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Specialité: Physique des Matériaux, par

Robert JOHNE
Master de Physique

Strong light matter coupling in
semiconductor nanostructures - Nonlinear

effects and applications

Soutenue publiquement le 18/09/2009, devant la comission d’examen:

TEJEDOR Carlos (président & rapporteur)

LOZOVIK Yurii E. (rapporteur)

WOUTERS Michiel (rapporteur)

BLOCH Jacqueline (examinateur)

MALPUECH Guillaume (directeur de thèse)
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Introduction

Exciton-polaritons, mixed light-matter quasiparticles, are on their way to break in the

world of optoelectronic devices due to their unique properties. The exciton-polaritons

result from the strong interaction of excitons and photons in microcavities. If this inter-

action is larger than all broadenings induced by different sources, the microcavity operates

in the strong coupling regime which manifests itself in a mixed light-matter dispersion

with separated nonparabolic polariton branches. The polaritons behave as interacting

bosons in the low density limit and are the solid state counterpart of cold atoms. Thus,

exciton-polaritons confined in 2D planar microcavities are in the focus of active research

partly because of the possible device applications, partly because of the general interest

in fundamental effects, such as quasi Bose-Einstein condensation in solid state systems.

A second structure, for a long time less studied than the planar cavities, are 0D micro-

cavities. This field is growing rapidly in recent years due to new developed applications

for single- or two-photon sources in quantum communication and quantum information

and the substantial progress of fabrication technologies.

The present theoretical thesis is focused on nonlinear effects and possible applications

of exciton polaritons. The first chapter gives a general introduction to exciton-polariton

physics including the main important mathematical tools, cavity realizations, as well as

a small review on the main theoretical and experimental observations. Putting apart

the general introduction on exciton-polaritons, the thesis can be divided into the three

following parts discussed in chapters two, three and four.

The second chapter is devoted to the effects possible under resonant excitation, which

means that the pumping laser is in quasi-resonance with the polariton dispersion. In some

cases, the relaxation of polaritons toward the bottom of lower polariton branch can be

described by rate equations - the so called semiclassical Boltzmann equations. Once a

condensate in the ground state is formed, its behavior can be described by a nonlinear

Schrdinger equation, the Gross-Pitaevskii equation. We present a new theoretical ap-

proach which builds a bridge between the semiclassical approach and the coherent picture

using high order correlators. This theory is applied to the polariton parametric oscillator

and a transition between the two regimes is shown.

The second topic of the second chapter is the bistability of the polariton system.

9
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The polariton-polariton interaction results in a blue shift of the polariton dispersion with

increasing external pump intensity. If the driving laser beam frequency exceeds that of the

lower polariton branch by more than its linewidth, the density of polaritons can exhibit

abrupt transitions between different stable values, demonstrating a hystersis cycle. Close

to the stability edge, fluctuations become important for the transitions between the stable

states. We compare different approaches to describe these fluctuation-induced transitions.

In general, increasing the noise intensity leads to a narrowing of the hysteresis cycle.

Condensation phenomena and their applications are the subject of the third chapter of

the thesis. Quasi Bose-Einstein condensation of exciton-polaritons makes possible a new

device called polariton laser, which is strongly different from conventional lasers because it

requires no population inversion. Wide bandgap semiconductors, such as GaN and ZnO,

are probably the best candidates for a polariton laser working at room temperature. We

simulate the relaxation of injected particles towards the bottom of the polariton disper-

sion for a ZnO microcavity and show the huge difference of kinetic and thermodynamic

lasing thresholds. As a general result, larger Rabi splittings are advantageous for quasi-

equilibrium polariton lasing, which shifts ZnO even more into the focus for the fabrication

of such devices.

The unique spin structure of polaritons and polariton condensates creates another

fascinating new field of applications: spin-optronics. We propose two novel devices. The

first one is based on the Josephson effect of exciton-polaritons: the interplay of different

nonlinear effects can result in a chaotic behavior, which can be used to transmit useful

signals hidden in a chaotic background (chaotic communication) under the condition that

two chaotic systems can be synchronized. We show that the synchronization of such

systems and the high frequencies of the chaotic oscillations provide transmission rates

for the useful signal up to 50 Gb/s. In addition, in the framework of spin-optronics, a

polaritonic spin transistor is proposed, in analogy to the Datta and Das spin transistor

for electrons. This spin-optronic device is based on the spin-Meissner effect of polariton

condensates (suppression of the Zeeman splitting below critical magnetic field with a

modification of the polarization of the condensate). The polarization of the injected

particles is rotated and the transmission coefficient of such a device can be tuned by

changing the density of the polariton condensate.

Beside the planar microcavities, the strong progress in the fabrication of cavity struc-

tures opens the field of cavity Quantum Electro-Dynamics in solid state systems. This will

be the subject of the last chapter and the last part of the thesis. Therein, we develop the

proposal for the generation of entangled photon pairs based on the biexciton decay in a

quantum dot embedded in a photonic crystal. Several problems of the imperfect artificial

atom picture of the quantum dots can be overcome by engineering the strong coupling of

the exciton states with cavity modes. We believe that our proposal of a strongly coupled
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dot-cavity system could be a worthy candidate for ”on-chip” sources of entangled photon

pairs.
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Chapter 1

Microcavity exciton-polaritons -

general aspects

The quasiparticle called ”exciton-polariton”, or simply polariton, possesses both excitonic

and photonic properties. It can be formed in a microcavity, if the coupling between the

free exciton and the photon field inside of the resonator is larger than the dephasing in

the system. Due to the mixing of matter and light, polariton have unique properties,

which allow to study application physics as well as fundamental effects in solid state

materials. This means that on one hand polaritons are the best suited candidates for

a lot of applications in optoelectronic devices and on the other hand exciton-polaritons

open the possibility of quasi Bose-Einstein condensation in a solid state system, which

has drawn a lot of attention to the field.

The following chapter gives an introduction to the strong coupling regime and to the

physics of polaritons, discussion of the basic mathematical tools as well as the effects of

different cavity designs. In addition, a small review of milestone experimental and theo-

retical works is included.
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1.1 Two oscillator model of strong coupling

The exciton-polariton concept was initially introduced in bulk semiconductors by Hop-

field (1958) [1]. It was independently proposed by Agranovic (1959) [2]. The most fruitful

system, technologically and physically, from the beginning of the experimental observa-

tion of exciton-polaritons [3] were semiconductor heterostructures. Periodical structures

containing quarter wave layers of different materials with different refractive indices - the

Bragg mirrors - allow to trap the photons in the structure and quantum wells (QWs)

as active layers allow to confine the excitons. The latter effect reduces the dimensional-

ity and allows to place the exciton in the maximum of the electric field of cavity light.

Thus, the coupling between light and matter in semiconductor heterostructures is strongly

enhanced, which opens the possibility to observe the strong coupling regime.

The polariton can be considered as a new eigenstate, which arises from the coupling

of two oscillators - in our case one exciton and one photon. In this simple model, the

polariton can be seen as a chain process between the radiative relaxation of the exciton

emitting a photon and the reabsorption of this photon creating an exciton. Finally the

excitation, in form of a photon, finds its way out of the microcavity, which results in the

annihilation of the polariton. The Hamiltonian for free excitons and cavity photons can

be written as follows

H0 =
∑

k

EX(k)b†kbk +
∑

k

EC(k)a†kak. (1.1)

The operators b†k, bk, a
†
k, ak are creation and annihilation operators for excitons and

photons, respectively. The in-plane dispersion relation of excitons is

EX(k) = EX(0) +
~

2k2

2mX

− i~

2
ΓX(k), (1.2)

where mX is the free in-plane exciton mass and ΓX is the phenomenological decay rate

which governs the finite linewidth of the exciton resonance. The dispersion of the cavity

mode reads

EC(k) =

√

EC(0)2 +
~2c2k2

n2
C

− i~

2
ΓC(k), (1.3)

with nC as the cavity refractive index. The resonant energy of the cavity is denoted

EC(0) = hc/λ0, where λ0 is the resonant wavelength of the cavity. The decay rate ΓC(k)

accounts for the escape of cavity photons through the cavity mirrors. Around k = 0 the

cavity dispersion can be approximated by a parabola:

EC(k) ≈ EC(0) +
~

2k2

2mC

− i~

2
ΓC(k), (1.4)
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where

mC = EC(0)
n2

C

c2
=
hnC

cλ
. (1.5)

Introducing a linear coupling between exciton and photon, resulting from the interac-

tion of the light field with the dipole moment of the electron-hole pair, one can write the

coupling Hamiltonian in the following way

HXC =
∑

k

~Ωa†kbk +H.c., (1.6)

Ω =
d

2πa2D
b

√
NEX

~2ncλ0

, (1.7)

where d is the exciton dipole moment and N is the number of QWs within the cavity. The

coupling strength Ω between an exciton and one photon is proportional to the exciton

oscillator strength and to the number of QWs embedded in the cavity. Taking only one

exciton resonance into account and neglecting the imaginary part of Eqs.(1.3) and (1.4),

the description can be reduced to a two-level problem. The eigenstates of the system can

be found by diagonalization of the matrix

M(k) =

(
EX(k) ~Ω

~Ω EC(k)

)
. (1.8)

The eigenvalues of this matrix are given by:

det(M − λI) = 0 ⇔ (EX − λ)(EC − λ) − ~
2Ω2 = 0. (1.9)

Two solutions can be found for this equation, which read

EU(L) =
EC(k) + EX(k)

2
± 1

2

√
(EC(k) − EX(k))2 + 4~2Ω2, (1.10)

where EU and EL are the eigenenergies of the upper and lower polariton branch, respec-

tively.

The corresponding eigenvectors are given by

M(k)

(
XU(k)

CU(k)

)
= EU(k)

(
XU(k)

CU(k)

)
, (1.11)

with the normalization condition XU(k)2 + CU(k)2 = 1 and they can be written as

CU =
EU − EX√

~2Ω2 + (EU − EX)2
(1.12)

XU =
~Ω√

~2Ω2 + (EU − EX)2
. (1.13)
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(a) (b) (c)

lower polariton lower polariton lower polariton

upper

polariton

upper

polaritonupper

polariton

exciton

photon
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photon

exciton

photon
D D D

Figure 1.1 | Calculated polariton dispersions of a GaAs microcavity: The bare exciton and

photon dispersions are plotted blue and the resulting polariton dispersions are plotted red. The used

detunings are (a) ∆ = 0, (b) ∆ = −10 meV and (c) ∆ = 10 meV.

The eigenvectors corresponding to the second eigenvalue give similar results and the

relation between them can be derived to:

XL = CU , CL = −XU , (1.14)

where XU(L) and CU(L) are the Hopfield coefficients for the upper (lower) polariton branch.

The typical dispersion is shown in Fig(1.1)(a) calculated for a GaAs microcavity. This

dispersion has a clear non-parabolic shape, which plays a crucial role for example for the

parametric scattering.

It is possible to define upper and lower polariton annihilation and creation operators

as combination of exciton and photon operators:

pk = XL(k)bk + CL(k)a†k (1.15)

p†k = XL(k)b†k + CL(k)ak

puk = XU(k)bk + CU(k)a†k

pu†k = XU(k)b†k + CU(k)ak.

Using this transformation one can rewrite the Hamiltonian in the basis of polariton

operators in which it becomes diagonal, with the eigenstates being the exciton-polaritons.

The polariton Hamiltonian reads

Hp =
∑

k

EL(k)p†kpk +
∑

k

EU(k)pu†kpuk. (1.16)

The exciton-polariton wavefunction is a linear superposition of photon and exciton

wavefunctions. Of course, the photons themselves do not interact, so the interactions

should be included only for the excitonic part. More detailed, the Coulomb interaction
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Figure 1.2 | Observation

of the vacuum field Rabi

splitting [3]: The left figure

shows the reflectivity spectra

in dependence on the pho-

ton energy for various de-

tunings. The right figure

presents the anticrossing be-

havior of the reflectivity dips

in dependence on the detun-

ing.

between the carriers is responsible for an effective exciton-exciton interaction. This de-

scription of exciton in terms of weakly interacting bosons has been recently criticized by

Combescot et al. [4]. It is not our goal here to enter in this debate and to discuss the

quality of such description which we will use as a starting point of more complex the-

oretical developments which are detailed all along this document. The Hamiltonian for

excitons reads

HXX =
1

2

∑

k,k′,q

Vqb
†
k+qb

†
k′−qbkbk′ . (1.17)

The interaction of photon-like polaritons in the upper dispersion branch may be ne-

glected if this branch is not expected to be strongly occupied, as in our case. Transfor-

mation of the interaction Hamiltonian in the polariton basis yields

HPP =
1

2

∑

k,k′,q

V PP
q,k,k′p

†
k+qp

†
k′−qpkpk′ , (1.18)

with

V PP
q,k,k′ = VqXL(k + q)XL(k′ − q)XL(k)XL(k′). (1.19)

Finally, the total Hamiltonian reads

H = HP +HPP . (1.20)

This includes only the polariton-polariton interaction. Other interaction terms are

discussed in the framework of the Boltzmann equations and in the appendix.

In principle, the excitonic mode EX(0) is not necessarily degenerate with the cavity

mode EC(0). Introducing a small positive or negative detuning ∆ = EC − EX allows

to change the dispersion and to shift the properties to more exciton-like or photon-like,
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respectively. This can be seen already from the distances of the polariton states to the

initial exciton and photon dispersion in Fig(1.1)b and c. The excitonic component has a

strong influence on the scattering rates, which is important for the relaxation process of

polaritons in order to observe the quasi Bose-Einstein condensation, discussed in the first

part of chapter 3.

As noted above, the energies of the excitonic and photonic modes can contain imagi-

nary parts, which account for the dissipative processes in the system.

The seminal paper of Weisbuch et al. (1992) [3] was the starting point for the huge

investigation of microcavity polaritons. The authors report the observed vacuum field

Rabi splitting at 5K in GaAlAs with seven quantum wells. The left figure on Fig(1.2)

shows the reflectivity in dependence on the photon energy for different detunings varied

from the top to bottom. At the resonance of the cavity mode and the exciton confined in

the quantum well (zero detuning) a splitting between two modes around the quantum well

resonance is observed. Past the resonance (negative detuning) the strong coupling is lost

again. The right hand side figure gives the splitting of the dips observed in the reflectivity

measurements in dependence on the detuning. In contrast to the weak coupling regime,

where the bare cavity mode and the bare exciton mode manifest themselves as straight

lines, in the strong coupling regime a clear anticrossing at zero detuning takes place.

This is the clear signature of the strong light matter interaction. As mentioned above,

after this report the activities on microcavity polaritons increased enormously and the

physics of exciton-polaritons has found its way into university courses and specialized

textbooks [5, 6]. Room-temperature vacuum Rabi splitting has been observed for various

semiconductor materials and systems and especially wide gap semiconductors have drawn

a lot of attention. To the best of our knowledge the record vacuum Rabi splitting in

conventional semiconductor materials is about 100 meV for ZnO microcavities, as reported

recently [7].

1.2 Cavity design

A microcavity is an optical resonator with a typical thickness between λ/2 and 5λ/2, λ

being the wavelength of the studied optical mode. Micrometer- and submicrometer-sized

resonators use two different schemes to confine light. The first one is based on a single

interface reflection (e.g. on metallic surfaces) or on the total internal reflection at the

boundary between two dielectrics. The second scheme is based on the microstructures

periodically patterned on the scale of the resonant optical wavelength. As an example of

this scheme one can give for instance the Bragg reflectors with high reflectivity or photonic

crystals. In general, these structures can be combined to obtain a light confinement in all

three spatial dimensions.
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The resonant optical modes of each cavity realization have their own properties which

govern their use. One of the main measures of the quality of microcavities is the quality

factor Q. It is simply defined as the ratio of the resonant cavity frequency ωc and its

linewidth δωc, the latter being nothing else than the full width at half maximum (FWHM)

of the cavity mode:

Q =
ωc

δωc

. (1.21)

The Q-factor parametrizes the frequency width of the resonant enhancement. The

second measure is the finesse F , which is defined as the ratio of the free spectral range

(the frequency separation between neighboring longitudinal modes of the cavity) to the

linewidth (FWHM) of the cavity mode:

F =
∆ωc

δωc

. (1.22)

The Q-factor is the rate at which the optical energy decays from within the cavity. De-

cay processes can be absorption, scattering, or leakage through imperfect cavity mirrors.

Q−1 can be interpreted as the fraction of energy lost in a single round-trip around the

cavity. It follows that the exponentially decaying number of photons has a lifetime given

by τ = Q/ωc. The quality factor plays an important role, because the strong coupling

regime can only be achieved if the coupling between light and excitons is larger than all

losses. Therefore, low quality microcavities are not suited for the investigation of the

strong coupling regime. The quality factor and the lifetime of polaritons are also impor-

tant for the polariton relaxation and their condensation. For example, room temperature

polariton lasing from ZnO microcavities has not yet been observed due to the poor quality

of the microcavity structure, even though the strong coupling has already been observed

(which is in this case related to the problems to grow well adapted Bragg mirrors and the

huge number of impurities in ZnO).

The separation of longitudinal modes ∆ωc in a microcavity is inversely proportional to

the cavity length. Also transverse optical modes scale as the cavity length. It follows that

microcavities have fewer modes than macroscopic cavities and the tuning of modes to a

particular emission wavelength can become more important. The tuning is a big problem

for planar microcavities. In case of photonic crystal structures very advanced techniques

have been developed [8] which are discussed more in detail in chapter 4.

Finally the main important points, which should be kept in mind when considering

microcavities, are:

• optical losses or finesse,

• coupling to incident light,
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• optical mode volume,

• fabrication complexity and tolerance,

• incorporation of active emitters, and

• practicality of electronic contacting.

Optoelectronic devices based on optical microresonators that strongly confine photons

and electrons form a basis for next-generation compact-size, low-power, and high-speed

photonic circuits. By tailoring the resonator shape, size or material composition, the mi-

croresonator can be tuned to support a spectrum of optical modes with required polariza-

tion, frequency, and emission patterns. This offers the potential for developing new types

of photonic devices such as light emitting diodes, low threshold lasers, polariton lasers

etc. Furthermore, novel designs of microresonators open up very challenging fundamental-

science applications beyond optoelectronic device technologies. The interaction of active

or reactive material with the modal fields of optical microresonators provides key physical

models for basic research such as cavity quantum electrodynamics (QED) experiments,

spontaneous emission control, nonlinear optics, and quantum information processing.

However, high-Q microresonators of optical-wavelength size are difficult to fabricate,

as the Q-factor decreases exponentially with the cavity size, and thus in general the

demands for a high Q-factor and compactness are contradictory. A very wide range of

microresonator shapes has been explored over the years for various applications. We will

focus on planar microcavities with distributed Bragg reflectors as they are widely used

for polariton lasing devices and photonic crystal cavities with their application to low

dimensional active emitters like quantum dots. The latter will be a crucial prerequisite

for the source of entangled photon pairs presented in chapter 4.

1.2.1 Planar microcavities with DBRs

Planar microcavities are widely used for optoelectronic devices. The development of

microcavities is closely related to the development of solid state lasers. This started first

in the last century when the first solid state lasing diodes were fabricated. They simply

used the difference of the refractive index of active layer with the refractive index of the

surrounding air to build a resonator structure, which is the simplest realization of a Fabry-

Perot resonator. This works fine for lasing diodes, but the reflectivity of these, so called

edge emitters, remains low. Especially to observation of the strong coupling between

light and matter was far away to be realizable due to the broad cavity resonance. The

next step was to use distributed Bragg mirrors to increase the reflectivity of the resonator

structure. Vertical-Cavity Surface-Emitting Lasers (VCSEL) have been the next step in
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Figure 1.3 | Planar microcavity designs: (left) Planar microcavity structure designed for a pump

probe experiment [9], and (right) Sketch of a triple-microcavity structure (sample A) with three λ-GaAs-

cavities optically coupled via two intermediate AlAs/GaAs distributed Bragg reflectors (13 pairs each)

[10]. Each cavity contains a single 80 ÅIn0.05Ga0.95As quantum well. The substrate was polished to allow

transmission.

laser fabrication with significantly decreased lasing threshold because of the long photon

lifetimes.

Finally, the strong coupling regime was observed for a planar GaAlAs structure with

seven quantum wells inside. The advantage of quantum wells is to place the exciton exactly

at the maximum of the electric field distribution in the microcavity. This electrical field

acts on the dipole moment of the excitons and provides the coupling between light and

matter. In addition, embedding quantum wells inside of the Bragg mirrors reduce the

mode volume of the cavities.

A schematic structure of a microcavity designed for a pump probe measurement is

shown on the left in Fig(1.3). The two quantum well layers are at the position of the

electric field maximum in this 3λ/2 cavity. In addition, the pump and the probe beams

are shown in this figure. Up to now, almost all experiments on microcavity polartions

have been performed under optical excitation. Electrical injection of carriers for realistic

operating laser devices are still under investigation and first simulations have been done

only recently [11].

Of course, there are possibilities to extend these structures to double [12] or triple

cavities [10] (right hand side Fig.(1.3)) with interesting configurations for e.g. intercavity

optical parametric amplification.

A powerful method which allows to compute the optical properties of Bragg reflectors

or microcavities as a whole (in the linear regime only) is the transfer matrix method.

The idea is to represent the effect of each layer on the electromagnetic wave by a matrix,

and the wave itself by a vector with components of the electric and magnetic field. The

method is described in detail in [5] and we will not discuss it here.
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(a)

(d)

(b)

(c)

Figure 1.4 | Quantum

dots in mcrocavities:

(a) micropillar [13], (b) mi-

crodisk [14], and (c) photonic

crystal [15]. (d) shows the

corresponding electric field

inside the photonic crystal

cavity presented in (c) .

1.2.2 Quantum dots in cavities

Beside planar microcavities, there has been a huge interest in quantum dots embedded

in microcavities for applications in quantum information and quantum communication

proposes.

The easiest way to couple a quantum dot to a cavity mode is to grow a layer of quantum

dots and to fabricate a top and bottom reflector (see for example Refs. [16] and [17] for

entangled photon sources). Then a single dot can be addressed by µ-photoluminescence

technique. This standard technique requires always a pre-selection of quantum dot and

a precise measurement setup. One of the main problems is the challenging integration

of the optoelectronic devices on a chip, which is limited by the array of dots and the

pre-selection. These on-chip sources might be the future for the realization of quantum

communication and quantum information schemes.

Therefore it is crucial to find an appropriate cavity, which allows to couple the cavity

resonances exactly to one quantum dot and its resonances. Also the positioning of the

dot is an important feature because the dot should be placed exactly at the maximum

of the electric field to increase the coupling of light and matter. Different proposals have

been published recently for strongly coupled dot-cavity systems. Reithmaier et al. [13]

observed the strong coupling of a quantum dot embedded in a micropillar. Furthermore

strong coupling of a quantum dot to a microdisk cavity has been reported recently [14].

The most interesting structure (from our point of view, see chapter 4 for details) is a

quantum dot embedded in a photonic crystal. The strong coupling for such a system has

been shown recently [15, 18]. The basic structures used to observe the strong coupling

are shown in Fig.1.4.

Photonic crystals arise from multiple photon scattering within periodic dielectrics, and

also exist in 3D and 2D versions. The ideal 3D photonic crystal microcavity would be

a defect in a perfect 3D photonic lattice with high enough refractive index contrast, so
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that there is a bandgap at particular wavelength in all directions. In principle, this would

provide the highest optical intensity enhancement in any microcavity, however, currently

no fabrication route to such system has been demonstrated.

In contrast, 2D photonic crystals etched in thin high refractive index membranes

or films have shown the greatest promises, with the vertical confinement coming from

the interfaces of the membrane. Quality factors exceeding 105 with extremely small

mode volumes can be fabricated, which are advantageous for many applications. The

introduction of small defects in such planar microcavities and embedding a quantum

dot therein has been demonstrated [15, 19]. This allows to couple perfectly the cavity

resonances to the matter resonances and the strong coupling regime has been observed

[18, 15].

Also photonic crystal slabs are under investigation to create resonator structures for

planar active layers like quantum wells [20, 21]. The quality factor of such resonators will

exceed strongly the one of dielectric Bragg mirrors and the tunable bandgap of such struc-

tures inspires hope for the applications, for example in ZnO structures, where perfectly

adapted Bragg mirrors are still not available.

1.3 Bose condensation and dynamics of polaritons

In the rest of the chapter 1, we will concentrate on planar cavities and two-dimensional

polaritons, which is, by far, a more developed research area with respect to the field of

0D polaritons evocate in the previous section. The 2D polaritons are a mixture of cavity

photons and QW excitons. QW excitons are expected to behave as weakly interacting

bosons in the low density limit, which is, therefore, also the case for polaritons.

Therefore, one expects them to exhibit a bosonic phase transition known as Bose-

Einstein condensation (BEC). This possibility, when implemented, has become the first

example of Bose condensation in a solid-state system [22]. Imamoglu and Ram (1996)

were the first to point out the application of such a polaritonic condensate that would

emit coherent light. This coherent light emitter is called polariton laser. The buildup of

a coherent ground state population from an incoherent exciton reservoir can be seen as

a phase transition towards a Bose condensed state, or as polariton lasing effect resulting

from bosonic stimulated scattering. At this point the polariton relaxation kinetic come

into play due to the finite lifetime: the relaxation process should be fast enough to

populate the ground state of the system.

The configuration studied in this section is characterized by off-resonant excitation.

The carriers (electrons and holes) are injected electrically or optically, and then form

excitons. The excitons self-thermalize at their own temperature mainly through exciton-

exciton interactions. The reduction of the kinetic energy of the excitons and exciton-
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LP

UP

Pumping

phonon

emission

Bottleneck

region

Figure 1.5 | Relaxation of cav-

ity polaritons: Schematic dispersion

curves of the QW exciton and cavity

photon (blue, dotted), and the resulting

LP and UP branch (red). The two re-

laxation mechanisms, acoustic and op-

tical phonon emission, which can be

blocked by the bottleneck effect (right

hand side), and LP-LP scattering (left

hand side), which will be discussed

later, are depicted.

polaritons (in the region of strong coupling) takes place by interaction with phonons.

The particles relax towards the bottom of the lower branch of the polariton dispersion as

illustrated in Fig. 1.5 by phonon emission. The mentioned bottleneck effect, where phonon

scattering is no more efficient, will be discussed a bit later in this section. The polaritons

scatter finally to the bottom of the lower dispersion branch, where they accumulate. Once

again, the coherence of the condensate builds up from an incoherent equilibrium reservoir,

and the phase transition can be interpreted as a Bose-Einstein condensation.

The condensate emits spontaneously coherent light so that there is no population

inversion condition. In addition, in the special case of zero temperature and infinitely

long polariton lifetime, there is no threshold for the coherent condensate emission as it is

the case for conventional laser.

Moreover, because of the small polariton mass, critical temperatures larger than 300

K can be achieved. All these characteristics allow to suppose that polariton-lasers are

ideal candidates for the next generation of laser-light emitting devices.

1.3.1 Einstein’s proposal

The tendency of Bosons to accumulate in unlimited quantity in a single state is a very

fascinating property, which has drawn a lot of attention since the first proposal by Einstein

(1925) [23]. This property led him to the prediction of a new phase transition for an ideal

Bose gas. Let us consider N noninteracting bosons at temperature T in a volume Rd,

where R is the system size and d is the dimensionality. The distribution is given by

function

fB(k, T, µ) =
1

e
E(k)−µ

kBT − 1
, (1.23)
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Figure 1.6 | Quasi-Bose-

Einstein condensation of

microcavity polaritons

[22]: (a) Far field emission

pattern for three different

excitation powers at 5K

increasing form the left to

the right. (b) Energy re-

solved spectra of (a). A clear

BEC behavior is observable:

Increase and narrowing of

the real space luminescence

intensity accompanied by the

clear concentration of the

emission in the ground state

of the polariton dispersion.

(a)

(b)

where k is the particle d-dimensional wavevector, E(k) is the dispersion function of the

bosons, kB is the Boltzmann constant and µ is the chemical potential, which is a negative

number if the lowest value of E is zero.

To add an particle to the system the energy −µ is needed. Its value is given by the

normalization condition for the fixed total number of particles N ,

N(T, µ) =
∑

k

fB(k, T, µ). (1.24)

The thermodynamic limit means here an infinite system size and infinite number of par-

ticles, with a finite density. The total number of particles with separated ground state

population term in the thermodynamic limit reads

N(T, µ) =
1

e
−µ

kBT − 1
+
∑

k,k 6=0

fB(k, T, µ). (1.25)

The total boson density (in the thermodynamic limit) is given by replacing the sum

by an integral over the reciprocal space:

n(T, µ) = lim
R→∞

N(T, µ)

Rd
= n0 +

1

(2π)d

∫ ∞

0

fB(k, T, µ)ddk, (1.26)

where

n0(T, µ) = lim
R→∞

1

Rd

1

e
−µ

kBT − 1
. (1.27)

If µ is nonzero, the ground state density vanishes. On the other hand, the integral on the

right hand side is an increasing function of µ. So, if one increases the particle density n in
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the system, the chemical potential also increases. The maximum particle density which

can be accommodated following the Bose-Einstein distribution is therefore:

nc(T ) = lim
µ→0

1

(2π)d

∫ ∞

0

fB(k, T, µ)ddk. (1.28)

This function can be calculated analytically in the case of a parabolic dispersion rela-

tion. It converges for d > 2 and it diverges for d ≤ 2. This means an infinite number of

bosons can always be accommodated in the system following a Bose-Einstein distribution,

the chemical potential is never zero and there is no phase transition in 2 or less dimen-

sions. In higher dimensions, nc is a critical density above which it would seem no more

particles can be added. Einstein proposed that at such high densities the extra particles

collapse into the ground-state, whose density is therefore given by

n0(T ) = n(T ) − nc(T ). (1.29)

This is a phase transition characterized by the accumulation of a macroscopic number

of particles in a single quantum state. The key parameter in physics of Bose-Einstein

condensates is the chemical potential, which becomes zero at the transition.

For the 2D case we consider, the Bose-Einstein condensation is strictly speaking for-

bidden. However, transitions to a superfluid state called Kosterlitz-Thouless transition

can take place. In a finite 2D system a quasi-condensation of bosons is also possible,

because in this case the integral in Eq.(1.28) takes finite value, since the integration is

done on the reciprocal space excluding the diverging region around the ground state.

Beside atomic systems, quasi Bose-Einstein condensation has been observed in 2006 by

Kasprzak et al. [22] at 5K in a CdTe/CdMgTe microcavity with 16 quantum wells. Later

other reports about the observation of quasi-Bose condensation appeared in the literature

[24, 25, 26]. Fig(1.6) shows the results of this experimental paper. Fig(1.6) displays

pseudo-3D images of the angular distribution of the spectrally integrated emission. Below

threshold (left), the emission exhibits a smooth distribution centered around an emission

angle of zero degrees, that is, around k = 0. When the excitation intensity is increased,

the emission from the zero momentum state becomes predominant at threshold (center)

and a sharp peak forms at k = 0 above threshold (right). (b) shows the energy and

angle-resolved emission intensities. The width of the momentum distribution shrinks with

increasing excitation intensity, and above threshold, the emission mainly comes from the

lowest energy state at k = 0.

All specific ingredients of a true BEC have been observed: above some critical density,

condensation takes place in the ground state, out of a degenerate Bose gas fully thermal-

ized at 19 K. The phase-transition character of the phenomenon is clearly seen. It has

been later shown that, despite the finite polariton lifetime, the polariton gas can be in
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a thermal equilibrium with the phonon bath [27]. Spontaneous symmetry breaking has

also been demonstrated by measuring random (from pulse to pulse) polarization of the

condensate and studying its statistics in bulk GaN sample [26], where the polarization of

the condensate is not pinned.

1.3.2 Semiclassical Boltzmann equation

As mentioned before, in case of the polariton laser the microcavity is excited non-resonantly

and the injected carriers have to relax to the ground state to form a condensate. To de-

scribe this relaxation process and the relaxation dynamics one uses the rate equations, also

called Boltzmann equations. The classical Boltzmann equations describe the dynamics of

classical particles.

It was first proposed by Uhlenbeck and Gropper [28] to include into the Boltzmann

equation the quantum nature of the particles involved, taking into account their fermionic

or bosonic character. In this section we describe the derivation of the spinless kinetic

Boltzmann equation for bosons interacting with phonons. Finally, the main scattering

mechanisms in a semiconductor microcavity are presented briefly.

The starting point is the Liouville-von Neumann equation for a quantum system:

i~
dρ

dt
=
[
Ĥ(t), ρ

]
, (1.30)

where ρ is the density operator of the system in the interaction representation and Ĥ(t)

is the time dependent Hamiltonian describing the interaction of bosons and phonons. In

the following we will use polaritons instead of bosons, but of course, the procedure is valid

for all bosonic particles. The time dependent Hamiltonian reads

Ĥ(t) =
∑

k,k′

Vk,k′ei(Ωk′−Ωk−ωk′−k)tbk′−kaka
†
k + h.c. (1.31)

In Eq.(1.31) a (a†) are the annihilation (creation) operators for polaritons and b (b†)

are the annihilation (creation) operators for phonons with respect to the wavevector k,

Ωk is the energy of noninteracting polaritons and ωk is the energy of the phonon. Both

are given by dispersion relations. Finally, Vk,k′ is the transition matrix element.

