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Abstract

Marine plants and animals are sources of a huge number of pharmacologically active 

compounds, some of which exhibit antineoplastic activity of clinical relevance. However the 

mechanism of action of marine natural products (MNPs) is poorly understood. In this study, 

proton NMR spectroscopy-based metabolomics was applied to unravel biochemical disorders 

induced in human MCF7 breast cancer cells by 3 lead candidate anticancer MNPs: 

ascididemin (Asc), lamellarin-D (Lam-D), and kahalalide F (KF). Asc, Lam-D, and KF

provoked a severe decrease in DNA content in MCF7 cells after 24 h treatment. Asc and 

Lam-D provoked apoptosis, whereas KF induced non-apoptotic cell death. Metabolite 

profiling revealed major biochemical disorders following treatment. The response of MCF7 

tumor cells to Asc involved the accumulation of citrate (×17 the control level, P < 0.001), 

testifying enzyme blockade in citrate metabolism, and the accumulation of gluconate (×9.8, P

< 0.005), a metabolite never reported at such concentration in tumor cells, probably testifying

glycolysis shutdown. The response to Lam-D involved the accumulation of aspartate (×7.2, P

< 0.05), glutamate (×14.7, P < 0.05), and lactate (×2.3, P < 0.05), probably in relation with 

the targeting of the malate-aspartate shuttle, as discussed. The response to KF involved

increased lipid accumulation (polyunsaturated fatty acids ×9.8, P < 0.05), and phospholipid 

and acetate derivative alterations. Altogether, this study demonstrates the potential of proton

NMR spectroscopy-based metabolomics to help uncover metabolic targets and elucidate the 

mechanism of cytotoxicity of candidate antineoplastic MNPs. 

Keywords: Marine natural products; MCF7 breast tumor cells; Apoptosis; NMR 

spectroscopy-based metabolomics; Metabolic targets.
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1. Introduction

There is a wide diversity of marine plants and animals from which a huge number of

pharmacologically active compounds have been isolated. Given their potent cytotoxicity, 

structural diversity, and mechanistic complexity, marine natural products (MNPs) recognized 

as clinically relevant antineoplastic agents are much less numerous [1]. Among small peptides 

and alkaloids, some have entered phase I and II clinical trials [1, 2], and very few are 

approved as orphan drugs by the European Commission and the Food and Drug 

Administration, including trabectedin in combination with doxorubicin for the treatment of 

platinum-sensitive recurrent ovarian cancer, and dehydrodidemnin B as a monotherapy for 

acute lymphoblastic leukemia and for multiple myeloma. However the mechanism of action 

of candidate antineoplastic MNPs remains greatly unknown. There is growing interest in 

metabolomics for investigating the molecular mechanism of action of drugs and identifying

enzyme or metabolic pathways as targets for these agents [3-5]. We sought to exploit 

advances in high resolution magic angle spinning (HRMAS) proton nuclear magnetic 

resonance (NMR) spectroscopy-based metabolomics [6] to get novel insights into the 

biochemical mechanism of action of 3 lead candidate anticancer MNPs: ascididemin (Asc), 

lamellarin-D (Lam-D), and kahalalide F (KF) in human MCF7 breast cancer cells.

Asc, a pyridoacridine alkaloid, displays an activity of topoisomerase II inhibitor and provokes

strong antiproliferative effects on human and murine leukemia cell lines [7, 8]. The 

mechanism of Asc-induced cell death was shown to implicate mitochondrial reactive oxygen 

species (ROS) production related to the reduction of the iminoquinone moiety of Asc, and 

DNA break formation [9]. Asc yields oxidative stress-dependent apoptosis through JNK-

dependent activation of caspase-2 [7, 10].

Lam-D, a pyrrole alkaloid, induces apoptotic cell death through stabilization of topoisomerase 

I-DNA covalent complexes, induction of DNA damage, and early disruption of the inner 
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mitochondrial transmembrane potential (MTP) in human breast and lung carcinoma cell lines 

[11]. It was also shown to inhibit several kinases relevant to cancer such as cyclin-dependent 

kinases [12]. Pyrrole-derived alkaloids of which Lam-D have been found to be potent 

inhibitors of ATP-citrate lyase (ACL, E.C.2.3.3.8) [13] and exhibit an in vitro aldose 

reductase (ALR2, E.C.1.1.1.21) inhibitory activity [14].

KF, a cycle depsipeptide, displays antitumor activity against breast, ovary, prostate and colon 

cancer cell lines [15]. KF interacts with lipid membranes [15] and cell lysosomes, induces the 

formation of large vacuoles in treated cell cultures [16], and provokes oncosis in human 

prostate and breast cancer cells [17]. KF has recently been studied in phase I clinical trial in 

advanced androgen refractory prostate cancer [18] and in phase II trial in advanced malignant 

melanoma [19]. 

The aim of this study was to use proton NMR spectroscopy-based metabolomics to uncover

biochemical disorders induced by Asc, Lam-D and KF in MCF7 breast cancer cells, and help 

identify metabolic targets and cytotoxicity mechanism of these candidate antitumor agents in 

relation with literature data. Our data reveal metabolic alterations in response to these MNPs 

that may be assigned to molecular targets. These new metabolic endpoints may serve the 

design of MNP-evaluating clinical trials in breast cancer.

