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Ai miei genitori. A loro devo tutto.



"I should dearly like to resuscitate one or two of the rascals,

just to know what they would think when they saw all going on as before,

in spite of the disappearance of the human race.

Would they then imagine that everything was made

and maintained solely for them?"

Giacomo Leopardi

"Dialogue between a goblin and a gnome"



Abstract

Many of the mechanisms underpinning cancer risk and tumorigenesis are

still not fully understood. However, the next-generation sequencing revolution

and the rapid advances in big data analytics allow us to study cells and complex

phenotypes at unprecedented depth and breadth. While experimental and

clinical data are still fundamental to validate findings and confirm hypotheses,

computational biology is key for the analysis of system- and population-level

data for detection of hidden patterns and the generation of testable hypotheses.

In this work, I tackle two main questions regarding cancer risk and tumorige-

nesis that require novel computational methods for the analysis of system-level

omic data. First, I focused on how frequent, low-penetrance inherited variants

modulate cancer risk in the broader population. Genome-Wide Association

Studies (GWAS) have shown that Single Nucleotide Polymorphisms (SNP)

contribute to cancer risk with multiple subtle effects, but they are still failing to

give further insight into their synergistic effects. I developed a novel hierarchical

Bayesian regression model, BAGHERA, to estimate heritability at the gene-level

from GWAS summary statistics. I then used BAGHERA to analyse data from

38 malignancies in the UK Biobank. I showed that genes with high heritable risk

are involved in key processes associated with cancer and are often localised in
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genes that are somatically mutated drivers.

Heritability, like many other omics analysis methods, study the effects of DNA

variants on single genes in isolation. However, we know that most biological

processes require the interplay of multiple genes and we often lack a broad

perspective on them. For the second part of this thesis, I then worked on the

integration of Protein-Protein Interaction (PPI) graphs and omics data, which

bridges this gap and recapitulates these interactions at a system level. First, I

developed a modular and scalable Python package, PyGNA, that enables robust

statistical testing of genesets’ topological properties. PyGNA complements the

literature with a tool that can be routinely introduced in bioinformatics automated

pipelines. With PyGNA I processed multiple genesets obtained from genomics

and transcriptomics data. However, topological properties alone have proven to

be insufficient to fully characterise complex phenotypes.

Therefore, I focused on a model that allows to combine topological and

functional data to detect multiple communities associated with a phenotype.

Detecting cancer-specific submodules is still an open problem, but it has the

potential to elucidate mechanisms detectable only by integrating multi-omics

data. Building on the recent advances in Graph Neural Networks (GNN), I

present a supervised geometric deep learning model that combines GNNs and

Stochastic Block Models (SBM). The model is able to learn multiple graph-aware

representations, as multiple joint SBMs, of the attributed network, accounting

for nodes participating in multiple processes. The simultaneous estimation of

structure and function provides an interpretable picture of how genes interact in

specific conditions and it allows to detect novel putative pathways associated

with cancer.
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Lay Summary

Research has shown that tumors are caused by changes in the DNA se-

quence that result in cells that grow uncontrollably. Indeed, the DNA, a long

sequence of nucleotides, stores and maintains the genetic content of an organ-

ism, which encodes all information required for the activities of the cell. The

flow of information that allows cells, and organisms, to function, is simplified

by the central dogma of biology: DNA makes RNA, and RNA makes proteins.

Peculiarities, modifications and errors in the DNA sequence can affect the whole

cascade of processes that regulate the machinery of an organism by changing

the structure and function of RNA and proteins, the actual effector molecules.

While we know that some of these events lead to tumorigenesis, the exact

mechanisms that drive the formation of tumors are still not fully understood.

Thanks to the dramatic technological improvements of the last 20 years, we

are now able to study the DNA of thousands of cancer patients and develop

computational methods instrumental to gain insights into genetic variability and

its impact on tumor susceptibility. In this work, I tackle two main questions

regarding cancer risk and tumorigenesis that required the development of novel

computational methods for the analysis of cancer data.
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First I focused on how germline variants, variations of the DNA sequence

inherited from parents, influence the risk of developing cancer. Indeed, we

know that some rare inherited pathogenic DNA variants lead to cancers that

recurrently occur in families, for example, the BRCA1 mutations associated with

a higher risk of breast cancer. However, studies carried out on thousands of

people have shown that DNA variants frequently observed in the population

can also modulate cancer risk. Thus, I developed a novel statistical method,

called BAGHERA (Bayesian Gene Heritability Analysis) that estimates where in

the DNA (i.e., into which genes) the variants increasing cancer risk are more

likely to be found. Then, knowing which genes are often affected, we can

investigate what are the systems they disrupt and what other factors might

concur to increase the risk of a tumor.

BAGHERA studies the location and impact of DNA variability in isolation.

Nonetheless, most biological processes require the interplay of multiple proteins

and regulatory elements where multiple smaller disruptions are more likely

to go unnoticed and generate a systemic problem, the tumor. Detecting the

combinations of issues that lead to cancer is non-trivial, but understanding them

is key to learning how tumors arise and how we can treat them.

In the second part of this thesis, I illustrate how novel computational meth-

ods can be used to map DNA variations associated with tumors onto protein

interaction networks. Indeed, biological experiments have reconstructed the

networks describing how proteins interact with each other and we can use them

in order to identify the groups, or modules, of genes that are responsible for

tumorigenesis. I developed a software, PyGNA, that enables researchers to

systematically map their experimental results on protein networks and analyse

their connectivity properties; knowing the structure and communication patterns

of the network helps investigate how cancer cells rewire. Moreover, I propose
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a novel artificial intelligence method, that leverages data from multiple exper-

iments, to predict which genes are more likely to drive tumors and how they

are organised in the networks. Combining the connectivity information of the

network with functional information of each gene improves our ability to detect

the modules of proteins associated with cancer.

Taken together, in this thesis I show that new computational methods can

elucidate some of the mechanisms underpinning cancer by aggregating multiple

lines of evidence and considering the cell system with its disruptions as a whole.
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1 Introduction

1.1 Background

Estimates of 2020 forecast that around one in five individuals worldwide,

and one in three in Europe, will develop a neoplasm during their lifetime [Sung

et al. 2021; Ferlay et al. 2020]. Similarly, the World Health Organization (WHO)

has estimated an incidence of around 19.3 million of newly developed tumors in

2020, which is expected to rise to 30.2 million in 2040. In regards to mortality,

the WHO reports that out of a total of 50 million deaths worldwide, around 9

million were due to a neoplasm [WHO 2020].

It is undebatable that cancer poses a considerable burden onto single

individuals and health systems, and it comes with no surprise that a large part

of the research worldwide has been focused on cancer. Today, hundreds of

studies a year produce a deluge of data on tumors, with cancer being the main

topic of about 16% of PUBMED entries [Reyes-Aldasoro 2017]. Nonetheless,

many aspects of cancer risk, development, and progression are still far from

being fully understood. Fortunately, in this somber landscape, both biological

and computational research are undergoing fast-paced improvements.
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1.1. Background

The Next Generation Sequencing (NGS) revolution has allowed studying

cells at an unprecedented level of depth and breadth. Since the release of the

first human genome draft [Craig Venter et al. 2001; Lander et al. 2001], up until

the recently published Telomere-to-Telomere human reference genome [Nurk

et al. 2021], sequencing has become increasingly less expensive, allowing to

collect population-level data, and novel experimental protocols and technologies

have flourished [Reuter, Spacek, and Snyder 2015; Aslam et al. 2017; Lowe

et al. 2017]. Last year, for example, the PCAWG consortium has released

whole-genome data for more than 2,658 cancer samples [Campbell et al. 2020]

and one of the largest consortium of public health, the UK Biobank [Sudlow

et al. 2015], is on track to release health records and sequencing data for

500,000 individuals. At the same time, we are now able to perform sequencing

experiments at the single-cell level [Stuart and Satija 2019; Abascal et al. 2021],

capturing not only the properties of cancerous tissues but also the detail and

heterogeneity of cells within them.

On the other side, statistical and computational sciences have undergone

dramatic advances as well. Technological improvements on the hardware, with

faster, more powerful, local and distributed machines, have powered the ‘big

data’ innovation process. Moreover, computational power has translated into a

deluge of novel methods, tailored to tackle high-dimensional data. Specifically,

machine learning [Alpaydin 2014; Hastie, Tibshirani, and Friedman 2009], which

we broadly use here to encompass all statistical learning, artificial intelligence,

and data science fields, harnesses large amounts of data, that can now be

stored and processed, to optimise the underlying statistical model. Indeed, a

common task of data analysis is to understand, and describe, the processes

behind the observed examples. Complex, stochastic, non-fully characterised

processes, are hard to approximate with mechanistic models. Conversely,

machine learning benefits from ‘big data’ by using it to automatically generalize
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1.1. Background

the properties of the datasets, being then able to detect hidden patterns that

would otherwise go undetected. By now, machine learning is being ubiquitously

applied to all fields, and biology is no exception [Ching et al. 2018; Zitnik et al.

2019].

While this can be sometimes overlooked, projects that harness and analyse

population-level data would not be possible without the dramatic improvements

of technologies such as high-performance computing and the methodological

advances of machine learning [Berger, Peng, and Singh 2013; Stephens et

al. 2015]. Hence we find ourselves at a peculiar, and exciting, intersection

between the complexity that we face studying cancer and the potential of newly

developed technologies.

Unsurprisingly, the combination of high-throughput experiments and com-

putational sciences has led to novel insights into many aspects of cancer. The

classical paradigm of tumorigenesis, see Fig. 1.1, describes it as a sequence

of aberrations conferring selective advantage to cells that eventually undergo

immortalization and grow uncontrolled [Vogelstein et al. 2013; Stratton, Camp-

bell, and Futreal 2009]. A lot of effort has indeed been placed into detecting

the events driving tumorigenesis and their functional effects. DNA sequencing

has allowed identifying hundreds of germline and somatic aberrations that are

associated with cancer phenotypes [Pleasance et al. 2010; Hoadley et al. 2018;

Campbell et al. 2020; Sondka et al. 2018; Sud, Kinnersley, and Houlston 2017]

distinguishing driver events from passengers and validating their tumorigenic

effect [Bailey et al. 2018; Martínez-Jiménez et al. 2020]. Moreover, functional

genomics studies have revealed the impact of aberrations by identifying their

effects on gene expression [Cieślik and Chinnaiyan 2018], cell trajectories and

tissue heterogeneity [Rozenblatt-Rosen et al. 2020], and the epigenetic marks

regulating tumor expression [Dawson 2017].
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1.1. Background

Most of the experiments described above are using single-modality snap-

shots of tumors and normal cells. While extremely fruitful, these studies have

also revealed the polygenicity and heterogeneity of cancer; we are still un-

able to detect driver events for all patients or to fully understand the effects of

known aberrations and their combinations since they can be peculiar to the

environmental stimuli, tissue, and genetic background [Campbell et al. 2020;

Martínez-Jiménez et al. 2020; Abascal et al. 2021]. However, while the specific

aberrations might be tumor-dependent, driver events tend to recurrently hit

genomic elements involved in hallmark processes of cancer [Hanahan and

Weinberg 2011]. In this context, system biology, that is the comprehensive and

integrative study of complex biological systems, has the potential to reveal the

processes underpinning cancer. Integrative studies have already led to novel

insights into cancer biology; among others, whole-genome co-essentiality maps,

that capture gene-gene funtional interdependency and actual pathway-level

gene cooperation [Wainberg et al. 2021], numerous therapeutic opportunities

directly targeting disrupted proteins or the processes they control [Hahn et al.

2021], novel cancer drivers prioritised by functional annotation [Reyna et al.

2020].

In this context, the goal of this thesis is to develop novel methods to elucidate

the mechanisms underpinning cancer; by using large-scale omic data and novel

machine learning methods, this work focuses on the interplay between different

tumorigenic events. Indeed novel computational methods for the analysis

of high-dimensional multi-modal datasets are instrumental to gather a three-

dimensional picture of tumorigenesis and generate novel, testable, hypotheses,

see Fig. 1.1. Specifically, we first address the question of cancer risk in

the broader population. We then focus on the interplay between genes that

participate in cancer-associated phenotypes by integrating omics data onto

biological networks. In the next section, we briefly introduce and discuss the
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1.1. Background

outline of the thesis, highlighting the motivation and the background of the main

topics we tackled.
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Figure 1.1: The timeline of tumorigenesis. Inherited mutations shape the genetic
background of all tissues. Driver events (dark crosses) confer selective advantage
to the cell that then generates clonal populations (expanding grey areas) that have
metabolisms enhancing replication and are more likely to escape cell death. At some
point, a cancer-driving event, a point mutation or a structural variation, occurs and
triggers cancer (expanding red areas), which leads to cell immortalization and uncon-
trolled proliferation. Available treatments, either drugs or physical procedures might be
able to attack the tumor, causing it to disappear in some cases, or to regress before a
relapse. All these events, however, are not functionally isolated as they occur in genes
-or any functional genomic element- that interact with each other. By mapping (dashed
arrows) the driver events (crosses) and the underlying genetics (darker network nodes)
to the network we can explore the disrupted pathways (colored dashed boxes) and
their functional relevance. Figure adapted from [Campbell et al. 2010] and Prof. Getz’s
lectures

7



1.2. Thesis Outline

1.2 Thesis Outline

Familial and targeted sequencing studies have been able to detect and

characterise the effects of high-penetrance germline variants for cancer risk

[Miki et al. 1994; Wooster et al. 1994; Anderson 1974; Lynch and Chapelle

2003]. These works have shed light on the role of germline mutations for cancer

predisposition, and have been instrumental in finding genetic markers for hered-

itary cancer syndromes [Foulkes, Knoppers, and Turnbull 2016; Foulkes 2008;

Southey et al. 2016]. However, the rare or uncommon mutations responsible for

early-onset hereditary malignancies do not explain how the genetic background

mediates cancer risk in the broader population. Genome Wide Association

Studies (GWAS) have been able to detect many frequent germline variants

associated with cancer, nonetheless, the functional characterisation of their

effects is still inadequate and often proves challenging [Sud, Kinnersley, and

Houlston 2017; Lawrenson et al. 2015].

The observation that cancer is a polygenic disease [Boyle, Li, and Pritchard

2017; Mavaddat et al. 2019], that is it requires multiple aberrations target-

ing different biological processes to develop, and the mounting evidence of

subtle effects of germline variants [Zhang et al. 2020; Whitington et al. 2016;

Dimitrakopoulos et al. 2019], sustains our interest in studying how multiple

low-penetrance variants might be mediating cancer risk alongside somatic mu-

tations. In chapter 2 we present the state-of-the-art of breast cancer GWAS

and describe results and limitations of current literature. Moreover, we review

the main methodological approaches to the study of GWAS heritability, the

additive effects of all inherited Single Nucleotide Polymorphisms (SNP) to the

phenotypic variance. Indeed, we find that heritability is an appropriate measure

of inherited cancer risk as it aggregates subtle germline effects and can be

applied to link the genetic variations to their functional effects.
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1.2. Thesis Outline

In chapter 3 we present BAGHERA, a novel statistical learning method to

estimate heritability at the gene level. We believe that apportioning inherited

cancer risk to functional loci, such as genes and cis-regulatory regions, might

effectively capture the biological mechanisms underpinning cancer. Indeed, we

found that the genes whose heritability is higher than expected by chance are

preferentially involved in the hallmark processes of cancer and we hypothesise

an interplay between germline and somatic mutations for tumorigenesis.

Our analysis of gene heritability studies the combined effects of multiple

variants on the same gene, however, it does not explicitly take into account

the interaction between genes. Pathway analysis methods [Ma, Shojaie, and

Michailidis 2019; Khatri, Sirota, and Butte 2012], those that statistically test for

an overrepresentation of a candidate set of genes into known pathways and

biological processes, allow mapping aberrations onto a functional representation

of cellular machinery. While extremely insightful, these methods are applied

downstream of the analysis and are biased towards known pathways, hindering

the chances of revealing novel ones.

Conversely, biological networks describe the interplay between genomic

elements and can be used to detect novel interaction patterns [Kuenzi and

Ideker 2020]. Graph-structured data have been used in a variety of system

biology applications, leading to some pivotal observations about cancer drivers

[Reyna et al. 2020], druggable master regulators driving tumor progression

[Hahn et al. 2021], drug repositioning [Gysi et al. 2021].

Chapters 4 and 5 discuss how experimental data can be mapped onto

Protein-Protein Interaction (PPI) networks that are large-scale graphs recapitu-

lating known physical interactions between proteins. Although incomplete and

lacking tissue-specificity, PPI networks can be combined with other datasets

to infer pathways, communities, or subgraphs, of genes that are synergistically
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1.2. Thesis Outline

affecting the phenotype. In chapter 4 we describe the background literature

on PPIs and the state-of-the-art methods for the integration of omics data

onto the graph structure. We focus on graph topology, that is the connectivity

properties of the genes in the network, as a way to summarize and detect the

interplay within and between genesets. As we identified the lack of scalable

computational tools to analyse the topological properties of genesets obtained

from high-throughput experiments, we present PyGNA, a modular Python pack-

age, integrable into existing bioinformatics pipeline, that implements multiple

statistical tests for graph topology.

Topological properties alone are insufficient to fully capture the pathways

underlying cancer connectivity: genes involved in complex phenotypes are

targeting multiple processes and might not be all closely linked to each other

[Agrawal, Zitnik, and Leskovec 2018]. Moreover, most state-of-the-art methods

are better suited for attributed networks with a single attribute, one score per

node that summarises the observed data. In chapter 5 we present a deep

learning method that uses both graph structure and multiple gene features to

integrate topology and experimental evidence. We use Graph Neural Networks

(GNN) to simultaneously learn gene properties from graph structure and exper-

imental observations. Within the deep learning architecture, we also use the

Stochastic Block Model to infer communities in the network, which can be then

readily used to describe the main pathways involved in cancer processes. Our

model, namely SBM-GNN, predicts cancer driver genes while organising them

into communities of both drivers and non-drivers and it is a promising stepping

stone for the identification of novel putative cancer-implicated pathways.
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2 Cancer risk in the broader

population

2.1 Introduction

Tumors have very complex genetic patterns arising from both inherited and

acquired mutations. Once we analyse the tumor DNA, we are observing the

results of the tumor clonal evolution, the DNA damage subsequent to cancer-

driving aberrations, on top of the genetic background and passenger events

[Gerstung et al. 2020]. Discriminating the driving, mediating, or innocuous

effects is a difficult task, nonetheless, it is critical to understand cancer risk and

tumorigenesis.

Research has, so far, been able to decode some of these events underpin-

ning cancer. For instance, the most frequent mechanism of tumorigenesis in

adults is an accumulation of somatic mutations, due to environmental exposure

to cancer risk factors, which culminates in a catastrophic event that triggers

cancer. In many cases, a coding mutation occurs within a master regulator

and it impairs critical cellular functions, like those controlled by the p53 tumor

suppressor pathway or those that regulate cell survival like KRAS or MYC

11



2.1. Introduction

[Vogelstein et al. 2013].

Insights into environmental risk factors [U.S. Department of Health and Hu-

man Services 2016] or into mutational and transcriptional signatures [Alexandrov

et al. 2013; Bernard et al. 2009] have been instrumental for cancer prevention

and patient treatment. However, these somatic events do not recapitulate the

whole landscape of tumorigenesis. Evidence for the causal role of low frequency

highly penetrant inherited variants in familial and cancer syndromes has been

identified more than 30 years ago [Anderson 1974; Miki et al. 1994; Wooster

et al. 1995]. These are rare inherited mutations in cancer susceptibility genes

(CSG) [Rahman 2014] that directly increase the risk of cancer in first-degree

relatives, but they do not explain cancer risk in the broader population. In other

cases, we have evidence that mutations in cancer driver genes did not trigger

tumorigenesis, reinforcing the hypothesis that further cancer risk factors might

explain the complexity and heterogeneity of tumorigenesis events [Martincorena

et al. 2015; Moore et al. 2020].

Frequent germline variants contribute to the genetic background of all tu-

mors, but much of their contribution to cancer risk is still unexplored. Single

Nucleotide Polymorphisms (SNP) are inherited point variants frequently found

in the population ( MAF > 1%). Consortia are now able to genotype, relatively

inexpensively, SNPs in large cohorts and to carry out Genome Wide Association

Studies (GWAS) that look for associations between frequent genetic variants

and phenotypes.

In the last 20 years, GWAS have been carried out on a broad spectrum of

traits [Visscher et al. 2017] and they have led to the identification of many SNPs

associated with increased risk of cancer [Sud, Kinnersley, and Houlston 2017].

SNPs with a significant association with a trait or disease are usually reported

in the GWAS catalog [MacArthur et al. 2017]. Currently, around 167 studies,
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Figure 2.1: Cumulative number of cancer GWAS hits, SNPs, reported in the GWAS
catalog [MacArthur et al. 2017] each year. Reported SNPs are either novel findings,
included in the catalog for the first time (dark bar), or known risk loci, already in the
catalog at the time of publication (light bar). We do not report here data for 2020 and
2021, as they are incomplete, but the number of SNPs in the catalog has reached 1225.

carried out since 2007, have reported 1225 SNPs significantly associated (p-

value < 5×10−8) with malignancies in European populations, see Fig. 2.1. While

these loci are significant genome-wide, their effects are subtle, with average

odds ratio (OR) 1.66, see Fig. 2.2, ranging from 1.02 to 2.69 for rs995030 which

is a well-known association locus for testicular germ cell tumors [Rapley et al.

2009; Ruark et al. 2013]. Moreover, the vast majority of them reside in non-

coding regions, with almost 80% of them located in either intron or intergenic

regions, see Fig. 2.2.

The subtle effect sizes and the unclear functional effects render testing the

impact of cancer SNPs very challenging. Indeed, complex phenotypes are

polygenic [Boyle, Li, and Pritchard 2017], that is they arise from the combination

of multiple molecular events that are encoded by many loci in the genome. This
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Figure 2.2: Odds Ratios of all reported SNPs in the GWAS catalog [MacArthur et al.
2017] for each malignancy, sorted by the number of reported hits. The vast majority
of SNPs have OR < 2, with the most of median values below 1.5. In the inset (top
right) we show the reported functional annotation with more than 80% of them being in
non-coding regions.

is often due to the effects that the variants have on regulatory elements [Li et al.

2016; Lawrenson et al. 2015], and the combination of GWAS and functional

annotation has shown interesting results for the prioritization of variants [Pickrell

2014].

In the paper below, we provide a detailed account of the state-of-the-art

cancer risk SNPs. We focus on breast cancer, which is one of the most frequent

malignancies, to gather a detailed map of known cancer risk loci in the broader

population. We explore the potential functional effects of significant SNPs and

pinpoint multiple genes whose effect could be mediated by inherited germline

variants.
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2.1. Introduction

We also introduce GWAS heritability, the amount of risk due to genetic

effects, as a method to account for the effects of all SNPs, regardless of their

statistical significance. While GWAS detect statistically significant associations

between single SNPs and cancer, it is reasonable to expect a non-null contribu-

tion to cancer risk of all the other variants. We give a detailed overview of the

state-of-the-art methods to study cancer heritability and the available estimates

of heritability for breast cancer.
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2.2. Dissecting the heritable risk of breast cancer: from statistical methods to
susceptibility genes

2.2 Dissecting the heritable risk of breast cancer:

from statistical methods to susceptibility

genes

The whole manuscript has been drafted and revised by V. Fanfani, with the

supervision of G. Stracquadanio. V. Fanfani reviewed the literature on GWAS

and heritability and produced all the figures. The details on gene function

and putative mechanisms for breast cancer tumorigenesis were revised by M.

Zatopkova, A.L. Harris, and F. Pezzella.
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A B S T R A C T   

Decades of research have shown that rare highly penetrant mutations can promote tumorigenesis, but it is still 
unclear whether variants observed at high-frequency in the broader population could modulate the risk of 
developing cancer. Genome-wide Association Studies (GWAS) have generated a wealth of data linking single 
nucleotide polymorphisms (SNPs) to increased cancer risk, but the effect of these mutations are usually subtle, 
leaving most of cancer heritability unexplained. Understanding the role of high-frequency mutations in cancer 
can provide new intervention points for early diagnostics, patient stratification and treatment in malignancies 
with high prevalence, such as breast cancer. 

Here we review state-of-the-art methods to study cancer heritability using GWAS data and provide an updated 
map of breast cancer susceptibility loci at the SNP and gene level.   

1. Introduction 

Breast cancer is the most frequent cancer among women worldwide, 
representing approximately one third of all diagnosed malignancies. 
Breast cancer has a cumulative risk of 5%, that is 5 in 100 newborns are 
expected to develop this malignancy during their lifetime. While the 
survival in first-world countries is usually very high, about 70% of all 
cases, breast cancer was still responsible for more than 600,000 deaths 
in 2018 [1,2]. 

The mechanisms affecting cancer predisposition, tumorigenesis and 
progression are still unclear; in the majority of cases, tumors are trig
gered by the accumulation of somatic mutations, which impair critical 
cellular functions, like those controlled by the p53 tumor suppressor 
pathway [3]. While the causal role of somatic mutations has been 
confirmed by in-vitro and in-vivo models, there is limited understanding 
of whether inherited mutations mediate the risk of developing cancer. 
Familial and cancer syndrome studies have shown a causal role of 
inherited variants; usually, low frequency highly penetrant variants in 
cancer susceptibility genes (CSG), directly increase the risk of cancer in 
first-degree relatives. In particular, breast cancer has been one of the 

first malignancies for which evidence of inheritance has been found and 
whose CSGs have been identified [4], including the well known 
BRCA1/2 genes [5,6]. 

However, rare mutations explain only a small fraction of the risk of 
cancer in the broader population, suggesting that cancer risk could be 
somehow mediated by high-frequency low-penetrance mutations, such 
as single nucleotide polymorphisms (SNPs). Recent advances in high- 
density genotyping arrays and DNA sequencing technologies allow 
genotyping SNPs in large cohorts, paving the way to population-scale 
Genome Wide Association Studies (GWAS). Currently, more than 
100,000 SNP alleles have been associated with various traits and dis
eases, of those around 5000 variants are associated with various tumor 
types, including breast cancer [7]. 

The contribution of germline mutations to the inherited risk of 
cancer is estimated through heritability analysis. Heritability estimates 
for cancer have been usually obtained through familial studies; how
ever, these estimates have not been replicated when analysing inherited 
mutations in the broader population, thus leading to the concept of 
missing cancer heritability [8]. Missing heritability could be appor
tioned to a number of factors, including structural variants, gene–gene 
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and gene–environment interactions, as well as rare highly penetrant 
variants [9,10]. Ultra rare variants, which are difficult to detect with 
current technologies, have also shown to have a significant role in 
complex diseases [11]. However, even accounting for rare highly 
penetrant variants and genome-wide significant SNPs, the difference in 
risk between individuals is not completely explained [12]. 

There is strong evidence suggesting that the risk of complex diseases, 
such as cancer, can be explained by the co-inheritance of a large number 
of frequent variants with subtle effects [13]. In this case, we consider a 
disease to be polygenic [14], thus we are interested in quantifying the 
contribution of low-penetrance inherited mutations to cancer risk. Here, 
we focus on narrow sense heritability, h2, that is the cumulative effect of 
all loci on the phenotype variance [15]. Interestingly, using GWAS data, 
we can estimate the heritability explained by SNPs regardless of their 
statistical significance. Heritability analysis is becoming a crucial step in 
recent cancer GWAS analyses, providing insights on the inherited risk of 
many malignancies, including prostate [16,17], cervical [18], testicular 
germ cell tumor [19], and breast cancer [20]. 

Here we aim at providing an overview of state-of-the-art methods to 
estimate the amount of heritability explained by SNPs and an updated 
reference of the genetic architecture of breast cancer at the SNP and 
gene level. We organised this review as follows; in Section 2, we intro
duce common notation and standard statistical analyses performed in 
GWAS, and we then present state-of-the-art methods for the estimation 
of heritability. Finally, in Section 3, we systematically characterize 
current GWAS data available for breast cancer, and propose a curated 
resource of SNPs and genes that can be used for further investigations. 

2. Estimating the risk of cancer explained by high-frequency 
inherited mutations 

DNA sequencing technologies have enabled the discovery of thou
sands of rare and common variants that are associated with complex 
traits and diseases. While high-throughput whole genome sequencing is 
now routinely used to detect both common and low-frequency muta
tions across relatively small cohorts (<10,000 individuals), cost- 
effective genotyping arrays allow to carry out genetic studies at a pop
ulation scale, albeit limited to only known loci. 

Population scale genotyping is pivotal to understand the role of high- 
frequency low penetrant inherited mutations as genomic modifiers 
controlling quantitative traits and disease risk in the broader population. 
While highly penetrant mutations are often identified in relatively small 
cohorts [21], quantifying the contribution of high-frequency but low 
penetrance mutations requires genotyping large number of individuals. 

In the last 30 years, genome-wide association studies (GWAS) have 
identified thousands of SNPs associated with increased risk of many 
diseases. In this context, cancer is not an exception; GWAS have been 
carried out on a broad spectrum of malignancies leading to the identi
fication of a plethora of SNPs associated with increased risk of cancer 
[22]. However, experimental and analytical challenges have limited 
GWAS contribution in understanding the mechanisms underpinning 
cancer heritability. 

Since the focus of this review is on computational methods for cancer 
GWAS analysis, we will focus on the methodological limits of SNP as
sociation tests, rather then issues arising from different experimental 
designs. GWAS have also complex interpretability limits; in particular, 
since variants often reside in non coding genomic regions, associations 
between SNP genotype and a trait provides limited mechanistic insights. 

Here, we will introduce methods for heritability analysis as a 
framework to dissect the contribution of SNPs to the heritable risk of a 
disease, focusing on how to use these methods to study cancer 
heritability. 

2.1. Tests of association 

We refer to a single nucleotide polymorphism (SNP), as a locus where 

two or more distinct nucleotides are observed in a given population. 
Hereby, we assume SNPs to be bi-allelic, that is only 2 nucleotides are 
observed or considered at a given locus; this is a reasonable assumption 
for the vast majority of loci in the human genome. 

We denote the most frequent nucleotide, as the major allele B, and 
the other as the minor allele, b. Since human cells are diploid, there are 
three possible genotypes, namely homozygous major (BB), heterozy
gous (Bb), and homozygous minor (bb). 

For a binary phenotype, such as case–control studies, the association 
between the genotype and the disease status (e.g. 0: normal, 1: affected) 
can then be tested using a χ2 test with 2 degrees of freedom. For each 
SNP, the test is carried out by comparing genotype counts in cases and 
controls, gij, with their expected value, ĝ ij, as follows: 

χ2 =
∑

i

∑

j

[
(gij − ĝij)

2

ĝij

]

(1)  

where i is the disease status, j is one of the three possible genotypes and 
ĝ ij = fjNi, with fj being the genotype frequency. While the above is the 
general formulation, theχ2 association test can be adapted to different 
hypotheses and data [23]. 

Logistic regression can instead be used to account for confounders, 
like age or sex. For a GWAS with N individuals and M SNPS, a logistic 
regression model can be defined as follows: 

Y = Xβ + ε (2)  

where Y : N × 1 is a binary vector encoding the disease status, X : N × M 
is the genotype matrix, with xij being the number of minor alleles for the 
ith locus of jth individual. 

Under the model in Eq. (2), β represents the effect-size of all SNPs 
and ε is the error introduced by confounders. In presence of other 
covariates, Ci, the regression is extended to include those terms, such 
that Y = Xβ+ C1β1 + C2β2 + …+ ε. Under the null hypothesis of no 
association between the SNP and the disease, βj ∼ N(0, σ2); thus, the 
statistical significance of each effect-size can be tested using a Wald-test 
or a likelihood-ratio test. While the above formulations are useful to 
understand the idea behind association testing, in practice, these ana
lyses require more complex models, which account for population bia
ses, such as structure and relatedness, and genotype uncertainty. 

While association analysis provides a mathematically tractable 
framework for testing whether a SNP genotype is associated with a trait, 
it is prone to false discoveries. This is largely due to SNP co-inheritance, 
a phenomenon usually referred to as linkage disequilibrium (LD); during 
meiotic crossing-over, proximal SNPs are more likely to be inherited 
together, resulting in a non-independence of their occurrence. From a 
statistical point of view, LD inflates the test statistic of the variants co- 
inherited with true causal SNPs, ultimately hindering the discovery of 
causal variants. LD for all genotyped SNPs in a GWAS can be represented 
as a lower-triangular matrix, R : M× M, where r2

ij is the LD between the 
alleles in SNP i and j. However, it is important to note that LD estimates 
are population-dependent and are biased by non-genotyped variants. 
Ultimately, finding causal variants usually requires integration of 
functional data to prioritize alleles within a given set of SNPs in LD [24]. 

To limit the number of false positives, GWAS studies usually apply a 
stringent family-wise error correction; in this context, empirical studies 
have concluded that 5 × 10–8 is a reasonable threshold to filter false 
positives out [13]. While for large populations and easily measurable 
phenotypes, such as height or blood pressure, it is possible to identify 
robust associations for a large number of loci, in cancer studies only a 
handful of SNPs pass correction for multiple hypotheses testing, result
ing in the contribution of other loci with subtle effects to be neglected. 

Thus, it is becoming apparent that methods able to estimate the 
cumulative contribution of multiple SNPs will be pivotal to maximize 
the information gained from GWAS. The rationale behind grouping SNPs 
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together is based on the hypothesis that multiple variants in the same 
gene or pathway are more likely to have a stronger association with the 
phenotype regardless of their individual statistical significance. This is 
particularly true for cancer, whose inherited risk is thought to be 
mediated by a polygenic genetic architecture. 

2.2. Estimating the heritable risk 

Whenever referring to heritability, clarity is paramount; in GWAS 
analysis, inheritance does not refer to the amount of familial resem
blance, rather to the effects of all inherited genomic loci to the pheno
typic variance [25]. While broad sense heritability encompasses the 
effects of all genetic factors, narrow sense heritability accounts only for 
additive genetic effects. Thus, narrow sense heritability can be estimated 
from GWAS data as the cumulative contribution of all SNPs to the 
inherited risk. 

Heritability in the narrow sense is defined as the portion of variance 

explained by the variance of the additive genetic effects, h2 =
σ2

Add
σ2

P 
[15]. 

The phenotype Y can be partitioned into two terms: a genotype term G 
and an environmental term E. The genotype contribution can be further 
partitioned into an additive genetic effect (add), a dominant genetic 
effect (dom) and an epistatic genetic effect (epi). Thus, a phenotype, Y, 
can be expressed as Y = G+ E = (add+ dom+ epi)+ E. 

By estimating heritability from GWAS data, we are assuming the 
variance of the phenotype P to be Var (P) = Var (G+ E). Assuming in
dependence between the terms, the overall phenotype variance is 
explained by narrow sense heritability, other genetic factors, and envi
ronmental effects as follows: 

σ2
P

σ2
P
= h2 +

σ2
epi + σ2

dom

σ2
P

+
σ2

E

σ2
P

(3) 

GWAS can be used to estimate narrow sense heritability, since 
germline variants are accounting for additive genetic effects. However, 
the estimate obtained from the genotyped SNPs, h2

SNP, is a lower bound of 
the narrow sense heritability, h2

SNP ≤ h2, since the genotyped loci are 
usually a subset of all the variants in the genome. Hereby, we will refer 
to the term heritability as a synonym of narrow-sense heritability, which 
we will denote as h2. 

Advances in statistical genetics are leading to an increasing number 
of methods to estimate the heritability explained by all genotyped SNPs, 
a quantity we will refer to as genome-wide heritability. However, these 
methods provide limited insights into the genetic architecture of a dis
ease. While the reasons for this stall are probably multifaceted, there are 
many challenges that affect the accuracy of heritability estimation 
methods. In general, we would like to measure the contribution of the 
SNPs to a binary trait, that is the disease status. However, many popular 
methods to estimate h2 are working under the assumption of continuous 
traits. This problem is overcome by introducing the concept of liability 
[26]. Since most continuous traits can be approximated by a normal 
distribution, binary traits have been modelled by a liability threshold 
model; thus, there is the underlying assumption that disease risk follows 
a normal distribution, which represents the sum of many independent 
and normally distributed genetic and environmental effects. Thus, the 
binary phenotype represents whether the liability score exceeds a 
certain threshold t. Hence, in a normally distributed population, the 
quantile distribution function at t is the probability of the disease and is 
usually set from the observed prevalence in the population. In this 
framework, the observed value of heritability, h2

observed, can be easily 
translated on the liability scale, h2

liability, as follows: 

h2
observed =

z(t)2h2
liability

K(1 − K)
(4)  

where K is the incidence, z is the standard Gaussian density. 

Although mapping h2 from the observed to the liability scale is 
straightforward, it is important to check whether the assumptions made 
by a method hold for the study under consideration. In particular, for 
many cancer types, the incidence can be extremely low and so are the 
values of h2

observed; in both cases, the case-control ratio of the GWAS is 
incremented by design. While this procedure increments h2

observed, thus 
making heritability detectable, it introduces a bias due to the difference 
between the real prevalence of the disease and the one in the cohort. 

We now move forward describing methods to estimate heritability 
from GWAS data, highlighting their strength and weaknesses in the 
context of cancer GWAS analysis. 

2.3. Methods for the estimation of genome-wide heritability 

Estimates of genome-wide heritability can be obtained using a 
plethora of methods, each working under specific hypotheses, using 
different estimators, and requiring different input data. However, these 
methods estimate the heritability explained by genotyped SNPs and it is 
common to refer to this quantity as array-heritability, h2

array, or SNP 
heritability, h2

SNP. 
Here we present state-of-the-art methods classified based on the 

required input, that is either genotype data or SNP summary statistics. 
Methods using raw data require genotype and covariates for each pa
tient. Conversely, methods using summary statistics require only SNP 
test statistics and standard errors, along with population-level parame
ters that can be estimated from reference panels. 

Here we describe methods using genotype data first as they are 
regarded as the gold-standard in the field; we then introduce those using 
summary statistics highlighting differences and advantages between the 
other class. 

2.3.1. Estimating heritability from genotype data 
Heritability is obtained by regressing the variance of the phenotype 

against the variance of the genotype as defined in Eq. (2). 
To do that, the vast majority of methods regress h2 using linear mixed 

models (LMM) [27–31]. The genomic-relatedness-based restricted 
maximum-likelihood approach (GREML, [27]), was the first to be 
introduced and it is routinely used for heritability studies. GREML uses 
genotype data with allele frequency as input and regress h2 using 
restricted maximum-likelihood. GREML assumes that effect sizes β and 
errors ε in Eq. (2) are normally distributed with variance σ2

g and σ2
e , 

respectively. The variance of the phenotype then becomes: 

var[Y] = Gσ2
g + Iσ2

e (5)  

where G = XXT/M is the genetic relationship matrix (GRM) between 
pairs of individuals at M loci. 

This method has been extended to account for differences in allele 
frequencies and relatedness. GREML has also been applied to binary 
traits [29], transforming the observed heritability estimates on the lia
bility scale h2

l , following the procedure outlined in Eq. (4). However, this 
procedure should be used with caution when analysing cancer data, 
since GREML works under the assumption that the phenotype is nor
mally distributed. While the liability model is a good approximation for 
diseases with high prevalence, REML assumptions do not hold when 
study prevalence does not match the true population prevalence; this 
leads to consistently biased estimates [32], thus suggesting that 
GREML-like approaches are not appropriate to analyse cancer data [33]. 

