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Abstract 

Many new Demand-Side Integration (DSI) load scheduling strategies are emerging for 

energy management in smart grids. The focus of this thesis is upon smart homes and end-

user DSI participation using Intelligent Decision Support Systems (IDSSs). The use of 

IDSSs can assist consumers to respond effectively to Real-Time Pricing (RTP) tariffs and 

other DSI pricing signals relayed to customers by utilities. 

For many DSI load management strategies, mathematical optimization and metaheuristic 

strategies have previously been suggested. For an end-consumer IDSS, these may not be 

acceptable from a computational complexity perspective, due to the non-deterministic 

polynomial hardness (NP-hardness) of the scheduling problem encountered by the IDSS. In 

this thesis, an efficient polynomial-time heuristic algorithm for scheduling residential smart 

home appliances across a receding time horizon is proposed. The heuristic algorithm is 

extensively evaluated using a generic cost model for electricity prices and a variety of 

representative smart home configurations. Results indicate that, when compared to an exact 

optimal algorithm, the proposed heuristic algorithm consistently produces results which are 

very close to optimal at a fraction of the computing cost. 

A prototype of the heuristic algorithm is implemented on a resource-constrained embedded 

processor, and testing and validation confirm its suitability for co-location on a smart meter. 

The final sections of the thesis are therefore concerned with the performance of multiple 

implementations of the heuristic from the perspective of a utility company. This thesis 

concludes that the proposed heuristic algorithm is a good candidate for the large-scale 

deployment of residential consumer oriented DSI and could be deployed as a useful and low-

cost extension of an Advanced Metering Infrastructure (AMI) in smart grids. 

Keywords – Smart grid; Demand-side integration; Demand-side management; Demand 

response; Load scheduling; Heuristic algorithm; embedded processor. 
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Chapter 1 

1 Introduction 

A smart grid is an electricity power network that utilizes digital technology to improve 

reliability, security, and efficiency of the electricity system from large generation, via the 

delivery systems to electricity consumers and an increasing number of distributed generation 

and storage systems [1]. Energy and business-related data flows and information 

management are central to the smart grid and help to facilitate advanced functionality which 

would otherwise not be available or not as effective without them. Such advanced 

functionality includes (but is not limited to) real-time electronic power conditioning, 

renewables integration, advanced metering, energy trading and Demand-side Integration 

(DSI). The scope of this thesis falls into the latter area, that of DSI. Specifically, the thesis 

is concerned with management of end-use domestic electricity loads through intelligent 

reactive scheduling of smart appliances. 

1.1 Motivation 

The recent advancement in smart grid technology offers interesting opportunities for 

residential customers who wish to actively participate in managing their energy consumption 

effectively. Modern information & communication technology (ICT) components (e.g., 

Advanced Metering Infrastructures) help to facilitate Demand-side Integration (DSI) by 

allowing duplex communication between utility service providers and consumers. In this 

thesis, the effective use of electricity in support of activities, which focuses on end-use 

efficiency, demand response and energy efficiency, are discussed under DSI. The 

implementation of DSI is aimed at encouraging shifts in residential load in response to 

specific contingencies affecting the wider power network by using, amongst other 

mechanisms, pricing signals and dynamic tariff mechanisms [2]. Such signals are mostly 

offered in real-time (or near real-time) by the utilities. In such schemes, active interaction 

between automatic energy management of smart homes and utility companies 
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interconnected by smart grid is enabled [3]. As such, residential smart buildings help to 

create a modernized environment, supporting the more efficient and reliable distribution of 

electricity. Energy consumption in the built environment (households and services sector) 

forms a major portion (40.3 %) of the total energy consumption in EU member states [4]. 

Household energy consumption accounts for the largest portion of electricity usage in this 

built environment sector. This is driven by a continuous increase in population as well as 

growth in energy demands of home appliances etc. [5]. Thus, the built environment sector 

(including residential and commercial customers and other blocks of buildings) has a 

potential of making a significant contribution to achieving the EU’s 2020 targets for 

combating climate change [6]. This can be done through the incorporation of Distributed 

energy resources (DERs) to the grid network, usually on small-scale production located 

closer to the load, which helps to reduce the transmission loss, while enhancing voltage 

profiles [7]. 

Over the past years, several energy management solutions have been proposed in the 

literature to achieve DSI in building stock, and five distinct use-cases (generic variable tariff, 

direct load control, DER program, capacity bidding program and Ancillary services 

program) are emerging [6]. Of these use-cases, generic variable tariff (GVT) DSI programs 

offer promise for residential applications; although the business model (from and end-user 

perspective) is not yet clear due to the complex energy billing and taxation mechanisms in 

use across Europe [6],[8]. Although much research (from a technological perspective) has 

been carried out on efficient DSI load scheduling strategies (e.g., investigations of energy 

cost optimization and load scheduling algorithms [9],[10],[11], specialized software 

architectures for optimization [12],[13] and residential energy management system design 

and testing [14],[15],[16], at present the specific value of DSI in residential applications and 

general building blocks is not yet thoroughly proven [2],[6]. Despite the advances in smart 

grid applications, most research on energy management of residential homes are relatively 
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immature for practical purposes. Therefore, to effectively leverage the potential features and 

benefits of DSI in these applications, efficient, low-cost, and highly autonomous 

implementations (which maximize the use of any existing infrastructure) would be very 

beneficial [6] 

In this research work, the focus is on heuristic load scheduling, which can be considered as 

potentially a very efficient DSI load management strategy for the implementation of a 

consumer Intelligent Decision Support System (IDSS) for energy. The IDSS aims to enable 

the autonomous management of smart home devices and their overall energy consumption 

profile to improve energy efficiency. This thesis proposes that a classical heuristic 

scheduling algorithm – based upon the list-processing algorithm for multiprocessor task 

scheduling – is a good candidate for solving the load-scheduling problem. The main crux of 

the discussion is that it can handle very well the trade-off between optimality and complexity 

inherent in the implementation of IDSS by sacrificing optimality at the expense of near 

optimality, features a comparatively very low computational overhead, and is well suited to 

analysis. The low computational overhead is necessary to ensure that regular re-optimization 

with updated state information can take place in the IDSS as environmental conditions 

evolve.  

 

1.2 Aims and objectives of the research 

The main aims of the thesis are summarized below: 

• To develop a low-resource and effective scheduling scheme (IDSS) to be deployed 

as part of domestic smart metering configuration for DSI participation.  

• To explore how utilities can moderate the aggregate electricity demand while 

ensuring consumer benefits in terms of cost savings and otherwise. 

To achieve the aims of the research, the following objectives are set: 
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• To understand the smart grid concept, enabling technologies and DSI load 

management strategies for optimal scheduling of residential loads. 

• To propose an effective heuristic scheduling algorithm and evaluate/benchmark its 

performance against an optimal exact algorithm in representative simulation studies. 

• To present a generic cost model for dynamic and mixed electricity pricing. 

• To demonstrate a prototype implementation of IDSS on a constrained embedded 

processor. 

• To further evaluate the proposed heuristic algorithm from the wider perspective of a 

utility company, considering multiple households and smart meters with multiple 

instances of the heuristic algorithm deployed as a part of a distribution network 

responding to utility DSI event pricing signals. 

 

1.3 Research questions 

Since the aim of the research is to develop an IDSS, with considerations to the control 

performance, real-time schedulability and for practical implementation on a resource-

constrained embedded processor, this study has considered answering the following main 

research questions:  

Question 1: What is the impact of an IDSS as a major component of DSI in encouraging 

consumer participation in peak demand reduction, and to what extent are the DSI load 

management strategies able to influence a typical power consumption profile and what 

potential energy cost savings could be made?  

Question 2:  To what extent is the influence of a chosen DSI load management strategy 

(heuristic or exact/optimal) and its cost model capable of being configured for generic use, 

in the presence of dynamic energy pricing, mixed pricing, and for multi-household 

appliances/configuration scheduling? 
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Question 3: What are the overheads of a practical implementation of an IDSS, and are they 

suitable for use on a resource-constrained embedded processor (e.g., ARM), and to what 

extent do overheads compare with an equivalent PC-based IDSS implementation on a high 

performing PC in a MATLAB© simulated experiment, in terms of cost savings and 

computational time evaluation?  

Question 4: To what extent does an area equipped with multiple IDSSs respond in an 

aggregated fashion to external signals (e.g., DSI event signaled by the utility) and what is 

the extent to which an IDSS can help shift aggregated demand in response to normal and 

stringent DSI prices? 

 

1.4 Appraisal of previous work 

As will be discussed in depth in Chapter 3, the main optimization strategies available in the 

literature for the load scheduling problem include mathematical programming / optimization, 

heuristic optimization, and metaheuristic search strategies. Each of these strategies has an 

array of appliance models and assumptions, a problem formulation, and power and timing 

requirements/constraints. The diversity in appliance modeling and assumptions made by 

researchers for the residential appliance modeling makes it difficult to compare the 

effectiveness of the load scheduling strategies. However, as the thesis aims to implement a 

simplified IDSS, which can be easily integrated into an AMI, the following three 

requirements are essential: (1) the IDSS should not require specialized software (e.g., integer 

programming libraries) and have a straightforward code implementation; (2) It should be 

implementable on a small computing device such as will be found within a smart meter; (3) 

It should be configurable for a wide variety of cost models and functions.  

Researchers in [17],[18] investigated the load scheduling problem using mathematical 

optimization methods by formulating the cost functions as a Mixed Integer Linear 

programming (MILP) and Mixed Integer non-linear programming (MINLP) respectively. 
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The results of the formulated cost models prove to be effective in reduction of electricity bill, 

while ensuring user comfort. It is also a common knowledge from the literature that the use 

of mathematical optimization strategy, in particular Linear Programming (LP) and integer LP 

variants guarantee an optimal solution, as opposed to heuristic and metaheuristic approaches 

which do not give such guarantees. However, mathematical formulation of the optimization 

problem with integer constraints is computationally expensive (due to NP-hardness) and 

requires specialized solvers/software (e.g., MATLAB interfaced with MILP solvers such as 

CPLEX [19], Gurobi [20], etc.). As such, heuristic and metaheuristic algorithms provide 

lower complexity alternative options for complex load scheduling. 

Heuristic approach to load scheduling requires knowledge (or experience) of the scheduling 

problem and its requirements (e.g., energy profile and time requirement of the scheduling 

devices) as well as other parameters to achieve good ‘feasible’ solutions based on a set of 

prescribed rules [21]. The heuristic approach can also be developed and configured to 

significantly reduce the computational burden of a specific optimization problem while 

achieving an acceptable or ‘good enough’ solution. On the other hand, metaheuristic 

approaches based on complex and iterative-search (e.g., Particle Swarm Optimization, 

Genetic Algorithms, Ant Colony Optimization etc.) provide high-level problem–independent 

frameworks that can be applied in solving general classes of problems. Metaheuristics may 

not be sufficient to achieve the desired performance for consumer IDSS due to the complexity 

of the load scheduling problem encountered by the IDSS, or a rigorous performance bound 

(experimental and/or analytical). 

Additionally, further research on mathematical programming, (discrete optimization in 

particular) has led to the interoperation of metaheuristic and mathematical programming 

optimization technique and is known as matheuristics [22]. This relatively new approach 

requires the exploitation of some features derived from the mathematical model of the 

problem (e.g., MIP model) in a metaheuristic framework. Many successful matheuristic 
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schemes use ‘black boxes’ to generate high-quality heuristic solutions for solving complex 

optimization problems [23]. The resultant effect of this approach is a possibility of incomplete 

MIP model (optimization problem formulation) and an external solver that iteratively solves 

the available sub-MIPs by introducing invalid constraints (e.g., variable fixing) that defines 

neighborhoods of certain solutions. In such cases, it requires the use of a general MIP refining 

approach (e.g., proximity search [24], evolutionary polishing method [25], etc.), to iteratively 

obtain a sequence of better solutions and refine the best solution within a feasible 

computational time. The drawback is that the MIP refinement approach does not generally 

guarantee feasible solution in some complex cases and might not have any good solution to 

refine. Further research is clearly needed in this area. 

In choosing the appropriate strategy for IDSS implementation on a resource constrained 

embedded processor, finding better solutions within a reasonable computational time is not 

only the deciding factor, but also the ability to find acceptable solution for large instances of 

the load scheduling problem autonomously in real world. In this thesis, an efficient heuristic 

scheduling algorithm is proposed for use in the consumer IDSS for minimizing smart 

appliances energy costs. The proposed heuristic algorithm is simple and has low 

computational overhead. Unlike previously heuristic algorithms presented by other authors, 

with cost functions that utilizes specialized pricing signals, for example Customer Incentive 

pricing (CIP) signals [26], a generic and flexible cost function for hourly energy pricing is 

presented in this thesis. The generic cost model can be configured for traditional on/off peak 

pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and various 

combinations thereof. The generic cost model presented in this thesis is used to test the 

effectiveness of the proposed algorithms across multiple households with variety of 

representative smart home configurations. Particularly, cost-based scheduling of smart home 

appliances in response to RTP, TOUP and 2TP. To the best of my knowledge, no results 
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related to the performance of a heuristic scheduling algorithm in the presence of such cost 

models have previously been published in the literature. 

In practice, the implementation of automated IDSS for residential load scheduling on a low-

cost, resource-constrained embedded processor for potential co-location on a smart meter 

does not seem to have been widely addressed in the literature and warrants further research 

study. This thesis investigates the implementation of a prototype of heuristic algorithm on a 

low-cost resource constrained embedded processor to respond to utility signals, provide 

scheduling advice and recommendations to end-users, which in turns, would enable active 

consumer DSI participation. A significant research focus has been on the demand side 

Integration and there have been interesting results reported in [27],[28]. However, it is 

comparatively rare to find research studies, which aim to evaluate the performance of 

heuristic scheduling algorithms from both consumer DSI viewpoint and the perspectives of 

utility planning, with the primary objective of minimizing end-user economic costs.  In this 

thesis, the effectiveness of the heuristic algorithm for residential appliance scheduling in 

terms of achieved cost solutions, computational overheads, suitability for multi-household 

appliance scheduling is experimentally is investigated. The extent to which a heuristic 

algorithm for household load scheduling can help shift aggregated demand in response to 

normal and stringent DSI prices advertised by the utility are also explored. 

 

1.5 Original contributions and publications 

To achieve the objectives of the thesis and to obtain the answers to the research questions in 

Research questions Research questions, different DSI load management strategies have been 

reviewed, followed by the development of load scheduling algorithms (exact and heuristic 

algorithms). Exact algorithm is proposed for comparative purposes of benchmarking the 

performance of the heuristic algorithm, in terms of minimum cost schedule achieved, while 

the heuristic algorithm is utilized in the embedded implementation of the consumer IDSS. 
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These algorithms have been proposed to support the research described in this thesis, and as 

such, considered as part of the original contributions. 

The outcomes of the overall thesis are categorized into technical and research contributions 

to knowledge.  

Technical contributions and the associated published paper(s) include:  

• The notion of heuristic scheduling algorithm as an effective DSI load management 

strategy to express the desired behaviour of a consumer IDSS and for real-time 

implementation. 

C. Ogwumike, M. Short, M. Denai, Near-optimal scheduling of residential smart 

home appliances using heuristic approach. In IEEE International conference on 

Industrial Technology (ICIT), Seville, Spain, pp. 3128-3133, 2015. 

 

• A Prototype implementation of IDSS on a resource constrained embedded processor 

(ARM7-TDMI 32-bit microcontroller). 

C. Ogwumike, M. Short, F. Abugchem, An embedded prototype of a residential 

smart appliance scheduling system, In IEEE 21st International Conference on 

Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, pp. 1-5, 

2016. 

Research contributions includes the performance evaluation and benchmarking of the 

proposed heuristic algorithm against an optimal exact algorithm; the designed experiments / 

simulation studies and result analysis, which are as follows: 

• A generic cost model employed with the heuristic scheduling algorithm. 

C. Ogwumike, M. Short, F. Abugchem, Heuristic optimization of consumer 

electricity costs using a generic cost model. Energies 2016, 9(1), 6; doi: 

10.3390/en9010006.  
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• The impact of heuristic algorithm on both consumer DSI and utility planning 

perspectives respectively. 

C. Ogwumike, M. Short, Evaluation of a heuristic approach for efficient scheduling 

of residential smart home appliances, In IEEE 15th International Conference on 

Environmental and Electrical Engineering (EEEIC), Rome, Italy, pp. 2017-2022, 

2015. 

C. Ogwumike, M. Short, F. Abugchem, Heuristic scheduling of multiple smart home 

appliances: Utility planning perspective., In IEEE International Conference for 

Students on Applied Engineering (ICSAE), Newcastle, United Kingdom, 2016. 

 

1.6 Thesis structure  

An outline of the thesis are as follows:  

 

Chapter 2: Smart grid concept and enabling technology 

An introduction to smart grid concepts and the enabling technologies are discussed, followed 

by the requirements for smart grid communications and the most acceptable standards 

relevant for smart grid implementations at the consumption level. 

Chapter 3: Review of Demand-side Integration and load management strategies  

The concept of DSI and various load management strategies are reviewed. Residential load 

scheduling objectives, modeling considerations and the most effective DSI load 

management strategy for IDSS implementation on embedded processor are also discussed.   

Chapter 4: A heuristic scheduling algorithm for smart appliances 

A low-overhead heuristic algorithm for smart home appliance scheduling is proposed. Exact 

scheduling algorithm and a generic cost model for dynamic electricity pricing are also 

presented in this chapter.  
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Chapter 5: Evaluation of the proposed heuristic algorithm (Part 1 - Consumer 

viewpoint) 

Various computational experiments to demonstrate the effectiveness of the proposed 

heuristic algorithm against exact search algorithm in achieving DSI participation at the 

consumption level are presented in this chapter.  

Chapter 6: Prototype embedded implementation of the heuristic 

In this chapter, a prototype-embedded implementation of the proposed heuristic algorithm 

for scheduling smart appliances is presented. Its performance is validated against 

MATLAB© based IDSS implementation on a high-performance computer. 

Chapter 7: Evaluation of the proposed heuristic algorithm (Part 2 - Utility viewpoint) 

In this chapter, the effects of multiple households using an effective heuristic algorithm for 

scheduling smart appliances is tested from the perspective of utility company planning. The 

chapter explores the behaviour of multiple instances of the heuristic algorithm in response 

to unexpected events affecting the wider grid.  

Chapter 8: Conclusions and future work 

This chapter concludes the thesis and presents the suggestions for future research.  
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Chapter 2 

 

2 Smart Grid Concepts and Enabling Technology 

2.1 Introduction 

Reuters [29] estimated that the global demand for energy would gradually rise to 44% by 

2030. This is sequel to the report by the U.S. Department of Energy that electricity demand 

and consumption in the US have an annual increase of 2.5% every year over the last 20 years 

[30]. As such, there is a significant increase in the annual energy consumption (domestic 

consumption in particular) due to the varying needs of the residential customers with respect 

to comfort, convenience and flexibility. However, while the components of the conventional 

grid - which has been progressively developing for over a century - is ageing, the demand 

for energy is increasing with insufficient improvements [31]. The existing power grid is 

mostly characterized by a lack of intelligent and automated control systems, self-healing 

features, poor visibility, mechanical switches causing low response times, and other factors 

which have all contributed to the electricity supply failure or black outs [32]. Therefore, 

there is need for a smarter grid to address these deficiencies to suit the needs of the 21st 

century. Although smart grid does not have a single clear definition, the concept integrates 

many technologies, generator/consumer solutions and addresses several policy and 

regulatory drivers [33],[34]. The European Technology platform [35] defines Smart grid as 

a modern electricity infrastructure network that can intelligently integrate the actions of all 

connected users such as generators, consumers and those that do both to efficiently deliver 

sustainable, economic, and secure electricity supplies. This requires innovative technologies: 

recent advances in information & communication technology (ICT), automation & control, 

sensing & metering technologies, high-power converters and so on to provide the main 

technological enablers. Higher-level energy management techniques based on energy supply 

and demand prediction, dispatch optimization, network availability and unit commitment are 

also required to addresses the challenges proactively [36],[37]. 
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In this emerging smart grid, residential energy users will be given the opportunity to 

participate in the decision-making aimed at using the energy infrastructure more efficiently. 

By the freedom of interaction with grid through the Advanced Metering Infrastructure 

(AMI), and available electricity pricing signals, a customer’s satisfaction with the electricity 

consumption and its economic cost could potentially be improved. From a researcher’s 

perspective, this notion can serve as a motivation to addressing the Demand-side integration 

(DSI) in the emerging smart grid. This chapter describes the smart grid concept and the 

expected ICT evolutions that will enable the transition to a modern electricity power grid, 

which in turn, will transform society in the future. The chapter is focused on the state of art 

in the smart grid enabling technologies, requirements, standards, and the challenges that have 

provoked research interests in this field. 

 

2.2 Background and state of the art 

The concept of applying intelligent techniques in the interaction of distributed assets 

emerged in the 1980s as a call for a modern power grid that would allow the utilization of 

alternative and renewable energy resources, while performing self-healing, awareness, and 

coordination [38]. Vu and Begovic [39] seemingly first mentioned the term smart grid in 

1997. Amin and Wollenberg [40] in 2005 referred to the term smart grid in their attempt to 

present some useful features of modern electricity network for future power delivery. In 

2007, the Energy Independence and Security Act (EISA) started an official use of the term 

smart grid to define a future electricity grid [41]. The existing electricity grid was built to 

meet requirements set up in the last century. The grid is primarily radial, designed for 

centralized power generation, and relies mostly on manual restoration following tripping 

incidents. Increasingly, the reliability of the conventional electric grid is mainly ensured by 

having excessive power capacity in the whole system, with unidirectional power flow from 

power plants to consumers [42],[43]. Table 2.1 below describes the essence of smart grid 

transformation in addressing the drawback features associated with the existing grids, such 
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as the lack of bidirectional communications, limited control options, inefficient use of 

electricity with no user participation, and so on, While the smart grid concept (before and 

after smart grid) is shown in Figure 2.1 

         

Table 2.1. Comparison of smart grid with existing grid [42] 

Features Smart grid Existing grid 

Electricity generation Distributed/Centralized  Mostly centralized generation 

Information flow Bidirectional Mostly unidirectional 

Testing Remote check Partial remote/Manual Check 

Sensors Digital Mostly electromechanical 

Recovery/monitoring Autonomous self-healing Semi-autonomous /manual monitoring 

Control type/ability Active/pervasive control Passive/limited control 

Reliability High Low 

Environmental pollution Low High 

 

 

Figure 2.1. Smart grid concept [43] 

Consequently, the U.S, EU countries, China, Canada, Australia, South Korea started major 

research and investment in the smart grid transition and applications aimed at sustaining the 

society and industry needs. In particular, U.S. and EU have developed different strategies to 
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making their respective power grids smarter. EU has been impacted by concerns derived 

from the advancement and quality of power grids across European countries, while the U.S. 

aims to increase stability of the power grid and respond to the forecasted growth in demand 

for a long-term vision. It is anticipated that such technologies will have far-reaching 

development subject to economies of scale.  For example, the U. S. National Institute of 

Standards and Technology (NIST) [44] have provided a conceptual model that pinpoints 

seven domains in the implementation of a smart grid. The domains include generation, 

transmission, distribution, operations, customers, service providers, and markets. The U.S 

government also announced a massive $3.4 billion in grant awards to fund a wide range of 

smart grid technologies [30]. Whereas the European strategy is spurred by ideas of 

advancement with respect to environmental and social reforms, which depends on security 

of supply, sustainability, and market efficiency [45]. Importantly, six objectives have been 

set for the EU strategy in [38], which includes:  

• To accomplish the highest levels of safety and security.  