2. Material and methods

2.1. Chemicals and reagents

The pyridoacridine alkaloid Asc was a gift from Bernard Banaigs (Laboratoire de Chimie des 

Biomolécules et de l’Environnement, Perpignan, France). The pyrrole alkaloid Lam-D and the 

small natural peptide KF were manufactured by PharmaMar (Madrid, Spain). 

Each MNP was solubilized in dimethylsulfoxide (DMSO, Merckeurolab, Strasbourg, France)

immediately before use in the culture medium. The DMSO concentration was maintained at a 
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final concentration of 0.5%. Eagle’s MEM-Glutamax medium, MEM vitamin solution, 

sodium pyruvate, non essential amino acids, phosphate buffered saline solution (PBS), 

gentamicin base, and propidium iodide were purchased from Gibco Invitrogen (Cergy 

Pontoise, France). Fetal calf serum was from Bio West (Nuaillé, France). Sodium dodecyl 

sulfate and Hoechst 33342 were purchased from Sigma-Aldrich (Saint Quentin Fallavier, 

France). D2O for NMR use was from SDS (Peypin, France).

2.2. Cell culture and treatment

Human estrogen-responsive breast adenocarcinoma MCF7 cells were purchased from the 

European Collection of Cell Culture (Salisbury, UK). Cells were plated in triplicate into 96-

well plates at a density of 3.5 × 104 cells/well for DNA content measurement, T75 flasks (1 ×

106 cells/flask) for quantification of apoptosis and microscopy analysis, or T180 flasks (10 ×

106 cells/flask) for NMR spectroscopy analysis. Cells were maintained as a monolayer culture 

at 37°C in humidified atmosphere containing 5% CO2 in Eagle’s MEM-Glutamax medium 

supplemented with 10% fetal calf serum, 1% MEM vitamin solution, 1% sodium pyruvate, 

1% non essential amino acids, and 0.04% gentamicine base. 

MCF7 cells were exposed to cytotoxic concentrations of MNPs: 5 µM Asc, 5 µM Lam-D, and 

3 µM KF [7, 17, 20], or the vehicule alone (0.5% DMSO, control group). At specified times 

(4, 6, 24, and 48 h after the onset of treatment), cells were harvested by trypsinization, rinsed 

once with PBS, then 2 times with D2O containing 1% PBS.

2.3. DNA content measurement

DNA content as an index of biomass of attached cells was measured after cell lysis, using 

Hoescht 33342 staining [21]. Briefly, 100 µl of a 0.01% sodium dodecyl sulfate solution in 

sterile distilled water was distributed into each well. MCF7 cells were then incubated for 1 h 
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at room temperature and frozen at -80°C for 1 h. After thawing (approximately 15 min), 100 

µl of Hoechst 33342 solution at 30 mg/l in a  hypersaline buffer (10 mM Tris–HCl, pH 7.4, 1 

mM EDTA, and 2 M NaCl) was added to each well. Plates were incubated in this solution for 

1 h, and protected from light at room temperature on a plate shaker. Fluorescence was then 

measured on a microplate fluorometer (Fluoroskan Ascent FL, Thermolabsystem, Helsinki, 

Finland) using an excitation wavelength of 360 nm, and an emission wavelength of 460 nm.

2.4. Cellular morphology and quantification of apoptosis

Cellular morphology was observed by microscopy analysis with fluorescence microscope (λ = 

365 nm, magnification 60×) after cell staining with Hoechst 33342 (0.5 mg/l, 10 min in the 

dark). Apoptosis was determined by fluorescence-activated cell sorting (FACS) with a 

FACScalibur (Becton Dickinson, France) after cell staining with propidium iodide. The 

percentage of apoptotic cells was quantified as the amount of attached cells in the sub-G1 

phase.

2.5. NMR spectroscopy analysis

Attached MCF7 cells were collected by centrifugation (1 500 g for 10 min at 4°C). Cell 

pellets were washed twice with 1 ml D2O containing 1% PBS and frozen at -80°C until 

analysis. Five to 10.106 intact cells were used for each NMR spectroscopy acquisition.

NMR Spectroscopy was performed on a small bore 500 MHz Avance DRX spectrometer 

(Bruker Biospin, Karlsruhe, Germany) equipped with a HRMAS probe. Unprocessed cell 

pellets were set into 4 mm diameter 50 µl free volume zirconium oxide rotor tubes. Rotors 

were spun at 4 kHz, and cooled at 4°C using the BCU-05 temperature unit. 

One-dimensional (1D) proton NMR spectra were obtained using a Nuclear Overhauser

Enhancement spectroscopy sequence with low power water signal presaturation (NOESYPR) 
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during both the 3.8-s relaxation delay and the 100-ms mixing time of the sequence. The 

spectral width was 12 ppm with 16K complex data points and 32 transients. This resulted in 

2:50 min acquisition duration. After Fourier transformation, low order phase correction and 

baseline spline correction were applied in a standardized way. One-dimensional NMR spectra 

were processed using deconvolution procedures, using the Topspin 2.0 software (Bruker 

Biospin, Karlsruhe, Germany).

