
ON CERTAIN HOMOLOGICAL FINITENESS CONDITIONS

DIMITRIOS BALLAS

Abstract. In this paper, we show that the injective dimension of all projective modules over
a countable ring is bounded by the self-injective dimension of the ring. We also examine the
extent to which the flat length of all injective modules is bounded by the flat length of an
injective cogenerator. To that end, we study the relation between these finiteness conditions
on the ring and certain properties of the (strict) Mittag-Leffler modules. We also examine
the relation between the self-injective dimension of the integral group ring of a group and
Ikenaga’s generalized (co-)homological dimension.

0. Introduction

The universal property of inverse limits of left R-modules may be reformulated as the
assertion that the covariant Hom-functor HomR(A, ) commutes with such limits for any
left R-module A. Similarly, the universal property of direct limits of left R-modules may
be reformulated as the assertion that the contravariant Hom-functor HomR( , A) maps such
limits to the corresponding inverse limits of Hom-groups for any left R-module A.
On the other hand, the requirement that the covariant Hom-functor HomR(A, ) commutes

with direct limits imposes certain restrictions on A: If (Bi)i is a direct system of left R-
modules, the canonical maps of the Bi’s to the direct limit lim

−→i
Bi induce an additive map

lim
−→i

HomR(A,Bi) −→ HomR

(
A, lim
−→i

Bi

)
.

It turns out that the above map is bijective for any direct system (Bi)i of left R-modules if
and only if the left R-module A is finitely presented. More generally, the canonical maps of
the Bi’s to the direct limit lim

−→i
Bi induce an additive map

lim
−→i

ExtkR(A,Bi) −→ ExtkR

(
A, lim
−→i

Bi

)
for any left R-module A and any k ∈ N. If n is a non-negative integer, then one can show
that the latter map is bijective for any direct system (Bi)i of left R-modules and any k ≤ n
if and only if the left R-module A is of type FPn+1, i.e. if and only if there exists a projective
resolution P∗ −→ A −→ 0, with Pi finitely generated (and projective) for all i ≤ n+ 1.
In general, one may look for conditions under which the vanishing of the groups ExtkR(A,Bi)

implies that ExtkR

(
A, lim
−→i

Bi

)
= 0. In particular, if B is a left R-module, one may ask whether

the vanishing of the functor ExtkR( , B) implies the vanishing of the functors ExtkR
(
, B(Λ)

)
for any set Λ. In other words, one may look for a relation between the injective dimension
of B and that of direct sums of copies of it. In the special case where B = R is the left
regular module, one then looks for a relation between the self-injective dimension of R and
the injective dimension of projective left R-modules. It is known that we have an inequality
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idRP ≤ idRR for any projective left R-module if the ring R is left Noetherian or else if R is
left perfect and right coherent. In that direction, we shall prove the following result:

Theorem. If R is a countable ring, then we have an inequality idRP ≤ idRR for any projective
left R-module P .

If G is a countable group, then the finiteness of the self-injective dimension of the integral
group ring ZG has important geometric consequences, which are analyzed in [16]. On the other
hand, the self-injective dimension of ZG is closely related to the generalized (co-)homological
dimension of G, which was defined by Ikenaga in [12].
Coming back to the general case of a ring R, we note that statements analogous to the

above are valid for the tensor product functors, which are well-known to commute with direct
limits: If (Bi)i is any direct system of left R-modules, then the canonical maps of the Bi’s to
the direct limit lim

−→i
Bi induce an isomorphism

lim
−→i

(A⊗R Bi)−→ A⊗R

(
lim
−→i

Bi

)
for any right R-module A. In particular, the tensor product functor A ⊗R commutes with
direct sums. On the other hand, the requirement that the tensor product functor A⊗R com-
mutes with inverse limits and, in particular, with direct products imposes certain restrictions
on A. More precisely, for any family of left R-modules (Bi)i the projection maps of the direct
product

∏
iBi to the Bi’s induce an additive map

A⊗R

(∏
i
Bi

)
−→

∏
i
(A⊗R Bi)

for any right R-module A. The additive map above is surjective for any family (Bi)i of left R-
modules if and only if the right R-module A is finitely generated. The injectivity of that map
is more subtle and leads to the notion of Mittag-Leffler modules, which were introduced by
Raynaud and Gruson in [15]. More generally, one may consider for any non-negative integer
k the additive map

TorRk

(
A,

∏
i
Bi

)
−→

∏
i
TorRk (A,Bi),

which is induced by the projection maps of the direct product
∏

iBi to the Bi’s, and look for
conditions under which the vanishing of the groups TorRk (A,Bi) implies that TorRk (A,

∏
iBi)=

0. In particular, if B is a left R-module, one may ask whether the vanishing of the functor
TorRk ( , B) implies the vanishing of the functors TorkR

(
, BΛ

)
for any set Λ. In other words, one

may look for a relation between the flat dimension of B and that of direct products of copies
of it. In the special case where B = Hom(R,Q/Z) is the Pontryagin dual of the regular right
R-module R, one then looks for a relation between the flat dimension of Hom(R,Q/Z) and
the flat dimension of injective left R-modules. In that direction, we shall prove the following
result:

Theorem. Let R be a right ℵ0-Noetherian ring and assume that all projective right R-modules
have injective dimension ≤ 1. Then, we have an inequality fdRI ≤ fdRHom(R,Q/Z) for any
injective left R-module I.

