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1. Introduction 

With advances in multimedia technologies, demand for transmission and storage of 

voluminous multimedia data has dramatically increased and, as a consequence, data 

compression is now essential in reducing the amount of data prior storage or transmission. 

Compression techniques aim to minimise the number of bits required to represent image 

data while maintaining an acceptable visual quality. Image compression is achieved by 

exploiting the spatial and perceptual redundancies present in image data. Image 

compression techniques are classified into two categories, lossless and lossy. Lossless 

techniques refer to those that allow recovery of the original input data from its compressed 

representation without any loss of information, i.e. after decoding, an identical copy of the 

original data can be restored. Lossy techniques offer higher compression ratios but it is 

impossible to recover the original data from its compressed data, as some of the input 

information is lost during the lossy compression. These techniques are designed to minimise 

the amount of distortion introduced into the image data at certain compression ratios. 

Compression is usually achieved by transforming the image data into another domain, 

e.g. frequency or wavelet domains, and then quantizing and losslessy encoding the 

transformed coefficients (Ghanbari, 1999; Peng & Kieffer, 2004; Wang et al., 2001). In 

recent years much research has been undertaken to develop efficient image compression 

techniques. This research has led to the development of two standard image compression 

techniques called: JPEG and JPEG2000 (JPEG, 1994; JPEG 2000, 2000), and many non-

standard image compression algorithms (Said & Pearlman, 1996; Scargall & Dlay, 2000; 

Shapiro, 1993).  

Statistical parameters of image data have been used in a number of image compression 

techniques (Chang & Chen, 1993; Lu et al., 2000; Lu et al., 2002; Saryazdi and Jafari, 2002). 

These techniques offer promising visual quality at low bit rates. However, the application of 

statistical parameters of the transformed data in image compression techniques has been 

less reported in the literature. Therefore, the statistical parameters of the transformed image 

data and their application in developing novel compression algorithms are further 

investigated in this chapter. 
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The performance of image compression techniques can also be significantly improved by 
embedding the properties of the Human Visual System (HVS) in their compression 
algorithms (Bradley, 1999; Nadenau et al., 2003). Due to the space–frequency localization 
properties of wavelet transforms, wavelet based image codecs are most suitable for 
embedding the HVS model in their coding algorithm (Bradley, 1999). The HVS model can be 
embedded either in the quantization stage (Aili et al., 2006; HSontsch & Karam, 2000; 
Nadenau et al., 2003), or at the bit allocation stage (Antonini et al., 1992; Sheikh Akbari & 
Soraghan, 2003; Thornton et al., 2002; Voukelatos & Soraghan, 1997) of the wavelet based 
encoders. In this chapter, HVS coefficients for wavelet high frequency subbands are 
calculated and their application in improving the coding performance of the statistical 
encoder is investigated. 

2. Fundamental of compression 

The main goal of all image compression techniques is to minimize the number of bits 
required to represent a digital image, while preserving an acceptable level of image quality. 
Image data are amendable to compression due to the spatial redundancies they exhibit and 
also because they contain information that, from a perceptual point of view, can be 
considered irrelevant. Many standard and non-standard image compression techniques 
have been developed to compress digital images. These techniques exploit some or all of 
these image properties to improve the quality of the decoded images at higher compression 
ratios. Some of these image coding schemes are tabulated in Table 1. 

Image compression techniques can be classified into two main groups, named: lossless and 
lossy compression techniques. In lossless compression process, the original data and the 
reconstructed data must be identical for each and every data sample. Lossless compression 
is demanded in different applications such as: medical imagery, i.e. cardiography, to avoid 
the loss of data and errors introduced into the imagery. Also, it is applied to the case that is 
not possible to determine the acceptable loss of data. 

In most image processing applications, there is no need for the reconstructed data to be 
identical in value with its original. Therefore, some amount of loss is permitted in the 
reconstructed data. This kind of compression techniques, which results in an imperfect 
reconstruction, is called lossy compression. By using lossy compression, it is possible to 
represent the image with some loss using fewer bits in comparison to a lossless 
compression. 

3. Characteristics of the Human Visual System 

Research has shown that embedding the Human Visual System (HVS) model into 
compression algorithms yields significant improvement in the visual quality of the 
reconstructed images (Aili et al., 2006; Antonini et al., 1992; Bradley, 1999; HSontsch & 
Karam, 2000; Nadenau et al., 2003; Sheikh Akbari & Soraghan, 2003; Thornton et al., 2002; 
Voukelatos & Soraghan, 1997). It has been shown in (Bradley, 1999; Nadenau et al., 2003) 
that the performance of image compression techniques can be significantly improved by 
exploiting the limitations of the HVS for compression purposes. To achieve this aim, the 
HVS-model can be embedded in the compression algorithm to optimise the perceived visual 
quality. 

www.intechopen.com



 
Wavelet Based Image Compression Techniques 

 

425 

 

Standard image coding techniques Non standard image coding techniques 

DCT-base Wavelet-base 

Differential Pulse code Modulation (DPCM) 
Vector Quantization (VQ) 
Zero-Tree Coding 
Fractal 
Neural Networks 
Trellis Coding 

JPEG (1980) JPEG2000 (2000) 

Table 1. Standard and non-standard image compression techniques. 