The Liouville equation can be transformed by time integration of Eq(1.30) and resub-

stitution in Eq(1.30):

dρ

dt
= − 1

~2

∫ t

−∞

[
Ĥ(t),

[
Ĥ(τ), ρ(τ)

]]
dτ (1.32)

After the application of the Markov approximation, which means physically, that the

system has no phase memory, Eq(1.32) can be integrated and this yields
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dρ

dt
=

1

2

∑

k

∑

k 6=k′

Wk′→k(2a
†
kak′ρa†k′ak − aka

†
ka

†
k′ak′ρ− ρaka

†
ka

†
k′ak′) (1.33)

+
1

2

∑

k

∑

k 6=k′

Wk→k′(2a†k′akρak′a†k − ak′a†k′a
†
kakρ− ρak′a†k′a

†
kak),

where

Wk→k′ =
2π

~

∑

k−k′

|Vk,k′|2(0, 1 + nk−k′)δ (E(k′) − E(k) ∓ ~ωk−k′) . (1.34)

The use of the Markov approximation makes impossible any description of coherent

processes.

The density matrix can be factorized into the product of phonon density matrix and

boson density matrix corresponding to the different states in the reciprocal space by using

the Born approximation

ρ = ρph ⊗
∏

k

ρk. (1.35)

The populations of polariton states with wavevector k are given by the diagonal ele-

ments of the density matrix ρk: nk = Tr(a†kakρk). The same can applied to the phonon

density matrix. Both populations are assumed to be given by an equilibrium distribution.

One obtains
dnk

dt
= −nk

∑

k′

Wk→k′(1 + nk′) + (1 + nk)
∑

k′

Wk′→knk′ . (1.36)

To include pump, decay, and the polariton-polariton interactions, one can rewrite

Eq.(1.36)

dnk

dt
= Pk − Γknk − nk

∑

k′

Wk→k′(1 + nk′) + (1 + nk)
∑

k′

Wk′→knk′ , (1.37)

where Pk is the pump generation term, Γk is the particle decay rate and Wk→k′ is the total

scattering rate between states k and k′. This total scattering rate can be any physical

process i.e. interaction of phonons and polaritons.

It was first proposed by Uhlenbeck and Gropper [28] to include the quantum character

of the particles, by taking into account their fermionic or bosonic nature. The Boltzmann

equation for bosons is given in Eq.(1.37) and the corresponding equation for fermions

reads:

dnk

dt
= Pk − Γknk − nk

∑

k′

Wk→k′(1 − nk′) + (1 − nk)
∑

k′

Wk′→knk′ . (1.38)
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Equations (1.37) and (1.38) are called the semiclassical Boltzmann equations. A similar

procedure, mathematically slightly more heavy, can be used to describe the polariton-

polariton scattering process, which has been performed by Porras et al. (2002) [29].

The main task to be performed in order to describe the relaxation kinetics of particles

in this framework is to compute the scattering rates. One should first identify the physical

processes that provoke the scattering of particles. Then, the scattering rates can be

calculated using the Fermi Golden rule. This procedure is correct only if the scattering

processes are weak and can be treated in a perturbative way. Interactions should provoke

scattering of particles within their dispersion relation and should not provoke the energy

renormalization. In general, this can be not assumed for a strongly coupled microcavity.

One should first treat non-perturbatively the exciton-photon coupling giving rise to a

polariton basis. Then, the polaritons indeed can be said to weakly interact with their

environment, which provokes the scattering of polaritons within their dispersion relation

and the Boltzmann equations can be used. The scattering rates can then be calculated

in a perturbative way, because they are induced by weak interactions. Nevertheless, the

blueshift of the polariton dispersion can not be described within the Boltzmann equations

and further theoretical treatments are necessary [30, 31].

In a semiconductor microcavity the main scattering mechanisms identified are:

• Polariton decay (mainly radiative),

• Polariton-phonon interaction,

• Polariton-free-carrier interaction,

• Polariton-polariton interaction, and

• Polariton-structural-disorder interaction.

A detailed discussion and the calculations of the rates of these different scattering mecha-

nisms are presented in the appendix following the textbook [5]. These scattering rates are

closely connected with the names Malpuech [32], Tassone[33, 34], and Porras [29, 35], who

developed in their works the state of the art for the simulation of the polariton relaxation

dynamics.

Many phenomena linked with polaritons derive from their dynamical properties, even

their nature as a coherent superposition of the exciton and the photon is intrinsically

dynamic. The energy is exchanged between these two fields at a rate Ω/~, which lies

in the sub-picoseconds range. Another aspect of the dynamics is linked with their finite

lifetime, due to the escaping of the photons through the mirrors of the cavity.

One of the restrictions blocking the way toward a polariton laser is the speed of the

relaxation of the injected carriers, which is somehow limited by the shape of the polariton
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Figure 1.7 | Bottleneck effect in a

CdTe based microcavity [37]: (a)

shows the photoluminescence spectra

at 9K and negative detunings and (b)

shows the corresponding theoretical po-

lariton dispersion to indicate the posi-

tion of the polaritons. The relaxation

process to the dispersion minimum is

visibly blocked and the polaritons are

accumulated around k ≈ 2.7 106 m−1.

dispersion. One of the problems arising has been called the bottleneck effect, introduced

by Tassone et al. (1997) [33] and observed experimentally by Tartakovskii et al. (2000)

[36] and by Müller et al. (2000) [37]. The bottleneck appears because of the particularity

of the interaction with acoustic phonons. In the excitonic part of the dispersion the

exciton-polaritons relax towards the ground state via scattering with phonons. This

relaxation is faster than the particle decay, which is almost the excitonic one. Once the

edge of the strongly coupled part of the dispersion is reached, the polaritons still need to

dissipate some small amount of energy (in the meV range) to reach the ground state of

the trap. Depending on the steepness of the dispersion (that is, on the detuning), this

process, if assisted only by acoustic optical phonons, may be take a long time, longer

than the polariton lifetime in this region. Therefore polaritons can not strongly populate

the states of the dispersion minimum and they accumulate at the edge of the polariton

trap. Fig(1.7) shows the observation of the bottleneck effect taken from the experimental

paper of Müller et al. [37]. This effect manifests itself clearly in a strong maximum of the

photoluminescence intensity at the edge of the polariton dispersion minimum.

This bottleneck can be overcome using higher excitation powers, but this increases of

course the threshold of future polariton lasing devices. In fact there are other ways to

decrease the bottleneck effect. The increase of the number of quantum wells increases

the number of polaritons and scattering processes are improved. The ”magic” numbers

of quantum wells are 12 for GaAs, 16 for CdTe and 67 for GaN microcavities. At the

same time, more quantum wells means larger Rabi splitting, which is also favorable for

the relaxation process (see chapter 3.1). Malpuech et al. propose the scattering with

free carriers [38], and of course higher Q factors increase the polariton lifetime, which
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also helps to overcome the bottleneck effect. Finally, wide gap semiconductors, such as

GaN and ZnO, are predicted to be the good candidates for polarition lasers at room

temperature with an almost invisible bottleneck effect due to the higher Rabi splitting,

which makes the dispersion less steep and at the same time improves the efficiency of LO

phonons.

1.3.3 Gross-Pitaevskii equation

Once a polariton condensate is formed, the Boltzmann equations are no longer suitable to

describe the properties of the system. Since we deal with the properties of a condensate,

the coherence should not be lost in the description and therefore a new mathematical

treatment is necessary - the Gross-Piatevskii equation. This equation is based on the

Bogoliubov theory [39], which treats uniform Bose gases. This theory has been extended

to non-uniform and dilute Bose gas (a more general case) by Gross and Pitaevskii. We

will follow in this section the treatment of Ref. [40]. Similarly to the case described in the

previous chapter, the starting point is to consider the Hamitonian of weakly interacting

bosons without phonons.

In a Bose condensate (macroscopically occupied state) the field operator Ψ̂(r) can be

written in a basis of single particle wavefunctions φi. This results from the long range

correlations between the elements of the one-body density matrix and works also in the

nonuniform and dilute systems. The field operator has the following form

Ψ̂(r) =
∑

i

φiai, (1.39)

where ai(a
†
i ) are the annihilation (creation) operators of an particle in the state φi, which

obey the commutation relations

[
ai, a

†
j

]
= δij, [ai, aj] = 0. (1.40)

The wave function relative to the macroscopic eigenvalue N0, which is the population

of the ground state and, therefore, the number of particles in the condensate, plays a

crucial role in BEC and characterizes the so called condensate wavefunction. It is useful

to separate in the field operator the condensate term i = 0 from the other components:

Ψ̂(r) = φ0(r)a0 +
∑

i6=0

φiai. (1.41)

This is the natural starting point of the Bogoliubov approximation [39], which consists

of replacing the operators a0 and a†0 with the c-number
√
N0. This is equivalent to

ignoring the non-commutativity of the operators a0 and a†0 and is a good approximation for
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describing the macroscopic phenomena associated with BEC, where N0 =
〈
a†0a0

〉
>> 1.

In fact, the commutator between the operators a0 and a†0 is equal to one, while the

operators themselves are of the order of
√
N0. The Bogoliubov approximation is equivalent

to treating the macroscopic component of φ0a0 of the field operator (Eq.(1.41) as a classical

field, so that Eq.(1.41) can be written as

Ψ̂(r) = Ψ0(r) + δΨ̂(r), (1.42)

where we have defined Ψ0(r) =
√
N0φ0 and δΨ̂(r) =

∑
i6=0 φiai. If one can neglect the

non-condensate component δΨ̂(r), as happens, e.g. in dilute Bose gases at very low

temperatures, then the field operator coincides exactly with the classical field Ψ0 and

the system behaves like a classical object. The validity of the Bogoliugov approximation

is guaranteed by the occurrence of a macroscopic occupation of a single particle state

N0 >> 1.

The function Ψ0 is called condensate wavefunction and plays a role of an order pa-

rameter, which is a complex quantity, characterized by a modulus and a phase S(r):

Ψ̂0(r) = |Ψ̂0(r)|eiS(r). (1.43)

The order parameter characterizes the Bose-Einstein condensate phase and vanishes above

the critical temperature.

In order to study the interacting nonuniform Bose gases one must generalize the Bo-

goliubov theory. We will use the Bogoliubov field operator in its general form (Eq.(1.41)).

This implies that one can simply replace the operator Ψ̂(r, t) with a classical field Ψ0(r, t)

(the order parameter). This procedure has indeed a deep physical meaning: I the present

case the noncommutativity of the field operators is not important and one can describe

the electromagnetic field by classical function, i.e the Maxwell equations for electric and

magnetic fields. Here, the presence of a large number of particles in a single state permits

the introduction of the classical functions.

The starting point is the many-body Hamiltonian:

Ĥ =

∫
drΨ̂†(r)

[
− ~

2m
∆ + V (r) +

1

2

∫
dr′Ψ̂†(r′)V (r − r′)Ψ̂(r′)

]
Ψ̂(r). (1.44)

In fact, the interaction term of this Hamiltonian is the same as in the staring Hamilto-

nian to derive the semiclassical Boltzmann equations but here boson-phonon interactions

are neglected.

The next task is to obtain an equation, which governs the field Ψ0(r, t). For this

purpose we remember that the field operator Ψ̂(r, t), in the Heisenberg representation,

fulfills the exact equation
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i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
= (1.45)

=

[
−~

2∇2

2m
+ Vext(r, t) +

∫
Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)dr′

]
Ψ̂(r, t).

It would be wrong to replace Ψ̂(r, t) with Ψ0(r, t) for a realistic potential. The replace-

ment is however accurate if one uses an effective soft potential Veff = αδ(r′−r), where the

Born approximation is applicable. The soft potential should reproduce the same low en-

ergy scattering properties as the bare potential V. By assuming that the function Ψ0(r, t)

varies slowly on the distances of the order of the range of the inter-bosonic force, one can

substitute r′ for r in the arguments of Ψ0 to finally obtain the equation

i~
∂

∂t
Ψ(r, t) =

(
−~

2∇2

2m
+ Vext(r, t) + α|Ψ0(r, t)|2

)
Ψ0(r, t). (1.46)

For the case of 2D exciton-polaritons the interaction constant has been determined

numerically [34, 41] to

α =
6Eb|XL|2a2

B

S
, (1.47)

where Eb is the exciton binding energy, aB is the 2D exciton Bohr-radius, XL is the exciton

fraction of the lower polariton and S is the surface of the microcavity.

One important approximation is the negligence of dephasing processes in the Gross-

Pitaevskii equation. This means that the system is by definition coherent, which is the

opposite of the Born-Markov approximation used for the derivation of the Boltzmann

equations.

The validity of Eqs.(1.46) and (1.47) is not restricted to soft potentials, but holds,

in general, for arbitrary forces, the s-wave scattering amplitude providing the relevant

interaction parameter. Eq.(1.46) was derived independently by Gross (1961) [42] and

Pitaevskii (1961) [43] and is the main theoretical tool for investigating nonuniform dilute

Bose gases at low temperatures. It is also often called nonlinear Schrdinger equation.

To find the dispersion of the weak excitations of the classical field Ψ we follow the

description of [40]. One shall consider small deviations from the constant average value√
N :

Ξ(r, t) =
√
n+ Aei(kx−ωt) +B∗e−i(kx−ωt), (1.48)

where A and B are the small complex amplitudes. Substitution of this expression into

the Gross-Pitaevskii equation 1.46, linearization, and separation of terms with different
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exponential factors yields a system of linear equations with p = ~k:

~ωA =
p2

2m
A+ αn(A+B), (1.49)

−~ωB =
p2

2m
B + αn(A+B). (1.50)

The solution of this system of equations is the famous Bogoliubov dispersion law,

which is linear for small k and tends to the dispersion of a free particle in case of large k:

(~ω)2 =

(
p2

2m

)2

+
p2

m
αn. (1.51)

The change between the two regimes takes place when the energy becomes equal to

αn. Below this energy, the speed of excitations or the speed of sound in a dilute Bose gas

with interactions can be derived to

c =

√
αn

m
. (1.52)

One very interesting and fascinating property of condensates described by the Gross-

Pitaevskii equation is superfluidity. The superfluidity follows directly from the Landau

criterion: if the spectrum of elementary excitations satisfies this criterion, the motion

of the fluid cannot give rise to dissipation. These dissipationless fluid flows have been

studied in detail for atomic systems in the first half of the last century [44, 45].

Also excitons might be interesting depending on their density and on temperature.

They behave either as weakly interacting Bose gas, a metallic liquid, or an electron hole

plasma. A number of theoretical works have been published dealing with Bose conden-

sation of excitons [46, 47, 48, 49]. The key point of these formalisms is that they assume

infinite lifetimes of the semiconductor excitations. This means that the excitations should

have a lifetime much longer than the relaxation time. So dark excitons as for example

indirect excitons are good candidates for condensation phenomena. Recent works claimed

the experimental observation of exciton condensation and superfluidity [50, 51, 52, 53] but

the results have not been confirmed by theoretical works [54, 55] and a clear evidence of

ecxitonic BEC has not yet been achieved.

Let us now introduce the Landau criterion of superfluidity. We consider a uniform

fluid at zero temperature flowing along a capillary with a constant velocity v. Dissipation

may come only from the scattering with walls from the capillary. The basic idea of the

derivation is to calculate energy and momentum in the reference frame moving with the

fluid and in the static one. The link between the two frames is given by the Galilean

transformation. If a single excitation with momentum ~k appears, the total energy in

the moving frame is E = E0 + ǫ(k), where E0 is the energy of the ground state and ǫ(k)
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is the dispersion of the fluid excitations. In the static frame however, the energy E ′ and

momentum P ′ of the fluid read:

E ′ = E0 + ε(k) + ~kv +
1

2
Mv2 (1.53)

P ′ = p−Mv, (1.54)

where M is the total mass of the fluid. The energy of the elementary excitations in

the static case is ǫ(k) + ~kv. Dissipation is possible only if the creation of elementary

excitations is profitable energetically, which means mathematically:

ε(k) + ~kv < 0. (1.55)

Therefore, the dissipation can take place only if v > ε(k)
~k

. In other words, the flow

stays superfluid if the velocity is smaller than the critical velocity vc. This is the Landau

criterion:

vc = min

(
ε(k)

~k

)
. (1.56)

In the case of the parabolic dispersion vc is zero and there is no superfluidity, but in

case of the Bogoliubov dispersion, vc is the speed of sound and the fluid is superfluid for

all velocities smaller than vc.

Bose-Einstein condensation and superfluidity are also connected. If Ψ(r, t) is a solution

of the equation for the field operator in Heisenberg representation then

Ψ′(r, t) = Ψ(r − vt, t)e
i
~
(mvr− 1

2
mv2t), (1.57)

where v is a constant vector, is also a solution of the same equation. This follows directly

from the Galilean transformation of the field operator. In the moving coordinate system

the condensate wavefunction of a uniform fluid is given by Ψ0 =
√
n0e

−iµt/~, where n0 is

a constant. In the other case (the coordinate systems do not move), the order parameter

takes the form Ψ =
√
n0e

iS, where

S =
1

~

(
mvr −

(
1

2
mv2 + µ

)
t

)
(1.58)

is the new phase, while the amplitude n0 has not changed. It follows that the velocity is

proportional to the gradient of the phase:

vs =
~

m
∇S. (1.59)

This velocity is often called superfluid velocity. This equation establishes the irrota-

tionality of the superfluid motion. The phase of the order parameter is playing the role

of a velocity potential.
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Figure 1.8 | Superfluid motion of a polariton

droplet and collision with a structural defect

[56]: (c-I)–(c-III) shows the near field image for in-

creasing excitation. (c-IV)–(c-VI) are the momen-

tum space images. At high powers, the emission

patterns are show the onset of a superfluid regime

characterized by an undisturbed flow around the de-

fect (c-III). In momentum space, the approach and

eventual onset of a superfluid regime is evidenced

by the shrinkage (c-V) and then collapse (c-VI) of

the scattering ring while for low powers the elastic

scattering ring is observed. Panels (d) show the cor-

responding calculated images. The black solid dot in

(c-IV) and (d-IV) indicates the momentum coordi-

nates of the excitation beam.

In contrast to the basic theory and the superfluid velocity, the first observation of

quasi Bose-Einstein condensation of polaritons [22] did not support the superfluid picture.

Strong spatial patterns and a flat dispersion around k = 0 provoked a controversial

discussion of possible explanations. Various works tried to describe this effect using

different models [57, 58, 59] e.g. disorder effects and glassy phases [57].

Recently different groups claimed the observation of superfluidity of cavity polaritons

[60, 56, 61]. Fig(1.8) shows a series of images of a polariton droplet colliding with a

structural defect for different excitation powers (C-I–C-III) in real space and (C-IV–C-

VI) in reciprocal space [56]. The figures indicated from d-I to d-IV are the corresponding

theoretical simulations. The authors claim superfluid motion, as the polariton droplet

passes the defect characterized by an undisturbed flow around the defect (c-III and d-III).

For small excitation one see the typical parabolic wavefronts resulting from the scattering

with the defect (c-I and d-I).

Also under resonant excitation, Utsunomiya et al. [61] report the first observation of

interaction effects on the exciton-polariton condensate and the excitation spectra, which

are in quantitative agreement with the Bogoliubov theory [39]. The sound velocity de-

duced from their experiments is in the order of 108 cms−1. This value is eight orders

of magnitude larger than that of atomic BECs, which results from the fact that the po-

lariton mass is eight orders of magnitude smaller than the atomic mass and the polariton

interaction energy is seven orders of magnitude larger than the atomic interaction energy.

According to the Landau criterion (Eq. 1.56), the observation of this linear dispersion

in the low-momentum regime is an indication of superfluidity in the exciton-polariton

system. However, the polariton system is a dynamical system with a finite lifetime, so
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Figure 1.9 | Temporal evolution of the

photoluminescence of an CdTe-based

microcavity [63]: The pump is circularly

polarized and (a) at the positive detuning,

upper polariton branch and (b) negative de-

tuning, lower polariton branch. The filled cir-

cles (open circles) denote the σ+(σ−) emis-

sion. The deduced time evolution of the

circular polarization degree for positive and

negative detunings is shown in (c) and (d),

respectively. The inset shows the maximum

value of polarization degree at 20 ps in the

negative detuning case.

the Landau criterion might be modified on a quantitative level.

Nevertheless, the superfluidy of cavity polaritons call for future theoretical and exper-

imental works to understand this exotic bosonic behavior for the specific system of cavity

polaritons.

Especially the coherent propagation, which is associated with superfluidity [62] under

non-resonant pumping is one of the greatest experimental challenges in our days.

1.4 Spin and polarization of polaritons

When created optically, polaritons inherit their spin and dipole moment from the exciting

light. Their polarization properties can be fully characterized by a Stokes-vector or -

using the language of quantum physics - a pseudospin accounting for both spin and dipole

moment orientation of a polariton. Polaritons start to change their pseudospin from the

first moment of their creation in a semiconductor microcavity. Various effects are in the

origin of this pseudospin rotation, such as effective magnetic fields of various natures and

scattering effects with acoustic phonons, defects, and other polaritons. This richness of

possible pseudospin rotation sources make the dynamics of the polariton pseudospin very

unique and complex which manifests itself in nontrivial changes of the polarization of the

emitted light in dependence on the pump energy, time etc. as shown by Fig. 1.9.

The spin of excitons governs the polarization of the due to the recombination emitted

light. The conservation of spin allows the spin-orientation of excitons by polarized light

beams. This results in the polarization of the photoluminescence light. Excitation lasers

which are σ+ or σ− polarized excite J = 1 and J = −1 excitons, respectively. Linear

polarized light excites a linear combination of +1 and −1 exciton states, so that the total

exciton spin projection on the structure growth axis is zero in this case.
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The exciton itself is formed by an electron and hole, i.e. by two fermions having

projections of the angular momenta on a given axis equal to Je
z = Se

z = ±1/2 for an

electron in the conduction band with S-symmetry and Jh
z = Sh

z +Mh
z = ±1/2,±3/2 for

a hole in the valence band with P-symmetry. The holes with ±1/2 spin component are

called light holes, the others are called heavy holes. In bulk semiconductors both types

are degenerate, while in quantum wells the confinement lifts the degeneracy and the heavy

hole states are closer to the bottom of the well. Thus the ground-state exciton is formed

by an electron and a heavy hole. The total angular momentum has the projections ±1

and ±2 on the structure axis. Bearing in mind that the photon spin is 0 or ±1 and that

the spin is conserved in the process of photoabsorption, excitons with spin projection ±2

can not be optically excited, so they are called dark excitons. This induces directly, that

the excitons with projection ±1 are bright states. The dark states can be neglected in

the following consideration, but nevertheless, they can still come into play.

The polarization of exciting light cannot be retained infinitely long by excitons. Sooner

or later they loose their spin due to spin and dipole relaxation. The main important

mechanisms are: the Elliot-Yaffet mechanism, the D’yakonov and Perel mechanism, the

Bir-Aronov-Pikus mechanism, and the spin flip scattering between carriers and magnetic

ions.

In a key paper Maialle et al. [64] have shown that the third mechanism is the main

dominant for the quantum confined excitons in non-magnetic semiconductors. The long-

range electron-hole interaction leads to the longitudinal-traverse splitting of exciton states.

This splitting is responsible for rapid spin relaxation of excitons in quantum wells. This

has an important consequence for the description of exciton-polaritons in quantum wells:

the dark states can be neglected, which allows us to consider the exciton-polariton as a

two level system and use the well-developed pseudospin formalism for its description.

The unique spin structure of polaritons lead to various interesting effects with or

without the presence of magnetic fields: the optical spin Hall effect, an analog of the

Aharonov-Bohm interferometer [65], and the so called spin-Meissner effect [66]. The

latter one is described more in detail in chapter three in the framework of the Datta-Das

spin transistor of polaritons. For the other effects the interested reader should address

the references and the text books on microcavity polaritons [5, 6] for a more detailed

discussion.

1.5 Resonant effects

This section is focused on the effects observable under resonant or quasi-resonant ex-

citation. We will discuss in detail the parametric amplification and the bistability or

multistability because of intra-condensate interaction.
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Figure 1.10 | Parametric scatter-

ing of polaritons – Savvidis ex-

periment [9]: (a) Schematic paramet-

ric scattering, (b) sketched experimen-

tal setup and (c) reflected probe spec-

tra at τ = 0 ps for pump off, co-, and

cross-circularly polarized to the probe.

Pump spectrum on lower trace. Inset:

Reflected narrow band probe spectra at

τ = 0 ps, with pump pulse on/off, to-

gether with pump PL without probe

pulse.

(a)

(b)

(c)

1.5.1 Optical parametric oscillator

One of the most influential work demonstrating the bosonic character of polaritons is

that reported by Savvidis et al. (2000) [9]. The authors announce the observation of

low temperature (4K) stimulated scattering of polaritons in a pump-probe experiment.

They varied the angle of the resonant excitation to change the k-vector of the injected

polaritons. A sketch of the experimental setup is shown on Fig(1.10)(b). The cavity has

a various thicknesses around the average value of 3λ/2 which allows to access different

detunings. In the zero detuning case, the lower polariton branch was excited by varying

the angle of the pump beam. A weak probe excites with delay τ the k = 0 state. In

case of no pumping the reflected spectra shows the two polariton peaks separated by the

Rabi splitting, which is about 7 meV in the present case. When the pump is switched on

and for small delays τ an enhancement of the emission of the lower polariton branch was

observed. For a specific angle of Θ = 16.5 ± 2, the so called magic angle, the emission

rises up to a gain of 70. The measured intensity is shown on Fig(1.10)(c).

The nature of this process is the scattering of two pump polaritons (kp) into a signal

polariton at k = 0 and an idler polariton at 2kp. This takes place at the magic angle with

energy and momentum conservation. The whole process is sketched on Fig(1.10)(a). This

experiment supported strongly the polariton picture and brought three new features to

the polariton field:

First, polaritons can scatter strongly on each other, provided that both energy con-

servation and momentum conservation can be simultaneously satisfied in the two-particle
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collision. This effect requires a non-parabolic dispersion, which supports the polariton

picture.

Second, polariton scattering can be enhanced by the occupation of the final state. In

other words, polariton scattering can be stimulated, as expected for bosons.

Third, polaritons can be present in relatively large numbers at the bottom of the

polariton trap in spite of their short lifetime governed by photon decay.

There are different ways to describe the parametric scattering effect. We will briefly

present the semiclassical description and the three level model developed by Ciuti et al.

(2000) [67].

1.5.1.1 Semiclassical Description

The parametric scattering can be described using rate equations. These rate equations

for occupation numbers are closely linked to the Boltzmann equations (see Eq.1.36). The

advantage of the description is that it allows easily to account for all interaction processes

affecting the polariton relaxation. The important disadvantage is that the dressing of the

polariton dispersion can not be easily included in this model. In the resonant configuration

one can single out the states, where the energy-momentum transfer is very efficient and

dominates the system. This leads in the simplest case to a three level model containing

the ground or signal state, the pump state and the idler state. The names of these

states arise from similar physics in nonlinear optics. The losses, such as the dominant

radiative losses and the scattering processes driven by disorder, can be taken into account

by phenomenological decay rates. The disorder effects are neglected in this model, but

scattering with phonons can be taken into account. The broadening can be written as

1

Γk

=
|XL|2

∆ + Γphonons

+
|CL|2
γc

, (1.60)

where XL and CL are the exciton and photon Hopfield coefficients, respectively, ∆ is the

exciton inhomogeneous broadening, Γphonon is the phonon-induced broadening and γc is

the cavity-photon broadening. At low temperatures Γphonon << ∆ and in most of the

cavity samples ∆ ≈ γc. We will use Γ as the decay constant.

Using these rate equations, the system can be written as a set of three equations

ṅ0 = P0 − Γn0 − αn0ni(np + 1)2 + α(n0 + 1)(ni + 1)n2
p, (1.61)

ṅp = P0 − Γnp + 2αn0ni(np + 1)2 − 2α(n0 + 1)(ni + 1)n2
p,

ṅi = P0 − Γni − αn0ni(np + 1)2 + α(n0 + 1)(ni + 1)n2
p,

where

α =
2π

~2

|M |2
πΓ/2

. (1.62)
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M is the polariton-polariton matrix element of interaction, which is here approximately

equal to one fourth of the exciton-exciton matrix element of interaction. This system can

be easily solved numerically. In the cw excitation case P0 = Pi = 0, this gives n0 = ni

and the system can be reduced to two equations.

Using the evolution equation for the ground state population

ṅ0 = n0(Win −Wout) +Win, (1.63)

where Win and Wout include all channels for incoming and outgoing polaritons, respec-

tively. The threshold of parametric scattering is given by the condition Win −Wout = 0.

This implies

n0 =
αn2

p − Γ

α(2np + 1)
. (1.64)

The population n0 should be positive or zero. This is given by np =
√

Γ/α and using

np ≈ P/Γ yields

Pthres = Γ

√
Γ

α
= γ

~Γ

2|M | (1.65)

for the threshold of parametric scattering.

1.5.1.2 Quantum model

The quantum model has been developed by Ciuti et. al (2000) [67] and is similar to

the Gross-Pitaevskii approach discussed previously, but considering three modes. The

starting point is the Hamiltonian, where interactions with phonons and free carriers are

neglected. To obtain the equation of motion for polariton operators ak and a†k we write

the Heisenberg equation:

i~
dak

dt
= [ak, H] = ELP (k)ak +

∑

k,k′′

Eint
k,k′,k′′a

†
k′+k′′−kak′ak′′ + P (k), (1.66)

i~
da†k
dt

= [a†k, H] = E∗
LP (k)a†k −

∑

k,k′′

Eint
k,k′,k′′ak′′ak′a†k′+k′′−k + P (k),

where ELP is the lower polariton branch dispersion relation

Eint
k,k′,k′′ =

1

2
(Vk′,k′′,k−k′ + Vk′,k′′,k′′−k), (1.67)

and P (k) the polarization amplitude induced by an external pumping field.

Once again, only the signal, pump, and idler states are considered, and it is assumed

that all states are macroscopically and coherently occupied. In other words, the states

are assumed to behave as classical coherent fields and one can replace them by there
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c-numbers as it has been done first by Bogoliubov. Ciuti used the same approximations

but assuming three macroscopically occupied states. Keeping the signal and idler state

operators and replacing the pump state by a complex number, one can describe the system

by three equations:

− i~ȧ0 = ẼLP (0)a0 + Einta
†
2kp
P 2

kp
+ Pprobe(t), (1.68)

−i~Ṗkp
= ẼLP (kp)Pkp

+ EintP
∗
kp
a0a2kp

+ Ppump(t),

i~ȧ†2kp
= ẼLP (2kp)a

†
2kp

+ E∗
inta0P

∗2
kp
,

where

ẼLP (0) = ELP (0) + 2V0,kp,0|Pkp
|2, (1.69)

ẼLP (kp) = ELP (kp) + 2Vkp,kp,kp
|Pkp

|2,
ẼLP (2kp) = ELP (2kp) + 2V2kp,kp,0|Pkp

|2,

and

Ẽint =
1

2
(Vkp,kp,kp

+ Vkp,kp,−kp
). (1.70)

The advantage of this formalism with respect to the one presented in the previous

section is that it allows one to account for the energy renormalization processes driven by

the inter-particle interaction. Here, a blueshift of the three states considered is induced

by the pump intensity. The blueshift itself can result in another nonlinear effect, which

will be discussed in the next section. On the other hand, spontaneous scattering processes

and the phonon scattering cannot be described.

This system of equations can be easily solved numerically by replacing all operators

by complex numbers. Finally, further treatments given in detail in e.g. [6, 5] result in a

similar equation for the parametric scattering threshold. This illustrates the equivalence

of the semi-classical and quantum models in this aspect.

1.5.2 Bistability and Multistability

1.5.2.1 Bistability

An important feature of the resonant excitation scheme is the renormalization of the

polariton energies. This renormalization is observed in the polariton emission, but it plays

also a key role in the absorption of the pump light. Two situations can be distinguished.

