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Abstract. We show that any module admits a presentation as the quotient of a Gorenstein
projective module by a submodule which is itself right orthogonal, with respect to the standard
Ext1 pairing, to the class of Gorenstein projective modules of type FP∞. For that purpose,
we use the concept of orthogonality in the stable module category and examine the orthogonal
pair which is induced therein by the class of completely finitary Gorenstein projective modules.
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0. Introduction

Auslander has introduced the finitely generated modules of Gorenstein dimension zero over
a commutative Noetherian ring in [2] and [3], as a generalization of the finitely generated pro-
jective modules, in order to study the finer homological properties of these rings. Since then,
this concept has found many applications in commutative algebra and algebraic geometry; it
turns out that the properties of modules of Gorenstein dimension zero are very closely related
to the structure of the singularities of a Gorenstein ring. The generalization of this notion to
any (not necessarily finitely generated) module over any (not necessarily commutative Noe-
therian) ring R by Enochs and Jenda in [13] lead to the definition of Gorenstein projective
modules: These are precisely the syzygy modules of the complete projective resolutions (a.k.a.
totally acyclic complexes of projective modules), i.e. of the doubly infinite acyclic complexes
of projective modules

(1) · · · −→ Pn+1 −→ Pn −→ Pn−1 −→ · · · ,
which remain acyclic after applying the functor HomR( , P ) for any projective module P . The
class GP(R) of Gorenstein projective modules has several interesting properties, as shown by
Holm in [17]. In particular, modules of finite Gorenstein projective dimension can be defined
in the standard way, by using resolutions by Gorenstein projective modules.
Avramov and Martsinkovsky studied in [1] the relative cohomology of finitely generated

modules of finite Gorenstein projective dimension over a two-sided Noetherian ring. This has
been taken up by Holm [17], who showed that the Gorenstein Ext functors (i.e. the relative
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derived functors of Hom, with respect to the class of Gorenstein projective modules) can be
always defined on the subcategory of modules of finite Gorenstein projective dimension. The
key property that modules M in that subcategory enjoy is the existence of proper Gorenstein
projective resolutions: Such a module M admits an exact sequence of the form

· · · −→ Gn −→ · · · −→ G1 −→ G0 −→M −→ 0,

where:
(i) the modules Gi are Gorenstein projective for all i ≥ 0 and
(ii) the sequence remains exact after applying the functor HomR(G, ) for any Gorenstein

projective module G.
It is through condition (ii) above that one can guarantee the independence of the Gorenstein
Ext groups upon the choice of the particular resolution. The existence of proper Gorenstein
projective resolutions in turn follows since any module M of finite Gorenstein projective
dimension fits into an exact sequence

(2) 0 −→ K −→ G
p−→M −→ 0,

where G is a Gorenstein projective module and K has finite projective dimension. Then, the
functor Ext1R( , K) vanishes on Gorenstein projective modules and hence the additive map

(3) p∗ : HomR(G
′, G) −→ HomR(G

′,M),

which is induced by the linear map p, is surjective for any Gorenstein projective module G′.
In general, we say that a module M admits a Gorenstein projective precover (a.k.a. right

GP(R) approximation) if there exists a surjective linear map p from a Gorenstein projective
module G onto M , for which the additive map (3) is surjective for all Gorenstein projective
modules G′. Any surjective map p as above, with kernel K such that the functor Ext1R( , K)
vanishes on Gorenstein projective modules, is a Gorenstein projective precover; such a precover
is called special. If all modules admit a Gorenstein projective precover, then we say that the
class GP(R) is precovering. Therefore, in order to define the Gorenstein Ext groups in the
category of all modules, one has to show that GP(R) is precovering.
Besides the case of rings over which all modules have finite Gorenstein projective dimension,

the class GP(R) is also known to be precovering over commutative Noetherian rings of finite
Krull dimension. In fact, Jorgensen proved in [18] that a sufficient condition for the existence
of Gorenstein projective precovers for any module is that the homotopy category of complete
projective resolutions be a reflective subcategory of the full homotopy category of projective
modules. It is shown in [loc.cit.] that this condition holds over any commutative Noetherian
ring that admits a dualizing complex; subsequently, Murfet and Salarian showed in [22] that
for the same condition to hold it only suffices to assume that the Noetherian ring has finite
Krull dimension.
We recall that a module of type FP∞ is a module that admits a projective resolution which

consists of modules that are finitely generated (and projective) in each degree. It is easily seen
that the Gorenstein projective modules of type FP∞ are precisely the syzygy modules of the
complete projective resolutions (1), where the projective modules Pn are finitely generated for
all n. As a contribution to the existence problem of (special) Gorenstein projective precovers,
we shall prove in this paper that any module M over any ring R admits a presentation as in
(2), where G is Gorenstein projective and K is a module such that Ext1R(G

′, K) is the trivial
group for all Gorenstein projective modules G′ of type FP∞. In fact, we prove something more
general than this, by considering the so-called completely finitary modules. Here, we say that



PRECOVERS AND ORTHOGONALITY IN THE STABLE MODULE CATEGORY 3

a module C is completely finitary if the complete cohomology functors Êxt
∗
R(C, ), which were

defined by Mislin [21], Benson and Carlson [7] and Vogel [16], commute with filtered colimits.
The class of completely finitary modules includes the modules of type FP∞ and the modules
of finite projective dimension, whereas it is closed under extensions, kernels of epimorphisms,
cokernels of monomorphisms and direct summands. In the special case of the integral group
ring of certain hierarchically decomposable groups, completely finitary Gorenstein projective
modules were studied in [10], in connection with the existence of Eilenberg-Mac Lane spaces
that have finitely many cells in all sufficiently large dimensions.
We can now state the main result of this paper.

Theorem. Let R be a ring and M an R-module. Then, there exists a short exact sequence

0 −→ K −→ G −→M −→ 0,

where G is a Gorenstein projective module and K is such that the functor Ext1R( , K) vanishes
on all completely finitary Gorenstein projective modules.

In general, the notion of precovering classes of modules (a.k.a. contravariantly finite subcate-
gories) has been introduced by Auslander and Smalo [5] and, independently, by Enochs [12].
This notion has been extensively studied in the literature, mainly due to its importance in
the representation theory of Artin algebras; see, for example, [4]. A useful tool for proving
the existence of precovers is provided by the concept of cotorsion pairs, which was itself in-
troduced by Salce in [24] (for abelian groups); the definition of cotorsion pairs is based on the
orthogonality relation induced by the Ext1 pairing of modules. Let us provisionally say that
a class F of modules admits a set of test modules for Ext1 if there exists a set of modules X,
such that the following two conditions are equivalent for any module M :
(i) Ext1R(F,M) = 0 for all F ∈ F and
(ii) Ext1R(X,M) = 0 for all X ∈ X.