We note that the class of right ℵ0-Noetherian rings over which projective right modules have
injective dimension ≤ 1 includes the quasi-Frobenius rings and the integral group rings of
finite groups.
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The proof of both of the above results uses the properties of the (strict) Mittag-Leffler
modules that were defined by Raynaud and Gruson in [15]. We recall this notion and detail
the results that will be needed in sections 1 and 2. Then, we relate the injective dimension
of the left regular module to the injective dimension of projective left R-modules (in section
3) and the flat dimension of an injective cogenerator of the category of left R-modules to the
flat dimension of injective left R-modules (in section 5). In section 4, we examine the relation
between the injective dimension of projective modules over the integral group ring ZG of a
group G and Ikenaga’s generalized homological dimension hdG.

Notations and terminology. For any two abelian groups M,N we denote by Hom(M,N) the
group HomZ(M,N) of all additive maps fromM to N . If R is a ring and (Bi)i is a family of left
R-modules, then for any left R-module A we identify the abelian group HomR(A,

∏
iBi) with

the direct product
∏

iHomR(A,Bi). In this way, a family (fi)i ∈
∏

iHomR(A,Bi) is identified
with the R-linear map f : A −→

∏
i Bi, which is given by a 7→ (fi(a))i, a ∈ A. Finally, we

denote by D the Pontryagin duality functors from the category of left (resp. right) R-modules
to the category of right (resp. left) R-modules, which are defined by M 7→ Hom(M,Q/Z).

1. Mittag-Leffler modules

In this section, we review the notion of a Mittag-Leffler module and record some properties
of these modules that will be used in the sequel.
First of all, we recall the Mittag-Leffler condition for an inverse system, introduced by

Grothendieck in [11, §13.1.2]. An inverse system of abelian groups (Ai)i with structural maps
σij : Aj −→ Ai, i ≤ j, is said to satisfy the Mittag-Leffler condition if for any index i there
exists an index j = j(i) ≥ i, such that

im
(
Aj

σij−→ Ai

)
= im

(
Ak

σik−→ Ai

)
for all k ≥ j. Assuming that the inverse system (Ai)i satisfies the Mittag-Leffler condition,

we refer to the subgroup A′i = im
(
Aj

σij−→ Ai

)
, where j = j(i) as above, as the stable image.

The notion of a Mittag-Leffler module was introduced by Raynaud and Gruson in [15] and
has been studied subsequently by many authors; the reader may consult the detailed exposition
[1]. This notion describes a property that a module may enjoy, as far as the representation
of it as a direct limit of finitely presented modules is concerned. More precisely, let M be a
right R-module and express M as the direct limit of a direct system (Mi)i of finitely presented
right R-modules. Then, M is a Mittag-Leffler module if the inverse system of abelian groups
(HomR(Mi, N))i, whose structural maps are induced by the structural maps of the direct
system (Mi)i, satisfies the Mittag-Leffler condition for any right R-module N . This definition
does not depend upon the particular representation of M as the direct limit of a direct system
of finitely presented right R-modules and may be equivalently formulated by means of the
injectivity of certain natural maps. For any family of left R-modules (Ni)i we may consider
the additive map

(1) φM : M ⊗R

(∏
i
Ni

)
−→

∏
i
(M ⊗R Ni) ,

which is given by letting m ⊗ (ni)i 7→ (m ⊗ ni)i for any m ∈ M and (ni)i ∈
∏

i Ni. We note
that φM = (1⊗pi)i, where pi denotes the i-th coordinate projection map of the direct product
onto Ni for any index i. Then, as shown in [15], the right R-module M is Mittag-Leffler if
and only if φM is injective for any family of left R-modules (Ni)i.
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In the sequel, we shall need a relative version of this notion. If X is a class of left R-modules,
then we say that a right R-module M is Mittag-Leffler with respect to X if the additive map
(1) is injective for any family of right R-modules (Ni)i that are contained in X. We denote by
ML(X) the class consisting of those right R-modules which are Mittag-Leffler over X. In the
special case where X = {N} is a singleton consisting of a left R-module N , we denote ML(X)
simply by ML(N).

Remarks 1.1. (i) If X,Y are two classes of left R-modules and X ⊆ Y, then we obviously
have an inclusion ML(Y) ⊆ ML(X).
(ii) Let X be a class of left R-modules and consider the class X consisting of those left

R-modules that may be embedded as direct summands in suitable direct products of modules
contained in X. Then, it is easily seen that ML(X) = ML

(
X
)
.