A second class of methods adapts the Haseman–Elston regression 
[34] to GWAS analysis, specifically focusing on case–control studies [35, 
32,36]. The Phenotype Correlation–Genotype Correlation method 
(PCGC) does not rely on normality assumptions, but instead obtains 
heritability estimates by considering the relationship between pheno
typic and genotypic correlations between individual i and individual j. 
The phenotypic correlation, E(yiyj) can be written as a generic function 
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of the heritabily and the genotypic correlation: 

E(yiyj) = f (h2,Gij) (6) 

In its simplest formulation, considering only additive quantitative 
phenotypes and no specific study design confounders, f(h2,Gij) = h2Gij 

and h2 can be estimated by least squares as follows: 

h2 = argmin
∑

i,j,i∕=j

[
yiyj − h2Gij

]
(7) 

Case–control studies, extreme phenotypes, studies with related in
dividuals are all modelled by using an appropriate f(h2,Gij). 

For binary phenotypes, the phenotypic correlation, E(yiyj), is 
accounted for to obtain estimates of heritability on the liability scale. 
The general consensus is that PCGC is better suited for binary pheno
types, being more robust to different covariates and cohort sizes. 

Methods using genotype data are considered the gold-standard for 
heritability analysis and are readily available as part of many bioinfor
matics packages [37,38]. However, these methods require access to 
high-performance computing (HPC) infrastructures and genotype data; 
while HPC facilities are routinely found in academic and industrial en
vironments, access to cancer patients’ genotype is usually difficult, due 
to privacy concerns, thus limiting their use in practice. 

2.3.2. Estimating heritability from summary statistics data 
There has been an increasing interest in estimating heritability using 

GWAS summary statistics to overcome the limitations imposed by 
methods requiring genotype data [39–43]. Summary statistics are usu
ally publicly available, since genotype information cannot be traced 
back from regression weights, and the analysis is not computationally 
taxing. Here we review how genome-wide heritability can be estimated 
from GWAS summary statistics. 

The most widely used approach to estimate heritability from sum
mary statistics is the LD score (LDSC) regression method [39,44]. LDSC 
computes heritability estimates by regressing h2 as follows: 

E
[
χ2

j

]
=

N
M

h2lj + N a + 1 (8)  

where χ2
j is the summary statistic of the jth SNP for a GWAS with N 

individuals and M variants. Here lj is a quantity called LD score, 
computed as lj =

∑K
i=0r2

ij, that is by summing up the correlation co
efficients of all the SNPs in a window of prefixed size from the jth 
variant. Here, Na + 1 is a term introduced to account for confounding 
bias, which can be estimated as the intercept of the linear regression 
between the LD score of each variant and its test statistic. The herita
bility is regressed using reweighted least squares, where the weights are 
adjusted to account for heteroscedasticity of the test statistic. LDSC is 
also implemented as part of the SUMHER software, which improves the 
original LDSC model by taking into account allele frequency [42]. 

Recently, PCGC has also been extended to take summary statistics in 
input (s-PCGC, [41]). It has been shown that LDSC and s-PCGC are 
almost equivalent in absence of covariates with strong effects [45], 
although s-PCGC is recommended in presence of effects that could 
severely skew the liability distribution. 

The methods discussed so far have been shown to be sensitive to the 
input data and trait properties, e.g. low or high heritability, low or high 
disease prevalence. This is due to the assumptions made by each model, 
which must be carefully considered as part of the analysis [46,47,45]. 

Although estimating heritability from genotype data usually leads to 
more accurate estimates, summary statistics proved to be sufficient to 
obtain accurate heritability estimates across a number of phenotypes 
[48]. Moreover, the negligible computational burden of summary sta
tistics methods has made them the preferred approach for population 
scale studies [49] and the steppingstone to estimate the heritability of 
SNP groups. 

Nonetheless, genome-wide heritability analyses have major inter

pretability limits. The estimate of h2 gives a measure of the contribution 
of all genotyped SNPs to the heritable risk, which is usually an under
estimation for cancer, in part due to the low prevalence of the disease. 
Importantly, current heritability studies do not provide insights into the 
mechanisms underpinning disease risk; thus, the focus has shifted on 
estimating the heritability explained by SNPs in functional genomic 
regions to provide a mechanistic interpretation of GWAS associations. 

2.4. Methods for partitioning heritability 

The vast majority of methods providing genome-wide heritability 
estimates usually assume that all genotyped SNPs have the same 
contribution to heritability. This assumption has already been ques
tioned in literature [28], since it is more reasonable to assume that the 
amount heritability explained by a group of SNPs depends on the 
genomic region where they are located, e.g. promoter or coding regions. 
Thus, it is becoming apparent that estimating the heritability explained 
by SNPs residing in functional loci could give further insights in the 
genetic architecture of a disease. 

Finucance et al. proposed a stratified LD score regression method (s- 
LDSC, [50]), which has been used to study the UK Biobank cohort. The 
method computes the heritability explained by SNPs belonging to a list 
of 53 functional binary classes, such as coding regions or histone marks. 
To do that, s-LDSC estimates the heritability explained by C functional 
categories, as follows: 

E
[
χ2

j

]
= N

∑

c∈C
τcl(j, c) + N a + 1 (9)  

where the LD-score is computed only over the SNPs within the cth class 
and τc is the per-SNP heritability contribution of the cth class. Thus, the 
portion of heritability of one class with LSNP

c variants is: h2
i = LSNP

c τc. 
Recently, the model has been extended to account for continuous an
notations, such as GC content or recombination rate [51]. 

An alternative approach uses the heritability estimator from sum
mary statistics, HESS [52], to partition the genome in 1703 independent 
loci [53] and to then estimate the explained heritability as follows: 

h2
local =

NβR− 1β − M
N − M  

where β are the summary statistics for a GWAS with N individuals and M 
SNPS. R− 1 is the inverse of the LD matrix approximated by a singular 
value decomposition, since the inverse usually does not exist due to 
linkage disequilibrium between SNPs. While for each category, s-LDSC 
partitions the whole genome in just two classes, HESS divides the 
genome in multiple regions (see supplementary figure S1). The scope of 
partitioning is to test whether a category has an heritability enrichment, 
that is the SNPs in the category explains a larger amount of h2 compared 
to the genome-wide estimate. If h2

k is the heritability explained by the Mk 

SNPs belonging to annotation k, the quantity (h2
k/Mk)M is on the same 

scale of the genome-wide estimate; thus, in absence of any enrichment, 
the heritability for the single SNP h2

k/Mk should be approximately equal 
to the genome-wide estimate h2/M. 

While partitioning methods could provide insights into genomic re
gions explaining a large proportion of heritability, there are still limits to 
use partitioned heritability to study cancer GWAS. Both HESS and LDSC 
are not robust for small sample sizes and low heritability diseases; this 
usually has the effect of providing erroneous negative local heritability 
estimates, suggesting that new robust estimators are needed to maxi
mize the utility of these analyses. 

3. The genetic landscape of breast cancer 

The genetics of breast cancer has been extensively studied due to its 
relatively high prevalence and incidence in the broader population. The 
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first three GWAS on breast cancer were published in 2007 and new 
targeted studies have been conducted in different populations. To date, 
the Breast Cancer Association Consortium (BCAC) is the largest breast 
cancer GWAS in Europeans, including more than 120,000 cases [54]; 
moreover, new genome-wide significant SNPs have been recently found 
in the same cohort using imputation [55]. Conversely, the UK Biobank 
(UKBB, [56]) represents the study with the largest total number of in
dividuals (N > 300,000) and unbiased disease prevalence. 

In this section we review the main results on breast cancer herita
bility, and then summarise and characterise susceptibility loci and genes 
for this malignancy. 

Table 1 
Breast cancer heritability estimates in European populations. For each study, we 
report the heritability estimate on the liability scale (h2

l ), the reported standard 
error or the 95% confidence intervals (CI) and the disease prevalence.  

Cancer (subtype) h2l  Cases/controls 

Breast (ER negative) [57] 0.096 (CI = [0, 0.199]) 1998/3263 
Breast (Self-reported) [49] 0.1104 (s.e. = 0.0221) 7480/329,679 
Breast [58] 0.13 (s.e. = 0.011) 122,977/105,974  

Fig. 1. Breast cancer susceptibility loci across the human genome. (A) Phenogram [96] of the 719 reported SNPs associated with breast cancer. Each SNP is rep
resented by circles, and stacked symbols represent a locus for which multiple studies have reported an association. The color codes distinguish the reported odds-ratio 
(OR). Red circles denote those with stronger effect, OR ≥1.31, that are only 5% of the total. (B) Distribution of the odds-ratios (OR) and risk allele frequencies (AF). 
The central scatter plot shows the ORs and AFs for each SNP, where the top and right side are the corresponding histograms of OR and AF, respectively. For SNPs 
reporting only regression coefficients, β, we transformed these values in odds-ratios as follows OR = exp(β). ORs are charatecterized by a long-tail distribution, 
whereas AF seems uniformly distributed. It is important to note the correlation between OR and AF, with rare variants have consistently stronger effects. (C) 
Functional classification of the variants reported by the GWAS catalog. 
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3.1. Heritability estimates 

The estimation of heritability from high-frequency variants for can
cer presents multiple challenges and the results are highly dependent on 
the cohort and downstream processing. However, as novel studies with 
large cohorts are released and targeted GWAS are carried out, it is 
reasonable to expect that understanding cancer risk in the broader 
population will be possible. 

While the exact heritability estimate varies across GWAS studies, there 
is a consensus estimate of breast cancer heritability being h2 ∼ 0.1 on the 
liability scale (see Table 1). This value is significantly smaller than pre
vious familial estimates, h2 ∼ 0.3, although there is mounting evidence 
that this value could be an overestimation [31,33]. Sampson et al. report 
values of heritability, estimated via GREML, between 0.092 and 0.25, 
after adjusting for age, minor allele frequency and gender [57]. While the 
authors analysed GWAS data calibrated for cancer studies, the cohort is 
considerably smaller than the UKBB and BCAC cohorts. Jiang et al. ana
lysed the BCAC cohort using LDSC regression [58], finding an heritability 
estimate h2 ∼ 0.13; interestingly, when excluding genome-wide signifi
cant SNPs and their linked loci, the heritability estimate is significantly 
smaller, suggesting that up to 45% of the total heritability is explained by 
genome-wide significant variants. Estimates obtained by LDSC on the 
UKBB cohort show remarkably coherent estimates, despite the prevalence 
of the malignancy being significantly smaller than other studies [49]. 

Recently, there has been increasing interest in identifying functional 
elements, such as histone mark or DNA I hypersensitive regions, 
explaining breast cancer heritability. However, analyses performed 
using stratified LDSC regression on the UKBB and BCAC cohorts were 
inconclusive [49]. Nonetheless, there is evidence suggesting that taking 
into account SNP location and functional effects in the analysis could 
provide useful insights on the role of inherited variants for cancer 
[59–61]. On this point, using local co-heritability between breast, lung, 
and prostate cancer [62,58], a pattern of local risk inheritance has been 
found. This result provides preliminary evidence that improvements in 
the analysis of partitioned heritability could be useful to discover loci 
across the human genome mediating the risk of multiple cancers. 

3.2. Breast cancer risk loci across the human genome 

Heritability studies have shown that high-frequency inherited 

mutations explain a significant proportion of breast cancer risk. We then 
move forward to identify SNPs and genes that are associated with 
increased risk of breast cancer in the broader population; ultimately, we 
aim at providing an updated map of breast cancer susceptibility genes 
across the human genome. 

We obtained SNPs data from the GWAS Catalog [7], which reports 
more than 143,000 SNPs across 3522 studies. We then retrieved SNPs 
associated with breast cancer in European populations and mapped 
SNPs to genes, after applying quality control filters (see Supplementary 
Methods and Supplementary Figure S2). We also discarded SNPs, 
approximately half of the total reported, that did not reach genome-wide 
statistical significance set at p < 5× 10− 8; usually, p-values above this 
threshold are indicative of a small population size or old genotyping 
arrays, thus we preferred to filter those out as a conservative approach 
for our downstream analysis. 

We found 719 significant variants (see Fig. 1A) reported by 26 
different studies, which are within 50kb from 311 genes (see Supple
mentary Table 1, we consider a 50kb window to include regulatory re
gions in the analysis). Interestingly, of those 719 reported variants, 108 
are reported in more than one study, while 311 are reported only once; 
while this provides preliminary evidence to support the robustness of a 
reported association, differences in tag SNP selection and reporting 
criteria across studies will likely result in different SNPs being reported 
for the same susceptibility haplotype (see Supplementary Methods and 
Supplementary Figure S2). 

We observed that most variants account for limited increase in risk, 
with average odds ratio OR:1.11, and ranging from 1.02 for rs17529111 
to 1.59 for rs62235635 (See Supplementary Figure S3,S4); moreover, 
the odds ratio for rs62235635 is still well below the strongest reported 
cancer association, that is for SNP rs995030-G in testicular germ cell 
tumors (OR: 2.26) [63] (Table 2). 

The risk allele frequency for breast cancer is 0.37 on average, ranging 
from 0.005 to 0.98 (Supplementary Figure S5). Unsurprisingly, the data 
suggests a negative-correlation between cancer risk and allele frequency 
(see Fig. 1B). In particular, SNP rs62235635 in PITPNB, which is the 
variant with the lowest frequency, is also the one with the highest odds 
ratio OR : 1.589. This is consistent with other studies, which have shown 
that SNPs with detrimental impact are less frequently observed in the 
broader population because are likely to be subject to negative selection 
[51,64]. 

Table 2 
Breast cancer susceptibility loci in European populations. We report SNPs associated with increased risk of breast cancer, whose odds-ratios (OR) are in the 95th 
percentile among all those reported in the GWAS catalog for this malignancy. For each SNP, we report the rsid, the cytogenic region, the reported odds ratio (OR), the 
functional consequence as sequence ontology term, the nearest gene, the reported risk allele frequency and the PUBMED id of the study.  

SNPS Region OR Context Genes Risk allele frequency Pubmedid 

rs62235635 22q12.1 1.59 Intron variant PITPNB 0.0065 29059683 
rs11571833 13q13.1 1.58 Stop gained BRCA2 0.01 29058716 
rs62235681 22q12.1 1.58 Intergenic variant CHEK2 0.0085 29059683 
rs1314913 14q24.1 1.57 Intron variant RAD51B  23001122 
rs62237615 22q12.1 1.55 Intron variant TTC28 0.0082 29059683 
rs62237573 22q12.1 1.53 Intron variant TTC28 0.0092 29059683 
rs3803662 16q12.1 1.5 Non coding transcript exon variant CASC16  23001122 
rs2229882 5q11.2 1.45 Synonymous variant MAP3K1 0.06 24493630 
rs2981579 10q26.13 1.43 Intron variant FGFR2 0.42 20453838 
rs10771399 12p11.22 1.39 Intergenic variant PTHLH  24325915 
rs16886448 5q11.2 1.37 Intron variant MAP3K1 0.07 24493630 
rs7726354 5q11.2 1.37 Intron variant MIER3 0.06 24493630 
rs16886034 5q11.2 1.36 Intergenic variant  0.08 24493630 
rs16886364 5q11.2 1.36 Intron variant MAP3K1 0.07 24493630 
rs3822625 5q11.2 1.36 Synonymous variant MAP3K1 0.07 24493630 
rs16886397 5q11.2 1.36 Intron variant MAP3K1 0.07 24493630 
rs16886113 5q11.2 1.35 Regulatory region variant  0.08 24493630 
rs614367 11q13.3 1.34 Intergenic variant LINC01488 0.16 24493630 
rs78540526 11q13.3 1.34 Intergenic variant LINC01488 0.08 25751625 
rs1017226 5q11.2 1.33 Intron variant AC008937.2;MAP3K1 0.08 24493630 
rs9397437 6q25.1 1.32 Intergenic variant CCDC170 0.07 29058716 
rs1219648 10q26.13 1.32 Intron variant FGFR2 0.42 20872241 
rs75915166 11q13.3 1.31 Regulatory region variant  0.06 25751625  
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We then analyzed the functional impact of each SNP associated with 
breast cancer (see Fig. 1C) and found that the vast majority of SNPs 
reside in introns or intergenic regions, with only a negligible fraction 
located in coding regions and possibly causing detrimental changes, 
such as missense variations or stop codon gain. While functional geno
mics techniques are continuously improving, testing functional effects of 
cancer SNPs will likely remain challenging, since phenotypic changes 
are going to be subtle and difficult to detect (Supplementary Figure S6). 
Nonetheless, we found that 89% of breast cancer SNPs are in or around a 
coding region, suggesting that most of them could act as cis-regulator of 
an upstream or downstream gene. We then used this information to 
compile a draft panel of genes associated with breast cancer heritability. 

3.3. Genes associated with breast cancer susceptibility 

We analysed 104 genes, out of the 311 in total, reported in at least 2 
studies and associated with a Hugo symbol (Supplementary figure S7). It 

is worth noting that a gene can be reported multiple times because the 
same variant might have been reported in multiple studies or because 
different variants are mapped to the same genes. 

We assigned the highest reported odds ratio, ORmax, and focused on 
those with the highest effect-size (see Fig. 2A). There are 20 genes with 
an ORmax > 1.2, with the top 10 genes having ORmax > 1.28; we hereby 
refers to these genes as breast cancer susceptibility genes (BCSGs, see 
Fig. 2B and C). 

We then analyzed the functional role of BCSGs to identify possible 
mechanisms mediating breast cancer heritability. After performing 
literature curation, we found that 4 BCSGs control cell cycle, whereas 5 
others are involved in DNA repair and invasion (see Fig. 3), which are 
fundamental processes underpinning all cancers [65,66]. It is important 
to note that CASC16 has been reported as a cancer susceptibility gene, 
but its functional role remains unclear. 

We identified 4 BCSGs, namely CHEK2, FGFR2, MAP3K1 and TTC28, 
which control critical steps of the cell cycle. CHEK2 is a tumour sup

Fig. 2. Breast cancer susceptibility genes. (A) For each gene, we report the variants that are mapped within 50Kb of the gene body and the corresponding odds-ratios 
(ORs); variants reporting only regression coefficients were transformed into ORs by computing OR = exp(β). The 10 genes with highest OR were further charac
terized below. (B) Number of reported variants for each gene. It is important to note that the same gene could harbor different variants, or the same variant could 
have been reported in multiple studies. (C) Number of unique variants grouped by gene and mutation effect. Only BRCA2, CHEK2 and MAP3K1 harbor exon variants. 
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pressor gene activated upon DNA damage, which activates genes con
trolling basic cellular activities, such as apoptosis, DNA repair, and cell 
cycle arrest. The mechanism is triggered via activation of TP53, BRCA1 or 
BRCA2 proteins [67]. Mutations in this gene are known to lead to the 
dysregulation of cell cycle and thus facilitate malignant transformation of 
the cell, and development of various types cancer, including breast cancer 
[68]. Mutations in CHEK2 gene mediate response to anthracycline based 
chemotherapy in breast cancer patients [69]. FGFR2 (Fibroblast growth 
factor receptor 2) negatively modulates activity of ESR1 and can inhibit 
estrogen signalling [70]. It has been clearly shown that FGFR2 mediates 
cancer susceptibility and mutations at this locus can account for an in
crease in the risk of breast cancer of up to 16% [71]. FGFR2 is also a 
member of the fibroblast growth factor receptor (FGFR) family, which 
controls upregulation of MAPK, PI3K/AKT, STAT and PLCγ signaling 
pathways. These pathways are involved in cancer mediating processes, 
such as cancer cell proliferation, differentiation, invasion, survival and 
carcinogenesis [72–74]. The mitogen-activated protein kinase kinase ki
nase 1 (MAP3K1) is a serine/threonine kinase having a role in signal 
transduction cascades, like MAPK, ERK, NF-κB, JNK or JUN pathway, 
which control critical cellular processes, including apoptosis, prolifera
tion and differentiation [75]. Mutations in this gene affect kinase activity 
and are identified as oncogenic drivers [76]. TTC28 is a gene with 
oncogenic activity required during the cell cycle for condensation of 
spindle midzone microtubules, formation of the midbody, and completion 
of cytokinesis [77]. The gene resides in the proximity of the CHEK2 gene, 
thus suggesting a possible pattern of co-inheritance. 

A second group includes 3 genes, namely BRCA2, RAD51B and 
LINC01488, which mediates repair mechanisms upon double-strand DNA 
breaks. BRCA2 is a well known cancer susceptibility gene, whose muta
tions are associated with 69% increase in risk of breast cancer and 17% 
increase in risk of ovarian cancer [78]. Mutations in this gene are also 
linked to other malignancies, including stomach, pancreatic and prostate 
cancer [79]. BRCA2 is also a therapeutic target of the FDA approved PARP 
inhibitors Rucaparib [80] and Niraparib [81]. For RAD51B there is 

evidence of association with familial breast cancer due to common varia
tions [82]. In detail, RAD51B (RAD51 paralog B) encodes a protein which 
creates a complex with other RAD51 paralogs promoting binding of RAD51 
upon DNA damage [83,84]. Damaged DNA prevents successful replication 
and cause a cell cycle arrest and apoptosis. Overexpression of RAD51 is 
usually found in tumors and mediates drug resistance [85]. Hap
loinsufficiency of RAD51B causes mild hypersensitivity to DNA-damaging 
agents favoring chromosome aberrations and aneuploidy in human cells by 
impairing RAD51 function [86]. LINC01488, also known as CUPID1, is a 
long non coding RNA regulated by estrogen and located in the 11q13 
cytogenic band, which is associated with increased risk of breast cancer 
[87]. CUPID1, and the neighboring lncRNA CUPID2, have been shown to 
affect homologous-repair (HR) and non-homologous end joining (NHEJ) 
DNA repair mechanisms by impairing RAD51 recruitment. 

We finally report 2 BCSGs, namely MIER3 and PTHLH, that are known 
to control invasion. MIER3 (MIER family member 3) together with MIER1/ 
2 and BAHD1 (vertebrate protein that promotes heterochromatin forma
tion and gene repression) repress expression of the steroid hormone re
ceptor gene ESR1 [88]. MIER3 is reported to act as tumor suppressor [89] 
and is a known cancer susceptibility gene [90]. The Parathyroid Hormone 
Like Hormone (PTHLH), which encodes the Parathyroid hormone-related 
protein (PTHrP), is a gene responsible for the humoral hypercalcemia of 
the malignancy, mammary development and lactation [91,92]. During 
lactation it facilitates delivery of maternal calcium to milk and thus play a 
role in regulation of bone and mineral metabolism. By action through 
PTH1 receptors, PTHrP contributes to formation of bone metastasis 
through promotion of osteoclast formation and bone resorption [93]. It is 
important to note that FGFR2, MIER3 and LINC01488 are also involved in 
estrogen signaling, which regulates mammary gland development and is 
one of the main risk factors for breast cancer. 

Taken together, the BCSGs identified in our analysis directly medi
ates cancer phenotypes and co-morbidities related to breast cancer. 
Upon further investigation, we also found these genes to be reported in 
many cancer panels (see Supplementary Figure 8) [94,95], thus sug
gesting also a possible link between somatic and inherited mutations. 

4. Future directions 

Decades of familial cancer studies provide evidence for a causal role 
of inherited genomic mutations, but these results have not been repli
cated by GWAS, when analyzing high-frequency mutations in the 
broader population. However, recent advances in sequencing and gen
otyping technologies, combined with accurate statistical methods, are 
enabling the identification of variants and quantify the heritable risk of 
many common malignancies, including breast cancer. 

Here we provided an updated overview of SNPs and genes associated 
with breast cancer susceptibility, showing how variants in genes con
trolling cell cycle, DNA repair and invasion could modulate the risk of 
developing this disease. Since breast cancer susceptibility genes are 
often mutated in breast tumors, we speculate that a possible link be
tween inherited and somatic mutations might exist and could provide 
new targets for clinical applications, including treatment and patients 
stratification. In particular, it is still difficult to dissect the functional 
role of the polymorphisms and how they may interact on a common 
mechanism, such as RAD51 regulation. 

It will be of interest in long term follow up studies e.g. ‘Generations’ 
study, to see whether the type of breast cancer that develops is related to 
these polymorphisms, and to understand prevention studies e.g. hor
mone suppression in those with estrogen regulated polymorphic genes. 

However, current experimental and analytical limitations lead us to 
believe that identifying the biological components modulating the risk of 
breast cancer and other oncological diseases will require substantial ad
vances in statistical genetics. Moreover, experimental systems should be 
put in place to systematically validate the findings, and update and 
improve models. Taken together, heritability analysis is emerging as a 
powerful tool to quantify the effect of variants with subtle effects, but new 

Fig. 3. Function and location of the breast cancer susceptibility genes. Breast 
cancer susceptibility genes (BCSGs, in red) are linked to three main biological 
processes (italic blue), namely cell cycle, DNA repair and invasion. When 
coupled to its ligand, FGFR2 triggers the RAS pathway, which activates 
downstream MAP3K1, thus promoting cell cycle. TTC28 and the hormone 
PTHLH also promote cell cycle while CHEK2 inhibits it. PTHLH induces FAK 
phosphorylation, leading to increased invasion, which is in turn inhibited by 
MIER3. Finally, both RAD51B and BRCA2 are active in DNA repair, whereas 
LINC01488 (CUPID2) mediates this process by impairing RAD51 recruitment. 
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robust methods able to identify biological units, such as genes or pathways, 
are needed to translate analytical results into biological and clinical 
findings. 
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2.3 Conclusions

Understanding cancer risk at the germline level could be beneficial for two

main reasons. First, the identification of specific variants increasing cancer risk

can lead towards targeted cancer surveillance. For instance, Poligenic Risk

Scores (PRSs), which aim at providing a set of SNPs that correctly predict the

risk of cancer for each individual [Mavaddat et al. 2019] , are used to inform

public health policies, like cancer screening programs [Mars et al. 2020]. More

interestingly for this work, understanding how the genetic background affects

cancer risk would help to decode the pre-cancerous conditions that, alongside

environmental exposure, lead to cancer [Ramroop, Gerber, and Toland 2019].

Integrating the germline signal into the existing knowledge of tumorigenesis has

the potential to identify markers or secondary actionable targets and to stratify

patients for treatment [Liu et al. 2021].

This review, consistent with previous accounts [Stracquadanio et al. 2016;

Fagny et al. 2020], has found that significant GWAS SNPs often occur in genes

involved in key functions, like signaling pathways, developmental processes, cell-

cell adhesion processes. Furthermore, recent in-vitro models have shown that

frequent germline variants have detectable regulatory effects [Lawrenson et al.

2015; Whitington et al. 2016], which might also affect cancer risk synergistically

with environmental exposure [Jeffers et al. 2021; Surakhy et al. 2020].

Nonetheless, the analysis of GWAS significant hits has weaknesses that

need to be addressed by future experimental designs and statistical methods.

SNP prioritisation methods and functional interpretations of the results rely on

mapping each locus to a functional category, e.g. whether the SNP is in a

coding, regulatory, or intergenic region. Improved mappings [Yardımcı et al.

2019; Watanabe et al. 2017; Frankish et al. 2020] that integrate genomic and

epigenomic annotations enable refined predictions of SNP function [Weissbrod

27



2.3. Conclusions

et al. 2020; Hutchinson, Asimit, and Wallace 2020; Wen, Pique-Regi, and Luca

2017] and will be instrumental for the development of methods that correctly

identify the effect of each locus.

Moreover, single hit GWAS analyses discard the contribution of the majority

of SNPs and they have been shown to be insufficient to explain the whole heri-

tability [Zhang et al. 2020]. We reason that accounting for all SNPs, regardless

of significance, and linking them to their functional role might reveal subtle

effects that would be otherwise undetected. State-of-the-art methods have tried

to partition heritability to estimate the polygenic signal and attribute it to local

and functional annotations. However, these methods lack sufficient resolution to

generate testable hypotheses; they do not identify putative gene- or variant-level

markers that can be investigated to translate analytical results into biological

and clinical findings. In the next chapter, we further address these limitations

and present a method to estimate heritability at gene-level resolution.
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3 Gene-level heritability analysis

3.1 Introduction

In the previous chapter, we presented an overview of the findings of cancer

GWAS and the methods to estimate the amount of inherited cancer risk due

to high-frequency variants. We have shown that GWAS hits alone are often

providing a non-exhausting characterisation of cancer risk, and we presented

heritability as a useful metric to account for the inherited risk due to all variants.

SNP heritability, h2SNP , that is the heritability explained by all genotyped

SNPs, is a single estimate that accounts for the risk of cancer due to inherited

variants, Fig. 3.1 [Lee et al. 2011; Golan, Lander, and Rosset 2014]. Cancer

heritability is generally low and its estimates often suffer by the low prevalence

of cases in the population, hence most studies on GWAS heritability focus

on frequent traits and qualitative phenotypes. Nonetheless, cancer heritability

has been studied using multiple methods and data panels, especially for more

frequent malignancies. Available estimates of GWAS heritability, see Tab. 3.1,

show that estimates vary greatly between studies and methods. In many

cases h2SNP is around 0.10, with prostate and testicular tumors being those with

the strongest signal reaching 0.3 of heritability. Conversely, for ovarian and
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3.1. Introduction

[1] h2l
(95% CI)

[2] h2l
(SE)

[3] h2l
(95% CI)

[4] h2l
(se)

h2l

Bladder
0.123

(0.086-0.160)
0.169

(0.067)

Breast
0.096

(0 - 0.199) *
0.14

(0.012)
0.14

(0.09–0.18)
0.11

(0.020)

Colorectal
0.09

(0.0089)
0.11

(0.07–0.14)

Colon: 0.12
(0.042)

Rectum: 0.068
(0.073)

0.072 [9]

Kidney
0.147

(0.023 - 0.270)
0.142

(0.097)

Lung
0.206

(0.142 - 0.271)
0.075

(0.011)
0.13

(0.08–0.19)
0.117

(0.058)**

Ovarian
0.033

(0.0065)
0.07

(0.02–0.12)
-0.048
(0.117)

Pancreas
0.098

(0.037 - 0.160)
0.05

(0–0.10)
0.104

(0.165)
0.21 [5]

Prostate
0.378

(0.244 - 0.513)
0.18 (0.021)

0.27
(0.21–0.33)

0.111
(0.037)

0.28 [6]
0.27 [7]

Testes
0.299

(0.084 - 0.513)
0.381

(0.386)
0.374 [8]

(CI: 0.28-0.47)

Table 3.1: Snapshot of the available SNP heritability estimates for most fre-
quently studied malignancies. The first four columns are the estimates from stud-
ies on multiple cancers , while the last column recapitulates data from different
studies. We selected only those malignancies for whom we found more than one
estimate and clear cancer types. [1] Sampson et al. 2015, [2]Jiang et al. 2019,
[3]Lindström et al. 2017, [4]UKBB https://nealelab.github.io/UKBB_ldsc/,
[5]Chen et al. 2019, [6]Gusev et al. 2016, [7]Mancuso et al. 2015, [8]Litchfield
et al. 2015, [9]Jiao et al. 2014. *) ER-, **) Brunchus and Lung

pancreatic cancer SNP heritability is very low, which is also possibly due to a

lack of power in rarer malignancies.

Genome-wide estimates of heritability do not provide any local or functional

information on how SNPs explain cancer risk, and they can hardly be used

to inform further studies on SNP function. SNP heritability, though, is an

additive measure, hence it is straightforward to obtain partitioned estimates
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3.1. Introduction

of h2SNP like the heritability explained by each chromosome [Yang et al. 2011].

More relevantly, we can obtain estimates of the percentage of total heritability

explained by a panel of significant SNPs, e.g. those that are significant in the

GWAS or those in cancer susceptibility genes. Nontheless, these SNPs, often

exclusively considered for post-hoc investigations, do not fully explain cancer

heritability. For instance, top GWAS hits and their flanking regions (±500kb)

have been shown to account for less than 53% of the total heritability, 28% on

average, [Jiang et al. 2019] while previously known CSGs explain on average

12% of total heritability [Sampson et al. 2015]. It is then clear that known CSG

and GWAS hits do not provide a full picture of cancer risk and that the polygenic

signal is attributable to more loci.

Methods to explicitly partition the heritability allow to obtain estimates for

groups of SNPs. As we described in Chapter 2, there are two main approaches

to this issue: functional partitioning and local partitioning, see Fig. 3.1. The

former splits the genome in multiple, overlapping, binary annotations; heritability

estimates for specific functional attributes are obtained and can be used to

prioritise further investigation [Finucane et al. 2015; Finucane et al. 2018]. How-

ever, no local target can be extracted from such methods, as each functional

estimate is gathered from genome-wide SNPs. Differently, local partitioning

returns non-overlapping heritability estimates, which have proven useful to un-

derstand the co-heritability of different traits at the haplotype level [Shi, Kichaev,

and Pasaniuc 2016; Shi et al. 2017]. While state-of-the-art local partitioning

methods can estimate heritability for up to 1700 genomic regions, they are still

too coarse-grained to provide testable targets.

We then developed a method, Bayesian gene-level heritability analysis

(BAGHERA), see Fig. 3.1, that applies local partitioning to heritability, and

reaches gene-level resolution. In the paper below, we describe BAGHERA in
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3.1. Introduction

depth, and we benchmark its performance. We then applied our method to

all 38 cancer types of the UK Biobank [Sudlow et al. 2015] and we gathered

a comprehensive picture of the heritability loci, which are those explaining a

significant amount of heritability for each malignancy.

Figure 3.1: Partitioning the heritability. Here we show an illustration of the different
levels of resolution of heritability estimates. The last row, BAGHERA, is the method for
estimating gene-level heritability that is presented in this chapter.
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3.2 The Landscape of the Heritable Cancer

Genome

The whole manuscript has been drafted by V. Fanfani, with the supervision

and contributions of G. Stracquadanio. The development of the method and

data analysis has been carried out by V.Fanfani with the supervision of G.

Stracquadanio and L.Citi. A.L. Harris and F. Pezzella contributed to the editing

of the manuscript and the validation of the conclusions.
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ABSTRACT
◥

Genome-wide association studies (GWAS) have found hun-
dreds of single-nucleotide polymorphisms (SNP) associated
with increased risk of cancer. However, the amount of heritable
risk explained by SNPs is limited, leaving most of the cancer
heritability unexplained. Tumor sequencing projects have
shown that causal mutations are enriched in genic regions.
We hypothesized that SNPs located in protein coding genes
and nearby regulatory regions could explain a significant pro-
portion of the heritable risk of cancer. To perform gene-level
heritability analysis, we developed a new method, called Bayes-
ian Gene Heritability Analysis (BAGHERA), to estimate the
heritability explained by all genotyped SNPs and by those
located in genic regions using GWAS summary statistics.
BAGHERA was specifically designed for low heritability traits
such as cancer and provides robust heritability estimates under
different genetic architectures. BAGHERA-based analysis of 38
cancers reported in the UK Biobank showed that SNPs explain

at least 10% of the heritable risk for 14 of them, including
late onset malignancies. We then identified 1,146 genes, called
cancer heritability genes (CHG), explaining a significant pro-
portion of cancer heritability. CHGs were involved in hallmark
processes controlling the transformation from normal to
cancerous cells. Importantly, 60 of them also harbored somatic
driver mutations, and 27 are tumor suppressors. Our results
suggest that germline and somatic mutation information could
be exploited to identify subgroups of individuals at higher risk
of cancer in the broader population and could prove useful to
establish strategies for early detection and cancer surveillance.

Significance: This study describes a new statistical method to
identify genes associated with cancer heritability in the broader
population, creating a map of the heritable cancer genome with
gene-level resolution.

See related commentary by Bader, p. 2586

Introduction
Decades of research have shown that inherited genomic mutations

affect the risk of individuals of developing cancer (1). In cancer
syndromes, mutations in susceptibility genes, such as the tumor
protein 53 (TP53; ref. 2), and the BRCA1/2 DNA Repair Associated
(BRCA1, BRCA2) genes (3, 4), confer up to an 8-fold increase in cancer
risk in first-degree relatives (1). However, these inherited mutations
are rare and highly penetrant and explain only a small fraction of the
relative risk for all cancers (1, 5).

It has been hypothesized that part of cancer risk could be appor-
tioned to high-frequency low-penetrant variants, such as single nucle-
otide polymorphism (SNP). Genome-wide association studies
(GWAS; ref. 6) have been instrumental in identifying SNPs associated
with increased risk of cancer in the broader population (1), including
breast (7), prostate (8), testicular (9), and blood malignancies (10, 11).
However, the vast majority of SNPs account only for a limited increase

in cancer risk (1) and are usually filtered out by multiple hypotheses
correction procedures applied in GWAS analysis (12), which ulti-
mately leaves most of the cancer risk unexplained (5).

Although most SNPs have only subtle effects, there is mounting
evidence suggesting that they still contribute to the risk of developing
cancer (13). Recently, we have shown that low-penetrant germline
mutations in p53 pathway genes can directly control cancer-related
processes, including p53 activity and response to chemotherapies (14).
Moreover, the Pan-Cancer Analysis of Whole Genomes (PCAWG)
study found that 17% of all patients have rare germline variants
associated with cancer (15). It is now becoming apparent that quan-
tifying the contribution of low-penetrance but high-frequency inher-
ited mutations could further improve our understanding on how
inherited mutations mediate cancer risk and tumorigenesis.

Heritability analysis provides the statistical framework to esti-
mate the contribution of all common SNPs to cancer risk regardless
of their statistical significance and effect size (16). Studying heri-
tability is now becoming a crucial step in cancer GWAS and has
provided insights on the risk of developing many malignancies (17),
including prostate (18), cervical (19), testicular germ cell tumor (20),
and breast cancer (21, 22).

However, because the functional impact of the SNPs is context-
dependent (23), it is important to quantify the amount of heritability
explained by genomic regions associated with well-characterized
biological functions (24, 25). Recently, the PCAWG study has shown
that driver mutations are mostly located in protein-coding rather than
regulatory regions (26), albeit few mutations in cis-regulatory regions,
such as theTERT promoter, can still mediate cancer phenotypes. Thus,
we reasoned that estimating the heritability of SNPs in protein-coding
genes and proximal regulatory regions could provide novel insights
into the etiology of this disease. However, developing analyticmethods
for estimating heritability at the gene level has been challenging, and
current methods allow only the estimation of heritability for large
functional regions or SNP categories, such as histone marks or
expression quantitative trait loci (eQTL; refs. 25, 27).
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Here, we developed a new method, called Bayesian Gene Herita-
bility Analysis (BAGHERA), which, to the best of our knowledge, is the
first method to enable heritability analysis both at genome-wide and at
gene-level resolution. We performed extensive simulations to validate
the robustness of BAGHERAestimates and assess whether ourmethod
was prone to false discoveries. Comparison with other state-of-the-art
methods (27, 28) clearly showed that BAGHERAprovides significantly
more accurate heritability estimates for traits with heritability lower
than 10%, such as cancer.

We then used BAGHERA to analyze all the 38 histologically
different malignancies reported in the UK BioBank cohort (29). Our
genome-wide heritability analysis showed that SNPs account for at
least 10% of the heritable risk of 14 tumors, including late onset
malignancies, such as prostate and bladder, which are not thought to be
driven by high-frequency inherited mutations. We then used gene-
level heritability analysis to build a panel of 1; 146 genes, called cancer
heritability genes (CHG), that have a significant contribution to the
heritability of at least one cancer. Interestingly, a significant proportion
of CHGs are known tumor suppressors or are directly involved in the
hallmark processes controlling the transformation from normal to
cancer cells.

Our study provides newmethods to analyzeGWASdata and genetic
evidence of a causal role for high-frequency inherited mutations in
cancer.

Materials and Methods
Estimation of heritability at the gene level

Narrow sense heritability, h2, is defined as the amount of phenotype
variance explained by additive genetic effects. GWAS provide unique
opportunities to study heritability of many diseases; in particular, with
the advent of high-density arrays, wheremore than 500; 000 SNPs are
genotyped, the heritability explained by these variants, h2SNP , repre-
sents a reasonable estimate for h2.