Using an elegant argument, Eklof and Trlifaj proved in [11] that any class F which is part of a
cotorsion pair (F,C) is precovering, provided that it admits a set of test modules for Ext1. In
this way, it is shown in [8] that the class of flat modules is precovering, using the flat cotorsion
pair. One may also attempt to prove that certain classes of modules are precovering, by using
an analogous approach, working with pairs of classes which are orthogonal with respect to the
pairing provided by the Hom groups Hom in the stable module category of the ring and not
by the Ext1 groups, as Eklof and Trlifaj did. In order to carry out such a programme, one has
to argue that the class of modules under consideration admits a set of test modules for Hom
(with the obvious definition, in analogy with the case of Ext1). At this point, the approach of
considering Hom-orthogonal pairs, rather than Ext1-orthogonal pairs, possesses an advantage:
Conceptually, it is much easier to verify that a class admits a set of test modules for Hom;
to solve the problem (at least locally, i.e. for one module at a time), we only have to exhibit
a cofinal set of objects in a suitable comma category. This point is illustrated by Lemma 3.1
below; see also the discussion following its proof. On the other hand, for the classes of modules
that we are interested in, the analogue of the result by Eklof and Trlifaj mentioned above is
provided by an algebraic description of a certain homotopy colimit, which was motivated by
algebraic topology and brought into the realm of algebra by Rickard [23] and Kropholler [19].
It is via this circle of ideas that we shall be able to prove our main result stated above.
Here is an outline of the contents of the paper: In Section 1, we collect certain preliminary

notions and basic results and fix the notation that will be used throughout the paper. In the
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next section, we examine the hyperfinite extensions of Gorenstein projective modules and prove
that these are Gorenstein projective as well. The class of stably finitely presented (Gorenstein
projective) modules is shown in Section 3 to induce an orthogonal pair in the stable module
category with some interesting properties. The main point here is to use the construction by
Rickard and Kropholler, as an analogue of the technique used by Eklof and Trlifaj, in order
to force the vanishing of certain Ext1 groups in their work on cotorsion pairs with enough
injective objects. Finally, in Section 4, we consider the class of completely finitary Gorenstein
projective modules and prove our main result, by using a description of the modules in the
(stable) right orthogonal of that class, in terms of the complete cohomology pairing.

Notations and terminology. All modules that are considered in this paper are left modules
over a unital associative ring R. If X, Y and Z are three modules, then we shall identify the
abelian group HomR(X, Y ⊕Z) with the direct sum HomR(X, Y )⊕HomR(X,Z); an element
(f, g) ∈ HomR(X, Y ) ⊕ HomR(X,Z) is then identified with the linear map X −→ Y ⊕ Z,
which is given by x 7→ (f(x), g(x)), x ∈ X. There is an analogous identification of the abelian
group HomR(X ⊕ Y, Z) with the direct sum HomR(X,Z)⊕ HomR(Y, Z); if f ∈ HomR(X,Z)
and g ∈ HomR(Y, Z), then we denote by [f, g] : X ⊕ Y −→ Z the corresponding linear map,
which is given by (x, y) 7→ f(x) + g(y), (x, y) ∈ X ⊕ Y .
All direct systems in this paper are indexed by directed sets of indices. A functor F from

the category of modules to that of abelian groups is said to commute with filtered colimits if

for any direct system of modules (Mi)i the natural map lim
−→i

F (Mi) −→ F
(
lim
−→i

Mi

)
is bijective.

1. Preliminaries

In this section, we recall a few notions and fix the notation that will be used throughout
the paper.
If M,N are two modules, then the set consisting of those linear maps M −→ N that factor

through a projective module is a subgroup of the abelian group HomR(M,N). We denote
by HomR(M,N) the corresponding quotient group and let [f ] be the class of any linear map
f ∈ HomR(M,N) therein. The composition of linear maps induces by passage to the quotients
a well-defined biadditive Hom pairing, that enables us to define the stable module category of
the ring R as the additive category whose objects are all modules and whose morphism sets
are given by the abelian groups HomR(M,N).
It is well-known that a module M is finitely presented if and only if the functor HomR(M, )

commutes with filtered colimits. We shall be interested in the stable analogue of this condition.

Definition 1.1. A module M is called stably finitely presented if the functor HomR(M, )
commutes with filtered colimits. We denote by SFP(R) the class of all stably finitely presented
modules.

As it turns out, the stably finitely presented modules are precisely the retracts of the finitely
presented modules in the stable module category.

Lemma 1.2. The following conditions are equivalent for a module C:
(i) C is stably finitely presented and
(ii) C is isomorphic to a direct summand of the direct sum N ⊕ P of two modules N and

P , where N is finitely presented and P is projective. �
Proof. (i)→(ii): The argument is essentially that provided in [10, Lemma 1.5]. We express

C as the colimit of a direct system (Ci)i of finitely presented modules and let fi : Ci −→ C
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be the canonical maps. Then, in view of our assumption on C, the natural map

lim
−→i

HomR(C,Ci) −→ HomR(C,C)

is an isomorphism. Considering the identity map 1C of C, it follows that there exists an index
i and a linear map g : C −→ Ci, such that [1C ] = [fig] ∈ HomR(C,C). The endomorphism
1C − fig of C factors then through a suitable projective module P ; in other words, there exist
linear maps a : C −→ P and b : P −→ C, such that 1C − fig = ba. The composition

C
(g,a)−→ Ci ⊕ P

[fi,b]−→ C

is therefore equal to fig + ba = 1C and hence C is a direct summand of Ci ⊕ P .
(ii)→(i): Since the class SFP(R) is closed under direct summands, it only suffices to prove

the result if C is equal to the direct sum of a finitely presented module and a projective module.
Since the functor HomR(P, ) is identically zero if P is a projective module, we may reduce
the problem to the case where the module C is finitely presented. In order to prove the result
in this case, assume that C is finitely presented and let (Mi)i be a direct system of modules
with structural maps gij : Mi −→ Mj, i ≤ j. We also consider the colimit M = lim

−→i
Mi and

the canonical maps gi : Mi −→M . Since C is finitely presented, the natural map

ν : lim
−→i

HomR(C,Mi) −→ HomR(C,M)

is bijective. It follows easily from the surjectivity of ν that the natural map

ν : lim
−→i

HomR(C,Mi) −→ HomR(C,M)

is surjective. In order to prove that ν is injective, we consider an index i and let f : C −→Mi

be a linear map, such that [gif ] = [0] ∈ HomR(C,M). Then, the linear map gif : C −→ M
may be factored through a (projective and hence through a) free module F , as the composition

C
a−→ F

b−→M , for suitable linear maps a and b. Since C is finitely generated, we may assume
that F is a finitely generated free module. Then, there exists an index j ≥ i, such that the

map b factors through Mj as the composition F
c−→ Mj

gj−→ M for a suitable linear map c.
We now consider the linear map gijf − ca : C −→Mj and compute

gj(gijf − ca) = gjgijf − gjca = gif − ba = 0 ∈ HomR(C,M).

Invoking the injectivity of ν, it follows that there is an index k ≥ j, such that

gikf − gjkca = gjk(gijf − ca) = 0 ∈ HomR(C,Mk).

