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Abstract 13 

Intermittent renewable energy generation, which is determined by weather conditions, is increasing 14 

in power markets. The efficient integration of these energy sources calls for flexible participants in 15 

smart power grids. It has been acknowledged that a large, underutilized, flexible resource lies on the 16 

consumer side of electricity generation. Despite the recently increasing interest in demand flexibility, 17 

there is a gap in the literature concerning the incentives for consumers to offer their flexible energy 18 

to power markets. In this paper, we examine a virtual power plant concept, which simultaneously 19 

optimizes the response of controllable electric hot water heaters to solar power forecast error 20 

imbalances. Uncertainty is included in the optimization in terms of solar power day-ahead forecast 21 

errors and balancing power market conditions. We show that including solar power imbalance 22 

minimization in the target function changes the optimal hot water heating profile such that more 23 

electricity is used during the daytime. The virtual power plant operation decreases solar power 24 

imbalances by 5 – 10 % and benefits the participating households by 4.0 - 7.5 € in extra savings 25 

annually. The results of this study indicate that with the number of participating households, while 26 

total profits increase, marginal revenues decrease.  27 
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1. Introduction 1 
 2 

The electricity markets are facing radical changes and innovations. The battle against climate change 3 

is forcing us to increase the amount of variable and intermittent renewable energy sources (RESs), 4 

such as wind and solar, in power systems. The fluctuating nature of intermittent RESs causes 5 

additional uncertainty and costs in the operation of the power system. These intermittency costs2 have 6 

been identified, categorized and calculated in many recent studies (Hirth, 2013; Hirth, 2016; Hirth et 7 

al., 2015; Gowrisankaran et al., 2017; Huuki et al., 2017). As a result, more attention has been paid 8 

to the efficient network control and the provision of balancing services. Fortunately, at the same time, 9 

the development of information and communication technology (ICT) has enabled more efficient 10 

power system operations. In other words, the power grids are constantly becoming smarter (Wissner, 11 

2011). The traditional unidirectional supply chain from the electricity producers to the consumers 12 

through the transmission and distribution grid is becoming a bidirectional supply chain, as consumers 13 

can feed their own distributed generation back to the grid. 14 

 15 

The development of energy storage technologies can be viewed as an additional enabler of cost-16 

efficient RES integration (a recent review article on energy storage technologies can be found in 17 

Koohi-Fagyeh and Rosen (2020)). In other words, the ability to store energy is one means of limiting 18 

the costs of integrating wind and solar power by buffering the volatility induced by the RES (Xia et 19 

al., 2018). Generally, the storage technologies can be categorized into the following three classes: 20 

bulk storage, which operates over timescales of hours to weeks; load shifting storage, which is 21 

operated from minutes to hours; and power quality storage, which operates from seconds to minutes 22 

(Staffell and Rustomji, 2016). The grid-scale bulk energy storage technologies, such as pumped hydro 23 

(Karhinen and Huuki, 2019) and compressed air (Berrada et al., 2016), may already be profitable in 24 

markets with a sufficiently high electricity price spread. However, the large-scale deployment of 25 

electricity storage is highly sensitive to the investment costs (McPherson et al., 2018). 26 

 27 

The growth of the energy storage market is resulting in lower investment costs for non-bulk storage 28 

technologies. For example, the goal of increasing the self-consumption of photovoltaic (PV) power 29 

has led to batteries being deployed in residential houses (Pena-Bello et al., 2017). Despite this 30 

development, the economic viability remains an issue due to the current investment costs. As shown, 31 

for example, by Barsali et al. (2017), the profitability of the electrochemical storage can be expected 32 

 
2 Also called the integration costs of RES (Hirth, 2013). 
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to increase in the future as the investment costs continue to decline. Although the increased 1 

investment intensity may not always be purely market-based (see, e.g., Kairius et al. (2019) for a 2 

discussion of the German case), it seems that the commercial residential storage markets are 3 

becoming economically attractive for consumers in the future. 4 

 5 

The development of ICT and energy storage has opened possibilities for novel distributed CO2 6 

emissions-free energy solutions in power systems. The new solutions aim to increase the resource use 7 

efficiency, which is why they should be efficiently integrated into the power system operations. In 8 

other words, while aiming to reduce the CO2 emissions in the electricity sector, the reliability of and 9 

security of the electricity supply in the power systems must be ensured. We, among other researchers 10 

in this field and also in other technological disruption fields3, propose that new types of business 11 

models and trading mechanisms are needed to activate the potential of the new technological 12 

solutions. The operators providing these solutions in the power markets are called  aggregators 13 

(Campaigne and Oren, 2016), microgrids and virtual power plants (VPPs) (Nosratabadi et al., 2017). 14 

 15 

The operation of a VPP depends on the electricity consumption and production resources under its 16 

control, which are linked to the questions of economies of scale and scope, as well as to the design 17 

of a proper business model. The scale questions involve finding an optimal amount of resources from 18 

a certain viewpoint, i.e., either the household’s or the VPP operator’s perspective. The scope aspect 19 

arises from the fact that the VPP may choose to participate in different marketplaces and offer various 20 

types of services to its customers. In addition to electricity bill minimization, these services can 21 

include, for instance, home automation (Vega et al., 2015) and electric vehicle charging (Nunes et 22 

al., 2015). Several business models ranging from nonprofit or profit types to different types of co-23 

operatives can also be applied (Akasiadis and Chalkiadakis, 2017). 24 

 25 

The most exciting finding of the VPP literature review in Nosratabadi et al. (2017) is that there are 26 

not many studies investigating the demand response in VPPs from the household perspective. Instead, 27 

most reviewed studies focus on different technical aspects related to VPPs but not on the cost savings 28 

for households from permitting the VPP operator to control their electricity consumption. An 29 

exception to this is provided by Richter and Pollitt (2018), who investigate the consumer preferences 30 

 
3 The sharing economy, or peer-to-peer markets, provides an alternative to long-established firms in the supply of services 

and goods. The impact of one of the best known recent multisided platform services, Airbnb, is  analysed in Zervas et al. 

(2017). Other new disrupting initiatives, such as Uber, are discussed in Kenney and Zysman (2016). These are thoroughly 

analysed by Henten and Windekilde (2016) in Coase’s (1973) transaction cost framework. Finally, Martin (2016) suggests 

that the current pathway of the sharing economy does not necessarily result in a transition to sustainability. 
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towards VPP pricing strategies with a discrete choice experiment. This gap in the literature leads to 1 

the main contributions of this article, which are as follows: 2 

i) we study the economics of scale and quantify the average and marginal added values of the 3 

individual households participating in the VPP operation, 4 

ii) we study the economics of scope by using hot water heaters as a thermal storage resource both in 5 

the household’s heating cost and solar power forecast error cost minimization, and 6 

iii) we show the market value of weather forecast accuracy (see also Martinez-Anido et al., 2016). 7 

The contributions listed above are studied with the developed VPP model, which includes controlling 8 

the consumption and production resources in a setting that combines models and elements from the 9 

previous VPP, demand response and weather forecasting literature. The flexibility is provided by the 10 

individual households whose electricity demand flexibility is used to balance the forecast errors of a 11 

PV power plant with a capacity of one4 megawatt-peak (MWp). The VPP operator seeks to minimize 12 

the forecast error costs given the uncertainty5 related to the balancing power market conditions and 13 

solar power forecasts6. In other words, the VPP operator may bid its production based on the latest 14 

forecast available at the day-ahead market closure and face the consequences of forecast errors in the 15 

energy imbalance market after the uncertainties have been realized. Alternatively, the operator may 16 

utilize the controllable flexible consumption resources to compensate for the forecast errors 17 

internally.  18 

 19 

The households are key players providing electricity demand flexibility in future power systems. In 20 

the past several years, a large stream of literature examining the different demand response (DR) 21 

programmes has been built (for thorough literature reviews see, e.g., Faruqui et al. (2010) and Katz 22 

et al. (2016)). These programmes are typically divided into price- and incentive-based programmes 23 

(Finn et al., 2011). According to Borenstein et al. (2002), real-time pricing with prices varying hourly 24 

can be considered the most prominent and economically efficient way to implement demand 25 

 
4 1 MWp describes the size of a large-scale solar power plant in Finland. For example, 0.9 MWp systems have been 

installed on the roofs of supermarkets and the electricity generation company Helen has a 0.85 MWp solar plant on the 

roof of a skiing hall.    
5 Much of the relevant VPP literature discusses the stochastic elements in VPP optimization. In short, the stochasticity in 

the VPP operations can be related to wind power (Tajeddini et al., 2014; Tascikaraoglu et al., 2014), solar power 

(Tascikaraoglu et al., 2014; Zamani et al., 2016), load (Dabbagh and Sheikh -El-Eslami, 2015; Zamani et al., 2016) or 

electricity prices (Dabbagh and Sheikh-El-Eslami, 2015; Tajeddini et al., 2014; Shafie-khan et al., 2013; Zamani et al., 