Our goal is to identify the amount of h2SNP explained by a protein-
coding gene and its proximal regulatory regions. To obtain unbiased
heritability estimates and control the number of false positives, we
require SNPs to be uniquely assigned to genes.

Hereby, we denote as genome-wide heritability the amount of
heritability explained by all genotyped SNPs, M, whereas we refer to
the amount of heritability explained by the SNPs in a gene as gene-level
heritability. In a model where each SNP has equal contribution to the
genome-wide heritability, the per-SNP heritability is �h2 ¼ h2SNP=M.
Conversely, if variants can have varying contribution to the genome-
wide heritability, we can model the per-SNP heritability as a random
variable, �h2M, whose expectation is �h2M ¼ E½�h2j �j ¼ 1;���;M, where M

denotes the number of SNPs used to average the per-SNP contribution
to heritability.

We hereby demonstrate that the genome-wide heritability
can be expressed as the sum of the gene-level contribution
and that the per-SNP genome-wide heritability is the expectation
of the per-SNP gene-level heritability. Let K be the number
of nonoverlapping genes in the human genome, each of them
with Mk SNPs, the genome-wide heritability can be expressed as

h2SNP ¼ PK
k ¼ 1

P
j2k

�h2j ¼ PK
k ¼ 1

Mk�h
2
Mk

, whereMk�h
2
Mk

is the amount of

heritability explained by all the SNPs in the k-th gene. Thus, let the
number of SNPs in each gene and the gene-level per-SNP herita-
bility be independent random variables, it is straightforward to
prove that the expectation of the gene-level per-SNP heritability is

the per-SNP genome-wide estimate h2SNP=M ¼ E½�h2Mk
�K . Howev-

er, estimating h2SNP only from SNPs assigned to genes would lead to
biased estimates, because the contribution of the SNPs in inter-
genic regions would be neglected; thus, SNPs outside genic regions
are assigned to a single intergenic locus, such that the heritability is
correctly estimated from all genotyped SNPs.

A hierarchical Bayesian model for heritability estimation
The estimation of heritability can be modeled as a hierarchical

Bayesian regression problem, which provides a robust approach to
simultaneously estimate the genome-wide heritability, h2SNP , and the
gene-level heritability, h2k , from the observed dataY . Our base Bayesian
regression model can be defined as follows:

h2SNP � F1ðÞ with supp F1ðÞð Þ 2 0;1½ �
h2k j h2SNP � F2 h2SNP

� �

Y j h2k � F3 h2k
� �

ðAÞ

where F1; F2; and F3 are suitable distributions.
SNP heritability, h2SNP , is the ratio of the variance of the additive

genetic effects,s2
g , and the phenotypic variance,s

2
P . Lets

2
P ¼ s2

g þ s2
e ,

where s2
e are the nonadditive and environmental effects, these

quantities can be modeled as random variables with s2
g � G ða; �Þ and

s2
e � G ðb; �Þ, respectively. Because G ða; �Þ=ðG ða; �Þ þ G ðb; �ÞÞ �

Betaða;bÞ, a suitable distribution for F1, in Eq. A, would be an
uninformative Beta distribution, e.g., Betað1;1Þ. In practice, the use
of a Beta distribution as prior for h2SNP allows us to obtain accurate
heritability estimates in the unit range even for low-heritability diseases,
where classical methods are usually inaccurate (28).

The gene-level heritability, h2k , can be modeled as a random
variable following a Gamma distribution with shape a ¼ h2SNP

and rate b ¼ 1. It is worth noting that h2k=M is the per-SNP
heritability of gene k, whereas the amount of heritability explained
by the gene is Mkðh2k=MÞ, where Mk are the SNPs in gene k. While
theoretically the Gamma distribution is unbounded, in practice,
for Mk � M, the likelihood of obtaining an estimate h2k s.t.
Mkðh2k=MÞ>1 is negligible. Therefore, for F2 ¼ G ðh2SNP ;1Þ, the
expectation would be h2SNP , which is an unbiased estimator of the
genome-wide heritability.

Finally, our model requires a suitable estimator to regress h2k from
the observed data. Recently, many methods have been proposed to
estimate heritability fromGWAS data (30); however, the vast majority
requires genotype data, which are both difficult to obtain, due to
privacy concerns, and computationally taxing to analyze, because of
high dimensionality. Thus, we adopted the LD-score (LDsc) regression
model (28), which allows estimation of heritability from GWAS
summary statistics, such as regression coefficients and standard errors,
which are readily available (12).

Thus, for F3, we rewrote the LDsc model to estimate gene-level
heritability, from summary statistics of M SNPs in a GWAS with N
subjects, as follows:

x2
jk � N Nljh2k=Mþ e;

ffiffiffi
lj

q� �
ðBÞ

where x2
jk and lj are the x

2 statistic and LD score associated with SNP j

in gene k, respectively. The LD score is a quantity defined as
lj ¼ P

z
r2jz, where r2jz is the linkage disequilibrium between variant

j and variant zwithin a certain genomic window (e.g., 1 Mb) in a given
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population. Importantly, LD scores can be conveniently computed
from large-scale genetic studies, such as the 1000 Genomes project.

Finally, setting the standard deviation to the LD score of the j-th
SNP allows us to control for heteroskedasticity of the test statistics due
to linkage disequilibrium, somehow similar to the weighting scheme
used in LDsc, and a term e accounting for confounding biases, which is
modeled using an uninformative normal prior.

BAGHERA software
We implemented our hierarchical model (see Eq. C) as part of the

BAGHERA software, which allows simultaneous estimation of
genome-wide and gene-level heritability, also called heritability loci,
which are genes and proximal regulatory regions with a per-SNP
heritability higher than the genome-wide estimate (see Fig. 1). Because
fitting the Beta–Gamma model is computationally taxing, we relaxed
our requirements by modeling h2k as a random variable following a
Normal distribution whose mean is the genome-wide heritability,
h2SNP , and the standard deviation is controlled by an uninformative
Inverse-Gamma prior. Although this formulationmight provide gene-
level heritability estimates outside the unit domain, we found this
problem to be well controlled in practice.

e � N 1; 1ð Þ
W � Inv-Gamma 1;1ð Þ

h2SNP � Beta 1;1ð Þ
h2k jh2SNP;W � N h2SNP ;W

� �

x2
jkjh2k ; e; lj;N;M � N Nljh2k=Mþ e;

ffiffiffi
lj

q� �

ðCÞ

BAGHERA predicts heritability genes by computing the posterior
distribution of hk � Iðh2k > h2SNPÞ, where I is a function that returns 1 if
the evaluated condition is true, and 0 otherwise. The expectation of the
posterior distribution ofhk, E½hk�, is the probability of the heritability of
a gene k of being higher than the genome-wide estimate; specifically,
we report as heritability genes, those with E½hk� >0:99. For each gene,
we also report effect sizes in terms of fold change with respect to the
genome-wide heritability estimate, as fck ¼ h2k=h

2
SNP .

We use the No-U-Turn Sampler as implemented in PyMC
3.4 (31) to fit the model, using 4 chains with 104 sweeps each and
a burnin step consisting of 2;000 samples. Convergence of the
sampling process was assessed based on the Gelman–Rubin con-
vergence criterion.

BAGHERA is released as a Python software package under MIT
license, and it is available on GitHub (https://github.com/stracqua
daniolab/baghera), as a package on Anaconda, and as a Docker
image. BAGHERA also implements the Beta–Gamma model
described in the previous section, called BAGHERA-G . Alongside
the source code, we also provide a Snakemake workflow (https://
github.com/stracquadaniolab/workflow-baghera) to run the pipe-
line presented in our study.

UK BioBank summary statistics processing and curation
We used summary statistics of the UK BioBank GWAS for

cancers classified using the ICD10 disease classification (source:
https://nealelab.github.io/UKBB_ldsc/); importantly, data are uni-
formly processed with state-of-the-art methods, which prevents any
methodologic bias. Here, we developed a custom pipeline to assign LD
scores to SNPs, and SNPs to human genes (see Fig. 1). Specifically, we
used precomputed LD scores for SNPs on autosomal chromosomes
with minor allele frequency MAF>0:01 in the European population

(EUR) of the 1000 Genomes project. We then removed the SNPs on
chr6:26,000,000–34,000,000, because this region contains the major
histocompatibility complex that have unusual genetic patterns and is
known to affect GWAS result interpretation (25, 32). Ultimately, our
analysis is conducted on 1;285;620 SNPs over 22 chromosomes.

We then used Gencode v31 to determine the genomic coordinates
of protein coding genes in the GRCh37 human genome. First, we
merged overlapping genes by creating a new multigene locus, whose
name denotes the overlapping genes andwhose boundaries are defined
as the first and last base-pair of these loci. We then assigned to a locus
all SNPs within or no more than �50 kb away from its boundaries
(Fig. 1); this strategy allows us to account for cis-regulatory elements
while retaining gene-level resolution. All other SNPs are assigned to
the intergenic locus. Overall, 55% of SNPs were mapped to a locus,
while the rest of them are assigned to the intergenic term. Finally, to
mitigate false positives due to poorly genotyped regions, we considered
only gene-loci harboring at least 10 variants. Ultimately, our dataset
consists of 15;025 loci; 12;042 (80:1%) of them are harboring more
than 10 SNPs, which were considered in our heritability study. The
results of our analyses are deposited in CSV format on Zenodo (doi:
10.5281/zenodo.3968269).

Enrichment analyses
We used a one-tailed Fisher exact test for all enrichment analyses,

with P values adjusted using the Benjamini–Hochberg procedure,
because we are interested in testing whether genes associated with a
given category (e.g., molecular function, gene panel) are overrepre-
sented in our set of significant heritability loci. Importantly, because
loci in our analysis might represent overlapping protein-coding
regions, we postprocessed our gene lists by converting each multi-
gene locus into the set of its genes. For the gene ontology (GO) analysis,
we used a GO slim annotation to obtain a high-level view of the
processes and functions mediated by a set of genes. All external
datasets, with their respective date of download, are detailed in the
Supplementary Methods.

Results
Simulations assessing robustness of genome-wide and
gene-level estimates for low heritability traits

We performed extensive testing of our method on simulated
data to assess (i) the robustness of genome-wide estimates for
low heritability traits and (ii) the false discovery rate (FDR)
associated with gene-level predictions. All our datasets were cali-
brated to simulate low heritability traits (h2SNP � 0:5), which is a
reasonable assumption for cancer. We generated genotype data for
M ¼ 100;000 SNPs ofN ¼ 50;000 subjects using haplotypes of
chromosome 1 from European populations under different heri-
tability models (see Supplementary Methods).

Our analyses show that BAGHERA provides robust unbiased
genome-wide estimates (see Supplementary Methods); interesting-
ly, while extreme values of gene-level heritability might affect
genome-wide estimates, we found that BAGHERA returns correct
estimates both as the median of the posterior genome-wide heri-
tability distribution and as the sum of gene-level heritability
contributions.

We then assessed whether BAGHERA was able to identify
heritability loci, that is loci harboring SNPs with a contribution to
heritability higher than expected under a constant per-SNPheritability
contribution. To do that, we selected 1% of the loci on chromosome 1
(� 13) as heritability loci and computed receiver operator
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characteristic (ROC) and precision recall (PR) curves at varying levels
of genome-wide heritability (see Supplementary Methods). For all
curves, we evaluated the area under the curve (AUC). Here, we found
that BAGHERA correctly identified heritability loci (ROC AUC:
0:89), although precision and recall were consistently higher for
higher genome-wide heritability levels (PR AUC: 0:41 for
h2 ¼ 0:01, >0:58 for h2 >0:01; Supplementary Figs. S1 and
S2A–S2C).

However, our simulated datasets have a main limitation; because
simulating genotype data is a computationally taxing task, we restrict-
ed the number of simulated SNPs toM � 100;000 SNPs from a single
chromosome, whereas more than 1 M are routinely genotyped in
modern studies.

We addressed this limitation by simulating summary statistics using
only linkage disequilibrium information (see Supplementary Meth-
ods). This approach provides a tractable framework to test varying

χA  Input preprocessing

B  SNP to gene assignment

D  Heritability analysis results

C  MCMC sampling and posterior distributions estimation

heritability

heritability

Intergenic

Figure 1.

BAGHERA workflow. Here, we show the four steps required to run gene-level heritability analysis with BAGHERA. A, In the preprocessing step, SNP summary
statistics are retrieved, and genes are processed, such that amultigene locus is createdwhen two ormore genes are overlapping.B, SNPs are assigned to the closest
gene locuswithin 50 kb. For example, the SNPmarkedwith a star iswithin 50 kb fromboth D;E and F, but it is assigned to locus F, which is closer. SNPs farther than 50
kb from any gene locus are considered intergenic. C, BAGHERA uses the No U-Turn Sampler (NUTS; left) to fit our hierarchical Bayesianmodel to estimate genome-
wide and gene-level heritability. The sampler estimates the posterior distributions of the heritability terms (right) and evaluates the indicator function to identify loci
explaining a significant amount of heritability.When h >0.99, the locus is considered significant.D, Finally, results are saved into CSV format to facilitate downstream

analyses. It is worth noting that h2SNP is the estimate for genome-wide heritability, and it is calculated for the malignancy rather than per-locus.
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levels of heritability enrichment, reported in terms of fold change with
respect to the genome-wide estimate, and to simulate SNPs across the
entire genome, rather than a single chromosome.

We then assessed the performance by computing ROC and PR
curves, the true positive rate (TPR), and the FDR. BAGHERA correctly
identifies heritability loci, even with fold changes in heritability as low
as fc ¼ 5 (ROC AUC range: 0:70	0:99). Importantly, we found
BAGHERA to be conservative with a low FDR across all scenarios
(FDR range: 0%	5%); this result suggests that our method is suitable
for exploratory analyses, and that significant results are associated to
true biological signal (see Supplementary Figs. S3–S5).

Comparison with state-of-the-art methods for genome-wide
and local heritability estimation

To the best of our knowledge, BAGHERA is the first method
specifically designed to analyze low heritability traits and to provide
heritability estimates with gene-level resolution. However, because our
method can estimate both genome-wide and local heritability with
gene-level resolution, we decided to compare its performance to state-
of-the-art methods designed to estimate genome-wide and local
heritability.

Genome-wide estimates were compared with LD score regression
(LDsc) results (28). Gold-standardmethods require rawdata; however,
previous studies have shown that LDsc has comparable performance in
most scenarios (22). Because LDsc is routinely used to estimate
heritability for the traits in the UK BioBank, we retrieved the results
for all 38 cancers and compared them with BAGHERA estimates. We
found strong consensus between the estimates of the twomethods (see
Supplementary Fig. S6), consistent with the fact that BAGHERA uses a
similar genome-wide estimator. Nonetheless, BAGHERA is more
robust for low heritability traits, because our Bayesian formulation
guarantees correct heritability estimates in the unit domain, whereas
LDsc incorrectly provides negative values.

Performances on local heritability analysis were compared with
the heritability estimation from summary statistics (HESS) meth-
od (27), which is the only available approach to estimate local
heritability from summary statistics. Here, we used BAGHERA to
estimate the heritability of 1703 regions, as defined in the HESS
original study (see Supplementary Methods). We then restricted our
analysis to breast and prostate cancer data, because these malig-
nancies are those with the highest h2SNP estimates; this was necessary
to ensure a fair comparison between the two methods, because
HESS is not designed for low heritability traits. Here, we found a
statistically significant correlation between HESS and BAGHERA
estimates (Pearson r: 0:76 for prostate and 0:78 for breast, see
Supplementary Figs. S7 and S8). However, because BAGHERA
provides robust estimates for as much as 15;000 regions, it enables
more detailed analyses compared with HESS.

Taken together, we have shown that BAGHERA provides robust
estimates for low heritability traits and can identify loci with herita-
bility enrichment up to gene-level, which represent a 10-fold increase
in genomic resolution compared with existing methods.

Genome-wide estimates of cancer heritability in theUKBiobank
We used BAGHERA to analyze 38 cancers in the UK Biobank (29),

a large-scale prospective study aiming at systematically screening and
phenotyping more than 500;000 individuals, with a reported age at
the assessment centre ranging between 37 and 73 years.

We obtained summary statistics for N ¼ 361;194 individuals
(see Table 1), including subjects whose tumors were histologically
characterized according to the ICD10 classification, where malignant

neoplasms are identified with codes ranging from C00 to C97 (see
Supplementary Methods). The number of cases varies significantly
across cancers, ranging from 102 individuals, for malignant neoplasm
of base of tongue (C01), to 9086 individual, for other malignant
neoplasms of the skin (C44). In this cohort, cancer prevalence ranges
between 0:29% and 2:51%, with higher estimates for common
malignancies in European populations, such as breast and prostate
cancer (33).

Estimating heritability from nontargeted cohorts can be chal-
lenging, due to the small prevalence of the disease. To test whether
we had sufficient signal for each cancer, we reasoned that if the SNP
test statistic follows a x2 distribution with 1 degree of freedom,
under the null hypothesis of no association, its expected value is
E½x2� ¼ 1; thus, similarly to other studies, we expected to have
sufficient polygenic signal for our analysis if the average x2 was
greater than 1 (25). Here, we found the vast majority of cancers to
have an average x2 � 1, with only 17 having a deviation greater
than 1% from the expected value of the test statistic. We also did not
consider cancers assigned to other malignant neoplasm of the skin
(C44), because (i) most tumors belong to unspecified anatomic
regions (C44.3, C44.9); (ii) are predominantly caused by sun
exposure in Europeans; and (iii) and includes poorly characterized
rare skin cancers. Ultimately, we restricted our study to 16
cancers for which we had sufficient power to perform our analysis.
Nonetheless, all our results are consistent with those we obtained
when considering all 38 cancer types (see Supplementary Figs. S9–
S12D and S13A–S13C; Supplementary Tables S1–S3).

We then estimated genome-wide heritability of each cancer
by computing the median of the posterior distribution of h2SNP and
transforming this value on to the liability scale, h2SNPL

, to

obtain estimates independent from prevalence and comparable across
malignancies. We found cancer heritability to be h2SNPL

¼14:7% on

average, ranging from 8% for non-Hodgkin lymphoma and up to 31%
for testis (see Table 1) consistent with other available estimates for
this cohort (see Supplementary Materials and Supplementary
Figs. S14, 15A–S15D, and S16A–S16C; Supplementary Table S4).
While comparison between cancer heritability estimates is usually
difficult across studies, due to differences in histologic classification
and genetic confounders, we found our heritability estimates on the
liability scale to be consistent with those reported for other cohorts, in
particular for breast, prostate, testes, and bladder (17, 18, 20, 34). The
heritability of testicular cancer is the highest among all malignancies
(h2SNPL

¼ 0:3158), consistent with the hypothesis that germline

variants have stronger effects in early onset and young adult
cancers. However, early onset cancers are underrepresented in
the UK Biobank, because children and young adults were not
enrolled in the study, and thus, an accurate estimation of the
correlation between age of onset and heritability is not possible.
Nonetheless, it is interesting to note that many malignancies with
onset in late adulthood, such as prostate or bladder, still display a
significant heritable component, ranging from h2SNPL

¼ 0:25 for

brain tumors (age of onset: 59) to h2SNPL
¼ 0:08 for diffuse non-

Hodgkin lymphoma (age of onset: 60). Overall, 14 of 16 cancers
(87%) show heritability higher than 10%, suggesting a consistent
contribution of SNPs to the heritable risk of cancer.

Heritability loci across 16 malignancies
We identified 783 heritability loci (h>0:99), harboring 1;146

protein-coding genes, across 16 cancers (see Fig. 2), with 53 herita-
bility loci per malignancy on average, ranging from 5 loci in
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mesothelioma, to 271 loci for prostate (see Table 1; Fig. 3A); here, we
are using the term heritability loci when referring to the nonoverlap-
ping genomic regions tested by BAGHERA, which might also include
multigene loci. Gene-level heritability across the selected 16 cancers
has a long-tail distribution (Fig. 3B), with a median 16-fold increase
compared with the genome-wide estimate, ranging from 4:4-fold for
the phosphodiesterase 4D (PDE4D) gene locus to 276-fold for the
fibroblast growth factor receptor 2 (FGFR2) gene locus in breast cancer.
Interestingly, 87% of heritability loci show per-SNP heritability
10-fold higher than the genome-wide estimate. Only 3 loci have fold
changes below5 andmore than99%of loci with fold changes below10
are found in the breast and prostate datasets, which have h2SNP >0:01.
On the basis of our simulations, our set of heritability loci is expected to
have a limited number of false positives.

Interestingly, heritability loci represent less than 1%of all the loci in
the genome, but they are significantly more than those harboring
genome-wide significant SNPs (see Supplementary Material, Supple-

mentary Figs. S17 and S18, and Supplementary Table S5); this result is
consistent with cancer being polygenic. Although we identified a
polygenic signal, heritability loci account for up to 38% of all the
heritable risk (breast cancer), suggesting that a significant amount of
heritability could be explained by only few loci across the genome
(Fig. 3A). Consistent with our hypotheses, when we looked at the
contribution of SNPs in intergenic regions, we did not find any
heritability enrichment.

We then tested whether heritability loci were shared among
multiple cancers to identify any potential genomic hotspot for
pan-cancer heritability. We found that only 59 (� 8%) of the
783 heritability loci show a significant heritability enrichment in
at least 2 cancers, and 8 (� 1%) in 3 or more (Fig. 3C and D). This
observation is consistent with results from tumor sequencing
studies, which have shown that pleiotropic effects are limited to
few master regulators, such as TP53 (35). Nonetheless, after per-
forming literature curation, we found evidence for a cancer-

Table 1. Genome-wide heritability of the 38 cancers in the UK BioBank.

ICD10 Malignancy Cases Prevalence x̂2 h2SNP h2SNPL HL

C44 Other malignant neoplasms of skin 9,086 0.0252 1.1408 0.0341 0.2422 422
C50 Malignant neoplasm of breast 8,304 0.0230 1.0869 0.0170 0.1285 267
C61 Malignant neoplasm of prostate 4,342 0.0120 1.0765 0.0191 0.2320 271
C18 Malignant neoplasm of colon 2,226 0.0062 1.0399 0.0070 0.1416 33
C43 Malignant melanoma of skin 1,672 0.0046 1.0288 0.0051 0.1293 52
C15 Malignant neoplasm of esophagus 519 0.0014 1.0236 0.0035 0.2296 24
C67 Malignant neoplasm of bladder 1,554 0.0043 1.0222 0.0047 0.1254 39
C34 Malignant neoplasm of bronchus and lung 1,427 0.0040 1.0208 0.0035 0.1010 17
C20 Malignant neoplasm of rectum 1,118 0.0031 1.0130 0.0031 0.1091 15
C62 Malignant neoplasm of testis 221 0.0006 1.0120 0.0024 0.3158 29
C71 Malignant neoplasm of brain 368 0.0010 1.0116 0.0030 0.2578 19
C45 Mesothelioma 150 0.0004 1.0110 0.0012 0.2213 5
C91 Lymphoid leukemia 349 0.0010 1.0109 0.0018 0.1646 11
C02 Malignant neoplasm of other and unspecified parts of tongue 152 0.0004 1.0106 0.0013 0.2475 23
C16 Malignant neoplasm of stomach 388 0.0011 1.0106 0.0010 0.0868 12
C83 Diffuse non-Hodgkin lymphoma 587 0.0016 1.0104 0.0014 0.0824 14
C82 Follicular (nodular) non-Hodgkin lymphoma 320 0.0009 1.0101 0.0031 0.3059 21
C90 Multiple myeloma and malignant plasma cell neoplasms 401 0.0011 1.0092 0.0013 0.1020 15
C56 Malignant neoplasm of ovary 693 0.0019 1.0063 0.0012 0.0616 13
C54 Malignant neoplasm of corpus uteri 988 0.0027 1.0063 0.0008 0.0295 14
C48 Malignant neoplasm of retroperitoneum and peritoneum 122 0.0003 1.0053 0.0009 0.2064 5
C64 Malignant neoplasm of kidney except renal pelvis 701 0.0019 1.0043 0.0009 0.0455 10
C01 Malignant neoplasm of base of tongue 102 0.0003 1.0043 0.0014 0.3596 10
C73 Malignant neoplasm of thyroid gland 278 0.0008 1.0042 0.0011 0.1254 13
C49 Malignant neoplasm of other connective and soft tissue 222 0.0006 1.0040 0.0017 0.2229 28
C80 Malignant neoplasm without specification of site 398 0.0011 1.0040 0.0016 0.1300 14
C53 Malignant neoplasm of cervix uteri 192 0.0005 1.0039 0.0005 0.0709 14
C22 Malignant neoplasm of liver and intrahepatic bile ducts 189 0.0005 1.0031 0.0009 0.1353 7
C21 Malignant neoplasm of anus and anal canal 139 0.0004 1.0027 0.0007 0.1436 23
C85 Other and unspecified types of non-Hodgkin lymphoma 762 0.0021 1.0023 0.0013 0.0600 9
C09 Malignant neoplasm of tonsil 162 0.0004 1.0022 0.0006 0.1009 5
C92 Myeloid leukemia 328 0.0009 1.0011 0.0008 0.0764 9
C17 Malignant neoplasm of small intestine 114 0.0003 1.0007 0.0015 0.3596 12
C19 Malignant neoplasm of rectosigmoid junction 498 0.0014 0.9992 0.0006 0.0390 10
C25 Malignant neoplasm of pancreas 403 0.0011 0.9991 0.0005 0.0402 12
C81 Hodgkin's disease 150 0.0004 0.9989 0.0003 0.0597 5
C69 Malignant neoplasm of eye and adnexa 137 0.0004 0.9970 0.0004 0.0705 14
C32 Malignant neoplasm of larynx 159 0.0004 0.9914 0.0003 0.0450 7

Note: For each cancer, we report the number of cases, the prevalence in the cohort, the average x2 of the SNPs considered in the GWAS analysis (x̂2), the genome-

wide estimates of heritability, both on the observed (h2SNP) and the liability (h
2
SNPL

) scale, and the number of heritability loci (HL) reported by BAGHERA as significant

for h > 0:99. In bold, we denote the 16 cancers that we used for the downstream analysis and functional characterization.
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mediating role for 7 of the 11 unique protein coding genes found in
at least 3 cancers (see Supplementary Table 6), including 4 genes
(CLPTM1L, APAF1, THADA, AGBL1) involved in apoptosis and 3
genes (PCDH15, DLG2, POU5F1B) involved in cell division, migra-
tion, and tumorigenesis (36, 37). It is important to note that the
cisplatin resistance-related protein 9 (CLPTM1L) is the heritability
locus found in most cancers (4/16) and is one of the gene in the
5p15.33 locus (the other being TERT), which has been consistently
associated with different cancer types (38).

Taken together, our analysis found 783 loci, harboring 1,146
protein-coding genes, having a significant contribution to the heritable
risk of at least 1 cancer. We denoted these 1,146 genes as CHGs.

CHGs are recurrently mutated in tumors
Tumor sequencing projects, including The Cancer Genome

Atlas program and the PCAWG project, have identified a number
of driver genes, which promote tumorigenesis when acquiring a
somatic mutation.

There is also increasing evidence that genes harboring germline and
somatic mutations can mediate cancer phenotypes (14, 39); thus, we
tested whether CHGs are significantly enriched among known
cancer driver genes. To do that, we obtained a curated list of driver
genes using the COSMIC Cancer Gene Census (Supplementary
Table 7). Interestingly, we found that a significant proportion of
CHGs, 60 of 1;146 (�5%), are also known cancer driver genes
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Figure 2.

Cancer heritability loci across the human genome. For each chromosome, we report all cancer heritability loci with heritability enrichment in the top 1%. In case of a
multigene locus, we report only the first gene name of the locus.
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(OR ¼ 1:75; P : 1:3
 10	4). These genes include members of
the p53 pathway, such as the cyclin-dependent kinase inhibitor 2A
(CDKN2A), the tumor protein 63 (TP63), and MDM4 regulator of
p53 (MDM4), as well as genes mutated across multiple types of
cancer, including FGFR2 and the anaplastic lymphoma kinase (Ki-1;
ALK) gene (Fig. 4A and B).

However, the number of cancer driver genes is extremely variable
across malignancies and studies; thus, we tested whether the
enrichment of CHGs in cancer driver genes was independent from
the cancer driver gene annotation used. To do that, we collected lists
of cancer driver genes from multiple studies, including the PCAWG

project (15), the Precision Oncology Knowledge Base (OncoKB;
ref. 40), Memorial Sloan Kettering Impact and Heme gene
panels (41), and the curated list of cancer genes by Vogelstein and
colleagues (42). Here, we found that CHGs are significantly
enriched in each cancer driver gene annotation analyzed, with an
enrichment ranging from OR ¼ 1.55 for the PCAWG annotation to
OR ¼ 2.47 for OncoKB tumor suppressors (Supplementary
Table S7). Interestingly, we did not find any enrichment of CHGs
in genes carrying germline driver mutations; this is consistent with
the fact that most germline driver mutations are rare, and thus are
unlikely to be genotyped in GWAS studies.
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Figure 3.

Heritability loci across cancers in the UK Biobank. A, For each malignancy, we report the observed heritability (h2SNP ;left box), the heritability on the liability scale

(h2SNPL
, dark barplot, between 0 and 0.5), the percentage of h2SNP explained by heritability loci (middle barplot; the percentage explained by heritability loci (HL) is

highlighted with a darker shade), and the number of heritability loci (right barplot). B, Gene-level heritability distribution across heritability loci, expressed as fold
change with respect to the genome-wide estimate. The x-axis is bound to the minimum and maximum values of fold change. We highlighted the top locus (FGFR2)
and the median (15.9) fold change across all cancers. C, Percentage of cancer heritability loci associated with multiple cancers. Approximately 8% of heritability loci
are common to multiple malignancies.D, Cancer heritability loci associated with multiple cancers. We report the 59 heritability loci common to at least two cancers;
here, the size of the dot is proportional to the fold change of the locus in the specific cancer.
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Taken together, we found 60 cancer heritability loci that are also
recurrently mutated in multiple tumors; this result suggests that SNPs
in CHGs might affect the same biological programs altered by somatic
mutations in tumors.

CHGs underpin biological processes affecting tumorigenesis
Our gene-level heritability analysis identified 1; 146 genes explain-

ing a significant proportion of the heritable risk of at least 1 cancer.We
then showed that CHGs are enriched in known cancer driver genes,
suggesting that loci recurrently mutated in tumors also harbor high-
frequency inherited mutations that could mediate cancer risk. Thus,
we hypothesized that CHGs could be involved in molecular functions
and biological processes affecting tumorigenesis.

To do that, we characterized CHGs by GO enrichment analysis
(see Table 2). We found a statistically significant enrichment for 21
terms (Fisher exact test; FDR < 10%, Fig. 4C), with an average OR of
1:31 and up to 1:55 for growth. CHGs are genes predominantly

involved in biological processes driving cell morphogenesis, differen-
tiation, proliferation, and growth, which include the mammalian
target of rapamycin (mTOR) and the Poly [ADP-ribose] polymerase
1 (PARP1) genes. We also observed a significant enrichment of
genes associated with cytoskeleton organization and anatomic struc-
ture development, which include theMothers against decapentaplegic
homolog 2 (SMAD2) gene.

Although these molecular processes drive normal cell fate, survival,
and proliferation, they are recurrently hijacked by cancer cells to gain
growth advantage and spread through the body through metasta-
ses (43), a process that is considered an hallmark of cancer. We then
tested whether CHGs are associated with any other hallmark of cancer,
which are processes, common to all malignancies, controlling the
transformation of normal into cancer cells (44). These lists of
biological processes include proliferative signaling, suppression of
growth, escaping immune response, cell replicative immortality,
promoting inflammation, invasion and metastasis, angiogenesis,
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genome instability and mutation, and escaping cell death. Inter-
estingly, we found 33 CHGs associated with at least one hallmark
(OR : 2:062;P : 3
 10	4). Consistent with our previous analysis,
cancer heritability loci are involved in escaping cell death, medi-
ating proliferative signaling, invasion and metastasis (Fig. 4D;
Supplementary Table S8). We then went further to understand
whether CHGs mediate these cancer processes by acting either as
tumor suppressor genes (TSG) or oncogenes (see Fig. 4E). To do
that, we used the Precision Oncology Knowledge Base (OncoKB;
ref. 40), a curated list of 519 cancer genes, including 197 TSGs, 148
oncogenes, and other cancer genes of unknown function. We found
that 27 CHGs are tumor suppressors (OR: 2:47, P : 7:9
 10	5),
whereas 17 are reported as oncogenes (OR: 1:83; P : 0:0198), of
which, 4 can function both as TSGs and as oncogenes (Fig. 4A, D,
and E; Supplementary Tables S7 and S8); importantly, this result
has been also confirmed when using the COSMIC Cancer Gene
Census TSG annotation (OR: 2:036; P : 2:07
 10	4). Tumor
suppressor CHGs include well-known cancer driver genes, such
as CDKN2A and SMAD2, which regulate cell growth, and DNA
repair genes, such as MUTYH and FANCA (45).

Taken together, we found evidence that CHGs directly mediate
processes underpinning tumorigenesis; interestingly, while we did not
observe pleiotropic effects at genomic level, we found that CHGs are
involved in biological processes common to all cancers. It is then
conceivable that inherited mutations in genes controlling these bio-
logical programs could provide a selective advantage to cancer cells,
once they acquire a driver somatic mutation. Our results suggest a
functional role for CHGs consistent with a two-hit model (46); while
inherited mutations associated with oncogene activation are likely to
be under purifying selection, mutations in TSGs can be observed at
higher frequency because deleterious effects are only observed upon
complete loss of function.

Discussion
Our study provides new fundamental evidence demonstrating a

strong contribution of high-frequency inherited mutations to the
heritable risk of cancer. We found that SNPs account for at least
10% of the heritable risk of 14malignancies, and their contribution is
not only limited to early onset cancers, but alsomalignancieswith a late
age of onset, such as bladder and prostate.

We then went further and built a high-resolution map of the
heritable cancer genome consisting of 1;146 genes showing a
significant contribution to cancer heritability. We then showed
that CHGs are responsible for controlling growth, cell morpho-
genesis, and proliferation, which are fundamental processes
required for tumorigenesis. Interestingly, we found that a signif-
icant proportion of CHGs (60/1;146) are also recurrently mutated
across many tumors, including well-known driver genes such as
FGR2, CDKN2A, and SMAD2. Importantly, 27 CHGs are known
TSGs, suggesting that SNPs might support cancer by hijacking
tumor suppressor functions. Ultimately, our results suggest that
inherited mutations in TSGs could create a favorable genetic
background for tumorigenesis. It is conceivable that SNPs make
normal cells more likely to evade the cell–cell contact inhibition of
proliferation, to elude the anatomic constrains of their tissue
and to achieve more easily independent motility in the presence
of other early oncogenic events; evidence supporting these mechan-
isms has been recently found in advanced urothelial cancer (47).
Thus, combining germline and somatic genetic information of
key cancer genes could facilitate the identification of subpopula-
tions of patients at higher risk, differential response to treatment,
and risk of relapse. Nonetheless, determining the heritability
threshold to justify the integration of genes carrying low-
penetrant mutations into clinical cancer genetics will require
further investigation.

Table 2. Gene ontology enrichment analysis of cancer heritability genes.

GO term No. CHGs OR P value FDR

Anatomic structure development 352 1.31 0.000044 0.006133
Kinase activity 126 1.44 0.000237 0.012169
Growth 84 1.55 0.000263 0.012169
DNA metabolic process 82 1.53 0.000481 0.016723
Cytoskeleton organization 120 1.39 0.000861 0.023924
Ion binding 431 1.22 0.001248 0.028903
Biosynthetic process 361 1.21 0.002711 0.041872
Biological_process 505 1.20 0.002224 0.041872
Cell morphogenesis 81 1.43 0.002419 0.041872
Cell proliferation 146 1.30 0.003404 0.047312
Cytoskeleton 141 1.28 0.005851 0.054216
Cellular protein modification process 275 1.21 0.004476 0.054216
Cell–cell signaling 123 1.30 0.005097 0.054216
Peptidase activity 103 1.33 0.005513 0.054216
DNA binding transcription factor activity 160 1.27 0.005068 0.054216
Enzyme binding 178 1.24 0.006568 0.057059
Cell differentiation 268 1.20 0.007776 0.063577
Embryo development 77 1.36 0.009437 0.069042
Cytoskeletal protein binding 77 1.36 0.009173 0.069042
Nucleus 347 1.16 0.014507 0.097916
DNA binding 174 1.21 0.014793 0.097916

Note: We report the gene ontology terms significantly associated with cancer heritability genes, at 10% FDR. For each term, we report the number of annotated
CHGs, the odds ratio, the P value from the Fisher exact test, and the adjusted P value after applying the Benjamini–Hochberg procedure.
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However, a causal role for many CHGs cannot be ascertained
only by genetic analysis and will require further experimental
validation. Of particular interest is the subset of CHGs belonging
to the Solute carrier (SLC) family (48). SLCs might support cancer
metabolism, and polymorphisms in these loci could provide a
strong basis for interaction with environmental risk factors such
as fats, carcinogens, metal ion deficiencies, and thus could be
integrated with future dietary studies, because risk factors may be
greater in subgroups of patients.

Obtaining a genomic map with gene-level resolution required the
development of a new method we called Bayesian Gene Heritability
Analysis (BAGHERA), for estimating heritability of low heritability
traits at the gene level; to the best of our knowledge, BAGHERA is
the first method to enable heritability analysis with gene-level
resolution. We performed extensive simulations to show that our
method provides robust genome-wide and gene-level heritability
estimates across different genetic architectures and outperforms
existing methods when used to analyze low heritability traits, such
as cancer.

We also recognize the limitations of our work. Although our
method provides accurate estimates of genome-wide heritability,
extremely low heritability diseases could lead to negative gene-level
heritability estimates; this was a trade-off to ensure reasonable
computational efficiency, although a rigorous model is provided
as part of our software. Our analysis does not incorporate functional
information, such as gene expression or stratified effects for syn-
onymous/nonsynonymous variants, which limits our power of
detecting tissue-specific contributions and single causal variants.
Finally, because BAGHERA works at single-gene level using sum-

mary statistics, analyzing tumors triggered by multihit events might
still require genotype data.

Taken together, our study provides new insights on the genetic
architecture of cancer with gene-level resolution. We expect that
integrating heritability information of cancer genes, along with other
cancer heritability genes linked to environmental risk factors and
somatic information, will help define more effective early detection
and surveillance strategies for the broader population.
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3.3 Conclusions

BAGHERA provides a pan-cancer compendium of genes explaining a portion

of cancer risk larger than expected by chance. While the method is agnostic to

the partitioning choice, gene-level estimates, with flanking regulatory regions,

are better suited to generate novel testable hypotheses and are a reasonable

trade-off between resolution and robustness of the estimates.

Being able to pinpoint specific heritability genes, we proceeded to under-

stand their functional relevance for tumorigenesis and progression. Consistently

with what we observed for single GWAS hits, most cancer heritability genes are

involved in key processes underpinning cancer, suggesting that multiple low-

penetrance variants might show phenotypic convergence at the process level

and might have a synergistic effect on cancer risk. Indeed, extremely polygenic

heritability is consistent with the effects of negative selection on high-penetrance

germline variants [O’Connor et al. 2019].

