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UNIVERSITÉ BLAISE PASCAL

Abstract

LIMOS, CNRS

Doctor of Philosophy

Modeling and Verification of Probabilistic Data-aware Business Processes

by LI Haizhou

There is a wide range of new applications that stress the need for business process mod-

els that are able to handle imprecise data. This thesis studies the underlying modelling

and analysis issues. It uses as formal model to describe process behaviours a labelled

transitions system in which transitions are guarded by conditions defined over a proba-

bilistic database. To tackle verification problems, we decompose this model to a set of

traditional automata associated with probabilities named as world-partition automata.

Next, this thesis presents an approach for testing probabilistic simulation preorder in

this context. A complexity analysis reveals that the problem is in 2-exptime, and is

exptime-hard, w.r.t. expression complexity while it matches probabilistic query eval-

uation w.r.t. data-complexity. Then P-LTL and P-CTL model checking methods are

studied to verify this model. In this context, the complexity of P-LTL and P-CTL model

checking is in exptime. Finally a prototype called ”PRODUS” which is a modeling and

verification tool is introduced and we model a realistic scenario in the domain of GIS

(graphical information system) by using our approach.

Key words: probabilistic database, business processes, simulation relation test, model

checking.



Résumé

Un large éventail de nouvelles applications met l’accent sur la nécessité de disposer de

modèles de processus métier capables de manipuler des données imprécises ou incer-

taines. Du fait de la présence de données probabilistes, les comportements externes de

tels processus métier sont non markoviens. Peu de travaux dans la littérature se sont

intéressés à la vérification de tels systèmes. Ce travail de thèse étudie les questions

de modélisation et d’analyse de ce type de processus métier. Il utilise comme modèle

formel pour décrire les comportements des processus métier un système de transitions

étiquetées dans lequel les transitions sont gardées par des conditions définies sur une

base de données probabiliste. Il propose ensuite une approche de décomposition de ces

processus qui permet de tester la relation de simulation entre processus dans ce con-

texte. Une analyse de complexité révèle que le problème de test de simulation est dans

2-EXPTIME, et qu’il est EXPTIME-difficile en termes de complexité d’expression, alors

que du point de vue de la complexité en termes des données, il n’engendre pas de surcoût

supplémentaire par rapport au coût de l’évaluation de requêtes booléennes sur des bases

de données probabilistes. L’approche proposée est ensuite étendue pour permettre la

vérification de propriétés exprimées dans les logiques P-LTL et P-CTL. Finalement, un

prototype, nommé ‘PRODUS’, a été implémenté et utilisé dans le cadre d’une appli-

cation liées aux systèmes d’information géographiques pour montrer la faisabilité de

l’approche proposé.

Mots-clés: bases de données probabilistes, processus métier, relation de simulation,

vérification de modèles.
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Chapter 1

Introduction

In the domain of Business Process Management (BPM)[1, 2], the core is process mod-

elling and analysis. A business process is usually defined as a collection of activities

performed in coordination to achieve a particular business goal [1]. The uses of busi-

ness process models have been spread from business scope (e.g., supply chain system)

to many other domains (e.g., agriculture, medicine). Following the numerous nouveau

demands, various process models [1, 2] have been proposed in the literature to describe

business processes ranging from theoretical models, which implement formal semantics

(e.g., transition systems, Petri nets, process algebras, EPC), to executable models (e.g.,

BPEL, XPDL, WS-CDL) or graphical ones (e.g., BPMN, activity diagrams of UML).

While most of existing models focus on control-flow perspective (i.e., ordering and co-

ordination of activities), which is an essential dimension to describe business processes,

there has been over the last few years an increasing interest around the role played by

data in business processes. Indeed, in many applications the executions of processes,

as specified in a control-flow, may be also governed by conditions defined over vari-

ables or over a database. This motivates the emergence of data-aware and data-centric

perspectives for process modelling, approaches that promote data to first-class citizens

in process models. The interest in these perspectives is driven by many applications in

which data plays a prominent role such as artifact-centric modelling of business processes

[3, 4], data-aware conformance and compliance checking [5, 6] of business processes as

well as data-centric web services [7].

However, whereas many traditional applications manipulate precise data, there is a wide

range of new applications that need to manage imprecise and uncertain data [8]. Many

sources of imprecision of data are possible, among them the following examples are worth

mentioning:

8



Chapter 1. Introduction 9

• Nowadays, most business processes are collaborative, span across enterprises bound-

aries and, as a consequence, have to deal with data originated from multiple

sources. This raises information quality issues since data sources are usually het-

erogeneous and methods and frequency of collecting data vary depending on or-

ganizations and geographies [9]. In the sense that a same real world entity may

be represented differently in different sources. Furthermore, data may be ”col-

lected with different methods and frequency by different departments, institutions,

and geographies” [9]. Data cleaning and source reconciliation are costly tasks,

in particular if the size of data is very large. As a consequence, in most of the

state-of-the-art, data integration approaches allow the data to be imprecise. For

example, as highlighted in [8], in business intelligence, imprecision is the price to

pay to reduce the cost of data cleaning. While the author of [9] explains that

many possible sources of uncertainty exist in BI applications, and this problem is

magnified when data comes from multiple sources and is collected with different

methods and frequency by different departments, institutions, and geographies.

• Recently, several research works [10, 11] as well as industrial tools (e.g., Oracle’s

BPEL Sensor and IBM WebSphere Business sensor events) highlighted the need of

integrating sensor network data into business processes. Example of applications

include fleet management and package tracking related to logistics processes [10]

or monitoring processes where sensors and actuators driven by a business process

are used to control large-scale physical systems (e.g., energy efficient buildings

[11]). Data captured from the physical world using sensors, cameras is inherently

imprecise and uncertain.

• In many applications areas, e.g., healthcare, financial services or business intelli-

gence, data is very sensitive and cannot be handled as it is by business processes.

Privacy regulations may impose various requirements such as anonymity, data

masking, obfuscation, or introduction of imprecision, (e.g., noise), to hide sensi-

tive information [8].

The aforementioned applications stress the need for business process models that are

able to handle imprecise data. We study in this thesis the underlying modelling and

analysis issues. We use as formal model to describe process semantics a Labelled Transi-

tions System (LTS) in which transitions are guarded by conditions defined over a global

database which, in spirit of [8], contains an explicit representation of the uncertainty. We

call such a model a probabilistic data-aware business process (pd-process). Our choice of

LTSs is motivated by the prominent role played by this formalism for representing be-

haviours of systems. Indeed, LTSs form one of the most used types of models in process

theory [12] and they have also been used intensively in BPM and web services areas to
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support formal analysis of business processes [13]. We rest on recent developments in

the emerging field of probabilistic databases [8, 14, 15] to include imprecise data within

labelled transitions systems and formally define the semantics of the obtained pd-process

model.

This dissertation focuses on the problem of modelling and analysing pd-processes. His-

torically, two principal methods of equal importance have been used in the literature to

analyse LTSs: temporal logic, used to verify whether a given process satisfies certain

properties and equivalence or preorder relations. In the first class, Linear Temporal

Logic (LTL) and Computation Tree Logic (CTL) are normally considered to verify pro-

cess models. LTL is a logical formalism capturing linear time properties and it is a

fragment of CTL which allows branching time and qualifiers. By using these temporal

logic, model verification or called model checking is wildly used to help process designers

to detect the defects of a model effectively by verifying essential properties. Regarding

the second class of methods, simulation preorder is a refinement relation on processes

that has been proved to be very useful in many applications. Simulation equivalence

plays a crucial role in model checking since it preserves relevant properties of many

temporal logics (e.g., CTL*) and hence can be exploited to minimize the state space

explored by verification algorithms [16, 17]. Simulation equivalence has also been used

directly for verification of business processes [18] as well as for web service analysis and

composition [19, 20].

1.1 Contribution

In this thesis, our contributions are as follows:

• We integrate probabilistic database with automata theories to propose a nouveau

process model, named ”Probabilistic data-aware business process model”, which

expands the usage domain of business process model. This model specifies boolean

queries on probabilistic databases as guards which enrich the decision making and

bring another way to express probabilities in a labelled transition system. Indeed,

the general topic of this thesis is not totally new since a satisfactory verification

theory for probabilistic processes has been a long-standing research problem and

numerous probabilistic process models have already been proposed in the litera-

ture [21]. Whereas most existing models assume a form of independence between

transition probabilities, in pd-processes there is an intricate correlation between

transitions due to the presence of guards over a probabilistic database. As a con-

sequence, pd-process semantics does not coincide with semantics of probabilistic
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processes previously described in the literature, which makes it difficult to reuse

existing techniques to do simulation relation test in pd-processes.

• We propose a refined approach to decompose a pd-process into a set of world par-

tition automata which can be seen as traditional automata with probability distri-

bution. This mechanism helps us to tackle verification problems of pd-processes.

• A formal definition of simulation relation preorder in the context of pd-processes

is made into two dimensions: (i) semantic, in the sense that it is based on a con-

tainment relation between the possible execution trees of pd-processes, and (ii)

conservative, since it matches classical notion of simulation in non-probabilistic

case and a refinement approach that enables to characterize simulation preorder

in pd-processes. With the help of world partition automata, we can reuse tradi-

tional method of simulation relation and model checking to verify the model of

pd-processes. The complexity of simulation test is studied in the dimensions of

expression complexity and data complexity. We prove that the size of probabilistic

database does not produce any overhead w.r.t the data complexity and establish

upper and lower bound of expression complexity.

• By reusing the traditional model checking algorithms in the literature, we produce

a sort of verification algorithms in the context of linear temporal logic (LTL)

and computational tree logic (CLT) as well as their probabilistic counterpart

Probabilistic-LTL (P-LTL) and Probabilistic-CTL (P-CTL). Owing to the refine-

ment of pd-processes a pd-process can be reconstructed with a set of normal

automata where every automaton is associated with a probability. So the tradi-

tional model checking algorithms in the context of LTL or CTL can be applied

in the refinement structures of pd-processes. Then the complexity of LTL model

checking on pd-processes is proved that there is no overhead w.r.t the complexity

of traditional LTL model checking but the CTL model checking on pd-processes

reaches exponential.

• We provide several optimized simulation relation algorithms of pd-processes. Firstly,

we classify pd-processes to three scopes: deterministic pd-processes, pseudo deter-

ministic pd-processes and strong non-deterministic pd-processes. If a pd-process

is a deterministic pd-process or a pseudo-deterministic pd-process, the complexity

of testing simulation relation is in EXPTIME. Besides, we introduces a special

case: the simulation relation test on a compiled approach when only the content

of query or database is altered.

• A pd-process can be considered as a Markov process if it satisfies some properties.

We propose the notion of independent pd-processes to build the bridge of linking
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pd-processes and Markov processes. Meanwhile, the complexity of simulation test

and model checking over independent pd-processes can be decreased, for example:

the complexity of simulation relation on independent pd-processes is in PTIME

rather than EXPTIME.

• We design and implement a probabilistic data-aware business process framework

abbreviated as PRODUS which is a pd-process model and verification tool.

PRODUS provides a graphical user interface to visualize designers’ process build-

ing and links a probabilistic system which is powered by PostgreSQL. Meanwhile,

PRODUS is capable to test the preorder relation and model verification (LTL,

CTL, P-LTL and P-CTL) in the context of pd-processes. Due to the lack of the

intersection algorithm of probabilistic boolean queries in the literature, an algo-

rithm of intersecting probabilistic boolean queries is devised to fulfil the needs

from preorder relation test.

1.2 Overview of Dissertation

This dissertation is organized as follows:

• Chapter 2 introduces some background knowledge: (i) probabilistic database, this

part briefly depicts the semantic of probabilistic database in the sense of possi-

ble worlds and an example related to the car insurance risk analysis introduced

in the motivation, (ii) simulation relation testing algorithm, the traditional pre-

order relation testing algorithm by [22], (iii) model checking algorithms, in this

subsection, the model verification algorithms in the context of LTL, P-LTL, CTL,

P-CTL are introduced respectively, including their syntax, semantics, algorithms

and complexity discussions.

• In Chapter 3, we propose a formal definition of probabilistic data-aware business

process, and we discuss its semantic in terms of possible execution trees. The main

concepts of pd-processes are explained through an example of car insurance risk

analysis. Then we refine the structure of pd-processes to a finite set of partition

automata which will be useful to facilitate verification algorithms for pd-processes.

• The probabilistic simulation relation algorithm is described in Chapter 4. This

chapter provides the definition of simulation relation preorder in the context of pd-

process in terms of possible execution trees but this definition cannot devise a direct

algorithm because the number of possible execution trees may be infinite. Then,

we discuss the complexity of this preorder relation algorithm in two dimensions:
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expression complexity in terms of the size of pd-processes and data complexity

w.r.t the volume of probabilistic database. Meanwhile, Chapter 4 describes the

model checking methods of pd-processes in the context of various temporal logics:

LTL, P-LTL, CTL, P-CTL. By reusing the refinement structure of pd-processes

the traditional model verification algorithms can be used with slight modifications.

• Chapter 5 discusses several optimized algorithms of simulation relation test over

pd-processes. Finally, we study the relation between pd-processes and Markov

processes. The notion of independent pd-processes reveals a fact that if a pd-

process satisfies some properties, it is a Markov process: complexity of verification

can be reduced.

• Chapter 6 discusses the related work and the differences between these works with

our contributions.

• Chapter 7 introduces the prototype PRODUS, the modelling of agricultural en-

vironmental risk analysis and several experiment result: system performance of

simulation relation test by inputting synthetic data and realistic information from

the agricultural scenario, model checking results of this scenario by inputting some

properties in terms of LTL, P-LTL, CTL and P-CTL respectively.



Chapter 2

Preliminary

This chapter provides several pieces of background material for this dissertation: the

notion of probabilistic database, a brief introduction about the labelled transition system

which is specified as finite state machine in this thesis, the notion of Markov processes,

the definition of simulation preorder relation, and the theories of model checking.

Motivation example

In this thesis, we consider an example of a business process used by an insurance company

as a running example. A main business goal of a company is to ensure that revenues must

be greater than expenses. In the case of an insurance company, a large part of revenues

come from customer premiums while the largest expenses are related to the payment

of claims. Therefore, calculation of insurance rates is of high importance and depends

on a number of different factors. The main business objective is to calculate premiums

that are adequate, in order to maintain company solvency, and which are as much as

possible fair compared to the risk, in order for example to avoid loosing clients who may

be attempted to move to cheaper competitor companies. Now the problem is how to

set a reasonable price for every candidate. Normally, car insurance companies will let

their insurance applicants to fill a complex form with a variety of personal information,

such as driving history, gender, age, education level, and record this information in the

database. Then the statistic should find the association between these driver personal

information with the financial risk. If we assume that all this information correctly

reflect the truth situation of candidates, we could approximate the probabilities of a

combination of principle criteria impacting the finance risk. Then the problem comes

to us, how can we build an effective business process and reflect the probabilistic data

influencing the decisions in this business process.

14
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Teacher Course

Tom History

@ French

Pascal @

Teacher Course

Tom History

〈Mary,Susan〉 French

Pascal 〈 Biology, Chemistry〉
Table 2.1: Example of incomplete databases

2.1 Probabilistic database

The issues underlying management of imprecision and uncertainty in data have attracted

the attention of the research community since a long time. Several models have been

proposed over the time to handle uncertain data [9, 23]. In recent years, the field of

probabilistic databases gained momentum under the driving force of a wide spectrum of

new applications [8, 14, 15].

Because relational database is designed to be capable to store incomplete data at the very

beginning, the model and theory of incomplete database was birthed to fulfil the needs of

representing and querying incomplete data which is stored in relational databases. The

original work was captured in [24] on Codd, c-, v-tables with their conditional tables

and introduced the notion of representation system. Intuitively, incomplete database

is a relational database which contains incomplete data (missing data as well as ”Or-

set” value). Table 2.1 illustrates an example of different presentation of incomplete

databases: Null value and ”Or-set” value. In the left table, @ represents null value

and this table is a Codd table [24]; 〈Mary,Susan〉 is a ”Or-set” value, showing that

both ”Mary” or ”Susan” are possible values. Incomplete database can be seen as a

(infinite) set of complete databases. These complete databases represent states of real

world. The incomplete database may be infinite and hard to manipulate. So we need

a tool to describe the infinite databases in a finite way which we could manipulate and

query. Because of this reason, a representing sytem is created to represent the incomplete

information. We denote the < T, rep,Ω > as a representing system. T stands for a set of

multi tables < T1, T2, . . . Tn > and it can be used like a model to represent the incomplete

information. rep(T ) is denoted as the set of possible relations that T represents. rep

defines a mapping from T to rep(T ) or we can say a mapping from Tab(R) to Inc(R).

If R is a relation scheme, Tab(R) presents the set of all tables on R and Inc(R) is the

power set of all the set of relations on R. Ω stands for a set of relational operators such

as projection, selection, etc. After the work of Imielinski and Lipski [24], later work

on incomplete database has focused on the notion of possible or certain answers [25],

completeness of query [26]. Meanwhile, the study of incomplete information is not only

limited in the domain of relational database but also extended to XML file system [27].
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By extending the notions of incomplete database, probabilistic database is birthed to

manage probabilistic data. The original work of probabilistic database can be derived

in 80s in [28] where attributes are random variables. Then in [29], the probability

was considered as an uncertain value of an attribute and the method of evaluation of

select-join queries was also studied in this paper. Later on, the semantic of possible

worlds were defined in [30] and an approach to ensure efficient query evaluation by

relaxing the probabilistic semantic was studied in [31]. Then the concept of probabilistic

schema (by-table or by-tuple) was described in [32]. Nowadays, there has been plenty of

researches over probabilistic database by extending previous result to expand the field

of probabilistic database [8, 14, 15].

The application of probabilistic database currently focused on managing uncertain sci-

entific information. In [33], a Probabilistic Tree Database based on a probabilistic XML

model has been designed to fulfil the needs in the domain of biology. Later on, an

application named BioRank was proposed in [34] for exploratory queries on tracking

the uncertainties by joining information from various data source . This system is used

to predict protein functions and considers the uncertainty in the domain of scientific

data integration. They revealed the advantage of consideration of probabilities to han-

dle vogue problem and to manage uncertain data. Currently, there are various project

relating to probabilistic database such as Trio [23] which manages uncertain data and

data lineage, MystiQ [8] that is a probabilistic query evaluation prototype. Then flurry

of DBMS of probabilistic database are developed, for example the systems for conjunc-

tive queries: MayBMS [35], PrDB [36], ORION [37], and SPROUT [38] which supports

full relational algebra. Next section will present another application ”Spatial relation”

which uses probabilistic database to manage uncertainty over agricultural plots with

vague boundaries in the domain of geography.

The remaining section introduces some basic concepts of the theory of probabilistic

databases [8, 14, 15]. We assume the reader familiar with basic database concepts (e.g.,

see [39] for details). In this thesis, we are interested in particular by probabilistic re-

lational databases defined over a finite domain. Informally, a probabilistic database is

defined as a database that includes relations whose tuples are associated with probabil-

ities.

Definition 2.1. A finite probability space is a pair (Ω, P r) where Ω is the finite set

of outcomes, and Pr : Ω → [0, 1] s.t.
∑

ω∈Ω
Pr(ω) = 1. For A ⊆ Ω, we take Pr(A) =

∑

ω∈A
Pr(ω). A set {t1, ..., tn} ⊆ Ω is independent if Pr(t1, ..., tn) = Pr(t1)× . . .×Pr(tn).