2016). Along the lines of the previous literature, the uncertainty in this study is related to the solar power output and 

balancing power market conditions. 
6 For instance, wind power forecast errors, defined as the difference between the day-ahead output forecast and the 

realized output, increase the imbalance power costs (Holttinen et al., 2011; Hirth et al., 2015). The same applies for 

solar (Hirth, 2015).  
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responses in power markets. The potential for real-time pricing to increase the efficiency of power 1 

system operations was recently shown in Huuki et al. (2017). In this study, it is assumed that the 2 

consumers are under real-time pricing. 3 

 4 

The technological aspects need to be considered in designing demand response programmes7. In other 5 

words, there are differences in, for example, whether the control is related to heating or other 6 

electricity usage (Ruokamo et al., 2019). Although the household-scale battery systems are already 7 

available (e.g., Kairies, 2019), there is other underutilized storage capacity available in the residential 8 

buildings. A resource that combines both the energy storage and demand response perspectives is 9 

related to the use of a building’s thermal mass (Thieblemont et al., 2017; Verbeke and Audenaert, 10 

2018) and household water in electric hot water heaters (EHWH) (Kepplinger et al., 2015; Karhinen 11 

et al., 2018).  12 

 13 

In this article, we treat EHWHs as controllable distributed thermal storage containers8. The EHWHs 14 

provide substantial technical flexibility in smoothing out the RES output variation, as they typically 15 

have oversized heat-absorption capacities and are well-insulated. Most importantly, their temperature 16 

can be adjusted without sacrificing the comfort level (Vanthournout et al., 2012). From an economic 17 

perspective, load shifting under a real-time pricing contract from high- to low-priced hours results in 18 

heating cost savings9 (Karhinen et al., 2018). Regarding the existing VPP literature, for example, 19 

Thavlov and Bindner (2015) considered the utilization of buildings’ thermal mass in a VPP set-up. 20 

However, these researchers do not quantify the monetary benefits at a household level, which is the 21 

focus in our study. 22 

 23 

This paper is organized as follows. In Section 2, we propose a virtual power plant model incorporating 24 

the necessary elements to elaborate the contributions listed above. The market framework determines 25 

the VPP operator’s trading decisions. Therefore, after the model is specified, we apply it to the Finnish 26 

power market by investigating a set of different scenarios. The Finnish power market, PV power 27 

forecast data and model parameters are introduced in Section 3. The results are presented and 28 

discussed in Section 4, and Section 5 concludes the paper. 29 

 
7 Additionally, it is essential to offer properly designed incentives to the end-users to avoid behavioural and economic 

barriers to activating the demand response potential (Torriti et al., 2010; Hobman et al., 2016).  
8 Different technologies such as conventional pumped hydro energy storage (Karhinen and Huuki, 2019) and more 

state-of-the-art technologies, such as batteries (Luo et al., 2015), are examples of energy storage solutions that are 

already usable in VPP applications. 
9 Instead, from the electricity bill perspective, there is nothing to be optimized if the household has a fixed-price contract 

and total consumption remains fixed.  
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2. Virtual power plant operation with demand response 1 

 2 

In this section, we attempt to show how solar power generation forecast errors can be internally 3 

balanced by aggregating and utilizing individual households’ electric hot water heaters. The model 4 

formalization is started by examining the generation and consumption resources separately in Section 5 

2.1. First, the computation of the imbalance costs/revenues arising from the errors between the actual 6 

and day-ahead forecasted solar power outputs is shown in Section 2.1.1. Second, in Section 2.1.2, the 7 

hot water heating costs of a representative household are minimized based on hourly varying day-8 

ahead market prices10. The forecast errors for solar power generation and water heating under the 9 

control of a VPP operator are considered together in Section 2.2.  10 

 11 

The model framework is presented in Figure 1. In the benchmark setting, the solar power producer 12 

passively sells and buys imbalance power (surplus or deficit) to compensate for its forecasting errors, 13 

and households buy electricity from the grid to heat water. In the VPP setting, the problem becomes 14 

dynamic, as represented by the dotted lines in Figure 1, when both resources are controlled by the 15 

VPP operator. In summary, if the solar power realization is higher than forecasted (surplus), the VPP 16 

operator may use some or all the surplus output for water heating and sell the residual surplus to the 17 

Transmission System Operator (TSO) at the imbalance power market price. Alternatively, the VPP 18 

operator may direct some of the contracted electricity from the grid to counterbalance the deficit solar 19 

power output in case the realization is lower than forecasted (deficit).  20 

 21 

 
10 Day-ahead prices are also called real-time prices in, e.g., Kopsakangas-Savolainen and Svento (2012). 
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 1 

Figure 1. Virtual power plant balances any imbalances caused by the day-ahead solar power forecast errors by 2 

operating with the TSO or by controlling the consumption and generation units. The dotted lines represent the 3 

additional layer of the VPP operator optimization. 4 

 5 

2.1. Resources without coordination by the virtual power plant operator 6 

 7 

2.1.1. Solar power producer’s imbalance 8 

 9 

In this section, we provide a simplified description of a conventional imbalance power management 10 

method that is applicable for various markets with some modifications. Typically, each market 11 

participant must ensure its own power balance. In other words, the difference between its electricity 12 

production/procurement and consumption/sales must be balanced with imbalance power. In practice, 13 

these balances are maintained with the help of a compulsory open supplier. As described in Chaves-14 

Ávila et al. (2014), Balance Responsible Parties (BRPs) take care of the open suppliers’ power 15 

balances and trade imbalance power with the TSO. In this paper, it is assumed that the power balance 16 

of the solar power producer is maintained by a specific BRP, who allocates all the costs associated 17 

with the solar power producer’s generation imbalances directly to the producer. We assume that the 18 

solar producer’s generation capacity is sufficiently small (1 MWp) that it does not have any 19 

significant effects on balancing the power market equilibrium quantity and price, despite the possible 20 
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forecasting errors. In other words, the balancing market reactions are not endogenized in our 1 

calculations. 2 

 3 

Any producer is obliged to submit a production plan for the balance market in case it has sufficiently 4 

large generation units. The initial production plans are submitted to the TSO the day before delivery. 5 

Subsequently, the initial production plans are updated constantly such that any expected imbalances 6 

can be included in the TSO’s balancing plans. In this descriptive case, a two-price imbalance system11 7 

with different prices for the purchasing and selling of imbalance power is used (for the differences in 8 

one-price and two-price systems, refer to, e.g., eSett (2018)).  9 

 10 

The TSO sells and buys imbalance power to and from the BRPs. In case of a deficit production 11 

balance, the producer needs to buy imbalance power via the BRP from the TSO. The purchase price 12 

of imbalance power for the BRP is the hour-specific up-regulation price (𝑝𝑡
𝑢𝑝) in the balancing power 13 

market. The purchase price is equal to the day-ahead market (DAM) price (𝑝𝑡
𝑑𝑎𝑚) in that hour in case 14 

there is no up-regulation, or the hour is defined as a down-regulation hour. Conversely, in case of a 15 

surplus production balance, the TSO buys imbalance power from the BRP at the down-regulation 16 

price (𝑝𝑡
𝑑𝑜𝑤𝑛) in that hour. If there is no down-regulation or the hour is defined as an up-regulation 17 

hour, the purchase price is equal to the day-ahead market price defined for that hour. Table 1 18 

summarizes the imbalance revenue in two-price system. The power imbalance 𝑒𝑡 is marked as the 19 

power sold to the day-ahead market less the realized production. 20 

 21 

Table 1. Imbalance revenue in a two-price system. 22 

 Up-regulation No regulation Down-regulation 

Excess (𝒆𝒕 < 𝟎) −𝑒𝑡𝑝𝑑𝑎𝑚 −𝑒𝑡𝑝𝑡
𝑑𝑎𝑚 −𝑒𝑡𝑝𝑡

𝑑𝑜𝑤𝑛  

Deficit (𝒆𝒕 > 𝟎) 𝑒𝑡(𝑝𝑡
𝑑𝑎𝑚 − 𝑝𝑡

𝑢𝑝
) 𝑒𝑡

(𝑝𝑡
𝑑𝑎𝑚 − 𝑝𝑡

𝑑𝑎𝑚) = 0 𝑒𝑡
(𝑝𝑡

𝑑𝑎𝑚 − 𝑝𝑡
𝑑𝑎𝑚) = 0 

 23 

Considering our case study, which is described in more detail in Section 3, a solar power producer 24 

forecasts its generation on a day-ahead basis for each hour the next day. Forecast error costs arise 25 

from not being able to bid correctly in the day-ahead market and paying for any imbalances in the 26 