• To achieve an energy-efficient Europe by enhancing building structures, 

transportation, and distribution grids. 

• To augment Europe’s leadership in energy technology and innovation. 

• To empower consumers.  

• To build a European integrated energy market. 

• To strengthen the external dimension of the EU energy market.  

 

Additionally, the European Strategic Energy Technology Plan includes eight European 

Industrial Initiatives (EIIs) in the field of energy. The EIIs on electrical grids is known as 

the European Electricity Grid Initiative and has a budget estimated to € 2 billion over a 

period of ten years with guidelines and activities for research and development (R&D) and 

a program with 20 massive demonstration projects [46]. Distribution Network Operators 

(DNOs) are incorporating AMI and Supervisory Control and Data Acquisition (SCADA) 



16 
 

systems along with automation technologies to their distribution systems [47]. In addition to 

research and development projects, numerous electric utilities are also taking significant 

steps to smart grid transformation. Most of these projects are consenting to arrangements 

with smart meter vendors to collaborate in smart grid projects. The arrangements 

characterize the required features of AMI to provide 2-way communication between the 

users and the utility [48].  

 

Smart grid is an interesting and complex topic that can be addressed from different 

perspectives due to its wide applications. Academia and industry have been undertaking 

considerable research and development of smart grid applications for residential, 

commercial, industrial as well as business customers. Reference [49] presents the different 

areas for smart grid technologies by identifying the benefits for reliable and efficient grid 

networks. The authors concluded that proper utilization of the technologies could improve 

the operation of future smart grids while eliminating the existing grid challenges. A 

comprehensive state-of-the-art review on smart grid issues, communications, opportunities, 

and challenges were presented in [42], [50]. The current state of the ICT for smart grid was 

reviewed with the objective of predicting future trends on the relationships between various 

ICT technologies. The resulting taxonomy provides guidelines for further studies of ICT 

architectures and highlights how the standards in the last mile of the smart grid are 

converging to common solutions to enhance ICT infrastructure interoperability [51].   

 

However, one of the most significant applications of smart grid will take place at the 

residential homes/buildings level, which would provide consumers the opportunity to 

participate in realising the potential benefits of the transition to smart grid. Hence, in this 

thesis, the focus of the smart grid application is on residential buildings for residential 

customers. The residential area of Stockholm Royal Seaport project [52] is currently one of 

the research bases for the practical implementation of smart grid utilising residential 

buildings. This chapter addresses primarily the enabling technologies and communication 
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requirements for the realisation of smart grid, particularly at the consumption level where 

households are encouraged to ensure efficient use of energy infrastructure. Figure 2.2 shows 

the Return on Investment (ROI) in the transition from the Automated Meter Reading (AMR) 

and Advanced Metering Infrastructure (AMI) to smart grid with various investments on 

technologies and capacities.  

 

Figure 2.2. Transition to smart grid technology [53] 

In the next section, the enabling technologies that form the bases for smart grid 

implementation are discussed. 

 

2.3 Smart grid enabling technology 

This section presents the enabling technologies that enable the smooth transition to smart 

grid. The technologies come in the form of hardware, control & communication 

infrastructure as well as network operations and real-time analytic systems to address the 

challenges facing smart grid. These challenges include the intermittent nature of renewable 

energy generation that affects electricity power output and quality, high complexities of 

small-distributed generation like plug-in hybrid electric vehicles (PHEV), batteries etc. The 
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challenges also include the application of information and communication technologies 

(ICT), advanced power electronics etc., to improve and optimize the energy use efficiency. 

 

2.3.1 Distributed Generation 

Effective distributed generation (DG) based upon renewable resources is a major enabling 

technology of the emerging smart grid. DG sometimes referred to as dispersed generation or 

embedded generation is located close to the point of consumption. The proximity to the 

consumption point is key to reducing energy wastage. Indeed, they could help to reduce the 

distance between energy production and consumption to about 8% [53], since the existing 

power grid is designed to deliver power to consumers from centralized generation units over 

transmission networks, which takes up to 14% [54] of the input energy generated. Such 

distributed generation can provide clean and sustainable energy and (potentially) enhance 

power system capacity and security. However, distributed energy sources such as solar 

panels and wind turbines, which are the main sources for smart grid, are intermittent in nature 

and the output characteristics of generator and converter sets (i.e., their voltage, frequency, 

and power) depends on the weather condition. This intermittency results to high complexity 

as it affects the large-scale production and potential integration to the grid. Therefore, there 

is a need for energy storage alongside a power electronic converter to store the excess 

generated energy during good weather condition, which may be beneficial during the pitfall 

of energy generation or integrated to the grid. 

2.3.2 Energy storage 

The challenges in conserving energy and reducing greenhouse effect requires the integration 

of increasing penetration of renewable energy sources, improving efficiency and reliability 

issues in power system. Energy storage systems (ESSs) are expected to play important role 

in giving flexibility to balance the smart grid by providing back up and buffering/slack 
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capacity to renewable energy resources [55]. ESS can also assist users to participate in 

energy management in a distribution network and reduce the electricity cost through 

opportunistic DSI, in particular residential buildings where individual households are 

equipped with an ESS [56]. The use of ESS can help to significantly leverage the efficient 

flows of energy within the household, generate revenues for the stakeholders, while helping 

to decarbonize the electricity grid. However, some ESS such as electric vehicles (EVs) that 

require high-capacity charger may not be installed within the residential building but in 

different commercial charging station. These ESSs for EVs can be used to provide ancillary 

services to both local energy providers and residential households [57]. There is also a 

category of vehicle to-grid (V2G) operation modes, where the charging and discharging 

cycles of the batteries of plug-in hybrid electric vehicles (PHEV) and electric vehicles (EV) 

are connected to network operation [58] 

In addition, some of the ESS developed for different purposes include but not limited to 

supercapacitor energy storage [59], flywheels [60] and Lithium-ion battery [61], etc. The 

utilization of these storage technologies depends on a specific application as they have 

individual characteristics and performances such as (power, energy, and cost) for different 

applications. Energy storage system interfaced with a suitable power electronics unit can 

help to create virtual synchronous generators (with rotational inertia) to reduce large 

frequency variations that can result in an unstable grid [62].  

 

2.3.3 Power electronics 

With power electronics, the high penetration of renewable energy sources (e.g., solar, wind, 

tidal) with stochastic energy production, using power active converter systems can be 

achieved in the smart grid. Power electronics converters serve as interface circuits between 

different smart grid components such as renewable energy sources, energy storage systems, 

power grid and customers to control power flow, helping with grid stability [54]. For each 
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agent, the front end to the smart grid is required to possess an intelligent energy conversion 

system interacting with the other front ends. The interconnections of these agents through 

transmission systems such as High Voltage DC (HVDC) or flexible AC transmission system 

(FACTS) enable larger and more efficient energy transfers [63]. It is also possible for 

transmission systems to manage a 2-way controlled power flow, which relies on the use of 

bi-directional energy conversion structure by adopting pulsewidth modulation (PWM) 

technology and control algorithms [63]. In a smart grid application, the objective function 

and operation of these agents can be continuously changed to meet the specific demands 

while ensuring safety and power processing efficiency.  

 

2.3.4 Smart metering 

Smart metering is a major enabling technology for realizing the vision of smart grid. Smart 

meter refers to an advanced/intelligent energy meter that obtains information from the end 

user’s load devices, measures the energy consumption of the consumer supply, and then 

provides added information to the utility service company [64]. Under the metering process, 

there are numerous types of data measurements such as consumption data, event data, energy 

generation information and power factor/power quality. Before the advancement of smart 

metering, Automated Meter Reading (AMR) initially was in place to reduce the manual 

effort of end-user cost calculation. AMRs are one-way communication electromechanical 

device installed inside the premises of the customers to provide the utilities with an on-

demand collection of meter records of subscribers [65]. Consumption data, which are regular 

and predictable, are only available at the substation level.  

With the transformation to smart grid technology, there is need for bilateral real-time 

interactions between the consumers and the utility service companies. Subsequently, 

Advanced Metering Infrastructure (AMI) has been developed to replace the AMR. AMI is a 

two-way communications technology and is the integration of advanced sensors; smart 
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meters, monitoring systems, computer hardware, software and data management systems 

that enable the collection and distribution of information between meters and utilities [66]. 

AMI can remotely control the supply and cut-off when necessary such that consumption data 

could be provided at time-interval with aggregated data for billing and other purposes [66], 

[67]. This provides consumers the opportunity to analyse the consumption data and potential 

cost of electricity for different time of the day. Utilities can also manage and ensure a better 

performance of the infrastructure across their service areas through the user modification of 

the energy demand and control system. Figure 2.3 shows the energy and secure 

communication flow between the utility and the smart meter interconnected to home 

appliances. The data aggregator/concentrator as shown in the figure provides the technology 

to measure and collect the aggregated energy usage data from the various appliances across 

the households, which is also passed to the utility [53]. It serves as the data and energy 

manager in the AMI. 

 

Figure 2.3. Smart metering communication system [53] 

For a wider application, optimization of energy consumption cost for various smart 

appliances and diagnosis of component wearing issues are some of the additional services 
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that can be provided to end consumers with the help of smart meters. The development of 

the required infrastructure (e.g., IDSS) for these services would complement the smart meter 

for potential user benefit. However, this natural extension in features of smart metering 

would form the bases for my research. 

 

 

2.3.5 Information & Communication Technology  

Adoption of Information and communications technology (ICT) is major step in the 

transition to smart energy grids. EU commission [68] noted that ICT based innovations 

provides the most cost-effective means of achieving 20% increase in energy efficiency by 

2020, while reducing carbon emission. ICT has the capability to transform the existing grid 

infrastructures by: 

• Supporting bidirectional energy and information flow 

• Facilitating the control and integration of renewable energy into the grid and  

• Extending to consumer control over their energy consumption by responding to 

pricing signals through the energy management systems. 

ICT is at centre of smart grid implementation; bringing together transmission system 

operators, power generators and energy consumers into a real time interactive network. 

Sustaining the existing electric grid requires the use of ICT as information channels to 

enhance energy efficient behaviour across sectors such as blocks of buildings, transport, and 

industries. 

 

2.4 Communication technologies available for smart grid applications 

The effectiveness of modern grid control depends on the quality of communication and 

information obtainable by the control system. Significant advanced technologies and 

applications are recently developed to provide communication services aimed at achieving 

a smarter grid electricity infrastructure. Communication technologies carry information 
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generated by other systems (e.g., utilities and consumers) and process the information to 

effectively manage power and protect the grid. This involves the generation of large data 

from different applications for real-time control and analysis. Therefore, it is imperative for 

electric utilities to establish communication requirements for their communication 

infrastructure to process reliable and secure data output throughout the overall system. The 

communication infrastructure as seen in Figure 2.4 is at the center of smart grid architecture 

interfacing with other smart grid stakeholders and enabling technologies. The importance of 

the communication infrastructure spreads from electric utilities to the DSI where the energy 

management system and smart home devices must be able to communicate effectively via 

control and external information signals (e.g., spot prices) to optimize energy consumption 

cost and production schedule. 

 

  

Figure 2.4. Smart grid architecture with modern communication infrastructure [48] 

 

The United States (U.S NIST) [69] defined a hierarchical information networks for smart 

grid system. These networks are classified into three categories namely: Home Area 



24 
 

Network (HAN), Neighborhood Area Network (NAN), and Wide Area Network (WAN) 

[70]. HAN is focused on small-scale data communications between devices in a typical 

residential setting; while NAN provides a backbone for transmitted data from multiple 

HANs that are deployed in residential/commercial buildings. WAN on the hand connects 

HANs and NANs, providing high-end capacities across vast area of smart grid network [71].  

However, in a smart building setting, there is need to support message exchange among 

smart meters, smart appliances, IDSS and utilities. Two types of information infrastructure 

are required for information flow [48]:  

• The flow from sensor and electric appliances to smart meters 

• The flow between smart meters and the utility’s data centers 

These information flows can be accomplished through wired and wireless communication 

technologies as described in the sections below: 

 

2.4.1 Wired technologies 

Dedicated cables are used for communications separately from the electrical power lines due 

to its increase in capacity and low latency [72]. Fiber optic and copper are typical examples 

of wired technologies for safe and reliable data transfer. Fiber optic cables are immune to 

electromagnetic interference and are used for relatively long-distance communication 

without the need for intermediate relays. However, the cost associated with the wired 

technologies and its maintenance is a major shortcoming in terms of long-distance cable 

deployments, for example when integrating DERs in remote areas to the grid and various 

connections in the populated cities. The major wired technologies are as follows:   

2.4.1.1 Powerline communication 

Powerline communication (PLC) is one of the most promising communication technologies 

for the implementation of smart grid. PLC is a low-cost technique mainly used to transmit 
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broad data signals from one device to another. Although commercially viable at the current 

time, it is not in widespread use (although usage is currently on the increase). With the 

existing powerline infrastructure (electric wires), there is no need for new cable installation. 

Though, electric utilities prefer to have their own networks, they use this technology for 

remote metering and load control using narrowband solutions in the low frequency range 

(CENELEC band [73] from 3 kHz) with data rates up to 9.6 kbps [74]. However, the 

availability and reliability of communication system offered by the PLC transmission 

channel is very difficult to guarantee under extremely adverse channel conditions. Therefore, 

a crucial stage in designing an efficient PLC system is gathering sufficient knowledge on 

channel characteristics such as access impedance, attenuation, multiple interferences, and 

synchronization [74]. One major application of PLC is on Home Area Network (HAN) 

interconnecting a number of smart appliances and might not be suitable for widespread 

application due to several shortcomings such as limited data, signal distortion when crossing 

transformers and others.  

Additionally, PLC depends on signal quality and is sensitive to disturbances (e.g., 

noise/interference in power lines). Therefore, there is need to combine PLC technology with 

other technologies such as General Packet Radio Service (GPRS), Global system for mobile 

communication (GSM) etc., to provide better connectivity. Hence, in a typical PLC network, 

electrical device such as powerline transceiver-based meter can be connected to the 

powerline and used to transmit metering data to a central location [75]. While PLC 

technology is required for data communication between the smart meters and the data 

concentrator, GPRS technology is used for transferring data from data concentrator to the 

utility’s data center.  
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2.4.1.2 Ethernet 

Ethernets is a wired communication technology popularly used for small-scale deployments 

to provide connections to HANs and Distribution Automation (DA) equipment. Ethernet has 

been extensively implemented in the existing power systems for localized protection 

functions to provide real-time monitoring and control through LAN [72]. Network hub and 

cables such as fiber optic, coaxial are required for Ethernet implementation, which can 

provide data ranging from 10 Mbs to 100 Gbs. Since it a wired network, it is sensitive to 

noise and distortion. Moreover, connecting power devices in large, distributed areas require 

scalable network that can quickly adapt to topology changes [76]. 

 

2.4.1.3 Serial communication 

Serial communication is a process of sending/receiving the bits of a byte in a timed sequence 

on a single communication channel (wire) [77]. It has become a standard for inter-device 

communication and is different from parallel communications where several bits are sent on 

a link with several parallel channels. TIA-232 is the most popular serial interface designed 

to allow one transmitter and one receiver on each line. It can support data rates ranging from 

 300 bps up to 115.2kbps and even 1 Mbps. Most computer networks use serial 

communication for a long-distance communication where parallel communication cannot be 

implemented due to cable cost and synchronization shortcomings. Moreover, only a few 

interconnecting cables are required for serial connection, as such, occupies less space which 

allows reasonable isolation of the channels from its surroundings. TIA-485 extends the basic 

point-to-point nature of TIA-232 connections to point-to-multipoint, with the restriction that 

communication is half-duplex. 
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2.4.2 Wireless technologies 

Wireless technologies are considered a genuine alternative to bolstering smart grid functions 

within the power distribution network and enabling consistent communication any place at 

low cost. Smart grid applications (e.g., load scheduling, etc.) make use of data collected from 

sensors and smart meters in understanding the current state of the system before deciding 

the best control action to improve the efficiency and for other purposes [78]. Therefore, to 

implement these applications effectively, wireless communication network (WCN) is 

needed to deliver data from sensors and smart meter to control center and to convey the 

signals in opposite direction to the actuators and smart meters. Wireless communication 

technologies have more advantages over the wired technologies because they have low cost 

of deployment, more scalability, flexibility, and portability. However, they are constrained 

to bandwidth and security options. Wi-Fi is the most popular wireless technology used to 

connect electronic devices to a Wireless Local Area Network (WLAN). Other wireless 

technologies include Radio Frequency Identification (RFID), Bluetooth, and Wave2M etc. 

[78]. In particular, RFID is used in HAN applications such as lighting control. Key relevant 

wireless technologies available for smart communications are discussed below: 

 

2.4.2.1 ZigBee 

With the advancement of wireless technologies, it has become necessary to implement 

applications based on wireless protocol. ZigBee is an industrial standard of wireless Personal 

Area Network (PAN) that is targeted to wireless communications with low power usage, 

low-data rate and low-cost of deployment [79]. It is based on IEEE 802.14.4 standard [80], 

and is an ideal technology for home automation, energy management, energy monitoring, 

smart lightning etc. In relation to home automation application, AMI vendors such as Elster, 

Landis Gyr, etc., prefer smart meters that allow the integration of ZigBee protocols [75]. 

ZigBee Smart Energy profile (SEP) offers these vendors an open standard for implementing 
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HAN communication [81]. This enables the communication and control of smart devices 

while benefiting household energy customers by allowing them to manage their consumption 

wisely based on the real-time consumption information provided by the utility. However, 

the constraints in the practical implementation of ZigBee are low processing capabilities, 

and small memory size as result of license-free Industrial, Scientific, and Medical (ISM) 

frequency band ranging from IEEE 802.11 wireless local area networks (WLANs), 

microwave and Wi-Fi [82].  

 

2.4.2.2 Wireless mesh  

Wireless mess networks (WMN) are deployed in smart grid to provide high-speed and easy-

to-deploy wireless backbone for NANs [83]. WMN can also provide wireless transmission 

methods in different applications such as AMI, HEMS, and internet services etc. Through a 

mesh network, a remote-control station can collect updated operation information from 

many devices located in a large area while also responding to any emergency. For example, 

in Pacific gas and electric (PG&E’s) smart meter system, every smart device is equipped 

with a radio module, which routes the metering data through a nearby meter. Each meter acts 

as a signal repeater until the connected data reaches the electric network access point. The 

collected data is then transferred to the utility via a communication network [48]. Two-tier 

architecture consisting of mesh routers and mesh clients are used by a mesh network to 

manage many electrical devices at a distributive location [84]. These architectures can be 

installed across power domains since the mesh network is independent from the power 

system operation. The major challenges encountered by mesh network is that its metering 

information passes through every access point managed by a third-party company, as such 

requires some level of data encryption for security purposes. 
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2.4.3 Cellular network communication 

Cellular network communication (CNC) is an existing option for communication between 

smart meters and the utility and between far nodes. The communications rely on a widely 

adopted communication infrastructure that allows deployment of smart metering that spans 

across wide area environments and remote endpoints to be connected into the same 

management network [81]. Hence, CNC can be rolled out quickly using an existing cellular 

infrastructure to enable wide-range communications among grid entities residing in different 

geographical locations. Some of the cellular CNC technologies available to utilities for smart 

metering deployments are 2G, 3G, LTE, 4G, WiMAX, etc. In a pilot deployment of virtual 

power plant [85], medium voltage remote applications were implemented over 2G and 3G 

mobile radio networks as such can also be used in NAN metering and control applications 

to facilitate communication. However, long term evolution (LTE) standards offer energy 

utilities some satisfactory requirements (e.g., low end-to-end latency, peak data rates etc.) 

for advanced smart grid application such as DSI and restoration applications. Both GSM and 

GPRS support applications in DSI, AMI and HAN. WiMAX has been chosen for 

communication function of a smart meter in a dedicated communication network built by an 

Australian energy delivery company (SP AusNet) [48]. They embedded WiMAX chip sets 

into smart meters and wireless communications are dedicated between smart meters and their 

central system. With CNC, there may be network congestion or shortfall of network 

performance in emergency events due to many customers in the cellular network. 

The range of coverage, data range requirements and communication technologies for the 

different hierarchy of networks are shown in Table 2.2 

 

 

 

 



30 
 

Table 2.2. Communication technologies for different hierarchy of networks and communication 

mediums [70],[71],[76] 

Communication technologies between smart meter and home appliances 
 

Technology Standard Data rate Coverage Application Limitation 

 

Z-wave Z-wave 40kbps Up to 30m HAN Low data range 

Bluetooth 802.15.1 721 kbps Up to 100m HAN Low data range, 

costly to install 

ZigBee 802.14.4 250 kbps Up to 175m HAN Low data range 

Wi-Fi 802.11x 2-600 Mbps <100m HAN, NAN Costly to install, 

noisy channel 

PLC HomePlug 14 - 200mbps Up to 200m HAN Noisy channel 

 

Communication technologies between Utility and smart meter  
 

Technology Standard Data rate Coverage Application Limitation 

 

Fiber optic PON 155Mbps 

to 2.5Gbps 

Up to 60 km  

 

    WAN 

 

Costly to install, 

Low scalability WDN 40Gbps Up to 100km 

SONET/SDH 10Gbps Up to 100km 

Cellular 2G-4G Up to 

100Mbps 

Up to 50km NAN, WAN Costly spectrum 

fee 

WiMAX 802.16 57Mbps Up to 50km NAN, WAN Not widely spread 

PLC Narrowband 10 -

500kbps 

Up to 3km NAN Harsh and noisy 

channel 

Ethernet 802.3x 10 Mbps -

10Gbps 

Up to 100m HAN, NAN Short range 

 

2.5 Requirements for smart grid communication 

Implementing smart grid demands a better understanding and identification of key features 

and requirements. While this includes different interdisciplinary areas, this section will focus 

on the communication features that will form the basis for a smarter power system that can 

meet the future electricity needs. Key features for smart grid communication are discussed 

below:  

2.5.1 System security, robustness, availability and reliability 

The operation of smart grid system requires a dedicated, secure, robust, and reliable 

communication network. It has been long acknowledged that the critical infrastructure 



31 
 

network should be resilient and protected against failures and attack. Secure information 

storage is very important for the utilities, especially for grid control, billing, and other 

purposes [86]. In the case where public internet is used to connect customer devices with the 

utility infrastructure, solid encryption and authentication measures must be taken to ensure 

the security of data in transit. Existing power grid is faced with unreliability issues arising 

from the ageing infrastructure, which results to power failure in some cases.  Harnessing the 

modern ICT, control, and intelligent devices from energy generation level to customer level 

will significantly strengthen the system availability, reliability, and robustness [87]. 

