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RÉSUMÉ

Les techniques de description des éléments caractéristiques d’une image sont om-
niprésentes dans de nombreuses applications de vision par ordinateur. Nous proposons
à travers ce manuscrit une extension, pour décrire (représenter) et apparier les éléments
caractéristiques des images. L’extension proposée consiste en une approche originale
pour apprendre, ou estimer, la présence sémantique des éléments caractéristiques lo-
caux dans les images. L’information sémantique obtenue est ensuite exploitée, en
conjonction avec le paradigme de sac-de-mots, pour construire un descripteur d’image
performant.

Le descripteur résultant, est la combinaison de deux types d’informations, locale
et contextuelle-sémantique. L’approche proposée peut être généralisée et adaptée à
n’importe quel descripteur local d’image, pour améliorer fortement ses performances
spécialement quand l’image est soumise à des conditions d’imagerie contraintes.

La performance de l’approche proposée est évaluée avec des images réelles aussi bien
dans les deux domaines, 2D que 3D. Nous avons abordé dans le domaine 2D, un
problème lié à l’appariement des éléments caractéristiques dans des images. Dans le
domaine 3D, nous avons résolu les problèmes d’appariement et alignement des vues
partielles tridimensionnelles. Les résultats obtenus ont montré qu’avec notre approche,
les performances sont nettement meilleures par rapport aux autres méthodes existantes.

Mots-clefs: description et appariement d’éléments caractéristiques, descripteurs lo-
caux et globaux, sac-de-mots, mots visuels, recalage de vues partielles tridimension-
nelles, information sémantique, information contextuelle.
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ABSTRACT

This manuscript presents an extension of feature description and matching strategies
by proposing an original approach to learn the semantic information of local features.
This semantic is then exploited, in conjunction with the bag-of-words paradigm, to build
a powerful feature descriptor.

The approach, ended up by combining local and context information into a single
descriptor, is also a generalized method for improving the performance of the local
features, in terms of distinctiveness and robustness under geometric image transforma-
tions and imaging conditions.

The performance of the proposed approach is evaluated on real world data sets as well
as in both the 2D and 3D domains. The 2D domain application addresses the problem
of image feature matching while in 3D domain, we resolve the issue of matching and
alignment of multiple range images. The evaluation results showed our approach
performs significantly better than expected results as well as in comparison with other
methods.

Keywords: Feature description and matching, local and global descriptors, bag of
words, visual words, range image registration, semantic information, shape context.
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DESCRIPTEURS AUGMENTÉS BASÉS

SUR L’INFORMATION SÉMANTIQUE

CONTEXTUELLE

Par le biais de ce manuscrit, nous proposons une methode de description et d’appariement
d’éléments caractéristiques des images. L’extension proposée a de meilleures perfor-
mances en terme de caractère distinctif et d’invariance (robustesse) des descripteurs
locaux dans les images.

L’approche suggérée est construite autour d’une technique originale, basée sur le
paradigme de sac-de-mots pour apprendre la signification des éléments caractéristiques
locaux qui conduit à une abstraction sémantique de la relation sous-jacente liée à
plusieurs images.

Cette information sémantique est ensuite exploitée dans un sens contextuel, et en
conjonction avec l’information locale pour genérer un descripteur d’éléments carac-
téristiques, qui est une combinaison linéaire de deux composantes, locale et sémantique
contextuelle.

L’approche proposée, pour la description et l’appariement des éléments caractéristiques,
se résume en quatre étapes:

1. Description locale des éléments caractéristiques:

Des descripteurs locaux sont calculés pour un ensemble d’éléments caractéris-
tiques (e.g., point, régions, etc.) pré-sélectionnés, ou échantillonnés, sur des
images. Le but est de capturer la distribution ou la variation de l’information au
voisinage de chaque élément caractéristique choisi.

2. Création de vocabulaires visuels:
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L’ensemble de descripteurs calculés précédemment, et collectés sur des images
obtenues à partir de la même scène (ou sur des vues partielles représentant le
même modèle 3D), sont correctement regroupés de manière à générer un nombre
fixe de mots visuels. L’ ensemble des centres de gravité des groupes résultants,
représentent notre vocabulaires visuels

3. Définition de contexte:

Chaque descripteur local est associé à un mot visuel, et une représentation de
sac-de-mots est définie par le comptage du nombre d’éléments caractéristiques at-
tribués à chaque mot. En particulier, pour un élément caractéristique de référence,
son contexte est défini comme l’ensemble des sac-de-mots obtenus dans plusieurs
régions qui définissent des coquilles concentriques centrées sur la référence.

4. Description et appariement des éléments caractéristiques:

La mise en correspondance entre deux éléments caractéristiques est obtenue
en comparant respectivement leurs composantes locales et contextuelles, et en
prenant en compte les différents types de mesures.

Les résultats expérimentaux ont montré que la technique proposée est plus performante
que les méthodes existantes. Pour les deux problèmes traités, dans les domaines 2D et
3D, les gains en performance les plus élevés sont enregistrés par nos descripteurs. Ceci
est particulièrement illustré sur des images obtenues sous des conditions d’imagerie
contraintes , où les descripteurs standard atteignent rapidement leurs limites et se
révèlent inapplicables dans certains cas.
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2 1.1. Context and Motivation

1.1 Context and Motivation

Image description is an important task for many computer vision applications. These
include, among others: object recognition [Ferrari 04, Lowe 04] and categorization
[Opelt 04, Fergus 03], image retrieval [Mikolajczyk 01, Schmid 97], texture recognition
[Lazebnik 05], feature matching [Tuytelaars 04, Schaffalitzky 02], making panoramas
[Brown 03], video data mining [Sivic 03], robot localization [Se 02], 3D model registra-
tion [Huber 03, Makadia 06], and 3D feature matching [Mian 06].

The rationale behind image description is to provide a compact image representation,
which is distinctive and invariant (robust) under geometric image transformations,
imaging conditions, occlusion, and noises. To this end, different methods have been
proposed, and these can be classified into three major categories, local, global, and
contextual approaches:

• Local: for the local methods, an image is represented by a set of local descriptors,
which encode the properties (e.g., distribution, variation, etc) of the information
collected in different feature neighborhoods.

• Global: based on global methods, an image is represented by a unique descriptor
(vector) which encodes the properties (e.g., distribution, variation, etc) of the
information available on the whole image.

• Contextual: contextual methods span both local and global methods. For instance,
shape context [Belongie 02] is a description method for which an image is repre-
sented by a set of local features (similar to local methods) by using the information
collected on the whole image scope (similar to global methods).

Basically, a successful image description method has to perform indifferently while
maintaining good performance (i.e., distinctiveness and robustness) on different types
of images and under challenging image alterations. These include, for example, the
problems that arise with images extracted from homogeneous and textured scenes, or
with those subjected to complicated geometric transformations.

To approach these problems, several techniques have been suggested. In the seminal
work of Mikolajczyk [Mikolajczyk 05a], a number of promising local feature description
approaches, including the contextual approach of Shape Context [Belongie 02], are eval-
uated and compared for image feature matching. The results suggest SIFT [Lowe 04],
PCA-SIFT [Ke 04] and GLOH [Mikolajczyk 05a] as the most successful descriptors.

For object recognition, the evaluation conducted by Bay et al. [Bay 06] shows their
SURF descriptor performs better than SIFT, PCA-SIFT and GLOH.
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Recently, an interesting framework [Maji 09] has been elaborated in the context of object
recognition to compare the performance of number of methods widely used for image
description. These are evaluated on the popular Caltech 101 dataset [Fei-Fei 06].

The results show that the performance of SIFT, Geometric-Blur [Berg 01], and Shape-
Context descriptors is superior to others. Besides, GLOH works poorly in spite of its
high performance on Mikolajczyk’s dataset. It is also illustrated that the performance of
SIFT is highly correlated with Shape-Context but the correlation dips with Geometric-
Blur.

On the other side, the recent local shape (i.e., for 3D model) descriptors of [Heider 12,
Tang 12] based on distance to plane, normal distribution, mean curvature, Gaussian
curvature, and shape index, are shown to be well adapted for the tasks related to 3D
shape models like recognition and categorization of 3D objects.

Despite their attractive usefulness, it seems no approach of the aforementioned includ-
ing others (or category of approaches) was found to perform best for all the image
types, deformations, and tasks.

For instance, some problems with the approaches based on the local information, lack
in performance for scenes exhibiting self similarities (e.g., homogeneous-structured
and highly-textured environments) as well as those depicting complicated non-affine
distortions and non-rigid movements.1

Hence, it becomes difficult for matching features within images obtained from these
scenes assuming affine warps or 2D-rigid transformations. By allowing non-affine
image transformations, the local descriptors may fail to address, for example, the
matching and registration problems. These constraints turn quite problematic for
applications demanding accuracy and precision.

The alternative solution to overcome the limitation of the local descriptors in images
with multiple similar regions, is probably adopting a contextual descriptor. However,
this is far to be suitable for images presenting occluded points (like in 3D partial
views) or altered by some geometric deformations, e.g., scale change. This is because
the contextual methods are more useful for tasks which the emphasis is more upon
comparing shapes than on matching features.

The other solution involves using a global approach is suited only for the problems
related to distinguish between shapes, but not for those of features discrimination. For
example, this should be a good solution for tasks like object categorization and 3D
shape retrieval, whereas it is not adapted for others like those involving estimating
geometric transformations between images.

1These are often caused by non-stationarity of objects inside images, i.e., objects move independently
during image capturing or deformation.
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To deal with all the aforementioned problems –among others, we propose an approach
based on combining local and context descriptors.

Combining local and context information is a promising approach, and only few
methods [Carneiro 04, Mortensen 05] adopt this strategy, to the best of our knowledge
(see [Mian 05], for an extensive overview of 3D shape matching methods).

An interesting and effective approach has been proposed in [Frome 04], which is an
extension of the so called shape context [Belongie 02] to the 3D domain.

Shape context encodes the distribution over relative positions of a fixed point with all
the other points of the shape. In this fashion, it summarizes the global shape in a rich
local descriptor [Belongie 02].

In this manuscript, we improve the basic idea of the shape context and thus we propose
an original approach for combining local descriptors with the Bag-of Words (BoW)
paradigm. This can be generalized to any local descriptor. Also, it can be seen as a
generalization of the closest existing methods of [Carneiro 04, Mortensen 05].

In this work, we introduce an original approach which can be generalized to any
local feature descriptor (i.e., can be adopted with any local feature descriptor) to build
powerful feature descriptors. The outlines of our strategy for describing and matching
image features, are presented in the following section.

1.2 Semantic-Shape-Context Approach

The proposed Semantic-Shape-Context is a four-steps process, which involves both
feature description and matching. This process will be detailed in Chapter 3, and here
it can be outlined as follows:

1. Local feature description: Several local feature (e.g., point) descriptors are computed
in order to capture the local image (or shape) variation [Lowe 04, Johnson 99,
Petitjean 02] in the point neighborhood.

2. Visual vocabulary construction: The set of feature descriptors collected from all
the images of the same scene (or from all the views of the same 3D model) are
properly clustered in order to obtain a fixed number of visual words. Thus, the set
of cluster centroids represents words in a visual dictionary [Csurka 04].

3. Context definition: Each local descriptor is assigned to a visual word, and a BoW
representation is defined by counting the number of points assigned to each word.
In particular, for a fixed point its context is defined as the set of BoWs computed
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on several regions which are defined by concentric shells centered on the fixed
point itself.

4. Feature matching: The matching between two features (e.g., points) is computed
by comparing their respective signatures and by taking into account the different
kinds of descriptors. Both the local and contextual contributions are considered.

An illustration of the first three of the aforementioned steps is given in Fig. 1.1c, Fig. 1.1d
, and Fig. 1.1e, respectively.

(a) (b) (c) (d) (e)

FIG. 1.1: Principle of semantic-shape-context feature description approach. Given a set of
images (a), firstly, features are selected on each image, as shown in (b). Then, the proposed
feature description approach is performed across three steps: (c) local feature description, (d)
visual vocabulary construction, and (e) context definition. This illustration is based on features (i.e.,
yellow circles) and descriptors (i.e., green grids), which are computed using SIFT detector and
descriptor.

The underlying idea here consists in the fact that the proposed context encodes not only
the spatial relationship between features, but also their class with respect to each local
descriptor. This means features assigned to the same cluster belong to the same class.

We thus call this new representation: Semantic Shape Context (SSC). The term semantic is
used to emphasize the fact that we learn the local shape of the feature, where here the
semantic is inferred by the feature classification.
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It is worth noting that the choice of local point descriptors is not the focus of this work,
since in principle any set of local descriptors can be used and cast in the proposed
context. The effectiveness of the SSC is tested in both the 2D and 3D domains by
addressing two problems of image feature matching and alignement of multiple range
images2 (i.e., 3D multiview surface matching and registration).

1.3 Roadmap

The remainder of this manuscript is organized as follows:

In Chapter 2, we present a literature review of the most relevant approaches already
published on the topic of image description, for both the 2D and 3D domains.

The main steps of the proposed feature description and matching strategy are presented
in Chapter 3.

In Chapter 4, we illustrate the performance expected of Semantic-Shape-Context to be
powerful concept for computing augmented feature descriptors.

The experimental results for evaluating the concept of Semantic-Shape-Context to
resolve a 2D-domain problem (i.e., image feature matching), are given in Chapter 5.

The proposed concept is also evaluated in 3D-domain by addressing the issue of
matching and registration of multiple range images. This is reported across Chapter 6.

Finally, the conclusion is given in Chapter 7.

2This implements a fully automatic model registration pipeline matching framework
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8 2.1. Introduction

2.1 Introduction

Image description is often an early step, and sometimes the main step, for several
machine vision tasks. These include, for example, video tracking [Trucco 06, Gabriel 03,
Noldus 01], robotic mapping and navigation [Thrun 02, Thrun 00], object recognition
[Lowe 99, Belongie 02], scene classification, and features matching [Ke 04].

Feature matching between two images is a typical case in which descriptors are com-
puted on a number of pre-selected features.

Basically, the performance, in terms of precision, of any matching algorithm is directly
proportional to feature accuracies, distinctiveness, and invariance of descriptors. Many
feature description methods have been suggested to achieve the performance sought
for high discriminative and invariant descriptors, and aiming to provide an accurate
feature matching.

According to the number of descriptors (vectors) involved in the image description, the
different image description approaches can be classified as locals and globals methods.
The contextual methods presented early in the introduction (i.e., Chapter 1) as a separate
category, are included here with local methods.

Following is a literature review on the most relevant approaches already published
on the topic of image feature description, in both the 2D and 3D domains, and with
respect to the local and global categories. Besides, we will present in Section 2.4 a brief
summary of a number state-of-the-art comparative studies designated for evaluating
the performances of different feature descriptors.

Recaps of the most relevant 2D and 3D feature descriptors, among these reviewed here,
are given in Tab. 2.1 and Tab. 2.2, respectively.

2.2 2D Feature Descriptors

Many 2D-domain vision problems are heavily dependent on the early task of image de-
scription. Video tracking [Trucco 06], robotic navigation [Thrun 02], object recognition
[Belongie 02], and features matching [Ke 04] are few examples.

In this context, different approaches have been proposed. These can be partitioned, as
above-mentioned, into two classes: local (including contextual) and global methods.

In general, the global approaches are useful for problems involving image shape
comparison (i.e., object recognition) whereas for those related to image feature matching,
i.e., estimating of geometric transformations, the local and contextual methods become



Chapter 2. Related Work 9

more appropriate.

2.2.1 Local Approaches

A basic contextual descriptor is a two-dimensional histogram representing the relative
distribution (i.e., relative to a reference point) of interest points inside an uniform
square-grid.

Based on a close idea, instead of interest points, Shape Context [Belongie 02] is com-
puted as log-polar histograms for spatial distribution of edges, extracted using Canny
detector [Canny 86]. This technique has been successfully evaluated in shape recogni-
tion, in which edges are reliable features.

Spin image [Johnson 99, Johnson 97a, Johnson 97b] is an approach developed in the
context of 3D object recognition. A 2D version (for 2D images) of this method has been
introduced by Lazebnik et al. [Lazebnik 05]. The proposed intensity-domain spin images
(abbreviated here as Spin-Image) descriptor is inspired by the latter 3D spin images, in
which the traditional coordinates (i.e., radial-distance and signed-elevation scalers are
replaced by the point location and brightness respectively.

The spin image histogram is obtained as a function of 4-bins distance and 10-bins
intensity, thus leading to a descriptor vector of dimension 40. The intensity-domain
descriptor has a high degree of invariance for representing affine normalized patches.
This is because the parameters, the distance from the center point and the intensity
value are invariant to orthogonal transformations of an image. Fig. 2.1 illustrates the
basic idea of building the intensity-domain descriptor based on modified spin images.

FIG. 2.1: Construction of the intensity-domain spin-image descriptor. The dimensions of each
(right) descriptor histogram are: d and i, which are the distance from the feature-point and
the brightness-value respectively. The slice of the spin image corresponding to a fixed d is
simply the histogram of the intensity values of pixels located at a distance d from the center.
This figure shows an example of three points on the normalized patch (left) and their different
corresponding positions in the descriptor (right). (adapted from [Lazebnik 05]).
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An approach robust to illumination changes [Zabih 94] was developed by exploiting
the ordering and reciprocal relations between pixel intensities. Its histograms represent
a distribution of all possible binary string combinations. These binary strings encode bi-
nary relations between intensities of several pixel in the neighborhood. This descriptor
performs well in case of texture representation. However, it needs high dimensionality
to build a reliable descriptor [Ojala 02].

Complex filters [Schaffalitzky 02] is a differential-based descriptor. It is developed
in the context of multi-view matching (i.e., establish relative view-points) given a
large number of images where no ordering information is provided. First step of this
approach is to normalize the intensity power in the neighborhood to unity, after shifting
the signal mean to zero. This guarantees invariance to illumination changes. Based on
the idea proposed by Baumberg [Baumberg 00], invariance of complex filters to image
transformation is achieved by mapping the neighborhood onto a unit disk. The filters
used are derived from the following model:

Kmn(x,y) = (x+ iy)m(x− iy)nG(x,y), (2.1)

where G(x,y) is a Gaussian. The original implementation used a total of 16 complex
filter responses per image patch. This is obtained by setting: m+n 6 6, m > n, and
swappingm and n to obtain complex conjugate filters. The filter bank shown above
differs from a bank of Gaussian derivatives in sense that linear coordinates change in
the space of the filter response.

Differential invariants [Koenderink 87] and steerable filters [Freeman 91] are two de-
scriptor close to complex filters, and use derivatives obtained by convolution with
an approximated Gaussian. Differential invariants based on the property that the
derivatives of the blurred illumination are equal to the convolution of the original
image with certain filters of RF (i.e., receptive field, and it is similar to Gabor filter
[Gabor 46]). The framework termed this as fuzzy derivatives. The RF filters are derived
from the following family of equations:

ϕn(x;t) =
∂n

∂xn
e

−x2
4t

√
4πt

(2.2)

To build the descriptor, a set of RF filters are concatenated to obtain higher order
derivatives at lower resolution. This is done by exploiting the concatenation theorem.
The filters use local jets [Poston 96] up to fourth order to compute edges curvatures.
Examples of RF filters are shown in Fig. 2.2.

The steerable filters [Freeman 91] technique is similar to the differential invariants. It
uses oriented (steered) filters to compute derivatives in an arbitrary direction. Oriented
filters are a linear combination of basis filters. Responses of the basis filters are used to
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(a) (b) (c)

FIG. 2.2: An example of RF filters. These filters play different roles: (a) This filter is used to
detect edges or lines. In case for edges detection, the filter (b) plays the role of the curvature
sensitive element for boundary curvature detection, whereas it is the curvature sensitive element
for line curvature if (a) is used to detect lines. In this case (c), it is the curvature sensitive element
for boundary curvature. (Illustration inspired by [Koenderink 87])

determine the direction of the derivatives. These derivatives are invariant to rotation if
they are computed in the direction of gradient. Fig. 2.3 shows an example of steerable
filters computed from circularly symmetric Gaussian and applied on a patch of a
circular disk.

Affine and photometric moment invariant [Van Gool 96] is a method developed in
the context of viewpoint invariant recognition of planar pattern. It uses traditional
geometric moments as the basic features. The idea of this approach is based on moment
invariants [Flusser 09]: (i) mixing of different types of moment and using a combination
of coplanar patterns and (ii) to deal with invariance to illumination changes, the
intensity moment is incorporated in the mixed moment. The moments are up to the
second order (i.e., keep the order of moments low), since high orders introduce more
noise, that is, sensitive to small geometric and photometric deformation. Two kinds of
moments are computed:

MSpq =

∫∫
Ω

xpyqdxdy and MIpq =

∫∫
Ω

I(x,y)xpyqdxdy (2.3)

These are the shape (p,q)-moment and intensity (p,q)-moment of order p+q respectively.
The moment invariant is function of both shape and intensity moments. The descriptor
based on moment invariants performs well with color images because the invariant
can be computed for each color channel and between channels [Mikolajczyk 05a].

Cross-correlation is a basic descriptor represented by a vector of image pixels. This vec-
tor can be used in many tasks such such as image feature matching, pattern recognition,
and feature detection [Gonzalez , Duda 98]. The traditional normalized correlation
operation, used in cross-correlation, does not meet speed requirements for time-critical
applications. Therefore, and due to the computational cost of spatial domain convolu-
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(a) (b) (c)

(d)

(e) (f) (g)

FIG. 2.3: An example of steerable filters with a circularly symmetric Gaussian kernel,G.
(a) The first derivative along the positive x-axis (horizontal direction), G0◦

1 . (b) The first deriva-
tive along y-axis (vertical direction),G90◦

1 , that is,G0◦
1 rotated (steered) by 90◦. (c) The directional

first derivative in the direction of the vector making an angle of 30◦ from the positive x-axis,
G30◦

1 . This can also be computed as a linear combination ofG0◦
1 andG90◦

1 : G30◦
1 = 1

2G
0◦
1 +

√
3

2 G
90◦
1 .

(d) A circular disk patch sampled from an image. The convolution results of this patch using
G0◦

1 and G90◦
1 are shown in (e) and (f) respectively. (g) The patch convolution with G30◦

1 can be
computed directly as a linear combination of the convolved patches obtained in and (e) and (f),
that is, (g) :: patch = 1

2 (e) :: patch+
√

3
2 (f) :: patch. (Illustration inspired by [Freeman 91])
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tion, the descriptor is not suitable for feature tracking task. One solution is computing
correlation in the frequency domain using the FFT (Fast Fourier Transform). How-
ever, for template matching, the normalized form of correlation preferred in this task,
has not a simple and efficient frequency domain expression. For this reason, many
algorithms have been introduced to overcome this constraint. In the framework, first
template matching [Lewis 95], the unnormalized cross-correlation is normalized using
pre-computed tables containing the integral of the image and its square image over the
search window. This descriptor is well suited for special effects feature tracking.

Briechle and Hanebeck [Briechle 01] proposed fast normalized cross correlation in the
context of template matching. The algorithm uses a sum expansion of a given template
function and a rectangular basis function. It is useful and suitable for problems where
many different template are to be found in the same image.

A new approach has been proposed by Yoo and Han [Yoo 09] recently to compute the
normalized cross-correlation without using multiplications. They showed that for a
search window of sizeM and a template of sizeN the fast normalized cross-correlation
requires only approximately 2×N× (M−N+1) additions or subtractions.

SIFT-like methods are distribution-based descriptors. Generally used in the context of
2D image feature description, where they have been proven to be very successful in
many applications. These descriptors are derived from scale invariant feature transform
(SIFT) [Lowe 04], which is a scale invariant region detector and descriptor based on the
distribution of gradient magnitudes. The detector finds interest points at particular
scales with assigned orientations. This keeps the detected points invariant to image
location, rotation and scale. The descriptor is then computed as a set of orientation
histograms (orientation relative to the interest point) on 4× 4 pixel neighborhoods.
Each descriptor contains an array of 4 histograms around the interest point, and
each histogram contain 8 bins. These histograms are computed from magnitude and
orientation values. The gradient magnitude and a Gaussian of scale σ (set to 1.5 times of
interest-point scale) are used for weighting the contribution of each pixel in histograms.
The resulting descriptor is a vector of dimension 128, i.e., 4× 4× 8 = 128 elements.
This vector is then normalized to enhance invariance to changes in illumination. In
order to reduce the effect of non-linear illumination , the vector is renormalized using a
threshold of 0.2. An example illustrating the principle of SIFT approach is shown in
Fig. 2.4.

Performance evaluation conducted by Mikolajczyk and Schmid [Mikolajczyk 05a] for
different approaches has shown that SIFT is partially invariant to the image distortion
(like viewpoint and illumination) and highly distinctive. They have been illustrated
that in the context of feature matching the accuracy (measured by recall and precision)
for viewpoint change of 50 degrees is higher than 50%. They also tested the distinc-
tiveness through varying number of features in the database [Mikolajczyk 05a]. This
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FIG. 2.4: An example of SIFT descriptor represented with a 2×2 array. The standard SIFT is
4×4 descriptor array computed from a 16×16 samples instead of 8×8 as shown in this example.
The descriptor computes first the gradient and orientation at each image point neighborhood
as shown on the left-side. These are weighted by a Gaussian window, indicated by the overlaid
circle. These samples are then accumulated into orientation histograms summarizing the
contents over 4×4 subregions, as displayed on the right-side, where the length of each arrow
corresponding to the sum of the gradient magnitudes near that direction within the region
(adapted from [Lowe 04]).

demonstrates SIFT a very distinctive descriptor even with large number of features.

Gradient location and orientation histogram (GLOH) [Mikolajczyk 05a] is an extension
of SIFT descriptor. It outperforms SIFT and other descriptors in sense that it increases
the robustness and distinctiveness. It uses SIFT computed for log-polar grid location
(changing location grid of SIFT) with 3 bins in radial direction and 8 bins in angular
direction. The gradient orientations are divided in 16 bins. The results in an histogram
of dimension 272 bins which is then reduced to 128 using PCA (i.e., principal component
analysis). The covariance matrix of PCA is computed from a set of 47,000 image patches.

PCA-SIFT [Ke 04] is another SIFT-like descriptor. It is a standard SIFT processed
through the principal components analysis, in which the descriptor vector is computed
within region of image gradients in x and y directions. The vector is of dimension
3,042, and reduced to 36 using PCA.

Colored SIFT (CSIFT) [Abdel-Hakim 06] is a version of SIFT descriptor which exploits
color invariant characteristic in images. It is built around the photometric reflection
model derived from the Kubelka-Munk theory [Geusebroek 00, Geusebroek 01]. This
is based on the following model:

E(λ,x) = e(λ,x)(1−ρf(x))2R∞(λ,x)+e(λ,x)ρf(x) (2.4)

Here, the reflected spectrum in the viewing direction, E , if a function of the illumination
spectrum, e, the Fresnel reflectance, ρf, and the material reflectivity, R∞. The variables
x and λ denote a point position in image and the wavelength respectively. To make the
descriptor robust to different geometrical transformations and photometric changes,
SIFT descriptor is computed with color gradients instead of gray gradients. The
descriptor was evaluated in the context of feature matching for illumination changes
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and using low resolution images with sizes of the order of 384× 288. It showed
significant improvements compared to the classical SIFT in terms of repeatability and
number of correct matches.