(iii) In particular, it follows from (i) and (ii) above that whenever X,Y are two classes of left
R-modules, such that X ⊆ Y and any module of Y may be embedded as a direct summand in
a suitable direct product of modules contained in X, then we have an equality ML(X) = ML(Y).
(iv) Let J be an injective cogenerator of the category of left R-modules. Since any injective

left R-module is a direct summand of a suitable product of copies of J , it follows from (iii)
above that ML(J) = ML(I), where I = I(R) is the class of injective left R-modules.
(v) Let X be a class of left R-modules and consider a family (Mλ)λ of right R-modules and

the direct sum M =
⊕

λMλ. Then, M ∈ ML(X) if and only if Mλ ∈ ML(X) for any λ. Indeed,
if (Ni)i is any family of left R-modules in X, then it is easily seen that the additive map
φM is injective if and only if the corresponding maps φMλ

are injective for all λ. Since the
regular right R-module R is obviously contained in ML(X), we conclude that ML(X) contains
all projective right R-modules.
(vi) Let X be a class of left R-modules and fix a non-negative integer n. For any right R-

moduleM we consider a projective resolution and denote byKn the corresponding n-th syzygy
module. Of course, Kn depends upon the choice of the particular resolution. Nevertheless,
Schanuel’s lemma implies that for any two n-th syzygy modules Kn and K ′n of M there are
projective modules P and P ′, such that Kn⊕P ≃ K ′n⊕P ′. Since the class ML(X) contains all
projective right R-modules and is closed under direct sums and direct summands (in view of
(v) above), we conclude that the right R-module Kn is Mittag-Leffler with respect to X if and
only if this is the case for the right R-module K ′n. In that case, we say that the n-th syzygy
module of M is Mittag-Leffler with respect to X.

The natural transformation φ may be derived as follows: Having fixed a family (Ni)i of left
R-modules, we consider for any right R-module M a projective resolution P∗ −→ M −→ 0
and the chain map

φP∗ : P∗ ⊗R

(∏
i
Ni

)
−→

∏
i
(P∗ ⊗R Ni).

By applying homology, we obtain additive maps

φ
(n)
M : TorRn

(
M,

∏
i
Ni

)
−→

∏
i
TorRn (M,Ni),

n ≥ 0, which do not depend upon the particular choice of the projective resolution of M .

We note that φ
(n)
M is the additive map whose i-th coordinate is that induced by applying the

functor TorRn (M, ) to the i-th coordinate projection map pi of the direct product onto Ni for

any index i. It is clear that φ
(0)
M can be identified with the map φM studied before. Moreover,
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the φ
(n)
M ’s are natural in M and commute with the connecting homomorphisms which are

associated with any short exact sequence of left R-modules

0 −→ M ′ −→ M −→ M ′′ −→ 0.

Proposition 1.2. Let M be a right R-module and consider a class X of left R-modules. Then,
the following conditions are equivalent for a non-negative integer n:
(i) The natural map

φ
(n)
M : TorRn

(
M,

∏
i
Ni

)
−→

∏
i
TorRn (M,Ni),

is injective for any family (Ni)i of left R-modules contained in X.
(ii) The n-th syzygy module of M is Mittag-Leffler with respect to X.
Proof. We proceed as in the proof of [6, Proposition 1.5]. Let P∗ −→ M −→ 0 be a

projective resolution of M and consider the corresponding n-th syzygy module Kn. Then, Kn

fits into an exact sequence

0 −→ Kn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0.

By applying dimension shifting, we obtain for any family (Ni)i of left R-modules exact se-
quences

0 −→ TorRn

(
M,

∏
i
Ni

)
an−→ Kn ⊗R

(∏
i
Ni

)
−→ Pn−1 ⊗R

(∏
i
Ni

)
and

0 −→
∏

i
TorRn (M,Ni)

bn−→
∏

i
(Kn ⊗R Ni) −→

∏
i
(Pn−1 ⊗R Ni).

Since the additive maps an, bn are defined by composing connecting homomorphisms and ϕ(∗)

commutes with connecting homomorphisms, we obtain a commutative diagram of abelian
groups with exact rows

0 −→ TorRn

(
M,

∏
i
Ni

)
an−→ Kn ⊗R

(∏
i
Ni

)
−→ Pn−1 ⊗R

(∏
i
Ni

)
φ
(n)
M ↓ ↓ φ

(0)
Kn

↓ φ
(0)
Pn−1

0 −→
∏

i
TorRn (M,Ni)

bn−→
∏

i
(Kn ⊗R Ni) −→

∏
i
(Pn−1 ⊗R Ni)

In view of Remark 1.1(v), the projective right R-module Pn−1 is Mittag-Leffler with respect

to X and hence the map φ
(0)
Pn−1

= φPn−1 is injective. Then, a diagram chase shows that φ
(n)
M

is injective if and only if this is the case for φ
(0)
Kn

= φKn , proving the equivalence between
conditions (i) and (ii) in the statement. �

2. Strict Mittag-Leffler modules

We shall now consider the notion of a strict Mittag-Leffler module and describe the relation
between these modules and the Mittag-Leffler modules of the previous section.
We begin by defining the strict Mittag-Leffler condition for an inverse system of abelian

groups: Let (Ai)i be an inverse system of abelian groups with structural maps σij : Aj −→ Ai,
i ≤ j, and consider the inverse limit A = lim

←−i
Ai, which is endowed with canonical maps

si : A −→ Ai for any index i. The inverse system (Ai)i is said to satisfy the strict Mittag-
Leffler condition if for any index i there exists an index j = j(i) ≥ i, such that

im
(
Aj

σij−→ Ai

)
= im

(
A

si−→ Ai

)
.
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The strict Mittag-Leffler condition for an inverse system is stronger that the Mittag-Leffler
condition. In fact, it is easily seen that the inverse system (Ai)i satisfies the strict Mittag-
Leffler condition if and only if it satisfies the Mittag-Leffler condition and the stable image A′i
coincides with the image of the canonical map si : A −→ Ai for any index i. In the special
case where the index set is countable, the strict Mittag-Leffler condition is actually equivalent
to the Mittag-Leffler condition. This is implicit in [11, §13.2.2]; see also [5, Lemma 1.1].
The notion of a strict Mittag-Leffler module was introduced by Raynaud and Gruson in [15].

More precisely, we consider a right R-module M and express it as the direct limit of a direct
system (Mi)i of finitely presented right R-modules. Then, M is a strict Mittag-Leffler module
if the inverse system of abelian groups (HomR(Mi, N))i, whose structural maps are induced by
the structural maps of the direct system (Mi)i, satisfies the strict Mittag-Leffler condition for
any right R-module N . This definition does not depend upon the particular representation
of M as the direct limit of a direct system of finitely presented right R-modules and may
be equivalently formulated by means of the injectivity of certain natural maps. If N is a
right R-module and ∆ an abelian group, then the abelian group Hom(N,∆) of all additive
maps from N to ∆ can be endowed with the structure of a left R-module, by using the right
R-module structure of N . If M is another right R-module, then we may consider the tensor
product M ⊗R Hom(N,∆) and define the map

(2) ΦM : M ⊗R Hom(N,∆) −→ Hom(HomR(M,N),∆),

by letting ΦM(m⊗f) be the operator given by g 7→ f(g(m)), g ∈ HomR(M,N), for all m ∈ M
and f ∈ Hom(N,∆). Then, as shown in [1, Theorem 8.11], the following two conditions are
equivalent for a right R-module M :
(i) If M is expressed as the direct limit of a direct system (Mi)i of finitely presented right

R-modules, then the inverse system of abelian groups (HomR(Mi, N))i satisfies the strict
Mittag-Leffler condition.
(ii) The additive map (2) is injective for any divisible abelian group ∆.

Having fixed the right R-module N , we say that a right R-module M is strict Mittag-Leffler
over N if the equivalent conditions (i) and (ii) above are satisfied. We denote by SML(N) the
class consisting of those right R-modules which are Mittag-Leffler over N .

Proposition 2.1. If M,N are two right R-modules and M is strict Mittag-Leffler over N ,
then M is Mittag-Leffler with respect to the left R-module DN = Hom(N,Q/Z). In other
words, we have an inclusion SML(N) ⊆ ML(DN) for any right R-module N .
Proof. Our assumption on M implies that the additive map (2) is injective for any divisible

abelian group ∆. Letting T = Q/Z, we have to show that for any set I the additive map

φM : M ⊗R Hom(N, T )I −→(M ⊗R Hom(N, T ))I

is injective. To that end, we consider the direct product T I and note that the coordinate
projection maps pi : T

I −→ T , i ∈ I, induce an isomorphism of left R-modules

(pi∗)i : Hom
(
N, T I

)
−→ Hom(N, T )I .

Since the composition

M ⊗R Hom
(
N, T I

) 1⊗(pi∗)i−→ M ⊗R Hom(N, T )I
φM−→(M ⊗R Hom(N, T ))I

is easily seen to coincide with the additive map

(3) (1⊗ pi∗)i : M ⊗R Hom
(
N, T I

)
−→(M ⊗R Hom(N, T ))I ,
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we are reduced to showing that (3) is injective. We now invoke the naturality of Φ with respect
to the divisible abelian group and conclude that the following diagram is commutative

M ⊗R Hom
(
N, T I

) (1⊗pi∗)i−→ (M ⊗R Hom(N, T ))I

Φ ↓ ↓ ΦI

Hom
(
HomR(M,N), T I

) (pi∗)i−→ Hom(HomR(M,N), T )I

The injectivity of (3) follows, in view of the injectivity of Φ (the abelian group ∆ = T I being
divisible) and the fact that the horizontal map at the bottom of the diagram is bijective. �
Corollary 2.2. If M is a right R-module which is strict Mittag-Leffler over the right regular
module R, then M is Mittag-Leffler with respect to the class I of injective left R-modules. In
other words, we have an inclusion SML(R) ⊆ ML(I).
Proof. Since the left R-module DR = Hom(R,Q/Z) is an injective cogenerator of the

category of left R-modules, it follows from Remark 1.1(iv) that ML(DR) = ML(I). Hence, the
result is an immediate consequence of Proposition 2.1. �

Let N be a right R-module and consider a family (Mλ)λ of right R-modules and the direct
sum M =

⊕
λMλ. Then, M ∈ SML(N) if and only if Mλ ∈ SML(N) for any λ. Indeed, it

is easily seen that the additive map ΦM of (2) is injective if and only if the corresponding
maps ΦMλ

are injective for all λ. Since the regular right R-module R is obviously contained in
SML(N), we conclude that SML(N) contains all projective right R-modules. Therefore, as with
the case of Mittag-Leffler modules, it follows that if Kn and K ′n are the n-th syzygy modules
of a right R-module M that correspond to two projective resolutions of it, then Kn is strict
Mittag-Leffler over N if and only if this is the case for K ′n. In that case, we say that the n-th
syzygy module of M is strict Mittag-Leffler over N .
The invariant silpR of the ring R was defined by Gedrich and Gruenberg in [9], as the

supremum of the injective lengths of projective left R-modules. We denote by silpRop the
corresponding invariant which is defined using right R-modules. We recall that the ring R
is called right ℵ0-Noetherian if all right ideals of it are countably generated and record the
following result, which is an immediate consequence of [6, Theorem 3.1].

Theorem 2.3. Let R be a right ℵ0-Noetherian ring and assume that silpRop ≤ n < ∞. Then,
the n-th syzygy of any right R-module is strict Mittag-Leffler over the right R-module R. �
Using Corollary 2.2, we obtain the following result.

Corollary 2.4. Let R be a right ℵ0-Noetherian ring and assume that silpRop≤ n < ∞. Then,
the n-th syzygy of any right R-module is Mittag-Leffler with respect to the class I of injective
left R-modules. �

3. On the injective length of the regular module

Let R be a ring and consider the invariant silpR. Our goal in this section is to examine
the extent to which the obvious inequality idRR ≤ silpR is actually an equality. Since any
projective left R-module is a direct summand of a suitable direct sum of copies of R, the
problem consists in showing that the vanishing of the functor ExtnR( , R) for some n implies
the vanishing of the functor ExtnR

(
, R(Λ)

)
for any set Λ.

Remarks 3.1. (i) If the ring R is left Noetherian, then it is easily seen that idRR = silpR.
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Indeed, assuming that idRR = n < ∞, we may construct an injective resolution of R of length
n. Since a direct sum of injective left R-modules is injective in this case (see [2, Theorem
1.1]), we may construct an injective resolution of R(Λ) of length n for any set Λ.
(ii) Let R be a left perfect and right coherent ring. Then, as shown in [14, Proposition 3],

the injection R(Λ) ↪→ RΛ splits for any set Λ. It follows that any projective left R-module
P is a direct summand of the direct product RΛ for some set Λ. Since the direct product of
injective left R-modules is injective, we conclude that idRR

Λ = idRR for any set Λ and hence
idRP ≤ idRR for any projective left R-module. It follows readily that silpR = idRR.

Lemma 3.2. Let R be a countable ring and consider two countably generated left R-modules
M,N , such that Ext 1R(M,N) = 0. Then, M is strict Mittag-Leffler over N .

Proof. We proceed as in the proof of [5, Proposition 1.2]. We write M as the direct limit
of a countable direct system (Mi)i of finitely presented left R-modules. Then, the Ext-groups
of M may be expressed in terms of the Ext-groups of the Mi’s. In particular, there is a short
exact sequence of abelian groups

0 −→ lim
←−i

1HomR(Mi, N) −→ Ext1R(M,N) −→ lim
←−i

Ext1R(Mi, N) −→ 0

and hence our assumption implies that lim
←−i

1 HomR(Mi, N) = 0. Since the left R-module

Mi is finitely generated, the abelian group HomR(Mi, N) is countable; indeed, if Mi can be
generated by ai elements as an R-module, then HomR(Mi, N) embeds into Nai . This being
the case for all i, we may invoke Gray’s criterion [10] in order to conclude that the triviality
of the group lim

←−i
1HomR(Mi, N) implies that the inverse system (HomR(Mi, N))i satisfies the

Mittag-Leffler condition. Since the index set is countable, it follows that the latter inverse
system satisfies the strict Mittag-Leffler condition, as needed. �
Theorem 3.3. If R is a countable ring, then silpR = idRR.

