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Abstract

Deep neural networks follow a pattern of connectivity that was loosely inspired by
neurobiology. The existence of a layered architecture, with deeper neurons representing
increasingly abstract features, was known from neuroscience long before it was used in
machine learning. However, when one looks beyond superficial similarities, deep networks
appear to be very different than their biological counterparts.

First and foremost, there is the manner in which they are trained. Deep networks are
almost universally trained with stochastic gradient descent, where gradients are computed
using backpropagation. Backpropagation requires that neurons are able to emit two types
of signal - a forward activation and a backward gradient. Biological neurons send signals
down a one-way signalling pathway called an axon, and appear to lack any mechanism
for backpropagating gradients.

Secondly, there is the means of communication. Backpropagation requires that neurons
communicate continuous-valued signals between each other, whereas biological neurons
communicate with a stream of all-or-nothing impulses called spikes.

Third, there is the domain in which networks are used. Deep networks are typically fed
with independent and identically distributed samples of data, whereas biological networks
learn online from a single, unceasing, temporally-correlated data stream.

In this thesis, we examine how how we can effectively train neural networks while obeying
the biological constraints. This is not only of academic interest. The brain, which by any
estimate does vastly more computation than any existing computer, uses only about 20W
of power - less than a light bulb. Understanding how it works may help us to build more
efficient computing hardware.

This thesis includes the work of four published papers, which address the following
questions, respectively:

• How can we exploit temporal redundancy in data for more efficient inference?

• How can we exploit temporal redundancy in data for more efficient training?

• How can we train a feedforward network without backpropagation?

• How can we achieve gradient descent when neurons are confined only to emit
quantized signals, and cannot send signals backwards?

The results from this work help us to see what a truly brain-like machine learning
architecture may look like.
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Samenvatting (Summary in Dutch)

Diepe neurale netwerken volgen een patroon van connectiviteit geïnspireerd door neu-
robiologie. Het bestaan van een gelaagde architectuur, met diepere neuronen die steeds
abstractere kenmerken vertegenwoordigen, was bekend uit de neurowetenschappen vo-
ordat het werd gebruikt in machine learning. Maar afgezien van deze oppervlakkige
overeenkomsten zien diepe netwerken er heel anders uit dan hun biologische tegenhangers.

Allereerst is er de manier waarop ze zijn getraind. Diepe netwerken zijn bijna universeel
getraind met stochastische gradiëntafdaling, waarbij gradiënten worden berekend met
backpropagation. Backpropagation vereist dat neuronen twee soorten signalen kunnen
uitzenden: een forward activering en een backward gradiënt. Biologische neuronen sturen
signalen via een eenrichtingssignaleringspad - het axon. Ze lijken een mechanisme te
missen voor het terugpropageren van gradiënten.

Ten tweede is er het communicatiemiddel. Backpropagation vereist dat neuronen onderling
communiceren met analoge signalen. Maar biologische neuronen communiceren met een
stroom van alles-of-niets elektrische pulsen die worden spikes genoemd.

Ten derde is er het domein waarin netwerken worden gebruikt. Diepe netwerken wor-
den doorgaans gevoed met onafhankelijke en identiek gedistribueerde steekproeven van
gegevens, terwijl biologische netwerken online leren van een enkele, onophoudelijke, tijdelijk
gecorreleerde gegevensstroom.

In dit proefschrift onderzoeken we hoe we neurale netwerken effectief kunnen trainen
zonder biologische beperkingen te schenden. Dit is niet alleen van academisch belang.
De hersenen verbruiken slechts 20W aan vermogen - minder dan een gloeilamp. Als we
begrijpen hoe het werkt, kunnen we efficiëntere computerhardware bouwen. Misschien.

Dit proefschrift omvat het werk van vier gepubliceerde artikelen. Deze artikelen behandelen
de volgende vragen:

• Hoe kunnen we tijdelijke redundantie in gegevens benutten voor een efficiëntere
gevolgtrekking?

• Hoe kunnen we tijdelijke redundantie in gegevens benutten voor efficiëntere training?

• Hoe kunnen we een feedforward-netwerk trainen zonder backpropagation?

• Hoe kunnen we gradiëntafdaling bereiken wanneer neuronen beperkt zijn tot het
uitzenden van gekwantiseerde signalen en geen signalen achteruit kunnen sturen?

De resultaten van dit werk helpen ons te zien hoe een echt hersenachtige architectuur
voor machine learning eruit kan zien.
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1. Introduction

It is an interesting case of convergent evolution that the models achieving state-of-the
art performance in machine learning bear some resemblance to the neural networks that
comprise our brains. These models, collectively referred to as Deep Neural Networks, have
in the last 10 years been overtaking more traditional machine learning models in tasks
such as image recognition and synthesis, machine translation, audio transcription and
synthesis, and reinforcement-learning tasks.

Both biological and artificial neural networks are “deep”, in the sense that they consist of
multiple layers of representation building increasingly abstract features on top of each
other. Both are made up of neurons which receive input signals from other neurons,
weigh each of them by some scalar synaptic weight and aggregate them into a neuron
potential which is is then related by some nonlinear activation signal to the output of that
neuron. Both biological networks and convolutional networks - the most commonly used
architecture for computer-vision tasks - share the property of local-connectivity: Neurons
respond to stimuli only in certain regions of the visual field, and primarily connect to
other neurons in those same regions. Both types of networks learn their synaptic weights
by accumulating small adjustments in response to incoming data.

However, there are some seemingly fundamental differences between biological and artificial
neural networks. Artificial neural networks are almost always trained with backpropagation
- the application of reverse-mode automatic differentiation to compute the effect that a
neuron’s parameters have on the loss function. Backpropagation requires that neurons
have a "bi-directional" signalling mechanism, wherein an error-gradient is propagated
in a direction opposite to the activation. Biological neurons lack a secondary signalling
mechanism of this type - they transmit signals down strictly one-way pathways called axons.
Instead, they have “feedback” connections, wherein high-level neurons send signals down
their axons to lower level neurons. How these feedback connections could communicate
information analogous to an error gradient is unclear. Additionally, backpropagation
requires that each neuron’s output be a real number which is a differentiable function of
the input. Biological neurons absolutely do not have this property - they communicate
with a stream of all-or-nothing impulses called spikes.

The manner in which biological networks learn is also very different from that of their
counterparts in deep learning. While deep networks are typically trained for millions of
iterations off of random sub-samples of a dataset, biological neurons must learn off of a
single temporal stream of data that comes in through the sensors. There are no distinct
‘data points’ but a only a stream of impulses from the sensory organs that indicate some
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1. Introduction

update to the state of the world.

The similarities of artificial neural networks to their biological counterparts, and their
significant contribution to machine learning in the last decade, would seem to hint that
machine learning may provide us with a valuable perspective on what the brain is doing.

Conversely, understanding biological neurons may help us find new ways to apply machine
learning to real-world situations. The brain is an asynchronous machine: It receive
an asynchronous stream of sensory inputs, it consists of interconnected modules which
appear to function without a central clock, and these modules produce another stream of
impulses to the muscles. Unlike almost all machine learning systems, there is no global
update step, wherein a sequence of modules pass information to each other in an orderly
manner in order to produces an output. Rather, it is best understood as a continuous-time
dynamical system. This makes the brain a very natural system for controlling a robot
- another continuous-time dynamical system - which is not surprising, because that is
what it evolved to do. Most of the work on understanding artificial neural networks as
continuous time-dynamical systems comes from the computational neuroscience literature.
The question of how to train such a system to do anything useful has not yet been
answered.

In the remainder of this introduction, we will begin by examining the similarities and
differences of biological and artificial neural networks in Sections 1.1 to 1.5. In Section
1.6, we will discuss why with think it is worth exploring these differences, and in Section
1.7 we will introduce the remainder of this thesis.

1.1. An Artificial Neural Network

The “neurons” used in deep learning are nonlinear continuous functions mapping a vector
input to a scalar output. They generally have the form:

sj = h

 ∑
i∈inputs(j)

siwij + bj

 (1.1)

Where sj ∈ R is the activation of a neuron, si is an input (either the input data
si := xi : i ∈ I, or the activations of another neuron), inputs(j) is the set of neurons
directly feeding in to neuron j, h : R 7→ R is some scalar, differentiable nonlinearity
such as tanh(x) or max(0, x), wij ∈ R the strength of a synaptic weight controlling how
strongly neuron i influences neuron j, bj is a scalar bias. Because the bias bj can be
considered an additional weight connected to an input whose value is always 1, we often
omit bj throughout the rest of this thesis for notational brevity.

The nonlinearity h allows a network of these neuron with at least one hidden layer of
arbitrary width to approximate any function with arbitrary precision [Hornik et al., 1989].
A network of linear neurons can only implement a linear function.

8



1.1. An Artificial Neural Network

In a typical deep network, such neurons are composed as a directed acyclic graph. In other
words, neurons are ordered such that neuron i feeds its activation into neuron j : j > i,
but not the other way around. This stands in stark contrast to biological neurons, where
reciprocal connections are common. Given an input vector x ∈ RD, some set of output
activations sO := f(x) ∈ R|O| are computed by recursively applying Equation 1.1 until
all nodes in the graph are computed. The output neuron activations are then compared
to a target y using some loss function ` to compute a scalar loss:

L = `(sO, y) = `(f(x), y) ∈ R+ (1.2)

The parameters of the networks are then trained with gradient descent, with gradients
computed through backpropagation (also known as reverse mode automatic differentiation
- see Section 2.5). For training the parameters of a network of these neurons, a crucial
characteristic is that neurons be differentiable. In backpropagation, neurons pass their
loss-derivatives backwards through the directed acyclic graph in a backward pass:

∂L
∂wij

=
∂L
∂sj

∂sj
∂wij

Compute Parameter Gradients (1.3)

∂L
∂si

=
∑

j∈outputs(i)

∂L
∂sj

∂sj
∂si

Compute Input Gradients (1.4)

Where wij refers to the weighting that neuron j applies applies to it’s i′th input (the
synaptic weight), and outputs(i) is the set of neurons that neuron i directly connects to.
Parameters θ (comprising the w and b of every neuron in the network) are then updated
by some gradient descent rule - the simplest of which is to take a small step down the
loss gradient:

θi = θi − η
∂L
∂θi

(1.5)

Where θi ∈ R is a parameter (the weight or bias of some neuron in the network) η ∈ R+

is a learning rate, defining how large a step to take. ∂L
∂θi

is the derivative of the loss with
respect to the parameter value, as computed by backpropagation.

Typically such networks are trained on a fixed dataset D = {(xn, yn) : n ∈ [1..N ]}. Such
datasets can be large, so computing the loss gradient ∂L

∂θ =
∑N

n=1 `(f(xn), yn) using
the entire dataset on each iteration would result in very slow training. Fortunately,
minimizing the loss does not require that we step in the exact direction of the gradient at
each iteration, but only that on average, we move in the direction of the gradient.

We can thus compute our updates much faster by only sampling a small minibatch
Dmini ∼ D of data points selected randomly from the dataset, on each iteration, and
using the approximate gradients ∂L

∂θ (Dmini) ≈ ∂L
∂θ (D) in our update. This is known as

stochastic gradient descent.

9



1. Introduction

1.1.1. Time in ANNs

It is worth noting how time is handled in artificial neural networks. The deep learning
literature almost always handles time as a discrete quantity, with steps corresponding
to regular time intervals. This allows us to still think of a network as a directed acyclic
graph, with edges connecting to both higher layers and future time-steps. In this setting,
the network can compute gradients with a forward/backward pass in time in the same
manner as it computes a forward/backward pass through layers of the network. This is
known as Backpropagation Through Time.

There are two basic ways of designing networks to handle temporal data: recurrent
networks and temporal convolutional networks - analogous the concepts of infinite Impulse
Response (IIR) and Finite Impulse Response (FIR) filters, from signal processing:

• Recurrent Networks (RNNs): The network has the form st = fθ(st−1, xt),
where xt ∈ RDin , st ∈ RDhid are the state and input at time t, respectively, and s0

is generally initialized to a vector of zeros. A directed acyclic graph is formed by
recursively computing [s1 = fθ(s0, x1), s2 = fθ(s1, x2), ...st = fθ(st−1, xt)], finding
some loss: L =

∑
t `(st, yt), and then using backpropagation to compute the

derivatives with respect to θ. When the sequence x is an infinite stream, a truncation
window T is typically used, so that derivatives are only computed using data from
steps t− T to t. This is known as Truncated Backpropagation Through Time

• Temporal Convolutional Networks (TCNs): The network has the form st =
fθ(xt−T ...xt), and is composed of a series of stacked layers, where within each
layer, weights are shared across time. Neurons in TCNs have the form st =

h
(∑T

τ=1 x(t−τ∆T )wτ + b
)
, where x is the neuron’s input (for the first layer, the

input is the data. For later layers, it is the output of the previous layer), ∆T ∈ N is
the temporal sub-sampling factor, which is 1 for the first layer and gets larger for
higher layers. TCNs have become popular for sequence modelling in recent years,
since Oord et al. [2016] demonstrated the good performance of their WaveNet TCN
for predicting and generating audio data.

1.1.2. Energy-Based Models

Feedforward networks are not the only type of artificial neural network. Another class
is known as "energy-based models". In these models, an energy function is defined over
the parameters and states of the network, and the network dynamics are designed to as
to minimize this energy function. Such models are especially interesting as models of
biological computation, because they consist of recurrently connected (non-feedforward)
networks, and do not necessarily require backpropagation to learn.
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1.1. An Artificial Neural Network

The classic energy-based model is the Hopfield Network [Hopfield, 1982].

E(s, (w, b)) = −
∑
ij

wijsisj −
∑
i

bisi (1.6)

Where si ∈ {−1,+1} is the state of neuron i and wij ∈ R, bi ∈ R are the parameters of
the network, and the weight matrix is constrained to be symmetric and zero along the
diagonal (wij = wji.wii = 0). The constraints allow us to easily define an update rule
which minimizes the energy function. Inference in a Hopfield network corresponds to
minimizing the energy conditioned on a set of inputs. In other words, a subset of neurons
{si : i ∈ Input} are clamped to an input value, and the states of the remaining neurons
are adjusted to minimize the energy conditioned on these. This is achieved by updating
neurons in a round-robin fashion where si = arg mins′i∈{−1,+1}E(ssi=s

′
i , (w, b)). In the

above formulation, this simply resolves to si = (1 if
∑

j 6=iwijsj + bi > 0 otherwise − 1).

In the classic Hopfield model, “memories” are stored into the network by adjusting the
parameters to lower the energy of desired memories. For each example we’d like to
memorize, we clamp all units to observed data and adjust the parameters to lower the
energy of this state: ∆wij = sisj , ∆bi = si. The lowered energy of this state means
that later, when partial data {xi : i ∈ Observed Inputs} is presented, we can clamp the
observed nodes and iteratively energy-minimize the remaining nodes as described above
to recover the “memory” s∗ = arg mins|sobs=ObservedDataE(s, (w, b)).

The Hopfield Model has been extended into continuous form [Hopfield, 1984], and to a
stochastic model known as a Boltzmann Machine [Ackley et al., 1985], which replaces
the notion of finding an energy minimum with approaching a stationary distribution.
Boltzmann machines will be discussed more in Section 2.1.

Energy based models are rarely used in the modern literature. One major reason for this
is that unlike in a feed-forward network, inference is an optimization process. Because
training involves repeated inference in a loop, training energy based networks generally
consists of running loops within loops, which is slow.

1.1.3. Weight Sharing

In Deep Networks, it is often useful to constrain parameters from different neurons to
have the same value. This “weight sharing” is used in a variety of different ways in a
variety of different architectures:

• Spatial weight-sharing in conv-nets. Convolutional layers use weight sharing
to achieve approximate translation-equivariance (i.e. a shift in the input results in
a shift in the output). Here, neurons are arranged in a 2D grid, and neurons at
different positions in the grid have the same weights, but apply them to different
regions of the input image.

11



1. Introduction

• Temporal weight-sharing in recurrent networks. In Backpropagation Through
Time, a recurrent network is implemented as a function st = fθ(st−1, xt), applied
repeatedly for each time-step t. The parameters θ are thus used repeatedly in the
execution of the network. When training such a network, we see this as a form of
weight-sharing - the network is represented as single graph “unrolled” in time, and
the parameters θ are considered to be shared between time-steps.

• Forward-backward weight-sharing in backpropagation. One way to view
backprop is as a computation performed by two neural networks: A forward
network, where neurons compute their activations as zlj =

∑
iwija

l−1
i ; alj = h(zlj),

and a backwards network, which computes the error signal elj = h′(zli)
∑

k e
l+1
k wl+1

jl .
Here, each weight wlij is shared by both the forward and backward network.

• Symmetric Weights in Energy-Based Models. In Section 1.1.2, we discussed
a class of Artificial Neural networks called Energy-Based Models. Such models
usually require that connections between neurons be symmetrical (i.e. wij = wji)
in order for there to be a well-defined energy function for the network. Without
symmetric connections, the network does not necessarily converge to a single point
(or stationary distribution for stochastic networks), and may experience limit-cycle
or chaotic dynamics.

1.1.4. Stochasticity

For regularization and probabilistic prediction, it can be advantageous to build a network
out of stochastic neurons. This can be done by either by stochastically rounding activations
in the forward pass, and ignoring the stochasticity when computing the gradient, as in
Dropout [Srivastava et al., 2014], or by treating the noise as a separate input variable
ε ∼ N (1, 1) which modulates the output s′ = sε, as in [Kingma et al., 2015]. The neuron
then remains differentiable, as the noise is treated as an external input. This is known as
the Reparameterization Trick.

1.2. A Biological Neural Network

Biological neurons are complicated systems, and in this work we abstract away most of
their detail. In this thesis we will spend little time on discussing the mechanics of real
biological neurons and instead focus on how one could build a learning system out of
abstract neurons which share the core characteristics of biological neurons. This section
provides a very brief introduction to biological neurons.
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1.3. Anatomy of a Neuron

1.2.1. Dynamical Neurons

Biological neurons are best described as continuous-time dynamical systems. Such systems
have the form:

ṡ = fθ(s, x) (1.7)

Where ṡ := ds
dt is the temporal rate of change of signal s. We can describe a simple neuron

as a dynamical system using same symbols as we did in Equation 1.1:

ṡ = h

(∑
i

xiwi + b

)
− s (1.8)

Where s and x vary in time continuously. Note that unlike our previous concept of a
neuron in Equation 1.1, this neuron has state - its output s(t) is no longer just a function
of its instantaneous input x(t). Note also that in the steady state (i.e. when the state of
the neuron stops changing: ṡ = 0), the relation between x and s is identical to that of
the non-dynamical neuron in Equation 1.1.

1.3. Anatomy of a Neuron

Biological neurons store their internal “state” in the form of an electrical potential across
the membrane of the neuron. The “membrane potential” is the difference in voltage
between the inside and the outside of the cell.

Biological neurons collect input signals from other neurons via connections called synapses.
The input signals flow up a tree of wires called called dendrites to the cell body, where
they contribute to the membrane potential. If this membrane potential is pushed past a
threshold, a spike is generated (see following section) and transmitted down the axon. The
axon connects to the dendrites of other neurons via more synapses. Thus the spike can
change the membrane potential of other neurons via these synapses. Figure 1.1 illustrates
the anatomy of a biological neuron.

1.3.1. Spiking

Most neurons in the brains of most animals do not directly communicate with real-valued
signals. Instead, they generate action potentials, also known as spikes. When one looks at
the voltage trace of a neuron in an awake animal, one sees something like Figure 1.2:

In the absence of stimulation, the membrane potential will be maintained at a resting
potential of around -70mV. As neurons receive input (in the form of electrical current from
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1. Introduction

Figure 1.1.: An illustration of a biological neuron [Mijwel, 2017]. In reality the dendritic
tree and the axon are much larger, relative to the cell body, than indicated in
the illustration, and can receive inputs from thousands of neurons. The cell
body can range from 4µm to 100µm across. The axon length is extremely
variable and can range from under a millimeter in locally connected cortical
neurons to over a meter in motor neurons. Dendrites are connected via
synapses to the axon-terminals of other neurons.

synapses - discussed in the following section), the membrane potential is incremented
and decremented, all the while gradually decaying back to the resting potential. If the
membrane potential is pushed passed a threshold voltage of -55mV, a spike is generated.
The spike consists of a sharp rise (depolarization) in membrane potential beyond the
threshold, up to +40mV, followed by a sharp fall (hyper-polarization) down below the
resting potential. Figure 1.3 illustrates this process.

Once the spike is generated in the cell body, it propagates down the axon - a single
cable coming out of the neuron with an active mechanism for propagating voltage spikes.
Crucially, the axon is a one-way channel - it transmits spikes from the cell body to the
synapses of other neurons, and does not send signals in the reverse direction.

1.4. Modelling a Neuron

The simplest model of a spiking neuron is known as the “Integrate-and-Fire” model. Here,
the duration of a spike is ignored, and the spike is treated as a delta function δ(t−tspike) :=
(∞ if t = tspike otherwise 0). We start with a neuron which follows continuous dynamics
ṡ = − 1

τmem
(s− srest) - meaning that the neuron’s membrane potential decays towards

a resting potential srest and will remain there unless disturbed. Solving the dynamical
system given initial conditions s(0) = s0, we get s(t) = (s0 − srest)e−t/τmem + srest.

Disturbance comes in two forms - input spikes and output spikes. When the neuron
receives a spike from the i′th input neuron, its potential is simply incremented by some
amount proportional to the synaptic weight wi. The effect of this is to simply add a spike
response wiκ(t− tspike), where κ(t) = (e−t/τmem if t > tspike otherwise 0) to the neuron’s
dynamics.

After a spike occurs, the membrane potential is reset to sreset. Equivalently, we can say
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1.4. Modelling a Neuron

Figure 1.2.: A voltage trace recorded
from a cortical neuron in-
vivo shows typical spiking be-
haviour [Ge et al., 2011]. The
trace shows the sub-threshold
dynamics as the membrane
potential is pushed around by
stimuli while decaying back to
the resting potential. When-
ever the membrane potential
crosses a threshold, an action
potential (spike) is generated.
The spikes are transmitted to
downstream neurons.

Figure 1.3.: An illustration of a single ac-
tion potential [Weil, 2017] -
the line traces the neuron’s
membrane potential. An ex-
ternal stimulation brings the
membrane potential past a
threshold of -55mV, at which
point the action potential
mechanism springs into effect
- causing the voltage to sud-
denly rise then drop to form
a spike.

that a potential sthresh − sreset is subtracted off the membrane potential. An output
spike acts in the same way on the membrane-potential as an input spike with a weight of
−(sthresh − sreset). We can now write out the full temporal dynamics for an integrate-
and-fire neuron:

s(t) = srest +

Input Spike Contribution∑
n

winκ
(t−tn)/τmem −

Output Spike Contribution∑
m

(sthresh − sreset)κ(t−tm)/τmem (1.9)

Where:
win is the weight of the input synapse i, from which the n′th input spike comes
κ(t) = (e−t/tmem if t > tspike otherwise 0) is the spike-response kernel
τmem is the membrane time constant.

To simplify this model as much as possible, we can set srest = sreset = 0 and sthresh = 1,
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1. Introduction

to get:

s(t) =

Input Contribution∑
n

winκ
(t−tn)/τmem −

Spiking Contribution∑
m

κ(t−tm)/τmem (1.10)

The Integrate-and-Fire model is as far as we will go into the modelling of biological
neurons. There has been a great deal of research in computational neuroscience into more
biologically realistic versions of this model - but for our purposes, the integrate-and-fire
model captures the fundamental behaviours:

• Neurons are dynamical systems.

• Neurons communicate by sending “spikes” to one another.

• The only information attached to a spike is its arrival time - spikes carry no further
information such as amplitude.

With this simplification, we ignore many of the complexities of real biological neurons:

• Biological neurons are either excitatory or inhibitory. When an excitatory neuron
fires, it increases the membrane potential of its downstream neurons. When an
inhibitory neuron fires, it decreases it. In other words, biological neurons have the
constraint that all outgoing synapses from a given neuron have the same sign.

• Dendrites can have much more complex behaviour than the passive transmission of
current from synapses to cell body. They can have nonlinearities, they can gate each
other’s inputs, and even have spike-like signals of their own - in both the forwards
and backwards direction. Thus a single biological neuron may in fact be comparable
in function to a small network of our abstract neurons.

• Not all synapses have the form of the axon-dendrite synapse described above.
In some brain regions, including the olfactory bulb and the retina, neighbouring
neurons form “electrical” or “dendrodendritic” synapses - direct electrical connections
between the dendrites of different neurons.

• Biological neurons come in a wide variety of different forms and structures, which
presumably makes them perform different functions.

• Global release of neurotransmitters affects the function of neurons.

• Synchronized firing of many nearby neurons forms Local Field Potentials - localized
fluctuations in extracellular voltage. When present over a large brain region they
can even be measured outside the skull, and are known as Delta, Theta, Beta,
Alpha, or Gamma Waves depending on their frequency. These may not just be
caused by neural firing but may affect neuron behaviour themselves, possibly acting
as a sort of clock for synchronizing neurons.
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1.4. Modelling a Neuron

1.4.1. Spike Timing Dependent Plasticity

Biological neurons have been observed to update their synaptic weights according to the
difference in timing between pre-synaptic and post-synaptic spikes. This learning rule is
known as Spike Timing Dependent Plasticity (STDP) Markram et al. [2012]. Figure 1.4
shows this learning rule. STDP is typically modelled with the Equation 1.11.

∆w =

{
−a−e∆t/τ− if ∆t < 0

a+e
−∆t/τ+ otherwise

(1.11)

Where a− ∈ R+ and a+ ∈ R+ are the strings of the anti-causal/causal components,
∆t = tpost − tpre and is the difference in timing between pre- and post- synaptic spikes,
and τ−, τ+ are the time-constants of the anti-causal/causal time-constants.

This rule says that if a pre-synaptic spike comes before a post synaptic spike (meaning it
could have caused it - right-side of Figure 1.4) the synapse increases in strength, and if it
comes after the postsynaptic (meaning it could not have caused it - left-side of Figure
1.4), the synapse decreases in strength.

Up until recently it has not not been clear what STDP means from a machine-learning
perspective. One of the more promising interpretations was proposed by Bengio et al.
[2015b], where the authors show that, assuming the a network’s dynamics (the evolution
of states of neurons) are moving towards minimizing an objective function, applying the
STDP rule on this network will adjust the weights to also minimize that objective. In
Chapter 6 we expand on this idea, and show that STDP can be interpreted as dynamics-
based learning in the context of a network of neurons that communicate with Predictive
Coding.

Figure 1.4.: The empirically observed STDP learning rule (figure from Bi and Wang
[2002]). When the presynaptic spike comes before the postsynaptic (right
half), the synapse strengthens, and when it comes after (left half), the synapse
weakens.
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1.5. The Gaps

If we compare the artificial neural networks described in Section 1.1 with the biological
networks described in Section 1.2, we notice that there are some fundamental gaps in the
behaviour of these types of networks. We enumerate them here, and will refer back to
them throughout the rest of this work. In Chapter 2, we will discuss how other authors
have tackled these points, and in Chapters 3 to 8, we will discuss work that we have done
to address these differences.

Gap 1: No Backprop

Neurons used in deep learning emit two types of signals - an activation on the forward
pass, and a gradient on the backward pass. Biological neurons send signals down a
one-way signalling pathway called an axon. They appear to lack any secondary signalling
mechanism for sending gradient backwards. That is not to say that information cannot
propagate backwards. Biological networks are full of reciprocal connections - where
higher-layer neurons send spikes back to their lower-layer inputs. But it is not clear how
this information could be used to train the lower layers make themselves more useful to
the higher layers.

Backpropagation Through Time (BPTT), the principle method by which recurrent
networks are trained, is even more biologically implausible: It would require neurons to
build up a buffer of their past activations as they receive data, then at fixed intervals,
iterate backwards through this buffer to backpropagate the error signal. No apparent
mechanism exists to allow for this behaviour, and so it is not clear at all how biological
networks could be learning.

We should note that there is a biological mechanism known as Neural Backpropagation
[Stuart and Sakmann, 1994], wherein it has been observed that a spike is not only
transmitted forward direction down an axon, but also echoes backwards through the
dendrites of the spiking neuron, to the input synapses. Critically though, the buck stops
there. Unlike in the backpropagation of error signals in artificial networks, there is no
mechanism for this signal to hop back across synapses, and down the axons of presynaptic
neurons. Thus Neural Backpropagation can only be used as a backwards signalling
mechanism within a neuron - not over a network. We will return to the topic Neural
Backpropagation at the end of Chapter 6.

Gap 2: Spiking

Neurons in deep learning have continuous, differentiable activation functions. This is
necessary in order to propagate useful gradients back through the network. Biological
neurons are best understood as dynamical systems which communicate through streams
of all-or-nothing “spikes”, as discussed in Section 1.2.
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There are two aspects to “spiking” that make it different from the continuous, differentiable
activation functions used in the rest of deep learning. First is the quantized aspect -
neurons do not produce real-valued signals but produce a discretized “spike or no-spike”
output. While biological spikes do have an “amplitude” which can be measured in mV,
it tends to be roughly the same for all spikes and does not appear to be used to convey
information between neurons. Secondly, there is the temporal aspect - neurons do not
simply output a value representing some function of their current inputs, but produce a
series of spikes in time, where the presence or absence of a spike is some function of the
recent input to a neuron.

Gap 3: Nonstationary Data

Artificial neural networks are almost always trained with stochastic gradient descent,
which involves repeatedly feeding the network small batches of Independent and Identically
Distributed (IID) data samples. When the data involves temporal sequences, these samples
typically involve “snippets” of sequence short enough that the model consuming them can
train off the entire sequence using backpropagation-through time without running into
memory-constraints. Biological networks live in a very different domain. They receive
a single stream of nonstationary data - neighbouring inputs in time tend to be highly
correlated. In most machine learning applications, the experimenter controls the order
in which data is fed to the model during training. In nature, the model must cope with
data in whatever order it arrives.

Gap 4: Asynchronous Processing

Training artificial neural networks involves a “forward pass”, in which the nodes of network
are computed in order of their dependency, followed by a “backward pass” where gradients
are computed in the reverse order. A physical implementation of this would require global
synchronization - where neurons recompute their states when their upstream neurons
have completed computation and then hold their states until the gradient propagates back
in the backward phase. This “global synchronization“ appears not to exist in the brain. It
would involve “executing” neurons in stages and asking them to hold onto their state while
they wait for a backward pass to arrive. Biological neurons appear, by contrast, to be
constantly processing input from both the forward (bottom-up) and backward (top-down)
directions. None of the precise control circuitry that would be required to do coordinated
forward and backward passes appears to exist. We discuss this in more detail in Section
1.6.2.
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Gap 5: No Shared Parameters

A key constraint of biological networks that is ignored in almost all deep networks is that
parameters of a neuron belong to that neuron alone. Whereas artificial neural networks
share parameters between neurons in a number of ways (see Section 1.1.3), there is no
mechanism whereby the weights associated with synapses can be shared across synapses.

1.6. Why care about biological neurons?

There are more reasons to care about how the biological neural networks might work
than pure academic curiosity. We believe that two primary reasons are handling of
asynchronous data (Section 1.6.1), and energy-efficient computation (Section 1.6.2).

1.6.1. Asynchronous Data

Suppose, as an ambitious deep learning researcher, you want to try your hand at robotics.
Perhaps you want to learn a model of the robot’s sensory signals, to see if you can learn
high-level percepts like “a door handle that I can pull” from raw image, joint angle, and
tactile data. Perhaps you are so ambitious that you would like to learn to generate the
motor signals commanding a hand to pull this handle when the moment arrives. Your
first step is to take your deep neural network and plug it into the sensors.

You are immediately confronted by an awkward problem of data formats. Instead of
the nice time-stepped series of observations < x1, ..., xn > that you’re familiar with from
datasets and simulations, where each xn summarizes the full sensory state of the robot at
a particular time-step, you are confronted by a series of partial observations from various
sensors that come in at irregular time intervals.

The gyroscope sends a series of time-stamped 6-dimensional linear-angular acceleration
measurements < (xgyro1 , t1), ..., (xgyron , tn) > around 1,000 times/second, on average, while
the joint-angle sensors may send 20-dimensional measurements< (xjoint1 , t1), ..., (xjointn , tn) >
around 100 times per second, and the camera may send a 1,000,000-dimensional image
< (xim1 , t1), ..., (ximn , tn) > around 30 times/s. This situation is illustrated in Figure 1.5.
You quickly find that this seemingly lowly question of data-formats is actually not so
trivial.

Updating the entire network for each input event is impractically expensive (either in
terms of run-time or energy use). Besides, it seems wasteful - the sensory context barely
changes two consecutive gyroscope readings - why should we recompute it from scratch
every time a new input arrives? An alternative would be to bin events into temporal
windows and feed them in batches to our network. However, this sacrifices our ability to
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1.6. Why care about biological neurons?

respond with low latency to important gyro signals - we have to wait until the next bin is
processed to respond to a gyro signal.

The problem is that the current paradigm in deep learning involves doing an update
on an entire network in one go - something that is not practical when the data arrives
sequentially in small parts. What we want is a system where we could feed every bit of
data into the network as it arrives, with the computational cost of the update proportional
to the amount of new information in that data. In other words, we want to calculate how
our new data affects the sensory state, without having to recompute the entire sensory
context from scratch with each newly arriving bit of data. What we are missing is a
principled way to only propagate changes when the changes are worth propagating.

Gyro
1000Hz

Joint
100Hz

Camera
30Hz

Motor: 
100Hz

Figure 1.5.: Robots must integrate sensory signals from multiple sources into a global
picture of the world. Globally updating the network with each Gyro signal
would be impractically expensive, but binning signals over time and updating
with the slowest sensor would sacrifice our ability to respond with low latency.

The data that the brain sees is an even more asynchronous than the data in our example
above. Not only does each sensor send data asynchronously, but even within a single
sensory stream, the data is comprised of a stream of asynchronous events (i.e. spikes).
And unlike our robot’s sensory signals, where each event comes tagged with some new
data (like the current vector of linear and angular accelerations), the only information
accompanying a spike is the time at which it arrives and the identity of the sensory neuron
from which it came. The underlying signals must be inferred from the pattern in which
spikes from different neurons arrive.

There are a few examples of artificial sensors that mimic this “event-based” paradigm of
biological sensors. One is the Dynamic Vision Sensor [Lichtsteiner et al., 2008]. This is an
event-based video camera, which, instead of sending a sequence of frames xn at regular
intervals of, say, 33ms, produces a sequence of events (tn, ijn,Polarityn), indicating the
times when a pixel has brightened or darkened significantly (With ijn indicating the
(row,column) of the pixel activated in the n′th event and Polarityn ∈ {+1,−1} indicating
brightening or darkening). The event-rate varies with how much is changing in the scene;
the sensor may produce thousands of events per second.

A spiking neural network is an extension of event-based signalling to communication
within the network. In a standard deep network, an entire layer is updated in one step,
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and passes on its vector of activations to the next layer. In a spiking networks, neurons
see a stream of input events (tn, in), arriving at times tn from input neurons in, and
produce their own streams of events in response.

What we are missing is an idea of how to train such a network to do something useful.

1.6.2. Energy

As long as it is more advantageous to do more computation, people will keep building
and running more powerful computers until they run into some limitation that makes it
not worth it to build and run more powerful computers anymore.

Some 4 million years ago, a group of apes discovered that they were better off walking
around on the ground than climbing in the trees, thus freeing up a perfectly good pair
of hands. There are a lot of things that one can do with perfectly good hands, and one
of the main limitations on the number of these things is the size of one’s imagination.
Suddenly there was an advantage to be gained by having a bigger imagination. Over the
following years, brain size grew by a factor of 3. It is not clear from the data (see Figure
1.6) if this trend has stopped, but Henneberg [1988] suggest that the trend towards larger
brains may have stopped and reversed around 20000 years ago, and that we’ve lost about
a tennis ball’s worth of grey matter since. It is not clear why this might be - theories
range from the lower cognitive demands of civilized life to evolutionary discoveries in more
efficient wiring. What seems fairly uncontroversial is that a significant downward pressure
on brain size is energy consumption. Brains are not cheap organs to maintain. Despite
comprising only 2% of human body mass, the brain consumes about 20% of the body’s
power - about 20W out of 100W - [Ling, 2001]. It may be the case that brains stopped
growing because additional intelligence, while always a plus, stopped being enough of a
plus to be worth the extra energy needed to maintain the larger brain to support it.

The same rules apply to artificial computation. Ultimately, it must provide enough
economic value to pay the power bills. When looking for inspiration on energy-efficient
machine learning, it may be worthwhile to examine the 20W supercomputer that lives in
our heads - as evolution has had both plenty of incentive and plenty of time to optimize
this machine.

While the brain is extremely power-hungry as far as human organs are concerned, it is
extraordinarily power-lean for a computer. Compared to the human brain’s 20W and
1011 neurons, a Titan X GPU running real-time object detection with YOLO [Redmon
et al., 2016], a network of around 107 much simpler neurons, consumes 250W.

There is no established way to measure the amount of computation that the brain does.
Impacts [2015] analyze the issue and observe that, in large parallel supercomputers,
the bottleneck to computation is not the aggregated number-crunching ability of all
the processors in the machine, but rate at which these processors can communicate
information internally within the machine. The reasoning is that as you scale up a
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Figure 1.6.: The growth in estimated brain volume of human ancestors over the last 3
million years [Du et al., 2018].

computer, the number of processors scales linearly but the number of connections - and
thus the aggregated communication between processors - must scale super-linearly if
the machine is to remain a coherent whole. They suggest that Traversed Edges Per
Second (TEPS) - a measure of internal information dissipation between processors used in
supercomputers - may be the natural way to measure the computational capacity of the
brain. Conveniently, it is possible to estimate the brains TEPS-performance by looking
at the rate at which neurons send spikes to one another, how many neurons there are,
and how many connected neighbours neurons tend to have. By the authors’ estimate,
the brain performs somewhere within the wide range of 1.8× 1013 to 6.4× 1014 TEPS,
which would put its efficiency somewhere in the (admittedly wide) range of 9× 1011 to
3.2× 1013 TEPS/W.