In the example of car insurance company, to evaluate the risk and to help managers to

insight the homogeneous criteria of candidates, the probabilistic database is an ideal tool
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Relation Applicant
ID Name Age Educ. Lev Lic Year Driv.Rec City Pr

t1 C101 Jack 20 college 3 medium paris 1

Relation Profit
AgeMin AgeMax Educ. Lev Lic Year Driv. Rec City Profit Pr

t2 25 50 college 3 medium Paris high 60%
t3 20 30 college 3 medium Paris medium 50%
t4 18 25 college 3 none Paris low 60%
t5 45 70 high school 10 minor Lyon high 70%

Relation Risk
AgeMin AgeMax Educ. Lev Lic Year Driv. Rec City Lev.Risk Pr

t6 18 25 college 3 medium Paris high 30%
t7 20 35 college 3 medium Paris medium 80%
t8 30 55 college 3 medium Paris low 40%
t9 45 70 high school 10 minor Lyon high 50%

Table 2.2: Example of a probabilistic database (Dins).

to reveal the relation of different attributes combinations. Table 2.2 shows an example

of a probabilistic database1, noted Dins, in the field of insurance risk assessment. The

database Dins contains three relations: Applicant, Profit and Risk. The Applicant relation

is used to store information about an application of a new customer. The Profit relation

is used to record the profit insurance companies forecast depending on drivers profiles

such as age, level of education, number of licence years and city. The relation Risk

records statistical information about levels of financial risk in association with drivers

profiles. Such information could be, for example, computed from an analysis of the

history of claims maintained by an insurance company. The content of the relation

Profit and Risk is indeed not certain and, hence, the two relations record a confidence

with each prediction or analysis result. This is materialised by the attribute Pr in

each relation which associate a probability with each tuple in a (probabilistic) relation

(i.e., Pr gives the marginal probability of each tuple). In this example, profit forecast

reveals that senior drivers living in the city of Lyon are likely to generate a high level

of profit. This information is captured by the tuple t5 of the relation Profit which has a

probability equal to 70%. The standard semantics of probabilistic databases is defined

based on the notion of possible worlds. The intuition is that the precise content of

a probabilistic database is unknown but instead the finite set of potential instances,

each with some probability, can be computed. Continuing with the previous example,

Table 2.3 shows some possible worlds (i.e., instances) of the probabilistic database Dins

(the total number of all the possible worlds is 28). Hence, a probabilistic database

can be viewed as a probabilistic distribution over a finite set of possible (complete)

databases. Given a probabilistic database D, we denote by W(D) the finite set of

1In this example, and only for illustration purposes, tuples are assumed to be independent (e.g., this
is why the sum of probabilities of the tuples t2 and t3 of relation Profit is > 1). Such an assumption is
not mandatory for the proposed approach.
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World ID Possible World Pr

W1 φ 0.1008%

W2 Applicant = {t1}, P rofit = {t2, t4}, Risk = {t7} 0.9072%

W3 Applicant = {t1}, P rofit = {t2, t4}, Risk = {t6, t7} 0.3888%

W4 Applicant = {t1}, P rofit = {t2, t3, t4}, Risk = {t7} 0.9072%

W5 Applicant = {t1}, P rofit = {t3}, Risk = {t6} 0.0648%

W6 Applicant = {t1}, P rofit = {t5}, Risk = {t6} 0.1008%

W256 Applicant = {t1}, P rofit = {t2, t3, t4, t5}, Risk = {t6, t7, t8, t9} 0.6048%
Table 2.3: Some possible worlds of the probabilistic database Dins.

its possible worlds (i.e., its possible instances). Formally, a probabilistic database D

defines a finite probability space (W(D), P r), whose set of outcomes W(D) form all

the possible instances of the probabilistic database D. Each possible world W ∈ W(D)

is associated with a probability given by Pr(W ), with
∑

W∈W(D)

Pr(W ) = 1.We recall

that conjunctive queries correspond to queries that can be formulated using the Select-

Project-Join operators of the relational algebra and they form the most used fragment

of existing relational query languages. We focus our attention on boolean queries,

Given such a framework, a crucial question is then related to query evaluation, i.e., the

problem of calculating the probability of tuples occurring in query answers [15]. In this

thesis, we are interested in particular by boolean queries, i.e., queries that return as

unique answers either true or false. When needed in the examples, we use a Datalog-like

notation to write boolean queries [39]. For example, using the database depicted at

Table 2.2, the query:

q1() :- Applicant( , , A, , , , ), Risk(A1, A2, , , , , R),

A1 ≤ A ≤ A2, R =′ high′

expresses a join between the relation Applicant and the tuples of the relation Risk having

a level of risk equal to ’high’ and using as join condition the ages of applicants which

must be included between the min and max ages of the relation Risk. In the query q1, the

letters A,A1, A2 and R denote variables while the symbol ′ ′ is used to denote anonymous

variables. When evaluated on a conventional database instance I, the query q1 returns

true if there is at least one tuple of Applicant that can be joined with an adequate tuple

of Risk (in this case we write q1(I) = true). Otherwise, the query q1 returns false (i.e.,

q1(I) = false). In the context of a probabilistic database (W(D), P r), the problem of

the evaluation of a boolean query q consists in computing the probability of query q

to return as answer the value true. Such a probability is defined as follows Pr(q) =
∑

W∈W(D)|
q1(W )=true

Pr(W ). In other words, Pr(q) is given by the sum of the probabilities of all

the possible worlds where q is evaluated to true. However, in most practical situations

it is not feasible to compute the set W(D) and then explicitly evaluate a query q on
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each world in W(D). Indeed, W(D) is usually very large (e.g., in our toy probabilistic

database of Table 2.2, the number of possible worlds is already 28). To cope with this

problem, existing works have developed techniques to efficiently evaluate queries on

concise representations of probabilistic databases [8, 14, 15]. Not surprisingly, there is

a trade-off between the expressiveness of the representation model and computational

tractability of query evaluation. This is why, most existing works adopt some restricting

assumptions, often expressed as a form of independence of tuples [8]. There are also some

few approaches that support modelling complex correlations in probabilistic databases

[14, 15].

It is worth mentioning that, while we rely on existing techniques to handle probabilistic

data, our approach remains insensitive w.r.t. the assumptions underlying the repre-

sentation model. We require only a system that is able to evaluate boolean queries

over a probabilistic database, a requirement which is within the reach of most existing

probabilistic database management systems.

2.2 Finite state machine

The definition of a finite state machine is given as follows. A finite state machine is a

tuple A = (S, s0, Act,Δ, F, L,AP ), where:

• S is a finite set of states, with s0 ∈ S, the starting state.

• Act is a finite set of actions or activities.

• Δ ⊆ S ×Act× S, the transition relations, is a set of guarded transitions.

• F ⊆ S is the set of final states.

• AP is a set of atomic propositions.

• L is a function L : S → 2AP .

s0
a−→ s1 stands for the transition relation from s0 to s1 assigned by action a. The

intuition of an automaton can be depicted as follows. Initial state s0 is the start of the

system and F is a set of final states which are the terminator of the system. Δ is the

set of transition relations which represent a fact that: if s is the current state, then a

transition s
a−→ s′ originating from s is selected non-deterministically and taken, then the

action a is performed and the transition system evolves from state s into the state s′.

This selection procedure will be repeated until a final state is encountered. Meanwhile,

this procedure is non-deterministic when a state has more than one outgoing transition.
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Function L relates a set L(s) ∈ 2AP of atomic propositions to any state si ∈ S. L(s)

represents the satisfaction of those atomic propositions ap ∈ AP by corresponding state

s. Noticing that one state may be expressed by one or many atomic propositions. For

a state si L(si) = {api1 , ..., apij}. A path π is a finite sequence of states, actions and

transition relations π = s0
a0−→ s1

a1−→ s2...
an−1−−−→ sn. We can also use π[0, ..., n] represent

the whole path and π[i, ..., j] stand for a sub path si
ai−→ si+1...

aj−1−−−→ sj . Paths(s)

represents a set of outgoing paths from state s.

2.3 Markov processes

Following the description in [40], the notions of discrete probability space and Markov

processes are defined as follows.

Definition 2.2 (Probability space). A probability space is a triple (Ω, F, Pr) where Ω

is a set, F is a collection of subsets of Ω, and Pr is a function from F to [0, 1] such that

Pr(Ω) = 1 and for any collection {Ci}i of at most countably many pairwise disjoint

elements of F , Pr(
⋃
Ci) =

∑
iCi.

A probability space Ω, F, Pr is discrete if F = 2Ω and for each C ⊆ Ω, Pr(C) =
∑

x∈C Pr(x), x is an element of C.

Definition 2.3 (Markov process). A Markov process A is an automaton (S, s0, Act,Δ,

P robs(S × Act)) whose transition relation Δ is a subset of S × Probs(S × Act) where

Probs(S ×Act) is a discrete probability space (Ω, F, Pr) such that Ω ⊆ S ×Act.

From the definition of Markov processes, the transitions from the same state are exclusive

and the ones from same state are independent, meaning that the probability of current

state never influence the predictions of successor transitions.

2.4 Simulation preorder relation

A simulation preorder relation test is to check the containment between two finite state

machines. According to [22], the definition of simulation preorder relation is defined as

follows. Let A = (S, s0, Act,Δ, F, L,AP ) and A′ = (S′, s′0, Act′,Δ′, F ′, L′, AP ′) be two

finite state machines. Then, A is simulated by A′, noted A � A′, iff: ∀si ∈ S, si
ai−→ sj ,

∃s′i ∈ S′ such that s′i
a′i−→ s′j , ai = a′i. The algorithm of simulation relation test[22] is

represented in Appendix.
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2.5 Model checking

Model checking [17] is a technique which automatically checks a given system to satisfy

some properties by converting these properties from natural language to temporal logics.

The underlying nature of time in temporal logics can be either linear or branching. In

the linear view, at each moment in time there is a single successor moment, whereas

in the branching view it has a branching, tree-like structure, where time may split into

alternative courses. Both temporal logics provide us a different perspective to consider

the properties of a system. In this thesis, the methods of model checking will focus on

linear temporal logic (LTL), probabilistic linear temporal logic (P-LTL), computation

tree logic (CTL) and probabilistic computation tree logic (P-CTL). Following the meth-

ods described in [17], the traditional algorithms of model checking as well as syntax and

some important notions are depicted in this section. To be clear, the operators of model

checking are firstly explained as follows.

• ©:next;

• U :until;

• �:always (now and for ever in the future);

• ♦:eventually (eventually in the future).

2.5.1 LTL model checking

Linear temporal logic (LTL) is a logical formalism specifying linear temporal properties

to check the satisfaction of paths in a finite state system. The syntax of LTL is depicted

as follows:

Φ � true|ap|ϕ1 ∧ ϕ2|¬ϕ| © ϕ|ϕ1 ∪ ϕ2 (2.1)

The semantic of LTL formulae is depicted as follows:

• π � true.

• π � ap iff ap ∈ AP1.

• π � ϕ1 ∧ ϕ2 iff π � ϕ1 and π � ϕ2.

• π � ¬ϕ iff π � ϕ.
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• π � ©ϕ iff π[1...n] � ϕ.

• π � ϕ1 ∪ ϕ2 iff ∃j � 0. π[j...] � ϕ2 and π[i...] � ϕ1 for all 0 � i < j

The LTL model checking algorithm is described below. This algorithm uses the notion of

Buchi automata [17] which is a type of ω-automaton, which extends a finite automaton

to infinite inputs. It accepts an infinite input sequence if there exists a run of the

automaton that visits (at least) one of the final states infinitely often.

Algorithm 1 Algorithm of LTL model checking [17]

Require:
A transition system A = (S, s0, Act,Δ, AP, L) and LTL formula ϕ over AP .

Ensure:
1: Construct a Non-deterministic Buchi Automata NBA¬ϕ such that L(NBA¬ϕ) =
Words(¬ϕ).

2: Construct the product A⊗NBA¬ϕ.
3: If there exists an accepted sequence (for example, a path Π) in A⊗NBA¬ϕ, it means

the model checking will return ”false” with a counterexample.
4: return True or false.

The complexity of LTL model checking is EXPTIME with respect to the size of LTL

formula. According to [17], the time complexity of LTL model checking is in O(|TS| ×
2|ϕ|) where |TS| is the size of automata and |ϕ| is the size of give LTL formula. We

introduce the notion of Probabilistic LTL (P-LTL). The syntax of P-LTL is same with

the one of LTL. According to [41], an informal definition of P-LTL model checking is as

follows: for a given finite state automaton A and a LTL formula ϕ, A �∼pr ϕ, pr ∈ [0, 1].

We say A satisfies ϕ in a state s with probability ∼ pr iff every path starting from

s satisfies ϕ with probability ∼ pr.(∼ means =, <,>,�,�). The algorithm of P-LTL

model checking is not used in this thesis. It is presented in Appendix.

2.5.2 CTL model checking

Computation tree logic [17] was birthed to overcome the shortage of LT properties which

only consider linear notion of time other than branching one. Branching notion of time

is a principle property of finite state automata. CTL is a temporal logic based on

propositional logic with a discrete notion of time, and only future modalities. It is an

important branching temporal logic that is sufficiently expressive for the formulation of

an important set of system properties. The syntax of CTL model checking differs from

the one of LTL with respect to branching parameters. There are two kinds of formulae

for CTL: state formulae and path formulae. The grammar of state formulae is as follows:

Φ � true|ap|Φ1 ∧ Φ2|¬Φ|∀ϕ|∃ϕ (2.2)
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where ap is an atomic proposition and ϕ represents a path formulae. The grammar of

path formulae shows below:

ϕ � ©Φ|Φ1UΦ2 (2.3)

Similar with LTL model checking, the semantic of CTL checking also needs some satisfac-

tion relations. The difference is on the fact that CTL has two types formulae. Therefore

there are two types of satisfaction relations: for state formulae and for path formulae.

Let ap ∈ AP be an atomic proposition, an automaton A = (S, s0, Act,Δ, F, L,AP ). The

satisfaction relation for state formulae is defined as follows.

• s � ap iff ap ∈ L(S).

• s � Φ1 ∧ Φ2 iff s � Φ1 and s � Φ2.

• s � ¬Φ iff s � Φ.

• s � ∃ϕ iff π � ϕ for some π ∈ Paths(s).

• s � ∀ϕ iff π � ϕ for all π ∈ Paths(s).

The satisfaction relation for path formulae is defined by:

• π � ©ϕ iff π[1] � ϕ.

• π � ϕ1 ∪ ϕ2 iff ∃j � 0. π[j] � ϕ2 and π[i] � ϕ1 for all 0 � i < j

The basic algorithm of CTL model checking [17] is to verify a given finite state automata

and CTL formulae Φ if LTS � Φ. The general step of CTL model checking is as follows,

if Sat(Φ) = {s ∈ S|s � Φ} and Sub(Φ) is a set of sub-formulae of Φ:

• Input: a given finite state automata and CTL formulae Φ.

• Build the parse tree 2. For Φ, divided Φ into a set of sub-formulae denoted as

Sub(Φ). The atomic formulae are depicted as Equation 2.4.

• For each Ψi ∈ Sub(Φ), find Sat(Ψi) = {s ∈ S|s � Ψi}.

• Accumulate the consequences to get Sat(Φ) =
⋂
(Sat(Ψi)).

• Finally, we get LTS′ � Φ where s ∈ SLTS′ also s ∈ Sat(Φ).

2The nodes of the parse tree represent the sub-formulae of Φ. The leaves stand for the constant true
or an atomic proposition a ∈ AP . All inner nodes are labeled with an operator
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The following equation illustrates the atomic formulae for CTL model checking.

Φ � true|ap|Φ1 ∧ Φ2|¬Φ|∃�Φ|∃ © Φ|∃(Φ1 ∪ Φ2) (2.4)

The complexity of CTL model checking is in PTIME with respect to the size of CTL

formula. According to [17], the time complexity of CTL model checking is in O(|TS| ×
|Φ|) where |TS| is the size of automata and |Φ| is the size of give CTL formula.

2.5.3 P-CTL model checking

P-CTL is CTL model checking in probabilistic system. It introduces a new operator for

the CTL model checking as P∼pr(φ). Similar to CTL, the grammars of state formulae

and path formulae are described as follows:

Φ � true|ap|Φ1 ∧ Φ2|¬Φ|P∼pr(φ) (2.5)

where P∼pr(φ means φ is true with probability pr, pr ⊆ [0, 1], ∼∈ {<,>,�,�}.

ϕ � ©Φ|Φ1 ∪ Φ2|Φ1 ∪�n Φ2 (2.6)

For the non-probabilistic operators, the method of P-CTL model checking is similar

with the one of CTL in spite of considering quantitative results. As to the probabilistic

operator P , it needs to compute the probability Prob(s, φ) for every state such that

Sat(P∼pr(φ)) = {s ∈ S|Prob(s, φ) ∼ pr}, Prob(s, φ) denoting the probability of s which

satisfies φ.
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Model description

This chapter describes the notion of probabilistic data-aware business process model

(pd-processes in short) in detail. The semantic of pd-processes is introduced in terms of

possible execution trees and the notion of world-partition automata is proposed to help

us to verify pd-process model in the next chapter.

3.1 Probabilistic data-aware business process model

In this section, we continue using the example of car insurance company to illustrate

our probabilistic data-aware business process framework. Roughly speaking, the business

process calculates insurance rates using three different procedures depending on risk and

profit factors: (i) if the associated risk is considered low, then a premium is calculated

and either a quote is automatically elaborated and proposed to the customer (if the

forecast profit is at least medium) or submitted for approval to a human expert, or (ii)

if the associated risk is considered medium, then a premium is calculated and either a

quote is automatically elaborated and proposed to the customer (if the forecast profit is

high) or submitted for approval to a human expert, (iii) if the associated risk is considered

as high, in this case an advanced approval procedure is required. Insurance companies

usually try to improve their risk management by using probabilistic risk analysis and

profit forecasts. For example, the probabilistic database depicted at Table 2.3 could be

used by the business process of figure 3.1 to provide better estimates for premiums.

We present below a formal definition of the notion of probabilistic data-aware business

processes (pd-processes).

Definition 3.1 (probabilistic data-aware process). A probabilistic data-aware process

(pd-process) is a tuple A = (S, s0, D,Act,G,Δ, F, AP,L), where:

25
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• S is a finite set of states, with s0 ∈ S, the starting state.

• D is a probabilistic database with possible worlds W(D).

• Act is a finite set of actions or activities.

• G is a finite set of guards defined as boolean queries over the database D.

• Δ ⊆ S ×Act×G× S, the transition relations, is a set of guarded transitions.

• F ⊆ S is the set of final states.

• AP is a set of atomic propositions.

• L is a labelling function L : S → 2AP .

Figure 3.1: PremCalc: an insurance premiums calculation business process.

Figure 3.1 shows a graphical representation of a premiums calculation pd-process, called

PremCalc. This process uses the insurance probabilistic database Dins given at Table

2.2. At the beginning, the PremCalc process is at the initial state Starting. Then, de-

pending on the risk level associated with the current applicant, PremCalc moves to one

of the states Premium Calculation, Application Evaluation or High Risk Application. This

conditional move is specified using transitions guards expressed as boolean queries over

the probabilistic database Dins. For example, the transition labelled ‘q3 | Rapid Evalua-

tion’ from state Starting to state Premium Calculation specifies that when the PremCalc

process is at state Starting and the guard q3 is true, then PremCalc may execute the

activity Rapid Evaluation and moves to state Premium Calculation. At this stage, two

observations are worth to mention. First, note that pd-processes are non-deterministic

processes as it can be observed in the example where the two transitions outgoing from
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state Premium Calculation have non exclusive guards. This means that the applications

that are at state Premium Calculation and which satisfy the guard q4 may be either

processed automatically, i.e., a quote is automatically elaborated and sent to the cus-

tomer without requiring any approval (transition Express Approaval) or may require a

manual approval (transition Approval Request). Second, the presence of probabilities

in the database makes process executions probabilistic. For example, the execution of

the transitions ‘q3 | Rapid Evaluation’ is determined by the probability of its guard q3

(i.e., the probability to have q3 evaluated to true). Hence, the pd-process PremCalc

can be viewed as a probabilistic process with probabilities associated with transitions.

As discussed below (c.f., notion of possible execution trees), probabilities of transitions

determine the branching choices available during a given process execution. Moreover,

it should be noted that probabilities of transitions are not independent. Arbitrary and

complex correlations between transitions probabilities may arise depending on the con-

sidered probabilistic database and on the connections that exist between transitions

guards (e.g., disjoint guards, containment, overlapping, ...).