 

 

Fig. 1. The CSF curves for the luminance and chrominance channels of the HVS (Nadenau et 
al., 2003). 

Due to the complexity of the human visual processing system, assessments of the 
performance of HVS-models are based on psychophysical observations.  Physiologists have 
performed many psycho-visual experiments with the goal of understanding how the HVS 
works. One of the limitations of the HVS, which was found experimentally, is the lower 
sensitivity of the HVS for patterns with high spatial-frequencies. Exploiting this property of 
the HVS model, and embedding it into compression algorithms, can significantly improve 
the visual quality of compressed images. Natural images are composed of small details and 
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shaped regions. Therefore, it is necessary to describe the contrast sensitivity as a function of 
spatial frequency. This phenomenon has been known as the Contrast Sensitivity Function 
(CSF) (Nadenau et al, 2003; Tan et al, 2004). Figure 1 shows the CSF curves for the luminance 
and chrominance channels of the HVS. From Figure 1, it can be seen that the HVS is more 
sensitive to the luminance component than the chrominance components. The sensitivity of 
the HVS in terms of luminance is greatest around the mid-frequencies, in the region of 4 cycles 
per optical degree (cpd). It rapidly reduces at higher spatial frequencies, and slightly decreases 
at lower frequencies. The HVS, in terms of chrominance components behaves like a low pass-
filter; therefore there is no decrease in its sensitivity at low frequencies.  

 

 

Fig. 2. A low frequency pattern (left) and a high frequency pattern (right), the high 
frequency pattern appear less intense. 

To give a sense of the sensitivity of HVS to different frequencies, two black and white 
patterns are shown in Figure 2, a low frequency pattern on the left and a high frequency 
pattern on the right. In both patterns, the black and white have the same brightness, but the 
black and white colours of the right hand pattern appears less intense than the pattern in the 
left side. This can be explained by the fact that the HVS is less sensitive to high frequency 
components.  

3.1 Human Visual System in compression techniques 

Wavelet-based image coding schemes have proven to be ideally suited for embedding 
complete HVS models, due to the space–frequency localization properties of the wavelet 
decompositions (Bradley, 1999). The HVS model has been embedded either at the 
quantization stage (Aili et al., 2006; HSontsch & Karam, 2000; Nadenau et al., 2003), or at the 
bit allocation stage (Antonini et al., 1992; Sheikh Akbari & Soraghan, 2003; Thornton et al., 
2002; Voukelatos & Soraghan, 1997) of the codec, which yields significant improvement in 
the visual quality of the reconstructed images. Antonini et al. (Antonini et al., 1992) 
developed a wavelet-based image compression scheme using Vector Quantization (VQ) and 
the property of the HVS. This algorithm performs a Discrete Wavelet Transform (DWT) on 
the input image and then the resulting coefficients in different subbands are vector 
quantized. The bit allocation among different subbands is based on a weighted Mean 
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Squared Error (MSE) distortion criterion, where the weights are determined based on the 
property of the HVS introduced in (Campbell & Robson, 1968). (Voukelatos & Soraghan, 
1998) introduced another wavelet based image compression technique using VQ and the 
properties of the HVS. They first calculated the value of the Contrast Sensitivity Function 
(CSF) for the central spatial frequency of each subband. These values were then used to scale 
the threshold value for each subband, which were used in vector selection prior to the VQ 
process. A weighted MSE distortion criterion using perceptual weights is also employed to 
allocate bits among different subbands. Voukelatos and Soraghan reported significant 
improvement over existing block-based image compression techniques at very low bitrates. 
Thornton et al (Thornton et al., 2002) extended the Voukelatos and Soraghan’s algorithm 
(Voukelatos & Soraghan, 1998) to video for very low bitrate transmission. Thornton et al. 
incorporated the properties of the HVS to code the intra-frames and reported significant 
improvement in objective visual quality of the decompressed video sequences. Sheikh 
Akbari and Soraghan (Sheikh Akbari & Soraghan, 2003) developed another wavelet based 
video compression scheme using the VQ scheme and the properties of the HVS. They 
calculated the value of the CSF for the central spatial frequency of each subband of the 
Quarter Common Intermediate (QCIF) image size. These values were then used to scale the 
threshold value for each subband, which were used in vector selection prior to the VQ 
process and also in the bit allocation among different subbands. 