 
11 In contrast, a  single-price system with equal purchase prices can be used on the consumption side. In up -regulation 

(down-regulation), the hour imbalance power price is the up-regulation (down-regulation) price. The imbalance price is 

equal to the day-ahead market price if no regulation is made. According to the typical market rules, a  producer does not 

have to submit a production plan to the TSO if all its individual generator resources are smaller than 1 MW. As an 

example, according to the Finnish TSO Fingrid’s balance service rules, the production of a smaller generation unit is still 

allowed to be handled in the production balance. In this case, the production is treated in the consumption balance as a 

small-scale production. In other words, the small-scale production is deducted from the consumption. 
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imbalance power market. The hourly forecast error is marked as the difference between the estimated 1 

day-ahead production (𝑠𝑜𝑙𝑎𝑟𝑡
𝑑𝑎𝑚 ) and the realized solar power production (𝑠𝑜𝑙𝑎𝑟𝑡

𝑟𝑒𝑎𝑙 ). At hour t of 2 

delivery, the forecast error 𝑒𝑡 = 𝑠𝑜𝑙𝑎𝑟𝑡
𝑑𝑎𝑚 − 𝑠𝑜𝑙𝑎𝑟𝑡

𝑟𝑒𝑎𝑙  may be one of the following: 3 

- The solar power generation is perfectly forecasted in the day-ahead market, i.e., 𝑒𝑡 = 0. 4 

- The day-ahead forecasted solar power generation is lower than the realized  solar power 5 

generation (surplus:  𝑒𝑡 < 0) 6 

- If the system is in a down-regulation state, the solar power producer receives the 7 

down-regulation price 𝑝𝑡
𝑑𝑜𝑤𝑛 < 𝑝𝑡

𝑑𝑎𝑚  for the surplus generation 𝑒𝑡. If the solar power 8 

had been perfectly forecasted, production 𝑒𝑡 could have been sold at the day-ahead 9 

market price 𝑝𝑡
𝑑𝑎𝑚. Consequently, the forecast error cost (see Table 2) is 10 

𝑒𝑡(𝑝𝑡
𝑑𝑎𝑚 − 𝑝𝑡

𝑑𝑜𝑤𝑛).  11 

- The TSO’s imbalance power purchase price is 𝑝𝑡
𝑑𝑎𝑚 in case of an up- or no-regulation 12 

system state. The forecast error cost for excess generation in these cases is zero. 13 

- The day-ahead forecasted solar power generation is higher than the realized  solar power 14 

generation (deficit: 𝑒𝑡 > 0) 15 

- If the system is in an up-regulation state, the solar power producer pays the up-16 

regulation price 𝑝𝑡
𝑢𝑝 > 𝑝𝑡

𝑑𝑎𝑚 for the required imbalance power 𝑒𝑡. If the solar power 17 

had been perfectly forecasted, production 𝑒𝑡 would not have been sold at the day-18 

ahead market price 𝑝𝑡
𝑑𝑎𝑚 in the first place. Consequently, the forecast error cost is 19 

𝑒𝑡(𝑝𝑡
𝑑𝑎𝑚 − 𝑝𝑡

𝑢𝑝). 20 

- The TSO’s imbalance power selling price is 𝑝𝑡
𝑑𝑎𝑚 in case of a down- and a no-21 

regulation system state. The forecast error cost for a deficit generation in these cases 22 

is zero. 23 

 24 

Table 2 summarizes the forecast error cost calculation in a two-price imbalance system. In this paper, 25 

it is assumed that the VPP operator cannot improve the forecasts as such. Instead, the VPP operator 26 

can minimize the forecast error cost by maximizing the imbalance revenue by optimizing the 27 

allocation of the solar power forecast error between the imbalance power market and the controllable 28 

consumption resources. 29 

 30 

 31 

 32 

 33 
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Table 2. Forecast error cost in the two-price system. 1 

 Up-regulation No-regulation Down-regulation 

Excess (𝒆𝒕 < 𝟎) 0 0 𝑒𝑡
(𝑝𝑡

𝑑𝑎𝑚 − 𝑝𝑡
𝑑𝑜𝑤𝑛 ) 

Deficit (𝒆𝒕 > 𝟎) 𝑒𝑡(𝑝𝑡
𝑑𝑎𝑚 − 𝑝𝑡

𝑢𝑝 ) 0 0 

Note: error 𝑒𝑡 = 𝑠𝑜𝑙𝑎𝑟𝑡
𝑑𝑎𝑚 − 𝑠𝑜𝑙𝑎𝑟𝑡

𝑟𝑒𝑎𝑙. 2 

 3 

2.1.2. Household water heating optimization 4 

As a starting point in storage optimization, we examine the water heating costs of a representative 5 

household, who optimizes its heating with respect to hourly electricity price signals and a set of 6 

consumption and technical restrictions. The optimal policy minimizes the electricity cost related to 7 

water heating as follows: 8 

 9 

∑ 𝛽𝑡−1𝑥𝑡𝑝𝑡
𝑑𝑎𝑚

𝑇

𝑡=1

, (1) 10 

 11 

subject to the energy content transition equation and storage limits, as follows: 12 

 13 

0 ≤ 𝑆𝑡+1 = 𝑆𝑡 − 𝑐𝑡 − 𝐿(𝑆𝑡) + 𝑥𝑡 ≤ 𝑆,̅ (2) 14 

 15 

and the heating power limits, as follows: 16 

 17 

0 ≤ 𝑥𝑡 ≤ 𝑥    for all 𝑡 , (3) 18 

 19 

where t denotes the hour, T is the number of hours in a year, 𝛽 is the discount factor, 𝑥𝑡 is the 20 

electricity used for water heating (kWh), 𝑝𝑡
𝑑𝑎𝑚 is the electricity price in the day-ahead market 21 

(cent/kWh), 𝑆𝑡 is the energy content (kWh) in the heater, 𝑐𝑡 is the hot water consumption in energy 22 

units (kWh), 𝑆̅ (kWh) is the maximum energy content of the heater, and 𝑥̅ is the hourly maximum 23 

heating energy of the heater (kWh). The heat loss is a function of the amount of energy stored in the 24 

water 𝐿(𝑆𝑡). It is assumed that heated water flows up in the heater12. Heat loss takes place on the 25 

 
12 A thermal model assuming perfect mixing inside the EHWH is used, e.g., in Kapsalis and Hadellis (2017) and 

Kepplinger et al. (2015).   
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surface area where the temperature is higher than the household’s indoor temperature. The heat loss 1 

function is written as follows: 2 

 3 

𝐿(𝑆𝑡) = (𝑈𝐴 ∙  
𝑆𝑡

𝑆
∙ ∆𝑇𝑒𝑛𝑣) ∙ 10−3 , (4) 4 

 5 

where 𝑈𝐴 is the thermal conductance and (𝑆𝑡 𝑆̅⁄ ) is the share of the surface area related to the heat 6 

loss from the heater. The temperature difference between the heated water and the ambient indoor air 7 

is denoted by ∆𝑇𝑒𝑛𝑣. 8 

 9 

The model is solved as a discrete-time dynamic optimization problem where the energy content 𝑆𝑡 is 10 

the state variable and electricity for heating 𝑥𝑡 is the policy variable, as follows:  11 

 12 

𝑉𝑡 (𝑆𝑡) = min
𝑥𝑡

{𝑥𝑡𝑝𝑡
𝑑𝑎𝑚 + 𝛽𝑉𝑡+1 (𝑆𝑡+1)} , (5) 13 

 14 

subject to the transition Equation (2) as well as the energy and hot water heater power constraints in 15 

Equations (2) and (3), respectively. The energy content in the first period 𝑆1 is given, and 𝑆𝑇+1 = 𝑆1 16 

is reached by setting a fine for the maximum hourly price for the energy content at the hour (𝑇 + 1) 17 

below 𝑆1. 18 

 19 

2.2. Coordination of virtual power plant operations with solar power and demand response 20 

resources 21 

 22 

The virtual power plant has household electric hot water heaters to balance the solar power forecast 23 

error. Assume now that N households have become customers of the VPP. These customers have 24 

granted the VPP the right to decide when to heat the water in the EHWHs in these houses, given that 25 

hot water is available when needed. The VPP operator must now solve its optimal operation by taking 26 

the following into account: i) the optimal amount of electricity from the grid used for water heating, 27 

ii) the allocation of excess solar power generation to water heating and iii) the amount of electricity 28 

bought from the grid to balance the solar power generation deficit. The target of the VPP operator is 29 

defined as maximizing the solar power generation imbalance revenue (Section 2.1.1) less the hot 30 

water heating costs (Section 2.1.2). 31 

 32 
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In hours when the sun is below the horizon, there is no uncertainty in the optimization, as no solar 1 

power forecasting errors can occur. Conversely, the uncertainty is related to solar power forecast 2 

errors and balancing the market outcome in the hours when the sun is above the horizon. The 3 

optimization decision is made in two phases in the hours that involve uncertainty. First, the forecast 4 

error realization occurs in hour t. This is because the VPP knows the amount of solar power sold in 5 

the day-ahead market and can monitor the actual solar power production within the delivery hour. 6 

Second, the system balance direction and imbalance price are realized after hour t. This is because 7 

the balancing energy prices are published after the delivery hour (Fingrid, 2018).  8 