To illustrate verification method in latter chapters clearly, a naive example is provide as

follows. Figure 3.2(a) shows another variant of a premium calculation business process,

called NormCalc. This process evaluates customers’ applications using a simpler proce-

dure which starts by launching the activity NormalRiskEvaluation. Then, two cases are

possible to terminate an execution: (i) for an applicant whose age and city belong to a

category where the forecast profit is reasonable (c.f., guard q′2), an express approval is

authorized (ii) for an applicant whose driving record and city belong to a category with

an acceptable level of risk (c.f., guard q′1), a manual approval is then requested. Figure

3.2(b) shows the set of all possible execution trees of the process NormCalc.

Figure 3.2: Another insurance premium calculation business process.

Semantic
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Various classes of process semantics have been studied in the literature [42]. A line

of demarcation between existing semantics lies in the distinction between linear time

and branching time semantics. When processes are compared with respect to branching

time semantics execution paths as well as branching structures of processes must be

taken into account. Usually, simulation preorder is used in the literature as a relation to

compare processes with respect to their branching structures [42]. Following branching

time semantics, possible executions allowed by a process are characterized in terms of

trees, called execution trees, instead of paths. In a nutshell, execution trees of a process

A capture all the executions paths of A as well as the branching structures of A. In

the case of pd-processes, execution trees depend on the evaluation of guards which is

determined by the considered possible world of the probabilistic database.

As an example, Figure 3.3 shows some execution trees of the process PremCalc in the

possible worlds W256 and W2. The presented trees are complete execution trees since

their leaves are made of final states. Hence, each branch in these trees that starts

from the root and ends at a leaf forms an execution path of the process PremCalc

in the considered world. For instance, the sequence of activities NormalRiskEvalua-

tion.ApprovalRequest.Premium Modification.Approved, which appears as a branch in the

execution tree T3, is a possible execution path of the process PremCalc in the world

W256. In addition, an execution tree captures the branching structures of a process.

For example, tree T3 shows that after the execution of the activity RapidEvaluation, the

process PremCalc will have a choice to either execute the activity ExpressApproval or the

activity ApprovalRequest.

To formally define the notions of execution trees, we use the following definition of a

tree: A tree is a set τ ⊆ N∗ such that if xn ∈ τ , for x ∈ N∗ and n ∈ N, then x ∈ τ and

xm ∈ τ for all 0 ≤ m < n. The elements of τ represent nodes: the empty word ε is

the root of τ , and for each node x, the nodes of the form xn, for n ∈ N, are children of

x. Given a pair of sets L and M , an 〈L,M〉-labelled tree is a triple (τ, λ, δ), where τ is

a tree, λ : τ → L is a node labelling function that maps each node of τ to an element

in L, and δ : τ × τ → M is an edge labelling function that maps each edge (x, xn) of

τ to an element in M . Then, every path ρ = ε, n0, n0n1, . . . of τ generates a sequence

Γ(ρ) = λ(ε).δ(ε, n0).λ(n0).δ(n0, n0n1).λ(n0n1). . . . of alternating labels from L and M .

Informally, if L and M correspond to the sets of states S and actions Act of a pd-

process A, then we can use an 〈S,Act〉-labeled tree to characterize the semantics of

A. In particular, the branches of the tree (once mapped with the labeling functions)

represent execution paths, and the tree hierarchy reflects the branching structures of the

process.
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Figure 3.3: Examples of execution trees of the worlds W256 and W2.

Definition 3.2 (Execution trees). Let A = (S, s0, D,Act,G,Δ, F, AP,L) be a pd-

process. An execution tree of A in a world W ∈ W(D) is a 〈S,Act〉-labeled tree

T = (τ, λ, δ) such that:

(i) λ(ε) = s0 and for every leaf x ∈ τ we have λ(x) ∈ F , and

(ii) for each edge (x, xn) of τ , there exists a guard g ∈ G such that (λ(x), δ(x, xn), g, λ(xn)) ∈
Δ and g(W ) = True.

We denote by Tr(A,W ) the set of execution trees of A in the world W .

The set of execution trees of a given pd-process may be infinite. Continuing with the

example, due to the presence of a loop Premium Modification at the state Approval

processing of the process PremCalc, the set Tr(PremCalc,W256) of its execution trees in

the world W256 is infinite. For example, the execution tree T3 of Figure 3.3 includes a

one time execution of this loop. Starting from T3, an infinite number of execution trees

may be constructed by increasing the number of times this loop is executed.

Definition 3.3 (Possible execution trees). Let A = (S, s0, D,Act,G,Δ, F, AP,L) be a

pd-process.

A 〈S,Act〉-labelled tree T = (τ, λ, δ) is a possible execution tree of A iff ∃W ∈ W(D)

and ∃λ′ : τ → S such that T ′ = (τ, λ′, δ) ∈ Tr(A,W ).

The probability of a possible execution tree T of A is: Pr(T,A) =
∑

W∈W(D)
T ′∈Tr(A,W )

Pr(W ).
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We denote by Tr(A) the set of all possible execution trees of a process A.

A possible execution tree T is simply an execution tree augmented with the probability

of occurrence of T . Note that two execution trees are considered equal if they differ

only w.r.t. the labels of their states (e.g., T is equal to T ′ in definition 3.3). Hence, a

probability of a possible execution tree T is calculated as the sum of the probabilities

of the possible worlds to which T , modulo renaming of states, belongs. As an example,

probabilities of the execution trees T1 and T2 of PremCalc depicted at Figure 3.3 are:

Pr(T1,PremCalc) = 24% and Pr(T2,PremCalc) = 80%.

Possible execution trees show the intricate relations between probabilities of transitions

and branching choices. Continuing with the example, the possible execution trees T1,

T2 and T3 reveal that when the PremCalc process is at the state Starting we may have

the following situations:

(i) the only possible choice is to execute the transition RapidEvaluation (tree T1 with a

probability Pr(T1,PremCalc) = 24%), or (ii) the only possible choice is to execute the

transition NormalRiskEvaluation (tree T2 with a probability Pr(T2,PremCalc) = 80%),

or (iii) there is a choice to execute either transition NormalRiskEvaluation or transition

RapidEvaluation (tree T3 with a probability Pr(T3,PremCalc) = 16%). Such a complex

correlation between probabilities of transitions and branching choices makes any struc-

tural analysis of pd-processes a difficult task. As explained below, one consequence is

that it is not straightforward to provide a simple definition of simulation based only on

the structures of the processes. It is worth noting that although the trees T1 and T2

are both sub-trees of T3, they both have a probability greater than the one of T3. This

is because T1 and T2 belong to more possible worlds than T3. This general property,

which states that the probability of a tree T is always less or equal to the probability of

its sub-trees, will be exploited later to devise a simulation algorithm for pd-processes.

3.2 World-partition automata

For the reason of simulation relation test and model checking, we describe below a refine-

ment of a pd-process structure into a set of automata, called world-partition automata,

that can be used to structurally characterize simulation and facilitate the verification

method of pd-processes. We recall that for a set G, the set 2G denotes the power set of

G (i.e., the set of all subsets of G).

Let A = (S, s0, D,Act,G,Δ, F, AP,L) be a pd-process with G = {q1, . . . , qn} a set of

boolean queries used as guards of transitions in A. Let PG be a set of boolean queries
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Process Partitions Associated query P. worlds Probability

PremCalc
P1 qP1 = ¬q1 ∧ q2 ∧ ¬q3 ∧ ¬q4 ∧ q5 ∧ q6 {W2, ...} 6.048%
P2 qP2 = q1 ∧ q2 ∧ ¬q3 ∧ q4 ∧ q5 ∧ ¬q6 {W3, ...} 2.592%
P3 qP3 = ¬q1 ∧ q2 ∧ ¬q3 ∧ q4 ∧ q5 ∧ q6 {W4, ...} 6.048%
. . . . . . . . .

NormCalc
P ′
1 qP ′

1
= q′1 ∧ q′2 {W4, ...} 16%

P ′
2 qP ′

2
= q′1 ∧ ¬q′2 {W5, ...} 34%

P ′
3 qP ′

3
= ¬q′1 ∧ q′2 {W2, ...} 16%

P ′
4 qP ′

4
= ¬q1 ∧ ¬q2 {W6, ...} 34%

Table 3.1: Example partitions

obtained as follows:

(i) ∀P ∈ 2G, qP := (
∧

q∈P
q) ∧ (

∧

q′ /∈P
¬q′), and

(ii) PG = {qP | P ∈ 2G}.

Note that, the set PG forms a partition of the possible worlds of the database D in the

sense given by the following lemma.

Lemma 3.4. Let A = (S, s0, D,Act,G,Δ, F, AP,L) and let PG be the set of guards

constructed as explained above. Then, ∀W ∈ W(D), there exists a unique qP ∈ PG such

that qP (W ) = true.

The proof of this lemma is straightforward since, by construction of PG, ∀W ∈ W(D) we

have: (i)
∨

qP∈PG

qP (W ) = true, and (ii) ∀qpi, qpj ∈ PG, with i �= j, then qpi(W )∧qpj(W ) =

false. Hence, each boolean query qP ∈ PG identifies a unique subset of W(D) (i.e., the

set {W ∈ W(D) | qP (W ) = true}).

In the sequel, we use the term partition qP to refer to the subset of W(D) identified by

qP . Table 3.1 shows examples of partitions related to the set of guards of the processes

PremCalc and NormCalc. For each partition, an associated probability is computed (c.f.,

last column in Table 3.1) using a probabilistic database management system. Also note

that it may happen that a probability associated to a given partition is equal to zero.

In this case, the corresponding query is removed from the set PG.

We introduce below the notion of world-partition automata as a mean to split the be-

haviour described by a given pd-process w.r.t. the possible worlds of the underlying

probabilistic database. More precisely, the goal is to split the set of possible execution

trees of a pd-process A into subsets of trees each of which is described by a distinct

unguarded automaton.

Definition 3.5 (World-partition automata). Let A = (S, s0, D,Act,G,Δ, F, AP,L) be

a pd-process and let PG = {qP1 , . . . , qPn} defined as previously. A world-partition au-

tomata of A using PG is a set of automata APG
= {AP1 , . . . , APn}, where, ∀qPi ∈ PG, a
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corresponding automaton APi = (S, s0, DPi , Act,GPi ,ΔPi , F, AP,L) is constructed from

A as follows:

(i) the components S, s0, Act, and F , remain unchanged,

(ii) the set of guards is: GPi = {true} and the database is DPi = ∅,

(iii) the set of transitions is: ΔPi = {(s, a, true, s′) | (s, a, g, s′) ∈ Δ and g ∈ Pi}.

The probability function Pr is extended to world-partition automaton as follows: ∀AP ∈
APG

, then Pr(AP ) =
∑

W∈W(D)
qP (W )=true

Pr(W )

Hence, an automaton APi ∈ APG
is simply a copy of the process A from which are

removed the transitions having a guard g satisfying the condition Pr(g ∧ qPi) = 0 (or

equivalently, ∀W ∈ W(D) | g ∧ qPi(W ) = false)1. Note that such a test can be achieved

easily by checking whether g ∈ Pi (since we have: Pr(g∧qPi) = 0 iff g /∈ Pi). From item

(ii) of this definition, each automaton APi ∈ APG
is an unguarded automaton (i.e., all

its guards are set to true).

Figure 3.4(a) shows the world-partition automata of the process NormCalc while the

Figure 3.4(c) shows two automata from the world-partition automata of the process

PremCalc.

Figure 3.4: Example of world-partition automata.

Intuitively, a world-partition automaton AP ∈ APG
describes the behaviour of A in all

the possible worlds belonging to the partition qP . The following lemma makes explicit

1Indeed, APi must then be cleaned by removing states that do not belong to a direct path from the
initial state to a final state. Such a cleaning can be achieved in linear time using algorithms such as
breadth first search.
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the connection between the behaviour of a pd-process A and the behaviours described

by its world-partition automata.

Lemma 3.6. Let A = (S, s0, D,Act,G,Δ, F, AP,L) be a pd-process and let APG
its set

of world-partition automata. Then:

(i) let W ∈ W(D) be a possible world of D that belongs to a partition qP ∈ APG
. Then,

T is an execution tree of A in the world W iff T ∈ Tr(AP ).

(ii) T ∈ Tr(A) with Pr(T,A) > 0 iff ∃{APi1
, . . . , APil

} ⊆ APG
such that: T ∈ Tr(APij ),

∀ij ∈ {i1, . . . , il}, and Pr(T,A) =
∑

ij∈{i1,...,il}
Pr(APij

)

Proof. • (i) (⇒) Let W ∈ W(D) and qP ∈ APG
| qP (W ) = true and let T =

(τ, λ, δ) ∈ Tr(A,W ).

By definition 3.2, ∀(x, xn) ∈ τ , ∃g ∈ G such that (λ(x), δ(x, xn), g, λ(xn)) ∈ Δ

and g(W ) = True. Let GT be the set containing such guards g.

From lemma 3.4,we have GT ⊆ P

Hence, T ∈ Tr(AP ,W ), by construction of AP .

• (i)(⇐) Straightforward.

• (ii)(⇒) Assume T ∈ Tree(A) with Pr(T,A) > 0. Hence, from definition 3.3, there

exists {Wi1 , . . . ,Wil} ⊆ W(D) | T ∈ Tr(A,Wij ) and Pr(T,A) =
∑

ij∈{i1,...,il}
Pr(Wij ).

From (1), we can derive that ∃{APi1
, . . . , APil

} ⊆ APG
such that T ∈ Tr(APij

),

∀ij ∈ {i1, . . . , il}, and Pr(T,A) =
∑

ij∈{i1,...,il}
Pr(APij

).

• (ii)(⇐) Assume that ∃{APi1
, . . . , APil

} ⊆ APG
such that: T ∈ Tr(APij

), ∀ij ∈
{i1, . . . , il}. Hence, T ∈ Tr(A) and Pr(T,A) > 0 (from (1) and definition 3.3).
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Verification methods

This chapter mainly focuses on the method of testing simulation relation and model

checking in the context of pd-processes. In the first section, with the help of world

partition automata introduced in the previous chapter, an algorithm of testing simulation

relation of pd-processes is given and the complexity is in 2-EXPTIME. In the second

part, P-LTL and P-CTL model checking algorithms over pd-processes are studied as

well as their complexity.

4.1 Simulation preorder

The notion of simulation is used in the literature to compare finite state machine with

respect to their branching structures [42]. Usually simulation is defined as a relation

between the states of the considered processes. In the case of pd-processes, and due to the

tight connection between possible execution trees and possible worlds of a probabilistic

database, it is not easy to provide such a structural definition (i.e., as a general relation

between states). This is because, whether or not a given state s is simulated by another

state s′ depends on the considered possible world. As a consequence, instead of a

structural definition, we provide below a definition of simulation based on the semantics

of pd-processes.

Definition 4.1 (Simulation relation between pd-processes). LetA = (S, s0, D,Act,G,Δ,

F ) and A′ = (S′, s′0, D′, Act′, G′,Δ′, F ′) be two pd-processes. Then, A is simulated by A′,

noted A � A′, iff: ∀T = (τ, λ, δ) ∈ Tr(A), ∃λ′ : τ → S′ such that T ′ = (τ, λ′, δ) ∈ Tr(A′),

and Pr(T,A) ≤ Pr(T ′, A′).

Hence, semantics of simulation is defined as a containment between the sets of possi-

ble execution trees of the considered pd-processes. According to this definition, when

34
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comparing execution trees of two processes, the labels of the activities are taken into ac-

count while names of the states are meaningless. Hence, if a process A is simulated by a

process A′, then every possible execution tree of A is also a possible execution tree of A′

(modulo renaming of states) with an equal or higher probability. It is worth noting that

the provided definition of simulation is conservative in the sense that when it is applied

to pd-processes with non-probabilistic databases (i.e., having probability of each tuple

equal to 1), it matches non-probabilistic simulation on conventional LTSs. If we come

back to the example of NormCalc and PremCalc, there are numerous situations where

it is interesting to identify whether the process NormCalc is a refinement of the process

PremCalc w.r.t. to the simulation preorder. Unfortunately, definition 4.1 is semantic

(i.e., it defines the meaning of simulation as a relation between possible execution trees)

and not structural (i.e., does not define a relation between states and transitions of the

processes). Therefore, there is no direct way to derive a simulation algorithm from such

a definition (since testing inclusion between potentially infinite sets of possible execution

trees is not feasible). As a consequence, we can use the notion of partition automata

to decompose a pd-process into a set of (unguarded) automata that can be analyzed

separately to structurally characterize simulation relation between pd-processes.

While a world-partition automata APG
enables to split an original process A into a

set of automata that describe all the possible execution trees of A, it is still not easy

to reason separately on elements of APG
to test simulation. This is due to the fact

that a probability of a possible tree T of A may be obtained from a subset of APG

(and not only from a unique element of APG
) (c.f., lemma 3.6). Such problematic

execution trees belong to intersections of elements of APG
. Figure 3.4(b) shows the (non-

empty) automata obtained from intersections between subsets of the world-partition

automata of the process NormCalc1. Then it is easy to see that execution trees of

the automaton AP ′
1
� AP ′

2
are possible execution trees of the process NormCalc with

a probability equal to Pr(AP ′
1
) + Pr(AP ′

2
). Therefore, to characterize precisely the

probabilities of every possible execution tree by a unique automata, there is a need to

compute the closure of world-partition automata w.r.t. the intersection operation. In

the example, the world-partition automata of NormCalc needs to be augmented with

the automata of Figure 3.4(b) in order to obtain the closure of the world-partition

automata of NormCalc w.r.t. intersection operation. The closure of world-partition

automata, called closure-automata, is formally defined below after the introduction of

some needed notation. Let A = (S, s0, D,Act,G,Δ, F, AP,L) be a pd-process and let

APG
its corresponding world-partition automata. For a set ψ ∈ 2APG (i.e., a subset of

APG
), we define A�ψ

:=
�

AP∈ψ
AP . Therefore, A�ψ

is an unguarded automata which

describes the behavior common to all the automata of the set ψ.

1The symbol � denotes conventional intersection between LTSs.
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Definition 4.2. (closure-automata) Let A = (S, s0, D,Act,G,Δ, F, AP,L) a pd-

process and let APG
its corresponding world-partition automata. The closure of the

world-partition automata of A is given by the set CL(APG
) = {A�ψ

| ψ ∈ 2APG},
where each transition system A�ψ

∈ CL(A) is associated with a probability distribution

Pr(A�ψ
) =

∑

AP∈ψ
Pr(AP ).

As an example, the set CL(NormCalc), corresponding to the closure of world-partition

automata of the process NormCalc, is made of the automata of Figures 3.4(a) and (b)

and their associated probabilities (shown in the figures).

Simulation test algorithm

This part studies the algorithm of testing simulation relation of pd-processes. As a main

technical result of this chapter, the next theorem provides a structural characterization

of the simulation relation between two pd-processes.

Theorem 4.3. Let A and B be two pd-processes. Let CL(APG
) be the closure-automata

of A and let BPG′ be the world-partition automata of B. Then:

A � B iff ∀A�ψ
∈ CL(APG

), Pr(A�ψ
) ≤ ∑

BP ′∈BPG′
A�ψ

�BP ′

Pr(BP ′)

sketch. (⇐) Assume that ∀A�ψ
∈ CL(APG

), we have Pr(A�ψ
) ≤ ∑

BP ′∈BPG′
A�ψ

�BP ′

Pr(BP ′) (i).

Let T = (τ, λ, δ) ∈ Tr(A) with Pr(T,A) > 0. By lemma 3.6, ∃{APi1
, . . . , APil

} ⊆
APG

such that: T ∈ Tr(APij
), ∀j ∈ {1, . . . , l}, and Pr(T,A) = ∑

ij∈{i1,...,il}
Pr(APij

).

Let A�ψ
:= APi1

� . . .�APil
. From assumption (i), we derive: ∃{BP ′

i1
, . . . , BP ′

ik
} ⊆

BP ′
G

such that A�ψ
� BP ′

ij
, j ∈ [1, k], and Pr(�ψ

) ≤ ∑

j∈[1,k]
Pr(BP ′

ij
). Hence,

∀BP ′
ij
, with j ∈ [1, k], ∃λ′ : τ → S′ such that T ′ = (τ, λ′, δ) ∈ Tr(BP ′

ij
). From

lemma 3.6, T ′ ∈ Tr(B) and Pr(T ′, B) ≥ ∑

j∈[1,k]
Pr(BP ′

ij
) ≥ Pr(T,A). Hence,

A � B (by definition 4.1).