The JPEG 2000 standard image codec supports two types of visual frequency weighting: 

Fixed Visual Weighting (FVW) and Visual Progressive Coding or Visual Progressive 

Weighting (VPW). In FVW, only one set of CSF weights is chosen and applied in accordance 

with the viewing conditions, and in the VPW, different sets of CSF weights are used at the 

various stages of the embedded coding. This is because during a progressive transmission 

stage, the image is viewed at various distances. For example, at low bitrates, the image is 

viewed from a relatively large distance, while as more bits are received, the quality of the 

reconstructed image is increased, which implies that the viewer looks at the image from a 

closer distance (Skodras et al, 2001). Nadenau et al. incorporated the characteristic of the 

HVS into a wavelet-based image compression algorithm using a noise-shape filtering stage 

prior to the quantization stage (Nadenau et al., 2003). They filtered the transformed 

coefficients using a “HVS filter” for each subband. This algorithm improves the compression 

ratio up to 30% over the JPEG2000 baseline for a number of test images. A new image 

compression method based on the HVS was proposed by Aili et al. (Aili et al., 2006). In this 

codec, the input image is first decomposed using a wavelet transform, and then the 

transformed coefficients in different subbands are weighted by the peak of the contrast 

sensitivity function (CSF) curve in the wavelet domain. Finally the weighted wavelet 

coefficients were coded using the Set Partitioning in Heretical Tree (SPIHT) algorithm. This 

technique showed significantly higher visual and almost the same objective quality to that 

of the conventional SPIHT technique. 

3.2 Calculation of perceptual weights 

In this section, the perceptual weights that regulate the quantization steps in different image 
compression techniques are specifically calculated for a Quarter Common Intermediate 
Format (QCIF) image size. The derivation of the weighting factors is based on the results of 
subjective experimental data that was presented in (Van Dyck & Rajala, 1994).  
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3.2.1 Calculation of spatial frequencies 

The perceptual coding model is designed for a QCIF image size, thus this corresponds to a 

physical dimension of 1.8 2.2  inches on the workstation monitor, i.e. videophone display. 

Therefore, the pixel resolution r , which is measured in pixels per inch, in both the 

horizontal and vertical dimensions, will be 80 pixels/inch. Let us assume the viewing 
distance v, which is measured in metres, be 0.30 metres. This distance is a good 
approximation of the natural viewing distance of a human using a videophone device. The 
sampling frequency, fs in pixels per degree, can be then calculated using Equation 1 
(Nadenau et al., 2003): 

 
2 tan(0.5 )

0.0254
S

v r
f

  (1) 

The signal is critically down-sampled at Nyquist rate to 0.5 cycle/pixel. Hence the 
maximum frequency represented in the signal is: 

 max 0.5 Sf f  (2) 

Thus the maximum frequency represented in the QCIF image size with the thirty centimetre 
distance will be 8.246 cycles/degree. The centre radial frequency for each subband is 
determined by the Euclidean distance of its centre from the origin where subbands are in a 
square of length 8.246 and the base-band is in the origin. Figure 3 shows the centre radial 
frequencies for each sub-band of a three level wavelet decomposition. 

3.2.2 Mean detection threshold 

The mean detection threshold is the smallest change in a colour that is noticeable by a 

human observer and is used to calculate the perceptual weighting factors. It is a function of 

spatial frequency, orientation, luminance and background colour. The initial data presented 

in (Van Dyck & Rajala, 1994) was measured in the xyY colour space, where x and y are the 

C.I.E. chromaticity coordinates and Y is the luminance. Table 2 gives the set of thresholds for 

various frequencies and orientations measured along the luminance, Red-Green and Blue-

Yellow directions when the luminance value 0Y  is 25 /cd m  and background colour is 

white. The chromaticity coordinates for white are:    0 0, 0.33 , 0.35x y  . For 

transition along the Red-Green and Blue-Yellow direction each mean detection threshold 

gives two chromaticity coordinates corresponding to the maximum and minimum of the 

sinusoidal variation as shown in equations 3 and 4, respectively. 

 0 .ix x x t    (3) 

 0 .iy y y t     (4) 

where t  is the mean detection threshold, x  and y  are the step sizes for the changes in 

the x  and y  direction. The values used for x  and y  for all three directions are given in 

Table 3. 
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Fig. 3. Subband centre spatial frequencies in cycles/degree. 

3.2.3 Perceptual weight factors 

The perceptual weight for each subband is the reciprocal of its mean detection threshold. 

Hence, the mean detection thresholds for the YIQ space need to be calculated before the 

perceptual weights can be determined. The mean detection thresholds in the xyY space for 

the centre frequencies of the subbands shown in Figure 3 are first calculated by linearly 

interpolating the values in Table 2. In wavelet decomposition, the diagonal subbands (HH) 

do not discriminate between left and right, so an average of the two values is employed. The 

resulting thresholds in the xyY space for the centre of the high frequency subbands are listed 

in Table 4. By using equations 3 and 4, two chromaticity coordinates  0, ,i ix y Y , 

where 1 , 2i   for each subband can be calculated. These two chromaticity 

coordinates are in the xyY space. Therefore they are converted from the xyY space to the 

C.I.E. XYZ space using the equations in 5: (Ghanbari, 1999). 
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Spatial 
Direction 

Colour 
Direction 

Spatial frequency cycles/deg 

1.0 2.0 5.0 10.0 20.0 

Horizontal 
(LH) 

