
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Languages of games and play
Automating game design & enabling live programming
van Rozen, R.A.

Publication date
2020
Document Version
Final published version
License
Other

Link to publication

Citation for published version (APA):
van Rozen, R. A. (2020). Languages of games and play: Automating game design & enabling
live programming.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://dare.uva.nl/personal/pure/en/publications/languages-of-games-and-play(5b899657-b786-46e0-815b-be669f002514).html

Languages of Games and Play

Riemer van Rozen

Languages of Games and Play
Automating Game Design & Enabling Live Programming

Languages of Games and Play
Automating Game Design & Enabling Live Programming

ACADEMISCH PROEFSCHRIFT

ter verkrĳging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K. I. J. Maex
ten overstaan van een door het College voor Promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op woensdag 19 februari 2020, te 10.00 uur

door

Riemer Andries van Rozen

geboren te Dokkum

Promotiecommissie:

Promotor: prof. dr. P. Klint Universiteit van Amsterdam
Copromotor: prof. dr. T. van der Storm Rĳksuniversiteit Groningen

Overige leden: dr. ir. A.R.E. Bidarra de Almeida TU Delft
prof. dr. ir. C.T.A.M. de Laat Universiteit van Amsterdam
prof. dr. R.V. van Nieuwpoort Universiteit van Amsterdam
prof. dr. M. de Rĳke Universiteit van Amsterdam
prof. dr. H.L.M. Vangheluwe Universiteit Antwerpen
prof. dr. E.J. Whitehead University of California Santa Cruz

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at Centrum Wiskunde & Informatica (cwi), in
collaboration with the Amsterdam University of Applied Sciences (auas), under the auspices
of the research school Institute for Programming research and Algorithmics (ipa) and has
been supported by the nwo/sia grants “Early Quality Assurance in Software Production”,
“Automated Game Design” and “Live Game Design”.

CONTENTS

Contents vii

Acknowledgements ix

1 Introduction 3

1.1 Perspectives . 3
1.2 Research Questions . 4
1.3 Origin of the Chapters . 10
1.4 Thesis Structure . 12
1.5 Conclusion . 13

2 Languages of Games and Play: A Systematic Mapping Study 17

2.1 Introduction . 17
2.2 Research Vision . 19
2.3 Methodology . 23
2.4 Review Protocol . 25
2.5 Research Areas . 30
2.6 Research Perspectives . 42
2.7 Challenges and Opportunities . 120
2.8 Related Work . 126
2.9 Threats to Validity . 127
2.10 Conclusion . 130

3 Analyzing Game Mechanics 135

3.1 Introduction . 135
3.2 Micro-Machinations . 136
3.3 MM AiR Framework . 147
3.4 Case Study: SimWar . 152
3.5 Conclusion . 157

4 Adapting Game Mechanics 161

4.1 Introduction . 161
4.2 Background . 162
4.3 Adapting Game Mechanics . 164
4.4 Case Study: AdapTower . 170
4.5 Conclusion . 178

5 Designing Game Mechanics with Patterns 183

vii

5.1 Introduction . 183
5.2 Related Work . 184
5.3 Mechanics Design Assistant . 188
5.4 Discussion . 199
5.5 Conclusion . 199

6 Toward Live Domain-Specific Languages 203

6.1 Introduction . 203
6.2 From Text Differencing to Live Models at Run Time 205
6.3 TMDiff: Textual Model Diff . 206
6.4 RMPatch: Generic Run-time Model Patching 216
6.5 Case Study: Live State Machine Language 219
6.6 Discussion and Related Work . 227
6.7 Conclusion . 232

7 Measuring Quality of Grammars for Procedural Level Generation 237

7.1 Introduction . 237
7.2 Related Work . 239
7.3 Grammars for Level Generation . 240
7.4 Grammar Analysis and Debugging . 244
7.5 Preliminary Evaluation . 249
7.6 Discussion . 251
7.7 Conclusion . 252

Bibliography 255

Summary 295

Samenvatting 299

viii contents

ACKNOWLEDGEMENTS

Little did Paul Klint know that when he asked me survey “languages for games”, it
would take me the better part of a decade to complete the work this entailed. Over
the years, challenges were plentiful, and certainly not all related to research. Together,
we discussed my teaching activities that happend in parallel and research proposals
that kept my research going. We devised communication strategies for building a
network and collaborating with industry. We exchanged thoughts on formulating
questions, proposing solutions and contributing results. Paul, thank you for your
advise and feedback. I have found our conversations highly educational, humorous
and tremendously motivating. Of course, I also thank my copromotor Tĳs van der
Storm. Tĳs, our collaboration on live programming has been an amazing experience
that continues to inspire me. In addition, we enjoyed many memorable social events
together. I mention ‘de Keet’ and the cargo bike.

We have motivated our research and validated our results together with game
developers. For this, I thank our industry partners, specifically Loren (Knowingo)
who introduced game development challenges to me, Joris (Ludomotion) with whom
I collaborated on Micro-Machinations and Chapter 4 and Paul (Firebrush Studios).

For hosting me, and being an amazing work place, I thank the Software Analysis
& Transformation group of CWI. Special thanks to group leader Jurgen, and in
alphabetical order: Aiko, Ali, Anastasia, Aggelos, Alexander, Anya, Arnold, Ashim,
Atze, Bas, Bert, Cleverton, Davy, Floor, Gauthier, Jan, Jeroen, Jouke, Lina,Magiel, Mark,
Mauricio, Michael, Mike, Nikos, Pablo, Paul, Piotr, Robert, Rodin, Sunil, Susanne,
Thomas, Thomas, Tim, Yanja, Ulyana and Vadim. We had great fun at Polder,
Praethuys and ‘game night’. I thank my office mates for interesting conversations
on diverse topics and for creating such a pleasant work environment. I enjoyed
exchanging perspectives with Pablo on languages and politics, and confining dry
humour to our office with Tim. I will remember Atze’s powerful laugh echoing in the
halls of CWI.

In addition, I thank my AUAS colleagues of CREATE-IT applied research and Play
& Civic Media: Ben, Daniël, Gabriele, Karel, Karin, Marĳe, Marcel, Maarten, Martĳn,
Martĳn, Mirjam, Monique, Mossa, Nikolai, Paul, Ria, Sabine, Stefan, Svetlana, Tamara,
et al. Of course, I thank Anders with whom I faced deadlines and deliverables
of several applied research projects. In addition I thank Jacob (Fontys), and the
spontaneous collective we call ‘PhD support group’: Saskia, Ahmed, Marĳe, et al. and
our former colleagues Sander and Tim. I will remember the cheerfulness, picknicks
on the roof, and to ‘go do things’.

During my PhD I lectured in several teaching groups. I thank my colleagues of
HBO-ICT at the AUAS, to name a few: Alexander, Claar, Dennis, Dop, Eric, Ferry,

ix

Frank, Gerke, Huub, Irshad, Jan, John, Karel, Karthik, Kees, Marcio, Marco, Marten,
Martĳn, Michel, Nico, Reza, Remco, Rosa, Ruud, et al. At the Master of Software
Engineering of the University of Amsterdam I thank Ana, Clemens, Simon, et al.

I thank the students and alumni that worked with me, in particular Quinten, who
is coauthor of Chapter 7.

For being welcoming and kind, I thank the Software Language Engineering and
AI and Games communities. Their feedback has helped my research progress. I thank
the committee members for their participation and for reviewing my thesis.

Because it is difficult to concisely and adequately express my thanks to everyone, I
share two especially memorable events.

On a bright Summer day, Adelheid† surprised me with a wonderful gift from
her desk drawer: a bottle of Oude Geuze, an exquisite artisanal beer of spontaneous
fermentation. Not only is this my favourite beer, it is simply the best beer in the world.

One late evening, Daria and I were delighted by a surprise visit of Pablo and
Geoffrey at our home. We enjoyed good cheese, beers and great conversations together.
Pablo, you will always be welcome.

Finally, I thank my family and close friends. In particular, Wicher, Sjoerd and
Rien†, great friends I have known since high school. For her support and friendship
I thank Ismênia. For their love and support, I thank my parents Annie and Alwin.
Most of all, I am grateful to my love and life partner Daria, and our kids Pieter and
Anna. A big hug!

x acknowledgements

INTRODUCTION 1
Digital games are a powerful means for creating enticing, beautiful, educational,
and often highly addictive interactive experiences that impact the lives of billions
of players worldwide. Developing high quality digital games in a time-to-market
manner is hard because game design is intrinsically complex.

The motivations for this dissertation are twofold. The first is to empower game
designerswith languages and tools that automate and speed up gamedesign processes
(“automated game design”). The second is to explore how such languages and tools
can be created (“metaprogramming”).

Here, we introduce the main concepts, formulate and motivate our research
questions, describe our research methods and contributions, and give an outline of
the overall structure of this thesis.

1.1 perspectives

The contributions of this thesis relate at three levels of abstraction, shown in Figure 1.1,
that pose distinct challenges, objectives and solutions. We explain them one by one.

Metaprogramming Automated Game Design Game Development

Languages for
building languages

Languages (and tools)
for building games Games

Figure 1.1: A three-tier approach to tackling game development challenges

1.1.1 Game Development

Many game development challenges result from game design complexity. Chap-
ter 2.2.1 explains them in some more detail, here we mention a few key challenges.

Games bring about experiences called gameplay such as enjoyment, persuasion and
learning. Game designers iteratively improve a game’s quality by forming hypotheses,
prototyping abstract rule systems, and play testing how those rules affect players in
interactive sessions. Often, the intended and actual gameplay differ. To evolve a game,
they have to explore alternatives, constantly requiring changes. Key challenges are:
Iteration time. Game design iterations simply take too much time, which all too often
prevents development teams from timely achieving the optimal quality.
Division of labor. Quality improvements fail and time is lost when adjustments best
understood by game designers have to be implemented by software engineers.
Software decay. The software quality deteriorates with frequent changes to the
source code made to accommodate evolving requirements.

3

1.1.2 Automated Game Design

This thesis contributes to Automated Game Design (AGD), a research area that aims to
automate game design activities. We propose to tackle game development challenges
by creating languages and tools that speed up game design processes. Our motivation
is detailed in Chapter 2.2.4. Objectives include:
Separation of concerns. Designers express a game’s interactive parts as source code
artifacts, without the help of engineers who instead maintain the game’s engine.
Live programming. Designers rapidly evolve ‘games and play’ by making changes to
the source code, and receiving immediate and continuous feedback about the effects.
Focused exploration. Intelligent design tools help focus the creative effort and support
the design space exploration by suggesting design alternatives (feed forward).

1.1.3 Metaprogramming

In this thesis, we tackle AGD challenges by leveraging and developing generic
language technology. In particular, we create metaprograms, programs that analyze
and transform the source code of other programs. Software language engineers can
use metaprogramming techniques to reduce complexity, improve quality, simplify
maintenance, and create languages and tools that game designers need to raise their
productivity. Objectives include:
Domain-specific languages. We study to what extent Domain-Specific Languages
(DSLs) can help automate game design. We introduce DSLs in Chapter 2.2.3.
Generic language technology. We explore how generic language technology can be
developed for constructing DSLs for live programming, in particular for AGD.

1.2 research questions

1.2.1 rq1: Languages of Games and Play: A Systematic Mapping Study

We wish to learn what informs the design of good games in order to help speed-up
the game development process, for creating better games more quickly. In particular,
we study to what extent languages, structured notations, patterns and tools, can offer
designers and developers theoretical foundations, systematic techniques and practical
solutions they need to raise their productivity and improve the quality of games
and play. We propose the term ‘languages of games and play’ for language-centric
approaches for tackling challenges and solving problems related to game design and
development. Despite the growing number of publications on this topic there is
currently no overview describing the state-of-the-art that relates research areas, goals
and applications. As a result, efforts and successes are often one-off, lessons learned
go overlooked, language reuse remains minimal, and opportunities for collaboration
and synergy are lost.

4 chapter 1 introduction

This leads us to the first research question, which is composed of four sub-questions.
Research Question 1 (rq1)

What is the state-of-the-art in languages of games and play?
rq1.1 What are the research areas and publication venues where authors have

published, and what does a map of the field look like?
rq1.2 Which languages have been proposed and how can these solutions be

characterized in terms of 1) objectives, scope and problems addressed;
2) language design decisions, structure and notable features; 3) applica-
tions, show cases or case studies; and 4) implementation, deployment
and availability?

rq1.3 What are similarities and differences between approaches, and common
research perspectives sharing similar frames and goals, which languages
illustrate them, and what are limitations?

rq1.4 Which developments and trends can be observed in recent work, and
what are the challenges and opportunities for future language research
and development?

Method Answering rq1 in an unbiased, reproducible and systematic way requires
a rigorous research methodology for conducting a high quality survey. Systematic
mapping studies offer a structured framework for retrieving and analyzing publications,
and mapping the breadth of related work on a particular topic of interest [KC07].

Results We have answered rq1 in Chapter 2 by performing a systematic mapping
study on ‘languages of games and play’. Its contributions are:

1. A systematic map on languages of games and play that provides an overview of
research areas and publication venues, which answers rq1.1.

2. A set of fourteen complementary research perspectives on languages of games
and play synthesized from summaries of over 100 distinct languages we identi-
fied in over 1400 publications, which answers rq1.2 and rq1.3.

3. An analysis of general trends and success factors, and one unifying perspective
on ‘automated game design’, which discusses challenges and opportunities for
future research and development, which answers rq1.4.

1.2.2 rq2: Domain-Specific Languages for Game Mechanics

Many games have an internal economy, an abstract rule-system that determines player
choices actions that impact gameplay. Using its mechanisms, players face challenges,
enact strategies, and manage trade-offs by accumulating, spending and distributing

1.2 research questions 5

in-game resources (e.g., gems, bricks or life essence). Unfortunately, game designers
lack a common vocabulary for expressing gameplay, which hampers specification,
communication and agreement. We aim to speed up the game development process
by improving designer productivity and design quality. The language Machinations
has introduced a graphical notation for expressing the rules of game economies that
is close to a designer’s vocabulary [AD12; Dor09]. Crucially, it foregrounds feedback
loops associated with patterns of ‘emergent’ gameplay. However, Machinations in its
current form is a ‘conceptual game design aid’ that is not suitable for programming.
Because it is not a programming language and lacks a formal semantics, predictions
about designs are imprecise, and not about the source code of an eventual game. To
apply Machinations for software prototyping, designers require a DSL that enables:

• expressing and analyzing game mechanics as source code
• live programming, modifying game mechanics possibly embedded in a game

while it is running, and obtaining immediate and continuous (live) feedback
about the results, e.g., while play testing

• designing, analyzing and transforming a game’s mechanics using a visual tool
and an extensible pattern library that expresses common structures

This leads us to the second research question, which has three sub-questions.

Research Question 2 (rq2)

To what extent can a DSL for game-economic mechanics (game economies)
speed up the game development processes, improve the design quality and
raise designer productivity?
rq2.1 How canmeta-programming andmodel-checking technology be used to

formalize a DSL for game mechanics, and analyze and predict qualities
of game software?

rq2.2 How can the game development process be accelerated and feedback
on game design quality be improved by adapting and improving the
game mechanics of running game software?

rq2.3 How can patterns be used for constructing an interactive game design
assistant (a tool) that statically analyzes and generates game mechanics?

Method Weapply design research [HRS+04], andpropose solutions that are iteratively
tested and improved in practice. Over the years, we have collaborated with industry
and academic partners in the following applied research projects:

• Early Quality Assurance in Software Production (EQuA-RAAK-PRO). In this
project led by the Fontys University of Applied Sciences, I was one of three
lecturer/researchers (PhD candidates). May 2011 — February 2015

6 chapter 1 introduction

Chapter 3:
Analyzing

Game Mechanics

Chapter 4:
Adapting

Game Mechanics

Chapter 5:
Designing

Game Mechanics
with Patterns

Figure 1.2: The evolution of Machinations: from informal notation for game-economies to
visual DSL for live programming

• Automated Game Design (AGD RAAK-MKB). In this project, led by the auas, I
worked as a researcher. Feb 2015 — November 2015

• Live Game Design (LGD RAAK-MKB). I was the main author of the research
proposal, principal investigator and project leader. May 2016 -– March 2019

For each sub-questionwe have carried out a case study to validate the contributions
and evaluated its strengths, weaknesses and threats to validity. Our main industry
partners in the work described here have been:

• IC3D Media (Loren Roosendaal)
• Ludomotion (Joris Dormans)
• Firebrush Studios (Paul Brinkkemper)

Results We have demonstrated how Micro-Machinations (MM), a DSL for game-
economic mechanics, can speed-up the game development process by improving
designer productivity and game design quality. MM has evolved from Machina-
tions [AD12], and addresses its main technical limitations. Figure 1.2 shows the
evolution of MM from an informal notation to a DSL for live programming.

In Chapter 3 we answer research question rq2.1 by demonstrating the feasibility
of using Rascal and Promela for meta-programming Micro-Machinations, a
DSL for game economies. In particular, we present a programming environment
called Micro-Machinations Analysis in Rascal (MMAiR) that enables model-checking
small programs against simple invariant properties, visually simulating models, and
inspecting event traces. In a case study on SimWar, a conceptual example used to
explain poor balancing, we prove that an approximation in MM is poorly balanced.

In Chapter 4 we answer research question rq2.2 by proposing a novel game
design approach for modifying mechanics of running games. In particular, we
present an embeddable Micro-Machinations Library (MM Lib) that facilitates run-
time modifications of game mechanics, e.g., during play testing. At the cost of
development effort during software prototyping and maintenance, our method
enables modifying mechanics with the flexibility and ease of paper-prototyping. In
a case study on AdapTower, a prototype tower defense game, we demonstrate that
we can flexibly change the rules of the game (and the gameplay) while the game is
running.

1.2 research questions 7

In Chapter 5, we answer research question rq2.3. We propose a pattern-based
approach for analyzing existing mechanics and for modifying them step by step,
introducing new challenges, trade-offs and strategies. Applying this approach is
a benefit one gets for free when factoring out game mechanics as separate models.
We validate the approach on the mechanics of Johnny Jetstream, a 2d fly-by shooter
developed at IC3D Media.

Current work The research on MM continues. Our current work entails a new
version of the MM library written in C# and a visual live programming environment
created in Unity. This new version is more maintainable and understandable, because
it leverages a novel technique for run-time statemigration, which is based onChapter 6.

1.2.3 rq3: Developing Domain-Specific Languages for Live Programming

Live programming is a style of development characterized by incremental change
and immediate feedback. Instead of long edit-compile cycles, developers modify a
running program by changing its source code, receiving immediate feedback as it
instantly adapts in response. However, little is known about how the benefits of live
programming can be obtained for DSLs. This brings us to the third research question.

Research Question 3 (rq3)

How can generic language technology be developed for constructing DSLs for
live programming?
rq3.1 How can origin tracking and text differencing be leveraged for textual

model differencing that produces model-based deltas?
rq3.2 How can model-based deltas be leveraged in the design of DSLs that

migrate an application’s run-time state?

Method As before, we apply Design Research [HRS+04]. We propose a novel
technique, create a prototype, and study its qualities to assess its feasibility.

Results Chapter 6 answers research question rq3. We propose two novel techniques
and its implementation as generic language technology for developing textual DSLs
for live programming. The first, Textual Model Differencing (tmdiff), produces
a model-based difference (or delta) for two textual models. The second, Run-time
Model Patching (rmpatch), applies this delta to the run-time model of a running
program, and migrates the domain-specific run-time state. We demonstrate the
feasibility of the approach with a language for simultaneously programming and
interpreting state machines. Scaling to more complex languages is future work.

8 chapter 1 introduction

Current work We address the following challenges. First, we abstract from concrete
domain-specific statemigration scenarios for scaling to complex languages that havemore
elaborate migrations. Second, we devise modular high-level language constructs for
programming understandable and maintainable migrations. Finally, we provide feedback
about cause and effect for forming more accurate mental models and making better
predictions. The new version of the MM library will demonstrate these principles.

1.2.4 rq4: Measuring Quality of Grammars for Procedural Level Generation

Grammar-based procedural level generation raises the productivity of level designers
for games such as dungeon crawl and platform games. However, the improved
productivity comes at the cost of level quality assurance. Authoring, improving and
maintaining grammars is difficult because it is hard to predict how each grammar
rule impacts the overall level quality, and tool support is lacking. This leads us to the
fourth and final research question.

Research Question 4 (rq4)

How can the quality of grammars for procedural level generation be improved?

Method As before, we apply design research [HRS+04]. We have worked with
Ludomotion on an iterative improvement for grammar-based level generation tech-
nology [DB11], in the context of the Live Game Design project.

We have tackled quality issues by applying common techniques from the research
area of software evolution. In particular, we trace model transformations (using origin
tracking) and analyze level characteristics over time (using metrics).

Results In Chapter 7 we have answered research question rq4 and addressed the
lack of tool support by proposing two novel techniques. The first is a novel metric
called Metric of Added Detail (MAD) that indicates if a rule adds or removes detail
with respect to its phase in the transformation pipeline. The second, Specification
Analysis Reporting (SAnR) enables expressing level properties in a simple DSL, and
analyzing how qualities evolve in level generation histories. We demonstrate MAD
and SAnR using a prototype of a level generator called Ludoscope Lite.

Our preliminary results show that problematic rules tend to break SAnR properties
and that MAD intuitively raises flags. MAD and SAnR augment existing approaches,
and can ultimately help designers make better levels and level generators. Of course,
these techniques are academic prototypes. A more extensive validation and empirical
evaluation is part of future work.

Current work The approach opens a research area for leveragingmetaprogramming
techniques to address a lack of tool support, in this case for grammar-based level

1.2 research questions 9

Table 1.1: Relating questions, chapters, publications (p) and tools (t)

question chapter publication venue tool

rq1 (1–4) 2 u1 submitted to csur
rq2.1 3 p1 sle 2013 t1
rq2.2 4 p2 fdg 2014 t2
rq2.3 5 p3 fdg 2015 t3
rq3.1 6 p4 icmt 2015 t4
rq3.2 6 p5 sosym t4
rq4 7 p6 pcg 2018 t5

design. The chapter was written as an introductory example, and has the purpose of
engaging students as collaborators in future applied research projects to continue this
work.

1.3 origin of the chapters

Here we relate thesis chapters to research contributions, shown in Table 1.1. Each
chapter is composed of one or more peer-reviewed publications (p), of which I was
the primary author. A reduced version of Chapter 2 is under submission (u) at ACM
Computing Surveys (csur). In addition, we list languages, libraries and tools (t).

1.3.1 Chapter 2: Languages of Games and Play

u1 R. van Rozen. “Languages of Games and Play: A Systematic Mapping Study”.
Under submission to ACM Computing Surveys. 2019

1.3.2 Chapter 3: Analyzing Game Mechanics

p1 P. Klint and R. van Rozen. “Micro-Machinations: a DSL for Game Economies”.
In: Software Language Engineering – Proceedings of the 6th International Conference
on Software Language engineering, SLE 2013, Indianapolis, IN, USA, October 26–28,
2013. Ed. by M. Erwig, R. F. Paige, and E. Van Wyk. Vol. 8225. LNCS. Springer,
2013, pp. 36–55. isbn: 978-3-319-02654-1. doi: 10.1007/978-3-319-02654-1_3

1.3.3 Chapter 4: Adapting Game Mechanics

p2 R. van Rozen and J. Dormans. “Adapting Game Mechanics with Micro-
Machinations”. In: Proceedings of the 9th International Conference on the Founda-
tions of Digital Games, FDG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014.

10 chapter 1 introduction

https://doi.org/10.1007/978-3-319-02654-1_3

Ed. by M. Mateas, T. Barnes, and I. Bogost. Society for the Advancement of the
Science of Digital Games, 2014. isbn: 978-0-9913982-2-5

1.3.4 Chapter 5: Designing Game Mechanics with Patterns

p3 R. van Rozen. “A Pattern-Based Game Mechanics Design Assistant”. In:
Proceedings of the 10th International Conference on the Foundations of Digital Games,
FDG 2015, Pacific Grove, CA, USA, June 22–25, 2015. Ed. by J. P. Zagal, E.
MacCallum-Stewart, and J. Togelius. Society for the Advancement of the
Science of Digital Games, 2015

1.3.5 Chapter 6: Towards Domain-Specific Languages for Live Programming

The first paper (p4) introduces tmdiff. Chapter 6 is based on an extended journal
version (p5) that adds rmpatch, but which omits an evaluation of tmdiff on Derric,
a DSL for digital forensics.

p4 R. van Rozen and T. van der Storm. “Origin Tracking + Text Differencing =
Textual Model Differencing”. In: Theory and Practice of Model Transformations
– Proceedings of the 8th International Conference on Model Transformation, ICMT
2015, L’Aquila, Italy, July 20–21, 2015. Ed. by D. Kolovos and M. Wimmer.
Vol. 9152. LNCS. Springer, 2015, pp. 18–33. isbn: 978-3-319-21155-8. doi:
10.1007/978-3-319-21155-8_2

p5 R. van Rozen and T. van der Storm. “Toward Live Domain-Specific Languages:
From Text Differencing to Adapting Models at Run Time”. In: Software &
Systems Modeling 18.1 (Feb. 2019). Special Section Paper on STAF2015. Received
June 27th 2016. Revised May 26th 2017. Accepted June 20th 2017. First Online
August 14th 2017, pp. 195–212. issn: 1619-1374. doi: 10.1007/s10270-017-

0608-7

1.3.6 Chapter 7: Measuring Quality of Grammars for Procedural Level Generation

The following paper, of which I am the main author, is based on the master project of
Quinten Heĳn. His thesis elaborates on this work, and adds a case study [Hei18].

p6 R. van Rozen and Q. Heĳn. “Measuring Quality of Grammars for Procedural
Level Generation”. In: Proceedings of the 13th International Conference on Founda-
tions of Digital Games, FDG 2018, as part of the 9th Workshop on Procedural Content
Generation, PCG 2018, Malmö, Sweden, August 7–10, 2018. Ed. by S. Dahlskog,
S. Deterding, J. Font, M. Khandaker, C.M. Olsson, S. Risi, and C. Salge. ACM,
2018, pp. 1–8. isbn: 978-1-4503-6571-0. doi: 10.1145/3235765.3235821

1.3 origin of the chapters 11

https://doi.org/10.1007/978-3-319-21155-8_2
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1145/3235765.3235821

1.3.7 Other contributions

The following paper, of which I am the main author, is not included in this thesis. It
addresses identifying quality issues of Lua source code.

p7 P. Klint, L. Roosendaal, and R. van Rozen. “Game Developers Need Lua AiR:
Static Analysis of Lua Using Interface Models”. In: Entertainment Computing –
Proceedings of the 11th International Conference on Entertainment Computing, ICEC
2012, as part of the 2nd Workshop on Game Development and Model-Driven Software
Development, GD&MDSD 2012, Bremen, Germany, September 26–29, 2012. Ed. by
M. Herrlich, R. Malaka, and M. Masuch. Vol. 7522. LNCS. Springer, 2012,
pp. 530–535. isbn: 978-3-642-33542-6. doi: 10.1007/978-3-642-33542-6_69

1.3.8 Languages, Libraries and Tools

The proposed languages, libraries and tools are released as open source software.

t1 R. van Rozen. MM AiR: Micro-Machinations Analysis in Rascal. https://github.
com/vrozen/MM-AiR. Eclipse License. 2013

t2 R. van Rozen. MMLib: Micro-Machinations Library. https://github.com/vrozen/
MM-Lib. 3-Clause BSD License. 2014

t3 R. van Rozen. MeDeA: Mechanics Design Assitant. https://github.com/vrozen/
MeDeA. Eclipse License. 2015

t4 T. van der Storm and R. van Rozen. TMDiff: Textual Model Differencing and
RMPatch: Run-time Model Patching. https://github.com/cwi-swat/textual-

model-diff. Eclipse License. 2015
t5 Q. Heĳn and R. van Rozen. LudoScope Lite. Includes and demonstrates the

Metric of Added Detail (MAD) and Specification Analysis Reporting (SAnR).
url: https://github.com/visknut/LudoscopeLite. url: https://github.com/
vrozen/MAD-Level-Design. Eclipse License. Aug. 2018

1.4 thesis structure

Here, we give an outline of the chapter structure. Figure 1.3 shows the general
structure of chapters (boxes) and possible reading directions (arrows). Chapter 2
answers research question rq1 and its sub-questions. The next three chapters are
on game mechanics in particular. Chapters 3, 4 and 5 respectively answer research
questions rq2.1, rq2.2 and rq2.3. Together they answer research question rq2.
Chapter 6 is on live programming in general. It answers research question rq3, and its
sub-questions. Finally, Chapter 7 answers research question rq4.

12 chapter 1 introduction

https://doi.org/10.1007/978-3-642-33542-6_69
https://github.com/vrozen/MM-AiR
https://github.com/vrozen/MM-AiR
https://github.com/vrozen/MM-Lib
https://github.com/vrozen/MM-Lib
https://github.com/vrozen/MeDeA
https://github.com/vrozen/MeDeA
https://github.com/cwi-swat/textual-model-diff
https://github.com/cwi-swat/textual-model-diff
https://github.com/visknut/LudoscopeLite
https://github.com/vrozen/MAD-Level-Design
https://github.com/vrozen/MAD-Level-Design

Chapter 1
Introduction

Chapter 2
Languages of

Games and Play

Chapter 3
Analyzing

Game Mechanics

Chapter 4
Adapting

Game Mechanics

Chapter 5
Designing

Game Mechanics
with Patterns

Chapter 6
Toward Live Domain-
Specific Languages

Chapter 7
Measuring Quality of
Grammars for Proce-
dural Level Generation

Figure 1.3: Thesis Chapter Structure

1.5 conclusion

Because this thesis has an open-ended structure, we refer to the individual chapters
for reflections on future work about their respective topics, in particular Chapters 2
and 6.

1.5 conclusion 13

LANGUAGES OF GAMES AND PLAY: A SYSTEMATIC
MAPPING STUDY 2

Abstract

Digital games are a powerfulmeans for creating enticing, beautiful, educational,
and often highly addictive interactive experiences that impact the lives of billions
of players worldwide. We explore what informs the design and construction of
good games in order to learn how to speed-up game development. In particular,
we study to what extent languages, notations, patterns and tools, can offer experts
theoretical foundations, systematic techniques and practical solutions they need
to raise their productivity and improve the quality of games and play.

Despite the growing number of publications on this topic there is currently
no overview describing the state-of-the-art that relates research areas, goals and
applications. As a result, efforts and successes are often one-off, lessons learned go
overlooked, language reuse remains minimal, and opportunities for collaboration
and synergy are lost. We present a systematic map that identifies relevant
publications and gives an overview of research areas and publication venues. In
addition, we categorize research perspectives along common objectives, techniques
and approaches, illustrated by summaries of selected languages. Finally, we distill
challenges and opportunities for future research and development.

2.1 introduction

In the past decades, digital games have become a main podium for creative expression
enabling new forms of play and interactive experiences that rival the works of great
historical writers, painters, artists and composers. The game development industry is
a vast and lucrative branch of business that eclipses traditional arts and entertainment
sectors, outgrowing even the movie industry [vGOK19]. Games reach audiences
around the world, unite players in common activities and give rise to subcultures and
trends that impact pass-time, awareness and policies of modern societies.

However, for every outstanding success existmanygameswithunrealizedpotential
and failures that preceded bankruptcy. Developing high quality games is dreadfully
complicated because game design is intrinsically complex. We wish to learn what
informs the design of good games in order to help speed-up the game development
process for creating better games more quickly. In particular, we study to what extent
languages, structured notations, patterns and tools, can offer designers and developers

This chapter is under submission at ACM Computing Surveys (CSUR)

17

theoretical foundations, systematic techniques and practical solutions they need to
raise their productivity and improve the quality of games and play.

We propose the term ’languages of games and play’ for language-centric approaches
for tackling challenges and solving problems related to game design and development.
Despite the growing number of researchers and practitioners that propose and apply
these languages, there is currently no overview of publications that relates languages,
goals and applications. As a result, publications on the topic lack citations of relevant
related work. In addition, lessons learned are overlooked and available methods and
techniques for language development often remain unused. As a consequence, it
remains difficult to compare and study games, designs and research contributions in
order to build bodies of knowledge that describe best practices and industry standards.

We aim to map the state-of-the-art of languages of games and play in an under-
standable way, such that it is accessible to a wide audience. Our goal is to provide a
means for 1) informing practitioners and researchers about the breadth of relatedwork;
2) sharing knowledge between research areas and industry for improved results and
collaboration; 3) enabling the application of available techniques; and 4) identifying
opportunities for future research and development.

We pose the following research questions:
• Which publication venues include papers on languages of games and play?
• How do the various approaches compare?
• What are open research challenges and opportunities for future work?
For answering these questions we conduct a survey of languages of games and

play called a systematic mapping study. Mapping studies provide a wide overview of
a research area by identifying, categorizing and summarizing all existing research
evidence that supports broad hypotheses and research questions [KC07]. In contrast,
systematic literature reviews usually have a more narrow focus, and instead perform
in-depth analyses to answer particular research questions. Both enjoy the benefits of
a well-defined methodology for (re)producing high quality results and reducing bias.

We identify and analyze relevant publications on languages of games and play.
First, we motivate the need for this study by describing its scope in Section 2.2. Next,
we describe the methodology with research questions, sources, queries and inclusion
criteria, and a review protocol in Sections 2.3 and 2.4. We contribute the following:

1. A systematic map on languages of games and play that provides an overview of
research areas and publication venues, presented in Section 2.5.

2. A set of fourteen complementary research perspectives on languages of games
and play synthesized from summaries of over 100 distinct languages we identi-
fied in over 1400 publications, presented in Section 2.6.

3. An analysis of general trends and success factors, and one unifying specific per-
spective on ‘automated game design’, which discusses challenges and opportunities
for future research and development, presented in Section 2.7.

18 chapter 2 languages of games and play: a systematic mapping study

Designer

Gameplay
Objectives

?
=

Rules Game

Player

Gameplay
Experiences

emerge

interact

hypothesize

create

(a) Game designers form hypotheses about how a
game’s rules realize gameplay goals, but usually re-
peatedly find intended and actual experiences differ

Aesthetics
Feedback

Gameplay
Design

Play
Testing

Rules

Game
Prototype

Production
Coding

(1)⧖1

⧖2
(2)

(b) Developing a high quality game entails iter-
atively designing, playtesting and improving its
rules as a paper- (1) or a software- prototype (2)

Figure 2.1: Game development aims for games with high quality player experiences

We describe related work in Section 2.8, discuss threats to validity in Section 2.9,
and conclude in Section 2.10. Our map provides a good starting point for anyone who
wishes to learn more about the topic.

2.2 research vision

A mapping study on games and play can be approached form different research
perspectives, each with different goals and needs. We introduce challenges of digital
game design in Section 2.2.1, and formulate two general hypotheses that drive this
study in Section 2.2.2. Our specific motivation is to automate game design and
investigate how domain-specific language technology, introduced in Section 2.2.3,
can offer solutions. We clarify our position and motivate this study in Section 2.2.4.

2.2.1 Games and Play

Games and play are inextricably intertwined concepts. Games bring about experiences
such as enjoyment, persuasion and learning. There exist many different view points,
explanations and definitions. We share a well-known definition of Juul, who studies
games, examines similarities between them and proposes:

“A game is (1) a rule-based formal system with (2) a variable and quantifiable outcome,
where (3) different outcomes are assigned different values [good/bad], (4) the player
exerts effort in order to influence the outcome [challenge], (5) the player feels attached to
the outcome, and (6) [real-world] consequences of the activity are negotiable.” [Juu11].

2.2 research vision 19

Game design [FSH08; Sch14b], the discipline and process of iteratively designing
and improving games, is an instance of a so called wicked problem, a problem that is
“difficult to solve in general due to incomplete, contradicting and evolving requirements” [Coy05;
EO12; MS05a]. We highlight challenges that illustrate its inherent complexity.

Improving a game’s qualities depends on gradually improving insight, as illus-
trated by Figure 2.1(a). Gamedesigners use paper prototyping to explore andunderstand
the problem at hand, abstracting away a game’s details until what remains is essential.
They form hypotheses about play, experiment with rules and objectives to evolve a
game’s design and learn what the solution can become. Designers create interaction
mechanisms (a.k.a. game mechanics, or rules) offering playful affordances [SZ03].

Players interact with games via these mechanisms during a game’s execution.
Playful acts result in dynamic interaction sequences. Ideally, these also represent
aesthetically pleasing experiences called gameplay, e.g., fellowship, challenge, fantasy,
narrative, discovery or self-expression [HLZ04]. However, opinions on a game’s
quality differ from person to person, e.g., with age, gender and beliefs.

For game designers playtesting is essential for verifying assumptions and learning
if a gamemeets its objectives. More often than not, designers discover that the realized
and intended gameplay differ. Unfortunately, even well prototyped games may fail
to meet expectations as fully developed software. In general, it is hard to predict
the outcome of modifying a game’s parts, e.g., how changing the rules affects the
dynamics and aesthetics of play. As a result, steering towards new goals is difficult.

Improving a game is never truly done. The maximum number of game design
iterations determines the achievable quality. Efforts on balancing, fine-tuning and
polishing are limited only by time and money. Resource-wise, AAA studios have
a competitive advantage over indie game developers. However, developing novel
high quality games in a time-to-market manner is universally hard because game
design iterations take simply too much time. Figure 2.1(b) shows an abstract game
development process that illustrates the root causes of delay (shown as ⧖).

Game designers and software engineers usually live on opposite sides of the
fence [KvR13]. Both lose time when adjustments best understood by designers have
to be implemented by software engineers (⧖1). To evolve a game, designers have to
explore alternative gameplay scenarios, constantly requiring changes.

As time progresses, more and more choices become fixed, and frequent changes
to the source code become more difficult, time-consuming and error-prone (⧖2). The
evolution of digital games, like other software, suffers fromawell-knownphenomenon
called software decay [Men08]. The software quality deteriorates with frequent changes
to the source code made to accommodate evolving requirements.

As a consequence, game designers have precious few chances to experiment with
design alternatives. This seriously compromises their ability to design, prototype

20 chapter 2 languages of games and play: a systematic mapping study

and playtest. Unfortunately, the complexity of game design all too often prevents
development teams from timely achieving the optimal quality.

These challenges urgently require solutions. Our brief discussion indicates that
rules, objectives and gameplay assumptions are artifacts that require appropriate
notations for constructing high quality digital games. However, game designers lack
a common vocabulary for expressing gameplay. Next, we address this need.

2.2.2 Languages of Games and Play

Languages of games and play are language-centric approaches for tackling challenges
and solving problems related to game design and development. We propose studying
existing languages and creating new ones. Two central hypotheses drive this study.
We formulate a general and a specific hypothesis:

1. Languages, structured notations, patterns and tools can offer designers and develop-
ers theoretical foundations, systematic techniques and practical solutions they
need to raise their productivity and improve the quality of games and play.

2. “Software” languages (and specifically domain-specific languages) can help
automate and speed-up game design processes.

Languages of games and play exist in many shapes and forms. The next section
describes one specific technical point of view that represents the departure point of
this study, which also details and motivates the second more specific hypothesis.

2.2.3 Domain-Specific Languages

We aim to deliver solutions that automate game design and speed-up game develop-
ment with so-called Domain-Specific Languages (DSLs), an approach originating in
the field of Software Engineering. Van Deursen et al. define the term as follows:

”A Domain-Specific Language is a programming language or executable specification
language that offers, through appropriate abstractions and notations, expressive power
focussed on, and usually restricted to, a particular problem domain.” [vDKV00].

DSLs have several compelling benefits. They have been successfully created
and applied to boost the productivity of domain-experts and raise the quality of
software solutions. For instance, in areas like carving data in digital forensics [vd-
BvdS11], engineering financial products [vDeu97], and controlling lithography ma-
chines [TMvdB+13], to name a few. DSLs divide work and separate concerns by
offering domain-experts ways to independently evolve and maintain a system’s
parts. Typically, DSLs raise the abstraction level and incorporate domain-specific
terminology that is more recogizable to its users. Powerful language work benches
enable analyses, optimizations, visualizations [EVV+13], and foreground important
trade-offs, e.g., between speed and accuracy in file carving.

2.2 research vision 21

Naturally, there are also costs. DSLs are no silver bullet for reducing complexity.
Time and effort go into developing the right language with features that are both
necessary and sufficient for its users. In addition, a DSLmay have steep learning curve
and users require training [vDKV00]. While DSLs help users maintain products,
DSLs themselves also demand maintenance and must evolve to accommodate new
requirements, usage scenarios, restrictions and laws, such as new legislation on
financial transparency or privacy.

2.2.4 Need for a Mapping Study

There are many compelling reasons to perform a mapping study on languages of
games and play. This study can be approached from different research perspectives
with distinct research needs and goals. Here we describe our position and motivation.

We aim to empower game designers with DSLs that automate and speed-up the
game design process. We wish to learn how to facilitate the design space exploration
and reduce design iteration times. We envision a set of complementary visual
languages, techniques and tools that help designers boost their productivity and
raise the quality of games and play. Challenges include providing abstractions and
affordances for:

1. expressing a game’s parts as source code artifacts, especially interaction-bound
game elements, and modifying these at any given moment

2. evolving ‘games and play’ by steering changes in the source code towards new
gameplay goals prototyping, play testing, balancing, fine-tuning or polishing

3. obtaining immediate and continuous (live) feedback on a game’s quality by con-
tinuously play testing the effect of changes on quantified gameplay hypotheses

4. obtaining feed forward suggestions that focus creative efforts and assist in
exploring alternative design decisions in a targeted way

5. forming better mental models for learning to better predict the outcome on play

To know where to start automating game design, we need an extensive analysis
on existing approaches. However, these efforts are currently not mapped, and
opportunities and limitations are not yet well understood. As a result it is unclear
which game facets are amenable to DSL development, which features can express
game designs, and what the limits of formalism are. There is no telling if DSLs can
deliver, and how the tradeoff between costs and benefits applies to game development.

We perform thismapping study on languages of games and play to obtain evidence
to support our hypotheses in general, and suit our own specific research needs by
scouting for opportunities for developing DSLs in particular.

22 chapter 2 languages of games and play: a systematic mapping study

2.3 methodology

A systematic mapping study requires a precise description of its scope, research
questions, search queries and databases for accurate and reproducible informa-
tion extraction, categorization and comparison [KC07]. We apply the following
methodology.

2.3.1 Scope

Games have been studied from different perspectives. Language-oriented approaches
have been proposed by authors who published in separate fields of research using
distinct vocabularies. As a result, language-centric solutions, intended for diverse
domain experts and novices solve differently scoped problems related to a game’s
design, development, and applications. We survey the full breadth of related work.

2.3.2 Research questions

The research questions addressed by this study on languages of games and play are:

rq1 What are the research areas and publication venues where authors have pub-
lished, and what does a map of the field look like?

rq2 Which languages have been proposed and how can these solutions be charac-
terized in terms of 1) objectives, scope and problems addressed; 2) language
design decisions, structure and notable features; 3) applications, show cases or
case studies; and 4) implementation, deployment and availability?

rq3 What are similarities and differences between approaches, and common research
perspectives sharing similar frames and goals, which languages illustrate them,
and what are limitations?

rq4 Which developments and trends can be observed in recent work, and what are
the challenges and opportunities for future language research and development?

2.3.3 Sources

We use the meta-repository Google Scholar (GS) to obtain primary sources because
it maps repositories in which we expect to find relevant publications. GS includes
traditional sources of publications such as the Association of Computing Machinery
(ACM), Institute of Electrical and Electronics Engineers (IEEE), Springer and Elsevier.
In addition, GS includes less-traditional sources such as games conferences that
operate independently, influential books, blog posts, and dissertations. Limiting the
search to fewer sources would likely make the study more easily reproducible but also
reduce its relevance. A wide search over many sources is necessary for answering
our research questions, and GS fits this criterion. Note that we exclusively focus on
written sources, which excludes games and commercial development products.

2.3 methodology 23

Table 2.1: Google Scholar search parameters

URL segment Description

q=[query] Queries [query], where AND is a space and NOT is a minus sign
hl=en Displays Google tips and messages in English (en)
lr=lang_en Reports results only in English (lang_en)
as_sdt=1,5 Excludes patents (1,5 = exclude and 0,5 = include)
as_vis=1 Excludes citations, (1 = hide and 0 = show)

2.3.4 Queries

Starting with a limited view of the field, we begin with a query to find domain-specific
languages for game design and game development. We call this our narrow query.

"domain specific language" AND ("game development" OR "game design")

GS returns approximately 400 results, mainly in the field of software engineering
and although many publications seem relevant, few articles focus on game design.
Clearly, the narrow query is biased towards one specific research area and is too
restricted for answering our research questions.

Part of a mapping study is identifying the distinct vocabularies experts in separate
research areas use for describing similar approaches, and a more general term is
“language”. We widen the scope accordingly but unfortunately we now find many
results on subjects that are off-topic. We therefore attempt to filter out irrelevant
publications by formulating a wide query.

language AND ("game development" OR "game design")

AND NOT ("sign language" OR "second language" OR "language acquisition" OR "body

language" OR "game based learning" OR "beer game" OR gamification OR gamify)

GS reports approximately 17.5 thousand results, more than is feasible for us to
analyze. We now realize that given the wicked nature of game design and game
development, no single query exists that captures all relevant works. We therefore
propose a compromise that combines the results of the narrow query with the first
1000 results of the wide query1.

We restrict the language to English. We exclude patents and citations, results for
which GS typically has not seen the full source. Part of the search parameters are
stored in a cookie, accessible via GS’s web interface, e.g., bibliographical data. The
cookie also stores a unique id, which GS uses to track the query and block requests
with a captcha if its algorithms indicate restrictions are violated. We construct the
following GS search url for the queries. Table 2.1 explains the url segments.

1GS limits the number of results to one thousand, but one can obtain more when filtering by year.

24 chapter 2 languages of games and play: a systematic mapping study

https://scholar.google.com/scholar?q="domain-specific language" ("game design" OR "game

development")&hl=en&lr=lang_en&as_sdt=1,5&as_vis=1

https://scholar.google.com/scholar?q=language ("game development" OR "game design") -"

sign language" -"second language" -"language acquisition" -"body language" -"game

based learning" -"beer game" -gamification -gamify&hl=en&lr=lang_en&as_sdt=1,5&

as_vis=1

2.3.5 Inclusion and exclusion criteria

We select publications according to the following criteria. The inclusion criterion
is: The publication describes a structured language-oriented approach for solving
problems related to the design or the development of digital games. For instance,
we include programming languages, modeling languages, DSLs, pattern languages,
ontologies and structured vocabularies. Digital games (or digital representations)
include computer games, videogames, and applied games (a.k.a. serious games), etc.

The exclusion criterion is: Language features with a fixed structure and notation
are not described in the paper, or the language does not relate directly to games,
and as such does not inform the game design process. Therefore, we exclude the
mathematics subject of game theory and the general theme of high performance
computing. Networking and audio are not excluded a-priori.

2.4 review protocol

We identify and analyze relevant publications and categorize them according to the
review protocol described in the following section. Each section of the protocol
addresses a research question. Section 2.4.1 addresses rq1, Section 2.4.2 addresses
rq2. The remaining questions rq3 and rq4 are outside the scope of this protocol,
and are addressed respectively in Section 2.6 and Section 2.7.

2.4.1 Research areas and publication venues

For each included publication we record the available bibliographical information
in BibTeX, e.g., about its authors, title, editors, year, publication venue, acronym,
publisher, journal, volume, number, isbn, issn and doi. When records are incomplete
or missing, as is often the case, we insert the information by hand.

In addition, we add a mapping study identifier that denotes its rank in the query
results, a number or not found (–), and appears in the narrow (n) or wide (w) query
results. For instance, 12n indicates the publication ranked 12 in the GS results of the
narrow query, and –w indicates a publication that conforms to the wide query, but is
not ranked in the top one thousand results. In some cases, we include publications

2.4 review protocol 25

Table 2.2: Categories of publications

Category Description

Paper or article Peer-reviewed papers appearing in the proceedings of a symposium,
workshop or conference, or a journal article

Thesis Describes the content of a Bachelor’s, Master’s or PhD thesis. May
contain chapters based on previously published peer-reviewed work

Textbook Explains a subject such that it can be easily studied chapter by chapter,
typically written by one or more established experts

Non-fiction Describes topic of interest, not primarily intended to be studied
Technical report Reports on what are usually technical challenges and solutions
Manual Explains how to perform steps, use solutions or apply concepts
Blog post Shares an opinion, problem or technical approach on a web page
Presentation Introduces or explains challenges on a topic that are noteworthy or

inspirational during a keynote presentation or invited talk

Table 2.3: Categories of research (adapted fromWieringa et al. [WMM+06])

Category Description

Evaluation research Investigates a problem or implementation of a technique in practice
for gaining empirical knowledge about causal relationships between
phenomena or logical relationships among propositions

Proposal of solution Proposes a novel solution technique and argues for its relevance
without a thorough validation.

Validation research Investigates properties of a proposed solution that has not yet been
used in practice

Philosophical paper Sketches a new way of looking at a problem, a new conceptual
framework, etc.

Opinion paper Provides an author’s opinion about what is wrong or good about a
topic of interest

Experience report Explains steps taken and lessons learned from experiences gained
during a project

Tutorial Explains and demonstrates how something works, usually by means
of illustrative examples

for clarity that conform to neither query, stating which keyword is missing, e.g., gd
indicates the keywords “game design” and “game development” are both missing.

Each publication is of a certain type, as shown in Table 2.2. In addition, we
analyze research categories shown in Table 2.3, like Petersen et al. [PFM+08]. This
table extends categories proposed by Wieringa et al. for categorizing peer reviewed
research in requirements engineering with the last two [WMM+06]. These are general
categories that indicate how reliable and mature a source is, without going into detail.

26 chapter 2 languages of games and play: a systematic mapping study

Table 2.4: Languages facets to summarize and analyze

Facet Element Description

Brief description Problem Problem statement, game topic
Objectives Goals the authors formulate, challenges addressed
Solution Solutions proposed, claims on language application

and scope, game genre
Category Solution category and application area (Table 2.5)

Design Pattern Language design pattern (Table 2.6)
Features Language features (elements shown in Table 2.7)
Examples Snippets of text, code, diagrams or models

Implementation How is the language implemented, e.g., interpreter,
compiler (these details are usually not described)

Validation Products Games, prototypes and show cases that are constructed
using the language

Availability Web site url of a web site providing information on the lan-
guage, notation or toolset

Distribution url of a binary distribution or source code repository
Source license License under which the source code is available

We construct a visual map of the field by leveraging citation data that relates
publications, and categorize publication venues to research areas. First, we extract
citation information from the GS research results. Next, we generate a citation graph
whose nodes are publications and edges are citations between them. Finally, we
visualize this graph using Gephi, an interactive graph visualization framework2.
Gephi’s force map algorithm draws together publications with citations between
them, forming clusters that roughly correspond to research areas.

We count the number of publications in different journals, conferences, workshops
and symposia. We identify research areas by grouping venues according to disciplines
and shared topics. We briefly describe each area, and zoom in on the related section
of the map for illustration. We summarize venues with two or more publications.

2.4.2 Language analysis and summary

Wewish to learn how languages compare, what they have in common, what separates
them, and what makes them unique. For each included publication we extract the
name of the language, or a description in case no name is provided. We summarize
each language concisely by analyzing related publications in a style similar to an
annotated bibliography. Table 2.4 highlight the facets we analyze.

2
https://gephi.org (visited June 6th 2019)

2.4 review protocol 27

https://gephi.org

Table 2.5: Language objectives – solution scope, category and application area

Dimension Category Description of intent

Scope Application-
specific

Solution is specific for a game or application

Genre-specific Solution that is reusable for a specific game genre
Generic Generic solution or separated concern

Solution Framework Analysis or mental framework for studying, understand-
ing, comparing, categorizing games that does not directly
support game development, e.g., ontologies, design pat-
terns, or simulations

Tool Authoring tool that facilitates creating a game’s parts as
models or programs for design or development , e.g.,
visual environments, programming languages or DSLs

Engine Game engine, reusable building block or software library
that integrates models fully into game software

Area Research Research vehicle primary intended for performing research
in a specific area

Educative Platform primarily intended for teaching a subject to a
group of people or example meant to illustrate, educate or
inform

Practice Solution primarily intended for practitioners, supporting
game design or game development

Claims regarding the scope and applications typically refer to game genres, such as
First Person Shooter (FPS), Role Playing Game (RPG) or 2d Platform Game. Although
game genre qualifiers are course grained, and not suitable for comparing games in
detail [ASS03], they do offer authors ways to indicate the topic of the solution and
sketch contours of its scope. In addition, we categorize languages objectives using the
categories shown in Table 2.5. Non-exclusive objectives position languages as:

• Communication means for sharing knowledge between experts,
• Illustration means for explaining or clarifying problems or solution by example,
• Maintenance tool for maintaining and modifying a game’s parts over time,
• Productivity raiser for increasing the productivity of its users,
• Quality raiser for improving a game’s quality,
• Reuse promotor for making parts of a game’s code or design reusable.

We highlight language design decisions and notable features, including mentions
of language reuse and formal semantics. When possible, we use the language
design patterns for DSLs proposed by Mernik et al. shown in Table 2.6 in our
description [MHS05]. We analyze language features related to notation, elements and

28 chapter 2 languages of games and play: a systematic mapping study

Table 2.6: Language design patterns (adapted from Mernik et al. [MHS05])

Dimension Category Description

Reuse Piggyback Partially uses an existing language, a form of exploitation
Specialization Restricts an existing language, a form of exploitation
Extension Extends an existing language, a form of exploitation
Invention Designs a language from scratch without language reuse

Description Formal Formally describes a language using an existing semantics
definition method such as attribute grammars, rewrite rules,
or abstract state machines

Informal Informally explains a language without formal methods

Table 2.7: Language features (these features are not mutually exclusive)

Dimension Feature Description

Notation Textual The language has a textual notation
Visual The language has a visual notation

Elements Scopes Scopes and bounds may be used to separate elements
and limit their valid context

Conditionality Conditionality features enable or disable other lan-
guage elements or events

Recurrence Recurrence features are elements that canhappen again,
e.g., in iterations

Modularity Modularity features enable composition and/or reuse
of language elements

Domain-specific Domain-specific features may be especially created for
a special purpose are unique to the language

User Interface Feedback Provides a feedback feature enabling understanding
Mixed-initiative Provides feedback& feed-forward, alternating between

user input and computer generated alternatives
Live Provides immediate and continuous feedback, e.g., a

live programming environment

user interface described in Table 2.7. We record how a language is implemented, e.g.
as an interpreter or a compiler, and what the host language or formalism is.

Furthermore, we assess applications and availability to form an idea about its
status, deployment and maturity. We list notable applications, show cases and case
studies that have been used to validate or evaluate the language in practice. Finally,
we report which languages are actually available, and if applicable, we provide links
to manuals, teaching materials, source repositories and license agreements.

This concludes the protocol. We present the results in the following section.

2.4 review protocol 29

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

0

5

10

15

20

25

30

35

40

3

6

1
3

5
6

6
4

10

12 8

16
17

11

10

6

6

3

6

5

1 1
3 4

10
6

11
13 16

9 12

13

12

9

6

1

1

1
1

4 5 5 4

10
8

11
9

20
18

11

16

1 1

Year

In
cl
ud

ed
Pu

bl
ic
at
io
ns

Narrow query
Wide query

Added by hand

Figure 2.2: Amount of publications included in the study per year

2.5 research areas

Here we present a systematic map of languages of games and play. We performed a
search on GS with our narrow and wide queries between the 2nd and 8th of March
2018, and obtained citation data until March 21st. Figure 2.2 shows a year-by-year
count of papers included in this study from both queries and publications we added
by hand. Figure 2.3 shows the citation graph of publications in the search results.
Each dot with text represents a publication shown with first author name and year.
Publications are included (green) or excluded (red) by applying the criteria from the
search protocol. Publications not connected to the graph are omitted.