(⇒) Assume that A � B and ∃A�ψ
∈ CL(APG

) such that

Pr(A�ψ
) ≥ ∑

BP ′∈BPG′
A�ψ

�BP ′

Pr(BP ′).

In this case, the maximal execution tree of A�ψ
does not have any corresponding

tree in B with enough probability.

Hence, A �� B (which contradict the assumption)
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Continuing with the example, checking whether the pd-process NormCalc is simulated by

PremCalc can be achieved by checking whether for each automatonA�ψ
in CL(NormCalc),

there is a subset of automata in the world-partition automata of PremCalc each of wich

simulates A�ψ
and having a sum of probabilities greater or equal to the probability

of A�ψ
. We recall that, using the automata depicted at Figure 3.4, the closure of

world-automata of NormCalc is CL(NormCalc) = {AP ′
1
, AP ′

2
, AP ′

3
, AP ′

1
�AP ′

2
, AP ′

1
�AP ′

3
} .

Consider the case of the automaton AP ′
1
of this set. Using any state of the art simulation

algorithm on unguarded LTSs, one can check that this automaton is respectively simu-

lated by the automaton AP1 and by the automaton AP2 of Figure 3.4(c). In fact, AP1 and

AP2 are just two examples of a family of automata from the world-partition automata of

PremCalc that simulates AP ′
1
. Indeed, any automaton of the world-partition automata

of PremCalc that belongs to a partition satisfying the guards q2 and q5 of, respectively,

transitions NormalRiskEvaluation and ExpressEvaluation of PremCalc simulates AP ′
1
. The

total number of such partitions is 24 with the sum of the associated probabilities equal

to 48% (which is greater than Pr(AP ′
1
)). Similar reasoning can be extended to all other

elements of CL(NormCalc) to show that conditions of theorem 4.3 are satisfied and hence

NormCalc � PremCalc.

Complexity analysis. Let A = (S, s0, DA, Act,G,Δ, F ) be a pd-process. We use |X| to
denote the cardinality of a set X. We extend this notation to pd-processes and we write

|A| to denote the size of the process A defined in terms of its total number of guards,

transitions and states (i.e., |A| = |S| + |Δ| + |G|). We use also the notation |DA| to
denote the size of the probabilistic database used by A defined in terms of total number

of tuples in D. We study the complexity of the problem of checking simulation between

two pd-processes A and B w.r.t. two dimensions: (i) expression complexity, which as-

sumes that |DA|+ |DB| is fixed while |A|+ |B| is variable, and (ii) data complexity, which

assumes that |A|+ |B| is fixed while |DA|+ |DB| is variable.

Theorem 4.4. Let A and B be two pd-processes. The problem of checking whether

A � B is:

(i) in O(f(|D|)) in data complexity, where f(|D|) is the data-complexity of computing

the probabilities of a boolean query on a probabilistic database D,

(ii) exptime-hard w.r.t. the expression complexity,

(iii) can be solved in 2-exptime w.r.t. |A|+ |B|.

Therefore, checking simulation between pd-processes is intractable w.r.t. the size of the

LTSs while, interestingly, it does not introduce additional overhead w.r.t. to probabilistic

query evaluation in data-complexity. We refer to [8] for detailed results regarding the

complexity of this latter problem (i.e., complexity of function f(|D|)) in the context of

disjoint-independent databases. This result is encouraging because data-complexity is
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the most significant factor in our context. Indeed, the size of the database of a pd-

process can be expected to be several order of magnitude higher than the size of its

LTS.

Proof. of theorem 4.4. We give the proofs in the following order: (iii), (i) and (ii). Let

A = (S, s0, DA, Act,G,Δ, F ) and B = (S′, s′0, DB, Act
′, G′,Δ′, F ′) be two pd-processes.

Proof of (iii) According to theorem 4.3, checking whether A � B, can be achieved in

three steps:

1. Computing world-partition automata of APG
and BP ′

G
. The size of APG

is bounded

by 2|G| and, from definition 3.5, one can derive that each automata in APG
has a

size bounded by |A| and can be constructed: (i) in time linear in |A|, and (ii) by

evaluating one probabilistic query q. A similar reasoning applies for BP ′
G
.

2. Computing the closure CL(APG
) of the world-partition automata of A. The size

of CL(APG
) is bounded by 2|APG

| ≤ 22
|G|

. The size of each automata of CL(APG
)

is bounded by 2(log(|A|)∗2|G|) (corresponding to the largest intersection of elements

of APG
whose size is bounded by |A|2|G|

). Hence, computing the closure CL(APG
)

is bounded by 22
|G| × 2(log(|A|)∗2|G|) = 22

|G|∗(log(|A|+1)).

3. Checking whether condition of theorem 4.3 is satisfied which amounts mainly to

testing simulation between pairs in CL(APG
)×BP ′

G
, a set bounded by 22

|G| × 2|G|.

Due to the size of automata in CL(APG
) and BP ′

G
, the simulation test is in O(22

|G|
).

Hence, this step can be achieved in O(22
|G|

).

Therefore, if we omit the cost of evaluating probabilistic queries, checking whether A � B

can be achieved in 2-exptime in |A|+ |B|.
Proof of (i) From proof of (iii), step 2, the number of queries to be evaluated over the

probabilistic database is bounded by 2|G|+|G′| (computation of APG
and BP ′

G
). Hence,

assuming |A| + |B| to be a constant enables to check whether A � B with a data-

complexity that matches the complexity of probabilistic query evaluation.

Proof of (ii)We give now the proof of hardness. We show that checking whether A � B

is exptime-hard, using a reduction from the following problem:

Input: P1, P2, ...Pn, P , a set of (unguarded) automata.

Problem: does P1 × . . .× Pn � P?

This problem is known to be exptime-hard even when the Pis automata have disjoint

alphabets [43]. We first reformulate this problem using intersection instead of shuffle

then we present the reduction to pd-processes simulation.
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Let Pi = (SPi , s
i
0, ActPi ,ΔPi , FPi), for i ∈ [1, n], and P = (SP , s

P
0 , ActP ,ΔP , FP ). We

assume that ActPi ∩ActPj = ∅, ∀i, j ∈ [1, n] with i �= j.

For each Pi = (SPi , s
Pi
0 , ActPi ,ΔPi , FPi), with i ∈ [1, n], we construct an automata

P̃i = (S̃Pi , s̃
Pi
0 , ÃctPi , Δ̃Pi , F̃Pi) as follows:

• S̃Pi = SPi , s̃
Pi
0 = sPi

0 and F̃Pi = FPi ,

• ÃctPi =
n⋃

i=1
ActPi ,

• Δ̃Pi = ΔPi ∪ {(s, a, s) | s ∈ S̃Pi and a ∈ ˜ActPi \ActPi}

The following lemma extends to simulation equivalence a result already known in the

case of language equivalence.

Lemma 4.5. Let Pi and P̃i, with i ∈ [1, n], be two sets of automata defined as described

above. Then: P1 × . . .× Pn � P̃1 � . . . � P̃n and P̃1 � . . . � P̃n � P1 × . . .× Pn

Proof. If P1 × . . . × Pn is denoted as Prods and P̃1 � . . . � P̃n is denoted as Inters, the

lemma 4.5 could be proved as follows:

We shall show that for any state (sP1
i1
, sP2
i2
, . . . , sPn

in
) of Prods and there exists a state

(s̃P1
i1
, s̃P2
i2
, . . . , s̃Pn

in
) of Inters such that (sP1

i1
, sP2
i2
, . . . , sPn

in
) �

� (s̃P1
i1
, s̃P2
i2
, . . . , s̃Pn

in
).

(⇒) For a transition relation from the state of Prods:

{((sP1
i1
, . . . , sPi

ii
, . . . , sPn

in
), a, (sP1

i1
, . . . , sPi

ii+1
, . . . , sPn

in
))|(sii , a, sii+1) ∈ ΔPi}.

From the construction of Inters, we could find that the corresponding automata of

Pi is P̃i such that (s̃ii , a, s̃ii+1) ∈ Δ̃Pi

Because of the pairwise disjoint alphabet, for other automaton Pj , j �= i, (s̃i, a, s̃ii+1) /∈
Δ̃Pj and hence (s̃ii , a, s̃ii) ∈ Δ̃Pj

As a result, there is always a corresponding transition relation

{((s̃P1
i1
, . . . , s̃Pi

ii
, . . . , s̃Pn

in
), a, (s̃P1

i1
, . . . , s̃Pi

ii+1
, . . . , s̃Pn

in
))|(s̃ii , a, s̃ii+1) ∈ Δ̃Pi}.

By induction, we could get that Prods � Inters if recursively considering all the

outgoing transitions from each pair of states.

(⇐) Similar to (⇒).
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As a direct consequence of this lemma, the problem of checking whether P̃1�. . .�P̃n � P

is exptime-hard. We reduce this latter problem to a problem of checking simulation

between two pd-processes PA and PB. The construction of PA and PB is described

below.

Construction of PA and PB.

For each automaton P̃i = (S̃Pi , s̃
Pi
0 , ÃctPi , Δ̃Pi , F̃Pi) we construct a pd-process P̂i =

(ŜPAi
, ŝPi

0 , ÂctPi , D, ĜPi , Δ̂Pi , F̂Pi) such that:

• ŜPi = S̃Pi ,ŝ
Pi
0 = s̃Pi

0 , F̂Pi = F̃Pi and ÂctPi = ÃctPi ;

• D is the probabilistic database depicted at Table 4.1. It is defined over a schema

made of a unary relation Test which contains the tuples tgA , tgB , t1, . . . tn. The

probabilities of these tuples are computed as follows:

– ∀i ∈ [1, n], xi = v, for any value v s.t. 2
2n−1 < v < 1, (w.l.o.g., we assume

n ≥ 2).

– xgA takes any value satisfying 0 < xgA <
2

(2n−1)v .

– xgB = (n− 1
2) ∗ v ∗ xgA .

• ĜPi = {gA, gi} is the set of guards. The guards gA and gi are defined as follows:

gA() : −Test(‘g′A)

gi() :- ¬Test(‘g′1), . . . ,¬Test(‘g′i−1),Test(‘g
′
i),¬Test(‘g′i+1), . . . ,¬Test(‘g′n)

• Δ̂Pi = {(sj , a, gi, sj) | ∃(sj , a, sj) ∈ ΔPi and a ∈ ÃctPi} ∪ {(sj , a, gA, sj) |
∃(sj , a, sj) ∈ ΔPi and a ∈

n⋃

j=1
j �=i

ÃctPj}

Construction of PA. We merge together the P̂is pd-processes to form the pd-process

PA = (SPA
, sPA

0 , ActPA
, D,GPA

,ΔPA
, FPa) defined as follows:

• sPA
0 is a new state used as the initial state of PA.

• SPA
= {sPA

0 } ∪
n⋃

i=1
ŜPAi

.

• ActPA
= {anew} ∪

n⋃

i=1
ÂctPi , where anew is a new action.

• GPA
=

n⋃

i=1
ĜPi .
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Relation Test
Attrib Pr

tgA gA xgA
tgB gB xgB
t1 g1 x1
t2 g2 x2

. . . . . .
tn gn xn

Table 4.1: The probabilistic database D

• ΔPA
= {(sPA

0 , anew, true, ŝ
Pi
0 ), for i ∈ [1, n]} ∪

n⋃

i=1
Δ̂Pi .

• FPi =
n⋃

i=1
F̂Pi .

Construction of PB. Given an automaton P = (SP , s
P
0 , ActP ,ΔP , FP ), we construct

a pd-process PB = (SPB
, sPB

0 , ActPB
, D,GPB

,ΔPB
, FPB

) as follows.

• sPB
0 is a new state used as the initial state of PB.

• SPB
= {sPB

0 } ∪ SP .

• ActPB
= {anew} ∪ActP ∪

n⋃

i=1
ActPi .

• GPB
= {gb}

• ΔPB
= {(sPB

0 , anew, true, s
P
0 )}∪{(s, a, true, s′) | (s, a, s′) ∈ ΔP }∪{(sPB

0 , a, gb, s
PB
0 ) |

a ∈ {anew} ∪
n⋃

i=1
ActPi}

• FPB
= FP ∪ {sPB

0 }.

• D is the same probabilistic database used for PA.

Observe that, by construction, |PA| is linear in the size of Pis while |PB| is linear in the

sizes of the Pis and P .

Lemma 4.6. Let P , Pi, with i ∈ [1, n], a set of automata, the Pis having disjoint

alphabets. Let PA and PB the corresponding pd-processes constructed as described above.

Then: P̃1 � . . . � P̃n � P iff PA � PB

Proof. of lemma 4.6. We make first the following observations.
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• Since GPB
= {gb}, the world-partition automata of PB contains only the following

two automata:

– P̂ representing the partition associated with the guard ¬gb. P̃ corresponds

to the automata P augmented with a new initial state sPB
0 and a transition

labelled anew from sPB
0 to the initial state of P .

– an automaton, noted P u, representing the partition associated with the guard

gb. Note that the automata P u is universal since it contains in its initial

state sPB
0 , which is also a final state, a loop labelled with alphabet from

{anew} ∪
n⋃

i=1
ActPi . Hence, P u simulates any automaton from the world-

partition automata of PA.

• Note that the guards gi in PA are pairwise disjoint. Hence, the world-partition

automata of PA contains two subsets:

– A set, noted PosA, of n automata representing partitions where ga appears

positively.

– A set, noted NegA, of n automata representing partitions in which the guard

ga appears negatively.

Let us now prove the two directions of lemma 4.6.

(⇒) Assume that P̃1 � . . . � P̃n � P

⇒ P̂1 � . . . � P̂n � P̂ (by construction of P̂ and the P̂is),

⇒ ∀T ∈ NegA, T � P̂ ,

⇒ ∀T ∈ NegA, T � �

P̂j∈X
X⊆PosA∪NegA

P̂j � P̂ ,

Note that max
T∈CL(PAPG

)
(Prob(T )) = Prob(gA) + Prob(¬gA) = 1

⇒ max
T∈CL(PAPG

)
(Prob(T )) ≤ Prob(P̂ ) + Prob(P u)

⇒ PA � PB

(⇐) Assume that PA � PB

⇒ P̂1 � . . . � P̂n � P̂ . This is because P u alone is not enough to simulate P̂1 � . . . � P̂n
since Pr(P u) = xgB = (n− 1

2) ∗ v ∗ xgA ≤ n ∗ v ∗ xgA = Pr(P̂1 � . . . � P̂n).

⇒ P̃1 � . . . � P̃n � P
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4.2 Model checking

This section proposes the method to do model checking in the context of pd-processes.

Because pd-process is a probabilistic transition system, LTL or P-LTL captures the

parallel meaning as well as CTL or P-CTL. In this thesis, we only consider P-LTL

and P-CTL model checking. The first part is about the discussion of algorithm and

complexity of the P-LTL model checking over pd-processes. The second part is denoted

to P-CTL algorithms and complexity.

To make the description clear, this chapter uses the same example as the previous

chapters. But model checking focuses on the proposition of every state. Figure 4.1

illustrates the atomic propositions and their distribution for every state.

Figure 4.1: The proposition assignment for every state.

4.2.1 P-LTL Model Checking on Pd-processes

Because pd-process is a probabilistic transition system, linear temporal properties are

described in the fashion of checking probability and LTL formulae. As a result, linear

temporal properties are always related to probabilistic model checking. In this thesis,

we don’t distinguish LTL or P-LTL model checking in the context of pd-processes. So

checking linear temporal properties over pd-processes is named as P-LTL model checking

on pd-processes. By reusing the syntax of P-LTL and following the traditional P-LTL

model checking method, the method of P-LTL model checking on pd-processes is as

follows. Let A = (S, s0, D,Act,G,Δ, F, AP,L) be a pd-process and let W ∈ W(D), we

denote Aw = (S, s0, DW , Act,G,Δ, F, AP,L) be an automaton associated with world

W . DW can be seen as a probabilistic database derived from W where the probability
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of each tuple in W is 1. The definition of P-LTL model checking on Pd-processes is as

follows:

Definition 4.7 (P-LTL Model Checking on Pd-processes). For a given pd-process A =

(S, s0, D,Act,G,Δ, F, AP,L) and a P-LTL formula ϕ, A �∼pr ϕ iff
∑

AWi
�ϕ

Wi∈W(D)

Pr(AWi) ∼

pr (∼ means =, <,>,�,�).

Because the paths of pd-processes are probabilistic, the P-LTL model checking on pd-

processes cannot directly check the paths of original pd-process. Fortunately, a pd-

process is a set of traditional automata corresponding with the possible worlds of prob-

abilistic database and these automata are adequate through P-LTL model checking

method. As a result, the P-LTL model checking on pd-processes is slightly changed to

check if it is possible to return a ”true” answer satisfying the given probability. Follow-

ing the example in Figure 4.1 and probabilistic database in Table 2.2, we want to check

some properties in this model. First, these properties are described in nature language

as follows:

• Checking if the premium application can be approved and give answers at the end

of approval processes with probability > 0.5.

• Checking if the high risk evaluation can be approved with probability > 0.2.

We interpret these properties to LTL formula. For A = (S, s0, D,Act,G,Δ, F, AP,L),

the properties above can be translated to

1. Pr(A � ©ap6 ∧ ♦ap10) > 0.5.

2. Pr(A � ap3 ∧ ♦ap8) > 0.2.

Algorithm 2 depicts the method of P-LTL checking under the context of pd-process

which stands for a finite set of traditional automata associated with different probabilities

represented by a set of partition automata. To do the P-LTL model checking under this

context, we could do it for every partition automaton by following the traditional LTL

model checking methodology. Because of the existence of probability for each partition

automaton, the P-LTL model checking may not be 100% true or false. To accumulate the

probability of ”true”, we introduce a variable P to help us checking the final probability

satisfaction.

Proof. For a given pd-process A = (S, s0, D,Act,G,Δ, F, AP,L), if W (Pi) stands for

the possible worlds which could be expressed by guard partition Pi, W (Pi) = {Wi1 ,Wi2



Chapter 4. Verification methods 45

Algorithm 2 Algorithm of P-LTL model checking on pd-processes

Require:
A pd-process A = (S, s0, D,Act,G,Δ, F, AP,L) and P-LTL formula ϕ over AP ,
checking if A �∼pr ϕ.

Ensure:
1: Construct a Non-deterministic Buchi Automata NBA¬ϕ such that L(NBA¬ϕ) =
Words(¬ϕ) and a variable P to record the probabilities of adequate partition au-
tomata.

2: Generate partition automataAPG
forA and for each partition automaton APi ∈ APG

,
construct the product APi ⊗NBA¬ϕ.

3: If there dose not exist any accepted sequence (for example, a path Π) in APi ⊗
NBA¬ϕ, it means the model checking will return ”true” with respect to the partition
automata APi , P+ = Pr(APi).

4: If P ∼ pr, return true, otherwise return false.
5: return True or false .

, ...,Wij} where Wik ∈ W(D), 1 � k � j. Then we have {AWi1
, AWi2

, ..., AWij
} corre-

sponding with the worlds in W (Pi). Because for any Wik ∈W (Pi), it can make Pi true.

APi and AWik
are equivalent automata and by definition of world partition automata,

we have Pr(APi) =
∑j

k=1 Pr(AWik
). Meanwhile, by definition of guard partitions, if

Wik ∈W (Pi), then Wik /∈W (Pj) where Pi �= Pj . Obviously, for a given P-LTL formula

ϕ, if ∃AWik
� ϕ, Wik ∈W (Pi), then ∀AWim

� ϕ,Wim ∈W (Pi). If
∑

AWi
�ϕ

Wi∈W(D)

Pr(AWi) ∼

pr, there exists a set of world partition automata {APi1
, APi2

, ..., APij
} such that Wi ∈

W (Pik), 1 � k � j and
∑

APi
�ϕ Pr(APi) ∼ pr. Therefore, Algorithm 2 and Definition

4.7 are equivalent.