Luminance 6.750 6.330 7.250 13.500 65.083 

R-G 4.750 4.750 7.617 17.417 77.417 

B-Y 6.000 6.833 32.667 70.167 150.000 

Vertical 
(HL) 

Luminance 6.833 6.250 6.833 22.500 77.800 

R-G 5.583 7.083 9.250 23.000 90.375 

B-Y 6.667 9.417 31.833 65.700 150.000 

Left 
Diagonal 

(HH) 

Luminance 7.667 6.917 11.167 37.083 49.000 

R-G 7.917 7.167 16.083 37.500 100.750 

B-Y 12.417 18.500 45.500 86.500 150.000 

Right 
Diagonal 

(HH) 

Luminance 8.083 7.583 9.167 42.583 85.750 

R-G 7.750 6.333 13.833 35.417 103.500 

B-Y 13.750 19.750 47.750 83.000 114.000 

Table 2. Mean detection thresholds in xyY space (Van Dyck 1994). 

 
 

Direction  Y  x   y  

Luminance 0.0124 0.0 0.0 

R-G 0.0 0.000655 -0.000357 

B-Y 0.0 0.000283 0.000689 

Table 3. Step size for changes in each direction (Van Dyck 1994). 

 
 

SUBBAND 
Mean Detection Threshold 

Luminance R-G B-Y 

LH1 8.731 9.939 41.554 

HL1 10.546 12.508 39.859 

HH1 32.436 48.890 75.188 

LH2 6.664 5.793 16.236 

HL2 6.462 7.871 17.576 

HH2 9.556 13.242 40.877 

LH3 6.520 4.750 6.454 

HL3 6.514 6.402 8.168 

HH3 7.431 7.261 20.839 

Table 4. Mean detection thresholds in xyY space for subbands. 
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
 (5) 

For the luminance direction each mean detection threshold also provides two XYZ values 
that are calculated using the equations in 6: 

 

0
0

0

0

0
0

0

. .

.

. .

i

i

i

X
X X Y t

Y

Y Y Y t

Z
Z Z Y t

Y

  
  
  

 (6) 

where Y is given in Table 3, t is the mean detection threshold and 1,2i  . The 

vector  0 0 0, ,X Y Z  contains the coordinates of the white point, computed from 

equation 6. The resulting values are then transformed into the YIQ space. The Red-Green 
line lies approximately in the I-direction and the Blue-Yellow line lies mostly in the Q 
direction. The linear transformations in equations 7 and 8 are used to give two points for 
each direction in the YIQ space. 

 

1.910 0.533 0.288

0.985 2.000 0.028 .

0.058 0.118 0.896

R X

G Y

B Z

                            
  (7) 

 

0.299 0.587 0.114

0.596 0.274 0.322 .

0.211 0.523 0.312

Y R

I G

Q B

                           
 (8) 

The YIQ mean detection threshold for each direction is the inverse Euclidean distance 

between these two points. The computed weighting factors for each subband of QCIF video, 

based on the properties of the HVS, are shown in Table 5. These values represent the 

perceptual weights that can be used to regulate the quantization step-size in the pixel 

quantization of the high frequency subbands’ coefficients of the Multiresolution based 

image/video codecs. 

4. Statistical parameters in image compression  

Statistical parameters of the image data have been used in a number of image compression 

techniques (Chang & Chen, 1993; Lu et al., 2000; Lu et al., 2002; Saryazdi & Jafari, 2002) and 

have demonstrated promising improvement in the quality of decompressed images, 

especially at medium to high compression ratios. A vector quantization based image 
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compression algorithm was proposed by Chang and Chen (Chang & Chen, 1993). It first 

generates a number of sub-codebooks from the super-codebook, and then employs the 

statistical parameters of the upper and left neighbour vectors to decide which codebook is to 

be used for vector quantization. This coding scheme has been extended by Lu et al. (Lu et 

al., 2000) who generated two master-codebooks, one for the codewords whose variances are 

larger than a threshold, and another one for the remainder codewords. Lu et al. exploited 

the current vector’s statistical parameter to decide which of these two master codebooks to 

use for vector quantization, and then Chang and Chen’s algorithm was applied to perform 

vector quantization. Lu et al. (Lu et al., 2002) successfully developed other gradient-based 

vector quantization schemes and reported further improvement at low bit rates. In the Lu et 

al. proposed algorithms, one master codebook is first generated and codewords are then 

sorted in ascending order of their gradient values. In the first algorithm, Chang and Chen’s 

(Chang and Chen, 1993) technique is used to perform vector quantization, with the 

difference that gradient parameters instead of statistical parameters are used to decide 

which codebook is to be used for vector quantization. In the second algorithm, the number 

of codebooks was increased, which resulted in further bit reduction. Another statistically-

based image compression scheme was reported by (Saryazdi and Jafari, 2002). In this 

algorithm, the input image is divided to a number of blocks. The statistical parameters are 

then used to classify each block into uniform and non-uniform blocks. The uniform blocks 

are coded by their minimum values. The non-uniform blocks are coded by their minimum 

and residual values, where the residual values are vector quantized. They reported 

promising visual quality at high compression ratios.  