A two-dimensional (2D) NMR spectrum was recorded immediately after the 1D NMR 

spectrum, using a Total Correlation Spectroscopy (TOCSY) sequence involving water signal 

suppression at low power, 6-ppm spectral bandwidth along both frequency axes, 256 samples 

along the first axis, and 2K samples along the second axis, 75-ms mixing time during which 

was applied the spin-lock pulse train (DIPSI-2), 1-s relaxation delay, and 16 repetitions. The 

2D NMR spectrum duration was 1:41 hour [22]. TOCSY spectra were reconstructed at both 

high (2K256) and moderately lower (256256) spectral resolution for signal attribution and

quantification, respectively. Baseline correction was applied using a second order polynomial. 

Then spectra were transferred on an Excel worksheet (Microsoft Co), and processed using a 

homebuilt routine designed to automatically compute spectral cross-peak volumes of 

identified signals. Quantification of metabolite content and variations between treated and 

control conditions exploited 1D and 2D NMR spectroscopy signals of metabolites, according 

to the previously published method [6, 23]. Quantified metabolites are listed in Table 1. 

2.6. Data processing and statistical analysis

Three to 5 independent experiments were performed for each time point. Statistical 

comparisons between control and treated groups were performed using the nonparametric 

Mann-Whitney test. Statistical tests were two-tailed unless specified. Differences were 

considered statistically significant for P < 0.05.

Table 1
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To identify NMR spectrum signals which were discriminating between treated and control 

groups, partial least squares-discriminant analysis (PLS-DA) was applied to 1D 1H-NMR 

spectra using the Tanagra 1.4.23 software (University Lyon2, France). One dimensional 1H-

NMR spectra were binned into 0.012 ppm rectangular buckets over the spectral area 4.30-1.10 

ppm. The variable importance in the projection (VIP) [24] was calculated for each spectral 

bucket, and used as the criterion for its discriminating value. The VIP is derived from a ratio 

of sums of squares, therefore is always positive, even if the signal of the corresponding bucket

decreases. A value of the VIP clearly above 1 was required to retain the discriminating power 

of a spectral bucket.

To assist the identification of unknown metabolites in the response to Asc, statistical TOCSY 

(STOCSY) [25] was computed from 1D 1H-NMR spectra. It provided a 2D representation of 

the square of the statistical correlation coefficient (r²) between unknown signals. In case of 

high correlation between unknown signals, there was presumption that they belonged to the 

same molecule, which assisted structural elucidation.  

As a means of integrating biochemical information in the response to Asc, hierarchical 

clustering was performed on metabolite data from control and Asc-treated groups using the 

Spearman’s rank correlation and displayed using the Treeview software [26].

3. Results

3.1. Global cytotoxicity to MNPs at selected doses

The exposure to all studied MNPs (Asc, Lam-D, and KF) yielded decreased DNA content, an 

index of cell biomass (Fig. 1A). DNA content significantly decreased in attached MCF7 cells 

after exposure to 5 µM Asc, 5 µM Lam-D, and 3 µM KF (30% ± 7%, 50% ± 4%, and 44% ± 

8%, at 24 h respectively, P < 0.01; 18% ± 7%, 21% ± 1%, 15% ± 7%, at 48 h respectively, P

< 0.01) (Fig. 1A). Figure 1
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Apoptosis was evaluated from the count of attached cells in the sub-G1 phase. Treatment with 

Asc yielded massive apoptosis at 24 h with 63% ± 6% (P < 0.01) apoptotic cells. The count of 

apoptotic cells at 4 h and 6 h was 8% ± 2% (P = NS) and 21% ± 3% (P < 0.01), respectively 

(Fig. 1B). The count of apoptotic cells exposed to Lam-D at 4 h, 6 h, and 24 h was 2% ± 1% 

(P = NS), 15% ± 4% (P < 0.05), and 4% ± 1% (P = NS), respectively (Fig. 1B). These data 

indicated that critical metabolic events in MCF7 cells took place before 6 h in response to Asc 

and Lam-D. 

Apoptosis was confirmed by fluorescence microscopy analysis. After a 6 h-exposure to Lam-

D and a 24 h-exposure to 5 µM Asc, apoptotic bodies could be seen (Fig. 1C). After 6 h, 

detached MCF7 cells exposed to Lam-D were observed with neither fluorescence microscopy 

nor FACS analysis. KF did not lead to apoptotic cell death, but to cell swelling as revealed by

optical microscopy (data not shown).

3.2. Global metabolite variations in MCF7 cell spectra in response to MNPs

In 1D 1H-NMR spectra of Asc-treated cells, intense signals of Cit were visible 4 h after the 

onset of treatment. Cit signals increased between 4 and 24 h (Fig. 2). Other obvious 

metabolite variations were the increase of alanine (Ala) and phosphoethanolamine (PE). 

In 1D 1H-NMR spectra of Lam-D-treated cells, intense signals of Asp were visible 4 h after 

the onset of treatment. Also, there was an increase in Glu, acetate (Ace), Ala, and ethanol

(EtOH) after a 6 h-exposure (Fig. 2).

In 1D 1H-NMR spectra of KF-treated cells, there was an increase in polyunsaturated fatty acid 

(PUF) and total fatty acid (tFA) signals 6 h after the onset of treatment (Fig. 2).