The languages of games and play we have identified originate from the fields of
software engineering, artificial intelligence, humanities, social sciences, education,

30 chapter 2 languages of games and play: a systematic mapping study

Furtado2006

Hernandez2010

Furtado2006

Walter2011

Herzig2013

Sarinho2009

Matallaoui2015

Furtado2011

Guo2014

Marques2012

Moreno-Ger2006

Lewis2011

Tang2011

Thillainathan2014

Broeckhoven2013

Furtado2011

Rozen2014

Dormans2012

Thillainathan2013

Anderson2008

Frapolli2010

Mehm2012

Champandard2003

Guana2014

Furtado2007

Abbadi2015

Herzig2012

Valdez2013

Guana2015

Guo2015

Neto2009

Kesik2014

Russell2008

Ahmadi2012

Troyer2011

Prado2015

Ortega2013

Ahmadi2012

Guo2015

Neto2010

Núñez-Valdez2017

Balderas2015

Santorum2013

Minović2013

Robenalt2012

Pavlova2009

Maggiore2011

Raies2013

Tôn2015

Guo2015

Beyak2011

Calleja2010

Giacomo2016

Klint2012

Yoo2013

Barros2014

Frapolli2010

Solís-Martínez2015

Sánchez2015

Abbadi2015

Ziatdinov2016

Palmer2010

Zhu2016

Valente2015

Mathews2008

Beyak2011

Cheong2005

Tong2015

Zahari2016

Prater2014

Cooper2013

Smith2009

Guo2015

Kauhanen2007

Wells2013

Rozen2015

Stapić2013

Frapolli2010

Radomski2015

Browne2016

Ramachandran2016

Albuquerque2014

Bezgodov2015

Minović2011

Rodríguez-Cerezo2013

Giacomo2017

Furtado2006Mossmann2016

Anastasia2007

Yoo2014

Furtado2012

Walter2014

Huisman2012

Guo2015

Guo2015

Underwood

Ahmad2018

Prasanna2012

Giacomo2017

Abbadi2016

Bartel

Vijayakumar2016

Laforcade2016

Pløhn2015

Web2009

Moreno-Ger2006

SHAFIQ2017

Yoo2018

Woo2008

Mirza-Babaei2015

Kaisanlahti2017

Emms2014
Fisler2008

Holmes2014

Ašeriškis2017

Moreno-Ger2009

Troyer2017

Bernstein2016

Marchiori2012

Ašeriškis2017

Mehm2010

Stiegler2013

Barve2016

Berns2016

André2017

Dea2017

Marchiori2010

Sturtevant2014

ZHANG2017

Hastjarjanto2013

Wells2014

Marchetti2016

Rezin2017

Mennig2014

Ghergulescu2011

Ogata2017

Cutumisu2007

March2008

Garcıa-Penalvo2015

Ludovico2015

Nayar2017

McMullen2013

Grigoriou

Mehm2016

Bhowmik2014

Theodorsen2015

Hastjarjanto2013

Hvannberg2011

Ohashi2014

Ahmadi2012

By

Butler2017

Ahmadi

Kampa2016

Zubek2015

Trindade2015

Zhu2014

Pierce2012

Mehm

Clarisó2017

Kaurel2016

Tscheligi2016

Borgo2009

Heinimaki2015

Summerville2017

Flatholm2000

Nikas2015

Giacomo2014

Suzuki2011

Pieper2012

Palomo-Duarte2018

Flatt2012

Bhowmik2013

Barve2017

Shaker2016

Sousa2011

Aycock2016

Glade2017

Sierra2007

Féher2012

Calderón2017

Minović2011

Patil2017

Graziotin2013

Nusayr2016

Abbadi2017

Bäärnhielm2014

Graziotin2013

Hoey2015

Chaudy2014

Zammetti2013

Abdessettar2016

HASAN2017

Bossomaier2015

Méndez-Acuña2013

Broeckhoven2015

Hernadez2013

KRISHNA2016

GuanaGarces2017

Hosseinpoor2012

Levy2013

Gatti2017

Winstrøm-Møller2010

Borenstein2015

Coatta2014

Sadanand2017

Raghu2007

Ingram-Goble2013

Moreno2007

Soundararajan

Williams2012

Rodrigues2017

Wasilko2012

Zammetti2013

Ferdig2012

Burgos2008

Ekeroth2015

McAfee2015

Wong2011

McDonnel2009

Werdegang

Kauhanen2009

Kadlec2008

Široký2013

Mehm2013

Peppler2016

ROTARU

Ašeriškis2017

Bradburne2007

Vasilev2017

Eile

Fayed2017

Nascimento2008

Anderson2008

Sandkuhl2016

Bellotti2009

Peirce2013

Corne2013

Au-Yong-Oliveira2015

Chadha2016

Carter2016

Aubrecht2012

Rumiantcev2017

Maness2010
Halle2011

Yasuoka2014

Petty2013

Isomöttönen2015

Barenghi2015

Borghini2015

Viruel2011

Kuhrmann2010

Breen2015

Mota2018

Kyriakou2017

Berman2017

Nguyen2016

Aycock2017

Holloway2016

Vansa2009

Gaudl2016

Sinha2015

Lack2015

Crespo

Fischer2014

Kellinger2017

Fine2008

Fernández2016

Valen2014

Silva2017

Jung2011

Mayer2013

Chen2010

McNamara2016

Mahlmann2012

Wheeler2013

Hishiyama2015

Frade2012

Martínez-Ortiz2009

Arch

Khalyeyev2017

Kasting2016

Arch1972

Mailewa2015

Kellinger

Kellinger

Kelly2015

Bartle2016

Zammetti

Gañán2016

Yacoub2017

Lucero2016

Sierra2007

Mueller2006

DiBernardo

Weintrop2013

Schraml

Rozen2017

Polydorou2011

Abbas2012

Yates2013

Stern2008

Wiebusch2016

Rivas2008

Fernandes2011

Fitzpatrick

Ripley2013

Andersen2014

Eid2016

Xu2015

Alcantara2013

Lakhmani2016

Dodero2014

Wargnier2016

Liblit2007

Aubrecht2011

Lux2006

Moses2014

Fernandez2014

Collman2014

Aufreiter2011

Heineck2016

Nelson2016

Thevathasan2014

Frade2008

Kessler2010

Szymczak2014

Abdullah2010

Savidis2007

Metzger2014

Jordan2010

Lúcio2016

Özgür2007

Eleutério2015

LaViers2017

Rahman2012

Faldborg2015

Behrens2008

Fjeldberg2008

Tari2008

Liu2012

Amundsen2011

Raj2015

Arvela2010

Saternos2014

Balk2016

Zapata2016

Falcou2014

Meads2015

Yang2018

Denecke2015

Tarr2017

Copil2015

Miller2004

Terävä2007

Phillips2014

Tomassetti2014

Minder2016

Wheeling

Tan2017

Kozumplík2009

Santamarıa2017

Johansen2009

Spencer

Ciuciu2015

Herd

Mayer2017

Rubira

Jeffery2012

Rozenberg2015

Wong2010

Voelter2015

Parkin2010

Jenkinson2012

Robertson2014

Wirtz

Maruseac2017

Tang2008

Salen2007

Sweeney2006

Maier2008

Ierusalimschy1996

Claypool2005

Campbell2008

Repenning2010

Goude2007

Varanese2002

Coleman2005

Wang2006

Kardan2006

Overmars2004

Zagal2007

Elverdam2007

Bojin2008

Games2010

Koh2010

Zhang2010

Bergeron2006

Furtado2011

Nummenmaa2009

Reyno2009

Kawash2013

Basawapatna2010

Ebner2013

Almeida2013

Ryoo2008

Maggiore2012

Adipranata2010

Xin2009

Almeida2013

Lemay2007

Prax2013

Cheng2015

Mubin2009

Winn2009

Štrekelj2015

Rankin2002

Marne2012

Font2013
Phelps2004

Prax2015

Duke1980

Smith2011

Yun-duo2011

Goulding2010

Chang2012

Anderson2005

Reyno2008

Civera1994

Anderson2005

Suomela2004

Francillette2012

Mateas2005

Ahmad2015

Alves2010

Zerbst2004

Kreimeier2002

Blow2004

Gee2008

Olsson2014

Sarve2014

Reyno2009

Leutenegger2007

Boumaza2012

Ahmadi2011

Nishimori2006

Ambring2010

Dowd2009

Baker2011

Ingles2006

Chang2012

Togelius2008

Cowan2015

Gaudy2006

Meigs2003

Bátfai2010

Yulia

Lee2016

Tan2010

Gurung2016

Yoo2014

Nacke2008

Pirttiaho2014

Maggiore2011

Sundqvist2013

Dormans2012

Li2004

Browne2010

Doss2011

Clark2004

Penton2004

McAnlis2014

Qiu2009

Weintrop2012

Villaverde2009

BU2012

Lim2014

Shirai2003

Fujimori1999

Navarrete2013

Zook2014

Valente2005

Dennett2008

Yi2015

Natkin2004

Cho2014

Giordano2013

Hladká2009

Neil2012

Mladenović2016

Moreno-Ger2007

Ajiro2005

Manker2011

Prax2016

Anderson2008

Barboza2009

Lewis2006

Wetzel2014

Bayliss2006

Nelson2007

Cruz2011

Guimaraes2008

English2018

Hayes2008

Repenning2008

Marner2002

Masuch2005

Canossa2009

Murray2006

Holliday1995

Martens2015

Horswill2014

Holopainen2003

Ioannidou2008

Schaefer2004

Kreimeier2003

Thillainathan2013

Ge

Bennett2011

Zyda2008

Jeon2012

Radtke2010

Alom2015

Zimmerman2007

Gestwicki2008

Mitgutsch2012

Tonon2010

Dowd2013

Goulding2008

Grünvogel2005

Begel2007

Salomão2015

Aleem2016

Hayashi2013

Holbert2010

McGee2007

Sali2012

Ching2013

Kinzie2008

Brusk2007

Kultima2009

Madsen2012

Driessen2014

Estey2009

Smith2000

Paige2006

Carey2005

Wang2009

Voorhees2012

Kolesnikov2013

Soflano2011

Jacobs2010

Segundo2010

Ostrowski2013

Améndola2015

Kutner2016

Choi2009

Belman2010

Letts

Winters2013

Liming2011

Prax2016

Borde1992

Smith2016

Baldwin2017

Araújo2009

Smith2011

Hoganson2010

Li2004

Aldred2007

Rollings1999

Sung2016

Kardamis2014

Salazar2012

Grace2011

McCrea2017

Barnes1997

Taylor2007

Smith2016

Ochsner2014

Morgan2009

Ruggill2011

Evans2005

Nacke2005

Jones2005

McCallum2010

Minnigerode2013

Mastel2009

O'Luanaigh2006

Weng2011

Greenwood2009

Games2011

Alom2016

Schaul2014

Yatim2007

Makar2004

Shumaker2002

POR2017

Hoyles2004

Jackson2014

Nelson2014

Scharl2012

Ahmadi2014

Hoppenbrouwers2008

Mihci2014

Zackariasson2006

Jaśkiewicz2014

Torrente2012

Hoecke2015

Schenke2014

Ryu2014

Maxim2004

Eun2014

Tremblay1990

Sayenko2015

Ahmadi2011

Prax2012

Salvoni2010

Dietz2007

Swacha2010

Fullerton2005

Schetinger2011

Willett2015

Togelius2011

Roden2013

Gold2004

Chandler2005

Jang2014

Lackey2010

Bidarra2009

Byl2012

Baba2007

Nakano2004

McAllister2015

Annetta2010

Koyama2005

Marks2008

Cook2013

Fernandez-Vara2010

Navabi2006

Li2010

Castillo2008

Feronato2011

Sprankle2008

Smith2009

Bosser2004

Barbour2011

Enevold2008

Chae2014

Qureshi2012

Millians1999

Nummenmaa2008

Thol

Vanhatupa2011

MacLaurin2009

Repetto2015

Maggiore2012

Björk2003

Nelson2008

Villaverde2010

Šisler2013

Overmars2004

Bojin2010

Sullivan

Ortega2013

Altunbay2009

Simpkins2010

Flanagan2005

Osborn2013

Habgood2010

Cazzola2009

Ahmadi2012

Guo2015

Cooper2013

Mateas2003

Harteveld2009

Yannakakis2005

White2009

Ahmadi2012

Orkin2004

MacLaurin2011

Mehm2009

Repenning2015

Pareto2007

Ioannidou2011

Repenning2011

Olsson2008

Smith2012

Bakkes2010

Thielscher2011

Klint2013

Zimmerman2007

Bidarra2008

Eladhari2006

Dormann2012

Whitehead2008

Smith2009

Lankoski2008

Zagal2012

White2008

Flanagan2013

Ierusalimschy2005

Robenalt2012

Oliveira2010

Brusk2008

Browne2016

Alves2011

Gestwicki2007

O'Donnell2008

Fernández2013

Browne2014

Zagal2010

Holopainen2007

Zhang2012

Salen2005

Browne2012

Smith2012

Gao2012

Mahlmann2011

Grace2009

Gestwicki2012

Cavazza2000

Nummenmaa2009

Hernandez2010

Zhang2008

Butler2008

Aarseth2009

Broeckhoven2015

Bidarra2008

Repenning2014

Xu2009

Wang2015

Brown2016

Browne

Nummenmaa2011

Koenig2008

Hooper2017

Cooper2014

Treanor2015

Mateas2005

Koenig2008

Smith2010

Demers2009

Sicart2017

Anderson

Browne2011

Browne2010

Elliott2013

Alves2011

Smith2015

Repenning2012

Begel2007

Zagal2013

Ierusalimschy2007

Holopainen2008

Grace2012

Fowler2012

Brusk2005

Sweeney2009

Kriglstein2014

Wetzel2013

Smith2009

Orkin2010

Rankin2009

Valente2018

Mateas2007

Macedonia2000

Björk2006

Hendrix2009

Osborn2015

Eladhari2008

Azadegan2014

El-Nasr2006

Roque2005

Horswill2014

Tolmie2005

Aarseth2015

Abela2015

Almeida2013

Alves2006

Alves2013

Anderson2011

Balas2008

Baldwin2017

Baniassad2004

Brom2007

Browne2008

Calleja2009

Carbonaro2008

Champandard2007

Champanard2012

Church1999

Conway1997

Corstjens2018

Cutumisu2006

Cutumisu2009

Dawson2002 Denault2006

Djaouti2008

Dobbe2007

Dormans2009

Dormans2011

Dormans2011

Dormans2012

Eliëns2009

Elliott1999

Evans2014Fu2003

Fu2007

Funk2012

Henno2009

Hullett2010

Isla2005

Khalifa2017

Kienzle2007

Koster2005
Leijnen2015

Llopis2010

Mahlmann2011

Martens2018

Mateas2002

McNaughton2003

McNaughton2004

McNaughton2004

Natkin2003

Nelson2001

Nelson2008

Nelson2012

Nimwegen2011

Zhu2010

Orwant2000

Orwant2000

Perlin1996

Pickett2005
Pizzi2008

Resnick2009

Romein1997

Rozen2018

Saffidine2014

Salomoni2007

Sarinho2012

Schaul2013

Schmidt2014

Sicart2011

Simpkins2008

Smelik2010

Smelik2011

Smith2009

Smith2010

Smith2010

Smith2010

Smith2011

Smith2011

Smith2011

Spronck2004 Stolee2010

Szilas2007

Tang2013

Tessman2004

Thielscher2011

Treanor2012 Treanor2013

Tutenel2010

Verbrugge2010

Virmani2008

Wages2004

Wasty2010

West2007 White2007

White2008

Wilcox2007

Williams2011

Wright2000

Zagalo2006

Zhang2005

Zook2014

Games

Games

Sicart2009

Mateas2009

Osborn2017

Osborn2018

Grammarware

<e-game> StoryTec

Education

AI in games

Attac-L

ScriptEase

Casanova

Game analysis
frameworks
Pattern languages
and Ontologies

Modelware

Figure 2.3: Systematic map consisting of publications and citations between them

2.5 research areas 31

Furtado2006

Hernandez2010

Furtado2006

Walter2011

Herzig2013

Sarinho2009

Matallaoui2015

Furtado2011

Guo2014

Marques2012

Moreno-Ger2006

Lewis2011

Tang2011

Thillainathan2014

Broeckhoven2013

Furtado2011

Rozen2014

Dormans2012

Thillainathan2013

Anderson2008

Frapolli2010

Mehm2012

Champandard2003

Guana2014

Furtado2007

Abbadi2015

Herzig2012

Valdez2013

Guana2015

Guo2015

Neto2009

Kesik2014

Russell2008

Ahmadi2012

Troyer2011

Prado2015

Ortega2013

Ahmadi2012

Guo2015

Neto2010

Núñez-Valdez2017

Balderas2015

Santorum2013

Minović2013

Robenalt2012

Pavlova2009

Maggiore2011

Raies2013

Tôn2015

Guo2015

Beyak2011

Calleja2010

Giacomo2016

Klint2012

Yoo2013

Barros2014

Frapolli2010

Solís-Martínez2015

Sánchez2015

Abbadi2015

Ziatdinov2016

Palmer2010

Zhu2016

Valente2015

Mathews2008

Beyak2011

Cheong2005

Tong2015

Zahari2016

Prater2014

Cooper2013

Smith2009

Guo2015

Kauhanen2007

Wells2013

Rozen2015

Stapić2013

Frapolli2010

Radomski2015

Browne2016

Ramachandran2016

Albuquerque2014

Bezgodov2015

Minović2011

Rodríguez-Cerezo2013

Giacomo2017

Furtado2006Mossmann2016

Anastasia2007

Yoo2014

Furtado2012

Walter2014

Huisman2012

Guo2015

Guo2015

Underwood

Ahmad2018

Prasanna2012

Giacomo2017

Abbadi2016

Bartel

Vijayakumar2016

Laforcade2016

Pløhn2015

Web2009

Moreno-Ger2006

SHAFIQ2017

Yoo2018

Woo2008

Mirza-Babaei2015

Kaisanlahti2017

Emms2014
Fisler2008

Holmes2014

Ašeriškis2017

Moreno-Ger2009

Troyer2017

Bernstein2016

Marchiori2012

Ašeriškis2017

Mehm2010

Stiegler2013

Barve2016

Berns2016

André2017

Dea2017

Marchiori2010

Sturtevant2014

ZHANG2017

Hastjarjanto2013

Wells2014

Marchetti2016

Rezin2017

Mennig2014

Ghergulescu2011

Ogata2017

Cutumisu2007

March2008

Garcıa-Penalvo2015

Ludovico2015

Nayar2017

McMullen2013

Grigoriou

Mehm2016

Bhowmik2014

Theodorsen2015

Hastjarjanto2013

Hvannberg2011

Ohashi2014

Ahmadi2012

By

Butler2017

Ahmadi

Kampa2016

Zubek2015

Trindade2015

Zhu2014

Pierce2012

Mehm

Clarisó2017

Kaurel2016

Tscheligi2016

Borgo2009

Heinimaki2015

Summerville2017

Flatholm2000

Nikas2015

Giacomo2014

Suzuki2011

Pieper2012

Palomo-Duarte2018

Flatt2012

Bhowmik2013

Barve2017

Shaker2016

Sousa2011

Aycock2016

Glade2017

Sierra2007

Féher2012

Calderón2017

Minović2011

Patil2017

Graziotin2013

Nusayr2016

Abbadi2017

Bäärnhielm2014

Graziotin2013

Hoey2015

Chaudy2014

Zammetti2013

Abdessettar2016

HASAN2017

Bossomaier2015

Méndez-Acuña2013

Broeckhoven2015

Hernadez2013

KRISHNA2016

GuanaGarces2017

Hosseinpoor2012

Levy2013

Gatti2017

Winstrøm-Møller2010

Borenstein2015

Coatta2014

Sadanand2017

Raghu2007

Ingram-Goble2013

Moreno2007

Soundararajan

Williams2012

Rodrigues2017

Wasilko2012

Zammetti2013

Ferdig2012

Burgos2008

Ekeroth2015

McAfee2015

Wong2011

McDonnel2009

Werdegang

Kauhanen2009

Kadlec2008

Široký2013

Mehm2013

Peppler2016

ROTARU

Ašeriškis2017

Bradburne2007

Vasilev2017

Eile

Fayed2017

Nascimento2008

Anderson2008

Sandkuhl2016

Bellotti2009

Peirce2013

Corne2013

Au-Yong-Oliveira2015

Chadha2016

Carter2016

Aubrecht2012

Rumiantcev2017

Maness2010
Halle2011

Yasuoka2014

Petty2013

Isomöttönen2015

Barenghi2015

Borghini2015

Viruel2011

Kuhrmann2010

Breen2015

Mota2018

Kyriakou2017

Berman2017

Nguyen2016

Aycock2017

Holloway2016

Vansa2009

Gaudl2016

Sinha2015

Lack2015

Crespo

Fischer2014

Kellinger2017

Fine2008

Fernández2016

Valen2014

Silva2017

Jung2011

Mayer2013

Chen2010

McNamara2016

Mahlmann2012

Wheeler2013

Hishiyama2015

Frade2012

Martínez-Ortiz2009

Arch

Khalyeyev2017

Kasting2016

Arch1972

Mailewa2015

Kellinger

Kellinger

Kelly2015

Bartle2016

Zammetti

Gañán2016

Yacoub2017

Lucero2016

Sierra2007

Mueller2006

DiBernardo

Weintrop2013

Schraml

Rozen2017

Polydorou2011

Abbas2012

Yates2013

Stern2008

Wiebusch2016

Rivas2008

Fernandes2011

Fitzpatrick

Ripley2013

Andersen2014

Eid2016

Xu2015

Alcantara2013

Lakhmani2016

Dodero2014

Wargnier2016

Liblit2007

Aubrecht2011

Lux2006

Moses2014

Fernandez2014

Collman2014

Aufreiter2011

Heineck2016

Nelson2016

Thevathasan2014

Frade2008

Kessler2010

Szymczak2014

Abdullah2010

Savidis2007

Metzger2014

Jordan2010

Lúcio2016

Özgür2007

Eleutério2015

LaViers2017

Rahman2012

Faldborg2015

Behrens2008

Fjeldberg2008

Tari2008

Liu2012

Amundsen2011

Raj2015

Arvela2010

Saternos2014

Balk2016

Zapata2016

Falcou2014

Meads2015

Yang2018

Denecke2015

Tarr2017

Copil2015

Miller2004

Terävä2007

Phillips2014

Tomassetti2014

Minder2016

Wheeling

Tan2017

Kozumplík2009

Santamarıa2017

Johansen2009

Spencer

Ciuciu2015

Herd

Mayer2017

Rubira

Jeffery2012

Rozenberg2015

Wong2010

Voelter2015

Parkin2010

Jenkinson2012

Robertson2014

Wirtz

Maruseac2017

Tang2008

Salen2007

Sweeney2006

Maier2008

Ierusalimschy1996

Claypool2005

Campbell2008

Repenning2010

Goude2007

Varanese2002

Coleman2005

Wang2006

Kardan2006

Overmars2004

Zagal2007

Elverdam2007

Bojin2008

Games2010

Koh2010

Zhang2010

Bergeron2006

Furtado2011

Nummenmaa2009

Reyno2009

Kawash2013

Basawapatna2010

Ebner2013

Almeida2013

Ryoo2008

Maggiore2012

Adipranata2010

Xin2009

Almeida2013

Lemay2007

Prax2013

Cheng2015

Mubin2009

Winn2009

Štrekelj2015

Rankin2002

Marne2012

Font2013
Phelps2004

Prax2015

Duke1980

Smith2011

Yun-duo2011

Goulding2010

Chang2012

Anderson2005

Reyno2008

Civera1994

Anderson2005

Suomela2004

Francillette2012

Mateas2005

Ahmad2015

Alves2010

Zerbst2004

Kreimeier2002

Blow2004

Gee2008

Olsson2014

Sarve2014

Reyno2009

Leutenegger2007

Boumaza2012

Ahmadi2011

Nishimori2006

Ambring2010

Dowd2009

Baker2011

Ingles2006

Chang2012

Togelius2008

Cowan2015

Gaudy2006

Meigs2003

Bátfai2010

Yulia

Lee2016

Tan2010

Gurung2016

Yoo2014

Nacke2008

Pirttiaho2014

Maggiore2011

Sundqvist2013

Dormans2012

Li2004

Browne2010

Doss2011

Clark2004

Penton2004

McAnlis2014

Qiu2009

Weintrop2012

Villaverde2009

BU2012

Lim2014

Shirai2003

Fujimori1999

Navarrete2013

Zook2014

Valente2005

Dennett2008

Yi2015

Natkin2004

Cho2014

Giordano2013

Hladká2009

Neil2012

Mladenović2016

Moreno-Ger2007

Ajiro2005

Manker2011

Prax2016

Anderson2008

Barboza2009

Lewis2006

Wetzel2014

Bayliss2006

Nelson2007

Cruz2011

Guimaraes2008

English2018

Hayes2008

Repenning2008

Marner2002

Masuch2005

Canossa2009

Murray2006

Holliday1995

Martens2015

Horswill2014

Holopainen2003

Ioannidou2008

Schaefer2004

Kreimeier2003

Thillainathan2013

Ge

Bennett2011

Zyda2008

Jeon2012

Radtke2010

Alom2015

Zimmerman2007

Gestwicki2008

Mitgutsch2012

Tonon2010

Dowd2013

Goulding2008

Grünvogel2005

Begel2007

Salomão2015

Aleem2016

Hayashi2013

Holbert2010

McGee2007

Sali2012

Ching2013

Kinzie2008

Brusk2007

Kultima2009

Madsen2012

Driessen2014

Estey2009

Smith2000

Paige2006

Carey2005

Wang2009

Voorhees2012

Kolesnikov2013

Soflano2011

Jacobs2010

Segundo2010

Ostrowski2013

Améndola2015

Kutner2016

Choi2009

Belman2010

Letts

Winters2013

Liming2011

Prax2016

Borde1992

Smith2016

Baldwin2017

Araújo2009

Smith2011

Hoganson2010

Li2004

Aldred2007

Rollings1999

Sung2016

Kardamis2014

Salazar2012

Grace2011

McCrea2017

Barnes1997

Taylor2007

Smith2016

Ochsner2014

Morgan2009

Ruggill2011

Evans2005

Nacke2005

Jones2005

McCallum2010

Minnigerode2013

Mastel2009

O'Luanaigh2006

Weng2011

Greenwood2009

Games2011

Alom2016

Schaul2014

Yatim2007

Makar2004

Shumaker2002

POR2017

Hoyles2004

Jackson2014

Nelson2014

Scharl2012

Ahmadi2014

Hoppenbrouwers2008

Mihci2014

Zackariasson2006

Jaśkiewicz2014

Torrente2012

Hoecke2015

Schenke2014

Ryu2014

Maxim2004

Eun2014

Tremblay1990

Sayenko2015

Ahmadi2011

Prax2012

Salvoni2010

Dietz2007

Swacha2010

Fullerton2005

Schetinger2011

Willett2015

Togelius2011

Roden2013

Gold2004

Chandler2005

Jang2014

Lackey2010

Bidarra2009

Byl2012

Baba2007

Nakano2004

McAllister2015

Annetta2010

Koyama2005

Marks2008

Cook2013

Fernandez-Vara2010

Navabi2006

Li2010

Castillo2008

Feronato2011

Sprankle2008

Smith2009

Bosser2004

Barbour2011

Enevold2008

Chae2014

Qureshi2012

Millians1999

Nummenmaa2008

Thol

Vanhatupa2011

MacLaurin2009

Repetto2015

Maggiore2012

Björk2003

Nelson2008

Villaverde2010

Šisler2013

Overmars2004

Bojin2010

Sullivan

Ortega2013

Altunbay2009

Simpkins2010

Flanagan2005

Osborn2013

Habgood2010

Cazzola2009

Ahmadi2012

Guo2015

Cooper2013

Mateas2003

Harteveld2009

Yannakakis2005

White2009

Ahmadi2012

Orkin2004

MacLaurin2011

Mehm2009

Repenning2015

Pareto2007

Ioannidou2011

Repenning2011

Olsson2008

Smith2012

Bakkes2010

Thielscher2011

Klint2013

Zimmerman2007

Bidarra2008

Eladhari2006

Dormann2012

Whitehead2008

Smith2009

Lankoski2008

Zagal2012

White2008

Flanagan2013

Ierusalimschy2005

Robenalt2012

Oliveira2010

Brusk2008

Browne2016

Alves2011

Gestwicki2007

O'Donnell2008

Fernández2013

Browne2014

Zagal2010

Holopainen2007

Zhang2012

Salen2005

Browne2012

Smith2012

Gao2012

Mahlmann2011

Grace2009

Gestwicki2012

Cavazza2000

Nummenmaa2009

Hernandez2010

Zhang2008

Butler2008

Aarseth2009

Broeckhoven2015

Bidarra2008

Repenning2014

Xu2009

Wang2015

Brown2016

Browne

Nummenmaa2011

Koenig2008

Hooper2017

Cooper2014

Treanor2015

Mateas2005

Koenig2008

Smith2010

Demers2009

Sicart2017

Anderson

Browne2011

Browne2010

Elliott2013

Alves2011

Smith2015

Repenning2012

Begel2007

Zagal2013

Ierusalimschy2007

Holopainen2008

Grace2012

Fowler2012

Brusk2005

Sweeney2009

Kriglstein2014

Wetzel2013

Smith2009

Orkin2010

Rankin2009

Valente2018

Mateas2007

Macedonia2000

Björk2006

Hendrix2009

Osborn2015

Eladhari2008

Azadegan2014

El-Nasr2006

Roque2005

Horswill2014

Tolmie2005

Aarseth2015

Abela2015

Almeida2013

Alves2006

Alves2013

Anderson2011

Balas2008

Baldwin2017

Baniassad2004

Brom2007

Browne2008

Calleja2009

Carbonaro2008

Champandard2007

Champanard2012

Church1999

Conway1997

Corstjens2018

Cutumisu2006

Cutumisu2009

Dawson2002 Denault2006

Djaouti2008

Dobbe2007

Dormans2009

Dormans2011

Dormans2011

Dormans2012

Eliëns2009

Elliott1999

Evans2014Fu2003

Fu2007

Funk2012

Henno2009

Hullett2010

Isla2005

Khalifa2017

Kienzle2007

Koster2005
Leijnen2015

Llopis2010

Mahlmann2011

Martens2018

Mateas2002

McNaughton2003

McNaughton2004

McNaughton2004

Natkin2003

Nelson2001

Nelson2008

Nelson2012

Nimwegen2011

Zhu2010

Orwant2000

Orwant2000

Perlin1996

Pickett2005
Pizzi2008

Resnick2009

Romein1997

Rozen2018

Saffidine2014

Salomoni2007

Sarinho2012

Schaul2013

Schmidt2014

Sicart2011

Simpkins2008

Smelik2010

Smelik2011

Smith2009

Smith2010

Smith2010

Smith2010

Smith2011

Smith2011

Smith2011

Spronck2004 Stolee2010

Szilas2007

Tang2013

Tessman2004

Thielscher2011

Treanor2012 Treanor2013

Tutenel2010

Verbrugge2010

Virmani2008

Wages2004

Wasty2010

West2007 White2007

White2008

Wilcox2007

Williams2011

Wright2000

Zagalo2006

Zhang2005

Zook2014

Games

Games

Sicart2009

Mateas2009

Osborn2017

Osborn2018

Figure 2.4: Mapping of citations shown as a graph (left part) – Software Engineering,Modelware
(mainly the top half) and Grammarware (mainly the bottom half)

32 chapter 2 languages of games and play: a systematic mapping study

Furtado2006

Hernandez2010

Furtado2006

Walter2011

Herzig2013

Sarinho2009

Matallaoui2015

Furtado2011

Guo2014

Marques2012

Moreno-Ger2006

Lewis2011

Tang2011

Thillainathan2014

Broeckhoven2013

Furtado2011

Rozen2014

Dormans2012

Thillainathan2013

Anderson2008

Frapolli2010

Mehm2012

Champandard2003

Guana2014

Furtado2007

Abbadi2015

Herzig2012

Valdez2013

Guana2015

Guo2015

Neto2009

Kesik2014

Russell2008

Ahmadi2012

Troyer2011

Prado2015

Ortega2013

Ahmadi2012

Guo2015

Neto2010

Núñez-Valdez2017

Balderas2015

Santorum2013

Minović2013

Robenalt2012

Pavlova2009

Maggiore2011

Raies2013

Tôn2015

Guo2015

Beyak2011

Calleja2010

Giacomo2016

Klint2012

Yoo2013

Barros2014

Frapolli2010

Solís-Martínez2015

Sánchez2015

Abbadi2015

Ziatdinov2016

Palmer2010

Zhu2016

Valente2015

Mathews2008

Beyak2011

Cheong2005

Tong2015

Zahari2016

Prater2014

Cooper2013

Smith2009

Guo2015

Kauhanen2007

Wells2013

Rozen2015

Stapić2013

Frapolli2010

Radomski2015

Browne2016

Ramachandran2016

Albuquerque2014

Bezgodov2015

Minović2011

Rodríguez-Cerezo2013

Giacomo2017

Furtado2006Mossmann2016

Anastasia2007

Yoo2014

Furtado2012

Walter2014

Huisman2012

Guo2015

Guo2015

Underwood

Ahmad2018

Prasanna2012

Giacomo2017

Abbadi2016

Bartel

Vijayakumar2016

Laforcade2016

Pløhn2015

Web2009

Moreno-Ger2006

SHAFIQ2017

Yoo2018

Woo2008

Mirza-Babaei2015

Kaisanlahti2017

Emms2014
Fisler2008

Holmes2014

Ašeriškis2017

Moreno-Ger2009

Troyer2017

Bernstein2016

Marchiori2012

Ašeriškis2017

Mehm2010

Stiegler2013

Barve2016

Berns2016

André2017

Dea2017

Marchiori2010

Sturtevant2014

ZHANG2017

Hastjarjanto2013

Wells2014

Marchetti2016

Rezin2017

Mennig2014

Ghergulescu2011

Ogata2017

Cutumisu2007

March2008

Garcıa-Penalvo2015

Ludovico2015

Nayar2017

McMullen2013

Grigoriou

Mehm2016

Bhowmik2014

Theodorsen2015

Hastjarjanto2013

Hvannberg2011

Ohashi2014

Ahmadi2012

By

Butler2017

Ahmadi

Kampa2016

Zubek2015

Trindade2015

Zhu2014

Pierce2012

Mehm

Clarisó2017

Kaurel2016

Tscheligi2016

Borgo2009

Heinimaki2015

Summerville2017

Flatholm2000

Nikas2015

Giacomo2014

Suzuki2011

Pieper2012

Palomo-Duarte2018

Flatt2012

Bhowmik2013

Barve2017

Shaker2016

Sousa2011

Aycock2016

Glade2017

Sierra2007

Féher2012

Calderón2017

Minović2011

Patil2017

Graziotin2013

Nusayr2016

Abbadi2017

Bäärnhielm2014

Graziotin2013

Hoey2015

Chaudy2014

Zammetti2013

Abdessettar2016

HASAN2017

Bossomaier2015

Méndez-Acuña2013

Broeckhoven2015

Hernadez2013

KRISHNA2016

GuanaGarces2017

Hosseinpoor2012

Levy2013

Gatti2017

Winstrøm-Møller2010

Borenstein2015

Coatta2014

Sadanand2017

Raghu2007

Ingram-Goble2013

Moreno2007

Soundararajan

Williams2012

Rodrigues2017

Wasilko2012

Zammetti2013

Ferdig2012

Burgos2008

Ekeroth2015

McAfee2015

Wong2011

McDonnel2009

Werdegang

Kauhanen2009

Kadlec2008

Široký2013

Mehm2013

Peppler2016

ROTARU

Ašeriškis2017

Bradburne2007

Vasilev2017

Eile

Fayed2017

Nascimento2008

Anderson2008

Sandkuhl2016

Bellotti2009

Peirce2013

Corne2013

Au-Yong-Oliveira2015

Chadha2016

Carter2016

Aubrecht2012

Rumiantcev2017

Maness2010
Halle2011

Yasuoka2014

Petty2013

Isomöttönen2015

Barenghi2015

Borghini2015

Viruel2011

Kuhrmann2010

Breen2015

Mota2018

Kyriakou2017

Berman2017

Nguyen2016

Aycock2017

Holloway2016

Vansa2009

Gaudl2016

Sinha2015

Lack2015

Crespo

Fischer2014

Kellinger2017

Fine2008

Fernández2016

Valen2014

Silva2017

Jung2011

Mayer2013

Chen2010

McNamara2016

Mahlmann2012

Wheeler2013

Hishiyama2015

Frade2012

Martínez-Ortiz2009

Arch

Khalyeyev2017

Kasting2016

Arch1972

Mailewa2015

Kellinger

Kellinger

Kelly2015

Bartle2016

Zammetti

Gañán2016

Yacoub2017

Lucero2016

Sierra2007

Mueller2006

DiBernardo

Weintrop2013

Schraml

Rozen2017

Polydorou2011

Abbas2012

Yates2013

Stern2008

Wiebusch2016

Rivas2008

Fernandes2011

Fitzpatrick

Ripley2013

Andersen2014

Eid2016

Xu2015

Alcantara2013

Lakhmani2016

Dodero2014

Wargnier2016

Liblit2007

Aubrecht2011

Lux2006

Moses2014

Fernandez2014

Collman2014

Aufreiter2011

Heineck2016

Nelson2016

Thevathasan2014

Frade2008

Kessler2010

Szymczak2014

Abdullah2010

Savidis2007

Metzger2014

Jordan2010

Lúcio2016

Özgür2007

Eleutério2015

LaViers2017

Rahman2012

Faldborg2015

Behrens2008

Fjeldberg2008

Tari2008

Liu2012

Amundsen2011

Raj2015

Arvela2010

Saternos2014

Balk2016

Zapata2016

Falcou2014

Meads2015

Yang2018

Denecke2015

Tarr2017

Copil2015

Miller2004

Terävä2007

Phillips2014

Tomassetti2014

Minder2016

Wheeling

Tan2017

Kozumplík2009

Santamarıa2017

Johansen2009

Spencer

Ciuciu2015

Herd

Mayer2017

Rubira

Jeffery2012

Rozenberg2015

Wong2010

Voelter2015

Parkin2010

Jenkinson2012

Robertson2014

Wirtz

Maruseac2017

Tang2008

Salen2007

Sweeney2006

Maier2008

Ierusalimschy1996

Claypool2005

Campbell2008

Repenning2010

Goude2007

Varanese2002

Coleman2005

Wang2006

Kardan2006

Overmars2004

Zagal2007

Elverdam2007

Bojin2008

Games2010

Koh2010

Zhang2010

Bergeron2006

Furtado2011

Nummenmaa2009

Reyno2009

Kawash2013

Basawapatna2010

Ebner2013

Almeida2013

Ryoo2008

Maggiore2012

Adipranata2010

Xin2009

Almeida2013

Lemay2007

Prax2013

Cheng2015

Mubin2009

Winn2009

Štrekelj2015

Rankin2002

Marne2012

Font2013
Phelps2004

Prax2015

Duke1980

Smith2011

Yun-duo2011

Goulding2010

Chang2012

Anderson2005

Reyno2008

Civera1994

Anderson2005

Suomela2004

Francillette2012

Mateas2005

Ahmad2015

Alves2010

Zerbst2004

Kreimeier2002

Blow2004

Gee2008

Olsson2014

Sarve2014

Reyno2009

Leutenegger2007

Boumaza2012

Ahmadi2011

Nishimori2006

Ambring2010

Dowd2009

Baker2011

Ingles2006

Chang2012

Togelius2008

Cowan2015

Gaudy2006

Meigs2003

Bátfai2010

Yulia

Lee2016

Tan2010

Gurung2016

Yoo2014

Nacke2008

Pirttiaho2014

Maggiore2011

Sundqvist2013

Dormans2012

Li2004

Browne2010

Doss2011

Clark2004

Penton2004

McAnlis2014

Qiu2009

Weintrop2012

Villaverde2009

BU2012

Lim2014

Shirai2003

Fujimori1999

Navarrete2013

Zook2014

Valente2005

Dennett2008

Yi2015

Natkin2004

Cho2014

Giordano2013

Hladká2009

Neil2012

Mladenović2016

Moreno-Ger2007

Ajiro2005

Manker2011

Prax2016

Anderson2008

Barboza2009

Lewis2006

Wetzel2014

Bayliss2006

Nelson2007

Cruz2011

Guimaraes2008

English2018

Hayes2008

Repenning2008

Marner2002

Masuch2005

Canossa2009

Murray2006

Holliday1995

Martens2015

Horswill2014

Holopainen2003

Ioannidou2008

Schaefer2004

Kreimeier2003

Thillainathan2013

Ge

Bennett2011

Zyda2008

Jeon2012

Radtke2010

Alom2015

Zimmerman2007

Gestwicki2008

Mitgutsch2012

Tonon2010

Dowd2013

Goulding2008

Grünvogel2005

Begel2007

Salomão2015

Aleem2016

Hayashi2013

Holbert2010

McGee2007

Sali2012

Ching2013

Kinzie2008

Brusk2007

Kultima2009

Madsen2012

Driessen2014

Estey2009

Smith2000

Paige2006

Carey2005

Wang2009

Voorhees2012

Kolesnikov2013

Soflano2011

Jacobs2010

Segundo2010

Ostrowski2013

Améndola2015

Kutner2016

Choi2009

Belman2010

Letts

Winters2013

Liming2011

Prax2016

Borde1992

Smith2016

Baldwin2017

Araújo2009

Smith2011

Hoganson2010

Li2004

Aldred2007

Rollings1999

Sung2016

Kardamis2014

Salazar2012

Grace2011

McCrea2017

Barnes1997

Taylor2007

Smith2016

Ochsner2014

Morgan2009

Ruggill2011

Evans2005

Nacke2005

Jones2005

McCallum2010

Minnigerode2013

Mastel2009

O'Luanaigh2006

Weng2011

Greenwood2009

Games2011

Alom2016

Schaul2014

Yatim2007

Makar2004

Shumaker2002

POR2017

Hoyles2004

Jackson2014

Nelson2014

Scharl2012

Ahmadi2014

Hoppenbrouwers2008

Mihci2014

Zackariasson2006

Jaśkiewicz2014

Torrente2012

Hoecke2015

Schenke2014

Ryu2014

Maxim2004

Eun2014

Tremblay1990

Sayenko2015

Ahmadi2011

Prax2012

Salvoni2010

Dietz2007

Swacha2010

Fullerton2005

Schetinger2011

Willett2015

Togelius2011

Roden2013

Gold2004

Chandler2005

Jang2014

Lackey2010

Bidarra2009

Byl2012

Baba2007

Nakano2004

McAllister2015

Annetta2010

Koyama2005

Marks2008

Cook2013

Fernandez-Vara2010

Navabi2006

Li2010

Castillo2008

Feronato2011

Sprankle2008

Smith2009

Bosser2004

Barbour2011

Enevold2008

Chae2014

Qureshi2012

Millians1999

Nummenmaa2008

Thol

Vanhatupa2011

MacLaurin2009

Repetto2015

Maggiore2012

Björk2003

Nelson2008

Villaverde2010

Šisler2013

Overmars2004

Bojin2010

Sullivan

Ortega2013

Altunbay2009

Simpkins2010

Flanagan2005

Osborn2013

Habgood2010

Cazzola2009

Ahmadi2012

Guo2015

Cooper2013

Mateas2003

Harteveld2009

Yannakakis2005

White2009

Ahmadi2012

Orkin2004

MacLaurin2011

Mehm2009

Repenning2015

Pareto2007

Ioannidou2011

Repenning2011

Olsson2008

Smith2012

Bakkes2010

Thielscher2011

Klint2013

Zimmerman2007

Bidarra2008

Eladhari2006

Dormann2012

Whitehead2008

Smith2009

Lankoski2008

Zagal2012

White2008

Flanagan2013

Ierusalimschy2005

Robenalt2012

Oliveira2010

Brusk2008

Browne2016

Alves2011

Gestwicki2007

O'Donnell2008

Fernández2013

Browne2014

Zagal2010

Holopainen2007

Zhang2012

Salen2005

Browne2012

Smith2012

Gao2012

Mahlmann2011

Grace2009

Gestwicki2012

Cavazza2000

Nummenmaa2009

Hernandez2010

Zhang2008

Butler2008

Aarseth2009

Broeckhoven2015

Bidarra2008

Repenning2014

Xu2009

Wang2015

Brown2016

Browne

Nummenmaa2011

Koenig2008

Hooper2017

Cooper2014

Treanor2015

Mateas2005

Koenig2008

Smith2010

Demers2009

Sicart2017

Anderson

Browne2011

Browne2010

Elliott2013

Alves2011

Smith2015

Repenning2012

Begel2007

Zagal2013

Ierusalimschy2007

Holopainen2008

Grace2012

Fowler2012

Brusk2005

Sweeney2009

Kriglstein2014

Wetzel2013

Smith2009

Orkin2010

Rankin2009

Valente2018

Mateas2007

Macedonia2000

Björk2006

Hendrix2009

Osborn2015

Eladhari2008

Azadegan2014

El-Nasr2006

Roque2005

Horswill2014

Tolmie2005

Aarseth2015

Abela2015

Almeida2013

Alves2006

Alves2013

Anderson2011

Balas2008

Baldwin2017

Baniassad2004

Brom2007

Browne2008

Calleja2009

Carbonaro2008

Champandard2007

Champanard2012

Church1999

Conway1997

Corstjens2018

Cutumisu2006

Cutumisu2009

Dawson2002 Denault2006

Djaouti2008

Dobbe2007

Dormans2009

Dormans2011

Dormans2011

Dormans2012

Eliëns2009

Elliott1999

Evans2014Fu2003

Fu2007

Funk2012

Henno2009

Hullett2010

Isla2005

Khalifa2017

Kienzle2007

Koster2005
Leijnen2015

Llopis2010

Mahlmann2011

Martens2018

Mateas2002

McNaughton2003

McNaughton2004

McNaughton2004

Natkin2003

Nelson2001

Nelson2008

Nelson2012

Nimwegen2011

Zhu2010

Orwant2000

Orwant2000

Perlin1996

Pickett2005
Pizzi2008

Resnick2009

Romein1997

Rozen2018

Saffidine2014

Salomoni2007

Sarinho2012

Schaul2013

Schmidt2014

Sicart2011

Simpkins2008

Smelik2010

Smelik2011

Smith2009

Smith2010

Smith2010

Smith2010

Smith2011

Smith2011

Smith2011

Spronck2004 Stolee2010

Szilas2007

Tang2013

Tessman2004

Thielscher2011

Treanor2012 Treanor2013

Tutenel2010

Verbrugge2010

Virmani2008

Wages2004

Wasty2010

West2007 White2007

White2008

Wilcox2007

Williams2011

Wright2000

Zagalo2006

Zhang2005

Zook2014

Games

Games

Sicart2009

Mateas2009

Osborn2017

Osborn2018

Figure 2.5: Mapping of citations shown as a graph (right part) – Analysis frameworks, pattern
languages, ontologies (mainly the top half) and AI in Games (mainly the bottom half)

2.5 research areas 33

Languages of
Games and Play

ArtificialIntelligence

Hum
anities

Social Sciences

Pr
ac
tic

e
So

ftw
ar
eE

ng
ine

eri
ng

M
DE

DSL
s

PCG

Authoring

Ludology

Narratology

Education

Too
ls

En
gi
ne

s

Figure 2.6: Language-centric approaches crosscut areas, disciplines and topics

and game studies, with some cross-disciplinary overlap and diffuse areas. Figure 2.6
illustrates the diversity of publication areas and topics we have selected. The reader
is invited to spin the outer wheel of research topics around the publication areas. We
describe research areas one by one. We briefly introduce each area, give an overview
of venues and link related research perspectives, which are detailed in Section 2.6.
For conciseness, we only describe venues when the number of identified publications
is at least two, as specified by the search protocol.

2.5.1 Software Engineering and Programming Languages

Software Engineering (SE) researchers study the game domain by developing and
applying structured methods, languages, techniques and tools for engineering better
game software. Lämmel covers several subjects of Software Language Engineering
in his textbook on Software Languages: Syntax, Semantics, and Metaprogramming
[Läm18]. Compilers: Principles Techniques and Tools (a.ka. the “dragon book”)
by Aho et al., first published in 1986, is still regarded as a classic foundational
textbook [ASU86].

We identify contributions from Programming Language (PL) research in particular,
as shown in Table 2.8. Figure 2.4 zooms in on related publications. The ACM Special
InterestGrouponProgrammingLanguages (SIGPLAN) “explores programming language
concepts and tools, focusing on design, implementation, practice, and theory”.

The main source of publications is the International Conference on Systems,
Programming, Languages and Applications: Software for Humanity (SPLASH), a

34 chapter 2 languages of games and play: a systematic mapping study

Table 2.8: Publication venues in the field of Software Engineering and Programming Languages

Venue Acronym Years Ct.

InternationalConference on Systems, Programming, Languages,
andApplications: Software forHumanity (conference umbrella)

SPLASH 1986–

Conference on Object-Oriented Programming Systems, Lan-
guages and Applications

OOPSLA 1986– 1

Symposium on New Ideas in Programming and Reflections on
Software

Onward! 2002– 2

International Conference onGenerative Programming andCom-
ponent Engineering

GPCE 2002– 1

International Conference on Software Language Engineering SLE 2008– 3
Workshop on Domain-Specific Modeling DSM 2001– 4

International Conference on Software Engineering ICSE 1975– 2
Workshop on Games and Software Engineering GAS 2011–

2016
2

International Conference on Automated Software Engineering ASE 1990– 2

Symposium on Principles of Programming Languages POPL 1973– 2

Science of Computer Programming 2000– 2

ACM Sigplan Notices 1966– 2

Communications of the ACM CACM 1958– 3
ACM Queue Queue 2003– 2

large conference ‘umbrella’ of colocated events, which includes: 1) Workshop on
Domain-Specific Modeling (DSM) [FS06a; FSR11; HO10; MBB+12]; 2) International
Conference on Software Language Engineering (SLE) [dGAC+17b; KvR13; NK12b]; 3)
Conference Object-Oriented Programming Systems, Languages and Applications3
(OOPSLA) [SBI+08a]; 4) Symposium on New Ideas in Programming and Reflections
on Software (Onward!) [MK13; Pal10]; and 5) International Conference on Generative
Programming and Component Engineering (GPCE) [AGM+06]. SLE research is
traditionally split between modelware and grammarware, which respectively revolve
around meta-models and grammars [PKP13].

In addition, the search revealed two publications at the International Conference
on Software Engineering (ICSE) [BC04; COS+06] and two more at the colocated
workshop on Games and Software Engineering (GAS), which was organized five
times [GSN15; HJL13].

Other conferences include the International Conference on Automated Software
Engineering (ASE) [MCS+04a; MCS+04b], and the International Conference on Model

3A track of SPLASH since 2010

2.5 research areas 35

Table 2.9: Publication venues in the field of Artificial Intelligence and Games

Venue Acronym Years Ct.

AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment

AIIDE 2005– 14

Workshop on Experimental AI in Games EXAG 2014– 2

IEEE Conference on Computational Intelligence and Games CIG 2005–
2018

8

IEEE Conference on Games CoG 2019– –

International Conference on Computational Creativity ICCC 2010– 2

EvoStar – The Leading European Event on Bio-Inspired Com-
putation (conference umbrella)

EvoStar 1998–

International Conference on the Applications of Evolutionary
Computation – Games track (EvoGames)

Evo-
Applications

2010– 3

IEEE Transactions on Computational Intelligence and AI in
Games

TCIAIG 2009–
2017

12

IEEE Transactions on Games T-G 2017– –

Driven Engineering Languages and Systems (MoDELS) [KDV07]. In addition, we
find two invited talks at the Symposium on Principles of Programming languages
(POPL) [Mac11a; Swe06] intended to inspire PL research.

Several journals stand out. The monthly SIGPLAN Notices includes special
issues from associated conferences, including SPLASH, SLE, Onward!, GPCE and
POPL [Mac11b; SBI+08b]. Communications of the ACM is a journal that covers a
wider computer science space [Fla12; RMM+09; WKG+09] and articles from ACM
Queue are included in its practitioners section [Fla11; WSG+08]. In addition, we find
two publications in special issues of Elsevier’s Science of Computer Programming
[COM+07; MSM+07].

We highlight the following related perspectives:

• Automated Game design, a multi-disciplinary area that includes SE, in Sec-
tion 2.7.3,

• Applied (or serious) game design, in particular DSLs for expressing subject
matter, in Section 2.6.3,

• Script- and Programming Languages for game development, in Section 2.6.12,
• Modeling Languages and model-driven engineering for game development, in

Section 2.6.13,
• Metaprogramming, primarily illustrative examples explaining the power of

generic language technology, in Section 2.6.14.

36 chapter 2 languages of games and play: a systematic mapping study

2.5.2 Artificial Intelligence and Games

The Artificial Intelligence (AI) community has studied how games can benefit from
intelligent, usually algorithmic approaches, yielding efficient algorithms, techniques
and tools. In their textbook on AI and Games, Yannakakis and Togelius describe the
theory, use and application of algorithms and techniques [YT18].

When languages are created, it is often in the context of intelligent systems (or
expert systems), or content generators. Classical AI favored logic programming in
Prolog for knowledge engineering, the construction of intelligent systems, which
explains why some modern solutions are also based on this paradigm. Notable
approaches include logic (Prolog, Answer Set Programming) and Machine Learning.
Figure 2.5 zooms in on related publications, mainly clustered together in the bottom
half of the graph. Conferences, symposia and workshops include the following.

The Association for the Advancement of Artificial Intelligence (AAAI) “aims to
promote research in, and responsible use of, artificial intelligence”. This includes the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE)
[BBA+08; Mar15; MS05b; NM08a; OZ10; OSM+15; OGM13; PCW+08; SNM09a;
SNM09b; SWM10b; TSB+10; VKM+08]

and colocated workshops, such as Experimental AI in Games (EXAG) [KT17],
which are annually organized in North America.

IEEE Conference on Computational Intelligence and Games (CIG) covers “advances
in and applications of machine learning, search, reasoning, optimization and other CI/AI
methods related to various types of games.” We find contributions related to methods for
general game playing such as game description languages and generation of level,
strategies and game rules. [BDF+17a; BT14; LH14; MTY11a; Sch13; SM10; SNM10;
TS08]. The IEEE Conference on Games (CoG), evolved from CIG and wided the scope
to cover among other topics, game technology, game design, and game education.

The prime journal is IEEE Transactions on Computational Intelligence and AI in
Games (TCIAIG) [BM10; DB11; ES14; PLW+10; Saf14; Sch14a; Sch14c; SM11a; SLH+11;
SWM+11; SMH+19; vdLLB14]. The journal recently widened its technological scope
and was renamed to Transactions on Games (T-G).

We highlight the following related perspectives:

• Automated Game design, a multi-disciplinary research topic with many contri-
butions from AI and games, in Section 2.7.3,

• Game mechanics, frameworks and systems providing analysis, generation and
explanations of a game’s rules, in Section 2.6.4,

• Virtual worlds and game levels, spaces whose structure and composition can be
described by languages, tools and generative techniques, in Section 2.6.5,

• Behavior languages, the design of algorithms, tools and engines for non-player
character behavior, in Section 2.6.6,

2.5 research areas 37

Table 2.10: Articles and presentations from Game Development Practice

Venue Acronym Years Ct.

Game Developers Conference (UBM Technology Group) GDC 1988– 4
Game Developer Magazine (UBM Technology Group) 1994–

2013
3

Gamasutra (UBM Technology Group) 1997– 3

• Narratives and storytelling, in particular technical language-centric approaches,
in Section 2.6.7,

• Game analytics and metrics, in Section 2.6.8.
• General gameplaying and Game Description Languages, formalisms for a

diverse test-bed for AI and general game playing, in Section 2.6.11.

2.5.3 Game Development Practice

The Game Developers Conference (GDC) owned by the UBM Technology Group is a
large annual event and not a publishing venue. However, it hosts presentations by
practitioners, some of whom share presentation slides identified by this study [Cha07;
HB03; Isl05b; Kos05a]. The GDCVault4 contains audio and video recordings of
these presentations and all volumes of Game Developer Magazine5, which ran until
2013 [Chu99a; Llo10; Wes07]. Gamasutra6 is a web site that continues to publish
articles, and hosts selected articles from Game Developer Magazine [Chu99b; Kre02;
Wil07]. In particular, post-mortems in which developers share experiences about
challenges, solutions, decisions (the good and the bad) during a game’s life cycle offer
glimpses of game development practice [Gro03]. Given the enormous size of the
game industry, the practical accounts we identified are few. These languages likely
represent the tip of the iceberg. We reflect on this issue in Section 2.9.

2.5.4 Social Sciences and Humanities and Storytelling

Game scholars have extensively studied, analyzed and critiqued games. They provide
insight into how games work, what constitutes play, and how games impact culture
and society. In game studies, ludologists have proposed vocabularies, ontologies
and pattern languages aimed at understanding and critiquing games and play in a
cultural context.

Aside from studies, game education has yielded textbooks on game design and
development practice. Schell introduces the art of game design, offering theory,

4
https://gdcvault.com (visited August 20th 2019)

5
https://gdcvault.com/gdmag (visited August 20th 2019)

6
http://www.gamasutra.com (visited August 20th 2019)

38 chapter 2 languages of games and play: a systematic mapping study

https://gdcvault.com
https://gdcvault.com/gdmag
http://www.gamasutra.com

Table 2.11: Multi-disciplinary publication venues on Game Studies, Education and Storytelling

Venue Acronym Years Ct.

Conference of the International Simulation and Gaming Associ-
ation

ISAGA 1970– 3

Simulation & Gaming S&G 1970– 2

Game Studies 2001– 2

European Conference on Games Based Learning ECGBL 2007– 2

Computers & Education (Elsevier) 2000– 2

International Conference on Interactive Digital Storytelling ICIDS 2008– 2
Conference on Technologies for Interactive Digital Storytelling
and Entertainment

TIDSE 2003,
4, 6

2

International Conference on Virtual Storytelling ICVS 2001,
3, 5, 7

2

approaches and conceptual lenses that help designers think and practice [Sch14b].
Fullerton describes a play centric approach to creating games highlighting the
disciplines prototyping and play testing [FSH08]. Salen and Zimmerman describe
game design fundamentals with focus on core concepts, rules, play and culture [SZ03].

The International Conference on Interactive Digital Storytelling [CKM15; vBVD15]
is the result of merging between its predecessors Technologies for Interactive Dig-
ital Storytelling and Entertainment [WGC04; ZGT+06], and Conference on Virtual
Storytelling [BŠH07; Szi07]. We also mention the workshops on Games and Natural
Language Processing [Hor14] and Intelligent Narrative Technologies [MFB+14].

The International Simulation and Gaming Association (ISAGA) has organized an
annual conference since 1970 [HBK07; HB08; MBS+07]. ISAGA can trace its origins
back to the now famous book Homo Ludens [Hui38], and aside from game studies
also has an education focus. Related is the journal Games & Simulation [ZTS12]. In
addition, we identify articles in the Journal of Game studies [Grü05; Sic08].

We highlight the following related perspectives:

• Ontological approaches and typologies, in Section 2.6.1,
• Pattern languages and design patterns, in Section 2.6.2,
• Narratives and storytelling, in Section 2.6.7,
• Educative languages, in Section 2.6.9,
• Gamification, in Section 2.6.10.

2.5 research areas 39

Table 2.12: Multi-disciplinary publication venues on Games and Entertainment Computing

Venue Acronym Years Ct.

International Conference on the Foundations of Digital Games FDG 2006– 12
Workshop on Procedural Content Generation in Games PCG 2010– 9
Workshop on Design Patterns in Games DPG 2012–

2015
5

International Conference on Entertainment Computing ICEC 2002– 5
Workshop on Game Development and Model-Driven Software
Development

GD &
MDSD

2011,
2012

3

Digital Games Research Association International Conference DiGRA 2003– 7

International Conference on Intelligent Games and Simulation GAME-
ON

2000– 6

International North American Conference on Intelligent Games
and Simulation

GAME-
ON-NA

2005–
2011. . .

3

International Conference on Computer Games CGAMES 2004–
2015

4

Brazilian Symposium on Computer Games and Digital Enter-
tainment

SBGames 2002– 4

International Conference on Computers and Games CG 1998– 2

International Conference on Advances in Computer Entertain-
ment Technology

ACE 2004–
2018

5

International Academic Conference on the Future of Game
Design and Technology

Future
Play

2002–
2010

3

ACM Computers in Entertainment CIE 2003–
2018

2

2.5.5 Multi-disciplinary Games Research

Researchers and practitioners from different fields meet at multi-disciplinary confer-
ences on games and entertainment computing. They exchange points of view, and
apply and mix diverse expertise on game design, AI and language technology, which
results in synergy and inter-disciplinary advances. Although challenges, objectives
approaches may differ, multi-disciplinary venues are the main source of publications
included in this study, and perhaps the best source of nuanced approaches. Table 2.12
shows the publications venues we identified. We briefly describe each one.

The International Conference on the Foundations of Digital Games (FDG) is
a multi-disciplinary conference that alternates between Europe and the USA. We
include contributions resulting from narrow [BTP17; Hol14; vRoz15a; vRD14] and

40 chapter 2 languages of games and play: a systematic mapping study

wide [FMM+13b; TZE+15; ZBL13] queries, andwe added several others by hand [AC15;
HW10; SWM10a; TBM+12]. Two colocated workshops are of special note. The first,
Design Patterns in Games (DPG) includes pattern languages and gameplay design
patterns [AR13; AH14; DN12; Wet13; Wet14]. DPG was last organized in 2015, but
might be revived. The second, Procedural Content Generation in Games (PCG) is
concerned with generative methods for games, often using AI techniques [ALY15;
BDF+17b; DN12; Dor10; Dor11b; LBB15; STdK+10; vRH18; ZR14b].

The International Conference on Entertainment Computing (ICEC) [KBW14;
MSO+12c; MMS+06; SSP04; VZ10] is organized annually. The continent of the venue
varies. The colocated Workshop on Game Development and Model-Driven Software
Development (GD&MDSD) was organized twice [FR12; KRvR12; MSO+12a].

The Digital Games Research Association (DiGRA) organizes its annual DiGRA
International Conference, which is a mix of game studies, humanities and technol-
ogy [AR09; BLH03; CD09; Dor11a; Lem07; MS05a; MC09a; ZMF+05].

The International Conference on Intelligent Games and Simulation (GAMEON-
ON) focuses on structured methods for programming of games that benefit industry
and academia. GAME-ON is organized annually in Europe [BD10; EHvdW+09;
MC08; NV03; SMM07; WM00], but also occurs on different continents, e.g., North
America (GAME-ON-NA) [DKV06; Dor09; PVM05]. Another conference branched
off from GAME-ON in 2004, as explained by Spronck [Spr04]. It was first known
as Computer Games: Conference on Artificial Intelligence, Design and Education
(CGAIDE) [NVG04] and later became the International Conference on Computer
Games (CGames), which was last organized in 2015 [FGH+12; SMO+12; vNvOM+11].