The leader in non-wet efficient computation (as of 2015), in terms of TEPS/W, is the
room-sized IBM Blue Gene/Q, which does 1.5 × 1013 TEPS - on par with the lower
end of estimates for the human brain - but consumes some 3.95× 106 W, bringing it in
at 3.8× 106 TEPS/W. So if Impacts [2015] are to be believed, the brain is somewhere
within the range of 237,000 to 8,241,000 times more efficient than the most efficient
supercomputer.

That hints that perhaps, at least for doing the type of computation that the brain does,
we could make a lot more headway by improving algorithms and computational hardware
than we could by firing up new power plants.

1.7. How to read this thesis

Grandiose introductions almost always lead to disappointing conclusions, and this thesis
is no exception. We do not, to our satisfaction or to the satisfaction of any reasonable
reader, fully solve any of the “Gaps” between our understanding of the brain and our

23



1. Introduction

understanding of artificial neural networks, outlined in Section 1.5. What we do do is
explore ideas that we hope will provide fertile ground for further development, which will
lead to future closure of said gaps.

In Chapter 2 we will review several past works that have contributed to closing the
theoretical gap between these two types of networks. Chapters 3, 4, 5, 7, and 8 are
papers that we have written. Chapter 3 is unpublished, and Chapters 4, 5, 7 and 8
were published in ICLR 2017, ICLR 2018, ICLR 2019, and AISTATS 2019 respectively.
Each of these chapters begins with a short summary which ties the work into this thesis.
In each summary, we attempt to convey the core ideas of the paper, and its link to
this thesis, as fully as possible in under two pages. For chapters 3, 4, 5, 7, and 8,
readers wishing to make the best use of their 20W are encouraged to focus
attention on the summary at the beginning of each chapter, and may feel free
read the remainder of the chapter lightly or not at all, without missing out
on anything critical. The remainder of each chapter - the paper - is intended to be
read as a stand-alone work which explores the ideas in detail.

Then there is Chapter 6, our most recent, and unpublished, work. It is the 6’th Chapter
because it flows nicely from the work in Chapter 5. This is probably the most important
chapter, because it explains how the STDP curve in Figure 1.4 arises.

Finally, in Section 9, we will discuss what we believe are the next steps are in this field.
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In this section re review past works in the machine learning literature which shed light
on what biological networks may be doing. We will also cover other works that are more
directly tied to our papers in the later chapters.

2.1. Boltzmann Machines

Boltzmann Machines [Ackley et al., 1985] are generative models based on stochastic,
energy-based neural networks. They are the first way that people proposed to use a
neural network to learn a probability distribution over data. Compared to more modern
methods of learning probability distributions with neural network, they have quite a few
biologically plausible features.

These models address a few points of biological implausibility in that they are trained
without backpropagation (Gap 1: No Backprop), and they consist of units which com-
municate binary signals (Gap 2: Spiking). However, they do not meet the other criteria:
They need to be trained on on IID data (Gap 3: Nonstationary Data), they rely on
globally coordinated “positive” and “negative” training phases (Gap 4: Asynchronous
Processing) and they require that the network have symmetric weight matrices (Gap 5:
No Shared Parameters). Here we will briefly describe what a Boltzmann machine is and
list extensions to it.

Like a Hopfield network (Hopfield [1982], see Section 1.1.2), a Boltzmann machines defines
an energy over a network of neurons:

E(s, (w, b)) = −
∑
ij

wijsisj −
∑
i

bisi (2.1)

Where s is the vector of states, (w, b) := θ are the synaptic-weights and biases, respectively.
States are constrained to si ∈ {0, 1} and w is constrained by wij = wji ∈ R, wii = 0.
This energy function is used to define a probability distribution over states:

pθ(s) =
e−E(s,(w,b))∑
s′ e
−E(s′,(w,b))

(2.2)
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Where
∑

s′ denotes a sum over all possible states of s. For a small network of 100 neurons
with 2 possible states si ∈ {0, 1}, this sum would involve 2100 terms. Because computing
this is wildly impractical, we reply on estimating this distribution though sampling. From
Equations 2.1 and 2.2, we can derive the probability distribution of a single unit given all
the rest as a sigmoidal function of the inputs:

pθ(si = 1|s\i) = sigm

∑
j

siwij + bi

 (2.3)

Where sigm(x) := (1 + e−x)−1. If we stochastically update units one-by-one (i.e. Gibbs
sample) with si ∼ Bernoulli(pθ(si = 1|s\i)), and observe the state of the network for a
long time, we can show that the network is actually drawing samples from pθ(s) as defined
above.

In a Boltzmann machine with hidden units, neurons are divided up to disjoint subsets of
visible units svis and hidden units shid. When training a generative model, the objective
is to learn a model where the distribution over the states of the visible units pθ(svis)
matches the data distribution pdata(x). The Boltzmann Machine learning rule is derived
minimizing the Kullback–Leibler Divergence between the data distribution and the model
distribution:

KL(pdata||pθ) =
∑
s′vis

pdata(s
′
vis) log

pdata(s
′
vis)

pθ(s
′
vis)

(2.4)

From here we can derive a simple update rule:

∂KL(pdata||pθ)
∂θ

=

positive phase

Es′vis∼pdata,s
′
hid∼pθ(shid|s′vis)

[
∂E(s′vis, s

′
hid)]

∂θ

]
−

negative phase

Es′vis,s
′
hid∼pθ(s′vis,s

′
hid)

[
∂E(s′vis, s

′
hid)]

∂θ

]
(2.5)

Where in the positive phase, the visible units are clamped to the data the hidden states
are sampled conditioned on these clamped visible units , and in the negative phase, the
both the hidden and visible states are sampled conditioned on the model alone. For the
energy function in Equation 2.1, this results in the very simple weight update rule:

∆wij ∝
positive phase

s+
i s

+
j −

negative phase

s−i s
−
j (2.6)

Where s+ and s− are samples from the positive and negative phase, respectively. This
learning rule is very appealing from a biological perspective, because, in the positive
phase, it corresponds the Hebbian “fire-together, wire-together” rule that constituted the
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first observed learning rule in biological neurons by Hebb [2005]. The negative phase
corresponds to an anti-Hebbian “fire together, wire-apart” rule, which has also been
observed biologically Lamsa et al. [2007] (though it appears to be less widespread). Note
that the synaptic update only depends on the activations of the pre- and post- synaptic
neurons, as opposed to the activations of distant neurons at the top of the network, as is
the case when training with backpropagation.

The problem with the above learning rule is that is can be very difficult to obtain these
positive and negative samples, especially those from the negative phase. The energy
landscape may be very multi-modal. The standard approach to acquiring samples - by
the repeated application of 2.3 in a round-robin fashion, corresponds to Gibbs Sampling,
a form of Markov-Chain Monte Carlo. When the energy landscape is complex, this may
take many thousands of iterations to “burn-in” so that samples accurately represent the
probability distribution that they’re trying to estimate. This means that each iteration of
training requires many iterations of settling, making the training of Boltzmann machines
impractical in all but the smallest of problems.

This problem was somewhat alleviated by Restricted Boltzmann Machines (RBMs)
[Smolensky, 1986], where the connectivity of the Boltzmann Machine is constrained
such that there are no direct connections between hidden units. This makes it very easy
to sample in the positive phase, because hidden units become conditionally independent
of one another, no iterative Gibbs-sampling is needed - all hidden units can be sampled
in parallel. Hinton [2002] proposed a method called “Contrastive Divergence”, which
greatly improved sampling efficiency of the negative phase. In Contrastive Divergence,
the negative-phase samples, rather than being drawn from the model, which takes a very
long time, are initialized at the positive-phase and run through the model for just a few
iterations, which should make them closer to the model-distribution than those of the
positive phase, causing the gradient to be biased but still point in the right direction.
Hinton et al. [2006] further improved on this idea by showing that by sequentially stacking
RBMs (by training one layer, freezing the weights, then training another on top, and so
on), the resulting Deep Belief Network was guaranteed to improve the likelihood of the
data under the model with each additional layer.

RBMs gradually fell out of favour in deep learning. Their two uses were to (A) pre-train
the weights in deep feedforward networks before fine-tuning with backpropagation, and
(B) as generative models. Use (A) became obsolete when Glorot et al. [2011] showed that
once you use a rectified-linear activation function h(x) = max(0, x) for your hidden units
in a feedforward network, and initialize your weights with the right magnitude [Glorot
and Bengio, 2010], there is no need for pre-trained parameters. Use (B) became obsolete
when Kingma and Welling [2013] introduced the Variational Autoencoder, a generative
model that was much easier (both faster and with fewer hyperparameters) to train and
sample from than a Deep-Belief Network.
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2.2. SpikeProp

Bohte et al. [2000] proposed an interesting variation on backpropagation to train a
spiking network which they called SpikeProp. This work addresses the problem of how to
train a spiking network, and so addresses Gap 2: Spiking. However it is still a form of
backpropagation, and does not address the remaining gaps discussed in Section 1.5. In
SpikeProp, the authors address the problem of how to train a spiking neural network to
produce a particular sequence of input spikes and desired output spikes:

〈
tij : i ∈ InputNeurons, t ∈ R+

〉〈
tdj : j ∈ OutputNeurons, t ∈ R+

〉
This formulation is quite different from the classic vector-in, vector-out setup of most
machine learning problems, so for most current datasets of interest, the data must be
remapped to this temporal sequence form. Note that in this formulation, each neuron is
allowed to fire once. The task is to optimize the firing time given the input sequence to
match the output sequence. Here the authors propose to do this by minimizing the loss
L =

∑
j∈OutputNeurons(t

d
j − tj)2 between the actual and desired spike times, using neurons

with an activation:

sj(t) =
∑

i∈Inputs

K∑
k

wkijκ(t− ti − dk)

tj = arg min
t

sj(t) > θ

Where sj(t) is the real-valued activation of neuron j, κ(τ) is a causal spike response
kernel, for example κ(τ) = (τe−τ if τ > 0 otherwise 0), each synapse has K associated
delays dk, and a weight wkij is associated with each delay from each synapse. A neuron
fires its spike tj when its activation sj(t) first crosses a threshold θ.

The main insight of SpikeProp is that one can find the gradients ∂L
∂wkij

by observing that,
for a small window around the time of a spike tj , the spike time varies linearly with the
parameter wtij . The authors use this observation to derive an update rule wherein for
each output spike, a backward pass is performed and parameters are adjusted to bring
that spike closer in time to the target spike. However, SpikeProp remains biologically
implausible in a number of ways: It still relies on a secondary signalling mechanism which
propagates a gradient backwards across synapses; it assumes neurons only spike once;
it assumes coordinated training iteration rather than a constantly changing stream of
inputs; and it requires that a neuron is already spiking in the vicinity of the target signal
to learn.
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2.3. Target Propagation

Target propagation is an alternative approach to credit assignment from backpropagation.
Instead of passing back a gradient (the direction that a neuron’s activation must move
in order to minimize the loss), the network passes back a target (a desired activation
for each hidden neuron, such that if it had had that activation on the forward pass, the
loss would be lower). Thus it addresses Gap 1: No Backprop. The catch here is that
we no longer have a guarantee that our updates will minimize the loss - we just hope
they will be in the right direction. As the network gets very deep this may no longer be
true. An advantage of target propagation is that it does not assume that the network
is a continuous, differentiable function, so it can in principle work in neural networks
with discrete activation functions, partially addressing Gap 2: Spiking. Furthermore,
the top-down weights of the target-propagating network need not be symmetric with
the feedforward network, addressing Gap 5: No Shared Parameters. Target propagation,
however, is not a full solution to biologically plausible learning. It still assumes IID data -
not addressing Gap 3: Nonstationary Data; and assumes a synchronized forward/backward
pass - not addressing Gap 4: Asynchronous Processing.

The trick to making target-propagation work well is in figuring out how to assign targets
to hidden neurons that actually lead to the minimization of the final loss. Lee et al. [2015]
proposed an efficient way of doing target propagation called Difference Target Propagation.
Suppose one has a deep network with layer-functions zl = fθl(zl−1), starting from an
input layer z0 = x. Suppose the supervision comes in the form of a target activation
for the final layer: ẑL. If each layer were invertible, then we could find a target for the
second last layer: ẑL−1 = f−1

θL
(ẑL), such that had zL−1 been a little bit closer to ẑL−1,

the loss ‖zL − ẑL‖ would have been lower. Parameters θL−1 can then be adjusted to
minimize ‖zL−1 − ẑL−1‖. Since layers are not, in general, invertible, target propagation
relies on training an approximate inverse ẑl−1 := gφl(ẑl) ≈ f−1

θl
(ẑl). Since f−1 may not

be realizable by g (f may not even be injective), this target-propagation is imperfect.
Difference Target Propagation applies a linear correction term, to calculate targets as
ẑl−1 = zl−1 + g(ẑl)− g(zl). The authors show that this greatly reduces the error arising
from the imperfect inverse and leads to a clear improvement in target propagation.
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Figure 2.1.: A visual explanation from Lee et al. [2015] of how targets are propagated
down from a higher to a lower layer in Difference Target propagation. (Note
that their notation uses hi to represent the activation of the i’th layer as
opposed to the zl convention used in this thesis.)

Target Propagation is more biologically plausible than backpropagation, because neurons
only need emit one kind of signal - an activation. It does not rely on a secondary
signalling mechanism (unobserved in biology) wherein neurons send loss-derivatives
backwards through multiple layers of synapses.

2.4. Neural ODE’s

Backpropagation is a way to assign credit when the computation takes the form of a
directed acyclic graph (where nodes correspond to differentiable functions and edges corre-
spond to variables). Because of this, artificial neural networks have always been awkward
in handling continuous time. The common approach has been to discretize time into
steps, and assign gradients with Backpropagation-Through time. Temporal-discretization
throws away potentially useful information, forcing a trade-off between efficiency (large
bins, much information loss) and accuracy (small bins with little information loss).

In Neural Ordinary Differential Equations, Chen et al. [2018] propose a novel learning
algorithm which shows how continuous-time neural networks could be trained. The
authors started with the observation that the standard form of a layer-update for ResNet
[He et al., 2016] takes the form zl := zl−1 + f(zl−1). Replace the layer-index with a
time-step index and this looks like an Euler-discretization zt−zt−1

∆t ≈ f(zt) of a continuous-
time dynamical system ∂z

∂t = f(z) with a step-size ∆t = 1. Euler discretization is known
to be the simplest and often worst method of discretizing a dynamical system. The
authors propose instead taking the equivalent dynamical system and passing it to a
black-box ODE solver (which uses more complex methods which more closely simulate
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the continuous-time dynamics). They further show how one can design an augmented
dynamical system ∂a

∂t = g(a) which computes the gradients in a backwards pass. This can
likewise be passed to a black-box ODE-solver to come up with close approximations.

The idea is interesting to biologically plausible learning because it shows how one could
actually train a network that lives in continuous-time in a principled way.

Neural ODE’s is an interesting idea with many potential applications. But it is likely
not the answer to our question of how biological networks learn. The reason is that it
still requires doing a forward and backward pass through time (thus not addressing Gap
1: No Backprop). It is difficult to see how a brain could run a dynamical system of
neurons, compute a loss, then run another “backwards” system with the same parameters
in reverse to assign credit. Moreover, such a system is inherently episodic - there has to
be some “end” point in time at which the loss is computed and the backward dynamics
start running (thus not addressing Gap 4: Asynchronous Processing). It’s difficult to see
how this could be used in online learning, where input arrives continuously.

2.5. Unbiased Online Recurrent Optimization

We have already discussed the fact that backpropagation-through time (BPTT) on a
recurrent network zt = fθ(zt−1, xt) is both inefficient and biologically implausible. The
inefficiency is because we must, for every learning iteration, backpropagate through T
time-steps, where T is the temporal horizon over which we would like to learn temporal
dependencies. The biological implausibility is because in order to do this, we need to keep
a buffer of T past-activations for every neuron, whereas biological neurons appear to have
no buffering mechanism to keep track of past-states. We would also need to transmit
signals backwards though axons, as in normal backpropagation.

There are two domains in which we can consider doing BPTT: (A) The episodic domain,
where we are presented with short sequences of inputs and must make some prediction at
the end of each sequence, and (B) The online domain, where the input arrives as a single,
infinite stream and we must learn to predict the next element of the stream given the
entire past (it may not be known in advance how much of the past is relevant). In case
(A) we simply execute a forward pass and then a backward pass on the sequence. In case
(B) we must choose a time-horizon of T-steps over which we want to backpropagate. In
this case, we have a tricky decision to make: In one limit, we could chose infinite T, to get
a correct gradient at the cost of slower and slower computation; As time goes on we have
to backpropagate through more steps to get to the beginning of the growing sequence. In
the other limit, we can chose a short T, and accept that our gradients are biased, so that
we are unable to learn temporal dependencies longer than T-steps. If we want to update
our parameters at every time-step, learning requires T-times as much computation as
inference, because at every step zt = fθ(zt−1, xt) we must backpropagate through T steps
to find our T-step approximation to the loss-gradient ∂L(zt)

∂θ .
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Unbiased Online Recurrent Optimization (UORO) [Tallec and Ollivier, 2017] proposes
an imperfect solution to this conundrum. The authors start from the observation that
there already exists a way to compute the gradients of the parameters of neural networks
with infinite time-horizon without doing backprop-through-time. It’s called Real Time
Recurrent Learning (RTRL) [Williams and Zipser, 1989] and it’s extremely expensive.
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Figure 2.2.: An illustration of the computational graph of a recurrent network.

A recurrent network has the form zt = fθ(xt, zt−1) where zt is the hidden activation at
time t and xt is the input. Suppose we get a loss LT (zT , yT ) at some time-step T and
want to figure out how to update parameters θ to optimize it. θ affects the loss through
many paths (one per time-step) so its gradient will be the sum of many components:

dLT
dθ

=
dLT
dzT

dzT
dθ

=
dLT
dzT

T∑
t=1

∂zT
∂zt

∂zt
∂θ

∣∣∣∣
zt−1

(2.7)

Where the notation ∂zt
∂θ |zt−1 means “partial derivative of zt with respect to θ, with zt−1

held constant”. We can compute this gradient by Backpropagation-through time (BPTT)
- i.e. using the observation that ∂LT

∂zt−1
= ∂LT

∂zt
∂zt
∂zt−1

. The problem, of course, is that as T
gets larger, so does the time required to compute this gradient.

Observe the gradient ∂LT
∂zt

can be decomposed as ∂LT
∂zt

= ∂LT
∂zT

∂zT
∂zT−1

...∂zt+1

∂zt
. BPTT corre-

sponds to crunching these terms left-to-right - backwards through time. But we could
also crunch then right-to-left, and this is the idea behind RTRL. In RTRL, we apply the
update

dzt
dθ

=
∂zt
∂zt−1

dzt−1

dθ
+
∂zt
∂θ

∣∣∣∣
zt−1

(2.8)

The problem here is that this involves the multiplication of a |z|×|z| and a |z|×|θ| matrix,
which is a hugely expensive operation. In a fully connected simple recurrent network
where zt = h(zt−1 · wzz + xt · wxz), the cost of the forward pass is O(|z| × |z|), while the
RTRL gradient update in Equation 2.8 costs O(|z| × |z| × |θ|). Since the network is fully
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connected, |θ| = |z| × |z|+ |z| × |x|, so for a small network of 100 neurons and 100 inputs,
the RTRL gradient update would cost |θ| = 20000 times more than the normal forward
pass!

UORO is a trick for computing an unbiased approximation to ∂zt
∂θ , by using random

projections to compress the gradient information from a |z| × |θ| matrix to an outer
product of a |z| and a |θ| vector: dzt

dθ ≈ z̃t ⊗ θ̃t. The update of this approximation at
each step only costs O(|zt| × |zt−1|) - the same as a step of the forward pass. However,
this comes at a cost: The approximation, while unbiased, may have a large variance,
and this variance slows down learning to the point where it appears to be impractical
for implementation on real problems. UORO partially addresses Gap 1: No Backprop
by not requiring backprop-through time. However it still requires the neurons emit a
secondary gradient signal - it just propagates this in the forward direction. It can also
run on nonstationary data, addressing Gap 3: Nonstationary Data, and, because it does
not require running a backward pass through time, it is may help to address how we
could train an asynchronous system, addressing Gap 4: Asynchronous Processing. The
idea is interesting and possibly could be extended into a biologically plausible learning
rule for training neural networks, but at present we cannot see how.

We tried and failed to improve upon UORO by replacing the random projections with
deterministic pseudorandom projections which should converge to the mean more quickly.
Our approach was not well theoretically founded, and did not work empirically, so we
abandoned it.

Recently, Cooijmans and Martens [2019] have explored other methods of reducing the
variance of the gradient-approximation made by UORO, and drawn a connection to
REINFORCE. However, there has yet to be a convincing demonstration of good empirical
results from this method. The topic of online learning using approximate forward-mode
differentiation remains an open and interesting one for the future.

2.6. Synthetic Gradients

Jaderberg et al. [2016] pointed out a problem with the standard backprop-trained deep
networks that they called “locking”. Suppose some layer in a deep network computes
its output given the state of the previous layer: zl = fθl(zl−1). In order to update that
layer’s parameters θl, we must first compute the rest of the activations in the network
zl+1, ..., zL, then find the loss L = `(zL, y), then sequentially compute the layer-gradients
with backprop ∂L

∂zL
, ..., ∂L∂zl before finally computing the parameter gradient ∂L

∂θl
= ∂L

∂zl
∂zl
∂θl

.
Until that gradient arrives, the neurons at layer l must remember the state of their inputs
so that they can compute ∂L

∂θl
. This requirement can become onerous when there is a long

chain of connections between zl and the final layer zL. This problem is especially evident
two settings:

1. Online Streaming Data. As discussed previously in Section 2.5, when the data
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comes in the form of an infinite temporal stream, it becomes intractable to assign
credit to parameters. We would have to wait until the end of time to compute the
loss which should be used to update a parameter.

2. Distributed Systems, where one “shared” network feeds data into several “client”
networks running asynchronously. In order to update properly, the shared network
would be “locked” until it received the backpropagating signal from every client
network. It thus would be constrained to the speed of the slowest client.

The approach that Jaderberg et al. [2016] use to solve this is to train an auxiliary model
to predict the backpropagating gradient: ∂L

∂zl
≈ ∂̂L

∂zl
:= gφl(zl), and use this “synthetic”

predicted gradient to update parameters. This of course just pushes the problem back
to how to train the gradient-prediction parameters φl - it could be trained to minimize
‖ ∂̂L∂zl−

∂L
∂zl
‖ , but then we need to wait for the true ∂L

∂zl
, which is exactly what we were trying

to avoid. Instead, we could ‘bootstrap’ from the next layer’s gradient approximation, and
minimize the gradient-prediction error given the next layer’s prediction of the gradient
‖ ∂̂L∂zl −

∂̂L
∂zl+1

∂zl+1

∂zl
‖, until finally the second-last layer’s parameters φL−1 learn to minimize

the true-gradient prediction error: ‖ ∂̂L
∂zL−1

− ∂L
∂zL

∂zL
∂zL−1

‖.

Unlike in Unbiased Online Recurrent Optimization (see Section 2.5), this procedure
introduces a bias in training. It is unclear how much this matters in practice on real-life
problems.

2.7. Equilibrium Propagation

Equilibrium Propagation [Scellier and Bengio, 2017] is an algorithm for gradient-based
training of deep networks, wherein neurons may only emit one kind of signal - an activation
- and do not have the capacity to send a secondary gradient signal backwards. It thus
addressed the problem of how to do gradient-based training of a deep network without
backprop (Gap 1: No Backprop).

The algorithm can be used to train an Energy-Based Model [Hopfield, 1984] for clas-
sification. The network performs inference by iteratively converging to a fixed-point,
conditioned on the input data, and taking the state of the output neurons at the fixed
point to be the prediction of the network. The network’s dynamics are defined by an
energy function over neuron states s and parameters θ = (w, b):

Eθ(s, x) =
1

2

∑
i∈S

s2
i −

∑
i∈S

biρ(si)−
∑

j∈S,i∈αj∩S
wijρ(si)ρ(sj)−

∑
j∈S,i∈αj∩I

xiwijρ(sj) (2.9)

Where I is the set of input neuron indices, S is the set of non-input neuron indices;
s ∈ R|S| is the vector of neuron states; where αj ⊂ {I ∪S} is the set of neurons connected
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to neuron j; x denotes the input vector; and ρ is some nonlinearity; w is a weight matrix
with a symmetric constraint: wij = wji, and entries only defined for {wij : i ∈ αj} The
state-dynamics for non-input neurons, derived from Equation 2.9, are:

∂sj
∂t

= −∂Eθ(s, x)

∂sj
= −sj + ρ′(sj)

bj +
∑

j∈S,i∈αj∩S
wijρ(si) +

∑
j∈S,i∈αj∩I

wijxi

∀j ∈ S
(2.10)

The network is trained using a two-phase procedure, with a negative and then a positive
phase, as illustrated in Figure 2.3. In the negative phase, the network is allowed to settle
to an energy minimum s− := arg minsEθ(s, x) conditioned on a minibatch of input data
x. In the positive phase, a target y is introduced, and the energy function is augmented
to “perturb” the fixed-point of the state towards the target with a “clamping factor” β:
Eβθ (s, x, y) = Eθ(s, x) +βC(sO, y), where β is a small scalar and C(sO, y) is a loss defined
between the output neurons in the network and the target y (we use C(sO, y) = ‖sO−y‖22).
The network is allowed to settle to the perturbed state s+ := arg minsE

β(s, x, y).

Finally, the parameters of the network are learned based on a contrastive loss between
the negative-phase and positive-phase energy, which can be shown to be proportional to
the gradient of the output loss ∂C(s−O,y)

∂θ in the limit of β → 0:

∆θ = − η
β

(
∂Eβθ (s+, x, y)

∂θ
− ∂Eθ(s

−, x)

∂θ

)
∝ −

∂C(s−O, y)

∂θ
(2.11)

Where η is some learning rate; O ⊆ S is the subset of output neurons. This results in
a local learning rule, where parameter changes only depend on the activities of the pre-
and post-synaptic neurons:

∆wij =
η

β

(
ρ(s+

i )ρ(s+
j )− ρ(s−i )ρ(s−j )

)
(2.12)

∆bi =
η

β

(
ρ(s+

i )− ρ(s−i )
)

(2.13)

Where xi will be substituted for ρ(si) when i is an input unit. Intuitively, the algorithm
works by adjusting θ to pull s− := arg minsEθ(s, x) closer to s+ : arg minsE

β
θ (s, x, y)

so that the network will gradually learn to naturally minimize the output loss C(s−O, y)
associated with the energy-minimum s−.

Note that the synaptic learning rule is purely local, and that neurons only emit one
kind of signal, so the network is indeed doing gradient-based learning without backprop,
addressing Gap 1: No Backprop. However, the algorithm depends on detecting small
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changes to the fixed-point of a network, and thus cannot not use quantization, failing
Gap 2: Spiking (a matter we address in Chapter 8). Further, it requires that input be
held static while the network converges, thus failing Gap 3: Nonstationary Data and Gap
4: Asynchronous Processing, and it assumes symmetric weights, failing Gap 5: No Shared
Parameters1.

Negative Phase

Targets (y)

Inputs (x)

Positive Phase

}States (s)

Figure 2.3.: An illustration of the two phases of Equilibrium Propagation. Left: In the
negative phase, the input is presented and the network is allowed to settle to
an energy minimum. Right: In the positive phase, the network starts at
the steady state of the negative phase, and is perturbed by pulling the output
units weakly towards the target, causing the entire network to settle to a
new steady state. The parameters are then updated based on the contrast
between these two steady states, according to Equation 2.12

.

2.7.1. Relation to Dynamics-Based Learning and STDP

One idea, inspired by Xie and Seung [2000] and Hinton [2012], of how biological neurons
might be learning is that they substitute the dynamics for the gradient in their learning
rule:

∂wij
∂t
∝ ρ(si)

∂ρ(sj)

∂t
(2.14)

1However as described in Scellier et al. [2018], the symmetry requirement can be relaxed without
significantly impacting performance. In this case there is no energy function, but one simply defines
the network in terms of the state dynamics. The network nevertheless seems to learn to settle to
fixed-points rather than falling into limit cycles or chaotic dynamics. The reason for this phenomenon
is not well understood.
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This implies that if the dynamics are moving in such a way as to minimize a desired loss,
the weight update should then also minimize that loss. Bengio et al. [2015b] show that
this should correlate to the STDP learning rule observed in biology - a connection that
we discuss in detail in Chapter 6.

As Scellier et al. [2018] pointed out, Equilibrium propagation implicitly applies this
dynamics-based learning rule during the positive phase. During the positive phase, the
states have the average trajectory ∂s

∂t := s+−s−
∆T . Now, when the difference between the

states of the two phases is small (i.e. in the limit of β → 0), we can see the relation
between the dynamics-based learning of Equation 2.14 and the Equilibrium Propagation
update of Equation 2.12:

∆wrateij ∝
∫ T+

t=T−
ρ(si)

∂ρ(sj)

∂t
≈ ρ(s−i )(ρ(s+

j )−ρ(s−j )) ≈ ρ(s+
i )ρ(s+

j )−ρ(s−i )ρ(s−j ) (2.15)

Thus we can say that the contrastive update rule of Equilibrium Propagation is approx-
imately equivalent to applying dynamics-based learning just during the course of the
positive phase of training.

This is of course a somewhat artificial scenario. It is not particularly biologically plausible
that a network would be allowed to settle to a fixed point, then perturbed very slightly
by a target and allowed to settle again, with learning switched on just during that second
settling phase (Gap 4: Asynchronous Processing). Clearly, the story is not complete.
However the underlying notion - That the network’s dynamics can take the place of a
back-propagated gradient in assigning credit to network parameters - is intriguing and
merits further investigation.
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In our first work, we aim to address Gap 2: Spiking, and gap Gap 4: Asynchronous
Processing, by constructing a network of spiking neurons and demonstrating that it can
be trained using an approximate form of backpropagation. Our goal in this work is to
train a multi-layer network for classification in a setting where neurons are not thought of
as functions, but as processes which consume and produce events (i.e. spikes) in sequence.
In our formulation, neurons are implemented in an event-based manner: Neurons update
their state upon receiving an event. Each received event may or may not trigger the
neuron to fire an event of its own. Under this formulation, the amount of computation
does not simply scale with the size of the network, as it would in a regular deep net, but
with the number of events communicated between neurons. Our network is Asynchronous
in the sense that there is no globally coordinated forward and backward pass. The forward
and backward passes run in parallel, with neurons sending out spikes once their activations
cross the threshold. Our goal in this work is simply to show that we can train a deep
network out of such building blocks.

Our system first converts an input vector v ∈ RD into a “signed spike” sequence 〈(in, sn) :
n ∈ N, in ∈ [1..Dinput], sn ∈ {−1,+1}〉 to be processed by the network. For the conversion,
we consider each element of the vector to be a “firing rate” which determines the rate of
change of potential φi, so that ∂φi

∂t = vi. When |φi| crosses some threshold, arbitrarily
defined at 1

2 , the spike (in, (sn := sign(φi))) is appended to the input sequence, and the
potential φi is decremented by sn. Note that we introduce a notion of time here only to
explain how a vector is converted to a spike-sequence; time has no role in the update
rules of the network.

The network that consumes this spike sequence consists of a forward and backward
network. In the forward network, first-layer neurons j accumulate input spikes one-by-one
into their potentials: φj ← φj + winjsn. Unlike the input, these neurons have only a
positive threshold and emit only positive spikes - making them event-based versions
of Rectified-Linear neurons. If a neuron j is pushed past the threshold (φj > 1

2), the
potential φj is decremented by 1 and the spike is routed to the next layer to be processed
in a similar manner before any further input spikes are processed.

At the top, error is transformed into a sequence in a similar manner to the input, and fed
into the backward network. Backward neurons work similarly to the forward, except that
they (since they must communicate gradients) emit both “positive” and “negative” spikes
(which is not biologically plausible). and to implement backprop correctly, they must be
“gated” such that they are disabled when their corresponding forward-units have received
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net-negative input.

Every time a forward neuron j or a backward neuron k spikes, the parameter φjk is
updated. Thus many update to a single parameter can occur during a single training
iteration.

While our creation does not show any dramatic performance improvements as compared
to a traditional deep network, it does have some interesting characteristics that separate it
from more traditional deep network implementations, and have potential to be beneficial:

1. Early Guessing - from the time of the first spike of the penultimate layer, we
already have an early guess as to what the final activation of the last layer is going
to be. This spike may come well before all the input neurons have spiked. Our
network, rather than computing its function in one go, gradually converges to a
solution as more and more spikes are propagated through the network.

2. Many Updates Per Iteration - In deep learning, stochastic gradient descent tends
to outperform batch gradient descent because it is better to make many approximate-
but low-cost parameter updates than one big and accurate one. Similarly, in our
configuration we can update each parameter every time a spike occurs on a backward
neuron. Thus even within a single training iteration, there may be many updates
to the value of a parameter.

This work does not address the other “gaps” between biological and artificial neural
networks. Our algorithm is simply an approximation to backpropagation, so it fails to
pass the Gap 1: No Backprop test. Although inputs are processed as a sequential stream,
the input rates are fixed and the network is allowed to run for a set amount of time as it
processes the input, so it cannot be said that we are learning on a temporal data stream,
and therefore we do not pass Gap 3: Nonstationary Data. Furthermore, because we are
approximately implementing backprop, connections used in the backward pass are the
same as those used for the forward pass, which is a form of weight-tying (Gap 5: No
Shared Parameters).

3.1. Abstract

We introduce an algorithm to do backpropagation on a spiking network. Our network is
"spiking" in the sense that our neurons accumulate their activation into a potential over
time, and only send out a signal (a “spike”) when this potential crosses a threshold and
the neuron is reset. Neurons only update their states when receiving signals from other
neurons. Total computation of the network thus scales with the number of spikes caused
by an input rather than network size. We show that the spiking Multi-Layer Perceptron
behaves identically, during both prediction and training, to a conventional deep network
of rectified-linear units, in the limiting case where we run the spiking network for a long
time. We apply this architecture to a conventional classification problem (MNIST) and
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achieve performance very close to that of a conventional Multi-Layer Perceptron with the
same architecture. Our network is a natural architecture for learning based on streaming
event-based data, and is a stepping stone towards using spiking neural networks to learn
efficiently on streaming data.

3.2. Introduction

In recent years the success of Deep Learning has proven that a lot of problems in machine-
learning can be successfully attacked by applying backpropagation to learn multiple layers
of representation. Most of the recent breakthroughs have been achieved through purely
supervised learning.

In the standard application of a deep network to a supervised-learning task, we feed
some input vector through multiple hidden layers to produce a prediction, which is in
turn compared to some target value to find a scalar cost. Parameters of the network are
then updated in proportion to their derivatives with respect to that cost. This approach
requires that all modules within the network be differentiable. If they are not, no gradient
can flow through them, and backpropagation will not work.

An alternative class of artificial neural networks are Spiking Neural Networks. These
networks, inspired by biology, consist of neurons that have some persistent “potential”
which we refer to as φ, and alter each-others’ potentials by sending “spikes” to one another.
When unit i sends a spike, it increments the potential of each downstream unit j in
proportion to the synaptic weight Wi,j connecting the units. If this increment brings unit
j’s potential past some threshold, unit j sends a spike to its downstream units, triggering
the same computation in the next layer. Such systems therefore have the interesting
property that the amount of computation done depends on the contents of the data, since
a neuron may be tuned to produce more spikes in response to some pattern of inputs
than another.

In our flavour of spiking networks, a single forward-pass is decomposed into a series of
small computations provide successively closer approximations to the true output. This is
a useful feature for real time, low-latency applications, as in robotics, where we may want
to act on data quickly, before it is fully processed. If an input spike, on average, causes
one spike in each downstream layer of the network, the average number of additions
required per input-spike will be O(

∑L
l=1Nl), where Nl is the number of units in the layer

l. Compare this to a standard network, where the basic messaging entity is a vector.
When a vector arrives at the input, full forward pass will require O(

∑L
l=1(Nl−1 · Nl))

multiply-adds, and will yield no “preview” of the network output.

Spiking networks are well-adapted to handle data from event-based sensors, such as the
Dynamic Vision Sensor (a.k.a. Silicon Retina, a vision sensor) Lichtsteiner et al. [2008]
and the Silicon Cochlea (an audio sensor) Chan et al. [2007]. Instead of sending out
samples at a regular rate, as most sensors do, these sensors asynchronously output events
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when there is a change in the input. They can thus react with very low latency to sensory
events, and produce very sparse data. These events could be directly fed into our spiking
network (whereas they would have to be binned over time and turned into a vector to be
used with a conventional deep network).

In this paper, we formulate a deep spiking network whose function is equivalent to a
deep network of Rectified Linear (ReLU) units. We then introduce a spiking version of
backpropagation to train this network. Compared to a traditional deep network, our
Deep Spiking Network has the following advantageous properties:

1. Early Guessing. Our network can make an “early guess” about the class associated
with a stream of input events, before all the data has been presented to the network.

2. No multiplications. Our training procedure consists only of addition, comparison,
and indexing operations, which potentially makes it very amenable to efficient
hardware implementation.

3. Data-dependent computation. The amount of computation that our network does
is a function of the data, rather than the network size. This is especially useful
given that our network tends to learn sparse representations.

The remainder of this paper is structured as follows: In Section 3.3 we discuss past work
in combining spiking neural networks and deep learning. In 3.4 we describe a Spiking
Multi-Layer Perceptron. In 3.5 we show experimental results demonstrating that our
network behaves similarly to a conventional deep network in a classification setting. In
3.6 we discuss the implications of this research and our next steps.