To identify signals which were discriminating between treated and control groups, PLS-DA

was performed on 1D 1H-NMR spectra (Fig. 3). In response to Asc, 1H-NMR buckets with a 

VIP value clearly above 1 corresponded to Cit, glutamine (Gln), Glu, Ala, glycine (Gly), 

Figure 2
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taurine (Tau), and PE. Also 5 unknown signals (X1 to X5) exhibited high VIP value and were 

subject to further analysis for identification. In response to Lam-D, discriminant signals were 

associated to Lac, Glu, Gly, phosphocholine (PC), Asp, Ala, and EtOH. On KF-treated cell 

spectra, discriminant signals were associated to PC, glycerophosphoethanolamine (GPE), 

PUF, and lipids (Fig. 3).

3.3. Identification of an unusual metabolite accumulating in response to Asc

PLS-DA revealed 5 new signals (X1 to X5) at 4.13, 4.02, 3.84, 3.82, and 3.76 ppm (Fig. 3). 

To identify the underling metabolite(s), we first focused on 2D NMR spectra, and identified 

strong spin system-related correlations at 3.76-4.13 ppm, 3.76-4.02 ppm, 4.04-4.02 ppm, 

3.66-3.76 ppm, and 3.83-3.66 ppm. Then, to evaluate whether these signals co-varied

therefore could originate from the same metabolite, we performed STOCSY on 1D NMR 

spectra of control and Asc-treated groups. It revealed strong statistical correlations 

overlapping with the spin system-related correlations of 2D TOCSY spectra of the Asc-

treated group (Fig. 4A). The interrogation of the BRMB database (www.brmb.wisc.edu) 

revealed that the co-variating unknown signals corresponded to gluconic acid (Gna) (Fig. 4B). 

Especially, we verified that the aforementioned signals did not match those of 

phosphogluconolactone or phosphogluconate (PGna), two classical metabolites. The

interrogation of the KEGG database (www.genome.ad.jp/kegg/kegg2.html) and the MetaCyc

database (www.metacyc.org) localized Gna in human cell metabolic pathways, as a product of

glucose dehydrogenation. To the best of our knowledge, this is the first time that Gna is found 

at rather high concentration levels in human tumor cells responding to an anticancer agent.

3.4. Quantitative metabolite profiling of MCF7 cells response to MNPs

Figure 4

Figure 3
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Variations of 33 quantified metabolites were calculated using the technique of 2D 1H NMR

spectroscopy-based metabolic profiling (Table 2). Data obtained at 6 h (n=4) and 24 h (n=4) 

were pooled together to improve statistical analysis.

In response to Asc, 3 metabolites accumulated dramatically: PUF (×4.45, P < 0.05), Cit 

(×17.18, P < 0.001), and Gna (×9.75, P < 0.005). Adenosine phosphates (AXP) were

decreased (×0.27, P < 0.05). Significant alterations occurred in Glu parent-metabolites with

the increase of Gln (×2.49, P < 0.05) and Ala (×2.32, P < 0.05), and a decrease of Asp (×0.30, 

P = NS). Methionine (Met) metabolism and transsulfuration were altered with the decrease of 

homocysteine (Hcy, ×0.42, P = NS), hypotaurine (hTa, ×0.14, P < 0.005), and Tau (×0.69, P

< 0.05), and a mild decrease of total glutathione (GSx, ×0.87, P = NS). The subset of other 

amino acids showed an increase of Gly (×2.67, P < 0.05) and lysine (Lys, ×1.90, P < 0.05). 

Phospholipid metabolism was strongly modified with the increase of PE (×2.37, P < 0.05), 

choline (Cho, ×1.39, P < 0.05), cytidine diphosphocholine (CDPC, ×1.76, P < 0.05), and 

phosphatidylcholine (PtC, ×1.33, P = NS), and the decrease of GPE (×0.64, P < 0.05), 

glycerophosphocholine (GPC, ×0.44, P < 0.01), and PC (×0.86, P = NS). 

In response to Lam-D, major metabolite variations were an increase of PUF (×12.66, P < 

0.05, one-tailed test), Asp (×7.21, P < 0.05, one-tailed test) and Glu (×14.73, P < 0.05). Other 

changes included the increase of Lac (×2.26, P < 0.05) and Ace (×9.56, P = NS). Myoinositol 

(MyI) was significantly increased (×2.68, P < 0.05). The other amino acid subset showed an 

increase of Ala (×3.94, P < 0.01), Gly (×2.75, P < 0.05, one-tailed test), and Lys (×2.58, P < 

0.05). Phospholipid metabolism was modified with an increase in CDPC (×2.22, P < 0.01), 

and a moderate decrease of PtC (×0.69, P = NS).

Exposure to KF led to a large increase in PUF (×9.76, P < 0.05) and tFA (×4.17, P < 0.05). 

Phospholipid metabolism was modified, with a decrease in PC (×0.56, P < 0.05), GPE (×0.65, 

P < 0.01), and GPC (×0.58, P = NS). N-acetylaspartate (NAA) decreased (×0.59, P < 0.05),

Table 2
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and Ace and Asp increased (×2.28, P = NS, and ×2.78, P < 0.05, respectively). The 

Transsulfuration subset included the decrease of Hcy (×0.55, P = NS), hTa (×0.45, P = NS), 

and GSx (×0.76, P < 0.05). In addition Gly was increased (×1.51, P < 0.05).