 

2.5.2 System design and data aggregation 

Given that smart grid is expected to integrate the actions and behaviors of all the connected 

users, the architecture for the communication system must be systematically designed. In 

particular, the development of energy distribution system and data aggregation method will 

be critical to making the system respond to localized changes. Hence, there has to be careful 

decisions on the design choices and potential trade-off analysis between the available system 

design objectives. Example, in the case of energy management system, a trade-off exists for 

design models with multi-objective optimization functions such as the minimization of 

electricity consumption cost on one hand and the maximization of customer’s comfort (well-

being) on the other hand.  

 

2.5.3 System efficiency and scalabilty 

The deployable infrastructure on the smart grid network must be simple and scalable enough 

to facilitate an efficient operation of the power grid. The efficiency of the system must be 

viewed in its entirety and not in isolation. Advanced functionalities such as self-

configuration, self-healing etc., are needed to provide scalability to different components 

such as communication devices and DER integrated to the power grid.  
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2.5.4 Quality of service  

Mechanisms for delivering Quality of service (QoS) must be provided by the communication 

network to satisfy communication requirements, while ensuring effective communication in 

conveying data and control signals from the utility company (supplier) to consumers. For 

example, in sending DSI pricing (e.g., RTP, CPP) to customers, a transmission error or 

excessive delay in the communication network will impose limits on the update intervals of 

energy prices. The packet delay for a DSI application can range from 500ms to several 

minutes at the same reliability [88], which when exceeded may lead to system instability, 

affecting the QoS. Different forms and levels of QoS are needed for various smart grid 

applications [78]. In supporting the QoS requirements for DSI application, an important 

question that comes up is how to define QoS requirements and ensure requirements from 

smart home appliances are available in the communication network. The answer to the 

question would require investigation into the energy prices and consumption details based 

on load profile. This would likely result to the development of an energy support unit (e.g., 

IDSS) to schedule and optimize energy consumption cost based on pricing information 

(signals) and knowledge of the appliance specifications, which will in turn, improve the 

communication and QoS. 

 

2.6 Smart grid standards 

Significant number of standards for smart grid have been developed in parallel or are still in 

development phase by different research institutes and organizations. Most of the standards 

are not widely accepted for smart grid implementation. It is therefore very important to select 

standards that meet the smart grid requirements, to enable the integration of advanced 

applications such as smart meters, renewable energy sources etc., while ensuring the 

interoperability between them. National and regional Institutes/organization have played a 

major role in presenting key standards to realize an integrated and interoperable smart grid. 
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Example of such institutes and organizations includes American National Standard Institute 

(ANSI), NIST, International Standard organization (ISO), Institute of Electrical and 

Electronics Engineers (IEEE), International Electro technical commission (IEC) etc.  In 

particular, IEC Smart grid standardization road map, NIST framework and Roadmap for 

smart grid interoperability standards release 2.0 and so on. For reader’s description, the 

details of the smart grid standards, which are most relevant to smart grid application at 

household level, are explained below:  

2.6.1 Building automation 

• BACnet is a communication protocol designed by American Society of Heating, 

Refrigeration and Air-conditioning Engineers (ASHRAE) for building automation 

and control network. BACnet protocol provides the mechanism for smart building 

devices performing different services to exchange information. 

2.6.2 Powerline networking 

• HomePNA is an industry standard for interconnecting computers within a home 

using existing coaxial cables and telephone wires or lines [77]. It serves a similar 

purpose with HomePlug and Ethernet and is considered as an enabling technology 

for an in-house broadband.  

• HomePlug is a family name designated for numerous powerline communications 

specification. HomePlug specifications are targeted at broadband applications (in-

home distribution low data rate), as well as in-home communication with smart 

meters to connect smart appliances to HAN.  

• PRIME (PoweRline Intelligent Metering Evolution) is an open international 

powerline standard for applications such as advanced metering and grid control. It 
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provides interoperability among several devices and systems from different 

manufacturers.  

2.6.3 Application level energy management systems 

• OpenADR is an internationally recognized standard for Automated Demand 

Response. The adoption of OpenADR to smart grid implementation has become 

necessary to deploy demand response and dynamic pricing effectively, while 

ensuring grid stability. 

• IEC 61970 and IEC 61968 are standards for the integration of advanced smart grid 

application. IEC 61970 is defined to improve communication interoperability for 

energy management systems while IEC 61968 standardize interface for meter 

reading & control, network operations etc.   

2.6.4 Interoperability center communications 

• IEEE P2030 is a guideline for smart grid interoperability of the electric power 

system with end-use application. The guide provides a basic understanding and 

knowledge required for grid architectural designs and operation, while also providing 

alternative approaches to good practices for smart grid. 

• ITU-T is a standard for wired communication and networking developed by 

International Telecommunication Union’s Telecommunication. ITU-T standards 

support communication over low and medium voltage powerlines in both urban and 

rural communications.  

• ISA 100.11a is a standard for wireless network systems, developed by the 

International Society of Automation (ISA). ISA 100.11a standard defines the 

procedures for implementing wireless systems in the automation and control open 

field level.  
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• ANSI C12.22 is a standard protocol for interface to data communication networks. 

The standard enables secure communications including confidentiality and data 

integrity by using AES encryption. 

 

 2.7 Summary 

The information provided in this chapter is a scene setter to understanding the features of 

smart grid and puts the research ideology into context. Although smart grid technology and 

its application is progressing very quickly, the focus was on the enabling technologies that 

are relevant to the work subsequently presented in this thesis. State of art of current smart 

grid communication technologies and their impacts, requirements and standards have also 

been presented. It is assumed for the remainder of the thesis that some of the highlighted 

enabling technologies will be in place to support smart grid applications. For example, smart 

meters through AMI will be in place to provide 2-way communication on energy prices, 

consumption data and other related information to both consumers and utility companies 

respectively. Although smart grid enables the transition to intelligent power grid with 

advanced capabilities, it also opens many new challenges that surround the uncertainty in 

future energy generation, preventing network planners and consumers from making 

informed decision. The major drawback to achieving the potential benefits of smart grid at 

the consumption level has been the lack of automated IDSS to provide an informed decision-

making on energy schedule, optimization and control of various interconnected devices and 

activities. Consequently, various smart home appliances, smart meters, electric vehicles 

(EVs), and IDSS are expected to communicate properly with each other, while also ensuring 

communication with consumers and utility service companies. Additionally, it is expected 

that this chapter will benefit researchers who are interested in smart grid and related fields 

by providing an insight into the enabling technologies and standards.  



36 
 

In the next chapter, DSI and load management strategies available for smart grid 

implementation in residential buildings will be described, which forms the core area of the 

research in the later chapters of the thesis.  
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Chapter 3 

3 Review of Demand-side Integration and load management strategies 

3.1 Introduction 

Load management is the most significant strategy for addressing the Demand-side 

Integration (DSI) problems [89]. Efficient load management strategies are critical to 

achieving DSI at the consumption level of smart grid and have recently gained increasing 

research interest [90]. Consequently, Demand-Side Management (DSM), Demand Response 

(DR) and Demand-Side Bidding (DSB) have been systematically used to describe load 

management and a range of different demand side initiatives (as will be defined in Intelligent 

Decision Support System). To avoid confusion and inconsistent use of the concepts and 

terminologies, Demand-side Integration (DSI) is used in this chapter to refer to the 

underlying aspects of the relationships between the electric power systems, the energy 

supply and end-user energy consumption. Hence, the DSI encompasses all activities focused 

on end-use efficiency and effective electricity utilization including demand response and 

energy efficiency. Towards the effective implementation of DSI load management strategy, 

an Intelligent Decision Support System (IDSS) will play an important role for efficient and 

coordinated load scheduling and optimization using pricing signals [91]. An IDSS aims to 

enable the autonomous management of smart home devices and their energy consumption 

profile to improve energy efficiency. In this chapter, the concept of DSI load management 

strategies is reviewed. Load scheduling objectives, appliance-modelling considerations, and 

the required algorithm for an effective IDSS implementation are also discussed.  

 

 

3.2 Demand-side Integration  

Demand-side integration (DSI) is a set of measures designed to utilize loads and local 

generation to support network management and improve the quality of power supply [33]. 



38 
 

DSI aims at addressing the problem of electric power systems such as financial risks of 

infrastructure investment and load management using pricing programs that encourage peak 

demand reduction. This requires the interaction between the consumers and utility service 

companies to deal with the increasing electricity demand; while providing the technological 

platform to implement demand sensitive pricing notions aimed at using energy more 

efficiently and effectively. Hence, utilizing price signals that reflect the known (or 

forecasted) value of energy during a particular hour—and its uncertainty—may help to 

enable improved coordination between electricity supply and demand. This, in turn, can help 

to integrate renewables with intermittent output into the grid. In addition to reducing 

consumer energy costs, DSI approaches should be able to help manage the integration of 

renewable resources, since a large proportion of energy generation in smart grid is expected 

to come from non-dispatchable renewable resources such as wind, solar and wave energy 

[92]. These renewables are intermittent in nature and it remains an important challenging 

factor to manage their output generation with demand fluctuations. Furthermore, the required 

generation capacity for peak demand can be reduced by DSI approaches [93]. Achieving the 

potential benefits of DSI depends on the following: 

• The availability and timing of the information provided to the customers, e.g., the 

spot prices of electricity relayed to the customers by the utilities via the AMI.  

• The duration and timing of the consumer DSI participation. 

• The efficiency of the ICT infrastructure e.g., the smart metering. 

• The automation of end-use energy management system e.g., the IDSS. 

 

DSI is a generic term for the various terminologies used in demand side, whose meanings 

are closely related to each but with slightly different focuses. These terms are defined as 

follows: 
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3.1.1 Demand-Side Management 

Demand-Side Management (DSM) is an enhancing concept for the activities of utility that 

influences customer use of electricity. DSM can be defined as the planning, implementation 

and monitoring of activities designed to encourage consumers to change their electricity 

consumption pattern [33],[94]. The initiative of the concepts of DSM was first introduced in 

1985 by Gellings [95]. The principally objectives of DSM include influencing energy 

demand, reducing peak demand and reducing greenhouse gas emissions. Effective 

techniques for DSM can also help to stabilize and sustain the grid. Therefore, the 

development of different new methods/approaches for the implementation of DSM are 

considered in the various on-going research by the academia and industry. DSM approaches 

are meant to achieve demand response at the consumption level and for large-scale 

customers. In the residential area, DSM refers to the activities designed by the utility 

companies to reduce peak demand at the consumption level [96]. However, the success of 

DSM will mostly depend on the active participation of the end-users.  

 

3.1.2 Demand Response  

While DSM refers to long-term and short-term measures designed by the utility to influence 

the consumption pattern, Demand Response (DR) is the actions or mechanisms taken to 

directly adjust demand curve of consumers in response to specific supply conditions [97]. 

Examples of DR includes the user modification of consumption pattern by shifting loads 

between times of the day; reducing the level of instantaneous peak demands, particularly 

when power utilization approaches supply limits. Traditionally, DR is focused on load 

curtailment during peak period to enable grid stability. On the other hand, DR is a more cost 

effective alternative than adding generation capabilities to meet the occasional demand at 

peak times. Incorporating DR within the constraints of the electricity network could have a 
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significant reduction in the electricity prices in the market and in turn, reduces the exercise 

of market power by the generation company [98].  

 

3.1.3 Demand-Side Participation 

Demand-Side Participation (DSP) is a set of techniques/strategies used in a competitive 

electricity market by end-use customers to contribute to economic, system security and 

environmental benefits [33]. DSP seeks to improve energy efficiency and control the effects 

of load on the supply chain. The major issue with DSP is how to make efficient energy 

consumption schedules with increasing number of loads. Consequently, customers are more 

willing to voluntarily participate in DSI by adapting to pricing programs advertised by the 

utilities and making effort to shifting some high-load consumption devices to off-peak 

periods to reduce electricity cost. This can be done through automatic response to pricing 

signals based on direct communication between the energy consumer, the system operator 

and the utility as shown in Figure 3.1[86] 

 

 

Figure 3.1. Demand-side Integration communications  
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3.1.4 Implementations of Demand-side Integration 

As shown in Table 3.1 below, the implementation of DSI can be done through DSI pricing 

programs, which provide the opportunity for consumers to control their energy consumption. 

They are of two types: 1) Pricing-based DSI (P-DSI); and 2) Incentive-based DSI (I-DSI) 

programs [33],[99]. P-DSI programs also known as time-varying prices that motivate 

consumers to change the consumption patterns, while I-DSI programs reward the 

participating customers for reducing their electricity consumption in response to utility 

signals. I-DSI programs (e.g., direct load control [100]) can be customized to a particular 

operational objective such as localised load reduction during transmission congestion to 

diversify the contribution of DSI load scheduling strategy to efficient grid operations [99]. 

However, I-DSI poses a serious threat to customer privacy as the time intervals of meter 

measurement varies from hours to seconds based on several trigger conditions  [101],[102]. 

This privacy issue is a major challenge of I-DSI, as it involves third party company (or utility 

company) collecting metering measurements to calculate the aggregate demand side 

resources of customers and reward customers based on their participation on demand 

curtailment during DSI events. 

Table 3.1. Demand-side integration pricing scheme [103] 

Priced-based DSI programs      Incentive-based DSI programs 

Real Time Pricing (RTP) 

Time of Use Pricing (TOUP) 

Critical Peak Pricing (CPP) 

      Direct load control (DLC) 

      Emergency load shedding 

      Demand bidding/Buybacks 

      Interruptible/curtailable load 

 

P-DSI or time-varying pricing mechanisms enable consumers to instantly identify the likely 

duration of a period of high price levels during which they can reduce their energy 

consumption. Hence, this could lead to cost-reflective consumption, driven by aspects of the 

entire supply chain involved in delivering electricity during a certain period in a given 
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quantity at a specific location [2]. Each of the time-varying pricing rate which includes real 

time pricing, time of use pricing and critical peak pricing is described below [2],[103],[104]:  

 

Real time pricing (RTP): Customers that participate in RTP are provided with electricity 

prices within a certain period on hour ahead basis. It is also possible to forecast the spot 

prices a day ahead depending on category of customers (residential, business customers etc.) 

RTP reflects the wholesale cost of energy production during a certain hour and represents 

the best and flexible pricing signals advertised to customers to reduce consumptions at the 

periods of high tariff. 

 

Time of use pricing (TOUP):  A typical model of TOUP is where a day is divided into 

several periods (times) and schedule of rate is provided for each period. For example, a 

period of 2pm to 10pm on a weekend (Saturdays & Sundays) might be defined as peak period 

during which prices of electricity are higher, while the remaining hours are the off-peak 

period. TOU rates in some cases might include a shoulder (mid-peak) period, as there is a 

certainty on the rates at any given period. TOU rate is very simple for customers to 

understand and participate in. However, they are not dispatched based on the changes in 

actual wholesale prices, and as such are not dynamic. 

 

Critical peak pricing (CPP): Participating customers under a CPP model pay higher tariff 

during a few days of an unexpected event (CPP event day) affecting the grid. At these 

periods, the wholesale prices may be the highest. Typically, this must not be more than 15 

days per season in a year according to regulations, and customers may decline not to 

participate. Customers are notified of any upcoming CPP event one day in advance and the 

participants receive incentives (e.g., discounted tariff during the remainder of the season) to 

balance the utility’s total annual revenue. 

 

However, the use of P-DSI to achieve demand response is most effective with the use of 

smart home devices, which can be scheduled or shifted to adapt to the pricing signals 
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advertised by the utility companies. To manage electricity consumption in response to time-

varying prices, there is a need for an automated system. For example, the use of Home energy 

management system (HEMS) or Intelligent Decision Support System (IDSS) to control the 

smart appliance scheduling in the residential building. For business and industrial customers, 

automated demand response (Auto-DR) would enable customers to automate reductions of 

electricity consumption in a range of processes through integration with the facility’s DSI 

support [104]. 

 

3.2 Intelligent Decision Support System  

The emerging smart grid has presented new opportunities for DSI support to incorporate the 

concept of smart homes and smart grid. Intelligent Decision Support System (IDSS) is a DSI 

load scheduling tool that enables an informed decision-making aimed at shifting and 

curtailing demand to improve energy consumption and production profile in response to 

pricing signals and user comfort [105]. IDSS enables optimal and near-optimal consumption 

and production schedules with different objective functions such as economic benefits (e.g., 

energy cost optimization, load profiles), environmental benefits (CO2 emission reduction) 

and consumer well-being (comfort) etc. IDSS is seen as a major driver for automated DSI 

participation, as it is unrealistic for consumers to spend time manually analyzing load 

profiles and consumption costs of the household devices to save money. As such, IDSS is 

expected to plan for appropriate responses such as price, demand uncertainties and so on, 

without human intervention. Hence, the implementation of IDSS increases the 

responsiveness of residential electricity consumers to dynamic pricing signals advertised by 

the utilities [105], [106]. For example, reductions in peak consumption are larger by 10-27% 

in critical peak pricing and 22% in time-of-use pricing when the pricing program is tested 

with a specialized system such as an IDSS [106]. 
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In a wider context, IDSS often incorporates forecasts of renewable uncertainties as well as 

energy consumption patterns/behaviors in household appliance scheduling. Forecasting 

tools such as fuzzy logic [107], Neural networks [108], support vector machines [109], etc., 

can be used to determine the accuracy of load forecasting, which also depends on the 

forecasting methods being employed. However, it can also be assumed that the forecasts are 

made available for IDSS through external sources (e.g., spot prices from the utilities) or can 

be addressed by a different component of DSI support tool. To utilize the IDSS effectively, 

complementary communication devices (e.g., smart meter/AMI) are needed to provide 

access to certain required information (e.g., electricity prices), and to the appliances 

themselves.  

 

Many terms have been broadly used in the literature to describe the IDSS and DSI support 

that manages home devices to improve energy consumption pattern and production profile. 

Home energy management systems (HEMS) [110]-[112]; Energy Management System 

(EMS) [113],[114]; Demand side management system (DSMS) [115],[116]; Residential 

energy management system (REMS) [117] are the most common terms used in the literature 

for DSI support unit. In this thesis, the use of the term IDSS is preferred to maintain 

consistency of discussion. 

 

3.2.1 Multi-objective functions of IDSS 

While the purpose of the terms used to describe the residential energy management units 

found in the literature are consistent, their objective functions can vary significantly. In 

general, the types of quantities comprising the components of an objective function 

employed in an IDSS have included the following:  

 

Economic Cost: these components constitute any financial savings from effective utilization 

of the energy infrastructure. Cost minimization is the predominant objective of IDSS, as 
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energy cost saving is the major driver for consumers, and electricity prices (spot prices) are 

readily available for consumption cost optimization and other purposes. Consumer costs 

might include per-unit taxation and distribution charges, which form a large proportion of 

the final price. The objective is aimed at finding the least expensive set of power profiles 

subject to necessary constraints. Cost objective function can also include the device start-up 

cost as well as cost of carbon or other emissions taxes [105].  

Customer Well-being: are the objective function components that consider the satisfaction 

of consumer’s lifestyle, patterns, and behavior in managing the energy consumption. This 

ensures the minimization of consumers’ inconveniences, while maximizing the quality of 

services rendered by the energy delivery. Hence, the objective is such that customers do not 

lose any degree of comfort. 

Load profile: This objective component considers the modification of the set of appliance 

stages (phases) along with their energy consumption to minimize peak demand through load 

shedding, shifting etc. Peak reduction is desirable to improve the usage of available grid 

capacity [118] 

Environmental impact (CO2 Emissions): This objective component refers to the 

minimization of greenhouse gas emissions relating to electricity consumption. Emissions 

may be based on grid intensity, measured in grams of CO2 equivalent per kWh of electricity 

consumed [105]. If an estimate of the economic cost of emissions (taxation levels) are 

known, then actual emissions are often eliminated and replaced by equivalent economic 

costs. 

 

While economic cost [17],[118],[119] is the dominant objective function component 

considered in the literature, several multi-objective function components are often 

combined, such as costs and well-being [10],[120], cost and emission [121], cost, well-being, 

and emission [122] and different combinations thereof. A multi-objective optimization 
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considers a trade-off analysis between two functions using two approaches. The first is a 

priori approach, which is considered when it is possible to analyze the decision-maker’s 

trade-off between various objectives before solving the optimization problem. The second is 

referred to as posterior approach (e.g., Pareto frontier) when the prior approach is not 

possible. The most commonly used methods for addressing multi-objective optimization 

problems are bounded objectives [123], which uses constraints with acceptable range; and 

weighted sum [124], which adds scalar weights to combine components into a new objective 

function.  

 

3.2.2 IDSS for smart home with smart devices (appliances) 

Smart homes are technological augmented residential buildings that have several intelligent 

interconnected devices, which provide services and automation to support the running of the 

household and its internal/external environment [125]. The services provided by a smart 

home application include appliance scheduling & optimization, lighting control services, 

heating and cooling services, ambient media services, security services, etc. Electronic 

sensors and actuators, automation devices and communication channels are used to control 

and coordinate the activities of various devices in the smart home.  However, there is large 

diversity in the energy consumption patterns of devices because of certain dwelling 

characteristics such as occupancy, affluence, and lifestyle [105]. Therefore, it is imperative 

for an IDSS to be effective enough to coordinate the scheduling of multiple devices with 

different configurations (such as operation stages and power constraints) along with a variety 

of user preference constraints (such as start and stop times or usage windows).  

3.2.3 Household appliance scheduling considerations for IDSS modeling 

For a coordinated scheduling and optimization using IDSS, there is need to address the 

modeling issues and considerations for the control of various appliances with unique 
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characteristics in residential buildings. Many existing research on load scheduling in the 

literature categorized the devices into different classes in attempt to simply the modeling 

complexity. The different classes based on appliance behavior and controllability include 

controllable loads, uncontrollable loads, regulation loads [105], etc. Controllable appliances 

such as washing machines, dishwasher, tumble dryers, water heaters, are selected candidates 

for demand response modeling. They are called controllable because they can be scheduled 

or shifted to operate at any hour of the day (within given user constraints), hence helping to 

reduce peak consumption and saving cost. Also, from the literature, certain appliances such 

as refrigerator are considered as uncontrollable [126] at hourly time resolution because of 

the short cycling characteristics (20-45 minutes), while most research consider it as 

regulating loads [10],[100] at the minute resolution, depending on the optimization or control 

technique being applied. Controllable appliances can be either interruptible or 

uninterruptible loads; and may have one or many operation cycles (stages) and constraints. 

For example, tumble dryer is modelled as uninterruptible load as it has only one stage 

(drying) which can start and finish without any in-stage interruption. In addition, renewable 

energy generations (PV panels and wind turbines), energy storage devices and Plug-in hybrid 

electric vehicles (PHEV) are also controllable /schedulable for environmentally friendly 

smart homes.  

