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3☯*, Anikó Sztrókay-Gaul1,2, Susanne Grandl1,2,

Sigrid Auweter1, Marian Willner3, Mathias Marschner3, Doris Mayr4, Maximilian F. Reiser1,

Franz Pfeiffer3,5, Julia Herzen3

1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany,

2 Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany, 3 Chair of

Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of

Munich, Garching, Germany, 4 Institute of Pathology, Ludwig-Maximilians-University Hospital Munich,

Munich, Germany, 5 Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical

University of Munich, Munich, Germany

☯ These authors contributed equally to this work.

* lorenz.birnbacher@ph.tum.de

Abstract

Background

The extent of intraductal carcinoma in situ (DCIS) is commonly underestimated due to

the discontinuous growth and lack of microcalcifications. Specimen radiography has

been established to reduce the rate of re-excision. However, the predictive value for

margin assessment with conventional specimen radiography for DCIS is low. In this

study we assessed the potential of grating-based phase-contrast computed tomography

(GBPC-CT) at conventional X-ray sources for specimen tomography of DCIS containing

samples.

Materials and methods

GBPC-CT was performed on four ex-vivo breast specimens containing DCIS and invasive

carcinoma of non-specific type. Phase-contrast and absorption-based datasets were manu-

ally matched with corresponding histological slices as the standard of reference.

Results

Matching of CT images and histology was successful. GBPC-CT showed an improved soft

tissue contrast compared to absorption-based images revealing more histological details in

the same sections. Non-calcifying DCIS exceeding the invasive tumor could be correlated to

areas of dilated bright ducts around the tumor.
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Conclusions

GBPC-CT imaging at conventional X-ray sources offers improved depiction quality for the

imaging of breast tissue samples compared to absorption-based imaging, allows the identifi-

cation of diagnostically relevant tissue details, and provides full three-dimensional assess-

ment of sample margins.

Introduction

In population based mammography screening, intraductal carcinoma in situ (DCIS) repre-

sents approximately 20% of detected breast cancers. The extent of DCIS is commonly underes-

timated due to the discontinuous growth and lack of microcalcifications. As additionally

systemic therapy is not recommended in the majority of cases, a DCIS focused management of

margins is necessary [1]. Recent studies underline that complete resection in breast conserva-

tion during primary surgery for DCIS is mandatory to avoid subsequent surgery and to reduce

the risk of recurrent disease [2–5]. Wider resection margins and intraoperative specimen radi-

ography have been established for intraoperative margin assessment to keep the rate of re-exci-

sion low. However, the sensitivity and negative predictive value of two-view specimen digital

radiography for DCIS is currently low [6]. Pathological methods like intraoperative frozen sec-

tions and imprint cytology perform well, but are time consuming and restricted to individual

sections of the excised sample [7]. Because of these challenges several X-ray attenuation-based

imaging technologies including specimen tomosynthesis specialized for the intraoperative

margin assessment are currently under evaluation [8, 9].

Over the last decade, continuous advances in X-ray phase-contrast imaging have rendered

the method promising as it provides high soft tissue contrast that substantially exceeds absorp-

tion contrast [10]. Initial feasibility trials introduced breast phase-contrast imaging for mam-

mography and CT imaging setups and have been performed with highly brilliant synchrotron

sources [11–15].

Compared to phase–contrast mammography, there is little experience with clinical phase-

contrast CT applications for breast imaging [16–24]. Recent trials on ex-vivo PC-CT imaging

of breast samples using synchrotron radiation showed greatly improved soft tissue contrast

and differentiability of fine structures compared to absorption-based imaging [25–30]. The

cornerstone for future clinical applications has been advancing grating-based phase-contrast

imaging to conventional laboratory X-ray sources [31, 32]. Moreover, grating-based phase-

contrast computed tomography (GBPC-CT) provides quantitative tissue-specific values com-

parable to the Hounsfield units established for conventional CT [33–35].