The International Conference on Computers and Games (CG) is a venue that is not
organized every year [Bro16; Ver03]. The Brazilian Symposium on Computer Games
and Digital Entertainment (SBGames) is a national event with international visibility,
and also a source of several DSLs [ARC+14; AVG+13; FS06a; SA09].

Some venues we identified are discontinued. For instance, the Conference on
Advances in Computer Entertainment Technology (ACE) was a technology oriented
multi-disciplinary conference [AR11a; Bru08; EM08; NKH09; WM11]. In 2018, most
members of its steering committee resigned when they could no longer guarantee
an impartial review process, and the conference closed down after a community
boycot that condemned the conduct of the event’s owner. The International Academic
Conference on the Future ofGameDesign andTechnology (Future Play)was organized
from 2002 until 2010 [And08b; Boj10; MV08]. The journal, ACM Computers in
Entertainment (CIE) ceased in 2018 [MC09b; ES06],

In the next section, we discuss a series of research perspectives. Each of these can
be considered a multi-disciplinary point of view.

2.5 research areas 41

2.6 research perspectives

We present a series of fourteen complementary research perspectives on languages
of games and play. Each perspective sheds light on what informs the design and
construction of good games. Together they form an overview that provides answers to
our research questions rq2 and rq3. We acknowledge that different decompositions
would have been possible, and ours ismerely one ofmanyways to aggregate the results
of this study. Our structure represents a best-effort that adheres to the phrasings and
research frames of the authors whose works we summarize.

We derive the perspectives from the search results as follows. We group summaries
of similar languages. We distill common research frames, highlight challenges and
describe theoretical foundations, systematic techniques and practical solutions. For
conciseness, we only illustrate these views with a selection of representative language
summaries.

2.6.1 Ontologies and Typologies

In search of a common vocabulary for game studies, scholars have defined ontologies
that relate written symbols, abstract concepts and real-world objects. In general, an
ontology defines a set of named concepts, their properties and the relations between
them, usually with the goal of categorizing objects of interest in a specific subject area
or problem domain for understanding its meaning. In game studies in particular,
ontologies and typologies are used to describe, categorize, analyze, understand and
critique games and play.

Aarseth explains that ontologies are essential for game studies to reach a consensus
on themeaning of words, concepts and relations between them [Aar11]. He scrutinizes
different ontological models and describes challenges in their construction. For
instance, choosing the level of description, i.e. how fine-grained the ontological
elements (or meta-categories) should be, is difficult because there is no natural halting
point in adding nuances, details or patterns for highlighting differences. In addition,
choosing generality or specificity limits applications since general-purpose ontologies
may not be as useful as ontologies constructed for a specific purpose.

There are many languages for constructing ontologies. For instance the w3c
Web Ontology Language (OWL) is an XML based notation with good tool support
for describing semantic relationships7. In some cases languages of games and
play use ontologies for describing or guiding parts of the solution. Table 2.13 lists
ontological languages we describe. Identified, but not summarized are a Business
Process Modeling Ontology for game-based learning [RKB13], and a Gamification
Ontology [Men14].

7
https://www.w3.org/OWL (Visited June 1st 2019)

42 chapter 2 languages of games and play: a systematic mapping study

https://www.w3.org/OWL

Table 2.13: Ontological Languages

Nr. Language Domain Notation

1 Game Typology Game studies tables and visual diagrams
2 Game Ontology Project Game studies tables /pattern-language
3 Pervasive Games Ontology Pervasive games class diagram
4 Ontology of Journalism Journalism Web Ontology Language

Language 1 Game Typology generic / framework / research

Elverdam and Aarseth discuss a multi-dimensional typology of games [EA07], an
extension of prior work [ASS03]. Instead of using game genres for classifying games,
which may be arbitrary, contradictory, or overlapping, they propose using an open-
ended ontological model. It has a meta-categories Player Composition, Player Relation,
Struggle, Game State, and Time (Internal and External) and Space (Virtual and Physical).
Virtual Space has the dimensions Perspective, Positioning, and Environment Dynamics.
Figure 2.7 depicts its Perspective dimension in a visual notation. Read from left to
right (and from abstract to concrete), dimensions (shown as rounded rectangles) have
alternatives (marked by arrows) and sub-dimensions (horizontal dashed lines), which
are also categories. On the far right are game instances, distinguished by the typology.

publication query publication type research category note

[ASS03] language conference paper proposal of solution
[EA07] 16w journal article proposal of solution

Language 2 Game Ontology Project generic / framework / practice

Zagal et al. present the Game Ontology Project (GOP), a framework offering a unified
game design vocabulary to describe, analyse and study existing games and facilitate the
design of new ones [ZMF+05]. The ontology abstracts away representational details of
games such as setting, genre and player knowledge, and its aim is to characterize the
game design space. The top-level elements are Interface, Rules, Entity Manipulation
and Goals. GOP is available online in Wiki form1.

1
https://www.gameontology.com/ (last visited November 17th 2018)

publication query publication type research category note

[ZMF+05] 15w conference paper proposal of solution
[ZMF+07] 15w book chapter proposal of solution reprint

[Zag10] 601w book validation research Ludoliteracy

2.6 research perspectives 43

https://www.gameontology.com/

Figure 2.7: Game Typology – The Metacategory Space Containing the Dimensions Perspective,
Positioning, and Environment Dynamics (appears in Elverdam and Aarseth [EA07])

Language 3 Pervasive Games Ontology genre-specific / tool / practice

Guo and Trætteberg propose a Pervasive Games Ontology (PerGO) for structuring and
accelerating the process of analyzing the game domain, specifically aimed at pervasive
games, i.e. games extending into the real world [GTW+14]. Guo et al. evaluate a
model-driven development methodology for a location-based game called RealCoins
[GTW+15b], and propose a domain-specific modeling workflow [GTW+15a]. Pløhn et al.
extend PerGO and perform a case study on a game called Nuclear Mayhem [PKG15].

44 chapter 2 languages of games and play: a systematic mapping study

Table 2.14: Pattern-languages for analyzing games and forming gameplay hypotheses

Nr. Language Informs the design of

5 Formal Abstract Design Tools gameplay goals / pattern languages
6 Game Design Patterns gameplay goals / pattern languages
7 Gameplay Design Pattern gameplay goals
8 Mechanics Dynamic Aesthetics digital game systems
11 Collaboration Patterns collaborative gameplay goals
15 Flow Experience Patterns flow experience goals
16 Patterns Language for Serious Games Design applied gameplay goals

publication query publication type research category note

[GTW+14] 9n workshop paper proposal of solution
[GTW+15b] 30n journal paper validation research
[GTW+15a] 50n conference paper validation research

[Guo15] 97n PhD Thesis evaluation research
[PKG15] 107n journal paper validation research

Language 4 Ontology of Journalism genre-specific / tool / practice

Dowd explores how the design of persuasive learning systems for journalists can
be guided by an ontology for journalism [Dow13]. The ontology describes vocabu-
lary, concepts and emotions in the journalism domain, including social media and
crowdsourcing. Robojourno is a synthetic player that helps journalists reflect on their
core values by responding to emotional inputs. Defined as a Finite State Machine, it
leverages links between roles, actions, before- and after-intentions and Hoare logic, e.g.,
“{Curiosity} publish story {satisfied}” and “{Competitive} scoop please {smug}”.

publication query publication type research category note

[Dow13] 166w conference paper proposal of solution

2.6.2 Pattern Languages and Design Patterns

A pattern language describes best practices with empirically proven good results as
a reusable solution to commonly recurring problems in a particular area of interest.
The approach originates form Alexander et al. who describe a pattern language
for towns, buildings and construction [AIS+77]. Often presented in table form or
a template, sequential sections highlight different facets of the problem, proposed

2.6 research perspectives 45

Table 2.15: Pattern-languages offering authorial affordances over designing games and play

Nr. Language Game Artifact Affects

9 Pattern Language for
Sound Design

sound sound-supported experiences

10 Verbs abstract player actions gameplay affordances
12 Pattern Cards for

Mixed Reality Games
mixed reality game rules mixed-reality experience

13 Design Patterns for
FPS Games

structure of FPS levels progression, experiences

14 3d Level Patterns structure of 3d levels progression, experiences
17 Operational Logics depends on concrete

representations
inner game workings, exter-
nal player communication

26 Machinations game-economic mechanics,
feed-back loops

gameplay affordances, strate-
gies and trade-offs

solution, examples, and related contextual information. In Software Engineering,
Object Oriented (OO) design patterns are a well-known means to create, explain
and understand software designs, design decisions and implementations [GHJ+94].
In contrast, in game studies and humanities, game design patterns are a means to
analyze and explain player experiences, also referred to as gameplay design patterns.
The key difference between these kinds of patterns is that the former are prescriptive
for structuring software and the latter are analytic regarding gameplay effects. We
categorize pattern languages in two categories. The first, shown in Table 2.14, lists
languages for analyzing, categorizing, understanding and critiquing gameplay. The
second, shown in Table 2.15, lists languages for predicting the effect of changes to
a game’s design, and making informed design decisions, e.g., level design patterns
and game mechanics patterns. Programming patterns that directly affect a game’s
mechanics, narratives, levels, and behaviors are discussed in Section 2.6.4, 2.6.5, 2.6.6
and 2.6.7.

Language 5 Formal Abstract Design Tools generic / framework / practice

Church proposes Formal Abstract Design Tools (FADT), a kind of pattern language
for game design, with broad categories intention, perceivable consequence and story.
This influential publication has influenced later works, because it offered a new frame
for research and practice for building on past discoveries, sharing concepts behind
successes, and applying lessons learnt from one domain (or genre) to another.

46 chapter 2 languages of games and play: a systematic mapping study

publication query publication type research category note

[Chu99b] –w magazine article proposal of solution
[Chu99a] –w magazine article proposal of solution reprint

Language 6 Game Design Patterns generic / framework / practice

Kreimeier proposes a pattern language for game design aimed at promoting reuse that
describes problem, solution, consequence, examples and references. Example patterns
include Privileged Move, for restricting actions and Weenie, for reorienting players.
This work inspired later approaches.

publication query publication type research category note

[Kre02] 67w article proposal for solution

Language 7 Gameplay Design Patterns generic / framework / practice

Björk et al. propose a framework for game design patterns, which was later renamed
gameplay design patterns, to support the design, analysis, and comparison of games.
The pattern language describes components of games and interaction patterns that
express how players or a computer use these components to affect aspects of gameplay.
Language elements include name, description, usage, consequences, relations, relations
and history. Holopainen et al. describe teaching gameplay design patterns using a tool
called CAGE, which visualizes design goals as a graph of related design facets [HBK07].
Holopainen and Björk further expand the gameplay design patterns collection through
exploring how games support motivation [HB08]. Zagal et al. discuss dark design
patterns that cause negative player experiences and whose intent is questionable and
perhaps even unethical, and how to identify them [ZBL13]. A pattern catalogue is
available online in Wiki form, along with a list of related publications1.

1
http://www.gameplaydesignpatterns.org (Last visited November 19th 2018)

publication query publication type research category note

[HB03] 150w lecture notes lecture
[BLH03] 313w conference paper proposal of solution
[BH06] 927w book chapter proposal of solution reprint

[HBK07] 605w conference paper proposal of solution
[HB08] 839w conference paper validation research
[ZBL13] 830w conference paper proposal of solution

2.6 research perspectives 47

http://www.gameplaydesignpatterns.org

Mechanics Dynamics Aesthetics

(a) Emergent gameplay

Designer

M D A

Player
(b) Interaction through game design and play

Figure 2.8: MDA perspectives (adapted from Hunicke et al. [HLZ04])

Language 8 Mechanics Dynamics Aesthetics generic / framework / research

Hunicke et al. present the Mechanics Dynamics and Aesthetic (MDA) framework for
understanding games, bridging the gap between design, development, game criticism,
and technical game research [HLZ04]. The framework is schematically shown in
Figure 2.8. Players interact with games via mechanisms (a.k.a. mechanics, or rules)
created by game designers. During a game’s execution, playful acts result in dynamic
interaction sequences. Ideally, these are also aesthetically pleasing experiences called
gameplay, e.g., fellowship, challenge, fantasy, narrative, discovery or self-expression.

publication query publication type research category note

[HLZ04] language workshop paper philosophical paper

Language 9 Pattern Language for Sound Design generic / tool / practice

Alves and Roque propose a sound pattern language for empowering game developers
in sound design. They present a collection of illustrative patterns in an accessible format
based on best practices [AR10]. In addition, they propose and evaluate a deck of cards
for sound design [AR11a; AR11b] and report experiences [AR13]. Examples of sound
patterns include Achievement, Failure, Anticipation, Directionality and Hurry Up! The
patterns are available in Wiki form1.

1
http://www.soundingames.com (Last visited March 21st 2019)

publication query publication type research category note

[AR10] 65w conference paper proposal of solution
[AR11a] 575w conference paper evaluation research
[AR11b] 820w conference paper evaluation research
[AR13] –w workshop paper experience report

48 chapter 2 languages of games and play: a systematic mapping study

http://www.soundingames.com

Capture
Abilities = var a

Throw ball

Score

Ball caught
A

c
= A

c
+ 1

A
c
= A

c
− 1

(a) Dodgeball feedback loops

(b) An attempt by Koster to model Checkers

Figure 2.9: A Grammar of Gameplay (diagrams appear in Koster [Kos05a])

Statistical
Resource

Verb

In-World
Object

Friend
Verb

action as a friend helping me

friends’
actions
helping
me

(a) Language elements

Gift Share Invite

In-World
Object

Statistical
Resource

(b) Common constructs

Place Decor

Plots

XP/Level Coins

Space

Crops

HarvestFertilize

Delete

(c) Verbs description of Farmville

Figure 2.10: The Verbs language fits on a napkin (diagrams adapted from Koster [Kos16])

2.6 research perspectives 49

Language 10 Verbs generic / framework / practice

Koster proposes “AGrammar of Gameplay” [Kos05a], an informal notation for gameplay
design that describes atomic player activities and affordances by using verbs (or ludemes).
The notation is inspired by “A Theory of Fun” [Kos05b]. It consist of atoms shown
as rectangles enclosing a verb, which can be labeled with additional information, e.g.,
board game size (e.g., 8x8), conditions (e.g., var < 256) and time passing (vertical bar
on the right). The arrows denote a sub-relation between general and specific atoms, and
also express success and failure outcomes (marked in blue and red respectively) that
help in analyzing feedback loops, e.g., in Dodgeball as shown in Figure 2.9.
Bojin studies game design epistemologies from a language philosophy perspective that
applies Wittgenstein’s language games [Boj08]. The author examines ludemes with
respect to limits of formal language for expressing experiences [Boj10]. Koster challenges
academics to explore these limits, and shows several excerpts from an updated and
simplified Verbs language depicted in Figure 2.10 [Kos16]. The language consists of
verbs (enclosed by a green circle), friend verbs (dashed line) statistical resources (light
blue rectangle) and in-world objects (red rounded rectangle).

publication query publication type research category note

[Kos05a] –w presentation slides proposal of solution Grammar of G.
[Boj08] 17w journal article philosophical paper language games
[Boj10] 377w conference paper philosophical paper Grammar of G.
[Kos16] –w presentation slides discussion piece Verbs

Language 11 Collaboration Patterns genre-specific / tool / practice

Azadegan and Harteveld examine how Collaboration Engineering (CE) can help study
the design of collaborative games, and how such games support collaboration through
their game mechanics [AH14]. They analyse two games using facilitation techniques
from CE called Thinklets. Thinklets are modular sets of rules intended for creating
predictable patterns of collaboration that desribe how people interact and work together
towards a common goal. Thinklets specify preferred actions that, given constraints and
capabilities, are appropriate for specific roles.

publication query publication type research category note

[AH14] 944w workshop paper proposal of solution

50 chapter 2 languages of games and play: a systematic mapping study

Language 12 Mixed Reality Pattern Cards genre-specific / tool / practice

Wetzel introduces a set of playing cards as a pattern language for designing Mixed
Reality games, and presents initial findings on their application [Wet14]. These cards
are available for purchase1.

1
https://www.pervasiveplayground.com/mixed-reality-game-cards/ (visited May 10th 2019)

publication query publication type research category note

[Wet13] 871w workshop paper proposal of solution
[Wet14] 133w workshop paper proposal of solution

Language 13 Design Patterns in FPS Games genre-specific / tool / practice

Hullett and Whitehead present level design patterns for creating varied and interesting
First Person Shooter (FPS) games [HW10]. The pattern language associates building
blocks of level design to resulting gameplay, and consists of the sections description,
affordances, consequences and examples. Categories and patterns include Positional
Advantage (Sniper location, Gallery and Choke Point), Large-scale Combat (Arena and
Stronghold), Alternate Gameplay (Turret and Vehicle Selection) and Alternate Routes
(Split Level, Hidden Area and Flanking Route).

publication query publication type research category note

[HW10] –w conference paper proposal of solution

Language 14 Structural Composition Patterns genre-specific / tool / practice

Winters and Zhu propose guiding the spacial navigation of players in 3d adventure
games with structural composition patterns [WZ14]. They analyze the games Un-
charted 3, Dear Esther, and Journey, and derive five patterns that direct a player’s
attention: Contrasting Shape, Framed Structure, Directional Line, Shifting Elevation and
Structural Exaggeration. They perform user tests on simulated 3d environments that
encode the patterns, interview the players, and show that especially Shifting Elevation
and Directional Line patterns influence player movement.

publication query publication type research category note

[WZ13] 201w poster abstract proposal of solution
[WZ14] –w conference paper validation research

2.6 research perspectives 51

https://www.pervasiveplayground.com/mixed-reality-game-cards/

Language 15 Flow Experience Patterns generic / framework / practice

Lemay proposes a pattern language for analyzing and understanding how a video
game’s elements can help trigger and maintain the most positive and intense player
experiences [Lem07]. Flow patterns describe a name, problem statement, context,
solution, forces affecting the problem, and examples. They relate to the facets sensation,
emotion, cognition, behavior and social interaction.

publication query publication type research category note

[Lem07] 39w conference paper proposal of solution

Language 16 Serious Games Design Patterns generic / framework / practice

Marne proposes a pattern library for serious games design aimed at improved under-
standing and cooperation between project team members, organizations and stakehold-
ers1. Reified Knowledge is an example pattern described in detail.

1
http://seriousgames.lip6.fr/site/spip.php?page=design_patterns&lang=en (visited April

26th 2019)

publication query publication type research category note

[MWH+12] 46w conference paper proposal of solution

Language 17 Operational Logics generic / framework / practice

Mateas and Wardrip-Fruin propose a framework for game analysis called Operational
Logics (OLs). They define the term as follows: “An operational logic defines an authoring
(representational) strategy, supported by abstract processes or lower-level logics, for specifying the
behaviors a system must exhibit in order to be understood as representing a specified domain to a
specified audience.” [MN09]. Thus, OLs describe both how a game functions internally
and how its simulation is communicated to players. Osborn et al. expand on this work
by refining and operationalizing several OLs [OWM17; Osb18]. Example logics are:
Collision-, Resource-, Persistence- and Character-State Logics. Logics are shown as
a pattern language with the fields: Communicative role, Abstract process, Abstract
operations, Presentation, Required concepts and Provided concepts. Osborn et al.
propose a new field of research called Automated Game Design Learning (AGDL) for
learning game designs expressed as OLs through simulating play [OSM17].

52 chapter 2 languages of games and play: a systematic mapping study

http://seriousgames.lip6.fr/site/spip.php?page=design_patterns&lang=en

Table 2.16: Languages for domain-experts to help design applied games scenarios

Nr. Language Subject matter expert Objectives

18 StoryTec educator, non-programmer educate through stories that in-
tegrate learning goals

19 GameDNA psychologist assess cognitive processes
20 ATTAC-L pedagogical expert educate, prevent cyber bullying
21 EngAGe DSL educator improve feedback to learners
22 VR-MED medical expert teach family medicine

publication query publication type research category note

[MN09] –w conference paper philosophical paper
[OWM17] –w conference paper proposal of solution pattern language
[OSM17] –w conference paper philosophical paper AGDL
[Osb18] –w PhD thesis validation research

2.6.3 Applied Game Design

Applied (or serious) games have a primary purpose other than entertainment and
usually require designs that incorporate subject matter knowledge. Diverse experts
from education, psychology and evenmedical doctors can help imporve game designs,
e.g., for learning8, overcoming traumas and speeding-up recovery. The challenge
is integrating domain knowledge in a game’s design to achieve specific gameplay
goals such that players (for instance patients or students) learn, reflect or modify
behaviors. Naturally, there are ethical and privacy implications and restrictions of
studying player choices, especially if the game also serves as a diagnostic tool. Dörner
et al. provide an overview of foundations, concepts and practice of serious games for
prospective developers and users [DGE+16]. Here, we identify languages, mainly
DSLs, intended for helping domain-experts design and vary scenarios of applied
games, e.g., for learning and assessment, as shown in Table 2.16.

Language 18 StoryTec generic / tool / educative

Mehm et al. present the StoryTec system, an authoring tool for non-programmers for
creating Digital Education Games (DEGs) [MGR+09]. Story descriptions consist of

8Please note that we excluded the term ’game based learning’ from the wide query due to the large
amount of false positives.

2.6 research perspectives 53

scenes. These are visually modeled using story units that have dramatic functions,
e.g., derived from the Heroes Journey template. The arrows between the units define
possible paths a story can take. Step-by-step authors add details to units, such as
selecting virtual characters, props that participate, and actions that modify the story
state. In later work, Mehm et al. present Bat Cave, a prototyping tool for evaluation and
testing DEGs [MWG+10]. Here, authors can define so-called Narrative Game-Based
Learning Objects (NGBLOBs) that express a scene’s learning context, gaming context
and storytelling function. The narrative engine executes story descriptions in an XML
format. This engine is extended to handle NGBLOBs and adapt DEGs to a model of
learner knowledge. In a book chapter on serious games, Mehm gives an overview of
authoring processes and tools, which includes StoryTec [MDM16].

publication query publication type research category note

[MGR+09] 471w workshop paper proposal of solution StoryTec
[MWG+10] 128n conference paper validation research Bat Cave

[Meh13] 238n PhD thesis evaluation research both
[MDM16] 152n textbook chapter introduction and overview overview

Language 19 GameDNA generic / tool / practice

Van Nimwegen et al. describe Game Discourse Notation and Analysis (GameDNA), a
graphical modeling language intended to develop serious games for assessment more
effectively [vNvOM+11]. GameDNA is designed to improve visualization methods for
the assessment of a player’s cognitive processes and metal states during gameplay. Its
notation is composed of two levels. The first describes narrative story elements that
form the story plot. The second describes the discourse between the player and the
system, and a players’ corresponding mental actions. Modeling elements include player
perceptual actions (see), mental actions (decide), physical actions (perform) and system
actions (react/feedback) that are connected via triggers and loops.

publication query publication type research category note

[vNvOM+11] –w conference paper proposal of solution

Language 20 ATTAC-L genre-specific / tool / educative

Van Broeckhoven and de Troyer propose ATTAC-L: a visual modeling language for
describing educational virtual scenarios that help prevent cyber bullying [vBdT13]. In
addition, they apply controlled natural language to improve collaboration [vBVD15].
ATTAC-L helps pedagogical experts compose scenarios from story bricks, nouns and

54 chapter 2 languages of games and play: a systematic mapping study

Controlled Natural Language for Specifying Game Narratives 9

(a) Screen-shot of the modeling tool (b) Simulating the player sending a text
message to Carl

Fig. 7: Modeling and simulating scenario’s

A regular brick containing a verb is called a verb-brick and connects to noun
phrases and/or adjective phrases to form a game move. In the case of a ditran-
sitive verb, the associated preposition serves as an extra connecting point for
the indirect passive object (see figures 4a, 4b, 4c, 4d and 4e for illustrations of
the most common cases). As explained, game moves containing a transitive or
ditransitive can also be expressed in a passive form (Fig. 4f represents the pas-
sive equivalent of Fig. 4e). In passive sentences, the placements of the indirect
passive object and the direct passive object (i.e., the original subject) can be
interchanged (Fig. 4f and 4g can be used interchangeably to represent the same
game move). In some cases, the ‘by’-part of the sentence can be omitted (see
Fig. 4h). The subject of the game move is then assumed to be any NPC.

6 Tool Support

We developed a (web-based) toolset for ATTAC-L that consists of a graphical ed-
itor including an export module, and a simulator. The editor (see Fig. 7a) allows
users to specify a story model by means of drag-and-drop. Extra assistance is
provided by means of automatic layout management and an auto-complete sug-
gestion mechanism for entering names. The export module generates a machine
interpretable data structure (JSON) for the modeled story. This structure can be
used by existing game engines as input for generating code or by an interpreter
to execute the story. A code generator is currently under development.

The simulator is a separate module. The simulator is a kind of interpreter that
executes the story directly. The execution is performed, however, in a simple and
predefined 3D environment with predefined NPCs and behaviors. As such, the
simulator provides a fast way to verify and test the modeled stories (Fig. 7b shows
a screenshot from the simulation of the example from Fig. 7a) and therefore
serves as a fast prototyping tool. The current simulator mainly targets scenarios
for cyber-bulling, which was the focus of the project for which ATTAC-L was
originally developed [4]. By providing other predefined NPCs and behaviors, the
simulator can of course easily be adapted for use in other domains.

Figure 2.11: Example game narrative in ATTAC-L (appears in Broeckhoven et al. [vBVD15])

verbs that can be combined in sequence, as choices or as concurrent events. Figure 2.11
shows a screen shot of its web-based editor. Friendly Attac is a related resarch project1.

1
http://www.friendlyattac.be – does not share software (visited April 10th 2019)

publication query publication type research category note

[vBdT13] 15n conference paper proposal of solution
[vBVD15] 206n conference paper proposal of solution
[vBVdT15] 693w conference paper validation research
[vHSD+16] 253w conference paper proposal of solution
[dTvBV17] 123n book chapter validation research

2.6 research perspectives 55

http://www.friendlyattac.be

Language 21 EngAGe DSL generic / engine / educative

Chaudy et al. aim to improve the effectiveness of game-based learning,. They propose
an Engine for Assessment in Games (EngAGe) and a DSL that helps teachers take
ownership of the feedback provided in serious games [CCH14]. They describe the DSL
as a Feature Model (see Language 95) and implement a prototype in Xtext. Features
include serious game kind, player data, learning goals, feedback messages, a feedback
model, and actions related to evidence and reactions. Chaudy’s website gives an
overview of related research1

1
http://www.yaellechaudy.com (visited July 15th 2019).

publication query publication type research category note

[CCH14] 199n conference paper proposal of solution
[Bor15] 163n PhD thesis evaluation research

Language 22 VR-MED genre-specific / tool / educative

Mossmann et al. present a prototype of VR-MED, a visual DSL that expresses game
scenarios for teaching family medicine. Developers and health-care professionals can
use VR-MED for creating simple games based on textual medical cases.

publication query publication type research category note

[MRF+16] 88n conference paper validation research

2.6.4 Game Mechanics

Although most agree that game mechanics are rules that affect gameplay, there are
many different explanations, theories on how this works, e.g., [FSH04; Juu11;
SZ03; Sch14b; Sic08]. In the previous sections we have described frameworks
(Section 2.6.1) and design patterns (Section 2.6.2) for understanding, analyzing, and
creating game mechanics. This section can be regarded as a proceduralist view that
applies formalizations and generative techniques to program game mechanics, and
analyze effects.

Table 2.17 shows languages, generators and tools for game mechanics. These
works explore the limits of formalism, and study to what extent models of mechanics
(and players) can be leveraged for predicting and improving a game’s quality. Each
language attempts to relate mechanics to aesthetics in different ways. Combinatorial
rule spaces expressed with logical notations use constraints for exploring the design
space and homing in on desired qualities, for instance usingAnswer Set-Programming

56 chapter 2 languages of games and play: a systematic mapping study

http://www.yaellechaudy.com

Table 2.17: Game Mechanics Languages

Nr. Language Mechanics Analysis Generation

23 Petri Nets game-economic, story yes ?
24 Game Space Definitions ’stock’ logics yes
25 Biped and Ludocore combinatorial yes yes
26 Machinations game-economic yes no
27 Micro-Machinations game-economic yes yes
28 Game-o-Matic combinatorial yes yes
29 Mechanic Miner avatar-centric yes yes
30 Gamelan and Modular Critics combinatorial yes ?
31 PDDL Mechanics combinatorial,

avatar-centric
yes yes

32 Sygnus and Gemini combinatorial yes yes

for exploring the design space. Examples include Biped and Ludocore (Language 25)
or Gamelan and Modular Critics (Language 30).

Meaningful relationships between real-world subjects, e.g., derived fromWordNet
andConceptNet, can be used to instantiate the structure ofmechanics, e.g. Game Space
Defintions (Language 24). Using Rhetorical arguments intended for adding meaning
structure the mechanics of news games or micro-games, e.g., to convince players
with political or cultural statements. Examples are Game-o-Matic (Language 28),
and Sygnus and Gemini (Language 32). Sicart critiques procedural rhetorics, and
presents opposing arguments [Sic11]. Nelson clarifies a more general position on
proceduralism [Nel12], and Treanor and Mateas present an account of proceduralist
meaning [TM13].

Avatar-centric mechanics encoded in ASP, rewrite rules or Java describe the
physics of characters in 2d levels, such as moving, jumping and bouncing, e.g.,
Mechanic Miner (Language 29), Planning Domain Description Language Mechanics
(Language 31) and PuzzleScript (Language 91).

Game-economic mechanics described in graph notations express how in-game
resources flow and which choices players have. They foreground feed-back loops
that represent investments and trade-offs. Examples are the well-known Petri Nets
(Language 23), the design framework Machinations (Language 26) or its cousin the
programming language Micro-Machinations (Language 27). Notably not identified,
and not described here, is the ANGELINA system [CCG17].

2.6 research perspectives 57

Language 23 Petri Nets generic / engine / practice

Petri Nets are a visual notation originally intended for describing chemical processes,
which has been extensibly studied and applied to numerous other fields, including
game design. Petri Nets are directed graphs with two node types: transitions (shown as
bars) and places (shown as circles) that respectively model events and variable amounts
of resources. The arrows between the nodes describe pre- and post-conditions of events.
The operational semantics and mathematical properties of different classes of Petri
Nets are well known, and there is ample tool support. Murata provides a historical
introduction, comprehensive overview, and tutorial [Mur89].
Verbrugge proposes representing Narrative Flow Graphs (NFGs) (Language 50) as Petri
Nets [Ver03]. Natkin and Vega propose describing and analyzing the non-deterministic
structure of the game narration with Petri Nets [NV03]. Natkin et al. propose a
methodology for spatiotemporal game design with directed hypergraphs that relate
missions modeled as Petri Nets to spaces for validating mission properties such as
reachability [NVG04].
Brom and Abonyi propose authoring non-linear story plots featuring intelligent virtual
humans with Petri Nets [BA06]. Brom et al. describe a Petri Nets dialect that supports
token ageing and its application in the design of Europe 2045, an on-line multiplayer
strategy game for teaching high-school in economics, politics, andmedia studies [BŠH07].
Balas et al. extend the approach by combining timed colored Petri Nets and non-
deterministic FSMs for developing Karo, a social simulation intended for teaching.
Araújo and Roque describe an approach for modeling game systems and flow with Petri
Nets for analyzing and simulating behaviors [AR09]. Ortega et al. propose Petri Nets
for modeling multi-touch games systems [OHB+13].

publication query publication type research category note

[Ver03] –w conference paper proposal of solution story plot
[NV03] language conference paper proposal of solution game design

[NVG04] 118w conference paper proposal of solution game design
[BA06] language workshop paper proposal of solution story plot

[BŠH07] language conference paper validation research story plot
[BBA+08] gd conference paper validation research story plot

[AR09] 207w conference paper proposal of solution game design
[OHB+13] 382w conference paper proposal of solution multi-touch

Language 24 Game Space Definitions genre-specific / tool / practice

Nelson and Mateas describe an approach for automated game design that describes
game mechanics of micro-games such as news games. They use WordNet and Con-
ceptNet for relating design goals to nouns and verbs that instantiate predefined (or

58 chapter 2 languages of games and play: a systematic mapping study

noun Avoider

noun Attacker

verb Attack_verb: shoot, attack, damage, chase,

injure, hit

constraint:

(ConceptNet CapableOfReceivingAction ?Avoider ?

Attack_verb)

constraint:

(WordNet hyponym ?Avoider "animate thing")

constraint:

(or

(and (WordNet hyponym ?Attacker "projectile")

(ConceptNet CapableOfReceivingAction ?

Attacker ?Attack_verb))

(ConceptNet CapableOf ?Attacker ?Attack_verb))

(a) Definition of an attacker-avoidance game space

Avoider Attacker

WordNet:
hyponym

"animate thing"

ConceptNet:
CapableOfRe-
ceivingAction

Attack_verb

ConceptNet:
CapableOf

WordNet:
hyponym

"projectile"

ConceptNet:
CapableOfRe-
ceivingAction

OR

AND

(b) Graphical view

Figure 2.12: Example of a game space (Adapted from Nelson and Mateas [NM08a])

stock) mechanics. They demonstrate the approach by generating WarioWare-style
games [NM07]. Extending the approach, they propose an interactive game design
assistant that helps novice designers create games. Authoring and understanding
happens in a mixed-initiative fashion, by alternating user-directed decisions and
computer-generated suggestions [NM08a]. Figure 2.12 shows an example definition of
an attacked-avoider game space.

publication query publication type research category note

[NM07] 135w conference paper position paper
[NM08a] 328w conference paper proposal of solution

Language 25 Biped and Ludocore generic / engine / practice

Smith et al. propose a light-weight game sketching approach with computational
support for a class of physical prototypes that use board-game-like elements to represent
complex videogames [SNM09a]. The Biped system supports manual and automated
play testing of prototypes that are formalized using the game sketching language, a subset
of Prolog for describing the game state, player actions and state update rules. A sketch
can be played as an interactive visual representation that maps specifications to board
game primitives. Connected spaces and tokens permit user actions such as clicking
and dragging. Designers can also analyze its properties by specifying scenarios and
conditions, obtaining feedback as logical game traces from an analysis engine that
leverages Answer Set Programming (ASP). The running example is DrillBot 6000. In
later work, they present Ludocore, a logical game engine that formalizes the event
calculus and drives Biped [SNM10]. Smith andMateas add a notation for pattern-based

2.6 research perspectives 59

(a) AMachinations diagram of Monopoly that
demonstrates a feedback loop in its economy

(b) The Dynamic Engine pattern expresses a
trade-off between spending energy on long-term
investment and short-term gain (action nodes)

Figure 2.13: Machinations diagram and pattern (adapted from Dormans [Dor12a])

gameplay analysis [SM11b]. They describe a design space approach that leverages ASP
for PCG [SM11a].

publication query publication type research category note

[NM08b] –w conference paper proposal of solution event calculus
[SNM09a] 537w conference paper proposal of solution Biped
[SNM09b] 880w ext. abstract (demo) proposal of solution Biped

[Smi09] 72n PhD thesis proposal proposal of solution Biped
[SNM10] –w conference paper validation research Ludocore
[SM10] –w conference paper proposal of solution ASP for PCG
[SM11b] 52w conference paper proposal of solution Ludocore
[SM11a] –w journal article validation research ASP for PCG
[Smi12] 494w PhD thesis validation research all of the above

Language 26 Machinations generic / framework / practice

Dormans proposes the Machinations framework as a common game design vocabulary
for visualizing elemental feedback loops associated to emergent gameplay [Dor09].
Models (or diagrams) are directed graphs resembling Petri Nets (Language 23). When
set inmotion through play, activated nodes act by pushing or pulling economic resources
along its edges. Figure 2.6.4 demonstrates a feedback loop inMonopoly, where buying
property raises a player’s income, which can again be invested. Figure 2.6.4 shows an

60 chapter 2 languages of games and play: a systematic mapping study

example pattern from the pattern catalogue, described as a pattern language. Designers
can use models for simulating and balancing games before they are built [Dor11c],
and for describing emergent physics [Dor12b]. The original Machinations tool was
Flash-based and now discontinued, but still available for download together with a set
of examples1. A commercial web-based tool that uses JavaScript is under development2.

1
https://machinations.io/FAQ.html – Technical ’old version’ (visited April 23rd 2019)

2
https://machinations.io (visited April 23rd 2019)

publication query publication type research category note

[Dor09] –w conference paper proposal of solution
[Dor11b] –w workshop paper proposal of solution
[Dor11c] –w workshop paper validation research
[Dor12a] 97w PhD thesis validation research
[Dor12b] –w workshop paper proposal of solution
[AD12] –w textbook validation research

Language 27 Micro-Machinations generic / engine / practice

Micro-Machinations (MM) is a textual and visual programming language, a continuation
of Machinations (Language 26) that addresses several technical shortcomings of its
evolutionary predecessor. Klint and van Rozen present MM, a DSL for game-economies
(or game-economic mechanics) that speeds up the game development process by
improving game designer productivity and design quality. MM formalizes an extended
subset of Machinations features, notably adding modularity and a textual storage
format. For accurately predicting a game’s behavior, they provide MM Analysis in
Rascal (MM AiR), a visual framework for analyzing the reachability and invariant
properties1. In addition, van Rozen and Dormans propose a live programming approach
for rapidly prototyping, adapting and fine-tuning game mechanics, which includes
an embeddable MM library written in C++2. Finally, van Rozen presents a pattern-
based Mechanics Design Assistant (MeDeA) featuring pattern-based editing using
an extensible and programmable pattern palette. MeDeA can recognize and explain
patterns, and generate model extensions3. Figure 2.14 depicts an example of a game’s
mechanics and shows a screenshot of MeDeA. MM AiR uses the Spin model checker4.
MM AiR and MeDeA leverage meta-programming features of Rascal5 e.g., pattern
matching and visualization. A new version of MM for live programming that is based
on C#, edit scripts and novel model migration techniques is ongoing work6.

1
https://github.com/vrozen/MM-AiR (visited May 14th 2019)

2
https://github.com/vrozen/MM-Lib (visited May 14th 2019)

3
https://github.com/vrozen/MeDeA (visited May 14th 2019)

4
http://spinroot.com (visited May 14th 2019)

2.6 research perspectives 61

https://machinations.io/FAQ.html
https://machinations.io
https://github.com/vrozen/MM-AiR
https://github.com/vrozen/MM-Lib
https://github.com/vrozen/MeDeA
http://spinroot.com

(a) AdapTower is a tower defense game
whose embeddedmechanics can bemod-
ified at run time. Towers prevent creeps
from passing and bases catch essence for
buying more. (adapted from [vRD14])

Tower

=
buyTower

creeps

120

gold

essencecreeps

= = =

essence

buyBase

5020

essence

=

towers bases

spawn missed
gold

1

Base

1

creeps

(b) AdapTower’s visualMicro-Machinations definition contains
Tower and Base sub-modules (adapted from [vRD14])

(c) A Mechanics Design Assistant for pattern-based analysis and generation (adapted from [vRoz15a])

Figure 2.14: Micro-Machinations is an embeddable and modular script language for live
programming of game mechanics whose qualities can be predicted using design patterns

5
https://www.rascal-mpl.org (visited May 14th 2019)

6
http://livegamedesign.github.io (visited May 14th 2019)

62 chapter 2 languages of games and play: a systematic mapping study

https://www.rascal-mpl.org
http://livegamedesign.github.io

Figure 2.15: Mechanic Miner: Levels for ’gravity inversion’ (appears in Cook et al. [CCR+13])

publication query publication type research category note

Chapter 3 [KvR13] 508w conference paper validation research MM AiR
Chapter 4 [vRD14] 17n conference paper validation research MM Lib
Chapter 5 [vRoz15a] 76n conference paper validation research MeDeA

Language 28 Game-o-Matic generic / tool / practice

Treanor et al. propose generating arcade-style videogames that represent ideas with
so-called micro-rhetorics. Micro-rhetorics are parameterized structures with a unique
id, a verb and entity roles (parameters). For instance, “A avoids B” consists of a subject
A, a predicate B and a verb avoids. For each verb, Game-o-Matic randomly selects
a representative micro-rhetoric from its library that form partial game descriptions.
These are completed with recipes that modify the rules and completes the game’s
mechanics, addingwin and lose conditions and concrete structures for player interaction.
Proceduralist Readings [TSB+11] is a related framework (see Language 32).

publication query publication type research category note

[TSB+12] language conference paper proposal of solution
[TBM+12] language workshop paper proposal of solution

Language 29 Mechanic Miner generic / tool / practice

Cook et al. introduce Mechanic Miner, “an evolutionary system for discovering simple game
mechanics for puzzle platform games” [CCR+13]. Mechanic Miner inspects and modifies
the mechanics using Java reflection. Levels are generated as tile maps with accessible
(white), solid (black) and deadly (red) cells. The objective is to use the mechanics

2.6 research perspectives 63

and toggle effect on and off to navigate the player (s) to the destination (x). The
playability of the resulting game is evaluated using a solver that attempts sequences of
button presses until it finds a combination that completes a level, which must include
the mechanic. Figure 2.15 shows an example level generated for mechanic named
‘gravity inversion’, which modifies how the game engine handles gravity: INVERTSIGN
player.acceleration.y;. Other examples include , ‘teleportation’: HALVE player.y; and
‘bouncing’: ADD 1 player.elasticity; In a large user study on a selection of generated
puzzle mechanics called A Puzzling Present1, they evaluate enjoyability and difficulty,
which entailed play testing followed by questionnaires [CCG13].

1
http://www.gamesbyangelina.org/downloads/app.html (visited August 7th 2019)

publication query publication type research category note

[CCR+13] –w conference paper proposal of solution
[CCG13] 284w conference paper evaluation research

Language 30 Gamelan and Modular Critics generic / tool / practice

Osborn et al. propose a framework for automated game design with computational
support for play testing. The game definition language (Gamelan) models turn-taking
games, such as board- and card games, and game design critics quantify gameplay
qualities for automated analysis. Gamelan games consist of rules and procedures. Rules
are side-effect-free relations that can only succeed or fail. In contrast, logical functions
are expressions defined over a game’s current state and can succeed with different
parameter bindings. Examples of critics are: no rules should go unused, players get
equal turns (unfair play), repeating similar actions should be a losing strategy (dull), and
rankings of players should shift frequently over the course of the game (unsuspenseful).
Core Gamelan is implemented in XSB Prolog. As a demonstration they detect known
design problems in a card game called Dominion.

publication query publication type research category note

[OGM13] 400w conference paper proposal of solution

Language 31 Planning Domain Definition Language generic / tool / practice

Zook and Riedl present an approach for generating game mechanics, with special focus
on turn-based domains with deterministic actions and avatar-centric mechanics. Game
mechanics are expressed in a subset of the Planning Domain Definition Language
(PDDL) with game-specific extensions. The first, time-indexing enables preconditions

64 chapter 2 languages of games and play: a systematic mapping study

http://www.gamesbyangelina.org/downloads/app.html

<Jump,

{<Relative, 1, Equal(Ypos(e), Ypos(Block)+1)>,

<Relative, 1, Equal(Xpos(e), Xpos(Block))>},

{<Relative, 1, Update(Xpos(e), 1)>,

<Relative, 1, Update(Ypos(e), 1)>}>

(a) ’Jump’ mechanic where e is an entity that has x
and y coordinates Xpos(e) and Ypos(e)

<DoubleJump,

{<Relative, 1, Equal(Ypos(e),Ypos(Block)+1)>,

<Relative, 1, Equal(Xpos(e),Xpos(Block))>,

<Absolute,-1, Equal(Performed(Jump),e)>},

{<Relative, 1, Update(Xpos(e),1)>,

<Relative, 1, Update(Ypos(e),2)>}>

(b) ’Double Jump’ requires first performing ’Jump’

(c) Platformer level with a superimposed playtrace
that uses a generatedmechanics (shown as arrows)
and gravity (shown as dotted arrows)

Figure 2.16: Generated PDDLMechanics of a Platformer (adapted fromZook and Riedl [ZR14a])

to refer to earlier times for expressing delayed effects. The second, coordinate frames
of reference distinguishes global world-state from avatar-relative terms for expressing
avatar perception. Figure 2.16 shows an example of jumping mechanics for a platform
game level. They leverage ASP to generate mechanics that conform to a set of design
constraints. A planner, also implemented in ASP, analyzes the playability of those
mechanics. Instead of generating mechanics from scratch, they iteratively adapt
and refine mechanics, favoring fewer mechanics. The approach is demonstrated by
generating combatmechanics of a role-playing game, and avatar-mechanics of a platform
game, and a hybrid of the two.

publication query publication type research category note

[ZR14b] –w workshop paper proposal of solution
[ZR14a] 114w conference paper proposal of solution

Language 32 Sygnus and Gemini generic / tool / practice

Summerville et al. propose Gemini, a system for analysis and generation of a game’s
mechanics [SMH+19]. They formalize Proceduralist Readings [TSB+11], a framework
for interpreting and understanding the meaning of games by providing rhetorical
affordances. Sygnus is a language based on ASP predicates that not only describes
mechanics, processes and interactions, but also aesthetic and cultural expressions. As
a result,‘meaning’ can be directly derived from the source code. The Gemini system
statically analyzes Sygnus programs, producing readings as reasoning chains.

2.6 research perspectives 65

Table 2.18: Tools and Languages for Mixed-Initiative Design of Levels and Virtual Worlds

Nr. Language or Tool Content

33 Semantic Scene Description Language classes of concepts and relationships
34 SketchaWorld 3d worlds
35 Tanagra platform game levels
36 Ludoscope grammar-based transformation pipelines of

2d levels
37 The Sentient Sketchbook tile map sketches of 2d levels
38 Evolutionary Dungeon Designer 2d level maps and patterns

publication query publication type research category note

[TSB+11] –w conference paper proposal of solution
[SMH+19] 173n journal article proposal of solution Gemini

2.6.5 Virtual Worlds and Levels

Virtual worlds are spaces in games or simulations that through various integrated
audiovisual content and interactive mechanisms support exploration, communication
or play. Game worlds and levels can be populated by and player avatars, virtual
characters, stories, missions, quests, etc. Procedural Level Generation is a form of PCG
that focuses on generating game levels, spaces that integrate missions, quests and
(lock and key) puzzles, e.g., for dungeon crawlers and platformers. Van der Linden
et al. survey Procedural Dungeon Generation [vdLLB14]. We identify relatively few
language-centric approaches using our protocol, sincemost authors in this perspective
call their solutions ‘tools’.

Table 2.18 shows tools and languages for designing levels and virtual worlds. Each
of these tools support creating and improving (this is usually called authoring) content
a mixed-initiative style. In mixed-initiative approaches, intelligent services (the tool)
and the designer collaborate and take turns to achieve the designer’s goals [Hor99].
Typically, designers receive visual computer-generated suggestions, and based on
gradually improving insight, make decisions that refine the content iteration by
iteration, in a conversational style. However, due to a lack of direct manipulation
of generated content, it can be challenging to assure all possible results represent
meaningful and high quality content. In this context, semantic scenes are structures for
describing meaningful and consistent content that can guide generators. As in other
perspectives, authors also apply patterns, constraints and metrics for generating and
analyzing level qualities. Metrics are discussed separately in Section 2.6.8.

66 chapter 2 languages of games and play: a systematic mapping study

Language 33 Semantic Scene Description Language generic / engine / practice

Tutenel et al. propose a Semantic Scene Description Language for guiding how genera-
tors produce consistent and meaningful content [TSB+10]. Using its visual notation,
designers can express abstract scene classes, descriptions of scenes consisting of objects
(or components), the relationship between them, and time- and context-specific varia-
tions, e.g., dining area, office, street, dungeon, forest, etc. Concrete scenes are situated
instances whose constraints are solved and generated as an integral part of a larger
whole. Kessing et al. propose Entika, a framework for designers that offers an editor for
authoring semantic game worlds and an engine for semantic layout solving [KTB12].

publication query publication type research category note

[TSB+10] gd conference paper proposal of solution
[KTB12] –w workshop paper validation research Entika

Language 34 SketchaWorld generic / tool / practice

Smelik et al. aim to simplify modeling virtual worlds by combining semantics-based
modeling and PCG techniques in a declarative modeling approach [STdK+11]. Sketcha-
World is a tool for designers for rapidly sketching 3d worlds, which integrates two novel
techniques: interactive procedural sketching and virtual world consistency maintenance.

publication query publication type research category note

[STdK+10] language workshop paper proposal of solution
[STdK+11] –w journal article validation research

Language 35 Tanagra genre-specific / engine / practice

Smith et al. describe Tanagra, a mixed-initiative level design tool for 2d platformers.
In response to changes to the pacing of the level generates levels with corresponding
“beat patterns” (sequences of obstacles) and verified playability, using constraint pro-
gramming and reactive planning, Tanagra integrates reactive planning language ABL
(Language 39) and numerical constraint solving.

publication query publication type research category note

[SWM10a] –w conference paper proposal of solution
[SWM10b] 783w extended abstract tool demonstration
[SLH+11] –w journal article proposal of solution

2.6 research perspectives 67

Language 36 Ludoscope generic / engine / practice

Lindenmayer systems (or L-systems) are generative grammars that were originally
intended for describing plant growth patterns [Lin68] and are now also used for PCG.
Dormans investigates strategies for generating levels for action adventure games, and
proposes mission and spaces as two separate structures. He analyzes a Zelda game
level, and generates its missions and spaces using transformative grammars [Dor10].
Ludoscope is a tool for designing procedurally generated game levels based on these
principles. In Ludoscope, level transformation pipelines step-by-step transform level
content, gradually adding detail, dungeons, enemies, encounters, missions, etc. These
pipelines consist of grammar rules that work on content represented as tile maps,
graphs, Voronoi Diagrams and Strings. Karavolos et al. explore applying Ludoscope
in the design of two distinct pipelines that generate dungeons and platform levels
[KBB15]. Van Rozen and Heĳn propose two techniques for analyzing the quality of level
generation grammars called MAD and SAnR (see Language 58).

publication query publication type research category note

[Dor10] –w workshop paper proposal of solution grammars
[DB11] –w journal article proposal of solution grammars

[Dor11b] –w workshop paper proposal of solution grammars
[DL13] language workshop paper validation research Ludoscope

[KBB15] language conference paper validation research Ludoscope
[vRH18] –n workshop paper proposal of solution Ludoscope Lite

Language 37 The Sentient Sketchbook genre-specific / tool / practice

Liapis et al. introduce The Sentient Sketchbook, a tool intended to support level designers
in rapidly creating abstract game levels, which represents levels as low-resolution tile
map sketches. The tool supports a mixed-initiative design and refinement process,
allowing designers to choose level suggestions generated using genetic algorithms. The
running example discusses a strategy game where players control a base and require
resources to build units. Its tile maps consist of tiles that are passable, impassable,
player bases or resources. Designers can analyze the maps for playability and visualize
gameplay properties using built-in metrics that calculate properties such as navigable
space, resource safety, safe areas and unused space. The tool is available on its website
as a Java application or an online version, along with a list of related publications1.

1
http://www.sentientsketchbook.com (visited August 12th 2019)

publication query publication type research category note

[LYT13] language conference paper evaluation research

68 chapter 2 languages of games and play: a systematic mapping study

http://www.sentientsketchbook.com

Figure 2.17: Room editing view with pattern overlay (appears in Baldwin et al. [BDF+17b])

Language 38 Evolutionary Dungeon Designer genre-specific / tool / practice

Baldwin et al. present the latest iteration of the Evolutionary Dungeon Designer (EDD),
a mixed-initiative level design tool that assists level designers in collaboratively creating
game content [BDF+17a]. EDD uses evolutionary search algorithms and patterns for
generating dungeon levels with desirable properties. EDD detects patterns in levels
and displays on instances superimposed on the tile map, as shown in Figure 2.17.
Spacial micro-patterns consist of paths and multiple tiles: corridor (red tiles), connector
(yellow tile) and chamber (blue tiles). Inventorial micro-patterns placed on one tile are
door, treasure and enemy. Meso-patterns are composed from spacial combinations of
micro-patterns. Examples, each shown using descriptive icons, are: treasure chamber,
guard chamber, ambush, dead end, and guarded treasure. Meso-patterns are detected
using breadth first search of a pattern graph, starting at a room’s entrance. The level
quality is estimated with several fitness functions that guide the search.

2.6 research perspectives 69

Table 2.19: Languages for domain-experts to help design behaviors

Nr. Language Description

39 ABL ABL is a reactive planning language for authoring believable agents
with rich personality

40 SEAL Simple Entity Annotation Language (SEAL) is A C-like script
language for describing NPC behaviors

41 BEcool BEcool is a visual graph language with sensors and actuators for
describing expressive virtual agents

42 Behavior Trees Behavior Trees is a visual language for authoring AI behaviors
43 BTNs Behavior Transition Networks is a visual notation of hierarchical

state machines for describing behaviors
44 POSH# framework for creating behavior-based AI for robust and intuitive

agent development
94 Statecharts Modeling formalism for describing behaviors
103 RAIL Reactive AI Language (RAIL) is a metamodel-based DSL for mod-

eling behaviors in adventure games

publication query publication type research category note

[BDF+17b] –w workshop paper validation research
[BDF+17a] 206w conference paper validation research

2.6.6 Behaviors

Defining behaviors of Non Player Characters (NPCs) has been an active topic of
technically oriented research. A Behavior Definition Language (BDL) is a program-
ming language that offers a notation that controls powerful AI features for describing
believable virtual entities that inhabit game worlds [And08a]. Many BDLs are imple-
mented as reusable software libraries that complement game engines. According to
Anderson, many BDLs are DSLs that also maintain the flexibility of programming
languages [And08a]. Challenges include developing appropriate notations and
features, authoring for dramatic realism, improving scalability of parallel behaviors,
and raising the fault tolerance. Table 2.19 shows a limited selection of formalisms
including Reactive Planning Languages, Behavior Trees, (Hierarchical) Finite State
Machines, UML and Rhapsody statecharts. Of course, many languages describe
behaviors in one way or another. Our selection represents a wider set of languages.

70 chapter 2 languages of games and play: a systematic mapping study

joint sequential behavior OfferDrink(){

team Trip, Grace;

// individual behavior for initial

offer subgoal

with (post-to OfferDrinkMemory)

iInitialDrinkOffer();

subgoal

iLookAtPlayerAndWait(0.5);

with (synchronize) subgoal

jSuggestMartini();

// react to Grace’s line about fancy

shakers

with (synchronize) subgoal

jFancyCocktailShakers();

}

(a) Trip’s ‘offer drink’ behavior

joint sequential behavior OfferDrink(){

team Trip, Grace;

// wait for Trip’s first line

with (success_test

{ OfferDrinkMemory

(CompletedGoalWME

name == iInitialDrinkOffer

status == SUCCEEDED

)}) wait;

subgoal

iLookAtPlayerAndWait(0.5);

// react to Martini suggestion

with (synchronize) subgoal

jSuggestMartini();

with (synchronize) subgoal

jFancyCocktailShakers();

}

(b) Grace’s ‘offer drink’ behavior (c) Trip and Grace in Façade

Figure 2.18: ABL scripts adapted from Mateas and Stern [MS02] (a, b) and [MS05b] (c)

Language 39 ABL generic / engine / practice

Mateas and Stern describe A Behavior Language (ABL), pronounced “able”, a reactive
planning language for authoring believable agents expressing rich personality built on
Hap [MS02]. ABL extends Hap with atomic behaviors, reflection, private memories
and goal spawning. ABL was notably used in the interactive drama Façade1 [MS05a;
MS05b] and Tanagra, which is described as Language 35. Figure 2.18 shows example
scripts that demonstrate synchronization with individual ‘i’ and joint ‘j’ subgoals.
Simpkins et al. extend ABL (as A2BL) with reinforcement learning [SBI+08a]. Its Java
sources are released under the GNU GPL2.

1
https://www.playablstudios.com/facade/ (visited May 9th 2019)

2
https://www.cc.gatech.edu/~simpkins/research/afabl/abl.html (visited May 9th 2019)

publication query publication type research category note

[MS02] gd journal article proposal of solution ABL
[MS05a] 63w conference paper philosophical paper ABL
[MS05b] 773w conference paper proposal of solution ABL

[SBI+08a] –w conference paper proposal of solution A2BL
[SBI+08b] –w journal article proposal of solution A2BL, reprint

2.6 research perspectives 71

https://www.playablstudios.com/facade/
https://www.cc.gatech.edu/~simpkins/research/afabl/abl.html

entity defender {

scalar manGun;

scalar turret;

scalar gunAvailable = 0;

event unused {

manGun = getGlobal("use");

if(manGun!=NULL) {

turret=getEntity(manGun);

gunAvailable = 1;

trigger lock @ turret;

}

};

state fsm {

patrolling(), NULL;

defending(), patrolling();

fsm(), NULL;

};

event enemy_detected {

setstate fsm::defending;

};

fsm::patrolling() {

while(1) {

/* execute ’patrolling’

behaviour */

...

}

}

fsm::defending {

/* if gun-turret available */

if(gunAvailable){

/* man gun turret */

manGun();

trigger unlock @ turret;

gunAvailable = 0;

...

} else {

/* execute default defence

behaviour */

...

}

}

fsm::fsm() {

setstate patrolling;

}

defender() {

setstate fsm;

}

};

(a) Defender entity

entity turret {

event lock {

/* stop advertising */

setSilent();

};

event unlock {

/* advertise */

setBroadcast();

};

...

global void use() {

/* action to fire the gun */

action fire();

...

fire();

...

}

...

turret(){}

};

(b) Turret entity

Figure 2.19: SEAL script of a defender manning a turret (adapted from Anderson [And08a]

Language 40 Simple Entity Annotation Language generic / engine / practice

Anderson proposes a Simple Entity Annotation Language (SEAL), a behavior language
that resembles C for scripting believable NPC behaviors with domain-specific features
and datatypes, e.g., state machines. Figure 2.19 shows an example script with two
entities, states, events, and associated behavior functions.

publication query publication type research category note

[And08b] 20n conference paper proposal of solution
[And08a] 247n PhD thesis proposal of solution

Language 41 BEcool generic / engine / practice

Szilas presents BEcool, a behavior engine for authoring high performance expressive
virtual agents. Behaviors are directed graphs with nodes for animations and arrows for
transitions, arrows’ labels for environment’s sensing (events) and dashed arrows for

72 chapter 2 languages of games and play: a systematic mapping study

c1 c2 a

A sequence is a node, shown as a
rectangle, whose success depends
on each of its child nodes succeed-
ing in sequence, where any failure
ends its execution in failure. Here,
conditions c1 and c2 must succeed
for action a to happen.

(a) Sequence node

?

s1 s2

A selector is a node shown as a
dashed circle whose success de-
pends on trying to execute its child
nodes one-by-one until one suc-
ceeds, ending the selection in suc-
cess. Here, sequences s1 and s2 are
alternative plans.

(b) Selector node

n a

A lookup node, shown as a dia-
mond, serves as amodular construct
for looking up a sub-tree by name.
Here, if action a happens depends
on the success of the sub-tree repre-
sented by lookup n.

(c) Lookup node

Figure 2.20: Behavior Trees (visual variant adapted from Champandard [Cha07; Cha12])

event-based animation triggering. BEcool supports sequencing, branching, parallelism
and inter-characters behaviors [Szi07].

publication query publication type research category note

[Szi07] gd conference paper proposal of solution

Language 42 Behavior Trees generic / engine / practice

Behavior Trees (BTs) is a visual notation for authoring AI behaviors that is said to be
understandable, easy to use, and scale well in parallel [Cha07; Isl05a; Isl05b]. Behaviors
are modeled by hierarchies of nodes that represent plans whose details are specified in
a top-down fashion. More general plans appear near the top, whereas the leafs at the
bottom represent conditions and “atomic” actions exposing lower-level logic such as
moves. Figure 2.20 shows three node types: sequence, selector and lookup, which can
be composed with conditions and actions in authoring complex modular behaviors.
Lim et al. apply evolutionary techniques in developing competitive AI-bots that can
play video games, in particular for the real-time strategy game DEFCON. Martens et al.
present a formal operational semantics, a type system and an implementation [MBO18].
Variants of BTs are commonly used in practice, e.g., in Halo 2 and Spore [Cha07; Isl05b],
and several implementations and engine plugins are available, e.g., BTs are a built-in
feature of Unreal Engine 41.