If the laser is below the bare polariton energy, the absorption is simply reduced by the

pump-induced blue shift, which drives the mode out of the resonance. If the laser is above

the bare polariton energy, the polariton energy gets closer to the pump energy because of
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Figure 1.11 | Experimental obser-

vation of the polariton bistability

[68]: Variations of the signal output

power (in transmission) as a function

of the pump power for a pump detun-

ing ∆ = −0.42 meV. The gray curve

is the result of a theoretical fit. The

inset shows more clearly the unstable

branch and the series of intermediate

states that are obtained when varying

the input intensity in both directions.

the blueshift, which in turn increases the blueshift, that enhances the absorption and so

on. Two different regimes can be distinguished in this case. First, at low pump intensities

the polariton energy remains below the pump energy. At higher pump intensities the

polariton energy passes the pump energy and stabilizes above. This results in a dramatic

increase of the population of the pump state, as the absorption reaches a maximum by

passing the pump laser energy. The threshold is called bistable threshold, as there are

two possible polariton populations for the same pump intensity. The same effect can

be also due to the saturation of the exciton oscillator strength[69]. The bistability was

first observed experimentally in 2004 by Baas et al. [68]. Also the interplay of the two

nonlinear effects (parametric amplification and bistability) opened a interesting field of

research [70, 71]. To analyze the bistability theoretically the dynamics of the pump state

can be written as follows

˙̄Pkp
= i(ωkp

− ωp + iΓkp
)P̄kp

+ i
2

~
Vkp,kp,kp

∣∣P̄kp

∣∣2 P̄kp
+ Ppump(t). (1.71)

This last quantity should be zero in the stationary regime. Then multiplying Eq.(1.71)

by its complex conjugate and replacing P̄kp
by the population of the pump state and |P̄kp

|2
by the pump intensity Ip, one gets:

[(
(ωkp

− ωp) +
2

~
Vkp,kp,kp

Np

)2

+ Γ2
kp

]
Np = Ip. (1.72)

The experimental observation of the bistability of cavity polaritons [68] is shown in

Fig.(1.11). It is the so called s-shape. Increasing the pump intensity results in a clear

jump of the population at the turning point 1. Starting now from the upper branch

and decreasing the pump intensity, the populations drops down at turning point 2. This

exhibits clearly a hysteresis cycle, when the pump intensity is stepwise increased and

decreased. The part of the curve, which connect the two turning points is instable, which

can be analyzed by stability calculations using the famous Ljapunov exponents and adding
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a small perturbation. The turning points can be found by the condition dIp/dNp = 0,

which yields:

3(
2

~
Vkp,kp,kp

)2N2
p + 4(ωkp

− ωp)
2 + Γ2

kp
= 0. (1.73)

The bistability region is given if there are two positive different solutions for this

quadratic equation and thus one has the condition

ωp > ωkp
+
√

3Γkp
. (1.74)

It follows directly from this condition, that it is necessary to pump at least one

linewidth above the bare polariton state to observe the bistability. So, finally the so-

lution for the turning points reads

Np =
2(ωp − ωkp

) ±
√

(ωp − ωkp
)2 − 3Γ2

kp

6
~
Vkp,kp,kp

. (1.75)

The solution with the minus sign corresponds to the turning point with the higher

pumping. Plugging Eq.(1.75)into Eq.(1.72) leads to the pumping threshold intensity.

1.5.2.2 Multistability

It was first reported by Gippius et al. [72] that the polariton bistability can be expanded

to polarization multistability. It is shown that the interplay between the nonlinearity

caused by the polariton-polariton interactions and the polarization dependence of these

interactions results in a remarkable multistability of a driven polariton system, contrary

to the ordinary optical bistability in the spinless nonlinear case.

The polarization-dependent system can be described by the spinor Gross-Pitaevskii

equation

[
ω0 − ω − i

τ
+ α1|Ψσ|2 + α2|Ψ−σ|2

]
Ψσ +

Pσ

4τ
= 0, (1.76)

where the number of the particles in the system with spin σ is Nσ = |Ψσ|2, τ is

the polariton lifetime, and α1(2) is the matrix element of polariton-polariton interaction

in the triplet (singlet) configuration, respectively. A solution of this equation gives an

interesting hysteresis cycle of the polarization degree inside the microcavity. For a given

polarization of the pump and depending on the history of the pumping process, the

polariton polarization can, in general, take three different values. For instance, a linearly

polarized laser can create a strongly right circularly, strongly left circularly, or a linearly

polarized polariton state. This is illustrated in Fig(1.12) (a) in dependence on the intensity
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c)

Figure 1.12 | Multistability of cavity polaritons [72]: (a) Circular polarization degree of the

driven mode versus external pumping intensity for slightly elliptical pump, (b) Circular polarization

degree of the driven mode versus circular polarization degree of the pump, and (c) The pump intensity I

and polarization (color) versus the circular polarized components of the driven mode . Color shows the

polarization of the pump (bright green corresponds to linear polarization). The crosses mark the four

stable points for the driven mode corresponding to the same linearly polarized pump intensity. Arrows

show the three possible jumps in case if the pump intensity is slightly increased.

of the elliptical pump intensity and (b) in dependence of the polarization of the pump.

In both cases complicated hysteresis structures arise.

Figure (c) shows the functional dependence between σ+ and σ− components of the

polariton population and the intensity and polarization of pump calculated accounting

for the coupling between polaritons with opposite spins described by α1 = −0.1α2. This

value of α2 corresponds to recent estimations of Ref. [73]. The circular polarization degree

of the pump laser is represented by the color of the surface of solution and the intensity

of the pump is on the vertical z axis. The linear part of the polarization of the laser is

kept aligned along x direction. The green areas correspond to nearly linearly polarized

pumping. If the intensity of the pump increases, while its polarization is kept linear, the

system follows the black solid line and then the black arrows shown in the Fig.(1.12) (c).

One can see that from the critical point at the end of the solid black line the system can

jump into three possible stable points (shown by crosses). One of them corresponds to the

linearly polarized state and two others to nearly right- and left-circularly polarized states.

The choice of the final state by the system is random and is triggered by fluctuations.



Chapter 2

Resonant excitation

In this chapter, we discuss effects under resonant or quasi-resonant excitation of polari-

tons such as the polariton parametric scattering and the bistability. For the former one

we present a new theoretical approach which builds a bridge between the semi-classical

approach of the Boltzmann equations and the coherent picture using high order correla-

tors. Both regimes, the quantum nature and the transition to the classical Boltzmann

equation are shown. The second part of this chapter is focused on bistable transitions

of the nonlinear polariton oscillator and the influence of fluctuations near the stability

edge. This fluctuations result in a narrowing of the hysteresis cycle and have thus a strong

impact on experimental outcomes.

47
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2.1 Quantum kinetic equations for interacting bosons

2.1.1 Introduction

The systems of interacting bosons are the focus of experimental and theoretical research at

present. The interest in these systems is stimulated by recent experimental demonstration

of Bose Einstein condensation (BEC) of cold atoms [74, 75, 76] and exciton-polaritons

in microcavities [77, 22, 24, 25, 26]. BEC of cold alkali atoms is characterized by ex-

tremely low critical temperatures (in nanokelvin region), while exciton-polaritons can be

condensed up to room temperature. On the other hand, strictly speaking, BEC is for-

bidden in two-dimensional systems like planar microcavities, so the observed phenomena

[77, 22, 78, 24, 25] should be rather called a quasi-condensation of the polaritons in a finite

size system. In an ideal infinite planar microcavity there is no BEC, but a superfluid phase

transition may take place [62, 60, 61], which requires polariton-polariton interactions.

The dynamics of condensation of interacting bosons is an extremely complex process

which is successfully treated theoretically only in particular cases and using strong ap-

proximations. Here, we present a dynamical quantum model allowing the description of

various systems of interacting bosons and apply it to the microcavity parametric oscilla-

tors. Our model goes beyond existing theories as it relaxes the Born-Markov approxima-

tion. It allows describing the transition between the quantum and classical limits for the

microcavity polariton parametric oscillators (PPOs).

To be specific, we shall consider a system of nD interacting excitons and assume that

the following condition is satisfied:

nDa
D
B << 1, (2.1)

where D is the dimensionality of the system (D=1,2,3) and aB is the exciton Bohr

radius. We shall further assume that this excitonic system is strongly coupled with light

in a semiconductor microcavity. The presence of the photonic component results in the

extremely small effective mass of cavity polaritons (10−410−5 of the electron mass [5]),

while the excitonic component makes possible effective polariton-phonon and polariton-

polariton interactions. These factors are crucial for polariton BEC, whose critical temper-

ature was predicted to be relatively high (tens of kelvins for GaAs and CdTe microcavities,

up to room temperatures for GaN and ZnO cavities [5, 79, 80]).

Similar to the exciton condensate as studied theoretically by Keldysh and Kopaev

more than 40 years ago [81], polariton condensate emits coherent light and, thus can be

used for the creation of a new generation optoelectronic device known as ”polariton laser”

[82].

Investigation of the mechanisms of polariton redistribution (and bosons, in general)
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in the reciprocal space is crucial for the comprehension of the formation of BECs. For

the cavity polaritons, two mechanisms are of major importance: the polariton-phonon

and polariton-polariton interactions. The former is dominant at small densities, while the

latter becomes dominant in the nonlinear regime and especially at the bottleneck region,

where polariton relaxation with acoustic phonons is no more efficient [33]. Polariton-

polariton scattering is even more important in the case of resonant optical pumping that

creates coherent macroscopic population of polaritons at their lower dispersion branch.

In this case, two main nonlinear mechanisms have been identified, which are polariton

parametric scattering [83, 67, 10] and the blueshift of the polariton dispersion [78]. These

two mechanisms often occur simultaneously, leading to the number of intriguing nonlinear

phenomena such as bistability of the polariton system [68, 70, 84, 71].

As explained in the first chapter, the existing models of the PPO either consider all

three states involved in the parametric process as classical fields coupled by a four-wave

mixing process [71] or consider the case of cw pumping, neglecting the pump depletion

[83, 67].

The exception is the recent work of Glazov and Kavokin [85], where the hyperspin for-

malism was applied for the analysis of the parametric amplifier. The hyperspin formalism

allows describing up to a certain point the quantum correlations in a three-level system,

while its extension to more complex systems would require extremely heavy analytics.

Other works [70, 84] are based on Gross-Pitaevskii equations. This allows taking into

account all states of reciprocal space, but the decoherence or relaxation associated with

phonons are completely neglected as well as processes of spontaneous polariton-polariton

scattering.

In the following sections, we derive quantum kinetic equations for the system of inter-

acting bosons. They describe the dynamics of the occupation numbers and of nonclassical

offdiagonal four-particle correlators. We argue that decoherence process leading to the

decay of the nonclassical correlators leads to the transition between the quantum oscilla-

tory regime and semiclassical relaxation regime. We show that in the limit of very fast

dephasing, the system of quantum equations becomes similar to the semiclassical system

of Boltzmann equations. These quantum kinetic equations are then applied to describe

the three state model corresponding to the PPO.

2.1.2 Quantum kinetic equations for a system of interacting

bosons

Here and further, we consider a system of spinless interacting bosons, e.g., cavity polari-

tons. We address the readers interested in the spin dynamics of exciton-polaritons to the

recent review paper [86]. Here, we consider a model quantum system described by the
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Hamiltonian

H =
∑

k

εka
†
kak +

∑

k,q

Uk,qa
†
kak−q

(
bq + b†−q

)
+

1

2

∑

k,k′,q

Vk,k′,qa
†
ka

†
k′ak−qak′+q +H.c., (2.2)

where the operators ak are the boson annihilation operators for polaritons and bq – the

acoustic phonon annihilation operators. The first term corresponds to the free particle

motion, the second term describes exciton-acoustic phonon scattering, and the third term

describes polariton-polariton scattering. The latter arises from the Coulomb interaction

between the excitonic fractions of two colliding polaritons and plays a major role in

polariton relaxation. The matrix element of this scattering is determined by the exciton

binding energy EB, exciton Bohr radius aB, and the area occupied by the condensate S.

Roughly, it can be estimated as

Vk,k′;k′′,k′′′ = 〈k,k′|Vint |k′′,k′′′〉 ∼ EBa
2
B

S
X∗

kX
∗
k′Xk′′Xk′′′δk+k′−k′′−k′′′ , (2.3)

where Xk is a Hopfield coefficient giving the percentage of the excitonic fraction in the

state k, and the delta function ensures the momentum conservation during the scattering

act. An estimation of this quantity within the mean-field approximation [41] has given a

prefactor of 6 in the left hand side of Eq.(2.3) . We neglected in Eq. (2.3) the saturation

terms [29], assuming that condition (2.1) is satisfied.

When considering the dynamics of the polariton system described by Eq.(2.2), the

phonon field can be treated classically. The usual way to deal with it is to use the Born-

Markov approximation for the Liouville von Neumann equation for the density matrix of

the system. The resulting system of kinetic equations is of the Boltzmann type. This pro-

cedure is well described in literature (see, e.g., Ref. [87]) and we will not further consider

the interaction with acoustic phonons in the rest of the chapter. We note, however, that

a strong advantage of the approach we use, with respect to the models assuming the full

coherence as the Gross-Pitaevskii equations, is that it allows taking simultaneously into

account the coherent and noncoherent aspects of the polariton dynamics.

Let us now consider the term describing particle-particle interactions [last term in Eq.

(2.3)] . Formally, the Born- Markov approximation can be applied also in this case [88].

The justification of this approximation is, however, less straightforward since there is no

classical reservoir in the system. To consider the dynamics of the system, we start from

the Liouvillevon Neumann equation which reads

i~
dρ

dt
= [H; ρ] (2.4)

=
∑

k

εk

[
a†kakρ− ρa†kak

]
+

1

2

∑

k,q

Vk,k′,q

[
a†ka

†
k′ak−qak′+qρ− ρa†ka

†
k′ak−qak′+q

]
.
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It yields the following dynamics of the occupation numbers Nk = Tr(a†kakρ):

dNk

dt
= Tr

(
a†kak

dρ

dt

)
(2.5)

= −1

~

∑

k′,q

Im
[
Vk,k′,q

〈
a†k−qa

†
k′+qakak′

〉]
= −1

~

∑

k′,q

Im [Vk,k′,qAk,k′,q].

The right part of Eq. (2.5) contains the fourth-order correlators

Ak,k′,q =
〈
a†k−qa

†
k′+qakak′

〉
= Tr

[
ρa†k−qa

†
k′+qakak′

]
. (2.6)

It follows from Eq.(2.5) that the total number of particles in the system is conserved,

d/dt
∑

k Nk = 0, as it should be in the absence of damping. Note that Eq. (2.5) is

obtained from Eq. (2.4) without any simplifying assumptions. In order to take into

account the finite lifetime of exciton-polaritons, an additional term −Nk/τk should be

introduced into Eq.(2.5).

To complete the set of kinetic equations, we derive an expression for the temporal

derivative of Ak,k′,q which reads

dAk,k′,q

dt
= Tr

(
dρ

dt
akak′a†k−qa

†
k′+q

)
=
i

~
Tr
(
[ρ;H] a†k−qa

†
k′+qakak′

)
(2.7)

=
i

~
(εk′+q + εk−q − εk − εk′)Ak,k′,q +

i

~

∑

k′′,q′

[
Vk,k′′,q′

〈
ak′′a

†
k−q′a

†
k′′+q′

a†k′ak−qak′+q

〉

+Vk′,k′′,q′

〈
a†kak′′a

†
k′−q′a

†
k′′+q′

ak−qak′+q

〉
− Vk−q,k′′,q′

〈
a†ka

†
k′a

†
k′′
ak−q−q′ak′′+q′ak′+q

〉

−Vk′+q,k′′,q′

〈
a†ka

†
k′ak−qa

†
k′′
ak′+q−q′ak′′+q′

〉]
=

=
i

~
(εk′+q + εk−q − εk − εk′)Ak,k′,q + F1 + F2 + F3 + F4

In Eq. (2.7), we have expanded the sum of the sixth-order correlators into four parts,

F1+F2+F3+F4. At this stage, we are going to break the hierarchy decoupling the sixth-

order correlators. Our goal is to write a closed system of equations for the occupation

numbers and the fourth-order correlators Ak,k′,q.

Depending on the wave vectors, all the terms in Eq. (2.7) can be collected into four

distinct groups:

(1) The term F1 corresponds to the correlators with q′ = 0. It describes forward

scattering and reads

F1 =
i

~

∑

k′′

(Vk−q,k′′,0 + Vk′+q,k′′,0 − Vk,k′′,0 − Vk′,k′′,0) ×
〈
a†k′+qa

†
k−qakak′a†k′′ak′′

〉
(2.8)

=
i

~
Ak,k′,q

∑

k′′

(Vk−q,k′′,0 + Vk′+q,k′′,0 − Vk,k′′,0 − Vk′,k′′,0)Nk′′ ,
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where in the passage from the first to the second line we have used the mean-field

approximation, i.e., we neglected the correlations between the states inside and outside

the correlator. The term F1 is responsible for the energy renormalization of the states

coupled by polariton-polariton interactions.

(2) The second term F2 contains the correlators, in which the momenta of the three

incoming creation operators coincide with momenta of the three annihilation operators. It

accounts for the scattering of the states forming the correlator. As we shall argue below,

it is the most important correlator for the polariton-polariton interactions in the limit of

strong dephasing. We have

F2 =
i

~
Vk,k′,q[

〈
a†kaka

†
k′ak′ak′+qa

†
k′+q

〉
+
〈
a†kaka

†
k′ak′a†k−qak−q

〉
(2.9)

−
〈
a†k′ak′a†k−qak−qa

†
k′+qak′+q

〉
−
〈
aka

†
ka

†
k−qak−qa

†
k′+qak′+q

〉
]

≈ i

~
Vk,k′,q[NkNk′(Nk−q +Nk′+q + 1) −Nk−qNk′+q(Nk +Nk′ + 1)],

where we used the symmetry of the matrix element Vk,k′,q = Vk′,k,−q = Vk−q,k′+q,−q =

Vk′+q,k−q,q for the systems with time inversion and again used the mean-field approximation

to pass from the first to the second line.

Equation 2.9 has a clear physical sense. The term in its right hand side is the collision

term of the classical Boltzmann equation (note, however, that the Boltzmann equation

does not contain fourth-order correlators). We see that within this assumption the dynam-

ics of the fourth-order correlator is governed by the dynamics of the occupation numbers.

The term F2 provides the spontaneous buildup of correlators, which initially were absent

in the system, and also takes into account the effects of the final state bosonic stimulation.

(3) The term F3 contains the correlators, in which the momentum of one creation

operator coincides with the momentum of one annihilation operator. These correlators

are decoupled following the usual procedure used to decouple the Bogoliubov chains,

F3 ≈
i

~

∑

q′

Vk,k′,q′ [(Nk−q +Nk′+q + 1)Ak,k′,q−q′ − (Nk +Nk′ + 1)Ak−q′,k′+q′,q−q′ ](2.10)

+
i

~
[
∑

k′′ 6=k′+q

Vk′′,k−q,qNkAk′′,k′,q +
∑

k′′ 6=k−q

Vk′+q,k′′,qNk′Ak,k′′,q

−
∑

k′′ 6=k′

Vk,k′′,qNk−qAk′′+q,k′,q −
∑

k′′ 6=k

Vk′′,k′,qNk′+qAk,k′′+q,q].

It should be noted once more that the procedure of the decoupling used in Eqs.

(2.8)(2.10) is not exact. This way a number of the nonclassical correlators of the new types

will appear that do not conserve kinetic momentum, such as
〈
a†kak′

〉
, 〈akak′〉 ,

〈
akak′ak′′a†k′′′

〉
,
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etc. These correlators, however, cannot appear spontaneously as a result of the particle-

particle scattering. Their appearance is possible either due to the strong Rayleigh scat-

tering in the system or to the presence of the coherent excitation by two or more laser

beams. Both these processes are not considered here.

(4) Finally, the term F4 involves six creation or annihilation operators corresponding

to six different quantum states:

F4 =
i

~

∑

k′′, q′

k′′, k − q, k′ + q

6= k′, k − q′, k′′ + q′

Vk,k′′,q′

〈
ak′′a†k−q′a

†
k′′+q′a

†
k′ak−qak′+q

〉
+ (2.11)

+
i

~

∑

k′′, q′

k′′, k − q, k′ + q

6= k, k′ − q′, k′′ + q′

Vk′,k′′,q′

〈
a†kak′′a†k′−q′a

†
k′′+q′ak−qak′+q

〉
−

− i

~

∑

k′′, q′

k − q − q′, k′′ + q′, k′ + q′

6= k, k′, k′′

Vk−q,k′′,q′

〈
a†ka

†
k′a

†
k′′ak−q−q′ak′′+q′ak′+q

〉
−

− i

~

∑

k′′, q′

k − q, k′ + q − q′, k′′ + q′

6= k, k′, k′′

Vk′+q,k′′,q′

〈
a†ka

†
k′ak−qa

†
k′′ak′+q−q′ak′′+q′

〉
.

We assume that their contribution is negligible (F4 = 0). Neglecting the terms F4

means that the phase coherence between six distinct states is negligible because of some

finite amount of decoherence in the system. In the case of six-wave mixing experiments,

for instance, this approximation will fail. Also, for the polaritons in a random external

potential, there are strong high-order correlations between the states with different k,

resulting in the inhomogeneous polariton density. This means that the suggested approach

cannot describe spatially inhomogeneous systems with induced or spontaneous pattern

formation.

The set of Eqs. (2.5) - (2.11) describes the dynamics of bosonic systems account-

ing for particle-particle interactions beyond the Born-Markov approximation. Equations

(2.5)(2.11) allow for non-energy-conserving processes and may predict a qualitatively dif-

ferent dynamics of the system with respect to the Boltzmann equations. We remind
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that the Boltzmann equations only contain the occupation numbers, while in the system

(2.5)(2.11), the correlations between different states in the reciprocal space are described

by means of the fourthorder nonclassical correlators.

2.1.3 Decoherence and classical limit

The formalism derived in the previous section assumes that decoherence is weak enough in

order to allow for the conservation of the fourth-order correlator. In this section, we con-

sider the regime of strong decoherence. The decoherence processes are mainly governed

by forward scattering of polaritons with acoustic phonons which do not affect directly the

occupation numbers. Also, the polariton-polariton forward scattering treated beyond the

Born approximation[89] can contribute to the temporal decay of fourth-order correlators.

To treat the above mentioned process phenomenologically, one can introduce a decoher-

ence time τdec in Eq. (2.7). This approach allows one to describe a smooth transition

between the coherent regime described in the previous section and the Boltzmann limit.

It allows the equation for Ak,k′,q to be rewritten in the following form:

dAk,k′,q

dt
=

[
i

~
(ǫk−q + ǫk′+q − ǫk − ǫk′) − 1

τdec

]
Ak,k′,q + F1 + F2 + F3. (2.12)

Though this is not always the case in the experimental situation, let us suppose that

the decoherence time is short enough, so that V Ntot << 1/τdec, where Ntot is the total

number of polaritons in the system and V is the mean value of the matrix element. In this

case, one can neglect in Eq.(2.12) the terms corresponding to the energy renormalization

F1 together with the terms F3. The latter terms can also be neglected because they contain

a sum of the fourth-order correlators corresponding to different states in the reciprocal

space whose phases are more or less random so that together they yield a zero contribution

(random phase approximation ). Then, one can assume that due to the strong decoherence

the values Ak,k′,q reach their equilibrium much faster than the occupation numbers, i.e.,

we divide the variables in our system into the slow ones (occupation numbers) and the fast

ones (correlators). Such an approach is frequently applied in chemical kinetics, where all

the intermediate products of chemical reactions are considered to be in quasiequilibrium

(and in our case, the fourth-order correlator is indeed an intermediate product). Thus,

one can write

dAk,k′,k−q,k′+q

dt
=

[
i

~
(ǫk−q + ǫk′+q − ǫk − ǫk′) − 1

τdec

]
Ak,k′,k−q,k′+q + F2 = 0, (2.13)
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Ak,k′,k−q,k′+q =
F2

1
τdec

− i
~
(ǫk−q + ǫk′+q − ǫk − ǫk′)

(2.14)

=
iVk,k′,q

(ǫk−q + ǫk′+q − ǫk − ǫk′) + i ~

τdec

×

×[NkNk′(Nk−q +Nk′+q + 1) −Nk−qNk′+q(Nk +Nk′ + 1)].

Substituting this expression for Ak,k′,q into the equation for the occupation numbers

Eq.(2.7) , one obtains a set of semiclassical Boltzmann equations:

dNk

dt
=
∑

k′,q

Wk,k′,q[Nk−qNk′+q(Nk +Nk′ + 1) −NkNk′(Nk−q +Nk′+q + 1)], (2.15)

where the scattering rates are given by the following formula:

Wk,k′,q =
|Vk,k′,q|2

~

1/τdec

(ǫk−q + ǫk′+q − ǫk − ǫk′)2/~2 + 1/τ 2
dec

. (2.16)

One can see from Eq.(2.16) that the scattering rate is the fastest for the energy-

conserving processes, where it is simply given by the Fermi golden rule:

Wk,k′,q = |Vk,k′,q|2 τdec/~. (2.17)

For the non-energy-conserving processes, the probability of scattering is reduced by a

standard Lorentzian factor.

2.1.4 Polariton parametric oscillator

2.1.4.1 Formalism and parameters

The complete set of kinetic Eqs.(2.5)-(2.11) is extremely complicated and, for the general

case of nonresonant pumping, requires hard numerical modeling. In the present section,

we consider the simple example of polariton parametric amplifier (PPO) involving only

three quantum states. Due to the strong nonparabolicity of the lower polariton branch, a

pair of exciton-polaritons created by the pump pulse at the so called magic angle scatters

into nondegenerate signal and idler states with both energy and momentum conserved, as

shown in Fig. (2.1) Our goal is to describe the transition from the Boltzmann limit to the

coherent regime. We do not consider here in detail the selection of the signal-idler states

among the continuum of polariton states. The selection problem, however, is far from be-

ing trivial because of strong renormalization of the polariton branches with the increase of

the pump intensity. At high polariton density, the conservation of energy and momentum
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Figure 2.1 | Parametric scatter-

ing: Polariton dispersion (blue) and

schematic parametric scattering of two

pump polaritons into signal and idler

polaritons at the magic angle. The bare

cavity and exciton energies are shown

dashed.

takes place for the states essentially different from those in the low density limit [70, 84].

Bearing this in mind, we consider here the simplest model based on the assumption that

the PPO may be described by only three quantum states, namely, the pump, signal, and

idler states. An advantage of our formalism with respect to the precedent ones derived in

the same spirit [67, 71] is that it allows to take into account simultaneously signal-idler

correlation and pump depletion. The Hamiltonian of this system can be written in the

following form:

H = (ǫsa
†
sas + ǫia

†
iai + ǫpa

†
pap) + U(|Xs|2a†sas + (2.18)

+|Xp|2a†pap + |Xi|2a†iai)(|Xs|2a†sas + |Xp|2a†pap + |Xi|2a†iai) +

+(V a†pa
†
pasai + V ∗apapa

†
sa

†
i ),

where the indices p, s, and i correspond to the pump, signal, and idler, respectively.

The first term describes free particles, the second one describes energy blueshifts (X is the

Hopfield coefficient corresponding to the percentage of the exciton fraction in each of the

states), and the third term corresponds to the parametric process. Equations (2.7)-(2.11)

reduce in this case to
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dNs

dt
= −Ns

τs
− 2

~
Im
{
V
〈
a†sa

†
iapap

〉}
= −Ns

τs
+

2

~
Im {V A} , (2.19)

dNi

dt
= −Ni

τi
+

2

~
Im {V A} , (2.20)

dNp

dt
= −Np

τp
− 4

~
Im {V A} + P

~
2τ−2

p

δ2
p + ~2τ−2

p

, (2.21)

dA

dt
= −(

1

2τs
+

1

2τi
+

1

τp
+

1

τdec

)A+
i

~
δPPOA+ (2.22)

+
iV

~
[N2

p (Ns +Ni + 1) − 4NsNi(Np + 1)],

where we have introduced the polariton lifetimes and external pumping term P ; E0

is the energy of the pump laser and τdec is the decoherence time. If pump depletion and

decoherence are neglected, we recover the results obtained earlier by Ciuti et al. [67].

One can see that there are two energy detunings that play a crucial role. The first one,

in Eq. (2.19), is the energy difference between the laser and the renormalized pumped

polariton state. It is responsible for the bistable behavior of the PPO and will be referred

to as the pump detuning in our further consideration,

δp(Np) = E0 − ǫp − U |Xp|2(|Xp|2Np + |Xs|2Ns + |Xi|2Ni). (2.23)

The second detuning, in Eq. (2.19), represents the dynamical energy mismatch be-

tween renormalized signal, pump, and idler states of the PPO:

δPPO(Np, Ns, Ni) = (ǫs+ǫi−2ǫp)+U(|Xi|2+|Xs|2−2|Xp|2)×(|Xp|2Np+|Xs|2Ns+|Xi|2Ni).

(2.24)

In our numerical simulations, we consider a realistic case of a GaAs microcavity similar

to that in Ref. [9]. The Rabi splitting is 6 meV and the cavity photon lifetime is τph = 2

ps. The signal, pump, and idler lifetimes are respectively given by

τs,p,i =
τph

1 − |Xs,p,i|2
. (2.25)

The exciton-exciton matrix element of interaction is taken as [85] U = 6Eb(a
2
b/S),

where Eb = 10 meV is the exciton binding energy, ab = 100 Åthe two-dimensional (2D)

exciton Bohr radius, and S the surface of the laser spot for which we take a lateral size

of 5 µ m.

2.1.4.2 Single mode dynamics under the cw laser pumping

In order to separate the contributions of the two main nonlinearities in the system, we

first consider the case of a single mode system with δp(0) > 0. Figure (2.2)(a)shows the
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(a) (b)

Figure 2.2 | Single mode model for a positive detuning δp(0) = 0.25 meV: (a) Pump population

versus pump intensity which is adiabatically increased (solid line) or decreased (dashed line). (b) Detuning

δp(Np) versus the pump intensity adiabatically increased (solid line) and decreased (dashed line).

steady state polariton population versus cw pumping whose energy lies above the bare

energy of the pumped state. cw pumping is adiabatically turned on (solid line) and turned

off (dashed line). Figure (2.2)(b) shows δp(Np) for the same pumping conditions. One

can see the typical hysteresis cycle of a bistable system. At low pumping, Np depends

superlinearly on P. The absorption of light by the mode decreases the value of |δp(Np)|,
which, in turn, results in the increase of the absorption. This process finds its paroxysm

at the turning point of the curve where δp(Np) changes sign. In the model case which we

consider here, the pump population jumps by a factor of 5 at this point. Above this point,

Np depends sublinearly on P since further increase of pumping provokes an increase of

|δp(Np)|, which limits the increase of absorption. If P is decreasing, similar processes take

place except that the turning point is situated at lower P than in the case of increasing

pumping. All these processes result in the typical hysteresis cycle shown in Fig. (2.2).

The hysteresis strongly affects the dynamics of the PPO as has been first outlined in Refs.

[70] and [84], and as we shall see in the next subsections.

2.1.4.3 Dynamics of three modes under steplike onset at t=0

We first focus on the establishment of the steady state regime under cw pumping switching

at t = 0. Figure (2.3)(a) shows the signal and the pump state populations versus the

pump laser intensity. The pump laser energy is now taken to be resonant with the bare

polariton energy so that no bistability is expected. We also take δPPO(0, 0, 0) = 0. The

parametric process starts to be efficient for rather low pump intensities and small polariton

populations, so that the corresponding value of δp remains smaller than the linewidth [Fig.
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Figure 2.3 | Three modes model with resonant excitation of the pump state δp(0) = 0:

(a) Steady state signal (black) and pump populations (blue) versus the cw pump intensity which is

adiabatically enhanced. (b) Detuning δp(Np) versus the pump intensity adiabatically enhanced. (c)

Time dependence of the signal (black) and pump populations (blue) for a pumping intensity of 1014

particles/s. The corresponding particle density in the steady state is 2.3x109cm−2.

(2.3)(b)] . Figure (2.3)(c) shows the temporal dynamics of the signal and pump states

under cw excitation far above threshold. The buildup time of the signal is about 50

ps and it is longer than that of the pump state. However, the signal dynamics is quite

smooth and shows no oscillations. In this regime, we do not expect that the Boltzmann

approach would give qualitatively different results, except for the weak maxima at about

25 ps for the pump and at 50 ps for the signal. One can observe in Fig. (2.3)(a) that

Np continues to grow even above the nonlinear threshold. This contrasts with the results

of the previous models, which neglect the pump dynamics and fix the pump population

above threshold. The same quantities as in Fig. (2.3) are shown in Figs. (2.4)(a)(d)

for the pump detunings δp(0) = 1 and 0.25 meV. In Fig. (2.3)(a), the pump and signal

populations show a nonlinear dependence on the laser intensity. Two very different regimes

can be achieved depending on the value of the pump detuning. If the detuning is large,

the PPO threshold is reached before the bistability threshold (solid lines). In this case,

there are two jumps in the signal intensity as a function of pumping intensity, as is shown

by the black curve. On the contrary, for smaller values of δp(0), the bistable threshold

takes place before the PPO threshold (dashed lines). In that case, only one intensity jump

is observed for both pump and signal intensities. However, this result and the next one

can be altered if we would consider a realistic 2D microcavity [71].

The time domain results are shown in Fig. (2.3)(c) for δp(0) = 1 meV and in Fig.