3.3. Related Work

There has been little work on combining the fields of Deep Learning and Spiking neural
networks. The main reason for this is that there is not an obvious way to backpropagate
an error signal through a spiking network, since output is a stream of discrete events,
rather than smoothly differentiable functions of the input. Bohte et al. [2000] proposes
a spiking deep learning algorithm - but it involves simulating a dynamical system, is
specific to learning temporal spike patterns, and has not yet been applied at any scale.
Buesing et al. [2011] shows how a somewhat biologically plausible spiking network can be
interpreted as an MCMC sampler of a high-dimensional probability distribution. Diehl
et al. [2015] does classification on MNIST with a deep event-based network, but training
is done with a regular deep network which is then converted to the spiking domain. A
similar approach was used by Hunsberger and Eliasmith [2015] - they came up with a
continuous unit which smoothly approximated the the firing rate of a spiking neuron, and
did backpropagation on that, then transferred the learned parameters to a spiking network.
Neftci et al. [2013] came up with an event-based version of the contrastive-divergence
algorithm, which can be used to train a Restricted Boltzmann Machine, but it was
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never applied in a Deep-Belief Net to learn multiple layers of representation. O’Connor
et al. [2013] did create an event-based spiking Deep Belief Net and fed it inputs from
event-based sensors, but the network was trained offline in a vector-based system before
being converted to run as a spiking network.

Spiking isn’t the only form of discretization. Courbariaux et al. [2015] achieved impressive
results by devising a scheme for sending back an approximate error gradient in a deep
neural network using only low-precision (discrete) values, and additionally found that
the discretization served as a good regularizer. Our approach (and spiking approaches in
general) differ from this in that they sequentially compute the inputs over time, so that it
is not necessary to have finished processing all the information in a given input to make a
prediction.

3.4. Methods

In Sections 3.4.1 to3.4.3 we describe the components used in our model. In Section 3.4.5
we will use these components to put together a Spiking Multi-Layer Perceptron.

3.4.1. Spiking Vector Quantization

The neurons in the input layer of our network use an algorithm that we refer to as Spiking
Vector Quantization (Algorithm 1) to generate “signed spikes” - that is, spikes with an
associated positive or negative value. Given a real vector: ~v, representing the input to an
array of neurons, and some number of time-steps T , the algorithm generates a series of
N signed-spikes: 〈(in, sn) : in ∈ [1..len(~v)], sn ∈ {±1}, n ∈ [1..N ]〉, where N is the total
number of spikes generated from running for T steps, in is the index of the neuron from
which the n’th spike fires (note that zero or more spikes can fire from a neuron within
one time step), sn ∈ {±1} is the sign of the n’th spike.

In Algorithm 1, we maintain an internal vector of “neuron potentials” ~φ. Every time we
emit a spike from neuron i we subtract si from the potential φi until ~φ is in the interval
bounded by (−1

2 ,
1
2)len(~v). We can show that as we run the algorithm for a longer time

(as T →∞), we observe the following limit:

lim
T→∞

: ~v =
1

T

N∑
n=1

~einsn (3.1)

Where ~ein is an one-hot encoded vector with index in set to 1. The proof is in the
supplementary material.

Our algorithm is simply doing a discrete-time, bidirectional version of Delta-Sigma
modulation - in which we encode floating point elements of our vector ~v as a stream of
signed events. We can see this as doing a sort of “deterministic sampling” or “herding”
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Algorithm 1 Spiking Vector Quanti-
zation
1: Input: ~v ∈ Rd, T ∈ N
2: Internal: ~φ ∈ Rd ← ~0
3: for t ∈ 1...T do
4: ~φ← ~φ+ ~v
5: while max(|~φ|) > 1

2 do
6: i← argmax(|~φ|)
7: s← sign(φi)
8: ~φi ← ~φi − s
9: FireSpike(source = i, sign =

s)
10: end while
11: end for
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Figure 3.1.: Variable-Spike Quanti-
zation shows 1/T con-
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Welling [2009] of the vector v. Figure 3.1 shows how the cumulative vector from our
stream of events approaches the true value of v at a rate of 1/T . We can compare this
to another approach in which we stochastically sample spikes from the vector ~v with
probabilities proportional to the magnitude of elements of ~v, (see the “Stochastic Sampling”
section of the supplementary material), which has a convergence of 1/

√
T .

3.4.2. Spiking Stream Quantization

A small modification to the above method allows us to turn a stream of vectors into a
stream of signed-spikes.

If instead of a fixed vector ~v we take a stream of vectors vstream = {~v1, ... ~vT }, we can
modify the quantization algorithm to increment ~φ by ~vt on timestep t. This modifies
Equation 3.1 to:

lim
T→∞

:
1

T

T∑
t=1

~vt =
1

T

N∑
n=1

~einsn (3.2)

So we end up approximating the running mean of vstream. See “Spiking Stream Quantiza-
tion” in the supplementary material for full algorithm and explanation. When we apply
this to implement a neural network in Section 3.4.5, this stream of vectors will be the
rows of the weight matrix indexed by the incoming spikes.

43



3. Deep Spiking Networks

3.4.3. Rectifying Spiking Stream Quantization

We can add a slight tweak to our Spiking Stream Quantization algorithm to create a
spiking version of a rectified-linear (ReLU) unit. To do this, we only fire events on positive
threshold-crossings, resulting in Algorithm 2.

Algorithm 2 Rectified Spiking Stream Quantization

1: Input: ~vt ∈ Rd, t ∈ [1..T ]
2: Internal: ~φ ∈ Rd ← ~0
3: for t ∈ 1...T do
4: ~φ← ~φ+ ~vt
5: while max(~φ) > 1

2 do
6: i← argmax(~φ)
7: ~φi ← ~φi − 1
8: FireSpike(source = i, sign = +1)
9: end while

10: end for

We can show that if we draw spikes from a stream of vectors in the manner described in
Algorithm 2, and sum up our spikes, we approach the behaviour of a ReLU layer:

lim
T→∞

: max

(
0,

1

T

T∑
t=1

~vt

)
=

1

T

N∑
n=1

~ein (3.3)

See “Rectified Stream Quantization” in the supplementary material for a more detailed
explanation.

3.4.4. Incremental Dot-Product

Thus far, we’ve shown that our quantization method transforms a vector into a stream of
events. Here we will show that this can be used to incrementally approximate the dot
product of a vector and a matrix. Suppose we define a vector ~u← ~v ·W , Where W is
a matrix of parameters. Given a vector ~v, and using Equation 3.1, we see that we can
approximate the dot product with a sequence of additions:

~u = ~v ·W ≈ 1

T

( N∑
n=1

~einsn
)
·W =

1

T

( N∑
n=1

sn~ein ·W
)

=
1

T

( N∑
n=1

sn ~Win,·
)

(3.4)

Where Wi,· is the i’th row of matrix W.
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3.4.5. Forward Pass of a Neural Network

Using the parts we’ve described so far, Algorithm 3 describes the forward pass of a
neural network. The InputLayer procedure demonstrates how Spike Vector Quantization,
shown in Algorithm 1 transforms the vector into a stream of events. The HiddenLayer
procedure shows how we can combine the Incremental Dot-Product (Equation 3.4) and
Rectifying Spiking Stream Quantization (Equation 3.3) to approximate the a fully-
connected ReLU layer of a neural network. The Figure in the "MLP Convergence" section
of the supplimentary material shows that our spiking network, if run for a long time,
exactly approaches the function of the ReLU network.

Algorithm 3 Pseudocode for a forward pass in a network with one hidden layer

1: function ForwardPass(~x ∈ Rdin , T ∈ N)
2: Variable: ~u ∈ Rdout ← ~0
3: for t ∈ 1...T do
4: InputLayer(~x)
5: end for
6: return ~u/T
7: procedure InputLayer(~v ∈ Rdin)
8: Internal: ~φ ∈ Rdin
9: ~φ⇐ ~φ+ ~v

10: while max(|~φ|) > 1
2 do

11: i← argmax(|~φ|)
12: s = sign(φi)
13: φi ← φi − s
14: HiddenLayer(i, s)
15: end while
16: end procedure
17: procedure HiddenLayer(i ∈ [1..din], s ∈ [−1,+1])
18: Internal: ~φ ∈ Rdhid , W ∈ Rdin×dhid
19: ~φ⇐ ~φ+ s ·Wi,·
20: while max(~φ) > 1

2 do
21: i← argmax(~φ)
22: φi ← φi − 1
23: OutputLayer(i)
24: end while
25: end procedure
26: procedure OutputLayer(i ∈ [1..dhid])
27: Internal: W ∈ Rdhid×dout
28: Global: ~u← ~u+Wi,· . changes ~u
29: end procedure
30: end function
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3.4.6. Backward Pass

In the backwards pass we propagate error spikes backwards, in the same manner as we
propagated the signal forwards, so that the error spikes approach the true gradients of
the ReLU network as T →∞. Pseudocode explaining the procedure is provided in the
“Training Iteration” Section of the supplementary material, and a diagram explaining the
flow of signals is in the “Network Diagram” section.

A ReLU unit has the function and derivative:

f(x) = [x > 0] · x
f ′(x) = [x > 0]

(3.5)

Where:
[x > 0] denotes a step function (1 if x > 0 otherwise 0).

In the spiking domain, we express this simply by blocking error spikes on units for which
the cumulative sum of inputs into that unit is below 0 (see the "filter" modules in the
“Network Diagram” section of the supplementary material).

The signed-spikes that represent the backpropagating error gradient at a given layer are
used to index columns of that layer’s weight matrix, and negate them if the sign of the
spike is negative. The resulting vector is then quantized, and the resulting spikes are sent
back to previous layers.

One problem with the scheme described so far is that, when errors are small, it is possible
that the error-quantizing neurons never accumulate enough potential to send a spike
before the training iteration is over. If this is the case, we will never be able to learn
when error gradients are sufficiently small. Indeed, when initial weights are too low,
and therefore the initial magnitude of the backpropagated error signal is too small, the
network does not learn at all. This is not a problem in traditional deep networks, because
no matter how small the magnitude, some error signal will always get through (unless all
hidden units are in their inactive regime) and the network will learn to increase the size
of its weights. We found that a surprisingly effective solution to this problem is to simply
not reset the φ of our error quantizers between training iterations. This way, after some
burn-in period, the quantizer’s φ starts each new training iteration at some random point
in the interval [−1

2 ,
1
2 ], and the unit always has a chance to spike.

A further issue that comes up when designing the backward pass is the order in which we
process events. Since an event can move a ReLU unit out of its active range, which blocks
the transmission of itself or future events on the backward pass, we need to think about
the order in which we processing these events. The topic of event-routing is explained in
the “Event Routing” section of the supplementary material.
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3.4.7. Weight Updates

We can collect spike statistics and generates weight updates. There are two methods by
which we can update the weights. These are as follows:

Stochastic Gradient Descent The most obvious method of training is to approximate
stochastic gradient descent. In this case, we accumulate two spike-count vectors, ~cin and
~cerror and take their outer product at the end of a training iteration to compute the
weight update:

∆W ← − η
T
· ~cin ⊗ ~cerror ≈ −

η

T

∂L
∂W

(3.6)

Fractional Stochastic Gradient Descent (FSGD) We can also try some thing new.
Our spiking network introduces a new feature: if a data point is decomposed as a stream
of events, we can do parameter updates even before a single data point has been observed.
If we do updates whenever an error event comes back, we update each weight based on
only the input data that has been seen so far. This is described by the rule:

∆W:,i ← −
η

T
· s · ~cin (3.7)

Where ~cin is an integer vector of counted input spikes, ∆W:,i is the change to the i′th
column of the weight matrix, s ∈ {−1, 1} is the sign of the error event, and i is the
index of the unit that produced that error event, and T is the number of time-steps
per training iteration. Early input events will contribute to more weight updates than
those seen near the end of a training iteration. Experimentally (see Section 3.5.2, we see
that this works quite well. It may be that the additional influence given to early inputs
causes the network to learn to make better predictions earlier on, compensating for the
approximation caused by finite-runtime of the network.

3.4.8. Training

We chose to train the network with one sample at a time, although in principle it is
possible to do minibatch training. We select a number of time steps T , to run the network
for each iteration of training. At the beginning of a round of training, we reset the state
of the forward-neurons (all ~φ’s and the state of the running sum modules), and leave the
state of the error-quantizing neurons (as described in 3.4.6). On each time step t, we
feed the input vector to the input quantizer, and propagate the resulting spikes through
the network. We then propagate an error spike back from the unit corresponding to the
correct class label, and update the parameters by one of the two methods described in
3.4.7. See the “Network Diagram” section of the supplementary material to get an idea of
the layout of all the modules.
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3.5. Experiments

3.5.1. Simple Regression

We first test our network as a simple regressor, (with no hidden layers) on a binarized
version of the newsgroups-20 dataset, where we do a 2-way classification between the
electronics and medical newsgroups based word-count vectors. We split the dataset with a
7-1 training-test ratio (as in Crammer et al. [2009]) but do not do cross-validation. Table
3.1 shows that it works.

Network % Test / Training Error

1 Layer NN 2.278 / 0.127
Spiking Regressor 2.278 / 0.82
SVM 4.82 / 0

Table 3.1.: Scores on 20 newsgroups, 2-way classification between ’med’ and ’electronic’
newsgroups. We see that, somewhat surprisingly, our approach outperforms
the SVM. This is probably because, being trained through SGD and tested
at the end of each epoch, our classifier had more recently learned on samples
at the end of the training set, which are closer in distribution to the test set
than those at the beginning.

3.5.2. Comparison to ReLU Network on MNIST

We ran both the spiking network and the equivalent ReLU network on MNIST, using
an architecture with 2 fully-connected hidden layers, each consisting of 300 units. Refer
to the “Hyperparameters” section of the Supplimentary Material for a full description of
hyperparameters.

Table 3.2 shows the results of our experiment, after 50 epochs of training. We find that
the conventional ReLU network outperforms our spiking network, but only marginally.
In order to determine how much of that difference was due to the fact that the Spiking
network has a discrete forward pass, we mapped the learned parameters from the ReLU
network onto the Spiking network (spiking with ReLU Weights”), and used the Spiking
network to classify . The performance of the spiking network improved nearly to that of
the ReLU network , indicating that the difference was not just due to the discretization
of the forward pass but also due to the parameters learned in training. We also did the
inverse (ReLU with Spiking-FSGD-trained weights) - map the parameters of the trained
Spiking Net onto the ReLU net, and found that the performance became very similar
to that of the original Spiking (FSGD-Trained) Network. This tells us that most of the
difference in score is due to the approximations in training, rather than the forward pass.
Interestingly, our Spiking-FSGD approach outperforms the Spiking-SGD - it seems that
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Network % Test / Training Error

Spiking SGD: 3.6 / 2.484
Spiking FSGD: 2.07 / 0.37
Vector ReLU MLP 1.63 / 0.426
Spiking with ReLU Weights 1.66 / 0.426
ReLU with Spiking FSGD weights 2.03 / 0.34

Table 3.2.: Scores of various implementations on MNIST after 50 epochs of training on a
network with hidden layers of sizes [300, 300]. “Spiking SDG” and “Spiking
FSGD” are the spiking network trained with Stochastic Gradient Descent and
Fractional Stochastic Gradient descent, respectively, as described in Section
3.4.7. “Vector ReLU MLP” is the score of a conventional MLP with ReLU
units and the same architecture and training scheme. “Spiking with ReLU
Weights” is the score if we set the parameters of the Spiking network to
the already-trained parameters of the ReLU network, then use the Spiking
Network to classify MNIST. “ReLU with Spiking weights” is the inverse - we
take the parameters trained in the spiking FSGD network and map them to
the ReLU net.

by putting more emphasis on early events, we compensate for the finite runtime of the
Spiking Network. Figure 3.2 shows the learning curves over the first 20-epochs of training.
We see that the gap between training and test performance is much smaller in our Spiking
network than in the ReLU network, and speculate that this may be to the regularization
effect of the spiking. To confirm this, we would have to show that on a larger network,
our regularization actually helps to prevent overfitting.
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Figure 3.2.: The Learning curves of the ReLU network (blue) and the Spiking network
(red). Solid lines indicate test error and dashed lines indicate training error.
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3.5.3. Early Guessing

We evaluated the "early guess" hypothesis from Section 3.2 using MNIST. The hypothesis
was that our spiking network should be able to make computational cheap “early guesses"
about the class of the input, before actually seeing all the data. A related hypothesis was
under the “Fractional” update scheme discussed in Section 3.4.7, our networks should learn
to make early guesses more effectively than networks trained under regular Stochastic
Gradient Descent, because early input events contribute to more weight updates than
later ones. Figure 3.3 shows the results of this experiment. We find, unfortunately, that
our first hypothesis does not hold. The early guesses we get with the spiking network
cost more than a single (sparse) forward pass of the input vector would. The second
hypothesis, however, is supported by the right-side of Figure 5. Our networks trained
with Fractional Stochastic Gradient Descent make better early guesses than those trained
on regular SGD.
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Figure 3.3.: Left: We compare the total computation (x-axis, in MegaFlops) required to
achieve a given score (y-axis, in percent error), between differently trained
predictors. Each curve represents a differently trained spiking network (Regu-
larized Fraction was trained with a regularization term, Fractional Temporal
was trained with higher learning rate for early events). The black line is
the convergence curve of a spiking network with parameters learned in a
conventional ReLU net of the same architecture (784-300-300-10). The dots
show the computation time and performance of a conventional ReLU network,
with the right dot indicating the cost of a full feedforward pass, and the left
indicating the cost when one removes units with 0-activation when computing
the cost of a matrix multiplication. We see that, when considering the full
network, our spiking approach does give a good early guess compared to
a naively implemented deep net, but not after considering sparsity. Right:
However, when only considering layers after the input layer (whose sparsity
we do not control), we can see that there is an advantage to our spiking
training scheme: In the low-flop range our spiking nets have lower error. The
networks that were trained as spiking networks are better at making early
guesses than the conventionally trained network.
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3.6. Discussion

We implemented a Spiking Multi-Layer Perceptron and showed that our network behaves
very similarly to a conventional MLP with rectified-linear units. However, our model
has some advantages over a regular MLP, most of which have yet to be explored in full.
Our network needs neither multiplication nor floating-point numbers to work. If we use
Fractional Stochastic Gradient Descent, and scale all parameters in the network (initial
weights, thresholds, and the learning rate) by the inverse of the learning rate, the only
operations used are integer addition, indexing, and comparison. This makes our system
very amenable to efficient hardware implementation.

The Spiking MLP brings us one step closer to making a connection between the types
of neural networks we observe in biology and the type we use in deep learning. Like
biological neurons, our units maintain an internal potential, and only communicate when
this potential crosses some firing threshold. We believe that the main value of this
approach is that it is a stepping stone towards a new type of deep learning. The way that
deep learning is done now takes no advantage of the huge temporal redundancy in natural
data. In the future we would like to adapt the methods developed here to work with
nonstationary data. Such a network could pass spikes to keep the output distribution in
“sync” with an ever-changing input distribution. This property - efficiently keeping an
online track of latent variables in the environment, could bring deep learning into the
world of robotics.
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Our second work, Sigma Delta Quantized Networks, deals with one aspect of Gap 3:
Nonstationary Data: In many situations, we may want to do inference on non-IID data.
One example is frame-by-frame classification of video data with a Convolutional neural
network. Video data tends to be highly non-stationary - neighbouring frames tend to be
highly correlated, and as frame rate is increased, this inter-frame correlation increases
too. Intuitively, it seems that “spiking” is a sensible approach to such cases. A spiking
neuron accumulates input until some threshold is crossed, and only communicates (sends
a spike) at that time. If we can use spikes to communicate “changes” to the input, we can
potentially design a system which does deep inference on video for much less computation
than it costs to run inference on each frame independently. In this work we are not
concerned with training the network - but merely looking for a more efficient way to do
inference with a pre-trained network.

The core idea is to only send quantized changes in activation between neurons. The
amount of information communicated between neurons should thus scale with the rate of
change of the input data. A perfectly static input (e.g. the unmoving view of a CCTV
camera upon an empty store), should trigger no new computation within the network.
On a slowly varying input, neurons will communicate with sparse integer signals at every
time-step.

Our system receives a time-varying input vector x(t) ∈ RDinput and transforms it into a
sparse integer vector q0(t) ∈ ZDinput by taking the quantized temporal-difference between
frames: q0(t) := round(k0x(t)) − round(k0x(t − 1)), where k0 ∈ R+ is the scale-factor
applied to the input layer (layer 0) - affecting the coarseness of quantization. The first
layer then receives this signal via weight matrix w and temporally integrates it to get
the activation of layer 1: z1(t) := z1(t − 1) + w1 · q0(t)/k0, which is passed though a
nonlinearity h before its temporal-change is quantized as q1(t) := round(k1h(z1(t)))−
round(k1h(z1(t−1))). We repeat this for each layer until the output zL is computed. The
remainder of the paper concerns how to optimize the coarseness coefficients k[0..L−1] to
achieve an optimal trade-off between performance (in terms of faithfulness to the function
of a non-quantized network) and computation (in terms of the number of arithmetic
operations required to update the state).

Because this work not involve any training of the quantized network (only the coarseness
parameters k) it does not even address Gap 1: No Backprop. Our quantization could
be seen as a form of spiking - addressing Gap 2: Spiking - and it actually brings up a
point that inspires our next paper - that spikes may be used to convey changes to the
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state of a neuron, rather than simply being a quantized or stochastic representation of the
current state. Since we process data in a feedforward-only and time-stepped manner, we
do not really address Gap 4: Asynchronous Processing, although our approach could be
extended to continuous-time asynchronous events if the input data arrived in that format.
The advantage of our approach is that as our frame-rate increases (as our units of time
become smaller), the average amount of computation over time should be bounded, so
long as the signal x(t) is smooth in time.

4.1. Abstract

Deep neural networks can be obscenely wasteful. When processing video, a convolutional
network expends a fixed amount of computation for each frame with no regard to the
similarity between neighbouring frames. As a result, it ends up repeatedly doing very
similar computations. To put an end to such waste, we introduce Sigma-Delta networks.
With each new input, each layer in this network sends a discretized form of its change
in activation to the next layer. Thus the amount of computation that the network does
scales with the amount of change in the input and layer activations, rather than the size
of the network. We introduce an optimization method for converting any pre-trained deep
network into an optimally efficient Sigma-Delta network, and show that our algorithm,
if run on the appropriate hardware, could cut at least an order of magnitude from the
computational cost of processing video data.

4.2. Introduction

For most deep-learning architectures, the amount of computation required to process a
sample of input data is independent of the contents of that data.

Natural data tends to contain a great deal of spatial and temporal redundancy. Researchers
have taken advantage of such redundancy to design encoding schemes, like jpeg and mpeg,
which introduce small compromises to image fidelity in exchange for substantial savings
in the amount of memory required to store images and videos.

In neuroscience, it seems clear that that some kind of sparse spatio-temporal coding is
going on. Koch et al. [2006] estimate that the human retina transmits 8.75Mbps, which
is about the same as compressed 1080p video at 30FPS.

Thus it seems natural to think that perhaps we should be doing this in deep learning.
In this paper, we propose a neural network where neurons only communicate discretized
changes in their activations to one another. The computational cost of running such
a network would be proportional to the amount of change in the input. Neurons send
signals when the change in their input accumulates past some threshold, at which point
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they send a discrete “spike” notifying downstream neurons of the change. Such a system
has at least two advantages over the conventional way of doing things.

1. When extracting features from temporally redundant data, it is much more efficient
to communicate the changes in activation than it is to re-process each frame.

2. When receiving data asynchronously from different sources (e.g. sensors, or nodes
in a distributed network) at different rates, it no longer makes sense to have a
global network update. We could recompute the network with every new input,
reusing the stale inputs from the other sources, but this requires doing a great deal
of repeated computation for only small differences in input data. We could keep
a history of all inputs and update the network periodically, but then we lose the
ability to respond immediately to new inputs. Our approach gets around this ugly
tradeoff by allowing for efficient approximate updates of the network given a partial
update to the input data. The computational cost of the update is proportional to
the effect that the new information has on the network’s state.

4.3. Related Work

This work originated in the study of spiking neural networks, but treads into the territory
of discretizing neural nets. The most closely related work is that of Zambrano and Bohte
[2016]. In this work, the authors describe an Adaptive Sigma-Delta modulation method, in
which neurons communicate analog signals to one another by means of a “spike-encoding”
mechanism, where a temporal signal is encoded into a sequence of weighted spikes and
then approximately decoded as a sum of temporally-shifted exponential kernels. The
authors create a scheme for being parsimonious with spikes by allowing adaptive scaling
of thresholds, at the cost of sending spikes with real values attached to them, rather than
the classic “all or nothing” spikes. Their work references a slightly earlier work by Yoon
[2016] which reframes common neural models as forms of Asynchronous Sigma-Delta
modulation. In a concurrent work, Lee et al. [2016] implement backpropagation in a
similar system (but without adaptive threshold scaling), and demonstrate the best-yet
performance on MNIST for networks trained with spiking models. This work postdates
Diehl et al. [2015], which proposes a scheme for normalizing neuron activations so that a
spiking neural network can be optimized for fast classification.

Our model contrasts with all of the above in that it is time-agnostic. Although we
refer to sending “temporal differences” between neurons, our neurons have no concept of
time - their is no “leak” in neuron potential, and our neurons’ behaviour only depends
on the order of the inputs. Our work also separates the concepts of nonlinearity and
discretization, uses units that communicate differences rather than absolute signal values,
and explicitly minimizes an objective function corresponding to computational cost.

Coming from another corner, Courbariaux et al. [2016] describe a scheme for binarizing
networks with the aim of achieving reductions in the amount of computation and memory
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required to run neural nets. They introduce a number of tricks for training binarized
neural networks - a normally difficult task due to the lack of gradient information. Esser
et al. [2016] use a similar binarization scheme to efficiently implement a spiking neural
network on the IBM TrueNorth chip. Ardakani et al. [2015] take another approach - to
approximate real-valued operations of a neural net with a sequence of stochastic integer
operations, and show how these can lead to cheaper computation.

These discretization approaches differ from ours in that they do not aim to take advantage
of temporal redundancy in data, but rather aim to find ways of saving computation by
learning in a low-precision regime. Ideas from these works could be combined with the
ideas presented in this paper.

The idea of sending quantized temporal differences has been applied to make event-based
sensors, such as the Dynamic-Vision Sensor [Lichtsteiner et al., 2008], which quantize
changes in analog pixel-voltages and send out pixel-change events asynchronously. The
model we propose in this paper could be used to efficiently process the outputs of such
sensors.

Finally, our previous work, [O’Connor and Welling, 2016a] develops a method for doing
backpropagation with the same type of time-agnostic spiking neurons we use here. In
this paper, we do not aim to train the network from scratch, but instead focus on how we
can compute efficiently by sending temporal differences between neurons.

4.4. The Sigma-Delta Network

In this Section, we describe how we start with a traditional deep neural network and
apply two modifications - temporal-difference communication and rounding - to create
the Sigma-Delta network. To explain the network, we follow the Figure 4.1 from top
to bottom, starting with a standard deep network and progressing to our Sigma-Delta
network. Here, we will think of the forward pass of a neural network as composition of
subfunctions: f(x) = (fL ◦ ... ◦ f2 ◦ f1)(x).

4.4.1. Temporal Difference Network

We now define “temporal difference” (∆T ) and “temporal integration” (ΣT ) modules as
follows:
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Algorithm 4 Temporal Difference
(∆T ):

1: Internal: ~xlast ∈ Rd ← ~0
2: Input: ~x ∈ Rd
3: ~y ← ~x− ~xlast
4: ~xlast ← ~x
5: Return: ~y ∈ Rd

Algorithm 5 Temporal Integration
(ΣT ):

1: Internal: ~y ∈ Rd ← ~0
2: Input: ~x ∈ Rd
3: ~y ← ~y + ~x
4: Return: ~y ∈ Rd

So that when presented with a sequence of inputs x1, ...xt, ∆T (xt) = xt − xt−1|x0=0, and
ΣT (xt) =

∑t
τ=1 xτ . It should be noted that when we refer to “temporal differences”, we

refer not to the change in the signal over time, but in the change between two inputs
presented sequentially. The output of our network only depends on the value and order of
inputs, not on the temporal spacing between them. This distinction only matters when
dealing with asynchronous inputs such as the Dynamic Vision Sensor, [Lichtsteiner et al.,
2008], which are not considered in this paper.

Since ΣT (∆T (xt)) = xt, we can insert ΣT ◦∆T pairs into the network without affecting
the function. So we can re-express our network function as: f(x) = (fL ◦ ΣT ◦∆T ◦ ... ◦
f2 ◦ ΣT ◦∆T ◦ f1 ◦ ΣT ◦∆T )(x).

Now suppose our network consists of alternating linear functions w(x), and nonlinear
functions h(x), so that f(x) = (hL ◦ wL... ◦ h2 ◦ w2 ◦ h1 ◦ w1)(x). As before, we can
harmlessly insert our ΣT ◦∆T pairs into the network. But this time, note that for a linear
function w(x), the operations (ΣT , w,∆T ) all commute with one another. That is:

∆T (w(ΣT (x))) = w(∆T (ΣT (x))) = w(x) (4.1)

Therefore we can replace all instances of ∆T ◦ w ◦ ΣT with w, yielding f(x) = (hL ◦ ΣT ◦
wL ◦ ... ◦∆T ◦h2 ◦ΣT ◦w2 ◦∆T ◦h1 ◦ΣT ◦w1 ◦∆T )(x), which corresponds to the network
shown in Figure 4.1 B. For now this is completely pointless, since we do not change the
network function at all, but it will come in handy in the next section, where we discretize
the output of the ∆T modules.

4.4.2. Discretizating the Deltas

When dealing with data that is naturally spatiotemporally redundant, like most video,
we expect the output of the ∆T modules to be a vector with mostly low values, with
some peaks corresponding to temporal transitions at certain input positions. We expect
the data to have this property not only at the input layer, but even more so at higher
layers, which encode higher level features (edges, object parts, class labels), which we
would expect to vary more slowly over time than pixel values. If we discretize this “peaky”
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vector, we end up with a sparse vector of integers, which can then be used to cheaply
communicate the approximate change in state of a layer to its downstream layer(s).

A sensible approach is to apply rounding before the temporal-difference operation - i.e.
round the activation values and then send the temporal differences of these rounded
values. It is then easy to show that the network’s function will remain identical to that of
the rounding network:

ΣT (w(∆T (round(x)))) = w(ΣT (∆T (round(x)))) = w(round(x)) (4.2)

It’s worth noting that this is equivalent to doing discrete-time Sigma-Delta modulation
to quantize the temporal differences - this connection is explained in Appendix B.1.

It follows from this result that our Sigma-Delta network depicted in Figure 4.1 D computes
an identical function to that of the rounding network in Figure 4.1 C. In other words,
the output yt of the Sigma-Delta network is solely dependent on the parameters of the
network and the current input xt, and not on any of the previous inputs x1..xt−1. The
amount of computation required for the update, however, depends on xt−1. Specifically, if
xt is similar to xt−1, the Sigma-Delta network should require less computation to perform
an update than the Rounding Network.

4.4.3. Sparse Dot Product

Most of the computation in Deep Neural networks is consumed doing matrix multiplications
and convolutions. The architecture we propose saves computation by translating the
input to these operations into an integer array with a small L1 norm.

With sparse, low-magnitude integer input, we can compute the vector-matrix dot product
efficiently by decomposing it into a sequence of vector additions. We can see this by decom-
posing the vector ~x ∈ Idin into a set of indices 〈(in, sn) : i ∈ [1..len(~x)], s ∈ ±1, n = [1..N ]〉,
such that: ~x =

∑N
n=1 sn~ein , where ein is a one-hot vector with element in hot, and

N = |~x|L1 is the total L1 magnitude of the vector. We can then compute the dot-product
as a series of additions, as shown in Equation 4.3.

u = ~x ·W : W ∈ Rdin×dout

=

(
N∑
n=1

sn~ein

)
·W =

N∑
n=1

~snein ·W =

N∑
n=1

sn ·Win,·
(4.3)

Computing the dot product this way takes N ·dout additions. A normal dense dot-product,
by comparison, takes din · dout multiplications and (din − 1) · dout additions.

This is where the energy savings come in. Horowitz [2014] estimates that on current 45nm
silicon process, a 32-bit floating-point multiplication costs 3.7pJ, vs 0.9pJ for floating-point
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addition. With integer or fixed-point arithmetic, the difference is even more pronounced,
with 3.1pJ for multiplication vs 0.1pJ for addition. This of course ignores the larger
cost of processing instructions and moving memory, but gives us an idea of how these
operations might compare on optimized hardware. So provided we can approximate the
forward pass of a network to a satisfactory degree of precision without doing many more
operations than the original network, we can potentially compute much more efficiently.

w1(x) h1(x) h2(x)w2(x)input output

A: Original Network

w1(x) h1(x) h2(x)w2(x)input outputΔT ΔT ΣT

B: Temporal Difference Network
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C: Rounding Network
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D: Sigma Delta Network
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Figure 4.1.: A: An ordinary deep network, which consists of an alternating sequence of
linear operations wi(x), and nonlinear transforms hi(x). B: The Temporal-
Difference Network, described in Section 4.4.1, computes the exact same
function as network A, but communicates differences in activation between
layers. C: An approximation of network A where activations are rounded
before being sent to the next layer. D: The Sigma-Delta Network combines
the modifications of B and C. Functionally, it is identical to the Rounding
Network, but it can compute forward passes more cheaply when input data
is temporally redundant.

4.4.4. Putting it all together

Figure 4.1 visually summarizes the four types of network we have described. Inserting the
temporal sum and difference modules discussed in Section 4.4.1 leads to the Temporal
Difference Network, which is functionally identical to the Original Network. Discretizing
the output of the temporal difference modules, as discussed in Section 4.4.2, leads to
the Sigma-Delta network. The Sigma-Delta Network is functionally equivalent to the
Rounding network, except that it requires less computation per forward pass if it is fed
with temporally redundant data.
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4.5. Optimizing an Existing Network

In this work, we do not aim to train a quantized networks from scratch, as we did in
O’Connor and Welling [2016a]. Rather, we will take existing pretrained networks and
optimize them as Sigma-Delta networks. In in our situation, we have two competing
objectives: Error (with respect to a non-quantized forward pass), and Computation: the
number of additions performed in a forward pass.

4.5.1. Rescaling our Neurons

We can control the trade-off between these objectives by changing the scale of our
discretization. We can thus extend our rounding function by adding a scale k ∈ R+:

round(~x, k) ≡ round(~x · k)/k (4.4)

This scale can either be layerwise or unitwise (in which case we have a vector of scales
per layer). Higher k values will lead to higher precision, but also more computation, for
the reason mentioned in Section 4.4.2. Note that the final division-by-k is equivalent to
scaling the following weight matrix by 1

k ,. So in practice, our network functions become:

fround(x) =

(
hL ◦

wL
kL
◦ round ◦ ·kL ◦ ... ◦ h1 ◦

w1

k1
◦ round ◦ ·k1

)
(x) (4.5)

fΣ∆(x) =

(
hL ◦ ΣT ◦

wL
kL
◦ round ◦ ·kL ◦∆T ◦ ... ◦ h1 ◦ ΣT ◦

w1

k1
◦ round ◦ ·k1 ◦∆T

)
(x)

(4.6)

For the Rounding Network and the Sigma-Delta Network, respectively. By adjusting
these scales kl, we can affect the tradeoff between computation and error. Note that if we
use ReLU activation functions, parameters kl can simply be baked into the parameters of
the network (see Appendix B.3.)

4.5.2. The Art of Compromise

In this section, we aim to find the optimal trade-offs between Error and Computation for
the Rounding Network (Network C in Figure 4.1). We define our loss as follows:
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Lerror = D(fround(x), ftrue(x)) (4.7)

Lcomp =

L−1∑
l=1

|sl|L1dl+1 (4.8)

Ltotal = Lerror + λLcomp (4.9)

Where D(a, b) is some scalar distance function (We use KL-divergence for softmax output
layers and L2-norm otherwise), fround(x) is the output of the Rounding Network, ftrue(x)
is the output of the Original Network. Lcomp is the computational loss, defined as the
total number of additions required in a forward pass. Each layer performs |sl|L1dl+1

additions, where sl is the discrete output of the l’th layer, dl+1 is the dimensionality of
the (l + 1)’th layer. Finally λ is the tradeoff parameter balancing the importance of the
two losses.

We aim to use this loss function to optimize our layer-scales, kl to find an optimal tradeoff
between accuracy and computation, given the tradeoff parameter λ.

4.5.3. Differentiating the Undifferentiable

We run into an obvious problem: y = round(k ·x) is not differentiable with respect to our
scale, k or our input, x. We get around this by using a similar method to Courbariaux
et al. [2016], who in turn borrowed it from a lecture by Hinton [2012]. That is, on
the backward pass, when computing the gradient with respect to the error ∂Lerror

∂kl
, we

simply pass the gradient through the rounding function in layers [l + 1, .., .L], i.e. we say
∂
∂xround(x) ≈ 1.

When computing the gradient with respect to the computational cost, ∂Lcomp∂kl
, we again

just pass the gradient through all rounding operations in the backward pass for layers
[l+1, .., .L]. We found instabilities in training when using the computational loss of higher
layers: Lcomp,l′ : l′ ∈ [l+ 1, ..., L], to update the scale of layer l. Since we don’t expect this
term to have much effect anyway, we choose to only use the gradient of the computational
cost in layer l when updating scale kl, i.e., we approximate: ∂Lcomp

∂kl
≈ ∂Lcomp,l

∂kl
.

Our scale parameters also must remain in the positive range, and stay well away from
zero, where they can cause instability due to the division-by-k (see Equation 4.5). To
handle this, we parametrize our scales in log-space, as κl = log(kl). Our scale-parameter
update rule becomes:

∆κl = −η

(
∂Lerror
∂κl

∣∣∣∣
pass:[l+1..L]

+ λ
∂

∂κl
|~sl|L1dl+1

∣∣∣∣
pass:l

)
(4.10)
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Where ~sl is the rounded signal from layer l, dl+1 is the “fan-out” (equivalent to the
dimension of layer l+ 1 in a fully-connected network), and pass : [l+ 1..L] indicates that,
on the backward pass, we simply pass the gradient through the rounding functions on
layers [l + 1..L].