Moreover, we have found evidence of the overlap between heritability loci

and somatic driver genes, reinforcing the possibility that further, unexplored,

genetic-environmental effects could explain tumorigenesis. While this topic is

vastly understudied, especially for the difficulties in assessing the effects of

SNPs, the interplay between germline and somatic mutation has been observed

in urothelial cancer [Vosoughi et al. 2020] and it has been shown to mediate the

effects of the TP53 pathway on cancer progression and treatment [Zhang et al.

2021].

Taken together, this study is a stepping stone for further investigation of the

role of low penetrance variants in cancer risk; accordingly, it provides interesting

suggestions and exhibits some limitations.

Our results on cancer heritability loci are consistently hinting towards pos-
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sible genetic-environmental interactions. SNPs might be mediating cancer

risk both by directly regulating pathways disrupted by driver mutations [Zhang

et al. 2021; Carter et al. 2017] or by affecting pathways that have a secondary

impact on cancer risk, for instance by affecting the BMI [Di Giovannantonio et al.

2020]. This is consistent with the observed inverse correlation between genetic

predisposition, measured as PRS, and the somatic mutation burden and age at

diagnosis of the neoplasm [Zhu et al. 2016; Qing et al. 2020]. Further evidence

in this direction might open novel avenues for prevention, early detection, and

personalised treatments.

Nonetheless, we are aware of the current limitations of this work, some of

which could be tackled by extending the method, while others would require

additional experimental evidence.

First, BAGHERA does not explicitly include any functional signal, e.g. func-

tional effects of the variants measurable by eQTLs [Geijn et al. 2021; Yao et al.

2020]. The prioritization of SNPs based on their functional annotation improves

fine-mapping and recovery of heritability [Weissbrod et al. 2020; Kichaev et al.

2019; Wen, Pique-Regi, and Luca 2017] and cis-regulatory effects could be

included as a prior on gene-level heritability. Conversely, we would hardly be

able to include trans-regulatory effects in our non-overlapping mapping of SNPs.

One issue we have not addressed is the population representativity of this

work; all our results have been focused on studies directly carried out on

European populations. It is indeed well known that subjects non-European

ancestry are underrepresented in GWAS and research is increasingly ad-

dressing this matter [Duncan et al. 2019; Fritsche et al. 2021]. On this is-

sue, a multi-ancestry GWAS project, the Pan-UK Biobank (https://pan.ukbb.

broadinstitute.org/), was recently started with the goal of testing for associ-

ation subject non-European ancestry that are less frequent, but still present, in
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the UKBB. While the practical and ethical considerations on the lack of diversity

in research are outside the scope of this work, it is worth noting and remarking

that our panel of heritability genes has been found in the European populations

and would need to be tested and validated in different ones. An interesting

avenue would be to study whether gene-level heritability can find phenotypic

convergence between different populations.

Eventually, this study can be considered exploratory and needs further com-

putational and experimental validation of the results. The identified heritability

loci could be used to prioritize gene-editing experiments to test the effects of

variants [Whitington et al. 2016; Lawrenson et al. 2015; Dimitrakopoulos et al.

2019]. Similarly, we expect that other methods for the estimation of heritability

might provide orthogonal evidence of the relevance of these loci for cancer risk.
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4 From single experiments to

system biology

The cellular machinery is a complex system where all biological functions

are the result of interactions between multiple genomic elements [Vidal, Cusick,

and Barabási 2011]. Complex phenotypes can only be understood when

the cooperation of these elements is considered, from regulatory elements

mediating gene expression to entire pathways involving multiple proteins.

High-throughput technologies enable the whole-genome characterisation

of samples with remarkable detail [Rozenblatt-Rosen et al. 2020]; transcript

abundance can be quantified at single-cell resolution [Stuart and Satija 2019]

and genome-wide mutations are identified for thousands of samples [Abascal

et al. 2021; Taylor-Weiner et al. 2019]. However, these experiments provide

snapshots of the status of a DNA sequence, a transcript, or protein, in isolation,

without any direct measure of how they interact with each other.

Similar to how NGS experiments capture different properties of DNA, tran-

scripts, and proteins, biological networks can describe a wide spectrum of

relationships between them, see Fig. 4.1. The nodes of these networks rep-
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resent genomic elements such as proteins, transcripts, transcription factors.

The edges between the nodes are instead specific interactions between them;

in Protein-Protein Interaction (PPI) networks each link describes the physical

contact between proteins [Rual et al. 2005; Lehner and Fraser 2004], while

in regulatory networks they capture how DNA elements interact with genes

to regulate expression [Ravasi et al. 2010; Califano et al. 2012]. The direct

quantification of these interactions in an experiment is non-trivial and hard to

scale, with the search space growing quadratically with respect to the number

of genomic elements. However, in the last two decades, considerable efforts

have been made to collect and aggregate data to recapitulate whole-genome

interactome [Stark et al. 2006; Chatr-Aryamontri et al. 2017; Luck et al. 2020;

Huttlin et al. 2021; Huttlin et al. 2015; Szklarczyk et al. 2019].

While the phenotype of cancer cells is characterized by known, recurrent,

hallmark processes [Hanahan and Weinberg 2011], the background genetics of

tumors reveals a polygenic and heterogeneous disease [Vogelstein et al. 2013].

In the previous chapters, we have shown that different low-penetrance germline

variants tend to target the same biological processes [Stracquadanio et al. 2016],

often occurring in genes that functionally interact with many others [Fagny et

al. 2020] and in regulatory elements [Lawrenson et al. 2015]. Hence, the

status of single genes may be insufficient to detect cancer-driving mechanisms.

Conversely, understanding how genes and proteins interact can elucidate how

polygenic signals arise. Interaction data is key to inform how heterogenous

mutations target the same biological processes, see Fig. 1.1, and to interpret

the results of multi-modal experiments. Unsurprisingly, networks have been

widely used in cancer studies to gain insight into different aspects of tumor

biology [Ozturk et al. 2018]; for the identification of cancer-driving mutations,

genes, and pathways [Ruffalo, Koyutürk, and Sharan 2015; Khalighi, Singh,

and Varadan 2020; Leiserson et al. 2015; Jia and Zhao 2014; Hristov and
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Singh 2017; Hristov, Chazelle, and Singh 2020; Reyna, Leiserson, and Raphael

2018; Tuncbag et al. 2016; Paull et al. 2013; Vanunu et al. 2010; Mezlini and

Goldenberg 2017; Cho et al. 2016; Horn et al. 2018; Silverbush et al. 2019], to

stratify patients based on their genetic and transcriptional signatures [Hofree

et al. 2013; Vandin, Upfal, and Raphael 2011; He et al. 2017; Lopes-Ramos

et al. 2018; Hansen and Vandin 2016], for the identification of therapeutics

opportunities [Margolin et al. 2006; Alvarez et al. 2018; Zitnik et al. 2019; Ruiz,

Zitnik, and Leskovec 2021].
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Biological Networks
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Figure 4.1: Biological Networks. There are multiple ways of representing genomic
elements as graphs, in each case nodes and edges between them represent specific
interactions [Pillich et al. 2017]. PPI networks are large-scale interactomes [Luck et al.
2020], where each link represents physical contact between the proteins. Here we
show a detail of the neighbourhood of the MYC Proto-Oncogene [Huttlin et al. 2021].
Metabolic pathways are detailed and directed graphs that describe the reactions in-
volved in a metabolic process, like glycolysis [Kanehisa and Goto 2000], and sometimes
a transfer function is available for each reaction. Regulatory Networks describe the
interactions between genes and transcription factors, or other regulatory elements.
Here we show the regulatory elements for KRAS specific for prostate cancer (PRAD),
[Aytes et al. 2014]. This is however a non-exhaustive list of biological networks, as
many others have been defined and used in the literature.

53



4.1. Protein-Protein Interaction Networks

4.1 Protein-Protein Interaction Networks

Protein-Protein Interaction (PPI) networks provide mechanistic insight into

how proteins physically interact with each other [Vidal, Cusick, and Barabási

2011; Costanzo et al. 2010]. Proteomics methods such as yeast two-hybrid

(Y2H) [Rolland et al. 2014; Rual et al. 2005] and affinity purification followed

by mass spectrometry (AP-MS) [Huttlin et al. 2015] are able to detect protein-

protein contacts and protein complexes, and they can be scaled up to detect

PPIs between multiple protein coding genes. Since we can now scan and

aggregate the interactions between thousands of proteins, PPI networks aim

to provide an exhaustive reference of possible contacts on top of which novel

hypotheses on cellular functions, aided by orthogonal experimental data, can

be formulated [Luck et al. 2020]. We refer to these large networks, when they

include almost all known proteins, as interactomes.

The main issue with the generation of complete PPI maps is scalability.

Indeed, AP-MS and Y2H require careful planning and parallelization to ob-

tain system-level interactomes. Moreover, these methods have low sensitivity

(∼ 20% [Venkatesan et al. 2009]) which contributes to hinder discovery. Com-

monly used networks [Szklarczyk et al. 2019; Stark et al. 2006] overcome

incompleteness by aggregating data from published research, and report a

collection of known interactions. For instance, BIOGRID [Stark et al. 2006;

Chatr-Aryamontri et al. 2017], which provides interactomes for multiple or-

ganisms, has a human PPI network compiled from more than 30 thousand

published articles with more than 26,000 genes and 500,000 edges between

them.

Resources such as BIOGRID [Stark et al. 2006] and STRING [Szklarczyk

et al. 2019] have enabled researchers to study interactions between thousands

of genes. However, since they aggregate data from a deluge of experiments
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found in the literature, they can be noisy and are prone to false discoveries

[Von Mering et al. 2002]. Both BIOGRID and STRING mitigate this issue by

curating their data, and they provide confidence scores for each interaction,

that can be then used to calibrate the analysis model [Chatr-Aryamontri et al.

2017]. Moreover, novel efforts, such as the Huri [Luck et al. 2020] network,

recently published, enabled to scan the complete ORFeome (∼ 17,000 genes)

with the same protocol, obtaining 52,548 interactions between 8272 proteins.

The HuRI network has been shown to provide more reliable data than literature

curated resources, with many of the interactions validated by orthogonal data.

Further efforts to generate whole-ORFeome maps [Huttlin et al. 2021] will

improve the reliability of PPI networks and will mitigate the issues of aggregated

interactomes.

Finally, PPI networks also have intrinsic limitations that require careful con-

sideration before their use and interpretation [Futschik, Chaurasia, and Herzel

2007; Peng et al. 2016]. Indeed, the experimental protocols used to draw

PPI networks are not representative of the actual environment proteins face;

expression and translation are tissue- and condition-dependent, and it is likely

that many of the observed interactions will not be actually occurring in the cell,

might be occurring only in some tissues, or might be happening at specific

times and locations. Hence, while large scale PPI networks provide thousand

of possible, experimentally observed interactions at the whole ORFeome level,

orthogonal and functional data are key to infer the actual pattern of interactions

and to link it to phenotypes [Kuenzi and Ideker 2020; Silverbush and Sharan

2019; Zheng et al. 2021; Haenig et al. 2020].
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4.2 Using interactome topology to test omics

data

As we described in the previous section, PPI networks aim at encompassing

the physical contacts of the whole ORFeome, the protein-coding genome. Thus,

given the availability of large-scale interaction data and whole-genome (exome

or proteome) experiments, single-gene information can be combined onto the

interactome to expand the interpretability of a single experiment.

The fundamental idea behind most omics experiments is to quantify an

appropriate signal, representing the biological properties of interest, for all ge-

nomic elements, to then detect deviations and variability from what is expected

[Meyerson, Gabriel, and Getz 2010]. For instance, differential expression exper-

iments aim at finding transcriptional differences between two or more conditions,

by comparing transcript abundance and detecting the genes with condition-

dependent expression levels [Love, Huber, and Anders 2014; Pimentel et al.

2017; McCarthy, Chen, and Smyth 2012]. While their data and modalities are

very different from each other, most NGS analyses attribute a final score for

each gene and statistically test them. Here we use the term ‘gene’ broadly as a

synonym of transcripts, exomes, loci, to refer to any genomic element that is

tested by the experiment.

High-throughput experiments are often statistically tested with ‘standard’

pipelines, specific for the modality, whose results are readily comparable to

published literature. Downstream, this data is characterised by mapping the re-

sults onto a functional annotation database; pathway analysis tools [Jassal et al.

2020; Subramanian et al. 2005] are ubiquitously used to reveal the processes

disrupted by the genomic and transcriptomic aberrations found in cancer. Net-

works, either PPIs, metabolic, signaling pathway graphs, are used to enhance
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the pathway analysis by adding information on the connectivity between the

geneset and the pathway [Ihnatova, Popovici, and Budinska 2018; Ma, Shojaie,

and Michailidis 2019]. Consistently with the poligenicity hypothesis, pathway

analysis methods map and aggregate gene-level data to reveal functional pat-

terns that would otherwise be undetected. However, these methods rely only

on predefined definitions of pathways and oftentimes use specific graphs that

do not capture the entirety of the interactions.

Conversely, interactomes can be used to characterise a set of genes in

terms of their connectivity, cross-talk, topological proximity without any bias

on the subgraph of interest. NGS results are mapped onto the corresponding

protein in the network to test their topological properties and infer functional

properties [Jeggari and Alexeyenko 2017; Liao et al. 2019]; highly mutated

genes that have a large degree could be master regulators and a group of

differentially expressed genes that are strongly interacting with each other might

reveal a novel pathway [Menche et al. 2015].

With the deluge of available large-scale datasets and publicly curated gene-

sets, we reasoned that network topology methods could be routinely used to

scan experimental results. Surprisingly, many tools often used in the literature

cannot be integrated into bioinformatics pipelines; they are web applications,

visualization plugins, or scarcely documented scripts, that are better suited for

targeted analyses.

We hence developed PyGNA, which is a Python package and command-line

interface tool that enables the statistical analysis of the topological properties

of genesets and networks. PyGNA implements multiple statistics that have

been shown to be representative of key properties of a network, such as the

average internal degree and the diffusion scores. PyGNA allows to statistically

test the properties of a single geneset, e.g. whether the set of genes is strongly
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interacting with each other, or to assess the connectivity between two genesets,

e.g. to infer comorbidities.

The manuscript in the next section details PyGNA’s implementation and

describes the methods used for statistical testing. Moreover, PyGNA is able

to generate simulated networks and genesets under different models. In the

manuscript, we use the simulated data to benchmark and compare all statistical

tests’ robustness and specificity. Eventually, we retrieved differential expres-

sion datasets from the TCGA consortium for 6 cancer types and we applied

PyGNA showing how network topology testing can become a routine step for

the characterisation of high-throughput experiments.

4.3 PyGNA: a unified framework for geneset

network analysis

The whole manuscript has been drafted by V. Fanfani, with the contributions

of F. Cassano, and with the supervision and the contributions of G. Strac-

quadanio. V.Fanfani first developed the tool and carried out the data analysis.

F.Cassano contributed to code reformatting and to the analysis of the TCGA

datasets.
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PyGNA: a unified framework for geneset 
network analysis
Viola Fanfani, Fabio Cassano and Giovanni Stracquadanio* 

Background
The availability of high-throughput technologies enables the characterization of cells 
with unprecedented resolution, ranging from the identification of single nucleotide 
mutations to the quantification of protein abundance [1]. However, these experiments 
provide information about genes and proteins in isolation, whereas most biologi-
cal functions and phenotypes are the result of interactions between them. Protein and 
gene interaction information are becoming rapidly available thanks to high-through-
put screens [2], such as the yeast two hybrid system, and downstream annotation and 

Abstract 
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to study the molecular wiring of a cell. Integrating high-throughput functional genom-
ics data with this information can help identifying networks associated with complex 
diseases and phenotypes.

Results:  Here we introduce an integrated statistical framework to test network 
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sharing in public databases [3, 4]. Thus, it is becoming obvious to use interaction data to 
map single gene information to biological pathways.

Integrating interaction information with high throughput experiments has proven 
challenging. The vast majority of existing analytical methods are based on the concept 
of over-representation of a candidate set of genes in expert curated pathways or net-
works [5, 6]; however, this approach is strongly biased by the richer-get-richer effect, 
where intensively studied genes are more likely to be associated with a pathway [7], ulti-
mately limiting the power of new discoveries. Many methods have now been proposed 
to directly integrate network information for function prediction [8–10], module detec-
tion [11], gene prioritization [12] and structure recognition [13]. However, results are 
usually sensitive to the underlying network interaction model used and test statistics 
[14], and performing analyses across different tools is not feasible, as the vast majority 
of this software comes either as a web application or visualization plugins. While web 
applications are simple to use for targeted analyses, they are also difficult to integrate in 
high-throughput data analyses pipelines.

With the increasing availability of biological interaction resources and the devel-
opment of standardized high-throughput analysis pipelines, a unified and easy to use 
framework for network characterization of genes and proteins could generate useful 
information for downstream experimental validation.

Here we build on recent advances in network theory to provide an integrated statistical 
framework to assess whether a set of candidate genes (or geneset) form a pathway, that is 
genes strongly interacting with each other. We then extended this framework to perform 
comparisons between two genesets to find similarities with other annotated networks, as 
a way to infer function and comorbidities. We called our statistical tests geneset network 
topology (GNT) and geneset network association (GNA) tests, respectively (Fig. 1a). We 
implemented our tests into a Python package, called Python Gene Network Analysis 
(PyGNA). It is important to note that the tests implemented in our software are not an 
exhaustive list of all the approaches presented in literature; here we favoured well estab-
lished models with test statistics easy to interpret [14]. Nonetheless, PyGNA provides a 
flexible API to implement and benchmark new network-based statistical tests, while tak-
ing advantage of our data processing and statistical testing framework.

We tested the GNT and GNA tests implemented in PyGNA on synthetic datasets to 
assess the performance (true positive rate and false positive rate). We then present how 
to use PyGNA to analyse high-throughput RNA sequencing data generated by The Can-
cer Genome Atlas (TCGA, [15]) and how to interpret network analysis results.

PyGNA is released as an open-source software under the MIT license; source code 
is available on GitHub (http://githu​b.com/strac​quada​niola​b/pygna​) and can be installed 
either through the PiP or Anaconda package managers, and Docker. Our software is 
designed with modularity in mind and to take advantage of multi-core processing avail-
able in most high-performance computing facilities. PyGNA facilitates the integration 
with workflow systems, such as Snakemake [16], thus lowering the barrier to introduce 
network analysis in existing pipelines.

The manuscript is organized as follows; “Methods” section describes the statisti-
cal network framework implemented in PyGNA, whereas   “Implementation” section 
describes PyGNA APIs and command line interface (CLI) options. In “Results” section, 
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we present benchmarking results on simulated data and how to apply PyGNA to analyse 
RNAseq experiments. We conclude by discussing how PyGNA compares to other exist-
ing tools and why it represents an advancement for geneset network analysis.

a

b

Fig. 1  The PyGNA analysis workflow. a Outline of the GNT and GNA tests. Given an input network, PyGNA 
maps genes to network nodes, performs GNA and GNT tests, and then outputs the results in CSV format. b 
Complete workflow. We recognize three main use-cases where PyGNA can be used, including (i) network 
analysis of high-throughput experiments, (ii) network analysis of curated genesets and iii) simulations of 
networks and genesets for algorithms benchmarking. PyGNA can perform GNT analysis on single or multiple 
genesets, along with GNA analysis to identify network associated with other genesets or pathways. Results 
are provided as CSV files and as high quality PDF figures
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Methods
We hereby introduce basic notation and properties for network analysis, describ-
ing interaction models, test statistics and hypothesis testing methods implemented in 
PyGNA.

Let G = (V ,E) be a network, or graph, with |V| nodes and |E| edges. Let A be a matrix 
|V | × |V | , with Aij = 1 if there is an edge between node i and j and 0 otherwise; we 
denote A as the adjacency matrix of the network G. We hereby consider only undirected 
graphs, thus the adjacency matrix is symmetrical Aij = Aji ; however, all the tests we 
present can be applied to directed networks and weighted networks. Moreover, unless 
otherwise stated, we consider only the largest connected component (LCC) of the net-
work; while this is not strictly necessary, distance measures are often not informative 
when computed over disconnected graphs. We denote as degree of a node i, deg(i), the 
number of edges associated with it. In this context, nodes represent genes or proteins, 
whereas edges the intervening interactions, e.g. physical, genetic interactions.

Let S = s1, . . . , sn be a geneset consisting of n genes, we want to quantify the strength 
of interaction between genes in the geneset (geneset network topology, GNT) and with 
genes in another geneset (geneset network association, GNA).

Interaction models

We denote as interaction model, a function that quantifies the strength of interaction 
between any two nodes in a network. Here we introduce three interaction models with 
different properties and complexity.

A direct interaction model assumes that two nodes interact only if there is an edge 
between them; this is the most efficient model to evaluate as it requires only the inspec-
tion of the adjacency matrix.

Under a shortest path interaction model, instead, we assume that the strength of inter-
action between two genes is a function of their distance on a network G, that is closer 
genes are more likely to interact. Thus, we denote with i → j a path in G from node i to 
node j, whose length, lij , is the number of edges from i to j. We then quantify the strength 
of interaction between two genes, i and j, as the length of the shortest path from i to j, 
denoted as sij ; w.l.o.g, shortest paths can be also computed over directed and weighted 
networks.

Finally, we introduce a probabilistic model of gene interactions, namely the Random 
Walk with Restart (RWR) model. Let W be a stochastic matrix inferred from the adja-
cency matrix A, the probability of reaching node i from node j after k steps is (Wk)ij 
[17]. However, for k big enough, the probability of interaction between nodes converges 
to a quantity proportional to the degree of the nodes, thus neglecting local structure 
information. We here instead consider a random walk with restart model (RWR), where 
it is possible to return to the starting node with fixed probability β (set to 0.85 unless 
otherwise stated [18]). We can then estimate analytically the probability of interaction at 
steady state as follows:

where Ā is the normalized adjacency matrix obtained as Ā = AD−1 , with D being the 
diagonal matrix of node degrees. In this case, the matrix H can be interpreted as the heat 

(1)H = β(I − (1− β)Ā)−1
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exchanged between each node of the network [11]. It is also worth noting that the above 
formulation is agnostic to direction and weights of the edges.

These three interaction models capture different topological properties. Direct models 
provide information about the neighborhood of a gene and its observed links. However, 
they might not be sufficiently powered to detect mid- and long-range interactions, thus 
statistics defined under these models are usually sensitive to missing links. Conversely, 
modelling gene interactions using shortest path provides a simple analytical framework 
to include local and global awareness of the connectivity. However, this approach is also 
sensitive to missing links and small-world effects, which is common in biological net-
works and could lead to false positives [19]. Propagation models provide an analytical 
model to overcome these limitations, and have been shown to be robust for biological 
network analysis [20]. While its interpretation is not necessarily straightforward, the 
RWR model is more robust than the shortest path model, because it effectively adjusts 
interaction effects for network structure; it rewards nodes connected with many shortest 
paths, and penalizes those that are connected only by path going through high degree 
nodes.

Based on the above interaction models, we have implemented and tested different sta-
tistics, which are described in detail below.

Geneset network topology statistics

Let S = s1, . . . , sn be a geneset of n genes, each mapped to a node in G = (V ,E) . We are 
interested in testing whether the strength of interaction between nodes of the geneset is 
higher than expected by chance for a geneset of the same size.

Under a direct interaction model, the importance of a geneset S can be quantified as 
the number of edges connecting each node in S to any other node in the network; we 
refer to this quantity as the total degree of the node. Thus, we define the total degree 
statistic for a geneset S as:

While TTD could be helpful to have an idea of how relevant and well characterized the 
nodes in the geneset are, we do not expect this statistic to be informative on the strength 
of interaction withing a geneset.

Conversely, with the direct interaction model, the strength of interaction for a gen-
eset S can be quantified as the number of edges connecting each node in S to any other 
node in the geneset; we refer to this quantity as the internal degree of the node. Thus, we 
define the internal degree statistic for a geneset S as:

where deg(i,  S) is the internal degree of gene i in geneset S. In practice, the internal 
degree statistic captures the amount of direct interactions between genes in a geneset, 
and thus a geneset showing a network effect should have TID values close to 1. However, 
the main limitation of this model lies in the fact that it only captures direct interactions, 

(2)TTD =
1

n

∑

i∈S

deg(i)

(3)TID =
1

n

∑

i∈S

deg(i, S)

deg(i)
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whereas biological networks are usually characterized by medium and long range 
interactions.

Another way to assess the strength of a network effect is the size of the largest con-
nected components of the graph induced by the geneset S, hereby denoted as TM . A 
main concern regarding direct interaction methods is that they could fail in presence 
of missing links, which is a well-known problem in biological networks analysis, where 
experimental screens are often not sensitive enough to detect all existing gene/protein 
interactions.

A shortest path interaction model allows to overcome this limitation by explicitly tak-
ing into account the distance between nodes. Here we define the test statistic TSP for the 
geneset S as follows:

which is the average of the minimum distance between each gene and the rest of those 
in S [21].

Conversely, under a RWR model, we can consider hij ∈ H as the heat transferred from 
node i to node j, which can be used as a measure of interaction strength between the 
nodes in the geneset S, as follows:

Geneset network association statistics

Let S1 and S2 be two geneset with n and m genes respectively, we want to estimate the 
association between S1 and S2 as a function of the strength of interaction between their 
nodes.

Under a shortest path model, the association statistics USP is defined as follows:

whereas, under a RWR model, we measure association as a function of the heat, UH , 
transferred between the two genesets as follows:

where we consider also the heat withhold by a gene, when there are overlapping genes 
between S1 and S2.

Hypothesis testing

The topological and association statistics are ultimately used for hypothesis testing. To 
do that, we need a calibrated null distribution to estimate whether the observed statistics 

(4)TSP(S) =
1

n

n∑

i=1

min
j∈S

sij

(5)TH (S) =
∑

i,j∈S,i �=j

hij

(6)

USP(S1, S2) =
1

n+m

∑

i∈S1

min
j∈S2

sij +
∑

j∈S2

min
i∈S1

sij

−
1

2
(TSP(S1)+ TSP(S2))

(7)UH (S1, S2) =
∑

i∈S1,j∈S2

hij + hji
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are more extreme than what expected by chance. Closed form definition of null distri-
butions is possible only for very simple network models, which are often unrealistic. 
Therefore, we reverted to a bootstrap procedure to estimate null distributions of the test 
statistics, conditioned on the geneset size; while this approach can be computationally 
taxing, in practice, we observed that ≈ 500 bootstrap samples are sufficient to obtain a 
stable distribution (see Additional file 1).

Thus, w.l.o.g, let Q be the null distribution of the test statistic q estimated for a geneset 
of size n, and q̄ the observed value. It is possible to derive an empirical p-value as follows:

where I is the indicator function returning 1 if and only if the evaluated condition is true, 
and unit pseudo-count is added for continuity correction. It is straightforward to adapt 
this formula to the case of testing whether a test statistic is smaller than expected by 
chance.

The default sampler generates null distributions by sampling nodes uniformly at ran-
dom. However, certain metrics might be particularly sensitive to local network structure, 
especially when they solely rely on degree-related statistics to characterize a geneset. To 
overcome this problem, we also implemented an additional sampler that generates null 
distributions matching the degree distribution of the tested dataset.

For the GNA tests, it is important to note that we are now dealing with two genesets. 
Hence, a null distribution can be computed either by sampling two random genesets or 
by sampling only one of the two; we recognize that the latter is more conservative, and 
is recommended when checking for association with known pathways (see Additional 
file 1).

Benchmarking geneset network tests

Rigorous benchmarking of network analyses tools is challenging, because there is no 
ground truth for geneset network analysis [14].

Stochastic block models (SBM) have been shown to be a reasonable model for analyz-
ing biological networks [22]; importantly, since SBM define a generative process over 
networks, they can be used to create networks with controllable features, including 
modules (also often referred as clusters). Let M : k × k be a stochastic block model with 
k blocks, where Mij represent the probability of a node in block i to be connected to 
(or interact with) a node in block j. A new network with n nodes can be generated by 
assigning each node to a block and adding edges probabilistically using the block model 
matrix. It is straightforward to note that if Mii >> Mij for any j, the genes in block i are 
likely to show a network effect. Hence, by modulating the values on the diagonal of the 
block model matrix, we can assess the performance of GNT tests by analyzing the gen-
esets made of the genes in a block. Conversely, we expect to find a significant association 
between two blocks i and j if Mij >> Mkl , with i, j  = k , l . By parametrizing the off-diag-
onal terms of the block model matrix, it is possible to assess the performance of GNA 
tests (see Additional file 1 for a graphical representation of the SBMs).

While the SBM are useful to simulate networks with controllable structures, they 
are difficult to adapt to modelling networks with highly connected nodes (hubs), 

(8)P(q̄ ≥ Q) =
(
∑|Q|

i=1
I(Qi ≥ q̄))+ 1

|Q| + 1
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which are common in biological networks. Thus, here we introduce a stochastic gen-
eration procedure to build networks with hubs, which can then be used for assessing 
the performances of GNT tests. We hereby describe each model in detail.

SBM for GNT benchmarking

We use the SBM framework to simulate a network with k blocks, with a baseline prob-
ability of interaction within and between blocks, p0 . We then select k+ < k blocks 
from the SBM matrix and set their within probability of connection M+

ii = αp0 , where 
α > 1 is a scaling factor controlling the strength of interaction of the genes within 
block i compared to the rest of the genes in any other block. Intuitively, each of the k+ 
blocks represents a geneset with a significant network effect, thus a robust GNT test 
should be able to detect them.

Ultimately, by varying the size of highly connected blocks, the baseline probability 
of interaction p0 and the strength of interaction α , it is possible to assess the power, 
true positive rate (TPR) and false positive rate (FPR) of GNT tests under different 
conditions.

SBM for GNA benchmarking

Similar to the approach outlined for GNT benchmarking, we used the SBM framework 
to generate network with multiple gene clusters to assess the performance of GNA tests.

We use the SBM framework to simulate a network with k blocks, with a baseline 
probability of interaction within and between blocks, p0 . We then selected k+ blocks 
at random and set their within block connection probability to M+

ii = αp0 and their 
between blocks connection to M+

ij = γ p0 for i  = j and α, γ > 1 . We then repara-
metrize γ as a function α , in order to control the relationship between the within and 
between block connection probability. Let β = γ /(α − 1) , we can set the between 
block connection probability as M+

ij = p0 + βp0(α − 1) . With this parametrization, 
we can directly simulate 3 different scenarios: 

1	 if β = 0 ⇒ M+
ij = p0 , the connection probability between blocks is equal to the 

baseline, thus genes in a block are highly connected.
2	 if 0 < β < 1 ⇒ p0 < M+

ij < M+
ii  , then the connection probability between the 

blocks is higher than the baseline, and thus we obtain assortative genesets.
3	 β > 1 ⇒ M+

ij > M+
ii  , then we have non assortative genesets, thus we expect them to 

be detected by a GNA test.

After building a network, we then generate genesets by selecting two distinct blocks, 
i,  j, with m nodes each, and add π ×m nodes from block i and (1− π)×m nodes 
from block j; for simplicity, we picked genes from blocks containing the same number 
of genes. The GNA testing is then performed between the SBM blocks and the novel 
mixture blocks. By varying the size of highly connected blocks and their interaction 
probability, along with the geneset composition, it is possible to assess the true posi-
tive rate (TPR) and false positive rate (FPR) of GNA tests.
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High degree nodes model for GNT benchmarking

The high degree nodes (HDN) model generates networks with a controllable number of 
hubs, nhd , whose probability of connection with another node, phd , is higher than the 
baseline probability p0 assigned to any other node in the network. The model is fully 
specified by four parameters, namely the number of nodes in the network, n, the num-
ber of HDN nodes, nhd , the baseline connection probability, p0 , and the HDN connec-
tion probability, phd > p0.

In order to benchmark GNT tests in presence of HDN nodes, we created geneset as a 
mixture of HDNs and non HDN nodes; we denoted these genesets as extended genesets. 
Specifically, each geneset is made of πhd × nhd nodes, with πhd ∈ (0, 1] , and ρπhdnhd 
random high degree nodes, where ρ is the ratio between high degree nodes and other 
nodes in the network (see Additional file 1 for a graphical representation).

With the HDN model, we can replicate a common scenario where the tested geneset 
is made of a few master regulators and many, possibly, unrelated genes. Here, the idea is 
that a robust GNT test should have a low false positive rate, even when observed statis-
tics might be skewed by few highly connected nodes.

Implementation
PyGNA is implemented as a Python package and can be used as a standalone command-
line application or as a library to develop custom analyses. In particular, our framework 
is implemented following the object oriented programming paradigm (OOP), and pro-
vides classes to perform data pre-processing, statistical testing, reporting and visuali-
zation. Here we provide an overview of the package structure and available interfaces, 
although the complete API documentation is available at: https​://githu​b.com/strac​quada​
niola​b/pygna​. Our basic workflows are summarized in Fig. 1b.

Input/output functions

Our software can read genesets in Gene Matrix Transposed (GMT) and text (TXT) 
format, while networks can be imported using standard Tab Separated Values (TSV) 
files, with each row defining an interaction. For diffusion analysis, instead, we require a 
Comma Separated Value (CSV) file specifying weights for each gene. It is important to 
note that parsers for new data can be easily implemented by extending the ReadData 
abstract class.

To facilitate the integration in bioinformatics pipelines, e.g. downstream analysis of 
DESeq2 results [23], we implemented a Utility class to enable input filtering, gene 
name conversion and GMT file creation.

PyGNA stores results as CSV files, for downstream manipulation and sharing, 
although new formats can be supported by extending the Output class. It is important 
to note that performing tests on large networks using either shortest path or random 
walk models is computationally taxing. However, since the node pairwise metrics are 
dependent only on the network structure, they can be computed upfront as part of a 
pre-processing step. Here, we save matrices in Hierarchical Data Format (HDF5) for-
mat, using the pytables framework [24], for efficient matrix storage. On this point, we 



Page 10 of 22Fanfani et al. BMC Bioinformatics          (2020) 21:476 

designed PyGNA to performs efficiently both on low-memory machines, using mem-
ory mapped input output, and high-performance computing environments, by loading 
matrices directly into memory.

Analysis functions

The GNT and GNA analysis are implemented by the StatisticalTest, and the Sta-
tisticalComparison classes, respectively. It is important to note that PyGNA can be 
easily extended to use different test statistics by defining new Python functions; on this 
point, in our online documentation, we provide a complete example on how to build 
GNT tests based on closeness centrality of the nodes.

A bottleneck of our network analysis framework is the bootstrap procedure used to 
obtain a null distribution for hypothesis testing. However, the resampling procedure is a 
seamlessly parallelizable process, since each randomly sampled set of nodes is independ-
ent from the others; thus, we implemented a parallel sampler using the multiprocessing 
Python library, allowing the user to set the number of cores to use. If only one core is 
requested, the multiprocessing architecture is not set-up, sparing the overhead incurred 
by setting up a scheduler for running only one thread (see Additional file 1). It is impor-
tant to note that, currently, Python 3.8 is required in order to process large matrices on 
multi-core CPUs.

Visualization functions

PyGNA has been developed to generate high quality figures for each analysis and to 
export networks and genesets in standard formats compatible with graph visualization 
software, such as Cytoscape [25]. The visualization functions are implemented as part 
of the PygnaFigure class, which comes with sensible default parameters to maximize 
figures readability.

There are four main types of figures currently implemented in PyGNA, namely bar 
plots, point plots, heatmaps and volcano plots, to visualize to GNT and GNA results.

Barplots are used to plot the GNT results for a single statistic. For each geneset a red 
bar represents the observed statistic, whereas a blue one represents the average of the 
empirical null distribution. To denote significance of each test we annotate the plot with 
stars, according to the −log10(p-value) . An example is presented in Fig. 4c, as part of our 
results.

Conversely, a dot plot can be used to summarize multiple tests for the same geneset. 
In order to show all the results in the same figure, the observed values are transformed 
in absolute normalized z-scores, such that all significant tests have z-score > 0 and are 
marked with a red dot. An example is discussed in Fig. 4a.

GNA results can instead be visualised on heatmaps, with the color gradients used to 
report the strength of association between two genesets. When an all-vs-all test is con-
ducted, as in Fig. 5, a lower triangular matrix is shown, with stars denoting significance. 
If, instead, a M-vs-N test was conducted, a complete heatmap would be included in the 
plot.

Alternatively, volcano plots can be used to visualize one-vs-many GNA results, for 
testing a geneset against a large number of datasets (e.g. gene ontologies). The plot 
shows the normalized z-score on the x-axis and the −log10 of the p-value adjusted to 
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control the False Discovery Rate (FDR) on the y-axis. Significant results are shown with 
red crosses, whereas not significant associations are represented by blue dots. We also 
annotate the plot with the top 5 scoring terms. An example of this plot is presented in 
the Additional file 1.

We provide more detailed information and tutorials in our online documentation.

Network properties

On top of the statistical testing framework, we provide functions for the basic charac-
terization of the network and geneset. General information, such as number of nodes 
and edges, average degree, connected components of the graph can all be retrieved from 
command line and saved in textual formats or shown in a GraphML file.

Network simulation functions

PyGNA provides a comprehensive simulation framework to generate networks with dif-
ferent structures and properties for benchmarking purposes, as described in “Bench-
marking geneset network tests” section. Moreover, since we allow the user to implement 
further statistical tests, we provide a full pipeline to generate a benchmark dataset to 
compare the results with those available in this paper.

Model descriptions and implementation details are also available in our online 
documentation.

Command line interface and workflow system integration

PyGNA implements a standard Unix-like command line interface with robust default 
options set for all functionalities. Using a CLI interface facilitates integration with work-
flow analysis systems, such as Snakemake [16]. We have developed Snakemake pipe-
lines to perform network analysis, available at https​://githu​b.com/strac​quada​niola​b/
workf​low-pygna​, which can be readily integrated into existing workflows.

Results
We designed PyGNA as a tool to streamline network analysis of biological data. Here 
we perform an extensive analysis of the performances of the GNT and GNA tests imple-
mented in PyGNA and then, we present a common use case regarding the analysis of 
cancer RNA sequencing (RNA-seq) experiments, providing basic guidelines to interpret 
PyGNA results.

Network simulations and algorithm benchmarking

GNT benchmarking with SBM and HDN

We used the SBM and HDN network models to assess the performance of the GNT tests 
implemented in PyGNA.

To do that, we first generated networks using the SBM model using the parameters 
reported in Table 1 (GNT-SBM). Given the large number of parameters, we restricted 
our analyses to networks generated using k = 7 blocks. For each network, we set ⌊k/2⌋ 
blocks with connection probability αp0 to simulate genesets with a network effect, which 
we denoted as positive genesets, whereas the remaining k − ⌊k/2⌋ were denoted as 
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negative genesets. For each possible parameter setting, we generated 10 networks and 
corresponding genesets for a total of 5400 positive and 5400 negative genesets.

We found that TID , TH and TSP are the statistics with the best overall performances 
(Fig. 2a), with TPR > 70% for all instances, whereas TM and TTD were able to detect 

Table 1  GNT and GNA benchmark parameters

For each model, we report the name of the parameter, a short description and its setting. A dash is reported when the 
parameter is not used

Parameter Description GNT-SBM GNT-HDN GNA-SBM

n Number of nodes 1000 1000 1000

k Number of blocks 7 – 9

p0 Baseline connection probability 0.01, 0.02, 0.05 0.006, 0, 02 0.01, 0.02

m Size of the geneset 20, 50, 100 9, . . . , 200 50, 80

α Within block connection probability 
scaling

2, 3, 5, 10 – 2, 5

β Between block connection probability 
scaling

0 – 0, 10

phd HDN connection probability – 0.5, 0.2, 0.1, 0.08, 0.05, 0.01 –

a

b

Fig. 2  GNT benchmarking. a Performance of all GNT tests on the SBM networks. We show True Positive 
Rate (TPR) and False Positive Rate (FPR) (y-axis) of each GNT test (colors) for different values of α (x-axis). As 
expected, as the value of α increases, all tests improve their detection performance, with TH and TID having 
consistently TPR > 0.75 . Conversely, for FPR we do not see a strong effect as α increases, with most tests 
having FPR ∼ 5% . b Extended geneset high degree nodes (HDNs) networks used to quantify FPR. Genesets 
have been selected with increasing number of HDNs (x-axis) and random nodes to HDNs ratios (colors); for 
each analysis, we report the False Positive Rate (FPR). As the ratio between random and HDNs increases ( ρ ), 
we notice that TSP has better performances. Interestingly, TID is the only one with FPR < 5% in all conditions
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a network effects only for highly connected genesets. In general, we found that all 
tests are robust to false positives ( FPR < 10% for all tests), with TSP being the most 
conservative.