Continuing checking the formulae of the example above, do LTL model checking for every

partition automaton to check the satisfaction of these two P-LTL formulae. Taking the

first one to briefly be studied, taking the partition automata in Fig. 3.4 (c) as an example,

both automata can be satisfied by formula 1. Then we could add the probability, it is

easy to see the final probability is bigger than 0.5. So formula 1 is satisfied. Then we

consider formula 2, in Fig. 3.4 (c), both automata are not satisfied by formula 2. When

we check all the partition automata, only the one with guard partitions {g1} can be

satisfied, the probability is 8.68%. As a result, formula 2 is not satisfied due to the

probability is less than what we need.

Complexity of P-LTL model checking on pd-processes

Theorem 4.8. The complexity of P-LTL model checking on pd-processes is as follows:

(i) in O(f(|D|)) in data complexity, where f(|D|) is the data-complexity of computing

the probabilities of a boolean query on a probabilistic database D,

(ii) EXPTIME-complete w.r.t. the expression complexity,
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Proof. Proof of (ii) From [17], we already know that checking a P-LTL formula can

be achieved in EXPTIME w.r.t expression complexity. According to theorem 4.8, do

P-LTL model checking on pd-process A of P-LTL formula ϕ, can be achieved in several

steps:

• Computing world-partition automata of APG
. The size of APG

is bounded by

2|G| and, from definition 3.5, one can derive that each automata in APG
has a

size bounded by |A| and can be constructed: (i) in time linear in |A|, and (ii) by

evaluating one probabilistic query q.

• For every world-partition automaton APi , do the traditional LTL model checking.

The complexity of traditional LTL model checking is bounded by |A| ∗ 2|ϕ|.

• To sum up, the P-LTL model checking equals that doing traditional LTL model

checking on every partition automata. Hence, the complexity is O(|A|×2|ϕ|×2|G|).

The hardness is obtained from the verification of standard LTL model checking which

is known as EXPTIME-complete. Indeed, such a problem can be easily translated by

letting a pd-process with an empty probabilistic database and setting all the guards to

true.

Proof of (i) From proof of (ii), the number of query to be evaluated over the proba-

bilistic database is bounded by 2|G| (computation of APG
). Hence, assuming |A| to be

a constant enables to check LTL properties with a data-complexity that matches the

complexity of probabilistic query evaluation.

4.2.2 P-CTL Model Checking on Pd-processes

At present, the problem is how to achieve P-CTL model checking under the context of

pd-process. If we consider the P-CTL model checking method is a black box function

and assume a pd-process is a set of traditional automata (partition automata) without

guards, the result of model checking for each partition automaton is a set of states

which satisfy the P-CTL formulae. The semantic of traditional P-CTL model checking

is to verify the set of states which satisfy the CTL formulae and also the probability

given by the syntax P∼pr(φ). This probability restricts the probability scope of the

candidate states. So under the context of pd-processes, we can reuse the method of

CTL model checking of pd-processes. That’s because the semantic of pd-processes is

for a given probabilistic database, different possible worlds can let corresponding pd-

process represents different automata (partition automata). The probability of each

automaton means the probability of the occurrence of the states in this automaton. If

one state exists in several partition automata, that means the occurrence of this states
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in the overall pd-process is the sum of the corresponding automata probabilities. When

we go back to the problem of P-CTL model checking, the syntax P∼pr(φ) restricts the

probability of the states satisfying φ. Under the context of pd-process, if si satisfies φ

in a set of partition automata, the probability of si satisfying φ is undoubtedly the sum

of these corresponding partition automata. The definition of P-CTL model checking on

pd-processes is as follows:

Definition 4.9 (PCTL Model Checking on Pd-processes). For a given pd-process

A = (S, s0, D,Act,G,Δ, F, AP,L) and a P-CTL formula P∼pr(Φ), the satisfaction set is

Sat(P∼pr(Φ) = {s|s ∈ S, s � Φ, P r(s) ∼ pr}where Pr(s) = ∑
Pr(AWi)|Wi ∈ W(D), s ∈

SAWi
and s � Φ under the context of AWi . (∼ means =, <,>,�,�).

Because P∼pr(φ) is a P-CTL syntax and it can be a part of Φ, under the context of

pd-processes, it is impossible to reuse the traditional P-CTL model checking algorithm,

we could reuse the method of traditional CTL model: checking to build the parse tree

of P-CTL formula and computing the satisfaction set of each node. To compute the

probability and merge the result of child node in the parse tree, there needs a set to

restore the adequate partition automata whose set of states satisfy the P-CTL syntax.

The algorithms for non-probabilistic syntax and probabilistic syntax is as follows:

Algorithm 3 Algorithm of computing satisfaction set of P-CTL syntax:probabilistic
case

Require:
A pd-process A = (S, s0, D,Act,G,Δ, F, AP,L) and P-CTL formula P∼pr(φ) over
AP , finding Sat(P∼pr(φ)).

Ensure:
1: Generate a set to record the partition automata whose states satisfy the syntax

denoted as SatPA(P∼pr(φ)).
2: Do traditional CTL model checking on every partition automaton APi and if si ∈
SAPi

, si � φ under the context of APi , Pr(si)+ = Pr(APi), SatPA(P∼pr(φ)) adds
APi .

3: Finally, checking all the states, if Pr(si) ∼ pr, Sat(P∼pr(φ)) adds si.
4: return Sat(P∼pr(φ)) and SatPA(P∼pr(φ)).

With the help of Algorithm 3 and Algorithm 4, the algorithm to do the P-CTL model

checking can be started from dividing the P-CTL formula in the form of parse tree. Then

we can bottom-up compute the satisfaction set for each node. For the leaf nodes, using

Algorithm 3 and Algorithm 4 compute the satisfaction set of states and the satisfaction

set of partition automata. For the internal node, if non-probabilistic case, intersect

these two sets from its child nodes; else if probabilistic case, intersect these two sets

then check the probability of each state in the satisfaction set of states according to its

occurrence in the satisfaction set of partition automata. Finally, the satisfaction of root

is the answer of model checking. The method is described in Algorithm 5.
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Algorithm 4 Algorithm of computing satisfaction set of P-CTL syntax:non-
probabilistic case

Require:
A pd-process A = (S, s0, D,Act,G,Δ, F, AP,L) and CTL formula φ over AP , finding
Sat(φ).

Ensure:
1: Generate a set to record the partition automata whose states satisfy the syntax

denoted as SatPA(φ).
2: Do traditional CTL model checking on every partition automaton APi and if
si ∈ SAPi

, si � φ under the context of APi , Pr(si)+ = Pr(APi), Sat(φ)) adds
si, SatPA(φ) adds APi .

3: return Sat(φ)) and SatPA(φ).

Algorithm 5 Algorithm of P-CTL model checking on pd-processes

Require:
A pd-process A = (S, s0, D,Act,G,Δ, F, AP,L) and P-CTL formula P∼pr(Φ) over
AP .

Ensure:
1: Build the parse tree of P-CTL formula.
2: Bottom up compute the satisfaction set for each node.
3: For leaf nodes, if the syntax φ is like P∼pr(φ), use Algorithm 3, otherwise, use

Algorithm 4, computing SatPA(φ) and Sat(φ).
4: For internal nodes, if the syntax Φi is a non-probabilistic syntax, intersect the Sat(φ)

for each child nodes to generate Sat(Φi) and do the same to generate SatPA(Φi),
otherwise, not only generating Sat(Φi) and SatPA(Φi) but also checking every state
si ∈ Sat(Φi), if

∑
APi

∈SatPA(Φi)
Pr(APi)|si ∈ APi dose not satisfy the need of Φi,

Sat(Φi)/si
5: The satisfaction set of root is the answer of P-CTL model checking.
6: return Sat(P∼pr(Φ)).

The proof is similar with the one of P-LTL model checking on pd-processes. For a

given pd-process A and a P-CTL formula Φ, we check every state si whether si � Φ and

Pr(si) ∼ pr. By Definition 4.9, we check every automaton AWi = (S, s0, DWi , Act,G,Δ,

F,AP, L) corresponding with a given world Wi ∈ W(D), where si ∈ S of AWi . From the

proof of Algorithm 2, we find that AWi can be represented as its associated world par-

tition automaton. Then we can transform this problem to check all the world partition

automata. It is obviously that Algorithm 5 and Definition 4.9 are equivalent.

4.2.2.1 Complexity of P-CTL model checking on pd-processes

Theorem 4.10. The complexity of P-CTL model checking on pd-processes is as follows:

(i) in O(f(|D|)) in data complexity, where f(|D|) is the data-complexity of computing

the probabilities of a boolean query on a probabilistic database D,

(ii) EXPTIME w.r.t. the expression complexity,
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(iii) can be solved in EXPTIME w.r.t. O((|A|) × |Φ|2 × 2|G|) which is capable to be

abbreviated by O(2|G|).

Proof. Proof of (iii) According to theorem 4.10, do P-CTL model checking on pd-

process A of P-CTL formula Φ, can be achieved in several steps:

• Computing world-partition automata of APG
. The size of APG

is bounded by

2|G| and, from definition 3.5, one can derive that each automata in APG
has a

size bounded by |A| and can be constructed: (i) in time linear in |A|, and (ii) by

evaluating one probabilistic query q.

• For every world-partition automaton APi , do the traditional CTL model checking.

The complexity of traditional CTL model checking is bounded by |A| × |Φ|2.

• To sum up, the P-CTL model checking equals that doing traditional CTL model

checking on every partition automata. Hence, the complexity is O((|A|) × |Φ|2 ×
2|G|). If we abbreviate it, the final complexity is O(2|G|).

Proof of (i) From proof of (iii), the number of query to be evaluated over the proba-

bilistic database is bounded by 2|G| (computation of APG
). Hence, assuming |A| to be

a constant enables to check LTL properties with a data-complexity that matches the

complexity of probabilistic query evaluation.

Proof of (ii) Because the complexity of computing CTL model checking is in PTIME

but we need to do CTL model checking in every partition automaton, computing par-

tition automata is in EXPTIME. As a result, the total expression complexity is EXP-

TIME.

4.2.2.2 Example

We continue using the example of premium calculation. The property we want to check

is if there exists any state being a risk evaluation letting next state is expert evaluation

and finally this premium calculation is permitted with probability > 0.3. Translate it

to P-CTL formula: ∃(((ap2 ∧ ©ap7)) ∧ (Pr(♦ap8) > 0.3)). Then we build parse tree

for this P-CTL formula in Figure 4.2. Bottom-up finding the satisfaction set for every

partition automaton, we take the partition automata in Fig. 3.4 (c) as an example

again. First considering ap2, the satisfaction set for Ap1 is {s2}, for Ap2 is {s2, s3},
within this two partition automata, Sat(ap2) = {s2, s3}, SatAP (ap2) = {Ap1, Ap2},
then we check all the other partition automata, Sat(ap2) = {s1, s2, s3}. Following the

same manner, Sat(©ap7) = {s3}, then we merge the result of these two leaves in the
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parse tree. Sat(ap2 ∧ ©ap7) = {s2}. Noticing that, the set of satisfaction partition

automata is updated as well. Because there are too many result, we don’t show it

here. When we go to find the satisfaction set of the leaf Sat(Pr(♦ap8) > 0.3), the

probability of every state satisfying ♦ap8 is considered with respect to the satisfaction

partition automata of Sat(Pr(♦ap8) > 0.3). The answer is that the satisfaction set of

Sat(Pr(♦ap8) > 0.3) is {s0, ..., s5} regardless probability, then considering probability,

the final answer is {s0, s1, s2, s3}. Finally, we merge the two satisfaction set Sat(ap2 ∧
©ap7) and Sat(Pr(♦ap8) > 0.3), the result is {s2}. As a result, the satisfaction set of

Sat(∃(((ap2 ∧©ap7)) ∧ (Pr(♦ap8) > 0.3))) = {s2}.

Figure 4.2: The parse tree of P-CTL formula ∃(((ap2 ∧©ap7)) ∧ (Pr(♦ap8) > 0.3)).



Chapter 5

Optimized Algorithms

In this chapter, several optimized algorithms of testing simulation relation on pd-processes

are studied under different contexts. Deterministic pd-processes, pseudo-deterministic

pd-processes and strong non-deterministic pd-processes classify pd-processes to several

different but related scopes. The third section introduces a special case: the simula-

tion relation test on a compiled approach when only the content of query or database

is altered. Last section reveals the connection between pd-processes with Markov pro-

cesses. As the previous chapters described, pd-process is a non-Markov process but some

special pd-processes which satisfy some properties are equivalent to Markov processes.

We present the notion of independent pd-processes which can be considered as Markov

processes. In the context of independent pd-processes, we have a lower complexity to

do the simulation relation test and model checking.

5.1 Deterministic pd-processes

A formal definition of deterministic pd-processes is given in Definition 5.1.

Definition 5.1 (Deterministic pd-process). Let A = {S, s0, D,Act,Δ, G, F,AP,L} be

a pd-process, A is deterministic iff ∀si ∈ S and ∀(si, ai, gi, si1) ∈ Δ, ∀(si, aj , gj , si2) ∈ Δ

and si1 �= si2then ai �= aj .

Under the context of Definition 5.1, we build the partition automata following Theorem

4.3 according to the partitions of guards. The partitions of guards are the power set of

all the guards. To ensure the partition automata cover all the probability, the closure

automata which are the intersections of the partition automata are considered. Lemma

5.3 states the fact that the intersection among partition automata from a deterministic

51
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pd-process do not create new automaton which differs from the partition automata

involved into this intersection.

Proposition 5.2. For two partition automata {APi , APj} of a deterministic pd-process

A, ∀APi , APj ∈ APG
, ∃APk

with Pk = Pi ∩ Pj such that Tr(APi �APj ) = Tr(APk
).

By expressing in terms of execution trees, Proposition 5.2 states a fact that if the result of

intersection between two partition automata of a deterministic pd-process is not empty,

then there exists another partition automaton which coincides with this result. The

proof of this proposition is given below.

Proof. To prove this proposition, let us propose a property of deterministic automata

first: because the actions of transition relations outgoing from one state are always

different, for the world W (Pk) of a given partition of guard Pk, there exist a set of

execution trees Tr(APk
) associated with only one partition automaton APk

. If a world

W (Pi) ⊃ W (Pk), W (Pi) associating with a partition automaton APi , ∀Tk ∈ Tr(APk
),

∃Ti ∈ Tr(APi) such that Tk is a sub-tree of Ti.

Here is the proof for this property. Because for any path si1
ai1 ,gi1−−−−→ si2

ai2 ,gi2−−−−→ si3 ...
aij ,gij−−−−→

sij+1 in a deterministic pd-process A, we cannot find another path through different

states assigned with the same sequence of actions and guards. That is to say for two

world partition automata APk
and APi of A, if Pk ⊂ Pi, ∀πk ∈ APk

then πk ∈ APi .

After this property, we prove this proposition as follows:

• By Definition 5.1, it is obviously that ∀APi , APj ∈ APG
, Pi ∩ Pj �= ∅, ∃APk

with

Pk = Pi ∩ Pj .

• ⇐, according to the property above, if APi�APj �= ∅, Pk = Pi∩Pj then Tr(APk
) ⊂

Tr(APi) and Tr(APk
) ⊂ Tr(APj ). As a result, we have Tr(APi �APj ) ⊇ Tr(APk

).

• ⇒, similar with the proof of the property above, if APi � APj �= ∅, Pk = Pi ∩ Pj
then for any path si1

ai1 ,gi1−−−−→ si2
ai2 ,gi2−−−−→ si3 ...

aij ,gij−−−−→ sij+1 in A, if its corresponding

path πi = si1
ai1−−→ si2

ai2−−→ si3 ...
aij−−→ sij+1 ∈ APi � APj , then πi ∈ APk

. Then we

have: for any tree Ti if Ti ∈ Tr(APi) and Ti ∈ Tr(APj ), Ti ∈ Tr(APk
). As a result,

Tr(APi �APj ) ⊆ Tr(APk
).

Finally ,we have Tr(APi �APj ) = Tr(APk
).

Lemma 5.3. Let A be a deterministic pd-process, CL(A) \APG
= ∅.
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Proof. According to Proposition 5.2, for a set of partition automata {APi1
, APi2

, ..., APin
}

of a deterministic pd-process A, if
�n
k=1(APik

) �= ∅, there exists APj ∈ APG
such that

Tr(APj ) =
�n
k=1(Tr(APGik

)) and Pj ⊆ ⋂n
k=1(Pik) That is to say: all the closure au-

tomata of A can be represented by partition automata APG
.

Following Lemma 5.3, under the context of deterministic pd-process, all the closure

automata are contained with partition automata so there is no need to compute closure

automata. However, in order to include the probabilities of related closure automata,

the probabilities of the partition automata need to be recomputed. The computation

is achieved as follows. For each partition automaton APi , it can be seen as a result of

intersecting all the partition automata whose execution trees contain Tr(APi). That

is to say the probability of APi is the sum of the probabilities of all these partition

automata. Because this way of probability computation only consider the positive part

of guards, to distinguish with Pr(APi) defined in the previous chapters, we denote this

kind of probabilities as Pr(APi)
pos. Pr(APi)

pos =
∏
qj∈Pi

Pr(qj). Lemma 5.4 states the

reason why we could compute the probability in this way.

Lemma 5.4. Let A be a deterministic pd-process, T ∈ Tr(A) with Pr(T,A) > 0 iff

∃APi ∈ APG
|T ∈ Tr(APi) and Pr(T,A) = Pr(APi)

pos

Proof. For a given pd-processes A = {S, s0, D,Act,G,Δ, F}, G = {q1, q2, ..., qn}, PG is

the set of guard partitions.

According to Lemma 3.6, T ∈ Tr(A) with Pr(T,A) > 0 iff ∃{APj , . . . , APn} ⊆ APG
such

that: T ∈ Tr(APk
), ∀k ∈ {j, . . . , n}, and Pr(T,A) =

∑

k∈{j,...,n}
Pr(APk

). Assuming Pi

accords to the condition of Lemma 5.4 and Pi = {q1, q2, ..., qi}.
Pr(Pi) =

∏i
j=1 Pr(qj)×

∏n
k=i+1(1− Pr(qk)).

Enumerate all the guard partitions which are the super set of Pi in PG such as Pi+1 =

{q1, q2, ..., qi, qi+1}, Pn = {q1, q2, ..., qi, ..., qn}, etc.
∑

k∈{j,...,n}
Pr(APk

) =

∏i
j=1 Pr(qj)×

∏n
k=i+1(1− Pr(qk))+

∏i
j=1 Pr(qj)× Pr(qi+1)×

∏n
k=i+2(1− Pr(qk))+

...+
∏i
j=1 Pr(qj)×

∏n
k=i+1 Pr(qk)=

∏i
j=1 Pr(qj)× (1− Pr(qi+1) + Pr(qi+1))×

∏n
k=i+2(1− Pr(qk))+

...+
∏i
j=1 Pr(qj)×

∏n
k=i+1 Pr(qk)=

This is a recursive formula, and finally there only

=
∏i
j=1 Pr(qj).

which is
∏
qj∈Pi

Pr(qj) = Pr(APi)
pos.
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As a result, comparing the simulation relation between deterministic pd-processes can be

achieved as follows: (i) first build the partition automata and compute their probability

Pr(APi)
pos; (ii) finally, test the simulation relation of the partition automata. Because

the closure automata are not generated, the expression complexity is based on the size

of partition automata which is in EXPTIME.

Pseudo-deterministic pd-process

The definition of pseudo-deterministic pd-processes is as follows.

Definition 5.5 (Pseudo-deterministic pd-processes). LetA = {S, s0, D,Act,Δ, G, F,AP
,L} be a pd-process, A is a pseudo-deterministic pd-process iff ∀si ∈ S and ∀(si, ai, gi, si1) ∈
Δ, ∀(si, aj , gj , si2) ∈ Δ such that si1 �= si2 , ai = aj and gi = gj .