1
https://docs.unrealengine.com/en-us/Engine/AI/BehaviorTrees (visited May 9th 2019)

2.6 research perspectives 73

https://docs.unrealengine.com/en-us/Engine/AI/BehaviorTrees

Figure 2.21: Behavior TransitionNetwork of combat patrol behavior (appears in Fu et al. [FHJ03])

publication query publication type research category note

[Isl05b] – presentation (audio) practice
[Isl05a] language article experience report
[Cha07] – presentation (video) tutorial / practice
[LBC10] language conference paper validation research
[Cha12] – presentation (video) tutorial / practice

[MBO18] –w unpublished validation research

Language 43 Behavior Transition Networks generic / engine / practice

Fu et al. describe a visual framework for designers, developers and subject-matter
experts that simplifies authoring behavior as Behavior Transition Networks (BTNs), an
extension of finite state machines [FHJ03]. In addition to current states and transitions,
BTNs support hierarchical decomposition, variables, communication to other BTNs and
code invocation. Figure 2.21 shows an example aimed at specifying realistic behavior of
NPCs in a first person shooter. SimBionic is a visual editor and a run-time engine for
embedding behaviors [FHL07] that is available under the 3-clause BSD licence1.

1
http://www.simbionic.com/ (visited March 28th 2019)

74 chapter 2 languages of games and play: a systematic mapping study

http://www.simbionic.com/

publication query publication type research category note

[FH02] –w journal article proposal of solution BrainFrame
[FHJ03] gd conference paper proposal of solution BTNs
[FHL07] gd conference paper proposal of solution Simbionic

Language 44 POSH# generic / engine / practice

Gaudl describes POSH# a C# framework for creating behavior-based AI for robust and
intuitive agent development1 ABODEstar is an IDE for behavior oriented design.

1
https://github.com/suegy/posh-sharp (Visited November 24th 2018)

publication query publication type research category note

[GDB13] –w conference paper POSH
[GGG+14] –w conference paper POSH, ABL

[Gau16] 274n PhD thesis POSH

Language 45 DSL for AI in real-time generic / tool / practice

Hastjarjanto et al. introduce a DSL for modeling the decision making process of the AI
in real-time video games, an embedded DSL in Haskell.

publication query publication type research category note

[HJL13] 138n workshop paper proposal of solution
[Has13] 155n Master’s thesis proposal of solution

2.6.7 Narratives and Storytelling

Storytelling, a field on its own, is concernedwithwriting, telling and sharing stories by
means of narratives to convey ideas and experiences to an intended audience. Similar
to games, stories in a cultural context, can be used for entertainment, education,
cultural values, etc. The perspective we describe here is a technical interpretation
that envisions programming languages for creating narratives and programming
interactive stories using generative techniques. Here, we refer to the creation process
as authoring, since the users of these languages are first and foremost authors.

Various researchers have focused on Interactive Fiction (IF), interactive drama,
and the story components of games, e.g., quests, missions and stories of adventure
games or educational games. Branching narratives can be expressed as graphs, where

2.6 research perspectives 75

https://github.com/suegy/posh-sharp

Table 2.20: Languages for authoring, analyzing and generating narratives, stories and dramas

Nr. Language Expresses

39 ABL Reactive planning language used for interactive drama
46 <e-Game> Storyboards for educational adventure games, formally analyzed
47 ScriptEase Patterns of behaviors, quests and stories, interactive user interface
18 StoryTec Educational stories and related learning goals, part of a tool set
48 Ceptre Story worlds and experimental game mechanics, offers logical proofs
49 SAGA Stories whose compilers target different platforms
50 (P)NFG Structured computer narratives and IF, playability and correctness
51 Wander Number games, represents an early historical account
52 Storyboards Generating storyboards of game levels, leveraging a planner
53 Versu Interactive text-based drama, including social conventions
54 Tracery Stories and art, example of a ‘casual creator’
107 Ficticious Demonstrates the use of DSLs for Interactive Fiction

choices represent alternative sequences of events or paths. Moreover, emergent stories
with generative and dramatic components requires integrating social values and
knowledge of virtual personas. Challenges include checking the correctness of the
paths by analyzing constraints and providing insight with appropriate visualizations
and debugging facilities, e.g, into the causality of emergent scenarios. Storyboards are
a sequences of images (or illustrations) and text (e.g. dialogues) used for analyzing
stories of various kinds of media, including games. Kybartas and Bidarra survey story
generation techniques [KB17]. We identify several languages intended for authoring,
generating and analyzing narratives, summarized in Table 2.20.

Language 46 <e-Game> genre-specific / engine / educative

Moreno-Ger et al. introduce <e-Game>, a textual DSL for describing storyboards
of adventure games [MMS+06; MSM+07], which is extended and applied for game
based learning [BMS+08; MBS+07]. <e-Game> and <e-Adventure> have an operational
semantics, which enables formal analysis and supports model checking [MFS+09]. They
describe the structure of storyboards using XML Schemas, which are abbreviated as
Document Type Definitions (DTDs). Figure 2.22 shows DTDs of conditions (a), effects
(c) and resources (e) and <e-Game> examples (b, d and f). The language also describes
scenes, objects, characters, conversations and actions in a similar way. Marchiori et al.
provide aWriting Environment for Educational Video games (WEEV), a visual language
and tool for educational adventure game authoring that builds on prior work.
The <e-Adventure> project web site1 refers to SourceForge2 for the distribution, which
includes several games and Java sources, released under LGPL.

1
http://e-adventure.e-ucm.es (visited January 7th 2019)

76 chapter 2 languages of games and play: a systematic mapping study

http://e-adventure.e-ucm.es

<!ELEMENT condition (%basic-condition;|either)+>

<!ELEMENT active EMPTY>

<!ATTLIST active flag NMTOKEN #REQUIRED>

<!ELEMENT inactive EMPTY>

<!ATTLIST inactive flag NMTOKEN #REQUIRED>

<!ELEMENT either (%basic-condition;)+>

<!ENTITY %basic-condition "(active|inactive)">

(a) Condition Description

<condition>

<active flag="FirstTaskInitiated"/>

<either>

<inactive flag="UsedSandSack1Container"/>

<inactive flag="UsedSandSack2Container"/>

</either>

<condition>

(b) Condition Example

<!ELEMENT effects ((activate|consume-object|speak-

player|speak-char)*,trigger-cutscene?)>

<!ELEMENT activate EMPTY>

<!ATTLIST activate flag NMTOKEN #REQUIRED>

<!ELEMENT consume-object EMPTY>

<!ELEMENT speak-player (#PCDATA)>

<!ELEMENT speak-char (#PCDATA)>

<!ELEMENT trigger-cutscene EMPTY>

<!ATTLIST trigger-cutscene idTarget IDREF #REQUIRED>

(c) Effects Description

<effects>

<speak-player>Aaaahhhh!!!</speak-player>

<activate flag="PlayerDamaged"/>

<trigger-cutscene idTarget="Ambulance"/>

</effects>

(d) Effects Example

<!ELEMENT resources (condition?, asset+)>

<!ATTLIST resources id ID #IMPLIED>

<!ELEMENT asset EMPTY>

<!ATTLIST asset type CDATA #REQUIRED uri CDATA #

REQUIRED>

(e) Resources Description

<resources>

<asset type="image/jpeg" uri="images/backround1.jpg"/>

<asset type="audio/mpeg" uri="sounds/working1.mp3"/>

</resources>

(f) Resources Example

Figure 2.22: <e-Game> Examples (adapted from Moreno-Ger et al. [MSM+07])

2
https://sourceforge.net/projects/e-adventure/ (visited January 7th 2019)

publication query publication type research category note

[MMS+06] 11n conference paper proposal of solution <e-Game>
[MSM+07] 125w journal article proposal of solution <e-Game>
[MBS+07] 220n conference paper proposal of solution <e-Adventure>
[BMS+08] 227n journal article proposal of solution <e-Adventure>
[MFS+09] 122n journal article validation research <e-Adventure>

[MTdB+12] 126n journal article proposal of solution WEEV

Language 47 ScriptEase genre-specific / tool / practice

McNaughton et al. propose ScriptEase, a tool for game designers intended to reduce the
effort in defining complex AI behaviours for Role Playing Games [MRS+03]. ScriptEase
is an IDE for pattern-based script design that offers drop-down lists, checkboxes, etc.

2.6 research perspectives 77

https://sourceforge.net/projects/e-adventure/

Figure 2.23: ScriptEase II – Treasure Island story (appears in Schenk et al. [SLC+13])

for pattern instantiation, adaptation and use. For instance, the Guard pattern specifies a
guard, a guarded object and a list of situations, which consists of a name, conditions
and actions. Other patterns include Patrol and Encounter.
Cutumisu et al. propose four metrics to evaluate the effectiveness of pattern cata-
logues [COS+06], and Carbonaro et al. evaluate ScriptEase in teaching [CCD+08].
Schenk et al. present ScriptEase II, which adds support for game-specific generators and
a drag-and-drop interface that simplifies the story component [SLC+13]. Figure 2.23
shows a screen shot of the prototype. Its Java sources are available on GitHub1. The
main example and generator target is Neverwinter Nights, a game developed at Bioware.

1
https://github.com/UA-ScriptEase/scriptease (visited March 21st 2019)

78 chapter 2 languages of games and play: a systematic mapping study

https://github.com/UA-ScriptEase/scriptease

do/flirt/conflict

: eros Flirter Flirtee * eros Other Flirtee

-o {eros Flirter Flirtee * eros Flirtee Flirter anger Other Flirter * anger Other Flirtee}.

Figure 2.24: Narrative action that expresses the effect of flirting in Linear Logic (adapted from
Martens et al. [MFB+14])

publication query publication type research category note

[MRS+03] –w conference paper proposal of solution ScriptEase
[MCS+04b] –w conference paper proposal of solution ScriptEase
[MCS+04a] language tool demo proposal of solution ScriptEase
[COS+06] –w conference paper validation research ScriptEase
[COM+07] 145n journal article evaluation research ScriptEase
[CCD+08] –w journal article evaluation research ScriptEase

[Cut09] –w PhD thesis evaluation research ScriptEase
[SLC+13] –w conference paper proposal of solution ScriptEase II

Language 48 Ceptre generic / tool / practice

Martens et al. investigate the use of Linear Logic (LL) programming for expressing
story worlds, settings in which the effect of narrative actions may create emergent be-
haviors [MFB+14]. Narrative actions modify story states consisting of logical predicates.
Figure 2.24 shows a rule that expresses how flirting between a Flirter and a Flirtee may
result in an angry lover (Other). Describing interactive stories using LL enables an
interpretation of stories as logical proofs. To demonstrate this, the authors describe an
example (dramatic) story world in the language Celf, and discuss how the approach
enables generation, analysis, and interactive interpretation of stories.
Martens et al. present Ceptre, a language for rapid prototyping of experimental game
mechanics that builds on prior work [Mar15]. Game designers and researchers can
use Ceptre to create, analyze and debug ‘core systems’ and relate logical proofs
to gameplay. Ceptre adds interactivity and modules called stages for structuring
independent components. Stages run until no more actions are available (a quiescence
state) allowing a transfer of control to another stage. They present two case studies.
The first is an updated interactive drama. The second specifies actions and effects of a
dungeon-crawler-like game. Ceptre and a tutorial are available on Github1.

1
https://github.com/chrisamaphone/ceptre-tutorial (visited August 14th 2019)

2.6 research perspectives 79

https://github.com/chrisamaphone/ceptre-tutorial

publication query publication type research category note

[MFB+14] gd workshop paper proposal of solution linear logic
[Mar15] 147w conference paper proposal of solution Ceptre

Language 49 SAGA genre-specific / engine / practice

Beyak and Carette describe SAGA, a DSL for story management meant to augment the
productivity of artistic teams who create multi-platform narrative-driven RPGs [Bey11;
BC11]. SAGA (Story as an Acyclic Graph Assembly) describes story states and transitions
as graphs. A meta-language called AbstractCode is simplifies translating SAGA
programs to different target platforms, e.g., C++, C# and Java. Figure 2.25 shows an
example story graph and its associated story description. The Haskell implementation
of SAGA is available online1.

1
http://www.cas.mcmaster.ca/~carette/SAGA/ (visited August 14th 2019)

publication query publication type research category note

[BC11] 51n conference paper proposal of solution
[Bey11] 66n Master’s thesis proposal of solution

Language 50 (P)NFG genre-specific / tool / practice

Picket et al. address a lack of tool support for expressing computer game narratives, and
in particular resolving the inherent logical consistency and playability issues [PVM05].
They present a textual language and an environment for programming and analyzing
structured narratives and assuring good narrative properties. This language, Pro-
grammable NFG, is based on Narrative Flow Graphs (NFGs). Since NFGs are a class of
1-safe Petri Nets (Language 23), the authors can leverage widely available techniques
for formal analysis. (P)NFG’s interactive narrative interpreter (and runtime) analyzes
NFGs using the symbolic model checker NuSMV1. (P)NFG has specific statements for
object, state, room and more general ones such as if, for and thread. Figure 2.26 shows
examples. As a demonstration, they model several IF games and annalyze narrative
properties.

1
http://nusmv.fbk.eu (visited August 17th 2019)

80 chapter 2 languages of games and play: a systematic mapping study

http://www.cas.mcmaster.ca/~carette/SAGA/
http://nusmv.fbk.eu

STORY Sealed Fate

INITIAL Tabula Rasa

SECTION A Hero Revealed A Villain Emerged {

Tabula Rase GOES The Right Thing to Do WHEN Keepin’ it Cool,

Tabula Rasa GOES Cowardice WHEN Afraid of Fire,

The Right Thing to Do GOES The Good Side WHEN Dead Weight,

Cowardice GOES Forgiveness WHEN Repent,

Cowardice GOES Evil Decision WHEN Fear Sets In,

Forgiveness GOES The Good Side WHEN Bedside Manner,

Forgiveness GOES The Bad Side WHEN Running Away,

Evil Decision GOES The Bad Side WHEN Running Again

}

SECTION The Path of Good {

Good is Choice GOES Cute Gift WHEN Teddy Bear,

Good is Choice GOES Full Stomach WHEN Home-Cooked Meal,

Cute Gift Goes Slumber WHEN The Kiss,

Full Stomach GOES Slumber WHEN Bedtime Story

}

...

(a) Story Description

L. Beyak & J. Carette 57

The domain expert designing the story will most likely not think about the story in this way (and
even less as a finite state machine!). They will simply craft the story just as how a writer writes a book.
They will think about the characters, what happens to them, and what the characters will do in order to
overcome their obstacles. The designer will need to be able to identify the crucial junctures in their story,
and separate these into discrete, named entities. This is where our design task is at its most subtle – we
want to minimize implementation issues exposed to the designer, but still need to be able to use their
work directly into the game.

Appendix A presents the full syntax of the SAGA DSL. We will use the example in Figure 6 to
explain the syntax (and its semantics) rather than using the EBNF, as that is easier to comprehend. The
story description in Figure 6 for the “Sealed Fate” game story produces a story graph seen in Figure 7.

A Hero Revealed A Villain Emerged

The Path of Good The Path of Evil

Tabula Rasa

The Right Thing to Do

Keepin it Cool

Cowardice

Afraid of Fire

The Good Side

Dead Weight Forgiveness

Repent

Evil Decision

Fear Sets In

Good is Choice

Hospital Visit

Bedside Manner

The Bad Side

Running Away Running Again

Evil is Power

The Parking Garage

Cute Gift

Teddy Bear

Full Stomach

Home-Cooked Meal

Slumber

The Kiss Bedtime Story

The Heist

Up the Elevator Murderous Rampage

Stolen Goods

Greed Happens

Trigger Happy

Trigger Happy

Figure 7: “Sealed Fate” Story Graph

A story must be given a name using STORY, and its starting point is given via labeling a node
INITIAL1. SECTION is used to define (named) sections; the contents of a section are currently delimited
by curly braces, but we intend to change this.

Sections contain lists of transitions (see the <trans> production in the grammar). A transition
specifies one or more initial nodes (with OR as separator for multiple nodes), GOES, a (single) destination

1We assume that our games all have a singular starting point (although this would be relatively easy to change).

(b) (Partial) Story Graph

Figure 2.25: SAGA excerpt of "Sealed Fate" (adapted from Beyak and Carette [BC11])

2.6 research perspectives 81

object cloak { }

room closet {

state {lit, locket}

}

room you {

counter {lives 0 3 }

}

(a) Declaring an object, room with two
states and a lives counter

room lighthousefront {

(you,go,north) {

"You are now on the mountain pass.";

move you from lighthousefront to mountainpass;

}

(you,go,east) {

"You are now behind the lighthouse.";

move you from lighthousefront to

lighthouseback;

...

}

(b) Room-specific Actions

Figure 2.26: (P)NFG code snippets (adapted from Pickett and Verbrugge [PVM05])

"Behold... THE PHONE BOOTH GAME!"

words (objects)

phone 0 1

telephone 1

"rotary phone" 2

pre action

"look phone" o?phone m=\

"The phone is a robust contraption with a rotary dial."

(a) .misc file, containing location-independent code

#1 Telephone Booth

You are in a telephone booth.

exit 2

#2 Outside Telephone Booth

You are not in a telephone booth.

enter 1

(b) .wrld file, containing location-dependent code

Figure 2.27: Text game featuring a phone booth in Wander (adapted from Aycock [Ayc16])

publication query publication type research category note

[Ver03] –w conference paper proposal of solution NFG
[PVM05] –w conference paper proposal of solution (P)NFG
[VZ10] –w conference paper validation research (P)NFG

Language 51 Wander genre-specific / tool / practice

In “Retrogame Archeology”, Aycock shares an excerpt of Wander, an early example of a
DSL for textual adventures and ’number games’ from 1974 that ran onmainframe [Ayc16].
Figure 2.27 shows a game featuring a phone booth.

publication query publication type research category note

[Ayc16] 186n book chapter historical account

82 chapter 2 languages of games and play: a systematic mapping study

Location(HM,room)

Location(afrikaaner,room2)

Location(casion-guard,room2)

Fire-Alarm(floor7,on)

(a) Current World State

Action:

Disguise-As(HM,casino-guard)

Pre-Conditions:

Inventory(HM,casino-vest)

Add-List:

Disguised(HM,casino-guard)

Delete-List:

Disguised(HM,none)

Disguised(HM,afrikaaner)

Disguised(HM,casino-staff)

(b) Disguise Action

Panel Template:

HM-Disguising

Actors Layer:

Disguised(HM,casino-guard)

Environment Layer:

Location(HM,room)

Atmosphere Layer:

Fire-Alarm(floor7, on)

(c) Disguising Panel Template
Instantiation

Figure 2.28: Example template instantiation from an action and a current state (adapted from
Pizzi et al. [PLW+10])

Language 52 Storyboards and STRIPS genre-specific / tool / practice

Pizzi et al. propose an authoring tool to allow game designers to formalize, visualize,
modify and validate game level solutions in the form of automatically generated
storyboards [PLW+10; PCW+08]. First, AI programmers represent game worlds as a
set of propositions, characterizing its planning domain, based on the input provided
by game designers. Game states are conjunctions of propositions and transitions
between states, or planning operators. These are represented using a STanford Research
Institute Problem Solver (STRIPS)-like formalism. Operators are categorized according
to different styles which can be used in the solution generation, which is the second step.
The tooling supports two modes. In the off-line mode a level designer select the style
and the heuristics planner generates a complete storyboard, if one exists, depending
on the constraints. In the on-line mode the level designer can simulate the level (plan)
step-by-step and explore alternatives. The results are visualized in a solution tree. They
validate the approach on a design of a game called Hitman. Figure 2.28 shows (a) an
example world state; (b) a disguise action; and (c) a template instantiation, which is
used to generate an image in the storyboard image sequence.

publication query publication type research category note

[PCW+08] language conference paper proposal of solution
[PLW+10] language journal article validation research

Language 53 Versu and Praxis genre-specific / engine / practice

Versu is a text-based interactive drama and storytelling system that simulates au-
tonomous agents. Praxis is a DSL for describing social practices as reactive plans that

2.6 research perspectives 83

process.greet.X(agent).Y(agent)

action "Greet"

preconditions

// They must be co-located

X.in!L and Y.in!L

postconditions

text "[X] says ’Hi’ to [Y obj]"

end

Figure 2.29: The social convention of greeting in Praxis (adapted from Evans and Short [ES14])

provide affordances to the agents who participate in them. Prompter is an environment
for authoring Praxis that speeds up the content creation process. Figure 2.29 shows an
example of two agents greeting each other. Applying exclusion logic, the ’!’ operator
expresses that variables can only have one value. In the example, agents X and Y must
both be at location L. This is a more concise notation than in STRIPS (see Language 52)
or PDDL (see Language 31).

publication query publication type research category note

[ES14] –n journal article experience report

Language 54 Tracery generic / engine / practice

Compton et al. present Tracery, a language and tool for authoring stories and art using
generative grammars. Its users have created a wide variety of creative generators, e.g.,
visual patterns, poetry, Twitter bots and games [CKM15]. Specifications are JavaScript
Object Notation (JSON) objects consisting of rewrite rules that express how strings of
characters can be produced. Features include recursion and storing results. Figure 2.30
shows an example of a “Hero and Pet” story. Tracery is implemented in JavaScript. Other
versions support platforms such as Python and Ruby. Users (also non-programmers)
can build generators using an online visual interactive authoring environment1

1
tracery.io (visited March 29th 2019)

publication query publication type research category note

[CKM15] –w conference paper validation research

2.6.8 Analytics and Metrics

Data science combines techniques, approaches and tools from statistics, data mining,
data analysis and machine learning. Data scientists leverage the available data to

84 chapter 2 languages of games and play: a systematic mapping study

tracery.io

{

"name": ["Yuuma","Darcy","Mia","Chiaki","Izzi","Azra","Lina"],

"animal": ["eagle","owl","lizard","zebra","duck","kitten"],

"mood": ["impassioned","wistful","astute","courteous"],

"story": ["#hero# traveled with her pet #heroPet#.

#hero# was never #mood#, for the #heroPet# was always too #mood#."],

"origin": ["#[hero:#name#][heroPet:#animal#]story#"]

}

(a) Tracery grammar of “Hero and Pet” in JavaScript Object Notation

(b) Example story output string and production

Figure 2.30: Tracery example of “Hero and Pet” stories (adapted from a tutorial on tracery.io)

extract knowledge, gain insights and predict trends. The game industry increasingly
relies on game analytics for developing high quality games. One technique is using
metrics, algorithms quantifying system properties, as measures of quality. Designers
can use these metrics to test gameplay hypotheses and assess the gameplay quality by
studying how metrics evolve over time. For instance, by relating player models or
’personas’ to how game mechanics are used (Language 55). PlaySpecs can be used to
analyze sequences of player actions (Language 57). Launchpad uses metrics to assess
platform level quality (Language 56). In contrast MAD and SAnR work directly on
the engine source code of grammar-based level generators, relating gameplay- and
software quality (Language 58). Fenton and Bieman describe a rigorous approach for
software metrics based on measurement theory [FB14]. Research challenges include
evaluating the quality of content generators [STN16], identifying suitable metrics for
different types of content, and relating metrics to player models and experience.

Language 55 Gameplay Metrics generic / framework / practice

Canossa and Drachen propose adopting the ‘personas’ framework for improving player
experiences. They add gameplay metics, patterns of player behaviors, to the model for
analyzing how different player categories use game mechanics, e.g., by measuring the
amount of jumping, solving and shooting. Designers can use gameplay metrics to
compare player behaviors to their gameplay hypotheses, and use the values to estimate

2.6 research perspectives 85

tracery.io

player engagement. The use of data in games has evolved rapidly. In their book, Game
Analytics, El-Nasr et al. provide an overview for a wide audience [EDC16].

publication query publication type research category note

[CD09] 142w conference paper proposal of solution gameplay metrics
[EDC16] – textbook multiple categories game analytics

Language 56 Launchpad genre-specific / engine / practice

Smith et al. describe Launchpad, a level generator for 2d platform games that can
generate a wide variety of game levels. These levels are varied by adjusting rhythm
parameters and level geometry [SWM+11]. The expressive range of a level generator is
analyzed using two metrics that measure quantities of level structure associated with its
qualities. The first, linearity, measures the aesthetic ‘profile’ of generated levels by fitting
a straight line to the level (under an optimal angle), and calculating to what extent the
geometry fits that line. The second, leniency, measures how forgiving a level is to player
mistakes by aggregating a score of level elements. Gaps, enemies and falls: -1. Springs
and stompers: -0.5. Moving platforms: +0.5 and jumps with no associated gaps +1.0.

publication query publication type research category note

[STW+09] language conference paper proposal of solution rhythms
[SWM+11] language journal article validation research Launchpad

Language 57 Playspecs generic / tool / practice

Osborn et al. introduce PlaySpecs, regular expressions for specifying and analyzing
desirable properties of game play traces, sequences of player actions. PlaySpecs are
validated with the PuzzleScript engine, which is itself described as Language 91, and
Prom Week, a social simulation puzzle game. The TypeScript sources of PlaySpecs are
released under the MIT license1.

1
https://github.com/JoeOsborn/playspecs-js

publication query publication type research category note

[OSM+15] 930w conference paper validation research
[Osb18] –w PhD thesis validation research

86 chapter 2 languages of games and play: a systematic mapping study

https://github.com/JoeOsborn/playspecs-js

college students Squeak (Lang. 62)
StarlogoTNG
(Lang. 64)

high school

students

middle school

schildren

Scratch (Lang. 63)
Alice (Lang. 59)

AgentSheets and
AgentCubes (Lang. 65)

Gamestar
Mechanic (Lang. 60)

young children Kodu (Lang. 61)
computational

thinking

programming creating and

designing games

Figure 2.31: Relating languages to education levels and learning goals

Language 58 MAD and SAnR generic / engine / practice

Van Rozen and Heĳn study Ludoscope (Language 36) and address quality issues of
grammar-based level generation. They propose two techniques for improving grammars
to generate better game levels. The first, Metric of Added Detail (MAD), leverages the
intuition that grammar rules gradually add detail, and uses a detail hierarchy that
indicates for calculating the score of rule applications. The second, SpecificationAnalysis
Reporting (SAnR) proposes a language for specifying level properties, and analyzes
level generation histories, showing how properties evolve over time. LudoScope Lite
(LL), a prototype that implements the techniques and demonstrates their feasibility1.

1
https://github.com/visknut/LudoscopeLite (visited April 25th 2019)

publication query publication type research category note

[vRH18] –n workshop paper proposal of solution LL

2.6.9 Education

Here we describe educative languages that are end-user solutions aimed at improving
learning experiences, e.g., for helping students or children learn programming,
computational thinking and game design in a playful and explorative manner.
Figure 2.31 shows examples, and roughly relates languages to educational activities,
goals and (minimum) education levels. Educational languages usually come with an
ample amount of study material. In addition, these languages may include learning
programmes and web sites that cater for active online communities.

2.6 research perspectives 87

https://github.com/visknut/LudoscopeLite

obj.move(forward, 1)

obj.move(forward, 1, duration=3)

obj.move(forward, 1, speed=4)

obj.move(forward, speed=2)

change of coordinate system

obj.move(forward, 1, AsSeenBy=camera)

different interpolation function

obj.move(forward, 1, style=abruptly)

(a) Object Movements

ArmsOut = DoTogether(

Bunny.Body.LeftArm.Turn(Left, 1/8),

Bunny.Body.RightArm.Turn(Right, 1/8))

ArmsIn = DoTogether(

Bunny.Body.LeftArm.Turn(Right, 1/8),

Bunny.Body.RightArm.Turn(Left, 1/8))

BangTheDrumSIowly = DoInOrder(

ArmsOut,

Armsln,

Bunny.PlaySound(’bang’))

BangTheDrumSIowly.Loop()

(b) Bunny Drum Script

Figure 2.32: Alice script example (adapted from [CAB+00])

Languages for learning usually pay extra attention to usability. Of special note are
the “block-based languages” that enable users to fit syntactic constructs together like
puzzle pieces. These do not permit syntax mistakes that can be especially frustrating
to novices, and instead ensure every adjustment is meaningful and educational.

In addition, several languages use a Logo-style positional movement where one
can imagine moving around. Logo is an educational programming language that is
well-known for its ’turtle’, which can be steered using commands for drawing vector
graphics.

Language 59 Alice generic / tool / educative

Alice is intended for authoring interactive 3d animations, and teaching programming
constructs to undergraduateswith no prior programming knowledge. Figure 2.32 shows
a textual Alice example that uses Logo-style coordination and movement. Whereas
the earlier versions were textual and based on Python, later version of Alice support
mediated transfer from block based notation to script. Alice is available online for free1.

1
http://www.alice.org (visited March 27th 2019)

publication query publication type research category note

[Con97] gd PhD thesis proposal of solution
[CAB+00] g conference paper experience report
[VJP09] 108w conference paper proposal of solution Cheshire

88 chapter 2 languages of games and play: a systematic mapping study

http://www.alice.org

(a) Visual Kodu Rule

See - purple - move - away

See - apple - move - towards

(b) Textual Kodu Rules

Figure 2.33: Visual and Textual Kodu Examples (adapted from MacLaurin [Mac11b])

Language 60 Gamestar Mechanic genre-specific / tool / educative

Salen presents the overview of the pedagogy and development process of Gamestar
Mechanic, an RPG style online game for teaching the fundamentals of game design to
children aged 7 to 14. Games presents the results of a study into teaching middle school
children to think like game designers by repairing broken games and developing games
from scratch given specifications [Gam10]. The game is available commercially1.

1
http://gamestarmechanic.com/ (visited April 10th 2019)

publication query publication type research category note

[Sal07] 2w journal article proposal of solution
[Gam10] 19w journal article validation research

Language 61 Kodu application-specific / tool / educative

Kodu is a graphical programming language for helping young children learn through
independent playful exploration. Kodu expresses rules that control robots in a realtime
3d gaming environment. Figure 2.33(a) shows a visual rule, which states that when a
monster sees a red apple, it moves towards it. Figure 2.33(b) shows two textual rules.
Kodu GameLab and educational materials are available from Microsoft Research1.

1
https://www.kodugamelab.com (visited March 27th 2019)

publication query publication type research category note

[Sto10] gd manual practice
[Mac11a] 466w invited talk proposal of solution
[Mac11b] 466w journal article proposal of solution reprint

2.6 research perspectives 89

http://gamestarmechanic.com/
https://www.kodugamelab.com

Language 62 Squeak – Croquet generic / engine / practice

Squeak is a dialect of Smalltalk, an object-oriented, class-based, and reflective program-
ming language1. ItsMorphic framework facilitates visual and interactive programming
and debugging of applications for domains such as education, gaming and research. Ma-
such and Rueger report experiences on using Squeak for teaching game design [MR05].
They investigate requirements for a collaborative learning environment that uses
OpenCroquet, an audio-visual 3d environment that has built-in features supporting
collaboration. Because the OpenCroquet project web site no longer exists, we share a
blog with several related frameworks2.

1
http://squeak.org (visited January 9th 2019)

2
http://planetcroquet.squeak.org (visited March 27th 2019)

publication query publication type research category note

[MR05] 142w conference paper experience report

Language 63 Scratch generic / engine / educative

Scratch is an visual environment for creating, designing and remixing interactive stories,
games, animations, and simulations, which is intended for children between 6 and 12
years old. Scratch is a block based language implemented on Squeak (Language 62)
whose its syntactic constructs fit together as puzzle pieces, for learning creative thinking
and understanding logic and programming concepts [RMM+09]. A web-based editor
of the current version and a large collection of projects contributed by its users are
available online1.

1
https://scratch.mit.edu/ (visited March 27th 2019)

publication query publication type research category note

[RMM+09] gd journal article experience report
[CCK12] 56w short paper evaluation research

Language 64 Starlogo TNG generic / tool / educative

StarLogo The Next Generation (TNG) is a language, tool and 3d simulation environment
for novices for creating and understanding complex systems such as games. The
language is a block-based extension of Logo, a dialect of Lisp and a successor of
StarLogo. Its elements are represented as colored blocks that fit together like puzzle
pieces that do not permit syntax mistakes. As such, it lends itself teaching introductory

90 chapter 2 languages of games and play: a systematic mapping study

http://squeak.org
http://planetcroquet.squeak.org
https://scratch.mit.edu/

game development [BK05; WMW+06]. A distribution is available for Windows and
MAC OS1. An open source version, OpenStarLogo, is available under the MIT license2.
A successor called StarLogo Nova can be used online3.

1
http://web.mit.edu/mitstep/projects/starlogo-tng.html (visited January 8th 2019)

2
http://web.mit.edu/mitstep/openstarlogo/index.html (visited January 8th 2019)

3
https://www.slnova.org (visited January 8th 2019)

publication query publication type research category note

[BK05] 170w journal article proposal of solution
[WMW+06] 12w extended abstract experience report

Language 65 AgentSheets and AgentCubes generic / tool / educative

Repenning proposes Agentsheets, a tool for building domain-specific visual environ-
ments [RS95]. Later, AgentSheets becomes a tool for creating agent-based games and
simulation, also used for teaching game design. In conversational programming, when a
programmer edits a game or simulation, an agent executes the program and provides
syntactic and semantic feedback [Rep11]. Ioannidou et al. propose AgentCubes, a 3d
game-authoring environment for teaching middle school children modeling, animation
and programming. Both are commercial products1.

1
http://www.agentsheets.com (visited April 17th 2019)

publication query publication type research category note

[RS95] game journal article proposal of solution AgentSheets
[IRW08] 151w conference paper proposal of solution AgentCubes
[Rep11] 488w conference paper demo paper AgentSheets

[Ahm11] 75w conference paper proposal of solution AgentWeb
[AJR12] 34n conference paper evaluation research AgentSheets
[Ahm12] 158n PhD Thesis evaluation research AgentWeb

2.6.10 Gamification

Gamification aims to apply or retrofit standard game designs to a new or existing
system to improve user experiences9. For instance, score, competition and reward
systems have been used in areas like online marketing to stimulate participation
with a product or service. We identify languages intended to gamify information

9Please note that we excluded the term ’gamification’ from the wide query due to the large amount
of false positives.

2.6 research perspectives 91

http://web.mit.edu/mitstep/projects/starlogo-tng.html
http://web.mit.edu/mitstep/openstarlogo/index.html
https://www.slnova.org
http://www.agentsheets.com

systems in general, e.g., GAML (Language 66), UAREI (Language 68) and GLiSMo
(Language 67). While these languages are technically reusable, they lack subject
matter concepts that help domain experts solve design problems. Recently the term
playification has been used to describe gamification that facilitates play more effectively
by means of tailor-made game designs.

Language 66 Gamification Language generic / tool / practice

Herzig et al. aim to enrich information systems with game design elements that increase
the engagement and motivation of its users [HJM+13]. The Gamification Language
(GAML) is a textual and declarative DSL that helps domain-experts define these
elements, and helps IT experts more easily incorporate them.
Matallaoui et al. propose a model-driven architecture for designing and generating
building blocks of serious games, and apply it in the creation of an achievement
system [MHZ15]. An Xtext grammar is available under the MIT license1.

1
https://github.com/AmirIKM/GamiAsService/ (visited April 10th 2019)

publication query publication type research category note

[HJM+13] 5n conference paper proposal of solution
[MHZ15] 7n conference paper validation research

Language 67 GLiSMo genre-specific / tool / educative

Thillainathan et al. aim to enable educators without prior programming skills to create
didactically sound serious games [TL14]. They propose Serious Game Logic and
Structure Modeling Language (GLiSMo), a visual modeling language that applies
model-driven development techniques for generating games from visual models.

publication query publication type research category note

[TL14] 14n conference paper proposal of solution

Language 68 UAREI generic / tool / practice

Ašeriškis et al. present User-Action-Rule-Entities-Interface (UAREI), a visual language
for representing gamemechanics for software gamification. They use UAREI to simulate
and evaluate the effects of gamified systems on different types of players. UAREI models
are directed graphs consisting of five node types (one for each word in the acronym)
with intentionally limited expressiveness. An operational semantics is not defined.
Case studies include OilTrader and the Trogon Project Management System.

92 chapter 2 languages of games and play: a systematic mapping study

https://github.com/AmirIKM/GamiAsService/

Table 2.21: Game Description Languages (GDLs) for General Game Playing

Nr. Language Game domain Examples of represented games

69 Multigame mainly board games Chess, Checkers
70 (Stanford) GDL combinatorial games various combinatorial games
71 ’Rule Sets’ pac-man-like games generated games
72 Ludi GDL combinatorial games e.g. Javalath
73 Strategy GDL strategy games Rock Paper Scissors, Dune II
74 Card GDL card games Texas hold’em, Blakcjack, Uno
75 Video GDL video games a variety of classic 2D games
76 Recycle card games Agram, Pairs, War

publication query publication type research category note

[ABD17] 120n journal article solution proposal
[AD17] 127n workshop paper solution proposal
[Aše17] 241n PhD thesis validation research

2.6.11 General Game Playing

Akey research challenge inAI is developing generally applicable intelligent techniques
capable of solving a wide range of complex problems. General game playing, for
instance, refers to algorithms that can play many games well.

Game Description Languages (GDLs) are notations with expressive power over
restricted game domains intended for evaluating the performance of AI techniques
called general game players against a wide variety of manually created or generated
games. GDLS are meant to cover a varied and representative game space.

The systems that execute GDL programs are used for validating if these techniques
are indeed more widely applicable, e.g., by letting them compete. General game
players can be search-based [TYS+11], e.g.,Monte-Carlo Tree Search (MCTS) or leverage
Machine Learning, e.g., genetic algorithms or neural networks. In a guest editorial
of a special issue on “general games”, Browne et al. summarize the state-of-the art,
challenges and directions for future research [BTS14]. We show representative GDLs
in Table 2.21 whose domains reflect a shifting research interest of the community over
the years. Notably not identified by this study is Zillions of Games10.

General game playing has the advantage of developing and applying the state-
of-the-art AI to digital games, offering advanced tools, simulations and analyses.
GDLs and are not necessarily suited for fine-tuning rules and improving gameplay

10
http://www.zillions-of-games.com (visited April 3rd 2019)

2.6 research perspectives 93

http://www.zillions-of-games.com

knight_move =

find own knight,

pickup, orthogonal, step,

either rotate 45 or rotate -45, step,

not points at own piece, putdown.

(a) A Knight’s move in Chess

dimensions (3,3)

symmetry all directions

pieces { mark ’X’ ’O’ }

main =

irreversible, # each move is a conversion

try new_mark else draw.

new_mark =

find empty field,

replace by mark,

try [test three_in_a_row, win].

three_in_a_row =

find own piece, # start from any position

any direction,

repeat 2 times [step, points at own piece].

(b) Tic Tac Toe

Figure 2.34: Multigame Examples (adapted from Romein et al. [RBG97] (a) and [RBG00] (b))

as in automated game design Section 2.7.3. Therefore, not all GDLs are a-priori
well-suited for developing games, especially not those intended as research platforms.
For instance, the language features of VGDL are course grained and the Stanford GDL
is low-level and verbose. GDLs for restricted game domains, such as board- and card
games, represent a concise and expressive middle ground.

Language 69 Multigame genre-specific / tool / research

Romein et al. present Multigame, a procedural DSL for expressing the rules of board
games intended to research automatic parallelism and parallel game tree search in
particular [RBG97]. Multigame helps programmers focus on choosing parameters that
influence behavior instead of resolving issues in communication, synchronization, work-
anddata distribution anddeadlocks. Themanual describesChess andCheckers [RBG00].
Figure 2.34 shows two simpler examples.

publication query publication type research category note

[RBG97] gd conference paper validation research
[RBG00] gd manual validation research
[Rom01] gd PhD thesis validation research

Language 70 Game Description Language generic / engine / research

General game playing studies how generic AI algorithms and techniques can help
computer systems play more than one game successfully. The Game Description
Language (GDL) provides a formal description of a game’s rules that systems can use

94 chapter 2 languages of games and play: a systematic mapping study

role(candidate).

role(random).

init(closed(1)).

init(closed(2)).

init(closed(3)).

init(step(1)).

legal(random,hide_car(?d))

<= true(step(1)), true(closed(?d)).

legal(random,open_door(?d))

<= true(step(2)),

true(closed(?d)),

not true(car(?d)),

not true(chosen(?d)).

legal(random,noop) <= true(step(3)).

legal(candidate,choose(?d))

<= true(step(1)), true(closed(?d)).

legal(candidate,noop) <= true(step(2)).

legal(candidate,noop) <= true(step(3)).

legal(candidate,switch) <= true(step(2)).

sees(candidate,?d)

<= does(random,open_door(?d)).

next(car(?d))

<= does(random,hide_car(?d)).

next(car(?d)) <= true(car(?d)).

next(closed(?d))

<= true(closed(?d)),

not does(random,open_door(?d)).

next(chosen(?d))

<= does(candidate,choose(?d)).

next(chosen(?d))

<= true(chosen(?d)),

not does(candidate,switch).

next(chosen(?d))

<= does(candidate,switch),

true(closed(?d)),

not true(chosen(?d)).

next(step(2)) <= true(step(1)).

next(step(3)) <= true(step(2)).

next(step(4)) <= true(step(3)).

terminal <= true(step(4)).

goal(candidate, 100)

<= true(chosen(?d)), true(car(?d)).

goal(candidate, 0)

<= true(chosen(?d)), not true(car(?d)).

There are two players, a candidate and a host. Initially, three doors are closed. The host may
first hide a car behind a door, and open a closed door at step 2 if it does not conceal a car and is
not chosen. The candidate may first choose a closed door, optionally switch doors at step 2,
and sees it when the host opens a door. When a car is hidden behind a door it remains there.
Doors remain closed when not opened. When the candidate choses a door, it remains chosen
unless they switch. Steps are sequential and the candidate wins only when choosing correctly.

Figure 2.35: GDL description of the Monty Hall game (adapted from Thielscher [Thi11b])

as a testbed for intelligent agents and algorithms. Thielscher translates GDL into action
language semantics [Thi11b] and introduces GDL-II, an extension of GDL for incomplete
information games [Thi10]. Figure 2.35 shows a simple example that explicitly defines
turn-taking, next states and sequence. Stanford hosts a web site, which refers to the
annual general game playing competition and also includes additional examples1.

1
http://ggp.stanford.edu (visited March 26th 2019)

2.6 research perspectives 95

http://ggp.stanford.edu

t
max

= 28

score
max

= 6

0 Red things, random short

4 Green things, clockwise

9 Blue things, still

//When Red and Green things collide, Red survives and

Green dies, and the score is -1-1 = -2.

collision: Red, Green → none, death, -1, -1

collision: Red, Blue → death, death, 1, 1

collision: Red, Agent → death, death, -1, 0

collision: Green, Blue → none, death, -1, -1

collision: Green, Agent → teleport, none, -1, 1

collision: Blue, Agent → death, none, 1, 1

(a) Race against green: score 6 within 28 time steps (b) A game’s start state: things and the agent
(cyan) are randomly placed on the fixed grid

Figure 2.36: Rule set of a Pac-man-like game (adapted from Togelius and Schmidhuber [TS08])

publication query publication type research category note

[LHH+08] gd technical report report GDL
[Thi10] gd conference paper validation research GDL-II
[Thi11a] gd conference paper validation research GDL
[Thi11b] 507w book chapter validation research GDL
[Saf14] gd journal article validation research GDL
[Sad17] 217n Master’s thesis validation research GDL-II

Language 71 Rules of Pac-man-like Games application-specific / tool / research

Togelius and Schmidhuber propose automatic game design as a means to generalize
AI techniques. They demonstrate playable rule sets can be generated and evolved for
the restricted domain of Pac-man-like games [TS08]. Games consist of a fixed grid of
cells populated by an agent (cyan) and things (red, blue and green) with random start
positions. Variable movement logics allow for the agent and the things to move and
collide, i.e. end up on the same cell. The rule space consists of parameters for limiting
the amount of time steps tmax ∈ {0..100} and scoring scoremax ∈ {1..50}, the movement
logic, and effects of collisions on things (none, death or teleportation to random cell)
and scoring (limited to −1, 0,+1). Figure 2.36 shows an evolved rule set of a game where
the objective is to compete with green things to catch blue things.

publication query publication type research category note

[TS08] 83w conference paper proposal of solution

96 chapter 2 languages of games and play: a systematic mapping study

(game Tic-Tac-Toe

(players White Black)

(board

(tiling square i-nbors)

(size 3 3)

)

(end

(All win (in-a-row 3))

)

)

(a) Tic Tac Toe

(game Yavalath

(players White Black)

(board (tiling hex)

(shape hex) (size 5))

(end

(All win (in-a-row 4))

(All lose

(and (in-a-row 3)

(not (in-a-row 4))))

)

)

(b) Yavalath (c) Yavalath: white forces a win
(adapted from Browne [Bro11])

Figure 2.37: Ludi GDL – Source code examples adapted from Browne and Maire [BM10]

Language 72 Ludi genre-specific / engine / practice

Browne and Maire examine how to synthesize and evaluate high quality combinatorial
games using evolutionary game design, an approach that combines evolutionary search
with quality measurements in self-play simulations. They describe Ludi, a game
system that synthesizes board games and evaluates their qualities [BM10]. Ludi’s Game
Description Language includes game facets (called ludemes) for player (name), board
(shapes and size), pieces with definitions of how they can move and end conditions.
Figure 2.37 shows two examples. Yavalath is a novel commercially published game
generated by Ludi where making four-in-a-row is winning, but making three-in-a-row
before is losing. Browne proposes generating context-free grammars by analyzing
the class hierarchies of game systems, in particular Ludii, to obtain so-called class
grammars for varying constructor parameters and evolving games [Bro16]. Ludii is being
developed in the context of the Digital Ludeme Project1, which studies how historical
games developed by means of modern AI techniques.

1
http://ludeme.eu (visited March 25th 2019)

publication query publication type research category note

[Bro08] –w PhD thesis evaluation research Ludi
[BM10] 99w journal article evaluation research Ludi
[Bro11] 803w book evaluation research Ludi
[Bro16] 80n conference paper proposal of solution Ludii

2.6 research perspectives 97

http://ludeme.eu

Figure 2.38: StrategyGameDescriptionLanguage – ”GoNorth” action (adapted fromMahlmann
et al. [MTY11a])

Language 73 Strategy GDL genre-specific / tool / practice

Mahlmann et al. propose the Strategy Game Description Language (SGDL). Combined
with evolutionary algorithms and appropriate fitness functions, SGDL serves as a
means to describe and generate complete new strategy games, and variations of old
ones [MTY11a; MTY11b]. SGDL visually models behaviors as trees of conditions
and consequences. These are expressions and statements whose nodes are actions
(triangles) comparators and functions (ovals), operators (diamonds) and constants
(circles). Figure 2.38 shows a simple example of a ’Go North’ action. In its left hand
condition, the _Map function takes attributes x and y - 1 as input, and its right hand
consequence y = y - 1 happens if the output equals null. Other examples include complex
variations of Rock Paper Scissors and Dune II [Mah13].

publication query publication type research category note

[MTY11a] 646w conference paper validation research
[MTY11b] –w conference paper validation research
[Mah13] 289n PhD thesis validation research

98 chapter 2 languages of games and play: a systematic mapping study

THE ANT AND THE GRASSHOPPER

Stages and rules

Stage 0

COMPUTER COMMAND <Unconditional> GIVE Player: 0 Amount

: 89 tokens

COMPUTER COMMAND <Unconditional> DEAL Table: 0 Amount:

1 cards

COMPUTER COMMAND <Unconditional> GIVE Player: 2 Amount

: 39 tokens

COMPUTER COMMAND <Unconditional> GIVE Player: <all>

Amount: 87 tokens

Stage 1

if SHOW >= T0 then PLAY IT

COMPUTER COMMAND <Unconditional> DEAL Player: <all>

Amount: 6 cards

COMPUTER COMMAND <Unconditional> GIVE Player: <all>

Amount: 58 tokens

PLAY ONLY ONCE if SHOW SAME RANK T1 then PLAY IT

Stage 2

if SHOW < T1 then PLAY IT

PLAY ONLY ONCE if SHOW >= T0 then PLAY IT

PLAY ONLY ONCE if SHOW > T0 then PLAY IT

Stage 3

COMPUTER COMMAND <Unconditional> GIVE Player: 0 Amount

: 77 tokens

Stage 4

COMPUTER COMMAND <Unconditional> GIVE Player: 0 Amount

: 44 tokens

MANDATORY if PLAY 994, > T0 then BET

Stage 5

PLAY ONLY ONCE if DRAW then BET

if SHOW >= T0 then PLAY IT

COMPUTER COMMAND <Unconditional> GIVE Player: <all>

Amount: 63 tokens

PLAY ONLY ONCE if DRAW then BET

Ranking

Card(s) Value

Four of a kind 190

6 + 8 + Jack 212

Winning conditions

5 points for each token.

3 points for finishing the game.

Figure 2.39: Card Game Description Language – ”The Ant and the Grasshopper” (adapted
from Font et al. [FMM+13a])

Language 74 Card Game Description Language genre-specific / tool / practice

Font et al. present initial findings on generating and analyzing both novel and existing
card games [FMM+13a]. They present a CardGameDescription Language for expressing
a wide variety of card games by formalizing the rules. They evolve playable card games
using grammar-guided genetic programming. They assess playability and balance by
measuring the performance of several agents. In addition, they filter games with too
many stages and rules [FMM+13b]. Figure 2.39 shows an example. Other examples
include poker variant Texas hold ’em, Blackjack and UNO.

publication query publication type research category note

[FMM+13a] 47w conference paper proposal of solution
[FMM+13b] 590w conference paper validation research

2.6 research perspectives 99

BasicGame

LevelMapping

G > goal

+ > key

A > nokey

1 > monster

SpriteSet

goal > Immovable color=GREEN

key > Immovable color=ORANGE

sword > Flicker limit=5 singleton=True

movable >

avatar > ShootAvatar stype=sword

nokey >

withkey > color=ORANGE

monster > RandomNPC cooldown=4

InteractionSet

movable wall > stepBack

nokey goal > stepBack

goal withkey > killSprite

monster sowd > killSprite scoreChange=1

avatar monster > killSprite

key avatar > killSprite scoreChange=5

nokey key > transformTo stype=withkey

TerminationSet

SpriteCounter stype=goal win=True

SpriteCounter stype=avatar win=False

(a) VGDL description for a Legend of Zelda-like game

wwwwwwwwwwwww

wA w w

w w w

w w w +ww

www w1 wwwww

w w G w

w 1 ww

w 1 ww

wwwwwwwwwwwww

(b) Side-by-side level description (left) and ren-
dering (right) of a Legend of Zelda-like game
level, where the hero Link (A) confined by dun-
geon walls (w) must find a key (+) and the exit
goal (G) while killing or avoiding monsters (1).

def killIfFromAbove(s, p, game):

"""Kills the sprite, if the other one is higher

and moving down."""

if (s.lastrect.top > p.lastrect.top and p.rect.

top > p.lastrect.top)

killSprite(s, p, game)

(c) Extension for Super Mario that restricts the
killSprite procedure to downward movement

Figure 2.40: Video Game Description Language (adapted from in Schaul [Sch14a])

Language 75 Video Game Description Language generic / engine / research

Ebner et al. propose a Video Game Description Language (VGDL) as a means for
general video game playing that expresses a wide range of classic 2d game types in a
high-level, concise and human readable manner [ELL+13], e.g., approximations of Pong,
Boulder-Dash, Tank Wars, Super Mario, Lunar Lander and Pac-Man.
Schaul proposes PyVGDL, a Python implementation of VGDL and a game simulation
environment for conducting research [Sch13; Sch14a]. Figure 2.40 shows an example
description (a). This description maps each game object to an ASCII character (Lev-
elMapping) used in level descriptions (b). Next, it specifies their behaviors (SpriteSet) by
using predefined functions (c). Finally, it defines the effects of possible collisions (Inter-
actionSet) and win conditions (TerminationSet). PyVGDL is used in The General Video
Game AI Competition1 for benchmarking algorithms for planning, level generation and
learning. PyVGDL is available under the 3-clause BSD license2.

1
http://www.gvgai.net (visited April 5th 2019) – also maintains a list of related publications

2
https://github.com/schaul/py-vgdl (visited April 5th 2019)

100 chapter 2 languages of games and play: a systematic mapping study

http://www.gvgai.net
https://github.com/schaul/py-vgdl

publication query publication type research category note

[ELL+13] 31w book chapter proposal of solution VGDL
[Sch13] –w conference paper proposal of solution PyVGDL
[BT14] 56n extended abstract proposal of solution VGDL

[Sch14a] 236w journal article proposal of solution PyVGDL

Language 76 Recycle genre-specific / tool / practice

Bell and Goadrich describe Recycle, a card game description language and its imple-
mentation Cardstock, which can automatically playtest card games with algorithms
that represent intelligent players. As a demonstration, they playtest variants of the
games Agram, Pairs and War.

publication query publication type research category note

[BG16] –w journal article proposal of solution

2.6.12 Script and Programming

Here we describe a programming language perspective on game development. For
creating a programming language, one usually constructs a grammar using the
Extended Backus-Naur form (EBNF) or a similar notation, for parsing the textual
source code of programs [ASU86]. Here, source code (or textual model) refers to
end-user notations called concrete syntax. The result of parsing is a parse tree that is
often represented using suitable intermediate representations referred to as abstract
syntax, which usually omitswhite-space and comment. In the resulting tree, references
between definitions and uses must be resolved. This processes of reference resolution
yields a graph that forms an input to analyzers, code generators and interpreters that
further transform or run programs.

Game programming usually follows a bottom-up approach that composes game
systems from reusable parts. Specialized software libraries called game engines offer
developers reusable Application Programming Interfaces (APIs) for solving challenge
in 3d modeling, physics, directional audio or networking. Many commercial game
engines have been developed as reusable platforms for game development, e.g., Unity
3d, Unreal, CryoEngine, etc.11.

11These are not identified by this study.

2.6 research perspectives 101

Table 2.22: Generic script and programming languages applied to game development

Nr. Language Application domain

62 Squeak dialect of Smalltalk applied in teaching game design
77 Python programming language, applied for scripting in games
78 Lua programming language, scripting in games
79 vision on game

programming
reflections on features of game programming lan-
guages and Haskell

80 DisCo language and system for creating, executing and ana-
lyzing formal specifications

81 Design by contract generic approach that uses pre- and post-conditions
for checking function calls

Table 2.23: Domain-specific languages for game development

Nr. Language Application domain

82 GameMaker 2d game development with C-like scripting
83 Extensible Graphical Game

Generator
game programming

84 Mogemoge 2d games
85 Scalable Games Language scripting for games
86 Network Scripting

Language
scripting and networking

87 4Blocks DSL DSL for Tetris games (Haskell-based)
88 Casanova game programming (integrated game engine)
89 Sound scene DSL sound scene DSL (Haskell-based)
90 MUDDLE (historical

account)
multi-user dungeon games (MUDs)

91 PuzzleScript puzzle games

One approach separates game engines from game-specific source code by using a
generic interpreters as-is, e.g. Python (Language 77) or Lua (Language 78). Table 2.22
also shows other examples.

Another approach leverages general purpose languages by adding domain-specific
language extensions, e.g., as an internal DSL that reuses the syntax and semantics of
the host language. For instance, Scalable Games Language (Language 85) extends SQL
and 4Blocks (Language 87) and Sound Scene DSLs (Language 89) are Haskell-based.

In contrast, purpose-built languages, also known as external DSLs, have separate
parsers, compilers and/or interpreters. PuzzleScript (Language 91) and Micro-
Machinations (Language27) are examples of externalDSLs. Table 2.23 showsexamples
of DSLs for game development. For conciseness, we do not list all textual DSLs that
we already describe in other sections. Notably not identified is DarkBasic [HS07].

102 chapter 2 languages of games and play: a systematic mapping study

Language 77 Python generic / engine / practice

Python is an interpreted general-purpose programming language originally developed
by van Rossum. Its language features include modules, exceptions, dynamic typing,
data types and classes. Examples of languages built on top of Python include versions
of Alice (Language 59) and PyVGDL (Language 75). The Python Package Index1 hosts
many reusablemodules for various purposes, including game development. The current
version (v3) of its portable and embeddable C implementation is released under the
Python Software Foundation License2.

1
https://pypi.org (visited July 14th 2019)

2
https://www.python.org (visited July 14th 2019)

publication query publication type research category note

[Daw02] –w article experience report
[Var03] 10w book practice
[Jon05] 227w short paper / tutorial practice
[Phi14] 377n book practice

Language 78 Lua generic / engine / practice

Lua is an interpreted general-purpose programming language developed by Ierusalim-
schy et al. [IDC05; IdFC07]. Originally intended for the petrochemical industry, Lua is
now also used for scripting in Games. Its APIs enable embedding in C and its functional
and dynamic features support constructing embedded DSLs.
Wasty et al. describe ContextLua, a context-oriented programming extension to Lua that
is suitable for implementingdynamic behavioral variations in computer games [WSA+10].
Layers modify the behaviour of function calls as shown in Figure 2.41. The proceed

method calls the next appropriate method in the current layer composition. The with

and without statements are used to activate and deactivate layers respectively.
The sources of Lua1 and ContextLua2 are available online under the MIT license.

1
https://www.lua.org (visited March 21st 2019)

2
https://www.hpi.uni-potsdam.de/hirschfeld/trac/Cop/wiki/ContextLua (visitedMay 1st 2019)

publication query publication type research category note

[IDC05] 551w journal paper proposal of solution Lua
[IdFC07] 834w conference paper experience report Lua
[WSA+10] gd workshop paper proposal of solution ContextLua
[KRvR12] 54n workshop paper proposal of solution Lua

2.6 research perspectives 103

https://pypi.org
https://www.python.org
https://www.lua.org
https://www.hpi.uni-potsdam.de/hirschfeld/trac/Cop/wiki/ContextLua

function Monster:getSensingDistance()

return 10

end

function Monster:Night_getSensingDistance()

return proceed() - 5

end

(a) Monster behaviour variation

with(Night, function()

print(monster:getSensingDistance())

end)

with({Night, Sneak}, function()

print(monster:getSensingDistance())

end)

(b) Night Layer Activation

Figure 2.41: ContextLua code snippets (adapted fromWasty et al. [WSA+10])

Language 79 Vision on Game Programming generic / framework / practice

In an invited talk on “The Next Mainstream Game Programming Language”, Sweeney
(Epic Games) shares a perspective on language constructs for game development with
focus on performance, modularity, reliability and concurrency [Swe06]. He argues for
productivity, modular libraries, debugging facilities, and reflects briefly on perceived
strengths (unions, maybe) and weaknesses of Haskell.

publication query publication type research category note

[Swe06] 3w abstract and slide deck opinion paper

Language 80 DisCo generic / tool / practice

Nummenmaa et al. propose simulating gameplay on a logical event level in the early
states of the game development process [NKH09]. As a design tool, simulating long-
term dynamics of abstract and simplified game prototypes can reveal problems early on.
They use DisCo1, a software package for creating and executing formal specifications,
which has been extended to for the analysis and simulation of games. The DisCo
language has an action-oriented execution model based on temporal logic. A simulation
model of a game called Tower Bloxx demonstrates the approach.