Then, we have gikf = gjkca ∈ HomR(C,Mk) and hence [gikf ] = [gjkca] = [0] ∈ HomR(C,Mk),
where the latter equality follows from the projectivity of F . This shows that the image of
[f ] ∈ HomR(C,Mi) vanishes in HomR(C,Mk) and hence in the colimit lim

−→i
HomR(C,Mi). This

completes the proof of the injectivity of ν. �

We now describe the notion of orthogonality in the stable module category that will be used
in the paper. To that end, let X be any class of modules. Then, the left orthogonal of X is the
class ⋄X, consisting of those modules Y for which HomR(Y,X) = 0 for all X ∈ X. The right
orthogonal of X is the class X⋄, consisting of those modules Z for which HomR(X,Z) = 0 for
all X ∈ X. This notion of orthogonality has several formal properties, which are analogous to
those enjoyed by the more standard notion of orthogonality that is defined through the Ext1

pairing. As an example, we note that X ⊆ ⋄(X⋄) for any class X.
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Another variation of the stable module category may be obtained by considering complete
cohomology. Influenced by Gedrich and Gruenberg’s work on terminal completions [14], Mislin

has defined in [21] for any module M complete cohomology functors Êxt
∗
R(M, ) and a natural

transformation Ext∗R(M, ) −→ Êxt
∗
R(M, ), as the projective completion of the ordinary Ext

functors. Equivalent definitions of complete cohomology have been independently formulated
by Benson and Carlson in [7] and Vogel in [16].
These complete cohomology functors may be computed by means of certain resolutions,

as we shall now describe. We say that a module M admits a complete projective resolution
of coincidence index n if there exists a doubly infinite acyclic complex of projective modules,
which remains acyclic after applying the functor HomR( , P ) for any projective module P and
coincides with a projective resolution of M in degrees ≥ n. Then, the modules that admit a
complete projective resolution of coincidence index 0 are precisely the Gorenstein projective
modules. The class of these modules will be denoted by GP(R); it is closed under extensions,
direct sums and direct summands (cf. [17]). Of course, all projective modules are Gorenstein
projective.

It follows from Mislin’s definition of complete cohomology that the groups Êxt
∗
R(M,N) may

be computed, in the case where M admits a complete projective resolution P∗ (of an arbitrary
coincidence index), as the cohomology groups of the complex HomR(P∗, N) for any module N ;
cf. [9, Theorem 1.2]. In particular, if M is Gorenstein projective and N is any module, then

the complete cohomology group Êxt
0

R(M,N) may be naturally identified with HomR(M,N)

and the natural map ExtiR(M,N) −→ Êxt
i

R(M,N) is bijective for all i ≥ 1.

Definition 1.3. A module M is called completely finitary if the functors Êxt
i

R(M, ) commute
with filtered colimits for all i. We denote by CF(R) the class of all completely finitary modules.

It follows readily that a completely finitary Gorenstein module is stably finitely presented.
The class CF(R) contains all projective modules and is closed under direct summands, exten-
sions, kernels of epimorphisms and cokernels of monomorphisms. It follows from [20, §4.1(ii)]
that CF(R) contains all modules of type FP∞, i.e. all modules that admit a projective resolu-
tion which consists of finitely generated (projective) modules in each degree.

2. Hyperfinite extensions of Gorenstein projective modules

As we have already noted above, Holm has shown in [17] that the class GP(R) of Gorenstein
projective modules is closed under extensions. Using an inductive argument, it follows easily
that an iterated extension of Gorenstein projective modules is Gorenstein projective as well.
In other words, if n is a non-negative integer and 0 = M0 ⊆ M1 ⊆ M2 ⊆ . . . ⊆ Mn = M is
an increasing filtration of a module M of length n, such that the quotient modules Mi+1/Mi

are Gorenstein projective for all i = 0, 1, . . . , n− 1, then M ∈ GP(R). In this section, we shall
obtain a version of that result for increasing filtrations of infinite length.
We begin with the following simple lemma. Its proof is certainly well-known, but we record

it for the convenience of the reader.

Lemma 2.1. (dual horseshoe lemma) Let

0 −→M ′ ι−→M
p−→M ′′ −→ 0

be a short exact sequence with M ′′ Gorenstein projective and assume that

0 −→M ′ a−→ P ′ −→ N ′ −→ 0 and 0 −→M ′′ b−→ P ′′ −→ N ′′ −→ 0
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are two short exact sequences with P ′ projective. Then, there exists a short exact sequence

0 −→M
c−→ P ′ ⊕ P ′′ −→ N −→ 0,

which fits into a commutative diagram with exact rows and columns

0 0 0
↓ ↓ ↓

0 −→ M ′ ι−→ M
p−→ M ′′ −→ 0

a ↓ c ↓ b ↓
0 −→ P ′ −→ P ′ ⊕ P ′′ −→ P ′′ −→ 0

↓ ↓ ↓
0 −→ N ′ −→ N −→ N ′′ −→ 0

↓ ↓ ↓
0 0 0

(In the diagram above, the second row involves the natural embedding of P ′ into the direct sum
and the natural projection of the direct sum onto P ′′.)
Proof. In view of our assumption on M ′′ and P ′, the abelian group Ext1R(M

′′, P ′) is trivial.
It follows that the additive map

ι∗ : HomR(M,P ′) −→ HomR(M
′, P ′),

which is induced by ι, is surjective. Therefore, there exists a linear map a′ : M −→ P ′, such
that a′ι = a. Then, the linear map c = (a′, bp) : M −→ P ′ ⊕ P ′′ fits into the commutative
diagram with exact rows

0 −→ M ′ ι−→ M
p−→ M ′′ −→ 0

a ↓ c ↓ b ↓
0 −→ P ′ −→ P ′ ⊕ P ′′ −→ P ′′ −→ 0

The argument is completed by letting N = coker c and invoking the snake lemma. �

Let C be a class of modules. We say that a module M is a hyper-C module (or a hyperfinite
extension of modules of C) if there exists an ordinal number α and an ascending filtration of M
by submodules Mβ, which are indexed by the ordinals β ≤ α, such that M0 = 0, Mα = M and
Mβ/Mβ−1 ∈ C (resp. Mβ =

∪
γ<β Mγ) if β ≤ α is a successor (resp. a limit) ordinal. In that

case, we shall refer to the ascending chain of submodules (Mβ)β≤α as a continuous ascending
chain of submodules with sections in C. If α = 2, this notion reduces to that of an extension
of modules of C. We note that the direct sum of any family of modules which are contained in
C is a hyper-C module. On the other hand, it is easily seen that any hyper-(hyper-C) module
is a hyper-C module. We state that property by saying that the class hyper-C is closed under
hyperfinite extensions; in particular, the class hyper-C is closed under extensions.
A class C of modules will be called Ω−1-closed if for any C ∈ C there exists a short exact

sequence
0 −→ C −→ P −→ D −→ 0,

where P is projective and D ∈ C. As an example, we note that the class GP(R) is Ω−1-closed.