Pseudo-deterministic pd-processes can be seen as a generalized case of deterministic

pd-processes, because if the guards of transition relations with identical action are the

same, these transition relations always occur in the same partition automaton, therefore

it drops to the scope of determinism.

5.2 Strong non-deterministic pd-processes

In the previous section, the methodology of testing simulation relation between deter-

ministic pd-processes or pseudo-deterministic pd-processes is studied but not all the

pd-processes are pseudo-deterministic so in this section, the strong non-deterministic

case will be described.

Definition 5.6 (Strong non-deterministic pd-processes). Let A = {S, s0, D,Act,Δ, G,
F,AP,L} be a pd-process, A is a strong non-deterministic pd-process iff ∃si ∈ S and

∃(si, ai, gi, si1) ∈ Δ, ∃(si, aj , gj , si2) ∈ Δ such that si1 �= si2 , ai = aj and gi �= gj . This

kind of transition relations are called strong non-deterministic transition relations.

As the simulation relation test method described in Theorem 4.3, we have considered

the intersections between all the partition automata so that there exist numeric vol-

umes of abundant operations. The intersection between partition automata is valuable

only when they are composed of strong non-deterministic transition relations. Because

deterministic and pseudo-deterministic cases are captured by partition automata and

their probabilities are recomputed through Pr(APi)
pos. Here we introduce the notion
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of strong non-deterministic guards and deterministic guards as follows. We introduce a

set named strong non-deterministic guards denoted as NDG. The guards which assign

to strong non-deterministic transition relations are recorded in NDG. For other guards

gj /∈ NDG, we call it a pseudo-deterministic guard. The set of pseudo-deterministic

guards is denoted as DG. NDG ∩ DG = ∅ and NDG ∪ DG = G.To compute closure

automata efficiently, two kinds of cases are considered as follows:

1. For a partition automaton APi , Pi ⊂ DG, we do not consider it. Because the set

DG does not contain any strong non-deterministic guards which means that there

do not exist transition relations with same actions outgoing from one state. As

a result, the intersections between APi with other partition automata obviously

follow the rule of Lemma 5.3.

2. During the intersections between two partition automata APi and APj , if Pi ⊂ Pj ,

we could ignore them because the result of APi � APj is APi and the probability

of APi has been captured in Pr(APi)
pos.

By ignoring these two cases, the algorithm to build closure automata is as follows:

Algorithm 6 Algorithm of computing closure automata under the context of strong
non-determinism

Require:
One pd-process A = {S, s0, D,Act,G,Δ, F, AP,L}

Ensure:
1: For each state si, check if there exists strong non-deterministic transition relations.
2: If there exists, for all these strong non-deterministic transition relations and corre-

sponding guards {gi1 , gi2 , ..., gij}. Record all these guards into the set NDG.
3: For any guard partition Pi ∈ PG, if Pi ∩NDG = ∅, delete Pi from PG
4: Generate the set of closure automata CL(APG

) which are the intersection with
one or many partition automata in APG

when the involved guard partitions are
{Pi1 , Pi2 , ..., Pim} satisfying that any two guard partitions are not in this case:
Pij ⊂ Pik . Then compute the probability Pr(CL(APG

)).
5: return A set of closure automata.

Lemma 5.7. Let A = {S, s0, D,Act,G,Δ, F, AP,L} be a pd-process and DG is the

set of pseudo-deterministic guards. The complexity of computing closure automata of

pd-processes is in O(2(2
|G|−2|DG|)).

Proof. To prove this lemma, we compute the number of intersection operations to create

closure automata. Because we don’t need to compute the intersection between APi and

APj if Pi ⊆ |DG| and Pj ⊆ |DG| according to Lemma 5.3, the number of candidate

partition automata for closure automata is 2|G| − 2|DG|. Then we compute the number
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of intersections among these partition automata. Obviously, the complexity is the ex-

ponential of the size of involved partition automata. As a result, the complexity is in

O(22
|G|−2|DG|

).

From Lemma 5.7, we can find a fact that the complexity of computing closure automata

relates to the size of deterministic guards, if |DG| is 0, we get the upper bound of the

complexity of computing closure automata in O(22
|G|); if |DG| = |G|, we don’t need to

compute closure automata.

Figure 5.1 illustrates the process of computing closure automata. Figure 5.1(a) shows

an example of a pd-process with three guards G1, G2, G3. Then we find 2 strong non-

deterministic transition relaitons illustrated in Figure 5.1(b). Set NDG and DG are

depicted in Figure 5.1(c). With the help of NDG and DG, we can generate the guard

partitions denoted in Figure 5.1(d). Following Algorithm 6, the intersections between

partition automata are made. Figure 5.1(e) illustrates some of the intersections and the

result of these intersections are demonstrated in Figure 5.1(f).

Figure 5.1: Example of computing closure automata

As a consequence of Lemma 5.7, we refine the complexity of testing simulation relation

on pd-processes below. Let A and B be two pd-processes with GA and GB, the set of

guards of A and B respectively and DGA and DGB, the set of pseudo-deterministic

guards of A and B respectively. Then the simulation relation test between A and B can
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be achieved in O((2|G| +2(2
|G|−2|DG|))× 2|G|). Say that if |GA| = |DGA|, the complexity

is in EXPTIME.

5.3 Simulation test algorithm based on a compiled ap-

proach

In this section, we explain the fact that a lower-cost method to analyze a compiled

approach that tests simulation relation between two pd-processes with data changes.

For two given pd-processesA and B, if guards and associated database instances are

changed and we would like to check simulation relation again. The algorithm of previous

section will take plenty of time. Because the structures of partition automata are not

altered regardless probability, there is no need to compute them again. The guard

partitions are not changed since the number of guards and transition relations keep the

original arrange. In this case, we could reuse partition automata which are already

generated and only need to recompute the probability of every partition automata or

closure automata. So to test simulation relation of pd-processes in the context of guards’

queries and database instances changed, Algorithm 7 depicts the first step about doing

some pre-computation to generate partition automata and Algorithm 8 describes the

method to test simulation relation of pd-processes when guards’ queries or database

instances are changed with the help of the result of pre-computation in Algorithm 7.

Algorithm 7 The compiled algorithm of simulation test

Require:
Two pd-processes A = {S, s0, D,Act,G,Δ, F, AP,L} and B =
{S′, s′0, D,Act′, G′,Δ′, F ′, AP ′, L′} regardless the content of guards’ queries or
database instances.

Ensure:
1: Generate a set of guard partitions of A denoted as PG.
2: According to PG, build a set of partition automata denoted as APG

3: Generate a set of closure automata denoted as CL(APG
).

4: Follow the same manner to generate a set of guard partitions P ′
G and partition

automata BP ′
G
.

5: For each APi , record all the BP ′
i
∈ BP ′

G
such that APi � BP ′

i
into a mapping table T .

T is a two column one-to-many mapping table where left column records APi ∈ APG

row by row and right column records a set of partition automata ∀BP ′
i
∈ BP ′

G
|APi �

BP ′
i
for a certain APi in the left row. Do the same stuff for each CL(APi) and record

their mappings in T . In T , if any element in left column maps with an empty set,
the simulation test will return ”False”.

6: return Mapping table T or False.

To illustrate Algorithm 7 clearly, here is an example. Assuming two pd-processes A and

B, partition automata of A are AP1 , AP2 , AP3 and a closure automaton CL(AP1) whose
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Algorithm 8 Algorithm of simulation test based on compiled approach

Require:
Two pd-processA and B, mapping table T generated in Algorithm 7, a new database
D and novel guards’ queries.

Ensure:
1: If the pre-computation in Algorithm 7 doesn’t return false,by using new database

instance and novel guards’ queries, the probability of each guard partition Pi ∈
PG and P ′

i ∈ P ′
G should be recomputed as well as their corresponding partition

automata. The probability of closure automata in CL(APG
) will be updated by the

sum of their associated partition automata.
2: In table T , for each row, we will check for each element in the left column, if there

exists a partition automaton in the right column of the same row with equal or
higher probability.

3: return True of Flase .

T A B

1 AP1 BP ′
1
, BP ′

2

2 AP2 BP ′
2
, BP ′

3

3 AP3 BP ′
3

4 CL(AP1) : {AP1 �AP2} BP ′
2

Table 5.1: Mapping table of A and B

corresponding set of partition automata is {AP1 , AP2}; partition automata of B are

BP ′
1
, BP ′

2
, BP ′

3
. We do some pre-computation and build the mapping table T as follows:

In the first row of Table 5.1, left element is AP1 and right element is BP ′
1
, BP ′

2
. It means

AP1 is simulated by BP ′
1
and BP ′

2
regardless probability. When guards and database

instances are given, we refer to Algorithm 8 to compute the probability of each partition

automaton and closure automaton of A, partition automaton of B. Then we go back

to table T , we check the preorder relations w.r.t probabilities from left column to right

column for each row. Each time when guards and database instances are changed, we

can reuse the result of pre-computation and only refer to Algorithm 8 to recompute and

check the preorder of the probabilities. Because Algorithm 8 recomputes the probability

for each partition automata and closure automata. So it can be seen as a PTIME

algorithm with respect to the size of partition automata.

5.4 Independent pd-processes

In pd-processes, guards {g1, g2, ..., gn} are boolean queries {q1, q2, ..., qn} on a given prob-

abilistic database D returning ”true” or ”false”. First, to evaluate the full relational

algebra problem in probabilistic databases, we will reuse the methods proposed in [38]:

each tuple of probabilistic database is annotated with a propositional formulas called



Chapter 5. Optimized Algorithms 59

”events” over a set of boolean variables . Table 5.2 shows an example of several proba-

bilistic tuples which add an additional attribute as events. The probability of the event

owned by a tuple equals to the probability of this tuple. For the reason of simple man-

agement of query evaluation, we assume all the original tuples with atomic events are

independent or disjoint and the other tuples derive from these original ones. The origi-

nal atomic events are not only a signature of every tuple but also represent the lineage

of every non-atomic tuple. The method to utilize the events annotated on probabilistic

database for evaluating the SPJ queries is as follows:

If assuming this query uniquely impacts on two tuples t1 with probability pr1 and event

X1, t2 with probability pr2 and event X2 from different tables, X1 is a collection of

atomic events which are independent or disjoint and considered as the original events,

as well as X2.

• Selection from t1 and t2. Selection never change the event and probability.

• Projection from t1 and t2. If projection impacts on both tuples, the result event

is X1 +X2, the probability is the consequence of computing X1 +X2.

• Join from t1 and t2. If t1 �� t2, result event is X1 × X2, the probability is the

consequence of computing X1 ×X2.

Announcing that t1 and t2 may be correlate tuples meaning that X1 and X2 have

common atomic events. The computation of probability cannot be simply adding or

product. For example, if X1 = y1 + y2, X2 = y1 + y3, then X1 + X2 = y1 + y2 + y3.

The probability of this result is pr(y1) + pr(y2) + pr(y3). With the same manner, if

X1 = y1×y2, X2 = y1×y3, then X1×X2 = y1×y2×y3. The probability of this result is

pr(y1)× pr(y2)× pr(y3) . We denote E(qi) as the formula of events generated by query

qi.

Definition 5.8 (Witness events). For any boolean query qi on a probabilistic database

D, the witness events of qi denoted as we(qi) are a set of atomic events such that

we(qi) = {e| e is an atomic event that occurs in E(qi) }.

According to Definition 5.8, if the set of witness events of qi is empty, qi returns ”false”.

In the context of probabilistic database, the witness tuples are enumerated due to the

computation of probability. In Table 5.2, if there is a boolean query :”Exists: select TID

= ’101’ in T1”, E(qi) = x1 + x2 the witness events we(qi) = {x1, x2}.

Definition 5.9 (Independent guards). Two guards g1 and g2 are independent guards

w.r.t a fixed probabilistic database D iff we(g1) ∩ we(g2) = ∅.
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Original database
T1 TID Name Pr Event

101 A 20% x1
101 B 40% x2
212 C 70% x3

T2 SID Name Pr Event

133 A 50% y1
134 D 60% y2
276 C 40% y3

Query answer of ΠTID=101T1
T3 TID Pr Event

101 60% x1 + x2

Query answer of ΠName(T1 �� T2)
T4 Name Pr Event

A 10% x1 × y1
C 28% x3 × y3

Table 5.2: Example of events annotated on probabilistic database

The definitions of independent guards is the principle criteria of determining if a pd-

process can be decreased to a Markov process. The definition of independent pd-

processes which capture the features of Markov processes is introduced as follows.

Definition 5.10 (Independent pd-processes). A pd-process A = (S, s0, D,Act,G,Δ, F )

is independent pd-process if the following properties are satisfied.

1. the guards of all the transition relations started from a state si are independent

guards.

2. for any two guards g1 and g2 whose corresponding transition relations are outgoing

from different states, if g1 and g2 are in the path π, g1 and g2 are independent

guards.

For the reason of simplifying notation, pd-processes indicate the normal pd-processes

whereas independent pd-processes represent the ones with the restrictions of the guards’

independence. As the descriptions in [44], a pd-process is a non-Markov process due

to the correlation of the guards (maybe common witness tuples). But Definition 5.10

implies a fact that there dose not exist correlation among guards in the same independent

guards closure or of the transition relations from same state in the context of independent

pd-processes. As a result, a theorem can be deduced from Definition 5.10 as follows.

Theorem 5.11. A pd-process is a Markov process iff it is an independent pd-process.

Proof. ⇒ The states, initial state and actions in pd-process own the parallel meaning

with the ones of a Markov process. For any two transition relations δ1, δ2 stated from one

state si in a pd-process A. Here we assume there are only two transition relations started

from si. If A is a independent pd-process, the guards for δ1, δ2 are g1, g2, respectively
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and obviously, we(g1) ∩ we(g2) = ∅ for a given probabilistic database D.

If E(D) represents the set of all atomic events in D, Pr(g1) = 1 − Pr(E(D) \ we(g1)),
Pr(g2) = 1−Pr(E(D)\we(g2)) and assuming there exists an inactive transition relation

δσ whose guard is gσ with a set of witness events we(gσ) = E(D) \ (we(g1) ∪ ve(g2)),
Pr(gσ) = 1−Pr(E(D)\σ) = 1−Pr(we(g1))−Pr(we(g2)) such that Pr(g1)+Pr(g2)+

Pr(gσ) = 1, equally, Pr(δ1) + Pr(δ2) + Pr(δσ) = 1 such that the set of transition

relations started from si, Δsi ⊆ si ×Act× S can be represented as a probability space:

Δsi ⊆ si×Probs(Act×S) = Probs(si×Act×S) where Probs(si×Act×S) = {δ1, δ2, δσ}
is a probability space (Ω, F, Pr) where Ω is {δ1, δ2, δσ}, Pr(Ω) = 1, F is discrete due to

the exclusiveness of the elements in Ω.

Similarly as the step above, for a set of connected transition relationss1
a1,g1−−−→ s2

a2,g2−−−→ s3,

because g1 and g2 are in the same path so they have not common witness events, these

two transition relations s1
a1,g1−−−→ s2 and s2

a2,g2−−−→ s3 are memoryless and discrete. This

feature also coincides with the properties of Markov processes.

⇐ For any Markov process, if we consider all the probability distributions as guards, it

obviously satisfies the two properties of an independent pd-process.

5.4.1 Simulation test of independent pd-processes

The simulation test algorithm in the context of independent pd-processes is trivial.

Because an independent pd-process can be decreased to a Markov process, we first

compute all the guards’ probabilities, then we run the traditional probabilistic simulation

test.

Complexity of simulation test of independent pd-processes

Let A and B be two independent pd-processes. The problem of checking whether A � B

is:

(i) in O(f(|D|)) in data complexity, where f(|D|) is the data-complexity of computing

the probabilities of a boolean query on a probabilistic database D,

(ii) PTIME w.r.t. the expression complexity,

(iii) can be solved in PTIME w.r.t. |A|+ |B|.
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5.4.2 Model checking of independent pd-processes

Similar with the simulation test, we can transform independent pd-processes to Markov

processes by computing the probability of each guard then run traditional P-LTL or

P-CTL model checking algorithms as needed.

Complexity of model checking of independent pd-processes As Proposition 5.11

described, an independent pd-process is a finite Markov Chain. The model checking

(LTL, CTL, P-LTL, P-CTL) algorithms of independent pd-processes can reuse the ones

of finite Markov Chain (Markov processes).

(i) in O(f(|D|)) in data complexity, where f(|D|) is the data-complexity of computing

the probabilities of a boolean query on a probabilistic database D,

(ii) the expression complexity is EXPTIME w.r.t P-LTL model checking, PTIME w.r.t

P-CTL model checking.

iii P-LTL model checking can be solved in EXPTIME w.r.t |φ| (φ is a LTL formula).

iv P-CTL model checking can be solved in PTIME w.r.t |Φ| × |A| (Φ is CTL formula).
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Related works

This chapter briefly describes related work of the main contents of this thesis and shows

the differences between our contributions with these works. We mainly focus on the

related domains as follows: data-centric/data-aware business processes, probabilistic

processes, probabilistic database, verification method on probabilistic systems. The first

part proposes the notion of data-centric/data-aware business processes and the second

part focuses on the domain of probabilistic processes including modeling, simulation

test, verification method in the context of probabilistic processes.

6.1 Data-centric/Data-aware business processes

Nowadays, experts do not only satisfy expressing business sequence of activities but

also the informational perspectives which normally are treated as a part of context of

single activities. The ideas of letting data play the most important role birthed data-

centric/data-aware business processes. Normally, without specific explanations, data-

centric business processes imply business artifact process. Intuitively, business artifacts

are data objects whose manipulations define the underlying processes in a business

model. Business artifact and information-centric processing of artifact life-cycles was

first introduced in [45]. Then in [46], a business artifact processes in pharmaceutical

research were designed and industrialized as a successful business attempt. Recently,

in [47], a brand new framework based on business artifact process was proposed to

integrate artifact-centric process model, process view model, a set of consistency rules,

and the construction approach for building process views. The authors attempted to

develop a bottom-up abstraction mechanism to construct process view by deriving from

underlying process models and capturing major business requirements. Meanwhile, they

defined a consistency rules to preserve the consistency between business views which were

63
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constructed and their corresponding processes. It can be considered as a generalization

of artifact-centric business processes.

Comparing with these formal works, we focus not only on the role played by data but

also the flow perspective in the business processes. In business artifact processes, data is

dissociated from the control flow perspectives and forms isolated views to illustrate the

information exchanging and data transforming during the whole business processes. Our

work directly integrates data by using guard querying probabilistic database in business

processes. It clearly observes how data influence the transition relations among different

states to predict future.

In spite of business artifact processes, data-aware conformance and compliance check-

ing provide another way to consider the role of data played in the business processes.

In [6], authors showed an abstraction approach to avoid state explosion by conduct-

ing compliance checking which is a part of process mining extracting information from

event log for an abstract process model and abstract compliance rules. In [5], a more

efficient method of data-aware conformance checking was extended from previous works

by running a realistic BPMN processes ProM and evaluated using a variety of model-

log combinations. The authors described an approach that aligns event log and model

while taking all perspectives (data and resources) into account. An automatic compo-

sition of a web service called Colombo model was introduced in [48]. Colombo model

is a framework in which web services are characterized in terms of the atomic processes

which impact on the real world (modelled as a relation database). This framework is

represented by following the notion of data-centric business process which is a control

flow perspective integrating queries over relational databases as guards. In our work,

we expand the notion of guards which query translational database in Colombo model

to probabilistic guards querying probabilistic database. This change cause plenty of al-

ternations with respect to the semantic of model, algorithms of simulation relation test

and model checking. In [7], a formal specification and verification of data-centric service

composition was represented to follow the paradigm of service oriented architecture.

The authors use a running example of PayPal Express Checkout flow by applying their

verification and specification approach. In their approach, the usefulness of a service

contract at different level of sophistication was evaluated to facilitate a so called cost-

benefit analysis. This analysis was decided on the time and effort invested by service

providers in specifying their services. Meanwhile, the effectiveness of the specification

in detecting programmers’ errors while building applications by integrating services in

an ad-hoc manner could be measure in their future works.