4.6. Experiments

4.6.1. Toy Problem: A random network

We start with a very simple toy problem to verify our method. We initialize a 2-layer
(100-100-100) ReLU network with random weights using the initialization scheme proposed
in Glorot and Bengio [2010], then scaled the weights by

(
1
2 , 8,

1
4

)
. The weight-rescaling

does not affect the function of the network but makes it very ill-adapted for discretization
(the first layer will be represented too coarsely, causing error; the second too finely, causing
wasted computation). We create random input data, and use it to optimize the layer scales
according to Equation 4.10. We verify, by comparing to a large collection of randomly
drawn rescalings, that by tuning lambda we land on different places of the Pareto frontier
balancing error and computation. Figure 4.2 shows that this is indeed the case. In this
experiment, error and computation are evaluated just on the Rounding network - we test
the Sigma-Delta network in the next experiment, which includes temporal data.

4.6.2. Temporal-MNIST

In order to evaluate our network’s ability to save computation on temporal data, we
create a dataset that we call “Temporal-MNIST”. This is just a reshuffling of the standard
MNIST dataset so that similar frames tend to be nearby, giving the impression of a
temporal sequence (see Appendix B.4 for details). The columns of Figure 4.3 show eight
snippets from the Temporal-MNIST dataset.

We started our experiment with a conventional ReLU network with layer sizes [784-200-
200-10] pre-trained on MNIST to a test-accuracy of 97.9%. We then apply the same
scale-optimization procedure for the Rounding Network used in the previous experiment
to find the optimal rescalings under a range of values for λ. This time, we test the learned
scale parameters on both the Rounding Network and the Sigma-Delta network. We do
not attempt to directly optimize the scales with respect to the amount of computation in
the Sigma-Delta network - we assume that the result should be similar to that for the
rounding network, but verifying this is the topic of future work.

The results of this experiment can be seen in Figure 4.4. We see that our discretized
networks (Rounding and Sigma-Delta) converge to the error of the original network with
fewer computations than are required for a forward pass of the original neural network.
Note that the errors of the rounding and Sigma-Delta networks are identical. This is a
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optimal scales for different values of λ. Right:
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Figure 4.4.: A visualization of our error-computation tradeoff curve for MNIST and our
Temporal-mnist dataset. Plot 1: Each point on the line for the Rounding
(blue) and Sigma-Delta (green) network correspond to the performance of
the network for a different value of the error-computation tradeoff parameter
λ, ranging from λ = 10−10 (in the high-computation, low-error regime) to
λ = 10−5 (in the low-computation, high-error regime). The red line indicates
the performance of the original, non-discretized network. The red dot on
the right indicates the number of flops required for a full forward pass when
doing dense multiplication, and the dot on the left indicates the number
of flops when factoring in layer sparsity. Note that for the Rounding and
Sigma-Delta networks, we count the number of additions, and for the original
network we count the numbers of multiplications and additions (as per Section
4.4.3). Plot 2: The same, but on the Temporal-MNIST dataset. We see
that the Sigma-Delta network uses less computation thanks to the temporal
redundancy in the data. Plots 3 and 4: Half of the original network’s Ops
were multiplies, which are more computational costly than the additions of
the Rounding and Sigma-Delta networks. In these plots the x-axis is rescaled
according to the energy use calculations of Horowitz [2014], assuming the
weights and parameters of the network are implemented with 32-bit integer
arithmetic. Numbers are in Appendix B.5.

consequence of their equivalence, described in Section 4.4.2. Note also that the errors
for all networks are identical between the MNIST and Temporal-MNIST datasets, since
for all networks, the prediction function is independent of the order in which inputs are
processed. We see that as expected, our Sigma-Delta network does fewer computations
than the rounding network on the Temporal-MNIST dataset for the same error, because
the update-mechanism of this network takes advantage of the temporal redundancy in
the data.

4.6.3. A Deep Convolutional Network on Video

Our final experiment is a preliminary exploration into how Sigma Delta networks could
perform on natural video data. We start with “VGG 19” - a 19 layer convolutional
network, trained to recognise the 1000 ImageNet categories. The network was trained
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4. Sigma-Delta Quantized Networks

and made public by Simonyan and Zisserman [2014]. We take selected videos from the
ILSVRC 2015 dataset [Russakovsky et al., 2015], and apply the rescaling method from
Section 4.5.1 to adjust the scales on a per-layer basis. We initially had some difficulty in
optimizing the scale parameters of network to a stable point. The network would either
fail to reduce computation when it could afford to, or reduce it to the point where the
network’s function was so corrupted that error gradients would be meaningless, causing
computation loss to win out and activations to drop to zero. A simple solution was
to replace the rounding operation in training with addition of uniform random noise
ε ∼ U(−1

2 ,
1
2). This seemed to prevent the network from pushing itself into a regime

where all activations become zero. More work is need to understand why the addition of
noise is necessary here. Figure 4.5 shows some preliminary results, which indicate that
for video data we can get about 4-10x savings in the amount of computation required, in
exchange for a modest loss in computational accuracy.

4.7. Discussion

We have introduced Sigma-Delta Networks, which give us a new way compute the forward
pass of a deep neural network. In Sigma-Delta Networks, neurons communicate not by
telling other neurons about their current level of activation, but about their change in acti-
vation. By discretizing these changes, we end up with very sparse communication between
layers. The more similar two consecutive inputs (xt, xt+1) are, the less computation is
required to update the network. We show that, while the Sigma-Delta Network’s internal
state at time-step t depends on past inputs x1..xt−1, the output yt only depends on the
current input xt. We show that there is a tradeoff between the accuracy of this network
(with respect to the function of a traditional deep net with the same parameters), and the
amount of computation required. Finally, we propose a method to jointly optimize error
and computation, given a tradeoff parameter λ that indicates how much accuracy we are
willing to sacrifice in exchange for fewer computations. We demonstrate that this method
substantially reduces the number of computations required to run a deep network on
natural, temporally redundant data. However, we observe in our final experiment (Figure
4.5, bottom) that our assumption that higher-level features would be more temporally
stable - and thus require less computation in our Sigma-Delta net - was not true. We
suspect that if we were to train the network from scratch on temporal data, we may learn
more temporally stable “slow” features, but this is a topic of future work.

A huge amount of data (eg. video, audio) comes in the form of temporal sequences, and
there is an increasingly obvious need to be able to process this data efficiently. There is
much to be gained by only doing processing when necessary, based on the contents of the
data, and we provide one method for doing that. Further work is needed to determine
whether this method would be of use on modern computing hardware, namely GPUs.
The problem is that these devices are designed for large, fixed-size array operations, and
tend not to be good at taking advantage of sparsity in the data, which requires many

64



4.7. Discussion

lesser panda
lesser panda

lesser panda
lesser panda

howler monkey
howler monkey

spider monkey
spider monkey

colobus
spider monkey

0

10

20

30

40
GO

ps

Round
Σ∆

Original

0 50 100 150 200
Frame #

0
20
40
60
80

100

Cu
m

ul
at

iv
e

Pe
rc

en
t A

cc
ur

ac
y

Round/Σ∆ Top-1
Round/Σ∆ Top-5

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

GO
ps

/fr
am

e

Layerwise Computational Costs
Round
Σ∆

Original

5 10 15
Layer #

0.0
0.1
0.2
0.3
0.4

Σ
∆

:R
ou

nd
Ra

tio

Figure 4.5.: A comparison of the Original VGG Net with the Rounding and Sigma-Delta
Networks using the same parameters, after scale-optimization. Top: Frames
taken from two videos from the ILSVRC2015 dataset. The two videos, with
201 frames in total, were spliced together. The first has a static background,
and the second has more motion. Below every second image is the label
generated for that image by VGGnet and the Sigma-Delta network (which is
functionally equivalent to the Rounding Network, though numerical errors
can lead to small changes, not shown here). Scale parameters were trained
on separate videos. Second Plot: A comparison of the computational cost
per-frame. The original VGG network has a fixed cost. The Sigma-Delta
network has a cost that varies with the amount of action in the video. The
spike in computation occurs at the point where the videos are spliced together.
We can see that the Sigma-Delta network does more computation for the
second video, in which there is more movement. During the first video it
performs about 11 times less computation than the Original Network, during
the second, about 4 times less. The difference would be more pronounced if
we were to count energy use, as we did in Figure 4.4. Third Plot: A plot
of the cumulative mean error (over frames) of the Sigma-Delta/Rounding
networks, as compared to the Original VGGnet. Most of the time, it gets the
same result (Top-1) out of 1000 possible categories. On almost every frame,
the guess of the Sigma-Delta network is one of the top-5 guesses of the original
VGGNet. Fourth Plot: A breakdown of how much of the computational
cost of each network comes from each layer. Fifth Plot: The layer-wise ratio
of the computational cost of the Sigma-Delta net to the rounding net. We
had expected (and hoped) this ratio to become very low in the upper layers,
as the high-level features should not change much between frames. However
this was not the case (as the ratio remains between 0.2 and 0.4 across all
layers). It appears therefore that our assumption - that higher level features
would be more temporally stable - is untrue. Appendix B.6 shows that this
is a property of the pretrained network, not our quantization scheme.
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4. Sigma-Delta Quantized Networks

random memory accesses to parameters. Fortunately, other devices such as the the IBM
TrueNorth [Cassidy et al., 2013] are being designed which keep memory close to processing,
and such handle sparse data (and random memory access) much more efficiently.

This work opens up an interesting door. In asynchronous, distributed neural networks,
a node may receive input from many different nodes asynchronously. Recomputing the
function of the network every time a new input signals arrives may be prohibitively
expensive. Our scheme deals with this by making the computational cost of an update
proportional to the amount of change in the input. The next obvious step is to extend
this approach to communicating changes in gradients, which may be helpful in setting up
distributed, asynchronous schemes for training neural networks.

Code for our experiments can be found at: https://github.com/petered/sigma-delta/
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5. Temporally Efficient Deep Learning
with Spikes

Our next paper further explores the idea that spikes may be primarily used to signal a
change of state of a neuron, rather than being a representation of the state itself. The
paper asks how one could train a network where inter-neuron communication is primarily
used to convey change of state - and thus exploit the temporal redundancy of data to
do more efficient training. Our training scheme is based on backpropagation, thus does
not address Gap 1: No Backprop or Gap 4: Asynchronous Processing. In this work,
we deal with how to quantize communication between neurons to reduce inter-neuron
communication (and therefore potentially energy expenditure) when the data is temporally
redundant - thus addressing Gap 2: Spiking and Gap 3: Nonstationary Data.

In Chapter 4 we introduced the notion of having neurons communicate the quantized
temporal change of their state, rather then their full state, with the goal minimizing the
amount of communication required to update the state of a neural network in response to
time-varying input data.

The problem becomes more complicated when we want to train a network on temporal
data - not just do inference. This is because when training, both the weights and
activations are changing with time. Suppose a neuron with time-varying state s(t) ∈ R
takes input from a vector of neurons with time-varying states x(t) ∈ RD and dots it
with a weight vector w ∈ RD. Ignoring quantization for the time being, these states
could be conveyed by sending the temporal difference of the inputs x(t) − x(t − 1),
at each step and reconstructing it on the other end by temporal summation: s(t) :=∑t

τ=1(x(τ)− x(τ − 1)) · w|x(0)=0 = x(t) · w. Now, suppose that the weight matrix is also
time-varying. We now have s(t) :=

∑t
τ=1(x(τ) − x(τ − 1)) · w(τ)|x(0)=0. Unless w(τ)

is static, i.e. w(τ) = w(1)∀τ , we generally have s(t) 6= x(t) · w(t). In fact, our error,
‖s(t)− x(t) ·w(t)‖ will accumulate over time. Still, it seems that if the data is temporally
redundant, and the weights are changing slowly in time, then we should be able to exploit
that redundancy to reduce inter-neuron communication.

The solution we propose is a compromise: send a linear combination of the rate of change
and the value of the signal: a(t) = kpx(t) + kd(x(t)− x(t− 1)). We can reconstruct this
on the other end as an exponential-moving average: s(t) = a(t)·w(t)+kds(t−1)

kp+kd
≈ x(t) · w(t).

As before we have s(t) 6= x(t) · w(t) unless the weights are fixed. However, now, the
error will not accumulate without bound - it will be small when weights are changing
more slowly or when kd is small. When we add quantization back in by quantizing a(t)
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5. Temporally Efficient Deep Learning with Spikes

before the weight multiplication, we find that the kp, kd parameters give us a trade-off
between accuracy (in terms of faithfulness to the unquantized function of the network)
and computation (in terms of number of arithmetic operations required to update).

In the review process, a reviewer rightly pointed out that what we are doing is actually an
instance of an idea that is widespread in the signal processing literature: If we re-arrange
the equation for our encoding scheme to a(t) = (kp + kd)

(
x(t)− kd

kp+kd
x(t− 1)

)
we

see that this is an instance of Linear Predictive Coding. The idea of predictive coding
is to subtract off the predictable component of a signal before transmitting it, then
reconstructing it on the other end. In this case, we have an extremely simple scheme
where our “prediction” of x(t) is kd

kp+kd
xt−1. When kd

kp+kd
is close to 1, this encodes

our belief that the signal will not change much between time-steps. In order for the
encoding/decoding scheme to be stable (for our reconstructions not to accumulate error
over time) we must have kd

kp+kd
< 1. When we add quantization after encoding, it becomes

known as lossy predictive coding.

In the paper, we use this scheme to encode, quantize and decode communication between
layers of a network. We train this network using backpropagation on temporal data, with
both the forward and backward passes quantizing their communication according to this
scheme. We demonstrate that when we train this network on temporal data using this
encoding/decoding scheme, we can get a modest decrease in inter-neuron communication
with no noticeable change to learning performance.

What is interesting in this paper is that by pursuing the objective of more efficient training
and inference on temporal data, we end up with an architecture with characteristics
reminiscent of biological neurons. In our decoding scheme, neurons take an exponential
running average of their inputs (reminiscent of Equation 1.9 in the Introduction, which
describes a basic model of a biological neuron). Another side effect of this scheme is that
our learning rule becomes a form of Spike-Timing dependent plasticity - a rule observed in
neuroscience wherein the change in weight on a synapse is a function of the relative timing
of the spikes from the presynaptic neuron and postsynaptic neuron (see Section 1.4.1) -
albeit of a different (symmetrical) form than the classic version observed in neuroscience.
We expand on this connection in Chapter 6.

5.1. Abstract

The vast majority of natural sensory data is temporally redundant. For instance, video
frames or audio samples which are sampled at nearby points in time tend to have similar
values. Typically, deep learning algorithms take no advantage of this redundancy to
reduce computations. This can be an obscene waste of energy. We present a variant on
backpropagation for neural networks in which computation scales with the rate of change
of the data - not the rate at which we process the data. We do this by implementing a
form of Predictive Coding wherein neurons communicate a combination of their state, and
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their temporal change in state, and quantize this signal using Sigma-Delta modulation.
Intriguingly, this simple communication rule give rise to units that resemble biologically-
inspired leaky integrate-and-fire neurons, and to a spike-timing-dependent weight-update
similar to Spike-Timing Dependent Plasticity (STDP), a synaptic learning rule observed
in the brain. We demonstrate that on MNIST, on a temporal variant of MNIST, and
on Youtube-BB, a dataset with videos in the wild, our algorithm performs about as well
as a standard deep network trained with backpropagation, despite only communicating
discrete values between layers.

5.2. Introduction

Currently, most algorithms used in Machine Learning work under the assumption that
data points are independent and identically distributed, as this assumption provides good
statistical guarantees for convergence. This is very different from the way data enters our
brains. Our eyes receive a single, never-ending stream of temporally correlated data. We
get to use this data once, and then it’s gone. Moreover, most sensors produce sequential,
temporally redundant streams of data. This can be both a blessing and a curse. From a
statistical learning point of view this redundancy may lead to biased estimators when
used to train models which assume independent and identically distributed input data.
However, the temporal redundancy also implies that intuitively not all computations are
necessary.

Online Learning is the study of how to learn in this domain - where data becomes available
in sequential order and is given to the model only once. Given the enormous amount of
sequential data, mainly videos, that are being produced nowadays, it seems desirable to
develop learning systems that simply consume data on-the-fly as it is being generated,
rather than collect it into datasets for offline-training. There is, however a problem of
efficiency, which we hope to illustrate with two examples:

1. CCTV feeds. CCTV Cameras collect an enormous amount of data from mostly-
static scenes. The amount of new information in a frame, given the previous frame,
tends to be low, i.e. the data tends to be temporally redundant. If we want to train
a model from of this data (for example a pedestrian detector), we need to process a
large amount of mostly-static frames. If the frame rate doubles, so does the amount
of computation. Intuitively, it feels that this should not be necessary. It would be
nice to still be able to use all this data, but have the amount of computation scale
with the amount of new information in each frame, not just the number of frames
and dimensions of the data.

2. Robot perception. Robots have no choice but to learn online - their future input
data (e.g. camera frames) are dependent on their previous predictions (i.e. motor
actions). Not only does their data come in nonstationary temporal streams, but
it typically comes from several sensors running at different rates. The camera
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5. Temporally Efficient Deep Learning with Spikes

may produce 1MB images at 30 frames/s, while the gyroscope might produce
1-byte readings at 1000 frames/s. It is not obvious, using current methods in deep
learning, how we can integrate asynchronous sensory signals into a unified, trainable,
latent representation, without undergoing the inefficient process of recomputing the
function of the network every time a new signal arrives.

These examples point to the need for a training method where the amount of computation
required to update the model scales with the amount of new information in the data, and
not just the dimensionality of the data.

There has been a lot of work on increasing the computational efficiency of neural networks
by quantizing neural weights or activations (see Section 5.5), but comparatively little work
on exploiting redundancies in the data to reduce the amount of computation. O’Connor
and Welling [2016b], set out to exploit the temporal redundancy in video by having
neurons only send their quantized changes in activation to downstream neurons, and
having the downstream neurons integrate these changes over time. This approach (take
the temporal difference, multiply by weights, temporally integrate) works for efficiently
approximating the function of the network, but fails for training. The reason for this
failure is that when the weights are functions of time, we no longer reconstruct the correct
activation for the next layer. In other words, given a sequence of inputs x0...xt with
x0 = 0 and weights w1...wt:

∑t
τ=1(xτ − xτ−1) ·wτ 6= xt ·wt unless wt = w0∀t. Figure 5.2

describes the problem visually.

In this paper, we correct for this problem by encoding a mixture of two components of
the layers activation xt: the proportional component kpxt, and the derivative component
kd(xt − xt−1). When we invert this encoding scheme, we get a decoding scheme which
corresponds to taking an exponentially decaying temporal average of past inputs. Inter-
estingly, the resulting neurons begin to resemble models of biological spiking neurons,
whose membrane potentials can approximately be modeled as an exponentially decaying
temporal average of past inputs.

In this work, we present a scheme wherein the temporal redundancy of input data is used
to reduce the computation required to train a neural network. We demonstrate this on
the MNIST and Youtube-BB datasets. To our knowledge we are the first to create a
neural network training algorithm which uses less computation as data becomes more
temporally redundant.

5.3. Methods

We propose a coding scheme where neurons can represent their activations as a temporally
sparse series of impulses. The impulses from a given neuron encode a combination of the
value and the rate of change of the neuron’s activation.

While our algorithm is designed to work efficiently with temporal data, we do not aim
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to learn temporal sequences in this work. We aim to efficiently approximate a function
yt = f(xt), where the current target yt is solely a function of the current input xt, and
not previous inputs x0...xt−1. The temporal redundancy between neighbouring inputs
xt−1, xt will however be used to make our approximate computation of this function more
efficient.

5.3.1. Preliminary

Throughout this paper we will use the notation (f3 ◦ f2 ◦ f1)(x) = f3(f2(f1(x))) to denote
function composition. We slightly abuse the notion of functions by allowing them to have
an internal state which persists between calls. For example, we define the ∆ function in
Equation 5.1 as being the difference between the inputs in two consecutive calls (where
persistent variable xlast is initialized to 0). The Σ function, defined in Equation 5.2,
returns a running sum of the inputs over calls. So we can write, for example, that when
our composition of functions (Σ ◦∆) is called with a sequence of input variables x1...xt,
then (Σ ◦∆)(xt) = xt, because (x1 − x0) + (x2 − x1) + ...+ (xt − xt−1)|x0=0 = xt.

In general, when we write yt = f(xt), where f is a function with persistent state, it will
be implied that we have previously called f(xτ ) for τ ∈ [1, .., t− 1] in sequence. Variable
definitions that are used later will be highlighted in blue. While all terms are defined in
the paper, we encourage the reader to refer to Appendix C.1 for a complete collection of
definitions and notations.

5.3.2. Position-Derivative (PD) Encoding

∆ :x 7→ y; Persistent: xlast ← 0

y ← x− xlast
xlast ← x

(5.1)

Σ :x 7→ y; Persistent: y ← 0

y ← y + x
(5.2)

Q :x 7→ y; Persistent: φ← 0

φ′ ← φ+ x

y ← round(φ′)

φ← φ′ − y

(5.3)

enc :x 7→ y; Persistent: xlast ← 0

y ← kpx+ kd(x− xlast)
xlast ← x

(5.4)

dec :x 7→ y; Persistent: y ← 0

y ← x+ kdy

kp + kd

(5.5)

R :x 7→ round(x) (5.6)

Suppose a neuron has time-varying ac-
tivation x1..xt. Taking inspiration from
Proportional-Integral-Derivative (PID) con-
trollers, we can “encode” this activation at
each time step as a combination of its cur-
rent activation and change in activation as
at , enc(xt) = kpxt + kd(xt − xt−1), (see
Equation 5.4). The parameters kp and
kd determine what portion of our encod-
ing represents the value of the activation
and the rate of change of that value, re-
spectively. In Section 5.5, we discuss how
this is a form of Predictive Coding and in
Appendix C.5, we discuss the effect our
choices for these parameters have on the
network.

To derive our decoding formula, we can
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5. Temporally Efficient Deep Learning with Spikes

simply solve for xt as xt = at+kdxt−1

kp+kd
(Equa-

tion 5.5), such that (dec ◦ enc)(xt) = xt.
Notice that Equation 5.5 corresponds to
decaying the previous decoder state by
some constant kd/(kp + kd) followed by
adding the input at/(kp + kd). We can
expand this recursively to see that this cor-
responds to a temporal convolution a ∗ κ
where κ is a causal exponential kernel κτ ={

1
kp+kd

(
kd

kd+kp

)τ
if τ ≥ 0 otherwise 0

}
.

5.3.3. Quantization

Our motivation for the aforementioned en-
coding scheme is that we want a sparse
signal which can be quantized into a low
bitrate discrete signal. This will later be
used to reduce computation. We can quantize our signal at into a sparse, integer signal
st , Q(at), where the quantizer Q is defined in Equation 5.3. Equation 5.3 implements a
form of Sigma-Delta modulation, a method widely used in signal processing to approx-
imately communicate signals at low bit rates [Candy and Temes, 1962]. We can show
that Q(xt) = (∆ ◦R ◦ Σ)(xt) (see Supplementary Material Section C.3), where ∆ ◦R ◦ Σ
indicates applying a temporal summation, a rounding, and a temporal difference, in series.
If xt is temporally redundant and we set kp to be small, then |at| � 1∀t, and we can
expect st to consist of mostly zeros with a few 1’s and -1’s.

We can now approximately reconstruct our original signal xt as x̂t , dec(st) by applying
our decoder, as defined in Equation 5.5. As our coefficients kp, kd become larger, our
reconstructed signal x̂t should become closer to the original signal xt. We illustrate
examples of encoded signals and their reconstructions for different kp, kd in Figure 5.1.

Special cases

We can compactly write the entire reconstruction function as x̂ = (dec◦∆◦R◦Σ◦enc)(xt).

kp = 0: When kp = 0, we get dec(xt) = (k−1
d ◦ Σ)(xt) and enc(xt) = (kd ◦ ∆)(xt), so

our reconstruction reduces to x̂ = (k−1
d ◦ Σ ◦∆ ◦R ◦ Σ ◦ kd ◦∆)(xt). Because Σ ◦ kd ◦∆

all commute with one another, we can simplify this to x̂t = (k−1
d ◦ R ◦ kd)(xt). so our

decoded signal is x̂t = round(xt · kd)/kd, with no dependence on xt−1. This is visible
in the bottom row of Figure 5.1. This was the encoding scheme used in O’Connor and
Welling [2016b].
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Figure 5.1.: An example signal xt (blue), encoded with kp varying across rows and
kd varying across columns. st (black) is the quantized signal produced
by the successive application of encoding (Equation 5.4) and quantization
(Equation 5.3, where N indicates the total number of spikes. x̂t (orange) is
the reconstruction of xt produced by applying Equation 5.5 to st. One might,
after a careful look at this figure, ask why we bother with the proportional
(kp) term at all? Figure 2 anticipates this question and answers it visually.

kd = 0: In this case, dec(xt) = k−1
p xt and enc(xt) = kpxt so our encoding-decoding

process becomes x̂ = (k−1
p ◦∆ ◦R ◦Σ ◦ kp)(xt). Neither our encoder nor our decoder have

any memory, and we take no advantage of temporal redundancy.

5.3.4. Sparse Communication Between Layers

The purpose of our encoding scheme is to reduce computation by sparsifying communi-
cation between layers of a neural network. Our approach is to approximate the matrix-
product as a series of additions, where the number of additions is inversely proportional
to the sparsity of the input data. Suppose we are trying to compute the pre-nonlinearity
activation of the first hidden layer, zt ∈ Rdout , given the input activation, xt ∈ Rdin . We
approximate zt as:

zt , xt · wt ≈ x̂t · wt , dec(Q(enc(xt))) · wt , dec(st) · wt ≈ dec(st · wt) , ẑt

where: xt, x̂t ∈ Rdin ; st ∈ Zdin ;w ∈ Rdin×dout ; zt, ẑt ∈ Rdout
(5.7)

The first approximation comes from the quantization (Q) of the encoded signal, and the
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xt wt zt = xt wt zt = deckpkd(Q(enckpkd(xt)) wt)

Figure 5.2.: The problem with only sending changes in activation (i.e. kp = 0) is that
during training, weights change over time. Top: we generate random signals
for a single scalar activation xt and scalar weight wt. Row 2: We efficiently
approximate zt by taking the temporal difference, multiplying by wt then
temporally integrating, to produce ẑt, as described in Section 5.3.4. As the
weight wt changes over time, our estimate ẑ diverges from the correct value.
Rows 3, 4: Introducing kp allows us to bring our reconstruction back in line
with the correct signal.

second from the fact that the weights change over time, as explained in Figure 5.2. The
effects of these approximations are further explored in Appendix C.5.1.

Computing zt takes din · dout multiplications and (din − 1) · dout additions. The cost of
computing ẑt, on the other hand, depends on the contents of st. If the data is temporally
redundant, st ∈ Zdin should be sparse, with total magnitude N ,

∑
i |st,i|. st can be

decomposed into a sum of one-hot vectors st =
∑N

n=1 sign(st,in) · γin : in ∈ [1..din ] where
γin is a length-din one-hot vector with element (γin)in = 1. The matrix product st · w
can then be decomposed into a series of row additions:

st · w =

(
N∑
n=1

sign(st,in) · γin

)
· w =

N∑
n=1

sign(st,in)γin · w =
N∑
n=1

sign(st,in) · win,· (5.8)

If we include the encoding, quantization, and decoding operations, our matrix product
takes a total of 2din + 2dout multiplications, and

∑
n |st,n| · dout + 3din + dout additions.

Assuming the
∑

n |st,n|·dout term dominates, we can say that the relative cost of computing
ẑt vs zt is:

cost(ẑ)

cost(z)
≈

∑
n |st,n| · cost(add)

din · (cost(add) + cost(mult))
(5.9)
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5.3.5. A Neural Network

We can implement this encoding scheme on every layer of a neural network. Given a
standard neural net fnn consisting of alternating linear (·wl) and nonlinear (hl) operations,
our network function fpdnn can then be written as:

fnn(x) = (hL ◦ ·wL ◦ ... ◦ h1 ◦ ·w1)(x) (5.10)
fpdnn(x) = (hL ◦ decL ◦ wL ◦QL ◦ encL ◦ ... ◦ h1 ◦ dec1 ◦ ·w1 ◦Q1 ◦ enc1)(x) (5.11)

We can use the same approach to approximately calculate our gradients to use in training.
If we define our layer activations as ẑl , (dec ◦ ·wl ◦Q ◦ enc)(x) if l = 1 otherwise (dec ◦
·wl ◦Q◦enc)(ẑl−1), and L , `(fpdnn(x), y), where ` is some loss function and y is a target,
we can backpropagate the approximate gradients as:

∂̂L
∂ẑl

=

{
∂L
∂zL

if l = L(
�h′l(ẑl) ◦ decbackl ◦ ·wTl+1 ◦Qbackl+1 ◦ encbackl+1

)
( ∂̂L
∂ẑl+1

) otherwise
(5.12)

This can be implemented by either executing a (sparse) forward and backward pass at
each time-step, or in an “event-based” manner, where the quantizers fire “events” whenever
incoming events push their activations past a threshold, and these events are in turn sent
to downstream neurons. For ease of implementation, we opt for the former in our code.
Note that unlike in regular backprop, computing these forward and backward passes
results in changes to the internal state of the enc, dec, and Q components.

5.3.6. Parameter Updates

There is no use in having an efficient backward pass if the parameter updates are not also
efficient. In a normal neural network trained with backpropagation and simple stochastic
gradient descent, the parameter update for weight matrix w has the form w ← w − η ∂L∂w
where η is the learning rate. If w connects layer l− 1 to layer l, we can write ∂L

∂w = xt⊗ et
where xt , hl−1(zl−1,t) ∈ Rdin is the presynaptic (layer l−1) activation, et , ∂L

∂zl,t
∈ Rdout

is the postsynaptic (layer l) backpropagating gradient and ⊗ is the outer product. So we
require din · dout multiplications to update the parameters for each sample.

We want a more efficient way to compute this product, which takes advantage of the spar-
sity of our encoded signals to reduce computation. We can start by applying our encoding-
quantizing-decoding scheme to our input and error signals as x̄t , (Q ◦ enc)(xt) ∈ Zdin

and ēt , (Q ◦ enc)(et) ∈ Zdout , and approximate our true update as ∂̂L
∂w recon,t

, x̂t ⊗ êt
where x̂t , dec(x̄t) and êt , dec(ēt). This does not do any good by itself, because the
vectors involved in the outer product, x̂t and êt, are still not sparse. However, we can
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x
x
x

spike

e
e
e

t

w t = xtet

w t = xtet

w t, past

w t, future

Figure 5.3.: A visualization of our efficient update schemes from Section 5.3.6. Top: A
scalar signal representing a presynaptic neuron activation xt = hl−1(zl − 1),
its quantized version, x̄t = (Q ◦ enc)(xt), and its reconstruction x̂t = dec(x̄t).
Middle: Another signal, representing the postsynaptic gradient of the error
e = ∂L

∂zl
, along with its quantized (ē) and reconstructed (ê) variants. Bottom:

The true weight gradient ∂L
∂wt

and the reconstruction gradient ∂̂L
∂wt

. At the
time of the spike in ēt, we have two schemes for efficiently computing the
weight gradient that will be used to increment weight (see Section 5.3.6). The
past scheme computes the area under x̂ · ê since the last spike, and the future
scheme computes the total future additional area due to the current spike.

exactly compute the sum of this value over time using one of two sparse update schemes -
past updates and future updates - which are depicted in Figure 5.3. We give the formula
for the Past and Future update rules in Appendix C.4, but summarize them here:

Past Updates: For a given synapse wi,j , if either the presynaptic neuron spikes (x̄ti 6= 0)
or the postsynaptic neuron spikes (ēti 6= 0), we increment the wi,j by the total area
under x̂τ,iêτ,j since the last spike. We can do this efficiently because between the current
time and the time of the previous spike, x̂τ,iêτ,j is a geometric sequence. Given a known
initial value u, final value v, and decay rate r, a geometric sequence sums to u−v

1−r . The
area calculated is shown in pink on the bottom row of Figure 5.3, and one algorithm to
calculate it is in Equation C.6 in Appendix C.4.

Future Updates: Another approach is to calculate the Present Value of the future area
under the integral from the current spike. This is depicted in the blue-gray area in Figure
5.3, and the formula is in Equation C.7 in Appendix C.4.

Finally, because the magnitude of our gradient varies greatly over training, we create a
scheme for adaptively tuning our kp, kd parameters to match the running average of the
magnitude of the data. This is described in detail in Appendix C.5.
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5.3.7. Relation to STDP

An extremely attentive reader might have noted that Equation C.7 has the form of an
online implementation of Spike-Timing Dependent Plasticity (STDP). STDP [Markram
et al., 2012] emerged from neuroscience, where it was observed that synaptic weight
changes appeared to be functions of the relative timing of pre- and post-synaptic spikes.
The empirically observed function usually has the double-exponential form seen on the
rightmost plot of Figure 5.4.

Using the quantized input signal x̄ and error signal ē, and their reconstructions x̂t
and êt as defined in the last section, we define a causal convolutional kernel κt ={
kβ (kα)t if t ≥ 0 otherwise 0

}
, where kα ,= kd

kp+kd
, kβ , 1

kp+kd
. We can then define a

“cross-correlation kernel” gt = {κt if t ≥ 0 otherwise κ−t} = kβ(kα)|t| : t ∈ Z which defines
the magnitude of a parameter update as a function of the difference in timing between
pre-synaptic spikes from the forward pass and post-synaptic spikes from the backward
pass. The middle plot of Figure 5.4 is a plot of g. We define our STDP update rule as:

∂̂L
∂w t,STDP

=

( ∞∑
τ=−∞

x̄t−τgτ

)
⊗ ēt (5.13)

We note that while our version of STDP has the same double-exponential form as the
classic STDP rule observed in neuroscience [Markram et al., 2012], our “presynaptic” spikes
come from the forward pass while our “postsynaptic” spikes come from the backwards pass.
STDP is not normally used to as a learning rule networks trained by backpropagation, so
the notion of forward and backward pass with a spike-timing-based learning rule are new.
Moreover, unlike in classic STDP, we do not have the property that sign of the weight
change depends on whether the presynaptic spike preceded the postsynaptic spike.

In Section C.4 in the supplementary material we show experimentally that while Equations
∂̂L
∂w recon

, ∂̂L∂wpast,
∂̂L
∂w future

, ∂̂L∂w stdp may all result in different updates at different times, the
rules are equivalent in that for a given set of pre/post-synaptic spikes x̄, ē, the cumulative
sum of their updates over time converges exactly.

5.4. Experiments

5.4.1. Temporal MNIST

To evaluate our network’s ability to learn, we train it on the standard MNIST dataset,
as well as a variant we created called “Temporal MNIST”. Temporal MNIST is simply
a reshuffling of the MNIST dataset so that so that similar inputs (in terms of L2-pixel
distance), are put together. Figure 5.6 shows several snippets of consecutive frames in
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tpost tpre

w

sign(xt) = sign(et)

tpost tpre

sign(xt) sign(et)

tpost tpre

Classic STDP Rule

Figure 5.4.: Left: Our STDP rule, when both the input and error spikes have the same
sign. Middle: Our STDP rule, when the input and error spikes have opposite
signs. Right: The classic STDP rule Markram et al. [2012], where the weight
update is positive when a presynaptic spike preceeds a postsynaptic spike,
and negative otherwise.

the temporal MNIST dataset. We compare our Proportional-Derivative Net against a
conventional Multi-Layer Perceptron with the same architecture (one hidden layer of
200 ReLU hidden units and a softmax output). The results are shown in Figure 5.5.
Somewhat surprisingly, our predictor slightly outperformed the MLP, getting 98.36% on
the test set vs 98.25% for the MLP. We assume this improvement is due to the regularizing
effect of the quantization. On Temporal MNIST, our network was able to converge with
less computation than it required for MNIST (it used 32 · 1012 operations for MNIST
vs 15 · 1012 for Temporal MNIST), but ended up with a slightly worse test score when
compared with the MLP (the PDNN achieved 97.99% vs 98.28% for the MLP). The
slightly higher performance of the MLP on Temporal MNIST may be explained by the
fact that the gradients on Temporal MNIST tend to be correlated across time-steps, so
weights will tend to move in a single direction for a number of steps, which will interfere
with the PDNN’s ability to accurately track layer activations (see Figure 5.2). Appendix
C.6 contains a table of results with varying hyperparameters.

5.4.2. YouTube Video Dataset

Next, we want to simulate the setting of CCTV cameras, discussed in Section 5.2, where
we have a lot of data with only a small amount of new information per frame. In the
absence of large enough public CCTV video datasets, we investigate the surrogate task of
frame-based object classification on wild YouTube videos from the large, recently released
Youtube-BB dataset Real et al. [2017]. Our subset consists of 358 Training Videos and 89
Test videos with 758,033 frames in total. Each video is labeled with an object in one of
24 categories.

We start from a VGG19 network [Simonyan and Zisserman, 2014]: a 19-layer convolutional
network pre-trained on imagenet. We replace the top three layer with three of our own
randomly initialized layers, and train the network both as a spiking network, and as
a regular network with backpropagation. While training the entire spiking network
end-to-end works, we choose to only train the top layers, in order to speed up our training
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Figure 5.5.: Top Row: Results on MNIST. Bottom
Row: Results on Temporal MNIST. Left
Column: the training and test scores as
a function of epoch. Middle: We now
put the number of computational oper-
ations on the x-axis. We see that as a
result our PDNN shifts to the left. Right:
Because our network computes primarily
with additions rather than multiplications.
When we multiply our operation counts
with the estimates of Horowitz [2014] for
the computational costs of arithmethic
operations (0.1pJ for 32-bit fixed-point
addition vs 3.2pJ for multiplication), we
can see that our algorithm would be at an
advantage on any hardware where arith-
metic operations were the computational
bottleneck.