Proposition 2.2. Let R be a ring and consider an Ω−1-closed class C consisting of Gorenstein
projective modules. We also consider a hyper-C module M , which is endowed with a continuous
ascending chain of submodules (Mβ)β≤α with sections in C, for some ordinal number α. Then,
there exists a hyper-C module N with a continuous ascending chain of submodules (Nβ)β≤α
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with sections in C and a family of projective modules (Pβ)β≤α, such that there is a short exact
sequence

0 −→M −→ Q −→ N −→ 0,

where Q =
⊕

β≤α Pβ, and short exact sequences

0 −→Mβ+1/Mβ −→ Pβ+1 −→ Nβ+1/Nβ −→ 0

for all β < α.
Proof. We shall construct a continuous ascending chain of modules (Nβ)β≤α with sections

in C and a family of projective modules (Pβ)β≤α, in such a way that P0 = N0 = 0 and there
are short exact sequences of modules

(4) 0 −→Mβ

ιβ−→
⊕

γ≤βPγ −→ Nβ −→ 0

for all β ≤ α, which are compatible with each other, in the sense that for any two ordinal
numbers β, β′ with β < β′ ≤ α the diagram

(5)

0 −→ Mβ

ιβ−→
⊕

γ≤βPγ −→ Nβ −→ 0
↓ ↓ ↓

0 −→ Mβ′
ιβ′−→

⊕
γ≤β′Pγ −→ Nβ′ −→ 0

whose vertical arrows are the inclusion maps, is commutative. In particular, if β is an ordinal
number with β < α, then we may let β′ = β + 1 in the above diagram and invoke the snake
lemma in order to deduce the existence of a short exact sequence

0 −→Mβ+1/Mβ

jβ+1−→ Pβ+1 −→ Nβ+1/Nβ −→ 0,

where jβ+1 is the linear map which is induced from iβ+1 by passage to the quotients.
We shall proceed by transfinite induction on β and note that there is nothing to show for

β = 0. We now let β be an ordinal number with 0 < β ≤ α and assume that the construction
has been performed for all ordinals γ < β.
If β is a limit ordinal, then we define Pβ = 0 and let Nβ = lim

−→γ<β
Nγ. Since we also have

Mβ =
∪

γ<β Mγ = lim
−→γ<β

Mγ, the short exact sequences

0 −→Mγ
ιγ−→

⊕
δ≤γPδ −→ Nγ −→ 0,

γ < β, induce (in view of the compatibility condition described by the commutative diagrams
(5) and the fact that lim

−→γ<β

⊕
δ≤γ Pδ =

⊕
δ<β Pδ =

⊕
δ≤β Pδ) a short exact sequence

0 −→Mβ

ιβ−→
⊕

δ≤βPδ −→ Nβ −→ 0.

The compatibility condition is obviously preserved by this definition.
We now assume that β = γ + 1 is a successor ordinal and consider the projective module

Qγ =
⊕

δ≤γ Pδ and the short exact sequence

0 −→Mγ
ιγ−→ Qγ −→ Nγ −→ 0,

that has already been constructed. Since the quotient module Mγ+1/Mγ is contained in the
Ω−1-closed class C, there exists a short exact sequence

0 −→Mγ+1/Mγ −→ Pγ+1 −→ C −→ 0,
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where Pγ+1 is projective and C ∈ C. The C-module Mγ+1/Mγ being Gorenstein projective,
we may apply Lemma 2.1 and conclude that there exists a commutative diagram with exact
rows and columns

0 0 0
↓ ↓ ↓

0 −→ Mγ −→ Mγ+1 −→ Mγ+1/Mγ −→ 0
iγ ↓ iγ+1 ↓ ↓

0 −→ Qγ −→ Qγ ⊕ Pγ+1 −→ Pγ+1 −→ 0
↓ ↓ ↓

0 −→ Nγ −→ Nγ+1 −→ C −→ 0
↓ ↓ ↓
0 0 0

The cokernel of the monomorphism Nγ −→ Nγ+1 is then identified with the C-module C and
this completes the inductive step of the construction. �

Remarks 2.3. (i) Keeping the same notation as in Proposition 2.2 and its proof, we note that
the projective modules Pβ where chosen therein to vanish when β is a limit ordinal. Hence,
the projective module Q =

⊕
β≤α Pβ may be endowed with a continuous ascending chain of

submodules (Qβ)β≤α with sections in the class of projective modules, by letting Qβ =
⊕

γ≤β Pγ

for all β ≤ α. Moreover, the short exact sequence

0 −→M −→ Q −→ N −→ 0

is compatible with the filtrations that are defined on the modules M,Q and N ; this is another
way of formulating the existence of the short exact sequences (4). Finally, the induced short
exact sequence

0 −→Mβ+1/Mβ −→ Qβ+1/Qβ −→ Nβ+1/Nβ −→ 0

reduces to the short exact sequence

0 −→Mβ+1/Mβ −→ Pβ+1 −→ Nβ+1/Nβ −→ 0

in the statement of the proposition for all β < α.
(ii) Proposition 2.2 implies that if C is an Ω−1-closed class consisting of Gorenstein projective

modules, then the class hyper-C is Ω−1-closed as well.
(iii) A class C of modules is called Ω1-closed if for any C ∈ C there exists a short exact

sequence

0 −→ D −→ P −→ C −→ 0,

where the module P is projective and D ∈ C. For later use, we note that for any Ω1-closed
class C, the class hyper-C is also Ω1-closed.
Indeed, we may prove the analogue of Proposition 2.2 for Ω1-closed classes using exactly the
same arguments. (In fact, we only need the standard horseshoe lemma for the inductive step
of the construction; hence, there is no need to assume that the sections of the ascending chains
of submodules are Gorenstein projective.)

We shall use the following simple lemma, in order to prove that hyper-GP(R) modules are
Gorenstein projective.

Lemma 2.4. Let R be a ring and consider an Ω−1-closed class C. If Ext iR(C,P ) = 0, whenever
C ∈ C, P is projective and i > 0, then C consists of Gorenstein projective modules.
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Proof. Since the class C is Ω−1-closed, for any C-module C there exists an exact sequence

0 −→ C −→ P−1 −→ P−2 −→ · · · −→ P−n −→ · · · ,
such that the module P−n is projective and the image im (P−n −→ P−n−1) is contained in C
for all n ≥ 1. Splicing that exact sequence with any projective resolution of C, we may obtain
a complete projective resolution of C of coincidence index 0. The existence of the latter shows
that C ∈ GP(R), as needed. �

The following result has been proved in [25, Corollary 2.5], using arguments that are different
than those employed here.

Corollary 2.5. Any hyper-GP(R) module is Gorenstein projective.
Proof. Since the functors Ext iR( , P ) vanish on the class of Gorenstein projective modules

for all projective modules P and all i > 0, we may invoke Auslander’s lemma [11, Lemma 1]
and conclude that these functors vanish on the class of hyper-GP(R) modules as well. On the
other hand, Proposition 2.2, applied for the class GP(R) of all Gorenstein projective modules,
implies that the class of hyper-GP(R) modules is Ω−1-closed; cf. Remark 2.3(ii). The result is
therefore a consequence of Lemma 2.4. �
Corollary 2.6. Let R be a ring and consider a module M , which is endowed with a continuous
ascending chain of submodules (Mβ)β≤α with sections in GP(R), for some ordinal number α.