Proof. Since we always have idRR ≤ silpR, it only remains to show that silpR ≤ idRR.
Of course, we may assume that idRR = n < ∞. Since the countable ring R is obviously left
ℵ0-Noetherian, the inequality silpR ≤ n will follow from [6, Theorem 3.1], provided that we
show the n-th syzygy of any countably generated left R-module to be strict Mittag-Leffler
over R. To that end, let M be a countably generated left R-module and consider a resolution
of it by countably generated free left R-modules. If K = Kn is the corresponding n-th syzygy,
then Ext1R(K,R) = Extn+1

R (M,R) = 0. Invoking Lemma 3.2, we may conclude that K is strict
Mittag-Leffler over R. �
Corollary 3.4. (cf. [13]) A countable left self-injective ring is quasi-Frobenius.
Proof. If a ring R is countable and left self-injective, then Theorem 3.3 implies that silpR =

0. Invoking a result by Faith and Walker (cf. [7] and [8]), it follows that the ring R is then
quasi-Frobenius. �

Remark 3.5. Let R be a ring and consider a left R-module A of finite projective dimension.
Then, we always have pdR A ≤ silpR. (Indeed, if pdR A = n < ∞, there exists a projective
left R-module P with ExtnR(A,P ) ̸= 0; in particular, it follows that idR P ≥ n and hence
silpR ≥ n.) If the ring R is countable, then, in view of Theorem 3.3 above, the latter
inequality can be equivalently rewritten as pdR A ≤ idRR (cf. [6, Corollary 2.25]).

Since the integral group ring ZG of a countable group G is countable, the following result is
an immediate consequence of Theorem 3.3.
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Corollary 3.6. If G is a countable group, then silpZG = idZGZG. �
It is worth pointing out that Corollary 3.6 above complements [6, Theorem 4.8(iii)], where

it is shown that silpZG = idZGZG for any countable group G, provided that silpZG < ∞.

4. On the relation between silpZG and hdG

As shown in [5], for any group G the invariant silpZG is equal to spliZG, i.e. to the
supremum of the projective lengths of injective ZG-modules. The finiteness of these invariants
has an important geometric significance: If G is a group with periodic cohomology after some
steps, then these invariants are finite if and only if G acts freely on a finite dimensional CW-
complex, which is homotopy equivalent to a sphere (cf. [16]). More generally, it is conjectured
in [17] that the finiteness of these invariants is equivalent to the existence of a finite dimensional
model for the classifying space for proper actions of G; this has been established for a big
class of groups in [18].
Ikenaga defined in [12] the generalized cohomological dimension cdG of a group G as the

supremum of the set of integers n, for which the abelian group ExtnZG(M,P ) is non-trivial
for some Z-free ZG-module M and some projective ZG-module P . Dembegioti and Talelli
conjectured in [3, Conjecture A] that the invariants cdG and spliZG are related by the equality
spliZG = cdG+ 1. They showed that this is indeed the case if G is:
(i) a duality group or
(ii) the fundamental group of a graph of finite groups or
(iii) the fundamental group of the finite graphs of groups of type FP∞ that are described

in [3, Theorem 3.5].
As shown in [5, Corollary 4.7(i)], we always have cdG ≤ spliZG ≤ cdG + 1. Therefore, the
above conjecture is equivalent to the assertion that

(4) cdG+ 1 ≤ spliZG.

We now consider the generalized homological dimension hdG of G, which is defined as the
supremum of the set of integers n, for which the abelian group TorZGn (I,M) is non-trivial for
some injective ZG-module I and some torsion-free ZG-module M . Since hdG ≤ cdG (cf. [6,
Theorem 4.11]), we may regard the validity of the inequality

(5) hdG+ 1 ≤ spliZG
as a weak form of the above conjecture. Let X be the class consisting of those groups G for
which the inequality (5) is true. It is clear that X contains all groups G, for which (4) is true;
in particular, this is the case for the groups described in (i), (ii) and (iii) above. If G is a
locally finite group, then hdG = 0 (cf. [12, §III, Corollary 2]) and hence G ∈ X.

Theorem 4.1. Let N be a normal subgroup of a group G. If N ∈ X and the quotient group
G = G/N is locally finite, then G ∈ X.
Proof. In order to show that G ∈ X, we may assume that spliZG = n < ∞. We note that

N ∈ X is a subgroup of G and hence

hdN + 1 ≤ spliZN ≤ spliZG = n

(cf. [9, 5.1(iii)]), i.e. hdN ≤ n−1. We have to show that hdG+1 ≤ n, i.e. that hdG ≤ n−1.
Since G is the directed union of its countable subgroups, we may use the behavior of hd
under directed unions (cf. [12, §III, Proposition 9]) and conclude that it suffices to prove that
hdG0 ≤ n− 1 for any countable subgroup G0 ⊆ G. To that end, let us consider a countable
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subgroup G0 ⊆ G. We note that G0 is an extension of a subgroup G0 of G by a subgroup N0 of
N . The group G0 is, of course, locally finite and we have inequalities spliZG0 ≤ spliZG = n
(cf. [9, 5.1(iii)]) and hdN0 ≤ hdN ≤ n− 1 (cf. [12, §III, Proposition 8]). Then, the inequality
hdG0 ≤ n− 1 follows from the following result. �
Proposition 4.2. Let N be a normal subgroup of a countable group G, such that the quotient
group G = G/N is locally finite. Assume that n is an integer, such that spliZG ≤ n and
hdN ≤ n− 1. Then, hdG ≤ n− 1.
Proof. We consider two ZG-modules I and M , with I injective and M torsion-free, and the

diagonal ZG-module I ⊗M . The groups TorZG∗ (I,M) = H∗(G, I ⊗M) can be computed by
means of the Lyndon-Hochshild-Serre spectral sequence

E2
pq = Hp

(
G,Hq(N, I ⊗M)

)
=⇒ Hp+q(G, I ⊗M).