First ex-vivo breast sample studies using conventional X-ray sources showed improved spa-

tial resolution for the characterization of different breast lesion types, and a full three-dimen-

sional view of a tumor permitting the identification of diagnostically relevant tissue sections

within large tumors [36, 37]. A study using synchrotron radiation showed that corresponding

to histopathological sections, specific microscopic structures of DCIS can be visualized in

PC-CT but not in absorption CT [38].

In this first proof-of-concept study, we perform for the first time ex-vivo grating-based

phase-contrast computed tomography (GBPC-CT) using a conventional X-ray source to assess

specific imaging features of DCIS compared to histopathology. In detail, we investigate if the

specific value of enhanced contrast in grating-based high resolution PC-CT can be compared

to absorption-based CT by means of four ex-vivo samples containing NST and DCIS.
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Materials and methods

Study design

This prospective ex-vivo study was conducted in accordance with the Declaration of Helsinki

and was approved by the institutional review board. Two participants were included, giving

written informed consent after adequate explanation of the study protocol. Indication to breast

surgery followed the recommendation of the interdisciplinary tumor conference of the local

certified breast center. Inclusion criteria were a histologically proven invasive or intraductal

carcinoma in situ (DCIS) in preoperative biopsy and completed preoperative conventional

breast diagnostics (clinical breast examination, high-frequency ultrasound, and digital two-

view mammography).

Patient 1 presented with a palpable mass in the upper outer quadrant of the right breast.

Mammography revealed multicentric disease with two suspect lesions in the upper outer quad-

rant and an area of suspect, pleomorphic microcalcifications with segmental distribution in

the center of the right breast. Patient 2 presented with inflammatory signs and an induration

of the entire left breast. Mammography revealed an edema of the cutis and extensive microcal-

cifications of both upper quadrants extending into the lower quadrants. Both patients were

treated by modified radical mastectomy carried out by the local department of gynecology and

obstetrics.

Sample acquisition and preparation

Within one hour after ablation, the breast abladates were fixated in a 4% formaldehyde solu-

tion. Clinical standard histopathological workup was completed before acquisition of the

GBPC-CT images. After cutting the formaldehyde-fixated abladates into 5 mm thick slices,

macroscopically suspicious and representative tissue sections (max. 3.0 × 2.0 × 0.5 cm3) were

resected for standard paraffin embedding and automatic staining. For imaging purposes, rep-

resentative and orientable tissue sections of 3 cm maximum diameter were resected from the

tumor-bearing area and put into a 50 ml plastic container containing a 4% neutral-buffered

formaldehyde solution. Standard histopathological workup of these samples was performed

after PC-CT data acquisition. The slices were dehydrated in an ascending alcohol series before

embedding in hot paraffin wax. After solidification, the paraffin blocks were cut into 5 μm sec-

tions using a standard microtome and sections were stained with haematoxylin and eosin

using standard protocols. Four breast samples were analyzed: three samples from patient 1 and

one sample from patient 2.

Grating-based PC-CT

Grating-based phase-contrast computed tomography (GBPC-CT) uses a conventional X-ray

source in combination with a Talbot-Lau interferometer and an X-ray detector. GBPC-CT

provides three complementary signals: the conventional attenuation image, the differential

phase-contrast signal, and the dark-field image. The basic principles of grating-based phase-

contrast imaging can be found in Pfeiffer et al. [31, 32].

The experimental setup consisted of a rotating anode with a molybdenum target (Enraf

Nonius FR 591) operating at 40 kVp and 70 mA and a Pilatus II 100k (DECTRIS, Baden,

Switzerland) single-photon counting detector (1 mm silicon sensor, 487 × 195 pixels,

172 × 172 μm2 pixel size). Due to the sample magnification, the effective pixel size was

100 × 100 μm2 [39].

