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Abstract

Cancer resistance evolution was presumed to result from either a pre-existing

or acquired mutation that survives treatment, re-populating the tumour following

therapy. However, it appears cancer cells can adopt both genetic and non-genetic

mechanisms to evade treatment, and a much broader range of evolutionary scenarios

could drive resistance evolution.

Here, I first develop models that explicitly capture both genetic and non-genetic

sources of phenotypic variation in cell populations evolving resistance to therapy. I

show that, given different parameters controlling the change in a resistance pheno-

type per division and the relative fitness cost of resistance, I can distinguish between

various evolutionary scenarios, including those that lead to the same proportion of

resistance. I subsequently combine these theoretical models with a long-term drug-

treatment experiment in vitro: I employ a high-resolution lineage tracing technique

and metronomic chemotherapy exposure in two colorectal cancer cell models. In

one cell-line - HCT116 - the lineage distributions are consistent with a resistance

phenotype being held at a low frequency by a high reversion phenotypic switch-

ing rate, or a high relative fitness cost. The other cell-line – SW620 – exhibits

a response that is consistent with a broad range of evolutionary scenarios, all of

which have relatively lower switching rates and fitness costs, whilst maintaining

the resistant phenotype at a higher frequency within the population.

My data show a role for either plasticity or a high fitness cost in the evolution

of drug resistance in these colorectal cancer cell models. These results highlight the

importance of including the diverse evolutionary scenarios that produce phenotypic

differences within the population when modelling cancer cells’ response to therapy.

As stymieing resistance requires hampering a tumour’s evolution, I argue that

designing more effective treatment strategies will depend on accurately describing

these diverse routes to resistance.
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Chapter 1

Introduction

1.1 The Evolution of Drug Resistance in Cancer

1.1.1 The Challenge of Resistance

As the development of sequencing technologies has revealed the high levels of hetero-

geneity within and between tumour’s genomes, so too has the appreciation that these

rapidly mutating systems are hotbeds for novel phenotypes. Frustratingly, this growing

source of adaptive potential can hamper efforts to target cancer-specific phenotypes

(Greaves 2018). Viewing tumours through an evolutionary lens as competing clonal

lineages governed by Darwinian selection is now commonplace. As clinical intervention

can be thought of as attempts to steer a tumour’s evolution, the wealth of genetic and

phenotypic diversity presents an obstacle to treatment by providing the raw adaptive

material for a tumour to respond to these external challenges. One such response is

drug resistance, where cancer cells eventually stop responding to treatment; resistance

to therapy is still the primary obstacle to patient survival (Liedtke et al. 2008; Osborne

and Schiff 2011; Panczyk 2014; Nikolaou et al. 2018). In combination with providing a

source of adaptive variation, the vast number of differences that can distinguish a can-

cer cell from a healthy cell presents a problem of identification: an additional challenge

of tackling drug resistance is also determining which of these changes is responsible for

the phenotype that confers treatment resistance.

Cancer drug therapy consists of either traditional chemotherapeutics, newer targeted
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therapies, or some combination of the two. Whilst immunotherapy offers an exciting

new avenue for targeting tumours by leveraging the body’s immune system, treatment

discussed in relation to this thesis is restricted to chemo- and targeted therapies. Whilst

chemotherapy acts broadly, preferentially killing dividing cells by inhibiting cell division

and DNA replication, targeted therapy involves killing cells by interfering with specific

molecular pathways that are distorted exclusively in malignant cells. Despite substantial

differences in specificity, evolution of drug resistance is common to both chemo- and

targeted therapies (Holohan et al. 2013).

To effectively tackle the problem of resistance evolution, the first logical step is

to identify which molecular changes in cancer cells has rendered them refractory to

treatment. As such, research attention has often focused on the biochemical mecha-

nisms of resistance. For chemotherapy, such as treatment with platinum compounds

and antimetabolites, these mechanisms can include decreased uptake or increased ex-

pulsion of drug, altered proliferation and modifications to DNA damage repair (Siddik

2003; Usanova et al. 2011; Nikolaou et al. 2018). Diverse resistance mechanisms to

targeted therapies also exist. The activation of parallel signalling pathways such as

MET, an alternative trans-membrane tyrosine kinase that can activate the same path-

ways as Epidermal Growth Factor Receptor (EGFR) and, as such, confers resistance

to EGFR-inhibitors (Tomasello et al. 2018); the amplification of drug targets such as

BRAF amplification, which eludes BRAF inhibition by re-activating the target path-

way – mitogen-activated protein kinase (MAPK) (Stagni et al. 2018); and mutations

in target genes such as T790M, a point mutation in lung cancer that decreases the

binding affinity of EGFR-TKI inhibitors to the ATP binding pocket of EGFR, allowing

ATP to bind more efficiently and re-activating the oncogenic EGFR protein (Yun et al.

2008; Mok et al. 2017). Cells are not restricted to a single strategy; multiple resistance

mechanisms can exist for a single drug (Shi et al. 2014), of which only few are needed

for full resistance (Tegze et al. 2012), whilst cells can also adopt multiple mechanisms

simultaneously (Cree and Charlton 2017). Treatment evasion is compounded further by

pathways that confer resistance to more than one drug: multi-drug-resistance (MDR),

which can effect both chemotherapies and targeted therapies simultaneously (Szakács
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et al. 2006). The most well studied of these is the ATP Binding Cassette (ABC) trans-

porters: efflux pumps that decrease intracellular concentration of therapeutic agents

(Robey et al. 2018).

Here, I have only touched on a few of the many mechanisms which have been shown

to confer resistance to cancer cells. However, to effectively design strategies that aim

to stymie resistance, knowledge of the resistance mechanisms alone is insufficient. The

ongoing accrual of changes during neoplastic growth means cancer genomes can be

thought of as ‘moving targets’ (Foo et al. 2013); a static snapshot of a tumour and the

nature of its resistance is inadequate if these traits can continue to emerge throughout

a tumour’s lifespan. Research must therefore also focus on the behaviour of these

resistance-conferring changes over time.

1.1.2 Pre-Existing vs De-Novo Resistance Mutations

The genetic instability intrinsic to cancer leads to the establishment of novel mutations

during tumour cell divisions. By the time a tumour has become clinically detectable

– approximately 109 cells – the combined population of tumour cells has had ample

opportunity to accrue novel variants, of which some will have direct phenotypic con-

sequences. Prior to recent advantages in sequencing above the level of the genome –

including the mapping of RNA and epigenetic landscapes – next-generation sequencing

sequencing meant that the diversity under scrutiny in tumours was genetic; attention

was primarily focussed on mutations that controlled phenotypes relevant to cancer dis-

ease progression. When it comes to resistance evolution, early investigations tended

to focus on describing the behaviour of variants that rendered treatment ineffective:

resistance-conferring mutations. One pertinent question was whether resistance mu-

tations arose during treatment, or whether they were pre-existing at the beginning of

therapy, rendering resistance a fait accompli (To avoid confusion, I will speak of resis-

tance mechanisms either solely as ‘pre-existing’ prior to treatment, or arising ‘de-novo’

following the onset of treatment).

Despite recent advances in the affordability and availability of whole-genome se-

quencing, studies have often circumvented these drawbacks by focussing on modelling
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the emergence of resistance, with the aim of answering the pre-existing vs de-novo di-

chotomy. Bozic and Nowak approached the question of whether a resistance-conferring

mutation was present at the time of clinical detection, prior to the onset of treatment.

They employed a simulation that assumes a genome-wide per-base-pair mutation rate

of 10−9/bp per cell division and 100 possible point mutations that can confer resistance.

As long as the resistance mutations are not highly deleterious, their results show several

resistant mutations should exist in a clinically detectable tumour of 109 cells (Bozic and

Nowak 2014).

Diaz et al. combined similar mathematical modelling with longitudinal samples

from colorectal cancer patients’ tumours that eventually became resistant to an EGFR

inhibitor (a targeted therapy) (Diaz et al. 2012). They also wished to understand

whether resistance conferring mutations were present when treatment began, or arose

de-novo during treatment. As KRAS mutations confer resistance to anti-EGFR therapy,

a high-sensitivity assay identified mutants KRAS in longitudinal samples. The study

then retrospectively estimated the probability that a resistance mutation was present at

the onset of treatment by combining the longitudinal mutant KRAS status data from

patients with a branching birth-death model of KRAS sequence evolution. Assuming

42 possible resistance-conferring mutations in the KRAS protein, and a per-base-pair

mutation rate of 10−9 per cell-division, Diaz and colleagues’ modelling also supported

the hypothesis that resistance-conferring mutations were present prior to the onset of

treatment.

Supporting the notion that genetic instability bestows cancer cells with a diverse

adaptive arsenal, additional work using those patients’ disease that did not accrue a

KRAS mutation revealed that resistance to EGFR inhibition was instead conferred by

an amplification of the MET gene. Using a PCR-based assay that targeted the MET

amplification in patient blood samples, these genetic aberrations could also be found at

very low frequencies before treatment began in the majority of patients studied (Bardelli

et al. 2013).

Tomasetti et al. applied modelling techniques to gastrointestinal stromal tumours

(GIST) to determine the likelihood that mutations conferring resistance to tyrosine ki-
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nase inhibitors (TKIs) were pre-existing (Tomasetti et al. 2013). They assume there

are 10 possible resistance mutations – an estimate they describe as conservative – and,

again, a per-base-pair mutation rate of 10−9 per-cell division and estimate the probabil-

ity of pre-existing resistance as a function of tumour size in cm. Given these estimates in

mutation rates and the number of target resistance mutations genome wide, Tomasetti

and colleagues found that the probability of a resistance mutation existing at the onset

of treatment in GIST was high.

The reliance on mathematical modelling to answer questions of pre-existence has

partly been a function of technical constraints; sampling only portion of a tumour

and the prohibitive cost of high-depth sequencing has often limited identifying variants

present at an extremely low frequency. An in vitro solution to this problem was to

adopt a novel lineage tracing technique in non-small cell lung cancer (NSCL) to enable

the tracking of lineages found at extremely low frequency (Bhang et al. 2015). Semi-

random nucleotide sequences were incorporated into cells using a lentiviral infection

system. Next-generation sequencing of these markers allows lineages to be tracked at a

much higher resolution than methods that rely on genome-wide variants for genealog-

ical reconstruction. By complementing this experimental approach with mathematical

modelling, they found that a few lineages were repeatedly shown to be refractory to

treatment across replicates, consistent with some rare, pre-existing population of resis-

tance. Lineage tracing technologies offer a remedy to some of the technical constraints

encountered when cell relationships are inferred using whole-genome data, and are dis-

cussed in detail in section 1.4.

An alternative remedy to the problem of insufficient detection power, only made

possible more recently by lower sequencing costs, is to employ ultra-deep sequencing.

Blood cancers are especially amenable to evolutionary studies, where the nature of the

cancer supports frequent, less invasive sampling, whilst ultra-deep sequencing helps me-

diate the technical difficulties introduced by the low ratio of malignant to healthy cells

in patients’ blood samples. In acute-lymphoblastic leukaemia, ultra-deep sequencing

was used to track the status of mutations through diagnosis and treatment (Li et al.

2020). Whilst they show that in a subset of patients resistance associated mutations
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are present at diagnosis, ultra-deep sequencing (median depth 3669X) of serial samples

revealed cases where resistance mutations were acquired sequentially, with various resis-

tance mechanisms corresponding to the various compounds that made up the combined

chemotherapy treatment regime.

Framing resistance evolution within the ‘pre-existing vs de-novo mutation’ paradigm

has implications for how resistance should be tackled clinically. A lack of pre-existing

mutations would suggest a strategy that minimised the opportunity for novel mutations

might be optimal, whereas the presence of pre-existing resistance mutations could rule

out the redundant application of cytotoxic treatments to patients, instead directing

clinical attention to therapies that might still limit malignant growth (Schmitt et al.

2016).

Yet one common assumption has been that, if resistance is the product of one or a

few mutations, the right combination of targeted therapies should provide an efficacious

means of treatment (Diaz et al. 2012). The pervading model has often framed cancer as

a population gradually accruing mutations, where a few sites render certain compounds

ineffective, and effective treatment is built around circumventing these mutations. If

resistance does proceed in this way, a tumour’s adaptive potential is limited by the

number of resistance mutations it can accrue, and this capability is in turn constrained

by the number of possible genomic sites that confer resistance. Unfortunately, a growing

body of work has revealed that this paradigm may be an over-simplification. Instead,

it appears that cancer cells can exploit evolutionary options that are not solely the

product of resistance-conferring genetic mutations.

1.1.3 Non-Genetic Phenotypic Variability and Drug-Tolerant Persis-

ters

Whilst mutations undoubtedly play a pivotal role in driving the evolution of drug

resistance, there is increasing evidence that non-genetic mechanisms can also contribute

to treatment evasion. By non-genetic, I refer to any change to the phenotype that is

not controlled by a change at the level of the genome. Such changes include stochastic

changes in gene expression (Payne and Wagner 2019) and epigenetic changes, such
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as DNA methylation (Glasspool et al. 2006). Whilst these biological phenomena are

‘invisible’ to traditional genomic sequencing, they can still provide phenotypic variation

upon which selection can act.

Whilst gene expression is tightly regulated in normal somatic cells by epigenetic

modifications, in cancer these regulatory networks can break down, leading to elevated

gene expression variation (Marusyk et al. 2012). Expression dysregulation is associated

with drug resistance: targeted inhibition of KDM5 – a gene that regulated expression via

chromatin modification - decreased transcription heterogeneity in ER+ breast cancer

(Hinohara et al. 2018). This attenuation in gene expression variability led to a decrease

in hormone-therapy resistance. It is possible that whilst tight regulation of transcription

in healthy cells maintains tissue homeostasis, increasing gene expression variation in

malignant cells grants them access to a wide array of phenotypes, some of which could

be adaptive under the current conditions. Indeed, in vitro studies using glioblastoma

showed that, whilst the resistant mutations known to the chosen therapy were absent,

epigenetic changes associated with tolerance to tyrosine kinase inhibitors (TKIs) showed

increased expression variation in genes under their regulatory control (Liau et al. 2017).

Despite the stochastic nature of the variability in gene expression, at the population

level this behaviour can lead to stable proportions of different frequencies. This was

shown in in vitro breast cancer cells, where one of three of the population’s phenotypes

were isolated. Following a subsequent growth step, the cells quickly approached the

parental population’s equilibrium phenotypic frequencies (Gupta et al. 2011).

One proposed mechanism by which increased variation in gene expression can lead

to drug resistance is by prolonging survival, providing a larger window of opportunity

during which selection can act: a small sub-population of cells that transiently exist

in this state are refractory to treatment and have a higher probability of accruing

stable, genetic resistant mutations (Brock 2009). This idea has gained traction as the

number of studies identifying some form of ‘drug tolerant persisters’ (herein DTPs) in

cancer have grown. By entering a state similar to diapause observed in multi-cellular

organisms, DTPs incur a fitness cost by delaying proliferation, yet are simultaneously

able to withstand otherwise lethal concentrations of cytotoxic drugs. As such, this
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strategy is sometimes referred to as ‘bet hedging’. Indeed, this route to resistance has

been well documented in bacteria (Balaban et al. 2004; Cohen et al. 2013; Windels

et al. 2019).

Some of the earlier, compelling evidence in favour of DTPs in cancer came from

Sharma and colleagues who showed that EGFR tyrosine kinase inhibitors (TKIs) resis-

tance in an in vitro model of NLSC arose from a population of DTPs (Sharma et al.

2010). Strikingly, the state was reversible, and KDM5 – the aforementioned chromatin

modifier – was partly responsible for its maintenance. In this case, the transient nature

and implication of an epigenetic regulator are consistent with the non-genetic mainte-

nance of a DTP sub-population. Whilst Hata et al. show that a pre-existing mutation

in NLSC confers resistance to TKIs, the same resistance mutation can also arise de

novo in drug-tolerant cells (Hata et al. 2016). Furthermore, their results suggest that

the resistance mutation was more refractory to further treatment if it arose de novo on

a drug-tolerant genetic background. One potential explanation is that the DTP route

to resistance allows more mutations to accrue and therefore produces a more robust

phenotype. A study in acute-lymphoblastic leukaemia observed a worrying property of

resistance evolution whereby chemotherapy treatment itself – namely, an antimetabo-

lite, thiopurine – increased cells’ mutation rate (Li et al. 2020). Modelling supported a

subset of these patients’ disease potentially arising from a sub-population of DTPs.

In an in vitro model of melanoma, single cells occasionally exist in a short-lived state

where they transcribe higher levels of genes associated with resistance to the targeted

drug vemuarfenib, a B-Raf inhibitor. After prolonged exposure, the cells gradually

increased the number of resistant genes they expressed, and the resistant phenotype

became stable: no longer reversible following a break from treatment (Shaffer, Dunagin,

et al. 2017). Findings such as these undermine any paradigm of resistance evolution

where treatment is only rendered ineffectual by the pre-existence of genetic resistance

mutations. There is mounting evidence that cancer cells can call upon non-genetic

means of resistance to survive initial rounds of treatment. Stochastic differences in

gene expression mean genetically identical cells can exhibit distinct phenotypes (Payne

and Wagner 2019); these mechanisms can provide rapid sources of adaptive variation
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not possible on the time-scale of stable, heritable mutations. Drug-tolerant persisters

are an extreme example where a transient phenotype that is extremely costly in the

absence of therapy provides a reservoir of cells refractory to treatment.

Finally, one promising line of evidence in the face of these diverse routes to resistance

comes from work by Marin-Bejar and colleagues. They use patient-derived xenograft

(PDX) models of melanoma to investigate resistance evolution to targeted therapy:

BRAF/MEK inhibitors. PDXs could be categorised into groups that evolved resistance

either through genetic or non-genetic means. Remarkably, replicate model tumours

derived from the same patients followed the same trajectories (Marin-Bejar et al. 2021).

This finding hints at the possibility that, although the various ways in which a tumour

can become resistant are numerous, cancer cells may be predisposed to following one

of several evolutionary routes. If the processes controlling these predispositions were

found, it would introduce a measure of predictability and could offer a means to tailor

treatment to tumours based on their molecular ‘class’ of resistance.

1.2 Insights from Evolutionary Biology

1.2.1 Cancer is an Evolutionary Disease

The established conceptual model of cancer is that of an evolutionary disease, subject

to Darwinian selection; sub-populations (or sub-clones) of cells accrue genetic muta-

tions that can produce variable, heritable phenotypes, leading to differential survival

that manifests as changes in lineage frequency changes over time (Nowell 1976). As

such, the theory developed to describe the principles of evolution in organisms can be

adopted as a conceptual framework to understand cancer (Michor et al. 2004), and

pertinent questions previously asked in evolutionary biology and population genetics

can help build a predictive model of tumour evolution. Despite work highlighting the

suitability of traditional population genetics for cancer (Ohtsuki and Innan 2017), it has

often remained underutilised (Aktipis et al. 2011). To name one problem relevant to

both fields, quantitative genetics has long sought to describe the selective consequences

of new mutations: the distribution of fitness effects (DFE) (Eyre-Walker and Keight-
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ley 2007). High-depth, next-generation sequencing (NGS) now allows such questions

to be tackled in cancer. For example, within a tumour, the imperfect replication of

genomes during cell division means that the evolutionary history of cancer cell lineages

are recorded in the number of mutations that any two cells share. By leveraging this

information, modelling mutations within a population genetics framework has allowed

the estimation of their selection coefficients (Williams et al. 2018). In respect to cancer

therapy, as the production and effect size of mutations controlling resistance mechanisms

can dictate the probability and strength of resistant phenotypes, robust estimates of

such parameters could help inform how cancer cells might respond to treatment. Fur-

thermore, observable phenotypic changes that are incompatible with the time-frames

necessary for genetic mutations may well point to alternative biological phenomena. In

such cases, theoretical expectations derived from traditional population genetics theory

could provide a model with which other modes of phenotypic evolution are compared.

1.2.2 The Pace of Adaptive Evolution

A historically moot point in evolutionary biology was the relative contributions of evo-

lutionary gradualism and saltation (Mayr 1989). Namely, does adaptive evolution occur

via many small effect mutations or few, large effect macromutations? A well-established

metaphor for considering adaptive evolution is that of an adaptive landscape (Wright

1932). Organisms occupy a position on a three-dimensional landscape: the x and y-axes

represent a genotype, whilst the z-axis – the height of the point – represents the fitness

of said genotype. A change in genotype – a mutation - can move the organism either

towards or away from a peak, increasing or decreasing fitness. The adaptive landscape

is not static: environmental changes and frequency-dependent effects can move the lo-

cation of peaks, of which there can be numerous and, of course, in reality organisms

are evolving through a high-dimensional space. Fisher’s geometric analogy developed

this metaphor of a landscape and showed that small changes in a genotype were more

likely to approach the peak an organism was currently climbing, and therefore increase

fitness. On the other hand, larger changes in genotype were more likely to overshoot

the peak, decreasing fitness (Fisher 1958). Fisher argued that adaptive evolution was
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therefore likely the product of many mutations of small effect.

One criticism of Fisher’s geometric argument is that organisms are approaching a

single peak which only moves gradually over time (Orr and Coyne 1992). Yet in the

case of cancer, something as detrimental as therapy likely places cells far from a nearby

fitness peak on the adaptive landscape, and here large effect mutations may in fact

allow them to more rapidly escape the low-fitness ‘valley’ they now occupy. One such

‘mutation’ which may allow cells to traverse the landscape more rapidly are chromoso-

mal aberrations, typified by aneuploidy – an abnormal number of chromosomes. These

large structural changes may provide cells with a quick and crude means to explore a

wider assortment of phenotypes compared to single nucleotide substitutions, yet with

the associated cost of altering multiple genes simultaneously. Indeed, there is evidence

that aneuploidy allows yeast cells to rapidly explore a wider fitness landscape in adverse

conditions: aneuploidy was associated with the rapid evolution of cytokinesis restora-

tion in yeast cells where it had been artificially disrupted (Rancati et al. 2008); cells

with an artificially introduced chromosomal amplification had a wider variance in fit-

ness than single-gene amplifications when nutrients were limiting (Sunshine et al. 2015);

and aneuploidy was an adaptive response to heat stress in experimental evolution of

yeast cells (Yona et al. 2012). Furthermore, supporting the notion that aneuploidy is a

rapid but, ultimately, a costly source of adaptive variation, the chromosomal gain was

eventually replaced by a reversion to euploidy; higher fitness was subsequently achieved

instead via the greater expression of certain heat tolerant genes (Yona et al. 2012).

Aneuploidy is found in the majority of common cancers (Sansregret et al. 2018).

The rapid accumulation of genomic aberrations would increase the probability of a

rapid traversal across the adaptive landscape. In fact, chromosomal copy-number-

alterations (CNAs) can occur in a simultaneous, punctuated fashion in both prostate

(Baca et al. 2013) and colorectal (Cross et al. 2018) cancer. The co-occurrence of these

aberrations in tumours’ evolutionary history suggest that these large-scale genomic

aberrations can be adaptive in cancer. Whilst punctuated genomic changes need not

lead to punctuated phenotypic change (Graham and Sottoriva 2017), there is evidence

aneuploidy can produce phenotypic differences. Intermediate levels of aneuploidy confer
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worse patient outcome, suggesting that structural genomic changes lead to phenotypic

changes that are adaptive to the cancer cells (Birkbak et al. 2011), whilst whole-genome

doubling helps buffer cells against detrimental aneuploid phenotypes by decreasing the

proportion of chromosomes gained or lost following structural changes (Dewhurst et al.

2014). Whilst there is some limited evidence that aneuploidy is associated with drug

resistance in cancer cells (Swanton et al. 2009; Lee et al. 2011), more work is necessary

to elucidate the relationship between large-scale chromosomal changes and the rate of

a tumour’s phenotypic evolution, including drug resistance.

Even when the rate of accrual of genetic changes in cancer has been described, this

need not lead to a corresponding rate of change in a cell’s phenotype. Indeed, such

inferences are confounded by the non-linear relationship between genotype and phe-

notype, coined the genotype-phenotype map. For example, single mutations occurring

within key regulatory genes can result in gross phenotypic changes that presage the

progression of cancer (Drost et al. 2015). Describing the pace of adaptive phenotypic

evolution may be therefore insufficient if relying solely on comparisons of genetic data.

In fact, as discussed in section 1.1.3, a change in phenotype may occur independently of

any genetic change via phenomena such as stochastic changes in gene expression. Like

changes in chromosome copy number, these differences provide rapid sources of novel

phenotypic variation not possible on the time-scale necessary for single-nucleotide point

mutations. Charlebois and colleagues developed a model where cells had a probabil-

ity of transiently shifting their gene expression profile (Charlebois et al. 2011). They

modelled a continuous resistance phenotype where survival was contingent on cells ex-

pressing some threshold quantity of the hypothetical gene product. By increasing the

variance in the cells’ resistance gene expression, non-genetic sources of variability could

push a higher proportion of a population into the phenotypic space that permitted

survival during treatment.

It is worth noting that these different evolutionary scenarios could be modelled as

points on a continuum, where the rate of phenotypic change is allowed to vary: if

changes in phenotype were extremely low per cell-division, the model would resemble

genetic mutations, whereas if the rates were much higher, it could instead capture
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stochastic phenotypic variation. This idea will receive more attention in the first of the

results chapters.

1.2.3 The Evolution of Asexual Populations

Both tumour and microbial evolution see periods of rapid expansion of individuals

lacking recombination. As such, similarities have frequently been drawn between the

two. These shared features can influence how selection operates. For example, selection

is less efficient in growing populations (Korolev et al. 2012) – differences in fitness are

manifest as differences in expansion rates, whereas in fixed population sizes deleterious

lineages are more likely to be driven to extinction. The lack of recombination also affects

how evolution progresses. The study of large, asexually evolving populations has led

to extensive theoretical and experimental work on the fate of mutations in populations

lacking recombination (Gerrish and Lenski 1998; Fogle et al. 2008; Couce and Tenaillon

2015). Importantly, facets of asexual evolution can limit adaptive evolution.

Clonal interference occurs when beneficial mutations arising on different genetic

backgrounds cannot recombine and therefore must compete (Gerrish and Lenski 1998).

During the experimental evolution of Saccharomyces cerevisiae, clonal interference was

shown to maintain multiple, competing lineages (Blundell, Schwartz, et al. 2019).

Whilst diversity was initially predictable as single-mutant lineages arose, the dynam-

ics became stochastic following the arrival of double-mutants. These double-mutants

preceded a crash in diversity at highly variable intervals .

Muller’s ratchet occurs when the accumulation of deleterious mutations cannot be

ameliorated via recombination (Gabriel et al. 1993). In cancer, whole-genome doubling

(WGD) appears to help limit the negative effects caused by the gradual accumulation

of detrimental mutations (Lopez et al. 2019): loss of heterozygosity (LOH) in cancer

can lead to deleterious mutations becoming present as both alleles. WGD appears to

buffer this effect by limiting the potential for LOH.

Here I have outlined a few features of asexual evolution that might influence how

tumours evolve. It is yet unclear to what extent these features of asexual evolution

could be manipulated to limit adaption in the face of therapy. At the very least, a
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thorough understanding of their behaviour in cancer is necessary to describe the fate

of beneficial mutations in full.

1.3 Evolutionarily Informed Strategies

1.3.1 Exploitable Evolutionary Constraints

As studies have increasingly investigated diseases through a Darwinian lens, it has

become clear that natural axes of constraint imposed by evolutionary phenomena can

provide windows of opportunity for therapeutic intervention: biophysical limits can

restrict the direction in which traits can evolve, whilst phenomena such as pleiotropy

and epistasis mean a new mutation can influence traits that are not under positive

selection.

Supporting the idea that a patient’s tumour must be viewed as a ‘moving target’,

exploitable phenotypes are often temporary in nature, and include states that are less fit

in non-treated environments or to other drug-treatments. These vulnerable phenotypes

are often discussed with reference to a ‘fitness trade-off’ and the notion of a ‘cost of

resistance’. To avoid confusion, these concepts first deserve some clarification.

One way that a ‘cost of resistance’ can be invoked is by simply considering adaption

to different environments. If ‘non-treated’ and ‘drug-treatment’ are two environmental

conditions, we might consider a ‘sensitive’ phenotype, S, that has high relative fitness

in the ‘non-treated’ environment and low relative fitness in the ‘drug-treatment’ envi-

ronment. Similarly, we could imagine a ‘resistant’ phenotype, R, where the reverse is

true. In this scenario, the term ‘cost of resistance’ captures the lower relative fitness of

the resistant phenotype in the non-treated environment. As pointed out by Lenormand

et al., we could just as easily discuss the ‘cost of sensitivity’ by highlighting the nega-

tive relative fitness of the S phenotype in the drug-treated environment, although the

concept is never framed in this fashion (Lenormand et al. 2018). Importantly, we can

explain a ‘cost of resistance’ without any reference to epistasis, pleiotropy or life-history

trade-offs.