 
 

SUBBAND Y-DOMAIN I-DOMAIN Q-DOMAIN 

LH1 
4.3807 2.0482 1.0502 

HL1 
3.4573 1.6159 1.0992 

HH1 
1.2372 0.6978 0.6065 

LH2 
5.9673 3.6449 2.6340 

HL2 
6.1708 2.7149 2.4728 

HH2 
4.1934 1.6384 1.1331 

LH3 
6.1796 4.5685 7.1443 

HL3 
6.1984 3.3243 5.5495 

HH3 
5.3931 2.9888 2.2339 

Table 5. Perceptual weight factors for the YIQ colour domain. 

4.1 Distribution of wavelet transform coefficients 

Wavelet transform is one of the most popular transform that has been used in many image-
coding schemes. As each statistical distribution function has its own parameters, knowledge 
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of the statistical behaviour of the wavelet transformed coefficients in each subband of an 
image, can play an important role in designing an efficient compression algorithm. Study of 
many non-artificial images has shown that distribution of the wavelet-transformed 
coefficients in high frequency subbands of natural images follow a Gaussian distribution 
(Altunbasak & Kamaci, 2004; Kilic & Yilmaz, 2003; Eude et al., 1994; Valade & Nicolas, 2004; 
Yovanof & Liu, 1996). In the following, the Gaussian distribution and its statistical 
parameters are first reviewed. Then, a review of the study on the distribution of the wavelet 
transform-coefficients of images is given. A one dimensional Gaussian distribution function 

( )gf x  is defined as follow: 

 2

2

2

)(

2
2

1
)( 







x

g exf   (9) 

where   is the mean value of ( )gf x  and is calculated using Equation 10: 

 ( )gx f x dx 
   (10) 

and   is known as the standard deviation, which determines the width the of the 

distribution. The square of the standard deviation, 2 , is called the variance and is 

determined as follows: 

 2 2 ( )gx f x dx 
   (11) 

where the mean value,  , and variance, 2 , of discrete data, are calculated using 

Equations 12 and 13, respectively. 

 
n

i

ix
n

1

1  (12) 

  
n

i

ix
n

1

22 )(
1   (13) 

where n  is the number of the discrete data, and ix  is the data. Every Gaussian distribution 

function is defined by two parameters: the mean value, which defines the central location of 
the distribution, and the variance, which defines the width of the distribution. Four 
Gaussian distribution functions, with different mean values and variances, are shown in 
Figure 4. 

Study of the distribution of wavelet transform coefficients in each subband has shown that 
the distribution of the coefficients in the detail subbands of the wavelet-transformed data of 
natural images is approximately Gaussian (coefficients in the baseband are excluded) 
[Valade and Nicolas, 2004][Kilic and Yilmaz, 2003]. Distributions of the wavelet coefficients 
of an image, after applying a three level 2D-wavelet transform, are shown in Figure 5. From 
Figure 5, it can be seen that except for the lowest frequency coefficients, the distribution of 
the coefficients in high frequency subbands is approximately Gaussian. 

www.intechopen.com



 
Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology 

 

434 

 

Fig. 4. Gaussian distribution functions (http://en.wikipedia.org/wiki/Normal -
distribution). 

 
 

 

Fig. 5. Histogram of three level wavelet transform of an image (Kilic & Yilmaz, 2003). 

In summary, it can be concluded that distribution of the wavelet coefficients in high 
frequency subbands of natural images can be well approximated by a Gaussian distribution. 
Therefore, effective use of statistical parameters of the transformed image data (mean values 
and variances of a Gaussian distribution function) is key in estimation of the transformed 
data and yielding compression.  
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4.2 Statistical encoder 

In section 4.1 the Gaussian distribution function and its statistical parameters were 
reviewed. It was shown that every Gaussian distribution function is defined by two 
parameters: the mean value, which defines the central location of the distribution, and the 
variance, which defines the width of the distribution. It was also noted that the 
distribution of the coefficients in each detail subband of the wavelet-transformed data of 
the natural images is approximately Gaussian has led to the development of a Statistical 
Encoding (SE) algorithm. The SE algorithm assumes that the coefficients in the 2D input 
matrix partly follows the Gaussian distribution. Therefore it estimates those parts through 
a novel hierarchical estimation algorithm, which codes in a lossy manner those parts with 
their mean values. The SE algorithm applies a threshold value on the variance of the input 
data to determine if it is possible to estimate them with the mean value of a single 
Gaussian distribution function or if it needs  further  dividing into four sub-matrices. This 
hierarchal algorithm is iterated on the resulting sub-matrices until the distribution of the 
coefficients in all sub-matrices fulfils the above criteria. Finally, the SE algorithm takes the 
Gaussian mean values of the resulting sub-matrices as the estimation value for those sub-
matrices. The SE algorithm generates a quadtree-like binary map along with the mean 
values to keep a record of the location of the sub-matrices, which are estimated with their 
mean values. 