 

3.3 Load scheduling Strategies  

Load scheduling is a significant service provided by DSI through demand side resources (e.g., 

flexible loads, distributed generation, and storage) to the power system by modifying the load 

consumption patterns [33]. The major objective of load scheduling is to determine starting 

times for controllable appliances to balance the residential electricity profile and to minimize 

the economic cost of energy consumption. This involves scheduling multiple appliances 

(which may be interruptible or non-interruptible) within various time and user comfort 

constraints. Since most scheduling problems are known to be NP-Complete, it is unlikely that 
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an optimal solution to an appliance load-scheduling problem can be found in polynomial time 

[21]. To simplify the solutions to such scheduling problems, there is often a need to 

approximate the optimal scheduling of household devices; there is a trade-off between 

optimality and low computational overheads. Three key techniques are most commonly used 

to schedule residential smart devices: those based upon mathematical optimization 

formulations, heuristic methods, and meta-heuristic searches [105]. These techniques are 

summarized below: 

 

3.3.1 Mathematical optimization (Mathematical programming) 

Mathematical optimization minimizes or maximizes an objective function by systematically 

choosing input values from a given set such that ‘best’ feasible solution satisfying any given 

constraints is achieved (this solution is known as the optimal solution). In a case where no 

feasible solution to an instance exists, the problem is termed ‘infeasible’. Both the objective 

functions and the constraints are formulated mathematically. The types of mathematical 

constructions appearing in an objective function and the types of constraints on the variables 

define the class of problem. Typical generalizations of problem classes are as follows [105]: 

 

Linear programming (LP): This is a special case of mathematical optimization for 

determining the best outcome in a given mathematical model for some list of requirements 

represented as linear relationships [127]. Hence, linear programming techniques are used for 

the optimization of linear objective functions subject to linear equality and inequality 

constraints. The objective function is a real-valued affine summation of the optimized 

variables. The solution procedure aims to find a point in the polyhedron where the function 

has the minimum or maximum value (if such a point exists). For real-valued decision 

variables, the best solution can be found in polynomial time using interior point methods 

[128], but specialized software is required for its implementation.   
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Integer linear programming (ILP): When additional constraints are added to linear 

program to enforce that all of the variables take on integer values, the resulting optimization 

program is known as an integer linear program (ILP). This increases the complexity of the 

problem considerably over a standard linear program, and the problem becomes NP-hard to 

solve [129]. Algorithms such as branch and bound and cutting planes are required to make 

progress on such problems. In the worst case, all such approaches will default to exhaustive 

search [130]. Specialized software is needed to solve ILPs. 

 

Mixed Integer linear programming (MILP): This is a generalization of an ILP, which 

requires only a subset of the decision variables to be integer. MILP problems are also NP-

hard and have similar requirements to ILPs. 

 

Quadratic programming (QP): This is a type of mathematical programming problem with 

a quadratic objective function in several variables that are subject to linear constraints. QP 

problems are simple to solve in polynomial time if the objective function is positive definite 

and only equality constraints are present. The problem becomes NP-hard when the objective 

function is indefinite, and one or more variables are required to be integer. 

 

Non-linear programming (NLP): This is a type of optimization problem where the objective 

function is nonlinear, and the best feasible solution is determined by linear nonlinear 

constraints.  

 

Mixed integer non-linear programming (MINLP): defines the optimization problems 

where the objective function and constraints have general nonlinear components (e.g., 

sigmoid functions). This type of scheduling problem formulation can be difficult to solve 

computationally and may not guarantee any global solution. In many cases, an NLP can be 

well approximated by a LP or MILP to obtain approximate solutions at appropriate 

computational cost, and if possible, to do so, it is mostly recommended to avoid ad-hoc 

solution techniques. 
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Convex/Non-convex programming: Convex optimization problem is where all of the 

constraints have convex functions, such that the objective is a convex function if minimizing, 

subject to linear inequality constraints or a concave function if maximizing subject to concave 

inequality constraints [131]. Hence, a concave optimization problem is a problem where the 

objective function or any of the constraints are concave or non-convex. The non-convex may 

have many feasible regions and local point within its region, which can take exponential time 

to determine the optimal solution across all regions. An illustration of convex/non-convex 

optimization is shown in Figure 3.2 below. 

a) b)    

c)       d)                

Figure 3.2. Illustration of convex/non-convex optimization: (a, b) Convex region and convex 

function respectively, (c, d) non-convex region and non-convex function (e.g., sine function) 

respectively [131]. 

 

Convex problems (e.g., linear programming) have only one local optimum point, which is 

also the global optimum point. Well-behaved iterative algorithms such as the interior point 

methods can be used to either find the feasible or global solution if such exists [48]. 

Dynamic programming: This is a method of solving complex optimization problems by 

breaking them down into smaller sub-problems, solving and storing the solutions of each one 

the sub-problems. For residential DSI support, variables are confined to be discrete values 

only. 
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3.3.2 Heuristic algorithm  

Algorithms are generally defined as step-by-step procedures for solving problems. They can 

simply be referred to as computer programs written in a precise computer language to solve 

and produce solutions to instances of optimization problems [129]. In the case of the 

Travelling Salesman optimization problem [132], an algorithm does not solve the problem 

unless it is designed in such a way that it gives the minimum length tour. Hence, an efficient 

algorithm could mean the fastest in obtaining the solution. In practice, time requirements are 

often a dominant factor in determining whether an algorithm is efficient enough or not. The 

time requirement for any algorithm is expressed by time complexity function to give the 

largest amount of time required to solve a problem instance of that size for each given length.  

Computer scientists recognise that algorithms have different time complexity functions 

because of distinctions between polynomial time algorithms and exponential time 

algorithms. A polynomial-time algorithm is one in which the computing time required to 

produce a correct solution for an input of input size x (in bits) is always less than some 

polynomial function p(x). On the other hand, an exponential time algorithm is any algorithm 

whose time complexity function cannot be bounded by a simple polynomial in this way 

[129]. This definition includes non-polynomial exponential time functions e.g., tlog t. The 

distinction in time complexity between polynomial time algorithms and exponential time 

algorithms has a great significant when considering the solution for a large problem instance; 

polynomial time algorithms scale reasonably well in the input, whereas exponential time 

algorithms do not.  

In computational complexity theory, Non-deterministic Polynomial (NP) is a class of 

decision problems where candidate solutions can be verified as solutions in polynomial time 

by a deterministic Turing machine [129]. Polynomial (P) problems represents a class of 

decision problems which are both solvable and verifiable in polynomial time and is a sub-

class of NP. Another sub-class of NP are NP-Complete problems which are thought to be 
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‘hard’ to solve and are related to each other through polynomial transformations. NP-hard 

problems are search (c.f. decision) problems which although they are not in NP, are at least 

as hard to solve as NP-complete problems. The relationship between the classes: NP, NP-

hard, NPC is shown in Figure 3.3 below.  

 

            

Figure 3.3. Relationship between complexity classes [21] 

 

If it is possible to solve any instance of an NP-Complete problem in a polynomial time, then 

all NP-Complete and NP problems can be solved in a polynomial time due to the polynomial 

transformability between NP-Complete problems [21]. However, for many NP-Complete 

problems such as subgraph isomorphism [133], Travelling Salesman and others, no 

polynomial time solution algorithms have been found at the time of writing this thesis, and 

it remains an open question as whether P = NP. Heuristic algorithms have been considered 

in the literature to solve the NPC problems.  

A heuristic algorithm applies a set of prescribed rules based on the knowledge of modeling 

processes realized for individual steps in a problem solution [21]. Heuristic approaches can 

be efficient in achieving faster solutions to an NPC optimization problem in many practical 

scenarios. Heuristic algorithm does not guarantee optimal solution; however, an efficient 

heuristic will provide approximate solution which is ‘good enough’ most times. 
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A significant focus of recent research has been on heuristic scheduling algorithms applicable 

to residential and industrial scheduling problems. Keqin [134] proposed three types of 

heuristic power allocation and scheduling algorithms for sequential tasks with energy and 

time constraints namely: pre-power determination, post-power determination and hybrid 

algorithms. The author analysed the performance of the algorithms, compared the solutions 

with analytical optimal schedule and concluded that the algorithms are applicable in real-

time energy efficient task scheduling. Barbato and Carpentieri [135] proposed a set of 

heuristics and an optimization model for the online demand side management. They 

combined online and offline approaches to control home appliances and energy storage 

systems for efficient management of the energy resources. In [9], an intelligent Home Energy 

Management (HEM) algorithm is presented for managing high power consumption 

household loads according to a pre-set priority. Authors in [136] proposed a heuristic 

algorithm to determine price update interval and step size required for limiting deviation of 

power load from a desired load. An aggregator-based residential DR approach for scheduling 

residential assets was proposed in [26]. They further designed a heuristic framework to 

perform optimization on the profit of the aggregator. 

Since load scheduling is faced with some inherent problems in terms of computational time 

complexity of the algorithm and the quality of the obtained solution, the best-fit heuristic 

algorithm could be used to potentially reduce the complexity of the scheduling framework. 

Several studies on heuristic algorithm for DSI support follow a simple greedy algorithm 

approach [137],[138], which makes use of locally optimal solution at each stage with limited 

backtracking. In greedy algorithm approach, decisions are made from the given solution 

horizon by choosing the nearest solution to optimality. In reality, greedy algorithm does not 

provide globally optimized solution because they do not search exhaustively on the set of 

decision horizon (e.g., time horizon). However, they achieve fast solution within a 

reasonable computational time.  
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Additionally, heuristic approach based on list-processing scheduling is widely used for 

applications requiring the scheduling of tasks with prescribed execution times upon 

interconnected microprocessors to obtain near-optimal solutions to the task scheduling 

problems [139]. List-processing scheduling evaluates and determines the degree of priority 

for different tasks, and finally assign the nodes to the processors that are ready to be executed 

based on a particular heuristic in order of scheduling priority. Commonly, the list of tasks is 

first permuted such that the priorities of tasks are indexed in non-increasing order of 

execution time; assignment of the next task to a processor is then done such that the lowest-

loaded processor (in terms of already-assigned task execution times) is chosen next. If more 

than one task has the same priority (or more than one processor has the same load), it 

randomly or deterministically breaks ties. List-processing heuristic scheduling is constrained 

(in an on-line situation) such that only ready tasks are considered for mapping. However, 

this constraint can be overcome by using ‘chaining’ method proposed in [140]; which allows 

mapping for the non-ready tasks. Chaining is a single pass deterministic algorithm based on 

list scheduling techniques that enables tasks to be selected for mapping in any order, 

irrespective of the task dependencies or priority. Consequently, chaining method based on 

list processing scheduling only tries to partition the task graph among the processors but 

does not allow for duplication of tasks [139],[140]. For multi-processor scheduling, list-

processing scheduling is known to perform better in both average and known cases compared 

to other types of heuristics (e.g., clustering algorithm [141]) in minimizing the execution 

tasks due to its feasibility, good performance and low complexity [71]. At the current time, 

it does not seem to have been applied in the smart grid/smart appliance context. Clustering 

algorithm is mostly applied in scheduling a network of unlimited number of processors and 

therefore cannot be used for real-time implementation because of high computational 

burden. This method also seems complicated when utilized in scheduling limited number of 

processors, as it requires two stages to finding solutions [139]. 
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3.3.3 Metaheuristic algorithm 

Metaheuristic search algorithms have been proposed in the literature over the last two decades 

for more efficient solving of hard optimization problems, including residential and 

commercial load scheduling. The fact remains that most mathematical optimization methods 

are not readily applicable for scheduling large numbers of appliances and for real-time 

implementation in households due to high complexity. Metaheuristic makes few assumptions 

about the optimization problem and can often find feasible solutions within less 

computational time when compared to mathematical optimization. Most of the existing 

metaheuristic methods are inspired by natural phenomenon, the studies explore alternative 

means of scheduling, and optimizing power profile at any hour of the day since an optimal 

deterministic technique is unrealistic to most customers. Many metaheuristic algorithms exist 

in the literature such as Tabu search [142], Harmony search [143], etc. The most widely used 

metaheuristics for residential scheduling applications are described below: 

Particle Swarm Optimization (PSO): is a population-based optimization technique 

proposed by Kennedy and Eberhart in 1995 [144]. It is inspired by flocks of birds or school 

of fishes that fly/swim synchronously, such that the animal (particles) behaviors are used to 

search for solutions in the optimization problem. Hence, each particle represents a candidate 

solution to the problem and is pulled by the best position it has achieved. All particles have 

their own velocities and fitness level and will eventually settle around the optimum, assuming 

a convex objective function, to determine the best performing particle. PSO increases the 

stochastic nature of particles and achieves global best minima with reasonably good solution 

to the optimization problem. A discrete binary extension of PSO called BPSO has also been 

proposed in [145], to solve optimization problems that requires discrete values as decision 

variables.  

Ant Colony Optimization (ACO): is a combinatorial optimization technique based on 

behavior of insects (ants) [146]. The technique is inspired by the ability of ants to find the 
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shortest distance from their nests to food, despite any impending obstacles (constraints). In 

searching the shortest distance to locate food, the ants communicate with each other by 

depositing chemical substance called pherome as they randomly move around. The ant that 

locates the food more quickly (within shortest distance) returns to the nest sooner, while 

depositing more pherome on the way back, which serves as a promising path for other ants 

to recognize and follow. ACO can be run continuously to adapt to changes and has been used 

for load balancing problems to produce near-optimal solutions. However, it is very difficult 

to estimate the theoretical speed of convergence like most metaheuristics. 

Genetic Algorithm (GA):  is an evolutionary algorithm based on genetic properties. GA is 

used to generate solutions for optimization problems by evaluating genetic operators (e.g., 

mutation, crossover, selection, etc.) as objective functions [147]. GA can be used for load 

scheduling problem by formulating the optimization problem as a template and defining the 

fitness (value of the objective function) and chromosomes (variables) which represents the 

solution. In [148], chromosomes are considered as an array of bits which represents the 

appliance’ ON/OFF state. Hence, the length of chromosomes would depend on the number 

of appliances. An initial population of solutions is generated by evaluating the fitness of each 

chromosome, followed by improving it through repetitive application of GA set operators. 

Fitness function ensures the evaluation and removal of poor performing individual. The 

algorithm is terminated when the global minimum is found. GA might not be fast enough for 

the IDSS due to the complexity in evaluating the cost function for the large number of 

populations involved. 

Simulated Annealing (SA): is a variant of local search used to find better solutions to 

unconstrained and bound constrained optimization problems by randomly varying the current 

solutions. SA is inspired by annealing metallurgy, to solve hard combinatorial optimization 

problem by simulating the temperature falling procedure of a particular systems in 

thermodynamic [149]. A new point is newly generated at each iteration of SA, which is 
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accepted with a certain probability (i.e., points that either lower or increases the objective 

function). During early iteration, SA is able to search globally for better solutions by 

accepting points that increases the objective function, to avoid being trapped in local minima. 

 

3.4 Discussion and comparison 

This chapter has presented several existing load-scheduling strategies in the literature such 

as: 

• Mathematical programming optimization  

• Heuristic optimization  

• Metaheuristic methods 

Each of these strategies has an array of appliance models in terms of assumptions, problem 

formulations, power, and timing requirements. The diversity in appliance modeling and 

assumptions made by developers for the residential appliance modelling makes it difficult to 

compare the effectiveness of the load scheduling techniques. The advantage of finding better 

solutions within a reasonable computational time is not only the deciding factor in choosing 

the appropriate technique for IDSS, but also the ability to find acceptable solution for large 

instances of the appliance scheduling problem autonomously in real-world. Therefore, this 

chapter has provided a descriptive analysis of the load scheduling methods with emphasis on 

the need for optimal/near-optimal schedule solutions, computational limitations, and 

suitability for consumer IDSS implementation in a constrained embedded processor. The 

main advantage of using mathematical optimization technique, in particular Linear 

programming (LP) and integer variants is that it guarantees an optimal solution, as opposed 

to heuristic, and metaheuristic which do not. However, mathematical formulation of the 

optimization problem with ILP, MIP or MILP adds additional constraints and variables to the 

objective function, which are not only difficult to solve (due to NP-hardness) but are also 

computationally expensive due to the need for specialized solvers/software (e.g., MATLAB 
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interfaced with MILP solvers such as CPLEX [19]. As such, heuristic and metaheuristic 

algorithms provide the alternative options for complex load scheduling.  

Heuristic approach to load scheduling requires knowledge (or experience) of the scheduling 

problem and its requirements (e.g., energy profile and time requirement of the scheduling 

devices) as well as other parameters to achieve good ‘feasible’ solutions based on a set of 

prescribed rules. The heuristic approach can also be developed and configured to significantly 

reduce the computational burden of a specific optimization problem while achieving an 

acceptable ‘good enough’ schedule solution. On the other hand, metaheuristic approaches 

based on complex and iterative-search is a high-level problem–independent framework that 

can be applied in solving general classes of problems. Metaheuristic is likely to outperform 

(not always) the heuristic approach in terms of the achieved solution, but their computational 

complexity makes them less scalable and might not be feasible for real-word problem 

instances such as the scheduling problems encountered by the IDSS.  

Further research on mathematical programming, (discrete optimization in particular) has led 

to the interoperation of metaheuristic and mathematical programming optimization technique 

and is known as matheuristics [22]. This requires the exploitation of some features derived 

from the mathematical model (e.g., MIP model) of a problem instance in a metaheuristic 

framework. However, many successful matheuristic schemes use ‘black boxes’ (e.g., MIP 

Solver) to generate high-quality heuristic solutions for solving complex optimization 

problems [23]. The resultant effect of this approach is a possibility of incomplete MIP model 

(optimization problem formulation) and an external solver that iteratively solves the available 

sub-MIPs by introducing invalid constraints (e.g., variable fixing) that defines neighborhoods 

of certain solutions. As such, it might not guarantee feasible solution within required 

computational time for complex cases like that of IDSS.   
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3.6 Summary 

In this chapter, DSI components and load scheduling strategies have been reviewed to select 

a suitable strategy to implement consumer IDSS, and some useful definitions were given. 

While the heuristic algorithm quickly finds feasible solution, metaheuristic sometimes 

exploits the interoperation of MIP model to improve the feasible solution by reaching a degree 

that is computationally difficult to attain. Therefore, for practical purposes, a standalone 

heuristic scheduling approach, without the need for any specialized solver is a more realistic 

strategy to actualizing the aim of the research. Essentially, a good trade-off will likely be 

based upon a list-processing heuristic, in line with greedy principles; such that appliance 

scheduling would follow a typical list scheduling process, scheduled in order of preference 

and sequentially (one-by one) without backtracking. This will likely produce fast, feasible 

solutions and allow for ease of implementation in real-time applications leading to a practical 

solution approach. In such an approach, the potential gap in optimality will require explicit 

evaluation in comparison to optimal exact algorithms, and the potential reduction in 

computational overheads requires similar treatment. This will better allow the effectiveness 

of the approach to be quantified with respect to a practical, large-scale roll out on smart 

meters. As such, in the next chapter the heuristic algorithm will be proposed and evaluated 

from consumer viewpoint in Chapter 5. An embedded implementation of the heuristic 

algorithm is described in Chapter 6 and thoroughly tested from utility planning perspective 

in Chapter 7. 
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Chapter 4 

4 Heuristic Scheduling Algorithm for Smart Appliances 

4.1 Introduction 

In the previous chapter, DSI load management strategies were reviewed, and it was 

highlighted that the use of scheduling algorithm is a key functional requirement in the 

realization of a consumer IDSS. The use of load scheduling in IDSSs has become necessary 

in order to enable consumers to automatically respond to the changing economic value of 

energy across different hours of the day. Moreover, an IDSS is ideally also required to be 

responsive to unexpected or emergency events, such as specific DSI requests relayed through 

the AMI following unexpected events affecting the wider grid. Even disregarding the 

technical challenges and complexities of connecting an IDSS to both an AMI and 

controllable home appliances, smart home load scheduling using variable price signals 

remains a difficult problem to solve computationally. In most cases the problem is NP-hard 

[21],[129], and is affected by uncertainties such as variations in appliance power profiles. 

This warrants the search for good heuristics with efficient computational performance and 

ease of implementation. Since smart home appliance scheduling, like other forms of real-

world scheduling problems, can be affected by uncertainties; in such circumstances regular 

re-optimization using a ‘rolling-horizon’ approach can be beneficial. For example, small 

changes in the electrical grid frequency - within statutory limits - can affect power 

consumption profiles by a small but not negligible margin because of imbalance between 

supply and demand; wear-and-tear of physical components such as motor brushes can also 

cause deviations from nominal appliance behaviour. To be of practical use, the optimization 

carried out by the IDSS must be able to deliver results of reasonable quality in a short space 

of time. A simplified representation of the optimization algorithm for load scheduling with 

various sources of energy supply to the residential building is shown in Figure 4.1. 
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Figure 4.1. Residential load scheduling showing different forms of energy supply 

 

In this chapter, a low-overhead heuristic scheduling algorithm for use in a consumer IDSS 

for minimizing smart appliance energy costs will be presented. Heuristic approaches can be 

efficient in achieving faster solutions, which – as will be demonstrated in a later chapter – 

enable easier implementation on an embedded computing system for the purposes of a 

consumer decision support system. On the other hand, a “good”, but not necessarily optimal 

solution to the optimization problem is only likely to be found; but it will be found in a 

reasonable time. Therefore, exact optimality with possibly excessive computation time is 

sacrificed for near optimality with much lower computational time, such that regular re-

optimization with updated state information can take place in real-time. Although some loss 

of optimality is unavoidable with heuristics, this loss may well be compensated for in the 

longer-term by having a system that is efficient enough to react to changing circumstances. 

Hence, a heuristic solution, which is simple enough to be embedded in a microcontroller or 

computer for the purposes of a consumer decision support system, is desirable. As stated in 

Introduction, the aim of the research is to implement a simplified IDSS, which can be easily 

integrated into an AMI. Hence, the following three requirements are essential:  

• The IDSS should not require specialized software (e.g., integer programming 

libraries) and have a straightforward code implementation. 

•  It should be implementable on a small computing device such as will be found within 

a smart meter. 
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• It should be configurable for a wide variety of cost models and functions.  

This chapter first presents the formulation of an optimization model for home appliance 

scheduling alongside a generic cost model for dynamic pricing. The NP-completeness of this 

mathematical minimization problem is then proven. This is followed by a detailed 

description of a heuristic algorithm for solution of the optimization problem, which is 

proposed to meet the above list of key requirements. A broader discussion regarding the 

configuration of the optimization cost model in combination with Two-tier pricing (2TP) for 

generic applications in smart homes with different types of pricing mechanisms then follows. 

Additionally, an exact algorithm is also proposed as a benchmark to obtain optimal solutions; 

due to its high computational overheads, it is principally employed for comparative purposes 

with the heuristic algorithm in a series of detailed performance evaluations, which follow in 

subsequent chapters. 