If i ∈ Z and L is a module, such that Êxt
i

R(Mβ+1/Mβ, L) = 0 for all β < α, then we also have

Êxt
i

R(M,L) = 0.
Proof. The modules Mβ+1/Mβ are Gorenstein projective for all β < α; in view of Corollary

2.5, this is also the case for the module M . Hence, if i > 0, the complete cohomology groups
that appear in the statement coincide with the corresponding ordinary Ext groups. In the case
where i > 0, the result then follows from Auslander’s lemma. In order to prove the result in the

case where i ≤ 0, it suffices to show that for any non-negative integer j the group Êxt
1−j

R (M,L)
is trivial, whenever M is a module endowed with a continuous ascending chain of submodules

(Mβ)β≤α with sections in GP(R) and L is a module, such that Êxt
1−j

R (Mβ+1/Mβ, L) = 0 for all
β < α. We shall prove the latter claim by induction on j. As we noted above, the case where
j = 0 follows from Auslander’s lemma. We now assume that j > 0 and the result is known
for j − 1. Given two modules M and L, as in the statement of the claim to be proved, we
use Proposition 2.2 for the special case where C = GP(R) therein, in order to find a module
N together with a continuous ascending chain of submodules (Nβ)β≤α with sections in GP(R)
and a family of projective modules (Pβ)β≤α, such that there is a short exact sequence

(6) 0 −→M −→ Q −→ N −→ 0,

where Q =
⊕

β≤α Pβ, and short exact sequences

(7) 0 −→Mβ+1/Mβ −→ Pβ+1 −→ Nβ+1/Nβ −→ 0

for all β < α. The existence of the short exact sequences (7) implies that

Êxt
1−(j−1)

R (Nβ+1/Nβ, L) = Êxt
1−j

R (Mβ+1/Mβ, L) = 0

for all β < α. Hence, applying the inductive hypothesis to the modules N and L, we conclude

that Êxt
1−(j−1)

R (N,L) = 0. The result follows, since the existence of the short exact sequence

(6) implies that Êxt
1−j

R (M,L) = Êxt
1−(j−1)

R (N,L). �
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We shall use Corollary 2.6 in the sequel for the special case where i = 0 therein, in the form
stated below.

Corollary 2.7. Let R be a ring and consider a class C, which consists of Gorenstein projective
modules. Then, any hyper-C module is contained in ⋄(C⋄).
Proof. LetM be a hyper-Cmodule and consider a continuous ascending chain of submodules

(Mβ)β≤α of it with sections in C, for some ordinal number α. Since C ⊆ GP(R), the C-module
Mβ+1/Mβ is Gorenstein projective and hence for any module L ∈ C⋄ we have

Êxt
0

R(Mβ+1/Mβ, L) = HomR(Mβ+1/Mβ, L) = 0

for all β < α. Since the module M is Gorenstein projective as well (cf. Corollary 2.5), we may
invoke Corollary 2.6 and conclude that

HomR(M,L) = Êxt
0

R(M,L) = 0.

As this is the case for any L ∈ C⋄, it follows that M ∈ ⋄(C⋄). �

3. Stably finitely presented modules and orthogonality

In this section, we shall be interested in the class of stably finitely presented modules and
examine the orthogonal pair which is induced by that class in the stable module category. It
will turn out that this orthogonal pair enjoys certain properties which are analogous to those
of cotorsion pairs with enough projective and injective objects in the category of modules (cf.
[24] and [11, §4]).
If C is a class of modules over a ring R and M is any module, then we denote by C↓M the

class consisting of all pairs (C, f), where C ∈ C and f ∈ HomR(C,M). The following result
is based on the characterization of stably finitely presented modules provided in Lemma 1.2,
coupled with the existence of a set of isomorphism classes of finitely presented modules.

Lemma 3.1. Let R be a ring and consider a module M and a class C of stably finitely presented
modules. Then, there is a set Λ = Λ(C,M) of pairs (C ′, f ′) ∈ C ↓M , which is such that for
any (C, f) ∈ C↓M there exists a suitable pair (C ′, f ′) ∈ Λ and a linear map g ∈ HomR(C,C

′)
with [f ] = [f ′g] ∈ HomR(C,M).
Proof. For any finitely presented module N we consider the set HomR(N,M) and define

the subset XN ⊆ HomR(N,M), consisting of those linear maps a : N −→ M for which there
exist:
(i) a pair (C, f) ∈ C↓M ,
(ii) a module K and a projective module P ,
(iii) an isomorphism u : C ⊕K −→ N ⊕ P and a linear map b : P −→M ,

such that the following diagram is commutative

(8)
C

(1,0)−→ C ⊕K
u−→ N ⊕ P

(1,0)←− N
f ↓ [f,0] ↓ [a,b] ↓ a ↓
M = M = M = M

For any a ∈ XN we choose such a 6-tuple (C, f,K, P, u, b) and label it as (Ca, fa, Ka, Pa, ua, ba).
We note that, with the above notation, the diagram

N
(1,0)−→ N ⊕ Pa

u−1
a−→ Ca ⊕Ka

[1,0]−→ Ca

a ↓ [a,ba] ↓ [fa,0] ↓ fa ↓
M = M = M = M
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is commutative. We now consider the class of all finitely presented modules and choose a set
N consisting of one representative from each isomorphism class therein. We define

Λ =
∪

N∈N{(Ca, fa) : a ∈ XN}.
For any pair (C, f) ∈ C↓M , we may use Lemma 1.2 and choose a module K and a projective
module P , so that C ⊕K ≃ N ⊕P for some N ∈ N. We then obtain a commutative diagram
as in (8) for an isomorphism u and suitable linear maps a and b; by the very definition of XN ,
we have a ∈ XN . We note that the diagram

C
(1,0)−→ C ⊕K

u−→ N ⊕ P
[1,0]−→ N

(1,0)−→ N ⊕ Pa
u−1
a−→ Ca ⊕Ka

[1,0]−→ Ca

f ↓ [f,0] ↓ [a,b] ↓ a ↓ [a,ba] ↓ [fa,0] ↓ fa ↓
M = M = M = M = M = M = M

is commutative in the stable module category. In fact, all of the squares in that diagram are
commutative in the ordinary module category, with the possible exception of the third one,
namely of

N ⊕ P
[1,0]−→ N

[a,b] ↓ a ↓
M = M

which is only stably commutative if b ̸= 0. Hence, if we define g : C −→ Ca to be composition
of the six horizontal arrows in the top row of the diagram, then [f ] = [fag] ∈ HomR(C,M).
Since (Ca, fa) ∈ Λ, the proof of the lemma is completed. �

As an immediate consequence of the previous lemma, it follows that for any class C consisting
of stably finitely presented modules and for any module M , there exists a set C0 = C0(M) of
C-modules, which is such that

M ∈ C⋄ if and only if M ∈ (C0)
⋄.