The Talbot-Lau interferometer consists of three gratings, each with a grating period of

5.4 μm (Institut für Mikrostrukturtechnik, Karlsruhe Institute of Technology, Germany) The
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gratings are placed in equal distances of 85.7 cm. The source grating produces an array of par-

tially coherent X-ray sources and allows for the use of a conventional X-ray tube. The phase

grating induces an interference pattern in certain distances exploiting the Talbot effect. The

design energy for the phase-grating is 27 keV and the phase-shift is π for this energy. The ana-

lyzer grating is needed in order to resolve the interference pattern as the detector pixel size is

larger than the grating period. A discrete, lateral shift of the analyzer grating over several

(phase-) steps called phase-stepping enables the retrieval of the attenuation and differential

phase-shift signal of the examined object in the X-ray beam [40]. The number of phase-steps

in this study was 11 and the exposure time was 3 seconds per step. The visibility, which

describes the quality of the interferometer, was approximately 24%. The reconstruction of the

800 projections for each image signal over 360 degrees was performed via filtered-backprojec-

tion using a Ram-Lak filter kernel for the attenuation projections and a Hilbert filter for the

differential phase-contrast projections [32]. The sample was positioned directly in front of the

phase-grating and surrounded by a water bath to avoid phase-wrapping and to reduce the

effect of beam hardening, which facilitates quantitative imaging [35]. The phase-contrast and

attenuation data was converted to attenuation Hounsfield units (HU) or phase-contrast

Hounsfield units (HUp), respectively [35]. Additionally, the raw detector data were decon-

volved using a Richardson-Lucy algorithm with an experimentally determined point-spread

function with 10 iterations, in order to correct the image blurring by a large source size [41,

42]. Absorption contrast and PC-CT data were automatically co-registered and manually

matched with corresponding histological slices. Preliminary three-dimensional reconstruc-

tions of the CT data sets were then matched during a consensus meeting of the reconstructing

breast radiologist and the pathologist in a lesion by lesion manner. Although simultaneously

acquired in GBPC-CT, the three-dimensional reconstruction of the dark-field signal has not

been evaluated with respect to breast imaging in this study.

Results and discussion

The GBPC-CT data was successfully matched with corresponding histological sections based

on characteristic macroscopic features and distribution of adipose tissue.

Tumor 1

Macroscopic examination of tumor 1 revealed an irregularly shaped, very stiff tumor in the

central part of the mastectomy sample. Microscopy displayed a diffusely growing DCIS of

maximum 6 cm diameter with a multifocal invasive carcinoma of non-specific type (NST, for-

merly invasive ductal carcinoma) composed by four tumor nodules of 4, 2, 0.6, and 0.2 cm of

diameter, respectively. Figs 1–4 show representative slices of three tumor samples.

Sample 1 presents with an invasive carcinoma in the center and surrounding DCIS (Fig 1).

The absorption-based images of sample 1 display no or very limited internal contrast differ-

ences with similar densities of ductal walls, intraductal carcinoma, and invasive carcinoma, as

illustrated by way of example in Fig 1A. The phase-contrast images allow the identification of

the compact invasive tumor within the surrounding ductal structures (Fig 1B). The ducts con-

taining DCIS are delineated by bright duct walls (arrows). The histopathological slice in Fig 1C

shows a clear and round shaped invasive ductal carcinoma with high cellularity and intraductal

cellular components in immediate proximity. The DCIS areas are characteristically closely

packed with polymorphic tumor cells within the lumen and hyperchromatic nuclei (Fig 1D).

The diagnostic DCIS features within areas of dilated intramammary ducts remain hidden in

the phase-contrast images due to the limited resolution of the technique in comparison to the

magnification view of optical microscopy.
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Sample 2 shows two areas of dilated ducts and fibrosis connected by a small semicircular

tissue strand (Fig 2). In the absorption-based images (Fig 2A) dilated ducts and other soft tis-

sue components reveal similar density with no internal contrast differences. The phase-con-

trast image allows clear correlation depicting the bright walls of the ducts in longitudinal and

orthogonal direction (Fig 2B, arrows). The triangular tissue structure extending into the fatty

tissue in the upper part of the slice represents an area of low grade DCIS (Fig 2A–2C, asterisk).