Now, if we were to discuss why adaption to these different environments leads to
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different fitness effects of the phenotypes S and R, we could discuss possible trade-offs

imposed by natural axes of constraint: fitness is composed of an individual’s survival

and reproduction advantage, and resource and biological limitations mean increasing

one often comes at the cost of the other (Michod et al. 2006; Lenski 2017). For example,

in a tumour, cells might pay the metabolic cost of increasing trans-membrane efflux

pump number in exchange for more efficient expulsion of cytotoxic compounds (Kam

et al. 2015). In the non-treated environment, cells will incur the metabolic cost whilst

reaping none of the survival benefits. Such trade-offs are relevant to ‘adaptive therapy’,

as discussed shortly.

Some of these axes of constraint will impose hard limits on the directions in which

traits can evolve: cells have a limited metabolic budget - should energy be ‘invested’

in efflux pump expression or elsewhere? Nonetheless, some constraints may be sur-

mountable given selection for a sufficient length of time. Pleiotropy can restrict the

direction any single mutation can move an organism through ‘trait-space’. Assuming

cells have evolved to have high relative fitness in the untreated environment, pheno-

typic changes are more likely to be detrimental than positive (see Fisher’s Landscape

Analogy in section 1.2.2). As such, a mutation that confers high fitness in the drug-

treated environment – a resistance mutation – is also likely to produce other changes

that have negative fitness effects in both the treated and non-treated environments. For

example, in cancer a large chromosomal aberration might change multiple genes simul-

taneously and could be interpreted as a ‘quick and crude’ means of creating adaptive

variation. Given continued evolution in the drug-treated environment, we might expect

these additional penalties to be mitigated over time by compensatory mutations. These

mutations would reduce the pleiotropic cost, but a difference in relative fitness between

the two treatment environments might still be interpreted as a ‘cost of resistance’. Al-

ternatively, in what would represent the worst-case (clinical) scenario, compensatory

mutations might lead to a resistance phenotype that also retains full fitness in the un-

treated environment, precluding any clinical intervention which might aim to exploit

these differences in fitness.
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1.3.2 Competitive Release and Adaptive Therapy

In light of the well-studied evolutionary phenomenon of ‘competitive release’ (Connell

1961) where the growth of a species occurs rapidly when its competitor(s) is removed,

the emergence of drug resistant subclones should come as no surprise. By removing the

resistant cells’ sensitive competitors with therapy, the resistant cells are free to utilise

previously unattainable resources (West et al. 2018). Adaptive therapy (AT) is an

evolutionary informed therapy that attempts to limit the competitive release of resistant

sub-populations (Gatenby 2009). It capitalises on the idea that tumour cells may ‘pay’

for the resistant phenotype with some ‘cost’. Again, to work, this need only assume that

there is cell competition, and some fitness difference between the resistant and sensitive

phenotypes in the two environments: treated and non-treated. Opposed to the current

standard of ‘maximum tolerated dose’ (MTD), AT proposes ‘drug vacations’ to allow

the faster growing sensitive cells to outgrow and hinder the expansion of drug-resistant

sub-clones. Recent work has begun to investigate the efficacy of such a strategy.

A spatial agent-based model by Gallaher and colleagues showed that modulating

the dose to encourage competition between sensitive and resistant cells can, in theory,

prolong the time to treatment failure (Gallaher, Enriquez-Navas, et al. 2017). The

optimal dosing strategies to ensure containment of resistant cells has been subject

to theoretical investigation (Gluzman et al. 2020). These include the recent findings

that containment strategy employed by AT can work even if resistant cells don’t incur

a fitness cost, as long as there is competition between resistant and sensitive cells

(Viossat and Noble 2021). Furthermore, the competition experienced between resistant

and sensitive cells is higher in scenarios where the turnover of cells is high (Strobl

et al. 2020). That is, when the sum of the birth and death rates (b + d) increases

whilst fixing the difference between the two (b − d) – the net growth rate. Whilst

experimental evidence in favour of AT has been limited, there is evidence that resistant

cells proliferate slower than their sensitive contemporaries in the absence of treatment,

consistent with resistance incurring some relative fitness cost (Duan et al. 2018). This

effect was also observed in resistant colorectal cancer cells in vitro, where different ratios

of sensitive and resistant cells were either grown in monolayer cultures or organoids (3-
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dimensional cultures of cells that preserve some rudimentary tissue structure of the

organ of origin). When treated with various concentrations of a targeted therapy – a

cyclin-dependent kinase inhibitor (CDKi) – it was only in the organoid cultures that

the presence of sensitive cells led to lower numbers of resistant cells after therapy, an

observation the authors argue is consistent with amplified competition between the

two phenotypes (Bacevic et al. 2017). If true, this would support the hypothesis that

spatial structure is another facet of tumour evolution necessary to successfully exploit

the competition between resistant and sensitive cells.

1.3.3 Temporal Constraints and Collateral Sensitivity

As cells adapt to their new environment – drug-treatment – the aforementioned biolog-

ical constraints can limit the direction of evolution and produce less fit phenotypes in a

given environment. However, evolution towards a new fitness optimum often occurs as

a stepwise process: the phenotypes a cell expresses on its adaptive route may only offer

transient exploitable windows for intervention. Work has therefore begun to identify

and characterise the dynamics at play cells traverse these phenotypes.

Opposed to broad acting cytotoxic chemotherapies, targeted therapies interact with

specific gene pathways or molecules. We might therefore expect resistance to resemble a

binary state, where a genetic change might change the shape of the treatment’s protein

target. However, in non-small cell lung cancer, resistance to ALK-inhibition – a targeted

therapy – was not the product of a single or few nucleotide changes to the ALK protein

sequence, but instead relied on the cumulative effect of numerous molecular changes.

These changes included a point mutation, amplification of the drug-target gene and

over expression of genes previously implicated in ALK-inhibition resistance (Vander

Velde et al. 2020). Time-series single-cell analysis showed a gradual transition from

sensitive to resistance and, importantly, only intermediate states were more sensitive to

a second targeted therapy: lapatenib (a HER2 inhibitor). If full resistance was allowed

to evolve, this window of opportunity disappeared. The order in which cells are exposed

to therapies can also impact resistance evolution. Some breast cancer cells can persist

despite exposure to the chemotherapy docetaxel – a taxane (analogous to the DTP
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phenotype discussed in section 1.1.3). However, administrating inhibitors of pathways

activated in the persister cells – SFK and Hck – increases sensitivity to chemotherapy

(Goldman et al. 2015). Notably, this effect was only effective if the SFK/Hck pathways

were first activated with docetaxel, and not if the drugs were applied simultaneously.

Collateral sensitivity describes the phenomenon where evolving resistance to one

line of treatment simultaneously renders cells more sensitive to another. For example,

in a murine model of acute-lymphoblastic leukaemia, a single, pre-existing mutation in

the V29LL locus provided resistance to a BCR-ALB1 inhibitor (B. Zhao et al. 2016).

Resistance to the BCR-ALB1 inhibitor increased cells’ response to other targeted ther-

apies, indicative of collateral sensitivity. Importantly, however, if allowed to continue to

evolve in the treatment conditions, cells accrued mutations that conferred resistance to

the additional treatments. In other work that bridges collateral sensitivity and adap-

tive therapy, Dhawan and colleagues showed that the magnitude of sensitivity to other

therapies in a resistant cell-line was contingent on the length of drug-holiday window

between the first and second line of therapy (Dhawan et al. 2017). Surprisingly, the

length of holiday and direction of sensitivity was drug-dependent. Whilst gaps in treat-

ment provide respite for patients receiving cytotoxic compounds, it appears they can

also mediate competition between resistant and sensitive cells and modulate the efficacy

of a second choice of treatment.

Experimental evolution studies in bacteria provide some of the best evidence describ-

ing the dynamics of collaterally sensitive and ‘costly’ resistant phenotypes. In E.coli,

one of two possible molecular routes to resistance to a range of antibiotics can dictate

whether or not cells no longer exposed to treatment retain the resistant phenotype,

whilst also regaining their ancestral fitness in the non-treated environment (Knopp and

Andersson 2015). In Pseudomonas aeruginosa, investigators had previously identified

collateral sensitivity to given combinations of clinically relevant antibiotics (Barbosa et

al. 2019). Importantly, the order in which the therapies were added dictated whether

or not cells retained collateral sensitivity, an outcome likely the product of epistasis

between the resistant mutations.

In summary, evolutionary informed strategies can often be framed in terms of ex-
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ploitable phenotypes that emerge during adaption to new environments; cells that are

adapting to a given treatment may simultaneously accrue phenotypic changes that

would be realised as fitness penalties if selection pressures were to be switched to non-

treated or alternative therapy environments. For strategies such as adaptive therapy,

their efficacy will depend on developing further the dynamics of resistance evolution.

Features of interest include the rate of change between ‘sensitive’ and ‘resistant’ pheno-

types, the resistant proportion of the population when treatment begins and the relative

fitness of each phenotype in environments under clinical control. The best strategy for

any given tumour may not just rely on its initial genetic and phenotypic makeup, but

instead require identifying exploitable phenotypes as the tumour evolves. These vul-

nerable phenotypes can be transient, and therefore understanding if the trajectories on

which they lie share common features or are repeatable will aid in designing effective

evolutionary-informed therapies.

1.4 Investigating Evolutionary Dynamics with Lineage Trac-

ing

1.4.1 Prospective Lineage Tracing

If we imagine a hypothetical population of cells with equal fitness, following a period

of growth during which all cells divide and die with some given rates, we can consider

the distribution of descendants each cell lineage has produced. Stochastic effects such

as drift and random environmental change will cause variation around some expected

lineage size (Greaves and Maley 2012; Basanta and Anderson 2013). If we now also

permit cells have to have differences in fitness – either as higher birth rates, lower death

rates, or some combination of these – there should be a higher, albeit more predictable

component of variance in the lineage distributions (Williams et al. 2018; Graham and

Sottoriva 2017). An important part of any experiment aiming to characterise the se-

lection experienced by cells is teasing apart the ‘predictable’ effects of selection from

the stochastic effects of drift. To do this in a population of cells, we require tools that

reveal the relative success of individual lineages.
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The first class of lineage tracing techniques – coined ‘lineage tracing’ - are prospec-

tive; those that introduce distinguishable markers prior to experimental manipulation.

These techniques were first used to tackle questions in evolutionary development, where

embryologists wished to reveal which cells gave rise to which tissues/organs (Kret-

zschmar and Watt 2012). These methods rely on visually distinguishable markers,

such as radioactive tracers and inducible fluorescent proteins. The ongoing demand

for spatially-explicit lineage tracing has given rise to the development of the number

of possible distinguishable fluorescent markers. For example, the Brainbow construct

supports roughly 100 unique fluorescent markers (Weissman and Pan 2014). Inducible

recombination reporters such as the Cre-Lox system in mouse also allow such markers

to be expressed in both tissue and time dependent manners (H. Kim et al. 2018).

Whilst visual markers offer a spatially explicit means to trace lineages, the number

of possible markers is limited. An alternative approach sacrifices visual identification

for resolution; artificial genetic sequences (which are referred to here as ‘barcodes’) can

be created in libraries that consist of over one million unique barcodes (Bhang et al.

2015; Levy et al. 2015). Ideally barcodes should be identifiable, selectable and stably

heritable. Common selection markers include resistance to a drug (e.g. puromycin)

and fluorescent proteins (Lamprecht et al. 2017; Kebschull and Zador 2018). The most

common technique for stable genomic integration is lentivirus infection. Whilst the

selective neutrality of markers is potentially compromised by insertional mutagenesis:

gene disruption via the random genomic site of lentivirus integration (Porter et al. 2014),

the proportion of total insertions to total sites in the genome with a relevant, phenotypic

consequence is small. Nonetheless, retrospective sequencing of the integration site with

techniques such as LAM-PCR can help resolve any uncertainty by allowing researchers

to amplify the sequences adjacent to the site of integration (Schmidt et al. 2007).

As the genomic location of integration is (semi-)random, studies have even used the

integration-site as a unique, heritable marker (Dieter et al. 2011; Giessler et al. 2017).
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1.4.2 Retrospective Lineage Tracing

The second category of these methods exploit the ancestry recorded in the imper-

fect copying of a cell’s genome (Graham and Sottoriva 2017). Such naturally occurring

changes are both genetic and epigenetic; they include single-nucleotide variants (SNVs),

chromosomal copy number variants (CNVs) and methylation patterns in non-expressed

genes (Kester and Oudenaarden 2018). One drawback of these approaches is that, due

to the small ratio of mutations to total genomic nucleotide positions, the resolution with

which lineages can be delineated is limited by sequencing depth and breadth (Wood-

worth et al. 2017). These drawbacks can be ameliorated in part by using mitochondrial

DNA variants, where the mutation rate is higher and genome size smaller (Ludwig et al.

2019). Nonetheless, the resolution limitations and lack of longitudinal sampling mean

inferring evolutionary dynamics from naturally occurring genetic markers in primary

tumour samples remains technically challenging.

1.4.3 High-Resolution Barcode Techniques

The first challenge faced when using high-complexity barcode pools is determining the

number and distribution of unique sequences in the library prior to integration. Ide-

ally, following transformation of the barcode plasmids into bacteria for amplification,

colonies would be cultured in small batches, integration efficiency assessed and batches

sequenced to create a confident list of the expanded library’s barcodes prior to infec-

tion (Bystrykh and Belderbos 2016). However, in complex libraries this procedure is

technically impractical, and a combination of counting transformed colonies and deep-

sequencing of the library can provide an estimate of the number and distribution of

unique barcodes.

Infecting cells with the barcode library involves a trade-off between the number of

uniquely infected cells and the number of multiple integration events. A satisfactory

trade-off is achieved by reducing the multiplicity of infection (m.o.i.): that is, by con-

ducting the experiment so that only a small proportion of the cells are barcoded, it

is possible to reduce the rate of multiple infections (the proportion of cells with more

than one viral integration). It is convenient to assume that the number of integration
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events in each cell follows a Poisson distribution; we can then calculate the proportion

of cells that should contain 0, 1, 2. . . etc. barcodes from the average integration rate

(Fehse et al. 2004).

Cells are typically barcoded at the start of an experiment, and after the experimental

treatment a survey is carried out to estimate the proportion of cells descended from

each of the barcoded founder cells. The barcodes must therefore be isolated from

genomic DNA. A PCR step simultaneously amplifies the barcodes to levels sufficient for

next-generation sequencing (NGS). For this purpose, barcodes are flanked by universal

sequences that allow the amplification primers to bind. As a superfluous number of

PCR cycles has been shown to impair barcode identification, amplification primers can

have (Illumina) sequencing primers integrated, precluding the PCR cycles barcodes

would experience during a distinct library-preparation step.

The number of rounds of PCR necessary for barcode amplification and sequencing

are minimized, since both processes introduce errors into barcode sequences. As the full

set of unique random/semi-random barcodes are not known beforehand, these errors can

artificially inflate the number of observed barcodes if erroneous sequences are mistaken

as distinct, unique barcodes (Thielecke et al. 2017). As such, various computational

techniques – termed ‘barcode clustering’ - have been developed to try and identify

these errors, and re-group the reads with their putative ‘parental’ barcodes (Bhang

et al. 2015; Zorita et al. 2015; L. Zhao et al. 2018; Tambe and Pachter 2019). Yet a

systematic review comparing clustering algorithms is lacking. It is therefore prudent

to compare the performance of these methods with simulated data, where the true

‘parental’ barcodes are known beforehand. Researchers can then choose the approach

that best recovers true barcode frequencies under their chosen experimental parameters.

The clusters barcodes procured from a sequencing run have been subject to numer-

ous selective bottlenecks, only some of which will be of biological interest. Therefore

one must develop methods to model the noise in an experiment to distinguish stochas-

tic changes due to sampling – the null distribution – from ‘true’ biological differences

(Blundell and Levy 2014). Such an approach has already been adopted to simulate

the binomial sampling of NGS (Williams et al. 2018) and, in the case of Levy and
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colleagues, the noise introduced into barcode distributions by PCR, NGS and culture

bottlenecks in yeast experimental evolution (Levy et al. 2015).

1.5 Clinical and Molecular Features of Colorectal Cancer

1.5.1 Colorectal Cancer Treatment

Colorectal cancer (CRC) is the 3rd most common cancer in the world (Arnold et al.

2017), risk factors include family history, sedentary lifestyle, smoking and obesity, and

it is responsible for roughly 10% of all cancer-related deaths (Kuipers et al. 2015). In

healthy tissue, the epithelial layer is arranged into crypt-like glands which are replen-

ished over time by stem cells at the base of the crypt (Humphries et al. 2013). CRC is

the consequence of degeneration of the homeostatic regulation of this tissue. This tran-

sition from benign adenoma (pre-cancer) to malignant adenocarcinoma is believed to be

the product of the sequential accumulation of specific genomic aberrations (Fearon and

Vogelstein 1990). Genetically, the intra-tumour heterogeneity identified in CRC ap-

pears to be initiated early in the tumour’s growth (Sottoriva et al. 2015). Whilst early

disease (stage I) can be cured with surgical resection alone, later stages (II-III) are typ-

ically treated by surgical resection followed by adjuvant therapy (Nguyen and Duong

2018). The mainstay of treatment continues to be chemotherapy as a combination

of leucovorin, 5-fluorouracil (5-Fu) and either oxaliplatin (FOLFOX in combination) or

irinotecan (FOLFIRI in combination). There is moderate and strong evidence in favour

of employing adjuvant chemotherapy for stage II and III CRC, respectively (Ragnham-

mar et al. 2001; Wilkinson et al. 2010). Chemotherapy has been combined with targeted

therapies, most commonly EGFR-inhibitors (Shankaran et al. 2010). Response rates

for combined therapies in a metastatic setting are variable, where overall/disease-free

survival is measured in months (Wolpin and Mayer 2013). Surprisingly, a recent phase

3 trial found a significant disadvantage to adopting an EGFR-inhibitor (Cetuximab) in

a pre-operative, intrahepatic metastatic setting (Bridgewater et al. 2020).
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1.5.2 Microsatellite Instability (MSI)

There are two, usually distinct, molecular subtypes of colorectal cancer. The first –

microsatellite instability (MSI) – is the product of a dysfunctional mismatch repairs

system (dMMR) due to the inactivation of at least one mismatch repair genes, and

occurs in roughly 15% of all colorectal cancers (Axel Walther et al. 2009). Microsatel-

lites are tandem repeats of 1-5bp in length, of which there are 100,000s in the human

genome, many of which play important roles in gene regulation (Gymrek et al. 2015).

Microsatellite containing genes are prone to insertions and deletions (indels) in MSI

tumours; the subsequent aberrations can disrupt gene expression (Jung et al. 2004).

MMR genes include MLH1, MSH2, PRMS1 PMS2 and MSH6 (Wheeler and Bodmer

2000), and germline mutations in these genes are responsible for the most common

form of familial colorectal cancer, Lynch Syndrome (Kuipers et al. 2015). Sporadic

MSI colorectal cancers however are primarily due to hypermethylation of MLH1, which

inactivates the gene’s protein (Hudler 2012). The MSI cancers also have distinct clinical

characteristics. They are usually found in the ascending colon, have higher lymphocyte

infiltration – likely due to the higher diversity of neoantigens (Llosa et al. 2015) – and

are less likely to progress to metastatic disease (Koopman et al. 2009).

1.5.3 Chromosomal Instability (CIN)

The other molecular sub-type of CRC is characterised by chromosomal instability

(CIN), occurs in approximately 85% of all CRCs, they are nearly all exclusively microsatellite-

stable (MSS), and it is defined by an abnormal numerical or structural chromosomal

alterations (Grady and Pritchard 2014). The distinction is often not made between

ongoing chromosomal instability and stable aneuploidy. This is despite evidence that

sub-clonal differences indicative of CIN play an important role in tumour evolution

(Vargas-Rondón et al. 2017). Here, however, I use CIN to refer broadly to aneuploid

tumours where ongoing instability may not have been shown explicitly. CIN can be the

product of many cellular defects including atypical mitotic checkpoint, assembly and

microtubule dynamics (Gordon et al. 2012). These cellular defects lead to aneuploidy,

copy number gains or losses and loss of heterozygosity (LOH) (Markowitz and Bertag-
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nolli 2009). CIN CRC tumours are predominantly located in the descending colon,

and whilst it is thought that CIN may increase the rate of adaption and therefore help

confer resistance to therapy (Giam and Rancati 2015), the specifics of these processes

have yet to be characterised in full.

1.5.4 The Consequences of Molecular Sub-Type

The biological consequences of either class of genomic aberration in colorectal cancer

(CRC) is complex. There are variable, sometimes contradictory reports on the clinical

impact of each molecular sub-type of colorectal cancer (in general MMRd tumours

have a better prognosis though, probably as a consequence of the immune predation

of neoantigens). For example, studies have reported mixed results regarding the effect

MSI status has on the response to 5-Fu therapy (Reimers et al. 2013; Copija et al.

2017). Hveem and colleagues looked at 952 patients and, after stratifying tumours by

MSI/non-MSI and stage, found that MSI cancers had better overall survival (OS) at

stage II, but not stage III (Hveem et al. 2014). Patients with recurrent MSI colorectal

tumours also appear to have worse overall survival (E. S. Kim 2016). One potential issue

is that the low representation of patients with advanced dMMR CRC has led to limited

statistical power in some studies (Koopman et al. 2009; Guastadisegni et al. 2010).

CIN CRC tumours have a worse overall prognosis in stage II and II CRC, irrespective

of adjuvant therapy (A. Walther et al. 2008). Overall, however, there is a consensus

that MSS CRCs have a worse overall outcome than MSI CRCs (Popat et al. 2005; Axel

Walther et al. 2009; Öhrling et al. 2010; Hutchins et al. 2011). Yet in several cancers,

when CIN reaches some critical threshold the excess of genomic aberrations actually

confers a better prognosis (Birkbak et al. 2011). Within CIN CRCs, the magnitude of

aneuploidy doesn’t appear to correlate with stage, yet there is a marked increase from

adenoma to adenocarcinoma (Orsetti et al. 2014). Sequencing of multiple regions in

adenomas and adenocarcinomas supports these findings (Cross et al. 2018).

Viewed through an evolutionary lens, the difference in scale of genomic aberrations

found between MSI and CIN CRCs could have consequences for the rate of adaption.

As discussed in section 1.2.2, experiments in yeast have shown that aneuploidy may
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act as a rapid, yet uneconomical source of adaptive variation in adverse environmental

conditions. I hypothesise that CIN may similarly provide a means to quickly explore

the adaptive landscape following exposure to chemotherapy; assuming large genetic

changes likewise cause large phenotypic changes, aberrations on the chromosome level

are more likely to move cells out of a fitness valley. However, cells with MSI may accrue

mutations with smaller phenotypic effects, but at a faster rate.

1.6 Summary and Thesis Outline

Here, I have outlined some of the features and problems faced by those aiming to

describe the evolutionary dynamics of drug resistance evolution in cancer. In particular,

how progress in technologies that allow for analysis of molecular features above and

beyond that of the genome have revealed that non-genetic factors appear to also play a

role in drug resistance evolution. These various routes to resistance available to cancer

cells are pertinent for evolutionary informed therapies. These strategies aim to exploit

the evolutionary constraints and vulnerable phenotypes found in cancer as resistance

emerges. Finally, I have discussed how lineage tracing can be employed to approach

some of these questions, and described features of importance in my chosen model

system - colorectal cancer.

In my thesis, I employ a prospective lineage tracing technology - the ClonTracer

Barcode Library (Bhang et al. 2015) - in two colorectal cancer cell lines in a long-

term drug-treatment experiment, in vitro. I develop theoretical expectations for how I

expect these lineage distributions to look under various evolutionary scenarios. Finally,

I compare how sequenced lineage distributions compare to simulated values to infer

the rates with which cells transition to and from resistant phenotypes. Identifying

likely evolutionary scenarios employed by these cells will point to broader strategies

that tumour cells may adopt when insulted with cytoxic treatments. Ultimately, these

modes of resistance evolution will dictate which evolutionary strategies will emerge as

the most efficacious.
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Chapter 2

Materials and Methods

2.1 Sequencing Experiment Designs

Prior to detailing the specific protocols undertaken for each step of my project, I will

first briefly outline the different sequencing experiments I performed and the differences

between them. The two letter experiment codes used to distinguish between the dif-

ferent experiments are in the respective headings. I use these codes in the subsequent

detailed protocols to highlight where different methods were adopted.

2.1.1 Original Trial (OR)

This small trial experiment was performed to ensure that the ClonTracer library was

behaving as expected in vitro and following sequencing. One of the two CRC cell-

lines used in the project - HCT116 - underwent the optimisation protocols (outlined

subsequently) for infection with the expanded ClonTracer library. Cells were not treated

with any drug-treatment in vitro, but instead were infected, expanded, assigned to three

replicates and then grown for two passages. Cells were sampled at each splitting step

for DNA extraction, barcode amplification and sequencing. PCR was optimised using

the custom sequencing primers that are provided with the ClonTracer barcode library

(outlined subsequently). The samples were sequenced on a single-end NextSeq 500 High

Output Run (75 cycles). There were no issues identified with sequencing that required

bespoke pipeline solutions downstream.
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2.1.2 Pulse Run 1 (PR)

Following successful adoption of the ClonTracer library in the OR experiment, I re-

optimised the infection and expansion step of the two CRC cell-lines - HCT116 and

SW620 - for an experiment that now imposes metronomic drug-treatment in vitro.

Cells were infected with the barcode library, expanded, before being split into respective

replicates. Replicate samples are identified according to the following codes:

• POTi - a sample of cells sampled directly from the expanded, barcoded pool of

cells, prior to assignment to control and drug-treatment replicates. i corresponds

to replicate i of 8.

• COi PN - a control replicate, passage N. These replicates are not subject to the

metronomic drug-treatment during time in vitro. i corresponds to replicate i of

4.

• DTi PN - a drug-treatment replicate, passage N. These replicates are given pulses

of chemotherapy treatment - 5-Fu - followed by ‘recovery’ periods under normal

culture conditions. i corresponds to replicate i of 4.

Again, cells were sampled at each stage of the experiment and labelled according to

the sample codes above. For this first long-term treatment experiment, both cell-

lines’ control and drug-treatment replicates were grown until Passage 2 (P2). During

time in vitro, cells were grown until any given replicate flask was approximately 80%

confluent. Control treatment flasks were grown and passaged according to standard

culture conditions (see: Tissue Culture Conditions). Drug-treatment flasks were instead

subject to periods of therapy where the estimated IC50 values that had been previously

estimated (see: Drug Assays) was applied for 3-5 days followed by a recovery period.

The samples were sequenced on a paired-end NovaSeq S2 flowcell (50 cycles). Custom

filtering steps were required after the identification of ’index-hopping’ artefacts in the

data (see: Sequencing Platform Specifications (PR) and see section 6.2 for more details).
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2.1.3 Pulse Run 2 (QR)

The same experimental design as PR was repeated to assess the repeatability of the

results and to procure additional time-points. The core design of this experiment was

the same as the first (PR). The same codes are also used to distinguish between samples

(COi PN, etc...), however they now contain the QR prefix. Important differences between

this second attempt and the first are as follows:

• Barcode infection optimisation was re-performed for each cell-line, and barcoding

of the cells was repeated prior to the experiment to ensure repeatability of the

technique.

• Cells were now successfully grown in all treatment replicates for 5 passages.

• The PCR protocol was adjusted and unique-dual index adapters were used across

two flow-cells (see: Barcode Amplification and Adapter Integration (QR) for more

details).

• Samples were now sequenced across two NovaSeq S2 flowcells (50 cycles) (see:

Sequencing Platform Specifications (QR) for more details).

• Slight ‘index-hopping’ artefacts remained despite the adoption of unique dual-

index adapters. Adjusted custom filtering steps were therefore necessary (see:

Section 6.2 for more details).