 

4.2 Optimization overview 

Electricity supplied to the residential home is assumed to be hybrid generation comprising 

the conventional forms of generation (coal, gas, etc.) along with distributed energy 

renewables (solar, wind etc.), with an hourly price that reflects the value of the energy during 

that hour. The hourly price of electricity (or its forecast) is assumed advertised to the resident 

24 hours in advance via the smart meter and will be used by the optimization algorithm to 

determine the cost-effective scheduling of the appliances. Figure 4.2 shows the block 

diagram of a DSI support unit, which comprises the data and power flow between an IDSS 

equipped in a smart meter, and the smart home appliances. The smart meter receives external 

signals (e.g., spot prices of electricity) from the utility service providers. This information is 

used by the optimizer (IDSS) to determine the cost-effective scheduling of controllable smart 

appliances. Residential users can visualize the optimized cost schedule and 
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recommendations provided by the IDSS to enable informed decisions on their energy 

consumption pattern/usage. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Block diagram of DSI support unit comprising consumer IDSS for Residential smart 

appliance scheduling. 

4.3 Optimization Model 

This section provides the mathematical formulation of the residential load scheduling 

problems. The focus is to optimize the power (and hence energy) profile at any given timeslot 

to minimize costs subject to the given constraints. It is assumed that the scheduling/planning 

horizon is divided into H > 0 uniform time slots; each time slot is of length T > 0 h. Typically, 

each slot will be of length T = 1 h, as obtainable in the Scandinavian electricity market, 

although this does not necessarily have to be so in the general case. Let the number of 

appliances be denoted as N, and the number of stages of appliance i be denoted as ni > 0. 

The power consumption during stage j of appliance i is denoted by Pi,j, i ∈ [1, N], j ∈ [1, ni]. 

Let the starting time of appliance i be denoted by the integer variable si ∈ [1, H]. The power 

consumed by appliance i is determined from start time si during timeslot h such that the 

decision of whether or not to schedule appliances is given by the decision rule. 
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Let the cost of consuming xh  0 units of energy during a particular hour h be represented by 

the cost function Ch(xh)  0. The optimization problem objective function J can then be 

formulated as the sum of the energy costs across each slot in the horizon as follows: 

                                          
1 1

(· ) 
H N

h i

h i

J C T x h
= =

 
=  

 
                                                                    (2) 

The basic form of the optimization problem can then be formulated as follows: 
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Constraints (3) are the user start time preferences, which ensure that each appliance does not 

operate outside of the set time preference interval given by si
Min and si

Max. Constraints (4) 

ensure the maximum power consumption for all the appliances at any time slot h does not 

exceed the power threshold, where Xh
Max is the threshold at slot h. Typically, this will be set 

by the household to suit its own specific constraints, such as the maximum power rating of 

the incoming supply or consumer unit. In addition, appliance specific constraints can be 

applied to ensure certain appliances start or finish before each other. An example is the case 

of washing machine and dryer where the latter must not start until the former has completed 

all of its operation stages. For certain types of interruptible appliances, it may also be 

possible to schedule a bounded amount of time-delay between two consecutive operation 

stages (e.g., a delay between a rinse cycle and the next wash cycle in a washing machine). 

In such cases, appropriate splitting of the main appliance into a number of sub-appliances, 

each with a separately considered start-time; appropriate constraints relating the start times 

of each sub-appliance will then model the required behavior, may extend the model.  
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By appropriate choice of T and H, the model may be configured to a given level of temporal 

fidelity and future planning horizon length. In the remainder of the chapter, we assume that 

T = 1 and H = 24, i.e., hourly slots are considered over a planning horizon of one day. In the 

next section, the proof of the NP-Completeness of the decision version of the problem 

described above is shown and is hence intractable for large problem sizes unless P = NP. 

The optimization version of the problem is therefore NP-hard [129]. 

 

4.4 Proof of NP–Completeness of IDSS scheduling problem 

Consider the decision version of the optimization model presented in [Section 4.3]:  

IDSS problem instance: An integer H > 0 representing the number of considered time slots, 

an integer T > 0 representing the length of each slot, an integer N > 0 representing the number 

of appliances, integers ni > 0 representing the number of appliance stages, and real-valued 

power consumption values for each stage denoted by Pi,j > 0, i ∈ [1, N], j ∈ [1, ni], cost 

function Ch(xh)  0 and maximum power consumption thresholds Xh
Max > 0 for each hour of 

the day, plus user start time preferences 0  si
Min  si

Max  H for each appliance, and a real-

valued cost budget B  0. 

Question: Is there a set of appliances start times si such that Constraints (3) and (4) are 

satisfied, and the cost calculated using Equations (1) and (2) satisfies J  B? 

In order to consider the computational complexity of the above problem, a well-known 

‘hard’ problem from the field of computational task scheduling is now introduced. This 

problem is known as the MULTIPROCESSOR SCHEDULING PROBLEM. 

 

Multiprocessor scheduling problem instance: Set  of tasks with cardinality L, number M 

> 1 of uniform processors, real-valued length li > 0 for each task, real-values deadline D > 0. 
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Question: Does a non-preemptive M-processor schedule for  exist, i.e., a function f(j)  

[1, …, M] mapping all L tasks j   to a processor (without overlap), such that the finish 

time for the schedule F: 

                                         
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Satisfies the constraint that it is less than the deadline, i.e., F  D?  

The multiprocessor scheduling problem above is known to be NP-Complete [120] and is in 

fact NP-Complete in the strong sense when M  2. NP-Completeness of the IDSS problem 

is now shown by transformation from MULTIPROCESSOR SCHEDULING. 

Theorem: IDSS is NP-Complete. 

Proof: Transformation from the MULTIPROCESSOR SCHEDULING PROBLEM. Given 

an instance of the multiprocessor scheduling problem, we configure the following instance 

of an IDSS problem: 
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Observe that M timeslots have been created in IDSS, each with unit length, and that L 

appliances have been constructed each with a single stage having power requirement li. By 

the choice of si
Min and si

Max, each appliance is free to be started in any of the M available 

timeslots and incurs an economic cost li regardless of which slot it is assigned to. Given the 

choice of the budget B, any assignment of start times satisfies the budget constraint 

eliminating it from the IDSS problem. It is clear from this construction, however, that 
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assigning an appliance start time si = j incurs a power cost of li units in timeslot j. The claim 

is that a feasible schedule to this instance of the IDSS problem exists if and only if a feasible 

schedule exists for this instance of the MULTIPROCESSOR SCHEDULING problem. This 

is proven by taking the assignment of si = j as equivalent to the assignment of task i on 

processor j, and equivalently it must hold that: 


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From which it is easy to see that the finish time of the schedule F is equivalent to the 

maximum power assigned to any of the H = M timeslots, and since the maximum power 

constraints are constructed as Xi
Max = D for each timeslot a feasible schedule to 

MULTIPROCESSOR SCHEDULING exists if and only if there is a feasible solution to 

IDSS, proving the claim.  

This result established the complexity of the problem at hand, even when the costs are 

restricted to be simple linear functions of the power consumption. In the next section, a 

generic cost model to be employed for more complex classes of cost functions that may 

occur in the context of a smart home is presented. 

 

4.5 Generic cost model 

As stated in the optimization model, it is assumed that the cost of energy during a particular 

time slot h is a generic function Ch(xh) of the amount of energy consumed, which is xh units. 

Typically, the form of Ch will depend heavily upon pricing of electricity in a day-ahead 

(spot) market and any specific DSI initiatives advertised to the subscribed residents by the 

supply/distribution company via the smart meter/AMI. The source of the energy supply is 

assumed a hybrid generation comprising the conventional forms of generation (gas, coal 

etc.) and distributed renewables (solar, wind, biomass etc.); hence, the nature and form of 

Ch can also depend upon the availability of these latter renewables, and have components 
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linked to balancing (real-time) energy market prices. Two particular cases seem to be of 

most interest at the present time for representing costs in the presence of fluctuating costs 

and DSI pricing signals; in these cases, costs are represented by a concave/convex 

combination of two piecewise affine functions: 

                212211 ,,max)( bbxbaxbaxC hhhh ++=                                                     (5) 

                122211 ,,min)( bbxbaxbaxC hhhh ++=                                                       (6) 

 

In particular, Equation (5) represents a case in which a cover charge (a1 €) plus a base price 

(b1 €/kWh) is incurred for energy used up to a certain limit ((a1 − a2) / (b2 − b1) kWh), beyond 

which a higher price (b2 €/kWh) is incurred for each extra unit consumed. This represents a 

pricing model in which increased production costs are reflected as increased consumer costs 

for increased consumption, and with the prices and low consumption limit linked to external 

market conditions. Equation (6) represents a similar situation except a reduction in cost is 

incurred for consumption above the limit, reflecting an economy of scale. Models (5) and 

(6) can be used to reflect specific cost incentives encouraging consumers to shift their 

consumption from peak to off-peak times, with both base and high consumption prices that 

can be linked to an underlying pricing plan. The cost functions Equations (5) and (6) are 

shown graphically in Figure 4.3 below. 

 

(a)                                                                        (b) 

Figure 4.3. Illustration of the piecewise affine price model. (a) Concave (min) configuration, (b) 

Convex (max) configuration. Note: In most cases, either the parameter a1 or a2 will be equal to zero 
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By appropriate choice of the parameters a1, a2, b1 and b2 for each hour, such a cost model is 

flexible enough to capture the salient features of RTP, TOUP, 2TP and various combinations 

in addition to specific DSI incentives. Unlike RTP, TOUPs are more customer friendly due 

to the predictable nature of the pricing signals. Adopting TOUP scheme has an effect on load 

shifting, which in turns helps to achieve demand response [150]. TOUP mainly consist of 

two or more-tier rates namely peak, off-peak and in some cases, mid-peak prices depending 

on customers need and load profile pattern, which varies across different countries and 

locations. However, the more the tiers, the more difficult the model would be for customers 

to participate. Hence, 2TP will be considered in this thesis to reduce complexity, since mid-

peak rates only examines the average costs between the peak and off-peak periods. 2TP is 

organized such that the rate of tariff paid below a certain power threshold is lower than the 

rate paid above it; this to penalize high consumption in any one hour and encourage even 

load distribution. However, the effect on demand response of combining 2TP with RTP—in 

which a customer may pay a basic unit rate until the threshold is exceeded, at which time a 

price linked to the spot price is incurred—has not been investigated fully in the presence of 

load scheduling. The simple functions proposed in equations (5) and (6) allow such an 

investigation to be carried out in the subsequent chapter. 

Under the assumption that the cost functions Ch(xh) are linear, or piecewise linear and 

convex, the optimization problem above can be solved using mixed integer linear 

programming (MILP) software such as the IBM ILOG CPLEX and the YALMIP interface 

to MATLAB [140]. Nevertheless, solving such MILPs efficiently can only be done for 

relatively small instances of appliances [121]. Algorithms such as cutting plane methods and 

the branch and bound method [151] can also be used to reduce the average execution time 

complexity. In the case that the costs may be arbitrary non-linear functions—or 

combinations of even simple convex and concave functions at different hours over the 

horizon—then a large number of additional binary variables may need to be introduced to 
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solve the problem. This may result in unacceptable overhead, even for relatively small 

numbers of appliances; in addition, the use of specialized solvers will be impractical and 

should be avoided on small devices such as smart meters and an IDSS computer. Therefore, 

instead this work seeks to find good—not necessarily optimal—solutions to the load-

scheduling problem, in a reasonable time without undue computational overheads. The 

proposed heuristic algorithm is described in the next Section. 

 

4.6 Proposed scheduling algorithms 

In this section, the proposed scheduling algorithms (exact and heuristic) to solve the stated 

residential appliance scheduling problem are presented. The algorithms use appliance start 

times si as the decision variables and search over the future time horizon (window) H for the 

start times, which minimize the expected electricity cost J subject to the given constraints. 

Parameters such as the number of appliances N, length of timeslot T, hourly timeslot cost 

functions (Ch(xh)), constraints, etc., are assumed given and define the problem instance.  

 

4.6.1 Exact method 

In principle, exact methods can guarantee an optimal solution to this NP-hard optimization 

problem. This can be achieved by searching the timeslots within the set time window 

exhaustively. In the proposed exact method—shown in pseudocode below—the algorithm 

exhaustively searches appliance start times for the best possible combination of starting 

times to obtain the minimum costs, which also satisfy the given constraints. The exact 

algorithm iterates through each possible combination of start times in the specified user 

intervals in turn. In the worst case, each of these intervals will be of length H timeslots, 

giving an exponential run-time complexity of O(HN) for the algorithm. During the search 

iteration, the exact algorithm updates the best solution whenever a feasible cheaper cost 

solution is found at each stage. The proposed exact algorithm could clearly be improved by 
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adding features such as backtracking of partial solutions that cannot improve upon the best 

solution found so far; however, its use in this chapter is to principally obtain optimal 

solutions for comparative purposes. 

Algorithm 1: Exact method 

1: Initialization: Set and initialize the N appliances, constraints, and 

cost functions; 

2: for i = 1 to N  do 

3:  si := siMin; 

4: end for; 

5: CB := INF; 

6: S := []; 

7: Done:= FALSE; 

8: while Done == FALSE  do 

9: if Constraints Satisfied  do 

10:  J := Evaluate Full Schedule Cost; 

11: if J < CB   do 

12:  CB := J; 

13:  S := [s1, s2, … sN]; 

14: end if; 

15: end if; 

16: for i = 1 to N  do 

17: si := si + 1; 

18: if si > siMax  do 

19:   si = siMin; 

20:  if i == N  do 

21:   Done=TRUE; 

22:  end if; 

23: else 

24:  break; 

25:  end if; 

26: end for; 

28: end while; 

29: return [CB, S]; 



72 
 

4.6.2 Heuristic method 

In the proposed heuristic algorithm, appliances are scheduled sequentially based on a greedy 

strategy without backtracking. This is such that the worst-case computation time is reduced 

compared to an exact search, at the expense of a potential loss of optimality in the obtained 

solution. Appliances start times are scheduled one-by-one, cost is evaluated for each feasible 

start time and considers only the current appliance and those, which have already been 

scheduled, and their start times fixed. Once the minimum cost for the current appliance is 

determined, its start time is fixed and is not subsequently changed once scheduling continues 

to the next un-scheduled appliance. All appliances are scheduled in this way.  

Algorithm 2: Heuristic method 

1: Initialization: Set and initialize the N appliances, constraints, and cost 

functions; 

2: CB := 0; 

3: S := []; 

4: for i = 1 to N  do 

5:  CB := INF; 

6:  for si = siMin  to siMax  do 

7:        J := Evaluate Partial Schedule Cost; 

8:   if Constraints Satisfied 

9:                             if J < CB 

10:               CB := J; 

12:                      end if; 

13:     end if; 

14:  end for; 

15: si := sB; 

16: end for; 

17: S := [s1, s2, … sN]; 

18: return [CB, S]; 
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A single loop over N appliances, considering the start times of each appliance within its 

specified user interval is performed. In the worst case, each of these intervals will be of length 

H timeslots, giving a polynomial run-time complexity of O(HN) for the heuristic algorithm. 

Given the similarity of the heuristic algorithm to the “List-processing” algorithm for 

multiprocessor scheduling [152] and the similarity of the considered appliance scheduling to 

multiprocessor scheduling as demonstrated in Section 4.4, it follows that the proposed 

heuristic may inherit some of the known good performance bounds of the “List-processing” 

algorithm. Indeed, if appliances are all single-stage and are sorted in non-increasing order of 

power requirements, then for identical (linear) cost functions across each hour of the 

optimization horizon of length H =24, the heuristic would achieve a cost not greater than 

32% more than the optimal cost, which represents the best possible bound for a simple 

special case of a more general result in multi-processor scheduling [150]. In the case of more 

complicated cost functions, this worst-case gap could be either amplified or attenuated. 

Determination of the exact bound would require inspection of each cost function on a case-

by-case basis due to the non-linearity involved. Nevertheless, the power allocation (c.f. 

costs) would still satisfy the 32% bound, regardless of cost functions. 

 

4.7 Summary 

In this chapter, a heuristic scheduling algorithm for the implementation of a consumer IDSS 

and an exact algorithm for benchmarking the performance of the propose heuristic in a 

realistic configuration have been proposed. Clearly, there are differences between the exact 

and the heuristic approaches; the largest one being in the number of iterations required by 

the two methods. The exact algorithm iterates through N nested loops, considering each of 

the H timeslots in turn, giving a complexity O(HN). The heuristic algorithm iterates through 

one loop N times, in each case considering each of the H timeslots in turn; giving a 

complexity O(NH). Clearly, this reduces the worst-case running complexity from 

exponential time to polynomial-time. The price paid for this efficiency is that the heuristic 
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is not guaranteed to obtain the optimal solution. A generic and flexible cost model for hourly 

pricing has been presented to be utilized by the heuristic algorithm, to capture the salient 

characteristics of traditional on/off peak pricing, RTP, Time of Use Pricing (TOUP), Two-

Tier Pricing (2TP) and combinations thereof. In the next chapter, testing the performance of 

the proposed heuristic algorithm will begin with an extensive array of simulation and 

computational experiments. 
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Chapter 5 

5 Evaluation of the Proposed Heuristic Algorithm Part 1) Consumer 

Viewpoint  

5.1 Introduction 

In Chapter 4 of this thesis, a heuristic scheduling algorithm was proposed as a solution to 

the load-scheduling problem. The heuristic provides a link between a utility company signals 

and individual household demands but is principally aimed at residential energy consumers. 

Consequently, there is a need to evaluate its performance under realistic conditions. An 

exhaustive search algorithm was also proposed for comparison and benchmarking purposes. 

In this chapter, a variety of different computational experiments is documented with the 

purpose of exploring the effectiveness of the proposed scheduling algorithm. The following 

aspects have been explored:   

• The effectiveness of the proposed heuristic algorithm against the exact algorithm in 

terms of energy cost savings achieved for a single household with controllable 

appliances in the presence of dynamic energy prices is evaluated.  

• The performance of the proposed heuristic within the framework of pricing models 

such as (RTP, 2TP, TOUP, etc.) and different combinations thereof (e.g., RTP/2TP, 

TOUP/2TP etc.), are investigated.   

• The behavior of the heuristic algorithm for multiple household scenarios with various 

differing appliance constraints and configurations are explored. 

• The disparity in power distribution between the heuristic and exact algorithms is 

quantified.  
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• The computational scalability of the heuristic and exact algorithms following an 

increase in the number of appliances and other configuration aspects such as length 

of timeslot, power assignments etc. is considered. 

This chapter focuses on benchmarking the performance of the proposed heuristic algorithm 

against optimal exact search algorithm in a realistic simulation study. Possible wider aspects 

of the use of the proposed heuristic algorithm for potential cost savings due to DSI and power 

shifts from peak to off-peak period during DSI event days will be subjected to further 

attention in Chapter 7. 

 

5.2 Experimental setup and technical data specification of appliances 

Experiments were conducted on the two proposed algorithms using various instances of 

dynamic pricing and combinations including Two-tier pricing (2TP), with different 

appliance configuration scenarios. MATLAB [153] was the computational platform on 

which the algorithms were developed. All experiments are performed on a HP© PC with an 

Intel Core i5 CPU, 3.40GHz speed and 6GB of memory. Data specification for Electric 

vehicle (EV) in Table 5.1 is a simple representation which may not fully represent the modern 

situation of an EV. Ideally, the oldest standard power rating of EV chargers should be 3kW 

for household analysis [154]. Under this circumstance, the charging time window would be 

at least 8 hours.           

 

Table 5.1. Data specification of the appliance scheduling for a single household [17] 

  Devices Power consumption (Watts) User time preference 

Washing machine 

   Tumble dryer 

    Dish washer 

Electric vehicle 

2100 

1200 

1900 

1000 

10:00–20:00 

10:00–22:00 

17:00–23:00 

            1:00–5:00 
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5.3 Cost evaluation for a single household 

This experiment is aimed at determining the differences in the cost of scheduling appliances 

with the exact and heuristic algorithms respectively. First, to evaluate and compare the 

minimum cost of appliance schedule based on RTP; second to evaluate the test result based 

on TOUP, combined with 2TP (TOUP/2TP), and to compare the results (exact and heuristic) 

with the RTP/2TP test results. The scheduling consists of four controllable appliances 

namely washing machine, dishwasher, tumble dryer and Electric Vehicle (EV) as indicated 

in Table 5.1 above. The scheduling is within the given constraints (e.g., appliance operation 

constraints which ensures that a certain appliance must finish before the start of the other as 

in the case of washing machine finishing its stages before tumble dryer phase starts). 

 

5.3.1 Cost evaluation based on Real-Time Pricing (RTP) 

RTP was used for optimization, which was carried out once every 24 h for one simulated 

year duration, considering the period from 1 December 2013 to 30 November 2014. The 

hourly pricing data for the RTP was taken from the Scandinavian electricity market 

Nordpoolspot [155] and samples of these prices are shown in Figure 5.1. Note that the raw 

(wholesale) costs for electricity were employed; in reality, consumer costs would also 

include per-unit taxation and distribution charges which actually form a large proportion of 

the final price and are typically over 50% in the EU. Nevertheless, price variations with the 

inclusion of these extra charges are still primarily as a result of wholesale price fluctuations, 

and the experiments still give a realistic indication of algorithm behavior. 
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Figure 5.1. Example of the hourly pricing of electricity used in the simulation, showing the plot for 

1st day of every month from December 2013 to November 2014. [155] 

 

The simulation results of the total consumption costs for the exact and heuristic algorithms 

across the different months of the year used are plotted in Figure 5.2. The performance result 

illustrates that the cost scheduling for heuristics and exact algorithms for December 2013 

and January are almost the same, although an insignificant difference can be seen on two 

days in December 2013 [i.e., 624th hour (26th December 2013) and 696th hour (29th 

December 2013)], and only one day in January 2014 [i.e., 480th hour (20th January 2014). In 

February 2014, there seems to be eight days in which there are little disparity in the economic 

cost between the exact and heuristic algorithm. However, some difference in cost scheduling 

for heuristic and exact algorithm across a number of days are quite visible between March 

and September 2014. In October and November 2015, the differences in cost scheduling are 

only visible across 8 days and 5 days respectively. Nevertheless, it can be seen visually from 

the overall results that the heuristic achieves a near optimal solution across the course of the 

whole year. Average monthly consumption costs of €2.1674 were incurred as compared to 

€2.1582 obtained by the exact algorithm. Percentage cost difference in these figures 

confirms that the proposed heuristic achieves up to (2.1674 − 2.1582)/2.1674 = 0.0042% of 

the optimal solution obtained by the exact algorithm. However, both algorithms schedule the 

same amount of energy in the household, but the heuristic takes significantly smaller 
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computation time (0.000704 s) for four controllable appliances when compared to the 

proposed exact algorithm (0.00246 s) which is approximately 71% difference in the solving 

time (see [95] for a detailed comparison of CPU execution times for typical configurations). 
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 Figure 5.2 Cont. 
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Figure 5.2 Cont. 
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Figure 5.2 Cont. 

       

Figure 5.2. Total consumption cost solutions obtained with exact and heuristic algorithms across 12 

months for the simulation period from December 2013 to November 2014. 