1
http://disco.cs.tut.fi (visited August 15th 2019)

publication query publication type research category note

[Num08] 298w Master’s thesis proposal of solution
[NKH09] 26w conference paper vision paper simulate prototypes
[NBM09] 662w workshop paper validation research analyze changes

104 chapter 2 languages of games and play: a systematic mapping study

http://disco.cs.tut.fi

move is choose

pieces are Rock and Paper and Scissors

board starts [[Rock, Paper, Scissors]]

turns synchronize

Beat means player(Rock) && opponent(Scissors)

or player(Scissors) && opponent(Paper)

or player(Paper) && opponent(Rock)

goal is Beat # success!

score increments

3x1 grid

(a) Rock Paper Scissors

turn is player place piece

3x3 grid

pieces are X and O

turns alternate

players are X and O

goal is &Three_in_a_row

Three_in_a_row means

(x-1,y) && (x,y) && (x+1,y)

or (x,y-1) && (x,y) && (x,y+1)

or (x-1,y-1) && (x,y) && (x+1,y+1)

or (x-1,y+1) && (x,y) && (x+1,y-1)

board starts empty

(b) Tic Tac Toe

Figure 2.42: EGGG example specifications (adapted from Orwant [Orw00a])

Language 81 Design by Contract generic / tool / practice

Paige et al. present qualitative and empirical results showing that light-weight formal
methods are effective for developing a networked, multiplayer game. Their results,
obtained in a pilot study on applying the Design-by-Contract approach, show that
contracts (pre- and post-conditions) indeed help in diagnosing defects.

publication query publication type research category note

[PAB06] 186w journal article evaluation research

Language 82 GameMaker generic / engine / practice

GameMaker is a commercial graphical game creation tool with a drag and drop interface
by YOYOGames1, which is described by Overmars [Ove04a; Ove04b]. The GameMaker
Language (GML) is a C-like language for scripting.

1
https://www.yoyogames.com/gamemaker (visited November 19th 2018)

publication query publication type research category note

[Ove04a] 14w journal article experience report
[Ove04b] 358w journal article experience report

2.6 research perspectives 105

https://www.yoyogames.com/gamemaker

Language 83 EGGG genre-specific / engine / practice

Orwant describes the Extensible Graphical Game Generator (EGGG), a system for game
programming aimed at productivity and reuse. EGGG offers a textual formalism, and
leverages an ontology that codifies similarities between traditional games such as board-
and card games. Examples include, Rock Paper Scissors, Tic Tac Toe, Poker, Crossword,
Deducto, Tetris and Chess [Orw00a]. Figure 2.42 shows the two simplest examples.

publication query publication type research category note

[Orw00b] –w journal article proposal of solution
[Orw00a] –w PhD thesis proposal of solution

Language 84 Mogemoge genre-specific / tool / practice

Nishimori and Kuno address the lack support in game script languages for interactions
among multiple concurrent activities in a state-dependent manner. They propose a
novel event handling framework called join token as a supplementary mechanism to
conventional object orientation, in which the states of game characters can be expressed
as tokens and interactions as handlers. The languageMogemoge implements join tokens,
and is used for creating two simple 2d games, Balloon (defending against bombs) and
Descender (climbing down a wall). Its Java sources are available online1. Copyright is
retained by Nishimori.

1
http://www.nisnis.jp/mogemoge/ (visited January 10th 2019)

publication query publication type research category note

[NK06] 76w conference paper proposal of solution
[NK12b] –w conference paper proposal of solution
[NK12a] –w journal article proposal of solution

Language 85 Scalable Game Language generic / engine / practice

White et al. propose the Scalable Game Language (SGL), a declarative language that
extends SQL for improving the quality of games, notably scalability. They describe two
patterns: the state-effect-pattern, which is similar to the well-known game loop, and the
restricted iteration pattern, which prevents out-of-bounds exceptions.

106 chapter 2 languages of games and play: a systematic mapping study

http://www.nisnis.jp/mogemoge/

publication query publication type research category note

[WDK+07] –w conference paper proposal of solution
[WSG+08] –w conference paper proposal of solution
[WKG+08] 544w journal article philosophical paper
[WKG+09] 457w journal article philosophical paper reprint

Language 86 Network Scripting Language generic / tool / practice

Russell et al. present a novel DSL called Network Scripting Language (NSL) for
programming bandwidth-efficient online games. Developers can use NSL to create the
game logic of deterministic, concurrent anddistributed games. The system automatically
maintains consistency between the clients and the sever that run the scripts. NSL has a
Java-like syntax. In NSL, objects are lightweight processes that execute a game loop.
Scripts contain specialized statements for sending and receiving messages and handling
synchronization. PointWorld is a simulation that demonstrates the approach.

publication query publication type research category note

[RDS08] 33n workshop paper proposal of solution

Language 87 Haskell – 4Blocks DSL application-specific / engine / practice

Calleja and Pace propose scripting game-specific AI with embedded DSLs in Haskell.
They demonstrate their approach with the 4Blocks DSL for Tetris.

publication query publication type research category note

[CP09] gd workshop paper proposal of solution
[CP10] 52n workshop paper proposal of solution

Language 88 Casanova generic / engine / practice

Maggiore et al. describe Casanova [MBO11; MSO+12a; MSO+12b; MSO+12c]., a language-
extension to F# for engineering games aimed at consistency and performance. Rules
inside entity type declarations determine how entities change during a tick of the game
loop. Additionally, imperative processes are supported through coroutines integrated
with the rules. Game scripts consist of the main script and pairs of event detection- and
event response scripts. Abbadi et al. [AdGC+15; Abb17; ADC+15] and di Giacomo et al.
[dGia14; dGAC+17a; dGAC+16; dGAC+17b] continue work on Casanova, in the context

2.6 research perspectives 107

of optimized compilation, meta-programming and high performance encapsulation.
Casanova 2 is available for Unity or stand-alone under the MIT license on GitHub1. The
distribution includes an asteroid game and several tutorials.

1
https://github.com/vs-team/casanova-mk2 (visited November 19th 2018)

publication query publication type research category note

[MBO11] 47n workshop paper proposal of solution Casanova
[MSO+12a] 34w conference paper validation research Casanova
[MSO+12b] 95w conference paper proposal of solution Casanova
[MSO+12c] 308w conference paper validation research Casanova

[dGia14] 177n Master’s thesis validation research Casanova
[AdGC+15] 60n conference paper proposal of solution Casanova II
[ADC+15] 26n conference paper proposal of solution Casanova II

[dGAC+16] 53n conference paper proposal of solution Metacasanova
[Abb17] 195n PhD thesis validation research Casanova II

[dGAC+17b] 101n conference paper validation research Metacasanova
[dGAC+17a] 86n journal article validation research Casanova II

Language 89 Haskell – Sound Specification DSL generic / tool / practice

Bäärnhielm et al. describe a sound specification DSL intended for designing immersive
and interactive experiences for a Nordic technology-supported Live Action Role Playing
(LARP) game. They demonstrate features of the Haskell-based DSL, by expressing
sound scenes of a Nordic LARP called The Monitor Celestra. In this game, which takes
place on a space ship, participants receive roles such as crew, passengers and refugees.
Within a framework of plots, storylines and clues, supported by sound, they act out a
story where choices determine the outcome.

publication query publication type research category note

[BSV14] 196n journal article experience report

Language 90 MUDDLE application-specific / tool / practice

Bartle gives a historical account of the creation of MUDDLE, a language for the first
Mutli-User Dungeon (MUD) game, which gave the genre its name, also known as
Massive Multiuser Online (MMO) games.

108 chapter 2 languages of games and play: a systematic mapping study

https://github.com/vs-team/casanova-mk2

title Simple Block Pushing Game

author Stephen Lavelle

homepage www.puzzlescript.net

========

OBJECTS

========

Background

lightgreen green

11111

01111

11101

11111

10111

Target

darkblue

.....

.000.

.0.0.

.000.

.....

Wall

brown darkbrown

00010

11111

01000

11111

00010

Player

black orange

white blue

.000.

.111.

22222

.333.

.3.3.

Crate

orange

00000

0...0

0...0

0...0

00000

=======

LEGEND

=======

. = Background

= Wall

P = Player

* = Crate

@ = Crate and

Target

O = Target

=======

SOUNDS

=======

Crate MOVE

36772507

================

COLLISIONLAYERS

================

Background

Target

Player, Wall,

Crate

======

RULES

======

[> Player |

Crate] ->

[> Player

|> Crate]

==============

WINCONDITIONS

==============

All Target on

Crate

=======

LEVELS

=======

####..

#.O#..

#..###

#@P..#

#..*.#

#..###

####..

######

#....#

#.#P.#

#.*@.#

#.O@.#

#....#

######

(a) Source code with dynamic dynamic syntax highlighting of sprites

(b) First level

(c) Second level

Figure 2.43: PuzzleScript tutorial: “Simple Block Pushing Game” (from puzzlescript.net)

publication query publication type research category note

[Bar16] 303n book chapter historical account

Language 91 PuzzleScript genre-specific / engine / practice

PuzzleScript is an online textual puzzle game design language and interpreter1 created
by Stephen Lavelle using JavaScript and html5/css. PuzzleScript game levels are tile
maps populated by objects (named sprites of 5x5 pixels) that can move and collide, and
whose game logic is defined as a set of rewrite rules. Figure 2.43 shows an example
where the objective is to push crates into place. When the player collides with a crate,
both directionally move if possible. The source are released under the MIT license2.
Lim and Harell present an approach for automated evaluation and generation of
PuzzleScript videogames and propose two heuristics [LH14]. The first, level state
heuristics, determines how close the state of given level is to completion during gameplay.
The second, ruleset heuristics, evaluates rules defining a videogame’s mechanics and
assesses them for playability. Osborn et al. apply Playspecs (Language 57).

2.6 research perspectives 109

puzzlescript.net

Table 2.24: Generic modeling languages applied to game design and development

Nr. Language Application domain

92 UML – Metamodeling generic formalism for meta-modeling, e.g., applied to 2d
platfrom games

93 UML – Class and State
Diagrams

generic formalism for object-oriented analysis and design
applied in model-driven game development

94 Statecharts variants of a formalis that describes behaviors as state
machines, applied to Game AI and dialogue in games

95 Feature Models visual variabilitymodeling formalism applied tomanaging
game (and game engine) variability

1
https://www.puzzlescript.net (visited November 24th 2018)

2
https://github.com/increpare/PuzzleScript (visited November 24th 2018)

publication query publication type research category note

[LH14] 110w conference paper validation research

2.6.13 Model-Driven Engineering

Model-driven game development revolves around abstract models that describe game
content orwork processes, often using visual diagrammatic representations. Modeling
languages are based on the principles, techniques and tools from an area calledModel-
Driven Engineering (MDE). These models are step-by-step translated, transformed
and combined into a resulting model or source code that integrates with the game
software. We identify applications of generic modeling languages in Table 2.24, and
Domain-Specific Modeling Languages in Table 2.25.

Metamodeling represents the abstract syntax of models as a graph of UnifiedMod-
eling Language (UML) classes and references between them. Because metamodeling
is often based on the Eclipse Modeling Framework (EMF) and Ecore (the EMF model
engine), it enjoys the advantage of generic reusable tools for model transformation,
analysis and productivity, e.g., for adding a textual concrete syntax (Xtext, EMFText),
or graphical ones (e.g., using GMF, Graphiti) [PKP13].

110 chapter 2 languages of games and play: a systematic mapping study

https://www.puzzlescript.net
https://github.com/increpare/PuzzleScript

Table 2.25: Domain-specific modeling languages for game development

Nr. Language Application domain

96 SharpLudus RPG games, mobile touch-based games, 2d arcade games
97 Eberos gml2d 2d Games
98 FlexibleRules digital board game creation and customization
99 PhyDSL 2d mobile physics-based games
100 Pong Designer Pong-like games
101 Board Game DSL board games
102 RougeGame Language visibility Rogue-like dungeon maps
103 Reactive AI Language behaviors in adventure games

Language 92 UML – Metamodeling generic / engine / practice

Montero Reyno andCarsí Cubel address the increasing complexity of game development
by applying model-driven engineering and UML to the development of 2d platform
games [MC08]. They aim to enhance productivity in terms of quality, time and cost
[MC09a]. A prototype tool uses Platform Independent Models (PIMs) for defining the
structure and behaviour of the game, and Platform Specific Model (PSM) for mapping
game actions to hardware control devices for player interaction [MC08] and UML
metamodels for social context, structure diagram and rule set [MC09a]. The tool
generates C++ prototype games for a middleware called HAAF Game Engine. These
are then iteratively play tested and manually completed and fine-tuned.

publication query publication type research category note

[MC08] 58w conference paper proposal of solution
[MC09a] 27w conference paper proposal of solution
[MC09b] 72w journal article proposal of solution

Language 93 UML – Class and State Diagrams generic / tool / practice

Tang and Hanneghan investigate how to define a Domain-Specific Modeling Language
for serious game design. They perform an analysis and propose a modeling framework
that uses UML class diagrams and state diagrams for modeling user interactions and
in-game components. They extend state diagrams with UI modeling elements [TH08].
In later work, they examine the state of the art in model-driven game development from
a game-based learning perspective [TH11]. We compare this related work in Section 2.8.
Tang et al. propose a Game Technology Model for modeling serious games [THC13].

2.6 research perspectives 111

publication query publication type research category note

[TH08] 1w conference paper proposal of solution
[TH11] 13n journal article survey

[THC13] –w journal article proposal of solution

Language 94 Statecharts generic / tool / practice

Statecharts are visual diagrams for modeling behavior. Several several variants of the
notation exist [CD07]. We identify two used in model-driven game development.
Kienzle et al. propose visual modeling game AI of NPCs in a Rhapsody Statechart
variant to ease the difficulty of programming consistent, modular and reusable game AI.
They demonstrate the approach in an AI competition of EA Games called Tank Wars.
Brusk and Lager propose applying State Chart XML (SCXML) to the design and
implementation of games, in particular games featuring natural language dialogue
[BL07]. Brusk investigates how statecharts can be used for describing social interaction
and dialogue behavior for believable characters in game worlds [Bru08]. Various tools
and libraries for Statecharts have since become available. The latest recommendation
for v1.0 of SCXML as w3c standard dates from September 1st 20151.

1
https://www.w3.org/TR/scxml/ (visited March 27th 2019)

publication query publication type research category note

[DKV06] gd l conference paper proposal of solution Rhapsody Sc.
[KDV07] –w conference paper proposal of solution Rhapsody Sc.
[BL07] 180w conference paper proposal of solution SCXML
[Bru08] 569w conference paper proposal of solution SCXML

Language 95 Feature Models generic / tool / practice

Feature Models (FMs) are a visual notation for describing the variability of product fea-
tures, e.g., in software product lines for the automotive or aerospace industries. Sarinho
et al. propose an approach that entails using FMs for representing and manipulating
the variability of game features, and an environment that integrates and adapts features
of available game engines, e.g., for configuring game logic, rules and goals.

publication query publication type research category note

[SA09] 6n conference paper proposal of solution
[SAA12] language workshop paper proposal of solution

112 chapter 2 languages of games and play: a systematic mapping study

https://www.w3.org/TR/scxml/

Language 96 SharpLudus genre-specific / engine / practice

Furtado et al. study how game development can be improved using visual domain-
specific modeling languages, software product lines, software factories, generators
and semantic validators aimed at software reuse and productivity [FSR+11; FS06b].
SharpLudus is a software factory intended to empower game designers in creating 2d
adventure video games [FS06b], but over the years targets also included RPG games,
mobile touch-based games and 2d arcade games [FSR+11]. For instance, ArcadEx is a
factory for 2d arcade games for the PC based on Microsoft XNA and the FlatRedBall
engine [FSR+11]. DSLs are provided for describing games, mapping input of Xbox 360
buttons into XNA Keyboard keys, and modeling variability using feature models. Game
descriptions are visual models of introduction screens and rooms with transitions
between them (arrows), sound, entities, input handling, triggers, events and actions of
NPCs. The project web site1 contains videos and demos of Ultimate Berzerk, Stellar
Quest and Tank Brigade, and links a to a distribution2.

1
http://cin.ufpe.br/~sharpludus/ (visited march 27th 2019)

2
https://archive.codeplex.com/?p=sharpludus (visited March 27th 2019)

publication query publication type research category note

[FS06b] 1n workshop paper proposal of solution SharpLudus
[Fur06] 3n Master’s thesis validation research SharpLudus
[FS06a] 87n conference paper tutorial MS DSL tools
[FSR07] 25n journal article validation research SharpLudus
[FSR11] 16n workshop paper experience report SharpLudus

[FSR+11] 25w journal article proposal of solution ArcadEx
[Fur12] 93n PhD thesis validation research all the above

Language 97 Eberos GML2D genre-specific / tool / practice

Hernandez and Ortega wish to learn how the game industry can profit from model-
driven development approaches [HO10]. Eberos GameModeling Language 2d (gml2d)
is a graphical DSL that aims for expressiveness, simplicity, platform independence and
library independence. Figure 2.44 shows the UI and a Pong model.

publication query publication type research category note

[HO10] 2n workshop paper proposal of solution

2.6 research perspectives 113

http://cin.ufpe.br/~sharpludus/
https://archive.codeplex.com/?p=sharpludus

Figure 2.44: Eberos gml2d showing amodel of Pong (appears inHernandez andOrtega [HO10])

Language 98 FlexibleRules genre-specific / engine / practice

Frapolli et al. present FlexibleRules, a framework for implementing all aspects of
digital board games aimed at customization, adaptability and end-user programming
[FBM+10a; FMH10; FBM+10b]. Its toolkit offers a logic editor for visually defining a
directed graph of game entities (nodes), properties and relationships (edges). The code
editor for a Lisp-like DSL enables programming games as the behavior specification of
those entities. Aside from statements for control flow andmessaging for communicating
between entities, it includes rules that are defined as laws and side effects, similar to
point-cuts and advice in aspect oriented programming. FlexibleRules is available
under GPL v31. Examples include Tic Tac Toe, Go and Snakes and Ladders.

1
http://flexiblerules.fulviofrapolli.net (visited April 10th 2019)

publication query publication type research category note

[FBM+10a] 21n conference paper validation research
[FBM+10b] 57n journal article proposal of solution
[FMH10] 78n conference paper validation research

114 chapter 2 languages of games and play: a systematic mapping study

http://flexiblerules.fulviofrapolli.net

Language 99 PhyDSL genre-specific / engine / practice

Guana and Stroulia propose PhyDSL, a textual DSL for rapidly prototyping mobile 2d
physics-based games, and a model-driven environment that generates code for Android
devices. PhyDSL has features for defining actors, environment and layout, activities
and scoring rules. PhyDSL-2 is implemented in Xtext and available on GitHub1.

1
https://guana.github.io/phydsl (visited September 1st 2019)

publication query publication type research category note

[GS14] 24n conference paper proposal of solution PhyDSL
[GSN15] 29n workshop paper experience report PhyDSL-2
[Gua17] 209n PhD thesis validation research PhyDSL-2

Language 100 Pong Designer genre-specific / engine / practice

Mayer and Kuncak aim to empower end-users and to simplify modifying running
programs [MK13]. They explore game programming by demonstration and present
Pong Designer, an environment for developing 2d physics games through direct
manipulation of object behaviors. Internally, a game’s rules are expressed in an
embedded DSL implemented in Scala. These rules are updated whenever a user
performs a new demonstration. Sources are available on GitHub under the Apache 2.0
license1. Examples include Pong, Brick Breaker, Pacman and Tilting maze.

1
https://github.com/epfl-lara/pongdesigner (visited July 12th 2019)

publication query publication type research category note

[MK13] 285n conference paper proposal of solution
[May17] 390n PhD thesis validation research

Language 101 Board Game DSL genre-specific / tool / practice

Altunbay et al. describe a model-driven software development approach aimed at
addressing increased complexity in video games, which is illustrated by a DSL for the
board game domain based on UML meta-modeling [AÇM09].

publication query publication type research category note

[AÇM09] 383w workshop paper proposal of solution

2.6 research perspectives 115

https://guana.github.io/phydsl
https://github.com/epfl-lara/pongdesigner

Language 102 RougeGame Language genre-specific / tool / practice

Féher and Lengyel illustrate the strength of model transformations based on graph
rewriting-based in a case study on Rouge-like games, a genre of 2d dungeon crawlers.
In particular, they study which cells are visible from a specific location on a 2d level
map. They define the RougeGame language, a DSL defined as a meta-model expressing
maps and visibility parameters. A transformation pipeline calculates the cell visibility
based on rewrite rules.

publication query publication type research category note

[FL12] 189n conference paper proposal of solution

Language 103 Reactive AI Language genre-specific / engine / practice

Zhu describes the Reactive AI Language (RAIL), a DSL for modeling behaviors in
adventure games, and a model-driven game development approach that uses meta-
modeling and EMF. The approach is validated in a case study called Orc’s gold, a 2d
action adventure game.

publication query publication type research category note

[Zhu14] 165n PhD Thesis validation research

2.6.14 Metaprogramming

The metaprogramming perspective considers game development as an application
domain for generic language technology. Metaprogramming refers to techniques,
tools and approaches for creating metaprograms that read and transform the source
code of other programs, e.g., compilers, interpreters and integrated development
environments. Applying these techniques to game development promises to raise
productivity, improve quality and reduce maintenance costs.

Constructing languages and tools by means of metaprogramming requires ap-
propriate meta-tooling. Language work benches are tools that provide high-level
mechanisms for the implementation of software languages. Erdweg et al. describe the
state of the art in language workbenches [EVV+13]. Examples of metaprogramming
languages and language work benches include Epsilon, Gemoc Studio, Meta-Edit+,
MPS, Racket, Rascal, Spoofax and Xtext. Several authors illustrate metaprogramming
techniques and apply approaches to example languages. Table 2.26 shows examples
of language of games and play created by means of language work benches.

116 chapter 2 languages of games and play: a systematic mapping study

Table 2.26: Applications of metaprogramming languages and language work benches

Nr. Language Metaprogramming

language or work bench

url

27 Micro-Machinations Rascal https://www.rascal-mpl.org

66 GAML Xtext https://www.eclipse.org/Xtext

96 SharpLudus Microsoft DSL tools https://visualstudio.microsoft.com

99 PhyDSL Xtext https://www.eclipse.org/Xtext

104 Whimsy C++ (various versions exist)
105 Level editors DiaMeta http://www2.cs.unibw.de/tools/DiaGen

107 Ficticious Ginger (not found)
106 Text aventures Racket https://racket-lang.org

108 Dialog Script Xtext https://www.eclipse.org/Xtext

The strength of this perspective is the application of state-of-the-art in language
engineering and its weakness is that, with some exceptions, many illustrations remain
toy examples that are never extensively validated.

Language 104 Whimsy application-specific / engine / educative

West discusses potential uses for DSLs in games and demonstrates Whimsy, a DSL
for creating whimsical flowery shapes inspired by the works of Rodney Alan Green-
blat [Wes07]. Figure 2.45 shows how SuperEgg, Inner and Petal primitives can be used
for generating an image similar to a painting. Whimsy is an external DSL implemented
in C++ that requires the Windows SDK and DirectX 9. Its sources are available under
the MIT license from GDCVault1.

1
https://twvideo01.ubm-us.net/o1/vault/GD_Mag_Archives/aug07.zip (visited May 9th 2019)

publication query publication type research category note

[Wes07] gd magazine article philosophical paper practice

Language 105 Level Editors in DiaMeta genre-specific / engine / educative

Maier and Volk report teaching experiences on applying DiaMeta, an EMF-based
language workbench for creating visual domain-specific languages, e.g., for level editors
for classic games such as PacMan and the platform game Pingus [MV08]. Insights
include that meta-modeling has a steep learning curve and that the proposed approach
speeds-up game prototyping.

2.6 research perspectives 117

https://www.rascal-mpl.org
https://www.eclipse.org/Xtext
https://visualstudio.microsoft.com
https://www.eclipse.org/Xtext
http://www2.cs.unibw.de/tools/DiaGen
https://racket-lang.org
https://www.eclipse.org/Xtext
https://twvideo01.ubm-us.net/o1/vault/GD_Mag_Archives/aug07.zip

superegg 0.15,0.10,3.5 at .3,.7 size 1.2 black distort .01

petals 14 0.05 size 1.8 petalblue

inner .88,.01 tvpurple

superegg .1,.2,2 at .20,.7 size .4 distort .01 tvlime

inner .65,.01 tvyellow

inner .45,.01 tvlightyellow

superegg .1,.2,2 at .3,.7 size .5 distort .01 tvblack

inner .85 tvbrown

inner .80 tvred

inner .75 distort .03 tvorange

inner .70 tvyellow

superegg .1,.2,2 at .4,.7 size .4 distort .05 tvblue

inner .6 distort .2 tvdarkblue

inner .4 petalblue

(a) Source code (b) Generated image

Figure 2.45: Whimsy example replicating the style of a painting (adapted from West [Wes07])

publication query publication type research category note

[MV08] 4w conference paper experience report

Language 106 Text Adventures in Racket genre-specific / tool / educative

Flatt demonstrates in a tutorial-like manner how to create languages in Racket. He
describes an illustrative text-adventure DSL for interactive fiction [Fla11; Fla12]. The
Racket metaprogramming language is distributed under the GNU LFPL1.

1
https://racket-lang.org (visited May 9th 2019)

publication query publication type research category note

[Fla11] 181n journal article philosophical paper
[Fla12] 181n journal article philosophical paper reprint

Language 107 Ficticious genre-specific / tool / practice

Palmer reports experiences on developing a set of micro-languages (DSLs) called
Ficticious for describing narrative worlds in Interactive Fiction [Pal10], including rich
text markup, virtual world design and character interaction. The approach demonstrates
how Ginger, a language with support for literate programming through so-called G-
expressions, can be used to separate concerns in DSLs. Figure 2.46 shows code snippets
for describing (a) people places and things; (b) page layout; (c) rich text and grammar;
and (d) dialogue.

118 chapter 2 languages of games and play: a systematic mapping study

https://racket-lang.org

object Hook extends: FixedItem

set name "hook"

set aliases ("hook" "peg")

set adjective ("small" "brass")

set location ’CloakRoom

action examine

:story It’s just a small brass hook,

if (isIn cloak self)

:story with a cloak hanging on it.

else

:story screwed to the wall.

(a) People, Places and Things

panel GamePageLakeShore extends: GamePage

property Image panel1

property Image panel2

init

setText 10 445 580 250

setImage panel1 "imgs/charonGone.png"

setImage panel2 "imgs/charonWaits.png"

draw

if (eq? ’Boatman.location ’LakeShore)

drawImage panel2 7 7

else:

drawImage panel1 7 7

(b) Page Layout

:story

The sign reads "No Loitering" but

ironically a cowboy whittles a small

piece of wood *right beside* the sign.

(c) Rich Text and Grammar

conversation on OldMine

oldMine "Ask about the old mine."

:dialog

Sam: I keep seeing an old donkey

at the mine.

donkey "Ask about the donkey." => oldMine

:dialog

Sam: The donkey comes and goes.

(d) Dialogue

Figure 2.46: Ficticious microlanguages code snippets (adapted from Palmer [Pal10])

publication query publication type research category note

[Pal10] 62n conference paper experience report

Language 108 Dialog Script in Xtext genre-specific / tool / educative

In a textbook chapter on engineering DSLs for games, Walter proposes DSLs for
bridging the gap between game design and implementation [Wal14]. He describes a
textual language called Dialog Script, as an introductory example for creating interactive
branching narratives [Wal14], which closely resembles an earlier version [WM11]. Dialog
Script is implemented in Xtext and its prototype is available on GitHub1 under version
2.0 of the Apache license.

1
https://github.com/RobertWalter83/DialogScriptDSL (visited May 9th 2019)

publication query publication type research category note

[WM11] 4n conference paper proposal of solution
[Wal14] 94n textbook chapter proposal of solution

2.6 research perspectives 119

https://github.com/RobertWalter83/DialogScriptDSL

2.7 challenges and opportunities

Here we discuss research trends, synthesize insights and describe challenges and
opportunities for future research and development. First, we discuss the results in
general in Section 2.7.1. Next, we compare and analyze success factors in Section 2.7.2.
Finally, we synthesize one additional perspective on languages of games and play in
Section 2.7.3. Our Automated Game Design perspectives is a specific language-centric
discussion on challenges and opportunities for research and development. This
section answers research question rq4.

2.7.1 General Analysis

Our area of interest ‘languages of games and play’ is a well-studied research topic
with a growing number of publications. Figure 2.2 shows that most papers we
included were published after the turn of the millennium. Around this time, roughly
between 1998 and 2006, most of the interdisciplinary game publishing venues we
identified also came into existence. Since 2005, there is a gradual increase in the term
’domain-specific language’. Two factors explain the declining number of publications
in this study after 2015. First, the query date limits the search results. Second, GS
orders the results of the wide query to show older results first. Therefore, it is likely
we missed newer results that could have been included.

Our analysis of the citation graph, shown in Figure 2.3, reveals a low cohesion
between publications. We observe clusters that represent distinct technological spaces,
tight-knit communities, fragmented sub-topics and diffuse areas. Therefore, authors
may not find or recognize related work in a wider research context. As a result,
relevant literature has gone uncited, efforts and successes have often been one-off,
lessons learnt have gone overlooked, and several studies and areas have remained
isolated. We view this mapping study as an opportunity to relate relevant primary
sources to help frame research problems, reuse available approaches, and benefit from
documented experiences. Our map serves to navigate between related perspectives
and technological spaces. As time progresses, the map can be extended and reshaped
for charting new research trajectories that continue to explore the limits of formalism.

2.7.2 Success Factors

Our analysis reveals a ”grave yard” of dead language prototypes. Few languages ever
grow to maturity. Many languages remain solution proposals that are now no longer
maintained, available or in use. This lack of reuse is unfortunate, since creating one
language often requires years of research, design and development. Naturally, this
leads to the question why so many prototypes were abandoned. Here we discuss
observations and insights about shared success factors. Table 2.27 shows examples of

120 chapter 2 languages of games and play: a systematic mapping study

Table 2.27: Examples of multi-year, multi-disciplinary work on Languages of Games and Play

(AI: Artificial Intelligence, SE: Software Engineering, Edu: Education, G: Games)

Nr. Language Ct. Years Areas Perspectives

65 AgentSheets 6 1995–2012 SE+Edu visual DSLs, education
39 ABL 5 2002–2008 AI+G+SE programming, behaviors, interac-

tive drama
7 Gameplay

Design
Patterns

6 2003–2013 G+Edu pattern language

47 ScriptEase 8 2003–2013 SE+G pattern language, visual DSL
96 SharpLudus 6 2006–2012 SE+G model-driven engineering, visual

DSL
46 <e-game> 6 2006–2012 SE+Edu storyboards, education, visual DSL
25 Biped and

Ludocore
9 2008–2012 AI+G automated game design, mechanics

26 Machinations 6 2009–2012 G pattern language, automated game
design

27 Micro-
Machinations

3 2013–2015 SE+G automated game design, mechanics,
programming, visual DSL

88 Casanova 11 2011–2017 SE+G game programming

Table 2.28: Highlighting the differences between applied and forgotten languages

Alive languages Dead languages

Language experts multiple one
Publication count multiple one or two
Publication areas multiple one
Validation applied and validated in practice not applied, toy examples
Availability sources or wiki pages are released

and maintained up to a point,
no source code is available

Examples tutorials, workshops and study
materials are available

not available

languages that stand out as multi-faceted research with a relatively high publication
count. We explain succes factors summarized in Table 2.28.

Languages of games and play represent a considerable effort and a long-term
investment. Therefore, success requires a multi-year research trajectory, perhaps
spanning multiple research grants and PhD projects. Publishing in different research
areas helps answer different related questions and sheds light on challenges and
solutions from different perspectives. Involving multiple researchers, language
developers and practitioners creates co-ownership and continuity.

2.7 challenges and opportunities 121

Traditionally, academia and the game industry have not always seen eye to
eye. However, collaborating in applied research projects is essential for validating
research in practice. To that end, some research departments include labs and game
studios, and host in-house designers. Of course, working with innovative indie game
developers or AAA studios on industrial case studies costs time and effort. The
main benefit is that case studies can show case approaches and lead to better and
more applicable solutions. Stakeholders can formulate common goals, agree to make
research results open source, and protect intellectual property of businesses with
Non-Disclosure Agreements (NDAs). As a selling point, students participating in
these projects might become employees who bring expertise and help to create new
and innovative game products.

Naturally, making solutions available is necessary in order to apply them. Open
source software might include reusable script engines, content generators, visual tools
or programming environments. In addition, for learning to apply solutions effectively,
users may require Wiki pages, blogs, example materials, tutorials and workshops.

Some languages, in particular educational online languages, have thriving user
communities that create significant impact. Their users apply solutions in practice,
which increases the research visibility and grows a network. Naturally, these benefits
come at great cost, e.g., time spent on tools, demos, maintenance and legacy support.
However, when users become stakeholders invested in validation, they also assist in
building data sets. Ultimately, empirical evidence is necessary for scientific research.

2.7.3 Automated Game Design

Here, we synthesize one final perspective on languages of games and play by relating
research perspectives from the previous section to challenges and opportunities for
future research and development.

Automated Game Design (AGD) aims to speed-up and improve iterative game
design processes by automating design processes. Here we discuss how languages,
structured notations, patterns and tools can help game design experts raise their
productivity and improve the quality of games and play. We distill research challenges
and relate this perspective to other perspectives on languages of games and play.

Various languages, techniques and tools have been proposed for creating, generat-
ing, analyzing and improving a game’s parts. These design tools offer interactive user
interfaces that support prototyping, sketching designs, automating play tests and
exploring design spaces, usually in amixed-initiative, conversational and collaborative
manner. Moreover, these tools are often intended to support game design as an explo-
rative, playful or enjoyable activity. AGD usually shifts design and implementation
efforts away from manual, repetitive, time consuming and error-prone tasks. That
way, designers can more efficiently create, improve and maintain growing amounts of
game content. We define content as follows:

122 chapter 2 languages of games and play: a systematic mapping study

Game

AI Pro-
grammerGame

Designer

EducatorNarrator
Subject Matter Expert

Level
Designer

(a) Examples of experts that might
contribute to a game’s design

GameMechanics

Game-Economies

Physics
Behaviors

Virtual Worlds

Levels
Missions

Trainings

Assessments

Dungeons Storylines

Quests

(b) Examples of interaction-bound content types whose evolution
represents gameplay dimensions that span game design spaces

Figure 2.47: Game design experts contribute content to evolve games in different dimensions

”Game content refers to every asset of a digital game that can be separately (or
together) viewed, understood, modeled, generated, recombined and improved
to affect audio-visual and interactive player experiences.”

Visual content includes textures, models, sprites, imagery, objects that form
composite structures such as trees, landscapes, cities and nature [STN16]. Audio
content includes music, voices and effects. Procedural Content Generation (PCG)
refers to generative techniques that produce and transform game content [HMV+13;
KB17; STN16; vdLLB14]. Game engines and software libraries, reusable components
for the construction of digital games, are not content [STN16].

The focus of this study is on ‘interaction-bound content’, content that expresses
how players interact and communicate, which especially affects player experiences.
Figure 2.47(a) illustrates the diverse experts that might contribute to a game’s design.
Figure 2.47(b) illustrates types of content (or facets) a game might have. Modifying
these content facets evolves a game along multiple related axes or dimensions.

The problem is that these dimensions overlap, often in non-trivial ways, which
results in a web of criss-crossing interconnected content dependencies that may
differ from game to game. This makes it exceptionally difficult to align a particular
interpretation of a dimension with a reusable form of content representation that
separates a game design concern. As a result, improving a game’s qualities along one
dimension is often difficult without negatively affecting another. Therefore, design
experts require orchestrated content generators [LYN+19] for composing high quality
games from different kinds of inter-connected content, intricately interwoven to
support meaningful experiences, in a reusable manner. Next, we relate key challenges
of AGD to perspectives on languages of games and play.

2.7 challenges and opportunities 123

Frameworks and pattern catalogues for studying games describe what games are.
These perspectives inform automating game design by providing context, theory and
structured frameworks for common vocabularies and notations.

• Game designers lack a common vocabulary, which hampers specification, com-
munication and agreement among developers and designers [KvR13]. However,
automating game design requires formalizing game concepts, e.g., by perform-
ing a domain analysis that identifies concepts, names, meanings and relationships.
Useful frameworks and resources are ontologies and typologies that help to de-
scribe, understand and characterize games, and distinguish what makes games
unique. Section 2.6.1 highlighted this perspective.

• Game designers require design tools, reusable patterns, and techniques that help
them analyze and predict how modifications to a game’s design will affect the
gameplay. Section 2.6.2 highlighted pattern languages and game design patterns
that describe best practices, recurring structures of content and gameplay, and
represent steps towards standardization and reuse.

Other perspectives are content-centric. Related publications typically envision
design experts who contribute design artifacts by means of languages and tools. We
describe the following perspectives:

• Games may require integrating subject matter knowledge. The challenge is
providing languages and tools that enable domain experts such as as educators
and psychologists to describe scenarios and participate in game design processes.
Section 2.6.3 highlighted a perspective on applied (or serious) game design.

• Many games integrate game mechanics, rules that offer playful affordances and
bring about interesting player experiences. Game designers require formalisms
to express gamemechanics, e.g., game economies or avatar physics. Additionally,
they require tools for analyzing behaviors, generating rules, balancing strategies,
introducing trade-offs, managing feedback-loops and automating play testing.
Section 2.6.4 highlighted a perspective on game mechanics.

• Many games include generated spaces such as virtual worlds and game levels.
Designers require tools to assist in populating these spaces with various kinds
of content, e.g., to create varied and interesting game levels, dungeons, missions
and quests. Section 2.6.5 gave a perspective on spaces.

• Game designs may integrate behaviors of in-game entities such as non-player
characters that require dramatic realism or challenge. Designers and AI pro-
grammers require formalisms for expressing these behaviors. Section 2.6.6
illustrated a perspective on behavior languages with different strengths and
applications.

• Games designsmay integrate stories that allowplayers to progress through stages
of a plot. Designers and narrators require languages and tools to expressing

124 chapter 2 languages of games and play: a systematic mapping study

these stories. Section 2.6.7 illustrated a perspective on techniques that express
narratives and story plot using textual notations and graphs.

Technical views on how to automate game design with available techniques and
approaches originate mainly from the fields of AI and games, software engineering,
and education. We relate the following challenges to technical perspectives on
languages of games and play:

• Raising the quality of game content requires automated iterative analyses,
especially when dealing with generated content. Section 2.6.8 highlighted a
perspective on metrics, which can be used to relate content and player actions
to gameplay.

• Usability, understandability and ease of use are essential qualities for game
design tools. Designers require appropriate visual notations and timely feedback
to comprehend concepts, master language features and learn to apply user
interfaces effectively. We described a perspective on educational end-user
environments in Section 2.6.9.

• During adigital game’s life span, designersmayneed tomake significant changes
to its design. Designers require tools that enable modifying a game’s design
during its entire evolution. Section 2.6.10 gave a perspective on gamification,
which studies techniques for redesigning games and retrofitting game designs.

• Powerful, cutting-edge AI techniques are constantly being researched, developed
and improved. The challenge is leveraging these for automate game design, e.g.,
for analysis, generation and testing. Section 2.6.11 described a perspective on a
field called general game playing, which uses games as a test-bed for AI.

• Developinghigh quality games in a time-to-marketmanner requires programming
and maintaining growing amounts of source code, and rapidly evolving that
code towards new gameplay goals. Section 2.6.12 highlighted a perspective
on DSLs, script languages and programming environments, which have been
created to speed up development and improve the quality and maintainability.

• Developing visual languages for game design from scratch is a difficult and
time-consuming endeavour. Model-driven engineering offers several reusable
formalisms, techniques and approaches. We highlighted a perspective on how
design can be automated by means of visual models and tools in Section 2.6.13.

• Developing and maintaining DSLs, generators and tools costs a considerable
amount of time and effort. Language developers require appropriatemeta-tooling
and metaprogramming techniques to alleviate this effort, that enable rapid
prototyping. Several authors advocate the use of generic language technology
by demonstrating its power in illustrative examples. We highlighted this
perspective in Section 2.6.14.

We describe the following additional open research challenges.

2.7 challenges and opportunities 125

• A game’s quality is limited by the number of game design iterations. Producing
high quality games more quickly requires the duration of game reducing
iterations. An open challenge is leveraging live programming techniques for
providing live (immediate and continuous) feedback on changes to a program.
This may be the key to forming more accurate mental models and better
predicting behavioral effects and gameplay outcomes.

• The composition of content alone does not explain how a game’s simulation is
communicated to its players. To fully understand how a game works, designers
might require content creation strategies that relate content representations to a
set of communication strategies or Operational Logics (Language 17).

2.8 related work

The research perspectives we have described in Section 2.6 relate work on languages
of games and play. We have already mentioned several surveys on more specific
topics that align with those perspectives. Here we briefly discuss more general related
surveys, literature reviews and mapping studies. In addition, we give an overview of
related PhD dissertations.

2.8.1 Related Surveys

Ampatzoglou et al. perform a systematic review on the more general topic of software
engineering research for computer games [AS10]. They identify topics, research
approaches and empirical research methods. Unlike this study, sources are limited to
well-known publishers (IEEE, ACM, Elsevier and Springer), which excludes many
games conferences. They search for the terms ’games’ and ’software’, and analyze
publications on software engineering using a concise protocol. The result is a limited
overview that gives one-sided perspective of a general field. This study instead
presents a multi-faceted map of a more specific topic.

Tang and Hanneghan examine the state-of-the-art in model-driven game devel-
opment from a game-based learning perspective [TH11]. Their overview, which
describes model transformations and several game design languages, overlaps with
the model-driven engineering perspective presented in Section 2.6.13. For instance,
Rich Pictures (shown as ovals and arrows) represent the abstract progression of a story.
Flow boards, similar to storyboards and flow charts document a game’s structure.
In addition, they identify Statecharts (Language 94), Petri Nets (Language 23), UML
Class Diagrams and Metamodeling (Language 92), Alice (Language 59) and Scratch
(Language 63). Finally, they compare several game engines.

Almeida and da Silva survey game design methods and tools [AdS13b], and
synthesize requirements from 32 selected publications [AdS13a]. They present a map
of design frameworks and visual modeling formalisms [AdS13b], which overlaps

126 chapter 2 languages of games and play: a systematic mapping study

with our perspectives on Ontologies (Section 2.6.1), Pattern Languages (Section 2.6.2)
and Game Mechanics (Section 2.6.4). In particular, they discuss FADTs (Language 5),
MDA (Language 8), Gameplay Design Patterns (Language 7), UML (Language 92),
Petri Nets (Language 23), Machinations (Language 26) and Ludocore (Language 25).
They describe requirements for software tools that integrate with industry approaches
and help aid game design. In particular, they propose constructing pattern catalogues
(databases) that let designers: 1) relate design concepts, games and genres from MDA
perspectives using pattern languages; 2) analyze concepts in relation to market, critics
and player data; and 3) build, manage, moderate, maintain and evolve the concept
collection together as a collaborative effort. Additionally, they propose tailor-made
visual design languages that let designers: 1) model and assemble games from smaller
concepts; and 2) reuse existing formalisms and proven technology.

Several vision papers align with this study. Walter and Masuch discuss how to
integrate DSLs into the game development process [WM11]. Mehm et al. take an
authoring tools perspective when discussing research trends [MRG+12].

2.8.2 Related Dissertations

Several dissertations also describe one or more languages of games and play, usually
as part of a literature study chapter. These chapters have a more narrow focus than
this study, and few are systematic studies. Table 2.29 shows a selection of PhD
dissertations. Authors of dissertations approach the topic from various angles. For
instance, Maggiore includes libraries and systemswhen discussing languages [Mag12].
Neil discusses several existing game design tools, mainly academic prototypes, and
evaluates their application in supporting practical game design activities [Nei15]. We
refer to our citation data for additional PhD, Master and Bachelor dissertations.

2.9 threats to validity

Systematic mapping studies are intended to create an unbiased and complete overview
of a subject. With that in mind, we have applied methodology guidelines [KC07],
and designed a reproducible and an unambiguous protocol. However, the results
of this study are a compromise. By definition the word ‘game’ is a concept whose
‘essence’ cannot be captured in words [Wit53]. Therefore this study can never be fully
complete, unambiguous, and unbiased. Here we address threats to validity.

Scoping the area of interest

We formulated two queries to obtain evidence for our hypotheses. Our narrow query,
aimed at our second hypothesis, is biased towards software engineering where the
term ‘domain-specific language’ is common. To obtain a more nuanced and complete

2.9 threats to validity 127

Table 2.29: Several PhD Dissertations related to Languages of Games and Play

author thesis query research angle language

Abbadi [Abb17] 195n DSL for general game develop-
ment

88: Casanova

Ahmadi [Ahm12] 158n Game based learning 65: AgentSheets
Anderson [And08a] 247n Behaviors and Game AI 40: SEAL
Ašeriškis [Aše17] 241n Gamification 68: UAREI
Borghini [Bor15] 263n Assessment systems in game

based learning
21: EngAGe DSL

Browne [Bro08] – 72: Ludi
Dormans [Dor12a] 97w Game mechanics and level gen-

eration
26: Machinations
36: Ludoscope

Furtado [Fur12] 93n Domain-Specific Modeling Lan-
guages

96: SharpLudus

Guo [Guo15] 97n Modeling Pervasive Games 3: PerGO
Gaudl [Gau16] 274n Real-Time Game AI 44: Posh#
Guana [Gua17] 209n Modeling Games 99: PhyDSL
Holloway [Hol16] 272n Modeling storylines
Mahlmann [Mah13] 289n 73: SGDL
Mayer [May17] 390n
Martens [Mar15] – Programming narratives in Lin-

ear Logic
48: Ceptre

Neil [Nei15] – Evaluates game design tools
Mehm [Meh13] 238n authoring tools for the educa-

tional domain
18: StoryTec

Osborn [Osb18] – Operationalizing Operational
Logics

17: Operational
Logics
57: Playspecs
30: Gamelan

Adam Smith [Smi12] 494w Mechanizing exploratory game
design

25: Biped and
Ludocore

Zhu [Zhu14] 165n 103: RAIL
Zook [Zoo16] –w Automated iterative game de-

sign
31: PDDL

overview that also includes other research fields, we formulated a wide query aimed
at our first hypothesis, with focus on languages in general. However, more than 16K
GS results was more than is feasible for us to analyze. We compromised and chose to
limit our analysis to its top 1K results. In addition, we filtered terms that are often,
but not always, off-topic. As a result, despite our best efforts, we may have overlooked
relevant publications.

128 chapter 2 languages of games and play: a systematic mapping study

Breaking protocol

We cited publications not conforming to either of our queries to clarify the origins,
descriptions and applications of a language. In addition, we included several papers
that conform to the wide query, but did not appear in the top 1K results. We have
clearly marked these in the language summaries, and added the bibliographical data
in a separate library, as can be seen in Figure 2.2. While this makes our overviewmore
complete, it also reintroduces the selection bias we wished to avoid in the first place.

Pilot error

We have summarized and related publications from a wide array research fields, areas
and topics. Unfortunately, despite our best efforts, we have inevitably overlooked or
mischaracterized contributions. This study is intended as an inclusive, constructive
and ’living’ document that we hope to discuss, improve and extend over time.

Synthesizing perspectives

We synthesized fifteen perspectives on languages of games and play from over one
hundred language summaries. Our decomposition of the topic of interest is a best-
effort interpretation that relies on our personal experience. We acknowledge that it is
possible to formulate other research perspectives that extend the collection. Different
authors, who have distinct research needs and goals, might want tot shed light on a
problem from a different angle. They could choose finer granularity to zoom in on an
area, and reuse different subsets of languages that cross-cut topics in different ways.

Missing in action: game development practice

We have mapped the state-of-the-art in languages of games and play for a wide
audience, which in our view, should include practitioners. Unfortunately, because we
identified relatively few practical sources, we have not fully delivered on this promise.
We acknowledge this is a limitation of our research method, which does not include
non-written sources such as games, development kits, engines and tools. Of course,
GS primarily contains academic sources, and the game development industry is not in
the business of publishing papers. In addition, fierce competition and time-to-market
pressure have lead to a degree of industrial secrecy. By not sharing information, many
businesses are simply protecting their intellectual property and competitive edge.

Ongoing work

The advantages of mapping studies come at the cost of a high effort. We have spent a
significant amount of time analyzing a large number of publications while authors
continued to publish. However, we have neither categorized every publication we

2.9 threats to validity 129

included, nor have we analyzed every language we identified in detail. As a result,
our analysis remains an ongoing process of updates and extensions.

Using Google Scholar

Our choice for GS is motivated by its high recall. Using GS we obtained publications
from independent venues we did not know existed. However, Google owns the
information records on GS, maps the interests of its users, and does not provide
bulk access12. This complicates systematic studies in general, which require an
off-line analysis in order to ‘stand on the shoulders of giants’. As a result, it is not
straightforward to reproduce this study.

Applying bibliometrics

We obtained citation data from GS and constructed the citation graph using a
combination of Python scripts and Gephi. Given the right tools, we could have
extracted the citation data directly from the PDFs. In addition, we used Gephi’s
built-in layout algorithms to obtain a suitable image. However, the same data can
produce different graph layouts as well. Mapping studies are complicated by a lack
of tools for bibliographic analysis and bibliometrics. Standardizing and automating
mapping studies can help save precious time and improve the quality of literature
reviews and surveys in general.

2.10 conclusion

We have presented an overview of the state-of-the-art in languages of games and play
that relates research areas, goals and applications. We identified and summarized
over one hundred languages, and synthesized fifteen research perspectives (or angles)
on the topic, each illustrated by selected language summaries.

The results show that there is evidence to support both of our research hypotheses.
First, languages, structured notations, patterns and tools can offer designers and
developers theoretical foundations that offer experts systematic techniques and
practical solutions they need to raise their productivity and improve the quality of
fames and play. Second, we obtained evidence that DSLs can help in automated game
design, and described illustrative examples that suggest how to achieve this.

We also mapped related approaches and described perspectives other than
our own departure point with distinct approaches and motivations. Instead of
clarifying a single perspective, our map leads in many related research directions,
each representing possible departure points for related studies. Ultimately, our map

12
https://scholar.google.com/intl/en/scholar/help.html (visited August 23rd 2019)

130 chapter 2 languages of games and play: a systematic mapping study

https://scholar.google.com/intl/en/scholar/help.html

provides a good starting point for anyone who wishes to study and learn more about
languages of games and play.

2.10.1 Future Work

We foresee the following future work.

• We plan to create a Wiki on languages of games and play. That we can grow and
maintain related work as a ’living document’, like Gameplay Design Patterns
and (Language 7) and Game Ontology Project (Language 2).

• We see opportunities for additional mapping studies and literature reviews that
intersectwith this study and zoom in on specific related areas, such as automated
game design, mixed-initiative approaches, procedural content generation and
live programming.

Acknowledgements

We thank Paul Klint, Tĳs van der Storm and Daria Polak for proof reading and
providing valuable feedback that helped improve this paper.

In addition, we thank the many colleagues who over the years have pointed out
so many languages, venues and publications.

Last but not least, we thank the authors whose contributions we had the privilege
to read, summarize and relate. We would like to apologize to any peer who feels their
work is unfairly treated or incorrectly portrayed.

2.10 conclusion 131

ANALYZING GAME MECHANICS 3
Abstract

In the multi-billion dollar game industry, time to market limits the time
developers have for improving games. Game designers and software engineers
usually live on opposite sides of the fence, and both lose time when adjustments
best understood by designers are implemented by engineers.

Designers lack a common vocabulary for expressing gameplay, which hampers
specification, communication and agreement. We aim to speed up the game
development process by improving designer productivity and design quality. The
language Machinations has introduced a graphical notation for expressing the
rules of game economies that is close to a designer’s vocabulary.

We present the language Micro-Machinations (MM) that details and formalizes
the meaning of a significant subset of Machination’s language features and adds
several new features most notably modularization. Next we describe MM Analysis
in Rascal (MM AiR), a framework for analysis and simulation of MM models
using the Rascal meta-programming language and the Spin model checker.
Our approach shows that it is feasible to rapidly simulate game economies in
early development stages and to separate concerns. Today’s meta-programming
technology is a crucial enabler to achieve this.

3.1 introduction

There is anecdotal evidence that versions of games like Diablo III1 and Dungeon
Hunter 42 contained bugs in their game economy that allowed players to illicitly
obtain game resources that could be purchased for real money. Such errors seriously
threaten the business model of game manufacturers. In the multi-billion dollar game
industry, time to market limits the time designers and developers have for creating,
implementing and improving games. In game development speed is everything. This
applies not only to designers who have to quickly assess player experience and to
developers that are under enormous pressure to deliver software on time, but also

This chapter was previously published as P. Klint and R. van Rozen. “Micro-Machinations: a DSL
for Game Economies”. In: Software Language Engineering – Proceedings of the 6th International Conference
on Software Language engineering, SLE 2013, Indianapolis, IN, USA, October 26–28, 2013. Ed. by M. Erwig,
R. F. Paige, and E. Van Wyk. Vol. 8225. LNCS. Springer, 2013, pp. 36–55. isbn: 978-3-319-02654-1. doi:
10.1007/978-3-319-02654-1_3

1
http://us.battle.net/d3/en/forum/topic/8796520380 (visited May 14th 2019)

2
https://web.archive.org/web/20130813083409/http://www.data-apk.com/2013/04/

dungeon-hunter-4-v1-0-1.html – misses the comments section (visited May 14th 2019)

135

https://doi.org/10.1007/978-3-319-02654-1_3
http://us.battle.net/d3/en/forum/topic/8796520380
https://web.archive.org/web/20130813083409/http://www.data-apk.com/2013/04/dungeon-hunter-4-v1-0-1.html
https://web.archive.org/web/20130813083409/http://www.data-apk.com/2013/04/dungeon-hunter-4-v1-0-1.html

to the performance of the software itself. Common software engineering wisdom
does not always apply when pushing technology to the limits regarding performance
and scalability. Domain-Specific Languages (DSLs) have been successfully applied
in domains ranging from planning and financial engineering to digital forensics
resulting in substantial improvements in quality and productivity, but their benefits
for the game domain are not yet well-understood.

There are various explanations for this. The game domain is diffuse, encompassing
disparate genres, varying objectives and concerns, that often require specific solutions
and approaches. Because the supporting technologies are constantly changing,
domain analysis tracks a moving target, and opportunities for domain modeling and
software reuse are limited [Blo04]. Existing academic language-oriented approaches,
although usually well-scoped, are often poorly adaptable, one-off, top-down projects
that lack practical engineering relevance. Systematic bottom-up development and
reuse have yielded libraries called game engines but such (commercial) engines are
no silver bullet either, since they only provide general purpose solutions to technical
problems and need significant extension and customization to obtain the functionality
for a completely new game. Engines represent a substantial investment, and also
create a long-term dependency on the vendor for APIs and support.

Our objective is to demonstrate that game development can benefit from DSLs
despite the challenges posed by the game domain and the perceived shortcomings of
existing DSL attempts. We envision light-weight, reusable, inter-operable, extensible
DSLs and libraries for well-scoped game concerns such as story-lines, character
behavior, in-game entities, and locations. We focus in this paper on the challenge of
speeding up the game development process by improving designer productivity and
design quality. Our main contributions:

• Micro-Machinations (MM), a DSL for expressing game economies.
• Micro-Machinations Analysis in Rascal (MM AiR), an interactive simulation,

visualization and validation workbench for MM.
• The insight that combining state-of-the-art tools formeta-programming (Rascal3

[KvdSV11]) and model checking (Promela/Spin4 [Hol03]) enable rapid proto-
typing of and experimentation in the game domain with frameworks like MM
AiR.

3.2 micro-machinations

3.2.1 Background

Our main source of inspiration is the language Machinations [AD12] that has been
based on an extensive analysis of game design practices in industry and provides

3
http://www.rascal-mpl.org/ (visited May 14th 2019)

4
http://spinroot.com/spin/whatispin.html (visited May 14th 2019)

136 chapter 3 analyzing game mechanics

http://www.rascal-mpl.org/
http://spinroot.com/spin/whatispin.html

(a) Machinations Conceptual Framework

Game
Engineering

Micro-Machinations
Analysis in Rascal

Textual
IDE

Graphical
Simulator

Game Design

game
software

Micro-
Machinations

ve
rif

ie
s

requirements

Spin

analyzer

creates

D
es

ig
n

 +
 M

M

MM

play t
est

/ a
ss

ess

1

2

4

3

analysis

adapt

(b) Micro-Machinations Architecture

Figure 3.1: Side-by-side comparison of Machinations (a) and Micro-Machinations (b)

a graphical notation for designers to express the rules of game economies. A game
economy is an abstract game system governed by rules (e.g., how many coins do I need
to buy a crystal) that offers players a playful interactive means to spend and exchange
atomic game resources (e.g., crystals, energy). Resources are characterized by amount
and unit kind.

Its focus is on the simulation of game designs. Various game design patterns
have been identified in this context [AD12; Dor11b] as well. Machinations takes an
approach that closely resembles Petri Nets that have been used in the game domain by
others. For instance, Brom and Abonyi [BA06] use Petri nets for narratives, and Araújo
and Roque [AR09] propose general game design using Petri Nets. Other approaches
to formalisms for game development related to design include hierarchical state
machines [FHJ03], behavior trees [Cha07], and rule-based systems [MCS+04b].

Machinations is a visual game design language intended to create, document,
simulate and test the internal economy of a game. The core game mechanics are the
rules that are at the heart of a game. Machinations diagrams allow designers to write,
store and communicate game mechanics in a uniform way. Perhaps the hardest part
of game design is adjusting the game balance and make a game challenging and fun.

Figure 3.1(a) shows the Machinations framework as presented in [AD12]. Machi-
nations can be seen as a design aid, that augments paper prototyping, which is used
by designers to understand game rules and their effect on play. The Machinations
tool5 can be used to generate automatic random runs, that represent possible game
developments, as feedback on the design process. Machinations is already in use by
several game designers in the field.

5
https://web.archive.org/web/20180620162709/JorisDormans.nl/machinations (visited May 14th 2019)

3.2 micro -machinations 137

https://web.archive.org/web/20180620162709/JorisDormans.nl/machinations

Micro-Machinations (MM) is an evolutionary continuation of Machinations aim-
ing at software prototyping and validation. MM is a formalized extended subset of
Machinations, that brings a level of precision (and reduction of non-determinism) to
the elements of the design notation that enables not only simulation but also formal
analysis of game designs. MM also adds new features, most notably modularization.
MM is intended as embedded scripting language for game engines that enables
interaction between the economic rules and the so-called in-game entities that are char-
acterized by one or more atomic resources. An advantage of early paper prototyping
is that loosely defined rules can be changed quickly and analyzed informally.

Later, during software prototyping the rules have to be described precisely and
making non-trivial changes usually takes longer. To start software prototyping as
early as possible, a quick change in a model should immediately change the software
that implements it. Therefore we study the precise meaning of the language elements
and how they affect the game state. By leveraging meta-programming, language
work-benches and model checking we can provide additional forms of analysis and
prototyping. This enables us to answer questions about models designers might have,
that affect both the design and the software that implements it. Figure 3.1(b) shows
schematically how MM relates to game development.

Our objectives are to introduce short and separate design iterations (1 and 2) to
free time for separate software engineering iterations (4) and alleviate relying on the
usually longer interdependent development iterations (3).

3.2.2 Micro-Machinations Condensed

MMmodels are graphs that consist of two kinds of elements, nodes and edges. Both
may be annotated with extra textual or visual information. These elements describe
the rules of internal game economies, and define how resources are step-by-step
propagated and redistributed through the graph. Here is a cheat sheet for the most
important language elements6.