We then used the HDN model to estimate the FPR of the GNT tests with respect to 
networks with hubs. Here we generated networks using the parameters reported in 
Table 1 (GNT-HDN) and generated 10 networks for each parameter setting. For each 
network, we then created extended genesets with by varying πhd = 0.1, 0.2, 0.5 and 
ρ = 2, 2.5, 3, 4 . For each combination of πhd and ρ we generated 3 random genesets, 
for a total of 30 datasets for each combination of network and geneset parameters. It is 
important to note that for increasing p0 , phd and π values, the extended genesets begin 
to form connected clusters; these cannot be considered false positives, albeit being 
generated at random. Thus, for each geneset, we first computed the size of the largest 
connected component (LCC), and discarded those genesets with more than 75% of the 
genes belonging to the LCC.

Here we found that our tests have a low FPR ( < 10% ) regardless of geneset composi-
tion and network structure. Interestingly, while TSP was the most robust on SBM net-
works, it is the most sensitive to HDN in the networks, with FPR as high as 20% even for 
genesets with only 3 HDNs (Fig. 2b). In this case TID is the most robust test (FPR< 10% ), 
while TH has FPR> 0.2 when the number of HDN increases.

Taken together, the TID statistic is the one achieving the best performances and it is 
faster to compute respect to the other best performer, TH , which requires the compu-
tation of a random walk matrix. Nonetheless, for exploratory analyses, we recommend 
using the TH test, which is confirmed to be well powered to detect network effects and 
has a low FPR, and might less sensitive to missing links. We would also point out that, 
since PyGNA provides implementations of the GNT analysis under different models 
of interaction, ensemble analyses could be useful in practice to increase the power of 
detecting network effects.

GNA benchmarking with SBM

We tested also the performance of GNA tests by generating networks and genesets as 
outlined in "SBM for GNA benchmarking" section and using the parameters reported 
in Table 1. For each network, we set two groups of blocks, k+ = 4 and k− = 4 , both of 
size m, along with another one including the remaining N − k ×m nodes. We then set 
Mij = γ p0 , for i = 1, . . . , 7 and j = i + 1 . For each pair of blocks, we generated genesets 
with a varying mixture of nodes π = {0.04, 0.06, 0.1, 0.12} ; with these genesets, we can 
test associations between highly connected and partially overlapping genesets. For each 
network and geneset parameter, we generated 10 runs, for a total of 2640 datasets. For 
both UH and USP , we then assessed the TPR, as the ratio of significant tests between 
genesets with β = 10 , and the FPR, as the ratio of significant tests between genesets with 
β = 0.

We found that UH has higher TPR than USP , regardless of network structure and gen-
eset composition (see Fig. 3). However, it is more prone to false discoveries when the 
number of overlapping nodes increases. In particular, when two genesets do not have 
high inter-connectivity, but share more than 5 out of 50 nodes the test is always signifi-
cant. Importantly, all tests between non overlapping genesets are not significant.
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Taken together, our results suggest that for UH is a well powered test for exploratory 
analyses, whereas USP might be more appropriate for verifying known associations.

Fig. 3  GNA benchmarking. a Performance of all GNA tests on SBM benchmark data. On the left column, 
we report the True Positive Rate (TPR) and False Positive Rate (FPR) for UH , while on the right column we 
report the same metrics for USP . On the x-axis, we show different geneset sizes, while we denote the overlap 
between the tested genesets with colors. For example, for size 50 and 4% of overlap the two geneset share 
2 nodes. We notice that UH has TPR > 0.95 , while USP is consistently below 0.75. Moreover, the FPR analysis 
confirms better performance for UH , albeit it is skewed by many overlapping nodes. On this point, when two 
genesets share 6 or more nodes out of 50, UH always considers them as positives

a b

c

Fig. 4  GNT analysis of TCGA RNA sequencing experiments. a Summary of the GNT results on the TCGA 
datasets. For each geneset analysed, a summary of all test results is reported. In order to make results 
comparable, observed test statistics are transformed in normalised z-scores. All results are in a scatter plot, 
where significant tests are marked with a red dot. We can notice that only the TCGA Lung Squamous Cell 
Carcinoma geneset is significant for all topology tests. b Null empirical distribution (blue) and observed 
value (red bar) for a significant rwr test on the TCGA Lung Squamous Cell Carcinoma geneset. c Barplot 
of the GNT module analysis on all TCGA datasets. For each geneset, we report both the observed statistic 
and the empirical null distribution average. Stars are used to identify significance of the test. Here, DLBC 
(p-value:6.99× 10−3 ) and LUSC (p-value: 8.99× 10−3 ) are significant, while the other terms are not
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Use case: network analysis of RNA sequencing experiments

RNA-seq experiments aim at finding genes that are up or down regulated between 
two or more conditions. As a use case, we analyzed RNA sequencing data generated 
by The Cancer Genome Atlas (TCGA) project [15] for 6 different types of cancer (see 
Additional file 1). Specifically, we selected 4 epithelial tumors, including 2 from uro-
genital tissues (BLCA and PRAD), 1 from breast (BRCA) and 1 from lung (LUSC), 
and 2 from liquid cancers (LAML and DLBC).

Here we are interested in finding whether differentially expressed genes in each can-
cer show a network effect, and whether they are similar to any other cancer analysed. 
It is possible to address these questions using the GNT and GNA tests implemented 
in PyGNA.

To do that, we retrieved TCGA data and performed differential expression analysis 
(DEA) using the TCGABiolinks package [26]. Here we found that there are no con-
trol samples in TCGA for LUSC, LAML, and DLBC; in this case, we instead used gene 
expression data from the Genotype-Tissue EXpression (GTEX) project [27], as control, 
and the TCGA tumor data processed by the Recount2 project [28], in order to avoid 
biases introduced by different RNA quantification pipelines (see Additional file 1). Taken 
together, we retrieved 6 datasets providing mRNA abundance for ≈ 15000 genes for 
each tumor and performed differential expression analysis. For each dataset, we consider 
significant all genes with FDR < 0.01 and |logFC| > 3 (see Additional file 1).

We then used PyGNA to perform GNT analysis and GNA analysis between all 
cancer datasets, using the BioGRID interaction network [29], a publicly available 
repository of protein interactions defining a human protein interaction network of 
17331 nodes and 283991 edges. For each test, PyGNA returns the results as a CSV 
file, which includes descriptive statistics and the parameters of the null distribution 
used for hypothesis testing. Our workflows are summarized in Fig. 1 and Snakemake 
pipelines are available at: https​://githu​b.com/strac​quada​niola​b/workf​low-pygna​.

ba

Fig. 5  GNA analysis of TCGA RNA sequencing experiments. a Heatmap of the observed values of the GNA 
test under a RWR interaction model, UH , where darker colors denotes larger observed UH values and stars 
denote statistical significance. b Heatmap of the observed values of the GNA test under a shortest path 
interaction model, USP . A divergent palette marks distant datasets with blue hues, and close ones with red 
hues, ( USP < 0)
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We then used the PyGNA plotting tool (paint-summary-gnt) to visualize a sum-
mary of the GNT results for all datasets (Fig. 4a), where we report the test statistic as a 
z-score, to make them comparable across different tests. Interestingly, only differentially 
expressed genes in lung and lymphoid cancers show a significant network effect, albeit 
this is detected by all tests for lung cancer and only by TH and TID lymphoid neoplasm. 
Interestingly, we did not observe any network effect for the other cancers; this could be 
explained by the fact these cancers might be controlled not by one highly connected net-
work, but by multiple distinct ones.

We then used PyGNA diagnostic plot generated by the GNT analysis to visualize the 
effect size and the null distribution of the test statistic for one of our significant datasets; 
in Fig. 4b, the plot shows the observed value of the TH statistic for lung cancer (vertical 
red line) being located in the upper-tail of the null distribution (blue area), suggesting 
that a network effect has been detected.

We again used the PyGNA plotting tool (paint-datasets-stats) to present a sum-
mary of the GNT TM results for all datasets (Fig. 4c). For each geneset, we report both 
the observed statistic and the empirical null distribution average. Stars are used to iden-
tify significance of the test. Here, DLBC (p-value:0.00699) and LUSC (p-value: 0.00899) 
are the only cancers with a statistically size of the induced module.

We then performed a GNA analysis between all differentially expressed genesets using 
the command (paint-comparison-matrix) in PyGNA. While most of them does not 
seem to show a consistent network effect, we can use the GNA to test whether each set 
of differentially expressed genes are more connected with each other than expected by 
chance. Using either UH and USP tests, we found a significant association between breast, 
bladder, and prostate carcinomas, and between leukemia and lymphoid neoplasms 
(Fig. 5); this is clearly shown through darker gradients for strongly associated genesets, 
and by the star notation to report statistical significance. This result is consistent with 
other gene expression analyses, which have shown that anatomically related cancers or 
with similar histopathology share similar changes in gene expression [30]. Interestingly, 
we found a significant association between lung and lymphoid neoplasms; this might be 
explained by the fact that lungs contain a vast lymphatic network, which might also be 
dysregulated in lung tumors.

Taken together, we have shown how PyGNA enables network analysis of RNA 
sequencing datasets and provide useful biological insights. The availability of informa-
tive diagnostic and descriptive plots provides a simple entry point for downstream 
expert analyses.

Discussion
The availability of biological interaction data has propelled the development of a pleth-
ora of network analysis methods, with the promise of linking single genes and protein 
information into networks to understand biological processes.

We surveyed publicly available, documented and actively maintained network anal-
ysis tools and found that, currently, PyGNA is the only available framework for com-
prehensive statistical network analysis under different interaction models (see Fig.  6). 
Currently, most software is available as web applications rather than stand-alone tools, 
usually performing only quantitative analyses with no statistical testing. This brings 
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major limitations both for data interpretation and downstream integration into exist-
ing data analysis pipelines (e.g. RNA-seq and variant calling workflows); PyGNA directly 
addresses these problems, by implementing statistical analysis tools into a modular soft-
ware package.

We further reviewed available tools by classifying their functionalities either as GNT 
or GNA, whether they perform statistical analysis and whether they provide a com-
mand line interface (CLI). We found two tools performing GNT on user defined gen-
esets: TopoGSA [31] and NetworkAnalyzer [32]. TopoGSA is a web application 
implementing network topology geneset analysis. It evaluates topological properties 
of the subnetwork induced by an input geneset, such as average shortest path length, 
node degree and clustering coefficient. An empirical p-value is obtained through per-
mutations, but the limited number of samples generated do not ensure a stable distribu-
tion for hypothesis testing. TopoGSA checks also for similarities with known pathways 
just by comparing network properties, but no statistical testing is performed, which 
ultimately limits its utility for interpreting the data. The application presents results in 
interactive tables and plots, and facilitate access to pre-computed networks of several 
organisms, along with the option to import user-defined networks. NetworkAnalyzer 

Fig. 6  State-of-the-art tools for geneset network analysis. Comparison between publicly available, 
documented and actively maintained network analysis tools. For each tool, we reviewed the type of networks 
and genesets that can be given as input (e.g. multi-organism, external/custom defined), and whether a tool 
can generate tables and figures. The majority of tools provides only one type of network analysis, either GNT 
or GNA, with few of them providing association tests between multiple user defined genesets. We also noted 
that, for many tools, there are no statistical testing procedures. Conversely, PyGNA enables comprehensive 
statistical network analysis under different interaction models, testing both single geneset topology and 
multiple genesets association. Moreover, PyGNA takes input user-defined networks, regardless of their type 
and organism, and provides results in comma separated value (CSV) files and PDF figures
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is a Cytoscape plugin, which estimates topology features of the subnetwork induced by a 
geneset, including centrality measures, average shortest path, node degree distribution. 
Differently from TopoGSA, it only provides descriptive statistics but no statistical analy-
sis can be performed.

PyGNA instead provides robust topological statistical testing under different interac-
tion models, which enables in depth analysis of the data, and represents a better solution 
for topology analysis.

Interestingly, we found GNA analysis to be a more popular application, in particular to 
study association with known pathways. The vast majority of tools perform association 
analysis using either over-representation analysis (ORA), which is usually a variant of 
Fisher’s exact test, or geneset enrichment analysis (GSEA, [33]). However, none of them 
explicitly allows association analysis between multiple user-defined genesets. There are 
three available tools commonly used for GNA analysis with known pathways: Webge-
stalt [34], network enrichment analysis (NEA, [35]), and Enrichnet [10].

Webgestalt is a comprehensive suite for geneset analysis, which implements conven-
tional ORA and GSEA analysis, and performs association testing as network topology 
association (NTA) test using Gene2Net (http://www.gene2​net.org/). First, a subnet-
work is built from the input geneset by adding relevant neighbours using a random 
walk model, as implemented in NetWalker [36]. Then, the application performs ORA 
between the genes in the inferred subnetwork and a pathway databases. We found Web-
gestalt to be the most comprehensive tool for GNA, as it includes multiorganism and 
multiplatform support, interactive plots and downloadable results. NEA performs GNA 
by computing an enrichment score between an input geneset and a pathway, as a func-
tion of the number of edges shared between the two. The statistical significance of the 
score is assessed by randomly permuting the edges in the network; recently, a binomial 
test has been implemented to reduce the running time. NEA has been implemented both 
as an R package, NEArender [37], and as a web application, EviNet [38], which pro-
vides access to multiple network and pathway repositories (e.g. GO, KEGG, Biocarta). 
Enrichnet performs GNA analysis between a user-defined geneset and a predefined 
list of biological pathways. The application uses RWR to compute interaction probabili-
ties between the input geneset and each pathway. The interaction probabilities are trans-
formed into a score, Xd ; intuitively, Xd is a measure of how close the geneset is to the 
pathway compared to all the others. As the Xd score does not allow a direct statistical 
testing, it is combined with Fisher-test FDR corrected p-values from an ORA, to find the 
threshold for significance. Enrichnet is a useful tool for direct comparison of ORA and 
a GNA, albeit it was last updated in 2012 and new pathways cannot be imported.

Since PyGNA provides also API for statistical network analysis, we also reviewed 
Ritan [39], an R package that provides functions for genesets and networks analysis in 
R. Ritan provides ORA testing between a geneset and pathways, provides functions to 
export networks for Cytoscape and iGraph, but it does not include any GNT or GNA 
off-the-shelf functionality. Finally, we would like to point out that the vast majority of 
GNA tests, are designed and optimized to perform association tests with specific data-
sets (e.g. KEGG pathways or Gene Ontology), rather than addressing the more general 
problem of network association; this poses substantial technical challenges for any rigor-
ous benchmarking experiment based on synthetic networks.
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Taken together, our software is the only available solution to easily investigate net-
work properties under different interaction models and perform statistical testing. 
We recognize that web applications are easier to interact with, fast to use for small 
scale and targeted analyses, since they do not require any setup and integrate many 
network and pathway genesets. However, we have designed PyGNA with flexibility 
and scalability in mind; we provide both command line interface and open APIs to 
extend GNT and GNA analysis using different topology measures. Moreover, the sup-
port for multi-core processing and easy integration with Snakemake allows to run 
PyGNA on multiple datasets and experiments at a glance

Conclusions
The availability of gene and protein interaction data provide unique opportunities 
to understand the cellular wiring underpinning most common complex phenotypes. 
However, integrating network and gene-level information has been challenging. Gen-
eset network analysis provides a statistical framework to test the presence of inter-
actions between genes associated with a phenotype, thus providing a useful tool for 
downstream analysis of high-throughput data. However, there are only few tools 
for statistical geneset network analysis, and usually are limited to specific interac-
tion models, lack statistical testing methods or are only accessible through web 
applications.

Here we present a modular Python package, called Python Geneset Network Anal-
ysis (PyGNA), to perform statistical geneset network analysis under different inter-
action models. As networks analysis results are sensitive to the underlying gene and 
protein interaction model, it is important to perform these analyses using different 
models to gain confidence on the observed network effects. Different from existing 
applications, we designed PyGNA to be easily integrated into workflow systems and 
rapidly provide a comprehensive network characterization of input genesets. Our 
software takes advantage of multi-core architectures and can work both on desktop 
and high-performance computing environments, thus lowering the computational 
requirements to perform network analysis. Our software is available on GitHub 
(http://githu​b.com/strac​quada​niola​b/pygna​) and can be easily installed from PyPi, 
Anaconda and as a Docker container.

We have shown how PyGNA can be used as part of biological data analysis pipe-
lines, in particular as downstream analysis tool for differential expression experi-
ments, exploratory geneset analyses, and as a network simulation framework. It is 
also worth mentioning that, while the package development has been motivated by 
the need for an integrated tool for biological data analysis, ranging from RNAseq 
experiments to evolutionary genomics [40] PyGNA is agnostic to input data types 
and could easily be adopted to analyse non-biological networks, including social and 
communication networks, where the information can be summarized into sets of 
nodes (e.g. users of a Facebook group).

PyGNA is not only a stand-alone application, but also a Python library that can be 
easily integrated into other software; thus, we envision our framework as an open-
source platform to develop network statistical tests.
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4.4. Conclusions

4.4 Conclusions

PyGNA is a tool that allows to topologically characterize genesets routinely

obtained from the analysis of high-throughput experiments. We implemented

robust and frequently-used statistics that shed light on the topological properties

and localisation of a set of genes. Importantly, the detailed implementation of

simulated networks allows generating extensive benchmarks that we used to

assess the power and robustness of the implemented properties. Novel results

can be readily tested by integrating the provided pipeline steps in existing

workflows. Alternatively, PyGNA is a modular Python package that can be

included in personalised scripts and other tools or extended with user-defined

statistics.

Nevertheless, we have to address some of the limitations of PyGNA and

topological testing in general. Taken together, PyGNA is a computational tool

applicable downstream to current NGS analysis methods. We provide a full

framework to benchmark the statistical tests and to characterise the topology

of a geneset. However, we do recognise that the results require some careful

interpretation which is less straightforward than a pathway analysis. Geneset

network topology tests (GNT) such as module, internal degree, and diffusion,

aim at identifying whether a set of genes could be a putative ‘pathway’, that is

a set of genes associated with a phenotype and strongly interacting with each

other. Unfortunately, extensive analysis of available pathways and disease-

associated geneset has shown that they often are fragmented and sparsely

mapped onto the PPI network, lacking the properties expected by topological

testing [Agrawal, Zitnik, and Leskovec 2018].

Moreover, our rigorous benchmarking of the statistics shows that shortest

path and module measures, previously used to show network effects and comor-

bidity patterns [Menche et al. 2015], are prone to false positives. We also have
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evidence that testing the same geneset onto two different PPI networks, that

are expected to be capturing similar and common properties of the interactome,

lead to different results. Considering the low sensitivity of PPI networks and the

challenge of aggregating data from the literature, we reason that methods that

only rely on the observed interactions might fail to fully capture the properties

of a geneset. Methods that try to predict interactions or that filter spurious

links [Silverbush and Sharan 2019] will possibly improve the reliability, and

interpretability, of topological testing.

Eventually, the biggest limitation of the approaches presented in this chapter

is the mapping of gene scores onto the network. Embedding multi-modal data

onto the network structure is not trivial, and all methods discussed here are

condensing the results of entire high-throughput experiments onto a score the

represents each gene status. While this is a necessary step for many graph

inference methods, collapsing multiple measures might result in information

loss. Multi-omics studies are becoming increasingly important and frequent, as

they directly capture the complexity of a cell. Henceforth, in the next chapter,

we present and discuss the methods for inference on multi-modal graph data.

82



5 Data integration on networks

In the previous chapter, we presented the state-of-the-art for the analysis of

graph topology in biological networks, with particular focus on the computational

tools available for interactome-level data analysis. We have shown that topology

alone is helpful to describe the connectivity of a subnetwork, but detecting the

full complexity of the structural organisation is much harder. Moreover, we

briefly discussed the limits of using single scores onto the network structure

and the difficulty of providing easily interpretable results.

Twenty years after the first genome was sequenced, a wealth of high-

throughput technologies can characterise samples at the genomics, transcrip-

tomics, and proteomics level [Reuter, Spacek, and Snyder 2015; Aslam et al.

2017; Lowe et al. 2017]. In practice, we are often dealing with multi-dimensional

datasets that capture various properties of the same samples. Multi-omics

analysis methods [Bersanelli et al. 2016; Reel et al. 2021] are increasingly

being used for cancer research; for instance, they have been applied to find

sources of heterogeneity in Chronic Lymphocytic Leukaemia [Argelaguet et al.

2018], to distinguish between tumor subtypes in liver [Chaudhary et al. 2018]

and oligodendroglial tumors [Kamoun et al. 2016].
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This amount and detail of data and the increased availability of PPI networks

suggest that methods for the integration of the interactome with multi-modal

data will produce novel insights into tumor biology. For instance, using previous

knowledge of somatic driver mutations to guide diffusion on the network results

in better predictions of putative drivers [Hristov, Chazelle, and Singh 2020]

and methods applied to multi-omics data to detect cancer-driving modules

outperform results on single-omics methods [Silverbush et al. 2019].

However, as it was discussed in the previous chapter, combining graph-

structured data and multiple node attributes (or features) is not trivial. Depend-

ing on the task, either class prediction or node clustering, there are appropriate

strategies to do inference on attributed graphs. First, the attributes are manipu-

lated to obtain scores that can be directly used with graph inference methods;

the features are transformed into a similarity matrix that weights the edges

of the network [Kuijjer et al. 2019], or multiple features are summarised in

a single node score [Leiserson et al. 2015; Silverbush et al. 2019]. Alterna-

tively, the graph is encoded onto the features space, such that they can be

directly analysed with methods for the analysis of tabular data. This is what is

done with node embedding methods [Goyal and Ferrara 2018] which apply a

graph-dependent transformation to the features, that are then analysed with

standard machine learning methods. Both these approaches can be thought

of as preprocessing steps, since the actual inference method does not directly

deal with either the features, in the first case, or the network, in the latter.

Eventually, node features can be used within the inference method; they can

guide a random walk [Hristov, Chazelle, and Singh 2020], can be transformed

into a distance metric to guide clustering [Bothorel et al. 2015], can be used

within an expectation-maximization algorithm to find subnetworks [Newman and

Clauset 2016]. In these cases, the features are incorporated into the model’s
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parameters resulting in more computationally expensive algorithms or a reduced

number of possible attributes.

Graph Neural Networks (GNNs) are a class of deep learning methods that

apply convolutions, or other nonlinear transformations, to graph-structured data

with multiple node features [Wu et al. 2019; Zhou et al. 2020]. GNNs explicitly

use the graph structure within their layers and optimization. Features are

transformed by using connectivity information, possibly at all hidden layers of

the Neural Network (NN); they apply multiple, sequential, embedding operations

both capturing short and long-range interactions within the network. Also,

both structure and node features can be used in the optimisation process by

specifying appropriate losses. Moreover, GNNs are built on top of the well-

established field of deep learning and borrow most of its optimization procedures

and, in practice, their community-maintained computational frameworks. The

key advance of GNN has been introducing differentiable transformations that

correspond to meaningful operations in the non-Euclidean graph space. From

both a mathematical and a practical point of view, NNs are easier to optimise

than graph inference methods and provide a flexible framework for testing and

tuning a model.

5.1 Graph Neural Networks

Neural Networks are a powerful resource that has become widely applied to

many different fields; for computer vision, natural language processing, image

classification, deep learning is by now ubiquitous, and recently it has also been

increasingly applied to biological data. Naturally, the first and more successful

implementations of NNs in biology have been for image processing [McKinney

et al. 2020; Haibe-Kains et al. 2020] and prediction of sequence function and

binding [Zhou and Troyanskaya 2015; Avsec et al. 2021; Yuan et al. 2019].
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These methods are applied to one- or bi-dimensional data, that allow to

efficiently define and apply matricial operations. Graphs, however, have much

more complex structures and cannot be directly projected onto a Euclidean

space. The first deep learning methods for graph data [Grover and Leskovec

2016; Perozzi, Al-Rfou, and Skiena 2014] borrowed the strategies used for text

documents to embed the node features into a Euclidean space, before applying

conventional NN layers. However, recently, NNs have been extended to explicitly

handle graphs, resulting in a deluge of novel GNN methods [Wu et al. 2019;

Zhou et al. 2020]. While the taxonomy of the field is still being updated, we can

anticipate that we are interested in the methods of Convolutional GNNs that

generalise the convolution operation onto the graph. In the remainder of this

section, we will introduce the basic intuition behind convolutional GNNs.

5.1.1 Convolutional Neural Networks

Let G = (V ,E) be an undirected graph, with V being the set of n nodes and

E being the set of m edges between nodes in G. Edges can be represented

by an adjacency matrix A ∈ Rn×n, such that Auv = 1 iff node u is connected to

node v in G, and 0 otherwise. The graph G can be attributed, that is each node

v correspond to a vector x ∈ Rf of properties. Contextually, each node could

belong to a group, such that each node corresponds to an assignment vector

y ∈ {0,1}c that specifies to which of the c classes the node belongs, s.t. yj = 1 iff

the node belongs to the j-th class.

Classical inference tasks would predict nodes’ classes, knowing only a few of

them (semi-supervised learning) or all of them (supervised learning), or cluster

the nodes in unknown groups depending on their features and connections

(unsupervised learning). The idea behind the GNNs is that considering the

features of a node and those of its neighbours enhances the performance

prediction. Hence, GNNs apply a filter to the graph that describes how to use
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the attributes in the neighborhood to update those of each node. While this is

easily managed into the Euclidean space through convolutions, graph nodes

can each have a variable number of neighbours, and distance measures are not

readily available in the non-Euclidean space. GNNs can apply such convolution-

like, or message-passing tasks [Scarselli et al. 2009], defining aggregation rules

that are independent of the size of the neighborhood.

First, we introduce the message-passing function in the spatial domain.

With x(k−1)i ∈ Rf denoting the features of node i in layer (k − 1), the simplest

message passing graph neural networks can be described as [Hamilton, Ying,

and Leskovec 2017]

x(k)i =W (k)
(
x(k−1)i ,AGGj∈N (i)

(
x(k−1)j

))
, (5.1)

where AGG denotes a differentiable, permutation invariant function, e.g., sum,

mean or max, and W are the weights of the Multi Layer Perceptron (MLP). The

gist of such layer is to represent the properties of the node at the k-th layer of

the NN as the combination of the properties of the node at the (k − 1)-th layer

and the aggregated features of the neighbouring nodes. The AGG operator is

equivalent to a spatial filter in the Euclidean space that defines, for instance, the

value of a one-dimensional temporal signal as the average of its value and that

of the preceding and following samples.

Generalizing Eq. 5.1, we can rewrite the message-passing layer as

x(k)i = γ (k)
(
x(k−1)i ,AGGj∈N (i)φ

(k)
(
x(k−1)i ,x(k−1)j

))
, (5.2)

where both γ and φ are differentiable functions with φ transforming the neigh-

borhood features. Different architectures have been proposed by changing

φ,γ,AGG; the Graph Attention Network [Veličković et al. 2018; Zhang et al.

2018], which applies the attention operation, well known in NN [Bahdanau,

Cho, and Bengio 2015; Vaswani et al. 2017], follows the same scheme of Eq.
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5.1, but it adds a learnable operation by using an MLP in φ that weights the

concatenated features of both node i and its neighborhood. Conversely, the iso-

morphism operator, GIN [Xu et al. 2019], approximates the Weisfeiler-Lehman

(WL) graph isomorphism test by using the sum aggregator, an MLP for γ , and a

scalar weight for xi.

However, convolutional filters can be also defined in the spectral domain

where the convolution operation is applied as matrix multiplication. Here, the

key issue is to transform the attributed graph in the spectral domain. First

we need to introduce the degree diagonal matrix D s.t. Di,i =
∑
jAi,j and the

graph Laplacian for an undirected matrix L = D −A. Let L = UΛUT be the

decomposition to the eigenvalues of L, where U are its eigenvectors and Λ the

eigenvalues. Given the feature vector x, its Fourier transform in the graph space

is F {x} =UT x. Given then a filter gθ, with Θ Fourier transform, the convolution

between the node and the filter becomes F {gθ ~ x} =ΘUT x.

Given the definitions above, a NN layer where a convolutional filter is applied

in the graph spectral domain is defined below:

H
(l)
(:,q) = σ


fl−1∑
i=1

U Θl−1
p,q U

T H l−1
:,p

 with j = {1, . . . , fl} (5.3)

fl are the feature dimensions for the l-th layer, that is the output of the NN

layers, and Θ
(l−1)
p,q is a diagonal matrix that defines the learnable filter between

the p-th input feature and the q-th output feature, as a transformation of the

graph eigenvalues. Eventually, σ is a typical non-linearity applied to the layer.

This formulation is general and allows to explicitly follow the transforms to and

from the spectral domain, as well as the general definition of the filter. However,

it is easy to spot some problems. First, the spectral domain is graph-dependent,

hence both the eigenvectors and the filters cannot be applied to a different

graph structure. Moreover, the decomposition to the eigenvalues of a graph
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is computationally expensive (O(n3)). All methods that are used in practice

approximate Θ to be independent of the graph, such that perturbations to the

graph would not invalidate the full NN training [Bruna et al. 2013; Henaff, Bruna,

and LeCun 2015].

From the general definition above, the simplest, but also most frequently

used convolutional layer, is the Graph Convolutional Network (GCN) [Kipf and

Welling 2016] that approximates the filter using a Chebyshev polynomial of the

first order and can be rewritten as:

H (l+1) = σ
(
Ã H (l)W (l)

)
with H0 = X (5.4)

where Ã = D̂−
1
2 ÂD̂−

1
2 is the degree normalised adjacency matrix with Â = A− I ,

W (l) are the learnable parameters of the layer, and H (l) are the hidden features,

or the input ones, X, for the first layer. We can see that from an operative point

of view, this formulation is easily computed as matrix multiplications with the

learnable parameters W independent of the graph. It is interesting to see that

the GCN defined in the spectral domain is equivalent to Eq. 5.1 with the xi values

normalised by degree and the mean function as AGG. Similar to GCN, the

Adaptive GCN (AGCN, [Li et al. 2018]), uses generalised Mahalanobis distance

to be able to apply the filter to a non-Euclidean space and to simultaneously

learn a modified adjacency matrix, that could be detecting unseen connections

or remove spurious ones.

The convolutional layers we have described above, although non-exhaustive,

are the fundamental models that have been revised, manipulated, and stacked

in most subsequent works on GNN. Similar to what happens with the other NN

models, optimal performance and best models require field-specific knowledge

and hyperparameter tuning [You, Ying, and Leskovec 2020; Ghasemian et al.

2020]. GNNs are now being increasingly used for PPIs [Li and Zitnik 2021];

they have been applied to cancer subtype prediction tasks [Rhee, Seo, and
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Kim 2018], cancer driver prediction [Schulte-Sasse et al. 2021], drug adverse

reactions [Zitnik, Agrawal, and Leskovec 2018], and drug repurposing [Gysi et al.

2021; Ruiz, Zitnik, and Leskovec 2021]. Hence, while we cannot directly draw

detailed architectures for gene function prediction, we believe that GNNs are

sufficiently powerful and flexible to be applied for the integration of multi-modal

cancer data.

5.2 An interpretable model for function and

structure prediction

GNNs have been shown to perform well for supervised and semi-supervised

node learning tasks [Kipf and Welling 2016; Veličković et al. 2018], hence they

could be applied to the discovery of novel cancer drivers [Hristov, Chazelle,

and Singh 2020; Reyna et al. 2020]. Nonetheless, deep learning methods are

classically considered a black box ; NNs do not provide interpretable results,

often using multiple hidden layers, with thousands of parameters. As a result,

trained models that achieve quasi-perfect learning performances need additional

steps to retrieve and interpret the network decisions [Baldassarre and Azizpour

2019]. This issue is even more compelling for biomedical applications where it is

particularly important to justify the algorithm predictions with a clear underlying

model. Specifically for cancer, we have discussed the need for methods that

are able not only to detect novel driver genes but also to provide the putative

subnetworks implicated in the phenotype.

The Stochastic Block Model (SBM) [Holland, Blackmond, and Leinhardt

1983] is a generative model that stochastically defines the network structure

through multiple communities and the probability of connection within and

between them [Lee and Wilkinson 2019]. For a non-attributed graph, the model

is fully specified by the SBM matrix B ∈ [0,1]k×k, and a membership matrix

90



5.2. An interpretable model for function and structure prediction

Z ∈ {0,1}n×k. For k communities (or blocks), each value Bij is the probability of

connection between two nodes of the i and j community, while each entry of

the membership matrix, Zvk denotes whether the node a node v belongs to the

k-th block. This model can also be used to infer the communities in an observed

network by finding B and Z such that the likelihood of observing the network from

the model is maximum [Karrer and Newman 2011]. Compared to the simplest

formulation above, the SBM has been extended with more complex, and realistic,

versions of the model; for instance, models with weighted assignments of the

nodes to the block [Airoldi et al. 2009] or overlapping blocks [Peixoto 2015], and

models with node attributes [Stanley et al. 2019; Newman and Clauset 2016].

The SBM has also been used multiple times for genomic networks [Larremore,

Clauset, and Buckee 2013; Ghasemian et al. 2020; Airoldi et al. 2009; Kavran

and Clauset 2020; Padi and Quackenbush 2018], confirming that it is a suitable

model to infer communities within a biomedical network setting.

In the next section we present the SBM-GNN architecture, that combines

SBMs with GNNs to simultaneously infer communities within the network and to

perform supervised learning on multi-modal data. The idea behind the model

is that the node function depends both on its features and on the community it

belongs to. The model allows us to directly detect pathways of genes that are

strongly connected with each other, which is an unsupervised learning task, to

predict novel drivers, supervised learning, and, finally, to link the prediction to

an explainable higher-order network structure.

We benchmark the performances of our model by simulating networks and

features with known community parameters. Desirably, the SBM can be used to

generate networks with controlled properties; we use it to simulate networks

with planted communities where we modulate the detectability of the block

structure. First, we test the performance of the network with unsupervised

91



5.3. Discovering cancer driver genes and pathways using stochastic block
model graph neural networks

learning for community detection. Moreover, we simulate block-dependent

features and labels for all the nodes, and we test how SBM-GNN performs for

both community detection and labels prediction.

Then, we apply SBM-GNN for the prediction of novel cancer driver genes

by using a recently published genomic dataset. Our model is able to correctly

detect communities and it outperforms state-of-the-art methods for driver gene

prediction. Nonetheless, we believe that the major advantage of SBM-GNN

is the readily interpretable description of the whole interactome, which is also

directly linked to the gene prediction task. This allows explaining how each gene

participates in the cancer phenotype by testing each block for the enrichment of

known functional pathways.

5.3 Discovering cancer driver genes and

pathways using stochastic block model

graph neural networks

The whole manuscript has been drafted by V. Fanfani, with the supervision

and contributions of of G. Stracquadanio. The method was developed by V.

Fanfani under the supervision of G. Stracquadanio and P. Liò. P. Liò and R.

Vinas-Torme, contributed to the editing of the manuscript.

Errata corrige

In Eq. 7 (page 4): ‘Â =A+ In is the adjacency matrix with added self-edges

used by the ‘renormalization trick’ to avoid numerical instabilities’.

Amended caption for Fig. 4 (page 17): ‘Block level organization of cancer

driver genes. From left to right, we group the genes according to their original

label (known), the block they belong to, as inferred by SBM-GNN, for the SBM of
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size ks = 20,10,5 (red, blue, green hues), and their predicted labels (Predicted).

The size of each box depends on the number on genes falling into each category,

for instance the ‘cancer driver genes’ group on bottom left represents the 169,

out of ∼ 10,000 genes in the network, that are originally labelled cancer drivers.

Between different boxes, we are plotting branches representing the number

of nodes shared between the two groups. The SBM block b20_19, dark red,

shares many genes with b10_3, light blue. Interestingly, SBM-GNN is not

assigning all the driver genes to the same block (the cancer drivers, dark grey

box on the left, are assigned to multiple blocks of in the SBM of size 20, red

hue boxes), thus the inferred structure is not only dependent on their labels as

expected. Moreover, it is worth noting that between different SBM layers there

are consistent rearrangings, rather than clear hierarchies, possibly reflecting

the complex structural and functional organisation of the network’.
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Abstract

The identification of genes and pathways responsible for the transformation of normal cells
into malignant ones represents a pivotal step to understand the aetiology of cancer, to char-
acterise progression and relapse, and to ultimately design targeted therapies. The advent
of high-throughput omic technologies has enabled the discovery of a significant number of
cancer driver genes, but recent genomic studies have shown these to be only necessary
but not sufficient to trigger tumorigenesis. Since most biological processes are the results
of the interaction of multiple genes, it is then conceivable that tumorigenesis is likely the
result of the action of networks of cancer driver and non-driver genes.

Here we take advantage of recent advances in graph neural networks, combined with
well established statistical models of network structure, to build a new model, called Stochas-
tic Block Model Graph Neural Network (SBM-GNN), which predicts cancer driver genes and
cancer mediating pathways directly from high-throughput omic experiments. Experimental
analysis of synthetic datasets showed that our model can correctly predict genes associ-
ated with cancer and recover relevant pathways, while outperforming other state-of-the-art
methods.

Finally, we used SBM-GNN to perform a pan-cancer analysis, where we found genes
and pathways directly involved in the hallmarks of cancer controlling genome stability, apop-
tosis, immune response, and metabolism.

1 Introduction

The classical paradigm of cancer formation suggests that tumors arise from the stochastic ac-
cumulation of somatic mutations in key genes, called cancer driver genes, which give aberrant
cells the ability to escape cell death and immune response and to grow uncontrollably through-
out the body [1, 2].

The advent of high-throughput sequencing technologies has enabled the study of a broad
spectrum of cancers and the identification of hundreds of driver genes across different malig-
nancies [3, 4]. While the causal role of many genes in cancer has been confirmed by in-vitro
and in-vivo models, recent studies have shown that driver mutations occur also in normal tis-
sues [5, 6]. These observations suggest that driver mutations are necessary but not sufficient
for tumorigenesis, and that the order in which they are acquired and the joint alteration of non
cancer driver genes is important to transform a normal cell into a malignant one.

*Corresponding author. Email: giovanni.stracquadanio@ed.ac.uk
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While the evolution of cancer cells can now be studied at sufficient resolution to generate
testable hypotheses, discovering pathways of driver and non-driver genes associated with can-
cer has been challenging [7]. Current high-throughput omic assays provide only information
with single-gene resolution, whereas gene and protein interaction experiments provide only
pairwise information. It has now become apparent that methods able to perform multi-omic
analyses at the pathway level are pivotal to understand the aetiology of cancer and design
effective therapies.

In the last ten years, there have been substantial efforts to develop network analysis meth-
ods that would capture cancer poligenicity [7]. Nonetheless, current approaches typically focus
on predicting either new cancer driver genes [8] or cancer driving pathways [9] by integrating
multi-omic information; however, these methods usually aggregate multiple experimental infor-
mation into a gene-level score, which effectively masks the effects and relationships between
multiple biological processes underpinning cancer phenotypes.