 

5.3.2 Cost evaluation based on Two-Tier Pricing (2TP) 

This experiment studies the impact of using a 2TP model in conjunction with a RTP model 

on both the residential electricity consumption cost and energy consumption profile. In a 

basic 2TP, the amount of energy consumed above a given power threshold is set as the tier-

two price, and a tier-one is charged for consumption below this threshold. This allows more 

even balancing of the electricity used during the overall billing period [156]. Both the tier-

one and tier-two prices could be fixed, follow typical on/off peak periods, or even change 

hourly. 

 

Figure 5.3. Example of 2TP model used by the British Columbia Hydro Residential usage charge 

updated on 1 April 2015 [156] 
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In this study, the 2TP is modeled such that the basic rate charged follows the hourly RTP 

(wholesale price as in Introduction), and the high rate—charged for consumption over a 

fixed threshold—is a multiple (>1) of this base price. In this simulation, the higher price was 

set to be 150% of the base price for consumption exceeding 1500 Wh. This configuration 

was drawn from a realistic example and was motivated by the British Columbia hydro two-

tier pricing system as shown in Figure 5.3. The experiment investigates whether the heuristic 

algorithm was as effective at enabling residential energy consumers to respond to the 

2TP/RTP charges by shifting peak consumption to off-peak period as with the response to 

the RTP-only charges reported above. 

In this experiment, the simulation was carried out across four months in 2014—January, 

April, July, and October, representing samples of the four seasons of the year (winter, spring, 

summer, and autumn) respectively. Again, the heuristic achieves almost the same result—

with respect to costs—compared with the exact algorithm as seen in Table 5.2 below. 

Comparing these results with those obtained for RTP alone in the previous section, the 

relative cost between the RTP and RTP/2TP is approximately a 20% increase for the latter 

under both the heuristic and exact algorithm solutions. RTP/2TP being the more expensive 

of the two schemes is to be expected, however, given the nature of the cost models. 

      

Table 5.2. Simulation result for 2TP/RTP model across representative seasons of the year 

Months of the 

year (2014) 

Heuristic algorithm  

average total cost 

(Eur/kWh) 

Exact algorithm  

average total cost 

(Eur/kWh) 

Relative difference in 

average total Cost 

(%) 

January 0.46451 0.46221 0.00495 

April 0.36140 0.35502 0.01765 

July 0.40928 0.40461 0.00467 

October 0.43770 0.43247 0.01195 
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In the next section, additional experiments were carried out in which the RTP and 2TP/RTP 

were evaluated against a basic TOUP cost model and a 2TP/TOUP with the same appliance 

characteristics. 

 

5.3.3 Cost evaluation based on Time of Use Pricing (TOUP) 

The TOUP model used in this experiment was derived as follows: the highest and lowest 

daily rates of the hourly RTP (wholesale price as in previous 77) were taken as the fixed 

prices charged for peak and off-peak periods across the simulation period. The peak period 

was defined as the hours between 06:00–08:00 and 17:00–21:00, and the off-peak the 

remaining hours of the day. The resulting solutions obtained with both the heuristic and exact 

algorithms for TOUP is shown in Table 5.3.                                                      

 

Table 5.3. Simulation result for TOUP model across representative seasons of the year 

Months of the 

year  

(2014) 

Heuristic algorithm 

average total cost 

(Eur/kWh) 

Exact algorithm 

average total cost 

(Eur/kWh) 

Relative difference in 

average total cost  

(%) 

January 0.18635 0.18635 0.00000 

        April 0.16816 0.16814 0.00011 

        July 0.16049 0.16049 0.00000 

October 0.16028 0.16028 0.00000 

 

In the 2TP/TOUP cost model, the same procedure was used to set the 2TP base price during 

the on-peak and off-peak times, with the higher price again set to be 150% of the base price 

for consumption exceeding 1500 Wh.  
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Table 5.4. Simulation result for 2TP/TOUP model across representative seasons of the year 

Months 

of the 

year 

(2014) 

Heuristic 

algorithm   

average total cost 

(Eur/kWh) 

Exact           

algorithm 

average total cost 

(Eur/kWh) 

Relative  

Difference in 

average total cost 

(%) 

Difference 

with 

2TP/RTP 

(%) 

January 0.43131 0.43130 0.0000023 0.004948 

  April 0.38822 0.38807 0.0000390 0.17611 

  July 0.37157 0.37157 0.0000000 0.00467 

October 0.37098 0.37098 0.0000000 0.01195 

 

The corresponding result for 2TP/TOUP is shown in Table 5.4, while the average total cost 

consumptions for RTP and RTP/2TP vs. TOUP and 2TP/TOUP are plotted in Figure 5.4 and 

Figure 5.5 below:  

 

            

Figure 5.4. RTP and RTP/2TP vs. TOUP and 2TP/TOUP cost scheduling solution for heuristic 

algorithm. 
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Figure 5.5. RTP and RTP/2TP vs. TOUP and 2TP/TOUP cost scheduling solution for exact 

algorithm. 

 

Considering Figures 5.4 and 5.5, one may observe that the heuristic algorithm achieves 

almost identical costs when compared to the exact algorithm over the course of the simulated 

months. In terms of consumer costs, better results (in terms of slightly lower billing) are 

achieved with 2TP/TOUP when compared to the 2TP/RTP model.  

 

In summary, the results that have been presented in these sections suggest that the proposed 

heuristic algorithm was found to be very effective across different types of pricing model 

when compared to the exact algorithm, in terms of the end consumer costs. In the next 

section, results related to the achieved power consumption profile are reported. 

 

5.4 Power distribution experiment  

The proposed algorithms were further tested to determine the differences in power 

distribution of appliance scheduling. In each simulation within the range of data considered 

for this experiment, there was a power distribution in terms of the aggregated household 

power demand allocated across the timeslots that was dependent upon the algorithm 

employed (exact or heuristic). In this experiment, two power distribution tests were 
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conducted for exact and heuristic algorithms using RTP only and a combination of RTP & 

2TP.  

 

5.4.1 Power consumption using RTP with Heuristic and Exact algorithms 

The power distribution solution within the first week of December 2013, March 2014, June 

2014, and September 2014, representing the 4 different seasons of the year are analysed to 

determine if any seasonal power deviations of the exact and heuristic algorithm are present. 

The absolute difference of the power distribution for both algorithms is plotted in Figure 5.6, 

Figure 5.7, Figure 5.8, and Figure 5.9 respectively.  

          

Figure 5.6. Power distribution for exact and heuristic algorithm in winter period. 

 

        

Figure 5.7. Power distribution for exact and heuristic algorithm in spring period. 
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Figure 5.8. Power distribution for exact and heuristic algorithm in summer period. 

 

       

Figure 5.9. Power distribution for exact and heuristic algorithm in autumn period. 

 

These performance investigations illustrate that there is no significant deviation of the power 

consumption profile in the winter period, and some differences can be observed during 2 

days in the spring period and 3 days in the summer period respectively. In the autumn period, 

however, there is evidence that the solution schedules differ considerably; appliances are 

scheduled in differing timeslots on a daily basis during the selected week. Nevertheless, the 

obtained schedules are all feasible (with respect to the household maximum power 

constraint) and from Figure 5.6 – 5.9, there was little difference in the final obtained cost. 

This presents an interesting observation in that although the heuristic and exact algorithms 
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differ very little in terms of the obtained economic costs, differences in the obtained power 

consumption profiles and appliance schedules can be found. 

5.4.2 Power Consumption using RTP and 2TP with Heuristic and Exact Algorithms 

The obtained power consumption for the two pricing models was tested with both the exact 

and heuristic algorithms to verify the energy distribution across different hours, days, 

months, and respective seasons of the year. This is displayed in Figure 5.10, Figure 5.11, 

Figure 5.12, and Figure 5.13 below. As can be seen in these figures, under the RTP-only 

model there are several hourly timeslots in which the power consumption is significantly 

different between the heuristic and exact algorithm. In particular, there are 13 situations in 

which the heuristic consumes over 1.5 kW while the exact algorithm remains below this 

level. Whilst this has an almost negligible impact upon cost—as detailed in the previous 

section—it indicates that problem solution is quite sensitive near the optimal cost. 

Examining the results obtained for the RTP/2TP pricing model, it can be observed that, 

although some differences exist, they are less pronounced under the 2TP extension. In 

particular, there are now no situations in which the heuristic consumes over the 1.5 kW 

thresholds while the exact algorithm remains below it. 

      

Figure 5.10. Power distribution across the first week of January 2014, representing winter period. 



90 
 

        

Figure 5.11. Power distribution across the first week of April 2014, representing spring period. 

        

Figure 5.12. Power distribution across the first week of July 2014, representing summer period. 

       

Figure 5.13. Power distribution across the first week of October 2014, representing autumn period. 
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This was indicative that the 2TP extension may be more effective at peak power reduction 

and load balancing than the basic RTP approach when households employ approximate, 

near-optimal scheduling of appliances. The aspects of different households with various 

appliances and configuration will be investigated in the next section. 

 

5.5 Cost evaluation for different households’ configurations 

In this experiment, different households with various appliance configurations and pricing 

mechanisms were considered. Parameters such as Time preference range (H), Length of 

timeslot (T) and Total power range (Pi,j) are the varying inputs that can be set by different 

household users based on the consumption pattern, desired comfort level and appliance 

manufacturer’s constraints. Each household is assumed to have one of eight possible 

configurations (C1~C8). Please see Appendix A: Details of household configurations for 

different appliance scheduling in section 5.5: Tables A1 and A2 for the specific details of these 

household configurations. Configuration parameters (e.g., different appliance start times, 

timeslot length operation as well as appliance power rating and assignment) were selected 

randomly and employed with a particular pricing model (e.g., RTP, RTP/2TP, TOUP, and 

TOUP/2TP). These inputs were selected randomly in uniform comparison to the recorded 

data of household appliance technical specification used in [17]. The pricing data used in 

this experiment is the same with the previous set of experiments reported in this chapter.  

 

For comparison purposes with the exact algorithm, given that the problem is NP-hard it was 

very difficult to obtain extensive exact results for large problem instances, so the 

experiments were conducted with five and six appliances, each with four different 

configurations and price model. The average yearly simulation results for the eight different 

configurations were as found in Table 5.5 and Table 5.6. 

 

 



92 
 

Table 5.5. Simulation result for multiple households with five appliances, different configurations, 

and pricing models 

Average 

yearly total Cost 

(Eur/kWh) 

Five appliances with configurations (C1~C4) 

C1 

RTP 

C2 

RTP/2TP 

    C3 

  TOUP 

     C4 

TOUP/2TP 

Heuristic algorithm 0.2071      0.4763 0.3043           0.5123 

Exact algorithm 0.2068      0.4722 0.3037           0.5111 

% Difference 0.0014      0.0086 0.0019           0.0023 

                                                                      

 

Table 5.6. Simulation result for multiple households with six appliances, different configurations, 

and pricing models 

Average 

yearly total Cost 

(Eur/kWh) 

Six appliances with configurations (C6~C8) 

 C5  

RTP 

          C6 

      RTP/2TP 

       C7  

     TOUP 

     C8 

   TOUP/2TP 

Heuristic algorithm  0.2276        0.4829      0.2117             0.4781 

Exact algorithm  0.2068        0.4790      0.2087             0.4758 

%Difference  0.0013        0.0080      0.0142             0.0048 

 

The simulation results indicate that the proposed heuristic algorithm with the generic cost 

model seems to be effective with different appliance and user preference configurations and 

has managed to bring the final consumption cost close to the optimal results (within 0.15%) 

across all pricing models and configurations. In the next experiment, the appliance cost 

schedule using spot prices for different geographical locations will be explored. 

 

5.6 Cost evaluation using spot prices for different geographical electricity market 

To test the performance of the heuristic algorithm across different geographical electricity 

markets, spot prices of electricity for New York City (NYC) [157] and Denmark (DNK) 

[155] on the 5th November 2014 were used to determine the energy cost difference for a 

typical day in the fall (autumn) period. See Figure 5.14 and Figure 5.15 for the respective 

NYC and DNK spot prices. 
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Figure 5.14. Spot price of electricity for New York City on 13th November 2014 [157] 

            

          

Figure 5.15. Spot price of electricity for Denmark on 13th November 2014 [155] 

 

Using the same number of appliances, values of the technical specification in the Table 5.1, 

the algorithms were tested with two instances of spot prices for NYC and DNK. After solving 

with heuristic algorithm, the spot price of electricity and the sum of power assigned to all 

appliances at each timeslot within the simulation horizon are plotted in Figure 5.16 and 

Figure 5.17 below. 
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Figure 5.16. Heuristic solution for power consumption profile and the electricity tariff, in the New 

York City scenario 

 

        

Figure 5.17. Heuristic solution for power consumption profile and the electricity tariff, in the 

Denmark scenario. 

 

The corresponding results of the total cost obtained for both instances of spot prices using 

both heuristic and exact algorithms are shown in Table 5.7. 
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Table 5.7. Results of total energy consumption cost for heuristic and exact algorithm with spot 

prices for New York city (NYC) and Denmark (DNK) 

Algorithm with spot prices                      (Cost USD)  

Heuristic: with NYC                                               

Exact: with NYC 

             0.2841   [8.523 per month] 

             0.2751   [8.253 per month] 

Heuristic: with DNK 

Exact: with DNK 

             0.2670  [8.01 per month] 

             0.2565  [7.695  per month] 

 

In the next experiment, the solving time for heuristic and exact algorithm with increasing 

number of appliance scheduling will be evaluated. 

 

5.7 Computational time scalability test 

In testing the solving time for this scheduling problem, the length of timeslots over the 

horizon and number of controllable appliances are the major variables dictating problem size 

and hence algorithm execution time. Table 5.8 shows the one-week periodic re-optimized 

average solving time for the heuristic and exact algorithms against increases in the number 

of controllable appliances. The controllable appliances are increased from 4 to 10 with 

random (but representative) energy and operating time requirements, specified in a uniform 

distribution (6 energy phases for each appliance). From the results, there was a significant 

difference in the average solving times for both algorithms; clearly, the heuristic solving 

time grows linearly with the increasing appliance number, where the exact algorithm grows 

exponentially. For 10 controllable appliances, the exact algorithm in 30 minutes computation 

time allowance returned no result. Extrapolating the growth rate from the data obtained, 

approximately 12,700 seconds would predictably be required. For 12 controllable 

appliances, this would rise to over 611 hours. However, at this stage, it must be cautioned 

that the exact algorithm employed did not utilize pruning techniques (such as branch-and-
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bound) which may help to reduce the average-case run-time. The extent to which such 

techniques would influence the computational time is an area of future investigation. 

 

Table 5.8. Solving time for exact and heuristic algorithm with increase in the number of appliances 

Number of 

appliances 

             Average CPU Solving  (in seconds)  

        Heuristic algorithm              Exact algorithm  

4             0.000704     0.00246 

6 0.00123 0.427 

8 0.00157 73.56 

10 0.00201        No result 

 

 Hence, the exact algorithm as presented is not scalable, and should be restricted to the case 

of a few smart home appliances (e.g., less than 9 appliances) and in situations in which re-

solving multiple times during a day is not required. However, the experiment demonstrates 

that the heuristic algorithm proposed in this research seems to be scalable, comparatively 

very efficient in terms of computational time complexity and could be applied as a core 

element in a decision support process for real-time residential appliance scheduling. 

 

5.8 Summary 

In this chapter, the evaluation of the proposed heuristic algorithm under consumer viewpoint 

has been explored and simulation results documented. The obtained results indicate that, for 

a single household with controllable appliances, the proposed heuristic is highly competitive 

against exact algorithm in terms of energy cost savings. The proposed heuristic algorithm is 

also capable of being configured to achieve reasonable performance with mixed pricing. For 

different household with various appliance configurations, the performance of the heuristic 

seems very good in the simulation-based experiments. Although the worst-case performance 

of the algorithm could (in Theory) be closer to the 32% optimality gap, in representative 

simulations the gaps between the heuristic cost solutions and the optimal achievable costs 

have been found to be much lower and almost negligible. However, some differences were 



97 
 

observed in the power consumption profile between the algorithms, especially in the 

presence of the RTP policy; this indicates that underlying the appliance-scheduling problem 

is potentially sensitive to small changes in the decision variables around the optimal 

achievable costs. In the pricing signal comparison, a combination of RTP and RTP/2TP was 

found to be less sensitive than RTP alone and gave a better distribution of the power 

consumption. Possible wider aspects of the use of the proposed heuristic algorithm such as 

cost savings due to DSI and power shifts from peak to off-peak period during DSI event days 

will be subjected to further attention in Chapter 7. 

Finally, for solving time scalability the heuristic algorithm offers low computational 

overheads and seems an ideal candidate for the implementation of a consumer energy 

management IDSS. In the next chapter, the implementation of the heuristic algorithm on a 

small, resource constrained embedded processor will be demonstrated. 
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Chapter 6 

6 Prototype Embedded Implementation of the Heuristic 

6.1 Introduction 

In Chapter 5 of this thesis, a series of detailed experiments carried out to evaluate the 

performance of the proposed heuristic were reported. In this chapter, an embedded 

implementation of the heuristic algorithm for scheduling smart appliances is presented. This 

is sequel to the good performance evaluation of the proposed heuristic algorithm as found 

and reported in Chapter 5. The focus of the current chapter is on the implementation and 

evaluation of the computational overheads incurred by the algorithm when executed on a 

small, resource constrained embedded processor (ARM7-TDMI 32-bit microcontroller). The 

performance of the prototype implementation is validated against previously reported 

MATLAB©-based simulated experiments on a high-performance personal computer. This 

was deemed important, as should the heuristic be deployed as a part of an intelligent Decision 

Support System (IDSS) for Demand-Side Integration (DSI), the overheads should be 

acceptably low. Before going on to describe this implementation, the overall motivation for 

this chapter of the work is described.  

 

6.2 Motivation 

The motivation for the work described in this chapter was as follows. As mentioned in 

Chapter 1, energy consumption in the built environment (households and services sector) 

forms a major portion (40.3 %) of the total energy consumption in EU member states [4]. 

Household energy consumption accounts for the largest portion of electricity usage in this 

built environment sector. This is driven by a continuous increase in population as well as 

growth in energy demands of home appliances etc.[5]. Smart meter devices and automated 

meter reading have been in increasing use over the past decade, and many EU member states 

have made good progress on (or commitments to) the installation of Advanced Metering 
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Infrastructures (AMIs). In the UK, for example, it is planned for every household to have a 

smart meter by the year 2020 [158]. By leveraging the existing or planned ICT components 

of an AMI (e.g., 4G connection, utility backhaul network, and smart meter with TCP/IP 

communication stack) and co-locating an appliance-scheduling algorithm on a residential 

smart meter, a lower-cost pathway to allow end users and utilities to achieve the potential 

benefits of DSI could be achieved. In the ideal case (quoting directly from the ENA [159]): 

 

“A completely Smart Grid of the future will enable appliances in the home to communicate 

with the smart meter and enable the networks to ensure efficient use of infrastructure, 

demand response and energy management. These are all critical to making the most of 

intermittent renewables and keeping the lights in an affordable low-carbon energy future.” 

 

For practical consumer DSI participation, the scheduling algorithm would need to have 

acceptably low computational and memory overheads and would likely need to be 

implementable without high-level operating system support and/or specialized software 

libraries. It is highly unlikely that techniques such as Mixed-Integer Linear Programming 

(MILP) could be employed for appliance scheduling in this context. As such, this study will 

investigate the feasibility of co-locating the heuristic algorithm on a smart meter by 

examining its overheads on a representative embedded computing platform (ARM-7 

platform). Although recognizing that a home energy management system consists of several 

other key components in addition to an appliance scheduler, these additional aspects are 

disregarded in this chapter; but it is important to note that a Wireless LAN (WLAN) 

connection may provide a simple means to provide connectivity to a user interface and the 

smart appliances themselves.  

6.3 Embedded platform  

Real time embedded systems are rapidly advancing and are widely used in industrial, 

medical equipment, house automation applications and communication devices such as 
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smart phones etc. Embedded systems are information processing computer systems 

embedded into larger mechanical or electrical products [160]. The purpose of the embedded 

system is to control and provide relevant information required for a specific function. More 

so, embedded systems are described by particular extra-functional properties such as 

constrained resources and real-time computing [161]. Majority of the repetitive work done 

by people can presently be implemented on an embedded system to round the clock, sparing 

time, and reducing energy wastage. It is vital to decide a suitable platform for the 

implementation of embedded software running on a programmable component in a specific 

hardware. Hence, the success of the automated IDSS depends on the careful selection of the 

platform to support the implementation requirements. The overall features of the embedded 

system environment consist of hardware and software platforms respectively. 

 

6.3.1 Hardware platform 

The hardware unit contains the 32-bit microcontroller with oscillator speed / clock speed of 

12 MHz and 60 MHz respectively, a Phase locked loop (PLL) used to up-step the crystal 

oscillator, 512 kb of FLASH ROM and 32 kb of SRAM, located on a development board 

containing I/O interfaces and an interface to allow programing and debugging. Recent 

development in computing and automation has found microcontroller in the heart of every 

device with a control system. This is a low–cost embedded system particularly used by 

applications that require computing power delivered within mobile devices, machinery and 

most importantly consumer appliances etc. [162]. Microcontrollers consist of a 

microprocessor integrated with memory and general-purpose interfaces in a single chip and 

are typically shaped as a single board computer hosting control software and executed within 

real-time environment. An LPC2378 microcontroller with ARM7TDMI-S CPU, running at 

72 MHz was selected as the embedded processing target, as shown in Figure 6.1.  
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Figure 6.1. Embedded Hardware with the LPC2378 Microprocessor 

 

ARM7TDMI-S [163] is a widely used 32-bit microprocessor in the family of ARM 7, which 

offers high performance with low power consumption. The ARM7TDMI-S uses a thumb 

architectural strategy (yielding a super reduced instruction set) which is suited to high 

volume applications with memory restrictions. This device is produced by NXP 

semiconductors [164]. The features include a low power Real-time clock and numerous 

general-purpose I/O interfaces such as multiple UARTs, an Ethernet controller, SD card and 

USB controllers, etc. The ARM processor is a family of CPU based on reduced instruction 

set computing (RISC) architecture. The microprocessor found on ARM technology is made 

up of 75 % market share of the 32-bit RISC processors; and is the architecture choice to meet 

diverse needs of home applications with more than 55% of consumers [165]. ARM 

processors include common processor series such as ARM7, ARM9, ARM9E, ARM10E 

and others such as Intel’s Xscale, SecureCore, and Intel’s StrongARM [165]. The block 

diagram of ARM7TDMI-S is shown in Figure 6.2 below. 
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Figure 6.2. Block diagram of ARM7TDMI-S [163] 

 

ARM7 processor core as shown in Figure 6.3 is used in low power embedded devices like 

tablets, smart phones, laptops, and many different industrial applications, including 

automotive control; it therefore provides a representative platform with the necessary 

features and I/O for a low-cost smart meter. 