(2.3)(d) for δp(0) = 0.25 meV. The signal and pump intensities show abrupt jumps once

the threshold is reached for both detunings. The populations show oscillations after reach-

ing the threshold, demonstrating the important role played by the correlations between

signal, pump, and idler states in this regime. These oscillations are damped because of the

continuous filling of the pump state by the external laser beam. For moderate pumping

and at large detuning, two successive thresholds can be seen in Fig. (2.3)(c) (solid lines)
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Figure 2.4 | Three modes model for the positive pump detuning δp(0): (a) Steady state signal

(black) and pump populations (blue) for δp(0) = 0.25 meV (dashed) and δp(0) = 1 meV (solid). The cw

pump intensity shown on the y axis is adiabatically increased. (b) Detuning δp(Np) versus the pump

intensity for δp(0) = 0.25 meV (black) and δp(0) = 1 meV (blue). (c) δp(0) = 1 meV. Time dependence

of the signal (black) and pump populations (blue) for a pumping intensity of 2x1016 particles/s (dashed)

and 7x1016 particles/s (solid). (d) δp(0) = 0.25 meV. Time dependence of the signal (black) and pump

populations (blue) for a pumping intensity of 1014 particles/s (dashed) and 1015 particles/s (solid).

for the signal and pump populations. The dotted lines show the population numbers for

pumping below threshold. In the case of high laser intensities, these two thresholds take

place simultaneously. In Fig. (2.3)(d), the PPO starts after passing the bistable threshold

and leads to a jump of the signal intensity. For pumping below the threshold, the signal

state is filled only by spontaneous scattering and remains weak for the two detunings.

2.1.4.4 Kick effect

In this section, we consider the effect of a short kick pulse resonant with the pump mode

which comes after the establishment of the steady state. We consider the case δp(0) = 1

meV. The intensity of the cw pumping laser is chosen in order to maintain the system

just below the bistable threshold. The intensity emitted by the signal is, therefore, rather

weak. Then a 1 ps long kick pulse is sent to the pump state. It induces the increase of the

pump intensity sufficient to pass the bistable threshold, as Fig. (2.5) shows. Consequently,

after the arrival of the kick, the signal intensity increases by almost 1 order of magnitude.

Remarkably, the system does not go back to its initial state after the kick pulse has passed,

but it stabilizes to a new equilibrium state characterized by an intense signal emission.

This effect can be used for the realization of low threshold optical switches.
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Figure 2.5 | Kick effect for the

three modes model: Time depen-

dence of signal (black) and pump state

populations (blue). The pumping is

composed of a cw laser δp(0) = 1 meV,

1 × 1016 particles/s and a short kick

pulse at t = 100 ps 2.5 × 1017 parti-

cles/s. The dashed lines correspond to

the populations without kick. 0 100 200 300 400
100
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Figure 2.6 | From quantum to classical limit: Signal and pump populations versus the pump

intensity for different decoherence times δp(0) = 1 meV. The condition V Ntot/τdec is satisfied for deco-

herence times shorter than 0.1 ps. (a) Steady state population of the signal state. (b) Time dependence

of the signal population 2.5 × 1016 particles/s. (c) Time dependence of the pump population 2.5 × 1016

particles/s.

2.1.4.5 From quantum to classical limit

Figure (2.6) shows the impact of the decoherence on the dynamics of the PPO. It can be

clearly seen that the decrease of the decoherence time leads to the increase of both bistable

and PPO thresholds. In the time domain, it leads to the washing out of the oscillations in

pump and signal intensities due to the suppression of the nonclassical correlations between

them. It is also seen that the decoherence makes longer the time needed for the pump

and signal states to reach stationary values under cw excitation. It is clearly seen from

Fig. (2.6)(c) that in the limit of the small decoherence times, the system recovers the

Boltzmann-limit dynamics.
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2.1.5 Conclusion

In conclusion, we have derived a closed set of kinetic equations describing a system of

interacting bosons beyond the Markovian approximation. The dynamics of the occupation

numbers is shown to be strongly altered by the buildup of the nonclassical four-particle

correlators. The decoherence process leading to the fast suppression of these correlators

is shown to provoke the transition from the quantum to the classical limit. This system of

kinetic equations is applied to the dynamics of a three state polariton parametric oscillator.

The general equation set which is obtained by us is quite heavy, and its solution requires

great numerical effort. However, this formalism has an important advantage of taking

into account the incoherent phonon dynamics and the coherent nature of the polariton-

polariton scattering process in the presence of macroscopically occupied polariton modes.

It represents a bridge between the fully coherent picture (Gross-Pitaevskii equations) and

the fully incoherent picture (Boltzmann approach).
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2.2 Fluctuation induced bistability transitions

2.2.1 Introduction

The blueshift and the bistability of exciton-polaritons have been introduced in the first

chapter. We will remind them at this point briefly because they will be the major ef-

fects discussed and investigated in the following section. The blueshift comes from the

polariton-polariton interaction, which has been under deep investigation in recent years

[90, 91, 92].

These correlations and the resulting polariton-polariton interaction manifests itself in

a blue shift of the polariton resonance with the increase of external pumping. In case the

driving laser beam frequency exceeds that of the lower polariton (LP) branch by more

than LP-linewidth, the polariton field amplitude can exhibit abrupt transitions between

different stable states [68]. The theoretical treatment of these nonlinear oscillators gives

a typical S-shape of the polariton amplitude depending on external excitation [68, 70, 71]

(Fig.2.7(b)), with finite range of pump intensities where the polariton system can be

bistable.

The second important nonlinear effect, studied in detail in the previous section, is the

parametric polariton scattering within the polariton dispersion branch with energy and

momentum conservation [83, 84, 71, 93].

Both nonlinear effects - parametric scattering and bistability - can often occur simul-

taneously [84, 93].

In fact, accounting for the polarization of light expands the bistability to multistability

and polarization hysteresis of the coherently driven polariton mode [72]. These effects

arise from polarization-dependent polariton-polariton interactions and can be measured

in polarization resolved transmission and photoluminescence experiments.

Fluctuations and noise are always present in physical systems and they can strongly

influence the dynamics of the physical phenomena. The origin of the noise lies in a large

number of physical processes e.g. spontaneous emission (internal fluctuations); amplitude

fluctuations of the external driving laser field and/or phase noise of the laser (external

fluctuations) in the case of optical pumping. The noise can become very important if the

driven system exhibits some critical behavior due to a nonlinear feedback mechanism.

The strong dependence of transition probabilities from the lower amplitude state of a

bistable nonlinear oscillator on the driving parameters and noise near the stability edge

sets a challenging problem of controlling these processes.

There are different ways to describe the nonlinear oscillator disturbed by noise. One of

them is the use of the generalized diffusion equation - the Fokker-Planck-equation (FPE).

It can be used to study peculiarities of the dynamics in case of bistable potentials.[94, 95,

96, 97, 98] Nonlinear systems disturbed by white [94] and colored additive noise [95] or
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multiplicative noise [96] have been considered.

In the following part we describe the dynamics of the driven nonlinear oscillator with an

additive external white noise under presence of damping. More specifically, we investigate

the time the system needs to jump from the low-energy stable state to the high-energy

stable state depending on the external noise intensity. This noise intensity is not coupled

to the damping, as it is given by the fluctuation-dissipation theorem. We investigate an

open system, where the damping is given by the leak mode of the cavity - the losses

through the cavity mirrors. We use three different methods to calculate the escape times

from the quasi-stable low intensity state and compare the results obtained for different

system parameters. We start with the direct numerical solution of the dynamic equation.

After that, we compare it with a two dimensional (2D) Fokker-Planck-Equation in order

to build a bridge to a one dimensional (1D) Fokker-Planck-Equation derived in Ref. [99].

These one dimensional analytical approach can give easily estimations of the jump times.

A special advantage is, that it could simplify the treatment including the polarization

degree of freedom by reducing the dimensionality of the system. We check the validity

of the reduction to the one dimensional quasi-energy picture and study the influence

of damping and noise on the mean escape time of the driven polariton mode from the

lower-density quasi-stable state, i.e. the expectation time of the internal field jump in the

microcavity.

2.2.2 Analytical models

2.2.2.1 Equation of motion

The dynamics of the driven nonlinear oscillator can be described in the quasi-energy

state representation. The effective Hamiltonian in rotating wave approximation with

slow varying polariton amplitude operators a and a+ reads

H = −∆a†a+
α

4
(a†a)2 − f(a† + a). (2.26)

The first term is the energy detuning with ∆ = ~(ω − ωLP ), where ω is the frequency

of the laser field and ωLP is the frequency of the lower polariton branch. The second

term describes the nonlinearity of polariton system, where α is the nonlinearity constant

and the last term is the driving force with amplitude f . In the classical approach, the

eigenvalues of H correspond to the quasi-energy E and the operators a and a† are the

classical canonical slow variables. One can easily obtain the following equation of motion

for slow varying amplitude

i~
da

dt
= −∆a+ αa|a|2 − f. (2.27)
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Transformation to dimensionless variables a∆/f → a yields

i
da

dτ
= −a+ βa|a|2 − 1, τ = t

∆

~
, (2.28)

and the corresponding Hamiltonian takes the form

H = −a+a+
β

4
(a+a)2 − (a+ a+), β =

αf 2

∆3
. (2.29)

The transformation of Eq.(2.26,2.27) to dimensionless variables simplifies the inves-

tigation of the system because only the parameter β is left. It defines the shape of the

phase trajectories and the probabilities to find the system in different quasi-energy states.

Fig.3.4(a) shows a typical phase diagram (u = Re(a), v = Im(a)) of the driven nonlinear

oscillator. The contour lines stand for different trajectories corresponding to different

quasi-energies E and periods of particle motions along the trajectories T(E). The critical

points are indicated with ’1’ (small oscillation amplitude (u1, v1)) and ’2’ (large oscillation

amplitude (u2, v2)) separated by an unstable state called separatrice. Fig.3.4(b) shows

these states schematically in the typical S-shape diagram. The middle branch including

the state ’S’ is unstable. The parameter β shifts the dashed line with the three points

along the abscissa axis. This dimensionless parameter allows one to determine the dis-

tance between the external field and its critical value, where the bistability jump will take

place without external fluctuations at βc = 4/27.

After introducing phenomenologically the polariton damping and noise terms, the

dynamic equation, which reads as follows

i
da

dt
= −iϑa− a+ βa|a|2 − 1 + ξ(t), (2.30)

where ϑ is the damping parameter and ξ(t) is the external Gaussian white noise with the

following correlation functions:

〈ξ∗(0)ξ(t)〉 = Qδ(τ), 〈ξ(0)ξ(t)〉 = 0. (2.31)

This equation is a stochastic equation also called Langevin equation, as it describes a

dynamic process with an additional white noise.

The damping is caused by e.g. losses through the cavity mirrors. We assume here, that

noise and damping are not coupled through the famous Fluctuation-Dissipation Theorem.

This theorem has been formulated by Nyquist (1928) [100] and first proved by Callen et

al. (1951) [101] and couples fluctuations and dissipation of a system. This theorem is valid

for linear equilibrium systems, which interact only with a thermal bath. But in contrast,

the present system is a non-equilibrium, nonlinear, and open system. In addition, we

assume that the damping given by the leakage through the cavity mirrors is much larger
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Figure 2.7 | Numerical experiment: (a) Phase

portrait of the numerical experiment. The lines are

the contour plot of the Hamiltonian and the blue

points are the results of the numerical experiment

starting from stable point ’1’. The parameters are

ϑ = 0.01, β = 0.075 and Q = 0.09. (b) shows

schematically the bistable region of nonlinear oscilla-

tor with two stable points ’1’ and ’2’ and one unstable

point ’S’. The dotted lines show the hysteresis cycle

and the dashed line shows the point of the calcula-

tion. (c) is the phase diagram of our system depend-

ing on the nonlinearity constant β and the damping

ϑ. The solid line borders the bistable area.

than the damping induced by the coupling with the exciton bath. However, once again,

we treat both parameters independently.

In Fig.2.7(a) a typical solution of the numerical experiment using Eq.(2.30) is shown.

Each blue point corresponds to the solution of Eq.(2.30) separated by fixed time step.

The averaged escape time (jump time) has been calculated over 100 numerical solutions

for each set of parameters Q, ϑ and β. The larger is the damping ϑ the stronger is

its influence on the dynamics of nonlinear oscillator and the deviation from the pure

Hamiltonian case for zero damping. In order to determine the position of the critical

states in phase space, one should find the zeros of the right part of Eq.(2.30) neglecting

the noise term. With the increase of the damping, the shape of the trajectories changes,

the stable points of the system shift away from the Re(a)-axis and disappear completely

for large damping coefficients [102]. In Fig.2.7(c) the phase diagram of our system in

the plane of dimensionless parameters β and ϑ2 is depicted. The solid lines border the

parameter settings where the bistable behavior can be observed in case one neglects

the effects of noise. Large dephasing as well as large nonlinearity constant lead to the

disappearance of the bistability, the critical values are ϑ = 0.53 and β = 0.27.
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Figure 2.8 | 2D Fokker-Plack equa-

tion and comparison of the models:

Distribution function calculated with

the 2D-FPE after 20 (a), 30 (b), and 100

(c) timesteps in the phase space. The

dynamic colorbar shows the value of the

distribution function from small (blue)

to high (red). (d) presents the calcu-

lated decay of particles in the closed

separatrice around the small amplitude

stable point for numerical experiment

(black), 2D FPE(red), and 1D FPE

(green). The calculation parameters are

Q = 0.09, ϑ = 0.01 and β = 0.125.
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2.2.2.2 2D Fokker-Planck Equation

The distribution of the probability to find the oscillator in a given point of the phase

space can also be obtained from the Fokker-Planck-Equation:

∂n(t)

∂t
= −(

∂

∂a
A(a, a∗) +

∂

∂a∗
A∗(a, a∗))n(t) +B(a, a∗)

∂2

∂a∂a∗
n(t), (2.32)

where A is the so called drift term and B the diffusion coefficient. The derivation of the

Fokker-Planck equation starting from the Langevin equation is given in the appendix.

In the case treated here, the two terms were described as follows (see appendix and

Refs. [103, 104]):

A(a, a∗) = −i(−iϑa− a− βa|a|2 − 1) (2.33)

and

B(a, a∗) = Q ≡ σ2

f 2

∆

~
. (2.34)

The diffusion coefficient is the external noise intensity and the drift term is governed

by the right hand side of Eq.(2.30) without noise.

We can estimate the ratio between the escape times t1 and t2 from stable states 1

and 2 of the nonlinear driven oscillator from the stationary solution of the 2D-FPE. The

arbitrary drift vector ~A = (Au, Av) can be decomposed into potential and rotary parts:
~A = ~Apot + ~Arot, with ~Apot = (∂uW,∂vW ) and ~Arot = (∂vH,−∂uH), where W = W (u, v)

and H = H(u, v) are arbitrary functions of (u, v) variables.

The analytic solution of 2D FPE can be found if ~Apot and ~Arot are orthogonal, i.e. the

following condition is fulfilled:

∂uW∂vH − ∂vW∂uH = 0. (2.35)
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In this case n(u, v) = exp (W (u, v)/Q), and the ratio between escape times t1 and t2

can be estimated as

t2
t1

=
n2

n1

= exp[(W (u2, v2) −W (u1, v1))/Q)]. (2.36)

Unfortunately in the case of driven nonlinear oscillator the condition (2.35) is not

fulfilled, and to study fluctuation-induced transitions in this system one should develop

some approximate analytical methods for solving 2D FPE and compare the obtained

solution with numerical results.

The 2-dimensional FPE should in principle provide the same results as the numerical

experiment since in the derivation no assumptions were made. To illustrate the dynamics,

Fig.2.8 presents the distribution function n at 3 different times. Starting from the small

amplitude state, the distribution function spreads due to diffusion and rotates around the

first stable point (Fig.2.8(a)). Then the particles cross the separatrice and reach the large

amplitude state. One intermediate picture is mapped in Fig.2.8(b). Fig.2.8(c) shows the

distribution probability after a long time. Almost all particles arrived in the surroundings

of the high energy stable state. In the phase space, it is not exactly at y = 0, as it is the

result of the shift of the stable points in presence of damping [102].

2.2.2.3 1D Fokker-Planck Equation

The third way to treat the problem is to solve the one dimensional FPE [99]. Using the

Keldysh diagram technique, the two dimensional problem can be transformed to a one

dimensional problem averaging over the trajectories with the same energy E:

∂ni(E)

∂E
=

∂

∂E

(
(ϑK)ni(E) +QD

∂ni(E)

∂E

)
, (2.37)

where i = 1,2 for low and high intensity stable points, respectively. The parameters ϑ and

Q are dimensionless damping and random force intensity. The terms K(E) and D(E) are

determined by integrals along the phase trajectories with particular quasi-energy E-closed

curve C(E) in dimensionless variables:

K(E) =
1

2iT (E)

∮

C(E)

ada∗ − a∗da (2.38)

D(E) =
1

2iT (E)

∮

C(E)

∂H

∂a
da− ∂H

∂a∗
da∗.

Once again, because the damping of polariton system is caused not only by the inter-

action with the exciton reservoir but also due the losses in mirrors we handle Q (noise)

and ϑ (damping) as independent parameters. We assume that the fluctuations of the

illumination do not affect the losses of cavity mirrors and vice versa. The derivation of

Eq.(2.37) is described in detail in Ref. [99].
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Figure 2.9 | Escape time

and fluctuations: (a)

Escape time depending on

external noise intensity for

constant dissipation ϑ = 0.1

and β = 0.125 (red), β =

0.075 (black). In (b) the

calculations for β = 0.075 for

two different damping coeffi-

cients are depicted. The red

(black) points correspond

to a ϑ = 0.01/ (ϑ = 0.1).

Squares/circles/triangles

correspond to NE/ 2D-FPE/

1D-FPE, respectively.
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The relations connecting the dimensionless parameter of the numerical calculations

ϑ,Q, β with the physical parameters: noise spectral density σ2, pump amplitude f , pump

detuning ∆, oscillator dephasing γ and nonlinearity constant α are listed below:

β =
αf 2

∆3
, ϑ =

γ

∆
, Q =

σ2

f 2

∆

~
, t1 = τ1

~

∆
. (2.39)

2.2.3 Numerical Results

In the following, we will discuss the influence of the fluctuations on the escape time from

the low energy point. It is defined as the time when the particle first leaves the region

bordered by the separatrice around the first stable point in phase space. We integrate

over the closed separatrice circle surrounding the low amplitude stable state (compare

Fig.2.7(a)) to obtain the number of particles in this area. The time dependence of this

value shows an exponential decay with the time constant τ1 (first escape time). One

example of the corresponding decay curves for the NE (black), FP2D (red) and FP1D

(green ) is shown in Fig.2.8(d). We see a more or less good agreement between all three

methods. The decays are calculated for Q = 0.09, ϑ = 0.01 and β = 0.125.

Fig.2.9(a) presents the results of the numerical experiment and the 2D-FPE for a

constant dissipation parameter ϑ = 0.1 and two different values of β, depending on the

external noise intensity. The damping is large and the ratio between damping and detun-

ing reproduces the experimental situation. As expected, the numerical experiment and

the 2D-FPE coincide. The escape time for small noise amplitude is large, because it is

hard to push the system over the bistability. For large noise intensities the sum of pump

amplitude and noise intensity strongly exceeds the bistability threshold – the jump takes
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Figure 2.10 | Escape time and dis-

sipation: Escape time in dependence

of the dissipation parameter for a con-

stant noise Q=0.09 and two differ-

ent nonlinearity constants β = 0.125

(red) and β = 0.075 (black). The

squares/circles/triangles correspond to

the solution method using numerical ex-

periment/ 2D-FPE/ 1D-FPE, respec-

tively.

place almost immediately and shows a rather weak dependence on stronger fluctuations.

The same happens for larger nonlinearity constants. For β = 0.125, the system settings

are closer to the bistability jump and smaller noise intensities are sufficient to push the

system to the upper state.

In Fig.2.9(b) the dependency of the jump time on the noise intensity is shown for

two different damping parameter. The numerical experiment (squares) and the 2D-FPE

(circles) are in good agreement, while the 1D-FPE solution (triangles) fails for large

damping parameters (black). The origin lays in the averaging over the trajectories, which

is done within low dissipation approximation. Under the presence of strong damping, the

system is considerably disturbed and the form of the trajectories changes completely (not

shown), so the approximation is no longer valid. In addition, the numerically obtained

decay times of the 1D-formalism show a mismatch with the other two methods for large

noise intensities. This originates from the larger sensitivity of the 1D approximation to

the edge of stability of the trajectories.

To show clearly the range of damping where the 1D-FPE is valid, we have calculated

the dependency of τ1 on the damping ϑ for fixed noise intensity Q=0.09. The correspond-

ing results for all three methods for two different nonlinearity constants are depicted in

Fig.2.10. The 1D-FPE is in good agreement with the other descriptions up to ϑ=0.04.

After that, the discrepancy between it and the NE grows with increasing dissipation, due

to the increased modification of the phase portrait. Furthermore, the decay times calcu-

lated with the 1D-FPE for β = 0.125 appear even to decrease with increased damping

due to relatively stronger modification of the phase portrait for the β close to the critical

value βc = 4/27. Additional damping shifts the critical point ’1’ closer to the separatrice

and the diffusion induced decay will dominate the system.
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The critical resonance width γ in Fig.4, which limits the valid parameter settings for

the one dimensional FPE, is determined to be 0.04 meV in case of a detuning ∆ of 1 meV.

To transform the obtained dimensionless escape times into real units and to show

their influence on experimental results we use the relations (14). Below we assume the

following set of parameters: CW pump detuning from the polariton resonance ∆=1 meV

and a resonance width γ= 0.1 meV. The dimensionless noise spectral density reads as

Q = (δf/f)2τc∆/~, where τc is the noise correlation time. We take now as an example

two points for β = 0.125 from Fig.2.9 at Q=0.01 and Q=0.02. The corresponding dimen-

sionless escape times τ1 are 104 and 100. For these values one obtains escape times t1 of 40

ns and 0.4 ns, which appear to be long enough for experiments with pulses shorter than

1 ns. With decreasing noise intensities, the escape times increase exponentially. These

large fluctuation-induced transition times are in agreement with bistable jumps observed

in experiments.[68, 84, 105]

2.2.4 Narrowing of the Hysteresis cycle

The question is, how the fluctuations can affect the outcome of experimental results. To

elucidate their impact, we show a fluctuation-affected hysteresis cycle in Fig.2.11. The

escape time t1 in dependence on the external amplitude f for the two directions is shown

in (a): (1) left hand side from upper to lower branch (decreasing pump intensity) and

(2) right hand side from lower to upper branch of the s-shape diagram (increasing pump

intensity). The times are calculated using the 2D-FPE. The escape times show a strong

dependence on the external amplitude close to the stability edges. Fig.5 (b) shows the

hysteresis cycle without fluctuations (red/gray) and with fluctuations (blue/dark gray)

for a given measurement time τexp indicated with the dashed line in Fig.5(a). As one can

see, the experimental observed hysteresis cycles are more narrow in comparison to the

undisturbed case. Due to the strong exponential dependence of the escape time on the

excitation power, the hysteresis cycle will not change strongly for longer measurement

periods. The noise intensity is chosen to be 0.01 and the damping γ is 0.1 meV. The

influence of the noise is quite strong and the closed hysteresis cycle with fluctuations

seems to be very small. In the experiments the noise is definitively smaller than what we

have studied here. We used a large noise intensity to show clearly the impact of these

fluctuations and to keep the numerical effort in a reasonable limit. However, it is not easy

to estimate the realistic noise intensity.

In case of additional illumination of the cavity by e.g. non-resonant excitation, the

fluctuations can be significantly increased and they can stimulate a transition to the high-

energy stable state. In contrast, the amplitude fluctuations of the driving lasers fields are

frequency-dependent and the resulting colored noise is much less efficient to stimulate the

transitions, than white noise.[106]
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Figure 2.11 | Narrowing of the hy-

eresis cycle: (a) Dependence of the

escape time t1 on the driving field am-

plitude f calculated for a GaAlAs cav-

ity. (b) s-shape (red line) for the undis-

turbed case. The black arrows show the

jumps of the internal amplitude with-

out noise. The blue line corresponds to

the noise induced hysteresis cycle for a

defined time τexp of the measurement

indicated by the dotted lines. The cal-

culation parameters are Q = 0.01 and

γ = 0.1.

But, nevertheless, we obtain an exponential decay of t1 for large white noise intensities,

which can change experimental results drastically.

The effect might be more important for the multistability, which has not yet been

observed. Therein, at the critical point one has the possibility to jump to three different

states. The probability of these transitions will also be governed by intensity or polar-

ization fluctuations in the system. Bearing this in mind, a nice polarization pattern in a

disordered system might be possible to observe.

2.2.5 Conclusion

Summarizing, we have considered the problem of a driven nonlinear polariton system in

three different ways and compared the obtained solutions. As expected, the numerical

experiment and the 2D-FPE show a good agreement and are valid for all regarded pa-

rameter settings. In contrast, the 1D-FPE in quasi-energy space becomes invalid for large

damping and strong fluctuations, because the averaging over the trajectories is not possi-

ble anymore. The 1D-approximation is shown to be valid for the polariton line widths less
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than 0.04 meV for a detuning of 1 meV between the driving field frequency and polariton

resonance. Finally, the fluctuations can narrow significantly experimental results as we

have shown for the hysteresis cycle of a polariton system.



Chapter 3

Condensation Phenomena

In the following chapter we will study in detail the condensation phenomena. From the

practical point of view, speaking of condensation means that the excitation is not coher-

ent (the pump laser is not in resonance with the polariton dispersion), and the coherence

appears in the system only thanks to the condensation process. The external pumping

creates electron hole pairs, which form a cloud of excitons. These excitons will interact

and relax towards the bottom of the polariton dispersion. The principal mathematical

description is given in Chapter 1, which is based on the Boltzmann equations for the

relaxation process. Once the condensate is formed, it can be treated within the Gross-

Pitaevskii equation. In the first part of this chapter we study the relaxation dynamics of a

ZnO based microcavity intend to operate as a polariton laser. ZnO has some huge advan-

tages in comparison with other semiconductors (even in comparison with other wide gap

semiconductors), such as the huge oscillator strength and Rabi splitting. As one will see,

the kinetics of the relaxation has an important impact on the lasing threshold and the use

of the infinite lifetime picture does not hold anymore to describe the relaxation process.

Polariton condensates are now observed experimentally for various systems and one can

start to think about possible applications beside the polariton laser. Interestingly, the

spin structure of polaritons can lead to some interesting analogies between electronic and

polaritonic systems. One of them is the Josephson effect (or Josephson junctions) with its

recent developed polaritonic analogue. The second part will be devoted to a polaritonic

analog of the electronic Datta Das transistor. We develop a new all optical spin transistor

based on the spin Meissner effect allowing fast switching of the transmission and relfec-

tion of this device by changing the condensate density. Basing on the nonlinearities in

the dynamics of polaritonic Josephson junctions, the emission of such structures can show

chaotic behavior. This can be used for a scheme of chaotic communication, which is the

subject of the last part. Synchronization of chaotic systems and chaotic communication

are discussed in detail in this part. All together, one may say the second and third part

is devoted a new research field: spin-optronics. Many interesting features and devices, in-

75
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vestigated intensive in spintronics (electrons with spin), can be modified for spin-optronic

devices using polaritons and their unique spinstructure.
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Figure 3.1 | Comparison of polariton

and photon laser [107]: Diagram com-

paring the exciton-polariton laser to the

more familiar concepts of Bose-Einstein

condensate of excitons and photon lasers.

u and v determine the exciton and photon

character of the polariton, respectively.

3.1 Theory of exciton-polariton lasing in ZnO micro-

cavities

3.1.1 Polariton laser

The concept of an exciton-polariton laser was first proposed by Imamoglu et al. 1996

[107] as a device that generates coherent optical waves using stimulated scattering of

polaritons in their ground state. In previous works it was called exciton boser [82]. In

contrast to conventional lasers, which are based on population inversion, this device of a

new type is based on the natural properties of bosons to form a condensate, called Bose-

Einstein condensate, and on the natural property of the condensate, namely, its coherence.

Polaritons are, due to their bosonic character at low densities, a well-suited system to

undergo such a phase transition and to form a condensate, which emits coherent light

once the stimulated diffusion rate exceeds the spontaneous one. Beside the pure device-

oriented interest, polaritons also raise the opportunity to study the fundamental properties

of condensation phenomena. Exciton polariton lasing is a phenomenon which occurs

between the full thermodynamic equilibrium, as it is the case for BEC of massive bosonic

particles, such as Rb87 atoms, and the photon laser, which emits coherent light while being

completely out of thermodynamic equilibrium. Fig. 3.1 illustrates this point of view. For a

thermal equilibrium reservoir and a vanishing photon character of the exciton polaritons,

one obtains a BEC of excitons. In the opposite limit of a nonequilibrium (inverted)

reservoir and a vanishing exciton character, the polariton laser is indistinguishable from

a photon laser.

To realize such a device the microcavity should be in the strong coupling regime – the

coupling constant of light and excitons should be larger than all broadenings induced by
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different effects. Especially, the temperature dependence of this broadenings limits the

possible materials to those with huge exciton oscillator strength, if one is interested in

high-temperature operation. Two of these materials, GaN and ZnO, have been in the

focus of research for the fabrication of a polariton laser at room temperature as pointed

out by Malpuech et al. and Zamfirescu et al. [80, 79].

Since the proposal and the works on huge oscillator strength materials, the interest of

the physical community grows strongly: on one hand, optoelectronic devices, such as LED

and semiconductor lasers, find a lot of applications nowadays. Polariton lasers or diodes

could create a revolution in this field due to the reduced threshold and the economization

of energy in the sense of low heating which could facilitate the on chip integration together

with electronic devices and reduced consumption of power in portable devices. On the

other hand, as mentioned above, the interesting fundamental physics can be easily studied

within the polariton picture.

One of the main problems on the way towards polariton lasing is the bottleneck effect

(see previous chapter). The relaxation of polaritons slows down in the steep part of the

polariton dispersion. This effect can be suppressed working at high temperature which

speed up the relaxation kinetic of polaritons. The second way is to go to positive detuning

of the bare photon mode with respect to the bare exciton. The particles become more

exciton like, which results in a increased lifetime and more efficient scattering processes

due to a shallower dispersion. Thus the system is close to an quasi-equilibrium situation.

In contrast, photonic-like polaritons accumulate in the steepest part of the dispersion and

a bottleneck behavior is usually observed, which results in an out of equilibrium situation.

3.1.2 Strong coupling in ZnO

ZnO is an II-VI semiconductor with a direct dipole allowed band gap around 3.4 eV and

a relatively large exciton binding energy of 60 meV. After a period of great interest in

ZnO as a wide band gap semiconductor in the middle of the 20th century, the interest

faded away partly due to huge problems to dope ZnO both n-type and p-type, partly

because the interest moved to structures of reduced dimensionality, which were at that

time almost exclusively based on the III-V systems. After a period of silence ZnO came

again into the focus of research due to the possibility to grow i.e. epitaxial layers, quantum

wells and nanorods, and due to a renewed hope to tap the full potential of its physical

properties as a radiation hard material for blue/UV emitting lasers and other electronic

and optoelectronic devices. A review on this topic is given by Klingshirn et. al [108].

Even the biggest problem to dope ZnO p-type has been overcome (for more information

see Ref.[109, 110] and references therein).

Alongside, there has been a huge interest into coupled exciton-photon modes since

their first observation in 1992 by Weisbuch et al. [3]. After the proposal of a polariton
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Figure 3.2 | Theoretical predictions for a ZnO polariton laser [79]: (left) Eigenenergies of the

ZnO cavity modes versus the incidence angle. Dotted lines indicate the positions of the unperturbed

modes: L indicates the light mode, and A,B,C indicate the A,B,C exciton resonances in ZnO, respec-

tively. The inset shows the percentage of the excitonic components and the photonic component in the

eigenmode of the lowest cavity-polariton state versus the inplane wave vector, (right) Exciton-polariton

phase diagram in the ZnO microcavity . The solid line shows the polariton critical density versus lat-

tice temperature. The vertical dashed line shows the exciton thermal dissociation limit. The horizontal

dashed line shows the Mott transition for excitons.

laser [82] and experimental report about quasi-Bose-Einstein condensation in CdTe at

low temperatures [22] the number of publications dealing with exciton-polaritons has

significantly increased and the subject became a textbook topic [5, 6].

ZnO has been predicted to be one of the best candidates to observe polariton lasing

at room temperature due to its huge exciton binding energy and its incredible oscillator

strength [79] (the other possible candidate being GaN, studied theoretically in [111, 38]).

Therein, the authors stress the giant Rabi splitting of more than 100 meV, which is two

times larger than the Rabi splitting of GaN based microcavities. Fig. 3.2 shows the dis-

persion and the calculated phase diagram of a ZnO microcavity [79]. The three excitons in

ZnO, labeled A, B, C, when coupled to a photonic mode, give rise to a complex dispersion

with various polariton branches possessing different coupling properties as shown by the

inset on the left hand side. The huge oscillator strength and the huge exciton binding

energy could make exciton-polariton lasing possible up to more than 500 K, limited by

the dissociation energy of the exciton with a binding energy about 60 meV.