2.2 Cell Culture

2.2.1 Cell Lines and Tissue Culture Conditions

Two colorectal cancer cell-lines colorectal cell lines HCT116 (ATCC®CCL-247™) and

SW620 (ATCC®CCL-227™) were both used for all data generating experiments in

this project. Coloretcal cancer can be classified as having microsatellite instability

(MSI) or being microstatellite stable (MSS), and these different classes of molecular

instability have biological consequences (see Section 1.5 for more details). As such, one

cell-line was chosen from each of these molecular sub-types: HCT116 is a near-diploid
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MSI colon adenocarcinoma cell-line, whilst SW620 is an MSS cell-line derived form a

colorectal lymph node metastasis. Although MSS, SW620 has experienced chromosomal

instability (CIN) and has a highly aberrant karyotype (Berg et al. 2017). Cells were

grown in ‘standard conditions’ which were as follows: growth medium, consisting of

high glucose DMEM (Gibco - Life Technologies) supplemented with 10% Fetal Bovine

Serum (FBS) and 2% Penicillin-Streptomycin (Gibco - Life Technologies) (from hereon

in: ‘full growth medium’, unless stated otherwise). Cells were either grown in T-75

vented flasks (Corning®) with 12mL of full growth medium, or in T-175 vented flasks

(Corning®) for the long-term drug-treatment experiment with 35mL of full growth

medium. Flasks were grown inside tissue-culture incubators (Hercell VIOS 160i CO2

incubator - Thermo Scientific™) at 37°C, 5% CO2 and 95% relative humidity.

2.2.2 Splitting, Counting and Seeding Cells

When splitting cells for a subsequent passage or freezing, cells first had their current

growth medium aspirated and were washed in either 10mL (T-75 flasks) or 20mL (T-

175 flasks) of phosphate buffered saline (PBS - pH 7.4) (Gibco- Life Technologies). The

PBS was then aspirated and 5mL (T-75 flasks) or 10mL (T-175 flasks) of Trypsin-EDTA

(1.0X solution made with PBS) (Gibco- Life Technologies) was added. The flask was

placed in the incubator at standard conditions for approximately 3 minutes. When

the majority of cells were observed as having become detached from the bottom of the

flask, equal volumes of full growth medium were added to the flask and aspirated up

and down several times to maximise the disassociation of adherent cells. Cells were

then centrifuged into a pellet at 300xg for 5 minutes. The leftover trypsin + growth

medium was removed and the pellet was then re-suspended in 10mL of PBS. 10µL of the

cell solution was then mixed with 10µL of 0.4% trypan blue (Gibco- Life Technologies)

and added to a Countess™ Cell Counting Chamber Slides (Thermo Fisher Scientific).

Cell numbers were then calculated using the Countess™ Automated Cell Counter. If

passaging cells, the desired number of cells were diluted in full growth medium and

added to the respective flask. If freezing, cells were processed as described below.
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2.2.3 Freezing and Thawing Cells

When freezing cells, cells were first trypsinised and counted as described above. Cells

were subsequently centrifuged into a pellet at X RPM for Y minutes. Cells were then re-

suspended in 1mL of freezing medium: 90% FBS and 10% Dimethyl Sulfoxide (DMSO)

(Sigma-Aldrich) and placed inside 2mL cryovials (Corning®). Cryovials are then placed

in a Mr.Frosty Freezing Container (Thermo Scientific) containing 100% isopropyl alco-

hol and placed into a -80°C freezer. To thaw cells, cryovials are removed from a freezing

container and quickly placed in a water bath at 37°C. Cells are then quickly pipetted

into a T-75 flask with 12mL of full growth medium which is replaced after 24hrs to

remove any cell debris and cells that did not survive thawing.

2.2.4 Drug-Assays

The IC50 values of each CRC cell line (HCT116 and SW620 ) were measured as follows:

Cells were trypsinised into a single-cell solution and counted as outlined above. Cells

were then seeded into a TC-treated 96-well adherent plate (Corning®) (HCT116 -

8000cells/well and SW620 - 10000 cells/well) in 200µL of full growth medium, leaving

one column of wells free from cells to use as blanks to standardise the colorimetric

reading. Cells were excluded from the peripheral wells to avoid edge-effects, and cell-

lines were split across multiple plates to avoid plate-effects. After 1 day (+24hrs from

start), the full growth medium was carefully aspirated from each well, and replaced

with 200µL of full growth medium + drug stock for a range of concentrations. These

drug-stock solutions were pre-made at 100x prior to the assays to allow an addition of

2µL to 198µL of full growth medium reaching the desired working concentrations on

the day of the assay. Stocks were re-made every 2-4 months to avoid drug attenuation.

After three subsequent days (+96hrs from start), CellTiter 96 ® AQueous One Soluton

(MTS reagent - Promega Ltd) was thawed (pre-made aliquots of enough solution for 1

plate + 10% had been prepared) in a water bath at 37°C. 30µL of MTS reagent was

added to all wells (excluding the edge wells which contain no cells). Once done, the

plate(s) were added to the incubator (37°C, 5% CO2 and 95% relative humidity) for 2.5

hours. After this, plates were removed from the incubator. A plate was gently tapped

45



before being placed in the plate reader to distributed the MTS reagent evenly. The

plate lid was removed and any bubbles were removed by gently piercing with a clean

pipette tip. Finally, the colorimetric reading was taking at a wavelength of 490nm.

The results were exported as a .csv file and the readings passed to a custom R script

to calculate the dose-response curve. Specifically, a four parameter log-logistic model

is fit to the observed response data using nonlinear least-squares estimation in the R

package ‘drc’ (Ritz et al. 2015).

2.3 ClonTracer Library Expansion, Production and Infec-

tion

2.3.1 Plasmid Expansion

Complex Library Pool Expansion

The ClonTracer library was a gift from Frank Stegmeier (Addgene #67267). The

ClonTracer library (Bhang et al. 2015) only comes with enough plasmids for a single

cell-line barcoding experiment. Therefore, the first necessary step was to expand the

complex plasmid library via electroporation. This was performed as follows: Firstly,

23µL of electrocompenent Escherichia coli cells (MegaX DH10B™ T1R Electrocomp™

Cells (Life Technologies)) were added to 1µL of 100ng/µL ClonTracer library 5 times,

for a total of 5x cuvettes - 500ng of library in total. According to estimates provided

with the library, this would contain approximately 6.5x106 barcode molecules. The

cuvettes were kept on ice. 2µL of cells + 100µL of SOC Recovery Medium were kept to

one side on ice. A Gene Pulser electroporation system (XCell™, Bio-Rad) was set to the

following settings: exponential decay wave, voltage at 2.0kV, resistance at 200Ω and

capacitance to 25uF. The cuvettes were sequentially dried and carefully placed in the

Gene Pulser before being pulsed - the time constant (TC) was recorded and confirmed to

fall between the desired values of 4 and 5. 1mL of SOC Recovery Medium was added and

to each cuvette before returning to ice. The contents of each cuvette were combined in a

50mL conical tube and incubated in the SOC Recovery Medium for 37°C whilst shaking

at 225rpm for 45 minutes. This was repeated in parallel for the non-transformed cells
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in 100µL of SOC in a separate tube. After 1 hour, 100µL of the transformed cells were

plated in 3x serial dilutions (1x10−3, 1x10−6, 1x10−7) before being spread on LB agar

+ carbenicillin (100µg/mL) plates. On a 4th plate, non-transformed plates were spread

as a control to ensure carbenicillin efficiency. These plates were incubated overnight.

The remainder of the transformed cells were combined in SOC medium into a large

flask with 500mL of LB medium supplemented with 100µg/mL carbenicillin (to select

for transformed cells) and were incubated at 37°C shaking at 175rpm for 16.5 hours.

Finally, the colonies on the agar plates were counted - the transformation efficiency

was estimated such that, assuming there are approximately 1x106 unique barcodes,

each unique barcode was represented approximately 20,250 times in the transformed,

expanded library pool. The bacterial growth mix (500mL) was collected and a maxi-

prep was performed according to the MAXIPREP protocol (QIAGEN), starting at the

centrifugation at 6000xg step. Skipping the steps prior to centrifugation is crucial as,

because we are dealing with a complex library pool, we avoid any dilution steps which

might diminish the library complexity.

Envelope Protein and Packaging Plasmid Expansion

For virus production, three viral plasmid components are necessary: the complex li-

brary pool, an envelope protein - pCMV-VSV-G - and a lentiviral packaging plasmid

- pCMV-dR8.2 dvpr (pCMV-VSV-G was a gift from Bob Weinberg (Addgene plasmid

# 8454 ; http://n2t.net/addgene:8454 ; RRID:Addgene 8454) and pCMV-dR8.2 dvpr

was a gift from Bob Weinberg (Addgene plasmid # 8455 ; http://n2t.net/addgene:8455

; RRID:Addgene 8455)). The envelope protein and packaging plasmid arrived from

Addgene as agar stabs. Bacteria were streaked for single colonies on on LB agar + car-

benicillin (100µg/mL) plates. A single colony was picked and transfered to 150mL of

LB broth with carbenicillin (100µg/mL) in 1L flasks for overnight expansions. The bac-

terial pellet was harvested the following day and a maxi-prep was performed according

to the MAXIPREP protocol (QIAGEN).
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2.3.2 Virus Production

Prior to infecting cells with the barcode library, it is necessary to produce the func-

tioning virus by combining the viral components. This was undertaken as follows: a

10cm Tissue Culture Dish (Corning®) was coated with 6mL of Poly-L-Lysine (Sigma-

Aldrich) to enhance the adherant properties of the dish. This was left for 30 minutes

before aspirating the Poly-L-Lysine and allowing the plate to dry for 2 hours. 2.5x106

HEK293T cells (ATCC® CRL-3216™) were seeded in 15.5mL of full growth medium.

The next day (+24hrs since start), 16.2µL of Lipofectamine™ 2000 transfection reagent

(Invitrogen) (pre-warmed to room temperature) was combined with 2.4µg of ClonTracer

barcode library, 0.6µg of pCMV-VSV-G envelope protein and 2.4µg of pCMV-dR8.2

dvpr packaging plasmid, with high glucose DMEM (Gibco - Life Technologies) (impor-

tantly, not supplemented with FBS or PenStrep) up to a total of 600µL. This plasmid

mix was left to incubate at room temperature for 20 minutes, following which, it was

gently pipetted onto different areas of the 10cm plate containing the HEK293T cells.

One day later (+48hrs since start), the medium was replaced with 6mL of fresh full

growth medium (now including FBS and PenStrep). Two days later (+96hrs since

start) the medium was sampled from the plate and passed through a 0.45µm syringe

filter (CORNING) and aliquoted into cryovials before being labelled and stored in the

-80°C freezer. This entire process was repeated for a total of 3x 10cm Tissue Culture

Dishes (CORNING) to maximise virus production.

2.3.3 Puromycin Selection Optimisation

After infecting cells with the barcode virus, it is necessary to perform a selection step

that kills any un-infected cells, leaving only barcoded cells. As the barcode plasmid

contains a puromycin resistance gene, this is performed by adding to puromycin to

the cells immediately following the infection step. For this step to be successful, two

conditions must be met: firstly, the cells must not have reached confluence, otherwise

they will stop actively dividing and the puromycin will be unable to kill any cells,

independent of barcode status. Secondly, the puromycin concentration used must not

be so high that it will kill any cells regardless of whether or not they have a puromycin
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resistance gene, but it must be high enough to effectively select for successfully barcoded

cells. As such, an optimisation step which mediates this trade-off is performed as

follows: each cell-line (HCT116 and SW620 ) were seeded in multiple 6-well adhesive

tissue-culture treated plates (CORNING), where each set of 3x plates contained the

following number of cells: 0.01x106, 0.05x106, 0.1x106, 0.2x106 and 0.5x106, for a total

of 15x 6-well plates. Each well contained cells diluted in 2mL of full growth medium.

Two day later (+48hrs since start), within each plate, the following concentrations of

puromycin were added to each well in 1mL of full growth medium: 0.0µg/mL, 0.4µg/mL,

0.6µg/mL, 0.8µg/mL, 1.2µg/mL, 2.0µg/mL (these were the final concentrations, in the

now 3mL of medium/well). Three days later (+120hrs since start) the medium was

aspirated from each well. Of the different cell-number replicates (x3 per each number),

the number that led to approximately 80% confluency in the negative control well

(0.0µg/mL) was chosen. Of these, the cell numbers were counted per well, and the

puromycin concentration chosen that led to almost no living cells remaining (0% <

cells remaining < 1%).

2.3.4 Virus Infection Optimisation

After the virus is ready for infection, and the number of cells and puromycin concentra-

tion have been optimised, it is necessary to determine the volume of viral supernatant

to add. As viral infection can be assumed to follow a Poisson distribution (Fehse et al.

2004), adopting a multiplicity of infection of 10% helps mediate the trade-off between

maximising the number of uniquely barcoded cells, whilst minimising the number of

cells that have more than one barcode. Therefore, the supernatant volume that leads to

10% surviving cells following puromycin selection is estimated as follows: The cell num-

bers determined in the puromycin selection optimisation step are seeded into 6x 6-well

adhesive tissue-culture treated plates (Corning®) in 2mL of full growth medium. One

day later (+24hrs since start), the following amounts of virus supernatant are added +

8µg/mL Polybrene (Hexadimethrine Bromide - Sigma-Aldrich) in 1mL of full growth

medium (the following volumes are added per well across 2x 6-well plates, bringing the

total to 3x replicates per condition): 20µL virus + no puromycin, 5µL, 10µL, 20µL,
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50µL, no virus [plate 1], 200uL virus + no puromycin, 100µL, 200µL, 500µL, 1000µL,

no virus [plate 2]. (Note that the puromycin has not yet been added, and the range and

number of replicates can be reduced when the volume of virus produced is a limiting

factor). One day later (+48hrs since start), the growth medium containing the virus

is removed, and fresh full growth medium containing the concentration of puromycin

determined in the puromycin selection optimisation step (excluding the ‘no puromycin’

wells) is added. Three days later (+120hrs since start) the growth medium was removed

and the cells counted. The volume of virus was chosen that achieved approximately 10%

cell survival compared to the ‘no puromycin’ wells. For the full experiment, infection

took place in a 150mm adherant cell culture dish (Corning®) - the optimised volumes

and cell-numbers outlined above were therefore increased by a factor of 15 to account

for this.

2.4 Long-Term Evolution Experiments

2.4.1 Experiment Set-Up

This stage is universal to all three experiments; OR, PR and QR. To begin the ex-

periment, 3x 150mm adherant cell culture dishes (Corning®) were seeded with the

number of cells optimised previously - 3 plates per cell-line (HCT116 and SW620 ).

After one day (+24hrs since start), the optimised virus volume was added to one of

the three plates, per cell-line. After another day (+48hrs since start), the optimised

concentration of puromycin that leads to 10% m.o.i (scaled up for the 150mm dishes)

was added to the plate with virus, and one of the two remaining plates. The third

plate (per cell-line) has the cells on this day counted - 10% of this cell count is the

estimated number of cells infected with a barcode at the beginning of the experiment.

This number was optimised, as discussed above, to ensure that ∼ 106 cells are infected

with a barcode. The two remaining 150mm plates were left for the puromycin selection

step - the plate with no virus should eventually lead to 100% cell death, as optimised

previously. The plate that had the optimised volume of virus supernatant added was

left until the puromycin had killed all uninfected cells, and the remaining infected cells
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had expanded such that the plate was 80-90% confluent. At this point, the cells are

harvested and counted. 1x106 cells were then seeded into each experiment’s respective

replicates in T-175 vented flasks (Corning®). Remaining unseeded cells were stored

as POTi samples. In the two drug-pulse experiments, ‘PR’ and ‘QR’, the replicates

consisted of four control replicates - COi - and four drug-treatment replicates - DTi.

2.4.2 Experiment Maintenance

For the experiment ‘OR’, maintenance simply consisted of either freezing cells imme-

diately prior to processing, or passaging for one or two passages under standard con-

ditions, as outlined above. The two drug-treatment experiments - ‘PR’ and ‘QR’ were

maintained as follows:

• Following two days, during which cells were allowed to settle and adhere to the

bottom the flasks, the standard growth medium was removed and replaced with

either:

– For the drug-treatment (DTi) samples: 35mL of full growth medium with

XµM of 5-fluorouracil (5-Fu), where XµM corresponds to the previously de-

termined IC50 value for each cell-line.

– For the control (COi) samples: 35mL of standard DMEM with the same

volume of DMSO (vehicle control) as the volume of 5-Fu added to the drug-

treatment replicates

• Every 3-5 days, the 5-Fu/DMSO containing medium was removed and replaced

with standard, full growth medium.

• When a flask was 80-90% confluent, cells were harvested, 1x106 cells were seeded

into the following Passage and the remaining were frozen for downstream DNA

extraction and barcode amplification (see below).

• This process was repeated for 2 (‘PR’) and 5 (‘QR’) passages for each experi-

ment. This corresponded to 9-10 weeks for the HCTbc and SW6bc drug-treatment

replicates, respectively, in ‘PR’, and 26-29 weeks for the SW6bc and HCTbc drug-

treatment replicates, respectively, in ‘QR’.
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Figure 2.1: A schematic depicting the set-up and maintenance of the long-term evo-

lution experiment during metronomic exposure to chemotherapy. i) Both colorectal

cancer cell lines (HCT116 and SW620, in parallel) were infected with the ClonTracer

complex plasmid library (m.o.i ∼ 0.1). ii) Barcoded cells are subject to repeated

growth-bottleneck cycles for 4x replicates per control/drug treatment. Control and

drug-treatmnets are subject to metronomic exposure to vehicle-control or IC50 values

of 5-Fu, respectively (not shown). Sample names on cell sample cryovials correspond

to those used in the main text.
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2.5 Barcode Sequencing

2.5.1 DNA Extraction, Purification and Quantification

To extract DNA for barcode amplification, cells were defrosted and a volume of approx-

imately 1x106 cells was spun down into a pellet and re-suspended in 200µL of PBS.

DNA was then extracted according to the DNeasy Blood & Tissue Kit ® (QIAGEN)

protocol, following the cultured cell sub-section. I performed a second elution at 36°C

to maximise the DNA extraction yield. DNA was eluted in DNase and RNase-Free

PCR grade water. To quantify the concentration of DNA, the eluted volume was vor-

texed and then 1µL taken and measured using a Qubit™ 4 Fluorometer (Invitrogen™)

according to the manufacturer’s protocol. DNA concentrations were recorded and the

DNA frozen at -20°C until future processing. Following PCR steps, I used a magnetic

bead based clean-up system for the purification of amplified barcode DNA (CleanNGS

- CleanNA). When mentioned in one of the protocols, the purification beads are used

as follows: the beads are removed from the fridge and allowed to reach room temper-

ature approximately 30mins prior to purification. A chosen ratio of beads:product is

added (according to the desired size of purified fragments kept) and mixed well with

the product. The volume is incubated at room temperature for 5 minutes. The sample

is placed on a magnetic stand and the beads are separated from the supernatant for

approximately 5 minutes. The supernatant is discarded, and the beads washed with

80% Ethanol for a total of two washes. All ethanol is removed and the DNA is eluted

from the beads in DNase and RNase-Free PCR grade water and incubated at room

temperature for approximately 5 minutes. Finally, the beads are separated from the

DNA solution on the magnetic stand for a further 5 minutes, the DNA is serrated and

stored for future use whilst the beads are discarded.

2.5.2 Barcode Amplification and Adapter Integration

Due to technical difficulties encountered with certain protocols and sequencing tech-

niques, different protocols were adopted for each sequencing experiment.
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Figure 2.2: The structure of the ClonTracer lentivirus barcode construct. The regions

targeted for round one and two of PCR are highlighted, as are the structure of the

respective PCR products (RHS). Note the PCR targets shown correspond to the ‘OR’

and ‘PR’ sequencing experiments, whilst ‘QR’ targeted the ‘R2’ ‘FWD’ and ‘REV’

sequences directly.

OR

For the ‘OR’ sequencing experiment, due to secondary structures forming during the

original ClonTracer protocol (Bhang et al. 2015), I adopted a nested PCR approach for

the barcode amplification step. The first round PCR uses two universal forward and

reverse primers to amplify the barcode sequence from cell gDNA (Table 2.1).

After amplifying the barcode sequences from cell gDNA using the PCR protocol

outlined in Table 2.2, the round 1 product was diluted and used as input for a second

round PCR. This PCR used primers that had Illumina™ index sequences already in-

corporated. This meant a subsequent library-preparation step could be skipped. Due

to the limited number of samples being sequenced, indexes were only included in the

reverse primer (Table 2.4). These forward and reverse index primers were used with

the PCR protocol outlined in Table 2.3.
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Table 2.1: Forward and Reverse round 1 amplification primers for the ‘OR’ sequencing

experiment’s nested PCR protocol.

Table 2.2: PCR protocol used for the round 1 nested PCR with ‘OR’ sequencing ex-

periment.

Table 2.3: PCR protocol used for the round 2 nested PCR with the ‘OR’ sequencing

experiment.
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PR

For the ‘PR’ experiment, I again adopted a nested PCR protocol approach. However,

due to the larger number of samples that needed to be sequenced simultaneously, the

round 2 primers were adapted so that the forward primers now also contained a unique

multiplexing sequencing (Table 2.7). This meant that it was now possible to sequence

up to 400 different samples at once (8 fwd * 50 rev indexes) if necessary.

QR

Finally, due to ‘index-hopping’ issues encountered when using the non-redundant combi-

nations of forward and reverse index primers (see Results Chapter 3 for a more detailed

description), a different approach was adopted for the third sequencing experiment,

‘QR’. Now, two universal amplification primers targeted the universal sequences flank-

ing the semi-random barcode sequence in the ClonTracer construct (Bhang et al. 2015)

directly (Table 2.9) using the PCR protcol outlined in Table 2.9. Following this, a

bespoke adapter ligation protocol (Table 2.10) was optimised that used unique dual-

indexes (IDT Illumina™ TruSeq UD Indexes 96) - this meant that each sample was now

identified via its own unique forward and reverse indexes (Table 2.11).
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Table 2.5: PCR protocol used for the round 1 nested PCR with ‘PR’ sequencing ex-

periment.

Table 2.6: PCR protocol used for the round 2 nested PCR with the ‘PR’ sequencing

experiment.
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Table 2.8: PCR primers used for the barcode amplification PCR with the ‘QR’ sequenc-

ing experiment.

Table 2.9: PCR protocol used for the barcode amplification PCR with the ‘QR’ se-

quencing experiment.

60



Table 2.10: A bespoke adapter ligation protocol developed for unique dual-indexes

(UDI) incorporation with the ‘QR’ sequencing experiment.

61



Table 2.11: Unique dual-indexes (IDT Illumina™ TruSeq UD Indexes 96) used with the

‘QR’ sequencing experiment.
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2.5.3 Sequencing Library Concentration Quantification

For the ‘OR’ test experiment, the library concentration was estimated using a TapeS-

tation (Agilent); samples were prepared and measured according to the manufacturer’s

instructions. For experimental runs ‘PR’ and ‘QR’, the proportion of the cleaned-up

library that was readily seqeunceable on an Illumina™ flow-cell, library concentrations

were quantified using a KAPA Library Quantification Kit (Roche) according to the

manufacturer’s instructions. Two different dilutions an order in magnitude apart were

prepared for each library (1x library for ‘PR’, and 2x libraries for ‘QR’). Three repli-

cates were processed in parallel for each library sample. Following performing qPCR

with the library samples alongside the KAPA DNA standards, standard curves were

used to convert Cq scores into average concentrations (pM), the average size-adjusted

concentration of each library sample was calculated, averaging across all three replicates

and each library dilution.

2.5.4 Sequencing Platform Specifications

OR

The ‘OR’ test experiment was sequenced on a NextSeq 500 High-Output flow cells (x4),

with 75-cycles of single-end sequencing. Due to the low-diversity nature of the amplicon

library, the amount of PhiX control library used was increased to 20%. Standard

Illumina™ sequencing primers were used.

PR

The ‘PR’ long-term drug-treatment experiment was sequenced on a NovaSeq 6000 flow

cell (x1), with 50-cycles of paired-end sequencing. Again, due to the low-diversity

nature of the amplicon library, 20% of Phix control library was used. The NovaSeq

reads the read 1 index directly of the flow-cell. However, due to the custom primers

used for joint barcode amplification and sequencing primer incorporation (Table 2.7),

a custom sequencing primer was used for read 2 (sequence:

ACGTGTGCTCTTCCGATCTCTAGCACTAGCATAGAGTGCGTAGCT).
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QR

The ‘QR’ long-term drug-treatment experiment was sequenced on NovaSeq 6000 flow

cells (x2), with 50-cycles of paired-end sequencing. Due to the low-diversity amplicon

library, 15% of Phix control library was used. As - due to index-hopping issues expe-

rienced in ‘PR’ - we used UDIs and a standard NEBnext Ultra II library preparation,

no custom sequencing primers were necessary.

2.6 Code and Software

Simulations were written in the language Julia (https://julialang.org/) whilst se-

quencing and simulation outputs and data visualisation was performed in the language

R (https://www.r-project.org/). The code used to run the agent-based simulations

can be found at the following GitHub repository:

https://github.com/freddie090/Cancer BarCode Sim CBC
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Chapter 3

Results Chapter 1 - Modelling

the Evolutionary Dynamics of

Drug Resistance

3.1 Summary

In this section, I develop models of resistance evolution. My experimental design per-

mits time-series observations of uniquely labelled lineages during chemotherapy treat-

ment in vitro. To build a quantitative understanding of the dynamics driving differences

in lineage success, it is necessary to build theoretical expectations for lineage distribu-

tions under various evolutionary scenarios.

In my experimental design, lineages are subject to stochastic sampling that is the

product of experimental and biological forces: cells are sampled into replicate sub-

populations when passaging in vitro, whilst the birth-death process of cell growth can

lead to the stochastic loss of lineages, especially when the population sizes are small

(analogous to genetic drift with regard to allele frequency changes). These forces can

lead to differences in lineage success without having to invoke selection. The first step

is therefore to explicitly include these dynamics in my model. Subsequently, I can

impose different hypotheses concerning the evolution of our phenotype of interest –

drug resistance – on top of these sampling forces. In Results Chapter 4, by comparing
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true, sequenced lineage distributions with these expectations under i) different modes of

resistance phenotype evolution, and ii) different parameter ranges within each of these

modes, I aim to infer which dynamics are driving resistance evolution in our chosen

colorectal cancer cell-lines.

3.2 Modelling Cell Turnover

Before I address possible models of resistance evolution, is is important to consider

purely neutral dynamics. That is, given all the situation where all cells have equal birth

and death rates, what differences do we expect to emerge in the lineage distributions

purely due to the experimental and biological sampling steps?As cells are only uniquely

labelled once, and the growing population is exposed to iterative sampling steps, we

expect differences between lineages to increase over time. In fact, assuming a net

positive growth rate and repeated population bottlenecks, as t −→ ∞, we expect the

number of lineages to monotonically decrease to a population consisting of only a single

lineage.

To capture this underlying process of cell turnover, I employ a kinetic monte-carlo,

agent-based model to simulate a stochastic birth-death process. Briefly, a cells are

assigned birth and death rates. The maximum birth and death rates in the popula-

tion are noted (bmax and dmax, respectively). A change in time, ∆(t) is drawn from

the distribution ∆(t) = −1
(bmax+dmax·log(r) , where r is a random number drawn from

Uniform(0, (bmax + dmax)). Figure 3.1 shows the transition rates for a cell given the

value of this randomly drawn number. Unless stated otherwise, cells in my simulations

are growth with uniform birth and death rates, and therefore bmax = b and dmax = d.

The most powerful feature of experimental evolution is the capacity to observe

evolution in parallel: exposing closely related descendants to the same selection pres-

sures in replicates allows us to ask questions such as ‘How repeatable is evolution in

our chosen conditions?’ and ’What is the rate of change of our phenotype of interest

within our experimental time frame?’. Therefore, to ensure most lineages are repre-

sented numerous times prior to isolating sub-populations in replicates, cells experience

a mutual expansion step immediately post-labelling with the lentivirus barcode. In
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Figure 3.1: A schematic illustrating all the possible transition states for a cell. A number

is drawn form the distribution Uniform(0, (bmax+dmax)). A birth occurs if this number

falls in the solid blue interval, and a death if it falls in the solid orange interval (the

dashed regions correspond to ‘no event’ occurring). Note that the probability of a birth

or death event is directly proportional to a cell’s b and d rates.

vitro, cells are then well-mixed and sampled into respective sub-populations (please see

Materials and Methods and Figure 2.1 for more details).To ensure that I can infer the

evolutionary dynamics from the model’s lineage distributions, I design my simulation

to reproduce important features the in vitro experiment. The most consequential of

these is the shared expansion step. The simulation has analogous steps, where cells are

uniquely labelled and grown together prior to being repeatedly sampled into isolated

sub-populations (Figure 3.2). They are then grown apart, in parallel and subject to

simulation-specific perturbations.