 9 

 10 

The VPP’s control variables (𝑥𝑡 and 𝑒𝑡
𝑣𝑝𝑝

) and events (𝑒𝑡 , 𝐼𝐵𝑡  and 𝑝𝑡
𝑖𝑚) have the following timing 11 

(see Figure 2 for illustration):  12 

 13 

1) Given the energy content of the heater (𝑆𝑡), the VPP makes the water heating (𝑥𝑡) decision 14 

before hour t starts, 15 

2) in hour 𝑡, the solar forecast error (𝑒𝑡) is realized. Given the error realization, the VPP 16 

operator decides the allocation of the forecast error between internal balancing (𝑒𝑡
𝑣𝑝𝑝

) and 17 

the imbalance market operation (𝑒𝑡 − 𝑒𝑡
𝑣𝑝𝑝

), 18 

3) The system balance direction (𝐼𝐵𝑡) and imbalance price (𝑝𝑡
𝑖𝑚) are realized after the end of 19 

hour t. These realizations together with the imbalance power (𝑒𝑡 − 𝑒𝑡
𝑣𝑝𝑝

) determine the 20 

imbalance market revenue. The next period energy content (𝑆𝑡+1) is known, and steps 1 – 3 21 

are repeated for hour  𝑡 + 1. 22 

 23 

 24 

Figure 2. Coordinated VPP operation before (1), within (2) and after (3) the operation hour. The stochastic 25 

components are presented in the frames. 26 
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The coordinated virtual power plant operations with solar power and demand response are presented 1 

in detail in Appendix A.  2 

 3 
3. Description of the Finnish power market, model data and parameters 4 
 5 
3.1. Reserve and balancing power scheduling 6 
 7 

The described model is applied to the Finnish power market, which is a part of the Nord Pool Spot 8 

market area. In this market, most of the electricity is traded in a day-ahead  auction market where 9 

producers and consumers place their bid for hours in the next day. The market is closed at 09:00 AM 10 

(Coordinated Universal Time, UTC) on the day before delivery. Bids are made for hours +17…+40. 11 

Assuming rational market participants, the bids in this market are made based on the expected market 12 

outcome including, for example, the latest production and consumption forecasts. The power 13 

balance13 is maintained in several markets, such as the intraday market, various reserve markets and 14 

balancing markets after the day-ahead market is closed. Three situations can occur during the delivery 15 

hour. First, the market could be in balance, meaning that the demand and supply were perfectly 16 

forecasted in the day-ahead market. Second, there might be excess demand so that more production 17 

is needed, or consumption must be reduced. Third, in case of excess supply, the production needs to 18 

be decreased or consumption needs to increase. 19 

 20 

The TSO utilizes the reserve and balancing power markets to maintain the power balance. The reserve 21 

capacity is acquired from the reserve markets closing at 2:30 PM (UTC) the day-ahead of delivery 22 

and is used as the primary source of balancing power. In case there are not enough spinning reserves, 23 

more capacity is acquired from the balancing power market, which is a voluntary spot market with a 24 

marginal-price auction that opens the day before delivery and closes 45 minutes before the delivery 25 

hour. In other words, the bids are sorted in an ascending order and the bids with lower prices are 26 

activated first. The last activated bid determines the market clearing price that is paid for all activated 27 

bids. The market participants can offer both up- and down-regulation bids, which specify the offered 28 

volume, price and hour of delivery. The net sum of all activated bids within an hour determines the 29 

state of the market14, i.e., whether the hour is defined as an up- or down-regulation hour15. The 30 

 
13 The power balance requirement states that demand must always be equal to supply in the power grid. In technical terms, 

this translates to maintaining the frequency in the grid within tolerable limits to ensure a high quality supply of electricity. 
14 The BRPs inform the TSO about their production plans 45 minutes before the beginning of the delivery hour. The 

balancing market state is determined based on the net sum of the BRPs’ imbalances. 
15 In case both up- and down-regulation bids are activated within the same delivery hour, the overall state of the market 

determines the paid price. More specifically, the bids corresponding to the state of the market receive the marginal price, 

whereas bids that are opposite to the market state receive a pay-as-bid price. We simplify the balancing power pricing 

such that the balancing power is priced with a marginal price principle. 
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resources offered to the balancing market are activated in real-time within the delivery hour. The 1 

balancing market state and price determine the imbalance market prices described in Section 2.1.1. 2 

 3 

The day-ahead market prices as well as the balancing power prices and quantities in the Finnish power 4 

system in 2016 are shown in Table 3. As seen, the mean up-regulation price is above the day-ahead 5 

market price, whereas the opposite applies for the mean down-regulation price. The up-regulation 6 

price is far more volatile than the down-regulation price, with the standard deviation being 3.5 times 7 

higher. The price cap of 3000 €/MWh occurred once during the sample period. The moments of the 8 

balancing power quantity distributions are more similar than those in the case of the price 9 

distributions. It must be noted that the maximum for up-regulation and the minimum for down-10 

regulation are substantial, as they correspond to 3.9% and 2.9% of the load (11 528 MWh and 11 403 11 

MWh, respectively) in the corresponding hours.  12 

 13 

Table 3. Day-ahead and balancing power market descriptive statistics 14 

 Minimum Maximum Mean St. dev. 

Day-ahead market price (€/MWh) 4.02 214.25 32.45 13.14 

Up-regulation price (€/MWh) 4.04 3000.00 36.87 41.42 

Down-regulation price (€/MWh) –25.55 200.09 28.18 11.79 

Up-regulation – Day-ahead market price (€/MWh) 0.00 2957.25 18.72 78.69 

Down-regulation – Day-ahead market price (€/MWh) 0.00 185.25 11.06 12.39 

Up-regulation quantity (MWh) 0.00 444.67 13.15 36.50 

Down-regulation quantity (MWh) –330.00 0.00 –19.80 40.24 

 15 

The correlation between the load and the up-regulation quantity is 0.262 and the correlation between 16 

the load and down-regulation quantity is –0.206. Both correlations are statistically significant at the 17 

1% significance level and they have the expected signs, i.e., a higher load causes higher regulation 18 

quantities in both the up-direction and the down-direction. The demanded balancing power quantity 19 

affects the price difference between the day-ahead and balancing market prices. The balancing 20 

quantities are fully inelastic since the system operator needs to maintain a power balance at all times, 21 

even if balancing the power price would be high16. The statistically significant (1%) correlations 22 

between the price differences and balancing quantities are 0.316 and –0.267 for the up-regulation and 23 

 
16 The values of lost load estimates differ between the residential, industrial and service sectors and range from a few 

€/kWh to more than 250 €/kWh (Schröder and Kuckshinrichs, 2015). 
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down-regulation states, respectively. This finding implies that the larger the up- (down-) regulation 1 

quantity is, the higher (lower) the regulation price is. 2 

 3 

The seasonal patterns in balancing prices are shown in Figure 317. As most of the balancing power is 4 

supplied with hydro power in Finland, the highest up-regulation prices occur in the spring with the 5 

highest inflow to water reservoirs. In other words, during this time, hydro power plants cannot be 6 

adjusted as flexibly since the reservoir capacity is limited. Therefore, other more expensive balancing 7 

resources must be used more than in other periods. Additionally, the price volatility tends to be higher 8 

during the coldest months, with the highest load occurring in the winter. Diurnally, the balancing 9 

prices tend to be higher during the day when the load is higher, as shown by the bottom subfigures. 10 

 
17 For clarity, up-regulation prices above 200 €/MWh (N = 14) are excluded from the figure. 
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 1 

Figure 3. Seasonal and diurnal patterns of the balancing prices in Finland in 2016. 2 

 3 

3.2. Solar power forecasts and the related uncertainty 4 

 5 
The actual solar photovoltaic (PV) production data for a system with a nominal capacity of 1 MWp 6 

are not available. Instead, we utilize measured production data of a 21 kWp PV system on the rooftop 7 

of the Finnish Meteorological Institute in Helsinki, Finland. The nominal capacity of the system is 8 

scaled to 1 MWp and the production forecast errors are scaled accordingly. The specifications for the 9 

actual solar power site are shown in Table 3. 10 

 11 

 12 
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Table 3. Specification of the solar power system. 1 

Latitude 60.203561 

Longitude 24.961179 

Panel system 84 PV Panels, 250 Wp each, 21 kWp in total 

Technology Poly-Si 

Integration level Semi-integrated 

Slope 15 degrees from horizontal 

Orientation Southeast (135 degrees) 

 2 

The PV production forecast is based on the output of the HARMONIE NWP model (Bengtsson et 3 

al., 2017). HARMONIE is a physical model that describes the interaction processes related to the 4 

state of the atmosphere and produces a numerical forecast of the prevailing weather conditions as an 5 

output. This output includes all the relevant parameters needed for obtaining a realistic estimate of 6 

the electricity production of a PV system, as described in more detail below and in, e.g., 7 

Krishnamurthy et al. (2018). 8 

 9 
The hourly time series used in this study consists of consecutive NWP forecasts, which are initialized 10 

daily at 06 UTC. The forecast horizon for each of these forecasts is from +17 to +40 hours, i.e., from 11 