Taboone et al. [Tabbone 06] presented a descriptor for object recognition. It is based
on Chamfer distance [Borgefors 84] and the new R-transform derived from the Radon
transform [Deans 83]. The Radon transform of an image I(x,y) is computed as follows:

TRI(ρ,θ) =
∫+∞
−∞

∫+∞
−∞ I(x,y)δ(xcosθ+ysinθ−ρ)dxdy, (2.5)

where δ is the unit-impulse function. They introduced R-transform of an image I(x,y)
as follows:

RI(θ) =

∫+∞
−∞ T 2

RI(ρ,θ)dρ. (2.6)

The R-transform-based descriptor is tested in the context of shape recognition and it
showed to be invariant to the translation and scale changes.

Tuzel et al. [Tuzel 06] have proposed using the covariance matrix of the interest region
for computing the feature descriptor. They defined the region covariance of an n-
dimensional feature as the norm of the first and the second intensity derivatives along
x-axis and y-axis for all n components. They derived a fast method to calculate the
covariances based on integral images in which the covariances are obtained by few
arithmetic operations involving generalized eigenvalues. The algorithm performance
was evaluated for object detection and texture classification. The results showed that
the descriptor invariance resists to rotations and illumination changes.

In the context of action recognition in video sequence, Kläser et al.[Kläser 08] investi-
gated an approach derived from HOG-based (Histogram of Oriented Gradient) rep-
resentation [Dalal 06]. The representation is computed for the oriented 3D spatio-
temporal-gradient (3D-gradients). This is similar to SIFT-like histogram [Lowe 04]. The
approach presents a descriptor in which, videos are seen as spatio-temporal volumes,
the HOG is extended to 3D domain, and integral image concept is extended to integral
videos. An original 3D orientation quantization method based on regular polyhedrons
is also proposed. The focus of the descriptor is action classification. Fig. 2.5 summarizes
the procedure in building a spatio-temporal descriptor.

The latter descriptor was evaluated on different datasets, the KTH [Schuldt 04], Weiz-
mann [Blank 05] and Hollywood [Laptev 08] actions and also compared to a number
of descriptors, the Local Jets [Schuldt 04], Gradient+PCA [Wong 07], HoG [Laptev 08]
and HOF [Laptev 08]. The spatio-temporal descriptor showed to be better in terms of
action recognition accuracies.

DAISY [Tola 08] is a descriptor derived from SIFT and GLOH. Its shape is close to that
introduced by Winder and Brown [Winder 07]. DAISY descriptor showed to be well
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FIG. 2.5: The main steps for computing the spatial-temporal descriptor. (1st column) In the
neighborhood of an interest point Ci, a number of 2×2×2 gradient orientation histograms
are built and then concatenated to compute a full spatio-temporal descriptor ds. (2nd column)
A grid of mean gradient of size 2×2×2 sub-blocks is used to compute a gradient orientation
histogram hi. (3rd column) A regular polyhedron grid is used to quantize the gradient orienta-
tion. (4th column) A mean gradient is computed over the entire videos. (Diagram adapted from
[Kläser 08])

suited for sparse matching but not for efficiency. It is designed for dense wide-baseline
matching in which the computation needs to be much faster without introducing
artifacts that decrease matching performance. Instead of using weighted sums as with
SIFT and GLOH, sums of convolutions is used. This leads to low computational time.
The performance of the descriptor was compared to those obtained by SIFT, SURF
, NCC (Normalized Cross-Correlation)[Lewis 95], and Pixel Difference. It appeared
that DAISY is much faster than SIFT, and produced fewer artifacts than the other
descriptors.

A recent variant of the SIFT have been proposed by Toews and Wells [Toews 09].
The ranked-ordered SIFT (SIFT-rank) investigates the image descriptions for affine
image matching using the ordinal description method. This method computes the image
measurement in terms of their ranks in a ordered array, instead of the their raw values.
That is, each histogram bin of the descriptor is computed as its rank in a sorted array.
The ordinal description of N scalar-valued image measurements, x = {x1, . . . ,xN}, is
given by:

r= {r1, . . . ,rN}. (2.7)

Where the rank-order values ri correspond to the values xi are obtained as:

ri = |{xk : xk 6 xi}| (2.8)

SIFT-rank descriptor is invariant against arbitrary monotonic variation in histogram
bins. It is well suited for local-affine feature matching since it improves the performance
of classic SIFT.
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Irregular orientation histogram binning [Cui 09] is also a recent descriptor derived
from standard SIFT. It uses an irregular histogram grid with subregions of different
sizes. Unlike SIFT which encodes the gradient distribution into oriented histogram
with a regular grid, histogram bin values are computed with respect to the feature
center and over different subregion sizes. Fig. 2.6 shows examples of regular rand
irregular subregions grid. The descriptor was tested in matching of local image features.

(a) (b) (c) (d)

FIG. 2.6: Example of regular/irregular subregion grids. Regular sub-region grids used with
SIFT, are shown in (a) and (b), while their corresponding irregular subregion grids adopted
with irregular-orientation-histogram-binning descriptor are shown in (c) and (d). In case of (c) and
(d), the image gradient is distributed over different subregions centered at the feature point.
These subregions have different sizes and overlaps.

It showed a good robustness to scale quantization errors.

Fast and accurate descriptor has been introduced by Bay et al. [Bay 06, Bay 08]. Speedup
robust features (SURF) is a couple of interest point detector and descriptor. The
descriptor is computed using a previously selected orientation. This is determined
based on the intensity distribution in the circular neighborhood of each interest point.
Next, a square region is built in the direction of the selected orientation. The SURF
descriptor is then 4-steps process obtained around this oriented square region. The
process can be described in 4 stages:

1. Each pre-selected oriented square region of size 20s (s is predefined scale obtained
from SURF detector), is divided regularly into 4×4 sub-square regions. Examples
of pre-selected square regions are shown in Fig. 2.7a.

2. Haar wavelet is computed for each sub-square over a regular subregion grids of
size 5×5 pixels. Splitting the regions into sub-regions using a regular grids and
then computing the wavelet response are illustrated in Fig. 2.7b.

3. Both horizontal and the vertical wavelet responses, dx and dy, are weighted with
Gaussian of scale, σ= 3.3s, and centered at the interest point. This augments the
robustness to geometric distortion and localization errors.
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4. The first two components of the descriptor vector are computed as the ingrates of
the wavelet responses dx and dy over the sub-square regions. The two remaining
components are set to sums of the absolute values, |dx| and |dy|.

Thus, we obtain for each sub-square region a sub-vector of 4 components,
∑
dx,

∑
dy,∑

|dx|, and
∑

|dy|. The resulting 64-dimensional SURF descriptor is obtained by
concatenating all sub-vectors computed for 4×4 sub-square regions. The illustration
of Fig. 2.7c demonstrates three different image patches with their corresponding SURF
descriptors.

The SURF descriptor has good invariance against illumination changes, since the
wavelet response is invariant to the variations in the illumination. In order to achieve
the invariance to the scale change, each descriptor vector is normalized to unity.

Conjointly to SURF, an upright version (U-SURF) was proposed. U-SURF descriptor is
speedy version well suited in case the invariance to the rotation can be neglected. It
also increases the discriminative power.

(a) (b) (c)

FIG. 2.7: The principle of SURF descriptor. (a) Example of oriented square regions selected
with different scales. (b) The wavelet responses are computed for each sub-square. SURF uses a
size of 5×5 pixels for each sub-square, but here only 2×2 are displayed. The components of
the descriptor are computed as the sums of wavelet responses, dx, dy, and their absolute values
, |dx|, |dy|. The sums are over each sub-square region. This gives a descriptor of size 64 since
there are 4×4 sub-square regions, and for each sub-square of size 5×5 pixels, 4 components
are computed,

∑
dx,

∑
dy,

∑
|dx|, and

∑
|dy|. (c) Example of SURF descriptors computed for

three different image patches.

CCH (Contrast Context Histogram) [Huang 06, Huang 08] is a global descriptor for
image matching. The CCH encodes the contrast distribution in the interest point
neighborhood into a 3D histogram using log-polar grid. This is similar to Shape-
Context approach. The distinctiveness of the descriptor is enhanced through using
both positive and negative contrasts. These are accumulated in separated bins in the
histogram as shown in Fig. 2.8.
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FIG. 2.8: Diagram of CCH histogram representation. For each sub-region inside a log-polar
grid mapped in an interest point neighborhood, an histogram is constructed by computing and
encoding the distributions of positive and negative contrasts in two separated bins. Here, the
diagram shows blue and red bars as examples for positive and negative contrast bins.
(Image taken from [Huang 08])

The performances of the CCH descriptor was compared to those obtained with SIFT.
The comparison is performed according to the computational time and matching
accuracies. The results showed that CCH outperforms SIFT in the computational time
complexity but approximately similar to it in matching accuracies.

2.2.2 Global Approaches

In general, the global descriptors are built around spatial-frequency techniques, which
use histograms to encode different characteristics of appearance and shape[Ke 04,
Belongie 02]. For example, the relative distribution of interest points around a refer-
ence interest point, which is computed inside a number of concentric shells and then
represented by a 2D histogram. Based on a close idea, Shape-Context [Belongie 02] and
geometric histogram [Ashbrook 95], instead of using points, exploit spatial distribution
of edges to compute histograms. These techniques were successfully tested in shape
recognition in which edges are reliable features.

Shape-Context is 3D log-polar histograms representing the distributions of edges
extracted with Canny [Canny 86] detector. These distributions are computed with
respect to log-polar coordinates, radial distance and orientation. The radial coordinate
is quantized into 5 bins while the orientation into 12 bins. This gives a descriptor vector
of dimension 60. Invariance to location is an intrinsic property of shape context because
the distributions are computed with respect to a set of points on the image. Since all
the radial distances are normalized by the mean distance, the invariance against scale
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change is improved. A simple example for computing the shape context descriptor is
illustrated in Fig. 2.9.

(a)

(b)

FIG. 2.9: A simple example for computing the shape context descriptor. (a)(left and center)
Some edge points of two shapes and (right) the log-polar grid in which 5 bins of logr and
12 bins of θ are used. (b) Examples for shape contexts computed for points labeled ◦, / and
3 in the left and in the center of (a). Diagrams in (b) represent 3D histograms computed by
accumulating edges points inside the log-plor grid shown in (a)(right). The accumulation is
with respect to reference points such as ◦, / and 3 shown in (a). We should note here that a dark
bin corresponds to strong accumulation of points, that is a large value in histograms. The shape
contexts of points marked by ◦ and 3 appear to be similar. This because they are computed
from similar points on the two shapes (adapted from [Belongie 02]).

Berg [Berg 01] suggested to adopt the geometric blur. The geometric blur denoted,
GI(x,y), for an image I(x,y) is defined as follows:

GI(x,y) =
∫
W∈Ω

I(W(x,y))dW (2.9)

The integral is computed over a set of bounded warps Ω (geometric transforms).
Fig. 2.10 illustrates the idea underlying the geometric blur technique. This consists in
blurring the image by a spatially varying Gaussian filter to ensures that the blur should
be smaller near the features points, and larger away from them. This is not the case
with an uniform Gaussian filter.

The advantage of using the geometric blur rather than a simple uniform Gaussian blur
is shown in Fig. 2.11.
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(a)

(b)

(c)

(d)

(e)

FIG. 2.10: An example illustrating the basic idea of the geometric blur approach. (a)(left) Three
unit-impulse functions representing a 1D signal, I(x). (a)(right) A translated version, Iw(x),
of I(x). One wants to match positively between these two signals, whereas, for majority of
translation amounts, the matching is obtained negative. As example the correlation gives often
a null value. (b) One solution is blurring the signals with an uniform Gaussian filter. For a
clarity purpose, here, Gaussian filters are shown as rectangle windows, and the window width
corresponds to the filter size. (c) The resulting correlation using a Gaussian filter where the
correlation between Iw(x) and I(x) decreases gradually as translation increases. This leads to
an over blurring near the center, and under blurring away. (d) To overcome the latter problem,
the geometric blur is used in which the amount of blur is proportional to distance from the
origin (blur should be small near the corresponding points, and larger away from them). (e)
Now after using geometric blur the correlation varies linearly.
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(a) (b) (c)

FIG. 2.11: An example to demonstrate the advantage of using geometric blur instead of
approaches based on an uniform Gaussian blur. (a) In this coordinate system, a signal consists
of a corresponding point chosen at the origin, and a set of five feature points in its neighborhood.
(b) A blurred version of the signal shown in (a) obtained using an uniform Gaussian filter. This
shows that all feature points are blurred with the same amount. (c) This version is obtained
after applying the geometric blur on the signal shown in (a), for which the amount of blur is
proportional to distance from the origin that is small near the corresponding point (the origin),
and larger away from them (adapted from [Berg 01]).
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To the best of our knowledge, only few methods exploit the idea of combining of local
and context information. Carneiro and Jepson [Carneiro 04] have initiated this idea
by combining local descriptors of [Carneiro 03] and SIFT with shape context. The
proposed descriptor has been tested in the context of two applications, wide baseline
stereo matching and non-rigid motion. The experiment results showed that the novel
approach provides a higher inlier ratio than Hough clustering.

Later on, Mortensen et al. [Mortensen 05] suggested also to combine local SIFT with
shape context to resolve ambiguities occurring in images containing multiple similar
motifs. The descriptor is obtained as a weighted concatenation of local SIFT descriptor
and shape contextual component:

D= [wL (1−w)G] , (2.10)

where the parameter w is a relative weighting coefficient fixed to 0.5. The descriptor
is of length 188, that is, 128 of local SIFT, L, and 60 of global context, G. The authors
claimed that the descriptor is robust to local appearance ambiguity and non-rigid
transformations. However, no convincing evaluation results are produced since no
comparison to others approaches are provided.

Moreover, the evaluation was conducted only for one unique image, which is warped
artificially for limited geometric transformations of rotation and skew only. The only
experimental evaluations that the authors were able to provide are reported in Fig. 2.12.
The few results they obtained showed that the combined-SIFT-Shape-Context performs
better than SIFT and shape context taken separately. It appears clearly, without any
doubt, that these results are not convincing and the approach is still far from being
completely investigated.

Though the latter two approaches and our SSC seem to be close, they differ mainly in
the way the context information (component) is generated and then exploited:

• Even though their meanings are similar they are not generated in similar manner.
Whereas the other methods adopt the standard shape-context to encode the
context information, we propose an original approach (i.e., learning of the local
shape of the feature) to generate the context information which encodes not
only the spatial relationship between features, but also their class as a way for
abstracting the semantic connection between images, and in principle, any local
descriptor can be used and cast in the proposed context.

• In contrast with the other method, our strategy to match two image features
consists in comparing first their respective local and contextual components. The
distance between the feature descriptors is then computed as a weighted sum of
both the distances between their respective local and contextual components. This
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is more useful, since the metric (e.g., euclidean distance and histogram comparison
χ2) to compute the distances between feature can be chosen 1 differently between
local and contextual components. This also helps to reduce the dimensionality
of each component, which in turn aids the matching to be more accurate and
effective.

In addition to the previous arguments, the other methods use local and global compo-
nents, which are completely decorrelated, without any notion of connection between
images (the same visual word can appear on different images) like we propose. That is
to say, they consider the context component, taken independent of the local component.
Thus, the descriptors can deal with ambiguities resulting from the presence of multi-
ple similar motifs in images, but not with other errors like those related to detectors,
outliers, and occlusions.

Also, including all the above-mentioned approaches, much more emphasis has been
placed on 2D image feature description and many other approaches have been intro-
duced despite the methods cited above still gaining more interests.

2.2.3 Recap

To summarize, the most relevant 2D feature descriptors (among the aforementioned)
are recapitulated in Tab. 2.1.

1For instance, adopting a metric of histogram comparison, like χ2, for comparing the descriptors built
around an histogram (or distribution) representation, will provide more accurate results than using, for
example, the simple euclidean distance.
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(a)

(b)

(c)

FIG. 2.12: Experimental results provided by the approach of Mortensen et al. [Mortensen 05].
(a) The image and its transformed versions used to evaluate the approach. Based on the nearest
neighbor strategy, the authors reported the following matching scores: (b) SIFT only —rotation:
170/200 correct (85%), —skew: 73/200 correct (37%). (c) SIFT with global context —rotation:
198/200 correct (99%), —skew: 165/200 correct (83%). (Images and scores extracted from
[Mortensen 05]).



26 2.2. 2D Feature Descriptors

T
A

B.2.1:
R

ecap
ofthe

m
ostrelevant2D

feature
descriptors

am
ong

the
above-review

ed
approaches.

Category
Nam

e&
Reference

Observation

Local

Spinim
age[ Johnson99]

Invarianttoorthogonalim
agetransform

ations
Approachof[Zabih94]

Perform
swellincaseoftextureim

ages
Com

plexfilters[Schaffalitzky02]
Invarianttoillum

inationchanges
Differentialinvariants[Koenderink87]

Providesdifferentviewspointatthesam
etim

e,from
insideandoutside

Steerablefilters[Freem
an91]

usefulinanalyzingim
agesequencesandvolum

etricdata
Affine/photom

etricm
om

entinvariant[VanGool96]
Perform

swellwithcolorim
ages

Cross-correlation[Lewis95,Briechle01,Yoo09]
W

ellsuitedforspecialeffectsfeaturetracking
SIFT[Lowe04]

Partiallyinvarianttotheim
agedistortionandhighlydistinctive

GLOH
[M

ikolajczyk05a]
IncreasestherobustnessanddistinctivenessofSIFT

PCA-SIFT[Ke04]
Bestperform

anceforim
ageblur

ColoredSIFT(CSIFT)[Abdel-Hakim
06]

Im
provesthedistinctivenessofSIFTunderillum

inationchanges
ApproachofTabooneetal.[Tabbone06]

Invarianttothetranslationandscalechanges
ApproachofTuzeletal.[Tuzel06]

Resiststorotationsandillum
inationchanges

Kläseretal.[Kläser08]
Thefocusofthedescriptorisvideoactionclassification

DAISY
[Tola08]

W
ellsuitedforsparsem

atchingbutnotforefficiency
SIFT-rank[Toews09]

W
ellsuitedforlocal-affinefeaturem

atching
Irregularorientationhistogram

binning[Cui09]
Showsagoodrobustnesstoscalequantizationerrors

SURF[Bay06,Bay08]
Hasgoodinvarianceagainstillum

inationandscalechanges
CCH

(ContrastContextHistogram
)[Huang06,Huang08]

Outperform
sSIFTinthecom

putationaltim
ecom

plexity

Global
Shape-Context[Belongie02]

Invariancetolocationisanintrinsicproperty
Geom

etricblur[Berg01,Vyas]
Suitedfortem

platem
atching

M
ixedlocal-global

ApproachofM
ortensenetal.[M

ortensen05]
Im

provesSIFTforrotated/shearedim
agescontainingm

ultiplesim
ilarm

otifs



Chapter 2. Related Work 27

2.3 3D Feature Descriptors

In the context of 3D image registration, estimating rigid transformations that align
corresponding points of range images (i.e., 3D partial views)2 is a critical issue for
various tasks in computer vision, e.g., 3D model reconstruction.

The ICP algorithm [Besl 92] is the gold standard for pairwise range image alignment.
However, it requires a sufficient overlap among the range images and a coarse pre-
registration to avoid getting stuck in a local minimum.

In particular, according to the taxonomy proposed in [Huber 03], when an initial
estimate is unknown and more than two range images are involved, the problem is
called matching of multiple range images. It consists of three main sub-problems need
to be solved [Huber 03]. These include (i) finding out which range images are in
overlapping, (ii) determining the relative pose between each pair of overlapping,
and (iii) identifying the absolute pose of the range images.

Focusing on (i) and (ii), similar to above for 2D feature descriptors, both local and
global techniques are exploited.

In this context, the local techniques are based on point-to-point matching, in which each
point signature describes local surface properties while the global techniques [Makadia 06,
Vranic 01b] directly estimate the matching of the whole range images by comparing
global surface characteristics.

For a considerable number of 3D tasks, adopting either local or global approach, is
often quite enough to achieve desired performances. However in particular tasks like
those involving range images, the above focused problems turn to be challenging.

For instance, one of the challenging issues of the local approaches is the presence of
multiple discontinuities, or holes, on the surface. This is a typical and common defect
for many scanned 3D models. These defects are, in general, due to noise and systematic
errors arising during creating range surface, as illustrated in Fig. 2.13.

Moreover, much as with the images in the 2D domain, the local 3D approach suffers
from lack in performance for range images containing many regions with similar
surface structures.

Though it seems in general to deal better against various problems, the global and
contextual methods perform worst when the 3D shape contains a considerable number
of points which diverge from the overall pattern. This is a frequent issue with range
images for which the number of occluded points is usually high.

2In this thesis, the names ”range image” and ”3D partial view” are used interchangeably.
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FIG. 2.13: An illustration of different steps to create a range surface. (a) A range image
obtained by sub-sampling from 3D scanning-based device. (b) Connecting nearest-neighbor
with triangular facets. (c) Performing shaded rendering. (d) Enhancing of the rang surface
resolution. (Image taken from [Curless 99]).

To approach these problems, many techniques have been introduced and following is a
literature review of the most relevant of them. Since the approaches reviewed here are
mostly locals or contextuals, all the methods (including the globals) will be presented
linearly, i.e., within one section.

3D Spin Images [Johnson 97a] is considered so far, as a reference work for many other
techniques. 3D Spin Images is a global approach based on the concept of object-oriented
coordinate system.

The advantage of 3D Spin Image is that the oriented point is well defined at every
point on the surface. Thus, it can be determined robustly, i.e., unambiguously, almost
at each point except at surface points discontinuities where the surface normal cannot
be calculated. Precisely, at the points in which the first order surface derivative are
undefined [Johnson 98].

Vranic et al. [Vranic 01a] proposed a method, built around 3D objects spatial properties,
for describing 3D shapes. The idea is that, similar objects are represented by close points
in the feature vector space. The descriptor is obtained as the coefficient absolute values
of 3D discrete Fourier Transform, computed for coarse voxelization of a 3D model.

This approach is evaluated according to the discriminative power criterion in the
context of 3D-model retrieval task, where its performances are compared to those
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of three state-of-the-art methods. The experimental results showed the approach
outperforms the others for rotation only. The authors claimed that the descriptor is also
invariant to translation, scale, reflection, and is robust to level-of-detail. However, no
evaluations are provided.

The 3D Shape Spectrum Descriptor (3D-SSD) [Zaharia 01] is an approach conceived for
MPEG-7 Committee Draft (CD), and leads to produce an intrinsic shape descriptor of
3D meshes. It is based on the distribution of the local geometric information, shape-
index, on the whole mesh.

The 3D-SSD is tested on MPEG6-7 3D model database of approximately 1300 meshes.
The evaluation results of the descriptor in objective retrieval using ground truth of 15
categories containing 228 meshes, gives a percentage of Bull-Eye score of 85%.

In the context of content-based 3D model retrieval, Chen et al. [Chen 03] suggested a
visual similarity-based 3D model retrieval approach (also called LightField descriptor
(LFD)) to measure the resemblance between 3D models by using visual similarity. The
principle of the proposed approach is that the similar models still appear like similar
under different viewpoints. This is illustrated in the example of Fig. 2.14.

The method is evaluated and compared to three competing approaches, and it showed
better scores, in terms of precision and recall criteria, of 42%, 94%, and 25%.

FIG. 2.14: An illustration of the idea of visual similarity-based 3D model descriptor. For
different view angles, the two models of the first and second rows, remain look similar even
though the angle of view changes. (Image taken from [Chen 03])

An approach invariant to rotation, based on spherical harmonics, has been proposed
by Kazhdan et al. [Kazhdan 03] for matching and alignment of 3D models. In fact,
the proposed descriptor is inspired by the approach of “Fourier descriptors for plane
closed curve” [Zahn 72]. In other words, it is a generalization of the latter to spherical
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functions. Fig. 2.15 illustrates the different steps in computing a rotation invariant
descriptor of a spherical function.

This method is evaluated for classifying 3D models within a database of 1890 “house-
hold” objects. The performance comparison to other approaches, showed the proposed
descriptor outperforming other methods while obtaining high matching performances,
i.e., precision and recall scores. Besides, the descriptor has a reduced dimensionality
which makes it more efficient.

An interesting and effective approach has been proposed in [Frome 04]. It is 3D ex-
tension of 2D Shape-Context [Belongie 02] approach described in Section 2.2. The 3D
Shape-Context, represented by a 3D histogram, which encodes the spatial distribution
of points with respect to a reference point. It summarizes a global descriptors in rich
3D histograms. Thus, it is quite robust against outliers and shape defects.

In addition to the above-mentioned approach [Vranic 01a], Vranic [Vranic 05] suggested
another 3D-shape descriptor called DESIRE. It is a composite of DEpth buffer images,
SIlhouettes, and Ray-Extents of a polygonal mesh. Mathematically speaking, the
composite feature descriptor is a concatenation of three feature descriptor components,

C=
(
D | S | R

)
(2.11)

To achieve an affine-transformation invariance descriptor, the triangle mesh models
are transformed into canonical coordinate frames. This is obtained throughout: (1)
shifting the center of gravity to the origin, (2) applying a rotation by using Continuous
Principal Component Analysis (CPCA), (3) distance normalization (or scaling) to
obtain the average distance (of vertices) to the origin equal to 1, and finally, (4) flip
the vertices by using the moment test.

The proposed method is evaluated and compared to the aforementioned LFD ap-
proach [Chen 03], which is stated by the author as the best state-of-the-art descriptor.
The experimental evaluations are performed on the BSP [Shilane 04] models of 1814
meshes belonging into 161 categories.

The results showed that the composite descriptor performs better than LFD in terms of
retrieval effectiveness and computational time as well.

Mian et al. [Mian 06] proposed a novel approach for feature matching and automatic
pairwise registration of range images. It is based on a new tensor representation which
exploits third order tensors to represent semi-local 3D surface patches of range images.
The authors claimed that the method is accurate and efficient. They also stated that, in
comparison to 3D Spin-Images, it is more discriminative and performs better at low
resolutions of range images.

Inspired by the standard SIFT approach for 2D image, the 3D-SIFT is a technique intro-
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FIG. 2.15: Computation of a rotation invariant descriptor of a spherical function. This is
three-step process: (1) the function is composed in its harmonics, (2) these harmonics are then
summed for each frequency, and finally the norm of each frequency is computed. (Figure
adapted from [Kazhdan 03])
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duced by Scovanner et al. [Scovanner 07] in the context of video action recognition and
3D imagery. It uses Bag-of-Words paradigm to describe spatio-temporal relationships
between video sequences.

The technique have been evaluated on the data set of Blank et al. [Blank 05], and
dedicated for classifying actions within videos. The reported results showed the
proposed descriptor performs relatively better than other state-of-the-art methods.

Another approach constructed around geometric scale-space analysis of 3D models,
has been proposed in [Novatnack 08]. It consists of analyzing the scale-variability of
range images and detecting the 3D features of scale-dependent. The resulting local
3D shape descriptors encode the local shape information within the inherent support
region of each feature. The authors demonstrated that the proposed descriptors can be
used in an efficient hierarchical registration algorithm for aligning range images with
the same global scale.