Figure 3.3 illustrates the stochastic nature of the birth-death process and successive

sampling steps: lineages exhibit differences in frequency following the expansion step,

and are randomly lost in some sub-populations. The population sizes simulated here are

smaller than those chosen for the full experiment, in order to illustrate the differences

that can emerge more clearly. There is a probability lineages are lost to drift early in

the growth stage, whilst the stochasticity of success in the subsequent sub-populations

is compounded by the probability of being lost during the sampling step.

Assigning uniform birth and death rates to all cells in a population produces a
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Figure 3.2: A schematic illustrating the components of the birth-death simulation that

aim to closely resemble the in vitro experiment. Namely, cells are assigned a unique

lineage identifier, share a mutual expansion step and are then subsequently sampled

(without replacement) into replicate sub-populations.

model where variability in frequency is due solely to the neutral dynamics described

previously; a lineage’s relative success is purely stochastic. Importantly, whilst repeated

iterations of the simulation will not lead to repeatability in any given lineage’s success,

we might still expect the same lineage to appear successful across replicates within a

single simulation iteration without having to invoke selection. That is, when cells share

a growth period at the beginning of a simulation (Figure 3.2) a lineage may by chance

become more abundant. Subsequently, it is more likely to be at a higher frequency in

multiple replicate sub-populations (Figure 3.4).

Without these theoretical considerations, one might arrive at specious conclusions

such as ‘a barcode found at high frequency across all replicates has a fitness advantage

over its contemporaries’. As I have illustrated here, purely stochastic forces can lead to

associations between sub-populations’ lineage frequencies.

So far, I have outlined the foundation of the stochastic model. Cells are assigned
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Figure 3.3: Growth trajectories of 12 randomly selected lineages (total lineages = 1000)

during a shared expansion stage (LHS panel) and following subsequent sampling into

and growth within three replicate sub-populations (RHS panels). All cells have uniform

birth and death rates and counts of each lineage correspond to unique colours are shown

in continuous time.

lineage identities, uniform birth and death rates and then grown according to the ex-

perimental design (Figure 3.2). Distributions and statistics of the populations’ lineage

counts and frequencies can then be obtained. As the real data consists of sequenced

lineage distributions, these can then be compared directly.

3.3 Analytical Solutions to Lineage Growth and Sampling

Before I begin to model the evolution of resistance phenotypes we can make some initial

predictions regarding how sub-lineages should be distributed immediately following the

shared population’s expansion step and upon sampling into multiple sub-populations.

First, we can ask how lineages are distributed given some birth (b) and death (d)

rates and some period of time (t); the analytical solution to this birth-death process is
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Figure 3.4: A pairwise comparison of lineage counts in two sub-populations (Sample 1

and Sample 2) following a shared expansion step then periods of isolated growth: cells

are assigned unique lineage marker, grown together, and then split into two populations

before being grown in isolation. All cells are grown with uniform birth and death rates.

Shared lineages are shown in blue, and lineages unique to a sample in red.

known (Bailey 1990), where p(n) is the probability of seeing a lineage of size n at time

t:

p(0) = α (3.1)

p(n) = (1− α)(1− β)β(n−1) (3.2)

where

α =
d(e(b−d)t − 1)

be(b−d)t − d
(3.3)

β =
b(e(b−d)t − 1)

be(b−d)t − d
(3.4)

We can also show that this p.m.f describes the stochastic birth-death agent-based

model described previously, exactly (Figure 3.5).
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Figure 3.5: The analytical solution (black line) to the birth-death p.m.f where b =

0.893, d = 0.200 and ∆t = 6.0 and a corresponding lineage-size distribution (blue

histogram) from a single iteration of the stochastic birth-death model.

The birth-death p.m.f provides us with a theoretical expectation of lineage sizes

following the expansion step, given some estimates of the population’s birth and death

rates. To derive a distribution for the probability of seeing a lineage k times following

sampling, given it is present n times in the expanded population of size N , I make use

of the following:

p(k) =
N∑
n=0

p(k|n)p(n) (3.5)

where p(n) is (5.2) if n = 0 and (5.1) if n > 0, and

p(k|n) =

(
n
k

)(
N−n
K−k

)(
N
K

) (3.6)
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if sampling without replacement (hypergeometric p.m.f ), or

p(k|n) =

(
K

k

)
(
n

N
)k(1− n

N
)K−k (3.7)

if sampling with replacement (binomial p.m.f ).

Whilst in practice, cells are sampled without replacement into their respective sub-

populations, modelling this step as sampling with replacement allows use to use I

binomial distributions, meaning each sub-population is i.i.d. For the values of N , I

and K used in the in vitro experiment, modelling sampling as a binomial distribution

accurately estimates the number of lineages of size k (Figure 3.6).

Figure 3.6: Simulated lineage size distributions (grey) within a sub-population follow-

ing an expansion growth period and single round of sampling without replacement vs

theoretical expectations given sampling without (orange points - hypergeometric) and

with (blue points - binomial) replacement.

Not all lineages will be sampled into each replicate sub-population. This has impli-

cations for how dissimilar we expect each replicate to be (in the absence of selection).

Modelling the lineage size distribution using (3.7) for each i of I sub-populations, we can
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ask: ’what is the probability of a lineage being sampled into i of I sub-populations?’.

First, I make use of the complement:

p(k > 0) = 1−
N∑
n=0

p(k = 0|n)p(n) (3.8)

As each sub-population is modelled as one of i independent and identical distri-

butions, we can model the probability that a chosen lineage makes it into i of I

sub-populations as a second binomial distribution, where the probability of success

= p(k > 0) and the number of trials = I. Therefore the probability that a chosen

lineage makes it into i of I sub-populations is:

p(i) =
N∑
n=0

(
I

i

)
(p(k > 0|n)i(1− (p(k > 0|n)i))I−ip(n) (3.9)

This distribution accurately estimates the number of lineages that make it into i of

I sub-populations in my stochastic birth-death model. We can see that, in the absence

of any selection, we expect approximately a third of all initial lineages to be lost to

sampling effects, whilst most extant lineages will be sampled into all 4 sub-populations

(Figure 3.7).

These analytical solutions show that the agent based model behaves as expected,

whilst capturing important features of the in vitro experiment. The probability distri-

butions can tell us i) the number of sub-populations any lineage is sampled into, and

ii) the lineage size distributions within each sub-population immediately following sam-

pling. I now proceed to develop models of resistance evolution within this framework.

3.4 Simple Models of Resistance

Cells in the control replicates were grown in the absence of the selection pressure of

therapy, whereas the drug-treatment replicates were periodically exposed to therapy.
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Figure 3.7: Simulated lineages found in i of I sub-populations following a shared ex-

pansion period and sampling without replacement (blue areas) vs the analytical ex-

pectations modelled using the sampling with replacement analytical distribution (black

points) from Eq 3.9.

To model this process, I simulate the underlying population’s birth-death process (‘cell

turnover’) independently from the death incurred due to therapy (‘drug-killing’ step).

In vitro, the cells are exposed to the drug treatment for several days followed by an

equal period of recovery. In the simulations, this is replaced with an instantaneous

drug-kill step. The resistant phenotype is modelled as a binary trait - cells are either

sensitive (R = 0.0) or resistant (R = 1.0) – and death of the sensitive cells during the

drug-killing step is deterministic – the probability of death = (1.0−R).

3.4.1 Pre-Existence and De-Novo Mutations

I begin by considering two very simple evolutionary scenarios: pre-existing resistance

and de-novo resistance mutations. In the pre-existing resistance model, cells are simply

assigned a resistance phenotype (R = 1.0) at the beginning of the simulation with

probability ρ. The resistance phenotype is completely heritable and immutable. As

cells are also assigned a unique lineage identity at the beginning of the simulation,
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there is a one-to-one relationship between a population’s lineage identities and resistant

phenotypes. In the de-novo mutation resistance model, cells are all initially sensitive

(R = 0.0). They then have a probability of acquiring the resistant phenotype (R = 1.0)

with probability µ per division. Subsequent mutations – ‘double hits’ – have no further

effect on the phenotype, and mutation to resistance is permanent; I do not permit

back-mutations.

3.4.2 Limitations of the Simple Resistance Models

These two modes of resistance evolution – pre-existing resistance and de-novo mutations

– have often been used to model drug resistance in cancer. However, these formulations

lead to assumptions that oversimplify the biological realities, to the potential detriment

of the investigator. Reflecting on the prospective change in phenotype frequencies over

time, two questions arise:

1. Firstly, in the pre-existing resistance mode – if there are some proportion of

cells that express the resistance phenotype at the onset of the experiment (either

in vitro or in silico), by what process did this ratio of resistance to sensitive

phenotypes arise? And why is it now absent for the duration of the experiment?

2. Similarly, in the de-novo mutation mode – why are mutations that produce a

perceivable change in the resistance phenotype only now permitted to occur for

the duration of the experiment?

One might suggest that the two modes could be combined. However, this new model

would still make the implicit assumption that the population would continuously evolve

towards a state of exclusively resistant cells. Yet the addition of treatment is often ini-

tially met with some degree of cell death, either in vitro or in vivo, an observation

that would be rare if resistance was ubiquitous (In the subsequent Results Chapter I

also address this question experimentally, and show the frequency of resistance appears

stable over time). As a remedy to these limitations, I aim to develop models of pheno-

typic evolution where the frequency of a resistance phenotype in the population is the

product of explicit evolutionary phenomena. I argue that these modifications improve
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Figure 3.8: a) A schematic outlining the pre-existing resistance model. Cells are as-

signed the resistant phenotype (blue cells) with probability ρ, and the sensitive pheno-

type (orange cells) with probability (1−ρ). All cells share birth and death rates: b and

d, respectively. b) The same schematic for the de-novo mutation resistance model. All

cells now start the simulation with the sensitive phenotype. However, there is now a

probability per division - µ - that both daughter cells transition to the resistant phe-

notype. Drug-treatment induced death is modelled identically in a) and b) drug-death

is deterministic: resistant cells (R = 1.0) and sensitive cells (R = 0.0) are killed with

probability 1−R.
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the biological assumptions underpinning the model, and have important consequences

for the theoretical expectations of lineage distributions following treatment.

3.5 Developing Models of Resistance

3.5.1 Mutation-Selection Balance

An evolutionary force that can act to maintain phenotypic variation is mutation-

selection balance. Whilst mutations act to increase the frequency of a phenotype within

a population, the change in phenotype incurs a fitness cost in an individual’s current

environment. As such, the forces of selection and mutation act to maintain some equilib-

rium frequency of the phenotype in question. Before developing the framework for this

mode of resistance evolution, it is worth noting several features of mutation-selection

balance. Firstly, if purifying selection is too weak, or the mutations too common (or

vice-versa), I note that this process could still lead to an equilibrium phenotype fre-

quency of either 0.0 or 1.0. Secondly, the equilibrium frequency of the phenotype is

dependent on its fitness cost and, therefore, also dependent on the current selection

pressures experienced by an individual. A change in environment may change the fit-

ness of the chosen phenotype and, therefore, lead to a change in its frequency. As such,

modelling a population as having reached some stable equilibrium implicitly assumes

the current environment is also stable. Under controlled conditions in vitro, I argue

that this is a safe assumption. Finally, whilst in classical population genetics mutation-

selection balance is framed in terms of deleterious alleles, here I continue to focus on

fitness cost and benefits in terms of a cell’s phenotype. That is, I only assume that

resistance incurs some fitness cost, without defining the molecular change responsible.

To model mutation-selection balance, I again define resistance as a binary pheno-

type, whereby cells are either sensitive (R = 0.0) or resistant (R = 1.0) and death of

sensitive cells during the drug-killing step is deterministic: the probability of death =

(R − 1.0). Once more, cells have a probability of acquiring the resistant phenotype

(R = 1.0) with probability µ per division, subsequent mutations have no further effect

on the phenotype, and back mutations are not permitted. However, a resistant cell now
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incurs some fitness cost δ, relative to the sensitive population. If sensitive cells have a

net growth rate λr such that λr = br − dr, δ is implemented as a relative fitness cost

such that the resistant population grows with rate λR = bR − dR = λr − (δλr) (Figure

3.9). The death incurred due to therapy is once again modelled instantaneously - with

probability of death = (R − 1.0) - and separately from the population’s underlying

birth-death process.

3.5.2 Non-Genetic Phenotypic Variability

A second source of variability in phenotypes can occur even within isogenic populations.

Non-genetic mechanisms mean populations can generate phenotypic diversity on time

frames much shorter than genetic mutations. If this variability leads to cells switch-

ing to and from two different phenotypes – for example, sensitivity and resistance

– with constant, albeit potentially asymmetrical rates, this too can produce equilib-

rium frequencies of a phenotype within a population. To model non-genetic sources of

phenotypic variability, there remains some probability that cells acquire the resistant

phenotype (R = 1.0) per division, µ. However, there is now a second rate -σ - with

which resistant cells revert to the sensitive phenotype (R = 0.0) per division (Figure

3.9). Of note, this framework can still model forwards and back mutations, if µ and

σ are very low per-division. Alternatively, if one or both of the transition rates are

sufficiently high the model can simulate non-genetic variability, where cells transiently

exist in a given phenotypic state for a few cell divisions.

3.5.3 Model Parameters Govern Phenotypic Change

Whilst studies often focus on modelling the genetic changes responsible for resistance,

it is important to again highlight that I only model the resistance phenotype and make

no explicit assumptions with regards to the molecular change responsible. This decision

was made in light of the information available to me during the evolution experiment,

where I only have access to the change in lineage frequencies over time. These dynamics

will be the product of stochastic sampling and a selection on a cell’s phenotype; pheno-

types will be the product of heritable, genetic changes, other non-genetic mechanisms,
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Figure 3.9: A schematic outlining the non-genetic phenotypic variability (a) and

mutation-selection balance (b) models. Cells are assigned the resistant phenotype (blue

cells: R = 1.0) with probabilities derived from their equilibrium frequencies - p - and

the sensitive phenotype (orange cells: R = 0.0) are assigned with probability ((1− p)).

In the non-genetic phenotypic variability model, sensitive cells can become resistant

with rate µ per-division, and resistant become sensitive with rate σ per-division. In the

mutation-selection balance model, resistant cells incur a fitness cost such that their net

growth rate, λR, is (1−δ) that of the sensitive cell net growth rate, λr. Drug-treatment

induced death is modelled identically in a) and b) - drug-death is deterministic: resis-

tant cells (R = 1.0) and sensitive cells (R = 0.0) are killed with probability 1−R.
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or a combination of each. I therefore make no assertion regarding either in this model of

resistance evolution. Therefore, whilst I will refer to modelling ‘mutations’ that move a

cell’s resistant phenotype, these could in fact be interpreted as either heritable, genetic

changes such as single-nucleotide polymorphisms (SNPs), insertions/deletions (indels)

and chromosomal copy-number alterations (CNAs), or non-genetic cellular mechanisms

of phenotypic diversity such as stochastic variation in gene expression. For brevity’s

sake, I employ the term ‘mutation’ to capture all of these potential changes in phenotype

in the simulations, unless stated otherwise.

3.5.4 Equilibrium Phenotype Frequencies

In my models of resistance evolution that incorporate a cost of the resistant phenotype

and non-genetic sources of phenotypic variability, we can describe the change in the

proportion of resistant:sensitive cells in the population over time with the following

pair of differential equations:

dnR
dt

= nR(bR − dR) + nr(2µbr)− nR(2σbR) (3.10)

dnr
dt

= nr(br − dr) + nR(2σbR)− nr(2µbr) (3.11)

where nR and nr are the number of resistant and sensitive cells, respectively, bR,

dR, br and dr are the resistant and sensitive birth and death rates, µ is the probability

of a sensitive cell producing two daughter resistant cells, per division, and σ is the

probability of a resistant cell producing two daughter sensitive cells, per division.

The rationale for these developed models of resistance evolution was to capture

biological forces that produce some phenotypic diversity within the population in a time-

independent manner. Selection subsequently acts on this phenotypic variation following

a change in selection pressure: in my case, the onset of drug-treatment. Now I have

formalised the change in resistant and sensitive cells over time given some evolutionary

parameters, I can ask what stable frequency of each phenotype these values would
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lead to in the population. Given Req = nR
(nR+nr)

, λr = (br − dr) and λR = (bR − dR),

I calculate the equilibrium frequency of the resistant phenotype in the population by

rearranging (3.10) and (3.11) in terms of
dReq

dt , setting to 0, and then solving for Req:

dReq
dt

= (−λR + λr)R
2
eq + (λR − 2µbr − 2σbR − λr)Req + 2µbr = 0 (3.12)

Figure 3.10: Solutions to the stable equilibrium frequency of resistance within a pop-

ulation given parameters that control the phenotype switching rate (µ and σ) and its

relative fitness cost (δ): equilibrium proportions of the resistance phenotype - Req -

are plotted as a function of different combinations of µ and σ (LHS panel) and of µ

and δ (RHS panel) derived by solving the equation (3.12) for
dReq

dt = 0. Parameter

combinations that lead to Req = 0.1 in both models have been highlighted (red dashed

lines).

Given that the difference between λR and λr is the relative cost of the resistance

phenotype, δ, we can now explore the relationship between various combinations of µ, σ

and δ and the equilibrium frequency of the resistance phenotype within the population,

Req (Figure 3.10). It is clear that different combinations of µ - the rate of resistance

conferring ‘mutations’ per division - and either the plasticity reversion rate to sensitivity,
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σ, or the fitness cost incurred by the resistance phenotype, δ, can lead to different levels

of standing phenotypic variation within the population.

One feature of a given cell population evolving with these evolutionary parameters is

the observed proportion of resistance (a product of the equilibrium frequency). Higher

proportions of resistance should lead to a high number of surviving lineages following

drug-treatment, whilst low equilibrium frequencies will lead to fewer. I therefore expect

combinations that lead to the same frequency of resistance to lead to similar losses of

lineage diversity following therapy. However, we can also look at differences between

scenarios that lead to the same frequency of resistance. Despite the same levels of

population-wide resistance, differences in growth rates (given δ) or phenotypic switch-

ing (given σ) could lead to differences in how resistance is distributed amongst lineages.

Differences in lineages that survive treatment between replicate sub-populations, evolv-

ing in parallel, could help distinguish between these scenarios. This idea is discussed in

more detail shortly.

Given some equilibrium proportion of resistance we wish to investigate - for exam-

ple, Req = 0.1 in Figure 3.10 (red dashed line) - parameter combinations can be chosen

accordingly; controlling for the proportion of resistance prior to drug treatment enables

the identification of differences in lineage distributions due solely to the mode of re-

sistance. Of note, we can see in Figure 3.10 that when comparing identical parameter

sets, combinations of µ and σ lead to lower equilibrium frequencies of resistance (Req)

than those of µ and δ.

To ensure that these analytical solutions to the equilibrium proportions of resistance

are predicting the stable proportions we’d expect populations to reach in the agent-

based model, I simulated the same parameter combinations in the stochastic birth-

death model where all cells started with the sensitive phenotype (R = 0.0). They were

then grown and subjected to population bottlenecks repeatedly. The proportion of

resistance these populations approached was then compared to the expected equilibrium

proportions derived by solving equation (3.12) for
dReq

dt = 0. The agent-based model

does approach the expected equilibrium proportions, with the caveat that the lower

values of µ, σ and δ are more prone to stochastic dynamics and therefore lead to
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Figure 3.11: A comparison of the analytical solutions of the equilibrium frequency of

resistance in the population with long-term simulated frequencies: equilibrium propor-

tions of the resistance phenotype - Req - were derived by solving the equation (3.12) for

dReq

dt = 0 (black points) and are plotted vs simulated values. Simulated values were cal-

culated as the mean proportion of resistance in the final 1000 bottleneck-growth cycles

given various values of µ and σ (top panel) and µ and δ (bottom panel).

more variable values of Req (Figure 3.11). This feature of the population dynamics is

pertinent within the real experiment: within a given time-window, lower values of both

µ and σ or δ will lead to fewer transitions from resistant to sensitive (and vice versa for

the σ case) than higher values of the parameters, even when controlling for the expected

proportion of resistant cells (e.g. dashed-red line in Figure 3.10). This difference has

important consequences discussed in section 3.6.

Finally, the Algorithms 1, 2 and 3 integrate the ideas discussed so far and describe

the simulation functions that: create a vector of cells with resistant phenotypes; grow

cells and save the new cell vector; and grow cells whilst periodically killing cells accord-
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Algorithm 1: Seed Cells

input : Parameters controlling the total number of cells, the birth and

death rates, and the resistant phenotype of each cell: N , b, d, ρ, µ,

σ, δ, limprobs

output: A vector of N uniquely barcoded cells, each with a resistant

phenotype: R ∈ [0.0, 1.0]

for i to N do

Assign cell a unique barcode, i;

Assign cell birth and death rates, b and d;

if limprobs = true then

Assign R to cell using equilibrium frequency, Req, given µ, σ and δ

else

Assign R to cell with probability ρ

end

end

Return vector of cells;
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Algorithm 2: Grow Cells

input : A vector of cells, cellvec,: where celli has [barcode, b, d, R];

Parameters that control the resistant phenotype evolution: µ, σ, δ;

Parameters that control the growth period: tmax, Nmax;

output: A new vector of grown cells: where celli has [barcode, b, d, R];

set t to 0;

while t < tmax or N < Nmax do

sample random uniform number, ran1 ∈ [0, (b+ d)];

sample single random cell, rancell from cellvec;

set b and d according to rancell.R and δ;

if ran1 < b then

// birth event: check if resistant phenotype changes

sample random uniform number, ran2 ∈ [0, 1];

if rancell.R = 0.0 then

if ran2 < µ then

rancell.R becomes 1.0

end

else if rancell.R = 1.0 then

if ran2 < σ then

rancell.R becomes 0.0

end

Duplicate rancell and add to cellvec;

else if b <= ran1 < (b+ d) then

// death event

Remove rancell from cellvec;

Update time;

sample random uniform number, ran3 ∈ [0, 1];

∆t = −1
(b+d)Nt

· log(ran3);

t = t+ ∆t;

end

Return vector of cells;
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Algorithm 3: Grow-Drug-Kill Cells

input : Same input as Grow Cells, and also:;

drug kill(true/false), insta kill(true/false), n pulse, ψ

output: A new vector of grown cells: where celli has [barcode, b, d, R];

A vector of total population sizes, Nt, per n pulse;

set t to 0;

∆tpulse = tmax/n pulse

while t < tmax or N < Nmax do

if drug kill = true then

if insta kill = true then

for i to N do

Kill celli with probability (1− celli.R) + ψ;

end

Record the total population size;

end

end

Grow cells using the Grow Cells function for ∆tpulse;

if drug kill = true then

for i to N do

Kill celli with probability (1− celli.R) + ψ;

end

end

Record the total population size;

end

Return vector of cells;

Return vector of population sizes;
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ing to their resistant phenotypes, respectively. Details on the code and languages used

can be found in the Materials and Methods section.

Now I have shown that combinations of parameters in the models of resistance

evolution lead to equilibrium frequencies of the resistance phenotype, I subsequently

use the values of µ, σ, δ and λr to assign resistance (R = 1.0) to cells at t = 0 (prior

to the expansion step) with probability Req in the agent-based simulations. Cells are

then grown according to their respective parameters.

3.6 Leveraging Within- and Between-Sub-Population In-

formation

So far, I have outlined a model that assigns cells parameters that control the underlying

growth of a population via birth and death rates. An additional set of parameters

controls the distribution and rates of change of two mutually exclusive phenotypes

of interest: drug-resistance and sensitivity, whilst the proportion of resistant:sensitive

phenotypes are assigned according to the expected equilibrium frequencies at the start

of the simulation. Within this framework, I can now ask whether we can distinguish

between different evolutionary scenarios solely by comparing lineage distributions. To

make these distinctions, there are three important sources of information available

following the in vitro experiment:

1. The number of high-frequency lineages remaining within the replicate sub-populations

following drug-treatment. This distribution will be the product of the standing

variation of the resistant phenotype within the population (Req).

2. The difference in successful, high-frequency lineages between replicate sub-populations

following drug-treatment. Mutual lineage success amongst sub-populations will

be the product of the ‘stability’ of the resistant phenotype during i) the whole pop-

ulation’s expansion step, and ii) drug-treatment within a replicate sub-population

post-expansion.

3. The distribution of lineages within and amongst control-treatment sub-populations.
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Assuming that selection to non-drug conditions are weaker, these replicate popula-

tions will provide ’baseline’ expectations with which the drug-treatment scenarios

can be compared.

To leverage these sources of information, I require appropriate summary statistics.

Ideally, these would condense my (2 · I · Passage) different distributions (I · Passage

per drug- and control-treatments) into two axes that summarise both the number and

similarity of the lineage distributions. One approach would be to compare the total

number of lineages within a sub-population vs a similarity index of lineages between

sub-populations, e.g. the Jaccard index, which is the intersection divided by the union

of two sets. However, the use of absolute lineage number has two drawbacks. The first

is that I am interested primarily in the successful lineages: those that reach a high

frequency within their sub-population. A large number of very low-frequency lineages

would inflate the absolute count whilst contributing little to the population’s current

response to therapy. The second drawback is technical - errors in lineage-barcode

amplification and sequencing can further inflate the number of low-frequency lineages,

giving a false impression of the true number. A solution to both of these problems is

to adopt diversity indices that accounts for both the number and relative frequency of

lineages.

3.6.1 Within-Population Diversity

To capture the diversity of lineages within a sub-population, I adopt the Hill diversity

indices of order q, qD, defined as

qD = (

J∑
j=1

pj
q)1/(1−q) (3.13)

where pj is the relative frequency of the jth lineage, and q controls the leverage

that high frequency lineages contribute to the index. Relative frequencies are scaled

according to q, where values of q < 1 and q > 1 preferentially leverage low- and high-

frequency lineages, respectively (Jost 2006; Roswell et al. 2020). When q = 0, q=0D is
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simply the total number of lineages (often referred to as ’species richness’ in ecology).

The exact solution for (3.13) when q = 1 does not exist, however as q −→ 1,

q=1D = exp(−
J∑
j=1

pjlog(pj)) (3.14)

which is also referred to as the Shannon diversity (the natural exponential of the

Shannon entropy). When all lineages are present in equal proportions (p1 = p2 = ... =

pJ) the values of qD are insensitive to q, and correspond to the total number of lineages.

qD provides a way to circumvent the problems that arise When using raw lineage

counts alone as a measure of diversity. Different values of qD between populations

following drug-treatment should correspond to inter-population differences in the pro-

portion of resistant lineages; if the resistance phenotype (R = 1.0) is rare, we expect

the majority of lineages to be lost during treatment, leading to low values of qD.

This apparently innocuous prediction that, following drug-treatment, a reduction

in diversity will be a function of the population’s resistant fraction rests on some bio-

logical assumptions that deserve scrutiny. Notably, there are two scenarios where this

prediction might not hold. Firstly, if treatment acts by killing individuals with some

set probability - independent of any phenotype - this could hypothetically lead to a di-

versity reduction of 0, where each lineage is depleted in equal measures. Alternatively,

if for now I continue to assume resistance is a binary, heritable trait, a 0 reduction

in a population’s diversity could occur post-treatment if the resistance phenotype was

equally distributed amongst all lineages. In practice, as long as the response to treat-

ment is governed by some cell-specific phenotype which can be inherited by daughter

cells and exhibits variability amongst individuals, these scenarios remain improbable.