While strong exciton-photon coupling and polariton emission have been observed ex-

perimentally for GaN [112, 113, 114] and finally the polariton lasing regime has been

achieved [115, 26, 116], the strong coupling regime in ZnO is far away from being easy to
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Figure 3.3 | Observation of strong exciton-photon coupling in ZnO microcavity [7]: (left)

Sample structure containing a ZnO quantum well sandwiched by MgO/ZrO Bragg resonators. (right)

Observed photoluminescence spectra for various excitation angles with the extracted and calculated

dispersions for the different modes.

realize. Recently the first observations of strong exciton-photon coupling in ZnO based

microcavities have been reported [117, 118, 7], which have confirmed that Ω close of 100

meV could indeed be achieved. Fig.3.3 shows the results of Ref.[7]. The authors use a

Bragg resonator of the basis of MgO/ZrO which contains a 3λ/2 ZnO active region. These

are the first results using distributed all oxide Bragg reflectors, which are far from being

optimal, but which should provide in principle much better reflectivity as for example

AlO mirrors [119].

The observed photoluminescence spectra are shown on the left hand side of Fig.3.3.

The three excitonic resonances result in a complicated dispersion with various branches

with different coupling properties. The authors claim the observation of vacuum Rabi

splittings up to 94 meV in these samples, which is the highest reported value except the

organic structures [120, 121, 122].

However, the existing ZnO cavities are far from being optimal: they show broad lines

due to inhomogeneous linewidth broadening and low quality factors of the confined optical

mode. Additionally, due to the huge self absorption in ZnO, the upper polariton branch

is almost invisible in the observed spectra. Nevertheless, first signatures of the mentioned

advantages of ZnO microcavity strong coupling have been observed.

Also some alternative systems to planar microcavities based on ZnO technology, such

as micropillars or microdisks, have allowed the observation of the strong coupling regime

at RT [123].

The only theoretical work published so far on ZnO polariton laser [79] reports only the
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Figure 3.4 | Strong coupling in a

bulk ZnO microcavity:(a) Polariton

dispersion (red lines) of a ZnO micro-

cavity with only one exciton mode. The

blue lines correspond to the bare cav-

ity and exciton mode. The Rabi split-

ting Ω and the detuning ∆ = Ec(k =

0) − Ex(k = 0) (black arrows) are indi-

cated. (b) Polariton distribution below

(black) close above (blue) and far above

threshold (red). (c) Emission intensity

versus angle below (black) close above

(blue) and far above threshold (red).

Ω=80 meV and the cavity lifetime is 0.1

ps.

(b)

(c)

(a)

calculation of a phase diagram in the thermodynamic limit (see Fig. 3.2) which means that

the finite polariton life time is neglected. Within this limit the larger value of Ω provides

a lower threshold which in principle makes advantageous the use of ZnO, with respect

to GaN. On the contrary taking into account finite particle lifetime and the relaxation

process, a larger Ω means more energy to dissipate for a particle to reach the ground state

from the excitonic reservoir. If this relaxation time becomes comparable or larger than

the polariton life time, the polariton gas is not anymore at thermal equilibrium, which

increases the threshold value which in this case is governed by kinetic limitations [27].

A good balance of the cavity parameters should therefore be found in order to optimize

the compromise between these two limiting factors. The aim of this section is to analyze

in detail these aspects giving the answers to the following questions: can we expect RT

polariton lasing in ZnO based microcavities regarding the quality of the existing samples?

Is there an advantage to use microcavities with a very large Ω?

3.1.3 Model and Simulation

In order to reply these questions we have simulated the polariton relaxation in a bulk

ZnO microcavity using semi-classical Boltzmann equations. We calculate kinetic phase

diagrams of the microcavity, showing the threshold dependence on crucial parameters,

such as Ω, the quality factor of the cavity, and the detuning between the bare cavity and

exciton mode. A special emphasis is put on the role and advantages of a large Ω.

We consider in our simulations a bulk ZnO cavity similar to the one of [7] but a

3λ/2 ZnO layer. To simplify the picture we keep only the lower polariton branch (with a

2D density of states) and the five other calculated branches are modeled as an effective

exciton reservoir (with a 3D density of states). Ω is treated as a external parameter. We
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consider continuous off-resonant pumping with a laser spot of 6 µm radius. A typical

polariton dispersion is shown in Fig.3.4(a), where also the meanings of the detuning ∆

and of Ω are defined.

The polariton relaxation is described by solving a set of semi-classical Boltzmann

equations. The general procedure for polaritons has been described in Ref.[5], and the

specifics of bulk polariton lasers have been first accounted for in Ref.[11]. The equations

read

dnk

dt
= Pk − Γknk − nk

∑

k′

Wk→k′(nk′ + 1) + (3.1)

+(nk + 1)
∑

k′

Wk′→kn
′
k.

Here nk is the polariton distribution function and Pk is the pumping term. We consider

a non-uniform grid in the reciprocal space. We assume that the off-resonantly pumped

excitons are completely thermalized when they reach the reservoir. Wk→k’ are the scat-

tering rates between the states with corresponding wavevectors k and k′. Wk→k’ includes

exciton-phonon scattering rates W ph
k→k’ and exciton-exciton contribution which depends

on the polariton distribution function:
∑

qW
xx
k→k’,qnq (1 + nq+k’−k), where W xx

k→k’,q is

the constant of exciton-exciton interaction for corresponding wavevectors. These rates

are calculated using the Fermi golden rule taking the 3D matrix elements. We assume

cylindrical symmetry of the reciprocal space, but the scattering processes with different

directions of wavevectors are properly taken into account. The parameters used in the

simulation are: exciton energy Ex = 3.377 eV, LO-phonon energy ELO = 72 meV, exci-

ton Bohr radius ab = 18Å, effective electron mass me = 0.24m and effective hole mass

mh = 0.98m,[124] where m is the free electron mass, deformation potential D = 15 eV

[110], exciton lifetime τex = 300 ps [125], inhomogeneous broadening of 50 meV. The

matrix element of the exciton-acoustic phonon interaction for any wavevectors is directly

proportional to the deformation potential D. The dependences on Ω and on the detuning

are less straightforward. Qualitatively, steeper dispersion is less favorable for scattering

with acoustic phonons; for optical phonons it is the energy difference between the ground

state and the exciton reservoir which plays the major role. For exciton-exciton scattering

the strongest dependence is on the occupation numbers of the states.

The exciton density at threshold at room temperature is about 5 ∗ 1016cm−3, which

is 4 times smaller than the Mott density for excitons. This confirms that the polariton

lasing effect should indeed take place within the strong coupling regime.
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Figure 3.5 | Polariton relaxation

and Rabi splitting: Kinetic lasing

threshold density versus RAbi split-

ting Ω (red line, squares). The solid

blue lines indicate the critical lifetime,

where the strong coupling is lost, and

the dashed blue line corresponds to the

thermodynamic threshold (infinite life-

time approximation). The cavity life-

time is 0.1 ps.

3.1.4 Numerical results

Fig.3.4 (b) and (c) illustrate the dynamics of the relaxation process: (b) shows the po-

lariton distribution versus wavevector k and (c) shows the angular emission of the cavity.

There is no bottleneck effect [33] and the kinetic distribution function above threshold

has a shape of a thermalized Bose-Einstein distribution . In the angular distribution (c)

the emission intensity is broad below the threshold and becomes peaked around k = 0

above threshold.

In the following we want to focus on the crucial role of Ω and its influence on the

threshold dynamics for polariton lasing. The results of the simulations are depicted in

Fig.3.5. It shows the threshold polariton density versus Ω for a cavity lifetime of τc = 0.1

ps (Q ≈ 500) [7], and a detuning between the cavity mode and the exciton energy ∆ = 0.

The vertical solid blue line delimits the range where the strong coupling is holding which

is guaranteed by the condition Ω < γc = ~/τc. The dashed blue line shows the threshold

density calculated in the thermodynamic limit (infinite particle lifetime approximation).

The gap between the kinetic and the thermodynamic threshold is increasing versus Ω

because the relaxation kinetics becomes slower. However this kinetic effect remains weak

and for all the range of Rabi energies the system is operating close to thermal equilibrium.

As a result the kinetic threshold value reduces 10 times between Ω = 20 meV and Ω = 140

meV.

The second crucial issue is the quality factor of the cavity, especially for ZnO based

structures, for which perfect lattice-matched Bragg mirrors and high quality structures

are still not available. Fig.3.6 shows the density of polaritons as a function of the cavity

lifetime and the corresponding quality factor. We take Ω=80 meV and ∆ = 0 for all

the calculations. The solid blue line again delimits the range of persistence of the strong

coupling. The dashed blue line indicates the thermodynamic threshold density of polariton
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Figure 3.6 | Polariton relaxation

and cavity lifetime: Kinetic lasing

threshold density (red line, squares) ver-

sus cavity lifetime τC and the corre-

sponding quality factor Q = ωC/Γ. The

dashed blue line is the thermodynamic

threshold density (infinite lifetime ap-

proximation).

lasing. The red line shows the kinetic threshold density which decreases versus Q up to

the thermodynamic value for large quality factors. Actually, the decrease of the lasing

threshold density is smaller than what one may expect. Of course, the increase of the

quality would provide the polaritons a longer time to relax into the ground state because

of the increased lifetime. But the excitonic reservoir does not change its properties and

the relaxation to the bottleneck region is not affected. The relaxation towards the bottom

of the dispersion in ZnO turns out to be good enough to thermalize the polaritons even

at relatively short lifetimes. All this together makes the influence of the cavity quality

factor on the lasing threshold density for ZnO smaller than one could expect.

To underline the advantage of large Ω we calculate the threshold density versus Ω and

detuning, keeping the value (Ω−∆) constant. Indeed one may think that a deep polariton

trap could be obtained with a small Ω but working at negative detuning. The results of

the kinetic simulations are shown in Fig.3.7(a) together with the infinite life time limit.

The kinetic threshold is found to decay three times between the small and the large Ω

limit.

In the small Ω case, the difference between the kinetic and thermodynamic threshold is

almost one order of magnitude which means that the system is not in thermal equilibrium

with the lattice. For such a geometry, the polariton is mostly photon-like having a small

effective mass, which reduces the scattering rates toward the ground state. The polariton

life time is shorter for the same reason. The combination of slow scattering and of a short

life time is responsible for a relaxation bottleneck effect, which increases the threshold

density.

For large Ω values and positive detunings, the situation is reversed. The polariton
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(a) (b)

Figure 3.7 | Polariton relaxation and detuning: (a) Lasing threshold density (squares) versus Ω for

various detunings ∆ (red numbers). The thermodynamic threshold density is plotted as blue line. The

cavity lifetime is 0.1 ps and the value (Ω − ∆) is kept constant. (b) Thermodynamic threshold density

versus detuning for various Ω (red numbers).

is mostly excitonic with a larger effective mass and longer life time than for negative

detuning and small Ω, which allows the achievement of a quasi-equilibrium situation where

the kinetic and thermodynamic thresholds become very close to each other. To complete

the picture, Fig.3.7(b) illustrates the dependence of the thermodynamic threshold on the

detuning for different Ω. In this limit one can reduce the threshold by going to negative

detunings, which contrasts with the kinetic simulations results.

The results can also be translated to the general case independent of the cavity mate-

rial: large Rabi splittings and positive detuning improve the lasing threshold of polariton

device due to the improved relaxation process. In contrast, negative detunings make the

polaritons more photonic, which decreases the scattering rates, and thus the operation

close to a quasi-equilibrium is not possible. All this make the use of large Rabi splitting

materials much more attractive for lasing devices.

3.1.5 Conclusions

To conclude, we have determined the polariton lasing threshold of bulk ZnO microcavities

using the semiclassical Boltzmann equations. We have shown that the cavity quality

factor values experimentally measured in these systems are good enough to observe room

temperature polariton lasing. We have also analyzed the impact of the extremely large

exciton oscillator strength of ZnO giving rise to Ω up to 100 meV. We have shown that such
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large values allow to decrease the polariton lasing threshold and facilitates the formation

of a quasi-thermal equilibrium for the polariton gas, that is, the achievement of polariton

Bose Einstein condensation at room temperature - a phenomenon of strong scientific

interest.

Our results for the discussed ZnO microcavity can be extended to the general case: the

relaxation simulations show clearly, that huge Rabi-splittings are much more advantageous

for the relaxation process because situations close to thermodynamic equilibrium can be

realized. Small splittings and, in addition, negative detunings lead to an increased lasing

threshold, due to the diminution of the excitonic component of the lower polariton branch.

This excitonic component governs the scattering processes and increases the lifetime, so

that scattering events are more probable and the polaritons can relax easier to lower

energies.

3.2 Polaritonic analog of the Datta and Das spin tran-

sistor

As mentioned before, the condensates and the spin structure of polaritons lead to various

analogies with electronic systems. In the following we will develop the idea of a polaritonic

Spin transistor, which works very close to the scheme of the electronic exemplar invented

by Datta and Das (1990) [126], which will be presented in the next section. In this

framework, another effect, which came basically from superconductor physics and was

transformed to polariton condensates, called spin-Meissner effect [66], will be used.

3.2.1 Electronic Datta and Das spin transistor

Spintronics is one of the trends in modern mesoscopic physics [127]. It was born in 1990,

when S. Datta and B. Das in their pioneer work proposed a theoretical scheme of the first

spintronic device [126], which afterwards was named Datta and Das spin transistor. It

consists of two ferromagnetic 1D or 2D electrodes, usually with collinear magnetizations,

separated by a non-magnetic semiconductor region in which a Spin-Orbit Interaction

(SOI) of the Rashba type is induced by a top gate electrode,

ĤSOI = α
[
k̂ × σ

]
· ez, (3.2)

where ez is a unity vector in the direction of the structure growth axis z, σ denote a set of

Pauli matrices, k̂ = −i∇. α is a characteristic Rashba parameter, which depends on the

degree of asymmetry of a quantum well (QW) in the z-direction. It can be efficiently tuned

by varying the top gate voltage Vg [128, 129, 130]. The Hamiltonian can be interpreted in

terms of an effective magnetic field lying in the plane of a QW and being perpendicular
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to the carrier’s kinetic momentum. This effective field provokes the rotation of the spin of

the carriers in the semiconductor region and results in the oscillations of the transmitted

current Itr as a function of Rashba coupling controlled by the gate voltage Vg [131]:

Itr ∼ cos2
(
2meffαL/~

2
)
, (3.3)

where meff is the carrier effective mass in the semiconductor. The above formula has

a very clear physical meaning: only the spin component parallel to the magnetization

can propagate in the outgoing ferromagnetic lead. The outgoing current should be pro-

portional to the rotation angle accumulated over a distance L between the two leads,

∆φ = 2meffαL/~
2.

Although the scheme of the Datta and Das spin transistor seems very simple from

a theoretical point of view, due to the problems of spin injection and decoherence its

practical implementation appears to be extremely complicated. More than 15 years of

intensive experimental work in this direction did not result in any breakthrough, and the

Datta and Das device still remains a theoretical concept.

On the other hand, it was recently proposed that in the domain of mesoscopic op-

tics the controllable manipulation of the (pseudo)spin of excitons and exciton-polaritons

can provide a basis for the construction of optoelectronic devices of the new generation,

called spin-optronic devices [132], that would be the optical analogs of spintronic devices.

The first element of this type, namely polarization-controlled optical gate, was recently

realized experimentally [133], and the principal schemes of other devices (Berry phase

interferometer [65], polariton neuron [134] etc.) were theoretically proposed.

Exciton polaritons (or cavity polaritons) are the elementary excitations of semiconduc-

tor microcavities in the strong coupling regime. An important peculiarity of the polariton

system is its spin structure: being formed by bright heavy-hole excitons, the lowest en-

ergy polariton state has two allowed spin projections on the structure growth axis (±1),

corresponding to the right and left circular polarizations of the counterpart photons. The

states having other spin projections are split-off in energy and normally can be neglected

while considering polariton dynamics. Thus, from the formal point of view, the spin struc-

ture of cavity polaritons is analogical to the spin structure of electrons (both are two-level

systems), and their theoretical description can be carried out along similar lines. The

possibility to control the spin of cavity polaritons opens a way to control the polariza-

tion of the light emitted by a cavity, which can be of importance in various technological

implementations including optical information transfer.

It should be noted, however, that the fundamental nature of elementary excitations is

different in two kind of systems: electrons and holes (i.e. fermions) in the case of spintron-

ics, exciton polaritons (i.e. bosons) in the case of spin-optronics. Also, it appears that the

account of many-body interactions is of far greater importance for spinoptronic devices



POLARITONIC ANALOG OF THE DATTA AND DAS SPIN TRANSISTOR 89

with respect to the spintronic ones. The polariton-polariton interactions in microcavities

are strongly spin-anisotropic: the interaction of polaritons in the triplet configuration

(parallel spin projections on the structure growth axis) is much stronger than that of

polaritons in the singlet configuration (antiparallel spin projections)[4]. This leads to a

mixing of linearly polarized polariton states which manifests itself in remarkable nonlinear

effects in polariton spin relaxation, such as self-induced Larmor precession and inversion

of linear polarization upon parametric scattering [135], polarization multistability [136],

and others, which are of great importance for the functioning of spinoptronic devices in

nonlinear regime.

3.2.2 Spin Meissner effect

Polariton have some peculiarities in the presence of a magnetic field. Additionally to

the TE-TM splitting (not discussed in the present thesis), which has an effect of an

effective magnetic field, polariton condensates show the so called spin Meissner effect,

which will be discussed in the following section and which will be the most important

effect for the polariton analog of a Datta-Das Transistor. The properties of a polariton

condensate are substantially different from a spinless Bose condensate. Moreover, an

applied magnetic field B changes drastically the excitation spectrum of the system and

can completely suppress the superfluidity. The effect is described briefly and the interested

reader should address the original paper of Rubo et al. [66]. Exciton-polariton condensate

in a semiconductor microcavity are strongly sensitive to the external magnetic field normal

to the cavity plane. In particular, the superfluidity is suppressed at a critical magnetic

field Bc proportional to the polariton concentration n:

Bc =
n(α1 − α2)

µBg
, (3.4)

where µB is the Bohr magneton and g is the electron g-factor. The parameters α1 and α2

are the interaction constants of polaritons with the same or perpendicular polarization.

One can now distinguish two different regimes, depending on the magnetic field:

1. B < Bc: In this range, the Zeemann splitting is fully compensated by the polariton-

polariton interactions in the elliptically polarized condensate. After some algebra

(see. Ref. [40]) one obtains for two Bogoliubov dispersion branches (see appendix

for the detailed calculation):

ω2
± = ω2

0 + ω0n

[
α1 ±

√

α2
2 + (α2

1 − α2
2)
B2

B2
c

]
, ω0 =

k2

2m
. (3.5)

The energy of the excitations is now given by E± = µ+ ω2
±. One can see that both

branches start at the same point at k = 0, which corresponds to the bottom of the
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lowest polariton band blue-shifted by the chemical potential, so that the Zeeman

splitting turns out to be fully suppressed in this regime. Note also that two branches

of quasiparticles are elliptically polarized (see appendix and the following section).

2. B > Bc: The spectrum of excitations is qualitatively different from the small mag-

netic field domain. The condensate is now circularly polarized. In this case, there

remains only one Bogoliubov-like branch with an independent of magnetic field

dispersion

ω2
+ = ω2

0 + 2ω0nα1. (3.6)

The quasiparticles belonging to this branch have the same circular polarization as

the condensate. The quasiparticles with the opposite circular polarization form a

parabolic branch blueshifted with respect to the condensate by a value proportional

to (B −Bc),

ω− = µbg(B −Bc) + ω0. (3.7)

Once again the energies of the excitations are E± = µ+ ω2
±. The two branches are

split by an effective Zeemann splitting.

The two branches of excitation spectrum can be characterized by the long-wavelength

sound velocity

v± =
dω±
dk

∣∣∣∣
k=0

. (3.8)

In the weak field regime one has now two sound velocity branches. In the strong field

regime one of the sound velocities is zero.

This is shown in Fig.(3.8) for the energies at k = 0. The suppression of the Zeeman

splitting, illustrated in the inset, is clearly seen for magnetic fields smaller than the critical

one. Weak magnetic fields make the polariton condensate elliptically polarized and slow

down the speed of sound for one of two excitation branches in the system. The exact

expression of the polarization vector is given in the following section and is derived in

the appendix. The speed of sound vanishes and the polariton superfluidity is suppressed

at the critical magnetic field Bc proportional to the population of the condensate. At

the critical field the polarization of the condensate becomes fully circular. The polariton

condensates exhibit an anomalous Zeeman splitting, which is equal to zero below the

critical field and linearly depends on the field at B > Bc. The magnetic susceptibility of

the system is discontinuous at the critical field at zero temperature.

3.2.3 Polaritonic Datta and Das Spin transistor

As shown in [65], the analog of Rashba SOI in microcavities can be provided by the

longitudinal-transverse splitting (TE-TM splitting) of the polariton mode. However, the
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Figure 3.8 | Spin Meissner Effect

[66]: The dependence of the long-

wavelength sound velocities of excita-

tions of polariton condensate on the ap-

plied magnetic field. The Zeeman split-

ting at k = 0 is shown in the inset.

TE-TM splitting cannot be easily tuned by the simple application of a voltage, unlike the

Rashba SOI. The control of the polariton Berry phase therefore requires to modulate an

external magnetic field, which is expected to be relatively slow.

In principle, the analog of Rashba SOI in microcavities is provided by the longitudinal-

transverse splitting (TE-TM splitting) of the polariton mode. It is well known that due

to the long-range exchange interaction between the electron and the hole, for excitons

having non-zero in-plane wavevectors the states with dipole moment oriented along and

perpendicular to the wavevector are slightly different in energy [64]. In microcavities, the

splitting of longitudinal and transverse polariton states is amplified due to the exciton

coupling with the cavity mode and can reach values of about 1 meV [137].

We propose to use as analogous of the Rashba field, not the TE-TM splitting, but

the change of the polarization eigenstates induced by the formation of polariton Bose

Einstein condensate in the presence of magnetic field. In that case the modulation of the

signal will be driven, not by the modulation of the magnetic field, but by the modulation

of the condensate density, which can be achieved either by the modulation of a pumping

laser intensity, or by the modulation of a voltage in case of electrically driven condensate

[138, 139, 140, 11].

The device is constituted by a planar microcavity showing a confining potential having

the shape of a stripe of width L as shown on the upper panel of the Fig.(3.9)),

U =

{
−U0

0

, 0 < x < L

, x < 0, x > L
(3.9)

We divide the system into three regions: (1) x < 0, (2) 0 < x < L and (3) x > L. We

assume that critical conditions for the formation of a quasi-equilibrium BEC of polaritons

are fulfilled [22]. We also assume that the chemical potential µ stands below the edge of

the barriers, so that the condensate is confined in the central region and absent in the

flanking regions.
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Figure 3.9 | Polaritonic analogue of Datta and Das spin transistor: Schematic illustration

of a polariton spin transistor (upper panel) with the corresponding renormalized polariton dispersions

(lower panel). The regions are indicated with 1 (x < 0), 2 (0 < x < L) and 3 (x > L). Dark gray

(blue) corresponds to σ− and light gray (red) for σ+ polarization. In region 2 the mixing of both circular

polarizations results in an elliptical polarized condensate, while in flanking regions only the σ+ component

can propagate.

We consider the effect of an external magnetic field B applied perpendicularly to

the structure interface. In the lateral regions 1 and 3, the normal Zeeman splitting Ez

between the polariton modes occurs as shown in the lower panel of the fig 1. This opens

an energy gap E < Ez = µbgB where only one of the two circularly polarized component

can propagate. We assume here, and in the following that the Zeeman splitting is much

larger than the TE-TM splitting which can therefore be neglected. In the central region

however, the presence of the condensate leads to the so-called spin Meissner effect [66].

For a given field B, the critical density nc in the polariton condensate can be defined as

nc = µbgB/(α1 + α2), (3.10)

where α1(2) are the interaction constants for particles with the same (perpendicular) spin

projection, g is the exciton g-factor and µb is the Bohr magneton. Above this critical

density nc, the spin anisotropy of the polariton-polariton interactions leads to a full para-

magnetic screening of the Zeeman splitting EZ resulting in a quenching of the Zeeman

gap, as shown in the lower part of the Fig.3.9. This effect is what is called the spin

Meissner effect. The polariton condensate is elliptically polarized, which is also the case

for the propagative modes in the central region. The polarization degree of these modes

depends on the condensate density. Therefore a circularly polarized σ+ pulse with an en-

ergy located within the Zeeman gap of the lateral regions can enter into the central region.



POLARITONIC ANALOG OF THE DATTA AND DAS SPIN TRANSISTOR 93

During its propagation in this region its polarization vector will be rotated by an effective

magnetic field whose direction is associated with the polarization of the eigenstates in this

region. This effective ”spin-Meissner field” has some in-plane component and plays the

role of the Rashba SOI effective field. The intensity of the outgoing current depends on

the angle ∆φ between the pseudospin vector of a polariton reaching the outgoing lead. If

the precession is so that the pulse becomes fully σ− polarized on the interface between 2

and 3, the pulse will be fully reflected. If the pulse is fully σ+ polarized, it will be fully

transmitted. Working in this energy range means that for polaritons we create a situation

analogical to ferromagnetic-nonmagnetic- ferromagnetic interface, which one needs for a

creation of the Datta and Das device.

Such a configuration has a number of possible advantages with respect to classical

spintronics: the dramatic impact of carrier spin relaxation or decoherence, which has

severely limited the achievement or the functionality of any semiconductor-based spin-

tronic devices, is strongly reduced [141]. Besides, the solution of spin injection problem is

now trivial: it is performed simply by choosing an appropriate polarization of the exciting

laser.

3.2.4 Model

Quantitatively the outgoing amplitude can be calculated by solving a system of linear

equations. The wavefunctions of a propagating mode in the three regions can be written

in the following way:

Ψ1 = (eikx + reikx)

(
1

0

)
+ Aeγx

(
0

1

)
, (3.11)

Ψ2 = (C+
1 e

ik1x + C−
1 e

−ik1x)

(
cosβ+

sinβ+

)
+ (3.12)

+(C+
2 e

ik2x + C−
2 e

−ik2x)

(
cosβ−

sinβ−

)
,

and

Ψ3 = (teikx)

(
1

0

)
+Deγx

(
0

1

)
, (3.13)

where r is the amplitude of reflectivity, t is is transmission amplitude, C
+(−)
1,2 are the

complex amplitudes of forward (backward) running waves in the trap with different po-

larization and wavevector k1 and k2. The wavevectors are determined by the dispersion

relations for each region Ref.[66], which read:
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k =

√
2m

~2
(E) (3.14)

γ =

√
2m

~2
(Ez − E) (3.15)

k1 =

√
m

~2
(−n2U+ +

√
4E2

eff + n2
2U

2
−) (3.16)

k2 =

√
m

~2
(−n2U− +

√
4E2

eff + n2
2U

2
+) (3.17)

with Eeff = E − µ and

U± = α1 ±

√

α2
2 + (α2

1 − α2
2)

(
B

BC

)2

. (3.18)

The polarization of the excitations in region 1 and 3 is σ+ and σ−. The polarization

of the elementary excitations of the condensate in the Spin-Meissner phase (region 2)

have never been calculated. They can be found by the standard method of linearization

with respect to the amplitude of the elementary excitations of the condensate and can be

written as follows:

(
cosβ±

sinβ±

)
, tanβ± =

−α1cos2Θ ±
√
α2

1cos
22Θ + α2

2sin
22Θ

α2sin2Θ
, (3.19)

where Θ = 1/2arcsin
√

1 − (B/BC)2.

Interestingly, the polarization of the excitations, associated with the angle Θ are dif-

ferent from the one of the condensate associated with the angle β. The Spin-Meissner

effective field is directed along (cosβ−, sinβ−), with an amplitude

Ωt =
E

2~

k2
1 − k2

2

k1k2

. (3.20)

To find the amplitude of the outgoing beam one has different possibilities. Using an

analytical approach close to the transfer matrix method, one obtains for the reflected

amplitudes r and transmitted amplitude t

t = eik1L cos2 β+ + eik2L sin2 β+ + (3.21)

+

[
cos β+ sin β+

(
eik1L − eik2L

)]2 [
sin2 β+e

ik1L + cos2 β+e
ik2L
]

1 −
[
sin2 β+eik1L + cos2 β+eik2L

]2 (3.22)

r =

([
eik1L − eik2L

]
cos β+ sin β+

)2

1 −
[
sin2 β+eik1L + cos2 β+eik2L

]2 . (3.23)
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a

b

Figure 3.10 | Reflection

and transmission coeffi-

cient versus energy of the

probe pulse and chemical

potential: (a) Dependence

of T (red) and reflection co-

efficient R (black) on the ex-

citation energy E (µ = −0.7

meV) and (b) T and R versus

chemical potential µ (E =

0.2 meV). The used parame-

ters are: B = 5 T, EZ = 0.25

meV, L = 20µ m, and U0 =

−1 meV.

In this analytical approach σ− polarized part is fully reflected and can not escape and

decay from the central region. Thus the results (not shown) from this analytical approach

reflect not the real life.

A more exact approach is to use the wave-functions (Eqs. (3.11)-(3.13)) and boundary

conditions, which ensure the continuity of the wave-function and current conservation at

the interfaces. The system of equations, which has to be solved reads as follows:

Ψ1(0) = Ψ2(0) (3.24)

Ψ3(L) = Ψ2(L)

v̂1Ψ1(0) = v̂2Ψ2(0)

v̂3Ψ3(L) = v̂2Ψ2(L),

where the operators v̂i can be found from Heisenberg’s equation of motion assuming

simply linear dispersions in the central region:

v̂1,3 =
i~

m

d

dx
, v̂2 = Vk1,k2 . (3.25)

The system of equations is solved numerically and the transmission and reflection

coefficients defined as T = |t|2, R = |r|2.
Fig.3.10 shows the dependence of the transmission coefficient T = |t|2 and reflection

coefficient R = |r|2 on the excitation energy E (a) and on the chemical potential of the

condensate µ (b). The polarization of the particles is rotated during the propagation in

region 2 with elliptically polarized excited states. The calculation is performed taking

into account realistic parameters of a GaAs microcavity. Varying the energy of the in-

jected particles, which can be done by change the excitation -angle of the resonant laser,
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increases or decreases the value of the Spin-Meissner effective field affecting the particle

propagation in the central region. Another way to modulate the outgoing beam keeping

the particle energy constant (close to the resonances on Fig.3.10(a)), is to change the

particle concentration (and thus the chemical potential µ) in region 2. This can be simply

realized by the modulation of the optical or electrical pumping of the condensate. The

impact of the particle concentration is shown in Fig.3.10(b). Close to the resonances, the

outgoing beam drops from full transmission to zero transmission for a very weak change

of µ. This gives a possibility to tune rapidly the outgoing current of the proposed device

simply by changing one external parameter.

Of course the outgoing intensity can also be modulated by the magnetic field, but the

change of the magnetic field intensity is rather slow in comparison to intensity modulation

of a pumping laser or to modulation of the applied voltage (in case of electrical pumping).

From the point of view of experimental realization, increasing the magnetic field enlarges

the Zeemann splitting and the energy range where only one polarization component can

propagate outside the condensate. Thus, on one hand it should be preferable to apply a

huge magnetic field in order to increase the operating energy range. On the other hand,

high magnetic fields complicate the practical applications.

3.2.5 Gross-Pitaevskii based simulations

We have also performed a realistic numerical simulation of the device operation. We have

first calculated the wavefunction of the condensate in the trap region by minimizing the

free energy ( equation 3.26) of the system on a grid, as in Ref. [142], taking into account

the two polarization components and the interactions between them. All the parameters

are taken the same as in the previous formulas.

F =

∫
dr

(
~

2

2m

(
Ψ∗

+∆Ψ+ + Ψ∗
−∆Ψ−

)
+ U

(
|Ψ+|2 + |Ψ−|2

)
(3.26)

+
α1

2

(
|Ψ+|4 + |Ψ−|4

)
+
EZ

2

(
− |Ψ+|2 + |Ψ−|2

))

We have then simulated the propagation of a circularly polarized pulse through the

system with the spinor Gross-Pitaevskii equation for polaritons using the wavefunction of

the condensate found previously. The main difference with the analytical model presented

above is the spatial profile of the wavefunction of the condensate; this difference becomes

negligible at larger densities, when the interaction energy is much higher than the kinetic

one. Another difference is that we consider pulse propagation, more important from the

practical point of view, instead of solving a steady-state problem.

Figure 3.11 shows the snapshots of the pulse propagation through the device. Only

the wavefunction of the pulse is shown, without the condensate, which is located in the
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Figure 3.11 | Propagation of a wavepacket through the spin transistor: (a) wavepacket created

by a laser pulse; (b) wavepacket reflected by the condensate; (c) wavepacket transmitted almost without

reflection.

trap shown by the rectangle. Panel (a) shows the initial state: a Gaussian wavepacket is

created by a short laser pulse to the left of the trap with the condensate. Panels (b,c)

show the system after the wavepacket has interacted with the condensate: in (b) the

packet is mostly reflected, whereas in (c) a larger part passes through. The two latter

panels correspond to two different regimes of the transistor operation depending on the

condensate density: closed (b) and open (c). The broadening of the wavepacket is due to

the interaction with the condensate; however this relatively small broadening should not

be detrimental for the device.