We are interested in the filtration of the homology group Hn(G, I ⊗M), which is induced by
that spectral sequence. Since the ZN -module resGNI is injective, whereas resGNM is torsion-
free, our assumption that hdN ≤ n − 1 implies that Hn(N, I ⊗M) = TorZNn (I,M) = 0. In
particular, E2

0n = H0

(
G,Hn(N, I ⊗M)

)
= 0. On the other hand, since G is locally finite, the

abelian group E2
pq = Hp

(
G,Hq(N, I ⊗M)

)
is torsion for all p > 0. Being a subquotient of the

latter, the limit term E∞pq of the spectral sequence is torsion for all p > 0 as well. We therefore
conclude that the group Hn(G, I ⊗ M) admits a finite filtration all of whose quotients are
torsion groups. Hence, TorZGn (I,M) = Hn(G, I ⊗M) is itself a torsion group. Since the ring
ZG is countable and silpZG = spliZG ≤ n (cf. [5, Corollary 4.5]), we may invoke the following
lemma and conclude that TorZGn (I,M) = 0. This being the case for any two ZG-modules I
and M , with I injective and M torsion-free, it follows that hdG ≤ n− 1. �
Lemma 4.3. Let R be a left ℵ0-Noetherian ring, i.e. a ring all of whose left ideals are countably
generated. Assume that n is an integer, such that silpR ≤ n, and consider a left R-module
M , which is torsion-free as an abelian group. Then:
(i) (cf. [3, Lemma 2.1]) the abelian group ExtnR(M,R) is divisible and
(ii) the abelian group TorRn (I,M) is torsion-free for any injective right R-module I.
Proof. (i) Let t be a positive integer and consider the injective R-linear map f : M −→ M ,

which is given by multiplication with t. Since idRR ≤ silpR ≤ n, the group Extn+1
R (coker f,R)

is trivial and hence the induced map f ∗ : ExtnR(M,R) −→ ExtnR(M,R) is surjective. The latter
map being multiplication with t, it follows that the group ExtnR(M,R) is t-divisible. This is
the case for all t ≥ 1 and hence the group ExtnR(M,R) is divisible.
(ii) Since any injective right R-module is a direct summand of a cofree module, we can easily

reduce to the case where I = Hom(R,∆) for some divisible abelian group ∆. Then, as shown
in [6, Theorem 3.1 and Proposition 1.5], our assumption that silpR ≤ n implies that the group
TorRn (I,M) = TorRn (Hom(R,∆),M) may be embedded into the group Hom(ExtnR(M,R),∆).
Therefore, it suffices to show that the abelian group Hom(ExtnR(M,R),∆) is torsion-free. This
follows from (i) above, in view of the following elementary observation: If A,B are two abelian
groups and A is divisible, then the abelian group Hom(A,B) is torsion-free. �

5. On the flat length of DR

Let R be a ring and consider the invariant sfliR, which is defined as the supremum of the
flat lengths of injective left R-modules. This invariant was introduced in [4] and has been
also studied in [6]. Since DR = Hom(R,Q/Z) is an injective left R-module, it is clear that
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fdRDR ≤ sfliR. Our goal in this section is to examine the extent to which the latter inequality
is actually an equality. Since any injective left R-module is a direct summand of a suitable
direct product of copies of DR, the problem consists in showing that the vanishing of the
functor TorRn ( , DR) for some n implies the vanishing of the functor TorRn

(
, DRΛ

)
for any

set Λ. More generally, we shall examine the question above for any injective cogenerator J of
the category of left R-modules.

Proposition 5.1. Let R be a ring and consider an injective cogenerator J of the category of
left R-modules. Then, the following conditions are equivalent for a non-negative integer n:
(i) sfliR ≤ n and
(ii) fdRJ ≤ n and the (n+1)-th syzygy of any right R-module is Mittag-Leffler with respect

to the class J of injective left R-modules.
Proof. (i)→(ii): Assuming that sfliR ≤ n, the inequality fdRJ ≤ sfliR shows that we also

have fdRJ ≤ n. On the other hand, since the class J of injective left R-modules is closed
under direct products and the functor Torn+1( , I) vanishes for any injective left R-module I
(as fdRI ≤ sfliR ≤ n), we may invoke Proposition 1.2 and conclude that the (n+1)-th syzygy
of any right R-module is Mittag-Leffler with respect to J.
(ii)→(i): Since any injective left R-module is a direct summand of a suitable direct product

of copies of the injective cogenerator J , it suffices to show that fdRJ
Λ ≤ n for any set Λ. To

that end, we fix a set Λ and note that our assumption on the syzygies of right R-modules
implies, in view of Proposition 1.2, that the natural map