3.6.2 Between-Population Diversity

Hill-diversity indices of the order q allow us to tune how strongly high-frequency lineages

influence our statistics. By the same token, we can transform (xq) and back-transform

(x1/(1−q)) lineage frequencies when quantifying the dissimilarity in diversity between

populations. Specifically, this is captured in qD(β), the effective number of unique
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Figure 3.12: Simulated, illustrative lineage distributions highlighting how diversity sum-

mary statistics - qD (within-population diversity) and qD(β) (between-population diver-

sity dissimilarity) - differ with total lineage numbers and abundances. The LHS panels

represent various populations, where numbers denote evolutionary scenarios (1 − 8),

and panels hold distinct sub-populations (3 per scenario). Point size correspond to a

given lineages frequency, the colour denotes lineage identity consistently between all

panels and lineages are randomly distributed within each panel. qD vs qD(β) statistics

(RHS panels) are shown for respective evolutionary scenarios (1− 8) for various orders

of q (q = 0, 1, 2).
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populations or the true beta diversity of order q. qD(β) is the equivalent of the often

adopted beta diversity, with the distinction that these transformations permit adjust-

ment of the contribution of high-frequency lineages, whilst also having an intuitive

range of [1, I], where I is the total number of populations being compared. qD(β) can

be calculated by partitioning multiple sub-population’s diversity into two components:

qD(β) =
qD(γ)
qD(α)

(3.15)

where

qD(γ) = (

JI∑
jI=1

pjI
q)1/(1−q) (3.16)

where I is the total number of sub-populations being compared, JI is the total

number of lineages amongst all I populations, and pjI is the relative frequency of

lineage j amongst all I populations, and

qD(α) = (
1

I

I∑
i

(
J∑
j

(pij)))
1/(1−q) (3.17)

where pij is the relative frequency of lineage j in population i.

In words, qD(γ) captures the total diversity of order q when pooling all I sub-

populations, qD(α) is the mean diversity of order q of all I sub-populations, and

qD(β) is the ratio between the two. When q = 0, q=0D(β) = 1.0 when all lineages

are shared amongst all I sub-populations - there is one ‘effective’ unique population;

and q=0D(β) = I when no lineages are shared amongst all I sub-population - there are

I ’effective’ unique populations.

Figure 3.12 illustrates how some differences within and between (hypothetical) lin-

eage distributions are captured by differences in qD and qD(β). In particular, how

increasing the value of q greatly reduces the diversity in samples where there are a
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few, dominant lineages (Figure 3.12, scenarios 3,4,7 and 8) and how this also produces

greater differences in values of qD(β) in comparisons that have a few, dominant lineages

that are shared (Figure 3.12, scenarios 3 and 7) and those where the high-frequency

lineages are unique ((Figure 3.12, scenarios 4 and 8).

3.7 Simulation Results

I have now described two simple models of resistance evolution and their shortcomings

which form the rationale for two developed modes of resistance evolution. These models

calculate equilibrium phenotypic frequencies (resistant:sensitive) to assign the propor-

tion of resistance to individual cells at the beginning of the simulation (t = 0) prior to

evolving cells according to the simulation’s respective evolutionary parameters. These

models permit me to simulate analogous lineage distributions to those of the sequenced

output of my in vitro experiment. Finally, I have outlined summary statistics that can

capture two important axes of information between these lineages: within-population

lineage diversity and between-population lineage diversity differences. The question

remains as to whether I can now distinguish evolutionary scenarios of drug-resistance

evolution by comparing lineage distributions.

The following simulation parameter values were chosen to resemble the in vitro

experiment as closely as possible. In particular, these initial birth and death rates were

chosen to be in a range of previously reported birth and death rates in cancer cell-lines

in vitro (Acar, Nichol, Fernandez, et al. 2019; Russo et al. 2021), whilst erring on the

side of higher cell turnover (b+d). As increasing the cell turnover increases the variance

in lineage distributions by increasing the probability cell lineages are randomly lost to

drift (see section 3.3), this ensured I didn’t under-estimate the stochastic components

of the experiment. For convenience, I also ensured that the net growth rate (b − d)

= log(2) ≈ 0.693. This means that a single time unit, ∆t = 1.0 corresponds to a single

population doubling.

• N0 = 106 (the number of uniquely barcoded cells at t = 0.

• b = 0.893 (therefore λ = (b− d) ≈ log(2) and ∆t = 1 ≈ 1 population doubling.)
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• d = 0.200 (therefore λ = (b− d) ≈ log(2) and ∆t = 1 ≈ 1 population doubling.)

• texp = 6.0 (∆t for shared expansion step prior to splitting into replicate sub-

populations).

• I = 4 (the number of replicate sub-populations per control- and drug-treatment

- therefore 2I total).

• ∆tDT = 2.0 (the time in between drug-kill events in the drug-treatment replicates)

• Nmax = 64 ∗ 106 (the carrying capacity of the replicate sub-populations - flasks

in the in vitro experiment).

• ρ, µ, σ, δ - these parameter values control the evolution of the resistance phenotype

as described in the text, and are simulation dependent.

• nsim = 10 (number of simulation iterations per unique parameter combination).

3.7.1 Growth Kinetics

The growth kinetics of the simulations were contingent on the combination of evolu-

tionary parameters µ, σ and δ. Figure 3.13 shows example population trajectories for

a subset of simulations where µ = 10−6.

As death due to drug-treatment is deterministic in these versions of the model (death

due to treatment is enforced with probability (1 − R)), nearly all of the selection for

the resistant phenotype occurs immediately following the cells being sampled into their

respective sub-populations: the proportion of surviving cells is determined by the frac-

tion of resistant cells in the sub-population at that time - a function of the equilibrium

frequency of resistance assigned at t = 0 (p) - and any resistance subsequently lost or

gained in the shared expansion stage.

Whilst I model death due to treatment in this deterministic fashion, all of the drug-

induced death nearly exclusively precedes the end of Passage 1. The only scenarios

where there are additional deaths due to treatment beyond the first drug-kill step are

when the switching rate from resistant to sensitive is high (e.g. σ = 0.1 in Figure 3.13).

Here, enough cells have reverted to the sensitive phenotype by the next drug-kill step
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(∆tDT ) that there is a detectable decrease in the population following the next drug-

kill step. As the direction of sensitive to resistant evolution in the ’cost of resistance’

scenarios (δ > 0 - bottom row, Figure 3.13) is unidirectional and the death due to drug

is deterministic, there is no analogous decrease (e.g. δ = 0.1).

3.7.2 Distinguishing Evolutionary Scenarios with Lineage Distribu-

tions

The next step is to compare different evolutionary scenarios using the summary statis-

tics I have chosen (discussed in section 3.6) that capture within- and between-population

differences in lineage success; qD and qD(β). Due to reasons outlined earlier, for now

I focus solely on the lineage distributions in Passage 2. The control replicates provide

useful null expectations for lineage distributions in vitro; relative to the drug-treatment

replicates, we expect selection to be weak as cells evolve in standard culture conditions.

I therefore simulate the control treatment in silico by assuming uniform birth and death

rates - neutral dynamics. I previously made some simple predictions given these dynam-

ics by comparing simulated distributions to analytical solutions (Section 3.3). I now use

the simulated Passage 2 control distributions to set a baseline expectation for diversity

within a population’s lineage distributions, and the level of divergence between multiple

populations. Deviation from these values in the drug-treatment replicates represents

the additional change in the within and between replicate diversity measures; changes

above that expected given the biological and technical sampling steps alone.

Following the pooled control replicates’ distributions, I can now compare values

of qD and qD(β) for parameter combinations that capture an array of evolutionary

scenarios. Figures 3.15 and 3.16 shows that a large number of parameter combinations

lead to values that are indistinguishable from the control values (black points in Figures

3.15 and 3.16). These results make sense when instead highlighting each simulation

output by the equilibrium frequencies of resistance (Req) assigned at the beginning

of the simulation (Figures 3.17 and 3.18). Parameter combinations that lead to high

equilibrium fractions of resistance - namely, high values of µ, and low values of σ and

δ - are unaffected by drug-treatment, and therefore lineage relationships are simply
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Figure 3.13: Example drug-treatment population trajectories for simulations where

values of µ = 10−6 - following assignment to replicates, the total population size of each

replicate sub-population was recorded at regular intervals throughout the simulation.

Non-genetic sources of phenotypic variability simulations (σ > 0.0 - top row) and cost

of resistance simulations (δ > 0.0 - bottom row) where colour correspond to different

values of σ and δ. Columns correspond to simulated passage number. The carrying

capacity of the sub-populations has been marked in each panel (red-dashed line).
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Figure 3.14: qD (within-replicate lineage diversity) vs qD(β) (between-replicate lin-

eage diversity dissimilarity) of order q = 2 for the combined simulation’s control (CO)

replicates for all combined simulation outputs (σ and δ > 0.0).

governed by the underlying birth-death process, as in the control replicates. Adopting

these parameter values makes little biological sense as cells do respond to therapy in

vitro. There are also combinations of parameters that consistently lead to too few

resistant cells at the onset of drug-treatment for any cells to survive the experiment

(blank panels in Figures 3.15 and 3.16). Again, these parameter values that consistently

lead to extinction are of little interest; scenarios where all cells are killed by the drug-

treatment aren’t observed in the in vitro experiment.

First, I can exclude the scenarios that are indistinguishable from the control treat-

ment dynamics. Secondly, although there are differences amongst the remaining pa-

rameter combinations, it is difficult to compare like-with-like: it isn’t clear which com-

binations lead to different levels of resistance in the population at treatment onset.

Figure 3.19 therefore instead organises parameter combinations so that rows now corre-

spond to simulations that share an equilibrium frequency of resistance (Req). I expect

these simulations (rows for a given Req) to have similar ratios of resistant:sensitive cells

when drug-treatment begins. Indeed, the value of qD agrees with this prediction, where
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Figure 3.15: qD (within-replicate lineage diversity) vs qD(β) (between-replicate lineage

diversity dissimilarity) of order q = 2 for the combined simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: rows are different values of µ, whilst columns and the colour of points correspond

to different values of σ. The black points in the bottom RHS of each individual panel

correspond to the combined simulations’ control treatments’ mean values.
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Figure 3.16: qD (within-replicate lineage diversity) vs qD(β) (between-replicate lineage

diversity dissimilarity) of order q = 2 for the combined simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: rows are different values of µ, whilst columns and the colour of points correspond

to different values of δ. The black points in the bottom RHS of each individual panel

correspond to the combined simulations’ control treatment mean values.
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Figure 3.17: qD (within-replicate lineage diversity) vs qD(β) (between-replicate lineage

diversity dissimilarity) of order q = 2 for the combined simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that

was run using the combination of parameters that control the resistant phenotype’s

evolution: rows are different values of µ, whilst columns correspond to different values

of σ. The colour of points are a given parameter combination’s equilibrium frequency

of resistance, Req (0.0 − 1.0). The black points in the bottom RHS of each individual

panel correspond to the combined simulations’ control treatment mean values.
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Figure 3.18: qD (within-replicate lineage diversity) vs qD(β) of order q = 2 for the

combined simulation’s Passage 2 drug-treatment (DT P2) replicates. Any given panel

corresponds to a simulation set that was run using the combination of parameters

that control the resistant phenotype’s evolution: rows are different values of µ, whilst

columns correspond to different values of δ. The colour of points are a given parameter

combination’s equilibrium frequency of resistance, Req (0.0 − 1.0). The black points

in the bottom RHS of each individual panel correspond to the combined simulations’

control treatment mean values.
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Figure 3.19: qD (within-replicate lineage diversity) vs qD(β) (between-replicate lineage

diversity dissimilarity) of order q = 2 for the combined simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that

was run using the combination of parameters that control the resistant phenotype’s

evolution: columns correspond to different values of µ, whilst rows correspond to values

of σ (top panels) or δ (bottom panels) that lead to the same equilibrium frequencies

of resistance (Req). The colour of points correspond to a simulation’s values of σ and

δ. The black points in the bottom RHS of each individual panel correspond to the

combined simulations’ control treatment mean values.
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combinations that lead to smaller equilibrium frequencies (moving from the top to the

bottom of Figure 3.19) lose more lineages to treatment, captured by smaller values of

within-replicate qD. At lower values of σ and δ, the differences between evolutionary

scenarios (different panels in Figure 3.19) appear to be negligible; the dynamics in these

cases are dominated by the lineages that were assigned pre-existing resistance according

to the equilibrium frequency, Req. The low values of µ, σ and δ mean the probability

of the phenotype switching per-division is low. The correlation between phenotype and

lineage identity assigned at t = 0 remains high. Resistance is therefore shared amongst

replicates following the mutual expansion step. The levels of dissimilarity between

lineages following treatment therefore remain low (Figure 3.19).

Even when comparing evolutionary scenarios with identical equilibrium frequencies

of resistance, some differences in values of qD vs qD(β) do emerge. Specifically, these

differences are largest when Req is small, and values of σ or δ are high. These differences

follow our expectations if we consider how these values influence the distribution of

resistance amongst lineages during the shared expansion step. For high values of σ,

the high number of cells that transition from resistant to sensitive per-division mean

the proportion of the population’s cells that are resistant become distributed widely

amongst all extant lineages. For high values of δ, the fitness cost paid by cells bearing

the resistant phenotype mean here, too, resistant is spread widely amongst lineages. To

highlight these differences, Figures 3.20 and 3.21 show simulations where values of µ and

δ (3.20) or µ and σ (3.21) lead to the same equilibrium values of resistance (Req). The

top panel in each figure’s two scenarios correspond to the distribution of resistant cells

amongst all lineages that contain at least one resistant cell. Here, it is clear that, whilst

each group has a similar proportion of resistance in the entire expanded population

(LHS relative frequency columns in each plot), in the scenario where either δ or σ is

high (top three panels in each figure), resistant cells are spread more evenly amongst

numerous lineages (n.b. the log-scale for the counts). As such, it is much more likely

that the resistant lineages sampled into each example replicate (‘Replicate 1 & 2’ in

Figures 3.20 and 3.21) are unique to each replicate. Alternatively, if the phenotypic

transition rates or fitness cost are low (the bottom three panels in each figure), a few
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lineages consist of all of the resistant cells in the expanded pool, and the probability of

these same lineages being sampled into each replicate is high.

In the scenarios where resistance is spread evenly amongst different lineages, follow-

ing drug-treatment, there is a high probability different resistant lineages now become

successful in each replicate, engendering between-replicate dissimilarity in lineage di-

versity (high qD(β) - e.g. panels where σ = 0.1 and δ = 0.25 in Figure 3.19). In the

scenarios with high values of σ and δ and high values of µ (≥ 10−5), the high equi-

librium frequencies of resistance mean there are many resistant lineages consisting of

numerous cells. This renders the evolutionary dynamics highly repeatable. However,

as µ decreases (µ < 10−5) high values of σ and δ lead to lower equilibrium frequencies

(Req). The dynamics become more stochastic, as illustrated by the increasing vari-

ance in values of qD(β): a resistant mutation occurring early in the shared expansion

stage will have a higher probability of being sampled into multiple replicates, which

will increase between-replicate similarity (and decrease qD(β)) post-treatment.

3.8 Non-Deterministic Drug-Induced Death

So far I have discussed models where drug-treatment is simulated as an instantaneous,

deterministic process: resistant cells (R = 1.0) are killed with probability 0.0, and sen-

sitive cells (R = 0.0) are killed with probability 1.0. One drawback of this model is

that it is impossible to recreate the growth kinetics of the corresponding in vitro exper-

iment. That is, when death is deterministic, the selection for the resistant phenotype

occurs exclusively during the first drug-kill step. Subsequent applications of the drug

(in silico) only kill additional cells in the rare cases where σ is high enough that enough

cells have reverted to sensitivity in the interim. In reality, metronomic chemotherapy

using concentrations adopted in the in vitro experiment leads to observable cell death

for numerous additions of treatment, not just the first.

A remedy to this feature of the model is to introduce variability into the process

where cells are killed by drug-treatment. This could operate via two possible mech-

anisms: in the first, the resistance phenotype could be converted into a continuous

trait, where the probability of death due to drug-treatment is now proportional to the
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Figure 3.20: Simulated distributions of resistant and total cells in lineages in i) an

expanded pool (top panel in each scenario), and ii) two sub-sampled replicates (bottom

two panels in each scenario) - for two evolutionary scenarios: either µ = 10−5 and

δ = 0.25, or µ = 10−7 and δ = 0.0025. Only lineages that have at least one resistant cell

in the expanded population are shown. The colour proportion of each bar correspond

to the total number of cells (green) and number of resistant cells (red). The frequency

of the total population that is resistant is shown on the LHS of each panel, whilst the

RHS shows the proportion of individual resistant lineages that express the resistant

phenotype. Lineages where resistant cells are sampled into at least one replicate are

highlighted by those that are either unique (orange points) or shared in each replicate

(blue points).
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Figure 3.21: Simulated distributions of resistant and total cells in lineages in i) an

expanded pool (top panel in each scenario), and ii) two sub-sampled replicates (bottom

two panels in each scenario) - for two evolutionary scenarios: either µ = 10−5 and

σ = 0.10, or µ = 10−7 and σ = 0.0010. Only lineages that have at least one resistant cell

in the expanded population are shown. The colour proportion of each bar correspond

to the total number of cells (green) and number of resistant cells (red). The frequency

of the total population that is resistant is shown on the LHS of each panel, whilst the

RHS shows the proportion of individual resistant lineages that express the resistant

phenotype. Lineages where resistant cells are sampled into at least one replicate are

highlighted by those that are either unique (orange points) or shared in each replicate

(blue points).
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‘strength’ of a cell’s resistance; the second possible approach could instead assume that

there is some underlying stochasticity in whether drug-treatment kills any cell, whilst

the resistance phenotype decreases this probability by some fraction. I choose to imple-

ment the second of these two mechanisms. It permits a range of hypotheses regarding

how the phenotype governs resistance with the addition of just a single parameter: at

one end, cells are equally likely to be killed irrespective of the chosen phenotype I choose

to label ‘resistance’. At the other extreme, the stochasticity could be tuned to 0.0, and

the model reverts to the deterministic approach. Furthermore, this approach limits the

model complexity to one extra parameter.

Had I chosen the first of the two possible mechanisms, choosing how a population’s

resistant phenotypes are distributed amongst individuals would be contingent on several

further biological assumptions. I argue the model remains more tractable if I continue

to model the resistant phenotype as a binary trait. Finally, if we assume that drug-

treatment exerts a strong selective pressure, the demarcation of cells as resistant or

sensitive becomes more appropriate as the proportion of mildly resistant cells that

might have otherwise survived decreases.

3.8.1 Modelling Stochastic Drug-Induced Death

To model the stochastic component of drug-induced death, I introduce the parameter ψ.

Drug-treatment is still imposed as an instantaneous event in the drug-treatment repli-

cates. However, opposed to resistant cells being killed with probability 0.0, and sensi-

tive cells being killed with probability 1.0, resistant cells are now killed with probability

(0.0 + ψ) and sensitive cells are killed with probability (1.0 − ψ), where ψ ∈ [0.0, 0.5].

When ψ = 0.0, the simulation reverts to the deterministic model. When ψ = 0.5, cells

are killed with probability 0.5, irrespective of their phenotype. As such, I can tune

the contribution that a cell’s resistant phenotype contributes to the chance of survival

during drug-treatment by varying ψ.

The following results were derived by setting ψ = 0.3. The remaining simulation

parameters are unchanged form the previous results.

By introducing a probability that sensitive cells can survive a drug-treatment step -
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Figure 3.22: A schematic outlining the implementation of the stochastic component of

drug-induced death. Sensitive cells are shown in orange (R = 0.0) and resistant cells in

blue (R = 1.0). Drug-killing is determined by a cell’s phenotype and the parameter ψ.

ψ = 0.3 - the number of cells that survive the initial pulse are now more similar across

parameter ranges (Figure 3.23): the proportion of cells that survive the first treatment

step is no longer just a product of Req (the equilibrium frequency of resistance), but

is now (Req(1 − ψ) + (1 − Req)ψ) (as illustrated in Figure 3.22). As before, the time

taken for all cells to fill each flask is protracted in scenarios where the probability of

reverting to the sensitive phenotype is high (e.g. σ = 0.1) or the relative fitness cost

of the resistant phenotype is high (e.g. δ = 0.25). However, the replicates now take

longer to fill each ‘flask’ as, even when all cells are resistant, each treatment step has a

chance to kill resistant cells with probability ψ.

Despite the relatively generous introduction of a stochastic element into the drug-

kill steps (ψ = 0.3), the majority of evolutionary scenarios lead to highly similar results

(Figure 3.19 and Figure 3.24). It appears in most cases within- and between-replicate

diversity is primarily governed by the distribution of resistance amongst lineages at

the time of sampling the expanded cells into the respective replicates, and relaxing the

stringency with which sensitive cells are killed by treatment has little impact on qD

and qD(β). However, unlike the deterministic results, there are now scenarios where an

equilibrium frequency of Req = 0.0 (no resistant cells are present at t = 0.0) that lead

to simulation iterations that survive drug treatment (Figure 3.24). Here, as illustrated
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Figure 3.23: Example drug-treatment population trajectories for simulations where val-

ues of µ = 10−6 where ψ = 0.3 - following assignment to replicates, the total population

size of each replicate sub-population was recorded at regular intervals throughout the

simulation. Non-genetic sources of phenotypic variability simulations (σ > 0.0 - top

row) and cost of resistance simulations (δ > 0.0 - bottom row) where colour correspond

to different values of σ and δ. Columns correspond to simulated passage number. The

carrying capacity of the sub-populations has been marked in each panel (red-dashed

line).
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Figure 3.24: qD (within-replicate lineage diversity) vs qD(β) (between-replicate lin-

eage diversity dissimilarity) of order q = 2 for the combined simulation’s Passage 2

drug-treatment (DT P2) replicates where ψ = 0.3. Any given panel corresponds to a

simulation set that was run using the combination of parameters that control the re-

sistant phenotype’s evolution: columns correspond to different values of µ, whilst rows

correspond to values of σ (top panels) or δ (bottom panels) that lead to the same

equilibrium frequencies of resistance (Req). The colour of points correspond to a simu-

lation’s values of σ and δ. The black points in the bottom RHS of each individual panel

correspond to the combined simulations’ control treatment mean values.
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by the high variance in values of qD and qD(β) the dynamics are highly stochastic;

differences in lineage distributions are contingent on the emergence time of resistance

mutations. The probability that sensitive cells can survive the drug-treatment steps now

provides an additional window of opportunity following the first treatment stage for cells

to transition to the resistant phenotype (controlled by µ). In some cases, the resistant

mutation occurs early in the mutual expansion stage and is subsequently sampled into

all replicate flasks, leading to high levels of between-replicate lineage similarity and

correspondingly low values of qD(β). These early occurring resistance mutations also

come to dominate the flask, leading to low within-flask diversity (qD). However, in the

replicates with late-emerging mutations, they occur late in the expansion stage or within

a flask and, therefore, the chance of being shared amongst replicates is highly unlikely.

Furthermore, in these late-emerging replicates, numerous sensitive cells have been able

to reach appreciable frequencies and contribute to the final within-replicate diversity.

These dynamics lead to high levels of between-replicate dissimilarity (captured by high

qD(β)) and relatively high values of within-flask diversity (qD).

In these highly stochastic scenarios (top left panels in Figure 3.24), it is worth

noting that the dynamics constrain the possible outputs in summary-statistic space

(qD vs qD(β)). It is possible to have high within-replicate diversity (qD) but also high

between-replicate differences (qD(β)) (top RHS of statistic space) if mutations occur

late; replicates can also have low within population diversity and low within replicate

diversity if the mutations occur early (bottom LHS of statistic space); however, it is not

possible to have many, shared lineages after the treatment bottlenecks (bottom RHS of

statistic space).

3.9 Discussion

The results in this chapter have built theoretical expectations for lineage distributions

under a diverse array of evolutionary scenarios. These different scenarios are encoded in

the different switching rates between phenotypes (µ and σ), or the fitness cost incurred

by the resistant phenotype (δ). Previous studies that have simulated the evolution of

drug resistance during an in vitro experiment have often assumed some pre-existing
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Figure 3.25: An illustration of how qD and qD(β) (within- and between-replicate diver-

sity, respectively) change depending on the distribution of lineages amongst replicate

flasks (smaller coloured arrows and density regions). In turn, the large arrows adjacent

to the x and y axes illustrate how different mechanisms of phenotypic evolution lead to

different values of qD and qD(β).
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probability of resistance and some de novo mutation rate for mutations that confer

resistance. However, these notions assume that the population is gradually approaching

a state of pure resistance. They therefore have important consequences when modelling

lineages’ response to treatment in vitro: if cells are only ever transitioning from a

sensitive to a resistant phenotype, the dynamics that emerge are contingent on the

cell divisions experienced prior to the experiment. However, this assumption is rarely

referenced, and the expansion time prior to the experiment therefore receives little

attention (for example, Oren et al. 2021; Bhang et al. 2015).

Here, I have implemented a model that closely mirrors the design of my in vitro

experiment. Furthermore, where equilibrium frequencies of a resistant phenotype are

assigned to cells at the experiment’s beginning, determined by the parameter combi-

nation in question. In many cases, where the rates are too low to lead to changes in

phenotype prior to treatment, these dynamics are indistinguishable from the simpler,

‘pre-existing resistance’ model: lineages which succeed during treatment are those that

were resistant at the time of lineage tagging. However, the proportion of resistant cells

assigned at the start are now no longer arbitrary, but rather the product of the biological

processes acting to produce and maintain differences in the resistance phenotype.

Scenarios where forces act to maintain the resistant phenotype at low frequencies -

either a high phenotypic switching reversion rate to sensitivity, or a high fitness cost -

leave distinct signatures in the combined within- and between-replicate lineage distribu-

tions: these dynamics mean each lineage has a low probability of harbouring numerous

resistant cells. After sampling into separate replicate sub-populations and applying

treatment, these dynamics are captured by high between-replicate differences. Such

differences highlight the power of experimental evolution: namely, applying selection

pressures on distinguishable, related individuals in parallel. Fortuitously, modes of resis-

tance evolution highly similar to these readily discernible scenarios have been observed

in vitro. High phenotypic switching rates from resistant to sensitive are analogous to

transient phenotypic states highly refractory to treatment, as seen in in vitro models of

melanoma (Shaffer, Dunagin, et al. 2017). Meanwhile high relative fitness costs of the

resistant phenotype can mimic dormant, slow-cycling cells that have also been observed
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to provide a reservoir of treatment resistant cells (Russo et al. 2021; Oren et al. 2021).

By relaxing the assumption that death incurred due to drug-treatment is determinis-

tic, the range of parameter values that are not lost to extinction increased. Surprisingly,

the signatures left in the lineage distributions in the deterministic (ψ = 0.0) and partly

stochastic case (ψ = 0.3) were strikingly similar. It appears that even given a generous

probability of surviving each ‘treatment step’, repeated bouts of selection mean that

the same dynamics emerge within and between replicates. In the partly stochastic case,

sensitive cells that still survive therapy provide an additional window of opportunity

for resistance to evolve. Specifically, the scenarios where the equilibrium frequency of

resistance was previously too low to provide a sufficiently large number of resistant cells

when the drug-treatment steps began can now potentially accrue resistant cells in the

windows in between treatment steps. The stochastic nature of this subset of simulations

is evident in the high variance of the two summary statistics, qD and qD(β).

Here I have chosen arbitrary birth and death rates (partly informed from previ-

ous studies) to observe the dynamics under various evolutionary scenarios. In Results

Chapter 3, I develop a Bayesian model that leverages information in the non-treated

replicates to infer the birth and death rates of my cell-lines. Subsequently, in Results

Chapter 4, I will compare the theoretical expectations of the lineage distributions devel-

oped here to the observed, sequenced distributions derived from the in vitro experiment

in my two chosen colorectal cancer cell-lines, HCT116 and SW620.
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Chapter 4

Results Chapter 2 - Optimising

and Characterising Lineage

Tracing and Drug-Treatment of

Colorectal Cancer Cells In Vitro

4.1 Summary

Here I outline a variety of experiments undertaken to optimise the use of the barcoding

lineage tracing technique in vitro as a means to investigate the evolutionary dynamics of

drug resistance. As the complex barcode plasmid pool had to be expanded in-house, the

behaviour of the lineage markers were assessed in my chosen colorectal cancer cell-lines

(HCT116 and SW620 ), whilst the plasmid pool itself was sequenced to a high depth

to ensure complexity had been maintained. The models I have developed to resemble

the dynamics of barcoded cells in vitro (see Results Chapter 1 for more details) rely

on some assumptions concerning the rate at which cells have a unique lineage marker

incorporated, and the selective bottleneck experienced by cells in standard culture con-

ditions. These assumptions are tested here, empirically. Finally, before inferring specific

evolutionary scenarios by comparing sequenced with simulated lineage distributions, I

draw conclusions about the cell populations’ response to treatment by measuring the
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robustness of treatment response over time spent in vitro, and by observing cells directly

during metronomic chemotherapy exposure.

4.2 Characterising the Expanded ClonTracer Library

Figure 4.1: A nucleotide logo plot of the Expanded ClonTracer Library. The height of

each nucleotide at each position corresponds to the frequency with which it was found

in the pre-filtered sequenced barcode reads.