To assist the biochemical interpretation of the response to Asc, an unsupervised statistical 

description of data was performed using hierarchical clustering. The analysis clearly separated

treated from untreated cells (Fig. 5). Three major clusters were obtained. A first cluster 

containing Cit and Gna also included Ala, Gln, Lys, Cho, tFA, PE, PUF, CDPC, and PtC. It 

showed a close co-variation between Cit and Gna levels, and between these metabolites and 

phospholipid derivatives. A second cluster (NAA, AXP, total creatine (tCr), Tau, hTa, GPC, 

GPE, Ace, Hcy, proline (Pro), Asp, and MyI) showed a co-variation between metabolites 

associated to acetyl-CoA metabolism and bioenergetics (NAA, AXP, tCr, and Ace), also

between metabolites of transsulfuration and transmethylation (tCr, Tau, hTa, and Hcy). A 

third cluster showed a correlation between Lac, PC and GSx. An interpretation of biochemical 

disorders is proposed in Fig. 6 for Asc, Lam-D and KF.

4. Discussion

Metabolomics allows for a global assessment of a cellular state, integrating genetic regulation, 

activity of enzymes, and cellular environment [27, 28]. Compared with genomics or 

proteomics, metabolomics probably more closely reflects phenotype. There is growing 

evidence that metabolomics may provide novel insights into the mechanism of action of 

chemotherapy agents, and help identify metabolic pathways and enzyme targets for these 

agents [3-5]. The present study exploited new developments in HRMAS proton NMR 

spectroscopy-based metabolomics to help unravel the mechanism of the response of MCF7 

cells to MNPs. The major metabolic findings of this study are the identification of the 

response of MCF7 cells to Asc involving enzyme blockade in citrate metabolism, 

Figure 5

Figure 6
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mitochondrial-cytosolic carrier disorders in response to Lam-D, and increased lipid membrane 

catabolism in response to KF.

Asc, a marine topoisomerase II inhibitor, induces outer and inner mitochondrial membrane 

permeabilization through cytochrome c release from mitochondria into the cytosol, and loss of 

MTP [7]. Asc may also cleave DNA by ROS generation [9]. Although chemical and 

molecular biology of ROS, and cellular redox regulation have deserved extensive work, 

knowledge is very partial yet on biochemical disorders induced by oxidative stress. We found 

the accumulation of Cit, primarily a product of the TCA cycle, in cells treated by Asc. This 

finding may be explained by enzyme blockade at the 3 levels of citrate processing: 

mitochondrial aconitase 2 (Aco2), cytosolic aconitase 1 (Aco1), 2 isozymes (E.C.4.2.1.3) 

which catalyze dehydrogenation of Cit into isocitrate, and ACL, the first committed step in 

cholesterol and de novo fatty acid synthesis. It has been shown that superoxide specifically 

reacts with 4Fe-4S centers present in mitochondrial complexes I and II, Aco1 and Aco2 [29].

Aconitases can be rapidly inactivated by ROS [30]. It was reported that Cit levels increased in 

response to H2O2 suggesting the inhibition of Aco2 [30]. Accumulation of Cit was also

observed in vivo in chronic cardiomyopathy induced by doxorubicin, a topoisomerase II 

inhibitor [31]. We identified a specific response to Asc involving the accumulation of Gna. 

The presence of Gna was already reported in fibroblasts transfected by “cancer-causing 

genes” (telomerase catalytic subunit in combination with simian virus 40 large T antigen, 

small T antigen, and an oncogenic allele of H-ras) [32], but not at an as high level as that 

found in our study. Gna is a product of glucose dehydrogenation, and does not undergo 

further metabolism in human cells according to the KEGG metabolic network database. 

Therefore when Gna was produced, it accumulated. Another glucose metabolizing pathway 

involves ALR2, which catalyzes the reduction of the aldehyde form of glucose into sorbitol

with concomitant conversion of NADPH to NADP+. ALR2 inhibition was reported in vitro 
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for heterocyclic compounds isolated from marine tunicates [14]. The phosphorylated form of 

Gna, PGna, is a well-known intermediate of the pentose-phosphate pathway which plays a 

major role in the adaptive response to oxidative stress by regenerating NADPH [33]. It does 

not accumulate since it is metabolized into nucleic acids or back into glycolysis intermediates. 

In contrast, glucose rerouting towards Gna biosynthesis requires the inhibition or saturation of 

enzyme activities immediately downstream glucose. This could result from either blockade or 

rate-limitation of glucose 6-phosphate dehydrogenase (G6PD, E.C.1.1.1.49) or hexokinase 

(HK, E.C.2.7.1.1). G6PD may be limitated in case of a major need for NADPH caused by 

ROS accumulation. Alternatively HK may be blocked, as supported by the high concentration 

of Cit accumulating in response to Asc, and the close co-variation between Cit and Gna levels

shown by hierarchical clustering. In addition, blockade of mitochondrial membrane HK 

(HKII) may cause its detachment from mitochondrial voltage-dependent anion channel 

(VDAC), thus triggering loss of mitochondrial membrane potential and apoptosis [34].

Another finding of hierarchical clustering was the co-variation between Cit, Gna, and 

phospholipid derivatives (PE, tFA, PUF, CDPC, and PtC), in favour of phospholipid 

metabolism reprogramming following glycolysis downregulation probably through 

diacylglycerol limitation. Also the decrease of AXP, NAA, Lac, and Ace levels suggested the 

deficiency of bioenergetics pathways.