Indeed, keeping the same notation as in the proof of Lemma 3.1, we may define C0 as the set
consisting of those modules C ∈ C, for which there exist a module N ∈ N and a linear map
a ∈ XN , such that C = Ca. This property of C is a weak (local) version of the stable analogue
of an important property that a cotorsion pair may have, namely that of being cogenerated
by a set of modules. As shown by Eklof and Trlifaj in [11, Theorem 10], any cotorsion pair
which is cogenerated by a set of modules has enough injective (and projective) objects.
We shall now detail an explicit algebraic construction of a certain homotopy colimit, which

was motivated by algebraic topology and brought into the realm of algebra by Rickard [23] and
Kropholler [19]; see also [10]. This construction will turn out to be the analogue of the result
by Eklof and Trlifaj mentioned above, in our setting. In order to describe the construction, we
fix an Ω−1-closed class C, which consists of stably finitely presented modules. For any module
M , we shall construct a sequence of modules (Mn)n and injective linear maps

M0
ι0−→M1

ι1−→ · · · ιn−1−→Mn
ιn−→ · · · ,

in such a way that M0 = M , the cokernel of ιn : Mn −→ Mn+1 is a hyper-C module for all n
and the colimit M∞ = lim

−→n
Mn is contained in C⋄.

We use induction on n and begin, of course, by letting M0 = M . Having constructed the
modules Mk for k = 0, 1, . . . , n and the embeddings ιk : Mk −→ Mk+1, whose cokernels are
hyper-C modules for k = 0, 1, . . . , n − 1, we proceed with the inductive step as follows: We
consider the class C↓Mn consisting of all pairs (C, f), where C ∈ C and f ∈ HomR(C,Mn). In
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view of Lemma 3.1, we may choose a set Λn of pairs therein, in such a way that for any (C, f)
in C ↓Mn there exists a pair (C ′, f ′) ∈ Λn and a suitable linear map g ∈ HomR(C,C

′) with
[f ] = [f ′g] ∈ HomR(C,Mn). We now let Cn =

⊕
(C,f)∈Λn

C and denote by η(C,f) : C −→ Cn

the canonical embedding of C as the direct summand of Cn corresponding to any index
(C, f) ∈ Λn. We also consider the linear map fn : Cn −→Mn, which is induced by the f ’s for
all (C, f) ∈ Λn; in other words, fn is the unique linear map for which the diagram below

C
η(C,f)−→ Cn

f ↓ ↓ fn

Mn = Mn

is commutative for all (C, f) ∈ Λn. For any pair (C, f) ∈ Λn, the module C is contained in
the Ω−1-closed class C; hence, we may choose a short exact sequence

0 −→ C −→ P −→ D −→ 0,

where P is projective and D ∈ C. Taking the direct sum of these over all pairs (C, f) ∈ Λn,
we obtain a short exact sequence

0 −→ Cn
ȷn−→ Pn −→ Dn −→ 0,

where Pn is projective and Dn is a (direct sum of modules contained in C and hence a) hyper-C
module. We now define the module Mn+1 as the pushout of the diagram

Cn
ȷn−→ Pn

fn ↓
Mn

In other words, Mn+1 fits into a commutative diagram with exact rows

0 −→ Cn
ȷn−→ Pn −→ Dn −→ 0

fn ↓ ↓ φn ∥
0 −→ Mn

ιn−→ Mn+1 −→ Dn −→ 0

Since coker ιn ≃ Dn is a hyper-C module, the inductive step of the construction is completed.
Having constructed as above the sequence (Mn)n and the monomorphisms ιn, n ≥ 0, we shall

prove that the colimit M∞ = lim
−→n

Mn is contained in C⋄. To that end, we fix a module C ∈ C,

a non-negative integer n and consider a linear map f : C −→ Mn. In view of the defining
property of the set Λn, there exists a pair (C

′, f ′) ∈ Λn and a linear map g ∈ HomR(C,C
′) with

[f ] = [f ′g] ∈ HomR(C,Mn). Letting h : C −→ Cn be the composition C
g−→ C ′ η(C′,f ′)−→ Cn, the

commutativity of the diagram

C
g−→ C ′ η(C′,f ′)−→ Cn

f ↓ f ′ ↓ fn ↓
Mn = Mn = Mn

in the stable module category shows that [f ] = [fnh] ∈ HomR(C,Mn). Hence, it follows that

[ιnf ] = [ιnfnh] = [φnȷnh] = [0] ∈ HomR(C,Mn+1),

where the latter equality is a consequence of the projectivity of the module Pn. As this is true
for all f ∈ HomR(C,Mn), we may conclude that the additive map

ιn∗ : HomR(C,Mn) −→ HomR(C,Mn+1),
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which is induced by ιn, is the zero map for all n ≥ 0. Since the C-module C is stably finitely
presented and M∞ = lim

−→n
Mn, it follows that the abelian group HomR(C,M∞) is identified

with the colimit of the system

HomR(C,M0)
ι0∗−→ HomR(C,M1)

ι1∗−→ · · · ιn−1∗−→ HomR(C,Mn)
ιn∗−→ · · · .

Therefore, the group HomR(C,M∞) is trivial, as needed.

Theorem 3.2. Let R be a ring and consider an Ω−1-closed class C, which consists of stably
finitely presented modules.
(i) For any module M there exists a short exact sequence

0 −→M −→ B −→ A −→ 0,

where B ∈ C⋄ and A is a hyper-C module.
(ii) Assume, in addition, that C contains all projective modules. Then, for any module M

there exists a short exact sequence

0 −→ B −→ A −→M −→ 0,

where B ∈ C⋄ and A is a hyper-C module.
In the special case where the class C above is a subclass of GP(R), the module A in statements
(i) and (ii) is a Gorenstein projective module contained in the double orthogonal ⋄(C⋄).