A compact multiview descriptor is introduced by Daras and Axenopoulos [Daras 09] for
3D object retrieval. The method consists in generating a set of 2D images (multiviews)
from a 3D object, and then a collection of 2D rotation-invariant descriptor is computed
for each image. The authors asserted that the approach outperforms the other similar
view-based descriptors.

Unique Shape Context (USC) is a descriptor proposed by Tombari et al. [Tombari 10] to
improve the accuracy of 3D feature matching. The performance of USC is compared to
that of the original 3D Shape Context, and showed this latter to be clearly outperformed
by USC.

Recently, Tombari et al. [Tombari 11] presented also a combined texture shape descrip-
tor for improving 3D feature matching. The suggested descriptor, named CSHOT,
is a mixed histogram of normal orientations and texture-based information. This is
illustrated in Fig. 2.16.

The CSHOT is evaluated for 3D object recognition in the presence of clutter and occlu-
sions. The obtained performances are compared to those of SHOST [Tombari 10](i.e.,
the original version of CSHOT) and MeshHoG [Zaharescu 09]. The results showed
CHOST to be more accurate than SHOST and improves the efficiency of MeshHoG.

The CORS [Van Nguyen 11] – acronym for Concentric Ringing Signature – is a descrip-
tor developed for 3D objects. The descriptor is computed based on the local geometric
properties, which are preserved under continuous deformations of objects, i.e., local
topologies. The approach is illustrated in Fig. 2.17.

It is a three-steps method. First, a spherical support region is selected around a reference
point p. Then, the local neighborhood of p is obtained as a plane, in which the normal
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FIG. 2.16: A combined texture-shape descriptor is obtained by concatenating the shape-based
and texture-based histograms (or signatures). (Image taken from [Tombari 11])

direction at the reference is adopted to be z−axis. Finally, the reference orientation
x−axis is selected and the distance from the surface to the patches are projected.

The experimental evaluations are performed on TOSCA and Mian data sets, based on
the percentages of correct matches and recognition rates. Compared to 3D Spin Images
and points signatures [Chua 97] approaches, CORS produces better results for both
matching and 3D object retrieval. For instance, it increases the percentage of correct
matches compared to the other methods, from 39% to 88%.

Nowadays, Kokkinos et al. [Kokkinos 12] introduce "Intrinsic Shape Context" (ISC)
descriptor for deformable shapes. ISC is a meta descriptor usable with any shape
property (photometric or geometric).

For 3D shape retrieval, the evaluation conducted by Tang and Godil [Tang 12] to
compare a set of local shape descriptors inside the bag-of-words algorithm, suggests
mean curvature, shape index, and curvature index, as the best descriptors.

Even though the above-mentioned techniques almost showed to work well under nor-
mal situations, their performances are rarely tested inside complicated environments
like those described early in this section.
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FIG. 2.17: Computation of CORS descriptor: First, throughout selecting a spherical support
region, then fitting a plane to local neighborhood, and finally, selecting a reference orien-
tation for x-axis before projecting the distances from the surface to patches. (Image taken
from [Van Nguyen 11])
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2.3.1 Recap

As for 2D approaches, Tab. 2.2 summarizes the most relevant 3D feature descriptors
among the above-reviewed approaches:
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2.4 Comparison Studies of Image Feature Descriptors

In general, a competitive feature descriptor must be highly discriminative (i.e., low
probability of a mismatch), easy to be computed and invariant to geometric distortions
such as scaling, rotation and viewpoint changes. It must also resist against lighting
variations and noise. Based on these key properties, so far, few comparative studies
have been conducted and designed to evaluate the performances of existing feature
descriptors.

Randen and Husoy [Randen 99] proposed in their earlier work a comparison of a set of
different descriptors. These include Gabor, DCT, eigenfilters, wavelet transforms, linear
predictors, optimized finite impulse response filters, and Laws masks. The descriptors
have been tested as various techniques of texture classification. The results show that
no technique is optimal for all situations. The descriptor performance depends widely
on the data at hand and the descriptor dimensionality. Despite this, Gabor filters
recorded the worst results.

Carneiro and Jepson [Carneiro 02] have compared their phase-based local descriptor
to the differential invariant descriptor [Huttenlocher 87]. They used in the evaluations
three test images with ground truth transformations computed artificially as well as five
database images. The performance criterion, detection rate with respect to false positive
rate, was adopted to evaluate matching accuracies. The results display the differential
invariant descriptor performing better for scale changes, whereas, the phase-based
feature has best performance for illumination changes.

Ke and Sukhankar [Kuhn 05] established three type of experiments to compare their
PCA-SIFT to the standard SIFT. They started by evaluating the robustness of each
descriptor in synthetic images before using real images. The third experiment involved
testing the descriptors in an application related to image retrieval. They adopted
the performance criteria, recall and 1-precision. These are often used for generating
ROC-based3 curves. The obtained curves ranked PCA-SIFT mostly better than SIFT in
terms of matching accuracy and computational time for both controlled (synthetic) and
real-world images.

Both descriptors proposed by Lazebnik et al. [Lazebnik 05] were tested in the con-
text of classification. They adopted the nearest-neighbor-based matching and Earth
Mover’s distance (EMD) [Renninger 04]. The experiments were performed on Brodatz
database [Picard 93, Liu 96] and a collection of 100 photographs of textured surfaces
with different viewpoints. The performances of their descriptors were compared to dif-
ferential invariant [Koenderink 87, Schmid 97] and filter banks [Baumberg 00, Cula 01,
Schmid 01, Varma 02, Schaffalitzky 02] descriptors. The experiment results demon-

3ROC: Receiver Operating Characteristics
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strated that the intensity-domain spin-images and RIFT have the best performances in
terms of rotation-invariant and distinctiveness. They also placed the intensity-domain
spin-images over RIFT for the texture database, whereas this latter is little better in
Brodatz database.

In the seminal work of Mikolajczyk and Shmid [Mikolajczyk 05a], a number of 10
promising descriptors are investigated and compared in the context of image feature
matching. These are shape context, steerable filter, PCA-SIFT, differential invariants,
spin images, complex filters, moment invariants, and cross-correlation. In their evalua-
tions, the performance criteria, recall and precision are used to plot ROC-based curves.
The purpose was comparing the discriminative power of descriptors under different im-
age deformations such as rotation, scaling, out-of-plane rotation, image blur, JPEG com-
pression, and illumination change. Different feature matching approaches are tested.
These are: nearest-neighbor, ratio-based nearest-neighbor, and threshold-based match-
ing. Besides, different regions detectors are also used. These include Harris-Laplace
[Mikolajczyk 01], Hessian-Laplace [Mikolajczyk 04], Harris-Affine [Mikolajczyk 04],
and Hessian-Affine [Mikolajczyk 05c]. The performances ranked SIFT, PCA-SIFT and
GLOH the most discriminative descriptors. For both textured and structured images,
the higher scores are obtained with SIFT-based descriptors. As well, these perform bet-
ter for image rotations and scale changes. Moreover, they recorded the larger matching
accuracies for viewpoint changes. In the case of illumination changes and image blur,
GLOH, PCA-SIFT and SIFT outperform the rest.

Based on Mikolajczyk’s benchmark, Bay et al. [Bay 06] compared their SURF descrip-
tor to GLOH, SIFT and PCA-SIFT. The descriptors are computed on SURF support
regions. Experiments were performed for both feature matching and object recognition.
Furthermore, two matching strategies are used. These are: threshold-based (similarity-
threshold) and nearest-neighbor techniques. For object recognition, the performance
scores placed SURF in the first rank followed by GLOH, then SIFT, and PCA-SIFT last.
As well, SURF worked better in feature matching, which is much faster that remaining
descriptors.

Similar to Bay et al. (i.e., using Mikolajczyk’s benchmark) the authors of CCH [Tola 08]
pretended that the performances of CCH descriptor are better compared to those
provided by SIFT.

Moreels and Perona [Moreels 07] explored the performance of different well-known
detectors and descriptors for 3D-object matching. A number of different combinations
detector-descriptor are evaluated in a database of 100 objects. The objects are used
under 144 calibrated viewpoints and different lighting conditions. The experimental
results showed that:

• Hessian-Affine detector with SIFT descriptor provides the higher robustness
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against viewpoint change.

• Harris-Affine with SIFT performs best for lighting change.

• Hessian-Affine with shape context outperforms the alternatives for length changes
in the camera focal.

They also noticed that no detector-descriptor combinations deal well with viewpoint
changes of more than ≈ 25◦.

The spatio-temporal 3D-gradient-based [Kläser 08] descriptor is evaluated in the con-
text of classification task. The evaluations are performed on KT [Schuldt 04], Weiz-
mann [Blank 05], and Hollywood [Laptev 08] datasets. To compare the descriptor
performance, the following descriptors are evalauted as well: Local Jets [Schuldt 04],
Gradient+PCA [Wong 07], HoG [Laptev 08], and HOF [Laptev 08]. The obtained re-
sults stated that the spatio-temporal descriptor is the best at least on two out of three
datasets and has the higher matching accuracy in the third.

In order to validate DAISY, Tola et al. [Tola 08, Tola 09] have conducted an elaborate ex-
periment. They used test images (with their corresponding depth maps) of [Strecha 08].
They evaluated DAISY by comparing it to SIFT, SURF, NCC, and pixel-differencing
descriptors. For dense matching task, the results obtained on blurred and low resolu-
tion web-cam images were much better with DAISY than NCC. Despite SIFT provides
similar results, it is time-consuming. It is about 50 times slower than DAISY. The
evaluation also highlighted the effectiveness of DAISY for the wide baseline stereo.
However, for the short baseline stereo, the pixel differencing and NCC perform better.
It also appeared that DAISY generates less artifacts than the other descriptors.

Feature description based on image colors are proposed recently. Therefore only few
work to compare their performances are available. For object and scene recognition,
Van de Sandel et al. [Van De Sande 09] analyzed the distinctiveness and invariance
properties of a number of color-based descriptors.

These can be grouped in three categories. The first is related to histogram-based
color approaches. These are: RGB histogram, Opponent histogram, Hue histogram
[Van De Weijer 06] and RG histogram. The second category collects moment-and-
moment-invariant-based color methods. The third is built around color-SIFT-based
descriptors. It contains SIFT, HSV-SIFT [Bosch 06], HueSIFT [Van De Weijer 06], Oppo-
nentSIFT, W-SIFT, rgSIFT, and Transformed color SIFT.

The latter descriptors are computed for support regions obtained with Harris-Laplace
detector [Mikolajczyk 01]. Besides, object appearance models are learned with the
approach of Zhang et al. [Zhang 07]. The evaluation are performed on both images
and videos, which include PASCAL Visual Object Classes Challenge [Everingham 07]
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and NIST TRECVID 2005 [Smeaton 06, Snoek 06] datasets respectively.

In conclusion, the authors stated that object and scene recognition depends on the
invariance to illumination as well as light-color. This has been criticized by Burghtouts
and Geusebroek [Burghouts 09], pointing out that "no insight is gained in the effec-
tiveness of various photometric invariants in discounting imaging effects ". They also
pretend no correlation between the theoretical and the experiments.

Burghtouts and Geusebroek [Burghouts 09] proposed recent and promising frame-
work. It aimed to compare color image descriptors using 3D-objects from ALOI dataset
[Geusebroek 05]. They include in addition to their color-SIFT , CSIFT [Abdel-Hakim 06],
and that proposed by Bosh et al. [Bosch 06]. These are evaluated similar to Mikolajczyk
and Shmid [Mikolajczyk 05a], in which the distinctiveness is characterized by the preci-
sion and recall criteria. They used nearest-neighbor matching strategy and Harris-Affine
[Mikolajczyk 04] to obtain support regions. The setup was also designed to evaluate
the descriptors according to information-content properties. The results illustrated
color-SIFT to be the most distinctive descriptors. They also claimed that it is robust to
illumination direction, viewpoint changes, and variations of the illumination color.

More recently, an interesting comparative study is proposed by [Maji 09]. It com-
pares performances of different descriptors in the context of object recognition. The
comparison covers a set of methods, which are widely used in describing image
feature. This contains SIFT, Shape-Context [Belongie 02], Spin-Image [Lazebnik 05],
Image-Moment [Van Gool 96], Jet descriptors [Koenderink 87, Florack 91, Freeman 91,
Florack 94], GLOH [Mikolajczyk 05a], and Geometric-Blur [Fei-Fei 06].

The methods are evaluated on the popular dataset of Caltech 101 [Fei-Fei 06]. Similar
to above, the authors adopted the nearest-neighbor approach to match descriptors.
Besides, the performance evaluation uses the recall and 1-precision criteria to measure
the distinctiveness of descriptors.

The obtained ROC-based curves showed SIFT, Geometric-Blur, and Shape-Context
descriptors coming first in most reported cases. On the other hand, GLOH works
poorly in spite of its high performance on Mikolajczyk’s dataset [Mikolajczyk 05a] .
It is also illustrated that the performance of SIFT is highly positively correlated with
Shape-Context but it is highly negatively correlated with Geometric-Blur.
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3.1 Introduction

Our feature description and matching strategy is constructed around the four steps,
early outlined in the introduction (Chapter 1). These include: (1) local feature de-
scription, (2) visual vocabulary construction, (3) context definition, and (4) feature
matching.

It is worth mentioning that here we are focusing only on a subset of image data (i.e.,
pixels or 3D points). This means we will not exploit the whole image data, but only
a subset of them which has particular meaning. This subset, often called features, are
needed to be previously selected (detected or sampled) on each image in order to be
used as support elements on which the descriptors are computed during the first step.

Several techniques are available for detecting (or sampling) image features, however,
the well-suited are those which are robust against noise and repeatable under different
image deformations.

For instance, a number of detection methods in 2D domain, are evaluated and com-
pared for different geometric deformations and imaging conditions by Mikolajczyk
et al. [Mikolajczyk 05c]. These include: harris-affine and hessian-affine [Mikolajczyk 04],
maximally stable extremal eegions (MSER) [Matas 04], an edge-based region detector
(IBR) [Tuytelaars 99], a detector based on intensity extrema (EBR) [Tuytelaars 04], and
salient regions [Kadir 04]. The authors concluded by claiming that no detector performs
better than the others for all image types as well as for all image deformations.

Besides, other methods like SIFT [Lowe 99], SURF [Bay 06], and Harris [Harris 88a] are
available when much more emphasis is up on effectiveness (in terms of computational
time) than on performances.

Regarding 3D domain, a number of well-known methods for detecting 3D key points
have been, recently, evaluated by Tombari et al. [Tombari 12] for 3D object detectors.

Two different categories of methods are evaluated, fixed-scale and scale-invariant
detectors.

Fixed-scale detectors include those of local surface patches (LSP) [Johnson 99], intrinsic
shape signatures (ISS) [Zhong 09], and keypoint quality (KPQ) [Mian 10].

Scale-invariant detectors contain MeshDoG [Zaharescu 09], laplace-beltrami scale-space
(LBSS) [Unnikrishnan 08], and keypoint quality scale invariant (KPQ-SI) [Mian 10].

These detectors are evaluated and compared with respect to the performance, in terms
of robustness, under noise, presence of clutter, occlusions, and viewpoint changes. The
experimental results showed KPQ-SI, MeshDoG, and ISS to be more repeatable while
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the favorite detector in terms of effectiveness is ISS.

In addition to the latter, other 3D keypoint detectors exist, and that suggested by
Castellani et al. [Castellani 08], or more recently introduced in [Sun 09, Knopp 10], are
examples.

Note that, we will adopt in our evaluation those of Mikolajczyk et al. [Mikolajczyk 05c]
for the 2D-domain problem while that of [Castellani 08] for the 3D-domain problem.
More details on these detectors are given later in Chapter 5 and Chapter 6, respectively.

3.2 Local Feature Description

Local descriptors aim at capturing local properties (e.g., pixel intensity, geometric
shapes and surfaces) of an image in the neighborhood of a given feature point.

In general, distinctiveness, robustness against noise, and invariance against geometric
transformations are sought characteristics to obtain robust and high precision matching.

In the following, we first describe the list of local descriptors we adopt for 2D domain
and then that for 3D domain. These are indicative and not exhaustive lists, opened to
other local descriptors and measures.

3.2.1 2D-Domain

Three variant of SSC-based descriptor are tested. These are related to the local descrip-
tors of:

• SIFT [Lowe 04]. The most popular descriptor showed to be very successful in
many applications. It is a scale invariant descriptor based on the distribution of
gradient magnitudes.

• Spin Image (SPIN) [Lazebnik 05]. The proposed intensity-domain spin images (ab-
breviated here as Spin-Image) descriptor is inspired by the standard spin images
[Johnson 97a], in which the traditional coordinates are replaced by the spatial
point position and brightness. The resulting descriptor is 2D histogram, which
encodes the distribution of image intensities around a fixed point. SPIN has a
high degree of invariance for representing affine normalized patches.

• Cross-Correlation (CC) [Lewis 95]. It is a basic descriptor represented by a vector
of image pixels. The unnormalized CC is usually normalized using pre-computed
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tables containing the integral of the image and its square over the search window.
This descriptor is well suited for special effects feature tracking.

3.2.2 3D-Domain

Starting from a set of oriented points (i.e., point with normal), we focus the following
geometric measures to compute the descriptors for each feature point:

• Shape Index (si) [Petitjean 02]. The Shape Index is defined as:

si=−
2
π

arctan
(
k1 +k2

k1 −k2

)
, k1 > k2, (3.1)

where k1,k2 are the principal curvatures of a generic vertex. The Shape Index
varies in [−1,1] and provides a local categorization of the shape into primitive
forms such as spherical cap and cup, rut, ridge, trough, or saddle as illustrated in
Fig. 3.1.

• Beta Value (bv). The beta value of vertex p is represented by the projection of the
nearby vertex v to the normal np at p. In practice it is the distance between the
surface point v and the plane identified by np.

Finally, those two measurements are collected and accumulated separately onto con-
centric shells, centered on the feature point. This gives three-dimensional histograms
Lsi(i, j) and Lbv(i, j)1, where i ∈ [1, ..,N], j ∈ [1, ..,M] are the indices which identify the
quantized geometric measures and the distance from the feature point, respectively.

3.3 Visual Vocabulary Construction

The proposed approach for learning point context is inspired from the BoW framework
for textual document classification and retrieval. To this aim, a text is represented as an
unordered collection of words, disregarding grammar and even word order.

The extension of BoW to visual data requires one to build a visual vocabulary (or visual
dictionary), i.e., a set of the visual analog of words. As for [Csurka 04], the visual words
are obtained by clustering local point descriptors (i.e., the visual words are the cluster
centroids).

1In practice Lbv(i, j) is the Spin Image [Johnson 99].
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FIG. 3.1: Relationship between the shape index values and surface topology. The range of
shape index values, i.e., [-1, 1], can be split into sub-ranges, to provide a number of primitive
forms (classes) for describing the surface local shape. For instance, in this illustration, the shape
index range is divided into 8 sub-fields to obtain 9 primitive forms to describe the shape of the
local surfaces.
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In practice, the clustering defines a vector quantization of the whole point descriptor
space, composed of all the feature points extracted from all the views (i.e., the training
set). In order to obtain the clustering, the k-means algorithm is employed [Duda 01].
The number of visual words is defined by fixing the parameter K.

In this fashion, each feature point can be easily classified by assigning to it the visual
word associated to the closest cluster centroid. Note that in our case, as in [Csurka 04],
the point classification is carried out by an unsupervised learning approach [Duda 01],
but that more sophisticated classification techniques could be used.

Figure 3.2 shows the selected features, the local descriptor of each feature point detected
on each image, and the feature classification on a chessboard example. Similar feature
are assigned to the same visual word.

(a) (b) (c)

FIG. 3.2: An illustration of visual vocabulary construction: selected features in yellow (a), the
local descriptor (in green) of each feature point (b), and the feature classification, i.e., words
with same color belong to the same class (c). Note that this example is based on features and
descriptors selected and computed using SIFT.
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3.4 Context Definition and Global Feature Description

Given one feature point, several sub-regions are defined by log-concentric shells, as
for the Shape Context2 [Belongie 02]. Therefore, a BoW representation is defined for
each sub-region by counting the number of points assigned to each word. Finally, the
set of BoWs composes the context definition (or SSC component). Figure 3.3 shows an
example of this step.

(a) (b)

(c)

FIG. 3.3: Context definition. For clarity, we suppose that the chess pieces replace the visual
words resulting from clustering algorithm. There are five visual words: black-pawn, bishop, rook,
knight, and white-pawn. The context definition for the feature point p, is computed as follows:
(a) The surrounding space of p is partitioned into log-radial concentric shells. (b) For each
shell, the repeated occurrences of each word (each chess piece) are accumulated to give one
1-dimensional histogram per shell. (c) The obtained histograms are concatenated, providing
thus, the context definition (or SSC component) of the descriptor computed for the feature
located at the point, p.

Finally, our global feature descriptor is defined by a vector,

G= [L,SSC], (3.2)

concatening the contribution of both, local descriptor and SSC component.

2Here the space is not split in sectors as in [Belongie 02, Frome 04] due to the instability of defining a
full local reference system.
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Another variant of our global feature descriptor can be built, for example, around the
contribution of both shape-index and spin-image measures. Thus we obtain, G, as a
vector concatenating four components:

G= [Lsi,Lbv,SSCsi,SSCbv] (3.3)

3.5 Feature Matching

Matching two features is computed by comparing their respective local descriptors and
their SSC components as well. For two features p1 and p2 , the global similarity matrix,
C, is computed as follows:

C(p1,p2) =wCL(p1,p2)+(1−w)CSSC(p1,p2), (3.4)

where the coefficientw (ranged in 0−1 and fixed to 0.5 in our experiments) is introduced
to properly balance the contribution weights between the local descriptor and SSC
component.

Besides, CL and CSSC are the similarity matrices computed by comparing the local
descriptors and SSC components, L and SSC, respectively.

Note that in the 2D domain, we adopt a simple euclidean distance metric to compute
CL and CSSC. However for 3D case, we use a standard metric of histograms comparison,
i.e., χ2 distribution, in which:

CL(p1,p2) =

N∑
i=1

M∑
j=1

(HLp1
(i, j)−HLp2

(i, j))2

HLp1
(i, j)+HLp2

(i, j)
, (3.5)

CSSC(p1,p2) =

R∑
u=1

K∑
v=1

g(u)
(HSSCp1

(u,v)−HSSCp2
(u,v))2

HSSCp1
(u,v)+HSSCp2

(u,v)
. (3.6)

The histograms HLp1
and HSSCp2

refer to the local descriptor L and SSC component of p1

and p2, respectively. L and SSC are of sizes of N×M and R×K, respectively.

Note that, the weight function, g(·), has been introduced. It is related to the sub-regions
(concentric shells) identified by u. The idea is to increase the influence of close regions
and vice-versa. This approach is especially useful in the context of partial view (3D
case) matching since furthest points are likely to be occluded. More details on g(·) are
given in Chapter 6.
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4.1 Introduction

As mentioned above, the proposed approach is built around combing both context and
semantic information with local information. The context information is constructed
around a semantic vocabulary generated for describing relationships existing between
different images related to or dealing with each other. These can be, as example, images
obtained from the same scene as well as range images of a same 3D full model.

The underlying idea of the semantic information is pretty straightforward. Thus, for
better interaction between people of different native languages, it is necessary first
to learn a common language vocabulary, like English for example. This resembles,
learning the most common features, which are characterized by repetition within
different images. We denominate these special features, semantic visual features be-
cause they express the connection existing between images. These are inspired by
[Torralba 07, Matthews 02, Ullman 02, Cheng 98, Fujita 92], and also in reference to the
features which are visible (seen or able to be seen) on every image.

The rationale for learning these types of relationships is that multiple images with
large overlap areas will supposedly reveal an extra identical regions. We abstract
the most representative set of these identical regions by a bunch of special features.
This bunch constitutes the semantic features (semantic vocabulary) generated using
vocabularies built around clustering algorithms like k-means approach [MacQueen 67,
Theodoridis 06, Bradley 97].

Beside their characteristic of repeatability on different images, clusterization usually
has an effect to reduce number of vocabulary words providing only the representative
words and discarding less significant features. This might increase robustness against
noises.

For example, the percentage of outliers can be easily reduced when the matched
features are previously collected based on prior information that almost of them belong
to overlap regions, which are visible on both images.

Following are our arguments that explain the advantages in adopting the SSC concept.
Many of them are related to common problems in both the 2D and 3D domains, whereas
certain are domain-specific problems (or applications).

4.2 Expected Performance

A reliable feature descriptor has to be discriminative and invariant. The discriminative
power of a descriptor is its ability to distinguish between different features inside an



Chapter 4. Expected Performance 51

image. The invariance of a descriptor is its capacity for maintaining this discriminative
power when images are subjected to different geometric transformations and imaging
conditions.

Unfortunately, no single descriptor can be optimal in both, discriminative power and
invariance. For instance, a descriptor naively constructed as a small square region
around an image point is highly discriminative but not invariant. This is because
of image transformations like rotation that point descriptors have fixed orientations,
though image is rotated —in thinking about pixel to-pixel comparison of descriptors
using standard Euclidean distance.

On the other side, imposing hard constraints for obtaining a full invariant descriptor
can lead to a degradation of the discriminative power. In fact, a compromise or trade-off
between discriminative power and invariance is often well-suited. This usually relies
on the particular task , data set, and prior knowledge at hand. Such as object tracking,
inside a homogeneous scene, where image transformation is approximately an affine
only.

In general when prior information, like these latter, on the task at hand are available, by
combining local and context component, it will be easy for recovering the advantages
of one component in the other. For example, considered to have best discriminative
power in homogeneous environment, the context descriptor can compensate for lacks
in distinctiveness of local descriptors.

Besides, in many applications, images can be subject to major transformations, strict
imaging conditions and hard viewing constraints. In particular, large scale changes,
geometrical distortions and occlusions are naturally occurring. As such, to fill in the
gaps when adopting a global descriptor, we need a generic complementary adaptation.
For this and since in general the local descriptor performs best in presence of distortions,
occlusions and for large scale changes. We think retrieving its performances into the
global component, and thus we augment distinctiveness power and the invariance
(robustness).

In addition, for tasks without prior knowledge, the estimation of the trade-off between
distinctiveness and invariance is always difficult to be determined. In such a case, the
most suitable solution is to have a configurable descriptor in which a set of tunable
parameters is available to control the invariance level in order to achieve a balance
between the desirable discriminative power and invariance. Thus, we could generate a
suitable descriptor by varying the parameters. Allowing us to cover the full extent of
trade-off from end to end and hence we could select the single descriptor appropriate
for the task at hand and corresponding to the optimal trade-off.

We can also place our descriptor somewhere within this scope of approaches according
to what we believe as the ideal solution to have tunable meta-parameters in rein-
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forcement estimating of the distinctiveness-invariance trade-off [Varma 07] trough
controlling the invariance levels. This can be done, as example, through changing the
number of visual words, i.e., the number of clusters.

In the following, we give some details on the expected performance of the semantic
shape context approach:

• Similar motifs and local ambiguities. The context component, SSC, helps to reduce
ambiguities occurring locally between similar regions. This has an effect to in-
crease the discriminative power of local descriptors in scenes containing multiple
similar regions in particular, as illustrated in Fig. 4.1.