Lam-D, a pyrrole alkaloid, is considered as a bisfunctional pharmacologic effector agent. It 

triggers apoptosis and MPT, through either an indirect effect following topoisomerase I 

inhibition or a direct action on mitochondria [11]. Lam-D has no effect on mitochondrial ROS 

production in cancer cells as previously reported [35], meaning that aconitases are not 

affected by ROS, as confirmed by the low level of Cit in our study. MPT triggered by Lam-D 

may lead to decreased mitochondrial membrane potential and decreased ATP production [36]. 

According to our findings, this could be related to the alteration of Glu-Asp mitochondrial-
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cytosolic transport. Cytosolic aspartate aminotransferase (AAT, E.C.2.6.1.1) and 

mitochondrial AAT function in tandem with malate dehydrogenase (MDH, E.C.1.1.1.37) to

cycle the malate-aspartate shuttle (MAS). Ca2+ flux through mitochondrial membrane is a 

major regulator of the activity of MAS or Krebs cycle dehydrogenases which mostly exclude 

one another [37]. Lam-D has been shown to reduce the threshold of Ca2+ necessary for MPT 

induction which precedes inhibition of MAS, and triggers apoptosis in cancer cells [11, 36].

Therefore, in our study, Glu and Asp accumulated probably as a consequence of MAS

inhibition. Moreover, the downregulation of the NADH shuttle associated to MAS probably 

activated cytosolic NADH-consuming pathways [38] which could explain the increase in Lac 

and EtOH found in this study.

KF, a small natural peptide, was reported to significantly downregulate erbB3 protein 

expression in KF-sensitive, high ErbB3-expressing breast carcinoma SKBR3 cells, and to

efficiently inhibit the phosphatidylinositol 3-kinase/Akt signaling pathway in these cells [39]. 

This agent also provokes membrane disorders, and induction of oncosis through lysosomal 

membrane depolarization [40]. In this study, we observed cell swelling and fatty acid

accumulation in KF-treated MCF7 cells. Fatty acids could be released from membranes in 

phagosomes through the activity of lysosomal lipases. KF could induce mitochondrial 

autophagy as reported in PC3 prostate cells [17]. In our study, membrane disorders could be 

linked to other biochemical alterations including decrease in NAA, a precursor for membrane 

lipid synthesis through the supply of acetyl-CoA [41].

In conclusion, the major metabolic findings of this HRMAS proton NMR spectroscopy-based 

metabolomics investigation in MCF7 breast cancer cells are the identification of enzyme 

blockade in citrate metabolism in response to Asc, mitochondrial-cytosolic carrier disorders in 

response to Lam-D, and increased lipid membrane catabolism in response to KF. This in vitro 
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metabolomics study provides metabolic endpoints of the response of breast cancer cells to 

MNPs, also potential targets for these agents. These findings may serve the design of MNP-

evaluating clinical trials in breast cancer.
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Figure Legends

Fig.1 - Global cytotoxicity response of MCF7 cells to MNPs. Cells were exposed to the 

vehicle (CT, 0.5% DMSO) or ascididemin (Asc, 5 µM), lamellarin-D (Lam-D, 5 µM), and 

kahalalide F (KF, 3 µM) for 4, 6, 8, 24, and 48 h. (A) Cellular DNA content (% of CT) as an 

index of cell proliferation and cytotoxicity in attached cells was evaluated using the 

fluorescence intensity of Hoechst 33342 dye after a 6 h-, 24 h- and 48 h-treatment to Asc, 

Lam-D or KF. (B) Apoptosis was determined by FACS after cell staining with propidium 

iodide. The percentage of apoptotic cells was quantified as the amount of cells in sub-G1 

phase after exposure to Asc, Lam-D or KF for 4, 6, and 24 h. * P < 0.05, and ** P < 0.01 

(Mann Whitney test, treated vs. CT cells). (C) Nuclear morphology of attached MCF7 cells 

was assessed under fluorescence microscopy (magnification 60×), using Hoechst 33342 

staining, after 4 h, 6 h and 24 h exposure to CT, Asc, Lam-D or KF. Arrows indicate apoptotic 

bodies.

Fig.2- Typical 1D proton NMR spectra of the response to MNPs. Acquisition of 1D 

HRMAS 1H-NMR spectra was done at 4 h (top), 6 h (middle), and 24 h (bottom) in CT 

untreated, Asc-, Lam-D-, and KF-treated MCF7 cells. Abbreviations, as in text.*, fatty acid

signals.

Fig.3- PLS-DA reveals discriminating NMR spectrum signals. Spectral regions between 

4.3 and 1.1 ppm were binned in 0.012 ppm rectangular buckets, and processed by PLS-DA. 

The number of samples for the CT group was n=8 compared with n=8 (Asc, top), n=4 (Lam-

D, middle), and n=4 (KF, bottom). VIP, variable importance in the projection. The VIP value 

was chosen to provide between 10 to 15 discriminating signals (VIP=1.2 for Asc, and 1.5 for 
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Lam-D and KF). Abbreviations, as in text. EtOH, ethanol (CH2 signal at 3.65 ppm and CH3

signal at 1.18 ppm). X1 to X5, 5 unknown signals.