23 UTC the same day to 22 UTC the next day. The dataset can thereby be considered a next day 12 

forecast.  13 

 14 

Table 5 shows the minimum, maximum and standard deviations of the hourly forecasting errors by 15 

months. The maximum hourly errors during the snow-free period are approximately 60% of the 16 

nominal capacity for both directions. However, the monthly distributions seem to be relatively long-17 

tailed, as the standard deviations of the hourly errors vary between 10% and 14% of the nominal 18 

capacity. The sum of the deficit hourly imbalances was 178.1 MWh and the sum of the surplus hourly 19 

imbalances was 123.4 MWh in 2016. Consequently, the cumulative solar power imbalance at the end 20 

of the annual period is a deficit of 54.7 MWh. 21 

 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
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Table 5. Minimum, maximum, and standard deviation of the hourly errors by month in 2016. 1 

Normalized by Wp. 2 

Hourly error [W/Wp] 

MONTH MIN MAX SD 

1 -0.0411 0.2456 0.0638 

2 -0.0285 0.4962 0.0980 

3 -0.4334 0.5273 0.1445 

4 -0.5974 0.4390 0.1406 

5 -0.5377 0.5857 0.1013 

6 -0.4494 0.6232 0.1157 

7 -0.4798 0.5318 0.1191 

8 -0.6083 0.3886 0.1305 

9 -0.4650 0.4236 0.1244 

10 -0.2682 0.2858 0.0854 

11 -0.0705 0.3091 0.0694 

12 -0.0447 0.1426 0.0381 

 3 
 4 
The presented forecasting model outputs are transformed such that the forecasting uncertainty is 5 

incorporated correctly in the optimization model described in Section 2.2. As mentioned previously, 6 

there is no solar power uncertainty in those hours when the sun is below the horizon. To illustrate the 7 

number of hours where no uncertainty occurs, Figure 4 shows that the sun is up approximately 80 8 

percent of the time in Helsinki in June. In comparison, the sun is up only in 25 percent of the hours 9 

in December. Consequently, the level of uncertainty related to VPP optimization varies significantly 10 

over the year. 11 
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  1 

Figure 4. Share of hours when the sun is above the horizon. 2 

 3 
Each hour-of-day-by-month solar power forecast error distribution is discretized into 𝐿 = 10 points. 4 

As an example, the probability distribution functions are illustrated in Figure 5, where the forecast 5 

errors (kWh) are on the horizontal axis and the probabilities are on the vertical axis. The greatest 6 

uncertainty with respect to forecast errors is during midday, when the sun is the highest above the 7 

horizon. The forecast error distribution is narrower in the mornings and in the evenings. As the solar 8 

power potential is the greatest during the summer, the distributions are also wider during the summer 9 

months. During the winter months, the solar forecast error probability distribution is narrower. 10 

 11 

 12 
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 1 

Figure 5. Solar power forecast error (forecasted – realized) distributions for morning (8:00 local time18) and 2 

midday (12:00) in each month.  3 

 4 
3.3. Model parameters 5 

The household is assumed to have an electric hot water heater with a heating power of 3 kW and a 6 

storage volume of 290 litres. The maximum heating energy in an hour is 𝑥̅ = 3 kWh, and the maximum 7 

energy storage capacity is given by the following: 8 

𝑆̅ = (𝑐𝑝 ∗ 𝑚 ∗ 𝑑𝑇) ∗ (
1

3600
) = 21.15 kWh, (6) 9 

  10 

where the conversion rate from kilojoule (kJ) to kWh is (
1

3600
), 𝑐𝑝 = 4.2 kJ/(kg°C) is the specific 11 

heat of water and the mass of water is 𝑚 = 290 kg. The cold inlet water to the heater is set to 5°C 12 

and it is heated up to 67.5°C, which results in a temperature change of 𝑑𝑇 = 62.5°C in the heater.  13 

 
18 The local time in Finland is UTC+2 during the winter (starting on the last Sunday of October) and UTC+3 during the 

summer (starting on the last Sunday of March). 
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The thermal conductance (𝑈𝐴) is set to 1.05 (W/K). With the assumed temperatures, ∆𝑇𝑒𝑛𝑣 = 47.5 K 1 

is the temperature difference between the heated water (67.5°C) and the ambient indoor air (20°C). 2 

Thus, the theoretical heat loss of a fully heated tank is 50 W, based on the heat loss function in 3 

Equation (4). The consumed hot water temperature from the tap is set to 55°C. The representative 4 

household, i.e., with two adults and two kids, is assumed to consume 200 litres of hot water per day 5 

(Hirvonen et al., 2016). Given the parameters above, the annual electricity consumption used for 6 

water heating is 4270 kWh in a representative household. 7 

 8 

The total hot water consumption in energy units (kWh) is allocated to different hours with a domestic 9 

hot water profile generator DHWcalc by Jordan and Vajen (2017). In brief, we simulate an hourly 10 

hot water consumption profile 𝑐𝑡. The daily variation of the hot water consumption profile used in 11 

the simulations is shown in Figure 6. The dotted line marks the maximum hourly water heating energy 12 

potential of the heater, with a heating power of 3 kW. There are several hours when the hot water 13 

demand cannot be met by heating the water during that hour. In other words, energy must be stored 14 

to fulfil the peak demands. 15 

 16 

 17 

Figure 6. Domestic hot water consumption profile. 18 

 19 

To simulate the balancing power market outcome, we need to compute the market state probabilities 20 

(see Equations 8–9) and formulate the price distributions (see Equations 10–13) based on the data 21 

described in Table 3. As shown in Figure 2, the balancing power prices have clear seasonal and 22 
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diurnal patterns. Therefore, similarly to the solar power forecast error, we define the probabilities and 1 

distributions for each hour-of-day-by-month combinations. On average, up-regulation was needed in 2 

22.5% and dow-nregulation was needed in 32.1% of the hours in 2016. Consequently, there was no 3 

need for regulation power in 45.4% of the hours in 2016.  4 

 5 

The imbalance cost / revenue is determined by the price difference between the up- and 6 

downregulation power price and the day-ahead market price in the corresponding hour. Examples of 7 

these differences for up- and down-regulation prices are shown in Figure 7 for hours 8 and 22 in 8 

January 2016. The distributions are discretized into 𝑀 = 10 points. As indicated by the correlations 9 

between the balancing power quantities and prices in Section 3.1, and as shown in Figure 8, both 10 

distributions are wider in the hours with higher demand (for example, 8:00-9:00 local time) than in 11 

the low demand hours (for example, 22:00-23:00 local time). 12 

 13 

 14 

Figure 7. Probability distributions for up- and down-regulation price differences to the day-ahead market price. 15 

 16 

It is assumed that each household is under a real-time electricity pricing contract, where the price 17 

varies hourly based on the power market conditions. The equilibrium prices in this contract are 18 

determined by the supply and demand bids in a day-ahead market operated by the Nord Pool. To 19 

generalize the model, we abstract from the impacts on the results arising from other electricity cost 20 
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components19 in Finland by excluding the taxes and grid fee from the analysis. Finally, the hourly 1 

discount rate 𝛽 is set such that the annual discount rate is 3%. 2 

 3 
4. Results 4 
 5 
The simulation results are presented and discussed in this section. The results are the average values 6 

over 25 random sample draws from the hourly solar forecast error and imbalance price probability 7 

distributions. First, the optimized water heating and solar power forecast errors are simulated as 8 

separate resources, i.e., without VPP operation. Section 4.1 shows the costs of optimized water 9 

heating of a single household with the model introduced in Section 2.1.2. Additionally, the forecast 10 

error cost and imbalance revenue profiles are computed based on the simplified market description 11 

in Section 2.1.1. The deterministic VPP optimization results are presented in Section 4.2. Although 12 

unrealistic, the perfect foresight operation provides a benchmark to which the results of the stochastic 13 

model can be compared. Finally, in Section 4.3, it is shown that the uncertainty faced by the VPP 14 

operator reduces the monetary reward allocated to the households and changes the hot water heating 15 

profile.  16 

 17 

4.1. Resources treated separately 18 

 19 

The correlation between the optimized hot water heating profile and the electricity price profile is –20 

0.348. A negative correlation implies that the 290-liter water tank provides flexible energy storage 21 

capacity with the daily hot water consumption of 200 litres, as it enables load shifting from high-22 

priced to low-priced hours. The annual electricity bill with optimized hot water heating is 99.85€. 23 