Comparing the normal duct marked with ‘d’ with areas containing DCIS (Fig 2B), the phase-

contrast signal intensity of the normal ductal wall does not differ much from the DCIS wall.

However, the thickness of the normal duct wall is much smaller than the thickness of the DCIS

and the lumen presents with relatively lower signal intensity. The DCIS containing areas have

a larger epithelial layer thickness and irregular filling of the duct lumen, which increases the

phase-contrast signal intensity of the DCIS areas. Fig 3 displays the histological slices of sample

2 in further detail. One can observe the widespread distribution of dilated ducts in various

directions (Fig 3A, arrow). The higher magnification of the duct labeled with the asterisk

visualizes a normal epithelial layer and lumen of the duct (Fig 3B & 3C, asterisk).

Sample 3 presents an area of DCIS containing microcalcifications in the right part of the

slice (frame) and a vessel in the left part of the slice (asterisk) (Fig 4). The absorption image of

sample 3 displays only low contrast of the vessel wall (Fig 4A). In contrast, the delineation of

the vessel is well depicted in the phase-contrast images (Fig 4B). The histological section shows

a vessel in the left part of the slice (asterisk) and areas of calcifying DCIS in the right part of the

slice (frame) (Fig 4C). The area of DCIS is marked by a cluster of microcalcifications in both

attenuation and phase-contrast images. However, the soft tissue component of the DCIS area

could not be identified in the absorption-based images.

Fig 1. Attenuation, phase-contrast, and histology images of sample 1. (A) The absorption-based image reveals

adipose tissue (at) appearing dark and areas of breast tissue. The tumor tissue cannot be further differentiated. The

absorption-based image shows low contrast of all structures except for adipose tissue (at). The attenuation data is

displayed in a linear range of [-60,60] HU. (B) The phase-contrast image of the same region shows a round shaped

central part of the invasive tumor marked with an ‘x’ with surrounding DCIS. The bright delineation of duct walls in

dilated ducts containing DCIS can be observed (arrows). (C) The histology section (HE staining) shows an invasive

ductal cancer (violet, labeled with ‘x’) surrounded by DCIS and dilated mammary ducts (pink). The arrows indicate

dilated ducts with intraductal carcinoma. The tumor area is embedded in an area of adipose tissue (at). (D) 200-fold

magnification of the histology part indicated by the rectangle in (C) visualizes dilated ducts (violet) and an atypical

epithelium that fills up completely or partially the lumen of the ducts. The DCIS areas marked by the asterisks depict

central necrosis.

https://doi.org/10.1371/journal.pone.0210291.g001
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Tumor 2

Macroscopic examination of tumor 2 revealed a tumor nodule with an irregular shape and a

whitish microcystic surface. The cysts were filled with partially yellow, partially reddish brown,

crumbly material. Microscopy showed extensively fibrotic breast parenchyma containing ecta-

tic ducts lined with a DCIS grade 3, focal intraluminal calcifications, and comedonecroses.

Figs 5 and 6 show representative slices of one tumor sample.