Fig.4- Identification of gluconic acid (Gna). (A) Top left, typical 2D TOCSY spectrum 

selection in the 3.55-4.20×3.55-4.20 ppm area, with the corresponding 1D NMR spectrum 

above, in the Asc-treated group; top right, typical 2D TOCSY spectrum in the CT group; 

bottom left, Gna spectrum from the BRMB database (www.brmb.wisc.edu); bottom right, 

STOCSY spectrum obtained from the Asc and CT sets of 1D NMR spectra (Asc, n=8 and CT, 

n=8). Attribution of signals is given in reference to Fig. 4B. (B) Chemical structure of Gna.

Fig.5 COLOR- Metabolite clustering applied to the response to Asc. Hierarchical 

clustering of individuals and metabolites shows clear separation between untreated control 

(CT) and Asc-treated (Asc) cell cultures. The metabolite-associated dendrogram is 

represented, and identified co-variations between sets of metabolites. Red, metabolite 

variations between average and average + 3×SD; green, metabolite variations between

average and average - 3×SD. 

Fig.5 GreyScale- Metabolite clustering applied to the response to Asc. Hierarchical 

clustering of individuals and metabolites shows clear separation between untreated control 

(CT) and Asc-treated (Asc) cell cultures. The metabolite-associated dendrogram is 

represented, and identified co-variations between sets of metabolites. Light grey, metabolite 

variations between average and average + 3×SD; dark grey, metabolite variations between

average and average - 3×SD. 
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Fig.6- Interpretative scheme of the response to MNPs. A summary of metabolic findings in 

MCF7 breast cancer cells, and their integration with literature data is given for the studied 

MNPs (main diagram, Asc and Lam-D; upper right inset, KF). 

Metabolite abbreviations: ACoA, acetyl-CoA; Ala, alanine; Asp, aspartate; Cit, citrate; FA, 

fatty acids; F6P, fructose 6-phosphate; Gna, gluconate; Glc, glucose; G6P, glucose 6-

phosphate; Glu, glutamate; Gln, glutamine; α-KG, α-ketoglutarate; Lac, lactate; Mal, malate; 

MAS, malate-aspartate shuttle; OAA, oxaloacetic acid; PGna, 6-phospho-gluconate; PUF, 

polyunsaturated fatty acids; ROS, reactive oxygen species. Enzyme abbreviations (italicized): 

Aco1; aconitase1 (cytosolic); Aco2, aconitase2 (mitochondrial); ALR2, aldose reductase; 

ACL, ATP-citrate lyase; G1D, glucose 1-dehydrogenase; GDH; glutamate dehydrogenase; 

HKI, hexokinase I; HKII, hexokinase II; PFK, phosphofructokinase.├ , enzyme inhibition; ↕ , 

arrest of metabolism due to the lack of expression of downstream enzymes. Measured 

metabolites are underlined; thick arrows, metabolite variation in response to Asc (black 

arrows), Lam-D (grey arrows), and KF. Numbers in brackets: literature references.
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Table 1. Proton chemical shift for identified and quantified metabolites. 

 

Subset of 
metabolites 

Chemical shift (ppm) in D20 Metabolite Abbreviation 

Bioenergetics 
derivatives/ 
Lipids 

8.53 Adenosine phosphates AXP 

1.34X4.11 Lactate Lac 

1.92 Acetate Ace 

0.88X1.33 Total fatty acids tFA 

2.79X5.33  Polyunsaturated fatty acids PUF 

2.55X2.75 Citrate  Cit 

(3.54,3.61)X3.28 Myo-inositol MyI 
    

Glutamate/ 
Aspartate 
derivatives 

2.06X3.76  Glutamate Glu 

2.12X2.46 Glutamine  Gln 

2.03X4.15 Proline Pro 

1.47X3.77 Alanine Ala 

(2.88,2.95)X3.99 Asparagine Asn 

(2.70,2.80)X3.89 Aspartate  Asp 

(2.50,2.70)X4.40 N-acetyl-aspartate NAA 

(1.68,1.92)X3.23 Arginine Arg 
    

Methionine/ 
Transsulfuration 
derivatives 

2.17X2.63 Methionine Met 

(1.72,2.13)X3.13 Polyamines  Ply 

2.17X2.72  Homocysteine Hcy 

3.035,3.93 Total creatine = creatine + phosphocreatine tCr 

(2.55,4.56)X2.17 Total glutathione = GSH + 2 x GSSG GSx 

2.63X3.35 Hypotaurine  hTa 

3.27X3.43 Taurine Tau 

    
Other amino 
acids 

3.56 Glycine Gly 

1.90X3.77  Lysine  Lys 

3.13X3.99 Phenylalanine Phe 

1.32X3.58  Threonine Thr 

    
Phospholidid 
derivatives 

3.22X3.99 Phosphoethanolamine  PE 

3.30X4.12 Glycerophosphoethanolamine GPE 

3.55X4.07 Choline Cho 

3.62X4.18,3.22 Phosphocholine PC 

3.26 Phosphatidylcholine PtC 

3.66X4.42 Cytidine diphosphocholine CDPC 

3.66X4.34 Glycerophosphocholine  GPC 

 

Table
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Table 2. Quantification of 33 metabolites in MCF7 tumor cells in response to marine natural 

products, using the technique of 2D 
1
H NMR spectroscopy-based metabolic profiling. Fold 

change in metabolite content in MCF7 cells exposed to 5 µM ascididemin (Asc), 5 µM 

lamellarin-D (Lam-D), and 3 µM kahalalide F (KF) averaged over time (6 h and 24 h).  