The average cost of optimized hot water heating energy is 2.34 cent/kWh, whereas the average 24 

electricity price is 3.24 cent/kWh. 25 

 26 

On average, the annual forecast error cost for the assumed solar power producer is 830 € based on 27 

the rules in Table 2, the forecast error distribution presented in Section 3.2 and imbalance price 28 

difference distributions presented in Section 3.3. The hourly error costs over the simulations are 29 

shown in Figure 8. The majority of costs are accumulated between April and October when the solar 30 

output is the highest.  31 

 
19 In addition to the hourly varying day-ahead market price 𝑝𝑡

𝐷𝐴𝑀 , the household’s electricity bill includes a fixed 

transmission and distribution (T&D) fee 𝑝𝑇&𝐷 (cent/kWh) and a fixed electricity tax 𝑡𝐸  (cent/kWh). Additionally, all 

costs are subject to a value-added tax 𝑡𝑉𝐴𝑇  (24%). 
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 1 

Figure 8. Solar forecast error cost. 2 

 3 

The hourly imbalance revenue profiles for the simulations are shown in Figure 9. Most of the revenue 4 

stream is positive, as the solar power producer can sell the excess electricity at either the day-ahead 5 

market price or at down-regulation price (see Table 1). The negative imbalance revenue is related to 6 

the hours with an imbalance deficit and an up-regulation market state20. Now, according to the rules 7 

in Table 1, the average annual solar power imbalance revenue is 3627€.  8 

 9 

 10 

Figure 9. Solar imbalance revenue. 11 

 12 

 
20 The revenue for excess electricity may also be negative if the down-regulation price is negative. 
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At this point, it must be noted that the annual forecast error cost (830€) is the annual revenue for the 1 

excess electricity sold at the day-ahead market price (4457€) less the revenue for the excess and 2 

deficit electricity sold at the imbalance price (3627€). Thus, the annual revenues could be increased 3 

by 830 € without any forecast errors. In other words, it is the added value of a perfect solar forecast 4 

compared to the actual forecast. To give the value a context, it corresponds to 2.5% of the solar power 5 

plant’s total revenue (32647 €) received from the day-ahead market.  6 

 7 

4.2. Deterministic virtual power plant optimization 8 

 9 

The average consumption profiles of electricity used for household water heating are shown in Figure 10 

10. The solid line represents heating in a scenario (benchmark) where the representative household 11 

is minimizing its water heating costs individually and is not under the control of the VPP operator. 12 

Night-time hours are utilized more often in water heating without the VPP. This difference is 13 

observed because, on average, the night-time electricity prices are lower than the daytime prices. In 14 

other words, the solid line represents well the inverse average diurnal price profile in the Finnish day-15 

ahead market. It is, however, evident that the heating strategy changes when the VPP operator is 16 

allowed to control the EHWH. For instance, more electricity is used during the daytime when solar 17 

power generation and possible power imbalances may occur. 18 

 19 

 20 

Figure 10. Average daily hot water heating profiles: household optimizing alone (Benchmark), 5 (small) and 50 21 

(large) households controlled by the VPP operator in the deterministic model . 22 
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 1 

The electricity bought from the spot market in the daytime hours provides the resources needed to 2 

balance the possible deficit in solar power generation, even though it is a suboptimal strategy from 3 

the perspective of cost minimization in water heating. The effect of the VPP optimization is clearly 4 

demonstrated in the average daily heating profile with 5 hot water heaters (small VPP). On the other 5 

hand, with 50 hot water heaters (large VPP), the effect per single heater is smaller, and the hot water 6 

heating electricity profile converges towards the pure cost minimization heating profile of a single 7 

household.  8 

 9 

More detailed optimization results are shown in Tables 6 and 7. The results marked  by delta (∆) refer 10 

to changes compared to the case where hot water heaters and the solar power producer operate in 11 

isolation (see Section 2.1). Table 6 shows that the effect of the VPP operations is positive for the 12 

system stability, because the demand for imbalance power for both the up- and down-directions are 13 

reduced. However, the effect is asymmetric. On average, the VPP operator buys electricity from the 14 

grid to balance the negative solar power forecast errors more than it uses the positive forecast errors 15 

for water heating. In other words, a “∆ solar power deficit” decreases more than a “∆ solar power 16 

surplus”. The reason for the asymmetry is that storing the surplus energy in water heaters during the 17 

daytime decreases the storage capacity for using cheaper electricity at night.  18 

 19 

Table 6. Deterministic VPP optimization strategy. Difference (delta) to separate the operation of 20 

water heaters and solar power imbalance power management. 21 

 N = 5 N = 10 N = 15 N = 20 N = 35 N = 50 

∆ solar power  

deficit (MWh) 

-22.7 

(-12.4%) 

-36.7 

(-20.1%) 

-49.5 

(-27.1%) 

-54.2 

(-29.6%) 

-88.3 

(-48.3%) 

-97.2 

(-53.2%) 

∆ solar power  

surplus (MWh) 

-6.0 

(-4.9%) 

-8.9 

(-7.4%) 

-10.5 

(-8.7%) 

-11.6 

(-9.6%) 

-13.0 

(-10.8%) 

-13.4 

(-11.1%) 

 22 

In this sense, there is an opportunity cost with respect to using the hot water heater energy capacity 23 

for balancing solar power surpluses. The energy storage capacity 𝑆̅ sets the limit for allocating the 24 

solar power surplus to water heaters. On the other hand, in the case of a solar power deficit, no trade-25 

off exists between balancing the deficits and using less expensive night-time hours for water heating.  26 

 27 
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The VPP can balance the daytime solar power deficit with electricity bought from the grid 21, given 1 

that water heaters have enough energy stored to meet the hot water demand. The annual deficit power 2 

imbalance is reduced by 12.4%, and the surplus power imbalance is reduced by 4.9%, with five 3 

heaters. The effect is stronger as the number of household hot water heaters is increased. More 4 

specifically, the deficit power imbalance is reduced by 53.2% and the surplus power imbalance is 5 

reduced by 11.1% with 50 heaters.  6 

 7 

The water heating costs are increased when heating is optimized in coordination with solar power 8 

forecast errors (see Table 7). Conversely, solar power revenues are increased when the VPP operator 9 

can internally handle a share of the imbalances caused by the forecast error. The net effect is positive, 10 

ranging from 173 € with 5 households to 767 € with 50 households. The monetary gain per household 11 

decreases from 34.6 € with 5 hot water heaters to 15.3 € with 50 hot water heaters if the reward is 12 

divided evenly between the participating households. 13 

 14 

Table 7. Electricity cost and solar imbalance revenue in deterministic VPP optimization. Difference 15 

(delta) to separate the operation of water heaters and solar power imbalance power management. 16 

 N = 5 N = 10 N = 15 N = 20 N = 35 N = 50 

∆ electricity cost (€) 670.9 1098.6 1512.3 1638.0 2806.7 3058.9 

∆ solar power imbalance revenue (€) 843.9 1387.6 1892.0 2095.2 3441.2 3825.8 

Net benefit (€): 

∆ revenue – ∆ cost 
173.0 289.0 379.7 457.1 634.5 767.0 

 17 

Next, stochasticity is introduced to the VPP optimization model. The results show how the 18 

uncertainties in the solar forecast error and the imbalance prices change the VPP resource allocation 19 

and net benefit of the VPP operation. 20 

 21 

4.3. Uncertainty in virtual power plant optimization reduces the rewards for households 22 

 23 

Figure 11 shows the average daily electricity consumption profiles in the same three scenarios as in 24 

Figure 10. Now, the VPP operator is more cautious in using daytime electricity to balance solar power 25 

deficits. As a comparison, the VPP operator procures more electricity during daytime hours than in 26 

 
21 Note that the profitability of this strategy applies for VPP operations under perfect foresight. As is shown in Section 

4.3, the VPP allocation strategy changes as uncertainties with respect to forecast errors and imbalance prices are 

introduced. This is because the VPP operator must procure more expensive day -time electricity to balance the solar 

power deficits, but the imbalance direction and imbalance prices are not known in advance.  
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the cost minimization case of a single household, but not to the same extent as in the deterministic 1 

case. This is because the operator must buy (on average) more expensive daytime electricity to 2 

balance the solar power deficits, and moreover, it does not know for certain the cost of the forecast 3 

error until the end of that hour.     4 

 5 

Figure 11. Average daily hot water heating profiles: household optimizing alone (Benchmark), 5 (small) and 50 6 

(large) households controlled by the VPP operator in the stochastic model. 7 

 8 

Compared to the results of perfect foresight optimization in Table 6, the uncertainties mitigate the 9 

VPP’s potential to reduce the imbalances in the imbalance power market (see Table 8). Two main 10 

differences arise between the deterministic and stochastic optimization strategies. First, the VPP 11 

operator handles roughly symmetric amounts of solar power deficits and surpluses. This implies that 12 

it does not pay off to the same extent to be prepared to balance the solar power deficits by buying 13 

electricity during the daytime hours. Second, the amounts of internally handled deficits and surpluses 14 

do not increase as strongly with more demand response resources. The reduction rate in solar power 15 

imbalances converges to approximately 10 %.    16 

 17 

 18 

 19 

 20 

 21 
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Table 8. Stochastic VPP optimization strategy. Difference to separate the operation of water 1 

heaters and solar power imbalance power management. 2 

 N = 5 N = 10 N = 15 N = 20 N = 35 N = 50 

∆ solar power  

deficit (MWh) 