6For conciseness we only give an informal description here, closely adhering to [AD12].

138 chapter 3 analyzing game mechanics

Table 3.1: Cheat sheet for basic Micro-Machinations language elements (part 1)

p p pp

1
max 2

p

2
max 2

pp

1

p
pool p

Empty pool

p p pp

1
max 2

p

2
max 2

pp

1

p
pool p at 1
Pool & resource

A pool is a named node, that abstracts from an
in-game entity, and can contain resources, such as
coins, crystals, health, etc. Visually, a pool is a
circle with an integer in it representing the current
amount of resources, and the initial amount at
which a pool starts when first modeled.
Pools may specify a maximum capacity for
resources, which can never be exceeded, that is
visually a prefix max followed by an integer.

p p pp

1
max 2

p

2
max 2

pp

1

p
pool p at 1 max 2
Limited capacity

p p pp

1
max 2

p

2
max 2

pp

1

p
pool p at 2 max 2

Full pool

gs dp

bool
exp

int
exp

4*p+1

all

/2

--->
resource connection

flow rate of one

gs dp

bool
exp

int
exp

4*p+1

all

/2

-/2->
resource connection

half flow rate

A resource connection is an edge with an associated
expression that defines the rate at which resources
can flow between source and target nodes.
During each transition or step, nodes can act once
by redistributing resources along the resource
connections of the model. The inputs of a node are
resource connections whose arrowhead points to
that node, and its outputs are those pointing away.

gs dp

bool
exp

int
exp

4*p+1

all

/2
-all->

resource connection

unlimited flow rate

gs dp

bool
exp

int
exp

4*p+1

all

/2

-4*p+1->
resource connection

flow expression

p p pp

1
max 2

p

2
max 2

pp

1

p

pool p
passive pool

p p pp

1
max 2

p

2
max 2

pp

1

p

auto pool p
automatic pool

The activation modifier determines if a node can act.
By default, nodes are passive (no symbol) and do
not act unless activated by another node.
Interactive (double line) nodes signify user actions
that during a step can activate a node to act in the
next state. Automatic (*) nodes act automatically,
once every step. Start (s) nodes are active in the
initial state, but become passive afterwards.

p p pp

1
max 2

p

2
max 2

pp

1

p

user pool p
interactive pool

p p pp

1
max 2

p

2
max 2

pp

1

p

start pool p
start pool

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

pool p
pool with pull act

and any modifier

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&all pool p
pool with pull act

and all modifier

Nodes act either by pulling (default, no symbol)
resources along their inputs or pushing (p)
resources along their outputs. Nodes that have
the any modifier (default, no symbol), interpret
the flow rate expressions of their resource
connections as upper bounds, and move as many
resources as possible. Additionally, these nodes
may process their resource connections
independently and in any order. Nodes that
instead have the all modifier (&) interpret them as
strict requirements, and the associated flows all
happen or none do.

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

push pool p
pool with push act

and any modifier

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

push all pool p
pool with push act

and all modifier

3.2 micro -machinations 139

Table 3.2: Cheat sheet for basic Micro-Machinations language elements (part 2)

gs d

c c_sc_d

p

bool
exp

int
exp

3

d d_p2

* **

d_p1 d_p3

*

source s
source

A source node, appearing as a triangle pointing up,
is the only element that can generate resources. A
source can be thought of as a pool with an infinite
amount of resources, and therefore always pushes
all resources or all resources are pulled from it. The
any modifier does not apply, and resources may
never flow into a source. Also, infinite amounts
may not flow from sources.

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

active

>1||p!=1

==1

>=2

d

&

drain d
drain with

any modifier

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

active

>1||p!=1

==1

>=2

d

&

all drain d
drain with

all modifier

A drain node, appearing as a triangle pointing
down, is the only element that can delete resources.
Drains can be thought of as pools with an infinite
negative amount of resources, and have capacity to
pull whatever resources are available, or whatever
resources are pushed into them. No resources can
ever flow from a drain.

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

active p

>1||p!=1

==1

>=2
.==1.>

condition edge

equals one expr

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

active p

>1||p!=1

==1

>=2

.>=2.>
condition edge

greater equals expr

A node can only be active if all of its conditions are
true. A condition is an edge appearing as a dashed
arrow with an associated Boolean expression. Its
source node is a pool that forms an implicit
argument in the expression, and the condition
applies to the target node.

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

active

>1||p!=1

==1

>=2

.active.>
condition edge

active expr

gs dp

bool
exp

int
exp

4*p+1

all

/2
p

p

p

p

&

p

p&

active p

>1||p!=1

==1

>=2

.>1||p!=1.>
condition edge

composed exprgs d

c c_sc_d

p

bool
exp

int
exp

3

d d_p2

* **

d_p1 d_p3

*

.*.>
trigger edge

A trigger is an edge that appears as a dashed ar-
row with a multiply sign. The origin node of a
trigger activates the target node when for each re-
source connection the source works on, there is a
flow in the transition that is greater or equal to that
of the associated flow rate expression. Addition-
ally, automatic pulling nodes without inputs and
automatic pushing nodes without outputs always
activate targets of their triggers.

c c_sc_d

2

d

* *

d_p1 d_p2

*

&

converter c from A to B
converter

c c_sc_d

2

d

* *

d_p1 d_p2

*

&

all drain c_d of A source c_s of B
c_d .*.> c_s

desugared converter

Converters are nodes, appearing as a triangle point-
ing right with a vertical line through the middle,
that consume one kind of resources and produce
another. Converters are not core elements because
they can be rewritten as a combination of a drain, a
trigger and a source. Unlike basic node types, con-
verters therefore take two steps to complete. Con-
verters can only pull, and the any modifier does
not apply. If specified, the unit kinds on the inputs
and outputsmustmatch the converter’s unit kinds.

140 chapter 3 analyzing game mechanics

b2_energyb1_energy

pond

2

lady

road

1

small_appetite

2

big_appetite

b2_eat

b1_digest

b1_eat

b2_digest

b1_life b2_life

(a) Visual Model

1 unit Bread : "bread crumbs"

2 unit Droppings : "bird residue"

3 unit Energy : "bird energy"

4 pool BIG_APPETITE of Bread at 2
5 pool SMALL_APPETITE of Bread at 1
6 auto push a l l pool lady of Bread at 2
7 pool pond of Bread
8 pool road of Droppings
9 lady −−> pond

10 auto a l l pool b1_eat of Bread
11 pond −SMALL_APPETITE−> b1_eat
12 auto converter b1_digest
13 from Bread to Droppings
14 b1_eat −−> b1_digest
15 b1_digest −−> road
16 pool b1_energy of Energy
17 source b1_ l i f e of Energy
18 b1_digest .∗ . > b1_energy
19 b1_ l i f e −−> b1_energy
20 auto a l l pool b2_eat of Bread
21 pond −BIG_APPETITE−> b2_eat
22 auto converter b2_digest
23 from Bread to Droppings
24 b2_eat −−> b2_digest
25 b2_digest −−> road
26 pool b2_energy of Energy
27 source b2_ l i f e of Energy
28 b2_digest .∗ . > b2_energy
29 b2_ l i f e −−> b2_energy

(b) Textual model that demonstrates code duplication

Figure 3.2: Modeling two birds that both eat from the same pond

3.2.3 Introductory Example

Figure 3.2(a) shows an example how a designer might model a lady feeding birds in
the original Machinations language. Figure 3.2(b) shows the textual equivalent as
introduced in MM. The lady automatically throws bread crumbs in a pond (*p) one
at a time, and two birds with different appetites compete for them. The first has a
small appetite and the latter a big a appetite. Both birds automatically try to eat the
whole amount (*&) their appetite compels them to. The edges from small_appetite and
big_appetite are not triggers but edge modifiers, and we have replaced them by flow rate
expressions in MM (lines 11 & 21). Birds digest food automatically which gives them
energy and produces droppings on the road.

3.2.4 Game designer’s questions

Given a model such as the example from Section 3.2.3, a designer might have the
following questions.

3.2 micro -machinations 141

• Inspect: Given a game state, what are the values of the pools, which nodes are
active and what do they do?

• Select: Given a game state, what are the possible transitions? Are there
alternatives? What are these alternatives and what are their successor states?

• Reach: Given this model, does a node ever act? Does a flow ever happen? Does
a trigger ever happen? Where in the model can resources be scarce? Is an
undesired state reachable, e.g., can the player ever have items from the store
without paying crystals? Is a desired state always reachable, e.g., can the game
be won or can the level be finished?

• Balance: Are the rules well balanced?

3.2.5 Technical challenges

Before answering these questions (in Section 3.2.6), we discuss engineering challenges
and how to tackle them leveraging meta-programming, language workbenches and
model checking.

• Parse: To analyze any of these questions we need a representation that can
easily be parsed. Therefore, MM introduces a textual representation of the game
model, that serves as an intermediate format, that is compact and easy to read,
parse, serialize and store.

• Reuse: Having a closer look at the example in Figure 3.2(a), we see mirroring in
the game graph that corresponds to code duplication in Figure 3.2(b). We need
modular constructs for reuse, encapsulation, scaling views, partial analysis and
testing, and embedding MM in games (by way of connecting nodes and edges
with in-game entities).

• Inspect: We need an environment that enables users to inspect states by
visualizing serialized models.

• Select: Detailed insight in the game behavior can be obtained by interactively
choosing successors and seeing transition alternatives. This is similar to debug-
ging when stepping through code, and requires the calculation of alternatives.
This can, for instance, reveala lack of resources or capacity.

• Analyze context constraints: Some structural elements of models, related to
contextual constraints can introduce errors that we want to catch statically.
Examples are: (i) Sources cannot have inputs; (ii) Drains cannot have outputs;
(iii) Edges are dead code if no active node can use them by pushing or pulling;
and (iv) Edges are doubly used when both origin and target are pushing and
pulling, which can lead to confusing results. Modeling errors can also be
detected. Optionally, resource types of nodes can be defined making resource
connections easily checkable. Additionally, missing references can be reported.

• Analyze reachability: Analyzing reachability is hard because it requires cal-
culation of all possible paths through the game graph. Normally, we cannot

142 chapter 3 analyzing game mechanics

calculate all possible executions of programs due to the sheer number of possi-
bilities, and use abstractions to allow forms of analysis. Because a MMmodel
is itself an abstraction of the actual game, and types and instances —MM’s
modularization mechanism is described in more detail in Section 3.2.7—enable
partial analysis, we can exhaustively verify models in an experimental context
using model checking techniques. The challenge is to translate MM diagrams
to models that a model checker can analyze, and making that analysis scalable.
Non-deterministic choices lead to a combinatorial explosion of execution path
and this results in a state explosion in the model checker. When searching
for undesired situations, an exhaustive search may not be necessary, since the
moment an invalid state is found, the execution stack trace represents a result.

• Balance: Providing useful analysis to support balancing games is very hard,
since this requires analyzing multiple types of play, each dynamic with different
unpredictable player choices and non-deterministic events. Experimental set-
ups in which instance interfaces are subjected to modeled input may provide
designers with useful feedback, but building such set-ups is hard and is the
expertise of game designers.

• Prototype and adjust: Prototyping game software and making adjustments
requires code. In addition to the MM format we require a light-weight embed-
dable interpreter that enables using script for prototyping and adjusting game
software. A simple API for integrating MM in existing architectures should at
least provide a means for calculating successor states (step), observing pools
value changes, activating interactive nodes and reading and storing information.
We require that this API relates the run-time state of models to the state and the
behavior of game elements that affect how the game behaves when played. This
is not further explored in the current paper.

3.2.6 Answers to game designer’s questions

We will now answer the questions raised in Section 3.2.4 and illustrate them using
the bird feeding example.

Figure 3.3 shows a rewrite of the example using new language elements to be
detailed in Section 3.2.7. Figure 3.3(a) shows the definition of Bird, which references
external nodes pond, road and appetite. These external nodes act as formal parameters
of the Bird specification and are bound twice in Figure 3.3(b). Figure 3.4(a) and
Figure 3.4(b) show the textual equivalent of this model.

Next, we introduce assertions and pose that birds shall never starve by adding
an assertion at the bottom lines of Figure 3.4(a). Then, we run the analysis to check
for reachability and find that (i) bird b2 starves because b1.eat always happens before
big.appetite is available, and (ii) the acts of bird b2.eat and b2.energy are unreachable
for all execution paths. Finally, we can explore the model and understand it better

3.2 micro -machinations 143

pond

eat

appetite

digest

road energy

Bird

life

(a) A bird’s life

Bird b1 Bird b2

0

pond

2

lady = =

0

road

road = =road

1

small_appetite

2

big_appetite

appetite appetite = =

pond pond

(b) A lady feeding two birds

Figure 3.3: Graphically modeling birds that eat, digest and live

Bi rd (re f appet i te ,
re f pond ,
re f road)

{
/ / b i r ds eat exac t l y a l l

they want
auto a l l pool eat of Bread
pond −appet i te −> eat
auto converter d iges t

from Bread to Droppings

/ / d iges t Bread
eat −−> d iges t

/ / produce Dropping
d iges t −−> road

pool energy of Energy
source l i f e of Energy
d iges t .∗ . > energy
l i f e −−> energy
assert fed :

energy > 0 | | road < 2
"birds always get fed"

}

(a) A bird’s life

unit Bread : "bread crumbs"

unit Droppings : "bird residue"

unit Energy : "bird energy"

pool BIG_APPETITE of Bread at 2
pool SMALL_APPETITE of Bread at 1

/ / a lady throws crumbs in a pond
auto push a l l pool lady

of Bread at 2
pool pond of Bread
pool road of Droppings
lady −−> pond

/ / one b i r d has a b ig appe t i t e
B i rd b1
BIG_APPETITE .=. > b1 . appe t i t e
pond .=. > b1 . pond
road .=. > b1 . road

/ / the other has a smal l appe t i t e
B i rd b2
SMALL_APPETITE .=. > b2 . appe t i t e
pond .=. > b2 . pond
road .=. > b2 . road

(b) A lady feeding two birds

lady −1−> pond
step
pond −1−> b1_eat
lady −1−> pond
step
pond −1−> b1_eat
b1_eat −1−> b1_d iges t_dra in
step
b1_eat −1−> b1_d iges t_dra in
b1_ l i f e −1−> b1_energy
b1_digest_source −1−> road
step
b1_ l i f e −1−> b1_energy
b1_digest_source −1−> road
step
v io la te b2_fed

(c) Bird b2 starves

Figure 3.4: Textual model and analysis that shows birds with a big appetite starve

by inspecting states, observing lack of alternative transitions, and automatically
simulating the trace that lead to the assertion violation visually, shown textually in
Figure 3.4(c).

144 chapter 3 analyzing game mechanics

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(a) P2 or P3 pulls

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(b) P2 or P3 pulls

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(c) Push to P2 or P3

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(d) P1 cannot push

Figure 3.5: Non-determinism due to shortage of resources

3.2.7 Language Extensions

We have designed MM and have introduced new language features as necessary to
attain our goals. MM has modular constructs for reuse, encapsulation, scaling views,
partial analysis and testing, and relating MM to in-game entities. MM has reduced
non-determinism and increased control over competition for resources and capacity by
introducing priorities. Time is modeled and understood, in a way that is embeddable
in games. Finally, invariants are introduced for defining simple properties for analysis.

Types definitions and instances The following table introduces7 our modulariza-
tion features type definitions and instances.

Nodes have priorities The sources of non-determinism that we have identified are
nodes competing for resources and the any modifier. Alternative transitions exist due
to lack of resources or capacity, as illustrated by Figure 3.5 and Figure 3.6.

We have already mentioned that each activated node can act once during a step.
Since the order in which nodes act is not defined, models under-specify behavior
and this can result in undesirable non-determinism. To allow a degree of control,
we specify that active nodes with the following actions and modifiers are scheduled
in the following order: pull all, pull any, push all, push any. Groups of nodes from
different categories do not compete for resources or capacity, which helps in analyzing
models and in understanding them. Section 3.4 makes use of this feature.

Steps take time MM does not support different time modes as Machinations does.
In MM each node may act at most once during a step, which conforms to the
Machinations notion of synchronous time. We do not support asynchronous time, in
which user activated nodes may act multiple times during a step without affecting
other nodes. Machinations supports a turn-based mode, in which players can each

7Once again, for conciseness, only informally.

3.2 micro -machinations 145

Table 3.3: Cheat sheet for modular Micro-Machinations language elements

r

A

A(ref r){ ... }
type definition

reference definition

1

B

p

B(in p){
pool p at 1 }
type definition

input modifier

A type definition is a named diagram that functions
as parameterized module for encapsulating
elements. Type definitions define internal
elements and how they can be used externally. A
reference, represented by a circle with a dashed
line, is an alias that refers to a node that is defined
externally. Internal nodes annotated with an
interface modifier input, output or input/output
become interfaces on the instances of the type.The
input modifier denotes that an interface accepts
inputs, output implies it accepts outputs and
input/output accepts both. Interface modifiers
appear as an arrow in the top right corner of a
node, where an input modifier point into the
node, an output modifier points out of the node,
and an in-/output modifier does both.

C

2

p

C(out p){
pool p at 2 }
type definition

output modifier

D

3

p

D(inout p){
pool p at 3 }
type definition

in-/output modifier

A a
r

A a
type instance

reference interface

B b
p

B b
type instance

input interface

An instance is a named object that has individual
instance data, whose interfaces are defined by its
type and can be bound to other models, acting as
formal parameters.
An interface makes internal elements of an
instance available to the outside, and can be used
by connecting resource connections. Visually, an
interface is a small circle at the border of an
instance with its name under it. Input interfaces
have an arrow pointing into the circle, outputs
have an arrow pointing outward, and in-/outputs
have a bidirectional arrow. The direction of the
arrow implies the validity of the direction of the
edges that connect to it. Only reference interfaces
appear with a dashed line.
References must be bound to definitions using
edges called bindings, represented by dashed
arrows annotated with an equal sign, that
originate from a defining node and target a
reference.
Additionally, instances can be nested inside type
definitions and build a name space, e.g., a nested
pool p inside an instance a of type definition A is
referred to as a.p.

C c
p

C c
Type instance

output interface

D d
p

D d
Type instance

in-/output interface

Q a
p=

p
pool p A a p .=.> a.p

Type instance

with reference binding

A a
r=

C c
p

C c A a c.p .=.> a.r
Type instances

with reference binding

pond

eat

appetite

digest

road

energy

Bird

Bird b1 Bird b2

0

pond

10

lady = =

0

road

road = =road

1

small_appetite

2

big_appetite

appetite appetite = =

pond pond

r

A

1

B

p

C D

2

p

3

p

A a B b C c D d
p

Q a
p=

p

ppr

A a
r=

C c
p

E

r

=
D d

p

E(inout p,ref r){D d d.p .=.> r}
Type definition with nested instance and

reference binding

146 chapter 3 analyzing game mechanics

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(a) Pull from P2 or P3

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(b) P1 cannot pull

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(c) P2 or P3 pushes

0

P21

P1 0

P3

1

P2 0
max 1

P11

P3

2

0

P22

P1 2
0

P3

1

P2 0
max 1

P11

P3

0

P21

P1

P3

0

P22

P1 0

P3

1

P2 0
max 1

P11

P3

1

P2 0
max 1

P11

P3

2

2

2

2

2

2 0

(d) P2 or P3 pushes

Figure 3.6: Non-determinism due to shortage of capacity

spend a fixed number of action points on activating interactive nodes each step. We
note that turns are game assets that can be modeled, using pools, conditions and
triggers, enabling turn-based analysis. MM does not specify how long a step takes,
it only assumes that steps happen and its environment determines what the step
intervals are.

Invariants Defining property specifications to verify a model against can be hard,
requiring knowledge of linear temporal logic. Defining invariants, Boolean expressions
that must be true for each state, is easier to understand. MM adds assertionswhich
consist of a name, a boolean expression that must invariantly be true, and a message
to explain what happened when the assertion is violated, i.e. becomes false for some
state. Figure 3.4(a) contains an example of an assertion (lines 14–15).

3.3 mm air framework

Figure 3.7(a) shows the main functions of the MM Analysis in Rascal (MM AiR)
framework and Figure 3.7(b) relates them to the challenges they address. The
framework is implemented as a Rascal meta-program of approximately 4.5 KLOC.
We will now describe the main functions of the framework.

3.3.1 Check contextual constraints

Starting with a grammar for MM’s textual syntax, using Rascal we generate a basic
MM Eclipse IDE that supports editing and parsing textual MMmodels with syntax
highlighting. This IDE is extended with functionality to give feedback when models
are incorrect or do not pass contextual analysis. This is implemented in a series
of model transformations, leveraging Rascal’s support for pattern matching, tree
visiting and comprehensions. This includes labeling the model elements, for storing
information in states and for resource redistributions in transitions. We check models
against the contextual constraints described in Section 3.2.5.

3.3 mm air framework 147

MM Analysis by SPIN

MM Analysis in Rascal IDE

MM Model
(.mm)

SimulateCheck

Translate

Graphical
View

MM Trace
(.mmt)

Promela
Model (.pml)

Verify
(pan)

Replay
(pan)

Pan Trail
(.trail)

Replay

messages

Analyze

Report

(a) MM AiR IDE functions

§ functionality challenges

3.3.1 check contextual
constraints (parse, desugar,
perform static analysis)

define syntax,
semantics, reuse,
constraints

3.3.2 simulate MMmodel
(interpret and evaluate
successor states,
interactive graphical
visualizations)

make models
debuggable, improve
scalability and
performance

3.3.3 translate MM to Promela relate formalisms,
ensure interoperability,
improve scalability

3.3.4 verify MM in Spin ensure interoperability,
improve scalability

3.3.5 analyze reachability ensure interoperability
3.3.6 replay behaviors and

verification results
source level debugging,
ensure interoperability,
readability

(b) Sections, functions and challenges

Figure 3.7: MM AiR Overview

3.3.2 Simulate models

Simulate provides a graphical view of a MM model and enables users to inspect
states, choose transitions and successors, and navigate through the model by stepping
forward and backward. We generate figures and interactive controls for simulating
flattened states and transitions. This is easily done by applying Rascal’s extensive
visualization library, which renders figures and provides callbacks we use to call
an interpreter. The interpreter calculates successor states by evaluating expressions,
checking conditions and generating transitions.

3.3.3 Translate to Promela

The biggest challenge in analyzing MM is providing a scalable reachability analysis.
We achieve this by translatingMM to Promela, the input language of the Spin model
checker. A naive approach is to model each node as a process, enabling every possible
scheduling permutation to happen. However, not every scheduling results in a unique
resource distribution, which hampers performance and scalability. Therefore we take
steps to reduce the number of calculations without excluding possible behaviors. We
take the following measures to reduce the state space explosion.

• Reduce non-determinism. We model only necessary non-determinism. We
have identified two sources that are currently in MM: nodes competing for re-
sources or capacity and the any modifier. For competing nodes every permutation

148 chapter 3 analyzing game mechanics

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

competitors c1

{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

any flow act

flow happens

[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]

full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

...
competitors cn

{n1 .. nn} branch

[else]

(a) Process

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

competitors c1

{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

any flow act

flow happens

[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]

full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

...
competitors cn

{n1 .. nn} branch

[else]

(b) Section

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

competitors c1

{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

any flow act

flow happens

[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]

full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

all node act
{f1 .. fn}

commit = true

all flow f1 act
...

all flow fn act

[else]

commit flows

[commit]

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

...

competitors cn

{n1 .. nn} branch

[else]

assert b1

 fail

assertions
{b1 .. bn} branch

assert bn

 fail

...

[!b1]

[!bn]

(c) Monitor

Figure 3.8: Skeleton for generated Promela code: process, section and monitor

potentially results in a unique transition that must be computed, but nodes that
do not compete can be sequentially processed.

• Avoid intermediate states. Promela has a d_step statement that can be used
to avoid intermediate states, by grouping statements in single transitions.

• Store efficiently and analyze partially. Pools can specify a maximum that we
use to specify which type to use in Promela (bit, byte or int), minimizing the
state vector. For partial analysis we can limit pool capacities.

Translating an MM model to Promela works as follows. We bind references
to definitions and transform the model to core MM. We generate one proctype per
model, schematically shown in Figure 3.8, and a monitor proctype that tests assertions
for each state. Figure 3.8(a) depicts their general structure. At the beginning of a step
the state is printed, and step guards are enabled if a node is active. This is followed
by sections for each priority level as determined by node type. In each section, groups
of nodes may be competing for resources or capacity.

For each group of competitors ci consisting of nodes n1, ..., nn , we introduce
a non-deterministic choice using guards that are disabled after a competing node
acts as shown in Figure 3.8(b). The remaining independent nodes r1, ..., rn are just
sequentially processed, since they never affect each other during a step. Figure 3.8(c)
shows that each path in the monitor process remains blocked until an invariant
becomes false, and a violation is found.

3.3 mm air framework 149

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

competitors c1

{n1 .. nn} branch

node n1 act

n1 step = false

...
node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

any flow act

flow happens

[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]

full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

...

competitors cn

{n1 .. nn} branch

[else]

(a) All Node

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

competitors c1

{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

any flow act

flow happens

[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]

full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

...

competitors cn

{n1 .. nn} branch

[else]

(b) All Flow

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

competitors c1

{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

any flow act

flow happens

[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]

full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

...

competitors cn

{n1 .. nn} branch

[else]

(c) Any Node

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

competitors c1

{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

any flow act

flow happens

[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]

full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

...

competitors cn

{n1 .. nn} branch

[else]

(d) Any Flow

Figure 3.9: Skeleton of generated Promela code for nodes

The behavior of nodeswith the all modifier is deterministic, as shown in Figure 3.9(a)
and Figure 3.9(b). All flows f1, ..., fn are executed sequentially and per flow conditions
are checked. The effect of all flows is only committed if the conditions for all flows
have been satisfied.

The behavior of nodes with the any modifier is shown in Figure 3.9(c) and Fig-
ure 3.9(d) models the non-determinism by introducing a non-deterministic choice
between the flows f1, ..., fn .

Individual nodes act by checking shortages of resources on the old state from
which subtractions are made and check shortage of capacity on the new state, to
which additions are also made. Finally, when each node has acted the state is finalized
by copying the new state to the current state. Temporary values and guards are
reset, and active nodes are calculated by applying activation modifiers, triggers and
conditions. Next reachability is tested, the step is printed andwe start at the beginning
to determine the next step.

150 chapter 3 analyzing game mechanics

3.3.4 Verify invariant properties

MM models are verified against their assertions by translating them to Promela
and then running a shell script. The script invokes Spin and compiles it to a highly
optimized model-specific Promela analyzer (Pan). It then runs this verifier to
perform the state space exploration, and captures the verification report Pan outputs,
which may contain unreached states and associated Promela source lines. If the
verifier finds an assertion violation, it also produces a trail, a series of numbers that
represent choices in the execution of the state machine representing the Promela
model. The challenge is interoperability, relating the verification report and the trail
back to MM and showing understandable feedback to the user. We show how this is
solved in Section 3.3.5 and Section 3.3.6.

3.3.5 Analyze reachability

We tackle the interoperability challenge of relating a Spin reachability analysis to
MM as follows. During the generation of Promela we add reachability tests, in which
states and source lines become reachable if an element acts. We collect the source
lines using a tiny language called MM Reach, which specifies the test case by defining
whether a node receives full or partial flow via a resource connection or if it activates
a trigger. We extract unreached Promela source lines from the Pan verification
report and map them back to MM elements to report the following messages, which
are relative to a partial or exhaustive search.

• Starvation. Nodes that never push or pull full or partial flow via a resource
connection starve, and represent dead code.

• Drought. A resource connection through which resources do not flow runs dry,
and is unused dead code.

• Inactivity. A trigger that never activates its target node is idle.
• Abundance. A node with the any modifier that always receives full flow along

all of its resource connections indicates a lack of shortage.

3.3.6 Replay behaviors

We tackle the interoperability challenge of relating Pan trails for Promela models
we obtained in Section 3.3.4 to MMmodel resource redistributions by introducing
an intermediate language called MM Trace (MMT). A sequence of MMT statements
forms a program that contains the transitions that an MM model performs, which
MM AiR graphically replays in a guided simulation.

Replaying a trail on Pan simulates the steps of a Promela model while calling
printf statements that generate an MMT program, ending in an assertion violation.
The program is obtained by embedding the following MMT statements prefixed with
MM: for filtering in the Promela model.

3.3 mm air framework 151

• Flow. Node causes flow to occur: source-amount->target
• Trigger. Trigger activates a target node in the next state: trigger node

• Violation. A state violates an assertion: violate name

• Step. Terminate a transition: step

3.4 case study: simwar

SimWar is a simple hypothetical Real-Time Strategy (RTS) game introduced by
Wright [Wri03] that illustrates the game design challenge of balancing a game. This
entails ensuring different player choices and strategies represent engaging and
challenging experiences. Common strategies for RTS games are turtling, a low-risk,
long-term strategy that favors defense, and rushing, a high-risk short-term strategy that
favors attack. Adams and Dormans [AD12] study the game using the Machinations
tool8. By simulating many random runs, they show the game is indeed poorly
balanced and that turtling is the dominant strategy.

Our MM adaptation of SimWar, shown in Figure 3.10, is based on [AD12], but it
models the rules for players in a definition called Base, avoiding duplication. It also
replaces probabilities on resource connections with amounts. Two players compete
by spending resources, choosing to buy defense (cost 1), attack (cost 2) or factories (cost
5). This is modeled by three converters in line 15–17 of Figure 3.10(b) that pull their
respective costs from resources when activated.

Factories produce income every turn, and represent an investment enabling more
purchases. We model this by turn triggering resources (line 5), which pulls from
reserve (line 9) the current amount of factories (line 18). A player must destroy their
opponent’s factories to win. Two references, opponent_defense and opponent_attack
determine the (rounded down) casualty rate of one in four (line 26, 27) for attack
and defense respectively. Opponents fight until one player has no defense, and her
factories are destroyed (line 28).

3.4.1 Experimental setup

In an experiment with SimWar and two strategies shown in Figure 3.11 we apply the
MM AiR framework, analyzing (i) the reachability of modeling elements, and (ii) the
existence of a strategy that beats a turtling strategy.

The Turtle strategy, defined in Figure 3.11(a) and Figure 3.11(b), simply counts
turns, and based on this triggers references for buying. The Random strategy defined
in Figure 3.11(c) and Figure 3.11(d) also counts, but adds a non-deterministic element
which uses priorities. Drains skip, getDefence, getFactory, getAttack compete for the
resource in choice before it pulls a resource from tick, enabling the next choice. In

8
http://www.jorisdormans.nl/machinations/

152 chapter 3 analyzing game mechanics

http://www.jorisdormans.nl/machinations/

 *

 *

 2

50

reserve

0

resources

*
turn

5

0

attack

1
max 3

factories

killed destroyed

buyAttack buyDefense buyFactory

opponent
_attack

opponent
_defense

/4/4

*1

1

defense
==0

(a) SimWar Base

1 Base (in BuyAttack , in BuyFactory , in BuyDefense , / / choices
2 re f opponent_attack , re f opponent_defense , re f tu rn ,
3 out at tack , out defense , out f a c t o r i e s , out resources) {
4 tu rn .∗ . > resources / / t u rn t r i g g e r s resources to p u l l
5 tu rn .∗ . > k i l l e d / / t u rn t r i g g e r s k i l l e d
6 tu rn .∗ . > destroyed / / t u rn t r i g g e r s destroyed
7 pool reserve of Gold at 50 / / Gold reserve (s t a r t s a t 50)
8 pool resources of Gold / / Gold resources (f o r purchases)
9 pool f a c t o r i e s of Factory at 1 max 3 / / f a c t o r i e s f o r income

10 pool defense of Defense at 1 / / defending un i t s
11 pool a t tack of At tack / / a t t ack i ng un i t s
12 drain k i l l e d of Defense , At tack / / un i t s can be k i l l e d
13 drain destroyed of Factory / / f a c t o r i e s can be destroyed
14 converter buyDefense from Gold to Defense / / buy defense
15 converter buyAttack from Gold to At tack / / buy a t tack
16 converter buyFactory from Gold to Factory / / buy f a c t o r y
17 reserve − f a c t o r i e s −> resources / / produce income
18 resources −5−> buyFactory / / buyFactory consumes 5 Gold
19 buyFactory −−> f a c t o r i e s / / buyFactory produces 1 Factory
20 resources −1−> buyDefense / / buyDefense consumes 2 Gold
21 buyDefense −−> defense / / buyDefense produces 1 Defense
22 resources −2−> buyAttack / / buyAttack consumes 1 Gold
23 buyAttack −−> a t tack / / buyAttack produces 1 At tack
24 f a c t o r i e s −a l l −> destroyed / / f a c t o r i e s des tuc t i on
25 defense −opponent_attack /4−> k i l l e d / / defense casua l t y ra te
26 a t tack −opponent_defense/4−> k i l l e d / / a t t ack casua l t y ra te
27 defense . defense == 0. > destroyed / / undefended cond i t i on
28 }

(b) SimWar Base

Figure 3.10: The rules of SimWar

3.4 case study: simwar 153

 >=1 >=5

>=2

 >=3

 *
turn

buyDefense

count

tick

factories

buyFactory buyAttack

resources

 *
buy

 * *

 <3
>=20

>=8

 <8

*

*

(a) Turtle Strategy

1 Tu r t l e (re f buyAttack , re f buyDefense ,
2 re f buyFactory , re f f a c t o r i e s ,
3 re f resources , re f t u rn) {
4 source t i c k
5 tu rn .∗ . > count
6 t i c k −−> count
7 pool count
8 auto source buy
9 buy .∗ . > buyAttack

10 buy .∗ . > buyFactory
11 buy .∗ . > buyDefense
12 count . >=20. > buyAttack
13 f a c t o r i e s . >=3. > buyAttack
14 resources . >=2. > buyAttack
15 count . <8 . > buyDefense
16 resources . >=1. > buyDefense
17 count . >=8. > buyFactory
18 f a c t o r i e s . <3. > buyFactory
19 resources . >=5. > buyFactory
20 }

(b) SimWar Turtle

>=5

 >15 <3

buyDefense buyFactory buyAttack

1
max 1

choice<10

 *

count factories

resources

*

>20

turn

 * * *
getFactory getAttack

>=2
>=1

skip

tick

getDefense

(c) Random Strategy

1 Random(re f buyAttack , re f buyDefense ,
2 re f buyFactory , re f f a c t o r i e s ,
3 re f resources , re f t u rn) {
4 source t i c k
5 tu rn .∗ . > count
6 t i c k −−> count
7 pool count
8 t i c k −−> s ta te
9 auto pool s ta te max 1

10 auto a l l drain sk ip
11 auto a l l drain getFactory
12 auto a l l drain getAt tack
13 auto a l l drain getDefense
14 getA t tack .∗ . > buyAttack
15 getFactory .∗ . > buyFactory
16 getDefense .∗ . > buyDefense
17 s ta te −−> sk ip
18 s ta te −−> getA t tack
19 s ta te −−> getDefense
20 s ta te −−> getFactory
21 count . >15. > sk ip
22 resources .>= 2. > ge tA t tack
23 count . >= 20.> ge tA t tack
24 resources .>= 1. > getDefense
25 count . <10. > getDefense
26 resources . >= 5. > getFactory
27 f a c t o r i e s . <3.> getFactory
28 }

(d) SimWar Random

Figure 3.11: SimWar Test Strategies

154 chapter 3 analyzing game mechanics

T
u

rtle p1

=

B
a

s
e

s2

=

B
a

se s1

attack

=
opponent_

defense

=

=
defense

opponent_
defense

attack

opponent_
attack

R
an

d
o

m
 p

2

=

=

=

=

=

=

=

=

=

=

resources

resources

factories

factories

buyDefense

buyDefense

buyAttack

buyAttack

buyFactory

buyFactory

resources

factories

buyDefense

buyFactory

resources

factories

buyDefense

buyAttack

buyAttack

buyFactory

turnturnturn

1
max 1

do

max 1 max 1

do2
= = =

do1

* **

opponent_
attack

defense

turn

(a) A Turtle instance battling a Random instance

1 unit Gold : "gold"

2 unit Factory : "factories"

3 unit Defense : "defense"

4 unit At tack : "attack"

5 Tu r t l e p1 Base s1 / / p layer p1 i s t u r t l i n g
6 Random p2 Base s2 / / p layer p2 i s random
7 auto a l l pool do i t at 1 max 1
8 auto a l l pool do1 max 1
9 auto a l l pool do2 max 1

10 do i t −−> do1 do1 −−> do2 do2 −−> do i t
11 do i t .==1. >do1 do1 .==1. >do2 do2 .==1. > do i t
12 do i t .= . > s1 . t u rn
13 s2 . defense .=. > s1 . opponent_defense
14 s2 . a t t ack .=. > s1 . opponent_attack
15 do i t .= . > p1 . t u rn
16 s1 . resources .=. > p1 . resources
17 s1 . buyAttack .=. > p1 . buyAttack
18 s1 . buyFactory .= . > p1 . buyFactory
19 s1 . buyDefense .=. > p1 . buyDefense
20 s1 . f a c t o r i e s .=. > p1 . f a c t o r i e s
21 do i t .= . > s2 . t u rn
22 s1 . defense .=. > s2 . opponent_defense
23 s1 . a t t ack .=. > s2 . opponent_attack
24 do i t .= . > p2 . t u rn
25 s2 . resources .=. > p2 . resources
26 s2 . buyAttack .=. > p2 . buyAttack
27 s2 . buyFactory .= . > p2 . buyFactory
28 s2 . buyDefense .=. > p2 . buyDefense
29 s2 . f a c t o r i e s .=. > p2 . f a c t o r i e s
30 assert t u r t l e L i v e s :
31 s1 . f a c t o r i e s != 0 "turtle dies"

(b) SimWar Battle

Figure 3.12: SimWar experimental test setup

3.4 case study: simwar 155

Figure 3.13: MM AiR playing back a counter-example showing Turtle defeated

our test set-up shown in Figure 3.12, we bind instances of Random and Turtle to a
Base instance in lines 16–20 and 25–29 of Figure 3.12(b). We bind base instances as
opponents in lines 13–14, 22–23 and bind turn to doit, our means for activity. Finally,
we assert in lines 30–31 that the factories of Turtle are never destroyed. A violation of
this assertion represents a behavior of Random that beats Turtle.

3.4.2 Experimental results

We apply MM AiR by translating the models to Promela and running Spin. Pan
reports using 2500MB of memory, mostly for storing 10.5M states of 220 bytes,
generating 188K states/second, taking 56 seconds on an Intel Core i5-2557M CPU. It
reports 11.9M transitions, of which 9.5M are atomic steps, and an assertion violation
(s1_factories!=0) at depth 8810.

156 chapter 3 analyzing game mechanics

The shortest trail yields an MMT file of 95 steps. Figure 3.13 shows its graphical
play-back. We find 22 strategies that beat our Turtle behavior, but these strategies all
fall into the turtling category, confirming the strategy is dominant.

During its limited state space exploration, Pan collects unreached Promela
source lines. Using these, our analysis reports the following:

Drought: No flow via s1_factories -s1_factories-> s1_destroyed at line 25 column 2

Drought: No flow via s2_factories -s2_factories-> s2_destroyed at line 25 column 2

Starvation: Node s2_destroyed does not pull at line 14 column 2

Starvation: Node s1_destroyed does not pull at line 14 column 2

Starvation: Node p1_buy does not push at line 39 column 2

Inactivity: Node doit does not trigger s2_destroyed at line 7 column 2

Initially puzzled by the first drought and the second starvation message, we
concluded that the assertion in the monitor process is violated before the reachability
check happens. Indeed node p1_buy never pushes, since it has no resource connections,
it serves only to trigger choices.

The final message of inactivity tells us that s2_destroyed is never triggered by doit,
the binding of turn. This experiment shows MM AiR provides feedback for analyzing
and refining MMmodels intended to be embedded in game software.

3.5 conclusion

Machinations was a great first step in turning industrial experience in game design
into a design language for game economies. In this paper we have taken the original
Machinations language as starting point and have analyzed and scrutinized it. It
turned out that the definitions of various of the original language elements were
incomplete or ambiguous and therefore not yet suitable for a formal analysis of game
designs. During this exercise, we have learned quite a few lessons:

• Formal validation of rules for game economies is feasible.
• Unsurprisingly, modularity is a key feature also for a game design language.

Modularity not only promotes design reuse, but also enables modular validation
that can significantly reduce the state space.

• In our refinement and redefinition of various language features, we have
observed that non-determinism had to be eliminated where possible in order to
reduce the state space.

• While a graphical notation is good for adoption among game designers, a textual
notation is better for tool builders.

• Promela is a flexible language that offers many features to represent the
model to be validated. Different representation choices lead to vastly different
performance of the model checker and it is non-trivial to choose the right
representation for the problem at hand.

3.5 conclusion 157

• The Rascal language workbench turned out to be very suitable for the design
and implementation of MM AiR. In addition to compiler-like operations like
parsing and type checkingMMAiR also offers editing, interactive error reporting
and visualization. It also supports generation of Promela code that is shipped
to the Spin model checker and the resulting execution traces produced by Spin
can be imported and replayed in MM AiR.

MM AiR in its current form is an academic prototype, but it is also a first step
towards creating embeddable libraries of reusable, validated, elements of game de-
signs. Next steps include the use of probabilistic model checkers, mining of recurring
patterns in game designs and finally designing and implementing embeddable APIs
for MM. These will form the starting point for further empirical validation. We see as
the major contributions of the current paper both the specific design and implemen-
tation of MM and MM AiR and the insight that the combination of state-of-the-art
technologies for meta-programming and model checking provide the right tools to
bring game design to the next level of productivity and quality.

Acknowledgements

We thank Joris Dormans for answering our many questions about Machinations, Tĳs
van der Storm for providing advice and feedback, and the anonymous reviewers for
giving valuable suggestions.

158 chapter 3 analyzing game mechanics

ADAPTING GAME MECHANICS 4
Abstract

In early game development phases game designers adjust game rules in a
rapid, iterative and flexible way. In later phases, when software prototypes are
available, play testing provides more detailed feedback about player experience.
More often than not, the realized and the intended gameplay emerging from game
software differ. Unfortunately, adjusting it is hard because designers lack a means
for efficiently defining, fine-tuning and balancing game mechanics.

The language Machinations provides a graphical notation for expressing the
rules of game economies that fits with a designer’s understanding and vocabulary,
but is limited to design itself. Micro-Machinations (MM) formalizes the meaning
of core language elements of Machinations enabling reasoning about alternative
behaviors and assessing quality, making it also suitable for software.

We propose an approach for designing, embedding and adapting game
mechanics iteratively in game software, and demonstrate how the gamemechanics
and the gameplay of a tower defense game can be easily changed and promptly
play tested. The approach shows that MM enables the adaptability needed to
reduce design iteration times, consequently increasing opportunities for quality
improvements and reuse.

4.1 introduction

In computer game development, developers face problems that arise from increased
complexity. Challenges include increased development speed, changing technologies,
and growing teams of experts with varying vocabularies. Teams may consist of artists,
software engineers, domain experts and game designers who work together to create
games. Practice is still catching up with the relatively new profession of the computer
game designer. Game design, despite the large number of games produced today
lacks a common vocabulary, methods for designing games and sharing knowledge
and artifacts. The need for common design vocabularies [Chu99a; ZMF+05], game
design patterns [BLH03], specialized game grammars [Dor09; Kos05a], and computer
assisted design tools [Nei12; NM08a] has been expressed for some time, but so far no
tool, method, or framework has surfaced as an industry standard. As result, game

This chapter was previously published as R. van Rozen and J. Dormans. “Adapting Game Mechanics
with Micro-Machinations”. In: Proceedings of the 9th International Conference on the Foundations of Digital
Games, FDG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Ed. by M. Mateas, T. Barnes, and I. Bogost.
Society for the Advancement of the Science of Digital Games, 2014. isbn: 978-0-9913982-2-5

161

design relies strongly on iterative prototyping, play-testing, and reprogramming parts
to improve games.

Good gameplay is an emergent property of the game system defined by the game
mechanics [Dor12a]. Therefore, gameplay can only be evaluated after the system
has been built and set into motion through play. More often than not, the realized
gameplay differs from the intended gameplay. Because a designer’s understanding
about how game rules affect the player is constantly changing, they have to make
adaptations quickly and often. However, as software development progresses, making
changes becomes harder and more time consuming. This seriously compromises the
ability of the designer to design, play test, gain feedback and improve, which results
in longer design iterations and missed opportunities for improving the quality. From
a software engineering point-of-view gameplay adaptations represent a problematic
stream of badly defined, poorly understood requirements that result in wasted effort,
ineffective attempts at reuse, and repetitive and error-prone coding cycles, instead of
focus on maintenance, libraries and tools.

We aim to accelerate the game development process by boosting game designer
productivity and improving quality feedback. The language Machinations [AD12]
provides a graphical notation for expressing the rules of game economies that is
gaining popularity with designers. Micro-Machinations (MM) [KvR13] formalizes the
meaning of core language features of Machinations and adds modularity, making it
also suitable for software development and formal analysis. We propose a gamedesign
approach for adapting mechanics using MM, that aims for brief design iterations with
informed and well-documented design decisions. The approach entails modeling
game mechanics as embeddable software artifacts with MM. Additionally, it provides
a means for adapting game mechanics at run-time using a library. We demonstrate
that changes to the game economy of a tower defense game can be easily designed and
embedded in software. Our approach shows that it is feasible to significantly reduce
design iteration times, by improving flexibility and adaptability, thereby increasing
opportunities for quality improvements and reuse.

4.2 background

4.2.1 Related Work

Language-orientedapproaches for gamedevelopment includePetriNets [AR09; BA06],
state machines [FHL07], and rule based and constraint based systems [MCS+04b;
NM08a]. Additionally, configuration files have been used for loading constants, and
interpreters that provide run-time adaptability using scripts have been embedded
in games, e.g. Lua [WSA+10] and Python [Daw02]. Commercial game engines also
include script languages [UDNb] and graphical languages [UDNa]. Script languages
are general purpose solutions that can be used for solving problems in many domains.

162 chapter 4 adapting game mechanics

In contrast, a Domain-Specific Language (DSL) focuses on providing increased
expressiveness over solutions for a smaller set of problems. We adopt the DSL
definition of van Deursen et al. [vDKV00] which states that:

“A Domain-Specific Language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to, a particular problem domain”.

DSLs have advantages over script languages such as improved productivity and
quality, divisionof labor. However, DSLapproaches also comeat a cost. Timeandeffort
goes into analyzing a domain, choosing appropriate notations andmeanings, learning
the language and maintaining it. In comparison, using an existing script language is
technically easier to achieve, e.g. through its meta-programming capabilities Lua has
been used for creating internal DSLs [KB13].

4.2.2 Machinations Evolution

We give a brief history of the evolution of the Machinations language, its tools and
frameworks, from its inception for game design to its formalization and use in game
software.

Game Design The original Machinations framework, intended solely for game
design, helps designers to design, understand, and balance complex game systems
[AD12; Dor12a]. Its starting point is the notion of internal economy for games
[AR06] that describes game dynamics in terms of distribution and flow of game
resources. Game resources include tangible resources such as money, property, and
food, but the concept also applies to abstract notions such as hit points, experience
points, and strategic advantage. The framework uses a diagrammatic language
to visualize a game’s internal economy. Machinations diagrams foreground the
structural characteristics of the game economy that are critical in the emergence of
gameplay. In particular dynamic gameplay can be attributed to feedback loops in the
internal economy [AR06; SZ03].

The framework augments paper prototyping, and can be used to assess game
balance, emergent properties, and potential dominant strategies. Diagrams are
abstract, dynamic, and playable representations of a game. Moreover, they are game
design artifacts only, and not suitable as software requirements, since they lack a
programmable semantics. Machinations is used in education and practice.

FormalAnalysis Micro-Machinations (MM) is aDSL thatwedescribe in Section 4.2.3
intended for both game design and software development. It is a formalized extended
subset of Machinations which adds a precise meaning to the design notation, enabling

4.2 background 163

formal reasoning about alternative model behaviors and assessing their quality. MM
also introduces new features, notably modularization, and has both a visual and a
textual notation. Micro-Machinations Analysis in Rascal (MM AiR) is a framework
for analyzing MM that uses the Rascal meta-programming language1 and the
Spin model checker [KvR13]. It offers an IDE that reads textual MM and displays
visual MM for simulating models interactively or randomly and analyzing behaviors
partially or exhaustively. MM AiR is described in Chapter 3.

Software Development Thus far, MM have only been analyzed. Here, we introduce
a library for building games with MM. The Micro-Machinations Library (MM Lib)
is a light-weight software library written in C++ for embedding MM in games and
tools2. MM Lib tackles technical challenges related to interoperability, traceability
and debugging. In particular, it enables embedding and adapting models in game
software and replaying behavior traces.

The library interprets textual MM as changes that are reflected at run-time in the
game economy state, enabling adapting model elements between evaluation steps.
Developers can integrate MM Lib using its simple embedding APIs, most notably for
evaluating model changes, activating nodes, stepping to a next state and informing
its context about changes to type definitions and instances.

4.2.3 Micro-Machinations

MMmodels are directed graphs consisting of nodes and edges, which can be annotated
with extra information. They describe the rules of internal game economies and
define how resources are redistributed step by step between nodes. We provide a
description of modeling elements needed for the case study of Section 4.4, which
is based on prior work, described in Chapter 3. Chapter 3 gives a more detailed
explanation that also includes textual models. Here, we use only the visual variant
for conciseness. First, we explain basic language elements in Table 4.1 and Table 4.2.
Next, we explain modular language elements. Table 4.3 introduces two new features
for embedding instances of MM diagrams into games: instance pools and the self pool.

4.3 adapting game mechanics

This section introduces a game design approach for designing, embedding and
adapting game mechanics and gameplay of working software by embedding MM. Its
goals are shortening design iterations, gaining immediate feedback and maximizing
opportunities for quality improvements. We aim at flexible integration in processes

1
http://www.rascal-mpl.org (visited September 1st 2019)

2
https://github.com/vrozen/MM-Lib (visited September 1st 2019)

164 chapter 4 adapting game mechanics

http://www.rascal-mpl.org
https://github.com/vrozen/MM-Lib

Table 4.1: Cheat sheet for basic Micro-Machinations language elements (part 1)

p

Empty pool

1

p
Pool and resource

A pool is a named node, that abstracts from an
in-game entity, and can contain resources, such as
coins, crystals, health, etc. Visually, a pool is a
circle with an integer in it representing the cur-
rent amount of resources, and the initial amount at
which a pool starts when first modeled.

Resource connection

with flow rate of one

4*p+1

Resource connection

with flow expression

A resource connection is an edge with an associated
expression that defines the rate at which resources
can flow between source and target nodes. During
each transition or step, nodes can act once by redis-
tributing resources along the resource connections
of the model. The inputs of a node are resource
connections whose arrowhead points to that node,
and its outputs are those pointing away.

p

Passive pool

The activation modifier determines if a node can act.
By default, nodes are passive (no symbol) and do
not act unless activated by another node.
Interactive (double line) nodes signify user actions
that during a step can activate a node to act in the
next state. Automatic (*) nodes act automatically,
once every step.

p
Automatic pool

p
Interactive pool

p

p

&

Pool with pull act and all modifier

Nodes act either by pulling (default, no symbol)
resources along their inputs or pushing (p)
resources along their outputs. Nodes that have
the any modifier (default, no symbol), interpret the
flow rate expressions of their resource connections
as upper bounds, and move as many resources as
possible. Additionally, these nodes may process
their resource connections independently and in
any order. Nodes that instead have the all modifier
(&) interpret them as strict requirements, and the
associated flows all happen or none do.

p

p

Pool with push act

and any modifier

p&

p
Pool with push act

and all modifier

4.3 adapting game mechanics 165

Table 4.2: Cheat sheet for basic Micro-Machinations language elements (part 2)

s
Source

A source node, appearing as a triangle pointing up,
is the only element that can generate resources. A
source can be thought of as a pool with an infinite
amount of resources, and therefore always pushes
all resources or all resources are pulled from it. The
any modifier does not apply, and resources may
never flow into a source. Also, infinite amounts
may not flow from sources during a step.

d
Drain with any

modifier

d

&

Drain with all

modifier

A drain node, appearing as a triangle pointing
down, is the only element that can delete resources.
Drains can be thought of as pools with an infinite
negative amount of resources, and have capacity to
pull whatever resources are available, or whatever
resources are pushed into them. No resources can
ever flow from a drain.

==1

Condition edge with

equals one expr

>=2

Condition edge with

greater equals expr

A node can only be active if all of its conditions are
true. A condition is an edge appearing as a dashed
arrow with an associated Boolean expression. Its
source node is a pool that forms an implicit argu-
ment in the expression, and the condition applies
to the target node.

Trigger edge

A trigger is an edge that appears as a dashed ar-
row with a multiply sign. The origin node of a
trigger activates the target node when for each re-
source connection the source works on, there is a
flow in the transition that is greater or equal to that
of the associated flow rate expression. Addition-
ally, automatic pulling nodes without inputs and
automatic pushing nodes without outputs always
activate their trigger targets.

c
Converter

c_sc_d

&

Desugared converter

Converters are nodes, appearing as a triangle point-
ing right with a vertical line through the middle,
that consume one kind of resources and produce
another.
Converters are not core elements because they can
be rewritten as a combination of a drain, a trigger
and a source. Unlike basic node types, converters
therefore take two steps to complete. Converters
always implicitly have pull and all modifiers.

166 chapter 4 adapting game mechanics

Table 4.3: Cheat sheet for modular Micro-Machinations language elements

5

self

Flare

fade

*

Definition containing a self pool

food

Tribble

*
eat child

*

Definition containing references

with in and out modifiers

A type definition is a named diagram that functions
as parameterized module for encapsulating ele-
ments. Type definitions define internal elements
and how they can be used externally. A reference,
represented by a circle with a dashed line, is an
alias that refers to a node that defines it. Inter-
nal nodes annotated with an interface modifier input,
output or input/output become interfaces on the in-
stances of the type. The input modifier denotes
that an interface accepts inputs, output implies it
accepts outputs and input/output accepts both. In-
terface modifiers appear as an arrow in the top
right corner of a node, where an input modifier
point into the node, an output modifier points out
of the node, and an in-/output modifier does both.

Flare

fireworks

10

show

*p

Instance pool without interfaces

Tribble

tribbles

110

food

food

 =

 =
child

Instance pool with

reference interfaces and bindings

An instance pool is a pool whose resource type is a
definition. It represents a set of instances, objects
with individual instance data, whose shared inter-
faces are defined by that type, and can be bound
to other models, acting as formal parameters. Ad-
ditionally, the size of the set is the amount of re-
sources in the pool. Visually, an instance pool ap-
pears as a circle and a rectangle. Instances are local
to a pool and cannot flow out through resource
edges. Resources flowing in create new instances,
and those flowing out delete them. An interface
makes internal elements of instances available to
the outside, and can be used by connecting re-
source connections. Visually, an interface is a small
circle at the border of an instance with its name un-
der it. Input interfaces have an arrow pointing
into the circle, outputs have an arrow pointing out-
ward, and in-/outputs have a bidirectional arrow.
The direction of the arrow implies the validity of
the direction of the resource edges that connect to
it. Only reference interfaces appear with a dashed
line. References must be bound to definitions us-
ing edges called bindings, represented by dashed
arrows annotated with an equal sign, that origi-
nate from a defining node and target a reference.
When a type definition contains a pool named self,
instances of this type end when the pool is empty.

4.3 adapting game mechanics 167

Game Design Software Engineering

Mechanics
Modeling

Play Test

Mechanics
Test

Gameplay
Design

Gameplay
Goals

Behavior
Analysis

Aesthetics
Feed-back

Game
Software

Name
Bindings

Test

Implementation

Design

Micro-
Machinations

Requirements

Domain
Modeling

Figure 4.1: Game design approach for adapting mechanics

Table 4.4: Disciplines, artifacts and expected iteration activity when using the Micro-
Machinations approach

occupation discipline main artifact expected iteration activity level

co
nc
ep
t

ela
bo
rat
ion

co
ns
tru
cti
on

de
liv
ery

game design gameplay design gameplay goals high high medium low
mechanics modeling mechanics model medium high high high
play test aesthetics feed-back medium high high high
mechanics test behavior analysis low low low low

software domain modeling name bindings low high low low
engineering implementation game software low medium high low

that employ iterative development, agile practices and Scrum. The approach sepa-
rates concerns, dividing the work between game designers and software engineers.
Because a game designer’s creative genius flourishes with expressive freedom, flexibly
switching between activities, we describe only what artifacts game designers and
software engineers create, but not when. Working on disciplines and artifacts is
optional at each given time.

Figure 4.1 shows disciplines (rounded rectangles) and artifacts (rectangles). Closed
arrow heads denote an artifact is required for activities related to a discipline, whereas
open arrow heads signify optional artifacts that provide added value. Table 4.4
describes expected iteration activity during phases of the project life cycle. These

168 chapter 4 adapting game mechanics

phases are 1) concept: when a game is conceived of and its feasibility is discussed, 2)
elaboration: when plans are made concrete using models and diagrams documenting
intended functionality, 3) construction: when game software is built, tested, balanced
and fine-tuned, and 4) delivery when a product is prepared for its release. We explain
the design disciplines one by one.

• Gameplay Design: How should the game affect the player experience during play?
Designers describe the intended effect of rules on players [SZ03] in what we
call gameplay goals. Gameplay design includes taking design decisions concerning
patterns, intended behavior and feedback loops. Activities may include paper
prototyping and using other conceptual game design tools for assisting in the
creative process, e.g. the Machinations tool [Dor09].

• Mechanics Modeling: What are the rules composing the mechanics? The approach
centers around the discipline of mechanics modeling, which involves designing
an artifact using MM that we call the mechanics model. It describes the rules of
the game, that when set in motion by run-time and player interaction aims to
achieve the gameplay goals. The mechanics model is an embeddable software
artifact that interacts with other parts of the software using its name bindings.
It includes descriptions that relate design decisions and diagram elements to
expected behavior and player interaction. Designers can add, change, balance
and fine-tune mechanics at any development stage.

• Play Test: How do the rules affect player experience? During play testing designers
validate if the mechanics model achieves the gameplay goals, gathering aesthetics
feedback in order to make improvements. Traditionally play testing happens
on paper prototypes in early stages. Mechanics models enable play testing
without game software, but with the guarantee the models behave the same
when embedded in games. Later, when game software is available play testing
becomes less abstract. This approach enables play testing effectively throughout
the development process.

• Mechanics Test: How do the rules behave, and how can that be improved? Mechanics
models are not just embeddable in games. Tools such as MM AiR described in
Section 4.2.2 can also interpret MM, enabling designers to analyze the behavior
separately. Applications include interactively stepping through states and
transitions, analyzing alternatives, programmable test setups prerecorded or
programmed player actions for random simulation runs or exhaustive analysis,
and reproducing states and transitions using MM traces, as in see Chapter 3.

For integrating thedesign and software engineeringprocesseswe relate sharedartifacts
to the software engineering disciplines of domain modeling and implementation.

• DomainModeling: What are the name bindings for embedding the mechanics in game
software? During domain analysis software engineers analyze and visualize
important concepts and relationships, and agree with designers on concept

4.3 adapting game mechanics 169

Figure 4.2: Screenshot of the running AdapTower prototype

names and activation points in a contract that we call name bindings. Changes
to name bindings may cost time because they affect the software design, and
integration points must be coded.