Here we addressed current limitations in network-aware cancer analysis by developing a
new method to simultaneously discover cancer driver genes and pathways by integrating gene-
level high-throughput experiments with protein interaction information. To do that, we built
a new deep learning model, combining graph neural networks (GNNs, [10]) and stochastic
block models (SBMs, [11]), called Stochastic Block Model Graph Neural Network (SBM-GNN).
GNNs provide a framework to obtain network-aware embeddings of gene level features; these
models have been successfully applied to a number of tasks, including node labelling and link
prediction [12, 10, 13], and have been shown to provide meaningful representations of omic
data [14]. Embeddings are then combined with SBMs, a robust generative framework to model
network connectivity, to infer new pathways. Importantly, our model can be fit end-to-end using
standard gradient descent and scales efficiently with the size of the datasets.

To assess the performances of our method for discovering cancer driver genes and path-
ways, we built a simulation framework to generate synthetic networks with different structures
and feature-level multi-modalities; experimental results show that our method is able to detect
cancer driver genes and pathways with high accuracy. We then applied SBM-GNN to pan-
cancer genome data [3]; here we found that our method outperforms other state-of-the-art ap-
proaches in identifying cancer driver genes, while being able to discover pathways associated
with the hallmarks of cancer.

2 Methods

2.1 Model architecture

Let G = (V, E) be an undirected graph, with V being the set of n vertices (or nodes) representing
genes or proteins, and E being the set of m edges (or links) between nodes in G. Edges can
be represented by an adjacency matrix A ∈ Rn×n, such that Auv = 1 iff node u is connected
to node v in G, and 0 otherwise. We define X ∈ Rn×f as the matrix of f gene features (e.g.
mRNA abundance, number of somatic mutations), and Y ∈ {0, 1}n×c a matrix of c gene labels
(e.g. being a cancer driver gene), such that Yuq = 1 iff node u has label q and 0 otherwise.

Here we hypothesise that node labels depend on the observed gene features and their
involvement in pathways mediating the phenotypes of interest; this information is obviously
unknown but can be learned from the data.

We denote with Ŷ, Ĝ = M(G,X,Y) a model that takes in input a graph G, a feature matrix
X, and a label matrix Y and predicts new labels Ŷ and a new graph Ĝ. Our model consists
of three layers: a network-aware embedding layer, a community detection layer, and a label
prediction layer.
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The network-aware embedding layer is used to learn a latent dense representation of the
biological processes mediated by each gene and its immediate neighbours. The embedding
for X can be computed using a non-linear transformation, ψ, defined as:

X̂ = ψ(A,X) (1)

where X̂ ∈ Rn×f̂ is an f̂ -dimensional embedding conditioned on the observed node fea-
tures X and the adjacency matrix A of the graph G.

We then wanted to detect how genes are organised in pathways. To do that, we imple-
mented a community detection layer, which allows us to identify groups of nodes that are
strongly connected to each other and that have homogeneous features. To perform community
detection, we used a layer that models network structure using Stochastic Block Models (SBM)
[15]. SBM is a generative model where edges between nodes depend on a community matrix
B ∈ [0, 1]k×k and a membership matrix Z ∈ [0, 1]n×k, where k is the number of unknown blocks.
Each entry of the membership matrix, Zik denotes the probability that a node i belongs to the
k-th block, which effectively corresponds to assigning genes to pathways. In a canonical SBM,
Z is binary; however, genes often belong to multiple pathways, thus we relaxed this constraint
by allowing for mixed membership, s.t.

∑
k Zik = 1. Each entry of the community matrix Bij ,

instead, denotes the probability of observing an edge between two nodes belonging to blocks
i and j, respectively (see Supplementary Materials, Supplementary Figure 1). In practice, we
infer B from the matrix of observed edges C = ZAZT , where Cij is the number of edges
between blocks i and j [16].

However, since cancer is not only mediated by short-range but also long-range interactions,
a naive approach combining a network embedding layer with a SBM layer will likely lead to
poor performances. To overcome this problem, we designed our model to simultaneously learn
multiple SBMs with a decreasing number of blocks, as a way to force the model to capture both
short and long-range interactions. Here we defined a multi SBM layer, as a layer consisting of
S SBMs with different numbers of blocks, ks. W.l.o.g. we assume s = 0 to index the SBM with
the smallest number of blocks; intuitively, high index SBMs represent fine-grained communities,
whereas low index SBMs represent coarse-grained communities.

To learn the membership matrix Z(s) for the s-th SBM, we apply a non linear network-aware
transformation ζ to the embedding of the node features, X̂, as follows:

Z(s) = softmax(ζ(A, X̂)) (2)

where the softmax transformation ensures that
∑

i=1...ks
Z
(s)
i = 1.

Finally, to perform node label prediction, we concatenated S membership matrices Z(s)

column-wise, and use the resulting matrix as input for the output layer, φ, as follows:

Ŷ = σ(φ([Z(1)|Z(2)| . . . |Z(S)])) (3)

where σ is a non-linear transformation suitable for binary or multi category classification.

2.1.1 Learning parameters of an SBM-GNN model

To fit our model, we defined a differentiable loss function, L, as follows:

L = Lclass + Lsbm + Lmix (4)

where Lclass is a supervised loss function for label prediction, whereas Lsbm and Lmix are
unsupervised loss functions for learning communities. Specifically, given a membership matrix
Z and a block matrix B, Lsbm is the likelihood of observing m edges in G defined as:

Lsbm = −(1T(C ln(C))1− (ln1TZ)C1− 1TC(lnZT1)) (5)
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and which in turn is averaged across each SBM layer [16]. Moreover, the contribution of Lsbm
is weighted as a function of the number of epochs, such that the learning process is forced to
minimise the community loss first and to learn how to classify the nodes later.

However, fitting multiple SBMs tends to assign nodes to only few blocks, effectively skipping
learning community structures. To overcome this problem, we introduced a membership loss
function, Lmix, defined as:

Lmix = −
[
H(ZZT /n)

]−1
(6)

whereH is the entropy function and n is the number of nodes; in practice, Lmix penalizes model
configurations assigning all nodes to a single community.

2.1.2 Implementation

Our architecture can be easily tailored to different type of data and analyses by using appropri-
ate transformations for ψ, ζ, φ. Our goal is to predict cancer driver genes and cancer associated
pathways; thus, we defined our base model as follows:

X̂ = ψ(A,X) = ReLU(D̂−1/2ÂD̂−1/2XW(0))

Z(s) = softmax(ζ(A,X)) = softmax(D̂−1/2ÂD̂−1/2X̂W(s)) for s in {1, ..., S}
Ŷ = σ(φ([w1Z

(1)| . . . |wSZ
(S)])) = sigmoid(dense([w1Z

(1)| . . . |wSZ
(S)]))

(7)

where Â = A−In is the and D̂ is the node degree matrix of Â. Layers ψ and ζ are implemented
using Graph Convolutional Network (GCNs, [10]) layers, and φ is a fully connected layer. Im-
portantly, we rescale membership information by learning weights, ws, in order to identify the
most relevant blocks with respect to the node labelling task.

We also explored other architectures, where we changed the ψ and ζ layers, while keeping
fixed the fully connected layer to perform label prediction; we denoted each model configuration
using a positional notation (see Table 1).

A possible limitation of our base model is that gene labels might be strongly correlated to
gene features, and this information might not be captured only by the SBM layers. Here, we
addressed this limitation by concatenating the embedding of gene-level features to the mem-
bership vectors, such that Y = σ(dense([w1Z

(1)| . . . |wSZ
(S)|X̂])); we refer to this layer as a

residual layer (denoted by the suffix RES in the name) [17].
We also considered introducing pre-processing steps to speed up learning model parame-

ters by augmenting our input node features. Biological network analyses have shown that graph
diffusion is a powerful technique to extract information from protein interaction data ([18]). Thus,
we decided to also test the use of graph diffusion as a pre-processing step using a sparsified
version of a random walk diffusion matrix, called Graph Diffusion Convolution layer (GDC, [19],
denoted by the prefix GDC in the model name).

Taken together, we tested 4 different model architectures that we then trained with either
pre-processed and raw node features, and using residuals (see Table 1).

2.2 Synthetic data simulation

2.2.1 Synthetic gene networks

We simulated networks as a mixture of a perfect communities graph (GSBM ) and a random
Erdos-Renyi network (GER) [20]. By varying a noise parameter η, we parametrised the con-
tribution of noise and planted communities as G ∼ (1 − η)GSBM +η GER, whereas network
sparsity is controlled by a density factor d (see Supplementary Materials, Supplementary Fig-
ure 2). As already shown, a stochastic block model with k communities and n nodes is defined
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by a stochastic matrix B and a node assignment matrix Z; this model allows us to simulate
different network structures by simply varying B, Z and η.

With this model in place, we first simulated networks with multiple non overlapping assor-
tative communities of approximately the same size, in order to assess whether our model is
able to recover known communities. In this case, B is a diagonal matrix with Bii = pSBM, while
the noise is added as an Erdos-Renyi network with a constant probability of connection pER
(see Supplementary Materials); with these parameters, we then generated k blocks harbouring
approximately n/k nodes each.

We then used the Signal to Noise Ratio (SNR) as an indicator of community detectability,
such that we can measure whether the SBM model is distinguishable from background noise.
The SNR is defined as follows:

SNR =
(a− b)2
2(a+ b)

(8)

where a and b are the average degree within and outside the community (a = npSBM and
b = npER) and n is the total number of nodes; by modulating pER and pSBM, we can control the
SNR for a given network. Theoretically, SNR > 1 is the threshold for detectability, but it has
been already shown that controlling for SNR > 1.5 is more reasonable [21].

However, since SBM-GNN is designed to detect multiple communities of different size, we
simulated networks with hierarchical structure as follows; given a depth value, h, we generated
h hierarchical layers of 2h blocks each. Then, B is obtained as the average of the h layers, such
that the smallest communities are the most assortative ones. Although there is no need to plant
a hierarchical structure, this is a reasonable and realistic procedure to generate a network with
multiple structured communities.

2.2.2 Synthetic gene features

We have also generated community-aware features conditioned on community structure, such
that nodes belonging to closer communities are more likely to share similar features. To do
that, we generate correlated random variables using the feature coloring method, which is the
inverse of features whitening, a method routinely used to remove correlation between random
variables.

Specifically, we first generated features as independent random variables drawn from a
Normal distribution, N (µi, σ), where the average µi depends on the i-th community the node
belongs to (see Supplementary Materials); then, the coloring procedure is applied such that
features are conditioned on the SBM structure of the network, which leads to features that
are probabilistically more similar for nodes within the same community (see Supplementary
Materials).

2.2.3 Community detection metrics

We then introduced two different metrics to assess community detection performances, namely
the Jaccard coefficients, Jc, and the assignment penalty.

In our case, we measured Jc between each simulated block, Ri, and each block learnt by
SBM-GNN, R̂j , obtained by assigning the nodes to the block with highest membership proba-
bility. Since the node assignment to the blocks is order invariant, for each learnt block we used
Jc(Ri, R̂j), where R̂j = argmaxj Jc(Ri, R̂j).

However, Jaccard coefficients do not measure the uncertainty of the node membership.
Thus, we defined the assignment penalty metric, Pij , between a known block assignment Z:i,
that is the known assignment for each node to the i-th block, and the SBM-GNN assignment Ẑ:j,
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as Pij =
∥∥∥Z:i − Ẑ:j

∥∥∥
2

F
, where ‖‖2F is the Froebenius norm. Similar to the Jaccard coefficient,

we used the penalty metric for the j-th block as Pj = mini(Pij). We then aggregated penalty
scores into a single term, Ptot, by summing all penalties and normalising them w.r.t the number
of nodes and the number of blocks, such that 0 ≤ Ptot ≤ 1.

2.3 Cancer genome data and protein interaction datasets

We downloaded genomic data from the Pan Cancer Analysis of Whole Genomes (PCAWG)
project [22], used in the companion pathway and network analyses [23, 24]. We then obtained
p-values associated with the confidence that a genomic locus is a driver; specifically, for each
gene, we considered p-values for coding (CDS) regions and 4 different types of non-coding
regions, namely 3’ UTR, 5’ UTR, promoters and enhancers, and then used Fisher’s method to
transform p-values into χ2 statistics.

We considered five different cancer panels as gene labels, both for training our model and
evaluating its performances, including the pathway implicated drivers (PID) gene list and the
COSMIC Cancer Gene Census (Cosmic) [25] (see Table 3).

Finally, we used two protein-protein interaction datasets: the STRING [26] and BioGRID
[27] database. We processed both datasets to keep only high confidence interactions [24] and
connected components; here we found BioGRID to be smaller and less dense than STRING
(see Table 2).

3 Results

3.1 Performance on simulated data

We rigorously tested the performance of SBM-GNN on simulated networks generated by SBMs
with controllable parameters, which is key to prove that our model is able to detect communities.

To do that, we simulated SBM networks with two blocks by drawing pSBM ∼ Uniform(0.5, 0.7)
and adjusting the diagonal values of B to control the Signal to Noise Ratio (SNR), while using
the identity matrix as gene features. Consistent with previously reported estimates, SBM-GNN
was able to correctly detect the planted communities for SNR > 1.5 (see Figure 2A).

We then assessed the performance of our method on networks with more than 2 commu-
nities and in the presence of gene features. In this case, we simulated networks of 1000 nodes
with 4 blocks as a mixture of SBM structures, with noise weighted by η = {0.1, 0.3, 0.6, 0.9}.
For each network, we then simulated genes with 5, 10, 20 features and generated 5 replicates
for each possible parameters setting; in this case, we used both uncorrelated and colored fea-
tures. Here we found that SBM-GNN was able to accurately detect communities in presence of
more than 2 blocks and with multiple annotations (see Figure 2B). Moreover, by increasing the
number of correlated features, which corresponds to strengthening the signal, performances
clearly improved (see Figure 2B).

After confirming that SBM-GNN can detect communities, we tested its performances on
node labelling and compared it to other GNN models, including GCN[10], GAT[13], SAGE[12],
and a LINEAR model, that is a neural network made of two fully connected layers that ignores
graph structure. While other, more complex, methods might have better performances on spe-
cific datasets, these three methods are usually at the foundation of most state-of-the-art ap-
proaches.We used our simulation framework to build networks and datasets with 5, 10,20 col-
ored genes features and 10% of positive labels (see Figure 2C), ultimately generating 5 datasets
for each possible parameters setting. For η < 0.5, signal is weighted more than noise, and all
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graph-aware methods yield better performances than a random classifier, whereas the LIN-
EAR model always had Receiver Operating Characteristic (ROC) Area Under the Curve (AUC)
AUC ∼ 0.5. Interestingly, as the number of correlated features increases, SBM-GNN clearly
outperformed the other models, suggesting that our approach is able to better exploits high-
dimensional data.

Taken together, our simulations showed that SBM-GNN is a robust and effective architecture
to identify network communities and to predict node labels using high-dimensional gene-level
information.

3.2 Performance on pan-cancer genome data

We then used our model to perform cancer driver gene prediction and cancer pathways dis-
covery using pan-cancer genomic data [3] and two protein-protein interaction datasets, namely
STRING and BioGRID, while using the PID gene panel as node labels for training. Here we
used both our base architecture and a set of 9 other SBM-GNN extensions, since fine tuning
the layers and parameters is often key to yield the best performances in deep learning (see
Supplementary Materials).

Interestingly, we found that all architectures performed remarkably well (AUC > 0.7) regard-
less of the protein interaction dataset used, albeit STRING seems to provide consistently better
results (see Figure 3A). Moreover, we found that adding the residual information consistently
improved the performances of our model, and similarly, but to a lesser extent, the use of graph
diffusion.

We then compared the performance of SBM-GNN with that of GCN [10], GAT [13], SAGE [12],
and a basic model with two fully connected layers, LINEAR (see Supplementary Materials). Most
SBM models achieved comparable performances with the other deep learning models (see
Table 4), but the residual version of SBM-GNN consistently achieved the best performances,
with GCN being the best alternative.

3.2.1 Comparison with state-of-the-art cancer driver prediction methods

We then compared SBM-GNN performance with state-of-the-art methods for cancer driver
gene prediction (see Supplementary Materials). There is a vast literature on methods designed
to identify new cancer driver genes, with many of them using network information [8, 28, 29].
Recently, the using Knowledge In Networks (uKIN) [8] has been shown to be the gold stan-
dard in the field, and hence we used it as a benchmark to analyse SBM-GNN performance.
Conversely, methods for community detection are less established. There are a plethora of
methods that detect cancer-associated submodules, that are connected subset of genes driv-
ing cancer [9, 30], but they do not explain the structure of all the nodes that are not implicated
in cancer. However, for completeness, we compared SBM-GNN performance with Hierarchical
Hotnet (HHotNet) [9] to explore the performance of this class of methods (see Supplementary
Materials). It is worth noting that HHotNet and uKIN are unsupervised methods, albeit the
latter uses information on known cancer driver genes to guide the diffusion process. For this
reason, we carried out comparisons both with models trained and tested on the PID labels, and
by training on the COSMIC panel and testing on PID. SBM-GNN performance was consistent
with those of uKIN and outperformed it when using PID labels (see Figure 3C). Unsurprisingly
HHotNet had a clearly worse performance. While results are not directly comparable, it is in-
teresting to observe that submodule inference is not directly applicable to identify new cancer
drivers.
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3.2.2 Discovering cancer pathways by inspecting stochastic block models

Our method is not limited to the prediction of cancer driver genes, but more importantly provides
an interpretable picture linking cancer driver genes to the pathways they are involved in. Our
hypothesis is that cancer driver genes are targeting multiple, possibly distant pathways, and
that complex relationships might be captured by fitting multiple SBMs. Thus, using our model,
we analysed the blocks harbouring cancer driver genes, the relationship between SBMs, and
how the learnt blocks can be used to identify cancer pathways.

We selected the model with the lowest loss and analysed the genes assigned to each block.
As we hypothesised, cancer drivers genes are assigned to multiple blocks, both in the coarser
and finer SBM layers (see Figure 4). This observation is consistent with the fact that cancer
driver genes, such as TP53 or MYC, are involved in multiple biological processes. Interestingly,
in most cases, cancer driver genes represent less than 20% of the genes in a block, which is
consistent with a model of tumorigenesis where driver genes mediate cancer phenotypes by
interacting with non driver ones.

Finally, we functionally characterised the genes in the blocks identified by SBM-GNN, in
order to provide a system-level picture of gene organisation encoded by the SBM. To do that,
for each block of genes, we performed a Fisher’s exact test using the Reactome genesets
(see Figure 5). Since we are organising the network in communities, we expect to find blocks
recapitulating cancer-associated pathways, alongside others not mediating cancer phenotypes.

At the higher level, our model identified blocks of genes associated with hallmarks of cancer
[31], in particular programmed cell death, metabolism which is associated with deregulation of
cellular energetics, and genome instability through alteration of the DNA repair and replica-
tion machineries. Specifically, by looking at the 20 block SBM, we found one (b20 16) having
86% of its genes been predicted as cancer driver genes, which recapitulates 72% (OR:45.1, p:
1.43×10−8) of genes involved in the Calcineurin activates NFAT process, that is a T-cell related
process involved in cancer progression and metastasis [32, 33], 70% (OR: 44.4, p: 2.32×10−22)
of the genes involved in Adjerens Junctions Interactions, and 60% (OR: 23.6, p: 1.11 × 10−6)
of the genes associated with Repression of WNT target genes pathway, which are both well
known processes involved in cell motility and proliferation. Moreover, we also found another
block (b20 6) encompassing the PIK3 cascade pathway (OR: 5.74, p: 2.07 × 10−6) and multi-
ple FGFR1 and FGFR2 signalling processes, which are known to be critical for tumorigenesis
[34]. Conversely, for example, block B20 11, which does not harbor any cancer driver gene, is
associated with non-cancer related processes, such as Olfactory Signaling.

Taken together, we have shown that our model is able to recover genes and pathways
associated with well characterised cancer mediating processes; in particular, by learning SBMs
with an exponentially growing number of clusters, it is possible to go from broad molecular
hallmarks to specific biological processes.

4 Conclusions

Tumorigenesis is triggered by a complex molecular reprogramming mediated by genetic, ge-
nomic, and molecular alterations acquired by driver and non-driver genes. While it is now
possible to quantitatively assess the impact of these changes at the single gene level, recon-
structing a system-level picture of cancer cells remains a challenging task.

Here we introduced a new model, called SBM-GNN, combining recent geometric deep
learning architectures with stochastic block model to simultaneously infer cancer driver genes
and associated pathways; our model provides a scalable approach to integrate multi-omic data
with protein-interaction information, that can be used to generate testable hypothesis at the
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gene and pathway level. We validated our method using an extensive set of simulations show-
ing that SBM-GNN can correctly identify cancer driver genes and cancer related pathways.

We then applied our method to the analysis of pan-cancer genomic data, where we showed
that SBM-GNN can predict driver genes with high accuracy and identify blocks of genes associ-
ated with well-know hallmarks of cancer. On this point, the ability of our model to learn an easily
interpretable pathway organization of cancer genes provides new opportunities to dissect the
system-level reprogramming underwent by cancer cells.
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Tables

Model ψ ζ

GCN-GCN GCN GCN
LIN-GCN fully connected GCN
GCN2-GCN GCN depth 2 GCN
GCN-LIN GCN fully connected

Table 1: SBM-GNN implementations. For each implementation used in our study, we re-
port the type of layer used for the network-aware embedding function, ψ, and the membership
assignment function, ζ.

# nodes # edges Density Max degree Median degree Mean clustering
STRING 10224 205422 0.003931 1882 11.0 0.46084
BIOGRID 5440 16346 0.001105 248 3.0 0.187394

Table 2: Protein-protein interaction network properties. For each network, we report the
number of nodes, the number of edges, the density, the maximum and median node degree,
and the median clustering coefficient.

# genes BIOGRID STRING

PID 169 134 161
COSMIC 719 481 610

Table 3: Cancer driver genes panels. For each cancer driver gene panel, we report the
number of genes, and the number of genes mapped to genes in BIOGRID and STRING.
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Network Model Precision Recall BACC AUC

BIOGRID

GAT 0.0798 0.6194 0.7174 0.8086
GCN 0.0798 0.6294 0.7212 0.8282
LINEAR 0.0250 1.0000 0.5000 0.7814
SAGE 0.0832 0.7024 0.7516 0.8236
GDC-LIN-GCN 0.0662 0.5316 0.6684 0.7372
GDC-LIN-GCN-RES 0.0894 0.7120 0.7626 0.8568
GCN-GCN 0.0764 0.5952 0.7046 0.7984
GCN-GCN-RES 0.0772 0.6440 0.7226 0.8180

STRING

GAT 0.0418 0.8366 0.6620 0.6844
GCN 0.0604 0.7554 0.7824 0.8660
LINEAR 0.0210 0.9346 0.5420 0.8150
SAGE 0.0630 0.8044 0.8052 0.8626
GDC-LIN-GCN 0.0524 0.6654 0.7358 0.8350
GDC-LIN-GCN-RES 0.0694 0.8368 0.8270 0.8948
GCN-GCN 0.0508 0.6368 0.7218 0.8046
GCN-GCN-RES 0.0598 0.7554 0.7810 0.8478

Table 4: Performance analysis of different models on cancer driver genes prediction.
Models were trained using either the BIOGRID or the STRING protein-interaction network, and
the PID panel of cancer driver genes. For each model, we report the precision, recall, balanced
accuracy (BACC) and Area Under the ROC Curve (AUC) averaged over 5 independent runs.
We report in bold face the best performance for each metric, and the best overall model.
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Figures

K = 2 K = 3 K = 5

Multi-level community detection

High-throughput data
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Cancer gene panels

Network-aware embedding

Cancer driver gene prediction

Graph Convolutional layer

σ

Stochastic Block Model layer

Fully connected layer

σ σ σ
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Protein interaction data

Figure 1: An overview of the Stochastic Block Model Graph Neural Network (SBM-GNN)
model. Here we present a sketch of the processing steps (left) implemented by SBM-GNN
into a deep neural network (right). Our model takes in input protein interaction data, high-
throughput omics data and a cancer driver gene panel, which classifies each node as being
a driver or not. Then, a Graph Convolutional layer is used to generate a gene-level network-
aware feature embeddings, which in turn are used to assign genes to communities learned
by multiple Stochastic Block Model (SBM) layers with varying number of blocks. Finally, the
network structure learned by SBM layers is used as input for a fully connected classifier to
predict cancer driver genes.
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Figure 2: SBM-GNN performance on synthetic data. A) On the y-axis, we report the total
normalised penalty obtained for 2 block SBM networks, whereas the x-axis reports SNR values
and colors denote different density parameters. For for SNR= 0.5, non-detectable blocks,
the total penalty is approximately 1, which corresponds to the maximum error. Total penalty
drops for SNR> 1.5, confirming that our model is able to recover the network structure. B)
Performance on uncorrelated and colored features for simulated networks with 4 blocks. On
the x-axis, we show the penalty value on block assignments at varying levels of noise, η, where
communities should become detectable for η < 0.5. We report results for 5, 10, 20 gene features
(colored) and for network density d = {0.05, 0.1} (columns). C) Classification performance
(AUC) of SBM-GNN , GAT, GCN,SAGE, and LINEAR architectures (color) on colored features
and synthetic networks with 4 blocks. Results are shown for different η (x-axis) and for 5, 10, 20
features (columns). For low η values, all graph neural networks have performances significantly
better than a random classifier (AUC> 0.5). Interestingly, as the number of correlated features
increases, we observed a significant improvement on SBM-GNN performance.
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Figure 3: SBM-GNN performance on cancer driver genes prediction. A) Cancer driver gene
prediction measured as the area under the receiver operating characteristic curve (ROC AUC),
for different SBM-GNN architectures. We have sorted them by average performance over 5
runs. For both the BIOGRID and STRING networks, we found GDC-LIN-GCN-RES architecture
achieves the best performances; interestingly, adding residuals information increase the AUC
for both SGCN-GCN and LIN-GCN models. It is also worth noting that all neural networks with-
out a network-aware block assignment layer, namely GCN-LIN, GDC-GCN-LIN, have consistently
worse performances. B) We compare the recall (x-axis) and precision (y-axis) of hierarchical
hotnet (HHotNet), UKIN, and SBM-GNN (colors) on BIOGRID and STRING networks (mark-
ers). Dashed lines are the theoretical relationship between precision and recall at the specific
percentile for each network. For UKIN and SBM-GNN, we reported as cancer driver genes
those above the 80th percentile of their scores. Here, we found SBM-GNN with residuals to
be the best performing method, a trend we also observed when we trained our model on the
COSMIC gene panel.
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Figure 4: Block level organization of cancer driver genes. From left to right, we show the
cancer labels, the blocks of size ks = {20, 10, 5} and the predicted labels. Between different
nodes, we are plotting branches representing the number of nodes shared between the two
blocks. The last blocks on the right are those that SBM-GNN predicts as significant.
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Figure 5: Block level Reactome geneset enrichment analysis. For each block (columns),
we plot the top five statistically significant genesets ranked by odds-ratio (OR) from the Fisher’s
exact test. For each Reactome geneset (rows), we also report their parental group (color
annotation), which allows us to identify macro functional classes. For each block, we show,
from top to bottom, the number of genes in the block, the number of known cancer driver genes
in the block and the fraction of those predicted by our model.
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5.4. Conclusions

5.4 Conclusions

We have presented a new model, SBM-GNN, combining geometric deep

learning and stochastic block models to simultaneously infer cancer driver genes

and associated pathways. By applying it to curated pan-cancer genomic data,

we have been able to obtain accurate predictions of driver genes and we have

shown how the combination of network structure and node function can be used

to explain our prediction.

This model has the potential to solve many of the issues raised and described

in this thesis. First, using the GNN readily allows the integration of multi-modal

data and PPI networks. By using the GCN and Graph Diffusion Convolution

(GDC) layers we are effectively applying a multi-feature diffusion process, which

has been shown to be well suited for biological applications [Cowen et al.

2017]. Moreover, the SBM can automatically detect submodules implicated in

tumorigenesis and link them to known functional pathways and processes.

Nonetheless, we recognise that this work has some limitations. Surely, the

model could, and should, be extended to a more comprehensive and realistic

analysis of multi-omics cancer data. While we were able to obtain state-of-the-

art performances with the genomic dataset, it is worth noting that the features

we used are highly-curated statistics obtained only from mutational data. Actual

multi-omics annotated data and comparable methods [Schulte-Sasse et al.

2021] will provide further evidence of SBM-GNN performance and explainability.

Here we need to specify that the only directly comparable work [Schulte-Sasse

et al. 2021] was published as we were finalising the analyses of this chapter. We

do anticipate that a detailed comparison will be included in future applications

of the method.

Additionally, we have shown that the general architecture of SBM-GNN can
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5.4. Conclusions

be adapted and extended by changing the layers within it. PPI network features

have been shown to be predictive of node connections at distance 3 (three

edges between each other) [Kovács et al. 2019]. From a biological point of

view, this observation is explained with similar proteins that, rather than being

in contact with each other, are affecting two proteins expressed in different

tissues, through the same mechanism. Moreover, in another study, it has been

hypothesised that assortative and disassortative filters [Kavran and Clauset

2020] might be improving the community detection performance. So far, we

have only applied GCN or MLP, but we believe that applying different filters

might be functional to detect different properties of the graph.

Eventually, we realise that we have not systematically investigated how

different graphs, and features, influence the inferred communities. For instance,

a comparison between PPI networks could reveal how much and when different

graphs influence the learning task. While consensus procedures [Reyna, Leiser-

son, and Raphael 2018] can be applied to retrieve the blocks that are frequently

inferred, a deeper analysis of how missing links influence prediction would be

extremely valuable in practice. Moreover, future studies could employ weighted

networks, e.g. edges weighted as the probability or confidence of being an

actual PPI; the SBM-GNN structural loss is already accounting for the strength

of interaction between and within blocks, and the improved performance of

the GDC layer shows that weighted networks can be directly employed within

the architecture. Finally, it would be interesting to investigate the sensitivity

to feature variability. Indeed, precision medicine strives to obtain actionable

patient-level predictions [Ozturk et al. 2018]; while in practice we can directly

process multi-omics patient-level data with SBM-GNN, it would be interesting to

see how stable the communities are and how accurate the node label prediction

would be.
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6 Conclusions

This thesis investigates the mechanisms underpinning tumorigenesis with

particular focus on how novel computational methods can help decode and

integrate the wealth of data that is being generated by high-throughput experi-

ments. Beyond the classical paradigm of tumor formation, it is now evident that

integrative studies are better suited to tackle the heterogeneity and poligenicity

of cancer. PPI networks provide genome-wide maps for the investigation of

the interconnection between different driving mechanisms, and we have here

proposed two approaches for the detection of system-level cell reprogramming

in cancer. However, for a complete picture of how tumors arise and evolve, ex-

perimental evidence, either at the genomics, transcriptomics, epigenomics level,

of the effects of somatic aberrations, need to be integrated with the underlying,

inherited, genetics of the organism.

In chapters 2 and 3 we have tackled the issue of cancer risk in the broader

population. We developed BAGHERA, a statistical learning method for the

estimation of gene-level heritability, that aggregates SNP summary statistics

to evaluate the cancer risk explained by each gene and their cis-regulatory

elements. Compared to state-of-the-art methods, BAGHERA is able to draw

genome-wide maps of cancer heritability at higher resolution. We applied
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BAGHERA to 38 histologically characterised cancer types in the UKBB and

retrieved 1,146 Cancer Heritability Genes, which are those with heritability

significantly higher than expected by chance. By investigating the functional

role of these genes, we observed that they are recurrently involved in known

cancer-related biological processes. More interestingly, we have also found that

these cancer heritability genes were also previously reported somatic drivers

and in particular tumor suppressors.

In chapters 4 and 5 we proceeded to study how the integration of high-

throughput experimental results with Protein-Protein Interaction networks can

help decode the mechanisms underpinning cancer beyond the single gene

hits. PyGNA uses network topology to characterise the connectivity between

phenotype-relevant genes identified by experimental data, such as differentially

expressed genes. By mapping genesets onto the PPI network, PyGNA can test

their topological properties, such as whether they are strongly interacting with

each other, likely related to cooperation on a biological level, and whether they

are hubs, affecting many others genes.

Nonetheless, graph topology alone is insufficient to provide functional expla-

nations of the observed networks and do not fully characterise datasets with

multiple modules, as is often the case of complex diseases reprogramming dif-

ferent pathways. Thus, we developed a deep learning method for the integration

of multi-modal data and PPI networks. We hypothesise that a node’s function

is dependent both on its observed features and the communities it belongs

to. SBM-GNN is a graph convolutional neural network that uses supervised

learning to predict novel cancer drivers combining multiple attributes for each

node, e.g. multi-omics datasets, and does inference of communities within

the whole networks, through stochastic block models. GNNs allow to readily

integrate functional and structural data, and with our architecture, we are able
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to provide an explainable model for tumorigenesis that links cancer drivers to

the pathways within the graph.

Taken together, the integrative study of germline and somatic variation, and

of the interactions between and within each other, has the potential to lead to

advancement in system biology that can then improve personalised medicine.

Methods for the detection of germline and somatic cancer driver genes have

largely based their predictions on the frequency, or strength of association, of

a variant, in practice prioritizing those that have a clearer functional impact

[Martínez-Jiménez et al. 2020]. However, difficulties in revealing driver events

for all patients [Campbell et al. 2010] and cancer poligenicity [Stracquadanio

et al. 2016] justify the development of integrative models to better tackle tumor

heterogeneity. The aggregation of SNP effects [Huang et al. 2011] allows us to

account for the effects of variants that would not reach statistical significance

in the GWAS but might be targeting key programs in the cell [Fagny et al.

2020]. Moreover, the study of cancer at the interactome level has the goal

of detecting groups of functionally related genes, that, when mutated, trigger

similar downstream effects or that synergistically affect normal cell functions

[Ozturk et al. 2018].

In chapter 3, we highlighted that BAGHERA does not explicitly include

any orthogonal evidence of SNP function, for instance, eQTL data [Aguet et

al. 2020]. We expect that the integration of functional information within the

cancer heritability model could improve its predictive capabilities prioritizing the

mechanisms that explain the increased risk [Gallagher and Chen-Plotkin 2018;

Wainberg et al. 2019]. Conversely, in chapter 5 we did not explicitly explore the

relationship between germline and somatic variation in the interactome context.

This will surely be an ensuing work, as we have evidence of the co-occurrence

of inherited and environmental aberrations [Vosoughi et al. 2020; Zhang et al.
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2021; Carter et al. 2017], but we would like to explore how they organise in the

network and to what extent they target the same pathways [Carbone et al. 2020].

Taken together, the integration of multi-modal data [Silverbush et al. 2019] and

the detection of the effects of variations on the network modules [Deritei et al.

2019] have the potential to find emerging patterns of functional pleiotropy that

go beyond the local two-hit model of tumorigenesis.

From a personalised medicine perspective, a system biology picture of the

mechanisms underpinning cancer would also enable the detection of novel

markers of risk and therapeutic opportunities. Indeed, while we have here

focused on tumorigenesis, cancer drivers are those that confer a selective

advantage to the cell, hence they can also be used to understand tumor pro-

gression and treatment. Low-penetrance variants can mediate pathways that,

alongside environmental cancer risk factors, increase cancer risk, and affect

tumor progression and drug response [Surakhy et al. 2020; Jeffers et al. 2021].

While BAGHERA does not inform on the specific functional effects of each

heritability locus, it produces testable hypotheses and would allow the func-

tional validation of single-locus dysregulation. In chapter 4 we reported that

network studies have been able to stratify cancer types, detecting subtype-

specific modules [Hofree et al. 2013; Chaudhary et al. 2018]. Furthermore,

novel computational methods are trying to directly address the problem of

personalised network reconstruction, for the direct identification of patient’s

driver genes and pathways [Ozturk et al. 2018]. Moreover, integrative network

studies of cancer aberrations have led to novel drugs being clinically tested and

repurposed [Hahn et al. 2021]. While cancer drivers are not always targetable,

the detection of secondary risk factors and connected pathways might instead

provide opportunities for patient surveillance and drug repurposing [Ruiz, Zitnik,

and Leskovec 2021].
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Eventually, it is worth noting that computational methods should evolve

alongside experimental technologies [Muir et al. 2016]. This thesis has analysed

and discussed, for the most part, bulk-sequencing data. Conversely, single-cell

omics experiments are now becoming more frequent and allow to capture within-

and between- tumor heterogeneity, and we should expect other cutting-edge

methodologies to be developed in the future. Thus, we expect the resolution

and quality of the data to increase, for instance with higher-throughput PPI

network experiments and with alignment and variant calling methods that fully

exploit the update reference genome. As there is no free lunch when modeling

biological data and careful considerations need to be made at each step of

the analysis, data integration methods will have to adapt and to even bigger

datasets, but they might have further ground truth models to train the model on.
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1 Supplementary Tables

All supplementary tables are in two files in XLSX format. We separated the tables
relative to all variants and genes from those of the functional characterisation. All
fields in these files are annotated.

Supplementary tables:

• Supplementary table 1: Curated list of breast cancer SNPs.

• Supplementary table 2: Curated list of genome-wide significant breast cancer
SNPs. reported by more than one study.

• Supplementary table 3: Curated list of genes harboring breast cancer SNPs.

• Table 2: Curated list of breast cancer SNPs above the 95th percentile of the
OR distribution.

Supplementary tables pathways:

• Supplementary table pathways 1: Curated list of genes harboring breast can-
cer SNP mapped to the Gene Ontology slim terms.

• Supplementary table pathways 2: Curated list of genes harboring breast can-
cer SNP to the KEGG pathways.

• Supplementary table pathways 3: Curated list of genes harboring breast. can-
cer SNP mapped to the cancer driver genes annotations and to the DNA re-
pair genes list.

• Supplementary table pathways 4: Gene Ontology slim enrichment analysis.

• Supplementary table pathways 5: KEGG pathway enrichment analysis.

• Supplementary table pathways 6: Hallmark of cancer enrichment analysis.
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2 Supplementary Methods

2.1 GWAS catalog data

We performed our analyses using the GWAS Catalog (downloaded on 12/07/2018),
a curated dataset of 143963 variants from 4054 studies. Unless otherwise noted,
all variants are mapped to Genome Assembly GRCh38.p12 and dbSNP Build 151.

We then considered SNPs in European populations, either in the initial or repli-
cation cohort, for studies whose primary trait of interest was breast carcinoma and
breast cancer, thus removing studies related to childhood cancer, treatment, sur-
vival, mortality. With these parameters, we identified 1289 SNPs in total.

We then restricted our analyses to genome-wide significant SNPs (p ≤ 5 ×
10−8), ultimately identifying 719 variants across 26 studies, with only 421 unique loci.
For each variant, we considered effect size as odds ratios (OR), either using the
reported estimate in the study or by setting OR = exp(β), where β is the reported
regression coefficient.

We assigned SNPs to genes using the GENCODE annotation for Genome As-
sembly GRCh38.p12 (downloaded on 27/07/2019); specifically, each SNP is as-
signed either to all overlapping genes or to the closest gene within a 50 Kb window,
if the variant is located in an intergenic region. Overall 421 SNPs are annotated to
311 genes, whereas 56 of them are intergenic. We then removed genes containing
SNPs whose association has been reported only once. We also remove genes with
name starting with AC**, since they do not have a Hugo Symbol but are using the
accession number of NCBI. Using our criteria, we identified 104 genes harboring
SNPs associated with breast cancer risk.