-7.4 

(-4.1%) 

-10.5 

(-5.8%) 

-12.7 

(-7.1%) 

-14.3 

(-8.0%) 

-17.1 

(-9.5%) 

-18.4 

(-10.2%) 

∆ solar power  

surplus (MWh) 

-3.4 

(-2.8%) 

-5.4 

(-4.4%) 

-6.9 

(-5.5%) 

-8.0 

(-6.4%) 

-10.5 

(-8.4%) 

-12.0 

(-9.6%) 

 3 

A solar power plant’s forecast error costs are reduced at a diminishing rate (Figure 12). As is shown 4 

in Section 4.2, the forecast error cost is 830.3 € without the VPP. In the current case, it is decreased 5 

to 674 € with five heaters and decreases to 488.7 € with 50 heaters. The decreased forecast error cost 6 

is not, however, the whole story. As the VPP balances more solar deficits than surpluses, the 7 

optimized forecast error allocation increases the electricity costs from the grid (see Table 9). 8 

Interestingly, the increase in the electricity costs is the highest with 20 households and decreases 9 

thereafter. This implies that the VPP operator must buy less electricity per household to be ready to 10 

balance the solar power deficits as the number of participating households increases. The net benefit 11 

of the VPP, defined as the increase in the solar power imbalance revenue less the increase in the 12 

electricity costs for water heating, increases from 37.6 € with 5 households to 252.0 € with 50 13 

households.  14 

 15 

 16 

Figure 12. Solar power plant forecast error cost over different VPP household resources. 17 

 18 
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A comparison of the deterministic (Table 7) and stochastic scenarios (Table 9) reveals that the 1 

uncertainties related to forecast errors, balancing power market state and imbalance prices greatly 2 

decrease the net benefits of the VPP. For instance, the average rewards are decreased by 73% in the 3 

stochastic scenarios. However, it must be noted that the rewards are decreased less with a higher 4 

number of participating households. With 5 households, the reduction is 78% and with 50 households, 5 

the reduction is 67%. 6 

 7 

Table 9. Cost and revenue in stochastic VPP optimization. Difference to separate the operation of 8 

water heaters and solar power imbalance power management. 9 

 N = 5 N = 10 N = 15 N = 20 N = 35 N = 50 

∆ electricity cost (€) 145.7 169.1 182.3 182.5 144.8 89.6 

∆ solar power imbalance revenue (€) 183.3 293.5 281.3 306.6 337.2 341.7 

Net benefit (€): 

∆ revenue – ∆ cost 
37.6 70.4 98.9 124.1 192.4 252.0 

 10 

Although the net benefit increases with greater household participation, the average and marginal 11 

benefits per member are decreased (see Figure 13). The average benefit is the net benefit divided by 12 

the number of households. The marginal benefit is the additional benefit related to new households 13 

divided by the number of new households. The values can be interpreted as rewards to households if 14 

none of the benefits are allocated to the solar power producer or to the VPP operator. As such, the 15 

monetary reward, which ranges from 4.0 to 7.5 euros, is not large on an annual basis. The forecast 16 

errors are related to a single 1 MWp solar power plant. Considering different amounts of solar 17 

generation resources could lead to an increase in the reward per household22. Furthermore, this paper 18 

concentrates only on the allocation of solar power forecast errors. Optimizing the day-ahead bidding 19 

of PV generation could also improve the value of the VPP operation.  20 

 
22 On the other hand, geographic dispersion of PV systems mitigates the aggregated solar generation forecast errors 

(Tabone et al., 2016), which may decrease the value of resources used to balance supply and demand.  
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 1 
 2 

Figure 13. Average and marginal benefits of household hot water heaters as VPP resources. 3 

 4 

The results suggest interesting topics for further research. For instance, we do not focus on revenue 5 

sharing principles nor dynamic pricing related to reaching a certain number of households becoming 6 

a part of a VPP. Especially interesting is that the total benefits are increased while the average and 7 

marginal benefits are decreased with a higher number of participating households. This finding leads 8 

to the question of optimal pricing regime over varying combinations of different kinds of 9 

consumption and production resources. How does the VPP incentivize the households to participate 10 

initially? What types of value can households with varying consumption patterns offer for the VPP 11 

and how are they compensated? To what extent can a VPP improve the self-sufficiency of 12 

participating households by matching the electricity consumption and PV generation profile? 13 

 14 

It should also be noted that we do not consider the interaction between price formation in day-ahead 15 

or balancing power markets and the operations of the VPP. This assumption is justified as long as the 16 

VPP can be treated as a price-taker in terms of its amount of resources in relation to the total energy 17 

traded. Finally, in this article, we do not consider the other cost components (taxes and grid costs) 18 

related to a household’s electricity bill. When electricity consumption and the related demand 19 

response meet these external cost components in different markets, it will have an impact on the 20 
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optimal allocation of VPP resources. From the policy perspective, the potentially distorting effect of 1 

taxes and grid costs on welfare related to VPP operations is an important future research area.   2 

 3 
 4 
5. Conclusions 5 

 6 

To increase the amount of variable renewable energy in the market, flexibility is required from other 7 

market participants. The efficiency of the VRE utilization can be increased by optimizing the demand 8 

and production resources together. This approach increases the value of the VRE production to the 9 

whole energy system. New operators, such as virtual power plants, are needed to coordinate and 10 

aggregate active consumer behaviour in the market. There are different possibilities to form a VPP, 11 

depending on the specific characteristics of the consumption and production resources. It is important 12 

to combine these resources such that the aspects of economies of scale and scope are included when 13 

the proper business model is designed. 14 

 15 

In this article, we formulate a small-scale virtual power plant that combines a solar power producer 16 

and households’ electric hot water heaters. The automated demand response in water heating provides 17 

a flexible resource that is used to handle the solar power generation imbalances. These imbalances 18 

arise from the variable and intermittent nature of solar irradiation, which causes forecasting errors in 19 

the day-ahead market scheduling. The objective of the VPP operator is to minimize the combined 20 

solar power forecast error and household hot water heating cost. 21 

 22 

We find economies of scope as we show that a VPP can add value both by minimizing the hot water 23 

heating electricity costs and by utilizing the hot water heaters as a resource in solar power generation 24 

imbalance mitigation. In determining the optimal scale of the VPP, our results show that the solar 25 

power plant’s forecast error costs are reduced at a diminishing rate as we increase the amount of the 26 

consumption side resources, and adding more households (50 in our case) does not further increase 27 

the benefits for the VPP. Considering that the solar power plant in our case is small, and we consider 28 

a fully automated demand response, this exercise is important in showing that a VPP can make a 29 

sustainable difference in smart electricity markets, even when only low effort is needed from the 30 

consumers of electricity.  31 

 32 

In this article, we do not specifically discuss the revenue-sharing dynamics within the VPP. The 33 

results imply that this is an interesting topic for further study. In addition, we concentrate only on the 34 
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hot water heating as a demand response source. A broader view of the total residential heating 1 

optimization would be a natural next step in the distributed thermal storage modelling.    2 
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Appendix A. Stochastic dynamic optimization: virtual power plant operation with solar power 1 

and demand response resources 2 

 3 

Solar forecast error variable is discretized into L points. Using the hourly solar forecast error data, 4 

the uncertainty related to solar power forecast errors is modelled by constructing probability 5 

distribution functions for each hour-of-day-by-month pair:  6 

 7 

𝑒𝑡  ∈ {𝑒1, … , 𝑒𝐿|month, hour-of-day}, (𝐴1) 8 

𝑃(𝑒𝑡 = 𝑒𝑖) = ∅(𝑒𝑖|month, hour-of-day), 𝑖 ∈ {1,2,… , 𝐿}. (𝐴2) 9 

 10 

Uncertainty related to the state of system balance and imbalance price is modelled by calculating the 11 

probabilities of down-, no- and up-regulating states and by formulating probability distributions of 12 

down- and up-regulating prices. All the following probabilities and distributions are computed from 13 

the historical power market data (see Section 3). The system imbalance state probabilities are 14 

calculated separately for every hour-of-day-by-month combinations:  15 

 16 

𝐼𝐵𝑡  ∈ {𝐼𝐵𝑑𝑜𝑤𝑛 , 𝐼𝐵𝑧𝑒𝑟𝑜 , 𝐼𝐵𝑢𝑝}, (𝐴3) 17 

𝑃(𝐼𝐵𝑡 = 𝐼𝐵𝑑) = Φ(𝐼𝐵𝑑|month, hour), 𝑑 ∈ {down, zero, up}. (𝐴4) 18 

 19 

If the hour is defined as down-regulation hour (𝐼𝐵𝑡 = 𝐼𝐵𝑑𝑜𝑤𝑛 ) the imbalance price is below the day-20 

ahead market price by a factor of (𝑝𝑡
𝑑𝑜𝑤𝑛 − 𝑝𝑡

𝑑𝑎𝑚 = Δ𝑝𝑡
𝑑𝑜𝑤𝑛 < 0), so that the imbalance power price 21 

is 𝑝𝑡
𝑖𝑚 = 𝑝𝑡

𝑑𝑎𝑚 + Δ𝑝𝑡
𝑑𝑜𝑤𝑛 . Conversely, in up-regulation hour (𝐼𝐵𝑡 = 𝐼𝐵𝑢𝑝 ) the factor is (𝑝𝑡