Figure 4.2: The cumulative frequency distribution of the unique lineages sequenced in

the amplified ClonTracer Library. The red dashed line is the cumulative distribution

given a hypothetical library with the same number of unique barcodes and identical

ratios of each lineage.

After receiving the ClonTracer complex plasmid pool, it is necessary to expand

the pool in electrocompetent bacteria to ensure there are enough barcode molecules for
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repeated rounds of viral infection (see Materials and Methods Chapter for more details).

As this step may lead to an inadvertent bottleneck that reduces plasmid diversity,

and this would alter the statistical properties of downstream lineage distributions, I

sequenced the expanded plasmid pool to a high depth. Following sequencing, where

approximately 10x106 barcode molecules were sequenced for a total of ≈ 140x106 reads,

and subsequent barcode clustering to account for PCR amplification and sequencing

errors, I identify ≈ 2.80x106 unique barcodes in the expanded plasmid pool, confirming

that the library maintained a high barcode diversity. Figure 4.1 shows the distribution

of nucleotides in the sequenced plasmid pool. The expanded library continues to adhere

to the semi-random weak-strong pattern (AT/CG) that enables stringent downstream

filtering of amplification and sequencing errors. The small proportion of barcodes that

do not adhere to the pattern (≈ 100, 000, or 5% of the total sequenced reads, not visible

in the logo plot - the distribution shown is prior to filtering for the weak-strong pattern)

is promising evidence that the majority of observed barcode reads are ‘real’. Finally,

there appears to have been very little bias introduced into the distribution of unique

barcode lineages during the expansion process (Figure 4.2). Whilst due to the nature

of the plasmid library production a skew in lineages is unavoidable, Figure 4.2 shows

that the expanded library does not deviate strongly from a hypothetical library where

all unique lineages are found at identical frequencies.

4.3 Investigating Barcode Infection Rate Assumptions

To ensure that the majority of barcodes contain a single, unique barcode, a low multi-

plicity of infection (0.1) was adopted when infecting cells with the lentivirus. Assuming

barcode integration follows a Poisson distribution (where λ = 0.1), over 95% of in-

fected cells will contain a single barcode. To ensure that the optimisation experiments

that set the multiplicity of infection had been successful, single cell colonies from each

cell-line were isolated from the barcoded pool of cells and then were allowed to expand

for several weeks. Figure 4.3 shows the relative frequency of reads that contained a

unique barcode sequence in each of these expanded colony samples. The majority of

single colony samples do contain one, dominant barcode, and these reads adhere to
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the semi-random nucleotide sequence expected in the ClonTracer barcodes. The large

number of low frequency read that do not adhere to this pattern highlight the utility

of this filtering step. Most of the reads that do not belong to the dominant barcode

are found at frequencies too low to pass the full filtering steps used later: any read

where (x/J) ∗ K < 1, where x is the observed number of reads for a given barcode,

J is the total reads for that sample, and K is the number of input cells, is removed.

Finally, whilst cells were seeded in dilutions that aimed to ensure 1cell/well, and wells

were checked by eye, there is still a small probability ‘doublet’ cells made it into wells.

That is, more than a single cell was the founder of the expanded colony. Therefore, the

number of multiple integrations inferred from figure 4.3 is likely an over-estimate.

4.4 Confirming Expected Barcode Behaviour under Sim-

ple Culture Conditions

Assuming that selection in the absence of treatment is weak, there are some simple

assumptions we can make about how the lineage distributions should be distributed.

Assuming all cells have similar proliferative potential, the birth-death process leads to a

distribution of lineages where most barcodes will be found at a low frequency, whilst the

distribution also has a characteristic long tail: a small minority of barcodes will grow

to high frequencies. The small, simple experiment under standard culture conditions

(experiment code ‘OR’) was undertaken to first ensure that the barcode distributions

adhered to these expectations. Most lineages are found at very low frequencies, even

after two passages in vitro. The distributions shift as expected, where time spent grow-

ing leads to a longer tail as some lineages grow to higher frequencies. The characteristic

‘bump’ seen near the low end of the distributions is the product of the cells being sub-

ject to a round of sampling after the growth period: a sub-sample of cells are used

for DNA extraction and barcode amplification. This behaviour can also be found in

simulated distributions subject to the same sampling processes. Selection in standard

conditions does indeed appear to be weak: by Passage 2, the most abundant barcode

is still only found at a frequency of 5x10−4. As 106 cells were used as input for these
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Figure 4.3: The read distributions of unique barcode sequences identified in expanded,

single colony samples in two colorectal cancer cell-lines: HCT116 (top panel) and SW620

(bottom panel). Colony number 1 in each panel corresponds to a control well where

approximately 100 cells were seeded. The x-axis position and size of the point cor-

responds to the relative frequency of the given barcode lineage, whilst the colour of

each point corresponds to whether the given barcode sequence follows the ClonTracer

semi-random weak-strong nucleotide pattern.

samples, this equates to only 500 cells. This high retention of diversity despite time

in culture is critical to subsequently distinguish different responses to chemotherapy in

the large, long-term drug treatment experiments.

4.5 Cell-Line Drug Response Stability In Vitro

One prediction of the model is that the cell populations used for the long-term experi-

ment are close to equilibrium frequencies of the resistance phenotype. That is, given no

selection for drug resistance, I expect the overall proportion of resistant cells to remain
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Figure 4.4: Barcode lineage distributions in HCTbc under standard culture conditions.

Panel columns correspond to replicate number, whilst rows and colours correspond to

passage number. Sequenced read counts have been filtered and normalised to relative

frequencies.

roughly equal as time progresses, aside from stochastic fluctuations due to random drift.

Figure 4.5 shows the IC50 values for the chemotherapy drug 5-fluorouracil (5-Fu) of an

early (P4/P5) and late (P14/P15) passage population of cells for each colorectal cell line

(HCT116 and SW620) used in the long-term experiment. Each cell-line’s 50% inhibition

concentration remains highly similar despite a long time in culture. As the selection

pressure of my chosen drug-treatment was absent for the period of growth, we might

expect the IC50 values to gradually increase over time if mutations that were benefi-

cial to standard culture conditions were pleiotropically linked to those that conferred

resistance, or if the resistance phenotype was not costly and was subject to significant

levels of drift in the time window observed. The relative stability of the IC50 values

supports the hypotheses that the proportion of resistant cells used for the initiation of

the long-term evolution experiment has reached some phenotypic equilibrium, opposed

to the cells being in the process of rapidly traversing some fitness landscape.
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Figure 4.5: IC50 values for the drug 5-fluorouracil (5-Fu) in two colorectal cancer cell-

lines: HCT116 and SW620 for early (P5 and P4) and late (P15 and P14) passage

cell populations. The grey ribbon corresponds to the 95% confidence interval of the

drug-response curve fit to the viability data. Error bars show +/-std.dev away from

the observed viability mean per concentration. The estimated IC50 values are shown

with the red dashed line and the 95% confidence interval by the black dotted lines.
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4.6 Observable Culture Dynamics during Drug-Treatment

In Vitro

Prior to sequencing barcodes from cultured cells that have been subjected to metro-

nomic chemotherapy treatment in vitro, I observed their behaviour with bright-field

microscropy. Even at this stage, there appeared to be differences in each cell-line’s

response to treatment. As cells are initially seeded at a relatively low density, after a

period of time in culture, the position of cells on the bottom of a flask can be used as a

coarse metric of relatedness: cells are adherent and grow out into adjacent, free space.

Proximal individuals are therefore likely to be descendants of the same cell.

In HCTbc, the majority of cells died during the first few pulses of chemotherapy

treatment. The remaining cells were larger and more irregular in shape (HCTbc - DT

early in Figure 4.6) than their untreated counterparts (HCTbc - CO in Figure 4.6).

Eventually, however, cells that resemble the untreated cells in the control replicates

emerged in ‘colony outgrowths’. These appear to emerge with surprisingly regularity

(both between replicates within an experiment, and between experiments) and continue

to populate the flask despite ongoing treatment.

In contrast, the SW6bc cells show a more uniform response to treatment: many cells

appear following treatment with chemotherapy, however the regrowth in the recovery

periods also appears more evenly distributed. The cells also appear more similar in

appearance to their untreated contemporaries in the control replicates (SW6bc - CO vs

SW6bc - DT early and late in Figure 4.6). This difference in each cell-line’s response

is also clear when observing the lineage trajectories for each experiment (Figure 4.6): the

HCTbc drug-treatment replicates take much longer to populate most of the flask than

the corresponding SW6bc drug-treatment replicates, as highlighted by the differences

between Passage 0 and Passage 1 in Figure 4.6. The lineage trajectories also reveal

slight differences between the two experiments. The drug-treatment replicates take

longer to recover from treatment in the ‘QR’ Passage 1 than the corresponding samples

in the ‘PR’ experiment. Although the aim was to maintain the conditions between the

two experiments as consistent as possible, it is possible that on the time-scales necessary

for resistance evolution stochastic differences led to a slightly more stringent bottleneck
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Figure 4.7: The total cell lineage trajectories for the two long-term drug-treatment

experiments: ‘PR’ (for a total of 2 passages - top 4 panels) and ‘QR’ (for a total of 5

passages - bottom 4 panels).

in the second ‘QR’ experiment.

4.7 Barcode Clustering Method Comparisons

When amplifying and sequencing the semi-random nucleotide sequences (the barcodes),

errors are introduced due to the incomplete fidelity of the polymerases used. As such,

a crucial step in the bioinformatic pipeline when analysing the barcode sequences is

a ‘clustering’ step, where statistical software attempts to ‘un-do’ the errors. As the

adoption of lineage tracing experiments that employ barcoding technology have grown,

several programs have been published that cluster sequences to produce a list of pu-

tative, true ‘parental’ barcodes without being computationally prohibitive (the high

number of unique reads usually precludes calculating all pairwise distances between

sequences).
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Here, I compare three clustering methods: the software provided with the Clon-

Tracer plasmid library, used in the original publication (Bhang et al. 2015), Bartender

(L. Zhao et al. 2018) and Starcode (Zorita et al. 2015). The clustering methods were

compared using simulated barcode reads: a distribution of barcodes was derived using

the birth-death simulation, where N0 = 105, ∆t = 6.0, b = 0.8 and d = 0.2. The

barcode identities were then converted into semi-random nucleotide sequences that ad-

hered to the semi-random nucleotide pattern, with universal adjacent primer sequences.

These nucleotide sequences then had errors introduced with rate 0.005/bp (a purpose-

fully ‘noisy’ rate to assess the clustering methods with difficult sequences). Finally,

these sequences were passed to a NGS simulator (ART: Huang et al. 2012) to produce

FASTQ files with error profiles similar to those expected from an Illmina sequencer.

The ClonTracer method (herein ‘ClonTracer’) has no parameters that influence

the clustering method. Therefore, only one clustered distribution was used for the

comparison. Both Bartender and Starcode have a ‘cutoff’ parameter that removes any

sequence found < c times. This was set to 1 in both methods. These two methods

also have a ‘distance’ parameter, d, that dictates the maximum number of mismatches

between two putative clusters that can be merged. This was set to 2 in both methods.

Finally, each method has a parameter that controls the stringency of clustering: in

Bartender, this is controlled by z, where higher values result in more generous clustering

(L. Zhao et al. 2018); in Starcode, this is controlled by r, where smaller values result

in more generous clustering (Zorita et al. 2015).

The results of the clustering method comparisons are shown in Figures 4.8 and 4.9.

Bartender and Starcode most faithfully reproduce the true frequencies of simulated

lineage relative to ClonTracer. The ClonTracer method has the lowest dropout rate,

but also calls the highest number of false positives. Overall, Bartender calls relatively

low numbers of false positives and negatives. It also offers a high number of parameters

to control the clustering process lacking in the ClonTracer software. As such, I choose

to employ the Bartender method for all future clustering steps.
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Figure 4.8: True, simulated counts (x-axis) vs estimated clustered counts (y-axis) for

three clustering methods. Panels are labelled with the variable clustering parameter

(n.b. the ClonTracer method has no user-defined variables).

4.8 Discussion

Here I have outlined some simple experiments that validate the adoption of the lentivirus

lineage tracing technique as a suitable means to investigate drug resistance evolution

in vitro. The modelling used to infer evolutionary scenarios in the long-term drug

treatment experiments (discussed in the following section) are contingent on some as-

sumptions concerning the statistical behaviour of the barcodes.

I have shown that the expanded plasmid pool retains a high level of diversity, en-

suring I have enough unique barcode molecules to trace lineages in vitro at a high
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Figure 4.9: Comparisons of the number of false positives and false negatives for each of

the clustering methods when used to cluster simulated barcode sequences. The x-axis

correspond to user-defined clustering parameters: z in Bartender and r in Starcode

(ClonTracer has no user-defined parameters).

resolution. Nearly all sequenced molecules also adhere to the semi-random weak-strong

nucleotide pattern which assists in filtering out technical artefacts that accumulate

during DNA extraction and barcode amplification, then sequencing. Most cells contain

a single, dominant barcode post-infection. This minimises any additional statistical

adjustments that might have been necessary had the infection led to multiple integra-

tions per cell. I compare several barcode clustering techniques on simulated lineage

distributions to ensure the chosen method maximises the concurrence between true and

observable, sequenced lineage counts.

Following growth under simple culture conditions, the lineage distributions are con-

sistent with theoretical predictions (as in Results Chapter 1): under weak selection,

most lineages remain extremely rare, although as time progresses, some lineages reach

high frequencies, whilst the overall number of lineages decreases as others are lost to
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drift. To observe the lineage distributions, the barcode construct must be extracted,

amplified and sequenced on a flow-cell. The retention of high diversity even following

these technical bottlenecks also validates the experimental pipeline as a means to track

rare cell populations in vitro.
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Chapter 5

Results Chapter 3 - Inferring

Growth Rate Parameters with a

Bayesian Noise Model

5.1 Introduction

Whilst the net growth rate of a growing population, (b − d), is easy to derive by

simply comparing the change in population size, Nt −N0, in some given time window,

∆t, the turnover of the population, (b + d), is harder to infer. To faithfully recreate

the growth dynamics of cells in simulations, estimates of these growth parameters are

necessary. Estimating the death rate directly can require additional experiments that

utilise, for example, live-imaging or FACS (Johnson et al. 2019; Russo et al. 2021).

Here, I leverage information held in the initial expanded population of barcoded cells.

Cells are uniquely barcoded, then subject to a mutual shared expansion step. Sub-

samples of this expanded pool are then processed and sequenced to assess the lineage

distributions at t = 0 in the full long-term drug-treatment experiment (as illustrated in

Figure 5.1. See Materials and Methods for full experimental schematic). The variance

in the observed lineage distributions are a product of the birth-death process for a

known ∆t and subsequent technical bottlenecks (for barcode extraction, amplification

and sequencing). Here, I develop a Bayesian model that accounts for these bottlenecks
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to independently recover the birth and death rates of each colorectal cancer cell-line in

vitro; HCT116 and SW620.

5.2 Birth-Death Process

First, I can make use of the p.m.f. for the birth-death process (Bailey 1990; Durrett

2015),

pn(n) = (1− α)(1− β) · β(n−1) (5.1)

for (n ≥ 1), and

p0(n) = α (5.2)

for (n = 0), where

α =
d(e(b−d)t − 1)

be(b−d)t − d
(5.3)

β =
b(e(b−d)t − 1)

be(b−d)t − d
(5.4)

Whilst the total number of cells following the mutual expansion step is known, Nt,

this observed value is itself also a random variable that depends on (b−d) (which dictates

the mean of the total population, N̂t) and on (b + d) (which dictates the variance of

the total population, σ2Nt
). I can therefore also make use of the following (Bailey 1990;

Durrett 2015):

N̂t = N0 · (e((b−d)·t)) (5.5)

σ2Nt
= N0 ·

(b+ d)

(b− d)
· e(b−d)·t · (e(b−d)·t − 1) (5.6)

where N0 is the number of cells at t = 0. If I could observe the barcode lineage

frequencies directly, I could use a Bayesian model to infer b and d by jointly using the pn
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p.m.f. for each individual lineage, and assuming Nt ∼ Normal(N̂t, σ
2
Nt

). However, the

lineage distribution is subject to two subsequent technical bottlenecks that influence

the statistical properties of the observed, sequenced distributions.

POT

X

Figure 5.1: A schematic of the growth expansion and sampling of the POT samples used

for the Bayesian growth parameter inference. Cells are barcoded, allowed to expand for

a known ∆t and then a fraction of these expanded cells, Nt, are sub-sampled (K) for

barcode expansion and sequencing.

5.3 Sampling K Cells

The most stringent technical bottleneck is determined by the fact that I can not se-

quence all cells - I am limited by the amount of DNA it is feasible to extract and

sequence. Instead, a sub-population of cells are sampled before their DNA is extracted,

their barcode sequences amplified and finally sequenced. Whilst strictly sampling with-

out replacement, this sampling step can be modelled as a Binomial sampling step,

where, if I sample K cells from the Nt expanded cell pool, now the probability of seeing

any lineage k times is

p(k) =

Nt∑
n=0

p(k|n) · p(n) (5.7)
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where p(n) is (5.2) if n = 0 and (5.1) if n > 0, and

p(k|n) ∼ B(n = K, p =
n

Nt
) =

(
K

k

)
(
n

Nt
)k(1− n

Nt
)K−k (5.8)

However, because ( n
Nt

) << 1.0, I can instead model this step as a Poisson distribu-

tion where the probability of seeing a any lineage k times (given it is at size n in the

expanded cell pool of size Nt) becomes

p(k|n) ∼ Pois(λ) =
λke−λ

k!
(5.9)

where

λ = ((
n

Nt
) ·K) (5.10)

If I want to determine the probability of seeing a any barcode lineage k times given

the sampling K cells step, I can calculate the compound probability distribution by

marginalising over n, as in 5.7.

So, now I have derived a p.m.f. for seeing any lineage represented k times in the

total K sampled cells, given they were sampled from an expanded population of Nt

cells, cells which all had birth and death rates b and d, respectively. As I also observe

the total number of cells in the expanded pool - Nt - I can also simultaneously fit this as

a free parameter, assuming Nt ∼ Normal(N̂t, σ
2
Nt

) (which relies on b and d - see 5.5 and

5.6). Yet an additional source of technical variance remains: the variance introduced

when sampling the amplified barcode molecules on the flow-cell during sequencing.

5.4 Sampling J Reads

After amplifying and extraction, each cell’s barcode is sequenced on a flow-cell. Whilst

this process can be thought of sampling each barcode lineage ( kK · J) times, where k is

the number of times the barcode lineage is represented in the pool of K sub-sampled
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cells (as per the previous section), and J is the total number of reads assigned to this

sample on the flow-cell, again, because ( kK ) << 1.0, we can model this as a second

Poisson distribution, where

p(j|k) ∼ Pois(λ) =
λje−λ

j!
(5.11)

where

λ = ((
k

K
) · J) (5.12)

Whilst I could now construct a p.m.f. for observing j reads of a given barcode

given some underlying birth and death rates (b and d), following which the ns and ks

would be marginalised out, this nested marginalisation would not be computationally

expedient. Therefore, as the variance introduced during a Poisson sampling step is

known, I can introduce this into the p.m.f for p(k) to account for the additional known

noise introduced from the sequencing step.

5.5 Incorporating Sequencing Noise into Sampling K Cells

The expectation and variance of a Poisson where λ = (( kK ) · J) are

E[j|k] = var(j|k) = λ = (
k

K
) · J (5.13)

where I condition on k, that is, there being k cells of a given barcode lineage in

the expanded K pool of cells. To calculate the additional noise, I must determine the

variance of the compound distribution of sampling J barcode reads from K barcoded

cells, assuming p(j|k) ∼ Pois(( kK ) · J). The variance of a compound distribution,

accounting for all probabilities of p(k) , is

var(j) = E[var(j|k)] + var[E(j|k)] (5.14)
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(using the law of total variance), which becomes

var(j) =

K∑
k=0

(var(j|k) · p(k)) + (

K∑
k=0

(E(j|k)2 · p(k))−
K∑
k=0

(E(j|k) · p(k))2) (5.15)

I can therefore calculate the variance introduced when sequencing J reads from a

pool of K cells that themselves have been sampled from an expanded pool of Nt cells

with birth and death rates b and d, respectively. This extra, known variance can then be

introduced back into the p.m.f for sampling K cells by replacing the Poisson distribution

with an over-dispersed Poisson; a Negative Binomial distribution (see bottom right-

hand arrow in Figure 5.2).

The Negative Binomial can be parameterised in the following form:

p(k|n) ∼ NegBinom(µ, φ) =

(
k + φ+ 1

k

)
(

µ

µ+ φ
)k(

φ

µ+ φ
)φ (5.16)

where the first moment (the mean) is

E[k|n] = µ =
n

Nt
·K (5.17)

and second moment (the variance) is

var(k|n) = µ+
(µ)2

φ
(5.18)

As µ = ( n
Nt
·K) is the mean of the standard Poisson, we can see that the additional

variance in the over-dispersed Poisson (the Negative Binomial) is (µ)2

φ . This additional

variance can therefore be transformed into a value of φ for the negative binomial by

rearranging (5.18) as follows:

φn =
µ2

var(j|n)− µ
(5.19)
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which can be thought of as a vector of φs for each possible n.

In summary, to introduce the additional noise added to K sampled cells when se-

quenced on a flow-cell to produce J sampled reads, the Poisson distribution p(k|n) ∼

Pois(λ = (( n
Nt)·K)) can be replaced with a Negative-Binomial, p(j|n) ∼ NegBinom(µ =

( n
Nt)·K,φ = φn), where φn accounts for the additional, known variance introduced when

sampling J reads from the K cells for a lineage at size n using the transform (5.19).

Figure 5.2: A schematic of the sampling steps and probability distributions used to

infer the birth and death rates in the Bayesian model framework. Parameters in red (b

and d) are unknown parameters that are fit by the model. The bottom arrow depicts

the replacement of an explicit distribution for sampling J reads with an extra variance

term in the p(k) distribution.

Finally, as I observe the J sampled reads, it is necessary to transform them on to

the scale K, where each transformed count, k = j · KJ . I therefore have a likelihood

function for the distribution of k normalised cell counts given the unknown parameters

b and d. I subsequently fit this model within a Bayesian framework to simulated and

experimental data.

134



5.6 Bayesian Model Development and Implementation

Figure 5.3: Prior distributions on the birth (b) and death (d) parameters (units =

days−1) used for the Bayesian inference on both the simulated and experimental data.

Employing the birth-death simulation model I developed in Results Chapter 1, I

simulated several different lineage distributions using cell and read sampling numbers

similar to those used in the in vitro experiment (see Materials and Methods for the spe-

cific sampling steps). For example, as depicted in Figure 5.2, the simulations assumed

that there are 1x106 uniquely barcoded cells at t = 0. The cells are then grown for

a given ∆t, sampled K times without replacement (to simulate the sub-sampling and

extraction step) and then sampled J times with replacement (to simulate the sampling

of reads on the sequencer flow-cell). I then established a Bayesian model using the

software Stan (in R - Rstan) and the likelihood function described above. Inference

was run for 4000 iterations with 4 chains. The priors for the two parameters I aim to

infer - the birth and death rates per day, b and d - are shown in Figure 5.3.

5.6.1 Simulated Data Inference

As shown by Figure 5.4, the model does well at recovering the true birth and death rates

of the underlying cell population, despite the lineage distributions having been subject
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Figure 5.4: Posterior estimates of the birth (b) and death (d) parameters (units =

days−1) vs the true values (blue and red dotted lines in plots). The LHS panels corre-

sponds to posterior means with error bars +/- std.dev.

to subsequent sampling steps. At very low cell turnover values, the model struggles

to dinstinguish very low levels of variance introduced via the birth-death process from

those introduced due to the technical bottlenecks alone, and I therefore see slight over-

estimates the death rate. For example, Simulation Number 1 in Figure 5.4 corresponds

to a pure-birth process (d = 0). However, at rate ratios where d/(b + d) ∼ 0.04, this

slight over-estimate has largely disappeared. As I expect the true biological process in

my cell-lines to deviate from a pure-birth process (even in standard culture conditions

cell death is observed in vitro), even this slight bias is likely of little consequence in the

true, sequenced data.

5.6.2 Experimental Data Inference

For each cell-line, I harvested 3x POT samples in the ‘QR’ experiment following the

shared, mutual expansion stage (as illustrated in Figure 5.1). To infer the birth and
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death rates of each population, I simultaneously fit the Bayesian model outlined above

to all 3x replicates simultaneously. Figure 5.5 shows the observed counts for one of

the three replicates compared with the simulated distribution using 100 random draws

from the posterior distribution. Figure 5.6 shows the full posterior distributions for all

4 chains of b and d per cell-line. The net growth rate (b − d) of QR HCTbc is slightly

higher than QR SW6bc, consistent with the longer passage times observed in vitro.

Figure 5.5: Posterior predictive distributions (‘Expected’) vs observed, normalised lin-

eage counts for one of the three replicates used for model fitting for each barcoded cell

line (QR HCTbc and QR SW6bc). Expected values were simulated by randomly sampling

100 draws from the posterior distributions of b and d. The y-axis depicts the square

root of the given counts.

5.7 Discussion

Here I have developed and implemented a model within a Bayesian framework to infer

the birth and death rates of my two cell-lines. Attempts to tease apart the birth

and death rates separately have often required additional experiments, including live-

imaging or determining the number of dead cells in a given time-window with FACS

(Russo et al. 2021; Johnson et al. 2019). The variance within the observed lineage counts

- made possible by the adoption of my lineage tracing technique - holds information

on the cell turnover. As the total population size after a given period of time tells us

about the net growth rate, I have designed a model that incorporates both sources of

information to provide separate estimates of the birth and death rates.
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Figure 5.6: Posterior distributions for the birth (b) and death (d) parameters for each

barcoded cell-line (QR HCTbc and QR SW6bc). The posterior is plotted for each chain,

and the mean value is denoted by the dotted line. N̂t and σ2Nt
were also fit by the

model and the mean and std.dev of their posterior distributions are also reported in

the posterior summary tables (RHS).

Numerous studies have modelled the dynamics of resistance evolution in vitro. Due

to the difficulty in teasing apart the two, birth and death rates have either been chosen

based on previously published data (Acar, Nichol, Fernandez, et al. 2019) or have been

simulated over a broad range of possible values (Bhang et al. 2015). By developing a

model that explicitly mirrors features of my in vitro experiment - including a mutual

expansion step and two technical sampling bottlenecks: extraction and sequencing - I

recreate sampled lineage distributions where the true birth and death rates are known.

In Results Chapter 1, I illustrated that the birth death probability distribution matches

the lineage size distributions obtained from the stochastic birth-death model exactly.

Here, I validate the model inference by accurately recovering the true birth and death

rates from these simulated distributions.
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One limitation is that the model assumes that all cells within the population have

the same birth and death rates. Whilst cells instead undoubtedly have rates that

follow some distribution, in the standard culture conditions we expect selection to

be relatively weak; intra-population differences in proliferative rates should be small.

Future work could extend the model to look at subsequent time-points (from the control

replicates) and identify lineages that deviate strongly from the model’s expectations.

These deviations could then be used to infer the differences in relative fitness of the

competing lineages, and therefore quantify the selection experienced by cells in the

control conditions. Similar work in yeast has been employed to infer the distribution of

fitness effects of newly arising mutations (Levy et al. 2015).

139



Chapter 6

Results Chapter 4 - Inferring the

Evolutionary Dynamics of Drug

Resistance during Long-Term

Chemotherapy Experiments

6.1 Summary

In Results Chapter 1, I described and developed models that built expectations for

lineage distributions under various evolutionary scenarios. I designed the models to

capture important features of the in vitro experiment, including a shared mutual ex-

pansion step prior to splitting cells into respective treatment replicates, and subjecting

half of the replicates - the drug-treatment arm - to periodic drug-treatment, where

survival was contingent on a resistance phenotype. Here, I present the sequenced re-

sults from the analogous in vitro experiments, and use the evolutionary simulations

to interpret the data. For a summary of the experimental set-up and which sample

codes correspond to which replicate types, please refer to the Materials and Methods

chapter. The Experimental codes PR and QR) also correspond to those also outlined

in the Materials and Methods chapter. Briefly, the main distinguishing features of each

sequencing experiment are as follows:
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• Pulse Run 1 (PR) - Both colorectal cancer cell-lines (HCT116 and SW620 ) were

infected with the lineage tracing barcodes and grown in the drug-treatment long-

term evolution experiment design (outlined in the Materials and Methods chapter)

for a total of two passages - this included four control arms (subject to pulse vehicle

control (DMSO) treatment) and four drug-treatment replicates (subject to pulse

chemotherapy (5-Fu) treatment at IC50 values).