 

    

Figure 6.3. ARM7TDMI-S core [163] 
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6.3.2 Software platform 

Embedded software is integrated with physical processes, to manage problems associated 

with time and concurrency in computational systems [166]. In this platform, the software 

development and testing facility was partitioned into two parts namely – a C programming 

language compiler/linker from Keil© with flash tools/JTAG interface for downloading and 

debugging the binary code into the microcontroller, and MATLAB software. MATLAB is a 

high-level technical computing language developed by MathWorks, for algorithm 

development and analysis. The heuristic algorithm was originally developed and tested in 

the MATLAB© environment. The task and scheduler libraries were re-written using the 

embedded C language. The communication between the target peripherals and the 

mentioned libraries are through functions implemented in peripherals and initialization 

libraries. Therefore, Programs written in C are very portable and can easily work on any 

CPU type without modification even when the target hardware is changed.  

 

6.4 Embedded Heuristic algorithm 

This section explains the data structure that represents the appliance scheduling. The number 

of bytes in each phase of the appliances as well as the main heuristic algorithm procedures 

are also presented. 

 

6.4.1  Data structure 

Given n is the number of appliances, the data structure can be expressed as follows: 

app_st[n] = [app 1, app 2,…, app n] 

app_time_limit [n] = [app 1, app 2,…, app n] 

nofp[n+1] = [0, app 1 nofp, app 1 nofp + app 2 nofp, + …., app n-1 nofp + app n nofp] 

POPT[nofp[n+1]] = [POPT[nofp[1], POPT[nofp[2]], …, POPT nofp[n+1]] 

Power[nofp[n+1]] = [Power[nofp[1], Power[nofp[2]], …, Power nofp[n+1] 
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Where: 

• The period of operations of all appliances are set by two arrays of unsigned 8-bit 

integer number namely: 

Appliance operations start time, denoted by app_st[number of appliances], and  

Appliance operations stop time, denoted by app_time_limit[number of appliances] 

 

• The number of phases (stages) of the appliances are set by an array of unsigned 8-bit 

integer numbers denoted by nofp[number of appliances + 1], where nofp[0]=0 and: 

The number of phases of first appliance is evaluated by nofp[1] – nofp[0] 

The number of phases of second appliance is evaluated by nofp[2] – nofp[1] 

…, and so on.  

Generally, the number of phases of x appliance = nofp[appliance x] – nofp[appliance 

x-1] 

 

• The duration of operations of the phases of appliances in minutes are stored in array 

of unsigned 16-bit integer numbers, denoted by POPT[number of appliances +1].  

 

• The power consumptions of the phases of appliances in watts are stored in array of 

float numbers, denoted by Power[nofp[number of appliances + 1]].  

 

• The hourly cost of electricity for each day is stored in array of 24 float numbers cost 

[24]. This is such that the cost of electricity between 1 and 2 o’clock is stored in 

cost[1], between 2 and 3 o’clock is stored in cost[2], … and so on. 

 

• Adjustable constraint which enforces a certain appliance to start and finish its 

operation phases before the other starts (e.g., the case of washing machines and 

tumble dryer) is stored in array of 8-bit unsigned numbers, denoted by c[number of 

appliances * number of appliances]. 
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6.4.2 Memory (RAM) requirement for appliance scheduling 

For an appliance with a single phase (e.g., Tumble dryer with the drying phase only), the 

appliance start time (app_st), stop time (app_time_limit), and the adjustable constraint (c) 

with 8-bit unsigned integer each, have 1 byte respectively. Number of phases (nofp) and 

operation time duration of phases (POPT) with 16-bit unsigned integer have 2 bytes each, 

while power with 32-bit float numbers has 4 bytes. Hourly costs of electricity over a 24-hour 

horizon are stored as 4-byte floating point numbers requiring 96 bytes of storage. A total of 

107 bytes is required for single phase of tumble dryer schedule. For 10 appliances, each with 

6 phases (i.e., 60 phases), a total of 6.26KB would be required to run the appliance 

scheduling. The device in question has 16 KB of on-chip memory, which is enough to store 

the configuration of 25 devices with 10 phases each; further off-chip RAM may be used to 

provide extensions. Note that there are several places in which memory consumption could 

be made more efficient, for example using fixed-point real numbers instead of floating point 

to reduce storage by approximately one half for these quantities. 

 

6.4.3 Main heuristic algorithm procedures  

The embedded heuristic algorithm is shown below. In line 3 to 7, the variable is declared to 

enable the compiler to decide the storage space to be allocated to the identifier values. The 

algorithm considers only three variable types, namely int, float and bool. The execution time 

measurement of the hardware timer in the microcontroller for the algorithm starts in line 8. 

From line 9, the algorithm starts iterating across time horizon (app_time_limit) for each 

appliance one by one to determine the time and cost-effective scheduling of the appliances. 

This is subject to appliance constraint (c) in line 20, which ensures that a certain appliance 

must finish its operation phases/stages before the start of another appliance. Line 24 calls 

the objective function to evaluate the best start time for a particular appliance, which is 

subject to power constraint in line 27. The power constraint is checked to ensure that power 



106 
 

assigned to every phase of an appliance does not exceed the maximum power limit. Line 31 

and 32 calculate and store the total cost and the best start time respectively for a particular 

scheduled appliance; while line 42 updates the power distribution for each appliance 

phases/stage. From line 45 to 47, best time and the total cost for each appliance is sent to the 

serial board, connected to the serial board of the computer using RS232 serial cable via 

U1THR port. Line 48 stops the execution time of the algorithm. The corresponding total cost 

for all appliances are then sent to the serial board of the computer from lines 49 to 54. While 

lines 50 and 51 send the integer cost, lines 53 and 54 send the float cost. Finally, lines 56 

and 57 send the total execution time for the embedded heuristic algorithm to the computer, 

which can be visualized alongside the total cost via the RealTerm: Serial Capture program 

2.0.0.70. 

 
/------------------------------------------------------------------------------------------------------------------------------- 
                                       Embedded Heuristic main code 

//----------------------------------------------------------------------------------------------------------------------------- 
1: void Heuristic(void) 
2: {   
 
// variables declaration     
3: uint8_t app_no=0,start=0,best_time[4]={0},i,x,valid;  
4: float total_cost=0,totalcost[4]={0},app_power[1440]={0},all_cost=0,total_POPT=0; 
5:  uint16_t data=0,start_s=0,start_e=0,j; 
6:   _Bool ps=1; 
7:   uint32_t start_t,stop_t;    
 
// start execution time measurements 
8:  start_t = timer;   
 
// start the algorithm 
9: for (app_no=0;app_no<appl;app_no++) 
10:     {    
11: totalcost[app_no]=100000.0; 
12: total_POPT = 0; 
   
13: for (i=nofp[app_no];i<nofp[app_no+1];i++) 
14:      total_POPT=total_POPT+POPT[i]; 
15: Time_limit[app_no] = Time_limit[app_no] - total_POPT; 
 
16:         for (start=app_st[app_no];start<=Time_limit[app_no];start++)  
17:        { 
18:          valid = 1;   
19:          for (x=0;x<appl;x++)    
20:     if ((c[app_no*appl+x]==1)&&(best_time[x]+total_POPT >= start)) 
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21:          valid = 0; 
22:     if (valid == 1) 
23:       { 
24:          total_cost = cost_func_obj(app_no, start, nofp, POPT, Power, cost); 
25:                    if (total_cost < totalcost[app_no]) 
26:             { 
27:                                              ps = power_dist_fun(app_no, start, nofp, POPT, Power, app_power, 
28:                                              Max_Power); 
29:         if (ps == 1) 
30:            {     
31:               totalcost[app_no] = total_cost; 
32:               best_time[app_no] = start; 
33:              } 
34:    } 
35:        } 
36:         } 
37:       start_s = best_time[app_no]*60; 
 
38:      for (i=nofp[app_no];i<nofp[app_no+1];i++ ) 
39:           { 
40:               start_e = start_s+POPT[i]*60; 
 
41:        for (j=start_s;j<start_e;j++)   
42:              app_power[j] = app_power[j] + Power[i]; 
43:       start_s = start_s+POPT[i]*60;   
44:          }   
   
   // send the best time for each appliance using RS232  
45:        U1THR = best_time[app_no];  
46:        U1THR = 00; 
47:         all_cost = all_cost + totalcost[app_no]; 
 
  // stop execution time measurements 
48: stop_t = timer; // stop timer 
49:  } 
 
 // send the total cost using RS232  
49: data = all_cost; 
50: U1THR = (data & 0xFF); 
51: U1THR = ((data >> 8)&0xFF); 
52: data = ((all_cost-data)*1000); 
53: U1THR = (data & 0xFF); 
54: U1THR = ((data >> 8)&0xFF);  
    
// send the execution time 
55: data = stop_t-start_t;  
56: U1THR = (data & 0xFF); 
57: U1THR = ((data >> 8)&0xFF); 
58: } 
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6.4.4  Embedded configuration 

The LPC2378 hosts the embedded heuristic scheduling algorithm code and is ideal for 

applications based on multi-purpose serial communication. Typically, numerous software 

tools including but not limited to compilers, linkers, debuggers can be used as a standalone 

program in the development platform. However, a solitary bundle consisting of full set of 

the aforementioned software tools is readily available. Keil© embedded development 

toolchain for ARM, μVision IDE and development/debug tools version 3.62c [167], was 

selected to compile, assemble, and link the embedded C code into a target binary. The binary 

codes (strings of 0 and 1) were downloaded to the microcontroller via the USB-JTAG 

connector which connects the USB port of a PC to a standard 6 pin JTAG programming 

header. A serial connection to a PC running a simple command line terminal application was 

used to implement a simple but function GUI. This allowed configuration of the scheduled 

appliance characteristics, execution of profiling tests and retrieval of results for visualization 

and analysis. An on-chip timer with 1 s accuracy was employed to obtain execution timings 

for the instrumented code. The only notable difference between the PC-based 

implementation and the embedded implementation was the use of single-precision real 

(floating-point) number representations in the latter compared to double precision in the 

former.  

 

6.5  Experimental case study 

A set of numerical studies were carried out to verify the functionality of the embedded 

processor implementation of the scheduling algorithm, and to investigate the processing time 

overheads. Experiments were performed on the embedded platform and benchmarked 

against the MATLAB© implementation running on a desktop HP© PC with an Intel Core 

i5 CPU running at 3.40GHz clock speed with 6GB of physical memory. The embedded 

processor implementation experimental setup is shown in Figure 6.4 below. 
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Figure 6.4. Embedded processor implementation experimental setup 

 

6.5.1 Verification of the embedded processor implementation 

In this experiment, a single household consisting of four controllable smart home appliances: 

washing machine, tumble dryer, dishwasher & electric vehicle was considered. The technical 

specifications for these appliances, such as number of operation stages, time, and energy 

requirements, are presented in Table 6.1 

 

Table 6.1. Appliance priorities and preference settings based on decreasing order of power 

consumption [17] 

Appliances 
No of  

stages 

Total Power 

(watts) 

Priority   User-time 

preference 

Washing Machine         6    2100    1 10:00 – 20:00 

Tumble dryer         1    1200    3 10:00 – 22:00 

Dish washer         6    1900    2 08:00 –  19:00 

Electric vehicle         1    1000    4 1:00 – 5:00 

 

The cost functions were taken to be constant in this setup, i.e., a regular Real-Time Pricing 

(RTP) signal. Hourly prices for electricity for the Scandinavian electricity market [155], 

considering the first week of February 2016, were used in these experiments. The prices 

were as shown in Figure 6.5. 
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Figure 6.5. Electricity Tariff (Hourly system price) from the 01/02/2016 to 07/02/2016. Data taken 

from Nordpoolspot [155]. 

 

Hourly system prices as shown in Figure 6.5 were utilized by the heuristic algorithm for 

scheduling the appliances to obtain cost and processing time for both the embedded 

processor implementation and MATLAB© based implementation. Optimization was carried 

out once every 24 hours in these tests for a one-week duration only (Monday to Sunday), 

with a specific hourly system price that corresponds to each day of the week. After 

simulation, the obtained results indicate that total consumption cost for both the MATLAB© 

based experiment and the embedded processor implementations were effectively the same, 

and both within 0.0042% of the optimal achievable cost when compared with test results for 

an exhaustive search method in section of chapter 5 (Section 5.3.1). A snapshot of one day 

of optimization is shown in Figure 6.6. In terms of power consumption, it is observed that 

there is no disparity in the power distribution as both schedules start appliances in the same 

time slots. However, the solving time (in seconds) between them varies somewhat, which is 

to be expected given the disparity of the processing platforms. The extent to which the 

solving time differs with an increase in the number of appliances (and changes to other 

configuration settings) was also tested. 
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       (a)   

       (b)    

Figure 6.6. Screen shot of the simulation results obtained in MATLAB© (a) and embedded processor 

(b), showing a snapshot of the scheduled appliance start times (hours), total cost (euro in (a) and 

cents in (b)) and simulation solving time (seconds in (a) and µs in (b)) 

 

6.5.2 Computational time evaluation 

Two different scenarios have been investigated, and the results for each compiled to provide 

a clearer picture of the scalability and worst-case performance of the embedded 

implementation. 

 

Scenario 1: Different household configuration with increase in number of appliances 

and appliance configuration: solving time was further tested with an increasing number of 

appliances, each with a different household configuration (C1 to C5). Real-time hourly 

prices across the same period of 5 days (Monday – Friday) as employed in Section 6.5.1. 

The number of appliances is increased from 4 to 10 across the five different household 

configurations, as shown in Table 6.2. Results illustrate that the solving time mostly increases 

with the increase in number of appliances, as expected – but that the appliance configuration 

also influences the results. Comparing the results of the embedded processor implementation 

to the MATLAB© based implementation, we observed that the solving time (in seconds) 
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again shows an expected disparity. However, the point to note is that it can be observed that 

the trend of computation times is similar across the configurations for both implementations. 

In particular, the computing time increase between 5 and 10 appliances is of approximately 

the same relative order of magnitude in both cases. 

 

Table 6.2. Solving time for MATLAB© based experiments and embedded processor 

implementation across different configurations with increase in number of appliances. 

No of appliances 
Household 

Configuration  

Average CPU solving time (seconds) 

MATLAB© Embedded system 

5 C1 0.00233 0.00802 

6 C2 0.00185 0.00850 

7 C3 0.00215 0.00880 

8 C4 0.00209 0.00970 

10 C5 0.00272 0.01290 

 

Scenario 2: Worst case appliance scheduling scenario: The worst-case solving time 

performance for the embedded processor implementation and the MATLAB© based 

implementation can be tested by forcing the scheduling time window such that appliances 

are scheduled to operate anytime within the course of the simulation period (24 hours), as 

opposed to a user-defined time window. In this last experiment, 10 random appliances with 

representative time and energy requirements were scheduled using the hourly real-time 

prices for Saturday and Sunday the 6th and 7th February 2016 respectively. The optimizer 

was run for 10 times each day and Table 6.3 summarizes the average obtained execution 

times, max/min execution times and standard deviation in execution times in each case. From 

this table, it can be observed that for embedded implementation, both the maximum and 

average execution times were at the sub-millisecond level, with very small standard 

deviation. This indicates that even for 10 controllable appliances, for a typical horizon 

configuration of 24 hours the heuristic is extremely efficient.  
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Table 6.3. Relative solving time for PC-based experiment vs Embedded processor implementation 

under worst-case scheduling scenario. 

Metric PC-Based IDSS Embedded Processor IDSS 

Mean 0.004295 0.017985 

Max 0.005100 0.018500 

Min 0.004000 0.001720 

Standard Deviation 0.000327 0.000919 

 

Combining results from Table 6.2 and Table 6.3 and assuming scheduling is performed once 

every minute, then an average processor utilization of less than 1.1 x 10-5 % will be 

consumed. This utilization figure is, in effect, negligible for all practical purposes and the 

heuristic scheduling algorithm would seem a good candidate for implementation on a smart 

meter. 

6.6 Summary 

In this chapter, a prototype embedded system implementation of a residential load 

scheduling system using the proposed heuristic algorithm has been described and tested on 

a small-embedded processor, and the prototype implementation validated against IDSS 

Implementation on MATLAB©. Test results indicate that the heuristic algorithm is efficient 

enough to be co-located on a small smart meter with limited processing power without any 

difficulties. In the next chapter, evaluation of the heuristic algorithm from the utility side 

perspective will be explored, considering multiple households and smart meters with 

heuristic deployed as a part of an embedded intelligent Decision Support System (IDSS) to 

respond to utility DSI event signals.  

 

 

 

 



114 
 

Chapter 7 

7 Evaluation of the Proposed Heuristic Algorithm Part 2) Utility 

Viewpoint  

7.1 Introduction 

The scheduling algorithm proposed in Chapter 4 of this thesis was extensively tested from 

the consumer viewpoint in Chapter 5; it was found to produce near-optimal results under a 

wide variety of operating conditions and pricing models. However, the end consumer of 

energy (householder) is not the only stakeholder in the overall context of this thesis. In the 

preceding Chapter 6, it was demonstrated that the heuristic seems to be efficient enough to 

be mounted on a small microprocessor and potentially rolled-out en-masse within a smart 

meter/AMI installation. The focus of the current chapter falls upon investigating the 

behaviour of multiple instances of the algorithm responding to price signals driven 

principally by wholesale energy prices and unexpected events affecting the wider grid. It 

investigates the combined decision-making ability of the heuristic algorithm in response to 

DSI events signalled by a utility company – the other principal stakeholder in this situation 

- when the primary focus of each individual heuristic is upon minimization of end-consumer 

economic costs. Hence, in this chapter, medium-scale simulations of the impact of utility 

pricing schemes on a roll-out of residential DSI will be presented. Furthermore, the extent 

to which a heuristic algorithm for household load scheduling can help shift aggregated 

demand in response to normal and stringent DSI prices will be explored. 

 

Electric utilities are incorporating DSI approaches in their energy networks, principally to 

handle increased levels of uncertainty arising from renewable energy production and related 

regulatory requirements. DSI can be implemented by using implicit price-based schemes 

such as TOUP, RTP and 2TP tariffs for end consumers, but may also incorporate (explicit) 

DSI programmes in response to external or unexpected effects on the wider grid [2]. 

Although (traditionally) DSI pricing schemes have mainly focused upon industrial end users 
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of energy, the push towards a smarter grid opens new opportunities to involve residential 

consumers in explicit DSI; one way this may be implemented is to encourage shifts in 

residential load by using ‘transient’ pricing signals provided in real-time by the utility 

company. The goal is to provide an extra ‘push’ during a DSI event to encourage the shift 

of energy consumption away from a particular time period on a particular day, by transiently 

adjusting prices away from tariff norms for DSI participants (registered customers). This 

provides a specific, targeted, and surgical attempt to reduce the load factor of the electricity 

system when a contingency occurs [168],[169]. In this chapter, the effects of multiple 

households using the proposed residential heuristic algorithm for scheduling smart 

appliances is explored from this utility planning and DSI perspectives.  

 

7.2 Background on Utility planning. 

Insufficient investment in the ageing electricity infrastructure network has limited the 

capacity to meet the increasing system loads [170]. This has placed an additional 

responsibility on utilities to incorporate DSI approaches in their energy networks to reduce 

peak loads and better match capacity with demand. From the consumer side, scheduling of 

controllable loads (such as smart appliances) with the help of an IDSS can help to achieve 

consumer DSI participation and can assist with DSI for utility event handling. Utility 

planning refers to efficient operations in electricity generation, transmission, and 

distribution. This is based on proper management of base load and peak load, as well as 

various energy resources for electricity generation [171]. The major goal of utility planning 

is to create a flexible plan that allows adjustments in response to uncertainty of growing and 

changing system demand. Distributed generation (DG) is an emerging option for solving 

distribution system capacity problem. Many utility planners apply an integration cost adder 

to calculate the cost of new distributed renewable capacity. These include the cost of 

balancing supply, forecast errors, and other costs related to variable generations in power 

system [172].  
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Additional mechanisms such as ancillary services (AS) [173]-[175] are also needed to 

regulate supply and demand while also responding to contingencies, for example during a 

sudden loss of transmission of electric power from utilities to the consumers. AS has 

potential benefits for consumer demand response participation. Such benefits include the 

availability of reliable resources to system operators and the flexibility to manage 

uncertainty events as a result of increasing integration of renewable generations to the grid 

[175] etc. These are aimed at enhancing energy system efficiency and help to prevent grid 

instability. In conjunction, utility companies can ensure proper planning, implementation, 

and monitoring of DSI activities designed for efficient utilization of the existing 

infrastructure network while reducing the cost of grid upgrades. Figure 7.1 below presents 

an example hierarchy of the common utility planning objectives that includes the provision 

for sustainable development as well other attributes adopted by many utilities. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Example of the hierarchy for utility planning objectives [176] 
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7.2.1 Assumptions for Utility planning 

During the planning processes, assumptions are made by utility to facilitate the planning at 

different stages. These assumptions include, but are not limited to, unidirectional load flow, 

electric load as passive demand, high cost of consumer load etc. However, utilities mostly 

adopt the ‘peak planning method’ such that the best alternative plan is found when it meets 

the expected peak load at minimum cost [176]. This implies that when a capacity limit is 

exceeded, both customer and utility costs increase to a sufficient value to justify the 

investment plan. Therefore, the utility planner evaluates the network performance by making 

use of all the distribution network information such as component rating, layout etc., together 

with the forecasted peak loads as the static inputs to determine when to activate an event. 

DSI events are typically limited in number and duration, and are triggered by utilities based 

on the following criteria [170]:  

• During emergency conditions at the generation, transmission, and distribution levels 

such as the sudden loss/unplanned outage of a generator or transmission line. 

•  Surpassing of an economic threshold based on spot prices.  

• During extreme weather conditions such as high or low temperatures that may 

increase loads on the system.  

To respond to the emergency, heuristic scheduling algorithm could be deployed in smart 

meter/AMI installation at residential buildings to provide scheduling advice and 

recommendations based on DSI prices. Hence, from the utility perspective, load 

management is an important mechanism for efficient planning and operations. 

 

7.2.2 Development of Utility plan 

The utility plan can also be referred to names such as Electric resource plans (ERP), 

Integrated resource plans (IRP), Long-term procurement plan (LTPP) etc. The utility 
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planning process is complicated by growing uncertainty due to resource availability, load 

growth, regulatory and environmental concerns as well as the competition in the various 

sectors of the power market [177]. In particular, the unknown nature of the future system 

load at the initial building of the system is a major concern. Subsequently, utility cannot 

afford to overbuild the system upfront for every possible load increase for many years [178]. 

Development of utility plans that minimize the interruption of system loads during 

unexpected DSI events requires balancing processes and criteria that the utility personnel 

must follow to ensure grid stability. Utility planning process is analogous to many other 

planning procedures and can be classified into five different generic stages as in [179], which 

includes data and information gathering; forecasting and performance assessment; problem 

identification and formulation; evaluation prioritization; and approval. Amongst the 

aforementioned stages, load forecasting is one of the key segments to achieving an economic 

balance on the system loads [179]. Utilities utilize peak load forecasting methods [180], 

[181] such as load-curve based algorithms, diversity factor, Valender correlation etc., to 

produce near estimates of the energy demand based on the assumptions in Section 7.2.1.  