Fig 3. Histopathologic slices of sample 2 in different magnifications. (A) In 10-fold magnification, the details of the

duct marked by the asterisk cannot be visualized. This duct is the same as depicted in the histology image in Fig 2C

labeled by the ‘d’. The arrow shows an exemplary DCIS structure. (B) The 100-fold magnification visualizes the normal

epithelial structure. The lumen of the ducts is partially filled by debris labeled by the ‘x’. (C) The 200-fold

magnification displays the epithelial monolayer in the duct in further detail.

https://doi.org/10.1371/journal.pone.0210291.g003

Fig 2. Attenuation, phase-contrast, and histology images of sample 2. (A) The absorption-based image shows low

contrast of all structures except for adipose tissue (at). The attenuation data is displayed in a linear range of [-60,60]

HU. (B) The phase-contrast image of the same region corresponding to (A) shows dilated ducts delineated with a

bright wall. Exemplary ducts are marked by arrows. The duct labeled by the ‘d’ marks a normal ductal wall with high

phase-contrast signal intensity, whereas the corresponding lumen is of lower signal intensity. In contrast, the DCIS

area (asterisk and arrows) shows irregular shape of the ductal wall and lumen due to the multilayer epithelium. The

phase-contrast data is displayed in a linear range of [-100,100] HUp. (C) The corresponding histological section

(overview, HE stained) visualizes areas of fibrous tissue with violet ductal structures in different directions. The

triangular tissue structure in the upper part of the slice represents an area of low grade DCIS (asterisk), which can also

be seen in the phase-contrast image (B).

https://doi.org/10.1371/journal.pone.0210291.g002
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Sample 4 consists of haemorrhage in the ducts and multiple areas containing DCIS visual-

ized in Fig 5. The absorption image of sample 4 shows no internal soft tissue contrast within

the sample section (Fig 5A). The phase-contrast image allows the depiction of the extent of

the ducts in the haemorrhage area as well as in the DCIS area (Fig 5B). The calcification clus-

ters are depicted both by phase-contrast and absorption images. The histological section of

sample 4 displays an area of haemorrhage in the center of the slice (Fig 5C). Intraductal

blood clots are marked by way of example by arrows. The small scattered areas of the violet

stained ducts represent diffusely growing calcifying intraductal carcinoma grade 3 (circles).

Magnification views of the histological section demonstrating blood filled ducts with normal

monolayer epithelium and a DCIS containing area (violet) are shown in Fig 6. The flat

monolayer epithelium of the normal dilated ducts filled with blood clots can be identified in

Fig 6B. The intraductal proliferations filling up the duct with polymorphic tumor cells and

debris indicating comedonecrosis (violet) are clearly visible using a magnification factor of

40 and 100 (Fig 6B and 6C).

Fig 4. Attenuation, phase-contrast, and histology images of sample 3. (A) The absorption-based image clearly

depicts microcalcifications (frame) but shows low contrast of the vessel wall (asterisk) and very little contrast of the soft

tissue component of the DCIS area. The attenuation data is displayed in a linear range of [-60,60] HU. (B) The phase-

contrast image visualizes a clear depiction of the vessel wall (asterisk). The calcifying DCIS region shows moderate soft

tissue contrast. The phase-contrast data is displayed in a linear range of [-100,100] HUp. (C) The histological section

(HE stained, overview) of sample 3 reveals a tubular structure in the left part of the section representing a vessel with a

tortous segment in the lower border of the section (asterisk). Areas of calcifying DCIS can be seen in the right part of

the section (frame).

https://doi.org/10.1371/journal.pone.0210291.g004

Fig 5. Attenuation, phase-contrast, and histology images of sample 4. (A) The absorption images reveal no

differentiation of ductal structures and glandular tissue. The microcalcifications are well depicted. The attenuation data

is displayed in a linear range of [-60,60] HU. (B) The phase-contrast image visualizes an overall higher signal in the

haemorrhagic area but low contrast of the dilated ducts in the areas of DCIS (encircled regions). Bright delineation of

duct walls is visible in both areas and the microcalcifications are clearly depicted. The phase-contrast data is displayed

in a linear range of [-100,100] HUp. (C) Histological section (overview, HE stained) showing haemorrhage in an area

of dilated ducts with normal monolayer epithelium (arrows) and regions of ducts with multilayer epithelium and

microcalcifications representing DCIS (circles).

https://doi.org/10.1371/journal.pone.0210291.g005
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Conclusion

Complete resection in breast conserving therapy of intraductal carcinoma remains a challenge.