(a) (b) (c)

FIG. 4.1: A typical case to demonstrate that multiple similar motifs inside an image, can result
in highly ambiguous local descriptors. Though features selected inside both red boxes of (b)
are spatially different, it seems by comparing (a) and (c) they have similar local presentations
with SIFT descriptors. This illustration uses features obtained with SIFT detector, whereas in
our experiments we adopt different detectors [Mikolajczyk 04], which will be presented later.

• Dealing with intrinsic and extrinsic errors. There are two major types of errors that
influence the local descriptors computation: intrinsic and extrinsic errors. The
intrinsic errors are related to the descriptor algorithm itself whereas the extrinsic
are caused by the imprecision in detectors and errors arose from common image
defects. These errors are often resulting from imperfection of image sensors and
uncontrollable imaging conditions.

Once visual words are used, these errors have less impact on local descriptor
performance because the clustering-based strategy for generating the visual
vocabulary helps to recover resemblance between deficient descriptors. Thus,
different inaccurate descriptors computed for the same feature on different images
is represented with the same visual word within all images.

In more detail, for the intrinsic errors, though they are extracted identically
on different images (i.e., similar features), it happened that some of them have
slight changes in their corresponding local descriptors. In particular cases, this
can yield serious problems, it might increase the probability of mismatching
between features, especially when errors related to the descriptor (defects related
to computation stability, invariance property, etc) are accumulated.
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The extrinsic errors often result from imperfection of image sensors and uncon-
trollable imaging conditions. For instance, some support regions can be extracted
at same locations in different images, whereas they are still not covariant because
of their scales and orientations which vary independently in these images.

In addition, these problems can be caused by the software and hardware materials
used in the pre-preprocessing steps.

When semantic information is used, these errors have less impact on descriptor
performance. This is because, the clustering-based strategy for generating the
semantic vocabulary helps to recover resemblance between deficient descriptors.
Thus, different inaccurate descriptors computed for the same feature on different
images is represented with the same visual semantic feature within all images.

These problems seem to be easily overcome since clustering ignore slight dif-
ferences that occur between same features. Thus, two identical features on two
different images can be represented with a same feature even though their corre-
sponding local descriptors are different.

• Handling of complicated non-affine distortions. Combing local descriptor and SSC
component seems to be quite appealing for particular scenes where images
present complicated non-affine distortions and non-rigid movements. These
often caused by non-stationarity of objects inside images. That is to say, objects
move independently during image capturing or deformation.

For instance, the giraffe and leaves objects shown in Fig. 5.1i and Fig. 5.2f page 60,
can be subjected to unpredictable motions while the scenes are under different
viewpoints, e.g., change of camera viewing angle. Hence, it becomes difficult
for matching features within images obtained from these scenes assuming affine
warps (or even rigid transformations). By allowing non-affine image transfor-
mations, the local descriptors may fail to address the matching and thus the
registration problem.

• Invariant to translation and rotation. It is intuitive to consider the invariance of the
SSC component to translation, since all histograms are built relative to points on
the image.

The SSC component, such as it is, is inherently rotation invariant because the ac-
cumulated occurrences of each visual word inside each concentric shell are nearly
unchanged under rotation. The resulting histograms are notably insensitive to
arbitrary rotations applied to images.

Furthermore, the rotational invariance is reinforced with the rotation-invariant
local descriptor, like SIFT for example. This is because, both components are
contributed. In contrast with the proposed approach, all the state-of-the-art
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approaches, like Shape Context [?] for example, requires previously determining
an accurate relative orientation in order to have rotational invariance. This
usually involves additional computations yielding to decreasing in the descriptor
accuracy and an excess in the complexity time.

• Occlusion handling. Occluded points for 3D models can yield serious problems for
many feature matching related tasks. These points usually visible on an image
but not on others, can cause a decrease in the number of correct matches, i.e., even
though one point is detected on the first image, its potential correspondence on
the other image is still hidden. Since the SSC component is constructed around
points mostly visible on different images, it can be solution to deal with occlusions
appearing in scenes of large occluded parts, like 3D partial views.

• Imperfections and discontinuities of surface. The problems when adopting a local
approach for describing 3D model features are caused by the errors related to
surface imperfections. For instance, the presence of multiple discontinuities, or
holes, on surface is typical and common defects for many scanned 3D models.
These defects are, in general, due to noise and systematic errors arising during
creating range surface.

• Object shape similarities. Many machine vision applications depend heavily on ob-
ject recognition and classification. For objects like those of Fig. 4.2a and Fig. 4.2b,
the similarities across embryonic (e.g., the first row in Fig. 4.2a) and typewritten
(handwritten) digits are evident. Thus, a number of recognition and classifica-
tion related tasks might be performed unsuccessfully once shape information
are adopted (global, or context, approaches). However, when it is added to the
shape information, local information might improve the recognition and classifi-
cation accuracies. This is because, for point-to-point comparison, these objects
are different while they are quite similar in terms of shape-to-shape comparison.

The proposed method not only compensates for errors arose from one category
of approaches into other (i.e., from local into global and vice versa), it is also
designed to make semantic-context component working in collaboration with the
local descriptor. That is, these semantic-context and local components, contribute
optimally in improving feature description. In the sense that the context informa-
tion is built around semantic features, which are in turn generated based on local
descriptor component. This allows the contribution of the context component
more efficient since a same set of semantic features are used for describing all
images. It helps, hence, to abstract the features mostly visible on all images.
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(a) (b)

FIG. 4.2: Example of objects with similar shapes. (a) Haeckel’s drawing [Richardson 02], a copy
of The Romanes 1892. This figure shows vertebrate embryos at different stages of development
for (from left to right) Fish, Salamander, Tortoise, Chick, Hog, Calf, Rabbit and Human. Taken out of
context (only for instructive purpose), the embryonic similarity is evident across the images
of the first row of (a). Thus, many machine vision tasks depend heavily on object recognition
and classification, can be performed unsuccessfully. (b) A set of different typewritten and
handwritten digits. In terms of shape-to-shape comparison, there are many similarities between
digits, but for point-to-point comparison, these digits are quite different.
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5.1 Introduction

In this Chapter we focus on the 2D domain, for which the performance sought of a
2D feature descriptor is to be discriminative and invariant against different geometric
transformations and imaging conditions.

The SSC approach is tested in 2D domain by addressing a feature matching problem. In
this case, we consider 2D images selected from a well known dataset, used habitually
to evaluate and compare the performances of 2D image feature descriptors.

Besides, we also include another dataset intentionally created from images containing
multiple similar motifs and depicting complicated non-affine distortions, i.e., slight
non-affine transformations.

The performance of the descriptors is evaluated according to the discriminative power
and invariance criteria using a well-known standard benchmark.

This Chapter is organized as follows: In Section 5.2, we outline the evaluation scheme
while presenting data set, performance criteria, descriptors, and matching strategies.
In Section 5.3, we show the evaluation results. The conclusion is given in Section 5.4.

5.2 Experimental Setup

The performance of SSC-based descriptor is evaluated using the standard benchmark of
Mikolajczyk [Mikolajczyk 05a] available on-line 1 . This includes supports of programs
and dataset for evaluating and comparing descriptor performances in the context of
image feature matching.

5.2.1 Computation of SSC Component

To compute SSC components, we have coded a basic c/c++ implementation, which
is compiled on Intel(R)Core(TM)2 Duo CPU P8700 @2.53GHz machine model,
running on Linux x86-64 architecture.

1http://www.robots.ox.ac.uk/~vgg/research/affine/

http://www.robots.ox.ac.uk/~vgg/research/affine/
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5.2.2 Data Sets

The experiments are performed on two different data sets. The first we intentionally
selected from homogeneous environment of multiple similar regions and complicated
non-affine distortions, while the second is that of Mikolajczyk available on-line. 2

For the first set, i.e., of homogeneous environment and complicated non-affine distor-
tions, images are obtained from both the structured and textured scenes, which reflects
natural environments and real operating conditions of our SSC-based descriptor, ex-
pecting thus to provide better performance than other descriptors. Fig. 5.1 displays an
image example for each scene in this data set.

The scenes are selected from video sequences such that its corresponding images
(frames) are related by planar projective transformations, i.e., homography. This is one-
to-one mapping between two images, which describes the image motion between two
frames when (i) the camera motion is pure rotation, or (ii) the camera is viewing a
planar scene [Prince 02].

Each scene of this dataset contains a set of images depicting gradual increases in specific
geometric transformations. These include rotation, scale change, and viewpoint change.
The ground truth transformation that maps each image to its reference is computed
with a similar approach of [Mikolajczyk 05a].

Thus, we start by selecting manually a reduced number of point correspondences
between the reference and each image. Based on these correspondences, approximate
homographies are estimated, which are then used to align each image to its reference.

Next, in order to compute precise homographies, a small-baseline-based robust method
for computing accurate residual homographies is applied between the reference and
the aligned images. The accurate homographies which map images to their reference
are obtained as compositions of the approximate and residual homographies.

The second data set is the standard dataset of Mikolajczyk. This contains images which
are subjected to different geometric transformations and imaging conditions. In terms
of geometric transformations, it includes rotation, scaling, and viewpoint change. For
imaging conditions, there are, image blur, illumination change, and JPEG Compression.
More details on this data set are available on-line. 2 Fig. 5.2 shows image samples
from this data set.

2http://www.robots.ox.ac.uk/~vgg/data/data-aff.html

http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
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(a) chessboard (b) streets (c) field (d) univ

(e) town (f) ship (g) parking (h) blobs

(i) giraffe (j) grass (k) zeriba (l) caravan

FIG. 5.1: The data set we have created for evaluating the descriptors inside challenging envi-
ronments. This is intentionally generated from structured and textured scenes of homogeneous
environment and complicated non-affine distortions. It reflects geometric transformations
related to (a)(b)(d) structured image rotations, (c) textured image rotations, (f)(g)(h) struc-
tured image scaling, (e)(i)(j) textured image scaling, and (k)(l) viewpoint changes in textured
environments.
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(a) boat (b) bark (c) graffiti (d) wall

(e) bikes (f) trees (g) cars (h) ubc

FIG. 5.2: The standard dataset we have used in our experiments. This is the well-known
dataset of Mikolajczyk. It contains structured and textured images subjected to (a)(b) combined
rotation-scale, (c)(d) viewpoint changes, (e)(f) image blur, (g) illumination change, and (h) JPEG
compression.

5.2.3 Evaluation Criteria

The descriptors performances are evaluated according to both the discriminative power
and invariance criteria.

5.2.3.1 Discriminative power

It measures the ability of a descriptor to distinguish between different features in an
image. Similar to [Burghouts 09, Maji 09, Bay 08, Mikolajczyk 05a], we evaluate the
discriminative power through ROC-Based curves, which show recall as function of
1-precision. We use 1−precision instead of precision in order to be compatible with the
standard ROC graph [Fawcett 04].

The recall score corresponds to the ratio of the number of correct matches to the number
of correspondences. Whereas precision is the ratio of number of correct matches to the
total number of matches. In an equivalent manner, the 1−precision is the ratio of the
number of false matches to the total number of matches. The latter scores are computed
based on the following formulas:
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recall=
#correct_matches
#correspondences

, 1−precision=
#total_matches−#correct_matches

#total_matches
(5.1)

Here, #correct_matches is determined based on the following conditions:

• The Features are matched in the descriptor space. A pair of features in two
different images is qualified as correct match if the matching of their correspond-
ing descriptors is verified with the related matching strategy, e.g., in the case of
threshold-based matching, two features constitute a correct match if the distance
between their descriptors is below a threshold.

• The match identified as correct in the descriptor space must be also correct in the
correspondence space, i.e., belongs to the set of correspondences.

The #correspondences is calculated using the ground truth transformations (homo-
graphies) and region overlaps between image features. Briefly, a pair of features in
two different images are supposed to be in correspondence if their normalized region
overlap error, expressed as a percent fraction (%), is below a threshold (fixed to 50% in
our experiments). Explicit details can be found in [Mikolajczyk 05a, Mikolajczyk 05b].

The cut-off points of ROC curves are obtained by varying the value of #total_matches
in a fixed range. In turn, these points correspond to different thresholds of the matching
strategy at hand.

Since the ROC curve is considered to depict the relative trade-off between the recall
(profit) and 1-precision (cost) scores, an ideal discriminative descriptor has its curve
passing through the upper left corner, i.e., 1-precision=0 and recall=1. Therefore, the
closer the ROC curve is the upper left corner, the higher the overall discriminative
power of the descriptor. This also means, the larger the area under the ROC curve, the
higher the discriminative power of the descriptor.

There are particular points on ROC curve. The origin (1-precision=0, recall=0), with
such a descriptor, no correct matches have been correctly identified. This point repre-
sents a case when the descriptor never produced a correct match. It may occur if the
matching threshold is too low for the descriptor.

The upper right point (1-precision=1, recall=1) represents a case where all correct
matches are correctly identified (recall=1) while no false matches are correctly identified
(1-precision=1). In this case, the descriptor recognizes all correct matches but it has
high probability to incorrectly identify false matches as correct.
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The upper left point (1-precision=0, recall=1) represents the ideal point in which all
correct matches are correctly identified and all false matches as well. Therefore, we
should always trust the descriptor, since the probability to add false matches to the set
of possible correct matches becomes null.

In general, the left-hand side of an ROC graph is more interesting, since in many tasks
the matching is dominated by large number of false correspondences.

5.2.3.2 Invariance

It evaluates the ability of the descriptor performance (e.g., discriminative power) to
remain high and unchanged when an image is strongly altered by particular geometrical
transformations and imaging conditions. The invariance, or robustness, measures the
constancy of the descriptor performance under gradual increase in image degradation.

Unlike other approaches, we evaluate the change in both recall and precision scores.
This is more relevant than considering the invariance with respect to the recall score
only.

5.2.4 Descriptors

The performance of three variants of SSC-based descriptors, SIFT-Based-SSC, SPIN-
Based-SSC and CC-Based-SSC, are evaluated and compared to ten state-of-the-art
approaches described in Chapter 2.

These include the local descriptors of SIFT [Lowe 04], spin images (SPIN) [Lazebnik 05],
complex filters (CF) [Schaffalitzky 02], differential invariants (KOEN) [Koenderink 87],
steerable filters (JLA) [Freeman 91], moment invariant (MOM)[Van Gool 96], normal-
ized cross-correlation (CC) [Lewis 95], GLOH [Mikolajczyk 05a], and PCA-SIFT [Ke 04].
In addition, we incorporate the contextual approach of Shape Context (SC) [Belongie 02].

5.2.5 Matching Strategies

Image feature matching performance depends heavily on the matching approach. For
this reason, the descriptor performances are evaluated with different matching tech-
niques. These are nearest-neighbor, distance-ratio-based nearest-neighbor, and threshold-
based matching.
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5.2.5.1 Nearest-neighbor

The nearest-neighbor is mostly correct (i.e., with higher precisions), since it selects only
one match (i.e., the nearest neighbor) below a threshold while discarding all the rest.
This explains why their corresponding ROC curves are mostly nearby the left-side
region of ROC graph.

5.2.5.2 Distance-ratio-based nearest-neighbor

The distance-ratio-based nearest-neighbor is similar to the nearest-neighbor, unless
the threshold is directly proportional to the ratio between distances to the first and
second nearest-neighbors. For instance, feature fi on an image is matched correctly
(i.e., considered as a correct match) to its first nearest-neighbor fj on another image,
if only if the ratio, dist(fi,fj)/dist(fi,fk), is below certain threshold and by taking
into account that fk is the second nearest-neighbor of fi. Here dist is a metric (e.g.,
euclidean, mahalanobis, correlation, etc.) to measure the distance between two feature
descriptors.

In general, distance-ratio-based nearest-neighbor matching is less accurate than nearest-
neighbor especially for images of multiple similar regions, and thus, it is not will suited
on this type of images because of many false matches can be introduced.

5.2.5.3 Threshold-based matching

For threshold-based matching, two features constitute a correct match if the distance
between their descriptors is below a threshold. Therefore the feature can obtain lot
of matches and many of them can be false which leads to low precision scores. This
explains why its corresponding ROC curves are often extended over the precision
range. This approach is useful when we envisage more efficiency than performance,
particularly for dense matching, i.e., within large feature databases.

5.2.6 Feature Detectors

In order to evaluate the impact of the errors arise from a lack of invariance and accuracy
of region detectors (i.e., here features as obtained as regions and used as supports of
descriptors), the descriptors are computed on regions obtained with different detectors.
The detector errors are often related to the inaccuracy in size, spatial position, and
orientation angle of the region as well as the insufficient robustness (invariance) of the
detector under particular image transformations.
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The region detectors we select are those of Mikolajczyk [Mikolajczyk 01, Mikolajczyk 04,
Mikolajczyk 05b], mainly constructed around the standard Harris corners detector
[Harris 88b]. Following are some details about these detectors.

5.2.6.1 Harris-Laplace

It is a similarity invariant detector, i.e.,the invariance is against translation, image
rotation and scale change only. The algorithm is performed in two steps. First, for each
scale of a preselected range, a scaled-adapted Harris matrix is computed. Based on
these matrices, a list of interest point sets is extracted (similar to the standard Harris
approach). Thus, each item (or interest point) in the constructed list is defined by its
spatial-location and scale coordinates. Next, an exhaustive search in the scale space
is applied on the whole list. The purpose is to select the items of scale with local
maximums of the Laplacian-of-Gaussian.

5.2.6.2 Hessian-Laplace

It is similar to Harris-Laplace –similarity invariant detector– except the interest point
are extracted based on Hessian matrix instead of Harris matrix (i.e., covariance matrix).

5.2.6.3 Harris-Affine

It is an affine invariant detector, i.e., the invariance is with respect to translation, image
rotation, scale change, and image shearing. The algorithm is a two-steps process. The
first involves using Harris-Laplace detector to determine the spatial location and scale
of the regions. The second is a refinement step based on an affine adaptation algorithm.
The purpose is to improve the region shape in order to be robust against image affine
deformations.

5.2.6.4 Hessian-Affine

The approach is similar to Harris-Affine (i.e., invariant to affine transformation as well
as based on shape adaptation algorithm ), unless it uses Hessian-Laplace instead of
Harris-Laplace for computing the spatial location and scale of the regions.

Because of their blob-like shapes, the regions obtained by Hessian-Laplace and Hessian-
Affine approaches are more conservative of information. Furthermore, they are more
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accurate than those obtained with Harris-Laplace and Harris-Affine approaches since
the scale selection in Hessian-Laplace is more precise than in Harris-Laplace.

5.3 Results and Discussion

In this section, we compare the performance of variants of SSC-based descriptors to
those obtained with ten of state-of-the-art approaches listed in Section 5.2.4 and well
described in Chapter 2. As for SSC-based descriptors, we include SIFT-Based-SSC,
SPIN-Based-SSC, and CC-Based-SSC.

The comparisons are performed for data sets of 20 scenes presented in Section 5.2.2.
These are selected to reflect different image alterations, including geometric transforma-
tions and imaging conditions. The images composed our created data set, i.e., shown
in Fig. 5.1, are mainly obtained from homogeneous and complicated environments ,
expecting thus that the previous variants of SSC descriptors will perform much better
than the other descriptors.

To inspect how the performances of different descriptors are influenced by extrinsic
errors arise from lacks of accuracies of both the detector3 and matching strategy, the
descriptors are compared for different detectors and matching techniques. To this
end, we include Harris-Laplace, Hessian-Laplace, Harris-Affine, and Hessian-Affine
region detectors. More details on these detectors are given in Section 5.2.6. According
to matching approaches, we adopt nearest-neighbor, distance-ratio-based nearest-
neighbor, and threshold-based matching techniques. These are presented in Section
5.2.5.

Mostly, we will adopt the nearest-neighbor and threshold-based as the main matching
techniques. We select nearest-neighbor because it is well-suited for image feature
matching since it is usually correct with high precision scores. Whereas for large
number of features, it is difficult to use. Hence, it becomes adequate to apply threshold-
based matching.

The performances are evaluated based on both the discriminative power and invari-
ance criteria, previously described in Section 5.2.3. Briefly, the discriminative power
measures the descriptor distinctiveness. It is presented by ROC-based curve, which
plots recall as function of 1-precision scores. The invariance (i.e., robustness or stability)
evaluates the constancy of descriptor performance under gradual increase in image
alterations. The descriptor invariance is measured with respect to both the recall and
precision scores for different geometric transformations and imaging conditions. Here,
the invariance is also evaluated with respect to the precision and not only according

3That is to say, those related to features and here are obtained as support regions
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to the recall as seen in the literature. We believe this is more revealing than using the
recall only.

Since the number of correspondences (i.e., #correspondences as described in Section
5.2.3), which is used to find the number of correct matches, entirely relies on the amount
of overlap error and the ground truth transformations (homographies), we will evaluate
how well the region overlap errors and the descriptor performances are correlated.
For this purpose, we will measure the degradation in the recall and precision scores
according to gradual increases in the overlap error. This error is fixed to 50% in the
other evaluations.

It is worth noting that the left-side of the ROC graph, which corresponds to the range
of high precisions, is the most relevant region for comparing the discriminative power
of descriptors. Therefore, the focus upon this region will be more important.

In addition to all of the above, we present across Section 5.3.2, some evaluation results
showing the effect of some parameters on the performance of SSC-based descriptors.
Though the focus of this work is more on performance than on effectiveness, we also
include in Section 5.3.10, an overview over of the computation time reported with our
approach.

Figure representation: for the purposes of clarity, the following conventions will be
adopted for figures and curves:

• For each figure, solid lines of red color are used to plot the SSC descriptor curves.

• In each curve, the same marker symbol is used for both SSC descriptor and its
related local descriptor.

• The SSC descriptors are labeled with bold text in the bottom of each legend box.

5.3.1 Results Overview

Before going into details, we include in this section an overview of the results and most
relevant observations noted during our experiments.

First, we briefly present in Fig. 5.3 a preview of the evaluations results, which summa-
rizes the performance, in terms of recall percentages, of different evaluated descriptors
with respect to different image deformations. It is easy to observe how well SIFT-Based-
SSC outperforms the other descriptors on both the structured and textured scenes as
well as for all the types of image deformations.
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Overall, the experiments show at first sight, that the SSC descriptors perform best
within images taken from homogeneous scenes while maintaining higher discrim-
inative power and invariance. Besides, the performances of other descriptors are
disappointing with homogeneous scenes, and the most successful local and global
descriptor, like SIFT and Shape-Context respectively, are deficient in performance.

It seems that for certain textured scenes with large number of similar regions, the
local descriptors turn to be unsuitable, as illustrated in Fig. 5.17a and Fig. 5.17b. Even
though one would expect that for these scenes, we could achieve the best performance
with contextual approaches (e.g., shape-context), they turn out to be less successful
compared to our SSC technique.

This supports our claim that adding the semantic information, better discriminative
power and invariance could be obtained. Contrary to these scenes, the SSC approach
performs less in images containing a reduced number of similar motifs but still better
than other methods. Overall and according to the experimental setup, we retained the
following points:

Weighting factor. A heuristic evaluation showed that a value of the weighting factor,
w, between 0.5 and 0.6 gives good performances.

Data sets. With respect to the scene type, the SSC descriptors perform better in scenes
presenting a large number of similar regions. We figured out that, higher the number of
similar regions, the higher overall discriminative power. This can be checked through
observing the discriminative power of the descriptors for scenes with large similar
motifs (e.g., Fig. 5.1a and Fig. 5.1c) and those with less number of similar motifs (e.g.,
Fig. 5.1b). This is clarified by comparing the ROC curves of Figs. 5.6a and 5.14a to those
of Fig. 5.10a.

Image alterations. With respect to different image degradations, the approach has better
performance against geometric transformation than against imaging conditions.

For example, Fig. 5.3 illustrates a better increasing in discriminative power of SIFT
under rotation, scaling, and viewpoint change, when adding SSC information. This
is observed through comparing the gaps between the blue (SIFT-Based SSC) and red
(SIFT) markers of, rotation, scale, and viewpoint change to those of blur, illumination,
and JPEG compression.
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FIG. 5.3: Experimental results preview. This compares the descriptor performances for different
types of image deformations, in terms of recall percentages. The recall percentages are computed
for precision values varying between 80% and 95%.
For the results shown in (a), we have included the scenes of chessboard (image rotation) ,
boat (scale change), graffiti (viewpoint change), bikes (image blur), cars (illumination
change), and ubc (JPEG compression).
For those of (b), we have used the scenes of field (image rotation), giraffe (scale change),
zeriba (viewpoint change), trees (image blur), cars (illumination change), and ubc (JPEG
compression). Note that the both sub figures share the same legend.
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Detectors. For the different types of tested detectors (i.e., support regions), the best
performances in both the discriminative power and invariance are recorded with our
SSC approaches. The gap in the precision between our descriptors and the other is
more apparent for Hessian-based regions (i.e., Hessian-Laplace and Hessian-Affine) as
shown in Fig. 5.7a and Fig. 5.9a. This is due to the fact that Hessian-based detector is
more accurate than Harris-based detector.

Matching strategies. Regarding the matching approach, the performances of all the
descriptors are better with the nearest-neighbor than those for the distance-ratio-based
nearest neighbor and threshold-based matching techniques. This is observed, as exam-
ple, across comparing the curves of Fig. 5.7a to those of Fig. 5.6b and Fig. 5.7b.

Mainly this is caused by the fact that the nearest-neighbor is mostly correct. Which is
not the case for the two other matching methods, since it may occur that one feature
may have a number of different matches even though only one of them is correct. Thus,
there are more number of false matches.

For instance, with the distance-ratio-based nearest-neighbor the number of correct
matches is minimized in the sense that the matching threshold is set as function of the
first and second nearest neighbor (see Section 5.2.5).

Computational time. To find out how the computational time influences the perfor-
mance, especially, when varying the parameters values of the SSC component, we have
measured the computation time of SIFT-Based-SSC component for different numbers
of semantic words (clusters) and images.

The results showed that when setting the number of clusters, k = 25 as well as that
of images to 2, the average time (i.e., wall clock time) required to compute each SSC
component (i.e., per feature) is 1.967 ms, whereas we reported 4.801 ms with SIFT taken
alone.

This means SSC component is less time consuming. It is approximately 41% of SIFT
computation time. This is very motivating since the focus here, is more upon the
performance than efficiency. Therefore, the constraint of the computational complexity,
engendered by the additive computation time of SSC component, can be improved
when the emphasis upon it, will be more important.

In the following, we first present and discuss the results related to evaluate the perfor-
mance of our proposed SSC descriptor when some of its relevant parameters are varied.
Next, we illustrate the experimental results obtained on evaluating and comparing the
performances of the descriptors for different geometric transformations and imaging
conditions. Lastly, we briefly discuss the effectiveness of our proposed SSC descriptor
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while providing some of reported computation times.

5.3.2 Effect of Parameter Setting

Our feature description and matching approach has three adjustable parameters:

• the weighting factor, w, between local and context components.

• the number of visual vocabulary, k.

• the number of log-concentric shells, s, around each feature location.

In addition, two other parameters related to the radii of the inner and outer shells, are
set. The robustness of SSC components against scale changes depends on the values of
these parameters.

The heuristic evaluation illustrated in Fig. 5.4 suggests that the reasonable range of w
is 0.4−0.7. This is fixed to 0.5 in our experiments.

Though a low value of k is quite sufficient for homogeneous scenes (e.g., textured
images), a high value is probably required when dealing with structured scenes. In this
spirit, we set k= 25 in the all experiments.