Proof. (i) For any module M we consider the sequence (Mn)n and the injective linear maps

M0
ι0−→M1

ι1−→ · · · ιn−1−→Mn
ιn−→ · · · ,

which were constructed above; recall that M0 = M , the cokernel of ιn is a hyper-C module for
all n and the colimit M∞ = lim

−→n
Mn is contained in C⋄. We regard the ιn’s as embeddings and

write simply M∞ =
∪

n Mn. Then, the cokernel of the embedding ι : M ↪→M∞ is the module
M∞/M =

∪
n Mn/M . Since M0/M = 0 and the successive quotients (Mn+1/M)/(Mn/M) ≃

Mn+1/Mn = coker ιn are hyper-C modules for all n, it follows that M∞/M is a hyper-(hyper-C)
module and hence a hyper-C module as well. Therefore, the short exact sequence

0 −→M
ι−→M∞ −→M∞/M −→ 0

satisfies the requirements in the statement to be proved. If the class C consists of Gorenstein
projective modules, then Corollary 2.5 implies that the hyper-C module M∞/M is Gorenstein
projective, whereas Corollary 2.7 implies that M∞/M ∈⋄ (C⋄).
(ii) We follow the (well-known by now) technique used by Salce in [24, Lemma 2.2] and

consider for any given module M a projective module P and a surjective linear map P −→M .
Applying assertion (i) to the kernel K of that map, we deduce the existence of a short exact
sequence

0 −→ K −→ B −→ A −→ 0,

where B ∈ C⋄ and A is a hyper-C module. Then, the pushout A′ of the diagram

K ↪→ P
↓
B
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fits into a commutative diagram with exact rows and columns

0 0
↓ ↓

0 −→ K −→ P −→ M −→ 0
↓ ↓ ∥

0 −→ B −→ A′ −→ M −→ 0
↓ ↓
A = A
↓ ↓
0 0

Since projective modules are contained in C and A′ is an extension of the hyper-C module A
by P , it follows that A′ is a hyper-C module as well. Thus, the horizontal short exact sequence
in the middle of the diagram satisfies the requirements in the statement to be proved. Finally,
invoking Corollaries 2.5 and 2.7 as in the proof of assertion (i), we conclude that if C ⊆ GP(R),
then A′ is a Gorenstein projective module contained in ⋄(C⋄).1 �

As an application of Theorem 3.2, we shall obtain some information about the modules in the
double orthogonal ⋄(C⋄) of the class C considered therein.

Proposition 3.3. Let R be a ring and consider an Ω−1-closed class C, which consists of stably
finitely presented Gorenstein projective modules and contains all projective modules. Then, for
any module M ∈ ⋄(C⋄) there exists a short exact sequence

0 −→M −→ P −→ N −→ 0,

where P is projective and N is a direct summand of a hyper-C module.

Proof. Let M be a module contained in ⋄(C⋄) and consider a short exact sequence

0 −→M
ι−→ B −→ A −→ 0,

where B ∈ C⋄ and A is a Gorenstein projective hyper-C module; the existence of such an exact
sequence follows from Theorem 3.2. Since the abelian group HomR(M,B) is trivial, we may

factor ι as the composition M
ȷ−→ P

g1−→ B, for a suitable projective module P and linear
maps ȷ and g1. Since g1ȷ = ι is injective, the linear map ȷ is injective as well; let N = coker ȷ
and consider the quotient map p : P −→ N . We also consider the commutative diagram with
exact rows

0 −→ M
ȷ−→ P

p−→ N −→ 0
∥ ↓ g1 ↓ f1

0 −→ M
ι−→ B −→ A −→ 0

where f1 is the linear map obtained from g1 by passage to the quotients. On the other hand,
since the module A is Gorenstein projective and P is projective, the abelian group Ext1R(A,P )
is trivial. Hence, the additive map

ι∗ : HomR(B,P ) −→ HomR(M,P ),

1In fact, if C ⊆ GP(R) then the module A is Gorenstein projective. Then, the abelian group Ext1R(A,P ) is
trivial and hence the vertical short exact sequence in the middle of the diagram splits, i.e. A′ ≃ A⊕ P .
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which is induced by ι, is surjective. Therefore, there exists a linear map g2 : B −→ P , such
that g2ι = ȷ. We now consider the commutative diagram with exact rows

0 −→ M
ι−→ B −→ A −→ 0

∥ ↓ g2 ↓ f2

0 −→ M
ȷ−→ P

p−→ N −→ 0

where f2 is the linear map obtained from g2 by passage to the quotients. Finally, let g = g2g1,
f = f2f1 and consider the commutative diagram obtained by composing the previous ones

0 −→ M
ȷ−→ P

p−→ N −→ 0
∥ ↓ g ↓ f

0 −→ M
ȷ−→ P

p−→ N −→ 0

Since (1P − g)ȷ = ȷ − gȷ = 0, we conclude that there exists a linear map h : N −→ P , such
that 1P − g = hp. Then, we have

(1N − f − ph)p = p− fp− php = p− fp− p(1P − g) = p− fp− p+ pg = pg − fp = 0

and hence 1N − f −ph = 0; we have therefore proved that f2f1+ph = f +ph = 1N . It follows

that the identity map 1N of N factors as the composition N
(f1,h)−→ A⊕ P

[f2,p]−→ N and hence N
is a direct summand of A ⊕ P . Since the projective module P is contained in C, the direct
sum A⊕ P is a hyper-C module and the proof is complete. �

Remarks 3.4. (i) Let C be an Ω−1-closed class, which consists of stably finitely presented
Gorenstein projective modules and contains all projective modules. The double orthogonal
⋄(C⋄) is closed under direct summands and contains all hyper-C modules (cf. Corollary 2.7).
In particular, for any module M ∈ ⋄(C⋄) the module N in the statement of Proposition 3.3 is
contained in ⋄(C⋄) as well. Hence, Proposition 3.3 implies that the class ⋄(C⋄) is Ω−1-closed.
(ii) A careful examination of the proofs that were provided above for Theorem 3.2(ii) and

Proposition 3.3 shows that in both of these results the hypothesis that C contains all projective
modules may be weakened; in fact, it only suffices to assume therein that the regular module
is contained in C (or even that R is a hyper-C module).

4. Completely finitary Gorenstein projective modules

In this final section, we specialize the discussion to the class of completely finitary Gorenstein
projective modules. Taking into account a description of the modules in the right orthogonal
of that class in terms of complete cohomology, the results of the previous section will lead to
the proof of our main result, namely of the Theorem stated in the Introduction.
A class C of modules is called Ω±1-closed if it is both Ω1- and Ω−1-closed. The property

of the modules in the double orthogonal ⋄(C⋄) presented in Proposition 3.3 is characteristic
of the modules in that class, in the special case where the class C therein is Ω±1-closed. The
following result is a stable analogue of [15, Corollary 3.2.4].

Proposition 4.1. Let R be a ring and consider an Ω±1-closed class C consisting of stably
finitely presented Gorenstein projective modules and containing all projective modules. Then,
the following conditions are equivalent for a module M :
(i) M ∈ ⋄(C⋄),
(ii) there exists a short exact sequence

0 −→M −→ P −→ N −→ 0,
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where P is projective and N is a direct summand of a hyper-C module, and
(iii) M is a direct summand of a hyper-C module.