A block diagram of the SE algorithm is shown in Figure 6. A two dimensional matrix of 

size NN, which for simplification is called U, along with a threshold value, which 

represents the level of compression, are input to the SE technique. The SE algorithm 

performs the following process to compress the input matrix U: The SE algorithm first 

defines two empty vectors called mv (mean value vector) and q (quadtree-like vector). It 

then calculates the variance (var) and the mean value (m) of the matrix U and compares 

the resulted variance value with the threshold value. If the variance is less than the 

threshold value, the matrix is coded by its mean value (m) and one bit binary data equal 

to 0, which are placed in the mv and q vectors, respectively. If the variance is greater than 

the threshold, one bit binary data equal to one is placed at the q vector and the size of the 

matrix is checked. If the size of the matrix is 22, the four coefficients of the matrix are 

scanned and placed in the mv vector and encoding process is finished by sending the 

mean value vector mv and the quadtree-like vector q. If the size of the matrix is greater 

than 22, the matrix U is divided into four equal non-overlapping blocks. These four 

blocks are then processed from left to right, as shown in Figure 6. For simplify, only the 

continuation of the coding process of the first block, U1, is discussed. This process is 

repeated exactly on the three other blocks. Processing of the first block U1 is described as 

follows: The variance (var1) and the mean value (m1) of the sub-matrix U1 are first 

calculated and then the resulting variance value is compared with the input threshold 

value. If it is less than the threshold value, the calculated mean value (m1) is concatenated 

to the mean value vector mv and one bit binary data equal to 0 is appended to the 

quadtree-like vector q. The encoding process of this sub-block is terminated at this stage. 

Otherwise, the size of the sub-block is checked. If it is 22, one bit binary data equal to 1 is 

appended to the current quadtree-like vector q and the four coefficients of the sub-block 

are scanned and concatenated to the mv vector and encoding process is ended for this 

sub-block. If its size is larger than 22, one bit binary data equal to 1 is concatenated to the 
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current quadtree-like vector q and the sub-block U1 is then divided into four equal non-

overlapping blocks. These four new sub-blocks are named successor sub-blocks and are 

processed from left to right in the same way that their four ancestor sub-blocks were 

encoded. The above process is continued until whole successor blocks are encoded. When 

the encoding process is finished two vectors mv and q represent the compressed data of 

the input matrix U. 
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Fig. 6. Block diagram of the Statistical Encoder. 
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Fig. 7. The multi-resolution and statistical based image encoder. 

4.3 Statistical and wavelet based image codec 

A block diagram of the Multi-resolution and Statistical Based (MSB) image-coding algorithm 
is shown in Figure 7. A gray scale image is input to the image encoder. The MSB encoder 
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then applies a 2D lifting based Discrete Wavelet Transform (DWT) to the input image data 
and decomposes them into a number of subbands. The DWT concentrates most of the image 
energy into the baseband. Hence, the baseband is losslessly coded using a Differential Pulse 
Code Modulation (DPCM) algorithm, which will be explained at the end of this section, to 
preserve visually important information in the baseband. Coefficients in each detail 
subband are coded using the procedure that is illustrated in Figure 7 as follows: (i) The 
coefficients in each detail subband are first level shifted to have a minimum value (Min) of 
zero; (ii) The resulting level shifted coefficients are then coded using the SE algorithm. The 
SE algorithm takes the level shifted coefficients of a detail subband and a threshold value, 
which is specifically designed for that subband, and performs the encoding process (The 
procedures for generating threshold values for different subbands are explained in Section 
4.2.1); (iii) The output of each SE encoder is a mean value vector (mv), which carries the 
mean values, and a quadtree-like vector (q), which carries the quadtree-like data; (iv) Finally 
the multiplexor combines all the resulting data together and generates the compressed 
output bitstream. 

XA

CB

XA

CB

 

Fig. 8. Three-sample prediction neighbourhoods for DPCM method. 

In the DPCM method pixel X with the value of x, is predicted from its three neighbouring 
pixels, called: A, B and C, with the values of a, b and c respectively, as shown in Figure 8. 
The prediction value of pixel X, called Px, is calculated using Equation 14: 

 2

ca
bPx


 (14) 

The predicted value of pixel X is then subtracted from the actual value of pixel X to generate 
an error value, and all the resulting error values are finally losslessly coded.  