Although specimen radiography is well established to provide accurate intraoperative margin

assessment, re-excision rates are much higher in the presence of extensive intraductal carci-

noma and the recurrence rate after primary surgery remains significant [6]. Phase-contrast

imaging of the breast has been shown to be a promising technique for ex-vivo breast imaging

outperforming the limitations of attenuation-based specimen radiography. Successful correla-

tion with histopathology being the standard of reference in a case of intraductal carcinoma

using synchrotron radiation has been described by Sztrókay et al. suggesting that the visualiza-

tion of the ductal walls of dilated intramammary ducts allows the identification of areas con-

taining DCIS [38].

In this study, we evaluated for the first time the potential of a grating-based phase-con-

trast computed tomography set-up using a conventional, laboratory X-ray source for ex-vivo

imaging of samples containing DCIS. Our results demonstrate a successful correlation of

GBPC-CT data sets with the histopathological sections of ex-vivo breast samples. Outper-

forming absorption-based images of the same data-set, the phase-contrast images allow the

clear depiction and differentiation of both invasive carcinoma and surrounding areas of

intraductal carcinoma. Even single dilated ducts, intraductal bleeding, and distinct vessels

were matched correctly with the HE stained sections. In the case of invasive disease phase-

contrast CT images could clearly depict areas of surrounding dilated ducts suspicious for

DCIS.

However, the consensus meeting showed that identifying and classifying areas of DCIS

and epithelial hyperplasia during the pathological inspection of the sections is not a sharp-

edged process but a more feature collecting scan. Pathognomonic features of DCIS like atypi-

cal epithelial growth, mitoses, and nuclear size could be revealed by light microscopy with

magnification factors of at least 100. These features are essential for the differentiation of

dilated ducts representing either sclerosing adenosis or malignant intraductal epithelial

growth.

In this regard, GBPC-CT for ex-vivo sample assessment will not be able to compete with

histological work-up as long as the spatial resolution is not drastically improved, which is the

Fig 6. Histology slices of sample 4 in detailed magnification. (A) The histological section in overview (HE stained)

indicates an area of dilated ducts with an atypical epithelium (framed violet ducts). (B) The magnification view (40 ×)

clearly demonstrates dilated ducts filled up with violet stained epithelial cells (frame) and surrounding fibrous tissue

(pink). These ducts filled with blood clots, which can be identified in the phase-contrast image in Fig 5B, show a

normal flat monolayer epithelium. (C) The magnification view (100 ×) of the framed region reveals central necrosis

within the intraductal proliferations and a high grade nuclearity of the epithelial cells showing clear evidence for the

presence of DCIS.

https://doi.org/10.1371/journal.pone.0210291.g006
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major limitation of the presented method. Currently, the isotropic spatial resolution lies

around 100 μm. Increasing the spatial resolution can be realized for example using X-ray

detectors with smaller physical pixel sizes and a redesign of the interferometer in combination

with an X-ray source with a smaller focal spot size.

A different phase-contrast approach is propagation-based phase-contrast imaging, which

can also be realized with laboratory X-ray sources, as shown in a current study revealing highly

detailed brain structures [43]. GBPC-CT does currently not reach this resolution in a labora-

tory environment, but is in general a more sensitive method and enables quantitative imaging.

At synchrotron facilities, high spatial resolution can be reached with GBPC-CT, as shown in

Zanette et al. [44].

In a recent breast cancer phase-contrast tomography study, which was performed with

propagation-based imaging at a synchrotron facility, a high resolution match between breast

tissue and histology was achieved [30]. Although the effective pixel size of our experiments

performed with the laboratory GBPC-CT setup is much larger, visual comparison allows

almost similar contrast.