Figure 5.6.: Some
samples
from the
Temporal-
MNIST
dataset.
Each
column
shows a
snippet of
adjacent
frames.
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time.

We compare our training scores and computation between a spiking and non-spiking
implementation. The learning curves in Figure 5.7 show that our spiking network performs
comparably to a non-spiking network, and Figure 5.8 shows how the computation per
frame of our spiking network decreases as we increase the frame rate (i.e. as the input data
becomes more temporally redundant). Because our spiking network uses only additions,
while a regular deep network does multiply-adds, we use the estimated energy-costs per
op of Horowitz [2014] to compare computations to a single scale, which estimates the
amount of energy required to do multiplies and adds in fixed-point arithmetic.

5.5. Related Work

Noise-Shaping is a quantization technique that aims to increase the fidelity of signal
reconstructions, per unit of bandwidth of the encoded signal, by quantizing the signal in
such a way that the quantization noise is pushed into a higher frequency band which is
later filtered out upon decoding. Sigma-Delta (also known as Delta-Sigma) quantization
is a form of noise-shaping. Shin [2001] first suggested that biological neurons may be
performing a form of noise shaping, and Yoon [2017] found standard spiking neuron
models actually implement a form of Sigma-Delta modulation.
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5.6. Discussion

The encoding/decoding scheme we use in this paper can be seen as a form of Predictive
Coding. Predictive coding is a lossless compression technique wherein the predictable
parts of a signal are subtracted away so that just the unpredictable parts are transmitted.
The idea that biological neurons may be doing some form of predictive coding was first
proposed by Srinivasan et al. [1982]. In a predictive-coding neuron (unlike neurons
commonly used in Deep Learning), there is a distinction between the signal that a neuron
represents and the signal that it transmits. The neurons we use in this paper can be seen
as implementing a simple form of predictive coding where the “prediction” is that the
neuron maintains a decayed form of its previous signal - i.e. that pred(xt) ,

kd
kp+kd

xt−1

(See Appendix C.2 for detail). Chklovskii and Soudry [2012] suggest that the biological
spiking mechanism may be thought of as consisting of a sigma-delta modulator within a
predictive-coding circuit.

To our knowledge, none of the aforementioned work has yet been used in the context of
deep learning.

There has been sparse but interesting work on merging the notions of spiking neural
networks and deep learning. Diehl et al. [2015] found a way to efficiently map a trained
neural network onto a spiking network. Lee et al. [2016] devised a method for training
integrate-and-fire spiking neurons with backpropagation - though their neurons did not
send a temporal difference of their activations. O’Connor and Welling [2016a] created a
method for training event-based neural networks - but their method took no advantage of
temporal redundancy in the data. Binas et al. [2016] and [O’Connor and Welling, 2016b]
both took the approach of sending quantized temporal changes to reduce computation
on temporally redundant data, but their schemes could not be used to train a neural
network. Bohte et al. [2000] showed how one could apply backpropagation for training
spiking neural networks, but it was not obvious how to apply the method to non-spiking
data. Zambrano and Bohte [2016] developed a spiking network with an adaptive scale of
quantization (which bears some resemblance to our tuning scheme described in Appendix
C.5), and show that the spiking mechanism is a form of Sigma-Delta modulation, which
we also use here. Courbariaux et al. [2015] showed that neural networks could be trained
with binary weights and activations (we just quantize activations). Bengio et al. [2015a]
found a connection between the classic STDP rule (Figure 5.4, right) and optimizing a
dynamical neural network, although the way they arrived at an STDP-like rule was quite
different from ours (they frame STDP as a way to minimze an objective based on the
rate of change of the real-valued state of the network, whereas we use it approximately
compute gradients based on spike-encodings of layer activations).

5.6. Discussion

We set out with the objective of reducing the computation in deep networks by taking
advantage of temporal redundancy in data. We described a simple rule (Equation 5.4) for
sparsifying the communication between layers of a neural network by having our neurons
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communicate a combination of their temporal change in activation, and the current
value of their activation. We show that it follows from this scheme that neurons should
behave as leaky integrators (Equation 5.5). When we quantize our neural activations
with Sigma-Delta modulation, a common quantization scheme in signal processing, we
get something resembling a leaky integrate-and-fire neuron. We derive efficient update
rules for the weights of our network, and show these to be related to STDP - a learning
rule first observed in neuroscience. Finally, we train our network, verify that it does
indeed compute more efficiently on temporal data, and show that it performs about as
well as a traditional deep network of the same architecture, but with significantly reduced
computation. Finally, we show that our network can train on real video data.

The efficiency of our approach hinges on the temporal redundancy of our input data and
neural activations. There is an interesting synergy here with the concept of slow-features
[Wiskott, 1999]. Slow-Feature learning aims to discover latent objects that persist over
time. If the hidden units were to specifically learn to respond to slowly-varying features
of the input, the layers in a spiking implementation of such a network would have to
communicate less often. In such a network, the tasks of feature-learning and reducing
inter-layer communication may be one and the same.

Code is available at github.com/petered/pdnn.
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6. STDP is just Predictive Coding and
Dynamics-Based learning

6.1. Abstract

Spike-Timing-Dependent Plasticity (STDP) is a synaptic learning rule observed in neuro-
science, wherein the updates to a synaptic weight are a function of the relative timing of
two spikes on the pre- and post-synaptic neuron. When pre precedes post, the weight is
strengthened, when post precedes pre, the weight is weakened.

Bengio et al. [2015b] suggested that this rule would correlate to “dynamics-based learning”,
where a network’s dynamics takes the place of the gradient in communicating how
parameters should be updated.

Here, we show that if neurons communicate with a simple form of lossy predictive coding,
that relationship becomes exact. We exactly reproduce the classic STDP learning rule
when we apply dynamics-based learning on a network where neurons quantize their
communication using lossy linear predictive coding.

6.2. Introduction

The previous chapter hinted at something interesting: Trying to efficiently compute weight
updates in our network, when neurons communicated quantized values using a form of
lossy predictive-coding, yielded an STDP-like double exponential kernel (see Figure 5.4).
Unlike regular STDP, our kernel was symmetric, and our spikes were signed (could have
a value of -1 or +1).

Coming from a completely different direction, Bengio et al. [2015a] (building on previous
work by Xie and Seung [2000]), proposed how STDP may be a way of implementing a
dynamics-based (as opposed to gradient-based) learning rule with spiking neurons. They
show why STDP should produce results that correlate with dynamic-based learning, and
demonstrate these empirically, but do not show an exact equivalence.
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6.3. Background

6.3.1. Dynamics-Based Learning

In an ordinary deep network trained with backpropagation, the gradient update rule for
a synapse connecting neuron i to neuron j is:

∆wij ∝ −
∂L
∂wij

= −hi
∂L
∂zj

(6.1)

Where zj :=
∑

iwijhi is the pre-nonlinearity activation; hi := h(zi) is a post nonlinearity
activation with h(·) being an elementwise nonlinearity such as sigmoid or ReLU; ∂L

∂zj
is

the gradient of the loss w.r.t. the activation of neuron j as computed by backpropagation.

As we have discussed in Chapter 1, this is not biologically plausible, because biological
networks have no secondary signalling mechanism to backpropagate gradients. Hinton
[2007] suggested that in biology, dynamics might take the place of negative-loss-gradients,
and that the secondary signal is actually the temporal derivative of the activation. In
other words, the negative gradient − ∂L

∂zj
is replaced by the post-synaptic rate of change

żj :=
∂zj
∂t , and the synaptic learning rule becomes:

∆wt1:t2
ij ∝

∫ t2

t=t1

hi(t)żj(t) ≈
1

2

t2∑
t=t1

hi(t)
(
zj(t+ 1)− zj(t− 1)

)
(6.2)

Where ∆wt1:t2
ij is the change in the strength of synapse ij between times t1 and t2. The

implication is that if the dynamics of the network are moving in a direction that minimizes
some loss, the parameter update will then also minimize that loss. The tricky part, not
explored here but investigated in Scellier et al. [2018], is how to make those dynamics
move in a direction that minimize the desired loss.

For ease of understanding, in the remainder of this chapter we shall use the discrete-time
form of Equation 6.2, with the assumption that our chosen time-units (say ms for real
neurons) are small enough to capture the dynamics in the signals.

6.3.2. Spike-Timing-Dependent Plasticity (STDP)

STDP is an observation from neuroscience Markram and Sakmann [1995] that the update
to a synaptic weight of a spiking biological neuron appears to be a function of the relative
timing of pre- and post-synaptic spikes. Specifically, if the pre-synaptic spike comes first,
the weight strengthens, and if the post-synaptic spike comes first, it weakens. This rule
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is visualized in Figure 6.1, and can be modeled as anti-symmetrical double-exponential
curve:

∆wij ∝ κSTDP (∆t) =


−a−e∆t/τ− if ∆t < 0

0 if ∆t = 0

a+e
−∆t/τ+ if ∆t > 0

(6.3)

Where a− ∈ R+ and a+ ∈ R+ are the strengths of the anti-causal/causal components,
∆t = tpost − tpre is the difference in timing between pre- and post- synaptic spikes, and
τ−, τ+ are the anti-causal/causal time-constants.

Note that STDP can be expressed compactly as a convolution and an scalar-product.
Suppose si(t) ∈ {0, 1} and sj(t) ∈ {0, 1} are streams of spiking signals from a presynapic
neuron i and postsynaptic neuron j. For every spike of postsynaptic neuron j at time t,
we add up the weight changes from every spike of presynaptic neuron i at time τ :

∆wij ∝
∑

t:sj(t)=1

∑
τ :si(τ)=1

κSTDP (t− τ) =
∑
t

sj(t)
∑
τ

si(τ)κSTDP (t− τ)

= sj · (κSTDP ∗ si) ∈ R
(6.4)

Where (a ∗ b)(t) :=
∑

τ a(τ)b(t− τ) denotes convolution and a · b :=
∑

t a(t)b(t) denotes
the scalar-product over time.

6.3.3. Linking dynamics-based learning to STDP

Xie and Seung [2000] were the first to observe a connection between the idea of an
dynamics-based learning rule and STDP. Beginning with the STDP kernel, they show
empirically that following an STDP-based learning rule will result in weight changes that
look like those resulting from dynamics-based learning.

Bengio et al. [2015a] arrived to this same conclusion the other way around - they show
that if one tries to implement dynamics-based learning with rate-coded spiking neurons
(i.e. neurons that simply represent their value with the frequency of outgoing spikes),
they empirically recover the STDP kernel in Figure 6.1. They also explain an intuition,
illustrated in Figure 6.2 - as to why dynamics-based learning should produce similar
results to STDP.

The bottom line, as flatly stated in the title of Bengio et al. [2015a]: STDP as presynaptic
activity times rate of change of postsynaptic activity, is that STDP corresponds to an
update rule of ∆wSTDPij ≈

∫
t hi

.
hj , where the post-nonlinearity activation hi := h(zi)

is interpreted as a “firing rate”. Note that this does not quite correspond to Equation
6.2 because the post-synaptic activity zj is replaced the post-nonlinearity activity hj .

85



6. STDP is just Predictive Coding and Dynamics-Based learning

Figure 6.1.: The STDP learning rule (fig-
ure from Bi and Wang [2002]),
showing the Synaptic change
∆wij on the y-axis, as a func-
tion of the relative timing be-
tween the pre and post-synaptic
spikes ∆t = tpost − tpre on the
x-axis. The anti-symmetrical
double-exponential curve very
roughly models data from neural
recordings (points)

Figure 6.2.: An illustration from Bengio et al.
[2015b] of why the Dynamics-
based learning (Equation 6.2)
correlates to STDP (Equation
6.3). The y-axis indicates the
postsynaptic firing rate tj , as a
function of time, and the dot-
ted vertical line indicates the
time tpre of a pre-synaptic spike.
When, as in this figure,

.
hj(t) >

0, we can see that a post-
synaptic spike is more likely to
occur in some window after the
pre-synaptic spike than in the
same window before it - causing
a positive weight change in the
STDP equation.

However, under the weak assumption that nonlinearity is monotonic, the updates should
point in the same direction.

Both of these results are empirical. In this work we will show a mathematical connection
between the anti-symmetrical double-exponential STDP kernel of Equation 6.3 and the
Dynamics-Based learning in Equation 6.2. Specifically, we show that Linear Predictive
Coding - a method for efficiently encoding signals from the signal processing literature
Itakura [1972], is the link needed to connect them exactly, and that firing rate does
not exactly correspond to “activity” h(t), but to an encoded version of this activity
h(t)− αh(t− 1).
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6.3. Background

6.3.4. Predictive Coding

In Chapter 5 we described a network wherein neurons communicate their values (and
backpropagate their gradients) using lossy predictive coding - a method for quantized
communication of time-series data. The central idea of Predictive Coding is to subtract off
the predictable parts of a signal before transmitting it so that the limited communication
bandwidth is used to communicate the unpredictable components. The predictable
component can then be reconstructed on the receiving end of the channel. Here we will
describe the simplest form of predictive coding - first order linear predictive coding. 1

Suppose we have a time-varying signal x(t). We will assume discrete-time here, though
everything here can be extended to continuous time. In first-order linear lossy predictive
coding, we encode a bounded signal x(t) ∈ [0, 1] into a bitstream

Q
x(t) ∈ {0, 1} as follows

(also illustrated in Figure 6.3):

E
x(t) = x(t)− P

x(t− 1) Subtract off predictable component
Q
x(t) = Quantize(Ex(t)) Quantize the encoded signal into a bitstream
R
x(t) =

Q
x(t) +

P
x(t− 1) Reconstruct the signal

P
x(t) = Predict(Rx(t)) = α

R
x(t) Make a prediction of the next input

(6.5)

Where E
x(t) is the encoded signal,

Q
x(t) ∈ {0, 1} is the binary quantized signal, Rx(t) is the

reconstructed signal, and P
x(t−1) is the prediction of the signal at time t based on the data

available at time t− 1. α ∈ [0, 1) is the predictive coding coefficient. Intuitively, when α
is close to 1, we spend most of our bandwidth encoding changes to the signal, and when it
is 0, we simply encode the current state of the signal. If α were > 1, our reconstructions
would explode. This is called First Order Linear Predictive Coding because it is a special
case of Linear Predictive Coding (LPC) Itakura [1972]. In T ′th order LPC, the prediction
coefficients α form a vector and the prediction has the form P

x(t) =
∑T−1

τ=0 ατ
R
x(t − τ).

Note that in practice, to accurately represent a signal, Ex(t) must be mostly in the range of
[0, 1], otherwise distortions will occur. This means x(t) must be scaled by an appropriate
constant before encoding and after decoding. For simplicity, we will assume here that
this scaling of the signal has already been done as a preprocessing step.

1Note that this is different from the type of Predictive Coding discussed in the well-known work by
Rao and Ballard [1999] where they hypothesize that in the brain, higher layers of neurons predict the
activations of lower layers, and lower layers send up the difference between the top-down predictions
and the bottom-up activations. It is also different from the Contrastive Predictive Coding of Oord
et al. [2018], where a network learns a representation by predicting the output of the network at
neighbouring time-steps. Here by contrast, prediction occurs within the neuron, takes a much simpler
form, and has the function of signal-compression, not representation learning.
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6. STDP is just Predictive Coding and Dynamics-Based learning

How the quantization of Ex(t) into
Q
x(t) is done is not important for the results presented

in this Chapter. Different methods of quantization are best for different objectives:

• Thresholding: Minimizes error at any given time but may have systematic biases
over time:

Q
x(t) =

[
E
x(t) >

1

2

]
• Random: Each sample is an unbiased estimator of the encoded value. Will have

higher error on average than thresholding but errors will cancel over time:

Q
x(t) =

[
E
x(t) > U(0, 1)

]
• Sigma Delta Modulation: Maintains balance of total input and total output

over time. Averaged error over time cancels faster than for Random sampling.

Q
x(t) =

[
φ(t− 1) +

E
x(t) >

1

2

]∣∣∣∣
φ(0):=0

φ(t) = φ(t− 1) +
E
x(t)−

Q
x(t)

Note that in the process of encoding the signal in Equation 6.5, we already computed
R
x(t), the reconstruction of x(t). The decoder simply involves reusing the portion of the
encoder that computes Rx(t):

R
x(t) =

Q
x(t) +

P
x(t− 1)

P
x(t) = Predict(Rx(t)) = α

R
x(t)

(6.6)

Note that the Equation 6.6 can be unrolled so that it corresponds to a convolution of
signal

Q
x with an infinite exponential kernel κpredt = (α(t) if t ≥ 0 otherwise 0), where ·(t)

denotes exponentiation by t. Written this way, we have:

R
x =

Q
x ∗ κPred =

Q
x ∗

{
0 if t < 0

α(t) otherwise

}
(6.7)

Computing R
x as a convolution would of course be computationally wasteful - as it costs

O(|
Q
x|min(|

Q
x|, |κpred|)) as opposed to the O(|

Q
x|) of Equation 6.6, but the equivalence will

be used in the following section to establish a link to STDP.

In Chapter 5, we presented a neural network where neurons communicate with predictive
coding. A key observation here is that since the prediction is linear, computing the
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Q +

+P Pδ δ

Encoder Decoder

+

Figure 6.3.: An illustration of the predictive coding circuit. P indicates the prediction
P (y(t)) = αy(t). δ indicates a time-delay δ(y(t)) = y(t− 1), Q indicates the
quantization function.

sum of weighted decoded input spikes is equivalent to computing the decoded sum of
weighted input spikes - i.e. we only need one decoder per neuron, not one per synapse,
allowing for efficient implementation. Equation 6.6 gives us update rule for neuron j:

zj(t) := αzj(t− 1) +
∑

iwij
Q

hi(t), where hi := h(zi) denotes the post-nonlinearity neural
activation.

The first two rows of Figure 6.5 show the quantization and reconstruction of example
signals using predictive coding.

6.4. Dynamical Learning and Predictive Coding result in
STDP

In this section, we will demonstrate that applying Dynamical learning to neurons which
communicate with predictive coding yields the classic STDP kernel of Figure 6.1.

6.4.1. Properties of Convolution

The following sections will make use of some properties of convolution (∗). We will
introduce them here. All variables in these equations are time varying signals.

1. Commutative Property: a ∗ b = b ∗ a

2. Associative Property: (a ∗ b) ∗ c = a ∗ (b ∗ c)

3. Linear Property: a ∗ (b+ c) = a ∗ b+ a ∗ c

4. Scalar-Product Kernel-Flip: a · (b ∗ c) = (a ∗ c−) · b, Where d · e :=
∑

t dtet
denotes the scalar-product over time-steps, and c−t := c−t denotes a flip about t = 0.
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6. STDP is just Predictive Coding and Dynamics-Based learning

5. Online Trick: This is actually a result of combining the Linear Property and
the Scalar Product Kernel-Flip: (a ∗ b) · c = (a ∗ bright) · c+ (c ∗ b−left) ·a, where

b−leftt :=

{
0 if t ≤ 0

b−t otherwise
, brightt :=

{
0 if t < 0

bt otherwise
indicate the flipped-left and

right sides of the signal b (note that b = bleft + bright). This is useful when you want
to compute (a ∗ b) · c in an online setting - where the signals come in as a temporal
stream and you want to efficiently update (a ∗ b) · c at each new time-step. We can
use the Online Trick to convert STDP from the Kernel Form in Equation 6.3 to an
Online Form:

∆wSTDPij : = (
Q

hi ∗ κSTDP ) ·
Q

hj

= (
Q

hi ∗ κSTDP,right) ·
Q

hj + (
Q

hj ∗ κSTDP,−left) ·
Q

hi Online Trick
(6.8)

6.4.2. Approximate Gradient Descent yields a Symmetric STDP
Kernel

In Chapter 5, we encoded and quantized both our forward-pass activations h and gradients

g as bitstreams
Q

h and
Q
g for communication between layers. We then showed that applying

the gradient-based weight update (Equation 6.1) to the reconstructions
R
h and R

g from
these bitstreams yields a symmetric form of STDP.

∆wApproxGDij ∝ −
∑
t

R
hi(t)

R
gj(t) = −

R
hi ·

R
gj = −(

Q

hi ∗ κPred) · (
Q
gj ∗ κPred) Equations 6.1 & 6.7

= −(
Q

hi ∗ κPred ∗ κ−Pred) ·
Q
gj Scalar Product Kernel Flip

: = −(
Q

hi ∗ κSymSTDP ) ·
Q
gj Kernel Form

= −(
Q

hi ∗ κSymSTDP,right) ·
Q
gk − (

Q
gj ∗ κSymSTDP,−left) ·

Q

hi Online Form
(6.9)

We can find the form of the kernel by plugging in the formula for κPred from subsection 6.3.4
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Predictive Coding:

κSymSTDPt : = (κPred ∗ κ−Pred)t :=
∑
τ

{
0 if t− τ < 0

α(t−τ) otherwise

}{
α(−τ) if τ ≤ 0

0 otherwise

}

=

{
α(−t)/(1− α2) if t < 0

α(t)/(1− α2) otherwise
(6.10)

Thus we showed that our approximate form of gradient descent was equivalent to an
STDP-like learning rule (except with a symmetric kernel and potentially signed spikes).
κSymSTDP is plotted in the second row of Figure 6.4.

6.4.3. The Link to Dynamics-Based Learning

Finally, we are ready to demonstrate the connection to dynamics-based learning. Suppose
we, following the ideas presented in subsection 6.3.1 Dynamics-Based Learning, simply
replace the reconstructed gradient Rgj with a discrete-time approximation of the dynamics
.
hj(t) := ∂

∂th(zj)(t) ≈ 1
2(
R
hj(t+ 1)−

R
hj(t− 1)) :=

∆
hj(t). Note that this corresponds to a

convolution with a kernel κ∆
t := (1

2 if t = −1;−1
2 if t = 1; 0 otherwise). Let us redo the

calculation in Equation 6.9 with these approximate dynamics plugged in in place of the
gradient:

∆wij ∝
∑
t

R
hi(t)

∆
hj(t) :=

R
hi ·

∆
hj :=

R
hi · (

R
hj ∗ κ∆)

= (
Q

hi ∗ κPred) · (
Q

hj ∗ κPred ∗ κ∆)

= (
Q

hi ∗ κPred ∗ κ−Pred ∗ κ−∆) ·
Q

hj Scalar Product Kernel Flip

:= (
Q

hi ∗ κDynSTDP ) ·
Q

hj STDP Form

(6.11)

The above equation gives us the kernel κDynSTDP := κPred ∗ κ−Pred ∗ κ−∆. Recall from
Section 6.3.4 that κPredt = (α(t) if t ≥ 0 otherwise 0), and the definitions κ−Predt := κPred−t
and κ−∆

t := (−1
2 if t = −1; 1

2 if t = 1; 0 otherwise). Convolving these three kernels, and
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6. STDP is just Predictive Coding and Dynamics-Based learning

using the result from Equation 6.10, yields:

κDynSTDPt : =
(
κPred ∗ κ−Pred ∗ κ−∆

)
t

:=
(
κSymSTDP ∗ κ−∆

)
t

=
∑
τ

{
α−(t−τ)/(1− α2) if t− τ < 0

α(t−τ)/(1− α2) otherwise

}
− 1/2 if τ = −1

1/2 if τ = 1

0 otherwise


=

1

2α


−α(−t) if t < 0

0 if t = 0

α(t) if t > 0

(6.12)

Note that this takes the same form as the original STDP kernel in Equation 6.3, with
ai = a+ = 1

2α and τ− = τ+ = 1
logα−1 ∈ (0,∞). The fourth row of Figure 6.4 plots

κDynSTDP and the fourth row of figure Figure 6.5 shows the resulting weight updates on
simulated data, as compared to unquantized dynamics-based learning.

6.5. Discussion

What we have here is an exact explanation for the anti-symmetrical double-exponential
curve of STDP. It implements an approximation to dynamics-based learning. The
approximation arises from the fact that the synapse only has access to the times of the
pre- and post- synaptic spikes generated by predictive coding of their activations.

Biologically, it is clear that the only way a synapse ij can access the state of neuron i is
via its spikes. As discussed in Chapter 1, axons are very long compared to the cell-bodies
of neurons, and the primary purpose of the spiking mechanism is probably to enable
long-distance signal transmission in a setting where analog voltages cannot be easily
transmitted. Dendrites, which connect synapse ij to postsynaptic neuron j, tend to be
much shorter than axons, but still may be long enough to have very non-uniform voltage.
Thus synapse ij generally does not have direct access to the voltage in the body of cell j
either. How then could the synapse even know when postsynaptic neuron j spikes? The
answer appears to be a phenomenon known as Neural Backpropagation - wherein when
neuron j produces a spike, an "echo" of this spike is also transmitted back throught the
dendrites to the input synapses [Stuart and Sakmann, 1994]. This has long been believed
to be the mechanism by which STDP occurs [Waters and Helmchen, 2004]. Unlike the
Backpropagation of machine learning - neural backpropagation does not hop back over
synapses, but stays within a cell.

Thus we show here how three reasonable hypotheses about how biological neurons com-
municate and learn neurons are actually connected: (1) Neurons perform dynamics-based
learning, (2) Synapses update their weights as a function of pre- and post- synaptic spike
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Figure 6.4.: The kernels discussed in this chapter. Top: The Predictive-Decoding
kernel reconstructs a signal from it’s quantized representation: Rx =

Q
x ∗ κPred.

Second Row: The Symmetric STDP kernel implements approximate
gradient descent between two predictive-coded neurons. Third Row: The
∆-Kernel, when convolved with a signal, yields a discrete-time approximation
to the temporal-derivative: ẋ(t) ≈ (x ∗ κ∆)t. Bottom Row: The STDP
kernel is can be obtained from the Predictive-Decoding Kernel and the
∆-Kernel.
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Figure 6.5.: Dynamics of the weight change ∆wij in response to randomly-generated sig-
nals from presynaptic neuron i and postsynaptic neuron j. Top: Activation
hihihi of the presynaptic neuron, alongside the quantized (spiking) representation
Q

hi
Q

hi
Q

hi, and the reconstruction of the activation from this representation
R
hi
R
hi
R
hi. Sec-

ond Row: The same for postsynaptic neuron j. Third Row: The rate
of change of the postsynaptic activity hj ∗ κ∆ ≈

.
hjhj ∗ κ∆ ≈
.
hjhj ∗ κ∆ ≈
.
hj , and the rate of change

of reconstructed post-synaptic activity:
R
hj ∗ κ∆
R
hj ∗ κ∆
R
hj ∗ κ∆. Bottom: The cumulative

weight change ∆wij(t) resulting from dynamics-based updates of Equation
6.2, the approximate dynamics-based updates from the first line of Equation
6.11, based on the reconstructions from the pre- and post-synaptic spikes,
and the STDP-updates from Equation 6.4, using the kernel in Equation 6.12.
Note that the approximate dynamics-based updates and the STDP-updates
arrive at the exact same value of ∆wij in the end. This is not a coincidence
- it is a consequence of the equivalence expressed in Equation 6.11. Note
also that despite the approximation arising from quantizing and decoding the
signal, the approximate-dynamics weight-trajectory closely matches the one
obtained from unquantized dynamics-based learning.
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6.5. Discussion

times, according to STDP. (3) Neurons use predictive coding to efficiently communicate
their signals. We show that (3) shows how (2) is actually a result of (1).
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7. Initialized Equilibrium Propagation

In Chapter 3 and ref 5, we devised schemes for training feedforward spiking neural
networks. Both of these schemes were basically quantized versions of backpropagation.
Since one basic property of biological networks is that they do not use backprop (Gap 1:
No Backprop) we began looking into ideas for how one could train a feedforward network
in a more biologically plausible way.

In Section 2.7, we introduced Equilibrium Propagation [Scellier and Bengio, 2017] - an
algorithm for training an energy-based network to minimize a supervised objective function.
Unlike backprop and some other non-backprop training schemes, such as Difference Target
Propagation [Lee et al., 2015] and Feedback Alignment Lillicrap et al. [2014], the neurons
used in Equilibrium Propagation produce only an activation, and do not need to produce
a secondary error signal to learn. Neurons are considered dynamical systems whose rate
of change is a function of the state and the inputs. Without a need for neurons to hold
their state until an error signal returns, Equilibrium Prop is a step towards training
asynchronous neural networks, and resolving Gap 4: Asynchronous Processing. What’s
missing is that it does not work on dynamic inputs - the algorithm assumes that inputs
are held fixed while the network settles to a steady state.

Instead of backpropagatating a loss-gradient, Equilbrium Propagation computes the
gradient by first presenting the input data x, letting the network settle to an energy-
minimizing state s−, then presenting the target y, which slightly perturbs output units
in the network so that they come closer to the target. The perturbation of the target
neurons also affects neurons in the rest of the network, leading neurons to settle at a new
energy-minimizing state s+. This is illustrated in the right two panes of Figure 7.1.

One impracticality with Equilibrium Propagation is that inference requires a settling
process. The network is defined by the dynamics: ∂s

∂t = −∂E(s,θ,x)
∂s , where E(s, θ, x) is

some energy function over the state of the network s, the synaptic weights θ, and inputs x,
and inference is done by presenting an input x and letting the network settle to an energy
minimum s−. The values of the output units s−O are then taken to be the prediction of
the network. The time it takes to settle scales poorly with the depth of the network,
making Equilibrium Propagation impractically slow.

Our proposed modification is to initialize the settling process with a feedforward network.
This is illustrated in the left pane of Figure 7.1. A feedforward network aims to approximate
s− with as a function sf = fφ(x). sf can then be used to initialize the settling process.
The parameters φ of the feedforward network are trained to give a better prediction of
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Negative PhaseFeed-Forward Pass

Targets (y)

Inputs (x)

Positive Phase

}States (s)

Figure 7.1.: The middle and right panels illustrate Equilibrium propagation: The net-
work first settles to a minimum conditioned on an input x, arriving at a state
s−. Then, the network is perturbed by the target, which pushes it towards
a new state s+. The parameters are then updated to bring s− closer to s+,
so that the network better predicts the target the next time around. The
left pane illustrates our modification. We initialized the settling state with a
feedforward network. This network learns to approximate the settling of s−

in one forward pass. After training, the feedforward initializing network can
be used directly for inference.

the energy-minimizing state. Specifically, the parameters φi of each feedforward neuron i
learn to minimize a local objective ‖sfi − s

−
i ‖. This feedforward network need not just be

used for initialization. Since it is being trained to approximate the energy-minimizing
state, and the energy-minimizing state is the prediction of the network, we can simply
use our feedforward net as the inference network in the end. Thus we end up with a
backprop-free, approximately gradient-based way to train a feedforward network.

7.1. Abstract

Deep neural networks are almost universally trained with reverse-mode automatic differ-
entiation (a.k.a. backpropagation). Biological networks, on the other hand, appear to
lack any mechanism for sending gradients back to their input neurons, and thus cannot be
learning in this way. In response to this, Scellier and Bengio [2017] proposed Equilibrium
Propagation - a method for gradient-based training of neural networks which uses only
local learning rules and, crucially, does not rely on neurons having a mechanism for back-
propagating an error gradient. Equilibrium propagation, however, has a major practical
limitation: inference involves doing an iterative optimization of neural activations to find
a fixed-point, and the number of steps required to closely approximate this fixed point
scales poorly with the depth of the network. In response to this problem, we propose
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Initialized Equilibrium Propagation, which trains a feedforward network to initialize the
iterative inference procedure for Equilibrium propagation. This feed-forward network
learns to approximate the state of the fixed-point using a local learning rule. After
training, we can simply use this initializing network for inference, resulting in a learned
feedforward network. Our experiments show that this network appears to work as well or
better than the original version of Equilibrium propagation while requiring fewer steps
to converge. This shows how we might go about training deep networks without using
backpropagation.

7.2. Introduction

Deep neural networks are almost always trained with gradient descent, and gradients are
almost always computed with backpropagation. For those interested in understanding
the working of the brain in the context of machine learning, it is therefore distressing
that biological neurons appear not to send signals backwards.

Biological neurons communicate by sending a sequence of pulses to downstream neurons
along a one-way signaling pathway called an “axon”. If neurons were doing backpropagation,
one would expect a secondary signalling pathway wherein gradient signals travel backwards
along axons. This appears not to exist, so it seems that biological neurons cannot be
doing backpropagation.

Moreover, backpropagation may not be the ideal learning algorithm for efficient imple-
mentation in hardware, because it involves buffering activations for each layer until an
error gradient returns. This requirement becomes especially onerous when we wish to
backpropagate through many steps of time, or through many layers of depth. For these
reasons, researchers are looking into other means of neural credit assignment - mechanisms
for generating useful learning signals without doing backpropagation.

Recently, Scellier and Bengio [2017] proposed a novel algorithm called Equilibrium
Propagation, which enables the computation of parameter gradients in a deep neural
network without backpropagation. Equilibrium Propagation defines a neural network as
a dynamical system, whose dynamics follow the negative-gradient of an energy function.
The “prediction” of this network is the fixed-point of the dynamics - the point at which the
system settles to a local minimum energy given the input, and ceases to change. Because
of this inference scheme, Equilibrium Propagation is impractically slow for large networks
- the network has to iteratively converge to a fixed point at every training iteration.

In this work, we take inspiration from Hinton et al. [2015] and distill knowledge from
a slow, energy based equilibrating network into a fast feedforward network by training
the feedforward network to predict the fixed-points of the equilibrating network with
a local loss. At the end of training, we can then discard the equilibrating network

0Code available at https://github.com/QUVA-Lab/init-eqprop
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7.3. Methods

and simply use our feedforward network for test-time inference. We thus have a way
to train a feedforward network without backpropagation. The resulting architecture
loosely resembles a Conditional Generative Adversarial Network [Mirza and Osindero,
2014], where the feedforward network produces a network state which is evaluated by the
energy-based equilibrating network.

To aid the reader, this paper contains a glossary of symbols in Appendix D.1.

7.3. Methods

7.3.1. Background: Equilibrium Propagation

Equilibrium propagation is an algorithm for training an energy-based network on a
supervised task. We refer the reader to Section 2.7 for the details of how this algorithm
works.

Because training involves many rounds of inference, and each round of inference involves
an iterative settling process, training a network with Equilibrium Propagation can be
impractically slow. In their experiments, Scellier and Bengio [2017] indicate that the
number of settling steps required scales super-linearly with the number of layers. This
points to an obvious need for a fast inference scheme.

7.3.2. Adding an Initialization Network

We propose training a feedforward network fφ(x)→ sf ∈ R|S| to predict the fixed-point
of the equilibrating network. This allows the feedforward network to achieve two things:
First, it initializes the state of the equilibrating network, so that the settling process starts
in the right regime. Second, the feedforward network can be used to perform inference at
test-time, since it learns to approximate the minimal-energy state of the equilibrating
network, which corresponds to the prediction. fφ(x) is defined as follows:

fφ(x) := (sfj : j ∈ S) ∈ R|S|

sfj := ρ


 ∑
i∈αfj ∩S

ωijs
f
i

+

 ∑
i∈αfj ∩I

ωijxi

+ cj

 ∈ R
(7.1)

Where αfj = (i : (i ∈ αj) ∧ (i < j)) is the set of feedforward connections to neuron j
(which is a subset of αj - the full set of connections to neuron j from the equilibrium
network from Equation 2.9); φ = (ω, c) is the set of parameters of the feedforward network.
This feedforward network produces the initial state of the negative phase of equilibrium
propagation network, given the input data - i.e., instead of starting at a zero-state,
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7. Initialized Equilibrium Propagation

the equilibrium-propagation network is initialized in a state sf := fφ(x). We train the
parameters φ to approximate the minimal energy state s− of the equilibrating network 1.
In other words, we seek:

φ∗ := arg min
φ

L(sf , s−) (7.2)

L(sf , s−) :=
∑
i∈S
Li(sfi , s

−
i ) :=

∑
i∈S

(sfi − s
−
i )2 (7.3)

The derivative of the forward parameters of the i’th neuron, φi = (ωαi,i, ci), can be
expanded as:

∂L
∂φi

:=
∑
j∈S

∂Lj(sfj , s
−
j )

∂φi
=

local

∂Li
∂sfi

∂sfi
∂φi

+

distant∑
j>i

∂Lj
∂sfj

∂sfj

∂sfi

∂sfi
∂φi

(7.4)

The distant term is problematic, because computing
∂sfj

∂sfi
would require backpropagation,

and the entire purpose of this exercise is to train a neural network without backpropagation.
However, we find that only optimizing the local term ∂Li

∂φi
does not noticeably harm

performance. In Section 7.3.4 we go into more detail on why it appears to be sufficient to
minimize local losses.

Over the course of training, parameters φ will learn until our feedforward network is a
good predictor of the minimal-energy state of the equilibrating network. This feedforward
network can then be used to do inference: we simply take the state of the output neurons
to be our prediction of the target data. The full training procedure is outlined in Algorithm
6. At the end of training, inference can be done either by taking the output activations
from the forward pass of the inference network fφ (Algorithm 7), or by initializing with
a forward pass and then iteratively minimizing the energy (Algorithm 8). Experiments
in Section 7.4 indicate that the forward pass performs just as well as the full energy
minimization.