3.2.6 Conclusions

In conclusion, we proposed a scheme of a polaritonic analog of Datta and Das spin tran-

sistor. The proposed geometry allows to solve the problems of decoherence and inefficient

spin injection which were blocking the experimental realization of Datta and Das spin

transistor for electrons.

3.3 Chaotic Josephson oscillations of polaritons

3.3.1 Josephson effect of excitons and polaritons

Polaritons are two dimensional objects. Thats why, strictly speaking Bose-Einstein con-

densation is forbidden in such systems. The 2D objects need to be confined in a potential

trap to undergo phase transitions such as BEC. The latter can appear due to the intrinsic

lateral photonic disorder in a cavity [22] or can be created in a controllable way by external

laser beams, by application of stress [24], or by using photolithographic techniques. The
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possibility of engineering the confinement of the condensates allows to study the Joseph-

son effects for excitons and polaritons, related to the tunneling between two condensates

possessing macroscopic phase coherence. The Josephson effect was first predicted [143]

and experimentally observed [144, 145] for two superconductors separated by a thin in-

sulator layer. Also realizations with superfluid helium [146] and cold atomic condensates

[147] have been reported in recent years.

The crucial property of the condensates of cold atoms and the condensates of exci-

tons and polaritons, as compared to the superconductors, is the interaction between the

tunneling particles. This leads to the striking nonlinear effects in Josephson dynamics,

such as anharmonicity of the Josephson oscillations [148] and macroscopic quantum self-

trapping (MQST) in the case when the initial imbalance between the two condensates

exceeds some critical value [149, 150].

In the following we will present briefly the predictions of Shelykh at al. [151] for the

Josephson effect of exciton-polaritons, which will be the basic effect used to observe the

chaotic oscillations. The interested reader should address the original paper for a more

detailed description.

The model Hamiltonian for interacting bosons with pseudospin confined in two traps

(R and L), which is the starting point of the description, reads as follows:

H = E
∑

i=R,L;σ=↑,↓
c†iσciσ + J

∑

σ=↑,↓

(
c†LσcRσ + c†RσcLσ

)
+ (3.27)

+Ω
∑

i=L,R

(
c†i↑ci↓ + c†i↓ci↑

)
+
α1

2

∑

i=L,R;σ=↑,↓
c†iσc

†
iσciσciσ.

The first term corresponds to free particles, the second term describes the spin-

conservative tunneling of particles between the two traps, and the third term describes

the possibly existing anisotropy of the QW (in the direction of the structure growth-axis),

which is equivalent to the application of an effective in-plane magnetic field able to pro-

voke spin-flip processes. The last term of the Hamiltonian corresponds to the interactions

between particles. The interactions between particles situated in different traps and par-

ticles having opposite circular polarizations are neglected. The system with all coupling

constants is schematically shown in Fig.3.12.

The coupling constant J can be written

J ≈ 4V e−~
−1

√
2mV D, (3.28)

where V is the well deepness, and D is the interwell distance. The interaction constant

U ≈ EBa
2
B/S and Ω has been determined experimentally in the range of 50 − 100µ eV.

The dynamic equations can be obtained by means of Heisenberg’s equation of motion,
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Figure 3.12 | Model system for the

Josephson effect of exciton polari-

tons: Ω is the coupling of particles in

one well with different polarization, J is

the coupling of particles with the same

polarization but in different wells, D is

the interwell distance and V the poten-

tial depth. L and R are the indices for

the two wells.

neglecting here all dephasing effects. The resulting coupled 4 equations for the order

parameter read as follows:

i~
dψLσ

dt
= (E + α1 |ψLσ|2)ψLσ + JψRσ + ΩψL,−σ (3.29)

i~
dψRσ

dt
= (E + α1 |ψRσ|2)ψRσ + JψLσ + ΩψR,−σ.

One can distinguish now two different cases, when either J or Ω is equal to zero:

• extrinsic Josephson effect : In the case of the absence of the effective in-plane mag-

netic field Ω = 0, one has independent coherent tunneling of the condensates with

opposite circular polarizations between two traps, completely analogical to the con-

ventional Josephson effect for atomic condensates.

• intrinsic Josephson effect : If different traps are uncoupled J = 0 but Ω 6= 0 in each

of the traps, we have coherent exchange of particles between the condensates with

different polarizations.

The nonlinear term plays a crucial role in Josephson dynamics. Once nonlinearity

is neglected, Eqs.(3.29) give a well-known expression for the Josephson current for both

extrinsic and intrinsic Josephson effects: Ii,e = I
(0)
i,e sinφ, where φ is the difference between

the phases of the two condensates; I
(0)
e = NTJ~

−1,I
(0)
i = NT Ω~

−1 with NT being the total

number of particles. In this regime the occupancies of the coupled condensates exhibit

harmonic oscillations with periods given by J and Ω for extrinsic and intrinsic Josephson

effects, respectively.

If both wells have the same number of particles and only the tunneling term is present,

one has a situation similar to the dc Josephson effect in superconductors: a small tunneling

current is flowing without any applied field. This current is proportional to the sine of

the phase difference across the barrier.
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Figure 3.13 | Extrinsic and intrinsic Josephson effect [151]: (a) ρc for the intrinsic Josephson

effect illustrating nonlinear oscillations (blue), MQST (blue) and finite lifetime effects (red). (b) Pop-

ulation imbalance for the extrinsic Josephson effect illustrating once again nonlinear oscillations (blue),

MQST (black), and finite lifetime effects (red/gray).

The situation changes drastically if the nonlinear terms are taken into account such

as the blueshift of the polaritons dispersion. The oscillations of the occupation numbers

become anharmonic and their period depends on NT [148, 149]. Besides, if the initial

imbalance between the occupation numbers of the two coupled condensates exceeds some

critical value Nc, the effect of the MQST occurs. In this regime the tunneling between

the condensates is suppressed and the particles remain in the state where they have been

created. The imbalance of the occupation numbers results in a different blueshift in each

well. This potential difference between the two wells is similar to the ac Josephson effect

in superconductors: A flow of a small ac current when there is a potential difference

between the two superconductors. The initial populations are almost unperturbed.

Figure 3.13(a) illustrates the intrinsic Josephson effect (J = 0). It shows the time

oscillations of the circular polarization degree ρc(t) for two different initial values ρc(0) =

0.58 and ρc(t) = 0.71, respectively, the critical value for the MQST effect being 0.63. In

that case the MQST leads to the suppression of beats of ρc which can be also expressed as

the onset of the self-induced Larmor precession, which is an oscillation of the linear part

of the polarization about the effective magnetic field created by the circular polarization

degree [86, 152]. The black curve is calculated considering a pulsed resonant excitation and

taking into account the decay of polaritons. At short times, the polarization oscillations

are suppressed. However, the decay of the number of particles leads to the increase in the

critical value ρc and after 40 ps the oscillatory regime is recovered. Fig. 3.13 (b) shows the

extrinsic Josephson effect. For different population imbalances z(t) of the particles one

can obtain different regimes: simple linear Josephson oscillations, microscopic quantum

self trapping as well as the transition from one to another induced by finite lifetime effects.
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Using elliptically polarized condensates, the oscillations become more complex. The

Josephson effects in the nonlinear regime lead to nontrivial polarization dynamics and

produce a spontaneous separation of the condensates with opposite polarizations in the

real space. We will not go into details of the description. Once again, the interested

reader is referred to Ref.[151] for a more detailed discussion.

In conclusion with a special focus on the following sections, the system of four coupled

equations 3.29 contains already enough complexity to show nontrivial oscillations, which

can be pushed towards chaotic oscillations.

3.3.2 Chaotic Josephson oscillations

Chaotic behavior of perfectly deterministic systems has been fascinating scientists since

its discovery by H. Poincaré [153] and its popularization by E. Lorenz [154] and B. Man-

delbrot [155]. Chaotic behavior has been observed in nature as well as in laboratory in a

variety of systems including mechanical, chemical, electrical, and optical ones. A neces-

sary condition for a system to be chaotic is nonlinearity. Moreover, the complexity of the

system should be sufficient in order to allow the existence of the chaotic attractor in the

phase space.

In this section we will consider two spatially separated macroscopically occupied modes

of cavity exciton-polaritons (polaritons) with a Josephson coupling between them, taking

into account their polarization.

It is the exciton-exciton interaction which brings the nonlinearity necessary for the

chaotic behavior into the polaritonic system. This interaction is spin-anisotropic: strongly

repulsive for excitons with the same spin projection on the growth axis and weakly at-

tractive for excitons with opposite projections [73, 41]. A single macrooccupied polariton

mode can be considered as a nonlinear oscillator demonstrating bistable behavior under

quasi-resonant pumping as already discussed in the previous chapters. The Josephson

coupling can arise between two weakly overlapping spatially separated modes with the

same spin (extrinsic Josephson effect). It can also arise between the two polariton spin

components without spatial separation. It was called intrinsic in the previous section.

The coupling between the two polarizations is provided by the natural splitting of the

ground state due to the anisotropy of the cavities.

The inherent property of polaritons is their relatively short lifetime (of the order

of several picoseconds). Therefore, the decay and the pumping should be included in

the description of such system. The Josephson oscillations in a driven polariton system

have been first considered by D. Sarchi et al [156], who demonstrated the validity of a

simplified single-mode approximation. The model of D. Sarchi did not include spin degree

of liberty and was not capable of demonstrating chaotic behavior. Like the cold atomic

condensates [149], the coupled macrooccupied polariton modes have been predicted [151]
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Figure 3.14 | Periodic oscillations of the Jospehson coupled system: (a) shown the oscillations

of |Ψ1+|2 on the time domain, and (b) shows the Fourier-spectrum of the spin-up component for periodic

oscillations.

to exhibit nonlinearities and macroscopic quantum self-trapping due to the interparticle

interactions. Chaotic Josephson oscillations and their synchronization have been studied

before in arrays of superconductors with Josephson junctions, with a different non-linear

term in the equation [157, 158], but not in optical systems.

We consider in the following two traps with two polarization components in each trap

with both extrinsic and intrinsic coupling mechanisms present. This coupling brings in

the complexity sufficient to observe chaotic behavior.

We consider two confined polariton states separated by a potential barrier. Such a

potential profile can be realized by applying stress on the microcavity surface [159], or by

patterning two micro-pillars close to each other [160]. In such case the equation describing

the dynamics of the coupled confined polariton states can be written as

i~
∂ψ1+

∂t
= −i~ψ1+

τ
+ α1 |ψ1+|2 ψ1+ + α2 |ψ1−|2 ψ1+ − Jψ2+ − Ωψ1− + P0e

−iωt(3.30)

i~
∂ψ1−
∂t

= −i~ψ1−
τ

+ α1 |ψ1−|2 ψ1− + α2 |ψ1+|2 ψ1− − Jψ2− − Ωψ1+

i~
∂ψ2+

∂t
= −i~ψ2+

τ
+ α1 |ψ2+|2 ψ2+ + α2 |ψ2−|2 ψ2+ − Jψ1+ − Ωψ2−

i~
∂ψ2−
∂t

= −i~ψ2−
τ

+ α1 |ψ2−|2 ψ2− + α2 |ψ2+|2 ψ2− − Jψ1− − Ωψ2+.

This are, except the additional pump term in the first equation and the decay terms,

exactly the equations discussed in the previous subsection. P0 is the pump intensity, while

~ω is the pump detuning or the energy difference between the pumping energy of the laser

and the energy of the bare polariton mode. In the calculations we use the parameters of
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Figure 3.15 | Chaotic oscillations of the Jospehson coupled system: (a) shown the oscillations

of |Ψ1+|2 on the time domain, and (b) shows the Fourier-spectrum of the spin-up component.

a typical cavity with GaAs quantum wells, since such cavities presently show the longest

lifetimes (we take τ = 20ps). We take Ω = 150µeV , in the range of values measured

experimentally, and J = 93µeV . Both should be comparable with each other and with

the inverse lifetime Γ = ~/τ , in order to observe chaotic behavior.

Fig. 3.14 shows the oscillations of the spin-up component of the first pillar |Ψ1+|2 in

the time domain (a) together with the corresponding Fourier-spectra. It is clear, that

for periodic oscillations one obtains a clear Fourier spectrum with some well defined

frequencies. In contrast, changing the parameter set, the oscillations become chaotic and

then one observes a continuous Fourier spectrum with a random peak structure. This is

shown in Fig. 3.15 (a) and (b).

Another typical visualization of chaotic behavior is the Poincaré section. The general

principle is shown in Fig. 3.16 together with the Poincaré section obtained for the chaotic

oscillations shown in the previous figure. The Poincaré-section (Fig. 3.16) cuts the mul-

tidimensional phase space by an arbitrary chosen plane S. The Poincaré map P(x) maps

now all intersections of a trajectory in the phase space with the arbitrary plane. In case

of a periodic, this means closed, trajectory, the Poincaré map consists of a finite number

of points. In the chaotic case, the Poincaré section shows a fractal structure, which is

illustrated in Fig. 3.16 (b) for the chaotic oscillations of the previous picture.

Furthermore, a nonlinear system can be efficiently analyzed using the conditional

Lyapunov exponent λ, that is, the logarithms of the eigenvalues of a function of the

Jacobian matrix of the system

lim
t→∞

(J∗ (t) · J (t))
1
2t (3.31)

calculated along its trajectory. Stable system contains negative Lyapunov exponents,
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Figure 3.16 | Poincaré section of a trajectory in phase space: (a) schematical description of the

Poincaré section: In Poincaré section S, the Poincaré map P projects point x onto point P(x); and (b)

Poincaré section of the chaotic oscillations of the previous picture.

which means, that the system falls back to the initial trajectory even if a small perturba-

tion is applied. One can use the simple model system of a ball in a potential minimum:

applying a small impulse on the ball, the final state will always be the potential mini-

mum. The system is stable. Chaotic regime is characterized by the presence of positive

Lyapunov exponents, which indicate the divergence of the tranjectory in the presence of

any small perturbation. Coming back to the simple model, the ball is now placed on a

potential maximum. Applying once again a small perturbation, the ball will leave the

initial point and will never come back. Qualitatively, the chaotic regime is obtained when

the bistability transition of the mode pumped directly (ψ1+ in our case) is constantly

invoked by the changes of its population due to the Josephson oscillations of both types.

To carry out quantitative analysis, we have performed simulations at different pumpings

and detunings (which are the most easily variable parameters in experiments, since they

are determined only by the external laser). Figure 3.17 summarizes the results of these

simulations showing the phase diagram of the system in the detuning-pumping intensity

coordinates, the other parameters of the system being kept constant. The boundaries of

the chaotic regions are shown by black solid lines. One can see that almost for any de-

tuning under certain pumping the system should exhibit chaotic oscillations. Outside the

chaotic regions, the oscillations are periodic or absent, as already predicted for a simpler

system [156].
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3.3.3 Chaos synchronization

The developed chaotic cryptography is based on the synchronization of two chaotic sys-

tems. The synchronization means that two chaotic systems are chaotic, but follow the

same trajectory in phase space. This has been first proposed by Pecora and Carroll (1990)

[161] and was later called Pecora-Carroll method. A recent review paper is given in Ref.

[162]. The principle of the synchronization together with the possible communication

scheme is shown in Fig. 3.18. It is taken from Ref. [163], where the experimental re-

alization of chaos synchronization and communication using electric circuits is reported.

One couples now a chaotic system (positive Lyapunov exponents) containing three sub-

systems u, v, w via the output of the first subsystem u(t) with a second system of the

same structure (vr, wr) but stable against chaos (negative Lyapunov exponents). Putting

apart for a while the signal n(t) (Fig. 3.18) the output u(t) drives vr and wr. Due to

the positive Lyapunov exponents the subsystems vr and wr will drive the ur in the same

way as the first system. The result is, that u(t) and ur(t) are equal in the perfect case

and the two systems are synchronized. This can be used to mask a useful signal n(t),

which can be added to the chaotic driving output u(t) of the first system. Due to the

negative Lyapunov exponents of the second system, this small deviation does not destroy

the synchronization and ur(t) will follow the same trajectory as u(t). Comparing now

s(t) with ur(t) opens the possibility to recover the useful signal, which has been masked

in the chaotic output of the first system u(t).

We use a similar way for our system: We divide our system into two subsystems, one of

them being intrinsically chaotic, and the other - intrinsically stable against chaos. These

two conditions are checked calculating the conditional Lyapunov exponents along the

trajectory in the chaotic regime. This calculation shows that for the chosen parameters

(pumping 1× 1014 s−1, detuning −1.5 meV, appearing to be optimal values) the system
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Figure 3.18 | Chaos syn-

chronization and com-

munication system [163]:

A useful signal n(t) can

be transmitted hidden in a

chaotic transport signal u(t)

by synchronization of two

systems. The extracted sig-

nal m̂(t) is in case of per-

fectly synchronized systems

equal to n(t).

can be divided into two subsystems, one of them associated with the first trap, and the

other with the second trap. The Lyapunov exponents are positive for the wavefunctions

of the first subsystem and negative for the wavefunctions of the second subsystem.

Therefore the synchronization between two systems should be performed by connecting

the output of the first trap of the master system (both polarization components) with the

only trap of the slave system (with parameters corresponding to the second trap of the

master system), as shown by the blue arrows in Fig.3.19(a). We describe this numerically

by adding a term proportional to the wavefunction of the driving system Ψ1± to the

equations describing the slave system Ψ′
2± :

i~
∂ψ′

2+

∂t
= −i~ψ

′
2+

τ
+ α1

∣∣ψ′
2+

∣∣2 ψ′
2+ + α2

∣∣ψ′
2−
∣∣2 ψ′

2+ − V ψ1+ − Ωψ′
2− (3.32)

i~
∂ψ′

2−
∂t

= −i~ψ
′
2−
τ

+ α1

∣∣ψ′
2−
∣∣2 ψ′

2− + α2

∣∣ψ′
2+

∣∣2 ψ′
2− − V ψ1− − Ωψ′

2+.

This coupling represents the only source of pumping for the slave system. A certain

time delay proportional to the transmission time between the two systems is present

between the master and the slave systems, which should be taken into account when

decoding a useful signal.

To transmit information masked in the chaotic oscillations we introduce a communi-

cation channel to the system shown by the red lines in Fig. 3.19 (a). A useful digital

signal with a repetition rate of 50 GHz is added to the output of the second polarization

component of the master system in point 1 and transmitted to the receiver 2, where the

useful signal is reconstructed by the comparison with the output of the synchronized slave

system. The corresponding Fourier spectrum of the chaotic output with the added useful

signal is shown in Fig.3.19 (b), where the arrow indicates the frequency position of the

masked useful signal. Obviously, the oscillations invisible in the Fourier spectrum are

completely masked in the time domain as well (not shown). The signal s(t) itself is shown

in (d). The subtraction of the chaotic output of the synchronized slave system from
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Figure 3.19 | Synchronization of the chaotic systems and chaotic communication: (a)

schematic system with a separated synchronization channel (blue) and a communication channel (red);

(b) Fourier spectrum of the chaotic behaviour of the second polarization component of the master sys-

tem modulated with a signal (red arrows); (c) synchronization error without signal versus time; (d)

transmitted signal s versus time, and (e) recovered signal s’.

the received signal from the master system allows recovering of the transmitted signal

(Fig.3.19 (e)).

Figure 3.19 (c) shows the relative synchronization error between two corresponding

wavefunction components
(∣∣ψ′

2+

∣∣2 − |ψ2+|2
)
/
(∣∣ψ′

2+

∣∣2 + |ψ2+|2
)

from the driving and the

slave systems with a mismatch of 0.5% of the coupling between polarizations within the

same well Ω. Although there are several peaks rising up, the synchronization is always

recovered on the long term, allowing a continuous signal transmission for communication.

The chaotic oscillations for the given parameters allow signal frequencies up to some

THz for extremely well synchronized systems. But the recovering of the transmitted

signals is restricted by the frequency spectrum of the synchronization error caused by the

parameter mismatch of the coupling constants and by the noise, which are always present

in experimental setups. One of the most important aspects of a cryptographic system

is its security. A set of criteria for estimation of the security of chaotic cryptographic

systems has been proposed recently [8]. These criteria include, for example, resistance to

message signal extraction attacks: the useful signal should not be visible in the Fourier

spectra. Another criterion is the robustness against noise in the communication channels.

We have checked that such criteria are well verified for our system.

The experimental implementation of this polarization dependent communication scheme
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Figure 3.20 | Chaotic communica-

tion networks: A possible chaotic

communication network containing one

server and three participants. The

Server is a master system which drives

the slave system A, B and C. Communi-

cation is possible between A, B, and C

if all lengths (and ”flight times”) of the

communication channels are known.

Server

A

B C

synchronization

channel
communication

channel

might seem challenging due to technical restrictions, such as that the polarization is not

maintained during the transmission through an optical fiber. Therefore, we have tested

a similar system without the polarization degree of freedom. However, to have sufficient

complexity, it is necessary to have at least three traps, with two Josephson couplings

between them. This can be obtained by arranging the traps in a line and pumping the

central one. In this configuration one can observe chaotic oscillations and their synchro-

nization, with the slave system consisting of a single trap. However, since the coupling

between the two circular polarizations within a trap is always present because of the quan-

tum well anisotropy, this model, although working, is not an adequate representation of

the real system. We therefore recommend the first scheme (two traps, two polarizations)

for realizing the chaotic communication systems.

3.3.4 Chaos communication network

Using separate synchronization and communication channels opens the possibility of bidi-

rectional communication, while the synchronization is provided by a unidirectional cou-

pling of the master and slave system. Within such a scheme one can even implement

chaotic communication networks.

A scheme of a chaotic communication network is shown in Fig 3.20. This network

contains a server, which is nothing else than the master system. This server drives the

three slave systems A, B and C. Once all three slave systems are synchronized with

the master, one can send and receive messages from one slave system to another. The

knowledge of all ”flight” times of the signal between the slave systems is a necessary

requirement to reconstruct the information.
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3.3.5 Conclusions

We have studied chaotic Josephson oscillations between two macrooccupied polariton

modes under quasi-resonant pumping taking into account the polarization degree of free-

dom. Chaos synchronization is possible for such systems, allowing the transmission of

useful signals with chaotic masking at rates up to 50Gb/s, which is an important advan-

tage with respect to other optical chaotic communication systems. Polaritons have unique

properties extremely useful for chaotic communication system. With respect to electronic

system, there advantage is to deal with the efficient transmission of data by light beams.

With respect to purely photonic systems, they show much stronger nonlinearities which

are absolutely required for the achievement of the chaotic regime. These two advantages

combined results in the very high communication rate we have demonstrated.
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Chapter 4

Strongly coupled dot-cavity system

Strongly coupled dot-cavity systems are under deep investigation in recent years and they

give hopes for new sources of single and entangled photon pairs. This section discusses

in detail one proposal to use a strongly coupled dot-cavity system as a new ”on-chip”

source of entangled photon pairs, possessing several advantages with respect to previous

proposals. The main point is the overcome of the impact of deviations of the dot or its

environment from the artificial atom picture. In case of entangled photon sources, the

main problem is the splitting of the exciton levels due to the anisotropic electron-hole

interaction, which can be overcome by our approach for almost all quantum dots.
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Figure 4.1 | Illustration of the

EPR-paradox: Two measurements

made at the same time give a full set of

spin components of the two entangled

particles, which contradicts the basics

of quantum mechanics, where the spin

components do not commute.
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4.1 Introduction

It was first pointed out by Einstein, Podolsky, and Rosen [164] that, according to the usual

interpretation of quantum mechanics, there exist two-particle states with the fascinating

property that a measurement of one chosen variable of particle 1 determines completely

the outcome of the measurement of the same variable of particle 2. At the measurement

the particles may be so far away, that no effect of one measurement can propagate to the

other particle in the available time. Such situations can arise if both particles are emitted

from a common source in some entangled (non-factorisable) quantum state

|Ψ〉 =
1√
2
[|Φ〉1 |χ〉2 − |χ〉1 |Φ〉2]. (4.1)

According to Einstein, Podolsky, and Rosen, when the outcome of one measurement

of some particle variable (for the second particle) can be predicted with certainty, without

disturbing the particle, then ”...there exists an element of physical reality corresponding

to this physical quantity...”. In other words, the particle two really has this value of the

variable, irrespective if it is measured or not. This must be contrasted with the quantum

point of view, according to which the measurement creates the reality, in a sense. On the

other hand, one may consider a different variable, say, one that is canonically conjugate

to the previous one measured for the 1st particle. Then the entanglement predetermines

the value of the conjugate variable of the 2nd particle, and, by the foregoing arguments,

particle two has really this value of the variable. But if the two variables are canonical

conjugates, then they do not commute and they can not both have definite values at the

same time.

Now the decision whether to measure one or the other variable of particle 1 can be

made when the two particles are far apart and cannot ”communicate” in the available

time, yet it influences the state of particle two. This contradiction led Einstein, Podolsky,

and Rosen to conclude that quantum mechanics is ”incomplete”. Such counter-intuitive

non-local correlations have, however, been observed experimentally.
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The implication itself of quantum entanglement has been widely discussed in the last

century [165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175].

To illustrate the so called EPR-paradox more explicitly, let us imagine a simple exam-

ple, which is illustrated in Fig.4.1. We consider a black box, which emits two entangled

spin 1
2

particles in opposite directions with total spin angular momentum zero. If we were

to measure the spin S
(1)
x of the first particle in the x-direction for example and obtain

the value ~/2, we would know that the second particle is in a eigenstate of its spin S
(2)
x

with eigenvalue −~/2. On the other hand, if we were to measure the S
(2)
y of the second

particle and obtain the value −~/2, we would determine the value of the y-component

of the spin of the first particle to ~/2. Performing these measurement for both particles

we would obtain a definite set of the spin eigenvalues of the two particles. But S
(1)
x and

S
(1)
y do not commute and, according to quantum mechanics, they cannot both have def-

inite values. The paradox arises, because we tend intuitively to think in classical terms,

i.e. to associate an objective physical reality with each particle and its variable, whereas

in quantum mechanics a dynamical variable does not have actually a value until it is

measured. In a sense, the measurement creates the physical reality. Various proposals

have been made to account for the correlations of the two particles in terms of hidden

variables, or unmeasurable parameters [166]. But it was later shown by Bell and others

[167, 168, 176, 169, 171, 172] that such nonlocal effects are fundamentally quantum me-

chanical, and that no realistic local theory can account for the correlations quantitatively.

Real applications of the entanglement have been developed within modern quantum

computing and communication schemes [177]. For the communication purposes, the word

teleportation is often used to describe these processes. Actually it comes from science

fiction and means to make disappear a person or an object at one place, while an exact

replica appears somewhere else. (In real life only coherent states, which can be described

by a wavefunction, can be transported and this limits strongly the teleportation of a

macroscopic object.) We will not discuss in detail the teleportation of an quantum state,

but we refer to Ref. [178] for the interested reader. Of course there are various different

communication protocols based on entangled photon pairs e.g [179] but we will describe

the modified BB84 protocol [180] which transforms the initial proposal based on polarized

single photons [177] to entangled photon pairs. The practical implementation has been

carried out by Jennewein et al. in 2000 [181].

In general, Quantum cryptography, or quantum key distribution (QKD), uses quantum

mechanics to guarantee secure communication. It enables two parties to produce a shared

random bit string known only to them, which can be used as a key to encrypt and decrypt

messages, which are transmitted over a standard (classical) communication channel. We

will only scratch the surface of the QKD, which grew enormously in recent years and

became a separate research field. More detailed informations are given, e.g. in a recent
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(a) (b)

Figure 4.2 | Realization of the modified BB84 protocol [181]: (a) Settings for Alices and

Bobs analyzers for realizing quantum key distribution based on the BB84 protocol and (b) schematically

experimental realization.

review paper [182].

An important and unique property of quantum cryptography is the ability of the two

communicating users to detect the presence of any third party trying to gain knowledge

of the key. This results from a fundamental aspect of quantum mechanics: the process

of measuring a quantum system in general disturbs the system. A third party trying to

eavesdrop on the key must in some way measure it, thus introducing detectable anomalies.

By using quantum superpositions or quantum entanglement and transmitting information

in quantum states, a communication system can be implemented which detects eavesdrop-

ping. If the level of eavesdropping is below a certain threshold a key can be produced that

is guaranteed to be secure (i.e. the eavesdropper has no information about), otherwise no

secure key is possible and communication is aborted.

The quantum states of two (or more) separate objects can become linked together in

such a way that they must be described by a combined quantum state, not as individ-

ual objects. This is known as entanglement and means that, for example, performing a

measurement on one object will affect the other. If an entangled pair of objects is shared

between two parties, anyone intercepting either object will alter the overall system, al-

lowing the presence of the third party (and the amount of information they have gained)

to be determined.

Let us go a bit more into the details of the modified BB84 protocol [180]. The system

is constructed as follows: A entangled photon source is placed in between Alice and

Bob. Alice and Bob receive now one of the entangled photons and they randomly vary

their analysis directions between 0◦ and 45◦ which is shown in Fig 4.2(a). Alice and

Bob observe perfect anticorrelations of their measurements whenever they happen to

have parallel oriented polarizers, leading to bitwise complementary keys. Alice and Bob

obtain identical keys if one of them inverts all bits of the key. Whenever Alice makes a

measurement on photon A, photon B is projected into the orthogonal state which is then

analyzed by Bob, or vice versa. After collecting the keys, Alice and Bob authenticate
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Figure 4.3 | Transmission of an

encrypted image [181]: The 49984

bit large keys generated by the BB84

scheme are used to securely transmit an

image (a) of the Venus von Willendorf

effigy. Alice encrypts the image with her

key and transmits the encrypted image

(b) to Bob via the computer network.

Bob decrypts the image with his key,

resulting in (c) which shows only a few

errors due to the remaining bit errors in

the keys.

their keys by openly comparing a small subset of their keys and evaluating the bit error

rate.

The schematic experimental realization of the quantum key distribution system fol-

lowing [181] is sketched in Fig. 4.2(b).

We will not go into detail in the experimental realization of the modified BB84 pro-

tocol. We only show in Fig. 4.3 the result from [181] to transmit an image of the Venus

von Willendorf effigy. This is the first full implementation of entangled state quantum

cryptography. The authors claim that all the equipment of the source and of Alice and

Bob has proven to operate outside shielded lab environments with a very high reliability.

All this shows that entanglement based cryptography can be tomorrows communication

technology.

After this small excursion to quantum cryptography, we come back to solid state

physics. As follows from the previous paragraphs, the quantum correlations and, to

be more specific, entangled photons pairs are a prerequisite for the realization of many

quantum communication protocols. We will focus in the following only on possible solid

state sources of entangled photon pairs based on single quantum dots as emitters.

4.2 Quantum dots as EPR-photon emitters

In the context of solid state physics, QDs as quantum emitters have drawn a strong

attention when it has been proposed to realize entangled photon pair sources based on

the biexciton decay[183]. The ideal decay paths are illustrated in Fig.4.4. The biexciton

decays emitting either first a σ+ and second a σ− polarized photon or vice versa, and the

photons are fully polarization-entangled. In principle this idea is ingeniously simple, as

it allows to implement such sources on a very small length scale and rises hope for the

on-chip sources of entangled photon pairs, which could be easily implemented on nano
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Figure 4.4 | Biexciton decay of an ideal

quantum dot: The decay takes place from the

biexciton state EXX via two degenerate exciton

states, which couple to different polarization of

light. The final state is the ground state of the

quantum dot.
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Figure 4.5 | Quantum correlations for selected quantum dots [16]: Selected quantum dots

with (a) non-zero finestructure splitting and (b) zero splitting. The corresponding reconstructed density

matrices for the selected quantum dots are also shown.

chips for computing purposes.

Unfortunately, this proposal turned out to be hard to implement mainly because the

intermediate exciton states of a typical QD are not degenerate due to the anisotropic

electron-hole interaction [184, 185]. Also the environment (i.e. the strain induced by the

substrate) of the quantum dot can effect the transitions.

This interaction couples degenerate exciton states which split into two resonances

coupled to two orthogonal linear polarizations called horizontal (H) and vertical (V), re-

spectively. The resulting photons for the two decay channels are therefore distinguishable

and the degree of entanglement becomes zero. The quantum correlations become hid-

den in time integrated measurements because a QD with split intermediate exciton levels

emits photons into a time-evolving entangled state.[186]

Several proposals have been made to overcome this splitting of the exciton lines. The
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(a) (b)

Figure 4.6 | Entanglement and spectral filtering [190]: (a) Shows the photoluminescence spectra,

together with a schematic picture of the decay. (b) shows the reconstructed density matrix with a non-

zero off-diagonal element for a large width of the spectral windows (upper panel) and for narrow spectral

windows (lower panel).

simplest one is of course to grow arrays of quantum dots and select only those, which

show no fine structure splitting. This has been published in several reports [187, 16, 188].