Availability of load forecast incorporated in the utility plan would enable the network 

planner to perform routine assessment and analysis of the distribution system. This is done 

to estimate if the performance of the system meets the utility’s criteria in terms of capacity 

of demand required by customers, safety, reliability etc. More so, there is need to prioritize 

the planning process in the course of emergency events to address other planning problems 

such as improvement of power quality, peak demand reduction etc. The rest of the planning 

process would include the utilization of modelling, simulation, optimization, and analytical 

tools to develop and evaluate various planning alternatives. As such, there is absolute need 

for empirical knowledge of the planning processes and stages by the utility planner for 

various planning criteria and tools.  

 



119 
 

7.2.3 Utility planning tools 

Utility planners can utilize a set of commercial software packages to plan and analyse basic 

functions such as load flow, contingency analysis, reliability assessment in the modelling 

and simulation of utility planning requirements. Considering the capacity issues, the related 

costs may be determined by positive sequence power flow diagrams [182]. The power flow 

tool must be capable of estimating the energy costing, simulating the load characteristics and 

load increase over time. Software packages such as PowerFactory, CYMDIST distribution 

system analysis etc., have different interface options and are efficient in running simulation 

algorithms designed for the planning and DSI event activation. The interface options include 

but not limited to utility custom tools, MATLAB, distributed management system, SCADA 

etc.  The use of the planning tools is to determine the economic value of the planning options.    

 

7.2.4 Utility incentive/pricing programs 

For utility planning processes that use analytic tools, the utility planner would first asses the 

available resources about demand expectations and then select the appropriate pricing 

program. Generally, two categories of DSI pricing programs exist as previously described 

in Chapter 3 (Section 3.2.2) of this thesis. There are the price-based programs that motivate 

customers to change their consumption behaviour in line with the dynamic pricing; and the 

incentive-based programs that rewards the customers for reducing energy usage on certain 

periods of the day in response to the DSI request [99]. The incentive-based programs can be 

configured to achieve a specific goal such as peak reduction during transmission congestion, 

which in turn, diversify the impacts of DSI on grid operations. However, as has been 

discussed, utility companies use pricing-based programs such as Critical Peak Pricing (CPP) 

[183], Real time pricing (RTP) [184]-[186], Time of use pricing (TOUP) [187], etc., to 

influence consumers to adapt to their tariff structure aimed at achieving an aggregated 

demand that matches the needs of the power generation. With the help of Advanced Metering 
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Infrastructure (AMI) - a two-way communication medium - utility company are able to 

advertise pricing-based signals and receive consumption details for electric billing purposes 

through a smart meter. The billing is based on measured demand and represents the actual 

energy consumption by customers. With the pricing-based programs, in particular CPP, 

utilities offer customers discounted rates of energy tariff throughout the year. In return, they 

have the opportunity to charge higher prices for energy consumed during the CPP event 

days. The price of electricity is higher during CPP events (i.e., periods of high-energy use 

with stringent prices) while the CPP rate offers standard tariff during all other times (non-

CPP event days). This pricing program is beneficial to participating customers that 

voluntarily reduce energy usage on the CPP event days. Importantly, utilities are only 

allowed to invoke a certain number of CPP events in a given period (within a year/season) 

specified on the contract. An example is the CPP event advertised by Southern California 

Edison (SCE), which limits events to between 9 and 15 times per summer or maximum total 

of 60 hours per year [188]. Utility notifies customers of any planned event no later than 

3.00pm the day before the event through different communication forms such as emails, 

telephone, fax etc.; and request they reduce energy usage during a certain CPP event period. 

In some cases, residential customers do not require acknowledgement of event notification 

and customers may decline to participate with or without penalty. However, customers may 

also participate in other DSI programs for additional incentives. Interestingly, although 

price-based programs account for only a small portion of the total DSI resource base, more 

utilities offer some types of it to customers than the incentive-based programs [189].  

Automated Demand Response (Auto-DR) [190] in the form of an IDSS is highly desirable 

for consumers to respond to DSI requests from the utility. This would encourage customer 

participation in DSI events by automating the load scheduling process and hence, eliminating 

the need for manual intervention. In the course of an event, the pricing signal is sent to 
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customers via the internet to the Energy Management System (EMS) or other devices such 

as the AMI, helping to reduce load in accordance with the DSI strategy/technique. 

 

7.2.5 Literature - Utility planning algorithms 

Researchers have considerable publications on different planning frameworks for the utility 

side management. Recent works [191],[192] present the utility planning processes and 

provide the survey of utility plans and procurement practices. In addition, there are studies 

relating to integration of renewable costs into utility planning (e.g. [182], [193],[194]). The 

pitfall is that the costs of integration are applied traditionally due to inability of most analytic 

tools to capture the details of system operation and transmission. As such, the integration 

costs are inaccurate in terms of managing the unpredictable nature of the renewable 

generations and therefore lacks uniformity in certain development factors. However, there 

exist a few literatures on electric utility planning with emphasis on decentralized smart home 

appliance scheduling during demand response events. Reference [195] proposes a 

distributed algorithm for customers and the utility company to compute demand schedules 

and optimal prices. This is such that the utility company use varying prices to coordinate DR 

to the benefit of the overall system. The authors in [196] illustrate how to use an existing 

utility data to predict customers demand management behaviour. Specifically, they showed 

the calibration of the of the estimated customer cost function to help in the design of efficient 

demand management contracts. In [197], a dynamic game along with a distributed algorithm 

was proposed to demonstrate the interactions between the utility company and its 

subscribers, which eventually leads to economic point. This chapter explores the 

performance of the heuristic algorithm on the aggregate household electricity consumption 

during DR events.  



122 
 

7.3 Motivation 

Various DSI implementation strategies such as, peak load curtailment for unexpected DR 

events [198],[199], direct load control [200] and price responsive demand [201] have all 

been employed in the past few years for reducing peak demand. However, such techniques 

have limitations in terms of the required ability of the utility company to control the 

residential smart appliances remotely. As a result, utilities are adopting pricing-based 

mechanisms to encourage residential customers to conserve energy and reduce peak demand. 

One of the barriers to enabling a critical investigation to different pricing schemes and their 

subsequent appraisal for use in future smart grid has been the complexity of the residential 

load-scheduling problem, which (as previously discussed) is known to be NP-hard [129]. 

The principal goal of the heuristic is to minimize a resident’s electricity bill in the presence 

of varying utility price signals within a reasonable computational time. Consequently, the 

utility company could adjust the pricing signals and energy capacity provided in each 

timeslot to help plan their actions. Therefore, the use of the near-optimal and extremely low-

overhead heuristic algorithm proposed in this thesis opens a pathway for further 

investigations. Utility can provide the cost function for electricity (e.g., CPP during a DSI 

event) to the residential energy users 24 hours in advance via the AMI to the smart meter. 

These prices are then used by the IDSS equipped with the proposed heuristic algorithm (co-

located on the smart meter) to respond to DSI events, while reducing peak consumption. 

Further evaluation of the proposed heuristic algorithm in terms of cost savings due to DSI 

and power shifts from peak to off-peak period during DSI event is the main motivation of 

the simulation study described in the following section.  

 

7.4 Experimental studies 

Numerical studies were conducted to investigate the aggregated performance of multiple 

instances of the heuristic algorithm in response to events affecting the utility side and 
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manifesting as dynamic fluctuations in the pricing signals offered to customers. Two sets of 

experiments were considered, each with two scenarios that addresses a specific DSI event. 

The first experiment evaluates the total resident’s cost while the second experiment evaluates 

the power distribution for the given scenarios. In the first scenario, ‘normal’ DSI procedures 

were assumed, and hourly RTP pricing structures that reflect the cost of electricity during 

the course of a number of days were assumed to be sent to each heuristic algorithm. In the 

second scenario, ‘stringent DSI prices’ which are modified pricing structures that aim to 

reduce electricity demand at specific times during the course of DSI event days were 

assumed to be sent to each heuristic algorithm. Ten heterogeneous residences with smart 

appliances and smart meters equipped with the heuristic algorithm were considered, and the 

aggregated demand was measured during the course of eight simulated days for both 

experiments. Representative configurations of the number and type of appliances and 

individual appliance constraints were employed. The number of appliances in a residence 

was varied between four and ten. The impact upon aggregated and individual household 

costs was also calculated in both experiments. Figure 7.2 displays the baseline RTP signals, 

and the magnification of prices applied during stringent events. 

        

 

Figure 7.2. Example of hourly RTP of electricity used in simulation, showing the plot for 1st and 

30th day of the representative months of the season. Data taken from Nordpoolspot [155] 



124 
 

7.4.1 Experimental data and configuration 

Baseline hourly electricity pricing data from Nordpoolspot [155] was used for the basic RTP 

signals and prices were used across four months in 2015 (1st and 30th days of January, April, 

July, and October), representing samples of the four seasons of the year (winter, spring, 

summer, and autumn). RTP data used in this simulation was arranged in such a way that 

both normal and stringent DSI prices have the same average total tariff. For stringent DSI 

event simulations, peak periods were defined for each day (6 AM until 11 AM, and 5 PM 

until 11 PM). The prices for the peak periods of each stringent DSI event day were fixed at 

the highest cost of electricity during that particular day, and the tariff for the remainder of 

the off-peak hours was scaled appropriately such that the average price for both a normal 

and stringent day remained the same. This configuration corresponds to a situation in which 

the utility is pre-notified of, say, a loss of contracted peak power supply and re-schedules its 

prices to effect DSI while ensuring that customers receive the same average price.  

 

7.4.2 Experimental results: Residents’ electricity cost 

This experiment evaluates the optimized costs of fulfilling the residents’ energy demand for 

the appliance scheduling. Results obtained for the aggregate energy costs for both normal 

and stringent DSI event days across all households is presented in Table 7.1. Corresponding 

aggregate results for all households DSI event days are shown in Table 7.2. From Table 7.I, 

it can be observed that the household average total cost of €1.2964 was incurred for normal 

DSI event days as compared to €1.2502 obtained for stringent DSI event days. This indicates 

that, for the pricing models employed, lower costs were achievable (on average) across the 

households during stringent DSI event days. However, it may be observed that 2 individual 

households (Houses 4 and 7 respectively) incurred greater costs during stringent DSI event 

days despite the average total cost of all households being lower. These factors should be 

kept in mind when utilities consider the impact of price schedules to achieve DSI 
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participation. From the results in Table 7.2, there is only one (day 30th July) where the 

aggregate total cost for Stringent DSI event was higher than the Normal DSI event. In 

addition, since the heuristic has low overhead, alternate scenarios can quickly be considered, 

adding an opt-in/opt-out opportunity to residents when DSI events result in changes to 

nominal RTP schedules seems advisory. 

 

Table 7.1. Comparison of household average total cost on all DSI event days for normal and 

stringent events 

Households with 

8 DSI Event days 

(2015) 

DSI Events (Normal) 

Household Average        

Total Cost (EUR/kWh) 

DSI Events (stringent)  

Household Average     

Total Cost (EUR/kWh) 

House 1 1.0461  1.0445 

House 2 0.9068  0.8811 

House 3 1.1671                  1.0994 

House 4 1.1831                  1.1953 

House 5 1.3102 1.1924 

House 6 1.2060 1.1724 

House 7 1.4131 1.4299 

House 8 1.4117 1.3134 

House 9 1.5528 1.4791 

House 10 1.7670 1.6945 

Mean 1.2964 1.2502 
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Table 7.2. Aggregate total cost of DSI event days for all households under normal and stringent 

events 

DSI event days 

(2015) 

 Normal  

DSI Events Household 

Total Cost (EUR/kWh) 

Stringent 

DSI Events Household 

Total Cost (EUR/kWh) 

1st January 2.0532   2.0195 

30th January 2.2561   2.1230 

1st April 1.8949                1.8831 

30th April 1.9912                1.8405 

1st July 1.1983  1.0998 

30th July 0.5146  0.5179 

1st October 0.9963  0.9867 

30th October 2.0593  2.0315 

 
 

7.4.3 Experiment results: Power distribution 

In this experiment, the distribution of power consumption of the appliance schedule is 

examined to determine the differences in the on-peak and off-peak energy consumption (in 

kWh) for each DSI event day with normal and stringent DSI prices. Figure 7.3 displays the 

results obtained for the aggregate electricity demand for both normal and stringent DSI event 

days. From the figures, visually it may be observed that for both normal and stringent days, 

the consumption follows the wholesale electricity price, but the price differences have had a 

marked impact on the distribution of power consumption. 

a) 
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Figure 7.3 Cont. 

b) 

             

c) 

             

d) 
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Figure 7.3 Cont. 

e) 

           

f) 

            

g) 

             

 



129 
 

Figure 7.3 Cont. 

h) 

            

Figure 7.3. Aggregate demand for all households (a to h) over the course of the day with Normal 

and Stringent DSI events. 

 

Although the normal prices were set to follow the wholesale cost of electricity (and hence 

implement DSI), the desired effect during stringent days is to shift additional power from 

peak to off-peak periods. To investigate this aspect further, peak, and off-peak energy 

consumption was calculated and is shown in Table 7.3 below. From the table, it can be 

observed that the desired effect has been achieved for each simulated day. On average, 2.65 

kWh was shifted away from peak periods. This corresponds to an average of 40% 

consumption shifted away from peak periods. The largest absolute reduction in peak 

consumption occurred in the summer with 4.15 kWh for the 30th July, while the largest 

relative (%) reduction occurred on 30th January with a 56.76% shift. The smallest absolute 

peak power reduction is seen on the 1st April with 0.44 kWh; this also corresponded to the 

smallest relative reduction at 10.76%. Nevertheless, a 10% shift in power consumption from 

on-peak to off-peak periods remains a considerable asset for a utility to call upon. Overall, 

the result confirms that the approach employed can be used for general DSI and to encourage 

shifts away from peak periods during DSI events. The results also suggest that the proposed 

heuristic algorithm can be effective in reducing aggregate peak demand when employed in 

a decentralized fashion. 



130 
 

Table 7.3. Aggregate on/off peak power consumption for normal and stringent DSI event days 

 

Event  

Day 

Normal DSI 

Total power 

Consumption 

(kWh) 

Stringent DSI   

Total power 

Consumption 

(kWh) 

Reduction in      

peak period 

consumption   

(kWh) 

Reduction in      

peak period 

consumption   

(%) 

On peak           Off 

peak 

On 

peak 

Off Peak   

1st January 3.74 9.31 2.22 10.56 1.52 40.64 

30th January 5.92 6.79 2.56 10.13 3.36 56.76 

1st April 4.09 8.72 3.65 9.20 0.44 10.76 

30th April 5.74 6.92 3.45 9.25 2.29 39.90 

1st July 7.52 5.30 3.65 9.05 3.87 51.46 

30th July 7.80 5.10 3.65 9.05 4.15 53.21 

1st October 6.38 6.45 3.65 9.05 2.73 42.79 

30th October 5.33 7.54 3.65 9.05 1.68 31.52 

 

 7.5 Summary 

Effective utility planning can help to achieve more efficient use of electricity distribution 

resources and help curtail excessive economic costs from poor utilization of resources. DSI 

initiatives/programs can also help to react to unexpected or unplanned events on the wider 

grid. In this chapter, the impact of a cost-minimizing heuristic algorithm when viewed from 

a utility perspective has been explored. The obtained results were positive in that the use of 

the proposed heuristic algorithm (in combination with careful pricing structures during DSI 

event days) could help shift aggregated demand in households with smart appliances. The 

economic effects on individual households were beneficial (on average), but some 

households nevertheless experienced slightly increased costs due to differing appliance 

scheduling configurations across various households. Overall, the test results confirm that 

the heuristic rapidly responds to DSI pricing signals and produces the desired responses from 

numerous households in synchronicity, although the choice of price signals plays a major 

role in the depth and nature of the response. The choice of effective price signals to achieve 

a specific DSI goal or target is an area that requires further investigation. Details of these – 

and other – related areas of future work will be described in the final concluding chapter of 

the thesis. 
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 Chapter 8 

 

8 Conclusions and future work 

8.1 Conclusions 

This thesis has investigated an important aspect of the implementation of an IDSS for 

Demand-side Integration in the emerging smart grid. The work in this thesis covered four 

main subject areas: first, the smart grid and its enabling technologies; second, DSI load 

management strategies and heuristic scheduling algorithm development; third, embedded 

processor implementation of consumer IDSS; and fourth, DSI realization from the 

perspective of Utility planning (moderating the aggregate electricity demand while ensuring 

consumer benefits in terms of cost savings). For the accomplishment of the thesis 

requirements from these subject areas, a heuristic algorithm for scheduling residential smart 

appliances has been proposed and extensively tested. The usefulness of the heuristic 

algorithm for practical purposes comes from enabling residential appliances to be scheduled 

greedily, one after the other without backtracking, such that the worst-case computation time 

is significantly reduced compared to an exact method, at the expense of a potential loss of 

optimality in the obtained solution. The proposed heuristic algorithm ensures near-optimal 

scheduling within polynomial time, thus, offers the choice for use in the consumer IDSS to 

provide scheduling advise and recommendations to residential customers. However, the 

success of the heuristic scheduling algorithm will likely depend on whether the residential 

home has the ‘right’ set of smart (schedulable) appliances. To that end, knowledge of the 

appliance technical specifications (parameters) such as time and power requirements (e.g., 

length of timeslot, power profiles etc.) as well as decision variable (start time) are imperative 

to define the problem objective and determine the corresponding scheduling solution. These 

attributes were taken into consideration in the research study. 
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The performance of the proposed load scheduling algorithms (heuristic and exact 

algorithms) was effectively investigated using a generic cost model for electricity prices and 

a variety of representative smart home configurations. This was deemed necessary in case 

heuristic is deployed as an IDSS in households across different geographical locations with 

various dynamic pricing structures. The generic cost model presented in this thesis can be 

configured for traditional on/off peak pricing, RTP, Time of Use Pricing (TOUP), Two-Tier 

Pricing (2TP) and combinations thereof. Simulation results indicated that, when compared 

to an exact algorithm, the proposed heuristic consistently produces results, which are very 

close to optimal at a fraction of the computing cost. The results also suggest that the proposed 

heuristic algorithm is very effective across different types of pricing model. 

Additionally, a prototype of the heuristic algorithm was implemented on a resource-

constrained embedded processor (ARM7-TDMI 32-bit microcontroller). The performance 

of this prototype was tested and validated against a PC based IDSS implementation. The 

results indicated that the heuristic algorithm is efficient enough to be co-located on a small 

smart meter with limited processing power without any difficulties. 

Following the good performance of the embedded heuristic algorithm from consumer 

viewpoint, the performance of such a situation from the perspective of a utility company was 

also explored as a means to reduce peak consumption. The effects on aggregated electricity 

demand with multiple instances of the heuristic, considering multiple (heterogeneous) 

household configurations, were also investigated. Test results confirm that the heuristic can 

produce a measured and coordinated response to DSI pricing signals in terms of aggregated 

electricity demand. 

The thesis concludes that the proposed heuristic algorithm is a good candidate for the large-

scale deployment of residential consumer oriented DSI and could be deployed as a useful 

and low-cost extension of an AMI in smart grids. 
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8.2 Future work 

A first area of future work is to further evaluate the performance of the heuristic algorithm 

and its embedded prototype with large-scale Monte-Carlo simulations, employing many 

households (upwards of 1000 representative houses with up to 100 appliances in each case). 

In addition, the worst-case computational ability of the exact algorithm may be improved by 

utilizing pruning techniques (such as branch-and-bound or branch-and-price) which may 

help to reduce the average-case run-time; this would help create better benchmarks to 

examine the relative overheads of the heuristic. 

The second area of future research is on the effect of pricing signals advertised by the utility 

service companies and the solution sensitivity. The sensitivity of both the heuristic and exact 

algorithms in the presence of time-of-use pricing (TOUP) was found to be low with respect 

to the economic cost but high with respect to the peak power consumption around the optimal 

solution point; some differences were also observed between the heuristic and exact 

algorithms. In addition, when multiple instances of the heuristic were present, the 

effectiveness of the depth of DSI was dependent upon the choice of pricing signals; it is not 

yet clear what choice of pricing signals would yield the optimal effect. Both aspects need 

further investigation. 

The third area of future work is to integrate Renewable Energy sources (RES) and storage 

system to the cost function, making it a multi-objective optimization. This will provide a 

robust evaluation of the heuristic algorithm. 
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Appendix A: Details of household configurations for different appliance 

scheduling in section 5.5 

A1 Configuration for five appliance scheduling with dynamic pricing 

  Table A1. Configuration for five appliance scheduling with dynamic pricing [17] 

Devices Input parameters 

Household configuration 

C1 

RTP 

C2 

RTP/2TP 

C3 

TOUP 

   C4 

TOUP/2TP 

Washing 

Machine 

Start time Range 10~20 10~20 10~20 10~20 

Timeslot length(min) 136 161 130 154 

Power 2249.96 2249.96 2249.96 2149.96 

Dish 

washer 

Start time Range 9~23 9~23 9~23 9~23 

Timeslot length(min) 82 134 78 87 

Power 1739.96 1880.96 1740.96 1840.96 

Tumble 

dryer 

Start time Range 13~23 13~23 13~23 13~23 

Timeslot length(min) 90 120 105 70 

Power 1200 1200 1500 1200 

Electric 

vehicle 

Start time Range 1~6 1~6 1~6 1~6 

Timeslot length(min) 120 110 150 120 

Power 1100 1000 2500 2000 

Water 

heater 

Start time Range 5~20 5~20 5~20 5~20 

Timeslot length(min) 105 60 90 60 

Power 950 900 700 1000 

 

A2 Configuration for six appliance scheduling with dynamic pricing 

   Table A2. Configuration for six appliance scheduling with dynamic pricing [17]. 

Devices Input parameters 

Household configuration 

C5 

RTP 

C6 

RTP/2TP 

C7 

TOUP 

C8 

TOUP/2TP 

Washing 

Machine 

Start time Range 10~20 10~20 10~20 10~20 

Timeslot length(min) 135 135 155 135 

Power 1939.96 1899.96 2249.96 1899.96 

Dish 

washer 

Start time Range 9~23 9~23 9~23 9~23 

Timeslot length(min) 89 88 132 108 

Power 1720.96 1700 1960.96 1700 

Tumble 

dryer 

Start time Range 13~23 13~23 13~23 13~23 

Timeslot length(min) 90 90 90 90 

Power 1100 1000 1100 1000 

Electric 

vehicle 

Start time Range 1~6 1~6 1~6 1~6 

Timeslot length(min) 120 120 120 110 

Power 1500 1200 1000 1300 

Water 

heater 

Start time Range 5~20 5~20 5~20 5~20 

Timeslot length(min) 90 90 90 90 

Power 900 900 900 900 

Electric 

cooker 

Start time Range 6~22 6~22 6~22 6~22 

Timeslot length(min) 75 75 75 75 

Power 600 600 600 600 
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