1We could also minimize the distance with s+, but found experimentally that this actually works slightly
worse than s−. We believe that this is because equilibrium propagation depends on s− being very
close to a true minimum of the energy function, and so initializing the negative phase to sf ≈ s− will
lead to better gradient computations than when we initialize the negative phase to sf ≈ x+
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7.3. Methods

Algorithm 6 Training
1: Input: Dataset (x, y), Step Size ε,

Learning Rate η, Network Architec-
ture α, Number of negative-phase
steps T−, Number of positive-phase
steps T+

2: φ ←
InitializeFeedforwardParameters(α)

3: θ ←
InitializeEquilibriumParameters(α)

4: while not converged do
5: xm, ym →

SampleMinibatch(x, y)
6: s← sf ← fφ(xm)
7: for t ∈ 1..T− do # Neg. Phase
8: s← s− ε∂Eθ(s,xm)

∂s
9: end for

10: s− ← s
11: for t ∈ 1..T+ do # Pos. Phase

12: s← s− ε∂E
β
θ (s,xm,ym)

∂s
13: end for
14: s+ ← s
15: θ ← θ −

η
β

(
∂Eθ(s+,x)

∂θ − ∂Eθ(s−,x)
∂θ

)
16: φi ← φi − η

∂Li(sfi ,s
−
i )

∂φi
∀i

17: end while
18: Return: φ, θ # Parameters

Algorithm 7 Feedforward Inference
1: Input: Input Data x, Inference Pa-

rameters φ
2: s← fφ(x)
3: return (si : i ∈ O) # Output unit

states

Algorithm 8 Iterative Inference
1: Input: Input Data x, Initialization

Parameters φ, Equilibriating Param-
eters θ, Number of Negative Steps
T−

2: s← fφ(x)
3: for t ∈ 1..T− do # Neg. Phase
4: s← s− ε∂Eθ(s,xm)

∂s
5: end for
6: return (si : i ∈ O) # Output unit

states

7.3.3. Including the forward states in the energy function

The fixed point s− of the equilibrating network is a nonlinear function of x, whose value
is computed by iterative bottom-up and top-down inference using all of the parameters θ.
The initial state sf , by contrast, is generated in a single forward pass, meaning that the
function relating sfj to its direct inputs sfαj ∈ R|αj | is constrained to the form of Equation
7.1. Because of this, the computation resulting in s− may be more flexible than that of
the forward pass, so it is possible for the equilibrating network to create targets that are
not achievable by the neurons in the feedforward network. This is similar to the notion of
an “amortization gap” in variational inference, and we discuss this connection more in
Section 7.5.2.
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7. Initialized Equilibrium Propagation

Neurons in the feedforward network simply learn a linear mapping from the previous
layer’s activations to the targets provided by the equilibrating network. In order to
encourage the equilibrating network to stay in the regime that is reachable by the forward
network, we can add a loss encouraging the fixed points to stay in the regime of the
forward pass.

Eλθ (s, x) = Eθ(s, x) + λ
∑
j∈S

(sfj − sj)
2 (7.5)

Where λ is a hyperparameter which brings the fixed-points of the equilibrating network
closer to the states of the forward pass, and encourages the network to optimize the energy
landscape in the region reachable by the forward network. Of course this may reduce
the effective capacity of the equilibrating network, but if our goal is only to train the
feedforward network, this does not matter. This trick has a secondary benefit: It allows
faster convergence in the negative phase by pulling the minimum of Eλθ (s, x) closer to
the feedforward prediction, so we can learn with fewer convergence steps. It can however,
cause instabilities when set too high. We investigate the effect of different values of λ
with experiments in Appendix D.4.

7.3.4. Why the local loss is sufficient: Gradient Alignment

In Equation 7.4 we decompose the loss-gradient of parameters φ into a local and a global
component. Empirically (see Figures 7.2, 7.4), we find that using the local loss and simply
ignoring the global loss led to equally good convergence. To understand why this is the
case, let use consider a problem where we learn the mapping from an input x to a set of
neuron-wise targets: s∗. Assume these targets are generated by some (unknown) set of
ideal parameters φ∗, so that s∗ = fφ∗(x). To illustrate, we consider a two layer network
with φ = (w1, w2) and φ∗ = (w∗1, w

∗
2):

s1 = ρ(xw1) s∗1 = ρ(xw∗1) L1 = ‖s1 − s∗1‖22
s2 = ρ(s1w2) s∗2 = ρ(s∗1w

∗
2) L2 = ‖s2 − s∗2‖22

(7.6)

It may come as a surprise that when φ is in the neighbourhood of the ideal parameters
φ∗, the cosine similarity between the local and distant gradients: S

(
∂L1
∂w1

, ∂L2
∂w1

)
is almost

always positive, i.e. the local and distant gradients tend to be aligned. This is a pleasant
surprise because it means the local loss will tend to guide us in the right direction. The
reason becomes apparent when we define ∆w := w−w∗, and write out the expression for

102



7.3. Methods

0 2500 5000 7500 10000
Iterations

0

200

400

Lo
ss L( local)

L( global)

0 2500 5000 7500 10000
Iterations

0.0

0.2

0.4

0.6

Gr
ad

ie
nt

 A
lig

nm
en

t S( 1L1, 1L2 : 7)
S( 2L2, 2L3 : 7)
S( 3L3, 3L4 : 7)
S( 4L4, 4L5 : 7)
S( 5L5, 5L6 : 7)
S( 6L6, 6L7 : 7)

Figure 7.2.: We train a 6-layer network with parameters φ to predict layerwise targets
generated by another network with random parameters φ∗. Left: We compare
the convergence of the global loss of two training runs starting from the
same initial conditions and identical (untuned) hyperparamters: A network
with parameters φlocal trained using only local losses and a network with
parameters φglobal trained directly on the global loss. We note that the locally
trained network converges significantly faster, suggesting that optimization
is easier in the absence of the “confusing” distant-gradient signals from the
not-yet-converged higher layers. Right: We plot the cosine-similarity of local
and distant components of the gradient of φlocal as training progresses. We
see that as we approach convergence (as φlocal → φ∗), the local and distant
gradients tend to align.

the gradient in the limit of ∆w → 0 (see Appendix D.2 for derivation)

∂L1

∂w1
=

∆w→0
xT (x∆w1 � ρ′(xw1)� ρ′(xw1))

∂L2

∂w1
=

∆w→0

G1

xT
(
x∆w1 � ρ′(xw1)w2 � ρ′(s1w2)2wT2 � ρ′(xw1)

)
G2

xT
(
s1∆w2 � ρ′(s1w2)2wT2 � ρ′(xw1)

)
(7.7)

When the term w2 � ρ′(s1 · w2)2 · wT2 is proportional to an identity matrix, we can see that
∂L1
∂w1

and G1 are perfectly aligned. This will be the case when w2 is orthogonal and layer 2
has a linear activation. However, even for randomly sampled parameters and a nonlinear
activation, w2 � ρ′(s1 · w2)2 · wT2 tends to have a strong diagonal component and the terms
thus tend to be positively aligned. Figure 7.2 demonstrates that this gradient-alignment
tends to increase as then network trains to approximate a set of targets (i.e. as φ→ φ∗).
Note that the alignment of the local loss-gradient with the global loss-gradient is at least
as high as with the distant loss-gradient, because ∇φLglobal = ∇φLlocal +∇φLdistant and
S(∇φLdistant,∇φLlocal) ≤ S(∇φLdistant +∇φLlocal,∇φLlocal) ∀∇φLlocal,∇φLdistant.

This explains the empirical observation in Figures 7.2 and 7.4 that optimizing the local,
as opposed to the global, loss for the feedforward network does not appear to slow down
convergence: Later layers do not have to “wait” for earlier layers to converge before
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7. Initialized Equilibrium Propagation

they themselves converge - earlier layers optimize the loss of later layers right from the
beginning of training. As shown in Figure 7.2, it may in fact speed up convergence
since each layer’s optimizer is solving a simpler problem (albeit with changing input
representations for layers > 1).

When local targets s− are provided by the equilibrating network, it is not in general true
that there exists some φ∗ such that s− = s∗. In our experiments, we observed that this did
not prevent the forward network from learning to classify just as well as the equilibrating
network. However, this may not hold for more complex datasets. As mentioned in Section
7.3.3, this could be resolved in future work with a scheme for annealing λ up to infinity
while maintaining stable training.

7.4. Experiments

We base our experiments off of those of Scellier and Bengio [2017]: We use the hard
sigmoid ρ(x) = max(0,min(1, x)) as our nonlinearity. We clip the state of si to the range
(0, 1) because, since ρ′(x) = 0 : x < 0 ∨ x > 1, if the system in Equation 2.10 were run
in continuous time, it should never reach states outside this range. Borrowing a trick
from Scellier and Bengio [2017] to avoid instability problems arising from incomplete
negative-phase convergence, we randomly sample β ∼ U({−βbase,+βbase}), where βbase
is a small positive number, for each minibatch and use this for both the positive phase
and for multiplying the learning rate in Equation 2.11 (for simplicity, this is not shown in
Algorithm 6). 2 . Unlike Scellier and Bengio [2017], we do not use the trick of caching
and reusing converged states for each data point between epochs. In order to avoid “dead
gradient” zones, we modify the activation function of our feedforward network (described
in Equation 7.1) to ρmod(x) = ρ(x) + 0.01x, where the 0.01 “leak” is added to prevent the
feed-forward neurons from getting stuck due to zero-gradients in the saturated regions.
We use λ = 0.1 as the regularizing parameter from Equation 7.5, having scanned for
values in Appendix D.4.

7.4.1. MNIST

We verify that the our algorithm works on the MNIST dataset. The learning curves
can be seen in Figure 7.3. We find, somewhat surprisingly, that the forward pass of our
network performs almost indistinguishably from the performance of the negative-phase of
Equilibrium Propagation. This encouraging result shows that this approach for training
a feedforward network without backprop does indeed work. We also see from from the

2When β is negative, the positive-state s+ is pushed away from the targets, but gradients still point
in the correct direction because the learning rate is scaled by −1/β. This trick avoids an instability
when, due to incomplete negative-phase convergence, the network continues approaching the true
minimum of E(s, x) in the positive phase, and thus on every iteration contues to push down the
energy of this “true” negative minimum
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Figure 7.3.: Learning Curves on MNIST comparing the performance of Equilibrium
Propagation (Eq Prop: s−), the Forward-Pass in Initialized Equilibrium
Propagation (Fwd Eq Prop: sf ) (Algorithm 7) and the Negative Phase
in Initialized Equilibrium Propagation (Fwd Eq Prop: s−) (Algorithm 8)
Numbers indicate error at the final test. Left Column: A shallow network
with a single hidden layer of 500 units. Right Column: A deeper network
with 3 layers of [500, 500, 500] hidden units. Top Row: Training with a
small-number of negative-phase steps (4 for the shallow network, 20 for the
deeper) shows that feedfoward initialization makes training more stable by
providing a good starting point for the negative phase optimization. The Eq
Prop s− lines on the upper plots are shortened because we terminate training
when the network fails to converge. Bottom Row: Training with more
negative-phase steps shows that when the baseline Equilibrium Propagation
network is given sufficient time to converge, it performs comparably with our
feedforward network (Note that the y-axis scale differs from the top).

top-two panels of Figure 7.3 that our approach can stabilize Equilibrium-Prop learning
when we run the network for fewer steps than are needed for full convergence. By
initializing the negative phase in a close-to-optimal regime, the network is able to learn
when the number of steps is so low that plain Equilibrium Propagation cannot converge.
Moreover we note that as the number of steps is enough for convergence, there is not
much advantage to using more negative-phase iterations - the longer negative phase does
not improve our error.

In Figure 7.4 we demonstrate that using only local losses to update the feedforward
network comes with no apparent disadvantage. In line with our results from Section 7.3.4,
we see that local loss gradients become aligned with the loss gradients from higher layers,
explaining why it appears to be sufficient to only use the local gradients.
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Figure 7.4.: Test scores and gradient alignment on [784-500-500-500-10] network trained
on MNIST Left: We compare the performance of Initialized Equilibrium
Propagation when the feedforward network is trained using only local losses
vs the global loss (i.e. using backpropagation). sf denotes the forward pass
and s− denotes the state at the end of the negative phase. Note that we
observe no disadvantage when we only use local losses. Right: We observe
the same effect as for our toy problem (see Figure 7.2). Early on in training,
the local error gradients tend to align with gradients coming from higher
layers.

7.5. Related Work

The most closely related work to ours is by Bengio et al. [2016]. There, the authors
examine the idea of initializing an iterative settling process with a forward pass. They
propose using the parameters of the Equilibriating network to do a forward pass, and
describe the conditions under which this provides a good approximation of the energy-
minimizing state. Their conclusion is that this criterion is met when consecutive layers
of the energy-based model form a good autoencoder. Their model differs from ours in
that the parameters of the forward model are tied to the parameters of the energy-based
model. The effects of this assumption are unclear, and the authors do not demonstrate a
training algorithm using this idea.

Our work was loosely inspired by Hinton et al. [2015], who proposed “distilling” the
knowledge of a large neural network or ensemble into a smaller network which is designed
to run efficiently at inference time. In this work, we distill knowledge from a slow,
equilibrating network in to a fast feedforward network.

7.5.1. Relation to Adversarial Learning

Several authors [Kim and Bengio, 2016], [Finn et al., 2016], [Zhai et al., 2016] have
pointed out the connection between Energy Based Models and Generative Adversarial
Networks (GANs). In these works, a feedforward generator network proposes synthetic
samples to be evaluated by an energy-based discriminator, which learns to push down
the energy of real samples and push up the energy of synthetic ones. In these models,
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both the generator/sample proposer and the discriminator/energy-based-model are deep
feedforward networks trained with backpropagation.

In our approach, we have a similar scenario. The inference network fφ can be thought of as
a conditional generator which produces a network state sf given a randomly sampled input
datum x: sf = fφ(x). Parameters φ are trained to approximate the minimal-energy states
of the energy function: minφ ‖fφ(x) − arg minsEθ(s, x)‖. However, in our model, the
Energy-Based network Eθ(s, x) does not directly evaluate the energy of the generated data
sf , but of the minimizing state s− = arg minsEθ(s, x) which is produced by performing
T− energy-minimization steps on sf (see Algorithm 6). Like a discriminator, the energy-
based model parameters θ learn based on a contrastive loss which pushes up the energy
of the “synthetic” network state s− while pushing down the energy of the “real” state s+.

7.5.2. Relation to Amortized Variational Inference

In variational inference, we aim to estimate a posterior distribution p(z|x) over a latent
variable z given data x, using an approximate posterior q(z). Algorithms such as Expecta-
tion Maximization [Dempster et al., 1977] iteratively update a set of posterior parameters
µ per-data point, so that zn ∼ q(z|µn). In amortized inference, we instead learn a global
set of parameters φ which can map a sample xn to a posterior estimate zn ∼ qφ(z|xn).
Dayan et al. [1995] proposed using a “recognition’ network” as this amortized predictor,
and Kingma and Welling [2013] showed that you can train this recognition network
efficiently using the reparameterization trick. However, this comes at the expense of an
“amortization gap” [Cremer et al., 2018] - where the posterior estimate suffers due to the
sharing of posterior estimation parameters across data samples. Several recent works
[Marino et al., 2018], [Li et al., 2017], [Kim et al., 2018], have proposed various versions of
a “teacher-student” framework, in which an amortized network qθ(z|x) provides an initial
guess for the posterior, which is then refined by a slow, non-amortized network which
refines q(z) in several steps into a better posterior estimate. The “student” then learns to
refine its posterior estimate using the final result of the iterative inference. In the context
of training Deep Boltzmann Machines, Salakhutdinov and Larochelle [2010] trained a
feedforward network with backpropagation to initialize variational parameters which are
then optimized to estimate the posterior over latent variables.

Initialized Equilibrium Propagation is a zero-temperature analog of amortized variational
inference. In the zero-temperature limit, the mean-field updates of variational inference
reduce to coordinate ascent on the variational parameters. The function of the amortized
student network qφ(z|x) is then analogous to the function of our initializing network fφ(x),
and the negative phase corresponds to the iterative optimization of varational parameters
from the starting point provided by fφ(x).
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7.5.3. Relation to other work in Local Credit-Assignment

Another interesting approach to shortening the inference phase in Equilibrium propagation
was proposed by Kohan et al. [2018]. The authors propose a model that is almost a
feedforward network, except that the output layer projects back to the input layer.
The negative phase consists of making several feedforward passes through the network,
reprojecting the output back to the input with each pass. Although the resulting inference
model is not a feedforward network, the authors claim that this approach allows them to
dramatically shorten convergence time of the negative phase.

There is also a notable similarity between Initialized Equilibrium Propagation and
Method of Auxiliary Coordinates [Carreira-Perpinan and Wang, 2014]. In that paper, the
authors propose a scheme for optimizing a layered feedforward network which consists
of alternating optimization of the neural activations (which can be parallelized across
samples) and parameters (which can be parallelized across layers). In order to ensure
that the layer activations zk remain close to what a feedforward network can compute,
the objective includes a layerwise cost µ

2‖zk − fk(zk−1)‖2, where zk is layer k’s activation,
fk is layer k’s function, and µ is a the strength of the layerwise cost (as they anneal
µ → ∞ this cost becomes a constraint). This is identical in form and function to our
λ
∑

j∈S(sf − s−)2 term in Equation 7.5. However, they differ from our method in that
their neurons backpropagate their gradients back to input neurons (albeit only across
one layer). Taylor et al. [2016] do something similar with using the Alternating Direction
Method of Multipliers (ADMM), where Lagrange multipliers enforce the “layer matching”
constraints exactly. Both methods, unlike Equilibrium Prop, are full-batch methods.

More broadly, other approaches to backprop-free credit assignment have been tried.
Difference-Target propagation [Lee et al., 2015] proposes a mechanism to send back
targets to each layer, such that locally optimizing targets also optimizes the true objective.
Feedback-Alignment [Lillicrap et al., 2014] shows that, surprisingly, it is possible to train
while using random weights for the backwards pass in backpropagation, because the
forward pass parameters tends to “align” to the backwards-pass parameters so that the
pseudogradients tend to be within 90◦ of the true gradients. A similar phenomenon was
observed in Equilibrium Propagation by Scellier et al. [2018], who showed that when
one removed the constraint of symmetric weight in Equilibrium propagation, the weights
would evolve towards symmetry through training. Finally, Jaderberg et al. [2016] used
a very different approach - rather than create local targets, each layer predicts its own
“pseudogradient”. The gradient prediction parameters are then trained either by the true
gradients (which no longer need to arrive before a parameter update takes place) or by
backpropagated versions of pseudogradients from higher layers.
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7.6. Discussion

In this paper we describe how to use a recurrent, energy-based model to provide layerwise
targets with which to train a feedforward network without backpropagation. This work
helps us understand how the brain might be training fast inference networks. In this view,
neurons in the inference network learn to predict local targets, which correspond to the
minimal energy states, which are found by the iterative settling of a separate, recurrently
connected equilibrating network.

More immediately perhaps, this could lead towards efficient analog neural network designs
in hardware. As pointed out by Scellier and Bengio [2017], it is much easier to design an
analog circuit to minimize some (possibly unknown) energy function than it is to design a
feedforward circuit and a parallel backwards circuit which exactly computes its gradients.
However it is very undesirable for the function of a network to depend on peculiarities of a
particular piece of analog hardware, because then the network cannot be easily replicated.
We could imagine using a hybrid circuit to train a digital, copy-able feedforward network,
which is updated by gradients computed in the analog hardware. Without the constraint
of having to backpropagate through the feedforward network, designs could be simplified,
for example to do away with the need for differentiable activation functions or to use
feedforward architectures which would otherwise suffer from vanishing/exploding gradient
effects.
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One problem with Equilibrium Propagation (see Section 2.7), from a biological plausibility
perspective, is that neurons communicate real-valued activations to one another - i.e.
it does not pass Gap 2: Spiking. The algorithm depends on the network settling to
an energy-minimizing state s∗ = arg minsEθ(s, x), where s are the states of neurons
in the network and x is some input. The network does this by following dynamics
∂s
∂t = −∂Eθ(s,x)

∂s = ρ′(s)(wxsx+ wsss+ b)− s, where ρ is a nonlinear activation function,
wxs, wss, b = θ are the weight matrices and biases. When the dynamics is approximated in
discrete time with an Euler update rule, we get st+1 = st+ε (ρ′(st)(wxsx+ wssst + b)− st)

In this work, we address the question of how Equilibrium Propagation could work if
neurons faced with the same sort of communication bottleneck that biological neurons
have. We impose the constraint that, at each time step, a neuron may communicate a 1
or a 0 to the other neurons in the network. The question is how to design the dynamics
such that the network efficiently settles to the minimum of an energy function.

The most efficient way to encode a bounded real value v ∈ [0, 1) with a stream of bits is to
bisect the range at each iteration, transmitting a 1 if the value is below a bisection point
and a zero otherwise. For example the value 0.4257 would be sequentially be encoded
as [0, 1, 1, 0, 1], and reconstructed with increasing precision at [0.25, 0.375, 0.4375,
0.40625, 0.421875]. In this scheme, each additional bit communicates an increasingly fine
increment to the estimate of the value being transmitted.

However, what do we do when the underlying value is changing at the same time we are
transmitting it? This is the case for the neurons in the energy-based network used in
Equilibrium Propagation, where neurons states change as the network settles. Intuitively,
we still want neurons to use their bits to communicate their states with increasingly
high resolution as the network converges. However our encoding/decoding scheme has
to account for the fact that the underlying value being encoded will change as encoding
is taking place. Our solution is not, as one might hope, a clean, theoretically grounded
communication scheme, but an ad-hoc combination of predictive coding, sigma-delta
modulation, and adaptive-step-sized averaging.

The main contribution of this work, then, is not to propose a clean solution, but to bring
attention to the problem. Energy-based models propose that inference is the minimization
of a global energy function - i.e, the process of finding s∗ = arg minsEθ(s, x), where x is
some input and s is the states of all neurons in the network. When neurons are restricted
in their communication, how can the network most efficiently converge to find s∗?
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8.1. Abstract

Backpropagation is almost universally used to train artificial neural networks. However,
there are several reasons that backpropagation could not be plausibly implemented by
biological neurons. Among these are the facts that (1) biological neurons appear to
lack any mechanism for sending gradients backwards across synapses, and (2) biological
“spiking” neurons emit binary signals, whereas back-propagation requires that neurons
communicate continuous values between one another. Recently Scellier and Bengio [2017],
demonstrated an alternative to backpropagation, called Equilibrium Propagation, wherein
gradients are implicitly computed by the dynamics of the neural network, so that neurons
do not need an internal mechanism for backpropagation of gradients. This provides an
interesting solution to problem (1). In this paper, we address problem (2) by proposing
a way in which Equilibrium Propagation can be implemented with neurons which are
constrained to just communicate binary values at each time step. We show that with
appropriate step-size annealing, we can converge to the same fixed-point as a real-valued
neural network, and that with predictive coding, we can make this convergence much
faster. We demonstrate that the resulting model can be used to train a spiking neural
network using the update scheme from Equilibrium propagation.

8.2. Introduction

The human brain, a network of around 1011 neurons, consumes around 20W [Ling, 2001].
For comparison, a Titan X GPU running real-time object detection with YOLO [Redmon
et al., 2016], a network of around 107 neurons, consumes 250W. In the quest for more
efficient hardware for deep learning, biology is a not a bad place to start looking.

The “neurons” used in deep learning are so-named because of their loose correspondence
to biological neurons. There are however, a number of fundamental differences between
the types of neurons used in deep learning and those we observe in biology [Crick, 1989].
Among them are :

1. Biological Neurons do not do Backpropagation: Neurons used in deep learn-
ing emit two types of signals - an activation on the forward pass, and a gradient
on the backward pass. Biological neurons send signals down a one-way signalling
pathway called an axon. They appear to lack any secondary signalling mechanism
for sending gradient backwards.

2. Biological Neurons communicate with Spikes: Neurons in deep learning
have continuous, differentiable activation functions. This is necessary in order to
propagate useful gradients back through the network. Biological neurons are best
understood as dynamical systems, which output streams of all-or-nothing signals
called “spikes”, which are some function of recent inputs to the neuron.
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These two characteristics pose a conundrum to those looking to reconcile theories in
machine-learning with how the brain might be reasonably expected to operate. The recent
successes in deep learning have been based on achieving gradient-descent by propagating
error-gradients backwards through a network. But it is not clear at all how biological
neurons could achieve this.

To address the “no biological backprop” problem, Scellier and Bengio [2017] proposed
Equilibrium Propagation. This showed how one may propagate gradients through a deep
network in a setting where neurons only produce one type of signal - the forward activation.
The authors use a continuous Hopfield network [Hopfield, 1984] - a symmetrically-weighted
neural network whose dynamics are defined according to the gradient of an energy function
(∂s∂t ∝ −

∂E
∂s , where s is the state of the neurons). Learning is based on allowing the network

to converge to a fixed-point conditioned on the input data, then perturbing the output
units towards the target, letting the network settle again, and then updating parameters
to minimize a contrastive loss between the original fixed-point state and the perturbed
fixed-point. Their work showed a semi-plausible mechanism by which biological neural
networks (or artificial networks implemented as analog circuits) may be able to achieve
gradient descent.

The original formulation of Equilibrium Propagation, however, still assumes continuous-
valued units. In this paper, we constrain neurons to emit binary-valued signals, and look
at how neurons can efficiently convey their real-valued activations to other neurons despite
this bottleneck. Specifically, we show how a network of neurons can efficiently minimize
an energy function when neurons are “spiking” - i.e. constrained to only communicate
binary values at each time-step.

This line of research may be of interest for designing the next generation of neural network
hardware. A continuous-dynamical system can be implemented with an analog circuits,
but electrical issues such as capacitance, inductance, and cross-talk make it difficult to
faithfully transmit analog values over a circuit. Digital signals, by comparison, can be
transmitted with ease. The brain appears to use a hybrid approach, with neurons having
analog internal dynamics but communicating with one another using digital “spikes”.

8.3. Background

8.3.1. A Neural Network as a Dynamical System

Suppose we have a network of recurrently connected neurons with symmetric weights
(wij = wji). This is known as a continuous Hopfield Network. Hopfield [1984] proposed
an energy-function for such a network, which can be defined as:

E(s) =
1

2

∑
u

s2
i −

∑
i 6=j

wijρ(si)ρ(sj)−
∑
i

biρ(si) (8.1)
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Where si is the activation of neuron i, wij and bi are model parameters, and ρ is a
nonlinearity. Scellier and Bengio [2017] use a hard sigmoid function: ρ(s) = [s]10, where
[·]ba indicates that values outside the range of a and b are clipped to these limits. Given
this energy function, we can define the temporal dynamics that minimize this energy with
respect to activations:

∂sj
∂t

= −∂E(sj)

∂sj
= −sj + ρ′(sj)

(∑
i

wijρ(si) + bj

)
(8.2)

Where ρ′(sj) is the derivative of the activation function about sj . For implementation in
discrete time, this can be expressed as a difference-equation (this is known as the Forward
Euler Method):

stj =

[
(1− ε)st−1

j + ερ′(st−1
j )

(∑
i

wijρ(st−1
i ) + bj

)]1

0

(8.3)

Where [·]10 indicates clipping to range [0, 1] and ε ∈ (0, 1) can be seen either as the size of
the time-step or as the learning-rate of the activations. This update will converge to the
optimum for a sufficiently small ε (e.g. ε = 1

2).

8.3.2. Equilibrium Propagation

We refer the reader to Section 2.7, where we introduce Equilibrium Propagation.

8.4. Binary Communication

Suppose we now operate under the constraint that neurons can only output binary values
at each time-step. Our objective is to optimally converge to the same fixed-points as
the continuous-valued dynamical system, under the constraint of binary communication
between neurons. In other words, we constrain our neurons to obey the interface:

qtj , s
t
j , z

t
j = f(qt−1

\j , st−1
j , w\j,j , bj , z

t−1
j ) (8.4)

Where qtj ∈ {0, 1} is the binary output of neuron j, q\j ∈ {0, 1}D are the binary signals
of other neurons in the network, stj ∈ R is the external state associated with a neuron,
w\j,j , bj are the parameters associated with neuron j, and zj is the internal state of
encoders and decoders which we will discuss in the following section. Note that the only
values that are communicated between neurons are the binary qj ’s. Our goal is to design
our neurons so that despite being limited by binary communication, the states s in our
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network to converge to the same fixed point as they would when following the real-valued
dynamics of Equation 8.5.

We propose to design our neurons as follows:

utj =
∑
i

wijq
t−1
i

vtj , z
t
dec,j = dec(utj , z

t−1
dec,j)

εtj , z
t
anneal,j = anneal(εt−1

j , vtj , z
t−1
anneal,j)

stj = [(1− εtj)st−1
j + εtjρ

′(st−1
j )

(
vtj + bj

)
]10

qtj , z
t
enc,j = enc(ρ(stj), z

t−1
enc,j)

(8.5)

Where enc and dec are functions for encoding and decoding signals between neurons,
anneal is a function of updating the step size ε, and the form of internal state variables
zj = (zdec,j , zanneal,j , zenc,j) will be defined in the following sections.

In this work we show how various definitions of enc, dec and anneal affect the convergence
of our discrete dynamics to the true minimum of the energy (Equation 8.1). In the following
sections we propose a quantization method that allows our neurons to efficiently settle
towards this fixed point.

8.4.1. Stochastic Approximation

One approach we could take is to look at this as a Stochastic Approximation problem
from the perspective of each neuron. The task of Stochastic Approximation is to keep
an online estimate θ̂t of a time-varying parameter θt from a stream of noisy samples
xt = θt + ζt, where ζt is some unbiased noise. When θt is not constant in time, we stay
the input is nonstationary.

Robbins and Monro [1951] showed that if the nonstationarity is transient (θt converges
to a final value over time), we can sequentially average out the noisy samples to form
estimates:

θ̂t = (1− εt)θ̂t−1 + εtxt (8.6)

If we anneal the step-size (or learning rate) εt in such a way that
∑∞

t=0 ε
t = ∞ and∑∞

t=0(εt)2 < ∞, then our estimator eventually converges to the true parameter values
(limt→∞ θ̂

t = θt). For stationary problems, when θt = θ0 : ∀t, the optimal annealing
schedule is εt = 1

t , which corresponds to a simple moving average. For nonstationary
signals (e.g. the activations in our network, which undergo some transient dynamics
before settling), we can converge faster by forgetting early samples, so that the average is
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not corrupted by stale values. There are a number of ways to do this [George and Powell,
2006]. A simple one is to schedule the step-size as:

εt =
ε0

(t)η
(8.7)

With the exponent η ∈ (1
2 , 1). This guarantees that as t → ∞, the inputs at t = 0

diminish to have zero weight relative to the most recent inputs, but the average still
smooths over an ever-growing number of samples.

8.4.2. A Naive Approach: Stochastic Rounding and the
Robinson-Munroe Annealing

In our case, the “true” parameter θ corresponds to the total pressure exerted on neuron
j by the rest of the network: ρ′(st−1

j )
(∑

iwijρ(st−1
i ) + bj

)
(from Equation 8.3). The

noise arises from trying to represent real signals with a temporal stream of bits. The
non-stationarity arises from the fact that the rest of the network has not yet settled to
the fixed point. Note that our estimate itself affects future inputs: Neurons are connected
recurrently in a network and the estimator in neuron i affects the estimator in neuron j
which in turn affects the estimators in neuron i.

Suppose each input neuron i in Equation 8.5 stochastically outputs bits qti ∼ Bernoulli(ρ(si)),
where ρ(si) ∈ (0, 1) is the neuron’s activation. Since qti is an unbiased estimator of ρ(si),
a neuron j receiving this signal should eventually average it out, along with all its other
inputs, to achieve a correct estimate of ρ′(st−1

j )
(∑

iwijρ(st−1
i ) + bj

)
, provided that its

input neurons do indeed converge to the correct fixed point s−i . A simple communication
scheme can then be described (with reference to the variables in Equation 8.5) as:

qt = Bern(ρ(st)) Stochastic Encoder (8.8)
vt = ut Identity Decoder (8.9)

εt =
1

(t)η
Annealer (8.10)

8.4.3. Better Averaging with Adaptive Step Sizes

In choosing the step-size for stochastic optimization, we face a trade-off. Small step sizes
allow us to average out noise, but also cause our current estimates to include outdated
values of the time-varying parameter θt. It can therefore be advantageous to adaptively
adjust our step size according to our estimate of how nonstationary θ is. George and
Powell [2006] review several existing step-size adaptation algorithms and propose one
of their own called Optimal Step-Size Adaptation (OSA) which, similarly to a Kalman
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filter, adjusts its step-size according to the ratio of the estimated drift in the underlying
parameter and the noise in the measurement. OSA is “optimal” in the sense that it
optimally estimates the parameter θ if the drift and noise are known. Since they are not -
OSA also estimates these quantities, and bases the step-size on these estimates. OSA has
only a single parameter, ν̄, which is the target learning rate for estimating the drift and
noise. The full algorithm is included in Appendix E.1.

8.4.4. Better Encoding with Sigma-Delta Modulation

There are more efficient ways to communicate a time-varying real value than to send
random bits centered around that value. A simple method from signal processing for
encoding time-varying signals is Sigma-Delta modulation [Candy and Temes, 1962].
Suppose we have a time-varying input signal x1, ...xt where xτ ∈ (0, 1)∀τ . We then
quantize xt into qt according to:

φ′ = φt−1 + xt

qt =

[
φ′ >

1

2

]
Sigma Delta Encoder

φt = φ′ − qt

(8.11)

Where [a > b] evaluates to 1 if a > b and 0 otherwise. By expanding Equation 8.11
recursively, we can verify that if xt ∈ (0, 1) and φ0 = 0, the mean quantization error is
bounded: 1

T

∣∣∣∑T
t=0(xt − qt)

∣∣∣ ≤ 1
2T . So we have O(1/T ) convergence, compared to the

O(1/
√
T ) convergence that we would get from averaging out a stochastic estimator.

Note that this corresponds to an “integrate-and-fire” quantization - inputs are added to a
“potential” φ, and once that potential crosses a threshold a “spike” (q(t) = 1) is sent out,
and subtracted from the potential. Sigma-Delta modulation has previously been used
as a model of the neural spiking mechanism: [Yoon, 2016], Zambrano and Bohte [2016],
O’Connor et al. [2017].

8.4.5. Better Bit-Economy with Predictive Coding

When the signal is time-varying, it seems like a poor use of bandwidth to simply com-
municate a stream of bits that averages out to the current signal value. Instead, we
can use an encoding scheme wherein neurons primarily send temporal changes in the
signal value to downstream neurons, and downstream neurons integrate these changes.
This is an instance of Predictive Coding, a widely used concept in the Signal Processing
literature. Predictive Coding has in the past been proposed as a possible mechanism in
neural communication. [Srinivasan et al., 1982], [Shin, 2001], [Tewksbury and Hallock,
1978], [Bharioke and Chklovskii, 2015].

116



8.4. Binary Communication

Lossy Predictive Coding is a method for efficiently encoding a real-valued signal as a
bitstream, and decoding it again on the other end of a communication channel. At each
time-step, a predictor attempts to predict the current signal from past signal values, and
the prediction is subtracted from the signal before quantization. On the receiving end,
the same predictor is used to reconstruct the signal from the stream of bits. In the case
where the predictor is a linear function of past inputs, we can exploit the commutativity
of the weight-multiplication and decoding operations [O’Connor et al., 2017] to sandwich
a weight matrix between the encoders and decoders. Here, we formulate an extremely
simple predictor Pred(xt−1, ...x0) = (1− λ)xt−1 where λ ∈ (0, 1). We write our encoder
(with reference to the variables in Equation 8.5) as:

at =
1

λ

(
ρ(st)− (1− λ)ρ(st−1)

)
Predictive Encoder

qt = Q(at) (8.12)

Where Q is some (possibly stateful) quantization procedure, such Sigma-Delta modulation
(Equation 8.11) or Stochastic Rounding (Equation 8.8). On the decoding side, we sum up
the weighted quantized inputs and invert the encoding function:

utj =
∑
i

wijq
t−1
i

vtj = (1− λ)vt−1
j + λutj Predictive Decoder

(8.13)

When λ is close to 0, we have a system that only sends changes in state, and accumulates
these change in a running sum. When λ is 1, we recover the case with no predictive
coding.

8.4.6. Lambda-Annealing

As was the case with ε, it is also possible to anneal the prediction-factor λ. Intuitively,
we would like to start the convergence process with a very short memory (λ close to 1),
primarily using bits to communicate the rapidly changing current state. Later, as we
approach a fixed point, we would like to lengthen the memory (λ close to 0) and use our
bits to communicate increasingly fine increments to the state.

8.4.7. The Resulting Model

Combining Sigma-Delta encoding from Equation 8.11 with the predictive encoder/decoder
of Equations 8.12 and 8.13 by plugging them all into Equation 8.5 results in a biologically-
plausible model that applies double-exponential smoothing to inputs and produces output
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Figure 8.1.: An illustration of the evolution of a neuron in response to converging inputs.
Top: The values of three input neurons as they converge towards a fixed point.
Tick marks indicate the times where the encoders of those neurons output a 1.
Row 2: The total weighted input from the input neurons to a post-synaptic
neuron. Row 3: the step size ε and predictive-coding parameter λ as they
anneal. Bottom: A comparison of the value of the post-synaptic neuron
under the continuous dynamics (Equation 8.3, red curve) and our binary
dynamics (Equation 8.14, black curve).

spikes with an integrate-and-fire mechanism:

vtj = (1− λt)vt−1
j + λt

∑
i

wijq
t−1
i

stj = [(1− εt)st−1
j + εtρ′(st−1

j )
(
vtj + bj

)
]10

at =
1

λt
(
ρ(st)− (1− λt)ρ(st−1)

)
qtj = [φt−1

j + atj >
1

2
]

φtj = φt−1
j + atj − qtj

(8.14)

Figure 8.1 shows some example dynamics from our model.
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8.5. Experiments

We explore several combinations of the hyperparameters εt, λt, introduced in Section 8.4.
First in Section 8.5.1, we compare the rate at which these various hyperparameter settings
converge to the fixed point for randomly initialized networks. Then in Section 8.5.2 we
apply the more promising settings to train a neural network on the MNIST dataset.

8.5.1. Convergence

To understand how our encoding/decoding parameters affect the rate of convergence, we
use a randomly initialized network with 3 layers of [500-500-10] units, where the first is
considered the "input" layer and is clamped to a random input vector (sin = x). We
simulate the two-phase learning of Equilibrium Propagation by running the network for a
fixed number of steps (corresponding to the negative phase), then adding a perturbation
to the output layer, and allowing the network to settle again (corresponding to the
positive phase). We compare scheduled and adaptive (OSA) step-size annealing with and
without predictive coding. For each annealing scheme we compare, we take the optimal
hyper-parameters as found by a Gaussian Process optimizer which attempts to minimize
the error after 250 steps of convergence. We find that the best convergence is obtained by
combining OSA step-size annealing with a predictive coding (with parameter λ). The
results can be seen in Figure 8.2.