• Implementation: How are the game mechanics integrated in software? Software
engineers build game software glue libraries, program integration points specified
in the name bindings, and integrate content and mechanics models with the
rest of the game system. The MM Lib, introduced in Section 4.2.2, enables
embedding the mechanics model. As soon as the first prototype runs the model,
play testing can commence.

4.4 case study: adaptower

4.4.1 Experimental setup

Wedemonstrate adaptability of themechanics and gameplay ofAdapTower, a prototype
tower defense game built using the approach discussed in Section 4.3. The game,
shown in Figure 4.2, is implemented in C# and embeds the MM Lib (which is C++)
using a wrapper that marshals data to .NET.

Figure 4.3(a) shows a partition of AdapTower in software layers. Players trigger
mechanics in the User Interface (UI) layer. The Physics layer interprets user actions
and tracks in-game entities, their location, speed and trajectories. It ensures the UI

170 chapter 4 adapting game mechanics

AdapTower

Micro-Machinations Library

inform about game
economy changes

activate
nodes

determine locations,
speeds and trajectories

trigger
mechanics

API API

API

Mechanics / Game Economy
Micro-Machinations Model

API

step

User Interface

Physics

evaluate

(a) Layer diagram

*

gold

bases

towers

++

*
xx

++
*

&

*
&

creeps essence

xx

++
xx

++
x

x

*

*

(b) Machinations concept

Figure 4.3: AdapTower diagrams

displays them accordingly. MM Lib interprets Physics calls to activate nodes, e.g. for
collisions and time passing, and evaluates textual MM defining adaptations. MM
Lib computes a next game economy state when the Physics calls the step API, and
informs it about changes to definitions and instances with callbacks and messages.

4.4.2 Adapting AdapTower

Here we demonstrate adaptations to the game economy of AdapTower in a series of
six design iterations. We provide visual MM definitions with additions and changes3.

Design Iteration 0: Concept phase

Gameplay Design. In AdapTower, the creeps spawn at random locations on the top
of the screen and march downwards. Defensive towers shoot creeps and convert killed
creeps into essence, a resource that falls down. Bases collect essence and convert it into
gold, which can be used to build more towers and bases. Both are destroyed when they
come into contact with the advancing creeps. To reach the objective of building a fixed
number of bases the player needs to construct defensive configurations that minimize
the risk of losing bases, but maximize the collection of essence. AdapTower’s internal
economy consists of two interconnected positive feedback loops. First, towers convert
creeps into essence and bases convert essence into gold, which players use to buy
more towers and bases. Second, the more creeps there are, the more likely it is they

3The textual MM of AdapTower can be found at https://github.com/vrozen/MM-Lib/tree/master/mm/tests/towers

4.4 case study: adaptower 171

https://github.com/vrozen/MM-Lib/tree/master/mm/tests/towers

Tower

=
buyTower

creeps

120

gold

essencecreeps

= = =

essence

buyBase

5020

essence

=

towers bases

spawn missed
gold

1

Base

1

creeps

Figure 4.4: Definition of AdapTower in visual Micro-Machinations

Table 4.5: Global name bindings

name meaning embedding

spawn a creep enters the world activate node
creeps amount of creeps in the world notify value
essence amount of essence in the world notify value
missed essence leaves the world activate node
towers amount of towers in the world notify new/del
bases amount of bases in the world notify new/del
gold amount of gold the player has notify value
buyTower player buys a tower activate node
buyBase player buys a base activate node

collide and destroy more towers, meaning more creeps will survive. Figure 4.3(b)
shows a concept sketch modeled with the Machinations tool [AD12; Dor09].

Design Iteration 1: Creeps, towers and bases

Mechanics Modeling. The first mechanics model version of the game economy
of AdapTower consists of three MM models. The integrated game is modeled in
Figure 4.4. We model creeps, essence and gold by pools, which are bound to Tower and
Base instances on their shared interfaces using binding edges. Creeps enter the world
by externally activating the interactive source spawnwhich pushes one resource along
its edge to the pool creeps. The drain missed models essence disappearing from the
world without being caught. The converters buyTower and buyBase consume 20 and
50 gold to respectively produce a tower and a base instance.

172 chapter 4 adapting game mechanics

150

range

50

firePower

20

rotationSpeed

killCreep

hitByCreep

5

1

self

creeps

essence

Figure 4.5: First version of the Tower definition

hitByCreep

self

1

creeps

essence

goldhitByEssence

Figure 4.6: First version of the Base definition

Table 4.6: Name bindings of Tower and Base type definitions

name meaning embedding

range tower range in game yards notify value
firePower tower fire power in hit points notify value
rotationSpeed tower rotation speed degree/s notify value
hitByCreep physics: a creep hits a tower activate node
killCreep physics: a tower kills a creep activate node
hitByCreep physics: a creep hits a base activate node
hitByEssence physics: essence hits a base activate node

4.4 case study: adaptower 173

150

range

50

firePower

20

rotationSpeed

killCreep

hitByCreep

5

1

self

creeps

essence

add 5 * xp

add 2 * xp

add 2 * xp

xp

Figure 4.7: Second version of the Tower definition

Figure 4.5 models the first Tower type definition. Each tower has a range of 150, a
firePower of 50 and a rotationSpeed of 20. When activated, converter killCreep pulls one
resource from creeps, and produces five resources in essence. Figure 4.6 models the first
Base type definition. When activated, converter hitByEssence pulls one resource from
essence and generates one resource in gold. Tower and Base both contain a converter
hitByCreep, which pulls one resource from external node creeps and one from self,
collapsing the instance.

Domain Modeling. Table 4.5 and Table 4.6 show name bindings for embedding
versions of the mechanics. Some interactive nodes are activated externally using their
names, such as spawn, missed, killCreep, hitByCreep, and hitByEssence. Others, such as
buyTower and buyBase are UI elements activated by the player. For of passive pools,
such as creeps, essence, towers, bases, gold, range, firePower and rotationSpeed the game
registers observers for using current values.

Play Test. The gameplay of the initial version works, but is not very exciting. Once
players set up their bases and defenses, they simply need to wait and collect enough
essence for quickly building the number of bases required to win.

174 chapter 4 adapting game mechanics

 *

5

hp

hitByCreep

self

1

creeps

essence

gold

collapse

hp == 0

3-heat

heat hitByEssence

tick

Figure 4.8: Second version of the Base definition

Design Iteration 2: Towers gain experience

Mechanics Modeling. We adapt the Tower definition in Figure 4.7 by adding an
experience pool xp and by changing the pools range, firePower and rotationSpeed, adding
a bonus based on xp.
Gameplay Design. The rationale behind this change is that adding another feedback
loop improves positioning effectively towers and speeds up the end game.

Design Iteration 3: Bases have health

Mechanics Modeling. We adapt the Base definition in Figure 4.8 by adding a pool hp
that denotes hit points, starting at five resources. A resource is drained every time a
creep hits the base, but bases only collapse when hp is empty. Additionally, bases gain
heat in a pool called heat every time it is hit by essence. Heat inhibits the conversion
from essence to gold. This change is represented by the modified flow from converter
hitByEssence to reference gold.Heat diminishes over time, since every time drain tick
activates, it pulls one resource from pool heat.
Gameplay Design. Hit points make bases more stable, whilst the heat mechanism
introduces anegative feedback loop that diminishes the effectiveness of bases collecting
a lot of essence. These changes aim to force players to spread bases for collection
resources, and reduce the effectiveness of funnelling all essence and creeps into a
single place.

Design Iteration 4: Towers lose experience

Gameplay Design. We introduce two feedback loops to make towers more dynamic.
The goal is that towers accumulate experience points much faster, but also lose them
over time. At the same time the experience points inhibit the number of essence

4.4 case study: adaptower 175

150

range

50

firePower

20

rotationSpeed

killCreep

hitByCreep

5 -
xp

3

1

self

creeps

essence

add 5 * xp

add 2 * xp

add 2 * xp

tick

xp

Figure 4.9: Third version of the Tower definition

 *

 heat<100

2
5

hp

hitByCreep

self

1

creeps

essence

goldconsume

amplifycollapse

hp == 0

heat>=100

heat

*

 *
hitByEssence

Figure 4.10: Third version of the Base definition

produced by each kill. The effect is that towers can go into a sort of “killing spree”, but
these towers essence production is reduced at the same time.
Mechanics Modeling. We realize these effects by increasing the flow from converter
killCreep to xp and adding a drain tick that pulls resources from pool xp in Figure 4.9.
Additionally, the amount of generated essence is reduced by changing the flow
expression to 5 - xp.
DomainModeling. The drain tick specifies the name of a node the gamemust activate
once each second.

176 chapter 4 adapting game mechanics

upgradeRange

150

range

50

firePower

20

rotationSpeed

upgradePower

upradeSpeed

50

10

10

range / 5
– 100

firePower
- 40

rotationSpeed
- 10

killCreep

1

soulReapupgradeSoulReap

soulReap*10
- 10

xp

hitByCreep

5 +
soulReap

1

self

creeps

essence

Figure 4.11: Fourth version of the Tower definition

Design Iteration 5: Bases amplify essence

Play Test. One problem we notice is that the player is not encouraged to place bases
at the top of the screen.
Gameplay Design. To make positioning bases more interesting we introduce an
ageing mechanism. A base ages for every essence it converts into gold. Once a
base has produced 100 gold it evolves into a new mode, duplicating essence instead.
Because essence falls down, it is more effective to place newer bases below older bases,
and this creates a high-risk reward strategy that encourages players to build their first
bases in relatively exposed positions.
Mechanics Modeling. Figure 4.10 shows the third Base definition. We delete drain
tick, reversing the decision of draining heat over time. We change hitByEssence into
a drain and reference essence gains an output modifier. We add converters amplify
and consume and triggers to activate them from hitByEssence. Consume returns one
gold and one heat for each essence when heat is less than 100, but otherwise amplify
instead returns two essence resources.

Design Iteration 6: Towers are upgradeable

Play Test. We see the problem that all towers act alike.
Gameplay Design. We try to overcome this by allowing players to choose different
possible upgrades for their towers, and specialize individual towers in different ways.

4.4 case study: adaptower 177

Table 4.7: Additional name bindings for the Tower definition

name meaning embedding

upgradeRange upgrade range activate node
upgradePower upgrade power activate node
upgradeSpeed upgrade rotation speed activate node
upgradeSoulReap upgrade essence efficiency activate node

Mechanics Modeling. The final tower model, shown in Figure 4.11, adds a new pool
called soulReap, and increases the amount of essence for killing a creep to 5+soulReap.
Additionally, users can upgrade range, firePower and rotationSpeed and soulReap by
respectively activating converters upgradeRange, upgradePower, upgradeSpeed and
upgradeSoulReap that require more xp each upgrade.
Domain Modeling. Previous game adaptations only involved mechanics modeling,
but choosing different tower upgrades is a feature not previously agreed upon. The
MM Lib lets games observe type changes, enabling us to meta-program the handy
default of adding new interactive nodes as clickable names near UI elements. In this
case the game adds different upgrades near towers, and infers the name bindings of
Table 4.7. This way, designers can continue mechanics modeling and play testing.

4.4.3 Experimental results

We showed that after the AdapTower prototype was built, its game economy could be
modified using MM, with a flexibility reminiscent of the concept phase. Because we
expect continuously high activity levels of mechanics modeling and play testing, as
shown in Table 4.4, the approach is especially useful in later project stages. It allowed
us to iterate and explore the design quickly, providing us with time to experiment and
improve the game. Each iteration took us about 15 minutes to design gameplay and to
model additions and changes of the mechanics in textual MM. We play tested briefly,
and confirmed that we achieved the emergence we were looking for. Additionally, we
spent only a fraction of the implementation time on the name bindings that integrate
the model.

4.5 conclusion

We proposed a game design approach for adapting game mechanics with MM. We
applied the approach and implemented AdapTower, a prototype tower defense game.
We demonstrated that its mechanics and emergent gameplay could be modified after
its construction. We showed that MM is a suitable notation for making adaptations.

We argued that structured and clear artifacts and better, faster feedback about
gameplay changes improve designer productivity. Our approach showed that it

178 chapter 4 adapting game mechanics

is feasible to significantly reduce design iteration times and accelerate the game
development process by improving the adaptability, thereby increasing opportunities
for quality improvements and reuse. We see our contributions as an important step
towards practical game design methods for producing game software. However,
our experience concerns a prototype and the technology still needs to mature before
industry can adopt this approach.

4.5.1 Future Work

Future work entails the following:

• Game design tools can embed MM Lib and show editable visual MM, and send
textual MM changes to adapt games like we proposed, e.g., graphical debuggers
for tracing and replaying behavior, and integrated analysis tools like MM
AiR. We envision a tool-of-tools approach, using language work-benches and
meta-programming, for tailoring tools towards games.

• Validation requires that we apply tools and libraries in industrial case studies.
Such experiences provide valuable information on the usage of language and
tool features, and for making improvements.

• Comparable, reusable, analyzable game designs enable pattern mining. To do
this, we first require a corpus of MM models to find empirical evidence of
patterns, and an assessment of their gameplay qualities. Then, we can extract
and compare them, e.g., for providing tools for mechanics comparison and
prototype generation. Using extracted domain knowledge can also augment
evolutionary techniques for mining patterns [CCR+13].

• MM do not necessarily describe the full run-time behavior of a game system,
which limits its analysis. Productivity and quality can be further improved by
integrating MM with other DSLs, e.g., for locations and speed, and story-lines.
Additionally, more accurate behavior predictions enable preventing bugs.

• Combining player satisfaction information with adaptable mechanics enables
tailoring mechanics to the skill and enjoyment of individual players.

Acknowledgements

We thank Paul Klint for proof reading this paper, and the anonymous reviewers for
their insightful comments.

4.5 conclusion 179

DESIGNING GAME MECHANICS WITH PATTERNS 5

Abstract

Video game designers iteratively improve player experience by play testing
game software and adjusting its design. Deciding how to improve gameplay
is difficult and time-consuming because designers lack an effective means for
exploring decision alternatives and modifying a game’s mechanics.

We aim to improve designer productivity and game quality by providing
tools that speed-up the game design process. In particular, we wish to learn how
patterns encoding common game design knowledge can help to improve design
tools. Micro-Machinations (MM) is a language and software library that enables
game designers to modify a game’s mechanics at run-time.

We propose a pattern-based approach for leveraging high-level design knowl-
edge and facilitating the game design process with a game design assistant. We
present the Mechanics Pattern Language (MPL) for encoding common MM struc-
tures and design intent, and a Mechanics Design Assistant (MeDeA) for analyzing,
explaining and understanding existing mechanics, and generating, filtering, ex-
ploring and applying design alternatives for modifying mechanics. We implement
MPL and MeDeA in Rascal, and evaluate them by modifying the mechanics of a
prototype of Johnny Jetstream, a 2d shooter developed at IC3D Media.

5.1 introduction

Video game designers work to improve player experience by iteratively play testing
game software and adjusting the game’s design. Improving gameplay is difficult
and time-consuming because designers lack an effective means for quickly exploring
design alternatives and modifying a game’s mechanics. Specifically, designers
cannot efficiently 1) author, modify and fine-tune mechanics—rules of games that
influence gameplay—without help of programmers; 2) receive immediate feedback
for comparing design intent to change result; and 3) explore decision alternatives
efficiently. Since making well-informed design decisions is costly due to long iteration
times, play testing is limited to fewer software versions than necessary for achieving
the best game quality.

This chapter was previously published as R. van Rozen. “A Pattern-Based Game Mechanics Design
Assistant”. In: Proceedings of the 10th International Conference on the Foundations of Digital Games, FDG 2015,
Pacific Grove, CA, USA, June 22–25, 2015. Ed. by J. P. Zagal, E. MacCallum-Stewart, and J. Togelius. Society
for the Advancement of the Science of Digital Games, 2015

183

We aim to improve designer productivity and game quality by providing tools
that speed-up the game design process. In particular, we wish to learn how patterns
encoding common game design knowledge can help to improve such tools.

Micro-Machinations (MM) is a visual language and software library that facilitates
brief design iterations by enabling game designers to modify a game’s mechanics
while it is running, and to play test simultaneously [KvR13; vRD14]. MM programs
can be represented as visual diagrams that are directed graphs describing game-
economic mechanics using various kinds of nodes and edges. A diagram works
inside a game, steering its mechanics, and when set in motion through run-time
and player interaction, the nodes redistribute resources along the edges between
the nodes. Understanding the dynamics of diagrams is hard because designers
combine elements in non-trivial ways, expressing design intent by providing choices,
challenges, trade-offs and strategies for interesting gameplay. Adams and Dormans
have suggested patterns forMM’s evolutionary predecessorMachinations, as a mental
framework for understanding, explaining and designing game mechanics, and they
provide a mechanics design rationale with example diagrams [AD12].

We propose a pattern-based approach that assists designers in the discipline
of modeling mechanics for modifying game software. We define parameterized
micro-mechanism patterns (patterns for short) that capture a wide range of diagrams
with shared structures and design intent. We provide a Mechanics Pattern Language
(MPL) for programming patterns and a Game Mechanics Design Assistant (MeDeA)
that recognizes patterns in existing diagrams, explains intent of design choices in
understandable text and enables interactively and visually exploring design choices
that can be step-by-step filtered and applied yielding new diagrams and software
versions. We contribute the following:

• A Mechanics Pattern Language (MPL) for programming patterns that capture a
wide range of diagrams with shared structures and design intent.

• A Mechanics Design Assistant (MeDeA) implemented in the Rascal meta-
programming language for analyzing, explaining and understanding existing
mechanics and generating, filtering, exploring and applying design alternatives
for modifying mechanics.

5.2 related work

We relate our work to languages, game design patterns and design tools providing
analysis or procedural generation techniques. Figure 5.1 schematically shows how a
designer modifies mechanics during play testing for improving the gameplay of a
working game system, which includes both players and software. Before we elaborate
on our approach for improving designer productivity we first sketch the research
context.

184 chapter 5 designing game mechanics with patterns

Gameplay Gameplay De-
sign Patterns

Player

Game Software

User
Interface

MM Library MM Game
Mechanics

MeDeA
MPL Mechanics
Design Patterns

Game Designer

modifyanalyze

program

runs on

author, explore, fine-tune

implemented by

emerge
describe and explain

describe and explain

interact

Figure 5.1: Relating design patterns to a game system

Languages

Game designers have expressed the need for a common game design vocabu-
lary [Chu99a]. Languages and tools are necessary for describing, communicating
and improving game designs using both mental frameworks and authoring tools for
constructing parts of game software. We relate our perspective to the Mechanics
Dynamics and Aesthetics (MDA1) framework of Hunicke et al. who describe an
approach to game design and game research [HLZ04]. As shown in Figure 5.1, we
view mechanics as part of the game software, dynamics as its run-time and player
interaction, and aesthetics as good player experience (gameplay) that emerges.

MeDeA is an authoring tool that uses Micro-Machinations (MM), a language
for game-economic mechanics described by Klint, van Rozen and Dormans [KvR13;
vRD14]. MM is an evolutionary successor of Machinations, a mental framework for
understanding the effect of game mechanics on gameplay introduced by Adams and
Dormans [AD12]. MM and MPL are so-called Domain-Specific Languages (DSLs)
[vDKV00], declarative languages that offer designers expressive power focussed
specifically on game-economic mechanics [KvR13]. Domains other than game
development have benefited from DSLs and seen substantial gains in productivity
and software quality at the cost of maintenance and education of DSL users [vDKV00].

1Not to be confused with the Model-Driven Architecture (MDA), a software design approach for
developing software systems by the Object Management Group (OMG) and a proprietary form of Model
Driven Engineering (MDE).

5.2 related work 185

Table 5.1: Game Description languages and tools for authoring, analyzing and modifying
different game facets

scope/concern language tool/system goals/functionality

“2d games”
(research platform)

PyVGDL
[Sch13]

PyVGDL lib. Design games and analyze dynam-
ics and learning algorithms

board games GDL /
Ludemes
[BM10]

Ludi system Playing, measuring, and synthesiz-
ing board games

mechanics of
“board-games”

Prolog subset
[SNM09a]

Biped Prototype complete board-like
games and analyze their dynamics

mechanics
(avatar-centric)

PDDL subset
[ZR14a]

Generator sys. Generate playable mechanics using
a constraint solver+planner

mechanics
(game-economic)

Machinations
[AD12]

Flash Tool Conceptually analyze mechanics
designs (not software artefacts)

MM, MPL
[this chapter]

MeDeA Statically analyze & modify embed-
ded mechanics using patterns

discrete domain
games

Gamelan
[OGM13]

“Tool set” Analyze Gamelan game dynamics
against Computational critics

stories of Zelda-
like 2d RPGs

Plot points seq.
[HZD+11]

Game Forge Generate & render playable game
world & story configurations

stories in
interactive drama

Praxis
[ES14]

Prompter Author & analyze stories in agent-
based interactive drama

Unlike ontologies [ZMF+05] or mental frameworks that focus on analyzing and
understanding games, DSLs also serve to modify software systems.

Patterns

Kreimeiermade a general case for game design patterns [Kre02]. Design patterns have
been used to describe recurring patterns of gameplay [BLH03] and game mechanics
[AD12]. Björk et al. propose game design patterns for analyzing and describing
gameplay that enable understanding and explaining games and how they relate, and
together form a game design body of knowledge [BLH03]. We view these patterns
as gameplay design patterns, which can be used to understand what gameplay goals a
completed game has, or should have while play testing during a game’s construction.

In contrast, game mechanics patterns can be used to describe how a game’smechanics
work before it is built, and to modify them afterwards, offering a way to achieve
gameplay goals. MPL can be used to model mechanics design patterns and MM
offers a way to implement a game’s mechanics aimed at improving gameplay as
shown in Figure 5.1. We view both pattern kinds as complementary, and discovering
relationships between them as an exciting direction of future research. Unlike
gameplay design patterns,MeDeA facilitates understandingmechanics by recognizing

186 chapter 5 designing game mechanics with patterns

and visualizing patterns that run in software, and offering high-level explanations
about their dynamics.

Tools

Game Description Languages (GDLs) are DSLs for the game domain. GDLs, tools
and libraries have been described that offer game designers affordances for authoring,
analyzing, understanding and modifying different game facets, e.g., measuring a
game’s qualities or by procedurally and/or iteratively generating content in a mixed-
initiative way [SLH+11] or for automatic improvements. Comparing GDLs is hard
because their goals, tools and notations differ, and their expressive power over specific
or general abstractions and behaviors for achieving novel gameplay goals vary greatly.
Therefore their effectiveness and usage scenarios range from game- or genre-specific,
to more general and abstract. Table 5.1 shows a small list of representative GDLs.
Disciplines include modeling mechanics of game-economies [KvR13; vRD14], avatar
acts [ZR14a] and board games [BM10; SNM09a] but also levels [SLH+11], missions and
stories of e.g., Zelda-like 2d games [HZD+11] or interactive drama [ES14].

Declarative textual notations have been proposed for specific classes of games.
Nelson an Mateas’ game design assistant facilitates iteratively prototyping micro-
games with stock mechanics by authoring nouns, verbs and constraints [NM08a].
Smith et al. propose prototyping abstract board-like games in a lightweight logic-
based sketching language that models game state and mutation events on the Biped
system, which integrates the logical Ludocore engine and produces gameplay
traces using answer-set-programming [SNM09a]. Browne and Maire demonstrate the
feasibility of evolutionary techniques for closed-system combinatorial board games
by measuring specific playability qualities in Ludi [BM10]. In contrast, Osborn et al.
argue for a more general procedural language. They propose Gamelan for games
over discrete domains (e.g., board, card games), and modular computational critics
that can measure rule coverage, turn-taking fairness and existence of uninteresting
strategies [OGM13]. Evans and Short describe the Versu storytelling system, which
is specific for interactive drama but also more generally reusable. Their Praxis
language describes autonomous agents and social practices, and Prompter is a tool
for debugging emergent stories[ES14].

Micro-Machinations

MM is a visual and textual DSL aimed at reuse that raises the abstraction level
above that of game- or genre-specific, tightly integrated languages. MM separates
the concern of game economies and supports both closed systems and integration
into larger systems composed of parts. In prior work, MM was analyzed against
invariants using model-checking [KvR13], and used to rapidly modify the mechanics

5.2 related work 187

Figure 5.2: Screenshot of a Johnny Jetstream prototype that embeds the Micro-Machinations
library

of a tower defense game iteratively at run-time using the embeddable reusable MM
library2 [vRD14]. MeDeA extends MM’s tool set and the spectrum of mixed-initiative
interactive game design tools with a novel and general pattern-based approach for
deciding how to improve a game’s mechanics, offering alternatives designers might
otherwise overlook.

5.3 mechanics design assistant

We present a Game Mechanics Design Assistant (MeDeA) and evaluate it using game
mechanics of Johnny Jetstream (JJ), a 2d side-scrolling shooter developed at Dutch
game business IC3DMedia that embeds MM. Figure 5.2 shows a screenshot of JJ. MM
programs can be represented as visual diagramswhich are directed graphs that consist
of two kinds of elements, nodes and edges. Both may be annotated with extra textual
or visual information. These elements describe the rules of internal game economies,
and define how resources are step-by-step propagated and redistributed through the
graph. A diagramworks inside a game, controlling its internal economy, andwhen set
in motion through run-time and player interaction, the nodes redistribute resources
along the edges through the graph.

Figure 5.3 shows a sample MM implementation part of JJ that is hard to read
for novices. This is our running example. We introduce MM and the Mechanics

2
https://github.com/vrozen/MM-Lib (visited September 1st 2019)

188 chapter 5 designing game mechanics with patterns

https://github.com/vrozen/MM-Lib

costUpgrade:
10 * bonus^2

buyShield

hp

getMedkit:
20

dmgHp:
(100-shield)*0.1

Income:
bonus

kill

costShield:
10 + shield

getShield:
10

0
$

gold

buyMedkit

costMedkit: 10

0
+

shield

100
+

getBonus:
1

upgrade

*

*

dmgShield: 5

damage

bonus

2
+

Figure 5.3: Micro-Machinations diagram of example mechanics of Johnny Jetstream

Pattern Language (MPL) by analyzing it against patterns with MeDeA. The tool
explains the design by generating explanations from patterns and templates explained
in Section 5.3.1. Next, we describe the mixed-initiative decision making process
of MeDeA in Section 5.3.2 and show how MeDeA also assists in authoring the
example using the same patterns in Section 5.3.3. We sketch MeDeA’s architecture in
Section 5.3.4.

5.3.1 Pattern-Based Analysis and Explanation

We analyze and explain example mechanics of JJ using a collection of patterns we call
our pattern palette. Although usually such a collection is called a catalogue, we will
show that the term palette more closely resembles its uses. Our example palette is
written in MPL, which enables palette composition and maintenance. It is based on a
subset of patterns proposed by Adams and Dormans, to whom we refer for a high
level discussion that omits programmed parameterized patterns as discussed here
[AD12]. We introduce MM and MPL by example, briefly stating pattern intent. For
conciseness we omit general explanations on motivation and applicability, focusing
on how the patterns work. We do not claim these patterns are complete for explaining
and authoring all interesting MM diagrams, and we expect that designers will have
varying opinions on what makes a good palette. We now begin MeDeA’s automated
analysis.

5.3 mechanics design assistant 189

pattern

+

Property

Benefit:
BenefitExp

$

Energy

Cost:
CostExp

Acquire

Intent: Activating converter ⟨Acquire⟩ costs ⟨CostExp⟩ resources from pool ⟨Energy⟩
as specified by resource connection ⟨Cost⟩ and yields ⟨BenefitExp⟩ resources in pool
⟨Property⟩ as specified by resource connection ⟨Benefit⟩.

Figure 5.4: Palette: an Acquisition pattern

Acquisition

Designers can apply the Acquisition pattern for offering players a way to acquire
property by spending currency. The visual representation of the Acquisition pattern
is shown in Figure 5.4. Visual MPL can be distinguished from MM by a rectangle
with a crooked edge pattern label on the top left, its name appearing in the top
center. Patterns consist of named elements called participants. Acquisition has five
participants, three nodes and two edges. Each participant name represents the role
the participant plays in its context. We explain them one by one.

• Energy is a node of type pool, which abstracts from an in-game entity modeled
by an MM diagram and can contain resources. Pools appear as a circle that
contains an optional amount of starting resources, and zero or more categories
that specify design intent. In our example palette, the category symbol ($)
marks that a node abstracts from currency such as gold, crystals or lumber, and
is intended for spending.

• Property is another pool. Its category symbol (+) marks that it abstracts from a
diagram node whose resources players desire to have such as health (hp).

• Cost is a resource connection, an edge with a flow rate expression that specifies the
amount of resources that can flow, in this case how much the acquisition costs.

• Benefit is another resource connection that specifies how much Property the
acquisition yields.

• Acquire is a converter, appearing as a triangle pointing to the right with a vertical
line through themiddle, that converts one type of resource into another. Acquire
is the only node that acts in this pattern by pulling resources along its input
(Cost), and pushing resources along its output (Benefit). Using the game’s user
interface, players can activate nodes that have an interactive activation modifier,
visually marked with a double line, but converters only work when all resources
on its inputs are available.

190 chapter 5 designing game mechanics with patterns

costUpgrade:
10 * bonus^2

buyShield

hp

getMedkit:
20

dmgHp:
(100-shield)*0.1

Income:
bonus

kill

costShield:
10 + shield

getShield:
10

0
$

gold

buyMedkit

costMedkit: 10

0
+

shield

100
+

getBonus:
1

upgrade

*

*

dmgShield: 5

damage

bonus

2
+

A1

A2

A3

Figure 5.5: MM diagram showing three Acquisition cases

Table 5.2: Acquisition pattern cases in JJ

role A1 A2 A3

Energy gold gold gold
Acquire buyMedkit buyShield upgrade
Property hp shield bonus
Cost costMedkit costShield costUpgrade
CostExp 10 10 + shield 10 * bonus2

Benefit getMedit getShield getBonus
BenefitExp 20 10 1

MeDeA analyzes our example diagram of Figure 5.3 against the Acquisition pattern,
and recognizes three cases. Figure 5.5 shows pattern instances A1, A2 and A3 (in light
gray) that overlap in role Energy played by diagram pool gold (dark gray). Table 5.2
shows how roles are assigned over diagram elements and flow rates. MeDeA uses
the pattern template to explain each pattern case to designers as shown in Table 5.3.

Dynamic Engine

Players require resources for activating one or more game-economic actions, in this
case gold. The Dynamic Engine pattern, shown in Figure 5.6, introduces income and a

5.3 mechanics design assistant 191

Table 5.3: MeDeA explains three Acquisition cases in JJ

case explanation

A1 Activating converter buyMedkit costs 10 resources from pool gold as
specified by resource connection costMedit and yields 20 resources
in pool hp as specified by resource connection getMedkit.

A2 Activating converter buyShield costs 10+shield resources from pool
gold as specified by resource connection costShield and yields 10
resources in poolshield as specified by resource connection getShield.

A3 Activating converter upgrade costs 10*bonus2 resources from pool
gold as specified by resource connection costUpgrade and yields 1
resources in pool hp as specified by resource connection getBonus.

+

Upgrades

Benefit:
BenefitExp

Cost:
CostExp

pattern

IncomeExp

Upgrades

Producer

Income:
IncomeExp

*

Invest

 Spend:
 SpendExp

Act

$

Energy

Intent: Source ⟨Producer⟩ produces an adjustable flow ⟨Income⟩ of ⟨IncomeExp⟩
resources. Players can invest using converter ⟨Invest⟩ to improve the flow.
Apply when: Apply Dynamic Engine for introducing a trade-off between spending
currency ⟨Energy⟩ on long-term investment ⟨Invest⟩ and short-term gains ⟨Act⟩.

Figure 5.6: Palette: a Dynamic Engine pattern

tradeoff between long-term investments and short-term gains [AD12]. We explain its
participants.

• Producer is a source. A source node, appearing as a triangle pointing up, is
the only element that can generate resources. A source can be thought of
as a pool with an infinite amount of resources. It can push any amount of
resources, and therefore provides the flow rates specified by its outputs to the

192 chapter 5 designing game mechanics with patterns

Table 5.4: Dynamic Engine pattern cases in JJ

role D1 D2

Producer kill kill
Energy gold gold
Invest upgrade upgrade
Act buyMedkit buyShield
Upgrades bonus bonus
Income income income
IncomeExp bonus bonus
Cost costUpgrade costUpgrade
CostExp 10 + bonus2 10 + bonus2

Benefit getBonus getBonus
BenefitExp 1 1
Spend costMedkit costShield
SpendExp 10 10 + shield

respective targets. The automatic activation modifier (*) of Producer specifies it
automatically provides IncomeExp resources via resource connection Income.

• Energy is a pool specifying currency ($) gained.
• Invest is a converter converting Energy into Upgrades.
• Act is an abstract node, visually represented as a star, that represents any kind

of node that players can activate for spending Energy. In this pattern it also
represents an alternative user action to Invest.

• Upgrades is a pool whose resource amount influences Income positively and is
marked as property (+).

• Income is a resource edge where its flow rate IncomeExp grows monotonically
with Upgrades, as defined by the constraint on the left bottom of the diagram.
This has to be the case for investment to be beneficial. A dashed edge signifying
Upgrades is used in Income makes the feedback loop explicit.

• Cost is a resource edge specifying the cost of Invest from Energy.
• Benefit is resource edge specifying the benefit of Invest to Upgrades.
• Spend is a resource edge specifying the cost of Act.

MeDeA again analyzes our example diagram, now using the Dynamic Engine
pattern and finds it twice as shown in Figure 5.7, and the pattern roles are distributed
as shown in Table 5.4. The difference between instances D1 and D2 is buyMedkit is
replaced by buyShield. MeDeA’s explanation of pattern case D1 is shown in Table 5.5.
We omit its explanation of D2. We remark that in JJ kill happens automatically, but
only when a player shoots an enemy, not every step.

5.3 mechanics design assistant 193

costUpgrade:
10 * bonus^2

buyShield

hp

getMedkit:
20

dmgHp:
(100-shield)*0.1

Income:
bonus

kill

costShield:
10 + shield

getShield:
10

0
$

gold

buyMedkit

costMedkit: 10

0
+

shield

100
+

getBonus:
1

upgrade

*

*

dmgShield: 5

damage

bonus

2
+

D1

D2

Figure 5.7: MM diagram showing two Dynamic Engine cases

Table 5.5: MeDeA explains a Dynamic Engine case in JJ

case explanation

D1 Source kill produces an adjustable flow income of bonus resources.
Players can invest using converter upgrade to improve the flow. Ap-
ply Dynamic Engine for introducing a trade-off between spending
currency gold on long-term investment upgrade and short-term gains
buyMedkit.

Static Friction

So far our palette contains only patterns for gaining and converting resources. We need
just onemore pattern to explain all elements in the diagram. The Static Friction pattern
is intended to counter positive effects a player tries to achieve, posing a challenge
[AD12]. Its visual representation and pattern cases and MeDeA’s explanations are
shown in Figure 5.8, Table 5.6 and Table 5.7. This concludes our concise explanation
of MeDeA’s pattern-based analysis.

5.3.2 Mixed-Initiative Design Decision Making

MeDeA facilitates the process of understanding and making game design decisions as
we have seen in the previous section. It supports a process that consists of a sequence

194 chapter 5 designing game mechanics with patterns

Energy

Loss:
LossExp

*

Lose

pattern

Intent: Drain ⟨Lose⟩ causes a loss by pulling flow rate ⟨LossExp⟩ via resource con-
nection ⟨Loss⟩ from pool ⟨Energy⟩.

Figure 5.8: Palette: a Static Friction pattern

Table 5.6: Static Friction pattern cases in JJ

role F1 F2

Energy shield hp
Loss dmgShield dmgHp
LossExp 5 (100-shield)*0.1
Lose damage damage

Table 5.7: MeDeA explains Static Friction cases in JJ

case explanation

F1 Drain damage causes a loss by pulling flow rate (100-shield)*0.1 via
resource connection dmgHp from pool hp.

F2 Drain damage causes a loss by pulling flow rate 5 via resource con-
nection dmgShield from pool shield.

of simple steps as shown in Figure 5.9. Rectangles represent data structures and
rounded rectangles represent processes either primarily controlled by the user (light
gray) or MeDeA (dark gray). By default MeDeA recognizes a full pattern in a diagram,
associating a diagram element to each role in the pattern. However, MeDeA can also
recognize partial matches, where not all roles in the pattern are represented, yielding
a possibly large set of extension points to the diagram with respect to the pattern. Each
extension point is associated with a set of pattern elements that did not match we call
the extension. Given a designer’s decision to apply the pattern, we reason that each
extension is a possible design decision. The problem is that exploring a large set of
decisions alternatives is not feasible. Our solution is to step-by-step filter the design
alternatives by letting the designer associate roles to diagram elements for cherry

5.3 mechanics design assistant 195

Pattern
Palette

Pattern
Selection

1 Pattern Pattern
Restriction

2

Search
Parameters

Diagram
Analysis

3Diagram

Design
Decisions

Decision
Filtering

4

Filtered
Decisions

Decision
Selection

5Selected
Decision

Decision
Application

6

Figure 5.9: MeDeA iterative decision making process

Figure 5.10: MeDeA: A Pattern-Based Game Mechanics Design Assistant

picking from a restricted set of alternatives. We explain the decision-making process
and detail the steps designers take.

1. Pattern Selection. Select a pattern from the palette displayed by MeDeA for
modifying a diagram.

2. Pattern Restriction. Choose the minimum amount of pattern elements (mini-
mummatch size) for which rolesmust bemapped to diagram elements, affecting
the size of the extension point. Optionally, restrict the search for design decisions
by step-by-step assigning roles to names of elements in the diagram. This yields
role constraints that target the search.

3. Diagram Analysis. Initiate the analysis of the diagram against the pattern.
MeDeA generates a potentially large set of design decisions, every way the

196 chapter 5 designing game mechanics with patterns

pattern applies to the diagram, given the minimum match size and predefined
role constraints.

4. Decision Filtering. Filter the generated design decisions by further assigning
roles to names of elements in the diagram. This yields additional role constraints
that exclude generated decisions by filtering them out.

5. Decision Selection. Visually inspect the remaining design decisions, and
select one that expresses design intent. MeDeA shows a visual rendering of
diagram resulting from the design decision, providing colors for distinguishing
between existing (black), found (blue), added/not found (green). For each
visual representation MeDeA also shows the design intent specified by the
pattern in which roles and amounts are replaced by their concrete names and
values in the diagram.

6. Decision Application. Apply the selected design decision after providing
MeDeA with names for all added elements (green) and flow amounts for all
added edges. Additionally, found elements (blue) are optionally adjusted and
replaced. MeDeA then then replaces the current diagram by the newly created
one. This concludes the iteration, continue at step 1.

5.3.3 Assisted Game Mechanics Authoring

We now demonstrate howMeDeA assists in authoring3 the mechanics of our running
example shown in Figure 5.3 by following the decision process of Figure 5.9. We
start with an empty diagram that we view as an empty canvas. First we select the
Acquisition pattern from our palette. The pattern cannot match, because the canvas is
empty, but we restrict the pattern to a minimum match size of zero, allowing us to
add it. We provide MeDeA with the role names and edge flow rates specified by A1
shown in Table 5.2 and apply the change. We again select Acquisition, restricting the
pattern to a minimum match size of one, which yields seven decisions. We restrict
the role Energy to gold, leaving four decisions. We select the decision where the other
roles are added, providing values for them from A2 as before and repeat these steps
for A3. Our diagram now has the elements highlighted with gray in Figure 5.5.

Next we select the Dynamic Engine pattern from our palette and restrict the
minimum match size to five. MeDeA offers twenty-seven design decisions. We
associate the role Upgrades to bonus, Energy to gold and Invest to upgrade, leaving just
three decisions. We pick one of two where buyMedkit or buyShield play role Act and
apply it. The unassigned roles are Producer and Income, which we name kill and
income respectively. We give income a flow rate of bonus, thereby satisfying the pattern
constraint. Our diagram now contains the elements highlighted in gray in Figure 5.7.

Next we select the Static Friction pattern from our palette, restricting Energy to
hp yielding one design decision. We apply it, providing vales for pattern roles Loss

3
https://vrozen.github.io/fdg2015/MeDeA_authoring.mp4 (visited September 1st 2019)

5.3 mechanics design assistant 197

https://vrozen.github.io/fdg2015/MeDeA_authoring.mp4

Diagram d
Parse &

Desugar MM td
1 2

Pattern p Parse &
Desugar MPL

tp
1 2

Generate
Match

4 Rascal
source Eval

5

Extension
Points

Generate
Decisions

6
DecisionsFilter

7

Filtered
DecisionsVisualize

3 8

Figure 5.11: MeDeA: Model Transformation Steps

and Lose as specified by F1 shown in Table 5.6. Finally, we select Static Friction one
more time for also applying Static Friction to shield using the values specified by F2
for pattern role Loss. With these simple steps our diagram is now complete.

5.3.4 Tool Architecture

MeDeA is implemented in Rascal, a functional metaprogramming language and
language workbench for source code analysis andmanipulation [KvdSV09]. MeDeA’s
implementation4 counts just 2.7K lines of code excluding comments and white-space.
Each of MeDeA’s analysis and transformation steps is controlled from its UI shown
in Figure 5.10, which is programmed using the Rascal Figure library as interactive
visualization offering designers UI elements for mixed-initiative decision making as
explained in Section 5.3.2.

Figure 5.11 schematically shows the steps of how MeDeA processes diagrams
and patterns. MM and MPL each have their own grammar for parsing (1) textual
programs that are represented as visual diagrams and patterns in this paper. MM
and MPL parse trees are imploded against an Algebraic Data Type (ADT) such that
we get Abstract Syntax Trees (ASTs). These ASTs are desugared (2), a transformation
in which syntactic constructs added for user convenience are transposed to a more
fundamental ADT that we visualize (3). In our case the desugared ADT is the same
for MM and MPL, which is necessary for our approach because we rely on a Rascal
feature called set matching for our results.

We generate Rascal programs (4) in which parameterized ADTs for patterns are
matched against the ADTs of diagrams. Some ADT fields are parameters and some
are constants, depending on the pattern, the diagram and optional user-supplied
constraints for limiting the search space. When we evaluate (5) these programs with

4
https://github.com/vrozen/MeDeA (visited September 1st 2019)

198 chapter 5 designing game mechanics with patterns

https://github.com/vrozen/MeDeA

Rascal it uses backtracking to bind the parameters to constants in every possible
way, yielding a possibly large set of extension points to the diagram with respect
to the pattern. From these extension points we generate design decisions (6) which
are visualized as partial diagrams without values for the added diagram elements.
Filtering (7) happens over this set using constraints posed by assigning diagram
element names to roles. We again use Rascal’s matching to filter out unwanted
solutions in which the roles (the pattern parameters) are bound to different constants.
When applying a decision the current diagram is replaced with a new one (8) in
which added elements have their variables bound to user supplied constants such as
element names and flow rate expressions.

5.4 discussion

MeDeA simplifies authoring, understanding and modifying a game’s game-economic
mechanics, and for its users is an improvement over editing textual MM programs.
However, the tool is currently limited to text or pattern-based authoring because
Rascal does not yet support visual edits on figures. Moreover, MeDeA is intended
for game designers that canwork as gameplay engineers, becausemechanicsmodeling is
an inherently complex technical discipline. MeDeA performs exhaustive calculations,
which means that larger diagrams matched against patterns with fewer user-defined
constraints result in larger search spaces, more extension points and longer calculation
times. However, diagrams are composed of modular constructs called components
[KvR13] (abstracted away in this paper), which ensures that diagrams are relatively
small. MeDeA supports a programmable extensible pattern palette for maintaining
patterns, which mitigates the lack of MPL patterns mined from software.

5.5 conclusion

We have presented a Mechanics Pattern Language (MPL) for programming patterns
that capture a wide range of game-economic mechanics with shared structures and
design intent, and a Mechanics Design Assistant (MeDeA) for analyzing, explaining
and understanding existing mechanics that also supports exploring and applying
decision alternatives for modifying mechanics. Its simple interface enables generating
decisions from patterns, filtering and selecting using simple point-and-click controls,
and all mechanics modifications result from applying generated design decisions.
MeDeA is implemented in the Rascal, a meta-programming language and language
workbench. Of course, MeDeA is an academic prototype, and the case study on
modifying the mechanics of Johnny Jetstream is a relatively small informal evaluation.
Because the approach is general, embeddable, reusable and maintainable we believe
it is a step towards industrially applicable game design tools. A more systematic
evaluation is part of future work.

5.4 discussion 199

5.5.1 Future Work

Our pattern-based mixed-initiative model-driven game design approach can be
extended by automating additional game disciplines and facets representing separated
concerns.

• Our approach for generating alternative design decisions for modifying me-
chanics can also be used for fully automatic game design. It complements
evolutionary approaches [TS08], which can also provide an alternative for
filtering, and can drive a game generator such as the Game-O-Matic [TBM+12],
Ludi [BM10] or the Angelina system [CC11]. Because MM is a reusable embed-
dable formalism that expresses extensible game economies in general, it is less
dependent on specific generators and constrained input. Recipes can consist of
names of patterns, resources and actions, and designers can analyze, modify
and fine-tune the generated results.

• Modifying games live—while they run—may help tackle adaptivity challenges
[LB11]. Modeling player behaviors and player experience respectively enable
automating mechanics testing and play testing.

• The gap between high-level game design patterns and programming game
mechanicsmay be bridged by further automating pattern-based transformations.
Case studies on games embedding MM can help evaluate howMPL patterns
relate to game design patterns, and how predictive they are for emergence. MPL
can support patternmining, relating palettes to existing game design knowledge
for forming genre-specific pattern palettes of game-economic game design lore.

• Amajor challenge remains engineering languages and tools for different experts
participating in game development processes. We argue for software language
engineering of game languages. This entails performing domain analyses
and meta-programming game design tools, e.g., writers require view points
on storylines whereas game designers need view points on game mechanics,
gameplay, levels and missions. Each of these view points could exist as a
separated concern, modified via live user interfaces designed to model, analyze
andgenerate content for composing high quality games. Ultimately, games could
be pieced together from sets of expressive, reusable, extensible, interoperable
and embeddable formalisms.

Acknowledgements.

I thank Paul Klint for discussions and proof reading, and the anonymous reviewers
for their insightful comments that helped restructure this paper.

200 chapter 5 designing game mechanics with patterns

TOWARD LIVE DOMAIN-SPECIFIC LANGUAGES 6
Abstract

Live programming is a style of development characterized by incremental
change and immediate feedback. Instead of long edit-compile cycles, developers
modify a running program by changing its source code, receiving immediate
feedback as it instantly adapts in response.

In this paper we propose an approach to bridge the gap between running
programs and textual Domain-Specific Languages (DSLs). The first step of our
approach consists of applying a novel model differencing algorithm, tmdiff, to
the textual DSL code. By leveraging ordinary text differencing and origin tracking,
tmdiff produces deltas defined in terms of the metamodel of a language.

In the second step of our approach the model deltas are applied at run time
to update a running system, without having to restart it. Since the model deltas
are derived from the static source code of the program, they are unaware of
any run-time state maintained during model execution. We therefore propose a
generic, dynamic patch architecture, rmpatch, which can be customized to cater
for domain-specific state migration. We illustrate rmpatch in a case study of a
live programming environment for a simple DSL implemented in Rascal for
simultaneously modeling and executing state machines.

6.1 introduction

The “gulf of evaluation” represents the cognitive gap between an action performed
by a user and the feedback provided to her about the effect of that action [LF95].
Live programming aims to bridge the gulf of evaluation by shortening the feedback
loop between editing a program’s textual source code and observing its behavior.
In a live programming environment the running program is updated instantly after

The content of this chapter was first published at the icmt 2015 conference, and later extended as
a sosym journal publication. This chapter is based on the latter, which extends the original work with
a generic run-time patch architecture (rmpatch), as well as the live state machine case study. It was
published as R. van Rozen and T. van der Storm. “Toward Live Domain-Specific Languages: From Text
Differencing to Adapting Models at Run Time”. In: Software & Systems Modeling 18.1 (Feb. 2019). Special
Section Paper on STAF2015. Received June 27th 2016. Revised May 26th 2017. Accepted June 20th 2017.
First Online August 14th 2017, pp. 195–212. issn: 1619-1374. doi: 10.1007/s10270-017-0608-7. For the
evaluation of tmdiff itself we refer to the original paper, which was published as R. van Rozen and
T. van der Storm. “Origin Tracking + Text Differencing = Textual Model Differencing”. In: Theory and
Practice of Model Transformations – Proceedings of the 8th International Conference on Model Transformation, ICMT
2015, L’Aquila, Italy, July 20–21, 2015. Ed. by D. Kolovos and M. Wimmer. Vol. 9152. LNCS. Springer, 2015,
pp. 18–33. isbn: 978-3-319-21155-8. doi: 10.1007/978-3-319-21155-8_2.

203

https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1007/978-3-319-21155-8_2

every change to the code [Tan13]. As a result, developers immediately see the
behavioral effects of their actions, and learn predicting how the program adapts to
targeted improvements to the code. In this paper we are concerned with providing
generic, reusable frameworks for developing “live DSLs”, languages whose users
enjoy the immediate feedback of live execution. We consider such techniques to
be first steps towards providing automated support for live languages in language
workbenches [EVV+13].

In particular, we propose two reusable components, tmdiff and rmpatch to
ease the development of textual live DSLs, based on a foundation of metamodeling
and model interpretation. tmdiff is used to obtain model-based deltas from textual
source code of a DSL. These deltas are then applied at run time by rmpatch to
migrate the execution of the DSL program [vdSto13]. This enables the users of a DSL
to modify the source and immediately see the effect.

The first component of our approach is the tmdiff algorithm [vRvdS15]. tmdiff
employs textual differencing and origin tracking to derive model-based deltas from
changes to textual source code. A textual difference is translated to a difference on
the abstract syntax of the DSL, as specified by a metamodel. As a result, standard
model differencing algorithms (e.g.,[AP03]) can be applied in the context of textual
languages.

The second component, rmpatch, is used to dynamically adapt model execution
to changes in the source code. This is achieved by “patching” the execution using the
deltas produced by tmdiff. We call differences applied to running programs exe-
cutable deltas. To apply executable deltas we require that a language is implemented
as a model interpreter [MFJ05]. In particular, we require that every class defined in a
language’s metamodel has an implementation counterpart in some programming
language (we use Java). The rmpatch architecture supports applying an executable
delta on the instances of those classes while the model is interpreted. To support
run-time state, we allow the run-time classes to extend the classes of the metamodel
with additional attributes and relations. Since the deltas produced by tmdiff are
unaware of those attributes and relations, the rmpatch engine is designed to be open
for extension to cater for migrating such domain-specific run-time state. rmpatch
has been applied in the development of a prototype live programming environment
for a simple state machine DSL. A state machine definition can be changed while it is
running, and the runtime execution will adapt instantly.

The key contribution of this paper is the combination of textual model differencing
and run-time model patching for adapting models at run time with “live” textual
DSLs, and to this end:

• We reiterate how textual differencing can be used to match model elements
based on origin tracking information and provide a detailed description of
tmdiff, including a prototype implementation (Section 6.3).

204 chapter 6 toward live domain -specific languages

foo.lang

“diff”

foo’.lang

Behavior(foo)

?

Behavior(foo’)

execute

?

execute

(a) How to get from a textual difference between
source code versions to a run-time difference in
behavior?

foo.lang

“diff”

foo’.lang

MM

∆(MM)

MM+

~δ�

MM+

parse/resolve execute

tmdiff 1 rmpatch+ 2

(b) Applying tmdiff to obtain model-based deltas
and rmpatch to migrate models at run time

Figure 6.1: Bridging the gap between textual models and running programs

• We present a generic architecture for run-time patching of interpreted models
(Section 6.4).

• We illustrate the framework using a live DSL environment for a simple state
machine language (Section 6.5).

6.2 from text differencing to live models at run time

We motivate our work by taking the perspective of developers who use textual DSLs
to iteratively modify and improve programs. Figure 6.1(a) gives an overview of the
challenge of bridging the gap between a developer’s textual model edits and the
associated program behavior that the developer needs to quickly observe, understand
and improve.

A developer writes a program (foo) in some language (lang), which can be executed
to obtain its behavior. The developer then evolves the program to a new version
(foo’) by updating its source, yielding a textual difference. In a traditional setting,
the effect of the change can only be observed by re-executing the program. However,
this involves compiling and executing the program from scratch. This can be a time
consuming distraction, losing all dynamic context observed while running foo. In
particular, all run-time state accumulated during the execution of program version foo
is lost when its next version foo’ is executed (again). We aim to make this experience
more fluid and live by obtaining a “run-time diff” from the textual “diff” between
successive program versions (foo and foo’), and then migrating its execution (from
Behavior(foo) to Behavior(foo’)) at run time.

Figure 6.1(b) shows an overview of our solution to this problem. The foo program
is mapped to an instance of a metamodel (MM), through parsing and name resolution.

6.2 from text differencing to live models at run time 205

Parsing constructs an initial containment hierarchy of the program in the form of
an Abstract Syntax Tree (AST). Name resolution, on the other hand, creates cross
references in the model based on the (domain-specific) referencing and scoping rules
of the language, yielding an Abstract Syntax Graph (ASG). The model is then executed
by an interpreter, which creates a run-time model corresponding to foo. This run-time
model is an instance of an enhanced metamodel (MM+), representing run-time state
as additional attributes and relations. We require that MM+ is an extension of MM.

Whenever the developer evolves the program’s source, the textual difference
between foo and foo’ is now mapped to a model-based delta over the metamodel MM
using tmdiff. Such a delta consists of an edit script which changes the model of
foo to a model representing foo’. That delta is then applied as an executable delta to
the executing run-time model of foo by rmpatch. Because the executing model has
additional run-time state that could become invalid, rmpatch needs to be augmented
with language-specific migrations. The generic part of rmpatch will only migrate
the parts defined by MM; the domain-specific customization defines what to do with
the extensions defined by MM+. At specific points during execution, the interpeter
will swap out the old version of the model, and start executing the new one, without
having to restart, and without losing state.

Note that the parts in boxes are the components that are language-specific. This
includes parsing and name resolution, which often need to be defined anyway, and a
model-based interpreter. tmdiff is completely language parametric, and thus can be
reused for multiple live DSLs. rmpatch is partially generic: it is generically defined
for deltas produced by tmdiff, but needs to be extended for dealing with the run-time
state extensions defined by MM+.

The rest of the paper is structured as follows. Next in Section 6.3 we describe how
tmdiff works. In Section 6.4, we showhow the deltas produced by tmdiff are applied
at run time using the generic patch architecture of rmpatch. The customization
of this architecture to support run-time state migration is described as part of our
case study based on state machines in Section 6.5. We show how this enables a live
programming environment for state machines using a prototype interpreter. We
conclude the paper with a discussion of related work and an outline for further
research.

6.3 tmdiff: textual model diff

6.3.1 Overview

tmdiff is a novel differencing algorithm that leverages ordinary text differencing and
origin tracking to derive model-based deltas from textual source code. Traditional
model differencing algorithms (e.g., [AP03]) determine which elements are added,
removed or changed between revisions of a model. A crucial aspect of such algo-

206 chapter 6 toward live domain -specific languages

rithms is that model elements need to be identified across versions. This allows the
algorithm to determine which elements are still the same in both versions. In textual
modeling [GBU08], models are represented as textual source code, similar to DSLs
and programming languages.

The actual model structure represented by an Abstract Syntax Graph (ASG) is
not first-class, but is derived from the text by a text-to-model mapping, which, apart
from parsing the text into an Abstract Syntax Tree (AST) specifying a containment
hierarchy also provides for reference resolution. After every change to the text,
the corresponding structure needs to be derived again. As a result, the identities
assigned to the model elements during text-to-model mapping are not preserved
across versions, and model differencing cannot be applied directly.

Existing approaches to textual model differencing are based on mapping textual
syntax to a standard model representation (e.g., languages built with Xtext are
mapped to EMF [EB10]) and then using standard model comparison tools (e.g.,
EMFCompare [BP08; Ecl12]). As a result, model elements in both versions are
matched using name-based identities stored in the model elements themselves. One
approach is to interpret such names as globally unique identifiers: match model
elements of the same class and identity, irrespective of their location in the containment
hierarchy of the model. Other approaches are to match elements in collections at the
same position in the containment hierarchy, to use similarity-based heuristics or to
construct a purpose-built algorithm.

Unfortunately, each of these approaches has its limitations. In the case of global
names, the language cannot have scoping rules: it is impossible to have different
model elements of the same class with the same name. On the other hand, matching
names relative to the containment hierarchy entails that scoping rules must obey the
containment hierarchy, which limits flexibility in terms of scoping. While similarity-
based matching techniques can deal with scopes, these may also require fine-tuning
the heuristic to obtain more accurate results for specific languages and uses.

tmdiff is a language-parametric technique for model differencing of textual
languages with complex scoping rules, but at the same time is agnostic of the model
containment hierarchy. As a result, different elements with the same name, but in
different scopes can still be identified. tmdiff is based on two key techniques:

• Origin tracking. In order to map model element identities back to the source,
we assume that the text-to-model mapping applies origin tracking [IvdSE14;
vDKT93]. Origin tracking induces an origin relationwhich relates source locations
of definitions to (opaque) model identities. Each semantic model element can
be traced back to its defining name in the textual source, and each defining
name can be traced forward to its corresponding model element.

• Text Differencing. tmdiff identifies model elements by textually aligning defi-
nition names between two versions of a model using traditional text differencing

6.3 tmdiff : textual model diff 207

1 machine doors d1

2 state closed d2

3 open => opened

4

5 state opened d3

6 close => closed

7 end

(a) Doors1 source code

d1: Mach

d2: State d3: State

:Trans
event: "open"

:Trans
event: "close"

(b) Doors1 model

Figure 6.2: Doors1: a simple textual representation of a state machine and its model

techniques (e.g., [MM85]). When two names in the textual representations of
two models are aligned, they are assumed to represent the same model element
in both models. In combination with the origin relation this allows tmdiff to
identify the corresponding model elements as well.

The resulting identification of model elements can be passed to standard model
differencing algorithms, such as the one by Alanen and Porres [AP03].

tmdiff enjoys the important benefit that it is fully language parametric. tmdiff
works irrespective of the specific binding semantics and scoping rules of a textual
modeling language. In other words, how the textual representation is mapped to
model structure is irrelevant. The only requirement is that semantic model elements
are introduced using symbolic names, and that the text-to-model mapping performs
origin tracking.

Here we introduce textual model differencing using a simple motivating example
that is used as a running example throughout the paper. Figure 6.2 shows a state
machine model for controlling doors. It is both represented as text (left) and as
object diagram (right). A state machine has a name and contains a number of state
declarations. Each state declaration contains zero or more transitions. A transition
fires on an event, and then transfers control to a new state.

The symbolic names that define entities are annotated with unique labels dn . These
labels capture source locations of names. That is, a name occurrence is identified with
its line and column number and/or character offset1. Since identifiers can never
overlap, labels are guaranteed to be unique, and the actual name corresponding to
label can be easily retrieved from the source text itself. For instance, the machine itself
is labeled d1, and both states closed and opened are labeled d2 and d3 respectively.