φ
(n+1)
M : TorRn+1

(
M,JΛ

)
−→ TorRn+1(M,J)Λ

is injective for any right R-module M . Since fdRJ ≤ n, the group TorRn+1(M,J) is trivial and

hence we may conclude that TorRn+1

(
M,JΛ

)
= 0, as needed. �

Corollary 5.2. If R is a right ℵ0-Noetherian ring and J an injective cogenerator of the
category of left R-modules, then sfliR ≤ max{fdRJ, silpRop − 1}.
Proof. The inequality to be proved is obvious if max{fdRJ, silpR

op − 1} = ∞ and hence we
may assume that max{fdRJ, silpR

op−1} = n < ∞. Then, we have silpRop ≤ n+1 and hence
Corollary 2.4 implies that the (n+ 1)-th syzygy of any right R-module is Mittag-Leffler with
respect to the class I of injective left R-modules. Since we also have fdRJ ≤ n, the inequality
sfliR ≤ n follows from Proposition 5.1. �

We note that if R is a right ℵ0-Noetherian ring, then we have an inequality sfliR ≤ silpRop

(cf. [5, Proposition 3.2]).

Corollary 5.3. Let R be a right ℵ0-Noetherian ring and assume that one of the following two
conditions is satisfied:
(i) sfliR = silpRop < ∞ or
(ii) silpRop ≤ 1.

Then, fdRJ = sfliR for any injective cogenerator J of the category of left R-modules.
Proof. Let J be an injective cogenerator of the category of left R-modules.
(i) If fdRJ < sfliR, then Corollary 5.2 implies that sfliR ≤ silpRop − 1, contradicting our

hypothesis that sfliR = silpRop < ∞.
(ii) In view of (i) above, it only remains to consider the case where the inequality sfliR ≤

silpRop of [5, Proposition 3.2] is strict. In that case, our assumption implies that sfliR = 0;
hence, the obvious inequality fdRJ ≤ sfliR is necessarily an equality. �
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Remark 5.4. The class of right ℵ0-Noetherian rings R for which silpRop ≤ 1 includes
the quasi-Frobenius rings and the integral group rings of finite groups. Indeed, as shown
by Faith and Walker in [7] and [8], the quasi-Frobenius rings are precisely the rings R for
which silpRop = 0. On the other hand, Gedrich and Gruenberg have shown in [9, §5.2] that
silpZG = 1 for any finite group G.

Corollary 5.5. Let R be a ring and assume that one of the following conditions is satisfied:
(i) R is right Noetherian,
(ii) R is right ℵ0-Noetherian, right perfect and left coherent or
(iii) R is countable.

Then, for any injective cogenerator J of the category of left R-modules, we have an inequality
sfliR ≤ max{fdRJ, idRopR−1}. Moreover, if we also have sfliR = idRopR < ∞ or idRopR ≤ 1,
then sfliR = fdRJ . �
Proof. Our assumptions on R imply that silpRop = idRopR (cf. Remarks 3.1 and Theorem

3.3). Therefore, the result is simply a restatement of Corollaries 5.2 and 5.3. �
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[1] Angeleri-Hügel, L., Herbera, D.: Mittag-Leffler conditions on modules. Ind. Univ. Math. J. 57, 2459-2517
(2008)

[2] Bass, H.: lnjective dimension in Noetherian rings. Trans. Am. Math. Soc. 102, 18-29 (1962).
[3] Dembegioti, F., Talelli, O.: On a relation between certain cohomological invariants. J. Pure Appl. Algebra

212, 1432-1437 (2008)
[4] Ding, N., Chen, J.: The flat dimensions of injective modules. Manuscripta Math. 78, 165- 177 (1993)
[5] Emmanouil, I.: On certain cohomological invariants of groups. Adv. Math. 225, 3446-3462 (2010)
[6] Emmanouil, I., Talelli, O.: On the flat length of injective modules. J. London Math. Soc. 84, 408-432

(2011)
[7] Faith, C.: Rings with ascending condition on annihilators. Nagoya Math. J. 27, 179-191 (1966)
[8] Faith, C., Walker, E.A.: Direct-sum representations of injective modules. J. Algebra 5, 203-221 (1967)
[9] Gedrich, T.V., Gruenberg, K.W.: Complete cohomological functors on groups. Topology Appl. 25, 203-

223 (1987)
[10] Gray, B.: Spaces of the same n-type, for all n. Topology 5, 241-243 (1966)
[11] Grothendieck, A.: EGA III. Publ. Math. IHES 11 (1961)
[12] Ikenaga, B.M.: Homological dimension and Farrell cohomology. J. Algebra 87, 422-457 (1984)
[13] Lawrence, J.: A countable self-injective ring is quasi-Frobenius. Proc. Amer. Math. Soc. 65 217-220 (1977)
[14] Lenzing, H.: Direct sums of projective modules as direct summands of their direct product. Comm.

Algebra 4, 681-691 (1976)
[15] Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Invent. Math. 13, 1-89 (1971)
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