Proof. (i)→(ii): This is proved in Proposition 3.3.
(ii)→(iii): Let M be a module for which there exists a short exact sequence as in (ii). Then,

N ⊕N ′ is a hyper-C module for a suitable module N ′. We consider a short exact sequence

0 −→M ′ −→ P ′ −→ N ′ −→ 0,

where P ′ is a projective module, and let

0 −→M ⊕M ′ −→ P ⊕ P ′ −→ N ⊕N ′ −→ 0

be the direct sum of the two exact sequences. Since the class C is Ω1-closed, we know that the
class hyper-C is also Ω1-closed (cf. Remark 2.3(iii)); hence, there exists a short exact sequence

0 −→ K −→ Q −→ N ⊕N ′ −→ 0,

where Q is projective andK is a hyper-Cmodule. As the projective module P⊕P ′ is contained
in C, it follows that K ⊕ P ⊕ P ′ is a hyper-C module as well. This completes the proof, since
M is a direct summand of the latter module, in view of Schanuel’s lemma.
(iii)→(i): Since the double orthogonal ⋄(C⋄) is closed under direct summands, this follows

from Corollary 2.7. �

Remark 4.2. Let C be an Ω±1-closed class, consisting of stably finitely presented Gorenstein
projective modules and containing all projective modules. Then, Proposition 4.1 implies that
the class ⋄(C⋄) is Ω±1-closed as well.

Let C be an Ω±1-closed class and consider a module C ∈ C. Then, using an inductive argument,
we may construct a doubly infinite acyclic complex of projective modules

· · · −→ P2 −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · · ,

whose syzygy modules are all contained in C and whose 0-th syzygy module is C. Using this
observation, we shall now prove that the right orthogonal of an Ω±1-closed class consisting of
Gorenstein projective modules admits a rigid description, as far as the complete cohomology
functors are concerned.

Lemma 4.3. Let R be a ring and consider an Ω±1-closed class C, which consists of Gorenstein
projective modules. Then, the following conditions are equivalent for a module L:
(i) L ∈ C⋄ and

(ii) Êxt
i

R(C,L) = 0 for all modules C ∈ C and all integers i ∈ Z.
Proof. The implication (ii)→(i) follows since C is a subclass of GP(R) and hence Êxt

0

R(C, ) =
HomR(C, ) for any module C ∈ C.
In order to prove that (i)→(ii), assume that (i) holds and consider a C-module C. As we

noted above, there exists a doubly infinite acyclic complex of projective modules, with i-th
syzygy module Ci contained in C for all i ∈ Z and C0 = C. Since C is a subclass of GP(R), the
module Ci is Gorenstein projective for all i. Hence, using dimension shifting and assumption
(i), it follows that

Êxt
i

R(C,L) = Êxt
i

R(C0, L) = Êxt
0

R(Ci, L) = HomR(Ci, L) = 0

for all i ∈ Z, as needed. �
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Proposition 4.4. Let R be a ring and consider an Ω±1-closed class C, which consists of stably
finitely presented Gorenstein projective modules.
(i) For any module M there exists a short exact sequence

0 −→M −→ B −→ A −→ 0,

where A is a Gorenstein projective hyper-C module and B is such that Ext1R(C,B) = 0 for all
modules C ∈ C.
(ii) Assume, in addition, that C contains all projective modules. Then, for any module M

there exists a short exact sequence

0 −→ B −→ A −→M −→ 0,

where A is a Gorenstein projective hyper-C module and B is such that Ext1R(C,B) = 0 for all
modules C ∈ C.
Proof. Invoking Theorem 3.2, we can find for any module M short exact sequences as in the

statement of the proposition, where A is a Gorenstein projective hyper-C module and B ∈ C⋄.

Then, Lemma 4.3 implies that the abelian group Ext1R(C,B) = Êxt
1

R(C,B) is trivial for all
modules C ∈ C. �

Remarks 4.5. (i) The class CF(R) ∩ GP(R) of all completely finitary Gorenstein projective
modules provides an example of a class that satisfies the hypotheses of Proposition 4.4.
Indeed, CF(R)∩GP(R) consists of stably finitely presented Gorenstein projective modules and
contains all projective modules. Furthermore, the class CF(R)∩ GP(R) is Ω±1-closed, since all
syzygy modules of an acyclic complex of projective modules are completely finitary, provided
that one of them is.
(ii) Any Ω±1-closed class C, which consists of stably finitely presented Gorenstein projective

modules, is contained in CF(R) ∩ GP(R).
In order to verify this, let C be an Ω±1-closed class consisting of stably finitely presented
Gorenstein projective modules and consider a C-module C. We also consider a doubly infinite
acyclic chain complex of projective modules, whose i-th syzygy module Ci is contained in C
for all i and whose 0-th syzygy module C0 equals C. Using dimension shifting, it follows

that the complete cohomology functors Êxt
i
(C, ) = Êxt

i
(C0, ) and Êxt

0
(Ci, ) are naturally

isomorphic for all i ∈ Z. Our assumption that C ⊆ SFP(R) ∩ GP(R) implies that the module

Ci is stably finitely presented and Gorenstein projective; hence, the functor Êxt
0
(Ci, ) =

HomR(Ci, ) commutes with filtered colimits for all i. It follows readily that C is completely
finitary, as needed.

We shall conclude with the following corollary, some parts of which constitute the Theorem
stated in the Introduction.

Corollary 4.6. Let R be a ring.
(i) For any module M there exists a short exact sequence

0 −→M −→ B −→ A −→ 0,

where A is a hyperfinite extension of completely finitary Gorenstein projective modules (and
hence A is Gorenstein projective) and B is such that Ext 1R(C,B) = 0 for all completely finitary
Gorenstein projective modules C.
(ii) For any module M there exists a short exact sequence

0 −→ B −→ A −→M −→ 0,
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where A is a hyperfinite extension of completely finitary Gorenstein projective modules (and
hence A is Gorenstein projective) and B is such that Ext 1R(C,B) = 0 for all completely finitary
Gorenstein projective modules C.
Proof. This follows from Proposition 4.4, by letting C = CF(R) ∩ GP(R) therein. �

Remarks 4.7. (i) Let C = CF(R) ∩ GP(R) and consider the double orthogonal C = ⋄(C⋄); in
view of Proposition 4.1, the class C consists of all direct summands of hyperfinite extensions
of completely finitary Gorenstein projective modules. Since the class of Gorenstein projective
modules is closed under hyperfinite extensions (cf. Corollary 2.5) and direct summands [17],
it follows that C is a subclass of GP(R). The class C is precovering; in fact, for any module M
the short exact sequence of Corollary 4.6(ii) is a special C-precover.
Indeed, keeping the same notation as in Corollary 4.6(ii), we have A ∈ C. On the other hand,
Auslander’s lemma implies that the functor Ext1R( , B) vanishes on all hyperfinite extensions
of completely finitary Gorenstein projective modules and hence on all direct summands of
these (i.e. on all C-modules).
(ii) Having the existence of (special) Gorenstein projective precovers in our mind, it would

be of some interest to examine rings over which any Gorenstein projective module may be
expressed as a hyperfinite extension of completely finitary Gorenstein projective modules; in
the notation of (i) above, we would then have an equality C = GP(R). As an example, we
note that Beligiannis has characterized in [6] the Artin algebras over which any Gorenstein
projective module may be decomposed into the direct sum of finitely generated modules
(which are then necessarily of type FP∞ and Gorenstein projective). Of course, the class
GP(R) is already known to be precovering when R is an Artin algebra; this case is covered by
Jorgensen’s result [18] about Noetherian algebras over a field that admit a dualizing complex.
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