Up to our knowledge, this is the first work that discusses the integration between
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probabilistic database and business processes. In our works, guards query probabilis-

tic database instead of traditional databases. The result of these probabilistic guards

provide a probabilistic predictions for every associated transition relation. As a conse-

quence, our works can present a set of traditional processes with probabilistic distribu-

tions rather than one process. This feature will help analysers to predict the risks in the

future by these probabilistic distributions.

6.2 Probabilistic process

Probabilistic process constitute a mathematical framework for the specification and anal-

ysis of probabilistic systems. The original work on probabilistic extensions of process

algebras were published in [49], [50] by using labelled transition systems as an opera-

tional model in which probabilities are associated to transitions relations. In [51], the

authors classified probabilistic models into three classes: reactive, generative and strat-

ified. Different probability distributions are assigned to different actions in the reactive

model. The probabilities assigned to the outgoing transitions of one state labelled sum

up to 1. This can be considered as a coarse way to describe the notion of probabilistic

space but the probability assigned in one transition relation does not affect the proba-

bility of successor states. Generative model assigned the probability to the states over

all outgoing transition relations and stratified model considered branching structure in

the context of generative model. In [52], the model of probabilistic automata was in-

troduced by capturing the notion of probabilistic space. The semantic of probabilistic

automata can be defined in terms of probabilistic space. With the help of definition

of probabilistic automata, a transition relation from a state presents a probabilistic

distribution over states rather than to a single state, coinciding with the definition of

transition relations of ordinary automata. Thus, the non-deterministic choice among

different transition relations can be considered as a probabilistic choice in the context

of probabilistic automata is addressed in this paper. Meanwhile, the simulaiton test for

probabilistic automata was given in this paper.

Besides the theories of probabilistic process, a flurry of applications of probabilistic

process were implemented by researchers and engineers. In [53], the author discuss an

application to verify PAR protocol with unreliable channels by reducing the process

expression for the parallel composition of the protocol components to an expression of a

fully probabilistic process on which the versification technique on probabilistic process

was introduced. In [54], probabilistic process was used to predict the pavement condition

rating and collect detail data in absence of sophisticated equipment or trained staff in a

system called decision support system (DSS) to replace Pavement Maintenance Systems
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(PMS). In DSS, the future condition of pavement can be predicted by calculating the

collected data in terms of probability distribution of previous conditions and analysing

these data in a business process. An application of analysing the accident from the

collision of ships entering or leaving port by using probabilistic process was discussed

in [55]. In this paper, the probabilistic distribution was assigned to semi-Markov chain

to determine the probability of correct execution of critical manoeuvres during ship’s

entering and leaving the port as well as the probabilities of incorrect execution of critical

manoeuvres by a ship, that leads to marine accidents.

Our work describes another kind of probabilistic process specification named as pd-

processes which differ from these traditional models. We introduce the notion of prob-

abilistic guards to the domain of probabilistic processes. In our works, guards are

boolean queries over probabilistic databases to provide a probabilistic decision making

for corresponding transition relations. Owing to probabilistic guards, the semantic of

our pd-processes is changed from Markov perspective to non-Markov specification. A

single pd-processes can represent a set of business processes which are described in terms

of world-partition automata with probability distribution. Therefore, the algorithms of

simulation relation and model checking are also changed to fulfil this semantic changes.

6.2.1 Simulation relation test

A simulation relation describes the containment relation of two finite state machines.

Intuitively, a finite state machine simulates another one if it can match all of its moves.

As a core stone of verification technique, simulation relation test provides a refinement

and abstraction tool for verifying the properties of finite state machines. In [22], a

polynomial algorithm of traditional simulation relation test was proposed and we use

it to do the simulation test between two world-partition automata in our thesis. This

algorithm is presented in Appendix. As to probabilistic processes, the simulation rela-

tion test was firstly studied in [52] as well as the model of probabilistic processes. The

algorithm of simulation relation test in the context of probabilistic processes extended

from the traditional simulation test algorithm in [22] but probability is a principle role

to be considered. In [52], authors introduced two notions of simulation relations strong

probabilistic simulation and branching probabilistic simulation with respect to proba-

bilistic processes model. Strong probabilistic simulation ignores the internal probabilistic

spaces which are the probabilistic spaces for every state but considers the global prob-

abilistic space of a probabilistic process. Branching probabilistic simulation concerns

every internal transition relations and states. Authors also proved that probabilistic

simulation are compositional and preserve P-CTL formulas and P-CTL formulas with-

out negation and existential quantification, respectively. Regarding our work, we reuse
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the algorithm of traditional simulation relation test rather than probabilistic ones. That

is because in the context of our work, a pd-process can represent a set of transitional

finite state machine in terms of world-partition automata assigned with probabilities.

In every world-partition automaton, the probability for each transition relation is the

same value. So when we attempted to check simulation relation, we consider the value

of probability (bigger or equal) first then check the simulation relations. Traditional

simulation relation test is adequate to check the similarity among world-partition au-

tomata. But the volume of world partition automata is exponential with respect to the

size of guards, the simulation relation test over pd-processes is in EXPTIME rather than

PTIME.

6.2.2 Model checking

There are a range of different techniques for formal verification. Model checking is

particularly well-fit for the automated verification of finite state systems. In the over

thirty years since its invention, model checking has achieved multiple breakthroughs,

extensively used in the hardware industry, and has become feasible for verifying many

types of software as well. By [17], the definition of model checking can be defined as

follows: ”model checking is an automated technique that, given a finite-state model of

a system and a formal property, systematically checks whether this property holds for

(a given state in) that model”. The finite-state model is usually described in terms of

concurrent system (normally automata) and the properties are depicted by translating

natural languages to temporal logical formulae. The pioneering works which focused on

temporal logical modelling checking on finite-state system by introducing linear temporal

logic (LTL) were done in [56], [57] and [58]. Meantime, computational tree logical model

checking (CTL) was introduced in [59]. To fulfil the need of analysing uncertainty

in various domain of scientific data management, probabilistic systems (probabilistic

database, probabilistic process, etc.) were birthed. Following this trend, verification

techniques for probabilistic models were occurred in eighties last century. The original

work was proposed in [60] by introducing a graph-based algorithm to prove not 100% sure

termination for finite state probabilistic processes. Then, the verification of qualitative

ω-regular properties in terms of P-LTL formula for finite state system was first studied

in [41, 61] by representing ω-regular properties in the form of deterministic non-bushi

automata. In these papers, the qualitative LTL model checking problem was proved

in PSPACE-complete. In [62], a double exponential lower bound was found for the

problem of verifying a fact that a finite state automaton was capable for a given P-

LTL formula. The problem of fairness in the context of P-LTL formula was studied in

[41, 61] by expressing restrictions on the resolution of non-determinism in finite state
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automata. A branching-time logic for probabilistic systems has been originally proposed

in [63]. Later on, a probabilistic computational tree logical model checking algorithm

was proposed in [64]. Authors gave algorithms for checking a concurrent system which

is in terms of Markov chain satisfy a given qualitative properties. As a milestone work in

the domain of probabilistic processes and verification technique in terms of computation

tree logic, [52] presented not only the foundation of probabilistic processes but also

action-based variants of P-CTL. The probabilistic model checker was flurry based on

the various theories of probabilistic process model checking. The first prototype of P-

CTL model checkers has been proposed in [65]. Then PRISM [66], ETMCC [67], MRMC

[68] were birthed to fulfil the various needs of P-CTL model checking for multi models

such as Markov chain,Markov decision processes, transition matrices, etc. LiQuor [69]

is an alternative model checkers for Markov decision processes to verify quantitative

properties in this context with SPIN [70] inside as the LTL model checker.

Our work extends from these formal works. Because we are in a probabilistic system,

P-LTL and P-CTL are considered in our case. The syntax and satisfaction relations of

P-LTL and P-CTL are reused in our work. But the semantic of our work is different from

the traditional finite state machine. The algorithm of P-LTL and P-CTL model checking

are refined to fulfil our needs. The algorithm of P-LTL model checking on pd-processes

reuses traditional LTL model checking method for every world partition automaton.

The level of complexity dose not increased still EXPTIME but the exponent of the

complexity is the sum of the size of guards and P-LTL formulas rather than temporal

logic formulas. Similarly, P-CTL model checking on pd-processes follows the method of

traditional CTL model checking (sparse tree, searching for specification sets for every

node of the sparse tree) but due to the exponential size of world partition automata,

the complexity of P-CTL model checking over pd-processes is EXPTIME rather than

PTIME.
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Prototype and Application

This section describes a prototype implementation on an application of pd-processes.

Section 7.1 describes a prototype to model the pd-processes and to test the simulation

relation between two pd-processes. The results of performance experiment on syntactic

data is illustrated in Section 7.2. Finally, Section 7.3 attempts to use the methodology

of pd-processes to model the behaviour of a realistic scenario.

7.1 The PRODUS Prototype

This prototype, called ”PRODUS” 1, a PRObabilistic Data-aware bUsiness process

Simulation framework, allows modeling the pd-processes and testing the simulation

relation between two pd-processes. Fig 7.1 shows the screenshot of PRODUS. The

programming language of PRODUS is C
 and the probabilistic database is powered by

PostgreSQL sever.

Figure 7.1: The PRODUS graphical user interface.

1The link of PRODUS: http://fc.isima.fr/˜li/Application.html

69
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Fig 7.2 depicts the global architecture of PRODUS which contains three main mod-

ules: the pd-process designer, the simulation handler, and the probabilistic database

management system.

• Pd-process designer: there are three components in this module.

– GUI: providing a graphical interface (PD-process model editor) to help users

to generate pd-processes visually.

– Pd-process model handler: (i) State handler: transferring the states descrip-

tions in the GUI to an array-list. This array-list is used to store the input

of the states; (ii) File handler: reading or writing files; (iii) Guard handler:

querying probabilistic database and returning probabilities; (iv) Transition

handler: Linking states and recording guards positions.

– Partition generator: generating guard partitions, partition automata and clo-

sure automata.

• Simulation handler: testing simulation relation between two input pd-processes.

• Probabilistic database management system: executing boolean queries on Post-

greSQL sever.

The process of modelling and testing simulation relation between two pd-processes in

PRODUS requires (i) building the transition system of the pd-processes by connecting

the states with transitions and specifying the contents of states, actions and guards in

the pd-process editor module; (ii) in the model handler module, constructing the data

structure of pd-process and resolving the guards in the guard handler module to query

the probabilistic database management system by executing a boolean query; (iii) the

P-DBMS is developed as an extension of the PostgreSQL sever which is in charge of

storing all the data with probability and evaluating probabilistic boolean query used

in pd-processes. In these probabilistic tables, probability and associated events are

considered as additional attributes; (iv) computing the probability of each member in

partitions of guards and based on it generating the partitions automata as the core

function of partition generator module; (v)simulation comparator module comparing

simulation relation by reusing the data produced by previous module; (vi) finally, the

data of pd-process is stored in an XML format or txt file by the file handler module.

7.2 Experiment

The environment of this experiment is as follows :
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Figure 7.2: The PRODUS architecture.

• CPU: Intel(R) Core(TM) i5-2430M, 2.40GHZ, 4 cores.

• RAM: Maximum 2Gb.

• Hard disk: ST9500420AS-ATA.

7.2.1 Experiment of the optimized algorithm of simulation test

This subsection briefly describes the method of a performance experiment with the re-

sults through it. In the experiment, the running time and memory allocation of the

prototype are concerned as the major elements. As a convincing result, it needs to

execute the experiments numerous times. So an algorithm of generating syntactic pd-

processes automatically is called up to fulfil this demand. Because of the homogeneous

model of pd-process with other traditional automata, a modification on the automatic

generation algorithm depicted in [71] is made to create typical automata rather than

tree automata according to the feature of pd-process. Due to the query on the proba-

bilistic databases by guards, automatic generation of the content of the guards is a new

challenge. Following the results of the analysis in the previous sections, the contents

of the probabilistic database do not give any impact to increase the complexity of the

framework. So we could generate a naive probabilistic relation with only one attributes,

as well as the probability distribution and homogeneous events for every tuple. Nor-

mally, users decide the number of tuple generated and the probability for each tuple is

randomly assigned a number N ∈ [0, 1]. Table 7.1 illustrates an example of automatic

generated probabilistic relation with 100 tuples.

With the help of the probabilistic relation generated as the method above, the content

of a guard can simply copy the grammar as follows:

select * from [relation name] where ID = ’[random ID number]’;
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ID Pr Events

t1 1 0.43 x1

t2 2 0.56 x2

. . . . . . . . . . . .

t100 100 0.12 x100

Table 7.1: Example of an automatic generated probabilistic database

Algorithm 9 depicts a method to generate a random pd-process. Because the names

of states is meaningless for simulation relation test, all the states are generated as

”S+the sequence number of states”. Owing to comparing simulaiton between different

pd-processes, the action names follow the same naming rule: ”a+the sequence number of

actions”. As a result, same automatic generated pd-processes with the same or different

size of alphabet pool can be used to test simulation relation.

Algorithm 9 Algorithm of automatic generation of pd-processes

Require:
Input state number N
Size of alphabet M
The scope of guards numbers

Ensure:
1: Pick the first generated state as initial state;
2: Randomly pick q numbers of state as final state with probability 0.5, 0 < q < N/2;
3: For each state which is not a final state can randomly form a transition relation with

other states (including itself) with a probability p1;
4: Each transition relation picks up an action from the alphabet pool randomly and

have a probability p2 to own a guard;
5: The statement of the guard follows the grammar depicted as above;
6: return An automatic generated pd-process;

Fig.7.3 shows the result of the experiments. Fig.7.3(a) illustrates the memory allocation,

noticing that when the guards number reaches 9, the memory allocation hits the ceiling.

The time consuming of computing partition automata, closure automata and simulation

test is shown in (b),(c) and (d), respectively. From these results, we can learn that:

(i) the memory allocation strategy attempts to put more data in the main memory

for avoiding I/O operations. Because the number of closure automata is 2-exptime,

taking 8 guards as an example, there are 22
8
= 2256 closure automata theoretically, even

after the optimization, the number decreases around 270. It still hit the ceiling of main

memory; (ii) The average time consuming is proximately 2 hours when guard number

is 10. The major problem is the high complexity of computing closure automata as

previous tip noticed but there is not an efficient way to decrease the complexity of this

step even the optimization is limited. The complexity of computing closure automata is

still bounded between EXPTIME and 2-exptime.
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Figure 7.3: Experiment results.

7.2.2 Experiment of Algorithm 8

Because Algorithm 7 is the same complexity of the previous pd-processes simulation

test algorithm, the experiments focus on the result of Algorithm 8. Fig 7.4 illustrates

the results of experiments. Figure 7.4(a) shows the memory allocation w.r.t the number

of partition automata. Because during the computation of Algorithm 8, only Table

T is maintained in the main memory. The increase of memory allocation is linear

and these is no need to record the details of each partition automaton. Figure 7.4(b)

illustrates the running time. The most principle computation of Algorithm 8 is to query

the probabilistic database. Since Table T is a hash table, the searching time can be

considered as constant. So the time consume in this step is mainly cost during the

manipulation of database.

Comparing with the result of previous experiment, based on a compiled approach, we

only need to recompute the probability of each partition automata and closure au-

tomata. The expression complexity is EXPTIME with respect to the size of partition

automata and closure automata and the data complexity is same as the one of querying

probabilistic database.
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Figure 7.4: Experiment results of Algorithm 8.

7.3 Scenario

This subsection describes a realistic scenario application in the approaching of the agri-

cultural field by collaboration with IRSTEA. IRSTEA is a research organization which,

since more than 30 years, works on major issues of a responsible agriculture and ter-

ritories sustainable planning, water management and related risks, drought, floods, in-

undations, the biodiversity and complex ecosystems study in their interrelation with

human activities. We consider that combining the methods of probabilistic database,

GIS (Geographical Information System) and business process modelling is a new trend

to evaluate the agricultural activities. Pd-process is occasionally an ideal tool under

this context. This scenario developed with IRSTEA shows how pd-processes could be

used to evaluate the impact of agriculture activities more precisely. We attempts to

evaluate the risk of agricultural activities among the hydrological objects (lakes, rivers,

etc.) and agricultural plots. The spatial relation which provides information on the

layout of spatial objects (distance, elevation, etc.) is the most principle information

needed in the evaluation processes. Normally, this kind of information are uncertain

and consequently the available data are often not precise so that probabilistic database

is used to capture the uncertainty of the spatial objects’ information in order to estimate

the level of possible water and soil contamination (by agricultural inputs). Other than

spatial relations, the type of farming, the varieties of crops in the farm, the pesticide

utilization and other traits are also considered in this scenario to determine the risk level

of agriculture activity on a certain farm during recent years.
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Figure 7.5: Spatial relations between simple 2-D regions defined in the Region Con-
nection Calculus model

Spatial relations can provide information on the layout of spatial objects [72]. As shown

in [73], there are different types of spatial relations. For example, topological relations are

invariant under topological transformations. Metric information is provided by distance

relations. Partial and total orders can be also modeled by spatial objects (”in the front

of”, ”behind”, etc.). Numerous spatial relations have been defined between different

forms of spatial objects.

Probabilistic spatial relations can be defined between objects. This type of relations

is associated to probability. In other words, we are able to assign probabilities on the

different spatial relations.

Probabilities on topologic relations can be also deduce from a partial knowledge. To

illustrate this type of methods, we introduce an example based on traditional binary

spatial relations between simple 2-D regions (defined in the Region Connection Cal-

culus model [74, 75] : Disconnected (DC), Externally Connected (EC), Equal (EQ),

Partially Overlapping (PO), Tangential Proper Part (TPP), Tangential Proper Part in-

verse (TPPi), Non-Tangential Proper Part (NTTP), Non-Tangential Proper Part inverse

(NTTPi). These relations are shown in Figure 2. All these relations are disjoint, i.e.,

there is only one spatial relation between two objects.

Suppose that we only know the three followings spatial relations between four simple

2-D regions:

• Relation 1: TPP(A, B).

• Relation 2: EC (B, C).

• Relation 3: TPP (C,D).



Chapter 7. Prototype 76

R(A,B) R(B,C) R(C,D) R(A,C) R(A,D) R(B,D)

Case1 TPP EC TPP DC DC DC

Case2 TPP EC TPP DC DC EC

Case3 TPP EC TPP EC DC EC

Case4 TPP EC TPP EC DC DC

Table 7.2: Deduction of new spatial relations

Figure 7.6: Four possible layouts

From the relations 1, 2 and 3, we can deduce new spatial relations between objects using

the composition table presented in [74]. The results are in Table 7.2, Figure 7.5 shows

an example of drawing for these spatial layouts. If we assume that all the rows of the

table are equiproportional, we can determine different probabilities:

• P (R(A,C) = DC) = 1/2 and P (R(A,C) = EC) = 1/2;

• P (R(A,D) = DC) = 1;

• P (R(B,D) = DC) = 1/2 and P (R(B,D) = EC) = 1/2;

• The probability that two relations on the three unknown relations are EC is 1/4,

etc.