4.3.1 Threshold generation 

In this research work, perceptual weights are employed to regulate the threshold values for 
different subbands. Hence, the threshold value for each detail subband is generated using a 
uniform quality factor divided by the perceptual weight of the centre of that subband, 
where the uniform quality factor can take any positive value. There is a direct relationship 
between the uniform quality factor and the resulting compression ratios. In Section 3.2 an 
algorithm for calculating the perceptual weights for detail subbands of a wavelet 
transformed image data was given. The proposed algorithm is used to calculate the 

perceptual weights for the centre of each detail subband of an image of size 512512 and a 
viewing distance of 40 centimetres, which are shown in Table 6. 
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DWT Level Subband Y-Domain I-Domain Q-Domain 

ONE 

LH 3.0230 1.3251 0.7258 

HL 2.0443 1.0275 0.7681 

HH 0.8713 0.4273 0.4697 

TWO 

LH 5.4726 2.9355 1.6570 

HL 5.5166 2.3270 1.6560 

HH 2.4531 1.0992 0.8321 

THREE 

LH 6.1930 4.2479 4.9906 

HL 6.3060 2.9823 4.0070 

HH 4.8143 2.2390 1.6068 

Table 6. Perceptual weights for the YIQ colour domain (512512 image size and a viewing 
distance of 40 cm). 

4.3.2 Results 

In order to evaluate the performance of the proposed MSB codec two sets of experiments 

were performed. In the first sets of experiments the performance of the MSB codec using 

perceptual weights is compared to that of MSB without using perceptual weights to regulate 

the threshold values for different subbands, which are presented in Sub-section 4.3.2.1 In the 

second sets of experiments, the MSB codec using perceptual weights is compared to those of 

JPEG and JPEG2000 standard image codecs, where the results are illustrated in Sub-section 

4.3.2.2. 

4.3.2.1 Results for the codec with and without using perceptual weights 

The performance of the MSB image codec was investigated on three greyscale test 

images (with resolution of 8-bits per pixel) and size of 512512 pixels: ‘Lena’, ‘Elaine’, 

and ‘House’. These test images cover all range of spatial frequencies from very low 

frequency smooth areas, to textures with middle frequencies, and very high frequency 

sharp edges. In order to evaluate the effect of the perceptual weights on the performance 

of the proposed codec, ‘Lena’, ‘Elaine’, and ‘House’ test images were compressed using 

the proposed codec with and without using perceptual weights to regulate the uniform 

threshold value for different subbands. A three level Daubechies 9/7 wavelet transform 

was used to decompose the input image into ten subbands for this experiment. The 

PSNR criterion was used to evaluate the quality of the reconstructed images. The PSNR 

measurements for the test images at different compression ratios using the MSB codec 
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with and without perceptual weights are given in Figure 9(a) to 9(c) respectively. From 

these Figures, it is clear that the MSB codec using perceptual weights gives significantly 

higher performance to that of the MSB codec without perceptual weights. However, it is 

well known that the PSNR is an unreliable metric for measuring the visual quality of the 

decompressed images (Kaia et al., 2005). Hence, to illustrate the true visual quality 

obtained using the MSB codec with and without perceptual weights, the reconstructed 

‘Lena’, ‘Elaine’, and ‘House’ images at compression ratio of 16 using the proposed codec 

are shown in Figure 10(I) to 10(III), respectively. From theses figures, it can be seen that 

the reconstructed images, when perceptual weights are used in the encoding process, 

have significantly higher visual quality with less blurred edges and better surface details. 

From Figure 10(I) and 10(II), which show decoded ‘Lena’ and ‘Elaine’ test images, it is 

obvious that the images using the MSB codec using perceptual weights have a noticeably 

higher quality to those decoded using the MSB codec without employing perceptual 

weights. It can also be seen that the decoded test images using the MSB codec with 

perceptual weights have clearer facial details with less blurring in the faces. From Figure 

10(III) it is clear that the reconstructed ‘House’ test image using MSB with HVS have 

significantly higher visual quality with lower blurred edges and clearer surface details. 

4.3.2.2 Results of the MSB, JPEG and JPEG2000 codecs 

In this section, the performance of the MSB codec with perceptual weights is compared to 

JPEG and JPEG2000 (JPEG2000, 2005) standard image coding techniques. The MSB, JPEG 

and JPEG2000 were used to compress ‘‘Lena’, ‘Elaine’, and ‘House’ test images at different 

compression ratios. The PSNR measurements for the encoded images using the MSB, JPEG, 

and JPEG2000 image codecs at different compression ratios are shown in Figures 11(a) to 

11(c), respectively. From these figures it can be seen that the MSB codec gives superior 

performance to JPEG and JPEG2000 at low compression ratios. From Figure 11(a) and 11(b), 

it can be observed that the proposed codec offers higher PSNR in coding ‘Lena’ and ‘Elaine’ 

test images to those of JPEG and JPEG2000 at compression ratios lower than 5. From Figure 

11(c), it is clear that the MSB codec outperforms JPEG and JPEG2000 in coding ‘House’ test 

images at compression ratios of up to 4. However, it is well known that the PSNR often does 

not reflect the visual quality of the decoded images, thus a perceptual quality evaluation 

seems to be necessary. To demonstrate the visual quality achieved using the MSB, JPEG and 

JPEG2000 coding techniques at different compression ratios, the decoded ‘Lena’ and ‘Elaine’ 

test images at compression ratios 5 and 40 using these techniques are shown in Figures 12 

and 13, respectively.  