Significant changes are in bold. P-value was calculated using two-tailed Mann Whitney test. 

*One-tailed Mann Whitney test. Abbreviations, as in text. Parenthesis, SD. NC, not 

calculated. 

  Asc (5 µM)  Lam-D (5 µM)  KF (3 µM) 

Metabolite Fold change (SD) P-value    Fold change (SD) P-value    Fold change (SD) P-value  

AXP   0.27 (0.87)   0.015   0.36 (0.72)   0.1257   0.66 (0.47)   0.1264 

tFA  1.43 (1.42)  0.2476  6.67 (6.52)  0.3924  4.17 (2.97)  0.0412 

PUF  4.45 (2.06)  0.0154  12.66 (11.60)  0.0374*  9.76 (5.54)  0.0166 

Lac   0.80 (0.83)  0.5286  2.26 (1.30)  0.0415  1.63 (1.49)  0.2345 

Cit  17.18 (4.67)  0.0008  0.88 (0.82)  0.6104  1.31 (1.21)  0.7341 

Ace  NC  -  9.56 (7.01)  0.2345  2.28 (1.95)  0.2345 

MyI  0.94 (0.76)  0.6744  2.68 (1.41)  0.0108  0.35 (0.86)  0.1481 

Gna  9.75 (3.19)  0.0011  1.00 (0.22)  0.4892  1.28 (1.59)  0.6098 

Glu  1.58 (1.49)  0.5256  14.73 (10.10)  0.0107  1.10 (1.93)  0.4892 

Gln  2.49 (1.59)  0.0274  0.67 (0.74)  0.3082  1.62 (1.30)  0.0617 

Pro  0.52 (0.78)  0.3938  2.59 (1.91)  0.0613  1.19 (1.19)  0.3073 

NAA  0.74 (0.88)  0.2076  0.65 (0.87)  0.1742  0.59 (0.92)  0.0272 

Ala  2.32 (1.50)  0.0274  3.94 (2.72)  0.0066  1.07 (1.17)  0.7341 

Asn  0.73 (0.85)  0.2076  1.38 (1.35)  0.3082  1.03 (1.16)  0.7341 

Asp  0.30 (0.83)  0.1141  7.21 (5.03)  0.0415*  2.78 (0.96)  0.0174 

Arg  0.88 (0.87)  0.4008  1.38 (1.53)  0.3082  0.73 (0.80)  0.2345 

Ply  1.58 (1.21)  0.0929  1.31 (1.26)  0.3958  1.47 (1.35)  0.4969 

Hcy  0.42 (0.88)  0.1141  0.58 (0.79)  0.4439  0.55 (0.90)  0.3958 

tCr  0.60 (0.93)  0.0274  0.68 (0.79)  0.3082  0.97 (0.82)  0.7341 

hTa  0.14 (0.94)  0.0011  0.33 (0.84)  0.0272  0.45 (0.72)  0.1264 

Tau  0.69 (0.93)  0.0117  0.82 (0.77)  0.3082  1.23 (1.26)  0.4969 

GSx  0.87 (0.89)  0.4622  0.75 (0.82)  0.1742  0.76 (0.98)  0.0415 

Gly  2.67 (1.75)  0.046  2.75 (2.53)  0.0374*  1.51 (1.17)  0.0415 

Lys  1.90 (1.22)  0.0209  2.58 (1.70)  0.0415  0.70 (0.81)  0.3958 

Phe  1.10 (1.12)  0.3446  1.41 (1.28)  0.1742  0.84 (0.96)  0.8651 

Thr  0.94 (0.78)  0.7527  1.30 (1.59)  0.8651  0.57 (0.74)  0.2345 

PE  2.37 (1.25)  0.0117  1.25 (1.29)  0.2345  1.43 (1.35)  0.1264 

GPE  0.64 (0.92)  0.0117  0.87 (0.78)  0.8651  0.65 (0.96)  0.0066 

Cho  1.39 (1.07)  0.0117  0.96 (0.91)  0.8651  0.62 (0.88)  0.0617 

PC  0.86 (0.90)  0.5286  0.43 (0.87)  0.0415  0.56 (0.95)  0.0415 

CDPC  1.76 (1.37)  0.0209  2.22 (1.27)  0.0066  1.10 (1.11)  0.6104 

PtC  1.33 (1.16)  0.2076  0.69 (0.83)  0.0894  1.15 (1.11)  0.3082 

GPC   0.44 (0.92)   0.0087   0.88 (0.71)   0.0894   0.58 (0.88)   0.0894 

 

Table



Page 27 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure

http://ees.elsevier.com/bcp/download.aspx?id=190060&guid=1c1777ac-a5b4-4b6e-b922-f93a63abe56e&scheme=1


Page 28 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure

http://ees.elsevier.com/bcp/download.aspx?id=190074&guid=9faba610-e798-4d0b-9035-68459594349b&scheme=1


Page 29 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure
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Figure 5 greyscale
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