Table 7.3 shows a fragment of the probabilistic database of the spatial relation ”Dis-

tance”. The AGRICULTURAL PLOT and HYDROLOGICAL OBJECT tables record

the necessary information for agricultural plots and hydrological objects. The DIS-

TANCE PLOT HYDRO table presents the distance between one hydrological object

and one agricultural plot with a probability. Our example database stores different infor-

mation related to agricultural activities. Spatial representations of hydrological objects

(lakes, rivers, etc.) and agricultural plots used for farming activities are in the database

tables. These information are polygons. We suppose there is an intrinsic uncertainty on

the boundary of the stored hydrological objects. For example, the hydrological limits

evolve over the time. The measurement of the agricultural plots will also depend on the

used acquisition techniques. So, we suppose that the same objects can have different
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AGRICULTURAL PLOT
ID plot Geo Area ID farm ID soil type ID watershed

AP0031 Poly{(11,32,79),(80,78,50)} 43.79 Farm0734 Soil145 Warter0427

AP0702 Poly{(68,70,67),(123,259,167)} 10.18 Farm0197 Soil145 Warter0831

HYDROLOGICAL OBJECT
ID hyd Geo Area Name

Hy0157 Poly{(65,40,20),(90,108,67)} 103.79 L’Allier river

Hy0470 Poly{(209,408,89),(520,734,54)} 306.12 Citro forest

DISTANCE PLOT HYDRO
ID plot ID hyd Distance Pr

AP0031 Hy0157 423.9 0.578

AP0031 Hy0157 320.7 0.235

AP0702 Hy0157 19.57 0.891
Table 7.3: An example of the agricultural spatial relation database schema.

representations. Consequently, the spatial relations between objects are uncertain. The

different spatial object representations are not stored in our database, but the database

contains the different spatial relations (with the associated probabilities) between these

objects. In this application, we are interested in using the probability of spatial rela-

tions between agricultural plots and hydro-graphical areas in order to estimate the level

of possible water and soil contamination (by agricultural inputs). The analysis of the

probabilities of contamination levels can lead to different control actions. Because the

spatial objects are uncertain, the distances between objects are also uncertain. Here we

propose a generic database schema for probabilistic spatial relations that can be reused

in many applications. A probabilistic spatial relation schema is composed of three types

of tables:

1. Spatial objects table (SOT) stores information on spatial entities. SOTs can be

probabilistic or not. SOT tuples contain: (i) a primary key; (ii) (optional) descrip-

tive attributes;(iii) one (optional) spatial attribute (point, line, polygon, vague

shape, fuzzy spatial objects, etc.) and (iv)(optional) foreign keys. The primary

key can be composed of foreign keys or not.

2. Descriptive table (DT) stores information which are non-spatial by nature or which

could have a spatial representation but that are not important for the application.

DTs can be probabilistic or not. DT tuples contain: (i) a primary key; (ii) (op-

tional) descriptive attributes;(iii)(optional) foreign keys. The primary key can be

composed of foreign keys or not.

3. Spatial relations table (SRT) stores information on the probabilities of binary

spatial relations. SRTs can be probabilistic or not. SRT tuples contain:(i) a

primary key composed of the foreign keys coming from two SOT tuples; (ii) one

(optional) spatial relation. This attribute is optional because the spatial relation
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Figure 7.7: Database structure of scenario

can be implicit, as in following the SRT: LEFT OF(obj a:numeric,obj b:numeric)

– in this example no additional attribute are needed to specify the spatial relations

; obj a is on the left of obj b (and consequently obj b is on the right of obj a). The

probability provides information on uncertainty of the spatial relation between two

spatial objects.

In Figure 7.7, the explanation and clarification of database tables are as follows.

SOT

• AGRICULTURAL PLOT

• HYDROLOGICAL OBJECT

• WATERSHED OBJECT

The information system considered in this example stores different plots used for farming

activities and a set of hydrological objects such as lakes, rivers, etc. Different watersheds

are considered.

DT

• FARM
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• USED PESTICIDE

• PESTICIDE

• PESTICIDE ACTIVE MATTER

• FARM ACTIVITY TYPE

• CROP

• CROP IN PLOT

• SOIL TYPE

• PLUVIOMETRY PER YEAR

The plots are owned by farms. Each farm has one type of activities that can be intensive,

semi-intensive or extensive. We consider here that we do not have access to information

at the finest geographical level (i.e., for each farm), but aggregated information are

available, such as the number of (semi-)intensive and extensive farms at regional level,

for large, intermediate and small farms, etc. So, a probability can be estimated for each

farm, depending on its properties (location, size, etc.). In the same way, the probabilities

of crops cultivated over the years on plots can be estimated. Probabilities on pesticides

used by farms can be also assessed. Geological information are available on the soil

of plot. These information are used to classify the plots depending on its capacity to

facilitate runoff or soil infiltration of water and pesticides. Pesticide run off is partially

caused by rains. Global information on pluviometry is also provided.

SRT

• DISTANCE PLOT HYDRO

• ELEVATION DIFFERENCE

• DOWNHILL

Elevation differences and distances (in meters) between plots and hydrological objects

are stored in DISTANCE PLOT HYDRO and ELEVATION DIFFERENCE (only for objects

which are close). Data are stored in ELEVATION DIFFERENCE only when plot are in

downhill of hydrological objects. If one plot is in downhill of another plot, this spatial

relation is stored in the DOWNHILL table.

Fig. 7.8 illustrates the processes of the agricultural risk evaluation modelled by a pd-

process. One process evaluates the risk level of one agricultural plot with its nearby
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hydrological objects by considering the spatial relations (distance, elevation, etc.), farm-

ing type, downhill and other traits. The risk level is divided into five different priorities

and the probabilities calculated by different probabilistic database instances are pro-

vided by the guards to help decision-makers to decide to perform or not controls on a

plot. Fig. 7.9 presents another two agricultural activities risk evaluation processes to

compare with the previous. Fig. 7.9(A) shows the process to evaluate the grape planting

farms and Fig. 7.9(B) demonstrates the apple cultivating farms evaluation process. To

avoid creating extra spaces, the simulation test is used to determine whether the expres-

sive power of one process is contained by another one. So we did simulation test of the

processes in Fig. 7.9 with the process in Fig. 7.8. The result in Fig. 7.9(A) is simulated

and Fig. 7.9(B) returns negative result. That is because the process in Fig. 7.8 consid-

ers general cases and grape planting are fortunately in this scope. Moreover, pesticides

are widely used when cultivates apples. Experts should investigate every non-biometric

samples manually to determine the pollution level.



Chapter 7. Prototype 81

Figure 7.8: An agricultural activities risk evaluation process
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Figure 7.9: Another two agricultural activities risk evaluation processes



Chapter 8

Conclusion and Perspective

This thesis demonstrates a new model integrating probabilistic database and business

processes named probabilistic data-aware business processes. The technique contribu-

tions focus on the formal definition of pd-processes the description of the semantic of

pd-processes in terms of possible execution trees, the decomposition of pd-processes to

partition automata, simulation relation test algorithm and model checking methods.

Within the simulation test algorithm in the context of pd-processes, Theorem 4.3 de-

scribes a basic method and several optimized algorithms are proposed in the dimension

of determinism, non-determinism of transition relations and compared approach of data

alternation. We proved that the expression complexity of simulation relation testing over

pd-processes is generally 2-EXPTIME and we can optimize it approaching EXPTIME

(EXPTIME is the lower bound of testing simulation relation over pd-processes). Model

checking methods focus on P-LTL and P-CTL formulae which meet pd-processes. The

complexity of P-LTL checking dose not exceed the one of traditional probabilistic sys-

tems, still in EXPTIME. But the complexity of P-CTL model checking on pd-processes

is in EXPTIME rather than PTIME in traditional cases. After verification methods, a

way to identify pd-processes to Markov processes is discussed. We propose the notion

of independent pd-processes which has a lower complexity of verification methods. Our

work is implemented in the PRODUS prototype and experimented in the agricultural

domain.

Perspective

The management of probabilistic data will be an increasingly important area over the

next several years as businesses, governments, and scientific researchers contend with

an ever-expanding amount of data. Although the space of applications will be diverse,

there will be fundamental primitives common to many of these applications (just as

there with standard, deterministic data). As a result, there will be a need for a general
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purpose probabilistic data-aware business process management frameworks which can

model, verify and analyse probabilistic data in a control-flow perspective. Our work will

focus on enriching the functions of PRODUS, integrating more verification methods such

as P-LTL and P-CTL model checking by reusing open sourced tools in it. Currently, our

realistic scenario is only in the domain of agriculture but the research of probabilistic data

has already reached various field such as sensor networks, health care, financial services

or business intelligence. We will try to expand the usage of pd-processes in capable

of more applications to forecast data, to tackle current data management problems

and to help an analyst to interactively explore and understand a large collection of

probabilistic data in a business process management system. Meanwhile, we will attempt

to simplify the verification methods of pd-processes to decrease the complexity and dig

on more properties. Probabilistic data-aware business processes are only one model of

non-Markov processes by integrating databases into business processes. Investigating

more general cases of data-aware business processes such as regarding different types

of database such as incomplete database, uncertain database, etc.., will be a long term

work.
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Appendix

A.1 Traditional simulation relation test

The main idea of transitional simulation test is to check the containment of two finite

state machines by considering actions assigned with the transition relation regardless

the name of states. The efficient simulation test algorithm of finite state automata has

been proposed in [22]. It is illustrated as follows:

For two finite state automataA = (S, s0, Act,Δ, F, L,AP ) andA
′ = (S′, s′0, Act′,Δ′, F ′, L′

, AP ′), to check if A � A′, we check for any δ, if there exist δ′ and their simulator set

sim(δ) and sim(δ′) such that δ ∈ sim(δ′) and δ′ ∈ Δ′. Simulator set sim(δ) stands

for a set of transition relations {δ′i|δ′i ∈ Δ′} with the same action assigned with δ. The

algorithm of simulation test is depicted in Algorithm 10. In this algorithm, the nota-

tion pre(δ) stands for the predecessor transition relations of δ, presim(δ) for all the

candidates of sim(δ), remove(δ) for recording the transition relations removed from

presim(δ), delta′′ representing the transition relations in remove(δ). The complexity of

this algorithm is in O(mn) if |m| is the size of A and n is the size of A′.

A.2 Model checking

Because in this thesis, PLTL model checking and PCTL model checking methods are

not used. They are presented in the appendix.
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Algorithm 10 Algorithm of simulation test

Require:
A � A′

Ensure:
1: for all δ ∈ Δ do;
2: let prevsim(δ) = Δ′

3: if post(δ) == ∅ then
4: sim(δ) = {δ′ ∈ Δ′|Act(δ) = Act(δ′)}.
5: else
6: sim(δ) = {δ′ ∈ Δ′|Act(δ) = Act(δ′)&&post(δ′) �= ∅}.
7: end if
8: remove(δ) = pre(Δ)n(sim(δ))
9: while there is δ ∈ Δ such that remove(δ) �= ∅ do

10: assert for all δ ∈ Δ , remove(δ) = pre(prevsim(δ))�pre(sim(δ))
11: for all δ′ ∈ pre(δ) do
12: for all δ′′ ∈ remove(δ) do
13: if δ′′ ∈ sim(δ′) then
14: sim(δ′) = sim(δ′)nδ′′;
15: for all δ′′ ∈ pre(δ′′) do
16: if post(δ′′) ∩ sim(δ′) == ∅ then remove(δ′) = remove(δ′) ∪ δ′′.
17: end for
18: end if
19: end for
20: end for
21: end while
22: let prevsim(δ) = sim(δ).
23: remove(δ) = ∅
24: return True or false.

A.2.1 P-LTL model checking

Following the definition of P-LTL, the method of applying P-LTL model checking is as

follows:

1. A given probabilistic transition system A = (S, s0, Act,Δ, AP, L) and LTL formula

ϕ over AP checking Pr(ϕ) >= c (c is a constant).

2. Do the regular LTL model checking and attempting to find a counterexample

satisfying Pr(¬ϕ) >= 1− c.

3. Return true or false following a counterexample with probability.

A.2.2 P-CTL model checking

Similar method as CTL, we consider the 3 types of path formulae operators (next, until

and bounded until)
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• Next

– Compute Prob(s,©Φ) for all s ∈ S. Prob(s,©Φ) =
∑

s′∈Sat(Φ) P (s, s
′)

where P (s, s′) presents the probability from s to s′.

– Compute vector Prob(©Φ) of probabilities for all the states.

In fact, this algorithm equals to another method: compute the probability for every

state, then find which states satisfy the given Φ not only the temporal formulae

but also the probability restrictions.

• Bounded Until and Unit To compute the bounded until case denoted as π �
Φ1 ∪�n Φ2, we have the method as follows:

– Identify states with probability 1/0. As a result, we have Syes = Sat(Φ2),

Sno = S \ (Sat(Φ1)
⋃
Sat(Φ2), S

? = S \ (Syes⋃Sno).

– Then we compute the solution of recursive equations, Prob(s,Φ1 ∪�k Φ2) =

∗ 1, if s ∈ Syes.

∗ 0, if s ∈ Sno.

∗ 0, if s ∈ S?, k = 0.

∗ ∑
s′∈S P (s, s

′)× Prob(s′,Φ1 ∪�k Φ2).

– similar with ”next” operator, we compute the result of Prob(s,Φ1∪�kΦ2) by

matrix-vector multiplication. By contrast, there needs k times matrix-vector

multiplication.

– Until can be seen as a Bounded Until without bound.

To check ifM � Φ, ifM is a probabilistic process, the complexity is O((|M |)×nmax×|Φ|)
where nmax is the maximal step bound in a sub-path formula Φ1 ∪�n Φ2.

A.3 Algorithm of intersection of probabilistic boolean queries

Because in the current state of art, there is not a tool capable to handle the intersection

of probabilistic boolean queries.But in our case, the intersection of probabilistic boolean

queries is principle to build partition of guards or partition automata. So we need

to implement our own algorithm of probabilistic boolean queries. The algorithm of

intersection depicts in Algorithm 11:

Here is the explanation of the Algorithm 11.
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Algorithm 11 Algorithm of intersection of probabilistic boolean queries

Require:
Two probabilistic boolean queries q1 and q2;
q1 intersect with q2.

Ensure:
1: if q1 = ∅ or q2 = ∅ then
2: return Pr = 0
3: else
4: Rewrite q1 and q2 as R1 and R2, respectively;
5: E1 = ΠEventR1, E2 = ΠEventR2;
6: E3 = E1 × E2;
7: E4 =Merge(E3)
8: Etrim = Distinct(E4)
9: Pr(Etrim) = 1−∏

∀Xi
(1− prXi), Xi is the events of Etrim.

10: return Etrim and Pr(Etrim);
11: end if

• Rewrite Rewrite q1 and q2 returning tables of query answer rather than boolean

values. This rewrite returns two relationsR1 with a collection of tuples{t11, t12, ...t1i},
and R2 with a collection of tuples{t21, t22, ...t2j}, for each tuple tmk, m = 1 or 2 ,

a probability prmk and an event Xmk associating with it, respectively.

• Merge E3 Merge the two columns for each tuple of E3 to form a new Relation E4

which has only one attribute as follows: assuming X1 is the value of first attribute

and X2 is the value of second attribute of E3, Y1 is the merge result such that

Y1 = X1 ×X2 and each atomic event in X3 is distinct.

• Distinct E4 Distinct the tuple of E4 as follows: if Y1 and Y2 are the values of

different tuples of E4, considering Y1 and Y2 are two sets which contain a set of

events as elements following the rules below: assuming y1 and y2 are two atomic

events of Y1,i if y1 × y2, y1 and y2 are separated as two elements in set Y1;ii if

y1 + y2, they are considered as one element. Following this manner, the elements

connecting with × are separated otherwise they are considered as an entirety by

connecting with +. So if Y1 ⊆ Y2, delete Y2. As a result, Etrim is build deriving

from E4;

Proof

This part attempts to prove Algorithm 11. Algorithm 11 describes a method to evaluate

intersection of probabilistic boolean queries such that i rewriting the boolean queries to

ordinary queries which return relations of query answer. This step ensures that all the

tuples involved in this intersection query process are captured in the relations of query

answer which rewrites the original boolean query, with the help of events which can be
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considered as the lineage of the query. ii after rewriting, the probability of intersection

of probabilistic boolean queries is computed according to lemma as follows.

Lemma A.1. For given boolean queries q1 and q2, R1 and R2 are their rewriting re-

lations of query answer, according to Algorithm 11, Etrim is built such that Pr(q1 IN-

TERSECT q2) = Pr(Etrim).

The proof of Lemma A.1 is explained as follows.

Proof.

• If PW1 and PW2 stand for the possible worlds of q1 and q2 respectively, the possible

world of the intersection result is PW1 ∩ PW2.

• Denote T1 = {t11, t12, ..., t1n} as a set of tuples of the answer of q1 and T2 =

{t21, t22, ..., t2m} as a set of tuples of the answer of q2. For each tuple tkl, k = 1or2,

there is an event ekl annotated, which contains a set of atomic events. This event

ekl presents a closure of possible worlds in which all the atomic events of ekl are

true, denoted as CPWekl .

• As a result, PW1 =
⋃1
i=nCPWe1i and PW2 =

⋃1
j=mCPWe2j . So PW1 ∩ PW2 =

⋃1
i=nCPWe1i ∩

⋃1
j=mCPWe2j =

⋃1
i=n(

⋃1
j=m(CPWe1i ∩ CPWe2j )

• If we rewrite the query answer of q1 and q2 to two relations R1 and R2 rather

than boolean values, such that PWR1 = PW1 and PWR2 = PW2. E1 and E2

present the set of events of R1 and R2. Obviously, E1 is the projection on the

attribute Event of R1 as well as E2. If we consider E1 and E2 are two sets,

E1 = {e11, e12, ..., e1n} and E2 = {e21, e22, ..., e2m}, PWE1 =
⋃1
i=nCPWe1i = PW1

and PWE2 =
⋃1
j=mCPWe2j = PW2.

• E3 = E1 × E2 = {(e11, e21), (e12, e21), ..., (e1i, e2j), ..., (e1n, e2m)}

• E4 =Merge(E3) such that PWE4 = {CPWe11∩CPWe21 , ..., CPWe1i∩CPWe2j , ...,

CPWe1n ∩ CPWe2m}.

• Etrim = Distinct(E4) such that PWEtrim = (CPWe11∩CPWe21)∪· · ·∪(CPWe1i∩
CPWe2j ) ∪ · · · ∪ (CPWe1n ∩ CPWe2m)

• Finally, Etrim = PW1 ∩ PW2, Algorithm 11 is confirmed.
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A.4 Spatial relation

In this section, two more methods to determine the probability of spatial relation is

provided.

A.4.1 Method 1

Suppose five data sources. Data sources 
1, 
2, 
3 store different spatial representations

of the same objects A. Data sources 
4, 
5 store different spatial representations of

the same object B. These different representations are caused by the uses of different

measurement techniques. Fig. provides an example of the instances A and B of the

five data sources; di is the different possible minimal distances between A and B. We

consider that only one data source stores the correct representation for the object A

(
1, 
2 or 
3) - but we do not know which one is correct. In the same manner, only

one data source stores the correct representation for the object B (
4 or 
5) - but the

correct source is unknown. So, if we make the hypothesis that all the rows of Table A.1

are equiproportional events: p(d1) = 1/6, p(d2) = 1/2 and p(d3) = 2/3. In other word,

if we do not know which data source stores the correct representation (for A and B),

the probabilities that d1 is the correct distance is 1/6, etc. Note that the distance that

minimizes the risk (i.e., the wrong choice) is d2. An order can be also provided between

these distances (d2 < d1 < d3) and probabilities of other events can be calculated: for

example, p(<= d1) = 5/6, i.e., the probability that the minimal distance is less than or

equal to d1 is 5/6.

Figure A.1: Spatial representation of two objects represented in five data sources.



Bibliography 91

Source 1 Source 2 Source 3 Source 4 Source 5 Correct distance

correct incorrect incorrect correct incorrect d1

incorrect correct incorrect correct incorrect d2

incorrect incorrect correct correct incorrect d2

correct incorrect incorrect incorrect correct d3

incorrect correct incorrect incorrect correct d2

incorrect incorrect correct incorrect correct d2

Table A.1: Different hypotheses on the data source reliability

A.4.2 Method 2

Probabilistic spatial relations can be also calculated in the context of moving objects.

Suppose that two commands are sent to a robot A controlled remotely:

1. A has to turn in an angle of 90 degrees.

2. Then, A have to walk 1 meter.

Due to the used robot material, the actions of the robot have a certain level of errors:

+/ − [0..20] degrees when A turns and +/ − [0..20]% for the covered distance. The

possible positions for the robots are represented in Figure 4. The robot A is represented

by a point drawn in bold. Pos1 is its initial position and Pos2 is its final position if the

robot material has no error. If we consider the errors, the boundary of possible final

positions (denoted by D) is represented by a polygon drawn in bold. This boundary

is calculated using the maximal angle error and the maximal covered distance error.

Consequently, the topological relations between A and the rectangular object O are

uncertain. Probabilities can be calculated for these spatial relations by comparing the

surface area of D ∩O with the surface area of D.

Figure A.2: Possible positions for the robot A.
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