𝑢𝑝 −22 

𝑝𝑡
𝑑𝑎𝑚 =  Δ𝑝𝑡

𝑢𝑝 > 0) and imbalance power price is 𝑝𝑡
𝑖𝑚 = 𝑝𝑡

𝑑𝑎𝑚 + Δ𝑝𝑡
𝑢𝑝

. When there is no regulation 23 

(𝐼𝐵𝑡 = 𝐼𝐵𝑧𝑒𝑟𝑜 ) the imbalance power price is 𝑝𝑡
𝑖𝑚 = 𝑝𝑡

𝑑𝑎𝑚. 24 

Hourly imbalance price is realized by drawing the price difference of balancing market price to day-25 

ahead market price in the corresponding hour from probability distributions for each hour-of-day-by-26 

month pairs. Distributions are evenly discretized into M points. Formally, for down-regulation prices 27 

this is written as: 28 

 29 

Δ𝑝𝑡
𝑑𝑜𝑤𝑛 ∈ {Δ𝑝1

𝑑𝑜𝑤𝑛, … , Δ𝑝𝑗
𝑑𝑜𝑤𝑛}, (𝐴5) 30 

 31 

𝑃(Δ𝑝𝑡
𝑑𝑜𝑤𝑛 = Δ𝑝𝑗

𝑑𝑜𝑤𝑛) = Φ𝑑𝑜𝑤𝑛 (Δ𝑝𝑗
𝑑𝑜𝑤𝑛 |month, hour-of-day), 𝑗 ∈ {1, … , 𝑀}, (𝐴6) 32 

 33 
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and for up-regulation prices as: 1 

 2 

Δ𝑝𝑡
𝑢𝑝 ∈ {Δ𝑝1

𝑢𝑝 ,… , Δ𝑝𝑘
𝑢𝑝}, (𝐴7) 3 

 4 

𝑃(Δ𝑝𝑡
𝑢𝑝 = Δ𝑝𝑘

𝑢𝑝) = Φ𝑢𝑝(Δ𝑝𝑘
𝑢𝑝|month, hour-of-day), 𝑘 ∈ {1, … , 𝑀}. (𝐴8) 5 

 6 

Given the uncertainties related to solar forecast errors, system balance state and imbalance prices, the 7 

stochastic dynamic optimization problem of the VPP operation is: 8 

 9 

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡

{−(𝑥𝑡𝑝𝑡
𝑑𝑎𝑚) + 𝛽𝑉𝑡+1(𝑆𝑡+1)} , (𝐴9) 10 

 11 

when the sun is below the horizon, and: 12 

 13 

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡

∑ ∅(𝑒𝑖)

𝐿

𝑖=1

 14 

{−(𝑥𝑡𝑝𝑡
𝑑𝑎𝑚) + ∑ Φ(𝐼𝐵𝑑)

𝑑 ∈{down,zero,up}

{max
𝑒𝑡

𝑉𝑃𝑃
𝑅𝑒𝑣𝐼𝐵(𝑒𝑡 − 𝑒𝑡

𝑣𝑝𝑝) + 𝛽𝑉𝑡+1(𝑆𝑡+1)}} , (𝐴10) 15 

 16 

 17 

when the sun is above the horizon, subject to 18 

 19 

0 ≤ 𝑥𝑡 ≤ 𝑥, (𝐴11) 20 

and 21 

0 ≤ 𝑆𝑡+1 = 𝑆𝑡 − 𝑐𝑡 − 𝐿(𝑆𝑡) + 𝑥𝑡 − 𝑒𝑡
𝑣𝑝𝑝

≤ 𝑆. (𝐴12) 22 

 23 

The constraints for internal balancing of forecast errors within the VPP (𝑒𝑡
𝑣𝑝𝑝

) are  24 

 25 

𝑚𝑎𝑥(𝑒𝑡 ,𝑆𝑡 − 𝑐𝑡 − 𝐿(𝑆𝑡) + 𝑥𝑡 − 𝑆) ≤ 𝑒𝑡
𝑣𝑝𝑝 ≤ 0,  if 𝑒𝑡 < 0, (𝐴13) 26 

 27 

0 ≤ 𝑒𝑡
𝑣𝑝𝑝 ≤ 𝑚𝑖𝑛(𝑒𝑡 ,𝑥𝑡 ,𝑆𝑡 − 𝑐𝑡 − 𝐿(𝑆𝑡) + 𝑥𝑡),  if 𝑒𝑡 > 0. (𝐴14) 28 

 29 
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The expected revenue from imbalance market RevIB is set as follows 1 

 2 

• when 𝑒𝑡 < 0 and 𝐼𝐵𝑡  ∈ {𝐼𝐵𝑧𝑒𝑟𝑜 , 𝐼𝐵𝑢𝑝} 3 

𝑅𝑒𝑣𝐼𝐵(𝑒𝑡
𝑣𝑝𝑝|𝑒𝑡) = −(𝑒𝑡 − 𝑒𝑡

𝑣𝑝𝑝)𝑝𝑡
𝑑𝑎𝑚, (𝐴15)  4 

• when 𝑒𝑡 < 0 and 𝐼𝐵𝑡 = 𝐼𝐵𝑑𝑜𝑤𝑛  5 

𝑅𝑒𝑣𝐼𝐵(𝑒𝑡
𝑣𝑝𝑝

|𝑒𝑡) = ∑ Φ𝑑𝑜𝑤𝑛(Δ𝑝𝑗
𝑑𝑜𝑤𝑛) ∙ (𝑒𝑡 − 𝑒𝑡

𝑣𝑝𝑝) ∙ (𝑝𝑡
𝑑𝑎𝑚 + Δ𝑝𝑗

𝑑𝑜𝑤𝑛),

𝑀

𝑗=1

 (𝐴16) 6 

• when 𝑒𝑡 > 0 and 𝐼𝐵𝑡  ∈ {𝐼𝐵𝑑𝑜𝑤𝑛 , 𝐼𝐵𝑧𝑒𝑟𝑜 } 7 

𝑅𝑒𝑣𝐼𝐵(𝑒𝑡
𝑣𝑝𝑝 |𝑒𝑡) = 𝑒𝑡𝑝𝑡

𝑑𝑎𝑚 − (𝑒𝑡 − 𝑒𝑡
𝑣𝑝𝑝 )𝑝𝑡

𝑑𝑎𝑚, (𝐴17) 8 

• when 𝑒𝑡 > 0 and 𝐼𝐵𝑡 = 𝐼𝐵𝑢𝑝 9 

𝑅𝑒𝑣𝐼𝐵(𝑒𝑡
𝑣𝑝𝑝 |𝑒𝑡) = ∑ Φ𝑢𝑝(Δ𝑝𝑘

𝑢𝑝){𝑒𝑡𝑝𝑡
𝑑𝑎𝑚 − (𝑒𝑡 − 𝑒𝑡

𝑣𝑝𝑝) ∙ (𝑝𝑡
𝑑𝑎𝑚 + Δ𝑝𝑘

𝑢𝑝)}

𝑀

𝑘=1

. (𝐴18) 10 

 11 

As discussed previously, the hourly optimization problem is deterministic with respect to the heating 12 

costs and hot water energy content dynamics in hours when sun is below the horizon (see Equation 13 

A9). On the other hand, the optimization problem is stochastic in hours with possible solar power 14 

production and forecast errors (see Equation A10). Uncertainty at the first stage is related to the hourly 15 

solar power forecast error realization (𝑒𝑡). VPP operator maximizes the expected imbalance revenue 16 

less the EHWH heating costs by optimizing the use of electricity from the grid (𝑥𝑡). Uncertainty at 17 

the second stage is related to the system imbalance direction and imbalance price revealed after the 18 

hour. Given the forecast error realization, the VPP chooses the optimal amount of forecast error 19 

balanced internally within the VPP (𝑒𝑡
𝑣𝑝𝑝

), given the probability distribution of revenue in the 20 

imbalance power market.  21 

 22 

Analogously to the description given in Section 2.1, if the realized solar power output is higher than 23 

the forecasted (𝑒𝑡 < 0), the VPP operator may absorb the excess generation in its controllable heaters 24 

depending on the amount of free storage in them (see Equation A13). If the realized solar power 25 

output is lower than the forecasted (𝑒𝑡 > 0), the VPP operator can choose not to utilize contracted 26 

electricity from the grid in water heating while ensuring that all heated water demand can be supplied 27 

(see Equation A14). The imbalance market revenue in two-price system (Equations A15 – A18) is 28 

explained in Section 2.1.1. 29 

  30 
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