Fig 4.5 shows the photoluminescence spectra of two quantum dots with either non-zero

or zero splitting. The corresponding reconstructed density matrices show clearly an non-

zero off-diagonal element for the zero splitting case, which corresponds directly to a non-

zero degree of entanglement [189] (see Appendix C). The disadvantage of this method is

that the fabrication process of the quantum dot takes place almost without possibilities

of controlling. Thus, it is always necessary to discover among a huge number of QDs

those, which show no splitting. This makes future industrial implementation much more

complicated because a huge effort is needed to fabricate one entangled photon source.

To avoid this, one needs other techniques to overcome the splitting. One, developed

by Akopian et al. [190], is to introduce spectral filters in the experimental setup which

select only the overlapping part of the transition. This procedure is illustrated in Fig.4.6

together with the results for the reconstructed density matrix.

Depending on the splitting, the overlap of the transitions may be very small. This

requires very narrow spectral windows to obtain entangled photon pairs. The disadvantage

here is that the quantum efficiency (the number of detected photons), is very low, which

restricts the possible applications of this technique in communication protocols. The third

possibility we want to discuss here, is the use of external fields to shift the intermediate

states to degeneracy. This has been shown for electrical fields [191, 192] and for magnetic

fields [187, 188]. The latter work is illustrated in Fig.4.7. The dependence of the fine
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(a) (b)

Figure 4.7 | Reduction of the finestructure splitting using external magnetic field [186]: (a)

shows the fine structure splitting versus magnetic field. (b) shows the density matrices for different fields,

where the matrix in the middle corresponds to a zero finestructure splitting.

structure splitting on the magnetic field is shown on the left hand side, showing the

degeneracy of the exciton states for a given magnetic field. Three density matrices for

different magnetic fields are shown on the right hand side, where the middle figure of the

lower panel corresponds to degeneracy. Both techniques together allows one to use almost

arbitrary quantum dots and engineer them to work as EPR-sources.

Nevertheless, the degree of entanglement remains relatively low, due to the imperfec-

tions, dephasing [193] and other effects. This implies the need of new ideas and proposals

to transform the simple idea of Benson et al. [183] to a real working device, which will

be discussed in the next sections.

4.3 Strongly coupled dot-cavity system

The biexciton decay scheme for an ideal quantum dot is shown in Fig.4.4. The interme-

diate exciton states are degenerate and they couple to circularly polarized light. In a real

QD Fig.4.8(a, left part) the exciton resonances coupled to H and V polarized light modes

are typically split by an energy δX . We consider that such a QD is embedded within a

photonic crystal, slightly anisotropic, which shows two confined optical modes polarized

along H and V directions and split by a quantity δC (see the middle of Fig.4.8(a)). Each

of the two non-degenerate exciton states strongly couples to one resonance of the photonic

crystal with either vertical (red) or horizontal (blue) polarization, respectively. This cou-

pling gives rise to two polariton doublets polarized H and V. The resulting decay paths

of the strongly coupled dot-cavity system can be seen on the Fig.4.8(a, right part).

There are now two possible decay channels for each polarization using either lower

or upper polariton state. In Ref.[194] we have shown that for any constant values of δX

and δC , the adjustment of the energy detuning between the group of exciton resonances



STRONGLY COUPLED DOT-CAVITY SYSTEM 119

(a)

(b)

Figure 4.8 | Working

scheme 1: (a) biexciton

decay of a real quantum

dot (left), photonic crystal

resonances (middle) and

resulting decay scheme for

the quantum dot embedded

in the photonic crystal in

the strong coupling regime

(right). The blue arrows

correspond to horizontal

(H) polarization and the

red arrows correspond to

vertical (V) polarization.

(b) shows the calculated

photoluminescence spectra.

and the group of photon resonances allows to make one polariton state with horizontal

polarization degenerate with one polariton state with vertical polarization. This alignment

makes the two possible decay paths of the biexciton using these two intermediate states

distinguishable only by their polarization which results in the generation of entangled

photon pairs showing a maximum degree of entanglement.

The energy of the polariton states EH,V
± can be calculated using [6]

EH,V
± =

EH,V
C + EH,V

X

2
± 1

2

√
(EH,V

C − EH,V
X )2 + 4~2Ω2

H,V , (4.2)

where H and V indicate the different polarizations, EH,V
C are the cavity resonances, EH,V

X

are the exciton energies, and ΩH,V are the values of Rabi splitting, proportional to the

exciton oscillator strength which we assume to be equal for H and V polarized modes.

In an isotropic QD, the oscillator strength of the polarized exciton modes can differ by

a few percent and can provoke shifts of the polariton energy by a few µeV, which will

be discussed later. It follows directly from Eq.(4.2) that the energies of the intermediate

polariton states can be tuned by changing the energy of the photonic resonances.

The pairs of polariton states are degenerate(EH
± = EV

± ) if EH = EV
C and EV = EH

C ,

which means that each resonance for V and H polarized light is adjusted to the energy

of the exciton state coupled to the perpendicular polarization. In the same time, the

biexciton transition is not strongly interacting with the cavity modes because the binding

energy of the biexciton is at least one order of magnitude larger than ~Ω . This resonance

can of course interact with another photonic mode, but we do not want to address this
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Figure 4.9 | Working scheme 2: (a) Calculated energies of the polariton states for different de-

tuning δC−X with , δx =0.1 meV, δC = - 0.5 meV, and 2ΩR =0.22 meV. Different polarizations are

indicated with red (vertical) and blue (horizontal). (b) Distribution of the energy levels for δC−X =0.

(c) Photoluminescence spectra for both polarizations.

case here and we therefore assume that the biexciton emission energy is not perturbed by

the presence of the optical cavity. The right hand side of Fig.4.8(a) shows the resulting

distribution of the energy levels. There are four possible decay channels for the biexciton.

The two decay paths using the UP as an intermediate state produce polarization entangled

photon pairs, which is also the case for the decay paths using the LP. This configuration

is particularly original and probably useful, since it allows producing two independent

EPR pairs. The calculated photoluminescence spectra are shown in Fig.4.8 (b). The

technological requirements for this scheme are however quite strong. The first condition

is that the Rabi splitting should be larger than the splitting between the H and V exciton

states 2~ΩR > δx . The second condition is that the splitting between the optical modes

is exactly equal to the splitting between the QD modes with an opposite sign δx = −δc.
The first condition is usually well fulfilled. In InAS based structures δx is of the order

of 0.05-0.1 meV, whereas 2ΩR ≈ 0.15-0.25 meV. The second condition, because it is an

equality, and because of the small value of δx , seems quite demanding, and would, in

practice, require the growth and study of many structures.

We therefore propose another configuration, conceptually less ideal, but which should

allow an easier experimental implementation. We propose to use an anisotropic photonic

crystal showing a splitting δC substantially larger than δx. Neither the exact value, nor

even the sign of δC play a crucial role in this scheme. This splitting should not be a

problem, since it is difficult rather to fabricate photonic crystals without it. In Ref. [195],

for instance, the splitting measured is about 0.5 meV for a cavity with quality factor

Q > 10000. Figure 4.9 (a) shows the eigenenergies versus the exciton-photon detuning
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Figure 4.10 | Working scheme 3: (a) Calculated energies of the polariton states for different detuning

δC−X with , δx =-0.1 meV, δC = - 0.5 meV, and 2ΩR =0.22 meV. Different polarizations are indicated

with red (vertical) and blue (horizontal). (b) Distribution of the energy levels for positive δC and negative

δX . (c) Photoluminescence spectra for both polarizations at δC−X=-0.275 meV.

δC−X =
EH

C −EV
C

2
− EH−EV

2
, keeping δx and δC constant. This kind of tuning of the

exciton resonance energy can be performed experimentally, for example by changing the

temperature of the sample [13, 14]. We consider here the case where δx and δC have the

same sign. For a wide range of detuning, the H-polarized LP and the V-polarized UP

are almost degenerate. The decay channels of the biexciton are shown on the figure 4.9

(b). The luminescence spectra in two polarizations for positive detuning are shown on the

figure 4.9 (c). The spectrum for each polarization consists of two groups of two peaks. The

group with the lower energy corresponds to the biexciton decay to the polariton states.

The group with the higher energy corresponds to the decay of the polariton states toward

the ground state. For each polarization, the peak with the higher energy and the lower

energy belong to the same decay cascade. The two central peaks belong to the same decay

cascade as well. One can clearly see that the decay channel involving the H-polarized UP

and the decay channel involving the V-polarized LP cannot be distinguished by energy

measurements, but only by their polarization.

As said before, this degeneracy can also be found if δx and δC have opposite signs.

Fig.4.10 (a) shows the eigenenergies versus δC−X in that case. The energy degeneracy now

occurs at negative detuning between the LP states (H and V), and at positive detuning

between the UP states (H and V). The decay channels of the biexciton for the negative

detuning case are shown on the Fig.4.10 (b). The luminescence spectra for negative

detunings are shown on the Fig.4.10 (c). Note the difference in the degeneracy of the

peaks in Fig.4.9 (c) and Fig.4.10 (c): in first case LP is degenerate with UP of different

polarization, and in the second case LP is degenerate with LP.
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4.4 Degree of Entanglement

To describe the full decay scheme analytically we write the two-photon wavefunction in

the following way neglecting cross polarization terms and using the notation UP for the

upper and LP for the lower polariton state of the doublet:

|Ψ〉 =
(
αLP

∣∣pLP
H

〉
+ αUP

∣∣pUP
H

〉)
|HH〉 + (4.3)

+
(
βLP

∣∣pLP
V

〉
+ βUP

∣∣pUP
V

〉)
|V V 〉 ,

where we extract the coordinate part
∣∣∣pLP (UP )

H(V )

〉
from the polarization part of the wave-

function |HH〉 (|V V 〉). The amplitudes α and β are the weights for the possible decay

paths satisfying

|αLP |2 + |αUP |2 + |βLP |2 + |βUP |2 = 1. (4.4)

After tracing out over all possible degrees of |p〉, the corresponding 2 photon density

matrix in the basis of HH,HV,VH and VV for scheme 1 of the previous section reads

ρ = |Ψ〉 〈Ψ| =





|αLP |2 + |αUP |2 0 0 γ

0 0 0 0

0 0 0 0

γ∗ 0 0 |βLP |2 + |βUP |2




, (4.5)

where

γ = αLPβ
∗
LP

〈
pLP

H |pLP
V

〉
+ αUPβ

∗
UP

〈
pUP

H |pUP
V

〉
. (4.6)

The detailed derivation of the density matrix is given in the appendix. In case of

scheme 2, the off-diagonal element transforms to

γ = αLPβ
∗
UP

〈
pLP

H |pUP
V

〉
(4.7)

We select only the degenerate intermediate states using spectral windows, represented

by a projection P , around the biexciton emission energy EXX and the polariton energy

EP . One can neglect those scalar products 〈pH |pV 〉 which show no overlap assuming that

the separation (in the case where two are degenerate) by at least the Rabi splitting Ω is

much larger than the width of the wavefunction. This width is mostly governed by the

lifetime of the polaritons. It can be more justified by the use of spectral windows where

the parts outside of them are not collected and thus do not contribute to the off-diagonal

element.

The use of spectral widows, which select only the degenerate LP-polariton states in

scheme 1, can be performed by the application of a projection P. The wavefunction has

to be retyped by P ||Ψ〉 /|P ||Ψ〉 |2 which yield



DEGREE OF ENTANGLEMENT 123

γ =
αLPβ

∗
LP

〈
pLP

H |P |pLP
V

〉
+ αUPβ

∗
UP

〈
pUP

H |P |pUP
V

〉
.

|P |Ψ〉 |2 . (4.8)

. Once again, the scalar product αUPβ
∗
UP

〈
pUP

H |P |pUP
V

〉
can be neglected, because the

spectral windows are centered to detect only the transitions via the lower polariton state.

The final equation for the off-diagonal element of scheme 2 reads

γ =
αLPβ

∗
UP

〈
pLP

H |P |pUP
V

〉

|P |Ψ〉 |2 . (4.9)

Within the dipole and rotating wave approximations, the perturbation theory [190, 196]

gives for the two photon function

ALP
H ≡ αLP

〈
k1, k2|pLP

H

〉
=

xH,LP
ex

√
ΓXXx

H,LP
ph

√
ΓLP

H /2π

(|k1| + |k2| − ǫXX
H )(|k2| − ǫLP

H )
, (4.10)

where k1 and k2 are the momenta of the photons and ΓXX(LP ) is the line width of the

biexciton (lower polariton). Furthermore, ǫXX(LP ) = EXX(LP )+iΓXX(LP )/2 is the complex

energy of the biexciton (lower polariton). The exciton (photon) Hopfield coefficients of

the polariton state are denoted by xH,LP
ex(ph) and the polariton lifetime is given by the ratio

of the square of the photon Hopfield coefficient and the cavity lifetime ΓLP = |xH,LP
ph |2/τC .

A similar expression of Eq.(4.10) can be obtained for the upper polariton state and the

perpendicular polarization. The final equation for the off-diagonal element of the density

matrix reads for scheme 1 (scheme 2)

γ′ =

∫ ∫
dk1dk2A

LP∗
H WA

LP (UP )
V∫ ∫

dk1dk2ALP∗
H WALP

H +
∫ ∫

dk1dk2A
LP (UP )∗
V WA

LP (UP )
V

. (4.11)

The function W corresponds to the spectral windows at the energies EXX and EH
LP .

Finally, to estimate the quantum correlations of the emitted photons we use the Peres

criterion for entanglement [189], which states that the emitted photons are entangled for

γ = 1/2 and not entangled for γ = 0 (see appendix).

The density matrix of the system is in the so-called ”x-form”, containing only diagonal

and anti-diagonal elements and thus another measure of entanglement – the concurrence

C [197] – is simply two times the absolute value of the off-diagonal element of the density

matrix [198, 199].

The degree of entanglement is strongly correlated with the line shape of the transi-

tions as it follows from Eq.(4.10)and Eq.(4.11): the better the overlap of the detected

emission lines, the higher the off-diagonal element. The photoluminescence spectra for

each transition can be calculated by integration of Eq.(4.10) either over k2 to obtain the

biexciton-polariton emission line or over k1 to obtain the polariton-ground state emission

line [196].
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Figure 4.11 | Calculated photoluminescence spectra of the biexciton decay: Photoluminescence

spectra for equal splittings (upper panel) at δC−X = 0 and for splittings ΩH = 0.11 meV, ΩV = 0.05 meV

at δC−X = −0.2 meV (lower panel). The blue (red and dashed) line corresponds to horizontal (vertical)

polarization.

Fig.4.11 shows the complete spectra of emission resulting from the biexciton decay.

The upper panel is calculated for ΩH = ΩV =0.11 meV which corresponds to the experi-

mentally measured value of [8] and the lower one for ΩH=0.11 meV and ΩV =0.05 meV.

The relative position of the cavity resonance δC−X = (EH
C + EV

C )/2 − (EH
X + EV

X)/2 is

chosen to degenerate the intermediate polariton states for both cases. The complicated

complete spectra shows 4 Lorentzian lines for the biexciton-polariton transitions with a

line width (ΓXX + ΓP ) and 4 Lorentzian lines with ΓP for the polariton-ground state

transitions. The line width depends strongly on the photonic fraction of the polariton

because the cavity photon lifetime is typically 100 times shorter that the QD exciton

lifetime. One should note that this type of spectra resulting from the biexciton decay in

a strongly coupled microcavity has been recently measured but only for one polarization

[200]. One can see on the upper panel, that the resonance condition between the two

polariton states H and V also corresponds to equal line width of the states and therefore

to a high degree of entanglement γ′ = 0.49. On the other hand one can see on the lower

panel of the figure that the nice symmetry of the scheme is broken when the oscillator

strengths of the two resonances are different. The degree of entanglement is much lower

γ′ = 0.09 in this last case, which we are going to analyze in details in the next section.

In [201] the authors have refined our initial proposal improving the calculation of the

emission spectra of the transitions by the use of the Weisskopf-Wigner approach. In
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Figure 4.12 | Degree of

entanglement: Depen-

dence of the off-diagonal

element γ′ on the relative

position of the cavity reso-

nances δC−X for the schemes

presented in Fig. 4.8 4.9 and

Fig. 4.10.

the large coupling constant (g) case, the improvement with respect to the simple picture

using Lorenzian lines is not significant. Some changes arise in the small g case, where

even without filtering a higher degree of entanglement is predicted with respect to our

approach.

Furthermore, more complex approaches for the spectra of strongly coupled quantum

dots have been published [202].

To finish this section we compare the degrees of entanglement, which can be obtained

for the different schemes. We keep the Rabi-splitting constant for both polarizations.

Figure 4.12 shows the numerically obtained off-diagonal element |γ| versus δC −X. The

maximum value of |γ| for scheme 3 is not optimal, due to the difference between the

exciton and photon fractions of the degenerate polariton states. The asymmetry of the

curves comes from the small lifetimes for negative detuning δC−X . Consequently, the line

width is larger than the energy difference between the two polariton states, which yields〈
PLP

H |P |PLP
V

〉
> 0. On the other hand, the degree of entanglement achieved within the

schemes proposed in Figs. 4.8 and 4.9 reaches almost the maximum value 1/2, which

makes these configurations quite favorable.

4.5 Rabi splitting

In the following we analyze the influence of different Rabi splittings of the H and V

polariton states on the degree of entanglement γ′ of the two photon wave function resulting

from the biexciton decay. This polarization anisotropy comes from the asymmetry of the

QD or its environment and results in different oscillator strength for excitons which couple

to different polarizations [203, 204, 205, 206]. Also misalignment of the quantum dot and

the antinode of the cavity mode field in one direction can change the coupling constant

[207]. Consequently, the final polariton states of each polarization H and V have different
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Figure 4.13 | Impact

of different Rabi split-

tings: Dependence of the

off-diagonal element γ′ on

the relative position of the

cavity resonances and on

the Rabi splitting for one

polarization ΩH . The second

splitting is kept constant at

ΩV = 0.11 meV.

values of Rabi splitting ΩV and ΩH . We will use only the second scheme, presented in

Fig. 4.9 to discuss the effect.

Fig.4.13 shows the degree of entanglement depending on the relative position of the

cavity resonances δC−X and on ΩH , whereas ΩV is kept constant, equal to 0.11 meV.

As one can see, the maximum degree of entanglement close to theoretical limit is

achieved if both splittings are equal. If one changes the Rabi splitting of one polarization,

the degree of entanglement decreases. In the case of ΩH = ΩV , the optimal detuning

δC−X is zero. This optimal value of δC−X becomes positive when ΩH −ΩV is positive and

negative when ΩH − ΩV is negative. In addition to the main maximum, the degree of

entanglement shows a three-peak structure for small ΩH and a second small maximum.

These effects arise from the interplay between the evolution of the lineshapes and overlaps

of the transitions in the region where the polariton states are close to each other, depending

on δC−X .

The difference of the Rabi splittings makes necessary a readjustment of the cavity

resonances. In the following we are going to tune independently the energies of the H

and V polarized modes. It means that now we tune not only δC−X , but also δC . This

can be achieved experimentally by atomic force microscope nano-oxidation of the cavity

surface [15]. The results of the calculations are shown on Fig. 4.14. We use ΩH=0.11

meV, ΩV =0.05 meV, and δX=0.25 meV (as for the lower panel of figure 4.11), which

represent a highly asymmetric case. Fig. 4.14 (a) shows γ′ versus δC−X (x-axis) and

δC (y-axis). One can see that the independent tuning of the position of the two photon

modes allows to recover quite a high value γ′ = 0.41. The photoluminescence spectra

corresponding to this optimal configuration are shown on the Fig.4.14 (b). Once again,
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(a)

(b)

(c)

Figure 4.14 | Readjust-

ment of the cavity reso-

nances: (a) Dependence of

the off-diagonal element γ′ on

the relative position of the

cavity resonances and on the

splitting between the pho-

tonic modes δC . The Rabi

splittings are kept constant

at ΩH = 0.11 meV and ΩV =

0.05 meV. (b) Photolumines-

cence spectra for a splitting

δC = 0.3 meV. The blue

(red and dashed) lines cor-

responds to horizontal (verti-

cal) polarization. (c) Degree

of entanglement versus cavity

resonance splitting and Rabi

splitting.

γ′ shows a complicated three-peak-structure when the detunings are not optimized (see

Fig.4.14 (a)), which finds its origin in the interplay between the evolution of the lineshapes

and overlaps of the transitions.

In Fig. 4.14(c), we keep ΩV = 0.11meV constant and show the best value of γ′ (which

can be obtained tuning δC−X) versus ΩH and δC . From this figure one can conclude that,

whatever the value ΩH − ΩV , it is possible to find the values of δC and δC−X for which

γ′ is larger than 0.4, which confirms the fact that the detrimental effect induced by the

difference of ΩH and ΩV can be, in all cases, overcome by the independent tuning of the

cavity mode energies.
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Figure 4.15 | Spectral filter-

ing: Degree of entanglement ver-

sus the width of the spectral

windows for non-optimized cav-

ity resonances (black squares) and

optimized cavity resonances (red

points). The percentages are the

calculated quantum efficiencies.
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4.6 Spectral filtering

Spectral filters have been used by Akopian et al. in 2006 [190] to increase the quantum

correlations of detected photons. Therein, the spectral windows were used to select the

overlapping part of the non-degenerate exciton emission lines and thus a non-zero off-

diagonal element of the density matrix has been observed. This filtering is furthermore

robust against fluctuations of the energy levels[208]. We define the quantum efficiency as

the ratio between the number of photon pairs emitted and the number of photon pairs

detected through the spectral window. This efficiency is expected to become smaller

and smaller with the use of a sharper spectral window. The scheme we have proposed

above already includes the use of spectral windows to preselect the appropriate transition

lines, but there is no filtering in the sense that we always detect the whole emitting

line. In the following, we analyze the impact of the width of the spectral windows on the

entanglement degree and on the quantum efficiency of the biexciton decay. Fig.4.15 shows

the dependence of γ′ on the width of the two identical windows around Ep and EXX −Ep

together with the evolution of the quantum efficiency.

Two cases are considered, which are: the unfavorable case presented on the lower

panel of the figure 2, and the one obtained for the same set of parameters but with the

optimization of δC maximizing γ′. Both optimized and none optimized configurations

show high γ′ and low quantum efficiency, below 1% for the smallest width of spectral

filters (< 10µeV ). Increasing this spectral width has a dramatic effect on the γ′ value for

the non-optimized case. In contrast, the optimized setup allows to achieve a high degree

of entanglement simultaneously with a large quantum efficiency by using a wide spectral

window of 0.1 meV.
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4.7 Strongly coupled biexciton

Another possibility which can be taken into account is the existence of additional res-

onances, e.g. a photonic mode close or at the biexciton-exciton transition energy. The

idea is to accelerate the emission of entangled photon pairs by mixing the biexciton with

a photon. We add now a V and an H-polarized photon fields at the biexciton-polariton

transition energy with energies EH
CXX

and EV
CXX

. One should therefore have a reversible

coupling between three possible configurations for each polarization which are: the biexci-

ton, one exciton and one photon, and two photons. Taking into account the polarization

degree of freedom and the fact that the bi-exciton is a common state for the two po-

larization channels, we should describe the reversible coupling between 5 states. The

eigenenergies of the resulting dressed states can be found by the diagonalization of the

5X5 matrix M , where ΩXX
H(V ) is the coupling to the biexciton state:

M =





EXX ΩXX
H ΩXX

V 0 0

ΩXX
H EH

X + EH
CXX

0 ΩH 0

ΩXX
V 0 EV

X + EV
CXX

0 ΩV

0 ΩH 0 EH
C + EH

CXX 0

0 0 ΩV 0 EV
C + EV

CXX




. (4.12)

The structure of the five eigenvalues and eigenvectors of this matrix is quite compli-

cated in the general case. It is possible to tune EH
CXX

and EH
CXX

in such a way that the

two polarized biexciton-polariton transitions from one initial bipolariton state are sym-

metric, which means that both polarization paths have the same radiative lifetime and

thus the same linewidth. This results in a high degree of entanglement if we assume that

the polariton-ground state transitions are optimized and unperturbed. In addition the

decay from a ”photon-like” bipolariton state is much faster in comparison to the uncou-

pled biexciton. The full transition to the ground state will take place in a few ps and

repetition rates close to THz range become realistic.

The design of a 4-resonance-cavity is the same as for the standard scheme with two

modes. It was based on polarization doublet of the ’photonic dot’ ground states with close

to symmetrical intensity profile. In case of to higher resonances the interplay between

the polarization and confinement of the photonic modes results in the formation of the

4 resonances originating from the ’scalar’ doublet (0,1)-(1,0), i.e. the states with 1 node

line in x or y directions in the intensity profile. The emission pattern of these modes is

angular-polarization dependent and this must be accounted for in the analyzing of the

outgoing photons, but in principle the design of such a cavity should be possible.

However, the realization and the adjustment of four different photonic resonances at

the same time seems to be extremely challenging. Furthermore the resulting fine structure
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Figure 4.16 | High quality photonic crystal structures with mode splitting [195]: (left)

Specifications of fabricated QD-embedded PC nanocavity. SEM image of the PC structure with the

corresponding reciprocal lattice space. (right) Typical spectrum of the dipole modes with Q > 10000.

The small local fabrication error breaks the degeneracy of modes A and B to make a 0.7 nm split. Inset:

polar plot of the polarization dependence of short (open squares with line) and long (filled circles with

line) wavelength modes.

of the bipolariton is complicated and the selection of the transition lines would be also

a difficult problem, which would end up by a huge reduction of the quantum efficiency.

Thus, we do not believe at this stage that a biexciton strongly coupled to light modes in

addition to the strong coupling of the excitons would be really advantageous for applied

purposes.

We do not address the excitation at such frequencies with all arising problems of e.g.

multiple photon pair generation. This will be another restriction towards high speed

devices. We only discuss fast photon pair emission as a prerequisite to achieve such high

repetition rates.

Nevertheless, a photonic resonance weakly coupled to the biexciton-polariton tran-

sition may accelerate the first photon emission, either by Purcell effect, or simply by

reducing the quenching of the emission which could be provoked by the fact that the

resonance is placed within a photonic bandgap. Also dressing the biexciton state modifies

the transition properties [209, 210] and stays as a tool for future applications.

4.8 Experimental implementation

As mentioned already in the first chapter, one dimensional polaritons have been observed

recently for various cavity designs [13, 14, 15, 18]. In our proposal we focused on photonic

crystal cavities. In general, the quantum dot is placed as an defect state into the lattice

of holes. The structure of suited cavities with quality factors above 104 [207] is shown



EXPERIMENTAL IMPLEMENTATION 131

Figure 4.17 | Tuning of photonic

crystal resonances [8]: PL spectra

showing the detuning of the dipole-

mode pair in one cavity resonant at 950

nm. The detuning of a DX mode is re-

duced from 2 to 0.1 nm as the cavity is

sequentially AFM oxidized according to

the insets on the left, where the oxide is

depicted in red.

in Fig.4.16 on the left hand side. The placement of the dot is now well under control.

What we need are split photonic modes for the linear polarizations. In fact, normally one

tries to avoid this splitting and the photonic crystal community has made a huge effort

to create degenerated photonic modes [195]. The right hand side of Fig. 4.16 shows the

photoluminescence of such a structure with non-degenerate cavity dipole modes. We use

now this splitting, which comes from any small fabrication imperfection of the holes in

the photonic crystal [195].

Once the quantum dot is embedded into the crystal, the resonances have to be adapted

carefully if has not been done before, during the fabrication of the crystal. This can be

done by AFM nano-oxidation of the cavity surface [8]. Fig. 4.17 shows the application of

this technique to shift the photon modes to the desired position. The technique provides

nearly continuous tuning of a single mode over several nanometers and is in principle

applicable to all photonic crystal based cavity structures. This powerful tool makes our

proposal more realistic because the cavity resonances can be modified after the fabrication

of the quantum dot. This means the properties of the crystal can be adjusted perfectly

to the properties of the embedded dot. Once the cavity modes are precisely tuned to the

exciton levels in a QD, efficient nonclassical photon sources can be achieved for quantum

information processing.

Finally, a strongly coupled biexciton requires additional resonances in the crystal.

this can in principle provided by higher resonances. In the previous picture, we discussed

dipole modes of the crystal, with a maximum of the electric field in the center of the

quantum dot. Fig. 4.18 shows the electric field distribution of different resonances of the

quantum dot together with the energy distribution depending on the crystal parameters.
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Figure 4.18 | Cavity mode frequencies and electric field inside a photonic crystal [195]:

(left) Normalized cavity-mode frequencies as a function of ∆r/a. The solid (dashed) lines correspond to

doubly degenerate (nondegenerate) cavity modes. The ten modes are referred to as modes A-J in order

of frequency. (right) Calculated electric field distributions in the slab center for ten cavity modes with

δr/a = 0.11. The modes in (a)(j) correspond to modes A-J on the left hand side, respectively.

For example the second dipole modes (i and j in the figure) could be the candidates

for strongly coupled biexciton devices.

Of course the coupling between the dot and the cavity depends strongly on the position

of the dot in the cavity, and the dot should may be not centered in the defect state because

the electric field maxima are not centered.

All these techniques together confirm the possibility to realize the proposal of a en-

tangled photon source, as discussed in this chapter.

Possible other cavity configurations are micropillars. Recently, new fabrication tech-

niques have been developed to place a quantum dot exactly in the center of a micropillar

[211]. Extending this techniques, one may fabricate slightly elliptic micropillars to obtain

a split of the linear polarized cavity modes. Secondly, the spatial profile of the emission

is the same for both polarizations. (By the way, this is not the case for photonic crys-

tals, which make the realization based on crystals a bit more challenging.) Thus, also

micropillars with embedded quantum dot can be a promising candidate for the present

proposal, beside the exciting results on single photon sources [212, 213]. Nevertheless,

this structures are in the process of development and several problems are not solved, i.e.

the extraction of the biexciton-exciton photon is still not possible, because it is in the

photonic gap. May-be lateral detection can solve this problem.
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4.9 Summary and conclusions

We have shown that the difference of exciton oscillator strengths of the exciton states

coupled to V and H polarized light strongly affects the entanglement degree of the photon

pairs emitted during the biexciton decay, when the excitonic resonance of the QD is

strongly coupled to the cavity modes of a photonic crystal. However, we have shown

that this detrimental effect can be compensated if it is possible to tune independently the

energies of the polarized photonic modes, which has been demonstrated to be possible

experimentally [15]. We have also analyzed the impact of a spectral filtering of the different

emission lines, showing that an increase of the entanglement degree by this method has to

be paid for by a strong reduction of the quantum efficiency. Finally, we have discussed the

possible impact of the presence of a cavity mode resonant with the biexciton transition.

We found that this coupling can indeed accelerate the biexciton decay and give access to

very high repetition rates (close of one THz) for the entangled photon emission. However,

the complication brought by the presence of many polariton lines which should be all tuned

simultaneously makes this configuration very hard to implement for an experimental point

of view. We conclude that the control of the electronic resonances through their strong

coupling to confined cavity modes opens new perspectives and is from many points of

view extremely advantageous for the fabrication of a solid source of entangled photon

pairs emitted on demand.
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Appendix A

Polariton scattering amplitudes

In this part we want to describe briefly the main scattering mechanisms in semiconductor

microcavities. We restrict ourself to the final equations. The exact scattering matrix

elements and the derivation of the scattering amplitudes are given in [5].

A.1 Polariton decay

As a result of the polariton dispersion, the polariton decay varies depending on the

wavevector. Three regions can be identified:

1. k < kSC : This is the region, where the exciton-photon anticrossing takes place.

The decay is mainly dominated by the finite cavity photon livetime:

Γk =
ck
τc
, (A.1)

where ck is the photon fraction of the polariton and τc is the cavity lifetime.

2. kSC < k < kL,where kL is the wavevector of light in the medium. In this region

excitons are only weakly coupled to the light mode and the polariton decay is Γk = Γ0,

which is the radiative decay of quantum well or bulk excitons.

3. k > kL: Beyond the wavevector of the light in the medium, excitons are no longer

coupled to the light. The decay is governed by nonradiative processes Γk = Γnr which we

do not want to discuss in detail.

A.2 Polariton-Phonon interaction

The theoretical description of exciton-phonon interaction has received considerably atten-

tion throughout the history of semiconductor heterostructures. Scattering events should

conserve the wavevector in the plane. The phonon wave-vector is called q with in-plane
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component qII and z-component qz. Using Fermi-Golden Rule the scattering rate between

two discrete polariton states of wavevectork and k′ reads:

W phon
k→k′ =

2π

~

∑

q

|M(q)|2(0, 1 +Nphon
q=k−k′+qz

)δ(E(k′) − E(k) ∓ ~ωq), (A.2)

where Nphon
q is the phonon distribution function. In equilibrium Nphon

q = 1/e−E(q)/kbT −1),

where E(q) is the phonon dispersion. The 1 and the - holds for absorption of a phonon

and 1 and + holds for emission of a phonon. M is the matrix element of interaction

between phonons and photons. For polaritons with a finite energy, the delta-function can

be replaced by a Lorentzian and this yields

W phon
k→k′ =

2π

~

∑

q

|M(q)|2(0, 1 +Nphon
q=k−k′+qz

) (A.3)

× ~γk′/π

(E(k′) − E(k) ± ~ωq)2 + (~γk′)2
. (A.4)

The energy width of the state can be defined as the imaginary part of its eigenenergy.