We provide a visual representation of the curation and filtering workflow in Sup-
plementary Figure S2.

2.2 Biological characterisation

We performed biological characterisation of the 104 genes using standard enrich-
ment analysis. In particular we tested whether, and to what extent, genes harbor-
ing breast cancer SNPs are enriched in any gene ontology term or KEGG path-
way. Our analysis shows that many genes are associated with fundamental cellular
processes regulating cellular development and proliferation, nuclear cellular com-
ponents and binding functions (Fig. S8A). Moreover, aging, response to stress,
and homeostatic process are biological processes correlated with increased DNA
instability and metabolic changes, that are known to be hallmarks for cancer devel-
opment and proliferation. Conversely, we found only the Gonadotropin-releasing
hormone (GnRH) signalling pathway reaches significance for FDR < 0.05 (Fig.
S8B); the signaling pathway activated with the secretion GnRH with the cascading
activation of the epidermal growth factor (EGF) receptor and activation of mitogen-
activated protein kinases (MAPKs).

Finally, we tested whether any gene harboring breast cancer SNPs was also a
known cancer driver. To do that we used two curated datasets, namely the Cancer
Gene Census and the OncoKB database; of the 104 identified in our study, 16 are
cancer driver genes reported in the Cancer Gene Census and 12 in the OncoKB
database, with 6 being tumour suppressor genes and 4 being oncogenes (Fig.
S8C).
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3 Supplementary Figures
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Figure S1: Schematic representation of genome partitioning for the estima-
tion of h2. This figure is providing a pictorial idea of the behaviour of different
partitioning strategies. We have zoomed on a portion of a chromosome, however
this extends to the whole genome. On top, we show a Manhattan plot which is a
common way of showing the results of a GWAS study. In this case a single SNP
is significant, with a −log(p) above the threshold. Then we can see how the dif-
ferent methods group the SNPs together. For the estimation of the genome-wide
h2 all SNPs are considered in a single term. For the functional partitioning, all the
SNPs in the genome falling into a specific category are apportioned to the same
term. Eventually, for the local partitioning, the genome is divided into multiple, non
overlapping, regions and each SNP then, is assigned to a local term.
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Figure S2: Schematic representation of the SNP filtering and curation work-
flow.
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Figure S3: Genome-wide distribution of breast cancer SNPs. For each SNP
in our dataset, we plot on the y-axis the maximum reported odds ratio (OR). It is
important to note that only 5% of all SNPs have OR > 1.31
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Figure S4: Distribution of the odds ratio (OR) for breast cancer SNPs.
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Figure S5: Distribution of the risk allele frequency for breast cancer SNPs.
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Figure S6: Odds ratio (OR) distribution by variant type for breast cancer risk.
We report the maximum OR reported for each variant, or the one obtained by trans-
forming the regression coefficient, β, as follows: OR = exp(β).
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Figure S7: Number of times a gene is reported in the catalog On the left side,
we show the number of variants reported by the GWAS catalog for each gene. We
consider only genes with at least two occurrences in the catalog. On the right side,
we report the number of unique variants for each gene.
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A) B)

C)

Figure S8: Biological Characterisation A) Pathways analysis with the principal
gene ontologies. Term in red are significant. B) Pathways analysis with KEGG
pathways. Only the top term (GnRH) is significant, whereas we report in red the
top 10 terms regardless of the statistical significance level. C) Overlaps between
all the genes and those reported in the major cancer driver genes annotations. The
box size is proportional to the overlap between an annotation and the genes found
in our analysis (see Supplementary Tables Pathways).
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1 Supplementary Methods

1.1 Simulated datasets

We performed extensive simulations to assess the performance of our hierarchical Bayesian
model, as implemented in BAGHERA.

First, we generated datasets with a realistic genetic architecture and linkage disequilibrium
patterns using data from the 1000 Genomes Project (see Supplementary Methods 1.1.1). Since
these simulations are computationally taxing and existing tools do not scale for genome-wide
simulations, we restricted our analyses to SNPs located on chromosome 1. We used these
datasets to test the accuracy of the genome-wide heritability estimates returned by BAGHERA,
and its performances for gene-level heritability analysis.

Nonetheless, we also wanted to explore the performance of our method on whole genome
datasets, which is the common use case for our method. Thus, we simulated whole genome
summary statistics with a varying number of heritability loci and enrichments (see Supplemen-
tary Methods 1.1.2).

When assessing the performance of BAGHERA in detecting heritability loci. We remind the
reader that our model estimates the posterior distribution of ηk, whose value is the probability
of the per-SNP heritability of gene k to be higher than the per-SNP genome-wide estimate;
thus, we can test how many heritability loci are discovered as a function of ηk. Since heritability
loci are known a-priori in our simulations, we derived Receiver Operating Characteristic (ROC)
curves and computed the corresponding Area Under the Curve (AUC) for each type of simula-
tion. While ROC curves allow straightforward comparison of different experimental conditions,
they can be problematic for interpreting genomic data, since the number of positive samples is
significantly smaller than the negatives. For this reason, we also derived Precision and Recall
(PR) curves as a more accurate approach to control Type 1 errors.

Hereby, we describe the procedures implemented to generation our simulated datasets and
the main results of the simulation analysis.

1.1.1 Simulated datasets with a realistic genetic architecture

We simulated N = 50, 000 subjects and M = 100, 000 SNPs on chromosome 1 from 1000
Genome reference data from 503 European ancestry subjects, using HAPGEN2 [4] and haplo-
type data downloaded from the IMPUTE website (https://mathgen.stats.ox.ac.uk/impute/
impute_v2.html#download). We then filtered out SNPs with minor allele frequency (MAF)
smaller than 0.01, leading to a final dataset consisting of 99,586 SNPs.

We then controlled whether the simulated genetic architecture was coherent with the one
observed in Europeans. To do that, we estimated the correlation between the observed MAF
in the 1000 Genomes data and our simulated data; here we found a statistically significant
correlation between the two datasets (Pearson correlation coefficient ρ = 0.9929, P ≤ 10−5),
suggesting that our strategy was appropriate to generate a realistic genetic architecture.

Summary statistics were then simulated following a dense and gene-level effect size model.
First, we used the dense effect model to test the robustness of the genome-wide heritability
estimates. To do that, we explicitly set the variance of the SNPs to be }2 = h2/M , with h2 =
{0.01, 0.1, 0.2, 0.5}; for each parameter setting, we generated 5 different datasets. BAGHERA
correctly estimates genome-wide heritability both as the median of genome-wide term h2SNP

and as the sum of the contributions of all genes (see Supplementary Figure 1). Performance
drops for larger h2 values, which are outside the working conditions of our method.

We then assessed BAGHERA as a method for discovering heritability loci. To do that, we
set as causal only those SNPs that are located in a predefined set of loci. With this setting, we
tested whether BAGHERA was able to identify heritability loci under different genome-wide and
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local heritability levels. Out of all loci L, we selected a fraction of them, sL, as significant, with
Lsig = L×sL being the total amount of significant loci. We then assigned 90% of the variance to
the Msig SNPs falling into the Lsig loci, while the remaining 10% variance is equally distributed
to the other loci. We simulated data with h2 = {0.01, 0.05, 0.1, 0.2} and sL = 0.01 (1%); taken
together, we obtained Lsig = 13 heritability loci out of 1322 loci with more than 10 SNPs on
chromosome 1. For each parameters combination, we simulated 5 datasets. Here we found
BAGHERA to provide accurate h2SNP estimates, both as the median of the posterior of the
h2SNP term and the sum of the gene level heritability (see Supplementary Figure 2A). Similar
to the results for dense-effect simulations, performance is more unstable for larger values of
heritability. However, in the worst case scenario, h2SNP tends to be overestimated, which leads
towards more conservative statistical testing. Importantly, BAGHERA performs extremely well
in retrieving significant loci with AUCs above 90% for ROC analysis and above 50% for most PR
analysis (see Supplementary Figure 2B and C).

1.1.2 Whole genome simulated datasets

Restricting the analysis to chromosome 1 would not provide conclusive evidence about the per-
formances of our method, which was designed to run on high-density genotype data. We then
used a simpler model, which does not require genotype data, to generate simulated summary
statistics for 22 chromosomes with a varying number of heritability loci and levels of heritability
enrichment.

We assigned random effect sizes to SNPs with MAF > 0.01 in the European populations
of the 1000 Genomes Phase 3 project by sampling from a normal distribution and weighting

the random variate by wj =
√
(1 + N

M h2klj), where h2k is the gene-level heritability and lj is the
LD score of the j-th SNP in the dataset [1]. Using LD scores allow us to account for positional
constraints and LD patterns without using genotype data. We then randomly selected a fraction
of loci as heritability loci and set their heritability h2k = fck × h2SNP , where h2SNP is the genome-
wide heritability, fck is the fold-change in heritability in the locus k compared to the genome-
wide estimate.

In our experiments, we set the genome-wide heritability to h2SNP = {0.01, 0.1, 0.2}, to
mimic a disease with a reasonably low heritability, such as cancer. We then considered
p = 1% of the loci in the genome as heritability loci, and set the heritability fold-change as
fck = {1.1, 5, 10, 30}, while fold-change value fc = 1.1 is used as control. For each possible
parameter setting, we generated 3 independent datasets, which resulted in a testbed consisting
of 36 datasets in total.

Our model obtained excellent results for fold-changes ranging from 5 to 30, when the
genome wide heritability is at least 0.1. While ROC performance drops for 5 and 10 fold-change
for low heritability levels, TPR and FDR estimates prove that our testing procedure is actually
conservative (see Supplementary Figure 3) and that our model has FDR < 0.05. Finally, for
the control simulations fc = 1.1, as expected, the ROC and PR analyses show no significant
difference with respect to a random classifier (see Supplementary Figures 3, 4, and 5).

It is worth noting that the ROC curves in Supplementary Figures 4 are the detail of the ROC
AUC shown in Supplementary Figure 3.

1.2 Comparison with state-of-the-art methods

1.2.1 Comparison of genome-wide heritability estimates between BAGHERA and LDsc

We compared BAGHERA genome-wide estimates with the observed h2SNP estimates of LD
score regression (LDsc) [2]. It is straightforward to note that BAGHERA and LDsc estimates
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follow a similar trend, although BAGHERA is more robust on low heritability malignancies, in-
cluding 9 cases where LDsc erroneously reported negative estimates (see Supplementary Fig-
ure 6).

1.2.2 Comparison of local heritability estimates between BAGHERA and HESS

We compared our estimates of local heritability with those obtained by HESS [3], which, to
date, is the only method for the estimation of local heritability using summary statistics and can
be applied on regions smaller than a chromosome.

First, we outline the main differences between the two methods, which could confuse the
interpretation of the results. HESS has been shown to provide robust heritability estimates
for genomic regions defined as LD independent. BAGHERA, instead, provides heritability esti-
mates for any non overlapping set of genomic regions, including ≈ 15, 000 protein-coding genes
in the human genome. Thus, BAGHERA can provide heritability estimates at a much higher
genomic resolution.

It is also important to also note the different output returned by BAGHERA and HESS. We
remind the reader that each region explains a portion of heritability ḧ2k =

∑Mk
j=1 }2j , where ḧ2k is

the output of HESS. With the notation we introduced in our study, ḧ2k/Mk = h2k/M , where h2k
is the gene-level heritability estimated by BAGHERA. Both methods, however, test whether the
local single SNP heritability, either h2k/M or ḧ2k/Mk, is larger than the expected genome-wide
heritability }2M .

It is also worth mentioning that the two methods implement different testing strategies; after
the estimation of local heritability, HESS converts the estimates to z-scores to obtain a p-
value for each region, and then uses Bonferroni correction to control the family-wise error rate.
BAGHERA instead uses a Bayesian hierarchical model to estimate the posterior distribution of
the genome-wide and gene-level heritability, along with the posterior distribution of the indicator
function, η, which is used to estimate the probability of the per-SNP heritability of gene k to be
higher than genome-wide estimate.

We then applied HESS and BAGHERA on the two cancer datasets from the UK Biobank
with the highest heritability: breast (C50) and prostate (C61). In order to compare local her-
itability estimates of the two methods, we used the same set of SNPs and the 1703 regions
originally used by HESS, although we filtered out 10 of them having less than 10 SNPs. For
each cancer (ICD10 code), we computed the genome-wide estimates h2, the number of sig-
nificant genomic loci, the number of significant loci found both by HESS and BAGHERA, the
correlation between the local heritability estimates (Pearson’s ρ) and the corresponding p-value
(see table below).

HESS BAGHERA
ICD10 h2(se) Significant loci h2(sd) Significant loci Common loci ρ p-value
C50 0.0111 (0.00316) 2 0.0149 (0.0018) 119 2 0.78 ≤ 10−6

C61 0.00896 (0.00316) 1 0.0098 (0.0017) 116 1 0.76 ≤ 10−6

Experimental results showed a strong consensus between the genome-wide heritability es-
timates of both methods, whereas BAGHERA the largest number of heritability loci, including
the two found by HESS. In Supplementary Figure 7 and 8, we show the results of our analysis
in detail; for each figure, the first panel shows ḧ2k estimates for HESS and BAGHERA, while the
second one is limited to the significant regions defined by BAGHERA and overlapping HESS
estimates, and the last panel, instead, rescales HESS ḧ2k estimates to BAGHERA’s h2k, as
ḧ2k/Mk ×M . It is straightforward to note that BAGHERA provides more robust local heritability
estimates, since the number of negative estimates is significantly lower than HESS, as clearly
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shown when rescaling the results. While BAGHERA might still return negative local heritability
estimates, in practice, this phenomenon is well controlled compared to HESS.

1.3 Analysis of 38 UK Biobank cancer datasets

1.3.1 Data processing and curation

We downloaded the metadata tables associated with the UK Biobank summary statistics for
cancer on 30/07/2019 from http://www.nealelab.is/uk-biobank. From the list of all pheno-
types, we selected those corresponding to malignant neoplasms, which are identified by ICD10
codes C00-C97 (see http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202), and
removed the benign neoplasms and in situ carcinoma/melanoma and the secondary neoplasms
(C77,C78,C79). With these parameters, we identified 38 different types of cancers.

LD-score data was downloaded from https://data.broadinstitute.org/alkesgroup/

LDSCORE/ on 15/03/2018-15/04/2018 and used Gencode version 31 available at https://

www.gencodegenes.org/). The Gene Ontology (GO) slim dataset was generated using the
MAP2SLIM utility of the OWL tools on 16/10/2019. We also report enrichment results for the
entire Gene Ontology dataset downloaded from the MSigDB,
(http://software.broadinstitute.org/gsea/msigdb). The Precision Oncology Knowledge
Base (OncoKB) dataset, alongside the MSK and Vogelstein data, were downloaded on
01/10/2018, while the Cancer Gene Census data was downloaded from https://cancer.

sanger.ac.uk/census on 17/07/2019. The DNA repair gene list has been downloaded from
https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.

html on 25/02/2019. The PCAWG compendium of mutational driver elements was downloaded
on 24/04/2020 from https://dcc.icgc.org/pcawg/. All dates are reported as dd/mm/yyy.

1.3.2 Relationship between genome-wide significant SNPs and local heritability

We tested whether higher levels of heritability could be explained by the presence of genome-
wide significant SNPs (P < 5× 10−8) in or nearby protein-coding regions.

For each cancer, we identified loci harbouring at least 1 genome-wide significant SNP, and
denoted these as minSNPs. We found 119 minSNPs in total, with at least 1 minSNP in 18 of
the 38 cancers (Supplementary Table 5). This is a striking difference compared to the 1523
heritability loci found in total for all 38 malignancies; interestingly, our method was able to re-
cover 98 (82%) of the minSNSP suggesting that it can detect heritability genes regardless of
the association strength of their SNPs.

We then proceeded to analyse whether there is a correlation between minSNP p-values and
heritability estimates. Interestingly, while we found many minSNPs to be also heritability loci,
we do not observed a linear relationship between BAGHERA η estimates and GWAS p-values
(see Supplementary Figure 17 and 18). However, as expected, there is a correlation between
each gene average statistics and local heritability (see Supplementary Figure 17).

1.3.3 Comparison with self-reported tumors

The UK Biobank provides GWAS results for multiple malignancies classified by patient self-
reported cancer type at time of assessment. Here we show the results for this dataset using
summary statistics computed by B. Neale et al. We found only 11 datasets with χ̂2 > 1.01
compared to the 17 found using the histologically classified tumors (see Supplementary Table
4), along with higher prevalence for the latter (0.0029) compared to the average of self-reported
tumors (0.0023).
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We then proceeded with the analysis of the self-reported dataset, similarly to what shown
for the histologically characterized tumours. Breast and prostate cancer show high values
of heritability, with both breast and testicular cancer have more than 30% of their heritability
explained by heritability loci (see Supplementary Figure 15A). As expected, these datasets,
whose signal is lower compared to the histologically classified malignancies, have a higher
heritability enrichment, consistent with results on simulated data (Supplementary Figure 15B).
CHGs occurring in multiple malignancies are consistent both in number (see Supplementary
Figure 15C) and identity with those found in the 38 cancers identified using the histological
classification (Supplementary Figure 15D and 12D).

Overall, we find that quantitatively comparing the heritability loci results for self-reported and
histologically classified cancers might be difficult. We then considered the Jaccard similarity
coefficient computed between heritability genes for each pair of cancers (see Supplementary
Figure 14). Here we used the Gencode v27 annotation, which might have resulted in a slightly
different mapping of the genes; thus, for the Jaccard coefficient, we directly compared the
genes rather than loci. As expected, in some cases, there is consensus between same cancers,
although the great differences in signal and the different mapping might decrease the power of
detecting similarities, especially for tumours with fewer heritability loci.

Interestingly, when characterizing the CHGs for the self-reported cancer types, we find the
overall results to be highly consistent with those of the histologically characterized datasets (see
Supplementary Figure 16). We would also like to point out that 90% of the significant GO terms
in this analysis are also significant in the same analysis for the histologically characterized
cancers; moreover, we also found a significant enrichment for tumour suppressors genes over
oncogenes.
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2 Supplementary Figures
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Supplementary Figure 1: Performance on genome-wide heritability estimation for simu-
lated dense effect datasets. Genome-wide heritability estimates for dense effects. For each
value of h2, we plot the simulated heritability level, the genome-wide (gw) estimate, which is the
median of the posterior of genome-wide heritability term, and the gene-level estimate which is
the sum of all median gene heritability estimates (sum). For each parameter setting, we simu-
lated 5 datasets, where error bars represent the standard deviation of the estimates. Genotype
data has been simulated only for chromosome 1.
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Supplementary Figure 2: Performance on gene-level heritability estimation for simulated
datasets. A) Genome-wide heritability estimates for datasets with varying gene-level heritabil-
ity. For each value of h2, we plot the simulated heritability level, the genome-wide (gw) estimate,
which is the median of the prior heritability term, and the gene-level estimate which is the sum
of all median gene heritability estimates (sum). For each parameter setting, we have simu-
lated 5 datasets, error bars represent the standard deviation of the estimates across different
datasets. Genotype data has been simulated only for chromosome 1. B-C) Receiver Operator
Characteristic curves and Precision Recall curves for the performance of BAGHERA in dis-
covering significant loci for different levels of genome-wide heritability h2. For each parameter
setting, we simulated 5 datasets.

7



0.01 0.1 0.2

h²

0.0

0.2

0.4

0.6

0.8

1.0

T
PR

0.00

0.01

0.02

0.03

0.04

0.05

FD
R

0.01 0.1 0.2
0.5

0.6

0.7

0.8

0.9

1.0

A
U
C

fold change

1.1

5.0

10.0

30.0

h² h²

0.01 0.1 0.2

Supplementary Figure 3: Performance on whole-genome simulated data. Performance of
BAGHERA for different levels of heritability h2 (x-axes) and gene-level heritability enrichment
(color coded). Here we show the AUCs of the ROC curves, the True Positive Rate (TPR)
and False Discovery Rate (FDR) for η > 0.99. Datasets have been simulated from summary
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Supplementary Figure 7: Comparison between BAGHERA and HESS local heritability es-
timates for breast cancer (C50). The first panel shows HESS and BAGHERA values of local
heritability ḧ2k. The second panel reports the values of ḧ2k, but it is limited the regions that are re-
ported as significant by BAGHERA and HESS. The last panel, instead, shows HESS estimates
rescaled to be comparable with BAGHERA, as ḧ2k/Mk ×M .
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Supplementary Figure 8: Comparison between BAGHERA and HESS local heritability es-
timates for prostate cancer (C61). The first panel shows HESS and BAGHERA values of
local heritability ḧ2k. The second panel reports the values of ḧ2k, but it is limited the regions
that are deemed as significant by BAGHERA and HESS. The last panel, instead, shows HESS
estimates rescaled to be comparable with BAGHERA, as ḧ2k/Mk ×M .
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Supplementary Figure 9: BAGHERA results - η distribution across 38 cancers in the UK
Biobank. For each dataset (x-axes), a violin plot shows the mass distribution of the indicator
function η, which in the software implementation is named P (y-axes).
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Supplementary Figure 12: Heritability loci across 38 cancers in the UK Biobank. A) For
each malignancy we report the observed heritability (h2SNP , left box), the percentage of h2SNP

explained by heritability loci (central barplot, dark blue is the percentage explained by HLs)
and the number of heritability loci (right barplot). B) Gene-level heritability density distribution
across heritability loci, expressed as fold-change with respect to the genome-wide estimate.
Highlighted are the top loci and the median fold-change across all cancers. C) Percentage of
cancer heritability loci associated with multiple cancers. Less than 13% of heritability loci are
common to multiple malignancies. D) Cancer heritability loci associated with multiple cancers.
We report the loci common to at least 3 malignancies sorted by name, for example we can
notice that CLPTM1L is common to 5 cancer types. Here the size of the dot is proportional to
the fold-change of the locus in the specific cancer.
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Supplementary Figure 13: Functional characterization of cancer heritability genes across
38 cancers in the UK Biobank. A) Gene Ontology enrichment analysis using Fisher’s ex-
act test. For each significant term, we report the odds-ratio (x-axis) and −log10(FDR) (color
gradients). B)Tumour suppressor and oncogene CHGs across cancers. For each cancer type
(y-axis), we report the number of genes (x-axis) reported as tumour suppressors (TSGs) and/or
oncogenes in OncoKB (colour codes, cancer genes are known to be drivers, but their specific
role is not reported). C) Enrichment of CHGs across cancer driver genes annotations; here we
report OncoKB (purple), COSMIC database (light blue), different cancer driver sets (dark blue)
and other sets (green), like DNA repair genes and known actionable targets. Stars indicate
statistical significance, with multiple terms having p < 10−4.
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Supplementary Figure 14: Jaccard similarity coefficient of heritability loci obtained from
the 38 ICD10-classified datasets and the 35 self-reported cancers in the UKBB. The
heatmap shows the Jaccard similarity coefficient between significant genes of the histologically
characterized dataset, y-axis, and the self-reported ones, x-axis, with darker colours corre-
sponding to higher similarity. In bold and with white stars we have highlighted high similarities
for the same tumour type, while with the dark stars we have highlighted the similarity between
different skin-cancer types.
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Supplementary Figure 15: Heritability loci across 35 self-reported cancers in the UK
Biobank A) For each malignancy, we report the observed heritability (h2SNP , left box), the
percentage of h2SNP explained by heritability loci (central barplot, dark blue is the percentage
explained by HLs) and the number of heritability loci (right barplot). B) Gene-level heritabil-
ity density distribution across heritability loci, expressed as fold-change with respect to the
genome-wide estimate. Highlighted are the top loci and the median fold-change across all
cancers. C) Percentage of cancer heritability loci associated with multiple cancers. More than
10% of loci are common to multiple malignancies. D) Cancer heritability loci associated with
multiple cancers. We report the HLs common to at least 3 cancers; here the size of the dot is
proportional to the heritability enrichment of the locus in the specific cancer.
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Supplementary Figure 16: Functional characterization of cancer heritability genes for the
35 self-reported cancers. A) Gene Ontology enrichment analysis using Fisher’s exact test.
For each significant term, we report the odds-ratio (x-axis) and −log10(FDR) (color gradients).
B)Tumour suppressor and oncogene CHGs across cancers. For each cancer type (y-axis), we
report the number of genes (x-axis) reported as tumour suppressors (TSGs) and/or oncogenes
in OncoKB (colour codes, cancer genes are known to be drivers, but their specific role is not
reported). C) Enrichment of CHGs across cancer driver genes annotations; here we report On-
coKB (purple), COSMIC database (light blue), different cancer driver sets (dark blue) and other
sets (green), like DNA repair genes and known actionable targets. Stars indicate statistical
significance, with multiple terms having P < 10−4.
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Supplementary Figure 17: Relationship between genome-wide significant SNPs and local
heritability across the 38 cancers in the UK Biobank. On the left panel, we show the cor-
relation between GWAS pvalues (x-axis, we consider only loci with p:< 10−5) and BAGHERA
η (x-axis; in the software implementation η is named P, and it is here transformed to 1 − η to
be comparable to pvalues). For each locus analysed by BAGHERA, we selected the smallest
p-value of its SNPs. Horizontal line is the GWAS significance threshold (p: 5 × 10−8), verti-
cal line is for η = 0.99. Size of the marker is proportional to the genome-wide h2SNP estimate
(which in the software implementation is denoted as mi median). It is worth noting that there is
no linear relation between BAGHERA η and GWAS pvalues. In some cases, see top left quad-
rant, there are locus harboring SNPs with very small p-values, that are not significant for the
heritability analysis. On the right panel, instead, we show the correlation between each locus
average χ2 and local heritability (y-axis, to make results from different cancer types comparable
we show the locus weight as wk = (h2k − h2)/h2). Significant loci are color coded in red. As
expected, there is correlation between the average value of the test statistics of a locus and its
local heritability.
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Supplementary Figure 18: Single malignancy genome-wide significant SNPs. For each
cancer type, color coded, we selected loci harbouring SNPs with p:< 10−5. On the x-axis, for
each malignancy, we sorted the loci by their η, from the largest to the smallest. Loci that are
significant for BAGHERA are dark stars, while those that are not significant are represented
with dots. Horizontal lines are different p-value significance thresholds. This figure details the
results in Supplementary Figure 17

.
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Genes chrom SNPs cancers Cancer types

CLPTM1L 5 27 5 melanoma skin, prostate, other skin,
bronchus lung, bladder

MUC19 12 183 5 thyroid, myeloma, breast, anus, rectosigmoid junction
MTRNR2L5;
PCDH15 10 978 4 lymphoid leukaemia, mesothelioma, eye adnexa, breast

AUTS2 7 489 4 oesophagus, lymphoid leukaemia,
other nonhodgkins lymphoma, pancreas

DPYD 1 574 4 liver, ovary, tonsil, larynx

THADA 2 165 4 melanoma skin, prostate,
diffuse nonhodgkins lymphoma, bladder

KCNS2; STK3 8 188 4 melanoma skin, small intestine, no site, anus
CDH13 16 1502 3 corpus uteri, melanoma skin, rectosigmoid junction
PACRG; PRKN 6 1353 3 thyroid, oesophagus, pancreas
NIPAL3;
STPG1;
GRHL3

1 136 3 melanoma skin, prostate, other connective soft tissue

CLEC16A 16 170 3 other nonhodgkins lymphoma, ovary,
diffuse nonhodgkins lymphoma

MAST4 5 383 3 peritoneum, other skin, breast
DLG2 11 1014 3 oesophagus, bronchus lung, bladder
APAF1;
ANKS1B;
FAM71C

12 582 3 testis, oesophagus, stomach

SMAP1; B3GAT2 6 162 3 rectum, other connective soft tissue, colon

AGBL1 15 698 3 testis, diffuse nonhodgkins lymphoma,
follicular nonhodgkins lymphoma

AGBL4;
BEND5;
AL645730.2

1 475 3 ovary, larynx, breast

TP53INP2;
PIGU; NCOA6 20 106 3 melanoma skin, other skin, breast

GRM5 11 313 3 melanoma skin, other skin, colon
ZFHX4 8 116 3 melanoma skin, prostate, other skin
RERE 1 141 3 kidney, other skin, diffuse nonhodgkins lymphoma
CDH4 20 540 3 testis, prostate, other skin
VGLL4; ATG7 3 245 3 other skin, eye adnexa, other tongue
NYAP2 2 154 3 other skin, other connective soft tissue, breast
MTAP; AL359922.1;
CDKN2B; CDKN2A 9 162 3 melanoma skin, other skin, brain

BACH2 6 215 3 other skin, other connective soft tissue, breast
PREX1 20 190 3 testis, tonsil, colon
GALK2; FGF7;
FAM227B; COPS2 15 157 3 ovary, follicular nonhodgkins lymphoma, breast

SEMA3A 7 287 3 peritoneum, other skin, ovary
ZNF385D 3 862 3 testis, prostate, follicular nonhodgkins lymphoma
POU5F1B 8 137 3 prostate, breast, colon

Supplementary Table 1: Heritability loci common to more than 2 malignancies among the
38 cancers in the UK Biobank. For each locus, we report the gene names, the chromo-
some, the number of SNPs in the locus, and the cancers for which the locus shows significant
heritability enrichment.
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GO Term GO id CHGs TP OR p-value FDR
cell morphogenesis GO:0000902 822 140 1.51249 0.00002 0.00145
cell-cell signaling GO:0007267 1364 215 1.38895 0.00003 0.00145
anatomical structure development GO:0048856 4094 576 1.25771 0.00002 0.00145
kinase activity GO:0016301 1291 203 1.38162 0.00006 0.00214
cytoskeleton organization GO:0007010 1260 194 1.34248 0.00029 0.00703
biological process GO:0008150 6375 848 1.19188 0.00030 0.00703
ion binding GO:0043167 5328 716 1.18984 0.00045 0.00900
cell differentiation GO:0030154 3263 454 1.21364 0.00058 0.01009
plasma membrane GO:0005886 4994 672 1.18500 0.00069 0.01068
response to stress GO:0006950 2975 412 1.19890 0.00164 0.02240
cytoskeleton GO:0005856 1597 232 1.25172 0.00210 0.02240
cellular protein modification process GO:0006464 3321 455 1.18618 0.00205 0.02240
enzyme binding GO:0019899 2076 295 1.22522 0.00199 0.02240
DNA metabolic process GO:0006259 789 123 1.34854 0.00244 0.02257
cytoskeletal protein binding GO:0008092 817 127 1.34455 0.00231 0.02257
cytoplasm GO:0005737 4713 628 1.15849 0.00318 0.02763
cell motility GO:0048870 1274 186 1.25239 0.00470 0.03845
cellular component GO:0005575 5314 699 1.14209 0.00581 0.04488
growth GO:0040007 797 120 1.29075 0.00852 0.06231
signal transduction GO:0007165 5214 683 1.13158 0.00974 0.06681
autophagy GO:0006914 379 62 1.41713 0.01009 0.06681
cell GO:0005623 2157 297 1.17421 0.01101 0.06958
cell adhesion GO:0007155 1149 165 1.22322 0.01378 0.07801
peptidase activity GO:0008233 1118 161 1.22701 0.01351 0.07801
embryo development GO:0009790 818 121 1.26283 0.01409 0.07801
cell junction organization GO:0034330 245 42 1.49541 0.01459 0.07801
cellular component assembly GO:0022607 2556 346 1.15242 0.01559 0.08027
plasma membrane organization GO:0007009 172 31 1.58688 0.01700 0.08150
reproduction GO:0000003 1133 162 1.21614 0.01689 0.08150

Supplementary Table 2: Statistically significant Gene Ontology terms for the 38 cancers
in the UK Biobank. We report the gene ontology terms significantly associated with cancer
heritability genes of all 38 cancers in the UKBB, at 10%FDR. For each term, we report the GO
id term, the number of annotated CHGs, the number of CHGs shared with the GO term, the
odds ratio, the p-value from the Fisher’s Exact test and the adjusted p-value after applying the
Benjamini-Hochberg procedure.

24



Geneset CHGs OR p-value
actionable 12 2.95704402853006 0.003010513617533
OncoKB Annotated 82 1.70182693656355 3.45E-05
OncoKB Oncogene 30 2.03015313527443 0.000989619358728
OncoKB TSG 41 2.32559883961873 1.10E-05
MSK-IMPACT 74 1.69855042892001 8.20E-05
MSK-HEME 72 2.00040589657017 1.04E-06
Foundation One 60 1.93523581681476 1.70E-05
Foundation One Heme 93 1.71410442349529 8.99E-06
Vogelstein 25 2.26853809360218 0.000688378926034
Sanger CGC 105 1.90314876984706 4.42E-08
cgc hallmark 52 1.99517925729025 2.98E-05
cgc somatic 114 1.78333561882259 2.14E-07
cgc germline 19 1.7869406867846 0.021626151797484
cgc epithelial 68 1.96978537106247 3.10E-06
cgc other 18 2.11038080867497 0.006672381597831
cgc mesenchimal 24 2.45812653699978 0.000340751626412
cgc liquid 50 1.64904739495146 0.001689100231574
dnarepair 23 1.41604940491173 0.085540295201593
pcagw compendium 111 1.58551000032207 2.59E-05

Supplementary Table 3: Cancer genesets enrichment analysis for the 38 cancers in the
UK Biobank. Results of the enrichments analysis between the Curated cancer dataset terms
and the heritability genes of all datasets.

25



code Malignancy cases prevalence χ̂2 h2
SNP h2

SNPL
HL

1002 breast cancer 7480 0.02219 1.08192 0.01245 0.09668 246
1061 basal cell carcinoma 3156 0.00936 1.06533 0.01250 0.18314 158
1044 prostate cancer 2495 0.00740 1.05405 0.00939 0.16460 136
1045 testicular cancer 614 0.00182 1.03105 0.00567 0.30420 145
1059 malignant melanoma 2677 0.00794 1.02615 0.00622 0.10342 49
1041 cervical cancer 1347 0.00400 1.02078 0.00590 0.16776 21
1022 colon cancer/sigmoid cancer 1134 0.00336 1.01659 0.00196 0.06403 9
1040 uterine/endometrial cancer 843 0.00250 1.01499 0.00148 0.06127 17
1062 squamous cell carcinoma 404 0.00120 1.01276 0.00225 0.17012 21
1065 thyroid cancer 317 0.00094 1.01245 0.00195 0.18077 26
1023 rectal cancer 253 0.00075 1.01187 0.00213 0.23923 13
1034 kidney/renal cell cancer 436 0.00129 1.00968 0.00156 0.11121 12
1035 bladder cancer 799 0.00237 1.00685 0.00091 0.03954 16
1003 skin cancer 1046 0.00310 1.00679 0.00226 0.07854 13
1019 small intestine/small bowel cancer 156 0.00046 1.00618 0.00076 0.12919 19
1030 eye and/or adnexal cancer 102 0.00030 1.00408 0.00184 0.44827 18

1052 hodgkins lymphoma /
hodgkins disease 331 0.00098 1.00324 0.00067 0.06010 14

1047 lymphoma 92 0.00027 1.00229 0.00101 0.26830 11
1063 primary bone cancer 105 0.00031 1.00193 0.00090 0.21425 13
1053 non-hodgkins lymphoma 631 0.00187 1.00082 0.00043 0.02267 2
1060 non-melanoma skin cancer 507 0.00150 1.00076 0.00109 0.06863 21
1018 stomach cancer 121 0.00036 0.99947 0.00079 0.16616 11
1068 sarcoma/fibrosarcoma 181 0.00054 0.99930 0.00126 0.18758 4
1011 tongue cancer 115 0.00034 0.99905 0.00181 0.39809 21
1006 larynx/throat cancer 250 0.00074 0.99786 0.00052 0.05865 9
1004 cancer of lip/mouth/pharynx/oral cavity 78 0.00023 0.99756 0.00060 0.18505 5
1039 ovarian cancer 579 0.00172 0.99745 0.00069 0.03903 10
1056 chronic myeloid 85 0.00025 0.99734 0.00112 0.32044 11

1032 brain cancer /
primary malignant brain tumour 155 0.00046 0.99648 0.00177 0.30057 12

1048 leukaemia 158 0.00047 0.99611 0.00045 0.07506 9
1024 liver/hepatocellular cancer 125 0.00037 0.99530 0.00168 0.34389 11
1020 large bowel cancer/colorectal cancer 475 0.00141 0.99524 0.00077 0.05125 9
1001 lung cancer 190 0.00056 0.99519 0.00091 0.13020 11
1050 multiple myeloma 115 0.00034 0.99491 0.00083 0.18195 7

Supplementary Table 4: Self reported cancers in the UK Biobank. We report summary
informations of of the 35 self-reported cancer types analysed in the first round of the GWAS
analysis on the UK Biobank. For each cancer, we report the number of cases out of the 337, 159
total samples, the prevalence in the cohort, the average χ2 of the SNPs considered in the
GWAS analysis (χ̂2), the genome-wide estimates of heritability, both on the observed (h2SNP )
and the liability (h2SNPL

) scale, and the number of heritability loci (HL) reported by BAGHERA
as significant for η > 0.99. Both prevalence and χ̂2 are lower than the data used in the main
study; in particular, there are only 11 tumours with χ̂2 > 1.01.
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ICD10 Cancer Significant SNPs minSNPs minSNP ∩ HL HL

C44 Other malignant neoplasms of skin 580 58 55 422
C50 Malignant neoplasm of breast 178 10 9 267
C61 Malignant neoplasm of prostate 203 20 20 271
C18 Malignant neoplasm of colon 4 1 1 33
C43 Malignant melanoma of skin 42 14 9 52
C15 Malignant neoplasm of oesophagus 0 0 0 24
C67 Malignant neoplasm of bladder 11 2 1 39
C34 Malignant neoplasm of bronchus and lung 0 0 0 17
C20 Malignant neoplasm of rectum 0 0 0 15
C62 Malignant neoplasm of testis 19 2 1 29
C71 Malignant neoplasm of brain 0 0 0 19
C45 Mesothelioma 1 1 0 5
C91 Lymphoid leukaemia 0 0 0 11

C02 Malignant neoplasm of other and
unspecified parts of tongue 0 0 0 23

C16 Malignant neoplasm of stomach 0 0 0 12
C83 Diffuse non-Hodgkin’s lymphoma 1 0 0 14
C82 Follicular non-Hodgkin’s lymphoma 0 0 0 21

C90 Multiple myeloma and
malignant plasma cell neoplasms 0 0 0 15

C56 Malignant neoplasm of ovary 0 0 0 13
C54 Malignant neoplasm of corpus uteri 0 0 0 14

C48 Malignant neoplasm of
retroperitoneum and peritoneum 0 0 0 5

C64 Malignant neoplasm of kidney
except renal pelvis 0 0 0 10

C01 Malignant neoplasm of base of tongue 1 1 0 10
C73 Malignant neoplasm of thyroid gland 23 2 2 13

C49 Malignant neoplasm of
other connective and soft tissue 1 1 0 28

C80 Malignant neoplasm
without specification of site 1 1 0 14

C53 Malignant neoplasm of cervix uteri 1 1 0 14

C22 Malignant neoplasm of liver
and intrahepatic bile ducts 5 1 0 7

C21 Malignant neoplasm of anus and anal canal 1 1 0 23

C85 Other and unspecified types of
non-Hodgkin’s lymphoma 0 0 0 9

C09 Malignant neoplasm of tonsil 1 1 0 5
C92 Myeloid leukaemia 0 0 0 9
C17 Malignant neoplasm of small intestine 0 0 0 12
C19 Malignant neoplasm of rectosigmoid junction 1 1 0 10
C25 Malignant neoplasm of pancreas 0 0 0 12
C81 Hodgkin’s disease 6 1 0 5
C69 Malignant neoplasm of eye and adnexa 0 0 0 14
C32 Malignant neoplasm of larynx 1 0 0 7

Supplementary Table 5: Comparison between GWAS results and gene-level heritability
analysis for the 38 cancers in the UK Biobank. For each cancer type, we report the number
of significant SNPs found by the GWAS analysis, the number of genes that harbor at least a
genome-wide significant SNP (minSNSP), the number of heritability loci (HL), and the overlap
between minSNP and HL.
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Genes chrom SNPs cancers Cancer types

CLPTM1L 5 27 4
prostate, melanoma skin,
bladder,bronchus lung

THADA 2 165 4
prostate, melanoma skin,bladder,
diffuse nonhodgkins lymphoma

APAF1;
ANKS1B;
FAM71C

12 582 3 oesophagus, testis, stomach

MTRNR2L5;
PCDH15

10 978 3 breast, mesothelioma, lymphoid leukaemia

AGBL1 15 698 3
testis, diffuse nonhodgkins lymphoma,
follicular nonhodgkins lymphoma

POU5F1B 8 137 3 breast, prostate, colon

ZNF385D 3 862 3
prostate, testis,
follicular nonhodgkins lymphoma

DLG2 11 1014 3 oesophagus, bladder, bronchus lung

Supplementary Table 6: Heritability loci common to more than 2 malignancies among the
16 cancers in the UK Biobank. The table refers to the top hits of Figure 3D. For each locus,
we report the gene names, the chromosome, the number of SNPs, and the cancers for which
the locus shows significant heritability enrichment.
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Geneset OR CHG in dataset p-value
actionable 2.63453493776791 7 0.026951610993734
OncoKB TSG 2.4758427927671 27 7.90E-05
cgc mesenchimal 2.24609098939929 14 0.007835265509946
MSK-HEME 2.19714313105167 48 3.93E-06
cgc other 2.07244104690334 11 0.027306118314416
cgc hallmark 2.06286703907705 33 0.00030018959537
Foundation One 1.93993932601498 37 0.000393887476418
Foundation One Heme 1.83497871569604 60 3.91E-05
OncoKB Oncogene 1.83348095659876 17 0.019840274395826
Vogelstein 1.83053839364519 13 0.038349307393117
OncoKB Annotated 1.78464447477968 52 0.000213156056084
MSK-IMPACT 1.7840487630967 47 0.000407877043307
cgc epithelial 1.75509927797834 38 0.001711381100092
Sanger CGC 1.74637430939227 60 0.000130077696757
cgc somatic 1.70276736998878 67 0.000110483300951
pcagw compendium 1.55039109506619 66 0.001117467439307
dnarepair 1.54926413964234 15 0.080471017287826
cgc germline 1.50414250207125 10 0.151946556078459
cgc liquid 1.49944841979726 28 0.033703719324945

Supplementary Table 7: Cancer geneset enrichment analysis for the 16 cancers in the UK
Biobank. Results of the enrichment analysis between the curated cancer genesets and the
heritability genes of the 16 datasets with sufficient power in the UK Biobank. The table refers to
the results in Figure 4 in the main text.
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gene PS SG EIR CRI TPI IM A GIM EPCD CCE tsg og fusion
XPO1 P P 0 1 0
TP63 P P P 1 1 0

SMAD2 P P S S 1 0 0
ROS1 P 0 1 1

RAP1GDS1 P P 0 1 1
RABEP1 P 0 0 1
PPARG P P P 1 0 0
POT1 S 0 0

PIK3R1 P S S 1 0 0
PBX1 P P P 0 1 1

PBRM1 P P S S S S P 1 0 0
NT5C2 P P 0 1 0
NCOR2 P S P,S 1 0 0
NAB2 S 1 0 1
MTOR P P P P P 0 1 0

MLLT10 P 0 1 1
LRP1B P S 1 0 0
JAK2 P P,S P P 0 0 0

FOXA1 P S 0 1 0
FGFR2 P P 1 1 0
FAT4 P S 1 0 0
ESR1 P P P P,S 1 1 1

ERBB4 P P P,S 1 1 0
EBF1 P 1 0 1

CTNNB1 P P P P P P S P P 0 1 1
CLIP1 0 0 1
CIITA S 1 0 1

CDKN2A P S S S 1 0 0
CDH11 S S 1 0 0
CCDC6 P S S P 1 0 1

CBFA2T3 P P 1 0 1
ALK P P P,S 0 1 1

LATS2 P P,S S S 1 0 0

Supplementary Table 8: Cancer heritability genes associated with the hallmark of cancers
across 16 cancers in the UK Biobank. Each column corresponds to one of the hallmarks.
P stands for promotes, S stands for suppresses. We also report whether the gene is known
to be a tumor suppressor, TSG, and oncogene or fusion gene. This table corresponds to the
results in Figure 4 in the main text. PS: proliferative signalling, SG: suppression of growth, EIR:
escaping immunic response to cancer, CRI: cell replicative immortality, TPI: tumour promoting
inflammation, IM: invasion and metastasis, A: angiogenesis, GIM: genome instability and muta-
tions, EPCD: escaping programmed cell death, CCE: change of cellular energetics, tsg: tumor
suppressor gene, og: oncogene.
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1 Supplementary materials
1.1 Parallel sampling performance
We tested how our sampler scales as a function of the
number of cores allocated to PyGNA. We used the in-
teraction network defined in [1] (13460 nodes, 138427
edges) and the generated genesets by taking random
nodes from it; using a smaller network, allowed us to
to minimize input/output overhead caused by reading
HDF5 files. We then performed GNT analyses using
both the module and random walk statistics, TM and
TH , to test the performances when the statistic is esti-
mated from a large matrix and when is evaluated only
from the network structure. We performed our tests on
genesets of size [50, 100, 500] and by increasing number
of cores [1, 3, 6, 8] and permutations [500, 1000, 10000]
as shown in Fig. 1; experiments were performed on a
Intel 3.2 GHz Intel Core i7 with 6 cores and 16Gb of
RAM, running MacOS Mojave.