A similar investigation to the above is conducted to determine the effect of varying
of the number of log-concentric shells, s, on the performance of SIFT-based-SSC. This
showed that a value around, s= 12 (the number of concentric shells used to compute
SSC components), is reasonably quite enough to ensure good performances.

To minimize the effect of the scale on the SSC robustness, we adopt an approach similar
to [Belongie 02]. The idea is setting the inner and outer radii to 1/8 and 2 respectively,
after normalizing (e.g., by the mean) of pairwise euclidean distances of all the image
feature points.

5.3.3 Image Rotation

In this experiment, we evaluate each descriptor performance under image rotation for
structured and textured scenes. For structured, we use the scenes of chessboard and
streets of Figs. 5.1a and 5.1b, respectively. These reflect images of large and medium
number of similar motifs. According to the textured scene, we use images of field,
shown in Fig. 5.1c.
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FIG. 5.4: Effect of weighting factor, w, on (a) discriminative power and (b) invariance. The
results are with respect to viewpoint changes using the textured scene of zeriba. The discrim-
inative power is evaluated according to a viewpoint angle of 50◦.

The scene chessboard contains 4 images presenting different rotation angles relative
to the reference frame shown in the left side of Fig. 5.5a. The rotation angle varies in
the range of 36◦−144◦. The scene streets is composed of 6 images with different
rotations from the reference image of the left side of Fig. 5.5c. The rotation angle
varies approximately between 10◦ and 40◦. The third scene, field, contains 6 images
subjected to affine transformations dominated by rotation. The rotation angles are
approximately between 5◦ and 25◦.

The descriptor performances are evaluated according the discriminative power and
invariance. For the discriminative power, the evaluation is performed with the three
scenes, and each descriptor is computed for the four region detectors and matched with
different matching techniques. We adopt the nearest-neighbor and threshold-based
matching strategies in almost all evaluations.

For the invariance, we use chessbord scene, and the descriptors are computed for
Harris-Affine and Hessian-Affine regions and then matched with the nearest-neighbor
and threshold-based matching techniques.

An example illustrating the resulting nearest-neighbor matching using a sample of
descriptors computed for different region detectors is shown in Fig. 5.5. The detected
regions are colored yellow, while their correspondences transformed from the reference
(i.e., image in the left of each sub figure) to the second (i.e., image in the right of each
sub figure) using the ground truth are in blue.

The correspondences computed based on ground truths and overlap errors are high-
lighted with blue lines, whereas matches identified as correct using descriptors are
highlighted with green lines. For instance, in Figs. 5.5a and 5.5b, we use PCA and
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(a) (b)

(c)

(d)

FIG. 5.5: An example of nearest-neighbor matching using a sample of descriptors computed
for different region detectors. The detected regions are in yellow while their correspondences
transformed from the reference (image in the left of each sub figure) to the second (image in the
right of each sub figure) using ground truth are in blue. The correspondences computed based
on ground truths and overlap errors are highlighted with blue lines whereas matches identified
as correct using descriptors and overlap errors (ground truths) are highlighted with green and
red lines, respectively.
For example, in (a) and (b), we use PCA and SPIN-based-SSC, both computed for regions
selected with Harris-Laplace detector. However, (c) and (d), are with SIFT-based-SSC computed
for Harris-Laplace and Harris-Affine regions respectively.
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SPIN-based-SSC approaches, both computed for regions selected with Harris-Laplace
detector.

However for Figs. 5.5c and 5.5d, we adopt SIFT-based-SSC computed on Harris-Laplace
and Harris-Affine regions, respectively.
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5.3.3.1 Discriminative power

In this experiment, the discriminative power of the descriptors is evaluated for chessboard,
streets, and field scenes. For each scene, the descriptors are computed on different
support regions and then matched with different matching approaches as well. The
obtained results are highlighted in the figures range from Fig. 5.8 to Fig. 5.17.

Overall, it seems SIFT-Based-SSC recorded the best scores over most experimental
settings. This means for different scenes, support regions, and matching algorithms.
We notice that the performances in discriminative power of SPIN and the basic CC
descriptors are considerably improved when adding semantic context information.
Thus, the resulting CC-based-SSC becomes more effective than competitive descriptors
like SIFT as we can see in Figs. 5.7a, 5.8a, and 5.9a.

We also observe that the best performance of SIFT-Based-SSC over all scenes is obtained
on the textured images of field, which contains a large number of similar motifs. This
is illustrated across Figs. 5.14a–5.17b

In detail, for the scene of chessboard, which is considered as structured scene con-
taining the larger number of similar regions, we observe that all SSC-based descriptors
outperform the other descriptors. Thus their ROC curves are mostly the closest to the
left side.

The gap in discriminative power between SSCs and the others is more apparent for
the descriptors computed on hessian-laplace and hessian-affine regions and
matched with the nearest-neighbor. This is because the Hessian-based detector is
more precise since they select more accurate regions than Harris-based detectors. In
addition, this is because of the nearest-neighbor, which is mostly correct.

This statement is reflected in Figs. 5.7a and 5.9a, in which the ROC curves of SSCs are
closer to the upper left side than others (i.e., the closer the ROC curve in the upper left
corner, the higher the overall discriminative power).

It is worth noting that SIFT-Based-SSC, SPIN-Based-SSC, and CC-Based-SSC are always
ranked in the top spots for all detectors and matching methods. In particular, the
CC-Based-SSC which is constructed around the basic cross-correlation approach shows
to be more competitive than SIFT and GLOH.

For the streets, which is regarded as a structured scene containing a moderate
number of similar regions, the performance of SSCs is less than those obtained with the
chessboard. However, SIFT-Based-SSC still outperforms all descriptors, even though
it recorded a noticeable decrease in discriminative power, as observed in Figs. 5.10 up
5.13.
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The descriptor ranking is no longer conserved except for SIFT-Based-SSC which still
in the top spot. Although they lost their best ranking in favor of SIFT, GLOH and
SC, the SPIN-Based-SSC and CC-Based-SSC still perform better than SPIN and CC. In
particular, CC which is highly improved when adding the SSC information.

Concerning the field scene, which is composed of highly textured images, SIFT-Based-
SSC descriptor exhibits higher discriminative powers. The gap in the discriminative
power between SIFT-Based-SSC and the other descriptors is too large especially inside
the ROC region of high precisions, i.e., 1-precision considerably small.

This range of precisions corresponds to the most revealing region in the ROC graph for
evaluating the discriminative power of a descriptor. We observe upon Figs. 5.14–5.17
that certain descriptors turn out to be completely obsolete for the high precision values,
while SSCs provide high recall scores.

Moreover, in general, the global (or context) approaches as Shape-Context (SC) have
been shown to perform always better than the local techniques for the textured scene
like field. However through inspecting Figs. 5.14a, 5.15a, 5.16a, and 5.17a, it appears
without any doubt that the SC is completly outperformed by the SSC descriptors.

Thus, we remark that for the high precision range while the local descriptors like SIFT
produces recall scores nearby zeros, the SIFT-based-SSC is providing an extremely high
score (≈ 0.35). This also means that certain local descriptors, like SIFT, fail completely
to find correspondences at high precisions, whereas SIFT-based-SSC find very high
number of correspondences at high precisions.

The Tab. 5.1 is given as an illustration for such case. This clearly demonstrates how
well the recall scores are enhanced when incorporating SSC information. For example,
when plugged into SIFT it shows to increase enormously the recalls. Thus, in Tab. 5.1a,
we read the scores of 0.05, 0.00, 0.00, and 0.01 for SIFT, while their correspondences
obtained with SIFT-Based-SSC are 0.43, 0.39, 0.40, and 0.41, respectively.

These results confirm the performance gain, in terms of discriminative power, when
adding the SSC information.

Furthermore, Figs. 5.6, 5.7, 5.8 and 5.9 show that for the high precision range above
0.9, i.e., 1-precision below 0.1, the three variants of the SSC descriptor, SIFT-based-SSC,
SPIN-based-SSC and CC-based-SSC, still provide higher recalls while others produce
too-low recall scores. These scores are practically zero, as example, in the case of
Harris-Laplace regions with nearest-neighbor, as displayed in Fig. 5.6a.

The previous prominent performance of the SSC approach arise from two main reasons.
The first is general and is related to the degree of scene similarities. Whereas the second
is specific to the rotation. The SSC-based component is inherently rotation invariant.
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TAB. 5.1: Evaluation of the recall scores under image rotation for the textured scene of field. The
results are obtained for the descriptors matched using (a) nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed for the precision thresholds of (a) 0.90 and
(b) 0.80.

(a) nearest-neighbor matching

Descriptor Harris-Laplace Hessian-Laplace Harris-Affine Hessian-Affine
SIFT 0.05 0.00 0.00 0.01
GLOH 0.30 0.30 0.30 0.25
SC 0.29 0.30 0.30 0.31
SPIN 0.00 0.00 0.00 0.00
PCA 0.13 0.09 0.13 0.18
SIFT-Based-SSC 0.43 0.39 0.40 0.41
SPIN-Based-SSC 0.15 0.15 0.15 0.05

(b) threshold-based matching

Descriptor Harris-Laplace Hessian-Laplace Harris-Affine Hessian-Affine
SIFT 0.00 0.00 0.00 0.00
GLOH 0.15 0.12 0.15 0.14
SC 0.15 0.12 0.15 0.15
SPIN 0.09 0.08 0.10 0.08
PCA 0.04 0.04 0.06 0.08
SIFT-Based-SSC 0.20 0.16 0.20 0.20
SPIN-Based-SSC 0.09 0.08 0.10 0.09

That is, the accumulated occurrences of each semantic feature inside each concentric
shell are nearly unchanged under rotation. Hence, the resulting histograms are notably
insensitive to arbitrary rotations.
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FIG. 5.6: Evaluation results of the discriminative power under image rotation. The results
are obtained for the structured scene, chessboard of Fig. 5.1a. The descriptors are computed for
Harris-Laplace regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1876 and (b) 38087
correspondences.
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FIG. 5.7: Evaluation results of the discriminative power under image rotation. The results
are obtained for the structured scene, chessboard of Fig. 5.1a. The descriptors are computed for
Hessian-Laplace regions and then matched using the (a) nearest-neighbor and (b) distance-
ratio-based nearest-neighbor matching techniques. The recall scores are computed with respect
to 3978 correspondences.
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FIG. 5.8: Evaluation results of the discriminative power for image rotation. The results are
obtained for the structured scene, chessboard of Fig. 5.1a. The descriptors are computed for
Harris-Affine regions and then matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 2129 and (b) 37390
correspondences.
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FIG. 5.9: Evaluation results of the discriminative power for image rotation. The results are
obtained for the structured scene, chessboard, of Fig. 5.1a. The descriptors are computed for
Hessian-Affine regions and then matched using (a) the nearest-neighbor and (b) distance-ratio-
based nearest-neighbor matching techniques. The recall scores are computed with respect to (a)
3743 and (b) 4191 correspondences.
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FIG. 5.10: Evaluation results of the discriminative power for image rotation. The results
are obtained for the structured scene, streets of Fig. 5.1b. The descriptors are computed for
Harris-Laplace regions and matched using (a) nearest-neighbor and (b) distance-ration-based
nearest-neighbor matching techniques. The recall scores are computed with respect to 2836
correspondences.

1-precision

re
ca
ll
(#

co
rr
es
p
o
n
d
en

ce
s:

1
9
1
3
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SIFT

GLOH

SC

JLA

MOM

KOEN

CF

SPIN

PCA

CC

SIFT-Based-SSC

SPIN-Based-SSC

CC-Based-SSC

(a)

1-precision

re
ca
ll
(#

co
rr
es
p
o
n
d
en

ce
s:

3
7
1
4
2
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SIFT

GLOH

SC

JLA

MOM

KOEN

CF

SPIN

PCA

CC

SIFT-Based-SSC

SPIN-Based-SSC

CC-Based-SSC

(b)

FIG. 5.11: Evaluation results of the discriminative power for image rotation. The results
are obtained for the structured scene, streets of Fig. 5.1b. The descriptors are computed for
Hessian-Laplace regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1913 and (b) 37142
correspondences.
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FIG. 5.12: Evaluation results of the discriminative power for image rotation. The results
are obtained for the structured scene, streets of Fig. 5.1b. The descriptors are computed for
Harris-Affine regions and matched using (a) the nearest-neighbor and (b) distance-ration-based
nearest-neighbor matching techniques. The recall scores are computed with respect to 2845
correspondences.
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FIG. 5.13: Evaluation results of the discriminative power for image rotation. The results are
obtained for the structured scene, streets of Fig. 5.1b. The descriptors are computed for Hessian-
Affine regions and matched using (a) the nearest-neighbor and (b) threshold-based matching
techniques. The recall scores are computed with respect to (a) 2037 (b) 36129 correspondences.
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FIG. 5.14: Evaluation results of the discriminative power for image rotation. The results are ob-
tained for the textured scene, field of Fig. 5.1c. The descriptors are computed for Harris-Laplace
regions and matched using (a) nearest-neighbor and (b) threshold-based matching techniques.
The recall scores are computed with respect to (a) 1279 and (b) 15075 correspondences.
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FIG. 5.15: Evaluation results of the discriminative power against image rotation. The results
are obtained for the structured scene, field of Fig. 5.1c. The descriptors are computed for
Hessian-Laplace regions and matched using (a) nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1280 and (b) 17375
correspondences.
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FIG. 5.16: Evaluation results of the discriminative power for image rotation. The results are
obtained for the textured scene, field of Fig. 5.1c. The descriptors are computed for Harris-Affine
regions and matched using (a) nearest-neighbor and (b) threshold-based matching techniques.
The recall scores are computed with respect to (a) 1201 and (b) 13600 correspondences.
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FIG. 5.17: Evaluation results of the discriminative power for image rotation. The results are
obtained for the textured scene, field of Fig. 5.1c. The descriptors are computed for Hessian-
Affine regions and matched using (a) the nearest-neighbor and (b) threshold-based matching
techniques. The recall scores are computed for (a) 1302 and (b) 15486 correspondences.
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5.3.3.2 Invariance

In this experiment, we evaluate the invariance of each descriptor under image rotation.
This is performed by measuring the constancy of the recall and precision scores for
gradual increases in image rotation.

The evaluations are conducted on the scene of a field, which contains 6 images with dif-
ferent rotation angles ranged from 5◦ to 25◦. The descriptors computed for harris-affine
and hessian-affine regions, and matched using both 1-nearest-neighbor
and threshold-based matching techniques. The obtained results are displayed
in Figs. 5.18 and 5.19.

In general, results show SIFT-Based-SSC recording the best constancy (robustness)
under all experimental settings for both recall and precision. Besides, the invariance of
SPIN and CC is considerably enhanced when adding the SSC information.

In detail, as expected, the recall and precision scores decrease when increasing image
rotation, whereas it is less important for SIFT-Based-SSC than the other descriptors.
Thus, we observe all SIFT-Based-SSC curves drop down slowly than those of the other
descriptors.

As example, Fig. 5.18a shows while the recall score of SIFT-Based-SSC drops from 0.6
to 0.44, other descriptors like, SIFT, SC and GLOH, drop from 0.6 to 0.09, 0.0, and
0.3,respectively. A similar observation can be made with precision scores, as seen in
Figs. 5.18c, 5.18d, 5.19c, and 5.19d. Therefore, the lack in discriminative power of SIFT
is compensated in SIFT-Based-SSC which still provide a high discriminative power
even for large rotation angles.

Finally, we notice that the descriptors ranking is approximately non preserved within
evaluations. However, SIFT-Base-SSC always obtains the top spot followed by SC
in the case of nearest-neighbor and by GLOH in the case of threshold-based
matching. It is worth noting the better ranking of SPIN-Based-SSC compared to SIFT,
as shown in Figs. 5.18b and 5.19b.
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FIG. 5.18: Evaluation results of the invariance under image rotation. The results are obtained
for the textured scene, field of Fig. 5.1c. The descriptors are computed for Harris-Affine regions
and matched using the (a)(c) nearest-neighbor and (b)(d) threshold-based techniques. The
recall scores are computed with respect to the precision thresholds of (a) 0.85 and (b) 0.50. The
precision scores are computed with respect to the recall thresholds of (c) 0.40 and (d) 0.25.
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FIG. 5.19: Evaluation results of the invariance under image rotation. The results are obtained
for the textured scene, field of Fig. 5.1c. The descriptors are computed for Hessian-Affine regions
and matched using the (a)(c) nearest-neighbor and (b)(d) threshold-based techniques. The
recall scores are computed with respect to the precision thresholds of (a) 0.85 and (b) 0.50. The
precision scores are computed with respect to the recall thresholds of (c) 0.40 and (d) 0.25.
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5.3.4 Scale Change

For scale change, we evaluate the descriptor performances by examining both dis-
criminative power and invariance in two scenes. The first is the giraffe of Fig. 5.1i,
which contains 9 images obtained approximately with scale factors of range 1.2-3.5.
The second is grass of Fig. 5.1j, which is composed of 3 images with scale factors of 1,
0.75 and 0.65.

Regarding discriminative power, the descriptors are evaluated for different support
regions, as well as for nearest-neighbor and threshold-based matching tech-
niques.

Since scale change is more challenging than image rotation, the discriminative power
is evaluated under both low and high scale factors. Whereas for the invariance, the
descriptors are computed for hessian-laplace and hessian-affine detectors
and then matched with nearest-neighbor and threshold-based matching tech-
niques.

An example of nearest-neighbor matching using SIFT-Based-SSC for the giraffe
and grass scenes are shown in Figs. 5.20a and 5.20b.

5.3.4.1 Discriminative power

We investigate the discriminative power under scale change for the descriptors com-
puted on different support regions and matching strategies as well. The experiments
are performed on the scenes of giraffe and grass.

For the scene of giraffe, the discriminative power is evaluated for images of low
(≈ 1.3) and high (≈ 2) scale factors. The observations are focused more on the left side
of ROC graphs. The obtained results are reported in Figs. 5.21-5.28.

At first glance, SIFT-Based-SSC seems to perform mostly better than the other descrip-
tors. The gap between SIFT-Baesd-SSC and the others become extremely large for
images with high scale factors as displayed in Figs. 5.21a, 5.22a, 5.23a, and 5.24a. It is
also observed that CC-Based-SSC performs much better than CC for all experimental
settings, where it turns out to outperform some competitive approaches like PCA-SIFT,
for example.

In more details, although well known to perform better under scale change in the
textured scene like, giraffe, SC appears to be fully outperformed by SIFT-Based-SSC
for all region detectors and matching strategies as well. The results, such as shown in
Figs. 5.21a, 5.21b, 5.22a and 5.22b, clarify the large difference between SIFT-Based-SSC
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(a)

(b)

FIG. 5.20: An example of nearest-neighbor matching using SIFT-Based-SSC computed for
Harris-Affine regions. The results are obtained for the (a) textured and (b) structured scenes.
The detected regions are in yellow while their correspondences transformed from the reference
(image in the left of each sub figure) to the second (image in the right of each sub figure) using
ground truth are in blue. The region correspondences computed based on ground truths and
overlap errors are highlighted with blue lines whereas matches identified as correct using
descriptors are highlighted with green lines. For the purpose of clarity, only a reduced number
of regions are shown.
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ranked first and the SC ranked second. It is important to observe the SIFT ranking
before and after incorporating the SSC information. It jumped from 3, or 4, to the first
spot.

It is also interesting to watch attentively the impact of plugging the SSC information
into CC. The resulting highly improved CC-Based-SSC becomes a workable descriptor
while obtaining a competitive discriminative power.

It is not the case for the CC descriptors computed in images with high scale factors
as shown in Figs. 5.21a, 5.21b. These appear completely unworkable, since they are
unable to produce any correct match even for low 1-precision scores.

For instance, Tab. 5.2, lists the 1-precision/recall thresholds for which the CC descrip-
tors seem to be not operational. In order words they are not able to produce correct
matches which have precision scores below reported thresholds.

TAB. 5.2: The 1-precision/recall thresholds for which the CC descriptor achieves its limitations.
That is, without producing any correct matches. The results are obtained for the image of giraffe
with scale factor of 2.

Matching method Harris-Laplace Hessian-Laplace Harris-Affine Hessian-Affine
nearest-neighbor matching 0.40/0.22 0.70/0.22 0.70/0.27 0.65/0.20
Threshold-based matching 0.80/0.03 0.92/0.01 0.97/0.05 0.90/0.04

We note that the above tabled scores are reported for 1-precision and recall values of
0.60 and 0.40 respectively.

According to the scene type, the obtained results on the grass scene, show GLOH
coming in the second rank behind SIFT-Based-SSC, while SIFT obtains the third rank
followed by SC.

We observe for hessian-laplace, i.e., Fig. 5.22, SIFT-Based-SSC and GLOH perform
almost equally while SIFT is completely outperformed. It has recall scores of zero for
1-precision scores below 0.1. Which means the considerable impact of SSC information
in improving the SIFT discriminative power.

We notice that SSC-based descriptors obtain better discriminative powers on giraffe
than on grass. In addition to the higher self similarities of giraffe, the other
reason is because of spatial distribution of similar motifs inside giraffe’s scene. The
random repartition of region similarities without any uniform structures reinforces
disambiguation in SSC component which in turn enhances the discriminative power.

The contribution of the SSC information into our descriptor is more relevant in girraffe
than in grass. This is because the clustering in the first is more stable and accurate.
Thus, the semantic features represented by the clusters are obtained for the first scene
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from 9 images across large scale factors (i.e., range of 1.2−3.5) while for the second are
obtained from 3 images within small scale factors (i.e., range of 0.65−0.75).

This is related to the fact that the role of the semantic information (which is generated
from visual features) is keeping tracks of informations that can always appear in an
image at different scales. Hence, more the images and large scale factors, the more the
semantic information.

In conclusion, under scale change, the discriminative power of SIFT is greatly enhanced
when adding SSC information. It is also more than expected to obtain an improved
performance of CC-Based-SSC when SSC is plugged into CC. The SSC information
plays a primordial role in improving the descriptor discriminative power under image
scaling.
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FIG. 5.21: Evaluation results of the discriminative power under scale change. The results are
shown for images with (a)(b) high and (c)(d) low scale factors of the scene, giraffe (Fig. 5.1i). The
descriptors are computed for Harris-Laplace regions and matched using (a)(c) nearest-neighbor
and (b)(d) threshold-based matching techniques. The recall scores are computed with respect
to (a) 264, (b) 3238, (c) 531, and (d) 6529 correspondences.
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FIG. 5.22: Evaluation results of the discriminative power under scale change. The results
are shown for image with (a)(b) high and (c)(d) low scale factors of the structured scene of
giraffe (Fig. 5.1i). The descriptors are computed for Hessian-Laplace regions and matched using
(a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores are
computed with respect to (a) 416, (b) 6258, (c) 811, and (d) 11036 correspondences.
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FIG. 5.23: Evaluation results of the discriminative power under scale change. The results
are shown for images with (a)(b) high and (c)(d) low scale factors of the textured scene, giraffe
(Fig. 5.1i). The descriptors are computed for Harris-Affine regions and matched using (a)(c)
the nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores are
computed with respect to (a) 294, (b) 4106, (c) 580, and (d) 7454 correspondences.
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FIG. 5.24: Evaluation results of the discriminative power under scale change. The results are
shown for images with (a)(b) high and (c)(d) low scale factors of the scene, giraffe of Fig. 5.1i. The
descriptors are computed for Hessian-Affine regions and matched using (a)(c) nearest-neighbor
and (b)(d) threshold-based matching techniques. The recall scores are computed with respect
to (a) 493, (b) 7555, and (c) 977, and (d) 13775 correspondences.
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FIG. 5.25: Evaluation results of the discriminative power under scale change. The results
are obtained for the scene, grass, of Fig. 5.1j. The descriptors are computed for Harris-Laplace
regions and matched using (a) nearest-neighbor and (b) threshold-based matching techniques.
The recall scores are computed with respect to (a) 581 and (b) 7066 correspondences.
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FIG. 5.26: Evaluation results of the discriminative power under scale change. The results are
obtained for the scene, grass of Fig. 5.1j. The descriptors are computed for Hessian-Laplace re-
gions and matched using (a) the nearest-neighbor and (b) threshold-based matching techniques.
The recall scores are computed with respect to (a) 827 and (b) 16173 correspondences.



Chapter 5. 2D Image Feature Matching 95

1-precision

re
ca
ll
(#

co
rr
es
p
o
n
d
en

ce
s:

5
1
0
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SIFT

GLOH

SC

JLA

MOM

KOEN

CF

SPIN

PCA

CC

SIFT-Based-SSC

SPIN-Based-SSC

CC-Based-SSC

(a)

1-precision

re
ca
ll
(#

co
rr
es
p
o
n
d
en

ce
s:

5
7
0
2
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIFT

GLOH

SC

JLA

MOM

KOEN

CF

SPIN

PCA

CC

SIFT-Based-SSC

SPIN-Based-SSC

CC-Based-SSC

(b)

FIG. 5.27: Evaluation results of the discriminative power under scale change. The results are
obtained for the scene, grass of Fig. 5.1j. The descriptors are computed for Harris-Affine regions
and matched using (a) the nearest-neighbor and (b) threshold-based matching techniques. The
recall scores are computed with respect to (a) 510 and (b) 5702 correspondences.
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FIG. 5.28: Evaluation results of the discriminative power under scale change. The results are
obtained for the scene of grass of Fig. 5.1j. The descriptors are computed for Hessian-Affine
regions and matched using (a) nearest-neighbor and (b) threshold-based matching techniques.
The recall scores are computed with respect to (a) 612 and (b) 8373 correspondences.
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5.3.4.2 Invariance

In these experiments, the descriptor invariance for scale changes is evaluated through
inspecting the degradation of both recall and precision scores under progressive in-
creases in the scale factor.

The evaluations are conducted on the scene of giraffe, which contains 8 images with
different scale factors varying from 1.2 to 3.5. Since image scaling is more attractive
than rotation, the invariance is measured for descriptors computed for two different
region detectors, hessian-laplace and hessian-affine. For each region detec-
tor, the recall and precision scores are computed for both 1-nearest-neighbor and
threshold-based matching methods. The results are given through Figs. 5.29 and
5.30.

The reported figures clearly highlight the effectiveness of semantic-context information
on the descriptor invariance. Thus, SIFT invariance is highly enhanced when semantic-
context information is added.

This can be checked by observing the ranking of SIFT and SIFT-Based-SSC curves within
Figs. 5.29 and 5.30. It seems SIFT-Based-SSC curves drop down more slowly than those
of other descriptors. This is shown for SIFT-Based-SSC which always occupies the first
position for both recall and precision over all scale factors. Besides, SC, GLOH and
SIFT ranked second, third , and fourth respectively.

Usually considered well suited for the textured scene, it appears that the SC is complet-
ley won by SIFT-Based-SSC. This situation is more obvious for the precision invariance
as highlighted in Figs. 5.29c, 5.29d, 5.30c and 5.30d.

Tab. 5.3 summarizes the degradations in the recall and precision scores from the low to
high scale factors, i.e., from 1.2 to 3.5. These scores are obtained for the four best descrip-
tors computed for hessian-laplace and matched with the nearest-neighbor
method.

TAB. 5.3: Degradations in recall and precision scores under scale change obtained for the
scene of giraffe. The degradations are computed from low to high scale factors (i.e., from 1.2 to
3.5) of recall (a) and (b) precision scores.