From Figures 12(a), it can be seen that the visual quality of the decoded Lena test image at 

a compression ratio of 5 using MSB codec is high. It is also clear that the quality of the 

decoded Lena test image using MSB codec is slightly higher than that of JPEG and almost 

the same as that of JPEG2000. The Elaine test image contains significant high frequency 

details and is more difficult to code. From Figure 12(b), which illustrates the decoded 

Elaine test images at compression ratio of 5, the high visual quality of all the decoded 

images is obvious. From Figures 13(a), which illustrates the decoded Lena test images at a 

compression ratio of 40, the severe blocking artefact of the decoded image using JPEG is 

quite obvious, where the MSB decoded image contains some blurring around the mouth 
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and ringing artefacts around edges in the image. In terms of overall visual quality, the 

MSB decoded Lena test image has superior visual quality to that of JPEG. It is also clear 

that the quality of the MSB decoded image is slightly inferior to that of JPEG2000. From 

Figures 13(b), which illustrates the decoded Elaine test images at a compression ratio of 

40, it is obvious that: a) the decoded JPEG image exhibits severe blocking artefacts; b) the 

MSB decoded image has higher visual quality but suffers from blurring in the background 

of the image and ringing artefacts in its sharp edges and c) the JPEG2000 decoded image 

has high visual quality but slight blurring and ringing artefacts can be seen in some 

regions of the background and sharp edges of the image. It is clear that the JPEG2000 

decoded images have slightly higher visual quality than MSB decoded images. 

The results presented here demonstrate that the MSB codec outperforms JPEG and 
JPEG2000 image codecs, subjectively and objectively, at low compression ratios (up to 
compression ratio of 5). The results also show that at middle-range compression ratios JPEG 
decoded images somewhat suffer from blocking artefacts, while the visual quality of the 
MSB decoded images is significantly higher.  

The results at high compression ratios (around 40) indicate that a) the JPEG decoded images 
severely suffer from blocking artefacts, so much so that there is no point in using JPEG to 
code images at high compression ratios; b) the MSB decoded images have significantly 
higher visual quality than that of JPEG, while they slightly suffer from patchy blur in 
regions with soft texture and ringing noise at sharp edges; c) decoded MSB images have 
significantly lower PSNR in comparison to that of JPEG2000 but their visual quality is 
slightly inferior to that of JPEG2000.  

5. Conclusion  

In this Chapter first a novel statistical encoding algorithm was presented. The proposed SE 

algorithm assumes that the distribution of the coefficients in the input matrix is partly 

Gaussian and uses a hierarchal encoding algorithm to estimate the coefficients in the input 

matrix with the Gaussian mean values of multiple distributions; then a multi-resolution and 

statistical based image-coding scheme was developed. It applies a 2D wavelet transform on 

the input image data to decompose it into its frequency subbands. The baseband is losslessly 

coded to preserve the visually important image data. The coefficients in each detail subband 

were first dc level shifted to have a minimum value of zero and then coded using the SE 

algorithm. The SE algorithm takes the dc level shifted coefficients of a detail subband and a 

threshold value, which is generated for that subband. The encoding process is then 

performed. Perceptual weights were calculated for the centre of each detail subband and 

used to regulate the threshold value for that subband.  

Experimental results showed that the proposed coding scheme provides significantly 

higher subjective and objective quality when perceptual weights are used to regulate the 

threshold values. The results also indicated that the proposed codec outperforms JPEG 

and JPEG2000 coding schemes subjectively and objectively at low compression ratios. 

Results showed that the proposed coding scheme outperforms JPEG subjectively at higher 

compression ratios. It offers comparable visual quality to that of JPEG2000 at high 

compression ratios. 
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a) Lena

b) Elaine

c) House

a) Lena

b) Elaine

c) House

 

Fig. 9. PSNR measurements for a) ‘Lena’, b) ‘Elaine’ and c) ‘House’ test images at different 
compression ratios using MSB codec with and without employing perceptual weights. 
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I) Lena

II) Elaine

III) House

b) MSB without HVSa) MSB with HVS

 

I) Lena

II) Elaine

III) House

b) MSB without HVSa) MSB with HVS

 

 

Fig. 10. Reconstructed I) ‘Lena’, II) ‘Elaine’ and II) ‘House’ test images at compression ratio 
of 16 using the MSB codec a) with HVS and b) without HVS. 
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a) Lena

b) Elaine

c) House

 

Fig. 11. PSNR measurements for a) ‘Lena’, b) ‘Elaine’ and c) ‘House’ test images at different 
compression ratios using MSB, JPEG and JPEG2000 codecs. 
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I) MSB

II) JPEG

III) JPEG 2000

b) Elainea) Lena

 

 

 

Fig. 12. Reconstructed a) ‘Lena’ and b) ‘Elaine’ test images at compression ratio of 5 using  
I) MSB codec, II) JPEG and III) JPEG2000. 
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II) JPEG

III) JPEG 2000
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Fig. 13. Reconstructed a) ‘Lena’ and b) ‘Elaine’ test images at compression ratio of 40 using  
I) MSB codec, II) JPEG and III) JPEG2000. 
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