As expected, parallel sampling dramatically reduces
the running time required to generate null distribu-
tions for the module test, although the maximum rel-
ative speedup was achieved when using 2 cores. For the
TH analysis, the most significant improvement was ob-
served when running PyGNA on large genesets with
more than thousands permutations. In general, for
small genesets and a limited number of permutations,
the cost of setting up the multiprocessing environment
introduces a significant computational overhead; also,
as expected, when allocating more than the number

*Correspondence: giovanni.stracquadanio@ed.ac.uk

School of Biological Science, The University of Edinburgh, EH9 3BF

Edinburgh, UK

Full list of author information is available at the end of the article

of available cores on the system, we observed no im-
provement or an increasing running time.

Taken together, we recommend using multiprocess-
ing when large genesets are analysed or a large number
of permutations are required to obtain a stable null
distribution.

1.2 Stability of empirical null distributions
We determined experimentally the number of samples
to be drawn to obtain a stable empirical null distribu-
tion for the GNT testing.

To do that, we used two real networks that we know
have different densities and node degree distribution,
namely the BioGRID network and smaller metabolic
network reported by [1]. We then conducted our tests
as follows: given a network G, we sample Ngs genes,
which represent our tested geneset, and then apply
GNT analysis with NoP number of permutations. For
each scenario, we repeat the procedure R times, and
record mean and standard deviation of the test statis-
tic.

Here, we performed simulations forNgs = [50, 100, 200]
and NoP = [10, 100, 500, 1000] and R = 10 runs using
total degree and RWR statistic for GNT testing, and
RWR and shortest path for GNA testing. Experimen-
tal results show that 500 permutations are sufficient
to obtain a stable null distribution, regardless of the
geneset size (see Fig. 2, 3, 4, 5).

1.3 Geneset network association bootstrap procedures
We hereby explain how null distributions are generated
for the geneset network association (GNA) tests, which
give an estimate of the strength of interaction between
two genesets, S1, S2. When we generate a null distribu-
tion by sampling two random genesets of size S1 and
S2, we are performing a test under the null hypothe-
sis of no difference between the strength of association
observed for S1 and S2 and any two random genesets
of equal size. Conversely, when one of the geneset is a
Gene Ontology (GO) or pathway term T , it is advis-
able to be more conservative; in this case, we resample
just the input geneset and keep the term T fixed, such
that we perform a test under the null hypothesis that
there is no difference in strength of interaction between
the input geneset and any other random geneset of the
same size as term T .
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1.4 TCGA data retrieval and preprocessing
We downloaded six dataset from The Cancer Genome
Atlas (TCGA) or the Genotype-Tissue EXpression
(GTEX) repository using the TCGAbiolinks package
[2]. Indeed, sometimes, TCGA data lack of control
samples, in those cases we resorted to the data of the
Recount2 project [3], that has reprocessed all TCGA
and GTEX tissues. For each RNA-seq experiment we
download the HTSeq- Counts and proceed to nor-
malise them.

Details on the used datasets are reported in Table 1.
Then a differential expression analysis (DEA) is per-

formed using the edgeR negative binomial generalized
log-linear model and FDR correction is applied [4].

We then mapped EntrezID of significant genes to
HUGO symbol using the R org.Hs.eg.db package, in
order to have consistent nomenclatures with network
data.
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TCGA Study Cases Tumor Tissue Control Study Controls Control Tissue Processing pipeline
BLCA 414 Bladder TCGA 19 Bladder GDC
BRCA 1102 Breast TCGA 113 Breast GDC
DLBC 48 Lymph nodes GTEX 595 Blood Recount
LAML 113 Bone marrow GTEX 595 Blood Recount
LUSC 502 Lung TCGA 49 Lung GDC
PRAD 498 Prostate TCGA 52 Prostate GDC

Table 1 RNA sequencing datasets used for the GNA analysis. For each dataset, we report the TCGA code, the number of
cases, the tumor tissue, the study and the number of control samples, control tissue and the RNAseq processing pipeline used for
quantification for both cases and controls.
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Figure 2 Stability of empirical null distributions for GNT testing on the BioGRID network. A) For each GNT test
(columns) and each geneset size (N gs, rows), we show the box plot of NoP samples of the the null distributions for each run. For a
small number of samples, the distribution is relatively unstable, however with more than 100 samples the distributions are stabilized.
B) For each GNT test (rows) and each geneset size (columns), we show the box plot of p-values for each run. As the number of
permutations increases, the p-value stabilizes as well. Wider box plots reflect the fact that the same observed statistic has different
significance levels, since the same geneset is tested for each run. However, for the same geneset we expect all p-values to be the same.
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Figure 3 Stability of empirical null distributions for GNA testing on the BioGRID network. A) For each GNA test
(columns) and each geneset size (N gs, rows), we show the box plot of NoP samples of the the null distributions for each run. For a
small number of samples, the distribution is relatively unstable, however with more than 100 samples the distributions are stabilized.
B) For each GNT test (rows) and each geneset size (N gs, columns), we show the box plot of p-values for each run. As the number
of permutations increases, the p-value stabilizes as well. Wider box plots reflect the fact that the same observed statistic has
different significance levels, since the same geneset is tested for each run. However, for the same geneset we expect all p-values to be
the same.
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Figure 4 Stability of empirical null distributions for GNT testing on the metabolic network. A) For each GNT test
(columns) and each geneset size (N gs, rows), we show the box plot of NoP samples of the the null distributions for each run. For a
small number of samples, the distribution is relatively unstable, however with more than 100 samples the distributions are stabilized.
B) For each GNT test (rows) and each geneset size (N gs, columns), we show the box plot of p-values for each run. As the number
of permutations increases, the p-value stabilizes as well. Wider box plots reflect the fact that the same observed statistic has
different significance levels, since the same geneset is tested for each run. However, for the same geneset we expect all p-values to be
the same.
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Figure 5 Stability of empirical null distributions for GNA testing on the metabolic network. A) For each GNA test
(columns) and each geneset size (N gs, rows), we show the box plot of NoP samples of the the null distributions for each run. For a
small number of samples, the distribution is relatively unstable, however with more than 100 samples the distributions are stabilized.
B) For each GNT test (rows) and each geneset size (N gs, columns), we show the box plot of p-values for each run. As the number
of permutations increases, the p-value stabilizes as well. Wider box plots reflect the fact that the same observed statistic has
different significance levels, since the same geneset is tested for each run. However, for the same geneset we expect all p-values to be
the same.
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Figure 6 Generation of synthetic networks A) Example of a stochastic block model matrix for GNT testing, where each cell
reports the value Mij . In this case p0 = 0.06, α = 3 and k+ = 3. For benchmarking, i = 0, 1, 2 would be considered positive
examples, while i = 4, 5, 6, 7 would be used as negative ones. B) Example of a stochastic block model matrix for GNA testing, where
each cell reports the value Mij . In this case p0 = 0.06, α = 3 and k+ = 4 and β = 2. For benchmarking, {0, 1}, {2, 3}, {4, 5}, {6, 7}
are used to generate mixture genesets. B) Example of the HDN network and geneset generation. First, a network with a number of
HDNs (red dots) is created, while all the other nodes have p0 probability of connection. Then, a geneset is created by taking at
random a mixture of HDNs and background nodes (pink nodes).
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reported as significant (red dots), with the top 5 marked with a star symbol.



A.4. Supplementary materials for “Discovering cancer driver genes and
pathways using stochastic block model graph neural networks”

A.4 Supplementary materials for “Discovering

cancer driver genes and pathways using

stochastic block model graph neural

networks”

173



Discovering cancer genes and pathways using stochastic
block model graph neural networks - Supplementary

Materials

Viola Fanfani1, Ramon Vinas Torne2, Pietro Lio’2, and Giovanni Stracquadanio *1

1School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
2Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD,

United Kingdom

*Corresponding author. Email: giovanni.stracquadanio@ed.ac.uk

1



1 Methods

1.1 Simulated features

In our simulations, we studied the performance of our model using both uncorrelated and cor-
related gene features.

In the first case, we simulated features conditioned on the communities genes belongs
to, but we did not account for correlation between different communities. Given a planted
SBM structure, we simulated features for each community as random samples from a normal
distribution; in the case of a hierarchical SBM, we only considered the blocks in the deepest
layer. Specifically, given K communities, we first selected at random their mean from a uniform
distribution µk = Uniform(−5, 5), and we then sampled the features for each gene, i ∈ k, as
X[i, :] = N (µk, 1). After obtaining the feature matrix X, we set a fraction of genes Ncancer as
cancer genes and multiplied their features by a weight factor W . With this strategy, features
have probabilistically a distinct signal from the background.

We then used the Cholesky decomposition method to generate correlated features. This
process, called features coloring, allows to impose a covariance matrix onto a stochastic pro-
cess such that the final samples are correlated. Given Y a random variable of i.i.d. noise
(uncorrelated) and Σ a covariance matrix, we want to find X s.t. its values are correlated con-
ditioned on Σ. Given a positive, semi-definite matrix Σ, the Cholesky decomposition finds a
lower triangular matrix L s.t. Σ = LLT . Correlated samples can then be found as:

X = LY (1)

However, this approach requires the adjacency matrix to be positive semi-definite, which is not
often the case. To overcome this limitation, we used the covariance matrix Σ = AAT , which
can be considered an edge correlation matrix.

1.2 Performance metrics

1.2.1 Blocks assignment and characterisation

One main advantage of the SBM-GNN model is the interpretability of the hidden layers. We
remind that in the main manuscript we have described (Eq. 2-3) how the the membership matrix
Z(s) for the s-th SBM is learnt and then concatenated into the last layer. The block assignment
matrix Z(s), can be used to understand how the genes are assigned to different blocks, the
relationship between different blocks and their characteristics.

Given the matrix Z = Z(1)|Z(2) . . . |Z(S), each sub-matrix Z(s) has dimensions n× ks, with n
being the number of nodes and ks the number of blocks in the s-th SBM, respectively. Each row
represents the probability of the node to belong to one of the ks blocks (soft assignment). The
Z matrix is saved alongside the neural network parameters and can then be used to assess
the community assignment performance with simulated data, when the background blocks are
known, or to characterise the blocks obtained with cancer data.

Here we use a toy example to illustrate how Z is used in practive. Given an architecture with
2 parallel groups of respectively 2 and 4 blocks, the resulting matrix Z would be of the form:

2



b2 0 b2 1 b4 0 b4 1 b4 2 b4 3
gA 0.1 0.9 0 0.3 0.5 0.2
gB 0.2 0.8 0 0.9 0.1 0
gC 0.3 0.7 0 0.3 0.5 0.2
gC 0.8 0.2 0 0.9 0.1 0
gD 0.9 0.2 0 0.3 0.6 0.1
gE 0.4 0.6 0 0.6 0.4 0
gF 0.6 0.4 0 0.1 0.9 0
gG 0.7 0.3 0 0.3 0.5 0.2
gH 0.1 0.9 0 0.9 0.1 0

where each entry is the probability that the node, rows gA,gB . . . gH, belongs to one of the
blocks, b2 0, b2 1, . . . , b4 3. Here the block naming convention, e.g. b2 1, indicates both
the group (SBM with two blocks ) and the specific block within the group (second block). The
softmax function is applied for each group (b2 or b4) such that all nodes are assigned to each
parallel SBM.

Eventually, nodes are uniquely assigned to a single block for each group by picking the block
with the largest memebership probability. In this example, we would obtain the assignment :

• b2 0: gC, gD, gF, gG

• b2 1: gA, gB, gE, gH ...

1.3 SBM-GNN hyperparameters

We trained our model with the following hyperparameters: learning rate:0.01, weight decay:1e-
4, 16 hidden nodes (for the φ hidden layers), and 3 parallel SBM with 5,10,20 blocks (hidden
nodes of ζ). Training was done over 15,000 epochs, with 80% of nodes in the training set and
10% in the test set. The same parameters were used with the simulated data, however we
trained the model on 1,000 epochs, as they were sufficient to train SBM-GNN on a network
with only 1000 genes.

1.4 UKIN and Hierarchical HotNet

We compared the performances of our model with those of two other state-of-the-art network-
aware analysis methods: using Knowledge In Networks (uKIN) and Hierarchical HotNet (HHot-
Net).

uKIN and HHotNet are network inference methods for attributed networks, although they
allow only single gene features; thus, we used Fisher’s method to combine multiple datasets
from PCAWG into a single score. uKIN also requires a set of known cancer driver genes to
act as seeds for the guided random walks; similar to what proposed by the authors of the
method, for each run (10 in total), we randomly sampled 30 cancer genes from the COSMIC
dataset and used them as seeds. Testing is then done with the whole COSMIC geneset, but
those employed for training, and with the PID labels, which are those deemed as cancer genes
specific to this dataset. Results are presented in Fig. 5.

Conversely, Hierarchical Hotnet is a method to detect disrupted cancer subnetworks. It is
then important to notice that the overall classification performance is probably worse than the
one of UKIN as it is not directly designed to extract single cancer drivers but submodules of
them. We ran Hierarchical Hotnet with the score randomisation strategy, 100 permutations,
and extracted all the modules returned by it.
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2 Figures
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Figure 1: Stochastic Block Model, network parameters and generation. Here we present
a simple stochastic block model of a network with two communities. We generate a network
with 40 nodes, with 20 nodes assigned to community C1, and the other 20 nodes to C2. The
probability of connection between nodes is defined by the SBM matrix shown on the right. Each
element of the matrix defines the probability of connection within and between the blocks. Next
to the community matrix, from left to right, we show a network generated from our SBM, the
corresponding adjacency matrix, the number of observed links between each block on the left.
In the network, different colors denote nodes in different communities, where the adjacency
matrix is sorted by blocks. First, we can notice that a higher probability leads to more edges
between the nodes; in this case we have an assortative network, where nodes within the same
community are more connected than nodes between different communities.
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Figure 2: SBM matrices for both disjoint and hierarchical communities We show here two
examples of how we simulate synthetic networks. First, top row, we simulate disjoint assor-
tative communities with pii between 0.5 and 0.7 (values on the diagonal) and we add some
background noise, by setting η = 0.1. On the right side we show a network generated from our
SBM, with different colors to denote different communities, and the corresponding adjacency
matrix. We then show a hierarchical SBM community matrix (bottom row). Blocks C1 and
C2, and C3 and C4, are merged together to generate a hierarchical structure in the network.
Connection probability Pi,j is averaged across hierarchical levels.
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Figure 5: UKIN performance. A) Precision and recall for uKIN using different networks (colors)
and on different labels, we cosider as significant the genes above the 90-th percentile. Train
performance (round marker) is for the same genes used as seeds. The test performance
(crosses) is that on the cosmic geneset, excluding the seed genes. The PID performance is on
the original cancer genes of the dataset (square marker). B) AUC, TPR and FPR for the same
data shown before.
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T., Šimíček, M., Stracquadanio, G., and Hajek, R., 2021. Mutation land-

scape of multiple myeloma measurable residual disease: identification of

targets for precision medicine. Blood Adv. (Accepted)

182



Bibliography

Abascal, Federico et al. (2021). “Somatic mutation landscapes at single-molecule

resolution”. In: Nature 593.7859, pp. 405–410. ISSN: 14764687. DOI: 10.

1038/s41586-021-03477-4.

Agrawal, Monica, Marinka Zitnik, and Jure Leskovec (2018). Large-scale anal-

ysis of disease pathways in the human interactome. Tech. rep. 212669,

pp. 111–122. DOI: 10.1142/9789813235533_0011. arXiv: 1712.00843.

Aguet, François et al. (2020). “The GTEx Consortium atlas of genetic regulatory

effects across human tissues”. In: Science 369.6509, pp. 1318–1330. ISSN:

10959203. DOI: 10.1126/SCIENCE.AAZ1776.

Airoldi, Edoardo M. et al. (2009). “Mixed membership stochastic blockmodels”.

In: Advances in Neural Information Processing Systems 21 - Proceedings of

the 2008 Conference 9, pp. 34–41. ISSN: 1532-4435. arXiv: 0705.4485.

Alexandrov, Ludmil B. et al. (2013). “Deciphering Signatures of Mutational

Processes Operative in Human Cancer”. In: Cell Reports 3.1, pp. 246–259.

ISSN: 22111247. DOI: 10.1016/j.celrep.2012.12.008.

Alpaydin, Ethem (2014). Introduction to machine learning. MIT press.

Alvarez, Mariano J. et al. (2018). “A precision oncology approach to the pharma-

cological targeting of mechanistic dependencies in neuroendocrine tumors”.

183

https://doi.org/10.1038/s41586-021-03477-4
https://doi.org/10.1038/s41586-021-03477-4
https://doi.org/10.1142/9789813235533_0011
https://arxiv.org/abs/1712.00843
https://doi.org/10.1126/SCIENCE.AAZ1776
https://arxiv.org/abs/0705.4485
https://doi.org/10.1016/j.celrep.2012.12.008


Bibliography

In: Nature Genetics 50.7, pp. 979–989. ISSN: 15461718. DOI: 10.1038/

s41588-018-0138-4.

Anderson, David E. (1974). “Genetic study of breast cancer: Identification of

a high risk group”. In: Cancer 34.4, pp. 1090–1097. ISSN: 10970142. DOI:

10.1002/1097-0142(197410)34:4<1090::AID-CNCR2820340419>3.0.CO;

2-J.

Argelaguet, Ricard et al. (2018). “Multi-Omics Factor Analysis—a framework for

unsupervised integration of multi-omics data sets”. In: Molecular Systems

Biology 14.6, e8124. ISSN: 1744-4292. DOI: 10.15252/msb.20178124.

Aslam, Bilal et al. (2017). Proteomics: Technologies and their applications. DOI:

10.1093/chromsci/bmw167.

Avsec, Žiga et al. (2021). “Base-resolution models of transcription-factor binding

reveal soft motif syntax”. In: Nature Genetics 53.3, pp. 354–366. ISSN:

15461718. DOI: 10.1038/s41588-021-00782-6.

Aytes, Alvaro et al. (2014). “Cross-Species Regulatory Network Analysis Iden-

tifies a Synergistic Interaction between FOXM1 and CENPF that Drives

Prostate Cancer Malignancy”. In: Cancer Cell 25.5, pp. 638–651. ISSN:

18783686. DOI: 10.1016/j.ccr.2014.03.017.

Bahdanau, Dzmitry, Kyung Hyun Cho, and Yoshua Bengio (2015). “Neural

machine translation by jointly learning to align and translate”. In: 3rd Interna-

tional Conference on Learning Representations, ICLR 2015 - Conference

Track Proceedings. arXiv: 1409.0473.

Bailey, Matthew H. et al. (2018). “Comprehensive Characterization of Cancer

Driver Genes and Mutations”. In: Cell 173.2, 371–385.e18. ISSN: 0092-8674.

DOI: 10.1016/J.CELL.2018.02.060.

Baldassarre, Federico and Hossein Azizpour (2019). “Explainability Techniques

for Graph Convolutional Networks”. In: arXiv: 1905.13686.

184

https://doi.org/10.1038/s41588-018-0138-4
https://doi.org/10.1038/s41588-018-0138-4
https://doi.org/10.1002/1097-0142(197410)34:4<1090::AID-CNCR2820340419>3.0.CO;2-J
https://doi.org/10.1002/1097-0142(197410)34:4<1090::AID-CNCR2820340419>3.0.CO;2-J
https://doi.org/10.15252/msb.20178124
https://doi.org/10.1093/chromsci/bmw167
https://doi.org/10.1038/s41588-021-00782-6
https://doi.org/10.1016/j.ccr.2014.03.017
https://arxiv.org/abs/1409.0473
https://doi.org/10.1016/J.CELL.2018.02.060
https://arxiv.org/abs/1905.13686


Bibliography

Berger, Bonnie, Jian Peng, and Mona Singh (2013). Computational solutions

for omics data. DOI: 10.1038/nrg3433.

Bernard, Philip S. et al. (2009). “Supervised risk predictor of breast cancer based

on intrinsic subtypes”. In: Journal of Clinical Oncology 27.8, pp. 1160–1167.

ISSN: 0732183X. DOI: 10.1200/JCO.2008.18.1370.

Bersanelli, Matteo et al. (2016). “Methods for the integration of multi-omics data:

Mathematical aspects”. In: BMC Bioinformatics 17.2, p. 15. ISSN: 14712105.

DOI: 10.1186/s12859-015-0857-9.

Bothorel, Cecile et al. (2015). “Clustering attributed graphs: Models, measures

and methods”. In: Network Science 3.3, pp. 408–444. ISSN: 20501250. DOI:

10.1017/nws.2015.9. arXiv: 1501.01676.

Boyle, Evan A., Yang I. Li, and Jonathan K. Pritchard (2017). “An Expanded View

of Complex Traits: From Polygenic to Omnigenic”. In: Cell 169.7, pp. 1177–

1186. ISSN: 10974172. DOI: 10.1016/j.cell.2017.05.038.

Bruna, Joan et al. (2013). “Spectral Networks and Locally Connected Networks

on Graphs”. In: 2nd International Conference on Learning Representations,

ICLR 2014 - Conference Track Proceedings. arXiv: 1312.6203.

Califano, Andrea et al. (2012). Leveraging models of cell regulation and GWAS

data in integrative network-based association studies. DOI: 10.1038/ng.

2355.

Campbell, Peter J. et al. (2010). “The patterns and dynamics of genomic insta-

bility in metastatic pancreatic cancer”. In: Nature 467.7319, pp. 1109–1113.

ISSN: 00280836. DOI: 10.1038/nature09460.

Campbell, Peter J. et al. (2020). “Pan-cancer analysis of whole genomes”. In:

Nature 578.7793, pp. 82–93. ISSN: 14764687. DOI: 10.1038/s41586-020-

1969-6.

185

https://doi.org/10.1038/nrg3433
https://doi.org/10.1200/JCO.2008.18.1370
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1017/nws.2015.9
https://arxiv.org/abs/1501.01676
https://doi.org/10.1016/j.cell.2017.05.038
https://arxiv.org/abs/1312.6203
https://doi.org/10.1038/ng.2355
https://doi.org/10.1038/ng.2355
https://doi.org/10.1038/nature09460
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41586-020-1969-6


Bibliography

Carbone, Michele et al. (2020). Tumour predisposition and cancer syndromes

as models to study gene–environment interactions. DOI: 10.1038/s41568-

020-0265-y.

Carter, Hannah et al. (2017). “Interaction landscape of inherited polymorphisms

with somatic events in cancer”. In: Cancer Discovery 7.4, pp. 410–423. ISSN:

21598290. DOI: 10.1158/2159-8290.CD-16-1045.

Chatr-Aryamontri, Andrew et al. (2017). “The BioGRID interaction database:

2017 update”. In: Nucleic Acids Research 45.D1, pp. D369–D379. ISSN:

13624962. DOI: 10.1093/nar/gkw1102.

Chaudhary, Kumardeep et al. (2018). “Deep learning–based multi-omics integra-

tion robustly predicts survival in liver cancer”. In: Clinical Cancer Research

24.6, pp. 1248–1259. ISSN: 15573265. DOI: 10.1158/1078-0432.CCR-17-

0853.

Chen, Fei et al. (2019). “Analysis of heritability and genetic architecture of

pancreatic cancer: A PANC4 study”. In: Cancer Epidemiology Biomarkers

and Prevention 28.7, pp. 1238–1245. ISSN: 10559965. DOI: 10.1158/1055-

9965.EPI-18-1235.

Ching, Travers et al. (2018). “Opportunities and obstacles for deep learning in

biology and medicine”. In: Journal of the Royal Society Interface 15.141.

ISSN: 17425662. DOI: 10.1098/rsif.2017.0387.

Cho, Ara et al. (2016). “MUFFINN: Cancer gene discovery via network analysis

of somatic mutation data”. en. In: Genome Biology 17.1. ISSN: 1474760X.

DOI: 10.1186/s13059-016-0989-x.
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Veličković, Petar et al. (2018). “Graph attention networks”. In: 6th International

Conference on Learning Representations, ICLR 2018 - Conference Track

Proceedings. International Conference on Learning Representations, ICLR.

arXiv: 1710.10903.

Venkatesan, Kavitha et al. (2009). “An empirical framework for binary interac-

tome mapping”. In: Nature Methods 6.1, pp. 83–90. ISSN: 15487091. DOI:

10.1038/nmeth.1280.

Vidal, Marc, Michael E. Cusick, and Albert László Barabási (2011). Interactome

networks and human disease. DOI: 10.1016/j.cell.2011.02.016.

Visscher, Peter M. et al. (2017). “10 Years of GWAS Discovery: Biology, Function,

and Translation”. In: The American Journal of Human Genetics 101.1, pp. 5–

22. ISSN: 00029297. DOI: 10.1016/j.ajhg.2017.06.005.

Vogelstein, Bert et al. (2013). “Cancer genome landscapes.” In: Science (New

York, N.Y.) 340.6127, pp. 1546–58. ISSN: 1095-9203. DOI: 10.1126/science.

1235122.

Von Mering, Christian et al. (2002). “Comparative assessment of large-scale

data sets of protein–protein interactions”. In: Nature 417.6887, pp. 399–403.

Vosoughi, Aram et al. (2020). “Common germline-somatic variant interactions

in advanced urothelial cancer”. In: Nature Communications 11.1. ISSN:

20411723. DOI: 10.1038/s41467-020-19971-8.

Wainberg, Michael et al. (2019). “Opportunities and challenges for transcriptome-

wide association studies”. In: Nature Genetics 51.4, pp. 592–599. ISSN:

15461718. DOI: 10.1038/s41588-019-0385-z.

205

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903
https://doi.org/10.1038/nmeth.1280
https://doi.org/10.1016/j.cell.2011.02.016
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1126/science.1235122
https://doi.org/10.1126/science.1235122
https://doi.org/10.1038/s41467-020-19971-8
https://doi.org/10.1038/s41588-019-0385-z


Bibliography

Wainberg, Michael et al. (2021). “A genome-wide atlas of co-essential mod-

ules assigns function to uncharacterized genes”. In: Nature Genetics 53.5,

pp. 638–649. ISSN: 15461718. DOI: 10.1038/s41588-021-00840-z.

Watanabe, Kyoko et al. (2017). “Functional mapping and annotation of genetic

associations with FUMA”. In: Nature communications 8.1, pp. 1–11.

Weissbrod, Omer et al. (2020). “Functionally informed fine-mapping and poly-

genic localization of complex trait heritability”. In: Nature Genetics 52.12,

pp. 1355–1363. ISSN: 15461718. DOI: 10.1038/s41588-020-00735-5.

Wen, Xiaoquan, Roger Pique-Regi, and Francesca Luca (2017). “Integrating

molecular QTL data into genome-wide genetic association analysis: Prob-

abilistic assessment of enrichment and colocalization”. In: PLoS Genetics

13.3, e1006646. ISSN: 15537404. DOI: 10.1371/journal.pgen.1006646.

Whitington, Thomas et al. (2016). “Gene regulatory mechanisms underpinning

prostate cancer susceptibility”. In: Nature Genetics 48.4, pp. 387–397. ISSN:

15461718. DOI: 10.1038/ng.3523.

WHO (2020). Global Health Estimates 2019: Deaths by Cause, Age, Sex,

by Country and by Region, 2000-2019. Tech. rep. Geneva: World Health

Organization.

Wooster, R et al. (1994). “Localization of a breast cancer susceptibility gene,

BRCA2, to chromosome 13q12-13”. In: Science 265.5181, pp. 2088–2090.

ISSN: 0036-8075. DOI: 10.1126/science.8091231.

Wooster, Richard et al. (1995). “Identification of the breast cancer susceptibility

gene BRCA2”. In: Nature 378.6559, pp. 789–792. ISSN: 00280836. DOI:

10.1038/378789a0.

Wu, Zonghan et al. (2019). A Comprehensive Survey on Graph Neural Networks.

Tech. rep. X, pp. 1–22. arXiv: 1901.00596v3.

206

https://doi.org/10.1038/s41588-021-00840-z
https://doi.org/10.1038/s41588-020-00735-5
https://doi.org/10.1371/journal.pgen.1006646
https://doi.org/10.1038/ng.3523
https://doi.org/10.1126/science.8091231
https://doi.org/10.1038/378789a0
https://arxiv.org/abs/1901.00596v3


Bibliography

Xu, Keyulu et al. (2019). “How powerful are graph neural networks?” In: 7th Inter-

national Conference on Learning Representations, ICLR 2019. International

Conference on Learning Representations, ICLR. arXiv: 1810.00826.

Yang, Jian et al. (2011). “Genome partitioning of genetic variation for complex

traits using common SNPs.” In: Nature genetics 43.6, pp. 519–25. ISSN:

1546-1718. DOI: 10.1038/ng.823.

Yao, Douglas W. et al. (2020). “Quantifying genetic effects on disease mediated

by assayed gene expression levels”. In: Nature Genetics 52.6, pp. 626–633.

ISSN: 15461718. DOI: 10.1038/s41588-020-0625-2.

Yardımcı, Galip Gürkan et al. (2019). “Measuring the reproducibility and quality

of Hi-C data”. In: Genome biology 20.1, pp. 1–19.

You, Jiaxuan, Rex Ying, and Jure Leskovec (2020). “Design Space for Graph

Neural Networks”. In: ISSN: 10495258. arXiv: 2011.08843.

Yuan, Han et al. (2019). “BindSpace decodes transcription factor binding signals

by large-scale sequence embedding”. In: Nature Methods 16.9, pp. 858–861.

ISSN: 15487105. DOI: 10.1038/s41592-019-0511-y.

Zhang, Jiani et al. (2018). “GaAN: Gated attention networks for learning on

large and spatiotemporal graphs”. In: 34th Conference on Uncertainty in

Artificial Intelligence 2018, UAI 2018. Vol. 1. Association For Uncertainty

in Artificial Intelligence (AUAI), pp. 339–349. ISBN: 9781510871601. arXiv:

1803.07294.

Zhang, Ping et al. (2021). “Germline and somatic genetic variants in the p53

pathway interact to affect cancer risk, progression, and drug response”. In:

Cancer Research 81.7, pp. 1667–1680. ISSN: 15387445. DOI: 10.1158/

0008-5472.CAN-20-0177.

Zhang, Yan Dora et al. (2020). “Assessment of polygenic architecture and risk

prediction based on common variants across fourteen cancers”. In: Nature

207

https://arxiv.org/abs/1810.00826
https://doi.org/10.1038/ng.823
https://doi.org/10.1038/s41588-020-0625-2
https://arxiv.org/abs/2011.08843
https://doi.org/10.1038/s41592-019-0511-y
https://arxiv.org/abs/1803.07294
https://doi.org/10.1158/0008-5472.CAN-20-0177
https://doi.org/10.1158/0008-5472.CAN-20-0177


Bibliography

Communications 11.1. ISSN: 20411723. DOI: 10.1038/s41467-020-16483-

3.

Zheng, Fan et al. (2021). “Interpretation of cancer mutations using a multiscale

map of protein systems”. In: Science 374.6563, eabf3067.

Zhou, Jian and Olga G Troyanskaya (2015). “Predicting effects of noncoding

variants with deep learning-based sequence model”. In: Nature Methods

12.10, pp. 931–934. ISSN: 15487105. DOI: 10.1038/nmeth.3547.

Zhou, Jie et al. (2020). “Graph neural networks: A review of methods and

applications”. In: AI Open 1, pp. 57–81. ISSN: 26666510. DOI: 10.1016/j.

aiopen.2021.01.001. arXiv: 1812.08434.

Zhu, Bin et al. (2016). “An investigation of the association of genetic susceptibil-

ity risk with somatic mutation burden in breast cancer”. In: British Journal of

Cancer 115.6, pp. 752–760. ISSN: 15321827. DOI: 10.1038/bjc.2016.223.

Zitnik, Marinka, Monica Agrawal, and Jure Leskovec (2018). “Modeling polyphar-

macy side effects with graph convolutional networks”. In: Bioinformatics.

Vol. 34. 13. Oxford Academic, pp. i457–i466. DOI: 10.1093/bioinformatics/

bty294. arXiv: 1802.00543.

Zitnik, Marinka et al. (2019). “Machine learning for integrating data in biology

and medicine: Principles, practice, and opportunities”. In: Information Fusion

50, pp. 71–91. ISSN: 15662535. DOI: 10.1016/j.inffus.2018.09.012.

arXiv: 1807.00123.

208

https://doi.org/10.1038/s41467-020-16483-3
https://doi.org/10.1038/s41467-020-16483-3
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://arxiv.org/abs/1812.08434
https://doi.org/10.1038/bjc.2016.223
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294
https://arxiv.org/abs/1802.00543
https://doi.org/10.1016/j.inffus.2018.09.012
https://arxiv.org/abs/1807.00123

	cover sheet.pdf
	thesis_vf_corrected.pdf
	Contents
	Introduction
	Background
	Thesis Outline

	Cancer risk in the broader population
	Introduction
	Dissecting the heritable risk of breast cancer: from statistical methods to susceptibility genes
	Conclusions

	Gene-level heritability analysis
	Introduction
	The Landscape of the Heritable Cancer Genome
	Conclusions

	From single experiments to system biology
	Protein-Protein Interaction Networks
	Using interactome topology to test omics data
	PyGNA: a unified framework for geneset network analysis
	Conclusions

	Data integration on networks
	Graph Neural Networks
	Convolutional Neural Networks

	An interpretable model for function and structure prediction
	Discovering cancer driver genes and pathways using stochastic block model graph neural networks
	Conclusions

	Conclusions
	Appendix A
	Supplementary materials for ``Dissecting the heritable risk of breast cancer: from statistical methods to susceptibility genes''
	Supplementary materials for ``The landscape of the heritable cancer genome''
	Supplementary materials for ``PyGNA: a unified framework for geneset network analysis''
	Supplementary materials for ``Discovering cancer driver genes and pathways using stochastic block model graph neural networks''

	List of publications
	Bibliography