• Pulse Run 2 (QR) - The drug-treatment long-term evolution experiment was re-

peated in both cell-lines (HCT116 and SW620 ) to ensure the technical application

of the barcode library and the evolutionary dynamics observed were repeatable.

All experimental parameters were the same as Pulse Run 1 (PR), however the

experiment now lasted for a total of five passages.

The results sections covering both ‘PR and QR’ are prefaced with a section on

solving technical difficulties encountered when sequencing the barcode amplicons on

NGS platforms, before a detailed description of results pertinent to the evolutionary

dynamics experienced by each cell-line during drug-treatment. I show how differences in

the expected distributions of lineages within and between replicates for different modes

of resistance evolution - captured by different parameters in the models of Results

Chapter 1 - can be used to identify likely modes of evolution operating in the in vitro

data.

6.2 Identifying and Rectifying Technical Artefacts in Se-

quenced Lineage Distributions

In each of the Pulse Run Experiments, when comparing the distribution of barcode

lineages between samples, an unexpected relationship was observed. In both sequencing

outputs, barcode lineages that rose to a high frequency in the drug-treatment replicates

were also found in putatively unrelated replicates - namely, control replicates in the

opposing cell-line - at a frequency that was strictly proportional to their frequency

in the drug-treatment replicate. This pattern had no feasible biological explanation,

and the strict concordance of the relationship hinted at a technical artefact that was
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occurring following the cell barcode DNA extraction and amplification, and was hence

avoiding the noise introduced during these technical preparation steps. Additionally,

in the PR experiment, this effect was most noticeable when comparing samples that

shared either a forward or reverse multiplexing index, further supporting a technical

effect that was occurring during sequencing.

6.2.1 PR Experiment

The clearest pattern that supported a technical artefact in the PR sequencing ex-

periment was the lineage distribution relationship between two biologically unrelated

samples. For example, as barcoding the cells was repeated independently for each cell

line, we would not expect any correlation between successful barcodes in a passage 2

control sample in SW620 (PR SW6bc COi P2) and a drug-treatment passage 2 sample

in HCT116 (PR HCTbc DTi P2). Yet certain comparisons of this nature yielded strong

correlations. Confirming the technical nature of these inter-sample correlations, com-

parisons that didn’t share a forward or reverse index did not yield such a relationship

(indexes are unique nucleotide sequences incorporated into a sample’s amplified barcode

sequences to multiplex on a sequencing flow-cell).

The most parsimonious explanation for these patterns is a sequencing phenomenon

known as ‘index-hopping’ (Costello et al. 2017). This occurs when sequence-able

molecules incorporate a different forward or reverse index than the one they were as-

signed. As samples were distinguished via different combinations of forward and reverse

indexes, this led to reads being wrongly assigned to a different sample if they shared

the remaining forward or reverse index. Of note, these patterns are particularly con-

spicuous in my data due to certain drug-treatment samples having a few lineages that

dominate the sample. These samples contain many millions of identical reads which,

due to the index-hopping occurring proportional to any given barcode’s read count, left

an observable signature when ‘hopping’ into other samples. Fortunately, the ‘hopping’

process appeared to be repeatable when comparing biologically unrelated samples that

either shared a forward or reverse index, and the conspicuous patterns in comparisons

that contain extremely high frequency lineage counts provideded a means to estimate
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the rate at which index-hopping occurs. Therefore, to derive estimates of this rate , I

made use of the following relationship:

fj = nj + p(fk) (6.1)

where sample j is a control-treatment replicate that shares either a forward or

reverse index with sample k, a biologically unrelated drug-treatment replicate. fj is

the observed frequency of a barcode in sample j, p is the index-hopping probability,

nj is the ‘true’ frequency of a barcode in sample j prior to index-hopping, and fk is

the observed frequency in the drug-treatment replicate. To infer the hopping rate, I

restricted myself to only using barcodes with an extremely high count in the drug-

treatment replicates (fk), as it is when comparing these lineages that the hopping

signature was most noticeable.

To estimate the index-hopping rate from these specific comparisons, I made some

assumptions. The first is that, because nj << nk, and because the comparison is

between two biologically unrelated samples, I can derive an estimate by assuming nj ≈

0. The second is that, because fk >> 0, I can assume that fk ≈ nk. That is, I can

assume that the index-hopping had a negligible impact on the observed count in the

drug-treatment sample barcodes that were found at an extremely high relative frequency

(often > 10−2).

After inspecting some different estimates of p for different index-combinations, it

appeared that index-hopping occurred at slightly different rates depending on whether

samples shared a forward or reverse index. Therefore, estimates of p were estimated

separately as pfwd and prev for forward and reverse indexes, respectively. By rearranging

(6.1), I derived estimates of pfwd and prev for various sample comparisons. I then ‘un-

hopped’ these samples (described below), and compared the distributions of the new

values of nj . If these were too positive, the hopping signature remained, whilst too

negative was interpreted as an over-estimate of the hopping rate.

Now that I had derived estiamtes of pfwd and prev using the biologically unrelated
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sample comparisons, I could use these rules to ‘undo’ the hopping signature in biologi-

cally related samples. I assumed that the probability any given barcode molecule could

hop into another sample can be represented by a probability matrix, M , where Mjk

corresponds to the probability of any given barcode molecule hopping from sample j

into sample k. If j = k, the probability equals the complement of the probability of

hopping into all other samples one index away,

Mjk = 1− (

Kfwd∑
kfwd=1

prev +

Krev∑
krev=1

pfwd) (6.2)

where Kfwd is the number of samples that are one forward index away, etc.

Therefore, finally, the relationship between observed counts and the putative ‘true’

counts prior to index-hopping in the ith sample can be described by the two vectors fi

and ni and the probability matrix M ,

fi = ni ∗M (6.3)

and I can rearrange to give the counts of each barcode, i, prior to hopping,

ni = fi ∗M−1 (6.4)

To ‘un-do’ the hopping for all samples simultaneously, I repeated this process for

each barcode and then used the corrected counts for downstream barcode clustering

and statistical analysis.
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Figure 6.1: A comparison of two biologically unrelated samples: HCTbc CO1 P1 and

SW6bc DT1 P5. The plot on the LHS compares samples that were samples on the same

flow-cell (HCTbc CO1 P1 is a technical replicate), whereas the plot on the RHS compares

the two samples that were sequenced on different flow cells. Points are highlighted by

whether they were shared between or unique to each sample in the respective compar-

isons.

6.2.2 QR Experiment

As a remedy to the index-hopping problems encountered in PR, I employed unique-dual

indexes when sequencing samples in QR. These avoid the issue by assigning each sample

a unique pair of both forward and reverse indexes. If a sample now wrongly incorporates

a different forward or reverse index, it is now no longer correctly de-multiplexed and

excluded from downstream analysis. Despite this technical modification, there were

still slight signatures of a similar phenomenon occurring when comparing biologically

unrelated samples, analogous to the comparisons outlined above. In fact, it was clear

that this process now occurred on the sequencing flow-cell due to the sample layouts of

my technical replicates: when one sample had a very high frequency of a few barcodes

(drug-treatment replicates), biologically unrelated samples compared within a flow-cell

exhibited the ’hopping’ signature (purple highlighted box in Figure 6.1), whereas the
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same two samples that were sequenced on different flow-cells no longer displayed the

relationship. Whilst the issue appeared much less severe than in the ‘PR’ experiment,

the lack of any obvious relationship between index identity and hopping probability

meant the solution had to be more general. The remedy involved making a list of

‘trouble barcodes’ that were found in any sample at a frequency > 10−2 - the problem

was dominated by barcodes found at these high frequencies. If any of these ‘trouble

barcodes’ were found in another sample at a frequency < 10−4, they were filtered

out prior to downstream analysis. If the barcodes were found in another sample at a

frequency > 10−4, it was assumed that this observation was much more likely to be a

real, shared observation. Whilst this process likely discards some true, low frequency

barcode observations that are shared between samples, these low-frequency lineages will

contribute little to the population’s response to therapy. Furthermore, my adoption of

diversity indices which can leverage high frequency barcodes diminishes the contribution

of any residual technical mistakes missed by this filtering step.

6.3 The Dynamics of Drug Resistance Evolution

Following these filtering steps that rectify the technical artefacts that might influence

the statistical behaviour of the barcode distributions, I now investigate the character-

istics of the lineage distributions when comparing different replicates, treatments and

experiments. I can now also make direct comparisons between my observed, experimen-

tal data with the theoretical assumptions developed in Results Chapter 1 to infer which

evolutionary scenarios are driving the in vitro response to chemotherapy treatment in

my two colorectal cell lines.

6.3.1 Cumulative Lineage Distributions Reveal Sample-Specific Bot-

tlenecks

To compare the within-sample differences in lineage success, we can plot the cumulative

frequency distributions: how many barcodes do we need to observe (x-axis) to have

captured some cumulative proportion of the entire sample (y-axis). The shape of each

cumulative distribution captures the inequality in barcode success within a sample,
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and the change between one time-point and the next is a product of the ‘bottleneck’ a

sample has experienced. As control and drug-treatment replicates experience identical

technical bottlenecks, the differences observed above and beyond those seen in the

control replicates are the product of a cell population’s response to treatment.

PR

In the PR experiment, the shapes of the cumulative distributions of both control treat-

ments are similar: most lineages are found at very low frequencies, and the number

of unique barcode lineages one needs to observe that make up 50% of each sample are

in the order of 105 (Figure 6.2). In relation to the drug-treatment distributions, the

changes between time-point one and two are minor. These observations are consis-

tent with the two cell-lines experiencing very similar dynamics in the control-treatment

replicates. The minor loss of lineages between time-points is a pattern expected from

a small bottleneck - as the technical bottlenecks are the same for all replicates, these

relative differences compared to the drug-treatment replicates are the result of small

differences in competing lineages proliferative potential, or ‘weak selection’.

Differences between each cell-line’s drug-treatment cumulative distributions imme-

diately point to differences in each population’s response to drug-treatment (Figure

6.2). Namely, the HCTbc DT replicates lose lineages much more rapidly; even by the

first time-point, Passage 1, the top 50% of each sample is made up of lineages in the

order of 102. By Passage 2, the variance between replicates has increased dramatically.

for example, in HCTbc DT1, one lineage now comprises more then 50% of the entire

sample, whereas in HCTbc DT3, there are still approximately 20 lineages making up this

same cumulative fraction. In the SW6bc DT replicates the bottleneck appears far less

stringent. Thousands of barcode lineages make up the top 50% of both time-points.

The repeatability of the dynamics also appear more consistent: the between replicate

comparisons of SW6bc DT cumulative distributions are almost identical (Figure 6.2).
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Figure 6.2: The cumulative frequency of sequenced barcode lineages as a function of

the total number of unique barcode lineages in each replicate. Distributions shown

for the ‘PR’ experiment. Panels correspond to different cell-lines - HCTbc and SW6bc,

top and bottom row, respectively - and different treatment-types - control (CO) and

drug-treatment (DT), left and right columns, respectively. Colours within each panel

correspond to Passage number.
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Figure 6.3: The cumulative frequency of sequenced barcode lineages as a function of

the total number of unique barcode lineages in each replicate. Distributions shown

for the ‘QR’ experiment. Panels correspond to different cell-lines - HCTbc and SW6bc,

top and bottom row, respectively - and different treatment-types - control (CO) and

drug-treatment (DT), left and right columns, respectively. Colours within each panel

correspond to Passage number.
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QR

Following the preliminary ‘PR’ drug-treatment experiment, the ‘QR’ experiment al-

lowed me to assess the repeatability of the dynamics, and observe how they differ for

an extended number of time-points, relative to ‘PR’. The ‘QR’ control treatment cumu-

lative frequency distributions are in agreement with the PR results: the loss in diversity

between time-points is marginal, relative to the drug-treatment replicates (Figure 6.3,

LHS plots). Most barcodes are found at a very low frequency, indicative of weak se-

lection in the control environment: no lineages come to dominate the flasks within the

evolutionary time observed in the experiment (n.b. the QR HCTbc CO4 P1 sample that

had a low read count, and hence shows an anomalous cumulative frequency shape).

The drug-treatment cumulative distributions are also broadly in agreement: relative

to the control flasks, both cell-lines experience a high loss in diversity. Again, in keeping

with the ‘PR’ experiment, in the first few passages the selective bottleneck appears far

more stringent in HCTbc than in SW6bc (Figure 6.3, RHS plots). Also in agreement with

‘PR’, whereas the between-replicate differences in SW6bc appear strikingly repeatable,

the HCTbc dynamics appear far more stochastic: there are clear between-replicate and

time-point differences.

In HCTbc DT3 and DT4, more lineages are found at a higher frequency in Passage

2 than in Passage 3. Whilst a raise in diversity may seem to go against the expec-

tations when selection is strong, these patterns are indicative of clonal interference,

where a lack of recombination means beneficial mutations that arise on different ge-

netic backgrounds are destined to compete. These patterns are only observed in two of

the four HCTbc replicates, suggesting that the accrual of phenotypic changes that confer

a growth advantage in the treated environment are highly stochastic. Nonetheless, this

temporary gain in diversity has been lost by Passage 4, where it appears the resolution

to observe ongoing dynamics has been lost: Passage 5 is almost indistinguishable in

all 4 replicates in both cell-lines. Once a population has become dominated by one or

a few lineages, the monotonic nature of experimental barcode loss means any ongoing

dynamics occurring within a barcode lineage are no longer visible.

Overall, the bottleneck lineages experience appears less stringent in the ‘PR’ exper-
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iment than in ‘QR’: by Passage 2, both cell-lines drug-treatment replicates have lost a

higher proportion of lineages in ‘QR’ than in ‘PR’. This pattern is shared between cell-

lines despite their markedly different lineage distributions, suggesting that this disparity

is a product of inter-experimental differences, opposed to intrinsic biological differences.

6.3.2 Within- and Between-Replicate Diversity Differences

In Results Chapter 1, I chose Hill Diversity indices - within-replicate (qD) and between-

replicate differences (qD(β)) - that can reduce numerous replicate lineage distributions

onto an informative statistic space. By focussing on the qD summary statistics of order

q = 2, I leverage the high-frequency barcodes when calculating within- and between

replicate diversity. This helps account for technical noise in sequencing barcodes which

can inflate low-frequency counts, and preferentially focuses the statistics on lineages

that have grown to dominate their respective replicate population. Reducing lineage

distributions onto this statistical space allows for comparisons of within and between

replicate differences simultaneously.

The within replicate lineage diversity (qD) decreases very slightly between time-

points in the control replicates (moving down rows in the CO column, Figure 6.4). As

highlighted in the cumulative frequency distributions, and supporting the notion that

they provide a valuable ‘baseline’ with which to compare the drug-treatment samples,

both cell-lines control replicates behave similarly: this is broadly true for the between-

replicate differences also, shown by similar qD(β) values.

The striking difference between the two-cell lines’ responses to treatment are the

extremely high dissimilarity between drug-treatment replicates in HCTbc (high values

of qD(β)), and the relative high similarity between drug-treatment replicates in SW6bc

(low values of qD(β)) (Figure 6.4). These differences point to either the same barcodes

coming to dominate the replicate flasks, as in SW6bc, or different barcodes, as in HCTbc.

In Passages 2 and 3 in the QR experiment, the variance in the HCTbc within-replicate

diversity (the x-axis in Figure 6.4) suggests the route to success is stochastic. Yet

despite these inter-time-point differences, dynamics appear highly repeatable between

experimental runs (‘PR’ vs ‘QR’ panels). Following Passage 3, this variance in qD col-

151



CO DT

P
1

P
2

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1

2

3

4

1

2

3

4

q=2 D

q=
2  D

 (ß
) Sample

HCTbc_CO_P1
HCTbc_CO_P2
HCTbc_DT_P1
HCTbc_DT_P2

PR_HCTbc
CO DT

P
1

P
2

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1

2

3

4

1

2

3

4

q=2 D

q=
2  D

 (ß
) Sample

SW6bc_CO_P1
SW6bc_CO_P2
SW6bc_DT_P1
SW6bc_DT_P2

PR_SW6bc

CO DT

P
1

P
2

P
3

P
4

P
5

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

q=2 D

q=
2  D

 (ß
)

Sample
HCTbc_CO_P1
HCTbc_CO_P2
HCTbc_CO_P3
HCTbc_CO_P4
HCTbc_CO_P5
HCTbc_DT_P1
HCTbc_DT_P2
HCTbc_DT_P3
HCTbc_DT_P4
HCTbc_DT_P5

QR_HCTbc
CO DT

P
1

P
2

P
3

P
4

P
5

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5
1e

+0
6

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

q=2 D

q=
2  D

 (ß
)

Sample
SW6bc_CO_P1
SW6bc_CO_P2
SW6bc_CO_P3
SW6bc_CO_P4
SW6bc_CO_P5
SW6bc_DT_P1
SW6bc_DT_P2
SW6bc_DT_P3
SW6bc_DT_P4
SW6bc_DT_P5

QR_SW6bc

Figure 6.4: qD (within-replicate diversity) vs qD(β) (between-replicate differences in

diversity) of order q = 2 for the ‘PR’ (top row) and ‘QR’ (bottom row) drug-treatment

experiments, for barcoded coloretcal cancer cell-lines HCTbc (LHS) and SW6bc (RHS).

Each point corresponds to a distinct replicate flask, and each separate panel and colour

corresponds to treatment type - control (CO) and drug-treatment (DT) - and Passage

(P#): moving from top to bottom corresponds to progressive time-points.
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Figure 6.5: ‘QR’ experiment: Pairwise comparisons of sequenced barcode lineages be-

tween two control passage 4 replicates (CON P4) from the HCT116 and SW620 cell-lines

(top and bottom row, respectively). The shared lineages relative frequencies are shown

in blue, whilst those unique to each replicate are shown in red. The histograms show

the distribution of shared and unique lineages sorted by each sample.
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Figure 6.6: ‘QR’ experiment: Pairwise comparisons of sequenced barcode lineages be-

tween two drug-treatment passage 4 replicates (DTN P4) from the HCT116 and SW620

cell-lines (top and bottom row, respectively). The shared lineages relative frequen-

cies are shown in blue, whilst those unique to each replicate are shown in red. The

histograms show the distribution of shared and unique lineages sorted by each sample.
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lapses in later passages as the few successful lineages in each replicate come to dominate

the flask.

Relative to HCTbc, the two experiments’ SW6bc drug-treatment samples responses

are in broad agreement: in each run, SW6bc replicates become more similar as the

time-points progress (qD(β) decreases), and a greater number of lineages are retained

in the early passages. However, as observed in the cumulative frequency distributions,

the bottleneck appears less severe in ‘PR’: more lineages survive treatment to drug-

treatment Passage 2, and the selection for the same barcodes between replicates also

appears less severe in ‘PR’.

For a high-resolution comparison of how lineages differ between replicates, we can

plot the pairwise differences between two given samples. Figure 6.5 shows such a com-

parison for two Passage 4 control replicates from the ‘QR’ experiment for each cell-line.

Even by the 4th time-point, no lineages have risen above 10−3 in relative frequency, and

there are many shared barcodes (blue histograms in Figure 6.5) throughout the lineage

distribution. Figure 6.6 instead shows the analogous comparison for two drug-treatment

replicates for each cell-line. Unlike comparisons between individual control replicates

(Figure 6.5), where the frequencies and proportions of each lineages are broadly the

same, drug-treatment differences between cell-lines is stark: there is a strong correla-

tion in the highly successful lineages in the SW6bc DT replicates, where the barcodes

that come to dominate each flask are shared amongst replicates (blue points in Fig-

ure 6.6 - n.b. the log-scale for the relative frequencies). In HCTbc DT, however, even

fewer lineages dominate any individual replicate flask, and those that do are unique to

each replicate (red points in Figure 6.6). The two summary statistics I employ can be

thought of as reducing these sources of information into two axes: the qD axis (within-

replicate diversity) captures the degree to which any individual replicate is dominated

by a few, successful lineages, whilst the qD(β) axis (between-replicate difference in

diversity) captures the ‘sharedness’ of these successful lineages between all pairwise

comparisons, simultaneously.
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Table 6.1: Parameters used for each cell-line specific set of simulations (parameters

correspond to those outlined in Results Chapter 1, and birth and death rates are those

inferred using the Bayesian model in Results Chapter 3).

6.3.3 Inferring Evolutionary Scenarios with Simulated Lineage Dis-

tributions

Whilst comparisons between cell-lines’ and time-points’ lineage distributions can pro-

vide some qualitative evidence as to the population-level dynamics of resistance evolu-

tion, it can be hard to distinguish differences due to stochastic experimental sampling

from true, biological differences. As such, I now compare the summary statistics of

the sequenced lineages with the simulated values under various evolutionary scenarios.

Figure 6.7 shows the workflow for identifying the most likely combination of evolution-

ary parameters in the sequenced data. Briefly, the simulated lineage distributions (4

per treatment, as in the in vitro experiment) are condensed into within- and between-

replicate lineage diversities (qD and qD(β), respectively). This process is repeated for

a range of parameter values. The euclidean distance between the simulated and se-

quenced points in diversity statistic space is calculated for each parameter set, and

the distances compared to identify those most consistent with the cell-line’s response

(heatmap in figure 6.7).

To illustrate the distances in summary statistics between the simulated lineage dis-

tributions and sequenced values, I have plotted them simultaneously for drug-treatment

Passage 2 for a range of evolutionary scenarios, excluding those indistinguishable from
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µ = 10 -6

σ = 10 -2
µ = 10 -7

σ = 10 -2
µ = 10 -8

σ = 10 -2

1. Simulate lineage 

distributions for a 

range of evolutionary 

parameters

2. Capture information 

from replicate lineage 

distributions using 

within- and between-

replicate diversity

3. Calculate the 

distance between the 

true, sequenced 

diversity statistics and 

the simulated values 

for each parameter 

set

4. Identify evolutionary 

parameters most 

consistent with the 

observed data by 

comparing these 

distances

Figure 6.7: A schematic illustrating how evolutionary scenarios are inferred with sim-

ulated lineage distributions. A small set of hypothetical parameters are chosen (µ and

σ) for illustrative purposes.

157



the control replicates, and sorted the panels so rows correspond to equilibrium frequen-

cies of resistance (Figures 6.8-6.11 and 6.13-6.16 - filled coloured points are simulated

values, crosses are sequenced values). However, to leverage the multiple Passages in

vitro and in silico, the similarity in summary statistics over all time-points can be com-

bined by taking the average euclidean distance between each simulated and sequenced

replicate for a given set of parameter values. The values of qD and qD(β) are nor-

malised so that each fall between 0 and 1. The distance in the qD axis is taken in

log-transformed space, as is shown plotted in Figures 6.8-6.11 and 6.13-6.16, and then

averaged across all time-points. The final distances are shown as the heatmap values

qD-Dist. in Figures 6.12 and 6.17.

158



Figure 6.8: qD (within-replicate diversity) vs qD(β) (between-replicate diversity dissim-

ilarity) of order q = 2 for the combined HCTbc simulation’s Passage 2 drug-treatment

(DT P2) replicates. Any given panel corresponds to a simulation set that was run us-

ing the combination of parameters that control the resistant phenotype’s evolution:

columns correspond to values of µ, whilst rows correspond to values of σ that lead to

the same equilibrium frequencies of resistance (Req). The black points in the bottom

RHS of each individual panel corresponds to the control treatments’ mean value. The

coloured crosses correspond to the equivalent statistic values in the ‘QR’ HCTbc se-

quenced drug-treatment (HCT DT P2) replicates. The drug-treatment was modelled as

deterministic (ψ = 0.0).
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Figure 6.9: qD (within-replicate diversity) vs qD(β) (between-replicate diversity dissim-

ilarity) of order q = 2 for the combined HCTbc simulation’s Passage 2 drug-treatment

(DT P2) replicates. Any given panel corresponds to a simulation set that was run us-

ing the combination of parameters that control the resistant phenotype’s evolution:

columns correspond to values of µ, whilst rows correspond to values of δ that lead to

the same equilibrium frequencies of resistance (Req). The black points in the bottom

RHS of each individual panel corresponds to the control treatments’ mean value. The

coloured crosses correspond to the equivalent statistic values in the ‘QR’ HCTbc se-

quenced drug-treatment (HCT DT P2) replicates. The drug-treatment was modelled as

deterministic (ψ = 0.0).
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Figure 6.10: qD (within-replicate diversity) vs qD(β) (between-replicate diversity

dissimilarity) of order q = 2 for the combined SW6bc simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: columns correspond to values of µ, whilst rows correspond to values of σ that lead

to the same equilibrium frequencies of resistance (Req). The black points in the bot-

tom RHS of each individual panel corresponds to the control treatments’ mean value.

The coloured crosses correspond to the equivalent statistic values in the ‘QR’ SW6bc

sequenced drug-treatment (SW6 DT P2) replicates. The drug-treatment was modelled as

deterministic (ψ = 0.0).
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Figure 6.11: qD (within-replicate diversity) vs qD(β) (between-replicate diversity

dissimilarity) of order q = 2 for the combined SW6bc simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: columns correspond to values of µ, whilst rows correspond to values of δ that lead

to the same equilibrium frequencies of resistance (Req). The black points in the bot-

tom RHS of each individual panel corresponds to the control treatments’ mean value.

The coloured crosses correspond to the equivalent statistic values in the ‘QR’ SW6bc

sequenced drug-treatment (SW6 DT P2) replicates. The drug-treatment was modelled as

deterministic (ψ = 0.0).
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Figure 6.12: The normalised, average distance in log-statistic space (log10(
qD) vs

qD(β)) between simulated and sequenced drug-treatment Passages’ lineage distribu-

tions from the ‘QR’ experiment over a range of parameter values that control the

evolution of the resistant parameter: rows and columns within each panel correspond

to values of µ and σ (LHS panels) or δ (RHS panels), respectively. Simulated values

are derived from the deterministic drug-kill outputs (ψ = 0.0) using either HCTbc (top

panels) or SW6bc (bottom panels) specific parameters. White panels correspond to pa-

rameter values where all simulations’ end states were extinction. The drug-treatment

was modelled as deterministic (ψ = 0.0).
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Figure 6.13: qD (within-replicate diversity) vs qD(β) (between-replicate diversity

dissimilarity) of order q = 2 for the combined HCTbc simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: columns correspond to values of µ, whilst rows correspond to values of σ that lead

to the same equilibrium frequencies of resistance (Req). The black points in the bot-

tom RHS of each individual panel corresponds to the control treatments’ mean value.

The coloured crosses correspond to the equivalent statistic values in the ‘QR’ HCTbc

sequenced drug-treatment (HCT DT P2) replicates. The drug-treatment was modelled

with a stochastic component (ψ = 0.3).
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Figure 6.14: qD (within-replicate diversity) vs qD(β) (between-replicate diversity

dissimilarity) of order q = 2 for the combined HCTbc simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: columns correspond to values of µ, whilst rows correspond to values of δ that lead

to the same equilibrium frequencies of resistance (Req). The black points in the bot-

tom RHS of each individual panel corresponds to the control treatments’ mean value.

The coloured crosses correspond to the equivalent statistic values in the ‘QR’ HCTbc

sequenced drug-treatment (HCT DT P2) replicates. The drug-treatment was modelled

with a stochastic component (ψ = 0.3).

165



Figure 6.15: qD (within-replicate diversity) vs qD(β) (between-replicate diversity

dissimilarity) of order q = 2 for the combined SW6bc simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: columns correspond to values of µ, whilst rows correspond to values of σ that lead

to the same equilibrium frequencies of resistance (Req). The black points in the bot-

tom RHS of each individual panel corresponds to the control treatments’ mean value.

The coloured crosses correspond to the equivalent statistic values in the ‘QR’ SW6bc

sequenced drug-treatment (SW6 DT P2) replicates. The drug-treatment was modelled

with a stochastic component (ψ = 0.3).

166



Figure 6.16: qD (within-replicate diversity) vs qD(β) (between-replicate diversity

dissimilarity) of order q = 2 for the combined SW6bc simulation’s Passage 2 drug-

treatment (DT P2) replicates. Any given panel corresponds to a simulation set that was

run using the combination of parameters that control the resistant phenotype’s evolu-

tion: columns correspond to values of µ, whilst rows correspond to values of δ that lead

to the same equilibrium frequencies of resistance (Req). The black points in the bot-

tom RHS of each individual panel corresponds to the control treatments’ mean value.