(a) Recall

Descriptor low scale high scale degradation
SIFT 0.62 0.00 0.62
SC 0.62 0.09 0.53
GLOH 0.58 0.00 0.58
SIFT-Based-SSC 0.62 0.20 0.42

(b) Precision

Descriptor low scale high scale degradation
SIFT 1.00 0.30 0.70
SC 1.00 0.34 0.66
GLOH 1.00 0.15 0.85
SIFT-Based-SSC 1.00 0.70 0.30

This table shows that SIFT-Based-SSC recorded the smallest degradation for both recall



Chapter 5. 2D Image Feature Matching 97

and precision. For the recall, we count a degradation of 0.42 with SIFT-Based-SSC while
we obtain 0.62, 0.53, and 0.58 with SIFT, SC, and GLOH, respectively. For precision, the
gap is huge in the sense that we register only a degradation of 0.30 for SIFT-Based-SSC
and the best of the remaining has 0.66 with SC, as example.
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FIG. 5.29: Invariance evaluation under scale changes (range of 1.2− 3.5). The results are
obtained for the structured scene, giraffe of Fig. 5.1i. The descriptors are computed for Hessian-
Laplace regions and matched with (a)(c) nearest-neighbor and (b)(d) threshold-based matching
techniques. The recall scores are computed with respect to the precision thresholds of (a) 0.60
and (b) 0.40. The precision scores are computed with respect to the recall threshold of 0.20.
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FIG. 5.30: Invariance evaluation under scale changes (range of 1.2− 3.5). The results are
obtained for the structured scene of giraffe of Fig. 5.1i. The descriptors are computed for
Hessian-Affine regions and matched with (a)(c) nearest-neighbor and (b)(d) threshold-based
matching techniques. The recall scores are computed with respect to the precision thresholds of
(a) 0.60 and (b) 0.40. The precision scores are computed for the recall thresholds of 0.20.
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5.3.5 Rotation-enlargement transformation

In this experiment, the performance of the SSC approach is evaluated on scenes selected
from the standard data set of Mikolajczyk described in Section 5.2.2. These scenes
reflect the particular image deformation of rotation-enlargement transformation, which
combines rotation and scale change.

For this purpose, we consider two different scenes. The first, bark of Fig. 5.2b, is a
textured scene composed of 6 images. The second, boat of Fig. 5.2a, is a structured
scene with the same number of images.

These scenes are used to assess the descriptor performance for different region detec-
tors and matching strategies. In this context, we focus on the discriminative power
performance only.

Before going into detail, we show through Fig. 5.31 an example of nearest-neighbor
matching obtained for SIFT-Based-SSC computed on harris-affine regions.
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(a)

(b)

FIG. 5.31: An example of nearest-neighbor matching using SIFT-Based-SSC computed on
Harris-Affine regions. The results are obtained for the scene of (a) bark and (b) boat. The
detected regions are in yellow while their correspondences transformed from the reference
(image in the left of each sub figure) to the second (image in the right of each sub figure) using
ground truth are in blue. The region correspondences computed based on ground truths and
overlap errors are highlighted with blue lines whereas matches identified as correct using
descriptors are highlighted with green lines. For the purpose of clarity, only a reduced number
of regions are shown.
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5.3.5.1 Discriminative power

Similar to scale changes, the discriminative power of the descriptor are compared for
images representing small and large deformations. For the scene of bark, we use 3rd
and 6th images, whereas for the boat, we consider the 3rd and 7th.

The descriptors of these images are computed for the four region detectors and matched
with nearest-neighbor and threshold-based matching methods. The obtained
results are given in Figs. 5.32-5.39.

At first look, we figure out that the best discriminative power is obtained by SIFT-Based-
SSC descriptor. Although it performs differently within two scenes, SIFT-Based-SSC
still ranked first in all situations. As expected, we obtain the best performance with the
textured scene as shown in Figs. 5.34c and 5.34d.

Furthermore, we can observe how well the discriminative power of SIFT is enhanced
for the structured scene when integrating the SSC component, e.g., Figs. 5.36a, 5.36b,
5.38a, and 5.38b. This is more than expected since the scene of boat does not exhibit
high region similarities.

The results demonstrate the usefulness of the SSC approach even for the structured
ordinary scenes without multiple similar motifs.
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FIG. 5.32: Evaluation results of the discriminative power under rotation-enlargement. The
results are shown for images with (a)(b) large and (c)(d) small rotation-enlargement of the scene,
bark of Fig. 5.2b. The descriptors are computed for Harris-Laplace regions and matched using
(a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores are
computed with respect to (a) 238, (b) 3926, (c) 538, and (d) 8209 correspondences.
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FIG. 5.33: Evaluation results of the discriminative power under rotation-enlargement. The
results are shown for images with (a)(b) high and (c)(d) low rotation-enlargement of the
structured scene of bark of Fig. 5.2b. The descriptors are computed for Hessian-Laplace regions
and matched using (a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques. The
recall scores are computed with respect to (a) 137, (b) 2109, (c) 453, and (d) 7217 correspondences.
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FIG. 5.34: Evaluation results of the discriminative power under rotation-enlargement. The
results are shown for images with (a)(b) high and (c)(d) low rotation-enlargement of the textured
scene of bark of Fig. 5.2b. The descriptors are computed for Harris-Affine regions and matched
using (a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores
are computed with respect to (a) 229, (b) 3306, (c) 546, and (d) 7890 correspondences.
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FIG. 5.35: Evaluation results of the discriminative power under rotation-enlargement. The
results are shown for images with (a)(b) high and (c)(d) low rotation-enlargement of the scene
of Fig. 5.2b of the textured scene, bark of Fig. 5.2b. The descriptors are computed for Hessian-
Affine regions and matched using (a)(c) nearest-neighbor and (b)(d) threshold-based matching
techniques. The recall scores are computed with respect to (a) 166, (b) 2441, (c) 554, and (d) 8839
correspondences.
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FIG. 5.36: Evaluation results of the discriminative power under rotation-enlargement. The
results are shown for images with (a)(b) high and (c)(d) small rotation-enlargement of the
structured scene, boat, shown in Fig. 5.2a. The descriptors are computed for Harris-Laplace
regions and matched using (a)(c) nearest-neighbor and (b)(d) threshold-based matching tech-
niques. The recall scores are computed with respect to (a) 615, (b) 10284, (c) 2041, (d) 35433
correspondences.
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FIG. 5.37: Evaluation results of discriminative power under rotation-enlargement. The results
are shown for images with (a)(b) high and (c)(d) low rotation-enlargement of the structured
scene, boat, shown in Fig. 5.2a. The descriptors are computed for Hessian-Laplace regions
and matched using (a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques.
The recall scores are computed with respect to (a) 754 , (b) 17888, (c) 2554, and 57171 (d)
correspondences.
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FIG. 5.38: Evaluation results of discriminative power under rotation-enlargement. The
results are shown for images with (a)(b) high and (c)(d) low rotation-enlargement of the
structured scene, boat, shown in Fig. 5.2a. The descriptors are computed for Harris-Affine
regions and matched using (a)(c) the nearest-neighbor and (b)(d) threshold-based matching
techniques. The recall scores are computed with respect to (a) 593, (b) 9022, (c) 2085, and (d)
32384 correspondences.
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FIG. 5.39: Evaluation results of discriminative power under rotation-enlargement. The results
are shown for images with (a)(b) high and (c)(d) low rotation-enlargement of the structured
scene, boat, shown in Fig. 5.2a. The descriptors are computed for Hessian-Affine regions and
matched using (a)(c) the nearest-neighbor and (b)(d) threshold-based matching techniques.
The recall scores are computed with respect to (a) 770, (b) 13078, (c) 2680, and (d) 49700
correspondences.
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5.3.6 Viewpoint Change

The viewpoint change is the most challenging deformation among different geometric
image transformations. Therefore, we will pay much closer attention on their perfor-
mance evaluation. In this context, we use three scenes expressing out-of-plane image
rotations, i.e., viewpoint changes.

The first scene, zeriba of Fig. 5.1k, is composed of 7 images of progressive increases
in viewpoint angles from 10◦ to 70◦. The second, graffiti of Fig. 5.2c, is a structured
scene obtained from the standard data set of Mikolajczyk. This contains 5 images with
viewpoint angles ranged in 20◦−60◦. The third, wall of Fig. 5.2d, represents a textured
scene of 6 images selected also from Mikolajczyk’s dataset.

An example of nearest-neighbor matching for the descriptors computed for these
scenes are shown in Fig. 5.40. These are obtained with SIFT-Based-SSC computed for
harris-affine support regions.

The evaluation of the descriptors are performed according to the discriminative power
and invariance. For the discriminative power, we use all scenes by considering the
descriptors computed on the affine support regions and different matching methods.
Whereas for the invariance, we use two scenes and the descriptors are also computed
on the affine support regions and different matching algorithms as well.

In order to inspect the impact of the overlap error on the performance coherency, we
start first by diagnosing the descriptor performances for different thresholds of overlap
errors.
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(a)

(b)

(c)

FIG. 5.40: An examples of nearest-neighbor matching using SIFT-Based-SSC computed for
Harris-Affine regions. The results are obtained for the (a) textured scene, zeriba of Fig. 5.1k,
(b) structured scene, graffiti of Fig. 5.2c, and (c) textured scene, wall of fig5.2d. The detected
regions are in yellow while their correspondences transformed from the reference (image in
the left of each sub figure) to the second (image in the right of each sub figure) using ground
truth are in blue. The region correspondences computed based on ground truths and overlap
errors are highlighted with blue lines whereas matches identified as correct using descriptors
are highlighted with green lines. For the purpose of clarity, only a reduced number of regions
are displayed.
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5.3.6.1 Region overlap error

The main objective of this experiment is evaluating how the region overlap errors affect
the descriptor performances. Thus, we evaluate changes in the recall and precision
scores under different amounts of overlap errors ranged in 10%−60%.

We use two scenes of different types. These are the textured of zeriba and structured of
graffiti. The descriptors are computed for harris-affine and hessian-affine
affine detectors and matched using 1-nearest-neighbor and threshold-based
matching techniques.

In order to keep the coherence within all experiments and unlike [Mikolajczyk 05a]
4, we consider the score obtained for an overlap error, for example 20%, as that cor-
responding to an overlap error smaller than 20%. We therefore obtain an increased
number of correspondences while increasing overlap error as highlighted in Tab. 5.4.
The evalauation results related to the overlap errors are displayed within Figs. 5.41-5.44.

TAB. 5.4: Number of correspondences for different overlap errors obtained for the scene of
zeriba. The scores are computed for (a) Harris-Affine and (b) Hessian-Affine region detectors.

(a) Harris-Affine

Matching method 10% 20% 30% 40% 50% 60%
nearest-neighbor 8 73 330 695 1059 1273
Threshold-based 21 241 1573 5343 14623 31636

(b) Hessian-Affine

Matching method 10% 20% 30% 40% 50% 60%
nearest-neighbor 5 136 561 1140 1611 1897
Threshold-based 12 485 3343 12086 34484 79676

Before going into details, we observe that the obtained curve shapes differ from one
scene to another as well as from one matching strategy to another.

Basically, we wait for the recall (or precision) score to increase while overlap error is still
increased below a particular threshold from which it starts decreasing. This is because,
the higher the overlap error the higher number of correspondences (i.e., in reference to
Tab. 5.4) and thus the higher probability to recognize more potential correct matches as
correct.

This is also related to the errors resulting from region detectors (imprecision of regions)

4We think this is the more appropriate than considering that computed for an overlap error larger than
10% and smaller than 20% as in [Mikolajczyk 05a].
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which can influence the number of correct matches, for example, a potential correct
match which cannot be identified as correct because its region overlap error is larger
than the used threshold although they are in correspondence.

The value of overlap error from which the scores start decreasing corresponds to that
from which the probability of matching more descriptors begins to decrease. This
value is higher for the nearest-neighbor, e.g., Figs. 5.41a and 5.41c, than for the
threshold-based method, e.g., Figs. 5.41b and 5.41d. This is because, the first is
mostly correct and always selects only the best match below threshold and rejects the
remaining although for large overlap error.

However, the second selects many matches and many of them are false, we therefore
obtain lesser correct matches (and higher false matches) when the overlap error starts
increasing. The result is that the value of overlap error from which the recall and
precision scores decrease is high with the nearest-neighbor and low with the
threshold-based matching method.

We observe that for the textured scenes, i.e., Figs. 5.41 and 5.42, the scores obtained
with the nearest-neighbor are always increasing, even for large overlap errors.
This is due to the fact that, this type of scene contains a large number of similar motifs
resulting in large number of similar regions which are spatially close to each other, and
thus the probability of finding more correct matches becomes higher especially for the
nearest-neighbor which is mostly correct.

The obtained figures display how well the performance of descriptors is improved
when the SSC information is used. This can be checked, for example, by observing the
recall curves of CC descriptor in Fig. 5.41a before and after adding the SSC component.

This figure shows that for an overlap error of 40%, we obtain recall scores of zero
with CC and ≈ 0.1 with CC-Based-SSC. The gap is more apparent for an overlap error
of 60%, in which we count a recall of 0.1 for CC and 0.35 for CC-Based-SSC. Similar
observations can be seen for the precision. As example, Fig. 5.42b demonstrates that
for an overlap error of 30%, while CC-Based-SSC produces a precision score of 0.2, the
CC gives ≈ 0.

The most impact of the SSC information on the descriptor performance under overlap
error is obtained for the SIFT descriptor. This is illustrated in Figs. 5.41-5.44, in which
the SIFT-Based-SSC conserves its first rank within all evaluations.

Moreover, by comparing the curves of Figs. 5.41 and 5.42 to those of Figs. 5.43 and 5.44,
we figure out that SIFT-Based-SSC performs better in the textured scene.

In conclusion, the overlap error does not affect the descriptors ranking and performance
is gained when SSC descriptors are used especially in textured scene.
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FIG. 5.41: Performance evaluation under viewpoint change for different overlap errors. The
results are obtained for the textured scene, zeriba of Fig. 5.1k. The descriptors are computed for
Harris-Affine regions and matched using (a)(c) nearest-neighbor and (b)(d) threshold-based
matching techniques. The recall scores are computed for the precision thresholds of (a) 0.50
and (b) 0.30. The precision scores are computed for the recall thresholds of (c) 0.25 and (d) 0.25.
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FIG. 5.42: Performance evaluation under viewpoint change for different overlap errors. The
results are obtained for the textured scene, zeriba of Fig. 5.1k. The descriptors are computed for
Hessian-Affine regions and matched using (a)(c) nearest-neighbor and (b)(d) threshold-based
matching techniques. The recall scores are computed for the precision thresholds of (a) 0.50
and (b) 0.40. The precision scores are computed for the recall thresholds of (c) 0.25 and (d) 0.25.
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FIG. 5.43: Performance evaluation under viewpoint change for different overlap errors. The
results are obtained for the structured scene, graffiti of Fig. 5.2c. The descriptors are computed
for Harris-Affine regions and matched using (a) nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed for the precision thresholds of (a) 0.40
and (b) 0.25.
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FIG. 5.44: Performance evaluation under viewpoint change for different overlap errors. The
results are obtained for the structured scene, graffiti, of Fig. 5.2c. The descriptors are computed
for Hessian-Affine regions and matched using (a) nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed for the precision thresholds of (a) 0.40
and (b) 0.25.
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5.3.6.2 Discriminative power

In these experiments, we assess the discriminative power of the descriptors for view-
point changes by using three different scenes, zeriba, graffiti, and wall.

For each scene, we use two images to express small and large viewpoint angles. In addi-
tion, we consider the affine region detectors of harris-affine and hessian-affine
and matching strategies of nearest-neighbor and threshold-based-matching.
The obtained results are presented in Figs. 5.45-5.50.

In general, we observe from the reported results that the SIFT-Based-SSC still obtains the
best discriminative power for both textured and structured scenes. This is specifically
for images of large viewpoint angles.

In addition, we notice that the discriminative power of the other SSC-based descriptors
are highly increased when including the SSC component. It is also important to consider
from Figs. 5.45a, 5.45b, 5.46a, and 5.46b that in the case of the textured scene of zeriba,
the other approaches (except SSCs) obtain recall scores of ≈ 0 for the 1-precision-range
below ≈ 0.2.

This means that these descriptors are becoming partially unsuitable for large viewpoint
changes. However, when they are plugged with the new SSC-based descriptors,
they turn into the most suited descriptors while recording high recall scores for high
precision range, i.e., 1-precision-range < 0.2

More than expected, we remark again how well the discriminative power of SSC-based
descriptors is enhanced under viewpoint changes even for the standard structured
scene of graffiti as shown in Figs. 5.47a, 5.47b, 5.48a, and 5.48b.

For further details, we observe from 5.46a and 5.46b that under large viewpoint angles
for zeriba scene, the effectiveness of SSC approach is vital in increasing the discrim-
inative power of descriptors. Thus, while other descriptors failed by providing low
recall scores for high precisions, SIFT-Based-SSC achieves large discriminative power
by producing large number of correct matches with high precisions.

Tab. 5.5 below illustrates clearly this case. This table is obtained for a sample of the
best descriptors, which are computed for hessian-affine regions. The number of
correct matches given in this table are computed for the precision scores of 0.1 and 0.4.
These are obtained with the nearest-neighbor and threshold-based matching
methods, respectively.

For example, we see in the first row of this table that when integrating the semantic-
context information, the numbers of correct matches jump from 0 to 451 for SIFT
and attains 193 for CC. This shows how well the SSC influences the performance of
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descriptor in presence of large number of similar regions.

TAB. 5.5: The number of correct matches with respect to particular precision thresholds
obtained for the scene of zeriba. The scores are computed for Hessian-Affine detectors with the
precision thresholds of (1st row) 0.1 and (2nd row) 0.4.

Matching method SIFT GLOH SC CC SIFT-Based-SSC CC-Based-SSC
nearest-neighbor matching 0 32 0 0 451 193
Threshold-based matching 0 2759 1379 0 5173 2414

More than expected we obtained again SSC-based descriptor performs best in the
structured scene of graffiti. This is happening particularly with images obtained
from large viewpoint angles as shown in Figs. 5.47a, 5.47b, 5.48a and 5.48b.

It seems that for large viewpoint angles, the standard descriptors (like SIFT and GLOH),
turn out to be outperformed by the SIFT-Based-SSC. This means that the SSC informa-
tion not only help to reduce the ambiguity manifested within scenes of similar motifs
like textured scenes, but it can also significantly increase the discriminative power in
structured scenes.

Therefore, we observe SIFT-Based-SSC continually in the top spot wining largely the
remaining descriptors, that is, the gap between SIFT-Based-SSC and the others is
significantly large.

Even though it performs less better than for the textured scene of zeriba, we notice
that SIFT-Based-SSC still ranked first in the textured scene of wall, as shown in
Figs. 5.49-5.50. More precisely, it improves hugely the discriminative power of SIFT
which seems lesser than GLOH and SC ranked 2 and 3 respectively.

The reason that SIFT-Based-SSC acting differently in these scenes although they are
both textured, is because of the higher number of similar regions which are spatially
close to each other in the scene of zeriba than in the wall.

The rational here is that scene of wall exhibits a larger number of similar motifs but
more dispersed in the space which results in degradation of the number of correct
matches as we can see by comparing, for example, Figs. 5.45a and 5.49a. Besides, it is
also related the local part represented by SIFT which performs lesser in the scene of
wall than in the zeriba.

In conclusion, we realize the vital role of the semantic-context information in enhancing
the discriminative power of descriptors computed for images subjected to viewpoint
changes. This is observed especially for the textured scene with high probability of
region similarity i.e., zeriba. The usefulness of SSC approach for structured scenes
is illustrated through the scene of graffiti, in which the discriminative power is
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significantly increased when SIFT-Based-SSC is constructed.
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FIG. 5.45: Evaluation results of the discriminative power under viewpoint change. The results
are shown for images with (a)(b) large and (c)(d) small viewpoint angles of the textured scene,
zeriba of Fig. 5.1k. The descriptors are computed for Harris-Affine regions and matched using
(a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores are
computed with respect to (a) 1059, (b) 14636, (c) 1342, and (d) 20321 correspondences.
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FIG. 5.46: Evaluation results of the discriminative power under viewpoint change. The results
are shown for images with (a)(b) large and (c)(d) small viewpoint angles of the textured scene,
zeriba of Fig. 5.1k. The descriptors are computed for Hessian-Affine regions and matched using
(a)(c) the nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores
are computed with respect to (a) 1611, (b) 34492, (c) 1999, and (d) 42513 correspondences.
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FIG. 5.47: Evaluation results of the discriminative power under viewpoint change. The results
are shown for images with (a)(b) large and (c)(d) small viewpoint angles of the structured scene,
graffiti of Fig. 5.2c. The descriptors are computed for Harris-Affine regions and matched using
(a)(c) the nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores
are computed with respect to (a) 464, (b) 5812, (c) 2044, and (d) 29532 correspondences.
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FIG. 5.48: Evaluation results of the discriminative power under viewpoint change. The results
are shown for images with (a)(b) large and (c)(d) small viewpoint angles of the structured scene,
graffiti of Fig. 5.2c. The descriptors are computed for Hessian-Affine regions and matched using
(a)(c) the nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores
are computed with respect to (a) 463, (b) 6193, (c) 1951, and 33387 (d) correspondences.
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FIG. 5.49: Evaluation results of the discriminative power under viewpoint change. The results
are shown for images with (a)(b) large and (c)(d) small viewpoint angles of the scene, wall of
Fig. 5.2d. The descriptors are computed for Harris-Affine regions and matched using (a)(c)
the nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores are
computed with respect to (a) 524, (b) 5278, (c) 1468, and (d) 15378 correspondences.
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FIG. 5.50: Evaluation results of the discriminative power under viewpoint change. The results
are shown for images with (a)(b) large and (c)(d) small viewpoint angles of the textured scene,
wall of Fig. 5.2d. The descriptors are computed for Hessian-Affine regions and matched using
(a)(c) the nearest-neighbor and (b)(d) threshold-based matching techniques. The recall scores
are computed with respect to (a) 322, (b) 3103, (c) 1026, and (d) 10054 correspondences.
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5.3.6.3 Invariance

In this evaluation, we investigate the invariance of the SSC-based approach while
comparing it to other methods. The investigation is conducted on images subjected to
gradual change in viewpoint angles.

These images are those of the textured and structured scenes of zeriba and graffiti.
For each scene, the descriptors are computed for both harris-affine and hessian-affine
region and matched with nearest-neighbor and threshold-based matching al-
gorithms.

Each descriptor invariance is inspected by measuring the degradations of both recall
and precision scores while the viewpoint angle is varied in range of 10◦−70◦ for the
scene of zeriba and 20◦−60◦ for the scene of graffiti.

The recall and precision thresholds are almost higher for the nearest-neighbor
than for the threshold-based matching method. This is because, the ROC curves
for the first are mostly close to the left side, whereas they are spread over whole ROC
space for the second. The evaluation results are displayed in Figs. 5.51-5.54.

From these results, we discover rapidly the usefulness of adding the SSC component
into descriptors like SIFT and CC. It seems the CC invariance is greatly augmented for
both recall and precision scores. In this way, SIFT gained the best constancy for both
scenes within all evaluations. We also observe that much more gains are obtained, as
expected, for the textured scene of zeriba.

The results obtained on this latter scene, show SIFT-Based-SSC curves being perma-
nently above those obtained with the other descriptors while coming down more slowly
than others. This situation can be observed, for example, in Fig. 5.51a in which while
the SIFT-Based-SSC recall falls to 0.3, the others like GLOH, SC, and SIFT drop to 0.15,
0.11, and 0.09, respectively.

Similar observation can be done for the precision curves, as shown, for example, in
the Fig. 5.51c. Thus, for the viewpoint angle of 70◦, we read a precision of 0.59 for
SIFT-Based-SSC and 0.45, 0.27, 0.22 for SIFT, GLOH and SC, respectively.

By comparing the curves of CC obtained in Figs. 5.52c and 5.52d, before and after
plugging the SSC part, i.e., CC-Based-SSC, we realize how well the precision of CC is
positvely affected when considering SSC information, especially for large viewpoint
angles.

For instance, for a viewpoint angle of 50◦, as shown in Fig. 5.52c, while the CC gives a
precision of zero, the CC-Based-SSC attains ≈ 0.42 and becomes thus competitive to
GLOH and SC.
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For the structured scene of graffiti, the results are slightly different from those
obtained in the textured scene of zeriba. Though SIFT-Based-SSC being ranked as
the best, the discrepancy between it and the others becomes smaller. Tab. 5.6 compares
the disparities in terms of the recall and precision scores between the textured and
structured scenes.

These are computed for viewpoint angles using SIFT-Based-SSC and the second best,
(i.e.ranked) descriptor. The recall and precision scores are calculated for the preci-
sion and recall thresholds of 0.70 and 0.20, respectively. These scores are obtained
with the descriptors computed for hessian-affine regions and matched with the
threshold-based matching algorithm.

TAB. 5.6: Comparison of disparities in the (a) recall and (b) precision scores between SIFT-
Based-SSC and the second ranked descriptor. These are obtained for both textured and struc-
tured scenes of zeriba and graffiti, respectively. The disparities are calculated for (a) a precision of
0.70 and (b) a recall of 0.20. Descriptors are computed for Hessian-Affine detector and matched
with the threshold-based matching algorithm.

(a) Recall

20◦ 30◦ 40◦ 50◦ 60◦

Zeriba 0.02 0.03 0.05 0.07 0.08
Graffiti 0.00 0.01 0.02 0.03 0.04

(b) Precision

20◦ 30◦ 40◦ 50◦ 60◦

Zeriba 0.07 0.15 0.23 0.25 0.25
Graffiti 0.00 0.02 0.04 0.20 0.09

This table shows clearly how much the discriminative power, i.e., recall and precision,
is increased when SIFT-Based-SSC is adopted, in the textured scene in particular. This
appears more straightforward for large viewpoint angles, in which the SIFT-Based-SSC
performs much better while the other descriptors are constrained to produce enough
recall scores with high precisions.

In conclusion, these experiments show the effectiveness of the SSC component in
increasing both discriminative power and invariance of descriptors computed on
images subjected to the most complicated non-affine geometric transformation of
out-of-plane rotation, or viewpoint change.

In addition, the important performance is obtained by SIFT-Based-SSC for the textured
scene under large viewpoint angles.