Further, the measurement duration is still way too long for time-critical application. The

sensor of the detector used here limits the efficiency, as well as the gratings on silicon substrate

cause substantial unwanted beam absorption. In order to increase the time performance, more

efficient detector systems, improved grating properties, and X-ray sources with higher flux

would allow to reduce the duration of the GBPC-CT scan enormously.

In contrast to histopathological sections depending on distinct slices and compared to two-

dimensional approaches, phase-contrast CT provides full three-dimensional capability allow-

ing a more precise margin assessment over the whole sample especially for non-calcifying

DCIS extending the invasive tumor. Thus, GBPC-CT sample imaging is able to provide essen-

tial histological landmarks and to identify suspicious areas within a sample to navigate the

placement of histological sections.

In conclusion, we show that improved ductal wall assessment is feasible with grating-

based phase-contrast computed tomography in a laboratory environment providing addi-

tional diagnostic benefits. Further optimization of the GBPC-CT setup will increase the

potential application for specimen tomography at higher spatial resolution and in shorter

measurement duration.
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11. Keyriläinen J, Bravin A, Fernández M, Tenhunen M, Virkkunen P, Suortti P. Phase-contrast X-ray imag-

ing of breast. Acta Radiologica. 2010; 51(8):866–884. https://doi.org/10.3109/02841851.2010.504742

PMID: 20799921

Assessment of DCIS using grating-based X-ray phase-contrast CT at conventional X-ray sources

PLOS ONE | https://doi.org/10.1371/journal.pone.0210291 January 9, 2019 10 / 12

https://doi.org/10.1002/jso.23594
http://www.ncbi.nlm.nih.gov/pubmed/24756965
https://doi.org/10.1007/s12282-014-0531-5
http://www.ncbi.nlm.nih.gov/pubmed/24777718
https://doi.org/10.1016/j.breast.2014.01.002
https://doi.org/10.1016/j.breast.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24468464
https://doi.org/10.1111/tbj.12573
http://www.ncbi.nlm.nih.gov/pubmed/26854189
https://doi.org/10.1055/s-0032-1312730
https://doi.org/10.1055/s-0032-1312730
https://doi.org/10.1245/s10434-014-3957-2
http://www.ncbi.nlm.nih.gov/pubmed/25081342
https://doi.org/10.1016/j.ejrad.2017.05.041
http://www.ncbi.nlm.nih.gov/pubmed/28668424
https://doi.org/10.1016/j.acra.2016.09.017
https://doi.org/10.1016/j.acra.2016.09.017
http://www.ncbi.nlm.nih.gov/pubmed/27888024
https://doi.org/10.3109/02841851.2010.504742
http://www.ncbi.nlm.nih.gov/pubmed/20799921
https://doi.org/10.1371/journal.pone.0210291


12. Auweter SD, Herzen J, Willner M, Grandl S, Scherer K, Bamberg F, et al. X-ray phase-contrast imaging

of the breast—advances towards clinical implementation. The British Journal of Radiology. 2014; 87

(1034):20130606. https://doi.org/10.1259/bjr.20130606 PMID: 24452106

13. Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, et al. Mammography with synchrotron radia-

tion: First clinical experience with phase-detection technique. Radiology. 2011; 259(3):684–694. https://

doi.org/10.1148/radiol.11100745 PMID: 21436089

14. Dreossi D, Abrami A, Arfelli F, Bregant P, Casarin K, Chenda V, et al. The mammography project at the

SYRMEP beamline. European Journal of Radiology. 2008; 68(3):S58–S62. https://doi.org/10.1016/j.

ejrad.2008.04.038 PMID: 18617344

15. Pani S, Longo R, Dreossi D, Montanari F, Olivo A, Arfelli F, et al. Breast tomography with synchrotron

radiation: preliminary results. Physics in Medicine and Biology. 2004; 49(9):1739–1754. https://doi.org/

10.1088/0031-9155/49/9/011 PMID: 15152928
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