8.5.2. Equilibrium Propagation on MNIST

We applied our quantization methods to train our binary-valued network on the MNIST
dataset using Equilibrium Propagation. We compare to our implementation of continuous-
valued Equilibrium-Propagation by Scellier and Bengio [2017] for a network with [784-
500-10] units in each layer. Unlike the author’s implementation, we did not use the trick
of keeping persistent activations per training sample between epochs. This trick would
have improved the performance of both the continuous and binary network but would
not be useful in drawing conclusion about the performance of the binary network relative
to the continuous one.

In order to reach similar performance to the continuous-valued network, we had to extend
the positive and negative phases to (100, 50) steps respectively, compared to the (20,
4) steps used in real-valued equilibrium propagation. We found no significant difference
between the networks trained with OSA and with annealing schedules (after finding
the optimal annealing-parameters for each model with a Gaussian-Process parameter
search - see Appendix E.3). In the remainder of this section, we report the results for the
OSA model with a constant λ = 0.275 predictive-coding coefficient. Our binary-network
performed similarly on the test set to the continuous-valued-network (see Figure 8.3),
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Figure 8.2.: A network is presented with a constant input at t = 0, and allowed to settle.
Then at t = 100 the output layer is perturbed, and the network is allowed
to settle to the new fixed point. The y axis indicates the log-mean-error
between the true fixed-point sfixed, and the current state of s of the quantized
network. sfixed is calculated by running a continuous-valued network (with
the same parameters and input) to convergence. Note that sfixed is different
for t < 100 and t ≥ 100 due to the external perturbation at t = 100. Shaded
regions indicate the standard deviation over 20 runs with randomly initialized
networks.

achieving a (2.37% test / 0.15% training) error, compared to the continuous network’s
(2.51% test / 0.25% training) error.

We also ran our model on a deeper network with 3 hidden layers [784-500-500-500-10],
and found that our network slightly underperformed the continuous-valued network,
achieving (3.65% test/, 3.02% training) error vs (2.42% test/ 0.27 % training) error for
the continuous-valued network. The discrepancy is likely due to the quantized network
needing longer negative/positive convergence phases. The learning curves and details on
the paremetrizations of these experiments can be found in Appendix E.3.

8.6. Discussion and Related Work

Much of the work in the stochastic approximation literature is about how to adapt
step-sizes according to the statistics of the incoming sample stream [Chau and Fu, 2015],
[George and Powell, 2006]. It is unclear whether we can transfer adaptive step-size
algorithms to the similar task of choosing optimal predictive coding coefficients (λ).
The difficulty is that if the encoder of neuron i has a different predicitve coefficient
λ than the decoder of neuron j, the signal will not be correctly transmitted, but the
binary-communication constraint prohibits us from directly transmitting predictive coding
coefficients between neurons. It may be possible to define an adaptive predictive coding
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Figure 8.3.: Learning curves on the MNIST dataset, on an equilibrium propagation
network with one hidden layer (with OSA step-size adaptation and a fixed
λ = 0.275 predictive coding parameter. Blue Curves: Training/Test set
Learning curves of our implementation of “Continuous-Valued” Equilibrium
propagation by Scellier and Bengio [2017]. Orange Curve: Scores from
our Binary-Values implementation with the best-performing quantization
hyperparameters from Figure 8.2.

rule where the predictive coefficients of different neurons tend to converge so that the
network reaches the correct fixed point in the end, but this needs more work. [Bharioke
and Chklovskii, 2015] suggested that including a nonlinearity in the predictor can have
the effect of rapid online adaptation of prediction coefficients. Adaptive predictive coding
could allow us to perform efficient inference on nonstationary data. We can imagine
constructing a network where neurons use their bits to communicate fine changes in state
when the network is near a fixed point but then adapts itself to take larger, coarser steps
when it sees the input has started changing rapidly (e.g. during a saccade).

Mesnard et al. [2016] also implemented Equilibrium Propagation with spiking neurons.
Their model was primarily built to mimic the leaky-integrate-and-fire dynamics of biolog-
ical neurons. There was no annealing and their neurons do not converge to a fixed point
when presented with a constant input. They demonstrate that the model can train on a
toy dataset, but it is not clear if this approach would scale to a more standard machine
learning task.

There are still several obstacles to doing truly biologically plausible deep learning. One
subtle issue is that we rely on “capturing” a negative state s− and a positive state s+

in order to do the parameter update (Equation 2.12). This requires holding onto two
states at once - something which biological neurons seem unlikely to do. If we instead
take the approach of using the rate of change of the postsynaptic neuron at the beginning
of the positive phase, as suggested in Bengio et al. [2015b], Scellier and Bengio [2017],
(i.e. ∆wij ∝ ρ(si)

∂sj
∂t ) we have the problem that we get very noisy updates due to the

quantization.

Another lingering biological-implausibility that is not specific to our algorithm is that
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we still use symmetric weights. Learning with symmetric weights implies an additional
communication channel to synchronize synapse wij of neuron j to synapse wji of neuron
i. However recent work by [Scellier et al., 2018] and Lillicrap et al. [2014] seems to
suggest that this may not be a problem, because weights tend to align themselves to be
approximately symmetrical through learning anyway. Another obstacle is that biological
networks do not appear to have distinct forward/backward passes, or negative/positive
phases (except perhaps on the very slow timescale of the sleep/wake cycle). It is still not
clear how one could do learning in a setting where new data is continuously coming in
and we do not have the luxury of pausing our sensory input while we wait for our brains
to do a forward/backward pass or settle to an energy minimum. Even if we could, we
face the problem of Catastrophic Forgetting, wherein deep networks tend to forget old
training data when presented with a nonstationary stream of training samples (though
Kirkpatrick et al. [2017] have done some work addressing this). Finally the question of
how to learn temporal sequences without doing backpropagation-through-time remains
an open one, though recent works such as Ollivier et al. [2015] and Tallec and Ollivier
[2017] have begun to address this.

8.7. Conclusion

We demonstrate that we can train a network with Equilibrium Propagation even when
neurons are constrained to only communicate binary values. To achieve efficient commu-
nication between neurons, we use ideas from Stochastic Approximation and Predictive
Coding.

We believe that this work is relevant to designing of the next generation of neural
computing hardware. In modern computers, most of the energy cost is not spent on
computation (in terms of adds and multiples), but in moving data around Horowitz
[2014]. It seems likely that future neural computing hardware will consist of neurons
implemented as physical circuits, with computation co-located with memory, so that
parameter values never need to be moved. The main energetic bottleneck will then be
the communication between neurons. In the brain, Attwell and Laughlin [2001] estimate
that 81% of metabolic energy is spent on sending signals between neurons. It makes
sense then, that neurons should have evolved to use the minimum number of spikes to
communicate what they need to communicate. If the brain is doing something similar to
Equilibrium Propagation, then neurons compute by collectively trying to find the fixed
point of a dynamical system. Our work addresses the question of how we can efficiently
find this fixed point when there is a communication bottleneck between neurons.

Code is available at https://github.com/quva-lab/spiking-eqprop

122

https://github.com/quva-lab/spiking-eqprop


9. Discussion

It should be clear at this point that we are still a few breakthroughs away from having a
learning system which shares the basic characteristics of biological learning. Here we will
review the "Gaps" between biological and machine learning systems that we discussed in
Section 1.5, and review our contribution to closing them, while being forthright about
the shortcomings of our own approaches.

9.1. The Gaps

Gap 1: No Backprop

Rather than invent our own way out of backprop, we stood on the shoulders of giants and
built on Equilibrium Propagation [Scellier and Bengio, 2017] as a method for training
a neural network without backprop. In Initialized Equilibrium Propagation (Chapter
7), we showed how the we can use Equilibrium Propagation to provide (approximate)
gradients to train a feedforward network. In Spiking Equilibrium Propagation (Chapter
8), we showed how this idea could work even when communication between neurons is
bottlenecked.

The problem is that Equilibrium Propagation is not a useful or complete answer to
backprop-free training. Each iteration of training involves an iterative settling process, and
the time required for this settling process to converge gets longer as the network gets larger.
Our approach of initializing settling with a feedforward network, in Initialized Equilibrium
Propagation, only partially alleviated the slow-convergence problem. Especially as the
network got deeper, it still required many iterations of convergence per training iteration
to provide suitable gradients for training the feedforward network.

Perhaps the solution is to give up on the idea that biological networks even try to minimize
a global loss by gradient descent. Rather, it is possible that each layer of neurons greedily
optimizes some local objective, without explicitly optimizing any well defined loss function.
The idea of greedily training layers on local objectives goes back to Hinton et al. [2006].
Recently, Löwe et al. [2019] showed that for some image and speaker identification tasks,
a greedy, unsupervised local training scheme on the lower layers can substantially help
supervised tasks that are learned on higher-layer representations.

Intuitively, it makes sense that there should be some top-down feedback in feature learning.
For an animal in the wild, only a small subset of the sensory world is relevant to survival,
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and it makes sense that low-level feature extractors should be tuned to look for things
that matter in the environment. However, this top-down feedback need not be internal
to the network. If the higher layers control the movements of the animal’s eyes, it may
simply be that the feedback comes in the form of where the animal chooses to look - lower
layers then adjust themselves to learn a feature representation of whatever the higher
layers make them look at.

However, neuroanatomy suggests that in-network top-down feedback does play an impor-
tant role in perception. A review by Chen et al. [2009] suggests that top-down connections
in the brain may serve primarily to modulate the activations of bottom-up connections.
One interpretation of this [Rao and Ballard, 1999] is that top-down connections attempt
to predict the future states of lower layers, and it is these prediction errors that are
transmitted up. Such a scheme turns the backpropagation-trained network on its head.
Higher layers predict the future activations of lower layers via feedback connections, and
feedfoward connections transmit the prediction errors back up.

It thus remains unclear how, or even if, biological networks do assign credit to low-level
parameters for their contribution to solving high-level objectives. The circuitry is there -
there are ample feedback connections to communicate error information back to lower
layers - but it is still unclear of how a low level synapse could know its contribution
to solving a high level objective. Equilibrium Propagation, and its extensions [Scellier
et al., 2018] provides an enticing framework for how this may happen, but it makes too
many biologically unrealistic, not to mention computationally inefficient, assumptions
(see following sections) to be a solution on its own.

Gap 2: Spiking

One conclusion of this thesis is that it seems likely that the brain uses some form of intra-
neuron predictive coding1 to communicate values between neurons. Predictive coding
makes sense from a signal-processing standpoint because it aims to make maximally
efficient use of spikes to transmit the unpredictable components of a signal - allowing the
boring and predictable components to be reconstructed on the other end.

In Chapter 4 we proposed communicating change of state between neurons to reduce
inter-neuron communication when processing temporal data. In Chapter 5 we proposed
that the transmitted signal should really be a combination of the current value of the
signal and the rate of change, in order for training to work - and showed that this was
an instance of predictive coding. In Chapter 6 we showed that predictive coding, when
combined with dynamics-based learning, actually explains the Spike-Timing-Dependent
Plasticity (STDP) learning rule first observed in experimental neuroscience [Markram
and Sakmann, 1995]. In Chapter 7 we did not address the issue at all, and in Chapter
8 we combined this scheme with a dynamical model of neurons and experimented with

1We say intra-neuron to contrast with the network-level forms of predictive coding proposed by Rao
and Ballard [1999] and Oord et al. [2018], which the brain may also be doing for all we know.
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dynamically adapting the encoding and decoding coefficients to allow a dynamical network
to optimally converge to the correct fixed-point.

Given that we were perusing the goal of reducing inter-neuron communication, it is
interesting that the resulting model shares a lot of features in common with biological
neurons.

The neuron-model we arrived at in Chapter 8 was:

vtj = (1− λ)vt−1
j + λ

∑
i

wijq
t−1
i

stj = [(1− ε)st−1
j + ερ′(sj

t−1)
(
vtj + bj

)
]10

at =
1

λ

(
ρ(stj)− (1− λ)ρ(st−1

j )
)

qtj = [φt−1
j + atj >

1

2
]

φtj = φt−1
j + atj − qtj

(9.1)

Converted to a continuous time dynamical system 2, this becomes:

v̇j = λ

(
−vj +

∑
i

wijqi

)
(9.2)

ṡj = ε
(
− sj + ρ′(sj)(vj + bj)

)
(9.3)

ȧj =
1

λ
ρ̇(sj)− ρ(sj) (9.4)

qj = δφj> 1
2

(9.5)

φ̇j = aj − qj (9.6)

What’s interesting here is that we came to this neuron model by (1) trying to train a
network without backprop and (2) trying to design an efficient model by bottlenecking
communication between neurons. Yet without explicitly designing for it, our model has
several characteristics of biological neurons.

1. Double-Exponential smoothing: Equations 9.2 and 9.3 implement double-
exponential temporal smoothing on their inputs. In a biological neuron, the first
smoothing on v can be seen as the effect of the input-spike on the input-current to
cell, and the second, on s, can be seen as the effect of the leaky integration of the
membrane potential.

2The [·]10 term disappears when ρ(x) = [x]10, because it is already impossible for sj to be driven out of
the range [0, 1]
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2. Integrate-and-Fire Spiking: The spiking mechanism in Equations 9.5 and 9.6
involves integrating a potential until a it crosses a threshold and then resetting. This
quantization scheme is known as Sigma-Delta Modulation, and we use it because it
allows downstream neurons to estimate the value of sj faster than if we were to use
another scheme like a Poisson process for conveying a time-varying real-value in
bits.

In summary, we propose that the spiking code arises from neurons trying to communicate
real-values to one-another with as few spikes (and thus as little energy expenditure) as
possible. Under our model, neurons communicate using a combination of predictive-coding
and sigma-delta modulation to convey their values to one another.

Gap 3: Nonstationary Data

In Chapters 4 and 5 we dealt with one aspect of the Non-IID data problem. We propose
how, when the data arrives as a temporally redundant (and therefore non-IID) time-series,
we can avoid the redundant computation that comes with passing every frame though the
network independently. Instead we propose a quantized communication scheme wherein
neurons primarily send their state change to other neurons.

There are other aspects to the IID data problem that we have not addressed here:

• Learning without Catastrophic forgetting. When the data distribution shifts
over training, a network trained on this data experiences a phenomenon known
as Catastrophic Forgetting, wherein old data are completely forgotten as new data
come in. Several authors, [Nguyen et al., 2017], [Kirkpatrick et al., 2017], have
proposed how this problem can be mitigated by selectively making some parameters
of the network less learnable once they have become useful for one task.

• Credit assignment through time. Non-IID data implies that target variables
yt are not independent of past inputs x0..xt−1. For infinite streams of data, back-
propagating back to the beginning of the sequence at each step is infeasible, and
truncating the number of time-steps introduces a bias. This problem is tackled
by Tallec and Ollivier [2017], where they propose a scheme for approximate credit-
assignment in this “infinite non-IID data stream” setting.

Gap 4: Asynchronous Processing

We did not discover an “asynchonous” way to train neural networks. However, as we
worked on this problem, it became clear that there are a few aspects to the notion of an
“asynchonous” network:

• No Locking: Jaderberg et al. [2016] first described the problem of “locking” in
neural networks - where a neuron that has just completed its forward pass is “locked”

126



9.2. Conclusion

- in the sense that it must remember the state of its inputs - until it receives a
backpropagated gradient. Neurons in Equilibrium propagation do not have a locking
problem (they may forget their past input once they’ve computed their output),
but they achieve this at the cost of introducing a new type of non-asynchronicity:

• No loops within loops: Equilibrium Propagation requires an iterative conver-
gence on each round of training, during which the input data must be held constant.
In a network running in real-time, this is an unreasonable constraint.

• Communication does not scale with frame-rate: As we discussed in Section
1.6.1, real-world data often does not come in complete frames describing the entire
state of the world, but may often come from several sensors operating at different
rates, each describing an update to the world-state. Any model that needs to do a
full update with each new datum is impractical in such a setting. The models we
describe in Chapters 4: Sigma-Delta Quantized Networks and 5: Temporally Efficient
Deep Learning with Spikes have the property that the rate of communication within
the network need not scale with the frame-rate of the input data. However, there
remains a problem with training. Sigma-Delta Quantized networks are only used
for inference, not training, and the model in 5 is not asynchronous in the sense that
it relies on backprop, and thus suffers from the locking sort of non-asynchronicity.

We are still missing a way to train networks in a truly asynchronous way. The primary
reason for this is that it is unclear how to assign credit effectively in such a system. At
present, all known forms of gradient-based credit assignment introduce some form of
“locking” - wherein one component of the network must hold its state until a feedback
signal arrives allowing it to update. This locking can either be on the level of the neuron
(as in regular backprop) or on the level of the network (as in Equilibrium Prop).

Gap 5: No Shared Parameters

In this thesis we do not attack the problem of how we can train without shared parameters.
However, this may not matter. Backprop requires that the network doing the backward
pass use the same parameters as the forward pass. Equilibrium propagation, upon which
we build our last two works, does not necessarily require this. As shown empirically
by Scellier et al. [2018], when one simply removes the symmetric-weight constraint that
wij = wji (and therefore removes the existence of an energy-function), the algorithm still
works. All that is required is that the network-dynamics to a fixed point. Symmetric
weights guarantee this condition, but are not necessarily required.

9.2. Conclusion

There has been a lot of talk about biologically plausible, learning systems, and how they
can help make machine learning systems more scalable, energy efficient, and applicable
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to raw, real-world data. But obviously not all characteristics of biological systems are
necessary or desirable. To use a common analogy, airplanes do not flap their wings. Nor
are they feathered. Engineers isolated the key principle that allows birds to fly - the
airfoil, and proceeded to design aircraft from first principles rather than mimicry. Human
flight would probably have gotten off to a much rocker start had engineers insisted on
basing early aircraft designs on a wholesale replication of avian anatomy.

Likewise, we need to identify the core characteristics that make biological networks work,
and ignore the rest. Thus, we would like to conclude by creating a checklist of the
characteristics of biological systems that we believe are desirable to replicate in machine
learning systems.

1. Efficient Credit Assignment [ECA] - Neurons update their parameters in the
direction of the gradient, and learning is at least on the same order of efficiency as
gradient-descent.

2. Efficient Credit Assignment through Time [ECAT] - Neurons can update
their parameters to optimize future losses without keeping a buffer of their states
and backpropagating through these.

3. Non-Locking Neurons [NLN] - Neurons simply process their inputs and produce
outputs, they do not need to wait for an error signal to return to update before
forgetting their input signals.

4. Efficient Inference [EI] - Inference can be performed on new data efficiently,
i.e. without requiring a minimization process or scanning through past data for
comparison.

5. Asynchronous Data Processing [ADP] - The network can receive sequential
data in parts (e.g. the Camera/Gyro example from Section 1.6), and update its
state without entirely recomputing a forward pass from scratch.

6. Quantized Communication [QC] - The components in the network communicate
sparse, discrete signals.

7. Continual Learning [CL] - The network can learn from a non-IID data stream
without catastrophic forgetting.

Table 9.1 matches these characteristics to our algorithms and a selection of related works
discussed in this thesis.

At present, and to our knowledge, there is no learning algorithm that meets all of these
criteria. It seems plausible, given progress on multiple fronts, that one will come along
in the next few years. The discovery of a “brain-like” learning algorithm will not mean
that the singularity has arrived and that we have entered into the era of artificial general
intelligence - after all, fruit fly brains would probably fill all of the checkboxes in the
above table. It will however, make it much easier to apply to machine learning to natural,
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Algorithm ECA ECAT NLN EI ADP QC CL
BackProp X X
Equilbrium Prop
Scellier and Bengio [2017] X1 X4

Difference Target Prop
Lee et al. [2015] X1 X

Synthetic Gradients
Jaderberg et al. [2016] X1 X X

Binary Weights and Activations
Courbariaux et al. [2016] X1 X X

Unbiased Online Recurrent Optimization
Tallec and Ollivier [2017] X X2 X3 X

Variational Continual Learning
Nguyen et al. [2017] X X X

Deep Spiking Networks
Chapter 3 X1 X4 X X

Sigma Delta Quantized Networks
Chapter 4 X1 X X X

Temporally Efficient Deep Learning with Spikes
Chapter 5 X1 X X X

Initialized Equilibrium Propagation
Chapter 7 X1 X4 X

Spiking Equilibrium Propagation
Chapter 8 X1 X4 X

The Brain ?5 ?5 X X6 X X X

Table 9.1.: 1. While these algorithms do have efficient credit assignment, they all make use
of some approximation which may be detrimental. Specifically, the algorithm
may work in small-scale networks but not generalize well at scale.
2. UORO’s method of credit-assignment through time involves making stochas-
tic approximations to the gradients. So the efficiency of estimating the gradient
comes at the cost of added noise.
3. UORO has neurons that do not lock for the purposes of backpropagating
gradients back-through-time, but they still face the locking-with-depth that
ordinary networks do.
4. While these methods all have Non-Locking Neurons (which do not need
to hold their state while waiting for a gradient to propagate back), they do
require that network settles to a fixed point at every training iteration, which
is a network-level form of “locking”.
5. It is obviously difficult to compare biological networks to artificial networks
on machine learning tasks. Adult brains come with a huge amount of super-
vised pre-training built in, giving them an unfair advantage, and infant brains
are uncooperative in experiments, so we can not make clear comparisons to
artificial networks about the efficiency of credit assignment.
6. Studies on primates [Hung et al., 2005] suggest the existence of a fast
feedforward inference circuit in the brain, based on the fact that it is possibly
to infer from neural recordings which object the eyes have seen after a short
(as little as 12.5ms) delay, which would only leave time for a few feedforward
synaptic transmissions.
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asynchronous, nonstationary data, and it will make it easier to design scalable, modular,
energy-efficient hardware on which to run neural networks.
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A. Deep Spiking Networks

A.1. Algorithms

A.1.1. Proof of convergence of Spike-Vector Quantization

Here we show that if we obtain events 〈(in, sn) : n ∈ [1..N ]〉 given a vector ~v and a time
T from the Spiking-Vector Quantization Algorithm then:

lim
T→∞

~v =
1

T

N∑
n=1

~einsn (A.1)

Algorithm 9 Spiking Vector Quantization

1: Input: ~v ∈ Rd, T ∈ N
2: Internal: ~φ ∈ Rd ← ~0
3: for t ∈ 1...T do
4: ~φ← ~φ+ ~v
5: while max(|~φ|) > 1

2 do
6: i← argmax(|~φ|)
7: s← sign(φi)
8: ~φi ← ~φi − s
9: FireSpike(source = i, sign = s)

10: end while
11: end for

Since ∀i : −1
2 < φi <

1
2 the L1 norm is bounded by:

‖φT ‖L1 = ‖
T∑
t=1

v −
N∑
n=1

einsn‖L1 <
l(~v)

2
(A.2)

where l(~v) is the number of elements in vector ~v. We can take the limit of infinite time,
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A. Deep Spiking Networks

and show that our spikes converge to form an approximation of ~v:

lim
T→∞

:
1

T
‖φT ‖L1 = lim

T→∞
: ‖ 1

T

T∑
t=1

v − 1

T

N∑
n=1

~einsn‖L1 = 0

lim
T→∞

: ~v =
1

T

N∑
n=1

~einsn

(A.3)

A.1.2. Stochastic Sampling

Algorithm 10 Stochastic Sampling of events from a vector
1: Input: vector v, int T
2: mag ← sum(abs(~v))
3: ~p = abs(~v)/mag
4: for t ∈ [1...T ] do
5: N = poisson(mag)
6: for n ∈ [1...N ] do
7: i← DrawSample(~p)
8: s← sign(vi)
9: FireSignedSpike(index = i, sign = s)

10: end for
11: end for

A.1.3. Spiking Stream Quantization

In our modification to Spiking Vector Quantization, we instead feed in a stream of vectors,
as in Algorithm 11.

Algorithm 11 Spiking Stream Quantization

1: Input: ~vt ∈ Rd, t ∈ [1..T ]
2: Internal: ~φ ∈ Rd ← ~0
3: for t ∈ 1...T do
4: ~φ← ~φ+ ~vt
5: while max(|~φ|) > 1

2 do
6: i← argmax(|~φ|)
7: s← sign(φi)
8: ~φi ← ~φi − s
9: FireSpike(source = i, sign = s)

10: end while
11: end for
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A.1. Algorithms

If we simply replace the term
∑T

t=1 ~v in Equation A.3 with
∑T

t=1 ~vt, and follow the same
reasoning, we find that we converge to the running mean of the vector-stream.

lim
T→∞

:
1

T
‖φT ‖L1 = lim

T→∞
: ‖ 1

T

T∑
t=1

vt −
1

T

N∑
n=1

~einsn‖L1 = 0

lim
T→∞

:
1

T

T∑
t=1

~v =
1

T

N∑
n=1

~einsn

(A.4)

A.1.4. Rectified Stream Quantization

We can further make a small modification where we only send positive spikes (so our ~φ
can get unboundedly negative.

Algorithm 12 Rectified Spiking Stream Quantization

1: Input: ~vt ∈ Rd, t ∈ [1..T ]
2: Internal: ~φ ∈ Rd ← ~0
3: for t ∈ 1...T do
4: ~φ← ~φ+ ~vt
5: while max(~φ) > 1

2 do
6: i← argmax(~φ)
7: ~φi ← ~φi − 1
8: FireSpike(source = i, sign = +1)
9: end while

10: end for

To see why this construction approximates a ReLU unit, first observe that the total
number of spikes emitted can be computed by considering the total cumulative sum∑T

t=1 vj,t. More precisely:

Nj,T = max
(
0,
⌊

max
T ′∈[1...T ]

( T ′∑
t=1

vj,t +
1

2

)⌋)
(A.5)

where Nj,T indicates the number of spikes emitted from unit j by time T and b·c indicates
the integer floor of a real number.

Assume the vj,t are IID sampled from some process with mean E[vj,t] = µj and finite
standard deviation σj . Define ζj,t = vj,t−µj which has zero mean and the cumulative sum
ξj,T =

∑T
t=1 ζj,t which is martingale. There are a number of concentration inequalities,

such as the Bernstein concentration inequalities Fan et al. [2012] that bound the sum or
the maximum of the sequence ξj,T under various conditions. What is only important for
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A. Deep Spiking Networks

us is the fact that in the limit T →∞ the sums ξj,T concentrate to a delta peak at zero in
probability and that we can therefore conclude

∑T
t=1 vj,t → Tµj from which we can also

conclude that the maximum, and thus the number of spikes will grow in the same way.
From this we finally conclude that Nj,T

T → max(0, µ), which is the ReLU non-linearity.
Thus the mean spiking rate approaches the ReLU function of the mean input.

A.2. MLP Convergence

Figure A.1.: A 3-layer MLP (784-500-500-10) MLP with random weights (∼ N (0, 0.1))
is fed with a random input vector, and a forward pass is computed. We
compare the response of the ReLU network to the counts of spikes from
our spiking network, and see that over all layers, the responses converge as
T →∞. Note both x and y axes are log-scaled.
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A.3. A Training Iteration

Algorithm 13 Pseudocode for a single Training Iteration on a network with one
hidden layer with Fractional Stochastic Gradient Descent

1: procedure TrainingIteration(~x ∈ Rdin , ~y ∈ Rdout , T ∈ N, η ∈ R)
2: Variables: ~u ∈ Rdout ← ~0, Whid ∈ Rdin×dhid , Wout ∈ Rdhid×dout
3: for t ∈ 1...T do
4: InputLayer.forward(~x)
5: OutputLayer.backward(~u− ~y)
6: end for
7: procedure InputLayer(~v ∈ Rdin)
8: Internal: ~φ ∈ Rdin
9: ~φ⇐ ~φ+ ~v

10: while max(|~φ|) > 1
2 do

11: i← argmax(|~φ|)
12: s = sign(φi)
13: φi ← φi − s
14: HiddenLayer(i, s)
15: end while
16: end procedure

Object: HiddenLayer
17: Internal: ~cin ∈ Rdin ← ~0, ~cout ∈ Rdhid ← ~0
18: procedure Forward(i ∈ [1..din], s ∈ [−1,+1])
19: Internal: ~φ ∈ Rdhid
20: cini ← cini + s
21: ~φ⇐ ~φ+ s · [Whid]i,·
22: ~cout ← ~cout + [Whid]i,·
23: while max(~φ) > 1

2 do
24: i← argmax(~φ)
25: φi ← φi − 1
26: OutputLayer(i, +1)
27: end while
28: end procedure
29: procedure Backward(~v ∈ Rdhid)
30: Internal: ~φ ∈ Rdhid
31: ~φ⇐ ~φ+ ~v � [ ~cout > 0]
32: while max(|~φ|) > 1

2 do
33: j ← argmax(|~φ|)
34: s = sign(φi)
35: φj ← φj − s
36: [Whid]·,j ← [Whid]·,j − η · s · ~cin . Update to Whid

37: end while
38: end procedure

Object: OutputLayer
39: Internal: ~cin ∈ Rdhid ← ~0
40: procedure Forward(i ∈ [1..dhid], s ∈ [−1,+1])
41: cini ← cini + s
42: Global: ~u← ~u+ s · [Wout]i,· . Update to ~u
43: end procedure
44: procedure Backward(v ∈ Rdout)
45: Internal: ~φ ∈ Rdout
46: ~φ⇐ ~φ+ ~v
47: while max(|~φ|) > 1

2 do
48: j ← argmax(|~φ|)
49: s = sign(φi)
50: φi ← φi − s
51: [Wout]·,j ← [Wout]·,j − η · s · ~cin . Update to Wout

52: HiddenLayer.Backward(s · [Wout]·,j)
53: end while
54: end procedure
55: end procedure
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A.4. Network Diagram

A.4. Network Diagram

Figure A.2.: The architecture of the Spiking MLP. On the top, we have a conventional
neural network of rectified linear units with one hidden layer. On the bottom,
we have the equivalent spiking network.

A.5. Hyperparameters

Our spiking architecture introduced a number of new hyperparameters and settings that
are unfamiliar with those used to regular neural networks. We chose to evaluate these
empirically by modifying them one-by-one as compared to a baseline.

• Fractional Updates.

– False (Baseline): We use the standard stochastic-gradient descent method
– True: We use our new Fractional Stochastic Gradient Descent method -

described in section 3.4.7
• Depth-First

– False (Baseline): Events are propagated "Breadth-first", meaning that, at a
given time-step, all events are collected from the output of one module before
any of their child-events are processed.
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A. Deep Spiking Networks

– True: If an event from module A creates child-events from module B, those are
processed immediately, before any more events from module A are processed.

• Smooth Weight Updates

– False (Baseline): The weight-update modules take in a count of spikes from
the previous layer as their input.

– True: The weight-update modules take the rectified cumulative sum of the
pre-quantized vectors from the previous layer - resulting in a smoother estimate
of the input.

• Backwards-Quantization:

– No-Reset-Quantization (Baseline): The backwards quantization modules do
not reset their ~φs with each training iteration.

– Random: Each element of ~φ is randomly selection from the interval [−1
2 ,

1
2 ] at

the start of each training iteration.
– Zero-Reset: The backwards quantizers reset their ~φs to zero at the start of

each training iteration.
• Number of time-steps: How many time steps to run the training procedure for each

sample (Baseline is 10).

Since none of these hyperparameters have obvious values, we tested them empirically
with a network with layer sizes [784-200-200-10], trained on MNIST. Table A.1 shows the
affects of these hyperparameters.

Table A.1.: Percent error on MNIST for various settings. We explore the effects of
different network settings by changing one at a time, training on MNIST,
and comparing the result to a baseline network. The baseline network has
layer-sizes [784, 200, 200, 10], uses regular (non-fractional) stochastic gradient
descent, uses Breadth-First (as opposed to Depth-First) event ordering, does
not use smooth weight updates, uses the "No-reset" scheme for its backward
pass quantizers, and runs for 10 time-steps on each iteration.

Variant % Error

Baseline 3.38
Fractional Updates 3.10
Depth-First Propagation 81.47
Smooth Gradients 2.85
Smooth & Fractional 3.07
Back-Quantization = Zero-Reset 87.87
Back-Quantization = Random 3.15
5 Time Steps 4.41
20 Time Steps 2.65

Most of the Hyperparameter settings appear to make a small difference. A noteable
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exception is the Zero-Reset rule for our backwards-quantizing units - the network learns
almost nothing throughout training. The reason for this is that the initial weights, which
were drawn from N (0, 0.01) are too small to allow any error-spikes to be sent back (the
backward-pass quantizers never reach their firing thresholds). As a result, the network
fails to learn. We found two ways to deal with this: “Back-Quantization = Random”
initializes the ~φ for the backwards quantizers randomly at the beginning of each round of
training. “Back-Quantization = No-Reset” simply does not reset ~φ in between training
iterations. In both cases, the backwards pass quantizers always have some chance at
sending a spike, and so the network is able to train. It is also interesting that using
Fractional Updates (FSGD) gives us a slight advantage over regular SGD (Baseline).
This is quite promising, because it means we have no need for multiplication in our
network - As Section 3.4.7 explains, we simply add a column to the weight matrix every
time an error spike arrives. We also observe that using the rectified running sum of the
pre-quantization vector from the previous layer as our input to the weight-update module
(Smooth Gradients) gives us a slight advantage. This is expected, because it is simply a
less noisy version of the count of the input spikes that we would use otherwise.

A.6. Event Routing

Since each event can result in a variable number of downstream events, we have to think
about the order in which we want to process these events. There are two issues:

1. In situations where one event is sent to multiple modules, we need to ensure that
it is being sent to its downstream modules in the right order. In the case of the
SMLP, we need to ensure that, for a given input, its child-events reach the filters in
the backward pass before its other child-events make their way around and do the
backward pass. Otherwise we are not implementing backpropagation correctly.

2. In situations where one event results in multiple child-events, we need to decide
in which order to process these child events and their child events. For this, there
are two routing schemes that we can use: Breadth-first and depth-first. We will
outline those with the example shown in Figure A.3. Here we have a module A that
responds to some input event by generating two events: a1 and a2. Event a1 is sent
to module B and triggers events b1 and b2. Event a2 is sent and triggers event b3.
Table A.2 shows how a breadth-first vs depth-first router will handle these events.
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Breadth-First Depth-First

B(a1) B(a1)
B(a2) D(b1)
C(a1) D(b2)
C(a2) C(a1)
D(b1) B(a2)
D(b2) D(b3)
D(b3) C(a2)

Table A.2.: Depth-First and Breadth-First routing differ in their order of event processing.
This table shows the order of event processed in each scheme. Refer to A.3.

A

B

C

D
a1 → b1, b2
a2 → b3

Figure A.3.: A simple graph showing 4 modules. Module A generates an event a1 that
causes two events: b1 and b2. These are then distributed to downstream
modules. The order in which events are processed depends on the routing
scheme.

Experimentally, we found that Breadth-First routing performed better on our MNIST
task, but we should keep an open mind on both methods until we understand why.
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B.1. Delta-Herding Proof

Algorithm 14 Herding

1: Internal: ~φ ∈ Rd ← ~0
2: Input: ~xt ∈ Rd
3: ~φ← ~φ+ ~xt
4: ~s← round(~φ)
5: ~φ← ~φ− ~s
6: Return: ~s ∈ Id

Algorithm 15 Delta-Herding

1: Internal: ~slast ∈ Id ← ~0
2: Input: ~xt ∈ Rd
3: ~s← round(xt)
4: ∆~s← ~s− ~slast
5: ~slast ← ~s
6: Return: ∆~s ∈ Id

In previous work [O’Connor and Welling, 2016a], we used a quantization scheme which
we refer to as herding for brevity and because of its relation to the deterministic sampling
scheme in [Welling, 2009], but could otherwise be called Discrete-Time Bidirectional
Sigma-Delta Modulation. The procedure is described in Algorithm 14. The input is
summed into a potential φ over time until crossing a quantization threshold (in this case
the ±1

2 at which the round function changes value), and then resets.

Here we prove that Algorithm 15 is equivalent to applying Algorithm 14 to the output of
a temporal difference modules. i.e. herd(∆t(xt)) = ∆T (round(xt))∀t.

First start by observing the following equivalence:

b = round(a)⇔ |a− b| < 1

2
: b ∈ I (B.1)

We can apply this to the update rule in Algorithm 14:

st = round(φt−1 + xt) ∈ I
φt = (φt−1 + xt)− st

(B.2)

⇒ |φt| <
1

2
(B.3)
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Now, if we unroll the two Equations B.2 over time, with initial condition φ0 = 0, we see
that.

φt =

t∑
τ=1

xτ −
t∑

τ=1

sτ : φt ∈ R, xτ ∈ R, sτ ∈ I (B.4)

Using Equations B.3 and B.1, respectively, we can say:

|φ| =

∣∣∣∣∣
t∑

τ=1

xt −
t∑

τ=1

sτ

∣∣∣∣∣ < 1

2
(B.5)

⇒
t∑

τ=1

sτ = round

(
t∑

τ=1

xτ

)
(B.6)

Which can be rearranged to solve for st.

st = round

(
t∑

τ=0

xτ

)
− round

(
t−1∑
τ=0

xτ

)
(B.7)

Now if we receive inputs from a ∆T unit: xτ = uτ − uτ−1 with initial condition u0 = 0,
then:

~st = round

(
t∑

τ=0

(uτ − uτ−1)

)
− round

(
t−1∑
τ=0

(uτ − uτ−1)

)
(B.8)

= round (ut)− round (ut−1) (B.9)
= ∆T (round(ut)) (B.10)

Leaving us with the Delta-Herding algorithm (Algorithm 15).

Therefore, if we have a linear function w(x), and make use of Equation 4.1, then we can
see that the following is true:

ΣT (w(herd(∆T (x)))) = ΣT (w(∆T (round(x)))) = w(ΣT (∆T (round(x)))) = w(round(x))
(B.11)

B.2. Calculating Flops

When computing the number of operations required for a forward pass, we only account
for the matrix-products/convolutions (which form the bulk of computation in done by a
neural network), and not hidden layer activations.