More than we expected, SIFT-Based-SSC is found also to perform best even for the
structured scene with a reduced number of similar motifs, like that of the graffiti
obtained from the standard data set of Mikolajczyk.
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FIG. 5.51: Evaluation results of the invariance under viewpoint changes. The results are
obtained for the textured scene, zeriba of Fig. 5.1k. The descriptors are computed for Harris-
Affine regions and matched using (a)(c) nearest-neighbor and (b)(d) threshold-based matching
techniques. The recall scores are computed with respect to the precision thresholds of (a) 0.80
and (b) 0.50. The precision scores are computed with respect to the recall thresholds of (c) 0.40
and (d) 0.20.
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FIG. 5.52: Evaluation results of the invariance under viewpoint changes. The results are
obtained for the textured scene, zeriba of Fig. 5.1k. The descriptors are computed for Hessian-
Affine regions and matched with (a)(c) nearest-neighbor and (b)(d) threshold-based matching
techniques. The recall scores are computed with respect to the precision thresholds of (a) 0.90
and (b) 0.70. The precision scores are computed with respect to the recall thresholds of (c) 0.40
and (d) 0.20.
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FIG. 5.53: Evaluation results of the invariance under viewpoint changes. The results are
shown for the structured scene, graffiti of Fig. 5.2c. The descriptors are computed for Harris-
Affine regions and matched with (a)(c) nearest-neighbor and (b)(d) threshold-based matching
techniques. The recall scores are computed with respect to the precision thresholds of (a) 0.90
and (b) 0.80. The precision scores are computed with respect to the recall thresholds of (c) 0.20
and (d) 0.20.
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FIG. 5.54: Evaluation results of the invariance under viewpoint changes. The results are
shown for the structured scene, graffiti of Fig. 5.2c. The descriptors are computed for Hessian-
Affine regions and matched with (a)(c) nearest-neighbor and (b)(d) threshold-based matching
techniques. The recall scores are computed with respect to the precision thresholds of (a) 0.85
and (b) 0.70. The precision scores are computed with respect to the recall thresholds of (c) 0.25
and (d) 0.20.
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5.3.7 Image Blur

For blur imaging condition, the descriptor performances are evaluated with two dif-
ferent scenes obtained from Mikolajczyk’s dataset. The first is the textured scene
of trees shown in Fig. 5.2f, while the second is the structured of bikes shown in
Fig. 5.2e.

The goal of this experiment is inspecting the degradation in the discriminative power
and invariance when the imaging condition resulting in adding some amount of blur
in images, such case for example, variation of the camera focus.

For the discriminative power evaluation, the descriptors are tested using different
region detectors and matching strategies. Regarding the invariance evaluation, only
harris-affine is used with different matching algorithms.

An example of the nearest-neighbor matching using SIFT-Based-SSC descriptor
computed for harris-affine is highlighted in Fig. 5.55.
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(a)

(b)

FIG. 5.55: An example of nearest-neighbor matching using SIFT-Based-SSC descriptor com-
puted for Harris-Affine regions. The results are for the (a) textured (trees) and (b) structured
(bikes) scenes. The detected regions are in yellow while their correspondences transformed from
the reference (image in the left of each sub figure) to the second (image in the right of each sub
figure) using ground truth are in blue. The region correspondences computed based on ground
truths and overlap errors are highlighted with blue lines whereas matches identified as correct
using descriptors are highlighted with green lines.
For the purpose of clarity, only few correspondences are shown.
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5.3.7.1 Discriminative power

Here, the discriminative power of the descriptors are chekced using both scenes of
trees and bikes. For each scene, the descriptors are computed on regions extracted
by harris-laplace, hessian-laplace, harris-affine and hessian-affine
detectors. These are then matched with nearest-neighbor and threshold-based
matching algorithms. The obtained results are highlighted in Figs. 5.56-5.63.

Overall, we observe that the discriminative powers of SIFT, CC and SPIN descriptors
are significantly improved after adding semantic-context informations resulting in
bringing, as example, SIFT-Based-SSC to the top rank in all evaluations.

Yet more in the structured scene, for which in some cases SIFT is outperformed by
other descriptors like GLOH, PCA-SIFT, etc. We also notice the large impact of the SSC
information in increasing the discriminative power of the CC descriptor as we can see,
as example, in Fig. 5.63.

More precisely, we remark that for the textured scene, trees, the ranking of descriptors
is almost the same within all evaluations. That is, for different region detectors and
matching strategies. This places SIFT-Based-SSC first followed by SIFT, SC, GLOH,
PCA-SIFT in the 2nd, 3rd, 4th, and 5th ranks, respectively.

Furthermore, we observe that the gaps between SIFT-Based-SSC and other descriptors
become more important inside regions of highest precisions, i.e., ranges of 1-precision
below than ≈ 0.1 as noticed in Figs. 5.56-5.59.

These regions correspond to the left-hand sides of the ROC graphs, which are more
revealing of the descriptor discriminative power. In addition, we notice that the
discriminative power of CC is also well improved with CC-Based-SSC.

The curves obtained in Figs. 5.60-5.63, which are related to the structured scene of
bikes, show SIFT-Based-SSC outperforming other descriptors for all region detectors
and matching algorithms.

Moreover, we observe that the discriminative power of both CC and SPIN are clearly re-
inforced when they are substituted by CC-Based-SSC and SPIN-Based-SSC, respectively.
For instance, the left-hand side (more interesting region in ROC space) of Fig. 5.63a
shows PCA-SIFT and JLA becoming outperformed by CC when adding SSC compo-
nent. That is to say, the CC curve is below those of PCA-SIFT and JLA which in turn
are farther down the curve of CC-Based-SSC.

In conclusion, we obtained across these evaluations, the SIFT-Based-SSC performs the
best in the discriminative power through all experiment and for the textured scene in
particular. We have also seen the discriminative power of CC and SPIN significantly
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increased when substituting CC-Based-SSC and SPIN-Based-SSC descriptors.
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FIG. 5.56: Evaluation results of the discriminative power under image blur. The results are ob-
tained for the textured scene, trees of Fig. 5.2f. The descriptors are computed for Harris-Laplace
regions and matched using (a) the nearest-neighbor and (b) threshold-based matching tech-
niques. The recall scores are computed with respect to (a) 2167 and (b) 32307 correspondences.
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FIG. 5.57: Evaluation results of the discriminative power under image blur. The results are
obtained for the textured scene, trees of Fig. 5.2f. The descriptors are computed for Hessian-
Laplace regions and matched using the (a) nearest-neighbor and (b) distance-ratio-based
nearest-neighbor matching techniques. The recall scores are with respect to (a) 2540 and (b)
37530 correspondences.
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FIG. 5.58: Evaluation results of the discriminative power under image blur. The results
are obtained for the textured scene of trees of Fig. 5.2f. The descriptors are computed for
Harris-Affine regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1233 and (b) 17240
correspondences.
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FIG. 5.59: Evaluation results of the discriminative power under image blur. The results
are obtained for the textured scene of trees of Fig. 5.2f. The descriptors are computed for
Hessian-Affine regions and matched using (a) the nearest-neighbor and (b) distance-ratio-based
nearest-neighbor matching techniques. The recall scores are computed with respect to (a) 1599
and (b) 23315 correspondences.
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FIG. 5.60: Evaluation results of the discriminative power under image blur. The results
are obtained for the structured scene of bikes of Fig. 5.2e. The descriptors are computed for
Harris-Laplace regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1256 and (b) 16901
correspondences.
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FIG. 5.61: Evaluation results of the discriminative power under image blur. The results
are obtained for the structured scene of bikes of Fig. 5.2e. The descriptors are computed for
Hessian-Laplace regions and matched using the (a) nearest-neighbor and (b) distance-ratio-
based nearest-neighbor matching techniques. The recall scores are with respect to (a) 1415 and
(b) 30364 correspondences.
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FIG. 5.62: Evaluation results of the discriminative power under image blur. The results
are obtained for the structured scene of bikes of Fig. 5.2e. The descriptors are computed for
Harris-Affine regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1304 and (b) 17393
correspondences.
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FIG. 5.63: Evaluation results of the discriminative power under image blur. The results
are obtained for the structured scene of bikes of Fig. 5.2e. The descriptors are computed for
Hessian-Affine regions and matched using (a) the nearest-neighbor and (b) distance-ratio-based
nearest-neighbor matching techniques. The recall scores are computed with respect to (a) 1658
and (b) 30509 correspondences.
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5.3.7.2 Invariance

In this experiment, the invariance of descriptors are evaluated against image blur using
textured and structured scenes of trees and bikes, respectively. For each scene,
the invariance is measured by inspecting the degradation in both recall and precision
scores while the amount of blur is progressively increasing. This is performed by using
range of 5 images in each scene, depicting a gradual augmentation in blur.

The descriptors for each image are computed on support regions obtained by harris-affine
detector and matched with both nearest-neighbor and threshold-basedmatch-
ing methods. The obtained results are depicted in Figs. 5.64 and 5.65.

These figures demonstrate, the recall and precision scores obtained with SIFT-Based-
SSC degrade more slowly than with the others. Also we observe that with respect to
the recall, the invariance of SIFT-Based-SSC is better in the textured scene, as shown in
Figs. 5.64a and 5.64b, than in the structured scene as shown in Figs. 5.65a and 5.65b.

However in terms of precision, SIFT-Based-SSC performs much better in the struc-
tured scene than in the textured scene. This can be noticed after comparing curves of
Figs. 5.64c and 5.64d to those of Figs. 5.65c and 5.65d. This also shows the large gap in
precisions between SIFT-Based-SSC and other descriptors for higher amount of blur.

Tab. 5.7 compares the precision scores for the five top best descriptors displayed in
Fig. 5.65d. These are computed for the structured scene of bikes. The scores are
obtained with images of lowest and highest amounts of blur.

TAB. 5.7: Degradations in precision scores under image blur computed for images of the lowest
and highest amounts of blur, and with respect to recall of 0.30. The scores are obtained for
descriptors computed for Harris-Affine regions on the scene of bikes and matched with the
threshold-based matching technique.

SIFT GLOH SC SIFT-Based-SSC CC-Based-SSC
Lowest blur 0.97 0.98 0.97 0.98 0.78
Highest blur 0.70 0.60 0.74 0.86 0.40

This table shows that for low amounts of blur, most of descriptors except CC-Based-SSC,
appear to have approximately similar precisions, whereas when the amount of image
blur is highly increased, the precisions of the other descriptors are rapidly dropping
down while SIFT-Based-SSC keeps significantly a higher precision.

In conclusion, from above evaluations we have seen that the invariance of descriptors
computed for blurred images, can be significantly enhanced when adding SSC informa-
tion. We also found that with respect to the recall, the impact of the SSC information is
better in the textured than in the structured scenes, whereas for the precision, it is the
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contrary, better in the structured than in the textured.
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FIG. 5.64: Evaluation results of the invariance under image blur. The results are obtained for
the textured scene of trees of Fig. 5.2f. The descriptors are computed for Harris-Affine regions
and matched using the (a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques.
The recall scores are computed with respect to precision thresholds of (a) 0.90 and (b) 0.80. The
precision scores are computed with respect to the recall threshold of 0.10 .
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FIG. 5.65: Evaluation results of the invariance under image blur. The results are obtained for
the structured scene of bikes of Fig. 5.2e. The descriptors are computed for Harris-Affine regions
and matched using the (a)(c) nearest-neighbor and (b)(d) threshold-based matching techniques.
The recall scores are computed with respect to the precision threshold of 0.99. The precision
scores are computed with respect to recall thresholds of (c) 0.60 and (d) 0.30.
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5.3.8 Illumination Changes

The following experiment will report the evaluation of the descriptor performances un-
der illumination changes. The performance is investigated based on the discriminative
power and invariance criteria, using the structured scene of cars shown in Fig. 5.2g.

This is composed of 6 images reflecting gradual decreases in image lighting. With re-
spect to the discriminative power evaluation, the descriptors are computed on different
support regions and then matched with different matching algorithms as well.

For the invariance evaluation, the descriptors are computed for harris-affine
regions and tested with different matching techniques.

As example, Fig. 5.66 displays the result of nearest-neighbor matching obtained
for SIFT-Based-SSC descriptor computed on harris-affine regions.

FIG. 5.66: An example of nearest-neighbor matching using SIFT-Based-SSC descriptor com-
puted for Harris-Affine regions. The results are for the structured scene, cars of Fig. 5.2g. The
detected regions are in yellow while their correspondences transformed from the reference
(image in the left of each sub figure) to the second (image in the right of each sub figure) using
ground truth are in blue. The region correspondences computed based on ground truths and
overlap errors are highlighted with blue lines whereas matches identified as correct using de-
scriptors are highlighted with green lines. For the purpose of clarity, only few correspondences
are shown.
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5.3.8.1 Discriminative power

The discriminative power of the descriptors under illumination change are evaluated
for different support regions and matching strategies. The results of these evaluations
are given in Figs. 5.67-5.70.

These results demonstrate the minor impact of the SSC information in improving
the descriptor discriminative power. It is clearly less important than for previous
evaluations, e.g., viewpoint change, image blur, etc.

This can be observed for the SIFT-Based-SSC curves across all reported figures. Un-
fortunately, these figures show also the bad impact of the SSC component when it is
added into SPIN and CC descriptors.

The resulting SPIN-Based-SSC and CC-Based-SSC obtained the discriminative power
dramatically decreased, for example, as shown in Fig. 5.69 and 5.70.

Although it performs less better than for other scenes, we observe SIFT-Based-SSC
still outperforms the rest of descriptors and ranked permanently in the top spot in all
evaluations. Moreover, its highest recall scores are obtained within most interesting
regions in ROC space e.g., Fig. 5.68a.
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FIG. 5.67: Evaluation results of the discriminative power under illumination change. The
results are obtained for the structured scene of cars of Fig. 5.2g. The descriptors are computed
for Harris-Laplace regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1881 and (b) 15901
correspondences.
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FIG. 5.68: Evaluation results of the discriminative power under illumination change. The
results are obtained for the structured scene of cars of Fig. 5.2g. The descriptors are computed
for Hessian-Laplace regions and matched using the (a) nearest-neighbor and (b) distance-ratio-
based nearest-neighbor matching techniques. The recall scores are with respect to (a) 1147 and
(b) 25569 correspondences.
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FIG. 5.69: Evaluation results of the discriminative power under illumination change. The
results are obtained for the structured scene of cars of Fig. 5.2g. The descriptors are computed
for Harris-Affine regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1168 and (b) 15205
correspondences.
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FIG. 5.70: Evaluation results of the discriminative power under illumination change. The
results are obtained for the structured scene of cars of Fig. 5.2g. The descriptors are computed
for Hessian-Affine regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 1124 and (b) 18544
correspondences.
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5.3.8.2 Invariance

Regarding to the invariance evaluation, we consider descriptors computed harris-affine
regions and then matched with nearest-neighbor and threshold-based match-
ing algorithms.

The invariance is measured by inspecting the degradations in recall and precision
scores while the scene is subjected to progressive decreases in illumination. This is
given through 5 images constituted by the scene of cars viewed under different light
intensities. The evaluation results are displayed in Fig. 5.71.

Even though it is not pertinent as in the case of viewpoint change or image blur, we
observe the invariance of SIFT is improved for both recall and precision cores, and
the SIFT-Based-SSC still ranked first in all evaluations. This is more clear for less
illuminated image, as shown in 5.71d.

Based on this figure, Tab. 5.8 is established to compare degradations in precision scores
for the the top 5 best descriptors. The degradations are computed as the difference
between precision score obtained for 5th and 6th images.

In addition, we report along the first and third rows of this table the precision score ob-
tained for the 5th image and the percentages of the degradation amounts, respectively.

TAB. 5.8: Degradations in precision scores under illumination change for the scene of cars.
The score are calculated with respect to recall of 0.25. The descriptors are computed for
Harris-Affine regions and matched with the threshold-based matching technique. The first row
shows the precision scores of each descriptor obtained in the 5th image while the second row
displays differences between precision scores obtained in the 5th and 6th images, whereas the
degradation percentages are recorded along the third row.

SIFT SC GLOH MOM SIFT-Based-SSC
Precision 0.88 0.80 0.80 0.56 0.92
Degradation ↓ 0.18 0.20 0.32 0.36 0.14

−20% −25% −40% −64% −15%

This table illustrates that the SIFT-Based-SSC registers the best scores in both precision
and constancy performance in the sense that it obtains the higher precision, i.e., 0.92,
and lower slope, i.e., 0.14.

In contrast with SIFT, we see the invariance of SPIN and CC are deteriorated when
integrating the SSC information. This is observed particularly for highly blurred images
(e.g., images 5 and 6 in Fig. 5.71a) even though significant improvements are noticed
for less blurred images as obtained with the recall curves of SPIN-Based-SSC and
CC-Based-SSC of figures 5.71a and 5.71b.
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To summarize, during these evaluations we figured out that adding the SSC information
to SIFT descriptor has a slight effect to improve the descriptor invariance i.e., less than
in the case of other deformations (viewpoint change, image blur, etc). However, the
performance of SPIN and CC almost decreases when substituting them by SPIN-Based-
SSC and CC-Based-SSC, respectively.
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FIG. 5.71: Evaluation results of the invariance under illumination change. The results are
obtained for the structured scene of cars of Fig. 5.2g. The descriptors are computed for Harris-
Affine regions and matched using the (a)(c) nearest-neighbor and (b)(d) threshold-based match-
ing techniques. The recall scores are computed with respect to precision thresholds of (a) 0.95
and (b) 0.80. The precision scores are computed with respect to recall thresholds of (c) 0.10 and
(d) 0.25.
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5.3.9 JPEG Compression

To evaluate the performance of our approach against loss in image quality, a set of
images of different degrees of JPEG-compression are used. These are those of ubc’s
scene shown in Fig. 5.2h.

The performance are evaluated with respect to the discriminative power of descriptors
computed on harris-laplace hessian-laplace, harris-affine, and hessian-affine
support regions. We adopt both nearest-neighbor and threshold-based match-
ing approaches.

For instance, Fig. 5.72 shows a sample of support regions (yellow ellipses) of harris-affine
described using SIFT-Based-SSC descriptor and then matched with nearest-neighbor
matching technique (green lines).

FIG. 5.72: An example of nearest-neighbor matching using SIFT-Based-SSC descriptor com-
puted for Harris-Affine regions. The results are obtained for the structured scene, ubc of
Fig. 5.2h. The detected regions are in yellow while their correspondences transformed from
the reference (image in the left of each sub figure) to the second (image in the right of each
sub figure) using ground truth are in blue. The region correspondences computed based on
ground truths and overlap errors are highlighted with blue lines whereas matches identified as
correct using descriptors are highlighted with green lines. For the purpose of clarity, only few
correspondences are shown.
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5.3.9.1 Discriminative power

The evaluation results of the discriminative power under JPEG compression are de-
picted in Figs. 5.73, 5.74, 5.75, and 5.76.

The scores are obtained for feature matching between the reference and 6th images.
This latter is shown in the right side of Fig. 5.72. It corresponds to the most degraded
image within the images of ubc’s scene.

The figures show all curves obtained with the nearest-neighbor (i.e., Figs. 5.73a,
5.74a, 5.75a, and 5.76a) are mostly situated toward the upper left-hand side of the ROC
space. This means the discriminative power of descriptors is much better under JPEG
compression than under other deformations (e.g., rotation, scale change, image blur,
etc).

On the other hand and in contrast with image blur, we observe that the discriminative
power of SPIN and CC is noticeably ameliorated when the SSC information is added,
which is not the case for SIFT as we can see across comparing the SIFT and SIFT-Based-
SSC curves.

Despite this, we find SIFT-Based-SSC still being in the top spot over all evaluations,
and besides, the ranking of CC-Based-SSC is much better than that of CC, yet more it
wins SC and GLOH in the case of Fig. 5.74a where it is placed 3rd behind SIFT.

We also notice that the role of the SSC component is more effective with CC than with
SPIN. This can be seen, for example, in Fig. 5.75b, in which while the SPIN and CC
curves are almost aligned, the curve of CC-Based-SSC goes much far above that of
SPIN-Based-SSC.

These differences seem more important when examining the gains in the number of
correct matches obtained separately for each SSC-based descriptor as highlighted in
Tab. 5.9.

In this table, the number of correct matches obtained with the local components, i.e.,
SIFT, SPIN, and CC, are reported along the first row while the percentages of the
number of correct matches gained when adding the semantic-context components are
recorded along the second row. Furthermore, we show the ranking changes along the
third row. The scores are established for number of correspondences of 39932 and with
respect to a precision of 0.2.

This table reflects how well the CC descriptor is positively influenced by the SSC
information where the improvements manifest clearly to be much better than those of
SPIN-Based-SSC and SIFT-Based-SSC descriptors.
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TAB. 5.9: Gains in the number of correct matches when adding semantic-context informations
in the case of JPEG compression (scene of ubc). The number of correct matches obtained with
the local components (SIFT, SPIN and CC) are reported along the first row while percentages of
number of correct matches gained when adding semantic-context components are recorded
along the second row. The ranking changes are exhibited along the third row. The scores
are established for number of correspondences of 39932 and with respect to a precision of
0.2. The descriptors are computed for Hessian-Affine regions and then matched with the
threshold-based matching strategy.

SIFT-Based-SSC SPIN-Based-SSC CC-Based-SSC
#Correct matches 11980 6590 6588
Gain ↑ (%) +03% +09% +63%
Ranking change 1→ 1 7→ 6 8→ 4
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FIG. 5.73: Evaluation results of the discriminative power under JPEG compression. The results
are obtained for the structured scene of ubc of Fig. 5.2h. The descriptors are computed for
Harris-Laplace regions and matched using (a) the nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 2508 and (b) 39883
correspondences.
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FIG. 5.74: Evaluation results of the discriminative power under JPEG compression. The results
are shown for the structured scene of ubc of Fig. 5.2h. The descriptors are computed for Hessian-
Laplace regions and matched using the (a) nearest-neighbor and (b) threshold-based matching
techniques. The recall scores are with respect to (a) 2160 and (b) 41447 correspondences.
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FIG. 5.75: Evaluation results of the discriminative power under JPEG compression. The
results are shown for the structured scene of ubc of Fig. 5.2h. The descriptors are computed
for Harris-Affine regions and matched using (a) nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 2569 and (b) 37780
correspondences.
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FIG. 5.76: Evaluation results of the discriminative power under JPEG compression. The
results are shown for the structured scene of ubc of Fig. 5.2h. The descriptors are computed
for Hessian-Affine regions and matched using (a) nearest-neighbor and (b) threshold-based
matching techniques. The recall scores are computed with respect to (a) 2381 and (b) 39932
correspondences.
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5.3.10 Computation Time

For the computational time (in terms of wall-clock time), we reported 1.9 ms/per-
feature for computing the SSC component of SIFT-Based-SSC. This is approximately
41% of SIFT computational time (4.8ms/per-feature). The recorded times are obtained
on the highly textured scene of zeriba.

This is very motivating, since the focus here is more upon the performance than
efficiency.
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5.4 Conclusion

In this chapter, the concept of SSC is used to address the problem of 2D image feature
matching on real data sets composed of different types of images, subjected to different
geometric deformations and imaging conditions.

The reported results showed SSC-based descriptors to perform significantly above the
expected performance. It clearly illustrated the effectiveness of the approach, under
particular conditions, to turn impractical descriptors into well suited descriptors. This
has been demonstrated for different geometric image transformations.

In addition, it is also noticed the usefulness of the SSC approach under imaging
condition changes is less better but still outperforms other descriptors as we showed
for SIFT-Based-SSC under image blur, illumination change, and JPEG compression.

Furthermore, we observed how well the performance of a basic descriptor like cross-
correlation (CC) is highly increased when adding the semantic-context component as
in cases of geometric transformations and image blur.
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6.1 Introduction

In this Chapter we test the effectiveness of the proposed SSC feature descriptor by
addressing the problem of multiview surface matching. As customary [Huber 03], regis-
tration1 is carried out pairwise first, and then a simple strategy for treating multiple
range images2 is implemented.

6.2 Pairwise Registration

We propose our feature matching strategy to solve robustly the issue of pairwise 3D
view pre-alignment.

Given a pair of 3D views, feature matching estimation is carried out by comparing the
descriptors of each feature point of the first view (range), with all the feature points of
the second range. In this fashion a graph of point-to-point similarities is built and the
correspondences are estimated based on bipartite graph matching concept [Duda 01]
by using Hungarian algorithm [Frank 05]. This algorithm is applied on the global
similarity matrix, C, defined in Equation 3.4.

Then, in order to remove false matches, the standard RANSAC [Fischler 81] algorithm
is implemented. It imposes the rigid constraint among two views. The output of
RANSAC is obtained as pre-final feature-point matching, i.e., the pre-alignment. Based
on this pre-alignment the ICP refinement algorithm is then applied to obtain the
pairwise view alignment.

In addition, to allow the SSC component to be influenced from the whole 3D view to a
small neighborhood, the weighting function, g(·) of Equation 3.6 is defined as Gaussian
kernel. This approach is especially useful in the context of partial 3D view matching
since furthest points are likely to be occluded.

Since the Gaussian function relies heavily on the scale parameter, σ, we implement
a greedy approach evaluating a set of values σs ∈ I to determine the best scale σbest.
This is selected as that recording the minimal pairwise registration error3.

1In this paper, the terms alignment and registration are used equivalently.
2Here, a view refers to a partial 3D view, also called range image.
3The registration error is computed by summing the residual errors of all corresponding points between

the two views after the pre-alignment, where the correspondences are computed by closest point.
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6.3 Treating Multiple Range Images

To extend the pairwise registration to multiple registration, we build the registration
matrixMx,y. This matrix stores the registration score for each pairwise view matching
i.e., the pre-alignment error between range images Rx and Ry.

We also suggest a strategy for estimating the best pair of views to be registered. We
binarize the matrix Mx,y by using a threshold obtained experimentally. Then we
estimate the best path which connects all the range and minimize the sum of registration
scores (i.e., similar to [Novatnack 08] by maximum spanning tree).

Finally, the registrations of the selected pairs are refined by ICP [Besl 92] and all the
views are put to the global reference system by simply concatenating subsequent
pairwise rigid transformations.

6.4 Experimental Setup

The performance of 3D SSC-based descriptor is evaluated for matching and alignment
of multiple range images by performing three different experiments. These include,
pairwise matching and registration of range images using (i) one-information-based
SSC and (ii) multiple-information-based SSC descriptors, and (iii) an automatic
multiple range images registrations.

The experiments are conducted based on the following setting:

6.4.1 Data Set

The evaluations are carried out using range images collected from the standard database
of Stuttgart university available on-line4. These contain 10 full models constituting 120
range images in total, i.e., each model is composed of 16 range images obtained from
different azimuthal viewpoint angles, as illustrated in Figs. 6.1.

The range images are produced under uncontrolled conditions using the 3D scanners,
Cyberware 3030 MS and XYZ RGB. Under such conditions which reflect a real environ-
ment of scanning process, several errors can appear. The errors related to outliers, scan
misalignments, and device as well as systematic errors are few examples.

These errors can cause many approaches to be ineffective. Through exploiting of the
proposed SSC approach, we expect better performance can be achieved.

4http://range.informatik.uni-stuttgart.de/htdocs/html/
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6.1: Examples of range images used to evaluate the 3D SSC-based descriptor. Each model
in the data set is composed of 16 range images obtained from different azimuthal viewpoint
angles. We show here those for (a) Bunny, (b) Dino, (c) Dragon, (e) Porsche, (f) Hasi, and (g)
Liberty.

6.4.2 Evaluation Criteria

We use three registration measures, inlier percentage (i.e., correct matches percentage),
pre-alignment error, and alignment error.

The inlier percentage is computed as the ratio of the number of inliers (i.e., obtained
by RANSAC algorithm) to the number of putative matches (i.e., the potential matches
obtained by the Hungarian algorithm).

The pre-alignment error computed as RANSAC Root Mean Squared Error, abbreviated as
RANSAC-RMSE. This measures the average of error squares occurring after applying
RANSAC to align two range images.