The energy conservation in the plane limits the sum to the z-direction.

In the framework of the Born approximation the matrix element of interaction can be

written as

|M(q)| = |
〈
Ψpol

k |Hq
exc−phon|Ψ

pol
k′

〉
| =

√
xkxk′|

〈
Ψexc

k |Hq
exc−phon|Ψexc

k′

〉
|, (A.5)

where Ψpol(exc) is the polariton (exciton) wavefunction:

Ψexc
k (re, rh) = fe(ze)fh(zh)

1√
S
eik(βere−βhrh)

√
2

π

1

a2D
b

e−|re−rh|/a2D
b , (A.6)

where ze(h) are the coordinates along the growth direction z and re(h) are the coordinates

in the plane, fe(h) are the electron and hole wave-functions in the growth direction. a2D
b

is the exciton Borh radius, βe(h) = me(h)/(me +mh) and S is a normalization area.

A.2.1 Interaction with longitudinal optical phonons

The interaction is mainly mediated by the Fröhlich interaction [214]. The Matrix element

in two and three dimensions can be approximated as

MLO
2 d(q) =

MLO
0

π

√
L

S
,MLO

3 d(q) =
MLO

0

π
√
SL

. (A.7)

Finally, assuming dispersionless phonons, the scattering rate can be written as:

W phon−LO
k→k′ =

2L

π2~S
xkxk′ |MLO

0 |
(

0, 1 +
1

e−~ωLO/kbT − 1

)
(A.8)

× ~γk′

(E(k′) − E(k) ∓ ~ωLO)2 + (~γk′)2
. (A.9)
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Optical phonons interact very strongly with carriers. They allow a fast exciton formation.

Nevertheless, the energy of optical phonons is in the range from 20− 80 meV and thus an

exciton with a kinetic energy below this range can not emit an optical phonon. This is

one reason why exciton gases stay at 100-200 K and further cooling via optical phonons

is not possible.

A.2.2 Interaction with acoustic phonons

The interaction is mainly mediated by the deformation potential. The exciton-acoustic

phonon matrix element reads:

Mac(q) =

√
~q

2ρcsSL
G(qII , qz), (A.10)

where ρ is the density and cs is the speed of sound in the medium. Assuming isotropic

bands, G reads

G(qII , qz) = DeI
z
e (qz)I

II
e (qII) +DhI

z
h(qz)I

II
h (qII) (A.11)

≈ DeI
II
e (qII) +DhI

II
h (qII). (A.12)

De and Dh are the deformation coefficients of the conduction and valence band, respec-

tively, and Ie(h) are the overlap integrals between the exciton and phonon mode in the

growth direction and in plane.

Using this Matrix element and moving to the thermodynamic limit, which means that

we let go the system in a given direction to infinity, the scattering rate becomes:

W phon
k→k′ =

|G(k − k′)|2
2πSρcs

xkx
′
k

∫

qz

|k − k′ + qz|(0, 1 +Nphon
k−k′+qz

) (A.13)

× ~γk′/π

(E(k′) − E(k) ∓ ~ωk−k′+qz
)2 + (~γk′)2

dqz. (A.14)

The scattering with acoustic phonons is the main process for the final down cooling of an

exciton gas to the lattice temperature, where optical phonons can not be emitted.

A.3 Polariton-electron interaction

The polariton-electron scattering rate is calculated using Fermi Golden Rule as

W el
k→k′ =

2π

~

∑

q

|M el
q,k,k′|2xkxk′N e

q (1 −N e
q+k′−k) (A.15)

× ~γk′/π

(E(k′) − E(k) + ~2

2me
(q2 − |q + k − k′|2))2 + (~γk′)2

, (A.16)
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where N e
q is the electron distribution function and me is the electron mass. A detailed

calculation of the electron-polariton matrix element can be found in Refs. [32, 215].

The interaction of electrons and polaritons are dipole-charge interaction and take place

in a few picoseconds. An equilibrium electron gas can thermalize a polariton gas quite

efficiently. However, more complicated effects, such as the formation of trions are also

possible.

A.4 Polariton-Polariton interaction

The polariton-polariton scattering rate reads:

W pol
k→k′ =

2π

~

∑

q

|Mex|2xkxk′xqxq+k′−kN
pol
q (1 +Npol

q+k′−k) (A.17)

× ~γk′/π

(E(k′) − E(k) + E(q + k′ − k) − E(q))2 + (~γk′)2
, (A.18)

The exciton-exciton matrix element of interaction is composed of a direct and an exchange

term [41]. Here, we shall use the numerical estimate [34] of this quantity, which we shall

assume constant over the whole reciprocal space:

Mex ≈ 6
(a2D

b )2

S
Eb, (A.19)

where Eb is the exciton binding energy. Passing to the thermodynamic limit in the plane,

the scattering rate becomes:

W pol
k→k′ =

1

2π2~S

∫
d2q|M0

ex|2xkxk′xqxq+k′−kN
pol
q (1 +Npol

q+k′−k) (A.20)

× ~γk′/π

(E(k′) − E(k) + E(q + k′ − k) − E(q))2 + (~γk′)2
. (A.21)

As one can see, the a priori unknown polariton distribution function is needed to calculate

scattering rates. This means that in any simulation these scattering elements should

be updated dynamically throughout the simulation time, which can be extremely time

consuming. Polariton-polariton scattering has been shown to be extremely efficient, when

a cavity is resonantly excited. It also plays a role in the case of non-resonant excitation.

Depending on the excitation condition and on the nature of the used semiconductor, the

exciton-exciton interaction may be strong enough to self-thermalize the exciton reservoir

at a given temperature.



Appendix B

Derivation of Fokker-Planck

Equation

B.1 Langevion equation

We follow the description of Ref. [104]. The temporal evolution of the relevant degrees

of freedom of dynamical systems that interact with a fluctuating environment is often

described by an equation of motion, which is a stochastic equation:

ẋ = A(x, t) + q(t). (B.1)

For different systems the variables in the above equation have different meanings, but to

be concrete we will call x(t) [x(0) = 0] a particle coordinate, A(x, t) = −∂U(x, t)/∂x a

force field, U(x, t) an external deterministic potential, q(t) a random force (noise) resulting

from a fluctuating environment.

In order to determine the statistical properties of x(t) we have to specify the properties

of q(t). We shall take q(t) to be a Gaussian random process of zero mean

〈q(t)〉 = 0, (B.2)

with extremely rapid fluctuations. We shall therefore approximate the two-time correla-

tion function by a delta-function, and write

〈qi(t)qj(t′)〉 = gij(t)δ(t− t′). (B.3)

Under these conditions Eq.(B.1) is usually known as Langevin equation. As the ran-

dom process q(t) evolves in its own way so as to drive x(t), it is apparent that x(t1) will

be uncorrelated with q(t2) at a later time t2, or

〈xi(t1)qj(t2)〉 = 0, t2 > t1. (B.4)
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Moreover, the future evolution of x(t) through Eq.(B.1) is governed only by the present,

and the past history of x(t) plays no role, so that x(t) is Markovian of first order. The

statistics of x(t) are therefore completely determined by the probability density p(x, t) and

by the transition probability density P (x, t|x0, t0), which obey Fokker-Planck equations,

as we now show.

B.2 Kramers-Moyal differential equation

We use the general integration relation that connects the probability density p(x2, t2) with

p(x1, t1) at an earlier time to obtain the time derivative of p(x, t). We put now t1 = t and

t2 = t+ δt. The relation can be written as

p(x, t+ δt) =

∫
P (x, t+ δt|x1, t)p(x1, t)dx1. (B.5)

In the above equation P is the conditional probability density, which connects the prob-

ability density p(x1, t1) with a later time p(x2, t2). Starting from this point the rate of

change of p(x, t) can be expressed as follows

∂p(x, t)

∂t
= lim

δt→0

1

δt
[p(x, t+ δt) − p(x, t)] (B.6)

= lim
δt→0

1

δt

[∫
P (x, t+ δt|x1, t)p(x1, t)dx1 − p(x, t)

]
. (B.7)

We make now the change of variable x− x1 = ∆x, and write

∂p(x, t)

∂t
= lim

δt→0

1

δt

[∫
P (x− ∆x+ ∆x, t+ δt|x− ∆x, t)p(x− ∆x, t)d∆x− p(x, t)

]
.

(B.8)

The integrand can be regarded as a function f(y, z) of the two variables y = x−∆x and

z = ∆x. With respect to the variable y, let us expand f(y, z) in a Taylor series about

y = x, keeping z constant,

f(x− ∆x, z) =
∞∑

r=0

(−1)r

r!
(∆x)r ∂r

∂xr
f(x, z). (B.9)

When this expansion is substituted under the integral in Eq.(B.8) we obtain the equation

∂p(x, t)

∂t
= lim

δt→0

1

δt

[∫ ∞∑

r=0

(−∆x)r

r!

∂r

∂xr
P (x+ ∆x, t+ δt|x, t)p(x, t)d∆x− p(x, t)

]
.

(B.10)

We now interchange the order of summation and integration and integrate term by term.

The term r = 0 integrates to p(x, t), which cancels the last term. For the remaining terms

we define the quantities
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Dr(x, t) ≡ lim
δt→0

1

δt

[∫
(∆x)r P (x+ ∆x, t+ δt|x, t)p(x, t)d∆x

]
, r = 1, 2, 3..., (B.11)

which are known as the transition moments of the random process x(t). The transition

moment Dr(x, t) is proportional to the r’th moment of the change of the process in a short

time δt, subject to the initial value x at time t. This is sometimes expressed in the form

Dr(x, t) ≡ lim
δt→0

〈(∆x)r〉x,t

δt
. (B.12)

With the help of this definition Eq.(B.10) can be re-written in the more compact form

∂p(x, t)

∂t
=

∞∑

r=1

(−1)r

r!

∂r

∂xr
[Dr(x, t)p(x, t)] , (B.13)

which is known as the Kramers-Moyal differential equation. In general it is a partial

differential equation of infinite order, although the order may become finite in certain

cases, as we will see. The effect of the first term involving D is called drift term, and the

second one is called diffusion coefficient.

B.3 The Fokker-Planck equation

We can now write the transition moments for the Langevin equation described above.

After the integration of equation (B.1) over a very short time interval δt, we have

∆xi(t) ≡ xi(t+ δt) − xi(t) = Ai(x, t)δt+

∫ t+δt

t

qi(t
′)dt′. (B.14)

Although δt is very small, the integral in the last equation cannot be replaced by qi(t)δt,

because qi(t
′), being delta-correlated, can fluctuate even in a infinitesimal interval. If we

calculate the average of both sides of this equation, subject to the contrained that x(t)

has some given value, divide by δt and proceed to the limit δt → 0, we obtain the drift

vector Di(x, t) of the random process. Now

〈xi(t+ δt) − xi(t)〉x,t = Ai(x, t)δt+

∫ t+δt

t

〈qi(t′)〉 dt′ (B.15)

= Ai(x, t)δt,

by virtue of 〈q(t)〉 = 0, so that

Di(x, t) = Ai(x, t). (B.16)

We have therefore shown that the average forcing term in the Langevin equation is

the Drift vector of the random process. This is also apparent from the fact that Ai(x, t)

is the conditional average of the velocity of x(t).
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Next we calculate the diffusion tensor. This requires that we average the product

∆xi∆xj subject to the constrained that x has a given value at time t. We obtain

Dij(x, t) ≡ lim
δt→0

1

δt

〈[
Ai(x, t)δt+

∫ t+δt

t

qi(t
′)dt′

] [
Aj(x, t)δt+

∫ t+δt

t

qj(t
′)dt′

]〉

x,t

(B.17)

= lim
δt→0

[Ai(x, t)Aj(x, t)δt+

〈
Ai(x, t)

∫ t+δt

t

qj(t
′)

〉

x,t

dt′

+

〈
Aj(x, t)

∫ t+δt

t

qi(t
′)

〉

x,t

dt′ +
1

δt

∫ t+δt

t

∫ t+δt

t

〈qi(t′)qj(t′′)〉 dt′dt′′].

The first term on the right vanishes in the limit δt → 0, and the second term and

third terms average to zero by the fact that x(t) is independent of q(t′) at later time t′.

For the fourth term we make use of approximate that the two-time correlation function

is a delta function and obtain finally

Dij(x, t) ≡ lim
δt→0

1

δt

∫ t+δt

t

∫ t+δt

t

gij(t
′)δ(t′ − t′′)dt′dt′′ = gij(t). (B.18)

It follows that the strength of the Langevin noise yields the diffusion tensor. A similar

argument can now be used to calculate any higher-order transition moment and it will

be found that all higher moments vanish in the limit δt → 0. Plugging these results

now in the Kramers-Moyal differential equation yield that p(x,t) obeys the second order

Fokker-Planck equation

∂p(x, t)

∂t
= − ∂

∂xi

[Ai(x, t)p(x, t)] +
1

2

∂2

∂xi∂xj

[gij(x, t)p(x, t)] . (B.19)

The Langevin process obeying the stochastic equation (B.1) is therefore a Fokker-Planck

process.



Appendix C

Datta and Das Spin transistor

C.1 Polarization in the spin-Meissner phase

The polarization of the elementary excitations of the condensate in the spin-Meissner

phase (region 2) has never been calculated. It can be found by the standard method of

linearization with respect to the amplitude of the elementary excitations of the condensate.

Let us take the wavefunction

Φ(r, t) =
√
n~e+ ~Aei(kr−ωt) + ~B∗e−i(kr−ωt), (C.1)

where in case B < Bc,

~e =

(
cos θ

sin θ

)
, θ =

1

2
arcsin

√

1 −
(
B

Bc

)2

, (C.2)

and substitute it into the Gross-Pitaevskii equations:

i
∂ψ↑
∂t

= (H0 − µ− Ω/2)ψ↑ +
[
α1 |ψ↑|2 + α2 |ψ↓|2

]
ψ↑ (C.3)

i
∂ψ↓
∂t

= (H0 − µ+ Ω/2)ψ↓ +
[
α1 |ψ↓|2 + α2 |ψ↑|2

]
ψ↓.

This gives 6 equations:

(
−µ− Ω

2

)
+ α1ne

2
↑ + α2ne

2
↓ = 0 (C.4)

(
−µ+ Ω

2

)
+ α1ne

2
↓ + α2ne

2
↑ = 0

A↑
(
ω0 − ω − µ− Ω

2
+ 2α1ne

2
↑ + α2ne

2
↓
)

+B↑
(
α1ne

2
↑
)

+ A↓ (α2ne↑e↓) +B↓ (α2ne↑e↓) = 0

A↑
(
α1ne

2
↑
)

+B↑
(
ω0 + ω − µ− Ω

2
+ 2α1ne

2
↑ + α2ne

2
↓
)

+ A↓ (α2ne↑e↓) +B↓ (α2ne↑e↓) = 0

A↑ (α2ne↑e↓) +B↑ (α2ne↑e↓) + A↓
(
ω0 − ω − µ+ Ω

2
+ 2α1ne

2
↓ + α2ne

2
↑
)

+B↓
(
α1ne

2
↓
)

= 0

A↑ (α2ne↑e↓) +B↑ (α2ne↑e↓) + A↓
(
α1ne

2
↓
)

+B↓
(
ω0 + ω − µ+ Ω

2
+ 2α1ne

2
↓ + α2ne

2
↑
)

= 0.
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The first two equations give the expression for the chemical potential:

µ =
α1 + α2

2
n. (C.5)

They are also substituted into the next 4 equations, which simplifies to:

A↑
(
ω0 − ω + α1ne

2
↑
)

+B↑
(
α1ne

2
↑
)

+ A↓ (α2ne↑e↓) +B↓ (α2ne↑e↓) = 0 (C.6)

A↑
(
α1ne

2
↑
)

+B↑
(
ω0 + ω + α1ne

2
↑
)

+ A↓ (α2ne↑e↓) +B↓ (α2ne↑e↓) = 0

A↑ (α2ne↑e↓) +B↑ (α2ne↑e↓) + A↓
(
ω0 − ω + α1ne

2
↓
)

+B↓
(
α1ne

2
↓
)

= 0

A↑ (α2ne↑e↓) +B↑ (α2ne↑e↓) + A↓
(
α1ne

2
↓
)

+B↓
(
ω0 + ω + α1ne

2
↓
)

= 0

Let us assign a = α1ne
2
↑, b = α1ne

2
↓ and c = α2ne↑e↓. Then the first two equations

transform to:

(ω0 − ω + a)A↑ + aB↑ + cA↓ + cB↓ = 0 (C.7)

aA↑ + (ω0 + ω + a)B↑ + cA↓ + cB↓ = 0

Taking the difference of the two, one obtains a relation of A↑ and B↑. A similar expression

can be obtained for the other spin component:

A↑(↓) =

(
ω0 + ω

ω0 − ω

)
B↑(↓). (C.8)

Finally one gets
A↑
A↓

=
B↑
B↓
, (C.9)

which means that the two vectors are collinear. Combining the previous equations yields
(

(ω0 − ω + a)

(
ω0 + ω

ω0 − ω

)
+ a

)
B↑ +B↓c

(
1 +

ω0 + ω

ω0 − ω

)
= 0 (C.10)

(
ω2

0 − ω2 + 2aω0

)
B↑ +B↓2ω0c = 0.

Now, one get the equation for the dispersion relation, which read

(
ω2

0 − ω2 + 2aω0

) (
ω2 − ω2

0 − 2bω0

)
+ 4c2ω2

0 = 0. (C.11)

This is expanded to a bi-quadratic equation, which results in the dispersion

ω2 = ω2
0 + ω0 (a+ b) ± ω0

√
(a− b)2 + 4c2 (C.12)

and replacing a, b and c yields

ω2 = ω2
0 + ω0n

[
α1 ±

√

α2
2 + (α2

1 − α2
2)
H2

H2
c

]
. (C.13)
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This is the dispersion formula presented in chapter 3. Substituting this into the equation

(C.10) one finds the ratio between two components of B:

B↓
B↑

=
−α1 cos 2Θ ±

√
α2

1 cos2 2Θ + α2
2 sin2 2Θ

α2 sin 2Θ
, (C.14)

which defines two angles

β± = arctan
−α1 cos 2Θ ±

√
α2

1 cos2 2Θ + α2
2 sin2 2Θ

α2 sin 2Θ
. (C.15)

Finally the eigenpolarization vector can be written

(
cos β±

sin β±

)
. (C.16)

C.2 Analytical transmission and reflection coefficients

We have three areas 1,2,3 (see chapter 3). In 1 and 3, only the propagation as a σ+ wave

is possible. In the central area of thickness L, the propagation takes place along the eigen

states calculated in the previous section. The wave

(
1

0

)
enters in the area 2 and reads:

(
1

0

)
= a

(
cos β+

sin β+

)
+ b

(
− sin β+

cos β+

)
, (C.17)

which gives a = cos β+, b = − sin β+. at the point z, the wave function reads:

ψ+
1 (z) = exp(ik+z) cos β+

(
cos β+

sin β+

)
− exp(ik−z) sin β+

(
− sin β+

cos β+

)
(C.18)

At the point z = L the σ+ part is fully transmitted, the σ− part fully reflected which

gives:

t+1 = exp(ik+L) cos2 β+ + exp(ik−L) sin2 β+ (C.19)

r+
1 = cos β+ sin β+ (exp(ik+L) − exp(ik−L))

We now consider the wave r+
1

(
0

1

)
propagating in the negative direction:

ψ−
1 (z) = r+

1

[
exp(−ik+(z − L)) sin β+

(
cos β+

sin β+

)
+ exp(−ik−(z − L)) cos β+

(
− sin β+

cos β+

)]

(C.20)
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In z = 0, the σ+ part is transmitted, the σ− part is reflected.

t−1 = r+
1 [exp(ik+L) − exp(ik−L)] cos β+ sin β+ (C.21)

r−1 = r+
1

[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]

Once again this procedure in the inverted direction yields

ψ+
2 (z) = r−1

[
exp(ik+z) sin β+

(
cos β+

sin β+

)
+ exp(ik−z) cos β+

(
− sin β+

cos β+

)]
(C.22)

t+2 = r−1 [(exp(ik+L) − exp(ik−L)) cos β+ sin β+]

r+
2 = r−1

[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]

= r+
1

[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]2
.

More generally, one can write:

r−i = r+
1

[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]2n−1
(C.23)

r+
i = r+

1

[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]2n−2

t−i = r+
i [exp(ik+L) − exp(ik−L)] cos β+ sin β+

t+i = r−i−1 (exp(ik+L) − exp(ik−L)) cosβ+ sin β+

(C.24)

Performing this n times and sending n to infinity yields for the total transmitted amplitude

t+ =
∑

n

t+n = t+1 + [(exp(ik+L) − exp(ik−L)) cos β+ sin β+]
∑

i=2

r−i−1 = (C.25)

t+ = exp(ik+L) cos2 β+ + exp(ik−L) sin2 β+

+ [cos β+ sin β+ (exp(ik+L) − exp(ik−L))]2
[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]

1 −
[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]2 .

The same can be done for the total reflected amplitude:

t− =
∑

n

t−n = [exp(ik+L) − exp(ik−L)] cos β+ sin β+

∑

i

r+
i = (C.26)

t− =
([exp(ik+L) − exp(ik−L)] cos β+ sin β+)2

1 −
[
sin2 β+ exp(ik+L) + cos2 β+ exp(ik−L)

]2



Appendix D

Quantum correlations: Density

matrix and Peres criterion

D.1 Derivation of the two-photon density matrix

The two photon wavefunction of the biexciton decay in a semiconductor quantum dot can

be written in the following way:

|Ψ〉 =
(
αLP

∣∣pLP
H

〉
+ αUP

∣∣pUP
H

〉)
|HH〉 + (D.1)

+
(
βLP

∣∣pLP
V

〉
+ βUP

∣∣pUP
V

〉)
|V V 〉 ,

Therein we neglect cross-polarization terms. We extract the coordinate part
∣∣∣pLP (UP )

H(V )

〉

from the polarization part of the wavefunction |HH〉 (|V V 〉). The amplitudes α and β

are the weights for the possible decay paths satisfying

|αLP |2 + |αUP |2 + |βLP |2 + |βUP |2 = 1. (D.2)

In general the density matrix of a system can be written as

ρ = |Ψ〉 〈Ψ| . (D.3)

Plugging now the wavefunction Eq.(D.1) into Eq.(D.3) yields

ρ =
(
αLP

∣∣pLP
H

〉
+ αUP

∣∣pUP
H

〉) (
α∗

LP

〈
pLP

H

∣∣+ α∗
UP

〈
pUP

H

∣∣) |HH〉 〈HH| + (D.4)

+
(
βLP

∣∣pLP
V

〉
+ βUP

∣∣pUP
V

〉) (
β∗

LP

〈
pLP

V

∣∣+ β∗
UP

〈
pUP

V

∣∣) |V V 〉 〈V V | +
+
(
αLP

∣∣pLP
H

〉
+ αUP

∣∣pUP
H

〉) (
β∗

LP

〈
pLP

V

∣∣+ β∗
UP

〈
pUP

V

∣∣) |HH〉 〈V V | +
+
(
βLP

∣∣pLP
V

〉
+ βUP

∣∣pUP
V

〉) (
α∗

LP

〈
pLP

H

∣∣+ α∗
UP

〈
pUP

H

∣∣) |V V 〉 〈HH| ,
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and finally

ρ = (|αLP |2
∣∣pLP

H

〉 〈
pLP

H

∣∣+ αLPα
∗
UP

∣∣pLP
H

〉 〈
pUP

H

∣∣ (D.5)

+α∗
LPαUP

∣∣pUP
H

〉 〈
pLP

H

∣∣+ |αUP |2
∣∣pUP

H

〉 〈
pUP

H

∣∣) |HH〉 〈HH|
+(|βLP |2

∣∣pLP
V

〉 〈
pLP

V

∣∣+ βLPβ
∗
UP

∣∣pLP
V

〉 〈
pUP

V

∣∣

+β∗
LPβUP

∣∣pUP
V

〉 〈
pLP

V

∣∣+ |βUP |2
∣∣pUP

V

〉 〈
pUP

V

∣∣) |V V 〉 〈V V |
+(αLPβ

∗
LP

∣∣pLP
H

〉 〈
pLP

V

∣∣+ αLPβ
∗
UP

∣∣pLP
H

〉 〈
pUP

V

∣∣

+αUPβ
∗
LP

∣∣pUP
H

〉 〈
pLP

V

∣∣+ αUPβ
∗
UP

∣∣pUP
H

〉 〈
pUP

V

∣∣) |HH〉 〈V V |
+(α∗

LPβLP

∣∣pLP
V

〉 〈
pLP

H

∣∣+ α∗
LPβUP

∣∣pLP
V

〉 〈
pUP

H

∣∣

+α∗
UPβLP

∣∣pUP
V

〉 〈
pLP

H

∣∣+ α∗
UPβUP

∣∣pUP
V

〉 〈
pUP

H

∣∣) |V V 〉 〈HH| .

Tracing out all p degrees of freedom with

∑

k

〈pk|pj〉 〈pi|pk〉 =
∑

k

〈pj|pk〉 〈pk|pi〉 =
∑

k

〈pj|pi〉 (D.6)

and assuming that scalar products between different polariton states are equal to zero (no

overlap of the photon wave packages) leads to

ρ = (|αLP |2 + |αUP |2) |HH〉 〈HH| + (|βLP |2 + |βUP |2) |V V 〉 〈V V | + (D.7)

+(αLPβ
∗
LP

∣∣pLP
H

〉 〈
pLP

V

∣∣+ αUPβ
∗
UP

∣∣pUP
H

〉 〈
pUP

V

∣∣) |HH〉 〈V V | +
+(α∗

LPβLP

∣∣pLP
V

〉 〈
pLP

H

∣∣+ α∗
UPβUP

∣∣pUP
V

〉 〈
pUP

H

∣∣) |V V 〉 〈HH| .

In matrixform ρ looks as follows:

ρ =





|αLP |2 + |αUP |2 0 0 γ

0 0 0 0

0 0 0 0

γ∗ 0 0 |βLP |2 + |βUP |2




, (D.8)

where

γ = αLPβ
∗
LP

〈
pLP

H |pLP
V

〉
+ αUPβ

∗
UP

〈
pUP

H |pUP
V

〉
. (D.9)

Using the projection P , which corresponds to the spectral windows which select for ex-

ample only the lower polariton branch, the density matrix reads

ρ =





|αLP |2 0 0 γ

0 0 0 0

0 0 0 0

γ∗ 0 0 |βLP |2




. (D.10)
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In this case the off-diagonal element simplifies to

γ =
αLPβLP

〈
pLP

H |P |pLP
V

〉

|P |Ψ〉 |2 . (D.11)

This derivation is valid for the scheme, where the lower states of both polarization are

degenerate. In case of scheme 2 of chapter 4 the indices should be adapted, for example

βLP transforms to βUP in the density matrix.

D.2 Peres criterion for entanglement

The used criterion was developed by Peres in 1996 [189]. It is based on the separability

of the density matrix. A striking quantum phenomenon is the inseparability of composite

quantum systems. Its most famous example is the violation of Bells inequality, which

may be detected if two distant observers, who independently measure subsystems of a

composite quantum system, report their results to a common site where that information

is analyzed. However, even if Bells inequality is satisfied by a given composite quantum

system, there is no guarantee that its state can be prepared by two distant observers who

receive instructions from a common source. For this to be possible, the density matrix

has to be separable into a sum of direct products,

ρ =
∑

A

wAρ
′
A ⊗ ρ′′A, (D.12)

where the positive weights wA satisfy
∑

Awa = 1, and where ρ′A and ρ′′A are density

matrices for the two subsystems. In the following we derive a simple algebraic test, which

is a necessary condition for the existence of the decomposition Eq.(D.12). The derivation

of this separability condition is best done by writing the density matrix elements explicitly,

with all their indices

ρm,µ,n,ν =
∑

A

wA(ρ′A)mn(ρ′′A)µν . (D.13)

Latin index refer to the first subsystem, Greek index to the second one (the subsystems

may have different dimensions).

Let us now define a new matrix,

σm,µ,n,ν = ρn,µ,m,ν . (D.14)

The Latin indices of ρ have been transposed, but not the Greek ones. This is not a unitary

transformation but, nevertheless, the matrix σ is Hermitian. When Eq.(D.12) is valid, we

have
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σ =
∑

A

wA(ρ′A)T ⊗ ρ′′A, (D.15)

Since the transposed matrices (ρ′A)T ≡ (ρ′A)∗ are non-negative matrices with unit trace,

they can also be legitimate density matrices. It follows that none of the eigenvalues of σ

is negative. This is a necessary condition for Eq. (D.12) to hold.

We perform this test now for the matrix derived in the previous section of the appendix

with additional inner diagonal elements

HH HV V H V V

ρ =





a1 0 0 γ

0 a2 0 0

0 0 a3 0

γ 0 0 a4





HH

HV

V H

V V

(D.16)

To construct the matrix σ on has to replace all matrix elements where the first letter of the

indices are different i.e. ρV V,HH transforms to ρHV,V H . Application of this transformation

yield a matrix σ

σ =





a1 0 0 0

0 a2 γ 0

0 γ a3 0

0 0 0 a4




. (D.17)

The eigenvalues can be simply computed:

λ1 = α1 (D.18)

λ2 =
a2 + a3

2
+

1

2

√
(a2 − a3)2 + 4γ2

λ3 =
a2 + a3

2
− 1

2

√
(a2 − a3)2 + 4γ2

λ4 = α4.

In case of the so-called ”x-form” of the density matrix [198], when only the outer diagonal

and off-diagonal elements are different from zero, ρ is only separable into the two subsys-

tems for γ = 0. This means for the two-photon density matrix of the previous section,

that the system undergoes quantum correlations only if the off-diagonal element is larger

than zero with a maximum possible value of 1/2.
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ABSTRACT Exciton-polaritons, mixed light-matter particles are on their way to
break into the world of optoelectronic devices thanks to unique properties and nonlinear effects
in polariton systems. The present thesis is devoted to the investigation of nonlinear effects and
applications of exciton-polaritons. The first part of the thesis investigates nonlinear effects such
as the polariton parametric oscillator and the polariton bistability: A new mathematical ap-
proach in between the semiclassical and the fully coherent picture is developed and the crucial
impact of fluctuations on the bistability is in the focus of this work. Applications of exciton-
polaritons are the subject of the second part. ZnO based structures are suited candidates for
room temperature polariton lasing and we simulate such a structure numerically in dependence
of the quality factor and the Rabi splitting. Beside the laser, the unique spin structure opens a
lot of possibilities. In analogy to the spintronic Datta and Das spin transistor a new polaritonic
spin transistor is developed and presented. Also other analogies, such as the Josephson effect
are predicted for polaritons. This effect is complex enough to show chaotic behavior in some
parameter range. The chaotic oscillations can be used for secure communication. The last part
of the thesis is devoted to 0D polaritons and to an on-chip source of entangled photon pairs.
Existing problems blocking the realization of highly correlated two-photon sources based on the
biexciton decay in quantum dots can be overcome in the strong coupling regime.

Keywords: exciton-polariton, polarization, ZnO, entanglement, quantum dot, Bose-Einstein
condensation

RESUME Les exciton-polaritons sont des particules mixtes de lumière et de matière.
Ils peuvent être le futur des applications optoélectroniques, en vertu de leur réponse optique
non-linéaire qui est extrêmement forte. Cette thèse est consacrée aux effets non-linéaires et aux
applications variées des exciton-polaritons dans les nanostructures à base de semi-conducteurs.
Les microcavités planaires et les polaritons 2D sont étudiés dans les premiers chapitres, alors
que le dernier chapitre est consacré à l’étude du système de boites quantiques en cavité (po-
laritons 0D). L’oscillateur paramétrique et la bi stabilité sont le sujet de la première partie
de la thèse. Une approche mathématique intermédiaire entre les approches semi-classiques et
purement cohérente est présentée. L’impact des fluctuations proches du seuil de bi stabilité est
étudié. La deuxième partie est consacrée la présentation de différentes applications basées sur
les propriétés des polaritons. Un laser à polaritons basé sur une cavité de ZnO est modélisé et
les résultats soulignent les avantages de l’utilisation de ce matériau pour la réalisation de ce type
d’application è température ambiante. La structure de spin particulire des polaritons est par
la suite utilise pour proposer deux nouvelles applications. La premire est un analogue optique
du transistor de spin pour les électrons, appelé transistor Datta et Das. La deuxième propose
d’utiliser le comportement chaotique d’une jonction Josephson polaritonique afin d’implémenter
un système de cryptage chaotique d’un signal. Le dernier chapitre est consacré aux polaritons
0D. Nous montrons comment la réalisation du régime de couplage fort permet de réaliser une
source de photons intriqués basée sur le déclin du bi exciton dans un boite quantique en résolvant
un certain nombre de difficultés par rapport au système constitué d’une boite quantique simple.

Mots clef: exciton-polariton, polarisation, ZnO, intriquation, bôıte quantique
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