We compute the number of operations required for a forward pass of a fully connected
network as follows:
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B.2. Calculating Flops

For the non-discretized network, the number of flops for a single forward pass of a single
data point through the network, the flop count is:

nF lopsdense =

L−1∑
l=0

(dl · dl+1 + (dl − 1) · dl+1 + dl+1) = 2

L−1∑
l=0

dl · dl+1 (B.12)

Where dl is the dimensionality of layer l (with l = 0 indicating the input layer). The
first term counts the number of multiplications, the second the number of additions for
reducing the dot-product, and the third the addition of the bias.

It can be argued that this is an unfair way to count the number of computations done
by the non-discretized network because of the sparsity of the input layer (due to the
zero-background of datasets like MNIST) and the hidden layers (due to ReLU units).
Thus we also compute the number of operations for the non-discretized network when
factoring in sparsity. The equation is:

nF lopssparse =

L−1∑
l=0

(
Nl∑
i=0

([al]i 6= 0) · dl+1 +

(
Nl∑
i=0

([al]i 6= 0)− 1

)
· dl+1 + dl+1

)

= 2
L−1∑
l=0

Nl∑
i=0

([al]i 6= 0) · dl+1

(B.13)

Where al are the layer activations Nl is the number of units in layer l and ([al]i 6= 0) is 1
if unit i in layer l has nonzero activation and 0 otherwise.

For the rounding networks, we count the total absolute value of the discrete activations.

nF lopsRound =

L−1∑
l=0

(
Nl∑
i=0

|[sl]i| · dl+1 + dl+1

)
(B.14)

Where sl is the discrete activations of layer l. This corresponds to the number of operations
that would be required for doing a dot product with the “sequential addition” method
described in Section 4.4.2.

Finally, the Sigma-Delta network required slightly fewer flops, because the bias only need
to be added once (at the beginning), so its cost is amortized.

nF lopsΣ∆ =

L−1∑
l=0

Nl∑
i=0

|[sl]i| · dl+1 (B.15)
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B.3. Baking the scales into the parameters

In Section 4.5.1, we mention that we can “bake the scales into the parameters” for ReLU
networks. Here we explain that statement.

Suppose you have a function

f(x) = k2 · h
(
x · w

k1

)

If our nonlinearity h is homogeneous (i.e. k · h(x) = h(k · x)), as is the case for relu(x) =
max(0, x), we can collapse the scales k into the parameters:

f(x) = k2 · relu(x · w/k1 + b) (B.16)
= relu (x · w · k2/k1 + k2 · b) (B.17)

So that after training scales, for a given network, we can simply incorporate them into
the parameters, as: w′ = w · k2/k1, and b′ = k2 · b.

B.4. Temporal MNIST

The Temporal MNIST dataset is a version of MNIST that is reshuffled so that similar
frames end up being nearby. We generate this by iterating through the dataset, keeping
a fixed-size buffer of candidates for the next frame. On every iteration, we compare
all the candidates to the current frame, and select the closest one. The place that this
winning candidate occupied in the buffer is then filled by a new sample from the dataset,
and the winning candidate becomes the current frame. The process is repeated until
we’ve sorted though all frames in the dataset. Code for generating the dataset can
be found at: https://github.com/petered/sigma-delta/blob/master/sigma_delta/
temporal_mnist.py

156

https://github.com/petered/sigma-delta/blob/master/sigma_delta/temporal_mnist.py
https://github.com/petered/sigma-delta/blob/master/sigma_delta/temporal_mnist.py


B.5. MNIST Results Table

B.5. MNIST Results Table

Mnist Temp mnist
Setting Net Type KFlops Test (ds\sp) Class error (tr\ts) Int32-Energy (nJ) KFlops Test (ds\sp) Class error (tr\ts) Int32-Energy (nJ)
========== ========== ========== ========== ========== ========== ========== ==========
Unoptimized Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173

Round 44 2.12 \ 4.21 4.42 44 2.12 \ 4.21 4.42
Σ∆ 53 2.12 \ 4.21 5.32 24 2.12 \ 4.21 2.49

λ=1e-10 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 209 0.07 \ 2.39 20.9 209 0.07 \ 2.39 20.9
Σ∆ 245 0.07 \ 2.39 24.6 110 0.07 \ 2.39 11

λ=3.59e-10 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 206 0.058 \ 2.3 20.7 206 0.058 \ 2.3 20.7
Σ∆ 243 0.058 \ 2.3 24.3 109 0.058 \ 2.3 11

λ=1.29e-09 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 178 0.094 \ 2.42 17.8 178 0.094 \ 2.42 17.8
Σ∆ 207 0.096 \ 2.42 20.7 92 0.094 \ 2.42 9.2

λ=4.64e-09 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 164 0.084 \ 2.41 16.4 164 0.084 \ 2.41 16.4
Σ∆ 193 0.082 \ 2.41 19.4 87 0.084 \ 2.41 8.75

λ=1.67e-08 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 122 0.19 \ 2.55 12.2 122 0.19 \ 2.55 12.2
Σ∆ 144 0.19 \ 2.55 14.5 65 0.19 \ 2.55 6.58

λ=5.99e-08 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 86 0.476 \ 2.88 8.66 86 0.476 \ 2.88 8.66
Σ∆ 102 0.478 \ 2.88 10.3 47 0.476 \ 2.88 4.71

λ=2.15e-07 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 72 1.17 \ 3.28 7.21 72 1.17 \ 3.28 7.21
Σ∆ 87 1.18 \ 3.28 8.78 41 1.17 \ 3.28 4.15

λ=7.74e-07 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 44 2.32 \ 4.26 4.49 44 2.32 \ 4.26 4.49
Σ∆ 54 2.32 \ 4.27 5.46 26 2.32 \ 4.26 2.61

λ=2.78e-06 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 34 5.91 \ 7.37 3.49 34 5.91 \ 7.37 3.49
Σ∆ 45 5.9 \ 7.37 4.53 23 5.9 \ 7.37 2.3

λ=1e-05 Original 397 \ 107 0.024 \ 2.24 636 \ 173 397 \ 107 0.024 \ 2.24 636 \ 173
Round 24 14.6 \ 14.6 2.5 24 14.6 \ 14.6 2.5
Σ∆ 35 14.6 \ 14.6 3.58 19 14.6 \ 14.6 1.98

Table B.1.: Results on the MNIST and Temporal-MNIST datasets. MFlops indicates
the number of operations done by each network. For the Original Network,
the number of Flops is considered when using both (Dense / Sparse) matrix
operations. The “Class Error” column shows the classification error on the
training / test set respectively. The “Energy” is an estimate of the average
energy that would be used by arithmetic operations per sample, if the network
were implemented with all integer values. This is based on the estimates of
Horowitz [2014]. Again, for the Original Network, the figure is based on the
numbers for dense/sparse matrix operations.

B.6. High-Level Feature Stability

We had initially expected that, when a convolutional network is tasked with processing
subsequent frames of video, high-level features would change much more slowly than
the pixels and low-level features. This would give a computational advantage to our
Sigma-Delta networks, whose computational cost scales with the amount of change in
the feature representations. To our surprise, this appeared not to be the case. See the
final plot of Figure 4.5. To verify that this was a property of the original convolutional
network (and not somehow related our discretization scheme), we take the same snippet
of video used for Figure 4.5 and measure the inter-frame differences. Figure B.1 shows

157



B. Sigma Delta Quantized Networks

the results of this small experiment, and confirms that our initial belief - that inter-frame
differences should become smaller and smaller at higher layers, was not quite correct.
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Figure B.1.: Top-Left: A heatmap showing the L1-distances between the feature repre-
sentations (post-nonlinearity) of adjacent frames from the video in Figure
4.5 at different layers (rows) and frames (columns). The input is considered
to be layer 0. Feature representations have been L1-normalized per-layer
Bottom Left: The L1-Norms (which are 1 due to the normalization) and
inter-frame L1-Distances for each layer, averaged over frames. Top and
Bottom Right: The same measurements, with the cosine-similarity metric
instead of L1. We note from these plots that the inter-frame difference is not
much smaller in higher layers than it is at the pixel level, and that in the
lower layers, feature representations of neighbouring frames are significantly
more dissimilar than they are at the pixel level.

159



C. Temporally Efficient Deep Learning
with Spikes

C.1. Notation

Here we present a legend of notation used throughout this paper. While the paper is
intended to be self-contained, the reader may want to consult this list if ever there is any
doubt about the meaning of a variable used in the paper. Here we indicate the section in
which each symbol is first used.

Section 5.3.1

∆: A “temporal difference” operator. See Equation 5.1

Σ: A “temporal integration” operator. See Equation 5.2

Q: Sigma-Delta quantization. See Equation 5.3

φ: The internal state variable of the quantizer Q.

enc: An “encoding” operation, which takes a signal and encodes it into a combination of
the signal’s current value and its change in value since the last time step. See Equation
5.4.

dec: A “decoding” operation, which takes an encoding signal and attempts to reconstruct
the original signal that it was encoded from. If there was no quantization done on the
encoded signal, the reconstruction will be exact, otherwise it will be an approximation.
See Equation 5.5.

R: The “rounding” operation, which simply rounds an input to the nearest integer value.

xt: Used throughout the paper to represent the value of a generic analog input signal at
time t. In Sections 5.3.1, 5.3.2, and 5.3.3 it represents a scalar, and thereafter it represents
a vector of inputs.

Section 5.3.2

kp, kd ∈ R+: Positive scalar coefficients used in the encoder and decoder, controlling how
the extent to which the encoding is proportional to the input (kp) vs proportional to the
temporal difference of the input (kd).

at , enc(xt): Used to represent the encoded version of xt.
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C.1. Notation

Section 5.3.3

st , Q(at): Used to represent the quantized, encoded version of xt.

x̂t , dec(st): Used to represent the reconstruction of input xt„ obtained by encoding,
quantizing, and decoding xt.

Section 5.3.4

wt ∈ Rdin×dout is the value of a weight matrix at time t.

zt , xt·wt ∈ Rdout is the value of a pre-nonlinearity hidden layer activation in a non-spiking
network at time t.

ẑt , dec(Q(enc(xt)) ·wt) ∈ Rdout is the value of a pre-nonlinearity hidden layer activation
in the spiking network at time t. It is an approximation of zt.

Section 5.3.5

(·wl) indicates applying a function which takes the dot-product of the input with the l’th
weight matrix: (·wl)(x) , x · wl

hl indicates an elementwise nonlinearity (e.g. a ReLU).

Ql indicates the quantization step applied at the l’th layer (because quantization has
internal state, φ, and an associated layer dimension, we use the subscript to distinguish
quantizers at different layers.)

decl, encl are likewise the (stateful) encoding/decoding functions applied before/after
layer l.
∂L
∂zl

is the derivative of the loss with respect to the (pre-nonlinearity) activation of layer l.

(·wTl ) indicates the dot product with the transpose of wl. This is simply backpropagation
across a weight matrix: If u , x · wl, then ∂L

∂x = ∂L
∂u · w

T
l

ẑl is the approximation to the (pre-nonlinearity) activation to layer l (ie the output of
decl), computed by the spiking network.

(�h′l(ẑl)) is a function that performs an elementwise multiplication of the input with the
derivative of nonlinearity hl evaluated at ẑl. This is simply backpropagation across a
nonlinearity: If u , hl(x), then ∂L

∂x = ∂L
∂u � h

′
l(x)

decbackl , encbackl , Qbackl serve the same functions as decl, encl, Ql, but for the backward
pass.

∂̂L
∂ẑl
∈ Rdl Is our approximation to the derivative of the loss of our network with respect to

ẑl, which is itself an approximation of the activation zl in a non-spiking implementation
of the network.

Section 5.3.6
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C. Temporally Efficient Deep Learning with Spikes

In the updates section we describe how we calculate the weight gradients in layer l.
Because this description holds for any arbitrary layer, we get rid of the layer subscript
and use the following notation:

xt , hl−1(zl−1,t) ∈ Rdin here is defined as a shorthand for “the input to layer l”.

et , ∂̂L
∂ẑl,t
∈ Rdout is simply a shorthand for “the approximate backpropagated gradient at

layer l”

(x̄t and ēt) are the encoded and quantized versions of signals (xt and et)

(x̂t and êt) are the reconstructed versions of signals (xt and et), taken from the quantized
(x̄t and ēt)

∂̂L
∂w recon,t

, x̂t ⊗ êt ∈ Rdin×dout is the approximate gradient of weight matrix w, as
calculated by taking the outer product of the (input, error) reconstructions, x̂, ê.(
∂̂L
∂wpast,t

, ∂̂L∂w future,t

)
are the gradient approximations at time t taken using the (past,

future) approximation methods, defined in Appendix C.4. They are more efficient to
calculate than ∂̂L

∂w recon,t
but converge to the same value when averaged over time (i.e.

limT→∞
1
T

∑T
t
∂̂L
∂w future,t

= 1
T

∑T
t
∂̂L
∂w recon,t

(see Figure C.1).

Section 5.3.7

∂̂L
∂w stdp,t

is the gradient approximation taken using the STDP-type update. It also converges

to the same value as ∂̂L
∂w recon,t

when averaged out over time.

kα , kd
kp+kd

∈ [0, 1], kβ , 1
kp+kd

∈ R+: A reparametrization of kp, kd in terms of the mem-
ory in our decoder kα and the scaling of our encoded signal (kβ). This reparametrization
is also used when discussing the automatic tuning of kp, kd to match the dynamic range
of our data in Appendix C.5

C.2. Relation to Predictive Coding

Our encoding/decoding scheme is an instance of predictive coding - an idea imported from
the signal processing literature into neuroscience by Srinivasan et al. [1982] wherein the
power of a transmitted signal is reduced by subtracting away the predictable component
of this signal before transmission, then reconstructing it after (This requires that the
encoder and decoder share the same prediction model).

Bharioke and Chklovskii [2015] formulate feedforward predictive coding as follows (with
variables names changed to match the conventions of this paper):
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C.3. Sigma-Delta Unwrapping

at , xt − Cfeedforward(xt−1, xt−2, ...) (C.1)

= xt −
∞∑
τ=1

ωτxt−τ In the case of Linear Predictive Coding (C.2)

Where the reconstruction is done by:

xt = at + Cfeedforward(xt−1, xt−2, ...) (C.3)

They go on to define “optimal” liner filter parameters [w1, w2, ...] that minimize the average
magnitude of at in terms of the autocorrelation and signal-to-noise ratio of x.

Our scheme defines:

at , kpxt + kd(xt − xt−1) = (kp + kd)

(
xt −

kd
kp + kd

xt−1

)
(C.4)

So it is identical to feedforward predictive coding with ωτ =

{
kd

kp+kd
if τ = 1

0 otherwise
up to a

scaling constant of (kp + kd). In our case, the function of this additional constant is to
determine the coarseness of the quantization.

From this relationship it is clear that this work could be extended to come up with more
efficient predictive coding schemes which could further reduce computation by learning
the temporal characteristics of the input signal.

C.3. Sigma-Delta Unwrapping

Here we show that Q = ∆ ◦R ◦Σ, where Q,∆, R,Σ are defined in Equations 5.3, 5.2, 5.6,
5.1, respectively.

From Equation 5.3 (Q) we can see that

yt ← round(xt + φt−1) ∈ Z
φt ← φt−1 + xt − yt ∈ R
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Now we can unroll for yt and use the fact that if s ∈ Z then round(a+ s) = round(a) + s:

yt = round(xt + φt−1)

= round(xt + φt−2 + xt−1 − yt−1)

= round(xt + xt−1 + φt−2)− yt−1

= round(xt + xt−1 + φt−2)− round(xt−1 + φt−2)

=

(
round(

t∑
τ=1

xτ + ���
0

φ0)−
t−2∑
τ=0

yτ

)
−

(
round(

t−1∑
τ=1

xτ + ���
0

φ0)−
t−2∑
τ=0

yτ

)

= round(
t∑

τ=1

xτ )− round(
t−1∑
τ=1

xτ )

(C.5)

At which point it is clear that Q is identical to a successive application of a temporal
summation, a rounding, and a temporal difference. That is why we say Q = ∆ ◦R ◦ Σ.

C.4. Update Algorithms

In Section 5.3.6, we visually describe what we call the “Past” and “Future” parameters
updates. Here we present the algorithms for implementing these schemes.

To simplify our expressions in the update algorithms, we re-parametrize our kp, kd
coefficients as kα , kd

kp+kd
, kβ , 1

kp+kd
.

past : (x̄ ∈ Zdin , ē ∈ Zdout) 7→ ∂̂L
∂w past

Persistent: w, u ∈ Rdin×dout ,
x̂← 0din , ê← 0dout

i← x̄ 6= 0, j ← ē 6= 0

x̂← kαx̂ , ê← kαê

v ← x̂i ⊗ êj ∈ R
∑
i′ [x̄i′ 6=0]×

∑
j′ [ēj′ 6=0]

∂̂L
∂w past,i,j

← ui,j − v
1− k2

α

x̂← x̂+ kβx̄, ê← ê+ kβ ē

ui,j ← v
(C.6)

future : (x̄ ∈ Zdin , ē ∈ Zdout) 7→ ∂̂L
∂w future

Persistent: w ∈ Rdin×dout ,
x̂← 0din , ê← 0dout

x̂← kαx̂

ê← kαê+ kβ ē

∂̂L
∂w future

← x̄⊗ ê+ x̂⊗ ē
k2
α − 1

x̂← x̂+ kβx̄
(C.7)
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Figure C.1.: In Section 5.3.6 and 5.3.7, we described 4 different update rules (“Recon-
struction”, “Past”, “Future”, and “STDP”), and stated that while they do
not necessarily produce the same updates at the same times, they produce
the same result in the end. Here we demonstrate this empirically. We
generate two random spike-trains representing the presynaptic input and the
postsynaptic error signal to a single synapse and observe how the weight
changes according to the different update rules. Top: A randomly generated
presynaptic quantized signal x̄, along with its reconstruction x̂. Middle: A
randomly generated postsynaptic quantized error signal ē, along with its
reconstruction ê. Bottom: The cumulative weight update arising from our
four updates methods. "recon" is just

∑t
τ=1 x̂τ êτ , “past” and “future” are

described in Section 5.3.6 and “STDP ” is described in Section 5.3.7. Note
that by the end all methods arrive at the same final-weight value.

C.5. Tuning kp, kd

C.5.1. Causes of approximation error

Equation 5.7 shows how we make two approximations when approximating zt = xt ·wt with
ẑt = (dec ◦w ◦Q ◦ enc)(xt). The first is the “nonstationary weight” approximation, arising
from the fact that w changes in time. The second is the “quantization” approximation,
arising from the quantization of x. Here we do a small experiment in which we multiply a
time-varying scalar signal xt with a time-varying weight wt for many different values of
kp, kd to understand the effects of kp, kd on our approximation error. The bottom-middle
plot in Figure C.2 shows that we enter a high-reconstruction-error regime (blue on plot)
when kd is small (high quantization error), or when kd >> kp (high nonstationary-weight
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C. Temporally Efficient Deep Learning with Spikes

error). The bottom-right plot shows that blindly increasing kp and kd leads to representing
the signal with many more spikes. Thus we need to tune hyperparameters to find the
“sweet spot” where reconstruction error is fairly low but our encoded signal remains fairly
sparse, keeping computational costs low.
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Figure C.2.: Top Left: A time varying signal xt, the quantized signal Q(enc(xt)), and
the time-varying “weight” wt. Bottom Left: Compare the true product of
these signals xt ·wt with the dec(enc(xt) ·wt), which shows the effects of the
non-stationary weight approximation, and dec(Q(enc(xt)) · w) which shows
both approximations. Top Middle: The Cosine distance between the “true”
signal x�w and the approximation due to the nonstationary w, scanned over
a grid of kp, kd values. Top Right: The cosine distance between the “true”
signal and the approximation due to the quantization of x. Bottom Middle:
The Cosine Distance between the “true” signal and the full approximation
described in Equation 5.7. This shows why we need both kp and kd to be
nonzero. Bottom Right: The Number of spikes in the encoded signal. In
a neural network this would correspond to the number of weight-lookups
required to compute the next layer’s activation: dec(Q(enc(x))� w).

C.5.2. An auto-tuning scheme for kp, kd

The smaller the magnitude of a signal, the more severely distorted it is by our quantization-
reconstruction scheme. We can see that scaling a signal by K has the same effect on the
quantized version of the signal, st, as scaling kp and kd by K: st = (Q ◦ enckp,kd)(Kxt) =
Q(kpKxt+kd(Kxt−Kxt−1)) = Q(Kkpxt+Kkd(xt−xt−1)) = (Q◦encKkp,Kkd)(xt). The
fact that the reconstruction quality depends on the signal magnitude presents a problem
when training our network, because the error gradients tend to change in magnitude
throughout training (they start large, and become smaller as the network learns). To keep
our signal within the useful dynamic range of the quantizer, we apply a simple scheme to
heuristically adjust kp and kd for the forward and backward passes separately, for each
layer of the network. Instead of directly setting kp, kd as hyperparameters, we fix the
ratio kα , kd

kp+kd
, and adapt the scale kβ , 1

kp+kd
to the magnitude of the signal. Our

166



C.6. MNIST Results

update rule for kβ is:

µt = (1− ηk)µt−1 + ηk · |xt|L1

kβ = kβ + ηk(k
rel
β · µt − kβ)

(C.8)

Where ηk is the scale-adaptation learning rate, µt is a rolling average of the L1 magnitude
of signal xt, and krelβ defines how coarse our quantization should be relative to the
signal magnitude (higher means coarser). We can recover kp, kd for use in the encoders
and decoders as kp = (1 − kα)/kβ and kd = kα/kβ. In our experiments, we choose
ηk = 0.001, krelβ = 0.91, kalpha = 0.91, and initialize µ0 = 1.

C.6. MNIST Results

Here we show training scores and computation for the PDNN and MLP under dif-
ferent input-orderings (the unordered MNIST vs the ordered Temporal MNIST) and
hidden layer depths. We notice no dropoff in performance of the PDNN (as compared
to an MLP) with the same architecture as we add hidden layers - indicating that the
accumulation of quantization noise over layers appears not to be a problem. For all
experiments, the PDNN started with kα = 0.5, and this was increased to kα = 0.9
after 1 epoch (see Appendix C.1 for the meaning of kα). Note that the numbers
for Mean Computation are counting additions for the PDNN, and multiply-adds for
the MLP, so they are not directly comparable (a 32-bit multiply, if implemented in
fixed point, is 32 times more energetically expensive than an add [Horowitz, 2014])
dataset hidden_sizes Network kOps/sample Training Score Test Score
mnist [200] PDNN 711000 100 98.34
mnist [200] MLP 314000 100 98.3
mnist [200, 200] PDNN 1000000 99.82167 98.18
mnist [200, 200] MLP 434000 100 98.5
mnist [200, 200, 200] PDNN 1300000 99.91 98.16
mnist [200, 200, 200] MLP 554000 99.99333 98.39
mnist [200, 200, 200, 200] PDNN 1620000 99.96 98.41
mnist [200, 200, 200, 200] MLP 674000 99.99167 98.28
temporal_mnist [200] PDNN 484000 100 98.39
temporal_mnist [200] MLP 314000 100 98.2
temporal_mnist [200, 200] PDNN 740000 99.97833 98.27
temporal_mnist [200, 200] MLP 434000 100 98.38
temporal_mnist [200, 200, 200] PDNN 967000 99.98 98.31
temporal_mnist [200, 200, 200] MLP 554000 99.99833 98.45
temporal_mnist [200, 200, 200, 200] PDNN 1170000 99.995 98.18
temporal_mnist [200, 200, 200, 200] MLP 674000 100 98.53
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C. Temporally Efficient Deep Learning with Spikes

C.7. Sample frames from the YouTube-BB Dataset

skateboard bird horse bear

elephant bird elephant boat

potted plant bird skateboard bird

skateboard horse bear boat

Figure C.3.: 16 Frames from the Youtube-BB dataset. Each video annotated as having
one of 24 objects in it. It also comes with annotated bounding-boxes, which
we do not use in this study.

C.8. Instability in Neural Network Representations

Figure 5.8 seems to show that computation doesn’t quite approach zero as our frame-rate
increases, but flat-lines at a certain point. We think this may have to do with the fact
that hidden layer activations are not necessarily smoother in time than the input. We
demonstrate this by taking 5 video snippets from the Youtube-BB dataset and running
them through a (non-spiking) 19 layer VGGNet architectures [Simonyan and Zisserman,
2014], which was pre-trained on ImageNet.

Given these 5 snippets, we measures how much the average relative change in layer
activation |at−at−1|

2(|at|+|at−1|) varies as we increase our frame-rate, at various layer-depths. We
simulate lower frame rates by skipping every N’th frame of video. (so for example to
get a 10FPS frame rate we simply select every 3rd frame of the 30FPS video). For each
selected frame rate, and for the given layers, we measure the average inter-frame change
at various layers:
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C.8. Instability in Neural Network Representations

FPS(n) = 30/n x-axis (C.9)

RelChange(n) =
1

S

S∑
s=1

T/n∑
t=1

|ant − a(n−1)t|
2(|ant|+ |a(n−1)t|)

y-axis (C.10)

Where:
S = 5 is the number of video snippets we average over
T is the number of frames in each snippet
at is the activation of a layer at time t
n is the number of frames we are skipping over.

This shows something interesting. While our deeper layers do indeed show less relative
change in activation over frames than our input/shallow layers, we note that as frame-
rate increases, this seems to approach zero much more slowly than our input/shallow
layers. This is a problem for our method, which relies on temporal smoothness in all
layers (especially those hidden layers with large amounts of downstream units) to save
computation. It suggests that methods for learning slow feature detectors - layers that are
trained specifically to look for slowly varying features of the input, may be helpful to us.
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Figure C.4.: The average relative change in layer activation between frames, as frame-rate
increases. For increasing network depth (red=shallow, violet=deep)
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D. Initialized Equilibrium Propagation

D.1. Glossary

Here we we have a reference of symbols used in the paper, in (Greek, Latin) alphabetical
order.

αi ⊂ {j : j ∈ S, j 6= i}: The set of neurons in the Equilibrating Network that connect to
neuron i

αfi = {j : j ∈ αi, j < i}: The set of neurons in the Feedforward Network connected to
neuron i.

β ∈ R: The perturbation factor, which modulates how much the augmented energy Eβθ is
affected by the output loss.

η ∈ R+: The learning rate.

θ: The set of parameters (all wij ’s and bj ’s, in the Equilibrating network)

ρ: a neuron nonlinearity. In all experiments it is ρ(x) = max(0,min(1, x))

φ = (ω, c): The set of parameters (all ωij ’s and cj ’s), in the feedforward network

φj : The set of parameters (all ω·j ’s and cj ’) belonging to a neuron j

(ω, c): The (weights, biases) of the feedforward network. Collectively called φ

C(sO, y) ∈ R: The output loss function, defined on the states of the output units.

Eθ(s, x) ∈ R: The energy function of the Equilibrating network (Equation 2.9) produces
a scalar energy given a set of states s and input x

Eβθ (s, x, y) = Eθ(s, x) + β ∂C(sO,y)
∂s ∈ R: The augmented energy function of the Equilibrat-

ing network, when it has been perturbed by a factor β by target data y

fφ(x) 7→ sf : The initialization function: A feedforward network which initializes the state
of the Equilibrating network.

I: The set of indices of input neurons.

L: The total loss in the Feedforward network’s prediction. Defined in Equation 7.3

Li: The local loss on the i′th neuron in the feedforward network. Defined in Equation 7.3
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D. Initialized Equilibrium Propagation

O: The set of indices output neurons, a subset of S

S: The set of inidices non-input neurons.

s: The set of neuron states. s := {si : i ∈ S} ∈ Rdim(S)

s− := arg minsE(s, x) ∈ Rdim(S): The minimizing state of the Energy function.

s+ := arg minsE
β
θ (s, x, y) ∈ Rdim(S) The minimizing state of the augmented energy

function.

sf := fφ(x)z ∈ Rdim(S): The state output by the feedforward network.

sO ∈ Rdim(O): the states of the output units

T−, T+: Hyperparameters for Equilibrium Prop defining the number of steps of conver-
gence of the negative/positive phase.

w, b: the parameters of the Equilibrating network (collectively called θ)

x ∈ Rdim I : The input data

y ∈ RdimO: The target data
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D.2. Gradient Alignment

Here to derive the result in Equation 7.7. First, we restate Equation 7.6 substituting
w∗ = w + ∆w:

s1 = ρ(xw1) s∗1 = ρ(x(w1 −∆w1)) L1 = ‖s1 − s∗1‖22
s2 = ρ(s1w2) s∗2 = ρ(s∗1(w2 −∆w2)) L2 = ‖s2 − s∗2‖22

Where:

x ∈ RN×D0 ; s1, s
∗
1 ∈ RN×D1 ; s2, s

∗
2 ∈ RN×D2 ; w1,∆w1 ∈ RD0×D1 ; w2,∆w2 ∈ RD1×D2

Now we will compute the gradient of each of the local losses with respect to ∆w1, in the
limit where ∆w1 is small.

∂L1

∂w1
=
∂L1

∂s1

∂s1

∂w1

=
((

(s1 − s∗1)� ρ′(xw)
)T · x)T

=

g(∆w1)

xT
((
ρ(xw1)− ρ(x(w1 −∆w1))

)
�ρ′(xw1)

)
lim∆w→0= g(0) + ∆w1

∂g

∂∆w1
(0) (1st order Taylor Expansion about ∆w1 = 0)

= xT
(
ρ(x(w1 − 0))− ρ(xw1))ρ′(xw1)

)
+ xT

(
x∆w1 � ρ′(xw1)ρ′(xw1)

)
= 0 + xT

(
x∆w1 � ρ′(xw1)2

)
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D. Initialized Equilibrium Propagation

∂L2

∂w1
=
∂L2

∂s2

∂s2

∂s1

∂s1

∂w1

=
((

(s2 − s∗2)� ρ′(s1w2)wT2 ρ
′(xw1)

)T
x
)T

= xT
(

(s2 − s∗2)� ρ′(s1w2)wT2 ρ
′(xw1)

)
=

g(∆w1,∆w2)

xT
((
ρ(ρ(xw1)w2)− ρ(ρ(x(w1 −∆w1))(w2 −∆w2))

)
� ρ′(ρ(xw1)w2)wT2 ρ

′(xw1)
)

lim∆w→0= g(0, 0) + ∆w1
∂g

∂∆w1
(0, 0) + ∆w2

∂g

∂∆w2
(0, 0) (1st order Taylor Expansion about ∆w1 = 0,∆w2 = 0)

= 0

G1

+xT
(
x∆w1 � ρ′(xw1)w2 � ρ′(s1w2)2wT2 � ρ′(xw1)

) G2

+xT
(
s1∆w2 � ρ′(s1w2)2wT2 � ρ′(xw1)

)
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D.3. Gradient Alignment at Initialization

Why do we observe gradient alignment even at random initialization? Let us start with
the same 2-layer network defined in Appendix D.2

∂L1

∂w1
=
∂L1

∂s1

∂s1

∂w1

=
((

(s1 − s∗1)� ρ′(xw)
)T · x)T

= xT
((
ρ(xw1)− ρ(xw∗1)

)
�ρ′(xw1)

)
=

GA

xTρ(xw1)�ρ′(xw1)− xTρ(xw∗1)�ρ′(xw1)

∂L2

∂w1
=
∂L2

∂s2

∂s2

∂s1

∂s1

∂w1

=
((

(s2 − s∗2)� ρ′(s1w2)wT2 ρ
′(xw1)

)T
x
)T

= xT
(

(s2 − s∗2)� ρ′(s1w2)wT2 ρ
′(xw1)

)
= xT

((
ρ(ρ(xw1)w2)− ρ(ρ(xw∗1)w∗2)

)
� ρ′(ρ(xw1)w2)wT2 ρ

′(xw1)
)

=

GB

xT
(
ρ(ρ(xw1)w2)� ρ′(ρ(xw1)w2)wT2 ρ

′(xw1)
)
−

xT
(
ρ(ρ(xw∗1)w∗2)� ρ′(ρ(xw1)w2)wT2 ρ

′(xw1)
)

GA andGB tend to be aligned because the terms ρ(xw1) and ρ(ρ(xw1)w2)�ρ′(ρ(xw1)w2)wT2
tend to be aligned. Suppose ρ is a piecewise saturating nonlinearity (as we have in this
paper) with ρ(x) = [a if (x < a);x if (x ∈ [a, b]); b otherwise]

Then we can define a weight matrix w′2 by filtering rows of w2 to only include weights
projecting to non-saturated neurons: w′2 = [w

(i)
2 ∀i : ρ′(ρ(xw1)w

(i)
2 ) 6= 0] Where w(i)

2

denotes the i′th row of w2.

Then our second term can be rewritten as: ρ(ρ(xw1)w2)�ρ′(ρ(xw1)w2)wT2 = ρ(xw1)w′2w
′T
2 .

Given a random matrix w′2, the matrix w′2w′T2 will tend to have a strong diagonal compo-
nent, causing this term to be aligned with ρ(xw1)
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D. Initialized Equilibrium Propagation

D.4. Effect of λ parameter

In Equation 7.5 we introduce a new parameter λ which encourages the state of the
equilibrating network to state close to that of the forward pass. Here we perform a sweep
of parameter λ to evaluate its effect.
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Figure D.1.: Here we scan the λ parameter and plot the final score at the end of training.
Each point in each plot corresponds to the final score of a network with
parameter λ fixed at the given value throughout training. The top row of
plots is a for a small network with one hidden layer of 500 hidden units. The
bottom is for a large network with 3 layers of [500, 500, 500] hidden units.
Each column is for a different number of steps of negative-phase convergence.

We see in Figure D.1 that when the number of steps of negative-phase convergence is small,
introducing λ can allow for more stable training. This makes sense - if the minimizing
state of the equilibating network is “pulled” towards the state at the forward pass, it
should take fewer steps of iteration to reach this state when initialized at the state of the
forward pass. However, we also see that training fails when λ is too high. We believe this
is because the simple iterative settling scheme (Euler integration) used in this paper, as
well as the original Equilibrium Prop by Scellier and Bengio [2017], can become unstable
when optimizing a loss surface with sharp, steep, minima (as are induced with large λ).
This could be addressed in later work by either using an adaptive λ term or an adaptive
Euler-integration step-size.
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E. Spiking Equilibrium Propagation

E.1. Optimal Step-Size Adaptation

George and Powell [2006] propose Optimal Step-Size Adaptation (OSA), an algorithm for
optimally estimating the value of a parameter θ given only noisy samples xn = θn + εn

(n is a superscript indexing the ordered sequence of samples). The algorithm assumes
that ε is some zero-mean IID noise and that we generate our estimates θ̄n by averaging:
θ̄n = (1− αn)θ̄n−1 + αnxn. The algorithm is “optimal” in the sense that the step sizes
αn are optimal if the bias β = θn − E[θ̄n−1] in θ and the magnitude σ of the noise are
known. Since they are generally not, OSA also estimates these from the input stream
using running averages. The algorithm, copied directly from their paper, is as follows:
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E.2. Hyperparameter Search

The parameters used in Figure 8.2 were obtained by running a hyperparameter search
which looked for hyperparameters which led to the smallest average error at the end of
each phase (i.e. at t=249 and t=499). The search used a Gaussian Process optimizer
with 500 iterations. We found that there generally tends to be a large, flat region in
parameter space with reasonably "good" parameters, as is evidence by the large regions
of purple in Figure E.1.
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Figure E.1.: Parallel-Coordinates plot visualizing the hyperparameter search for the best-
converging parameters. Each plot corresponds to one of the lines in Figure
8.2 (excluding the first, 1/

√
t, which has no hyperparameters). In each plot,

the leftmost axis represents the iteration in the Gaussian-Process search,
the middle axes represent the hyperparameter values, the rightmost axis
represents the error resulting from that set of hyperparameters (in this case
the mean of the distance from the true fixed point at the end of each phase -
see Figure 8.2), and lines are also colour-coded to indicate the error (purple
is low and red is high). The black dotted line indicates the final selected set
of hyperparameters. Large purple regions in these plots indicate insensitivity
to hyperparameter values.
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E.3. Details on MNIST Experiments

For the MNIST experiments, we ran the hyperparameter optimization for both scheduled
annealing and OSA + predictive coding. We optimized the hyperparameters based on
the validation error after 1 epoch of training. Figure E.2 visualizes the hyperparameter
search. Because the two performed similarly and the latter had fewer parameters, we
chose OSA + predictive coding for the experiment in Figure 8.3.
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Figure E.2.: Parallel Coordinates plot for the hyperparameter search for the 1-layer
MNIST network. See Figure E.1 caption for explanation of the plot. The
hyperparameter search aimed to minimize the validation-set error after 1
epoch. Left: The search using scheduled step-size / predictive coding. Right:
The search using OSA and fixed predictive-coding. Because these behaved
similarily, we used the OSA + predictive coding (right) which had fewer
parameters, with the optimal parameters found here model for Figure 8.3.

We also experimented with a deeper network,with 3 hidden layers of 500 units. The
following plot shows the learning curve of Equilibrium Prop. The "binary" network is
run with OSA, with parameters λ = 0.771, ν̄ = 0.686 found in a hyperparameter search.
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A final note is that it is possible to get our spiking network to perform on par with
Equilibrium Prop without increasing the number of convergence steps (T+ and T−). The
trick is to save a “checkpoint” of the state of the neurons (including the states of all
encoders and decoders), at the end of the negative phase (see the “splitstream” parameter
in the code). We then allow both the negative phase and the positive phase to proceed
independently from this checkpoint for T+ steps, to achieve the s− and s+ used in the
update rule in Equation 2.12. This results in a much lower variance gradient estimate
because the noise due to the internal states of the encoders/decoders cancels out in the
constrastive update. We do not use this in any of our experiments because the notion of
saving a state “checkpoint” which you can return to is biologically unrealistic.
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