The alignment error, ICP-RMSE, is similar to the latter whereas it is computed after
applying ICP final alignment (i.e., refinement).

6.4.3 Descriptors

This proposed SSC descriptor is compared to the both standard 3D Shape-Context [Frome 04]
and Spin-Image [Johnson 99] descriptors, early presented in Section Related Work.

Briefly, a 3D Shape-Context descriptor is computed as a histogram encoding the point
distribution around a reference feature point, as function of three quantized spherical
coordinates: radial distance, r, elevation angle, θ, and azimuthal angle, φ. In our
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evaluations, we use an histogram of size 10×10×10.

For Spin-Image, the descriptor is also computed as a histogram, but with respect to
two parameters only. Thus, each histogram is a function of the quantized cylindrical
coordinates α and β, which are the positive radial and signed elevation coordinates,
respectively. The experiments use a histogram of 10×10.

6.4.4 Computation of Local Descriptors and Context Components

For shape-index measure (information), the L is a histogram of size 6× 8, whereas
that related to β-value is data dependencies. That is to say, the histogram size of L
component depends on mesh resolution of the range image being treated. For instance,
we computed a histogram of size 215×408, for Bunny’model.

The SSC component is of size 6×K, in which the number of visual words, K, is obtained
as an estimate of the average number of features per range image, e.g., we obtained
K= 50 for Bunny’s model.

6.4.5 Matching and Registration Strategies

We adopt range image feature matching based on bipartite graph concept, for which
the Hungarian algorithm is applied. This requires a similarity matrix (i.e., Equation 3.4)
to be previously computed, i.e., as an input of the algorithm.

To reject false matches, the RANSAC alignment algorithm is then applied by imposing
a rigid body transformation between each pairwise range images. Thus, the final set
of correct matches (inliers) are provided. This is used later by the ICP refinement to
produce the final pairwise range images alignment.

6.5 Results and Discussion

As mentioned above, the performance of 3D SSC approach is evaluated within three
experiments. The first two experiments are related to pairwise view registrations.

In the first experiment of Section 6.5.1, we use the shape-index measure, si, to build the
local descriptor, L, and the global similarity matrix, C, is given as follows:

C(p1,p2) = C
si
L (p1,p2)+C

si
SSC(p1,p2). (6.1)
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In the second experiment of Section 6.5.2, The global descriptor is computed around
two different geometric measures, shape-index, si, and β-value, bv. That is, G is a
combination of four different components, for which the matrix, C, is written as:

C(p1,p2) = C
si
L (p1,p2)+C

bv
L (p1,p2)+

CsiSSC(p1,p2)+C
bv
SSC(p1,p2).

(6.2)

The weighting coefficient,w, appearing in Equation 3.4 is discard, i.e., the different com-
ponents are contributing equally. The G descriptor constructed thus is then compared
to the standard approaches of 3D Shape-Context and Spin-Images.

In the third experiment of Section 6.5.3, the SSC-based descriptor tested during the
second experiment (i.e., Equation 6.2) is used to perform an automatic multiple range
images registration, and its performance is compared to those obtained with Shape-
Context and Spin-Images.

Before going into details, Fig. 6.2 shows an example of feature matching between two
range images, in which the putative matches (after applying Hungarian algorithm) are
highlighted with blue lines while the inliers (after applying RANSAC algorithm) are
shown with red lines.

During the experiments, the scale, σs related to the Gaussian function, g(·), used to
compute the SSC component is automatically adjusted, i.e.,

σs ∈ {0.1, 0.6, 1.1, 1.6, . . . ,4.6}, (6.3)

while the other parameters remain fixed. It appears that the only revealing parameters
are the scale, σs, and number of visual words, K. This is set as the average number of
feature points per range image.

6.5.1 One-Information-Based SSC Descriptor

In this evaluation, the performance of the SSC-based descriptor, G, obtained around
the matrix distance of Equation 6.1, is evaluated and compared to those of L and SSC
components.

The obtained results are depicted in Figs. 6.3, 6.5, and 6.5. Following are some ob-
servations reported with respect to the registration measures: percentage of inliers,
pre-alignement error, and alignment error.
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FIG. 6.2: An example of feature matching between two range images, in which the putative
matches (after applying Hungarian algorithm) are highlighted with blue lines while the inliers
(after applying RANSAC algorithm) are shown with red lines. Here, the range images are
displayed as range surfaces, i.e., after performing triangulation and shaded rendering.
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6.5.1.1 Inlier percentages

In Fig. 6.3, the considerable gap in the percentage of correct matches looks reasonably
straightforward, where the curves ofG is always above those of L and SSC components.
It is easy to observe that SSC component performs better than L.

This is quite expected, since the contextual signature, SSC, is often well-suited for range
images, which are composed of point cloud with local discontinuity structures.

The aforementioned illustrates that G is more discriminative, and thus the number of
accurate putative matches obtained after applying Hungarian algorithm is high enough
for RANSAC to produce a higher number of inliers as well.

We note that similar results are recorded on the other models and the performance of G
on high mesh resolution models are observed to be better than those on models of less
mesh resolutions. For instance, G performs better on Bunny than on Dino as shown in
Fig. 6.3a and Fig. 6.3b.

(a) Bunny (b) Dino

FIG. 6.3: Evaluation of range-image feature matching according to the percentage of inliers
(correct matches). The results are obtained for (a) Bunny and (b) Dino models. On the x-axis
the pairwise range image pre-alignments are sorted in ascending order from 1 to 15 since the
model contains 16 range image

6.5.1.2 Pre-alignment error (RANSAC-RMSE)

The results related to pre-alignment errors are displayed in Fig. 6.4. These are obtained
on two models with different mesh resolutions. We observe that the pre-alignement
error computed for G is less than those for L and SSC.

Much as the previous evaluation (w.r.t. inlier percentages), G produces more accurate
pre-alignemets on Bunny than on Dino as illustrated in Fig. 6.4a and Fig. 6.4b, respec-
tively. Since the resulting pre-alignement based on G is always more accurate, thus it is
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more easy to be directly refined by any ICP-based algorithm.

(a) Bunny (b) Dino

FIG. 6.4: Evaluation of pairwise range image pre-alignment according to RANSAC-RMSE.
The results are obtained for (a) Bunny and (b) Dino models. On the x-axis the pairwise range
image pre-alignments are sorted in ascending order from 1 to 15 since the model contains 16
range images

6.5.1.3 Alignment error (ICP-RMSE)

The evaluation results obtained according to the final alignment error are demonstrated
in Fig. 6.5. We reported the final alignment error after applying ICP refinement less
important with G than with L and SSC taken separately. This is because of good pre-
alignments (RANSAC alignments) provided after combined L and SSC components.
Similar to the pre-alignment evaluation, the final alignment is noticed to be in gen-
eral better on models of high resolution meshes than those of less resolution meshes.
Fig. 6.5a and Fig. 6.5b are examples.

(a) Bunny (b) Dino

FIG. 6.5: Evaluation of pairwise range image alignment according to ICP-RMSE. The results
are obtained for (a) Bunny and (b) Dino models. On the x-axis the pairwise range image
alignments are sorted in ascending order from 1 to 15 since the model contains 16 range images
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6.5.2 Multiple-Information-Based SSC Descriptor

In this evaluation, G descriptor computed on both shape-index and β-value geometric
measures (as given in Equation 6.2), is compared to 3D Shape-Context and Spin-Images
descriptors.

The descriptors are evaluated according to the RANSAC and ICP alignment errors
defined early. Our evaluation proceeds by computing the registration matrix, Mx,y,
that contains the alignment error for each pair of images (we used 16 range images of
each model).

By varying the scale, σs, (weighting the spatial extent of SSC component) as given in
the statement 6.3, we select the best, σbest, for which the RANSAC pre-alignment error
is the minimum.

Then we record the corresponding RANSAC and ICP alignment errors as well as
the associated transformation. We find the best path of a weighted graph (i.e., the
registration matrix,Mx,y) by using the maximum spanning tree algorithm [Wu 04].

The test models are intentionally selected to obtain different type of range images
with diverse properties, i.e., contain various type of features, surfaces (e.g., planar),
symmetries, and curvatures. The evaluation results obtained on eight of these models
are depicted within Figs 6.6 . . . 6.13.

The obtained results illustrates without doubt the best performance of our descriptor
compared to those of 3D Shape-Context and Spin-Image. This holds on different
evaluated models when the approximate pairwise registration (i.e., RANSAC pre-
alignment) obtained with our descriptor still the best for the almost pre-alignments.

Moreover, in many cases the 3D Shape-Context and Spin-Images failed completely
to produce an accurate enough pre-alignment, which is required by any ICP-based
alignment algorithm in order to converge.

Fig. 6.11 is an example demonstrating a number of pairwise alignment based on 3D
Shape-Context and Spin-Images performed unsuccessfully while our descriptor pro-
vides accurate pre-alignments in all cases.

In order to demonstrate the robustness of our descriptor according to the overlap area,
we computed the best scale, σbest, for each pairwise alignment. The corresponding
alignment error is reported. We use large, medium, and small to define the amount of
overlap, which is proportionally estimated from σbest (i.e., the larger σbest the larger
the overlap).

The computed pre-alignment error for each pairwise range image is compared to
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FIG. 6.6: Evaluation of pairwise alignment errors for Bunny’s model. The errors are related
to (Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise range
image alignments are sorted in ascending order from 1 to 15 since the model contains 16 range
images.



166 6.5. Results and Discussion

FIG. 6.7: Evaluation of pairwise alignment errors for Bull’s model. The errors are related to
(Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise range
image alignments are sorted in ascending order from 1 to 15 since the model contains 16 range
images.
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FIG. 6.8: Evaluation of pairwise alignment errors for Dino’s model. The errors are related
to (Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise range
image alignments are sorted in ascending order from 1 to 15 since the model contains 16 range
images.
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FIG. 6.9: Evaluation of pairwise alignment errors for Dragon’s model. The errors are related
to (Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise range
image alignments are sorted in ascending order from 1 to 15 since the model contains 16 range
images.
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FIG. 6.10: Evaluation of pairwise alignment errors for Female’s model. The errors are related
to (Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise range
image alignments are sorted in ascending order from 1 to 15 since the model contains 16 range
images.
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FIG. 6.11: Evaluation of pairwise alignment errors for Hasi’s model. The errors are related
to (Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise range
image alignments are sorted in ascending order from 1 to 15 since the model contains 16 range
images.
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FIG. 6.12: Evaluation of pairwise alignment errors for Screwdriver’s model. The errors are
related to (Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise
range image alignments are sorted in ascending order from 1 to 15 since the model contains 16
range images.



172 6.5. Results and Discussion

FIG. 6.13: Evaluation of pairwise alignment errors for Seahorse’s model. The errors are related
to (Left) RANSAC pre-alignment and (Right) ICP alignment. On the x-axis the pairwise range
image alignments are sorted in ascending order from 1 to 15 since the model contains 16 range
images.
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those obtained with 3D Shape-Context and Spin-Image. Tabs. 6.1 . . . 6.4 summarize the
results.

For each model we selected 4 different pairwise alignments according to the σbest
value (i.e., large, medium, or small overlap). Note that the 3D Shape-Context and
Spin-Images approaches provide more accurate alignments for large overlaps only,
while for the small to medium overlaps, our descriptor seems to be significantly better.

Thus, we observe that for low (i.e., small and medium) overlaps, the pre-alignment
errors reported with our descriptor are mostly smaller than those of other descriptors.
This is clearly illustrated, for example, in Tabs. 6.2 and 6.4.

Even though it records slightly higher errors than 3D Shape-Context and Spin-Image
for large overlaps (e.g., Tab. 6.4), it is still operational to provide enough accurate pre-
alignments 5 necessaries for ICP-based refinement to be directly and successfully
performed.

This is not the case with the other descriptors for many pairwise pre-alignments where
the pre-alignement errors provided by 3D Shape-Context and Spin-Image are above
the specific threshold. 5

TAB. 6.1: Evaluation of our SSC-based descriptor (global) robustness for Bunny’s model
according to the overlap area.

RANSAC alignment error
Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

08← 07 3.1 large 0.0310 0.0283 0.0388
14← 12 1.6 medium 0.0292 0.0583 0.4479
03← 02 0.6 small 0.0301 0.0637 0.4248
09← 10 4.6 large 0.0284 0.0306 0.0304

TAB. 6.2: Evaluation our SSC-based descriptor (global) robustness for Bull’s model according
to the overlap area.

RANSAC alignment error
Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

07← 08 0.1 small 0.0256 0.3168 0.3489
11← 12 4.1 large 0.0260 0.0329 0.0333
16← 02 1.6 medium 0.0267 0.0323 0.0299
09← 10 3.6 large 0.0256 0.0348 0.0256

The main reasons behind the best performance of our descriptor are:

5We found experimentally that for pre-alignment errors below 0.06, ICP-based algorithm converges to
the good solution.
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TAB. 6.3: Evaluation of our SSC-based descriptor (global) robustness for Dino’s model accord-
ing to the overlap area.

RANSAC alignment error
Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

16← 02 0.1 small 0.0269 0.0727 0.2568
03← 04 3.6 large 0.0271 0.0260 0.0260
02← 03 1.6 medium 0.0275 0.0301 0.2847
07← 08 4.6 large 0.0261 0.0276 0.0277

TAB. 6.4: Evaluation of our SSC-based descriptor (global) robustness for Dragon’s model
according to the overlap area.

RANSAC alignment error
Pairwise alignment σbest overlap Our Descriptor Spin Image 3D Shape Context

04← 05 4.1 large 0.0263 0.0263 0.0263
13← 14 2.1 medium 0.0258 0.2252 0.2869
14← 15 1.1 small 0.0246 0.3149 0.0247
03← 04 2.6 medium 0.0258 0.0846 0.0258

• Combining local descriptor with context component can resolve the ambiguities
that may appear in each other (e.g., locally where a view has similar surface
elements).

• By using multiple sources of information, e.g., shape-index and β-value, we
are able to compensate for apparent (or intrinsic) defects of one component by
retrieving information from another (i.e., from local to context components and
vice versa).

• Another strong point in our approach is related to rotation invariance of our
descriptor. It means that we can use a simplified histogram-like descriptor.
Therefore, we avoid a high loss of information [Malassiotis 07] (i.e., going from a
3D to a 2D representation) and gain more in robustness.

These mentioned arguments may explain the superior performance of our approach in
the case of small overlap illustrated in the above tables.

6.5.3 An Automatic Registration of Multiple Range Images

Based on the same global descriptor,G, previously computed (i.e., multiple-information-
based SSC of Section 6.5.2), we conducted an automatic multiple range image registra-
tion. We evaluated a collection of 10 models, consisting of 16 images in each model.
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The images are chosen in such a way that ICP would diverge by requiring a robust
pre-aligning strategy.

Figure 6.14 shows the results of 4 models. Note that the registered models are further
refined with an ICP-based algorithm. It can be seen across the 2nd and 3rd columns of
each row that these registered models do not have noticeable defects.

This because of the approximate alignment (i.e., with the RANSAC-based algorithm)
which is obtained is very accurate, and thus can be directly and successfully refined
with an ICP-based algorithm.6

Finally, similar automatic multiple range image registration are performed using 3D
Shape-Context and Spin-Image. The results are illustrated in Tab. 6.5, in which the
three approaches are compared according to the percentages of the number of pairwise
alignments performed successfully (i.e., ICP-algorithm converges towards the good
solution) for each tested model.

TAB. 6.5: Evaluation of automatic multiple range image registration according to the percent-
ages of the number of pairwise alignments, which are performed successfully i.e., ICP-algorithm
converges towards the good solution.

Model 3D Shape-Context Spin-Image Our Descriptor
Bunny 81.2 87.5 100
Dino 75.0 75.0 100
Bull 93.7 87.5 100
Dragon 100 100 100
Liberty 68.7 93.7 100
Hasi 100 93.7 100
Porshe 81.2 100 93.7
Mole 93.7 87.5 100
Copter 100 81.2 87.5
Screwdriver 81.2 68.7 93.7
Average 87.4 87.4 97.4

This table demonstrates that out of 10 tested models, we are able to align (i.e., overlay)
successfully 7 the range images of 7 models when using our descriptor. Whereas
we report only 3 and 2 models when adopting 3D Shape-Context and Spin-Image
approaches, respectively.

Furthermore, the registered (i.e., aligned) models obtained with our approach appear
to be very accurate, without visible imperfections, as shown in Fig. 6.14.

6An ICP-based algorithm requires a sufficient overlap among the views and a coarse pre-registration
to avoid getting stuck into a local minimum.

7Those obtain percentages of 100%, which means the 16 range images composing the model are aligned
successfully.



176 6.5. Results and Discussion

FIG. 6.14: An automatic multiple range images registration based on the SSC descriptor. Here,
along the 1st column, four sets of range images before registration are displayed, while along
the 2nd to 5rd columns of each row, the registered range images seen from 4 different angles.
These registered models are very accurate; indeed, they appear without visible defects.
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6.6 Conclusion

In this chapter, we showed that the SSC is a successful yet simple concept, to implement
a powerful feature descriptor which resolves efficiently the problem of pre-alignemnt,
i.e., approximate alignment by postapplication of a RANSAC-based method. This pre-
alignemnt becomes accurate enough to be directly refined by an ICP-based registration
method. We also introduced an approach to automatically estimate the overlap area.
We used the scale for determining which views overlap. Based on the best scale, we
find the best pairs of views to be registered to each other for fully automatic registration.
Our experiments demonstrated the efficiency of our descriptor for the case of a small
overlap.
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7.1 Introduction

We have proposed across this manuscript, an extension of feature description and
matching strategies, through presenting an original approach to learn the meaning of
local features, which leads in turn to estimate the semantic of the local features. This
semantic is then exploited, in conjunction with the bag-of-words paradigm, to build a
powerful feature descriptor.

The approach consists, first, in extracting the semantic information around local infor-
mation collected on different images. Thus, the local descriptors computed on different
images are grouped and then clustered to generate what we call, semantic features (or
visual words) – in fact, these are the different obtained clusters.

Inspired by bag of words paradigm (BoW), these semantic features are then accumu-
lated inside spatial concentric shells to obtain an histogram-based representation of
Semantic-Shape-Context component. This, is next concatenated to the local component
to obtain finally our proposed SSC-based feature descriptor.

The effectiveness of the SSC concept is illustrated for two different real machine vision
applications. The first is a 2D-domain problem which addresses the problem image
features matching. The second is a 3D-domain issue, which involves matching and
alignment of multiple range images.

The experimental results showed our approach performs much better compared to
other methods. For both the 2D-domain and 3D-domain addressed problems, the
higher performance scores are recorded by our proposed SSC-based descriptors. This is
specially illustrated on the images extracted under hard and uncontrollable conditions,
where the standard descriptors quickly achieve their limitations and turn out to be
unworkable in some cases.

The remainder of this chapter summarizes the content of our contribution regarding
the usefulness of SSC concept in both the 2D and 3D domains.

7.2 SSC Approach in 2D-Domain

Our evaluations in 2D-domain have been conducted to resolve an important and crucial
problem, omnipresent in many computer vision applications. This consists in matching
features on images, subjected to real geometric transformations and relevant imaging
conditions.

The evaluations are previously designed to compare the performance of three variant
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of SSC-based descriptors to those obtained with ten of well-known and most usable
state-of-the-art descriptors. The performances are evaluated with respect to both the
discriminative power and invariance criteria.

In order to illustrate the impact of the detectors and matching approaches on the
descriptor performance, different combinations of detectors and matching strategies
are tested.

In the beginning, we have expected that better performances of our approach would be
obtained within scenes depicting a large number of similar regions, textured scenes,
and scenes reflecting complicated non-affine transformations.

Overall, the experimental results showed SSC-based descriptors to perform significantly
above the expected performance. It clearly illustrated the effectiveness of the SSC
information, under particular conditions, to turn impractical descriptors into well
suited descriptors.

This has been demonstrated for geometric image transformations, rotation, scaling
and viewpoint change. We also noticed the usefulness of our approach under imaging
condition changes, is less but still outperforms other descriptors as we showed for
SIFT-Based-SSC under image blur, illumination change, and JPEG compression.

Further, we observed how well the performance of the basic descriptor, cross-correlation
is highly increased when including the SSC component as in cases of geometric trans-
formations and image blur.

Besides, we retained that SIFT-Based-SSC performs best performance across all the
comparisons, i.e., for different detectors, matching strategies, and scene types.

According to different variants of tested SSC-based descriptor, the best gains for both
the discriminative power and invariance are obtained mostly with SIFT-Based-SSC and
CC-Based-SSC descriptors. However, SPIN-Based-SSC is better for image rotation and
blur than for scale changes and JPEG compression.

We found the gains obtained with CC-Based-SSC under JPEG compression are much
more than those of SIFT-Based-SSC. In addition, the best performance of SPIN-Based-
SSC in terms of discriminative power is obtained for the textured scene of image
rotation with descriptors computed for hessian-laplace where SIFT-Based-SSC
and CC-Based-SSC are outperformed by SPIN-Based-SSC.

Regarding the detectors, the performance of SSC-based descriptors are mostly similar.
However, descriptors computed for Hessian-based detectors perform some times better
than those of Harris-based detectors. As example, for image rotations, scale changes
and viewpoint changes.
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This is because the Hessian-based detectors are more accurate than those of Harris-
based, as noted by their authors [Mikolajczyk 05b, Mikolajczyk 05a].

According to matching strategies, the SSC-based approaches show to perform equally
with both the nearest-neighbor and threshold-based algorithms whereas in
some evaluations, the performance appears to be better with the nearest-neighbor
than with the threshold-based matching method. This is mainly due to the higher
precision of the nearest-neighbor algorithm since it is almost correct and selects
only one match (the best below the threshold) and discarding others. In contrast with it,
the threshold-based algorithm selects many matches and obviously many of them
are false which leads to lower the discriminative power.

Furthermore, in many cases, SIFT-Based-SSC appeared to win largely the other de-
scriptors while it gains the first rank far away from them. This is illustrated for image
rotations, scale changes, and the challenging transformation of viewpoint changes in
particular.

Tab. 7.1 reports the ranking of descriptors over all the conducted evaluations with
respect to different image deformations. This ranking is established according to the
discriminative power of large image deformations. The descriptors are computed
on hessian-affine regions and then matched with the nearest-neighbor algo-
rithm. Since it is the most significant ROC region, the ranking is mostly based on
descriptor responses nearby the left-side region of ROC space. For some situations,
the ranking is not accurate enough because some descriptors perform almost equally.
For illumination change and JPEG compression, the ranking is given for descriptors
computed on hessian-laplace support regions.

This table shows clearly how well the performance of SIFT descriptor is enhanced once
the SSC information is added. In this spirit, we obtain the high-ranking of SIFT-Based-
SSC even though SIFT performs less good like for image rotation in which it is ranked
5 and 6.

Besides, the table shows the performance of the simplest cross-correlation (CC) de-
scriptor remarkably enhanced when the SSC component is incorporated. This can be
observed, as example, for viewpoint changes under the textured scene containing a
large number of similar regions (T*). Thus, while the CC is ranked 8, the CC-Based-SSC
wins the 2nd rank, and therefore outperforms the competitive descriptors of GLOH
and SC.

The most evaluations are performed for variants of SSC-based descriptors (i.e., SIFT-
Based-SSC, SPIN-Based-SSC, and CC-Based-SSC), computed with parameter values
fixed roughly, we thus set the number of clusters to 25, the number of concentric shells
to 12 and we adopted the k-means clustering strategy.
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Even though its best performance in terms of the discriminative power and invariance,
our approach is not without problems. It suffers from an excessive computation time,
such as the best case of SIFT-Based-SSC where we reported an extra time of ≈ 50% in
addition to that needed to compute the local component SIFT.

To overcome this constraint, we advocate building the SSC component around a simple
local signature designed specifically with the lower computational time and to obtain a
SSC component which can compensate for lack of performance of the local signature.

This is mainly inspired by the cross-correlation which showed an enormous perfor-
mance enhancement once the SSC information is added while it is much less computa-
tionally demanding than other competitive local signatures, like SIFT.

This problem seems interesting to be addressed since in addition the advantage to
improve the computation time, it allows to figure out the best approach for constructing
the local signature in such a way to take benefits of extra performance from SSC
component contributions.

In other words, investigate the appropriate type of local signatures as well as their
suited connections with the SSC component so as to get the best performance of the
resulted descriptor. Precisely, we suggest to inspect the best approach to build the local
and SSC components in such a manner to compensate for lack in performance from one
to another. It also means examine other alternatives to generate the SSC information
instead of those based on clustering method.

7.3 SSC-Based Approach in 3D-Domain

The usefulness of our SSC approach is also evaluated in 3D domain, in which a SSC-
based descriptor is proposed to resolve a problem arising in matching and alignment
of multiple range images.

Similar to 2D domain, our suggested 3D feature augmented descriptor is computed
based on extracting semantic features using k-means clustering method. These are
then exploited to generate a SSC component, SSC, which in turn, is combined with
local information, LD, to obtain our full SSC-based feature descriptor, GD.

Thus, a novel descriptor robust to overlap and extremely discriminative is derived. The
proposed SSC-based descriptor is effective yet simple to implement.

The performance of SSC-based feature descriptor is evaluated for matching and align-
ment of multiple range images by performing different evaluations.

We started by conducting pairwise matching and alignment test to compare the per-
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formances of LD, SSC, and GD components. The purpose is figuring out how well
the performance is enhanced when combining local and SSC information compared to
those of LD and SSC used separately. To this aim, the LD is computed based on one
information only.

Next, the performance of the SSC-based descriptor built around multiple information,
i.e., different geometric measures, is compared to those of the standard 3D descriptors
of 3D Shape-Context and Spin-Image.

In the second evaluation, the performance of the proposed approach is used to perform
an automatic multiple range image registration. Similar to above, the SSC-based
descriptor, GD, is computed around two different source of information, which are the
shape index and β-value geometric measures.

The reported evaluation results illustrate without doubt the best performance of our
descriptor compared to those of 3D Shape-Context and Spin-Image. This holds on dif-
ferent evaluated models when the approximate pairwise registration (i.e., RANSAC pre-
alignment) obtained with our descriptor is still the best for the almost pre-alignments.
Moreover, in many cases the 3D Shape-Context and Spin-Image failed completely
to produce an accurate enough pre-alignment, which is required by any ICP-based
alignment algorithm in order to converge.

The results also demonstrate the robustness of our descriptor against the overlap
area, in sense that for low (i.e., small and medium) overlaps, the pre-alignment errors
reported with our descriptor are mostly smaller than those of other descriptors.

Moreover, the result of the automatic multiple range image registration experiment
shows that the registered (i.e., aligned) models obtained with our approach appear
without any visible imperfections and are much more accurate compared to those
obtained with 3D Shape-Context and Spin-Image.

We also introduced an approach to automatically estimate the overlap area. We used
the scale for determining which range image overlap. Based on the best scale, we find
the best pairs of range images to be registered to each other.

Finally, despite the best performance of the proposed approach obtained for both the
2D and 3D domains, its usefulness is still far from being completely investigated by the
means of the present framework. We suppose no other similar approach for learning
the local feature, seems existing in the current literature, as far as we know. For this
reasons, and in addition to the above suggestion, it would be a good challenge to find
other machine vision problems in which the approach might be more powerful and
give better performance. In this context we think, for example, about object recognition
and scene categorization.
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