The coloured crosses correspond to the equivalent statistic values in the ‘QR’ SW6bc

sequenced drug-treatment (SW6 DT P2) replicates. The drug-treatment was modelled

with a stochastic component (ψ = 0.3).
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Figure 6.17: The normalised, average distance in log-statistic space (log10(
qD) vs

qD(β)) between simulated and sequenced drug-treatment Passages’ lineage distribu-

tions from the ‘QR’ experiment over a range of parameter values that control the

evolution of the resistant parameter: rows and columns within each panel correspond

to values of µ and σ (LHS panels) or δ (RHS panels), respectively. Simulated values

are derived from the deterministic drug-kill outputs (ψ = 0.3) using either HCTbc (top

panels) or SW6bc (bottom panels) specific parameters. White panels correspond to

parameter values where all simulations’ end states were extinction.
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By comparing to the simulated qD vs qD(β) summary statistics, each cell line’s drug

treatment replicates (HCTbc DT and SW6bc DT) can be categorised into two evolutionary

scenarios: SW6bc drug-treatment replicates are consistent with a broad range of param-

eter values that all lead to similar equilibrium frequencies of resistance: Req ≈ 10−4

(Figures 6.10 and 6.11). These results remain true for the non-deterministic version

of the simulation (ψ = 0.3, Figures 6.15 and 6.16). HCTbc is instead most consistent

with an equilibrium frequency of resistance an order of magnitude lower: Req ≈ 10−5.

The range of likely scenarios is also much narrower in HCTbc: in both the deterministic

(ψ = 0.0) and stochastic versions (ψ = 0.3) of drug-induced death, the sequenced data

are consistent with a ‘resistance-conferring-mutation rate’ (µ) of 10−6, and either a

reversion ‘mutation’ rate (σ) of 0.1, or a relative fitness cost of resistance (δ) of 0.25

(see the lowest qD-Dist values in Figures 6.12 and 6.17). These values imply that the

resistance phenotpye is either costly (δ) or transient (σ). In fact, if the transience or

the cost of the resistant phenotype is this high in the SW6bc simulations, these are the

only parameter combinations that lead to an equilibrium frequency of Req = 10−4 that

are not consistent with the sequenced SW6bc results, for both the deterministic and

non-deterministic models (Figures 6.12 and 6.17).

Relaxing the model so that death due to treatment is no longer deterministic (ψ =

0.3) broadens the range of parameter values that lead to an equilibrium frequency

of Req = 10−5 in the HCTbc simulations (Figure 6.17). Yet notably, if I consider other

scenarios whereReq = 10−5, but with lower combinations of µ, σ or δ (rowsReq = 1e−05

and 9e−06 in Figures 6.13 and 6.14), the dynamics become too stochastic to reproduce

the sequenced HCTbc DT results as consistently as when µ = 10−6. The parameter

combinations where no cells are assigned resistance at the beginning of the simulations

- µ = 10−8 and σ = 0.1 or δ = 0.25 also fail to consistently capture the HCTbc DT

results for the same reason: the model rules out any scenario where resistance arises

solely de novo during the experiment. In both cell-lines, the similarity of the signatures

left in the lineage distributions by either mode of phenotypic variability maintenance

- either the reversion to sensitive phenotypic switching rate, σ > 0.0, or the relative

fitness cost of resistance, δ > 0.0 - mean the simulation cannot distinguish between the
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two scenarios.
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6.4 Discussion

In this chapter I have combined theoretical expectations for lineage distributions under

various evolutionary scenarios with sequenced data from a long-term evolutionary ex-

periment in two colorectal cancer cell-lines. I have shown that the two cell-lines exhibit

distinct population-dynamics in response to chemotherapy treatment in vitro.

In HCT116, a single case of each evolutionary scenario emerges as most consistent

with the simulated distributions: either µ = 10−6 and σ = 0.1 or µ = 10−6 and δ = 0.25.

Notably, the model is able to distinguish between scenarios that lead to the same equi-

librium frequencies of resistance (Req) and, therefore, the same proportion of resistance

(on average) when treatment begins. In terms of within- and between-replicate diversity

(qD and qD(β)), no other combination of parameters led to a consistently low enough

number of successful lineages that differed between all replicates.

The model results that best capture the sequenced lineage distributions show that

resistance is maintained at a much lower frequency in HCT116, which is consistent

with an equilibrium frequency of Req ≈ 10−5, than in SW620, where it is closer to

Req ≈ 10−4. As such, the overall selection experienced by the HCT116 cell popula-

tions appears much stronger, and the dynamics were therefore more variable; when the

population dynamics are dominated by a few resistant cells and waiting times for in-

frequent phenotypic transitions, the stochastic forces of lineage drift predominate early

growth. In HCT116, this led initially to higher variance in between-replicate diver-

sity measures: qD. Whilst within-experiment replicate comparisons are indicative of

stochastic dynamics in HCT116, the change in diversity measures when comparing the

two experiments - ‘PR’ and ‘QR’ – are remarkably similar. It is possible that whilst

any one replicate’s successful lineages are the product of stochastic waiting times, the

trajectory the combined sub-populations take towards resistance is broadly repeatable.

In SW620 - a CIN CRC cell-line - the sequenced results are consistent with a

wide range of parameters that lead to the same equilibrium frequency of resistance

(Req ≈ 10−4) and, therefore, similar proportions of resistant cells when treatment

begins. In the case where the phenotype frequency is controlled by the transition

probabilities to and from resistance, the rates with which a cell’s phenotype can move
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(per-division) - µ and σ - are too slow to break the correlation between lineage identity

and phenotype (resistance). When, instead, it is a cost that controls the proportion of

resistance, the relative fitness cost - δ - is too moderate to maintain resistant lineages at

extremely low frequencies. At the start of the experiment, each cell is assigned a unique

lineage marker. In both cases (σ and δ), the phenotype that lineages are assigned at the

beginning of the experiment - either resistant or sensitive - does not change during the

mutual expansion step, the assignment to replicate flasks nor treatment beginning. As

such, both scenarios lead to identical signatures in the lineage distributions, and these

results can be interpreted as a stable, resistant phenotype ‘pre-existing’ in the initial

population. Importantly, however, opposed to being some arbitrary fraction, in my

model the fraction of resistance is an emergent property of the simulations parameters:

namely, the switch from sensitive to resistant, µ, the reverse rate, σ, or the relative

fitness cost of resistance, δ. Although multiple parameter values lead to the same

equilibrium frequency in SW620, the values of σ the model supports - between 10−4

and 10−2 - are too low to invoke some form of transcriptional memory, where epigenetic

changes have been shown to invoke phenotype transitions that are maintained for several

divisions (Shaffer, Emert, et al. 2018). Yet these rates are also likely too high to

invoke genetic mutations (resistance conferring mutations are often discussed within

the 10−9 − 10−7 range (Bhang et al. 2015; Acar, Nichol, Fernandez-Mateos, et al.

2020). Therefore, it is more likely that the scenarios where resistance is maintained

in the population by some fitness cost (δ > 0.0) responsible for the observed SW620

results.

Comparisons of features such as the cumulative frequency distributions of lineages

can provide clues as to how the resistant phenotype is distributed amongst cells within

the population, whilst correlations between replicates can indicate how resistance is

maintained within lineages. However, the conclusions drawn from these features alone

are qualitative in nature. Furthermore, when the frequency of resistance in the popula-

tion is small, it is difficult to distinguish stochastic sampling effects that are experimen-

tally imposed from those that are due to the random nature of phenotype transitions,

whether they are under genetic or non-genetic control. Here I have shown that by
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comparing diversity statistics of sequenced distributions with theoretical models where

parameters control a resistance phenotype, I gain quantitative insights into the dynam-

ics of resistance evolution. Interestingly, the two colorectal cancer cell-lines I investigate

appear to exhibit quantitatively distinct responses to chemotherapy in vitro: both the

frequency of resistance within each population and the stability or cost of the resistant

phenotype differ.
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Chapter 7

Summary and Outlook

7.1 Summary

In this thesis I set out to investigate the evolutionary dynamics of drug resistance in

colorectal cancer. Important determinants of these dynamics are the rates at which

cells transition between resistant and sensitive phenotypes and the relative fitness cost

incurred by resistance. By estimating these values, I aimed to understand the under-

lying molecular processes controlling them. Namely, pre-existing and de-novo genetic

mutations, and epigenetic innovations. I developed models that incorporated these fea-

tures of resistance evolution, optimised an in vitro long-term experiment to test the

predictions of the model, and then combined these results to understand how colorectal

cancer cells evolve resistance when challenged with chemotherapy.

I designed the evolutionary model to simultaneously capture a range of rates, from

those that resemble genetic mutations to those that are consistent with transient phe-

notypic states. In results chapter 1, I develop theoretical expectations for how lineages

should be distributed under these various evolutionary scenarios. By choosing two sum-

mary statistics that capture the within and between replicate diversity (qD and qD(β),

respectively), I was able to distinguish between evolutionary scenarios, even when they

led to the same equilibrium frequency of resistance. These differences are only perceiv-

able due to the model recapitulating the most powerful facet of the in vitro experiment:

namely, the parallel evolution of closely related, distinguishable individuals under the
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same selection pressures. The modelling revealed that when the rate of change from re-

sistant to sensitive was frequent enough, or the relative fitness cost was high, resistance

was kept at a low enough frequency in individual lineages that, following sampling into

replicate sub-populations, the probability of lineage success being replicate-specific was

high.

In results chapters 2 and 3, I characterised the behaviour of my chosen lineage trac-

ing technology (ClonTracer - Bhang et al. 2015) in vitro. My model was contingent on

the statistical behaviour of the lineage ‘barcodes’ used to track individual cell lineages.

For example, importantly: the expanded complex plasmid library retained a high level

of diversity and adhered to the semi-random nucleotide pattern that aids downstream

filtering of sequenced barcodes; most infected cells contained a single, dominant bar-

code; and under standard culture conditions selection appeared weak, as demonstrated

by the retention of many lineages at low frequencies. I leveraged information contained

in control treatment cells sampled immediately after infection and expansion to infer

the cell lines’ birth and death rates. These rates informed the subsequent simulations

that were used to distinguish evolutionary scenarios in the empirical, sequenced dis-

tributions. Finally, even prior to analysing sequenced barcode data, the behaviour of

each cell line in response to treatment in vitro indicated there were intriguing differ-

ences between the two cell-lines: the difference in growth rates between drug-treatment

passages and the existence of apparent drug-resistant ‘colonies’ in HCT116 suggested

a more stringent selective bottleneck and the accrual of rare, ‘jackpot’ events, when

compared to the other cell line investigated, SW620.

Finally, in results chapter 4, I combined all of these results to infer the evolutionary

dynamics of each cell-line to chemotherapy treatment during a long-term in vitro exper-

iment. In SW620, the results were consistent with a range of parameter combinations

that led to same proportion of pre-existing resistance. The similarity in these scenarios

can be understood by considering the model of resistance evolution: if the probability

of a cell switching between resistant and sensitive phenotypes per cell-division is not

high enough, the correlation between lineage identity and phenotype remains constant

during the shared expansion step, and it is not possible to distinguish between scenarios
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using differences in between-replicate diversity. Similarly, if the relative fitness cost of

resistance is too low, the cost has negligible effect during the expansion step, and the

dynamics are instead simply the product of the phenotypes cells were expressing when

labelled with the lineage markers.

In HCT116 - an MSI CRC cell-line – the difference in treatment response observed

in vitro when compared to SW620 was verified during analysis of the barcode data.

Here, one evolutionary scenario was consistently supported by the data: the resistant

phenotype was kept at low frequencies by either a high phenotypic switching rate from

resistant to sensitive (per cell-division: σ = 0.1) or a high relative fitness cost (δ = 0.25).

The results excluded other parameter combinations that led to the same equilibrium

frequency of resistance; the few numbers of lineages that became dominant in different

replicates could not be explained by a resistant phenotype that was less costly or more

stable during cell-division. In this final section, I will discuss the relevance of these

results in the broader context of resistance evolution in cancer, and how these findings

might influence the design of more effective treatment strategies.

7.2 Evolutionary Dynamics and Mechanisms

The paradigm of drug resistance in cancer has been one of resistance mutations that are

either pre-exsiting or acquired (Wang et al. 2018; Iwasa et al. 2006; Misale et al. 2012;

Diaz et al. 2012). Following treatment, the lineage harbouring the resistance mutation

survives and eventually expands leading to disease progression. Here, I have shown

that these dynamics are unlikely to be responsible for the evolution of drug resistance

in vitro in my two colorectal cancer cell models.

The high rates at which the model predicts HCT116 either reverts from the resistant

to sensitive phenotype (σ = 0.1) or the relative fitness cost incurred by resistance

(δ = 0.25) are both consistent with recently identified responses cancer cells employ

to evade treatment. Given the high transition from resistance to sensitivity, Shaffer

and colleagues have shown that melanoma cells can exhibit a ‘transcriptional memory’

whereby a sub-population of individuals can express certain genes for several divisions.

At any given time, a minority of cells can transcribe a set of genes associated with
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resistance at a higher level than the rest of the population. Following the addition

of treatment, these differences are revealed via strong selection against any cell not

expressing these resistance phenotypes (Shaffer, Dunagin, et al. 2017). Subsequent

work has also shown that the coordinated expression of these genes can persist for

several divisions (approximately 2-3) (Emert et al. 2020). My model can give rise to

these dynamics by constraining the amount of time cells exist in the resistant state via

the high reversion probability to sensitivity per cell division. One possible explanation

for the high levels of between-replicate diversity differences observed in HCT116 is that

the resistant phenotype is the product of a rare subset of cells briefly expressing a set of

genes that confer a higher fitness in the presence of 5-fluorouracil (my chemotherapeutic

agent).

Whilst resistance is a binary trait in my models, others have modelled this stochastic

variation in gene expression as a continuous trait, where resistance is conferred by

expression above some threshold (Charlebois et al. 2011). In reality, these transient

shifts in expression are continuous phenomenon. However, as selection in my experiment

is strong in the drug-treatment environment – as illustrated by the low numbers of

successful lineages – I argue that modelling resistance as a binary trait can be an

acceptable sacrifice in favour of model tractability: the more stringent selection, the

higher the expression threshold necessary for survival, and the lower the proportion of

surviving cells that exhibit moderate expression levels.

The alternative mode of resistance that might best describe the HCT116 data is the

existence of a sub-population of quiescent cells, often coined ‘drug-tolerant persisters’

(DTPs). Numerous studies have shown that a rare population of cells can survive high

concentrations of cytotoxic treatments whilst entering a state where cell division stops,

or is reduced greatly (Marin-Bejar et al. 2021; Sharma et al. 2010; Liau et al. 2017). In

patient-derived xenograft (PDX) models of colorectal cancer, this state was shown to

be equipotent; all cells had equal capacity to become DTPs (Rehman et al. 2021). The

high fitness cost incurred by resistant cells in a subset of my simulations can recreate

dynamics similar to those experienced by cells in a quiescent state. Like the results of

Rehman and colleagues (2021), my model permits cells to transition from the sensitive
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to resistant phenotype with equal probabilities. Whilst the highest relative fitness I

consider (δ = 0.25) means cells are dividing too fast to be considered ‘quiescent’, recent

work by Oren et al. has shown that it is only the small proportion of DTPs that can

continue to actively divide that go on to drive resistance (Oren et al. 2021). As such, if

a sub-population of DTPs in HCT116 are responsible for the observed dynamics, it is

only this actively dividing fraction that would re-populate the replicate and be present

in the sequenced lineage distributions.

One hypothesis for how DTPs might aid resistance evolution is by providing a

reservoir of cells that can survive treatment long enough to accrue additional mutations

that confer full resistance (Brock et al. 2009). My model simply distinguishes resistant

cells from sensitive. Under this formulation, there is no distinction between cells that

can merely survive the drug-treated environment – DTPs - and those that can actively

proliferate in the presence of treatment - the traditional definition of resistance. If

HCT116 cells follow this pathway to resistance, where persistence is followed by a

second molecular ‘event’ that confers full resistance, my model would underestimate

the standing variation of a persister phenotype. Instead, the equilibrium frequency of

resistance most consistent with my results - Req ≈ 10−5 - would represent the fraction

of the population that make it from persistence to resistance. In fact, two of the

HCT116 drug-treatment replicates (in the ‘QR’ experiment) show evidence of clonal

interference: namely, a rise in the number of successful lineages despite ongoing selection

in the therapy condition. One explanation could be that tolerance acts as a short-term

solution to survive treatment. Over time, evolution selects for resistance mutations that

confer a higher fitness in the presence of chemotherapy. As the cells are an asexually

evolving population, different beneficial mutations must compete on alternative genetic

backgrounds. This could drive a transient increase in diversity, as more lineages accrue

resistant mutations. Subsequently, the arrival of ‘double mutant’ lineages would lead

to a concomitant drop in diversity again. Such dynamics were shown to explain a crash

in diversity in Saccharomyces cerevisiae (Blundell, Schwartz, et al. 2019) (and can be

observed in the time-series lineage distributions in Jasinska et al. 2020).

Following the long-term drug-treatment experiment, I now have a list of ‘success-
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ful’ lineages that either went on to dominate all/most replicates (in SW620 ) or each

individual replicate (in HCT116 ). Future in vitro experiments could isolate these lin-

eages from the original, expanded population (the POT samples). Isolated cells could

be seeded in individual wells, expanded briefly, and then exposed to treatment. Such

experiments resemble the famous ‘Luria–Delbrück experiment’ in E.coli and have now

been employed in cancer several times to characterise the behaviour of cell’s resistant

phenotypes over time (Shaffer, Dunagin, et al. 2017; Russo et al. 2021). The variance

between single-cell colonies that become resistant could help tease apart whether resis-

tance is either costly, or the product of a transient phenotypic state. Additionally, a

recent study was designed to tease apart the persister and resistance phenotypes: Russo

and colleagues fit experimental cell-number trajectories during treatment to a Bayesian

model and were able to derive estimates for the rate at which cells transitioned to per-

sisters, as well as the rate at which these persister cells became fully resistant (Russo

et al. 2021). If HCT116 do adopt a persister phenotype, I could assess whether there

is any overlap between cells that become persisters in a subsequent single-cell isolation

experiment, and the resistant lineages in the original experiment. If the cells are primed

to become persisters, there should be lineages that are shared in each of these groups.

It might be that the accrual of additional changes that grant full resistance following

the persister phenotype are stochastic, and it is these dynamics that drive differences

in lineage success between replicates.

Future experiments can also be designed to better distinguish between either sce-

nario. One approach is to leverage information held in the control replicates: if cells

that are resistant confer some fitness cost in the non-treated environment, they should

be less successful, on average, in the control replicates. Due to the various sources of

biological and technical noise that arise in the lineage distributions - discussed through-

out the thesis - this will require the development of further statistical models. Another

approach would involve testing the proliferative capacity of cells derived from the orig-

inal expanded pool in vitro, prior to any treatment exposure. If lower growth rates

in the absence of drug correlated with success in the drug-treatment replicates in the

original experiment, this would provide compelling evidence that resistance came with
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a relative fitness cost. Finally, single-cell RNA sequencing experiments could assess the

gene expression of cells in the original expanded pool. Techniques have been developed

that allow for the simultaneous genotyping and RNA-sequencing of single cells (Nam

et al. 2019). I could therefore extract the barcode identity of cells as well as their

expression data. The variance profile of certain genes between individual cells could

provide evidence that the mechanism of resistance was driven by transient expression,

as has been shown elsewhere (Shaffer, Emert, et al. 2018).

In contrast to persister dynamics or transcriptional memory, SW620 could be de-

scribed by simpler dynamics, where the lineages that came to dominate all replicates

were resistant at the beginning of the experiment. In vitro lineage tracing has previ-

ously shown that resistance was the product of a rare pre-existing sub-population in

lung cancer (Bhang et al. 2015; Acar, Nichol, Fernandez-Mateos, et al. 2020). However,

opposed to a single lineage harbouring a single resistance mutation, in SW620, where

it appears resistance could be genetically controlled, numerous lineages survive to ap-

preciable frequencies despite 5 Passages of drug exposure in vitro. Whilst the stability

of the phenotype during the experiment does strongly suggest that the mechanism is

under genetic control, a next, logical step will be to identify what molecular features

endow these cells with the ability to grow readily despite ongoing chemotherapy.

A difference between the two cell-lines employed in this study are the underlying

class of genomic instability: HCT116 is classed as microsatellite unstable (MSI), where a

non-functional mismatch repair system leads to high numbers of insertions and deletions

in the short tandem repeat regions of the genome (Wheeler and Bodmer 2000). In

SW620, cells are chromosomally unstable (CIN), leading to high levels of aneuploidy.

An unanswered question is to what extent these differences lead to different tempos of

adaptive evolution. My results show that there is higher standing variation in SW620

for resistance: the modelling predicts there is an equilibrium frequency of resistance

of approximately 10−4, compared to HCT116, where it is approximately 10−5. One

possibility is that the chromosomal aberrations in SW620 are more likely to hit genes

that confer a selective benefit in the presence of chemotherapy. Work in yeast has

shown that large chromosomal changes can act as ‘quick and crude’ sources of adaptive
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variation given strong selection that follows a sudden change in environmental pressures

(Yona et al. 2012; Sunshine et al. 2015). In contrast, the insertions and deletions in

HCT116 have a lower probability of hitting any gene sequence involved in a resistance

phenotype. This could explain why they might employ a survival mechanism that

extends the time window for possible resistance mutations to accrue, such as the DTP

phenotype.

One observation which is often taken as evidence in favour of non-genetic mecha-

nisms of resistance is the lack of any clear genetic bottleneck in either lineage tracing

markers (Rehman et al. 2021), or in phylogenies recreated from genetic sequencing data

(Turati et al. 2021; Echeverria et al. 2019). My results imply that changes in diversity

alone may be insufficient to infer whether the resistance mechanism is genetically con-

trolled. A drop in any given population’s diversity (as captured by the qD statistic I

adopted) following treatment is a product of how widespread resistance is in the cell

population. It is instead the difference between replicate populations‘ diversity that

have evolved in parallel - qD(β) - that can capture how quickly cells in any given lin-

eage transition from a sensitive to resistant phenotype, sources of information generally

unique to experimental evolution. To give an example, cells that transiently express

resistance genes appear to be rare in a population (Emert et al. 2021). As such, if a

tumour survives an initial round of treatment due to the presence of these cells, this

could lead to only several genetic lineages being observed in subsequent samples, de-

spite no genetic mechanism controlling resistance. This has important consequences

for attempting to track the mode of resistance via genetic sequencing of serially de-

rived patient samples: If genetic bottlenecks cannot be taken as prima facie evidence

of resistant phenotypes under genetic control, other metrics will have to be employed

to distinguish which mechanism is at play.

7.3 Clinical Outlook

The mechanisms consistent with the dynamics observed in HCT116 represent a chal-

lenge for effective treatment. If cells with no pre-existing resistance mutation can enter

transient phenotypic states that are refractory to treatment – either by briefly express-
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ing certain genes or becoming quiescent - this broadens the scope of potential targets

that therapy must aim to limit or circumvent. One method would be to target the

pathways that lead to resistance emerging and combine these drugs with chemo- and

targeted therapies. Limiting cell transcription variability already forms the basis of

one class of therapy. KDM5 is a gene that encodes a histone demethylase, a family

of enzymes involved in transcription regulation via epigenetic modifications. Hinohara

and colleagues have shown that KDM5 inhibition in breast cancer can reduce resistance

to endocrine therapies by reducing heterogeneity in gene transcription (Hinohara et al.

2018). It is possible that the ‘transcriptional memory’ observed elsewhere is also the

product of dysfunctional epigenetic regulation, and that by restoring it the probability

of cells expressing the resistant set of genes is diminished.

If instead cells adopt a DTP phenotype, treatments could aim to limit the probabil-

ity that cells enter the quiescent state. Recent work in an in vitro model of lung cancer

identified metabolic pathways that permitted a sub-population of persister cells to di-

vide in the presence of targeted therapies (Oren et al. 2021). These included pathways

involved in tolerating reactive oxygen species (ROS) and increased fatty acid oxidation

(FAO), whilst the presence of DTPs and their reliance on these pathways was confirmed

in several other cell-lines. Encouragingly, inhibition of glutathione synthesis – an in-

tracellular compound which aids ROS tolerance – decreased the proportion of actively

dividing persister cells. As persister cells appear to provide a means by which cancer

cells evade chemo- targeted therapies, a promising avenue of treatment could be to first

limit the emergence of DTPs by targeting persister-specific pathways before additional

cytotoxic treatment.

The heterogeneity of tumours‘ genetic and phenotypic makeup has now been well

documented (PCAWG Transcriptome Core Group et al. 2020). This has led to an

appreciation that a ‘one-size-fits-all’ approach is insufficient. Instead, attention has

shifted to personalised cancer treatment, where therapy is tailored to the molecular

profile of a patient’s tumour. This strategy relies, in part, on the predictability of can-

cer evolution: if there is no way to project the response of intervention by observing

a tumour’s current state, then there is little utility in a bespoke strategy for each pa-
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tient‘s tumour. The stable, pre-existing resistance phenotype supported by the data

in SW620 is likely more amenable to a personalised strategy: the molecular features

responsible for resistance could be identified prior to treatment, and the choice of ther-

apies tailored accordingly. Choosing treatments based on a cancer’s genetic makeup is

already commonplace. For example, patients receiving the targeted therapy cetuximab

in colorectal cancer are screened for a KRAS mutant, which renders the treatment in-

effective (Grady and Pritchard 2014). If SW620 resistance is the product of a genetic

alteration, a similar strategy could be employed to pre-emptively circumvent resistant

sub-populations.

The results from HCT116 provide a greater challenge for implementing personalised

treatments. Firstly, if every cell has an equal capacity to enter the resistant phenotype

– as is consistent with my results, and those elsewhere (Rehman et al. 2021) – there is

no rare sub-population that screening might aim to identify and target with alternative

treatments. An important question is therefore whether molecular features predispose

tumours to adopt non-genetic or DTP modes of resistance evasion. Whilst the lineages

that become successful in each replicate were different, the HCT116 dynamics were

highly repeatable between each of my experiments. It is possible that, although low

levels of resistance in the pool of cells lead to stochastic between-replicate dynamics,

the tumour the cell-line was derived from was ‘primed’ to follow a given evolutionary

route. Promising work using PDX models of melanoma show that replicate experiment

tumours derived from the same patient do repeatedly adopt either genetic or non-

genetic mechanisms of resistance, including a putative DTP phenotype (Marin-Bejar

et al. 2021).

Adaptive therapy is an evolutionary informed approach where treatment is modu-

lated to encourage competition between resistant and sensitive sub-populations, thereby

extending the time before the tumour consists of solely resistant cells. Whilst there have

been numerous theoretical discussions concerning the conditions under which adaptive

therapy would be effective (Viossat and Noble 2021; West et al. 2018; Strobl et al. 2020;

Gallaher, Brown, et al. 2018), empirical tests of the assumptions have been fewer (al-

though see Bacevic et al. 2017). In the context of the two mechanisms consistent with
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HCT116 in my results, adaptive therapy could benefit from either a high fitness cost

of resistance or a high reversion rate to sensitivity. It has been shown that the efficacy

of adaptive therapy is heightened if the resistant phenotype incurs a growth penalty

(Viossat and Noble 2021). Alternatively, if cells have a relatively high probability of

reverting to a sensitive phenotype, the number of sensitive cells with which the resistant

sub-population will have to compete will increase during drug-holidays. As such, my re-

sults from HCT116 provide additional empirical evidence that the conditions necessary

for adaptive therapy may well operate in certain cancer cell populations.

7.4 Conclusion

In summary, I have shown that by combining evolutionary models, lineage tracing

technology and a long-term drug-treatment experiment in vitro, I can draw quantita-

tive conclusions regarding the evolution of a resistant phenotype. By formulating the

simulations such that the evolutionary parameters can take a wide range of values, the

model can simultaneously capture dynamics that resemble previously identified resis-

tance mechanisms, including stable, pre-existing resistance, de novo mutations, tran-

scriptional memory, and drug-tolerant persisters. This was crucial to distinguish two

diverse routes to resistance employed by two colorectal cancer cell models. The framing

of a tumour’s response to therapy has often been perceived rigidly, where a tumour

either responds to treatment, or resistance mutations render therapy a fait accompli. I

hope my work has contributed to the burgeoning evidence that a broader conceptual

model is necessary to capture the evolution of drug resistance in cancer.
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