The labels are typically the result of name analysis (or reference resolution),
which distinguishes definition occurrences of names from use occurrences of names
according to the specific scoping rules of the language. For the purpose of this paper

1For the sake of presentation, we use the abstract labels di for the rest of the paper, but keep in mind
that they represent source locations

208 chapter 6 toward live domain -specific languages

1 machine doors d4

2 state closed d5

3 open => opened

4 lock => locked

5

6 state opened d6

7 close => closed

8

9 state locked d7

10 unlock => closed

11

12 end

(a) Doors2

1 machine doors d8

2 state closed d9

3 open => opened

4 lock => locking.locked

5

6 state opened d10

7 close => closed

8

9 locking d11 {

10 state locked d12

11 unlock => closed

12 }

13 end

(b) Doors3

Figure 6.3: Two new versions of the simple state machine model Doors1

it is immaterial how this name analysis is implemented, or what kind of scoping rules
are applied. The important aspect is to know which name occurrences represent
definitions of elements in the model.

By propagating the source locations (di) to the fully resolved model, symbolic
names can be linked to model elements and vice versa. On the right of Figure 6.2, we
have used the labels themselves as object identities in the object model. Note that
the anonymous Transition objects lack such labels. In this case, the objects do not
have an identity, and the difference algorithm will perform structural differencing
(e.g., [Yan91]), instead of semantic, model-based differencing [AP03].

Figure 6.3 shows two additional versions of the state machine of Figure 6.2. First
the machine is extended with a locked state in Doors2 (Fig. 6.3a). Second, Doors3
(Fig. 6.3b), shows a grouping feature of the language: the locked state is part of the
locking group. The grouping construct acts as a scope: it allows different states with
the same name to coexist in the same state machine model.

Looking at the labels in Figure 6.2 and 6.3, however, one may observe that the
labels used in each version are disjoint. For instance, even though the defining name
occurrences of the machine doors and state closed occur at the exact same location in
Doors2 and Doors3, this is an accidental result of how the source code is formatted.
Case in point is the name locked, which now has moved down because of the addition
of the group construct.

The source locations, therefore, cannot be used as (stable) identities during model
differencing. The approach taken by tmdiff involves determining added and removed
definitions by aligning the textual occurrences of defining names (i.e. labels di). Based

6.3 tmdiff : textual model diff 209

src1

src2

m1

m2

map

origin1

identify

map

origin2

align ∆

Figure 6.4: Identifying model elements in m1 and m2 through origin tracking and alignment of
textual names.

--- a/doors1.sl

+++ b/doors2.sl

@@ -3,0 +4

+ lock => locked

@@ -6,0 +8,3

+

+ state locked

+ unlock => closed

(a) Textual diff between Doors1 and Doors2

--- a/doors2.sl

+++ b/doors3.sl

@@ -4 +4

- lock => locked

+ lock => locking.locked

@@ -8,0 +9

+ locking {

@@ -10,0 +12

+ }

(b) Textual diff between Doors2 and Doors3

Figure 6.5: Textual diff between Doors1 and Doors2, and Doors2 and Doors3 2

on the origin tracking between the textual source and the actual model we identify
which model elements have persisted after changing the source text.

This high-level approach is visualized in Fig. 6.4. src1 and src2 represent the
source code of two revisions of a model. Each of these textual representations is
mapped to a proper model, m1 and m2 respectively. Mapping text to a model induces
origin relations, origin1 and origin2, mapping model elements back to the source
locations of their defining names in src1 and src2 respectively. By then aligning
these names between src1 and src2, the elements themselves can be identified via the
respective origin relations.

2The diffs are computed by the diff tool included with the git version control system. We used
the following invocation: git diff --no-index --patience --ignore-space-change --ignore-blank-lines

--ignore-space-at-eol -U0 <old> <new>.

210 chapter 6 toward live domain -specific languages

create State d7

d7 = State("locked",[Trans("unlock", d2)])

d2.out[1] = Trans("lock", d7)

d1.states[2] = d7

(a) tmdiff Doors1 Doors2

create Group d11

d11 = Group("locking",[d7])

remove d4.states[2]

d4.states[2] = d11

(b) tmdiff Doors2 Doors3

Figure 6.6: tmdiff differences between Doorsi and Doorsi+1 (i ∈ {1, 2})

tmdiff aligns textual names by interpreting the output of a textual diff algorithm
on the model source code. The diffs between Doors1 and Doors2, and Doors2 and
Doors3 are shown in Fig. 6.5. As we can see, the diffs show for each line whether it
was added (“+”) or removed (“-”). By looking at the line number of the definition
labels di it becomes possible to determine whether the associated model element was
added or removed.

For instance, the new locked state was introduced in Doors2. This can be observed
from the fact that the diff on the left of Fig. 6.5 shows that the name “locked” is on a
line marked as added. Since the names doors, closed and opened occur on unchanged
lines, tmdiff will identify the corresponding model elements (the machine, and the 2
states) in Doors1 and Doors2. Similarly, the diff between Doors2 and Doors3 shows that
only the group locking was introduced. All other entities have remained the same,
even the locked state, which has moved into the group locking.

With the identification of model elements in place, tmdiff applies a variant of
the standard model differencing introduced in [AP03]. Hence, tmdiff deltas are
imperative edit scripts that consist of edit operations on the model. Edit operations
include creating and removing of nodes, assigning values to fields, and inserting or
removing elements from collection-valued properties. Figure 6.6 shows the tmdiff
edit scripts computed between Doors1 and Doors2 (a), and Doors2 and Doors3 (b). The
edit scripts use the definition labels dn as node identities.

The edit script shown in Fig. 6.6(a) captures the difference between source version
Doors1 and target version Doors2. It begins with the creation of a new state d7. On
the following line d7 is initialized with its name (locked) and a fresh collection of
transitions. The transitions are contained by the state, so they are created anonymously
(without identity). Note that the created transition contains a (cross-)reference to
state d2. The next step is to add a new transition to the out field of state d2 (which is
preserved from Doors1). The target state of this transition is the new state d7. Finally,
state d7 is inserted at index 2 of the collection of states of the machine d1 in Doors1.

The edit script introducing the grouping construct locking between Doors2 and
Doors3 is shown in Fig. 6.6(b). The first step is the creation of a new group d11. It is
initialized with the name "locking". The set of nested states is initialized to contain

6.3 tmdiff : textual model diff 211

1 list[Operation] tmDiff(str src1, str src2, obj m1, obj m2) {
2 <A, D, M> = match(src1, src2, m1, m2)
3 ∆ = [new Create(da , da .class) | da ←A]
4 M′ = M + { <da , da> | da ←A }
5 ∆ += [new SetTree(da , build(da , M′)) | da ←A]
6 for (<d1, d2> ←M)
7 ∆ += diffNodes(d1, d1, d2, [], M′)
8 ∆ += [new Delete(dd) | dd ←D]
9 return ∆

10 }

Figure 6.7: tmdiff

state d7 which already existed in Doors2. Finally, the state with index 2 is removed
from the machine d4 in Doors3, and then replaced by the new group d11.

In this section we have introduced the basic approach of tmdiff using the state
machine example. The next section presents tmdiff in more detail.

6.3.2 TMDiff in More Detail

Top-level Algorithm

Figure 6.7 shows the tmdiff algorithm in high-level pseudo code. Input to the
algorithm are the source texts of the models (src1, src2), and the models themselves
(m1, m2). The first step is to determine corresponding elements in m1 and m2 using
the matching technique introduced above. We further describe the match function
later in this section.

Based on the matching returned by match (line 2), tmdiff first generates global
Create operations for nodes that are in the A set (line 3). After these operations are
created, the matching M is “completed” into M′, by mapping every added object to
itself (line 4). This ensures that reverse lookups in M′ for elements in m2 will always be
defined. Each entity just created is initialized by generating SetTree operations which
reconstruct the containment hierarchy for each element da using the build function
(line 5). The function diffNodes then computes the difference between each pair of
nodes originally identified in M (lines 6–7). The edit operations will be anchored at
object d1 (first argument). As a result, diffNodes produces edits on “old” entities, if
possible. Finally, the nodes that have been deleted from m1 result in global Delete
actions (line 8).

212 chapter 6 toward live domain -specific languages

1 Matching match(str src1, str src2, obj m1, obj m2) {
2 P1 = project(m1)
3 P2 = project(m2)
4 <Ladd , Ldel> = split(diff(src1, src2))
5
6 i = 0, j = 0; A = {}, D = {}; I = {}
7 while (i < ∣P1∣ ∨ j < ∣P2∣) {
8 if (i < ∣P1∣ ∧ P1[i].line ∈ Ldel)
9 D += {P1[i].ob ject}; i += 1; continue

10 if (j < ∣P2∣ ∧ P2[j].line) ∈ Ladd)
11 A += {P2[j].ob ject}; j += 1; continue
12 if (P1[i].ob ject .class = P2[j].ob ject .class)
13 I += {<P1[i].ob ject, P2[j].ob ject>}
14 else
15 D += {P1[i].ob ject}; A += {P2[j].ob ject}
16 i += 1; j += 1
17 }
18 return <A, D, I>;
19 }

Figure 6.8: Matching model elements based on source text diffs.

Matching

The match function uses the output computed by standard diff tools. In particular,
we employ a diff variant called Patience Diff 3 which is known to often provide better
results than the standard, LCS-based algorithm [Mye86].

The matching algorithm is shown in Fig. 6.8. The function match takes the textual
source of both models (src1, src2) and the actual models as input (m1, m2). It first
projects out the origin and class information for each model (lines 1–2). The resulting
projections P1 and P2 are sequences of tuples ⟨x , c , l , d⟩, where x is the symbolic name
of the entity, c its class (e.g. State, Machine, etc.), l the textual line it occurs on and d
the object itself.

As an example, the projections for Doors1 and Doors2 are as follows:

3See: http://bramcohen.livejournal.com/73318.html

6.3 tmdiff : textual model diff 213

http://bramcohen.livejournal.com/73318.html

P1 =

[⟨doors, Machine, 1, d1⟩,
⟨closed, State, 2, d2⟩,
⟨opened, State, 5, d3⟩]

P2 =

[⟨doors, Machine, 1, d4⟩,
⟨closed, State, 2, d5⟩,
⟨opened, State, 6, d6⟩,
⟨locked, State, 9, d7⟩]

The algorithm then partitions the textual diff in two sets Ladd and Ldel of added
lines (relative to src2) and deleted lines (relative to src1) (line 4). The main while-loop
then iterates over the projections P1 and P2 in parallel, distributing definition labels
over the A, D and I sets that will make up the matching (lines 6–17). If a name occurs
unchanged in both src1 and src2, an additional type check prevents that entities in
different categories are matched (lines 12–15).

The result of matching is a triple M = ⟨A,D , I⟩, where A ⊆ Lm2 contains new
elements in m2, D ⊆ Lm1 contains elements removed from m1, and I ⊆ Lm1 × Lm2

represents identified entities (line 18), where Lm1 and Lm2 are labels of elements in m1
and m2 respectively. For instance the matchings between Doors1, Doors2, and between
Doors2 and Doors3 are:

M1,2 = ⟨{d7}, {}, {⟨d1 , d4⟩, ⟨d2 , d5⟩, ⟨d3 , d6⟩}⟩
M2,3 = ⟨{d11}, {}, {⟨d4 , d8⟩, ⟨d5 , d9⟩, ⟨d6 , d10⟩, ⟨d7 , d12⟩}⟩

Next we explain how the matching result is used for differencing nodes.

Differencing

The heavy lifting of tmdiff is realized by the diffNodes function. It is shown in Fig. 6.9.
It receives an existing entity as the current context (ctx), the two elements to be
compared (m1 and m2), a Path p which is a list recursively built up out of names and
indexes and the matching relation to provide reference equality between elements in
m1 and m2. diffNodes assumes that both m1 and m2 are of the same class (line 3). The
algorithm then loops over all fields that need to be differenced (lines 4–16). Fields can
be of four kinds: primitive (lines 5–6), containment (lines 7–11), reference (lines 12–13)
or list (lines 14–15). For each case the appropriate edit operations are generated, and
in most cases the semantics is straightforward and standard. For instance, if the field
is list-valued, we delegate differencing to an auxiliary function diffLists (not shown)
which performs Longest Common Subsequence (LCS) differencing using reference

214 chapter 6 toward live domain -specific languages

1 list[Operation] diffNodes(obj ctx, obj m1, obj m2, Path p, Matching M) {
2 assert m1.class = m2.class;
3 ∆ = []
4 for (f ←m1.class.fields) {
5 if (f .isPrimitive && m1[f] ≠ m2[f])
6 ∆ += [new SetPrim(ctx, p + [f], m2[f])]
7 else if (f .isContainment)
8 if (m1[f].class = m2[f].class)
9 ∆ += diffNodes(ctx, m1[f], m2[f], p + [f], M)

10 else
11 ∆ += [new SetTree(ctx, p + [f], build(m2[f], M))]

12 else if (f .isReference && M−1[m2[f]] ≠ m1[f])

13 ∆ += [new SetRef(ctx, p + [f], M−1[m2[f]])]
14 else if (f .isList)
15 ∆ += diffLists(ctx, m1[f], m2[f], p + [f], M)
16 }
17 return ∆
18 }

Figure 6.9: Differencing nodes

equality. The interesting bit happens when differencing reference fields. References
are compared via the matching M, highlighted in Figure 6.9.

In order to know whether two references are “equal”, diffNodes performs a reverse
lookup in M on the reference in m2 (line 12). If the result of that lookup is different
from the reference in m1 the field needs to be updated. Recall that M was augmented
to M′ (cf. Fig. 6.7) to contain entries for all newly created model elements. As a result,
the reverse lookup (line 13) is always well-defined. Either we find an already existing
element of m1, or we find a element created as part of m2, highlighted in Fig. 6.9.

6.3.3 Implementation in Rascal

We have implemented tmdiff in Rascal, a functional programming language for
metaprogramming and language workbench for developing textual DSLs [KvdSV09].
The code for the algorithm, the application to the example state machine language,
and the case study can be found on GitHub4.

Since Rascal is a textual languageworkbench [EVV+13] allmodels are represented
as text, and then parsed into an abstract syntax tree (AST). Except for primitive values

4
https://github.com/cwi-swat/textual-model-diff

6.3 tmdiff : textual model diff 215

https://github.com/cwi-swat/textual-model-diff

Events
Model
+ State

rmpatch

Delta

Edit Textual
Model

tmdiff

Programming Environment Running Program

Figure 6.10: Approach: using tmdiff and rmpatch for live programming

(string, boolean, integer etc.), all nodes in the AST are automatically annotated with
source locations to provide basic origin tracking.

Source locations are a built-in data type in Rascal (loc), and are used to relate
sub-trees of a parse tree or AST back to their corresponding textual source fragment.
A source location consists of a resource URI, an offset, a length, and begin/end and
line/column information. For instance, the name of the closed state in Fig. 6.3 is
labeled:

|project://textual-model-diff/input/doors1.sl|(22,6,<2,8>,<2,14>)

Because Rascal is a functional programming language, all data is immutable
and first-class references to objects are unavailable. Therefore, we represent the
containment hierarchy of a model as an AST, and represent cross-references by explicit
relations rel[loc from, loc to], once again using source locations to represent object
identities.

In prior work [vRvdS15], we have evaluated tmdiff on the version history of file
format specificationswritten in Derric, a real-life DSL that is used in digital forensics
analysis [vdBvdS11]. We found that tmdiff reliably computes small deltas between
consecutive versions of the Derric specifications of JPEG, GIF, and PNG.

6.4 rmpatch: generic run-time model patching

6.4.1 Overview

The previous section described the tmdiff algorithm to obtain model-based deltas
from textual source files. Here we introduce rmpatch, a generic architecture to
apply these deltas to run-time models that drive the execution of the models of
a language. During interpretation of such a model, users edit the textual model
using a live programming environment that embeds tmdiff for generating deltas for
successive model versions, as shown in Figure 6.10 on the left. These edit scripts are

216 chapter 6 toward live domain -specific languages

applied by rmpatch to migrate the model as part of the running program to reflect
the new version of the source code, as shown in Figure 6.10 on the right. Together
tmdiff and rmpatch provide a foundation for the design and implementation of
live programming environments, where textual models can be edited while they are
executing.

In order to provide a unified approach for recording and replaying model differ-
ences, we record a run-time history of events such as user interactions and changes
to the source code as edit operations on the run-time model. This history can be
used for implementing “undo”, persisting application state (cf. event sourcing),
and back-in-time debugging. When the developer edits a textual model and saves
a modified version, the programming environment applies tmdiff to the current
and the previous version of the textual model. It then passes the resulting delta to
rmpatch, which pauses the interpreter, applies the delta to the run-time model,
possibly migrating run-time state, and continues the interpreter. Similarly, we also
represent the effects of other events as deltas, e.g., resulting from a user pressing a
button or a sensor firing. In Figure 6.10 the oval “events” represents these cases.

6.4.2 Models at Run Time

Live programming environments enable adapting models at run time as text. Specifi-
cally, a model is an instance of a static metamodel of a language represented by an
ASG, which is obtained from text through parsing and name resolution. rmpatch
requires that a model interpreter is implemented in an object-oriented language, like
Java. In particular, it requires reflection for interpreting executable deltas that create
objects and assign values to fields. The interpreter executes a model as a run-time
model, an instance of a run-time metamodel, which extends the static metamodel of the
language by adding additional attributes and relations to model run-time state, and
methods that implement behavior.

For instance, a state machine can be executed by interpreting incoming events and
updating a current state attribute. In between such transitions, the run-time model
may need to be migrated however, because, in a live programming environment, the
source code of the state machine may have changed in the meantime. At dedicated
points in the execution, the interpreter must check for pending deltas (as produced
by tmdiff), and if there are any, apply them to the run-time model, before continuing
execution.

6.4.3 Applying Deltas at Run Time

The deltas produced by tmdiff are converted to run-time edit operations that can be
evaluated against an instance of the run-time metamodel. Every change computed by
tmdiff can be mapped to a change at run time, because the model of the source is

6.4 rmpatch : generic run -time model patching 217

subsumed by the run-time model. Applying a run-time delta contributes a sequence
of atomic edits to the run-time history of the running program. The edit operations
produced by tmdiff, however, are unaware of any additional state maintained in the
run-time models. For avoiding information loss and invalid run-time states, rmpatch
can be extended with custom state migrations. Migration effects are represented as
model edits too, making them part of the run-time history.

Recall that tmdiff produces edit scripts as shown in Figure 6.6:

create State d7 // create

d7 = State("locked",[Trans("unlock", d2)]) // setTree

d2.out[1] = Trans("lock", d7) // insertTree

d1.states[2] = d7 // insertRef

Such a script is represented as a list of edits, such as create, setTree, insertTree
and insertRef. In addition to these four, tmdiff generates delete, setPrim, remove,
insertRef and setRef operations. Create and delete are global operations, creating or
deleting objects from the model, respectively. The other, relative operations traverse a
path through the features of their owner object, the object operated on, (e.g., d7, d2, or
d1), and modify the traversed field accordingly. For instance, the last operation in the
edit script above, inserts state d7 in the machine’s (d1) list of states at index 2.

The edit operations setTree and insertTree take trees as arguments. Java makes
no distinction between a tree argument’s containment references and cross references,
and encodes both as object references. We therefore flatten tree operations to a
sequence of create, setPrim, setRef and insertRef operations. As a result rmpatch
only implements these operations, and delete and remove.

Owner objects are represented using opaque identities used internally by tmdiff.
rmpatch maintains an objectSpace table that maps these identities to Java objects.
The create and delete operations respectively add and remove objects in this table.
Since the identities are not stable across versions of a model, rmpatch uses the
tmdiff matching (see Section 6.3.2) information to adjust the object space to reflect
the situation after the edit operations have been applied.

Applying the edit operations to the run-time model is implemented using the
Visitor pattern [GHJ+94]. A base visitor defines visit methods for each type of edit
operation, and modifies the current model according to the semantics of the operation.
When an edit has been applied, it is added to the global history object to support
undo and replay.

The application of edit operations to a run-time model is unaware of invariants
concerning the run-time state extensions of that model. Naively applying a tmdiff
delta to the run-time model of a DSL program, might bring its execution in an
inconsistent state. For instance, in the case of state machines, what happens if the
current state is removed? What happens if the last remaining state is removed? These
questions cannot be answered in a generic, language independent way. We therefore

218 chapter 6 toward live domain -specific languages

Mach
– name: String

Element
– name: String

Group State

Trans
– event: String

Mach’

State’
– count: int

states

*

states

*

transitions

*

target

state

(a) Metamodel (b) Run-time extension

Figure 6.11: Static and run-time metamodel of SML

allow the base visitor to be extended with custom state migration logic to address
such questions. If such additional migration steps are realized as edit operations as
well, they can also be added to the global application history, to ensure that undo and
replay maintain consistency.

The next section describes how these technique have been applied in the de-
velopment of a live programming environment for the state machine language of
Section 6.3.

6.5 case study: live state machine language

6.5.1 Overview

Here we present a case study based on the simple State Machine Language (SML)
used as the running example in Section 6.3. We have used both tmdiff and rmpatch
to obtain a live programming environment for SML, called LiveSML. The static and
run-time metamodels of SML are shown in Figure 6.11.

The run-time model (Figure 6.11(b)) can be seen as an extension of the static
metamodel (Figure 6.11(a)); it includes all the attributes and relations of the static
model. However, to represent run-time state, there are additional attributes and
relations that do not exist in the static metamodel. For instance, run-time machines

6.5 case study: live state machine language 219

Source code perspective

(a) Editing Doors1

Run-time perspective

(b) Running Doors1

d1: Mach

d2: State d3: State

:Trans
event: "open"

:Trans
event: "close"

(c) Static model of Doors1

d1: Mach

d2: State
count: 1

d3: State
count: 0

:Trans
event: "open"

:Trans
event: "close"

state

(d) Run-time model of Doors1

Figure 6.12: LiveSML: the left shows the source code perspective with the IDE at the top and
the static model at the bottom. The right shows the run-time perspective with the state machine
GUI at the top, and the (extended) run-time model at the bottom.

(Mach objects) have a state field, representing the current state. Furthermore, the
State objects are extended with a count field, indicating how many times this state
has been visited.

LiveSML consists of two application components, shown in the top row of Fig-
ure 6.12. On the left, Figure 6.12(a) shows the programming environment of LiveSML,
which consists of an Eclipse-based IDE for editing state machines, implemented in
Rascal. The editor shows the Doors1 state machine.

On the right, Figure 6.12(b) shows the execution of Doors1 as an interactive GUI.
The user can click buttons corresponding to events defined in the state machine. The
main window shows a textual rendering of the state state machine in tabular form.
An asterisk indicates which state is the current one, and the column marked with the
pound symbol indicates how many times a state has been visited. The bottom row
shows the actual Doors1 state machine models. Figure 6.12(c) shows the static state
machine model that represents the textual source code of Doors1 shown in the editor.
Figure 6.12(d) shows the same state machine, represented as a dynamic model that is
executing at run time, which is shown in the GUI.

220 chapter 6 toward live domain -specific languages

1 class MigrateSML extends ApplyDelta {
2 private Mach machine; //run-time model to migrate

3
4 @Override
5 public void visit(Create create) {
6 super.visit(create);
7 Object x = create.getCreated(this);
8 if (x instanceof Mach) { //new machine

9 this.machine = (Mach) x;
10 }
11 else if (x instanceof State) { //new state

12 Edit e = new SetPrim(reverseLookup(x), new Path(new Field("count")), 0);
13 e.accept(this);
14 }
15 }
16
17 @Override
18 public void visit(Insert insert) {
19 super.visit(insert);
20 Object owner = insert.getOwner(this);
21 if (machine != null && machine.state == null && owner == machine) {
22 // Added a group or state to a machine without a current state.

23 goToInitialState();
24 }
25 }
26
27 @Override
28 public void visit(Delete delete) {
29 super.visit(delete);
30 Object x = delete.getDeleted(this);
31 if (machine != null && x == machine.state) { // Deleted the current state.

32 goToInitialState();
33 }
34 }
35
36 private void goToInitialState(){
37 State s = machine.findInitial();
38 Edit e1 = new Set(reverseLookup(machine),
39 new Path(new Field("state")), s);
40 e1.accept(this); //Set the current state.

41 if (s != null){
42 Edit e2 = new Set(reverseLookup(s), new Path(new Field("count")), s.count+1);
43 e2.accept(this); //Increment current state count.

44 }
45 }
46 }

Figure 6.13: MigrateSML extends ApplyDelta for SML state migration

6.5 case study: live state machine language 221

When a developer edits a textual model and saves a modified version, the
programming environment applies tmdiff to the current and the previous version
of the textual model. It then passes the resulting delta to the executing program
that embeds rmpatch. Similarly, when the user triggers an event, the program
calculates its own delta for updating its model elements. As a result, run-time model
transformations result either from textual model edits or user-level application events.

6.5.2 Migrating Domain-Specific Run-time State

Since the deltas produced by tmdiff only take the static metamodel of the source into
account, the generic rmpatch system needs to be extended to support dealing with
the state and count attributes. Note that in most cases, rmpatch will simply leave
these attributes intact, but in special cases, the outcome would lead to an inconsistent
state of the execution.

We define domain-specific state migration logic by extending the ApplyDelta
visitor provided by rmpatch, as shown in Figure 6.13. The class ApplyDelta defines a
visit method for each kind of edit supported by rmpatch. For LiveSML, we address
the following cases:

• Creation of a new machine. Initially there is no machine because we start with
an empty object space. We store a reference to the machine when it is first
created (lines 9 and 10).

• Creation of a new state. The count attribute is initialized to 0 (lines 12–15).
• Insertion of an element in an uninitialized machine. When a state or group

is inserted into a machine that has no current state (lines 24–29), it is initialized
to the initial state (lines 43–54). The initial state is the first state in the textual
model.

• Deletion of the current state. When a machine’s current state is deleted (lines
36–37), it is reinitialized to the initial state (lines 43–54).

Each domain-specific migration is represented using edit operations. For each
required side effect, new edit objects are created. For instance, initializing the count
field of a new state to 0, is enacted by a SetPrim edit, anchored at the new state, with
a path to field “count”. Applying these operations through the extended visitor
(MigrateSML) adds them to the application history of LiveSML.

6.5.3 Evolving and Using State Machines with LiveSML

The key point of LiveSML is that state machines can be edited and used at the same
time. In a sense, the source and run-time models coevolve in lockstep: changes to
the code are interleaved with user events, – both transform the run-time model using
deltas. To illustrate this coevolution, we present a prototype live editing scenario with
LiveSML.

222 chapter 6 toward live domain -specific languages

Table 6.1: Interleaved coevolution of models Doorsn and run-time states sn over time

Model State Event Edit operation Origin

∅ s0 Save Doors1 δ1 create lang.sml.runtime.State d2 tmdiff ∅ Doors1
δ2 d2.count = 0 side effect
δ3 create lang.sml.runtime.State d3
δ4 d3.count = 0 side effect
δ5 create lang.sml.runtime.Mach d1
δ6 d2 = State(name("closed"),[Trans("open",d3)])
δ7 d3 = State(name("opened"),[Trans("close",d2)])
δ8 d1 = Mach(name("doors"),[d2,d3])
δ9 d1.state = d2 side effect
δ10 d2.count = 1 side effect

Doors1 s1 Click open δ11 d1.state = d3 user action
δ12 d3.count = 1

Doors1 s2 Click close δ13 d1.state = d2 user action
δ14 d2.count = 2

Doors1 s3 Save Doors2 δ15 create lang.sml.runtime.State d7 tmdiff Doors1 Doors2
δ16 d7.count = 0 side effect
δ17 d7 = State(name("locked"),[Trans("unlock",d2)])
δ18 insert d2.transitions[1] = Trans("lock",d7)
δ19 insert d1.states[2] = d7
δ20 rekey d1 → d4
δ21 rekey d2 → d5
δ22 rekey d3 → d6

Doors2 s4 Click lock δ23 d4.state = d7 user action
δ24 d7.count = 1

Doors2 s5 Save Doors3 δ25 create lang.sml.runtime.Group d11 tmdiff Doors2 Doors3
δ26 d11 = Group("locking",[d6])
δ27 remove d4.states[2]
δ28 insert d4.states[2] = d0
δ29 rekey d4 → d8
δ30 rekey d5 → d9
δ31 rekey d6 → d10
δ32 rekey d7 → d12

Doors3 s6 Save Doors1 δ33 remove d8.states[2] tmdiff Doors3 Doors1
δ34 remove d9.transitions[1]
δ35 delete d11
δ36 delete d12
δ37 d13.state = d9 side effect
δ38 d9.count = 3 side effect
δ39 rekey d8 → d13
δ40 rekey d9 → d14
δ41 rekey d10 → d15

6.5 case study: live state machine language 223

s0 s1 s2 s3 s4 s5 s6 s7

∅ Doors1 Doors2 Doors3 Doors1

click
open

click
close

click
lock

Figure 6.14: Interleaved coevolution of models Doorsn and application run-time states sn over
time

Figure 6.14 shows its general time line. The top row shows five successive versions
of the state machine definition, starting in the version where there is no state machine
at all (∅). The bottom row shows successive states of the executing state machine.
Some state changes are triggered by source changes (e.g., from s0 to s1), while others
result from user interactions (e.g., s2 to s3).

The details of the application state transitions are listed in Table 6.1. The first
two columns indicate the start source model and run-time model state. The third
column (“Event”) captures what happened (“saving” or “clicking an event button”).
Each event causes a sequence of edits δi to be applied to the run-time model. Edits

Table 6.2: Sequence of screen shots of LiveSML’s programming environment (top) and running
application (bottom) while in application state si (i ∈ 0, ..., 7) of the interactive session with
LiveSML.

s0 s1 s2

224 chapter 6 toward live domain -specific languages

s3 s4 s5

s6 s7

6.5 case study: live state machine language 225

correspond directly to the operations generated by tmdiff. One additional operation
(rekey) is used to realign the internal object identities of the run-time model with
the opaque identities used by tmdiff; this operation is needed because the tmdiff
identities are not stable across revisions. The last column shows the origin of the
edit operations: an edit can originate from a tmdiff delta, a migration side-effect (as
described in Section 6.5.2), or a user action. The sequence of δi (i ∈ 1...41) represents
the full history of run-time model transformations.

Finally, Table 6.2 shows, yet again, the sequence of source models and program
states of the LiveSML session, – this time showing both the editor and the runtime
GUI. From left to right, the upper row shows states s0 to s2, the middle s3 to s5 and
the bottom row s6 and s7. An empty cell indicates that nothing has changed in the
editor with respect to the previous state.

We now briefly describe how each run-time model state sn in the sequence results
from textual model edits and user actions.

• s0. The application starts and the initial model is ∅. Both the editor and GUI are
empty.

• s1. Doors1 is entered into the editor, and saved. In response, the environment
computes the difference tmdiff ∅ Doors1. As a result, the GUI shows the
execution of Doors1. Both state count attributes are initialized to zero (δ2 and
δ4). The machine’s initial state is closed (marked by *) and its count is set to one
(δ9 and δ10).

• s2. The user clicks button open, which triggers the transition and produces δ11
and δ12.

• s3. The user clicks button close, which triggers the transition and produces δ13
and δ14.

• s4. The model is modified such that it becomes Doors2. In response, the
environment computes the difference between Doors1 and Doors2. The count
attribute of the locked state is initialized to zero (delta16). The UI now also
displays buttons for the lock and unlock events.

• s5. The user clicks button lock, which triggers the transition and produces
operations δ23 and δ24.

• s6. The model is modified such that it becomes Doors3. In response, the
environment computes the difference between Doors2 and Doors3. This time,
there are no migration side effects because the change has no semantic effect:
grouping is just a scoping mechanism.

• s7. Finally, the model is modified such that it becomes Doors1 again. As a result
of applying the differences, the current state locked is removed and therefore the
current state is reinitialized to the first state closed (δ37). Accordingly, its count is
set to three (δ38). Note that the buttons lock and unlock have been removed from
the UI since no such events exist anymore.

226 chapter 6 toward live domain -specific languages

The sequence of states of this LiveSML session shows the fine-grained interleaving
of edit operations originating from different sources. The execution of the state
machine adapts to both user events and changes in the source code. As such, LiveSML
provides a very fluid developer experience. Long edit-compile cycles are completely
eliminated.

6.6 discussion and related work

This paper presents an approach for live programming environments for textual
DSLs that builds on two reusable components: tmdiff and rmpatch. We reflect on
limitations, challenges and future work, and discuss related work.

6.6.1 Towards Live Domain-Specific Languages

Live DSLs aim for a low representation gap between domain, notation and run time.
Users can adapt run-time models directly from the textual source. We assume that
the run-time metamodel extends the static language metamodel, such as is the case in
LiveSML. This design choice facilitates applying changes of the source code to the
running program. The assumption does not hold in general, however. For instance
imperative languages have more complex mappings between code and execution.
Such languages therefore offer less direct affordances over a program’s execution,
breaking the continuous link between the mental model of the programmer, the code
and the running program.

Edit scripts are commonly used to encode model differences between versions
of models representing the abstract syntax of a language. Edit scripts precisely
encode what changed and in which order, but not why these effects happen. Typically,
language semantics refers to a formal definition that does include the precise causal
relationships from which these run-time changes result, which also enables formal
proofs. In our approach the behavioral evolution of executing models is influenced by
the waymodel differences are computed. When entities are not detected as “the same”
between versions the corresponding run-time objects will be removed or added, even
if this was not the behavior intended by the user of the modeling language. This
problem is not unique to our application of tmdiff, since any differencing algorithm
will have to use heuristics to match model elements. We hypothesize, however, that in
the context of live programming where immediacy of feedback is paramount, changes
tend to be small and local, reducing the risk of unintuitive matchings.

One question is whether replacing tmdiff by an alternative algorithm would
provide a better programmer experience. For instance, SiDiff [KKP+12; TBW+07],
DSMDiff [LGJ07] or EMFCompare [Ecl12] may result in a more accurate matchings
for specific circumstances. SiDiff in particular would be a candidate since it is
independent from any kind of scoping rules used to create references between model

6.6 discussion and related work 227

elements. SiDiff can be configured to make the algorithm perform better based on
certain language features. Unfortunately, adjusting the weights used in comparing
language features, often requires substantial empirical testing [KDP+09].

The question is if similarity-based heuristics would offer more predictable differ-
ences, and as a result more predictable run-time adaptation. Our hypothesis is that
tmdiff has the benefit that its mechanism for identifying model elements stays close
to the textual source representation of a model, which is precisely the material the
modeler is manipulating. Comparing alternative differencing approaches in terms of
predictability and run time performance is part of future work.

Our experience in using tmdiff and rmpatch shows that migrating run-time
state is complex. Even for a relatively simple language like LiveSML, the extensions of
rmpatch to migrate state must account for many possible transformation scenarios.
Since edit operations are applied in sequence, one must make careful assumptions
about the existence or absence of objects and references. The key question is then
if the correct interleaving of migration edits with the original edits produced by
tmdiff could be automatically derived. In future work we plan to address this
challenge by separately modeling and maintaining migration scenarios that abstract
from underlying edits, and use dependency analysis to derived possible orderings of
run-time model modifications.

Assessing if rmpatch scales to larger systems requires additional case studies
on real-world live DSLs, in particular those whose source and run-time metamodels
differ more substantially than in the case of LiveSML. To investigate this question
further, we plan to apply rmpatch to Micro-Machinations, a visual language and
execution engine that enables game designers to adapt a game’s mechanics while it
is running [vRD14]. Its live programming environment is called Mechanics Design
Assistant (MeDeA) [vRoz15a].

The run-time metamodel of Micro-Machinations adds a new level of dynamic
instantiation: at run time there are “instance” level models which are not directly
represented by textual source code, but which depend on source-defined entity
definitions. Such languages require a pipeline of coupled transformations between
source and runtime. The question is how modification effects propagate in a well-
defined way. This problem is not unlike migrating objects after a change in class
(e.g., in Smalltalk), or database migration upon schema change. In fact, these kinds
of migrations are instances of the general class of coupled transformations [Läm04]
where a transformation of one model induces a “coupled” transformation on another
(possibly over a different metamodel). Further research is needed to formalize run-
time patching presented here using this framework. This could help to precisely
delineate the scope and limitations of rmpatch-like run-time adaptation.

Reversible transformations support features for programming environments such
as undoing edits, rollback, restoring system states, replaying anddebugging. rmpatch

228 chapter 6 toward live domain -specific languages

operations can be augmented with extra information to make every edit operation
– and thus complete edit scripts – reversible. The question is to what extent such
features can be support by generic, reusable components. Although it is clear how to
“unapply” edit operations on the run-time model, performing this same operation on
the textual source code requires more advanced machinery, such as origin tracking,
source code formatting and reversing source-to-source transformations.

At this time, tmdiff and rmpatch offer no special support for model merging,
which, for instance, would be interesting for hypothetical exploration of dynamic
what-if scenarios. Further research is needed to investigate how different deltas
produced by tmdiff can be combined for this purpose and how to resolve merge
conflicts at run time.

6.6.2 Limitations of TMDiff

Unlike rmpatch, the tmdiff algorithm can be used independently. In this section
we identify a number of limitations of tmdiff as a separate component and discuss
directions for further research.

Thematching of entities uses textual deltas computed by diff as a guiding heuristic.
In rare cases this affects the quality of the matching. For instance, diff works at the
granularity of a line of code. As a result, any change on a line defining a semantic
entity will incur the entity to be marked as added. The addition of a single comment
may trigger this incorrect behavior. Furthermore, if a single line of code defined
multiple entities, a single addition or removal will trigger the addition of all other
entities. Nevertheless, we expect entities to be defined on a single line most of the
time.

If not, the matching process can be made immune to such issues by first pretty-
printing a textual model (without comments) before performing the textual com-
parison. The pretty-printer can then ensure that every definition is on its own line.
Note, that simply projecting out all definition names and performing longest common
subsequence (LCS) on the result sequences abstracts from a lot of textual context that
is typically used by diff-like tools. In fact, this was our first approach to matching.
The resulting matchings, however, contained significantly more false positives.

Another factor influencing the precision of the matchings is the dependence on the
textual order of occurrence of names. As a result, when entities are moved without
any further change, tmdiff will not detect it as such. We have experimented with
a simple move detection algorithm to mitigate this problem, however, this turned
out to be too computationally expensive. Fortunately, edit distance problems with
moves are well-researched, see, e.g., [Tic84]. A related problem is that tmdiff will
always see renames as an addition and removal of an entity. In general, edit scripts
consisting of long sequences of atomic operations are hard to understand. However,
user-level composite operations such as renaming and more complex refactorings

6.6 discussion and related work 229

can be detected in existing sequences of atomic operations, e.g., using the approach
proposed by Langer et al. [LWB+13], or the rule-based semantic lifting approach
proposed by Kehrer et al. [KKT11].

6.6.3 Related Work

The key contribution of this paper intersects two areas of related work: model
differencing and dynamic adaptation of models at run time. Below we discuss
important related work in both these areas.

Model Differencing

Much work has been done in the research area of model comparison that relates to
tmdiff. We refer to a survey of model comparison approaches and applications by
Stephan andCordy for an overview [SC13]. In the area ofmodel comparison, calculation
refers to identifying similarities and differences between models, representation refers
to the encoding form of the similarities and differences, and visualization refers to
presenting changes to the user [KDP+09; SC13]. Here we focus on the calculation
aspect.

Calculation involves matching entities between model versions. Strategies for
matching model elements include matching by 1) static identity, relying on persistent
global unique entity identifiers; 2) structural similarity, comparing entity features;
3) signature, using user defined comparison functions; 4) language specific algorithms
that use domain specific knowledge [SC13]. With respect to this list, our approach
represents a new point in the design space: matching by textual alignment of names.

The differencing algorithm underlying tmdiff is directly based on Alanen and
Porres’ seminal work [AP03]. The identification map between model elements is
explicitly mentioned, but the main algorithm assumes that model element identities
are stable. Additionally, tmdiff supports elements without identity. In that case,
tmdiff performs a structural diff on the containment hierarchy (see, e.g.,[Yan91]).

tmdiff’s differencing strategy resembles the model merging technique used
Ensō [vdSCL14]. The Ensō “merge” operator also traverses a spanning tree of two
models in parallel andmatches up object with the same identity. In that case, however,
the objects are identified using primary keys, relative to a container (e.g., a set or
list). This means that matching only happens between model elements at the same
syntactic level of the spanning tree of an Ensō model. As a result, it cannot deal with
“scope travel” as in Fig. 6.3c, where the locked state moved from the global state to
the locking scope. On the other hand, the matching is more precise, since it is not
dependent on the heuristics of textual alignment.

Epsilon is a family of languages and tools for model transformation, model
migration, refactoring and comparison [KPP08]. It integrates HUTN [RPK+08], the

230 chapter 6 toward live domain -specific languages

OMG’s Human Usable Text Notation, to serialize models as text. As result, which
elements define semantic identities is known for each textual serialization. In other
words, unlike in our setting, HUTN provides a fixed concrete syntax with fixed
scoping rules. tmdiff allows languages to have custom syntax, and custom binding
semantics.

Lin et al. describe DSMDiff, a signature-based differencing approach which is
intended specifically for Domain-Specific Modeling Languages [LGJ07]. DSMDiff
uses a signature-based matching over node and edge model elements, augmented by
structural matching when the signature-based matching produces multiple matching
candidates.

Maoz et al. propose semantic differencing, an approach that defines diff operators
for comparing two models where the resulting differences are presented as a set
of semantic diff witnesses, instances of the first model that are not instances of the
second [MRR11]. These instances are concrete examples explaing how the models
differ. Maoz and Ringert relate syntactic changes to semantic witnesses by defining
necessary and sufficient sets of change operations [MR15].

Langer et al. present a general approach for semantic differencing that can be
customized for specific modeling languages. This approach is based on the behavioral
semantics of a modeling language [LMK14]. Two versions of a model are executed
to capture execution traces that represent its semantic interpretation. Comparing
these traces then provide a “semantic” interpretation of the difference between the
two versions. In contrast, our approach starts at the opposite end: instead of using
execution traces to explain syntactic differences, we use syntactic differences to drive
the execution in the first place.

Cicchetti et al. propose a representation ofmodel differences which ismodel-based,
transformative, compositional and metamodel independent [CDP10]. Differences are
represented as models that can be applied as patches to arbitrary models. Although
no special extension points are offered for supporting run-time state migrations, the
model-based differences themselves could be used to represent them.

Dynamic Adaptation

“Models at run time” is a well-researched topic, as, for instance, witnessed by the
long running workshop on Models@run.time [GBF15]. Executable modeling can be
considered a subdomain of models at run time, where a software system’s execution
is defined by a model interpreter. Executable modeling was pioneered in the context
of the Kermeta system [CCP12; MFJ05]. Kermeta is also the basis for recent work on
omniscient debugging features for xDSMLs [BCC+15]. Omniscient debuggers allow
the execution of a program or model to be reversed and replayed. This work can
be positioned on an orthogonal axis of “liveness”, where the focus is on providing
better feedback through time travel. We consider our delta-based approach to be a

6.6 discussion and related work 231

fruitful ground for further exploration of such features. In the LiveSML case study
we already have implemented a reversible history of application state. However, a
particular challenge will be to apply reversed edits back to the source code of a DSL
program.

Models at run time in general are often motivated from the angle of dynamic
adaptation. For instance, Morin et al.[MBJ+09] describe an architecture to support
adaptation at run time through aspect weaving. However, this work focuses on
adapting behavior and dynamically selecting alternative variants of behavior, rather
than changing the run-time models themselves.

The specific requirements for run-time metamodeling are explored by Lehmann
et al. [LBT+11]. The authors present a process to identify the core run-time concepts
occurring in run-time models. In particular, they propose to identify possible model
adaptations at run time, to explicitly address potential run-time consistency issues.
In our case we allow any kind of modification, but leave the door open to implement
arbitrary run-time state migration policies.

rmpatch requires the run-time metamodel to be an “extension” of the static
metamodel. This relation is similar to the concept of “subsumption” in description
logics [MB95]. Although we have not yet explored this link in more detail, it would
allow formal checking of whether a run-time metamodel is suitable for live patching.
Another assumption underlying rmpatch is that it should be possible to pause the
model interpreter at a stable point in the execution in order to apply the runtime
modifications. This is related to the concept of quiescence explored in the area of
dynamic software updating [VEB+07].

6.7 conclusion

Live programming promises to improve developer experience through immediate and
continuous feedback. These benefits have not yet been explored from the perspective
of executable domain-specific modeling languages. In this paper we have described
a framework for developing “live textual languages”, based on a metamodeling
foundation. Our framework consists of two components.

First, we presented tmdiff, a novel model differencing algorithm, based on
textual differencing and origin tracking. Origin tracking traces the identity of an
element back to the symbolic name that defines it in the textual source of a model.
Using textual differencing these names can be aligned between versions of a model.
Combining the origin relation and the alignment of names is sufficient to identify
the model elements themselves. It then becomes possible to apply standard model
differencing algorithms. tmdiff is a fully language parametric approach to textual
model differencing. A prototype of tmdiff has been implemented in the Rascal
metaprogramming language [KvdSV09].

232 chapter 6 toward live domain -specific languages

The second component, rmpatch, represents an architecture for dynamically
adapting run-time models which encode the execution of the model. rmpatch
receives model deltas from tmdiff, and evolves the execution accordingly. To avoid
information loss and invalid run-time states, rmpatch can be extended to define
custom, language-specific migration policies. rmpatch is used in the development
of a live state machine DSL, which allows simultaneous editing and using of state
machine definitions.

To the best of our knowledge, this paper is the first work connecting the worlds
of model differencing and dynamic adaptation of models at run time. Nevertheless,
some important directions for further research remain. The most important directions
are formalizing the relation between static metamodel and (extended) run-time
metamodel of a DSL, investigating how dependencies between edit operations
can be inferred and used to (re)order their application, and determining how to
separately model and maintain run-time state migration scenarios at a higher level of
abstraction. Ultimately, we expect that delta-based run-time adaptation provides a
fertile foundation for developing live programming support for executable DSLs.

Acknowledgements

We thank the reviewers for their insightful comments that helped improve this paper.

6.7 conclusion 233

MEASURING QUALITY OF GRAMMARS FOR PROCEDURAL
LEVEL GENERATION 7

Abstract

Grammar-based procedural level generation raises the productivity of level
designers for games such as dungeon crawl and platform games. However, the
improved productivity comes at the cost of level quality assurance. Authoring,
improving and maintaining grammars is difficult because it is hard to predict how
each grammar rule impacts the overall level quality, and tool support is lacking.
We propose a novel metric called Metric of Added Detail (MAD) that indicates if a
rule adds or removes detail with respect to its phase in the transformation pipeline,
and Specification Analysis Reporting (SAnR) for expressing level properties and
analyzing how qualities evolve in level generation histories. We demonstrate
MAD and SAnR using a prototype of a level generator called Ludoscope Lite. Our
preliminary results show that problematic rules tend to break SAnR properties and
that MAD intuitively raises flags. MAD and SAnR augment existing approaches,
and can ultimately help designers make better levels and level generators.

7.1 introduction

Grammar-based level generation is a form of Procedural Content Generation (PCG)
that raises the productivity of game level designers. Instead of hand-crafting levels,
designers create a level transformation pipeline that generates levels for them by
authoring modules, grammars and rewrite rules. The grammar rules work on data
structures such as strings, tile maps and graphs, which can be used for generating
names, level layouts and missions. These artifacts are step-by-step transformed and
combined until a final detailed and fully populated level is generated, with missions,
power-ups, challenges, enemies, hidden treasures, secret pathways, encounters, etc.
Ideally, each generated level has the intended qualities. Unfortunately, improving the
productivity of level designers comes at the cost of quality assurance.

In practice, many small problems arise, such as levers in walls, blocked pathways,
missing encounters and lava adjacent to water. A lack of direct manipulation
compromises the ability of designers to isolate and improve level qualities, e.g., when

This chapterwas previously published as R. vanRozen andQ.Heĳn. “MeasuringQuality of Grammars
for Procedural Level Generation”. In: Proceedings of the 13th International Conference on Foundations of Digital
Games, FDG 2018, as part of the 9th Workshop on Procedural Content Generation, PCG 2018, Malmö, Sweden,
August 7–10, 2018. Ed. by S. Dahlskog, S. Deterding, J. Font, M. Khandaker, C.M. Olsson, S. Risi, and
C. Salge. ACM, 2018, pp. 1–8. isbn: 978-1-4503-6571-0. doi: 10.1145/3235765.3235821

237

https://doi.org/10.1145/3235765.3235821

authoring bridges, forests or paths. As a result, some generated levels may lack
intended goals, challenges and missions.

The qualities of generated levels depend on the composition of grammar rules and
how they are combined in sequence. Therefore, potential bugs often remain unknown
until they are observed during playtesting. Additionally, the combinatorial explosion
resulting from recursive rule expansions complicates formingmental models required
for reasoning about intended qualities, and how they are represented in the grammar
or intermediate data. Moreover, it is hard to predict how individual rules affect the
overall level quality.

Grammars are brittle, i.e. code that is liable to break easily. Designers require
special measures to ensure that qualities once introduced, remain intact, preventing
successive rewrites from breaking levels. Fixing one level with a rule that prevents an
occurrence may introduce new problems in others. In general, there is a lack of tools
and techniques for authoring, debugging, testing and improving rules that introduce
and preserve design intent. As a result, the full potential of these techniques has not
yet been realized.

We aim to improve the quality of grammar-based procedural level generation in
general, and focus on grammars that work on tile maps in particular. We motivate
our research by studying and improving Ludoscope, a state-of-the-art development
environment for generating very diverse game levels. Since its inception, Ludoscope
was developed by Ludomotion for indie game development, and successfully applied
to a rogue-like dungeon crawler calledUnexplored. We address the need of developers
for better tools. This paper proposes and contributes two enabling techniques:

1. Metric of Added Detail (MAD), a novel metric that indicates if a grammar rule
adds or removes detail to a tile map. We hypothesize that grammars gradually
add detail. MAD leverages a detail hierarchy, a binary relation on alphabet
symbols indicating which symbol is more detailed, which can easily be derived
from transformation pipelines.

2. Specification Analysis Reporting (SAnR), a technique that offers a level property
language for expressing level qualities. SAnR analyzes and reports how these
properties evolve over time in level generation histories.

We demonstrate the feasibility of MAD and SAnR by implementing Ludoscope
Lite (LL), a light-weight version of Ludoscope intended to study level quality. LL is
implemented using Rascal, ameta-programming language and languageworkbench.
Our preliminary evaluation shows that SAnR can express and analyze simple level
properties, and that MAD raises flags for rules that remove detail. MAD and SAnR
augment existing approaches by supporting gradually adding detail and analyzing
level generation histories, which ultimately helps designers make better levels and
level generators.

238 chapter 7 measuring quality of grammars for procedural level generation

7.2 related work

Evaluating content generators and their output is a key open research problem
[STN16; SMS+17; YT18]. Generators can be analyzed in terms of generated content,
e.g., Summerville et al. evaluate metrics for difficulty, visual aesthetics and enjoyment
of platform games [SMS+17]. We take an authoring perspective on level grammars.
Our approach stands apart by also taking into account how generated levels are
generated. This enables level designers to relate qualities of generated levels back to
the source code of the generator (grammar rules) and make targeted improvements.

Level grammars are under-specified, since they also generate many levels that
are bad with respect to design constraints. The challenge is authoring a set of rules
that efficiently generates varied and well-structured results capturing design intent
while limiting the recursion. Smith and Mateas propose explicitly describing design
spaces as an answer set programs, and show generators can be sculpted for a variety
of content domains [SM11a]. Van der Linden et al. focus on improving authoring and
controlling level generators by expressing gameplay-related design constraints. They
use graph grammars to encode these constraints, and generate action graphs that
associate player actions and content for generating complete layouts of game levels
[vdLLB13]. We refer to a survey of van der Linden et al. for a wider discussion on
techniques for procedural dungeon generation [vdLLB14].

We relate our work to other content generators that use grammars. Tracery is
a grammar-based tool for authoring stories and art as structured strings that has
been used for generating names, descriptions, stories in poetry, Twitter bots and
games1 [CKM15]. PuzzleScript is a language and authoring environment which uses
rewrite rules to express puzzle mechanics2. Ludoscope is a visual environment for
authoring level transformation pipelines as grammars that builds upon the mission
and spaces framework [Dor10; DB11]. Pipelines consist of modules that contain
grammars, alphabets and recipes that transform level artifacts such as strings, tile
maps, graphs and Voronoi diagrams. In particular, recipes are crucial to control
the generation and focus the application of rules for obtaining aesthetically pleasing
levels. Recipes parameterize modules with instructions, that determine the ordering
of rules and limit how often rules work. Member values annotate tiles with extra
information. Both help reducing the generation space, but neither are well-suited
to check qualities off-line and independently. Ludoscope is neither extensively
documented, nor currently available as open source software. Karavolos et al. report
experiences on applying Ludoscope to a platformer and a dungeon crawl game, which
require very different transformation pipelines [KBB15]. Our approach closely follows
the pipeline structure of Ludoscope, but it improves upon its capabilities for analyzing
grammar and level quality.

1
http://tracery.io

2
https://www.puzzlescript.net

7.2 related work 239

http://tracery.io
https://www.puzzlescript.net

Module m1: add walls

r1: (R,U)

(a) Adding walls on the
room borders

⇒ Module m2: add doors

r2: (1x)

r3: (1x)

(b) Adding north (r2) and east (r3)
doors

⇒ Module m3: add traps

r4: (3x)

r5: (1x)

(c) Adding three fire pillar
obstacles (r4) and a pond (r5)

=off map =empty =wall
=door =pillar =water

Figure 7.1: Level transformation pipeline consisting of three modules

(a) Empty room with walls (b) Example room with content

Figure 7.2: Tile maps that are input and output of the pipeline

7.3 grammars for level generation

Here, we introduce quality issues in grammar-based level design using a simple
example that generates a room for a dungeon crawler, which illustrates some of the
challenges that arise during authoring grammars. It isolates problems that have larger
more complex forms in practice, e.g., in Unexplored. We relate questions designers
might have in Section 7.3.2 to technical challenges in Section 7.3.3.

7.3.1 Introductory Example

In dungeon crawlers, tile maps often represent rooms connected by pathways. Our
level generation pipeline, shown in Figure 7.1, generates rooms with two doors
connecting to a larger dungeon. It consists of three modules of grammar rules that
represent sequential level transformation phases. The grammar rules rewrite pieces
of the tile map matched by their pattern on their left hand side to the pattern on their
right hand side. The pipeline takes an empty tile map as input, e.g., of 6x6 tiles. Each

240 chapter 7 measuring quality of grammars for procedural level generation

module m4a: remove obstacles

r6: (R,U)

(a) Module removing pillars

MADscore heatmap

-1 (+0-1)

−

(b) MAD score and heat map

Figure 7.3: Module for removing pillars that block doors

module m4b: move obstacles

r7: (R,U)

r8: (R,U)

(a) Moving pillars left (r7) or right (r8)

MADscore heatmap

0 (+1-1)

− +

0 (+1-1)

− +

(b) MAD score and heat map

Figure 7.4: Module for moving pillars that block doors

phase randomly selects and applies rules, gradually adding detail. Many levels can
result, and as we will see, not all of these are what a designer might deem desirable.

First, module m1 adds walls on the borders of the tile map (Figure 7.1(a)). It
contains one rule called r1, whose left hand pattern matches on an empty tile on
the north edge of the map. Grammar rule r1 replaces an empty tile on the north
edge of the map with a wall. Rules can have modifier symbols to its right. The (U)
symbol to the right indicates that rule r1 is applied as many times as possible. The (R)
symbol indicates that rule r1 is also applied to the east, south and west borders of
the map. The result of module m1 is always a tile map with walls on its borders, e.g.,
Figure 7.2(a) is the output at 6x6.

Next, module m2 adds doors in the north and east walls that connect the room to
other parts of the dungeon (Figure 7.1(b)). The rules r2 and r3 respectively add a door
in the north and east walls. These rules are applied exactly once (1x).

Finally, module m3 introduces challenge (Figure 7.1(c)). Rule r4 places three fire
pillars, traps that set players on fire if they remain close too long. In addition, rule r5
adds a pond of water the player can use to extinguish the flames.

7.3.2 Level designer questions

The pipeline of Figure 7.1 can also generate problematic levels. For instance, in
Figure 7.2(b), a fire pillar in front of the north door prevents players from passing.

7.3 grammars for level generation 241

R

(a) Module m4a removed a pillar at R

→ M

(b) Module m4b moved pillar M

Figure 7.5: Repairing the example level of Figure 7.2(b) in two ways

A
1 2 3

B

(a) No space to move pillar 2 away
from door A

A
1
2 3 B

(b) Moving pillar 3 can block door A
Water remains unreachable

Figure 7.6: Levels that cannot be repaired by Module m4b

Oneway to fix this is to patch the level by removing obstacles, as shown in Figure 7.3(a)
results in Figure 7.5(a). However, fewer pillars than intendedmay reduce the difficulty.
Another way is moving obstacles away from doors, as shown in Figure 7.4(a), which
results in Figure 7.5(b). Unfortunately, other problematic output still exists, e.g.,
Figure 7.6. Authoring level grammars is hard, even for this tiny example. Questions
about quality a designer might have are:

1. Efficiency. Do the grammar rules efficiently generate levels, or is time wasted
on overwritten dead content?

2. Effectiveness. Do the grammar rules effectively generate levels that contain all
the intended objects, composite structures, problems and solutions, or are some
parts missing?

3. Root-cause analysis. Given a level with a problem, by which rules were the
affected tiles generated?

4. Bug-fixing. Does changing a rule improve levels, or does it also introduce new
problems?

5. Bug-free. How can unwanted situations be prevented and removed from the
level generation space?

242 chapter 7 measuring quality of grammars for procedural level generation

Application of Module m1: add walls

a01 r1: @(0,-1)

⋮ ⋮
a20 r1: @(-1,1)

(a) Adding walls on the room borders

Application of Module m2: add doors

a21 r2: @(2,0)

a22 r3: @(4,3)

(b) Adding north (a21) and east (a22) doors

Application of Module m3: add traps

a23 r5: @(4,1)

a24 r4: @(2,1)

a25 r4: @(3,3)

a26 r4: @(1,4)

(c) Adding three pillars (a24, a25, a26) and a pond (a23)

Figure 7.7: Level generation history showing how rules generated the example level of
Figure 7.2(b)

Other relevant questions not further discussed here are, e.g.,
• Playability. Are the challenges of all generated levels solvable, or are there

ways in which players can get stuck?
• Challenge. Are the levels challenging to play?

7.3.3 Challenges

Here, we identify technical challenges that need to be addressed for answering
questions of level designers described in Section 7.3.2.

1. Static analysis and metrics. Profiling the applications of rules helps to assess
efficiency measuring (relative) times and amounts. However, static analysis

7.3 grammars for level generation 243

may also help predict rule efficiency. Upper bounds on rule applications enable
reasoning about worst-case scenarios. Left hand patterns that can never match
indicate dead code. In addition, metrics can help assess to which extent rules
contribute to generating an intended result, to find bad rules.

2. Analyzing the level generation space. Viewed as a state-space exploration
problem, rules might rewrite levels to prior states. For a given level, the shorter
its trace of rewrites, the more efficient its generation.

3. Expressing and analyzing level qualities. Grammar rules lack ways to specify
properties at specific points in the pipeline, e.g., if objects are (not) adjacent,
contained, intact or missing. Designers need an additional formalism for
effectively specifying properties that intuitively capture design intent. To see
how qualities evolve, levels can be checked against these properties after each
transformation.

4. History analysis. Generators produce tile maps by applying grammar rules
in sequence, e.g. Figure 7.7. However, these generation histories are usually
not stored. For identifying rules that impact tiles, or groups of tiles, designers
require an analysis of the level transformation history.

5. Impact analysis. Assessing the impact of rules on many generated results
requires isolating rule effects. The position in the pipeline scopes the locality of
impact, and a dependency analysis can exclude side-effects, but an exhaustive
impact analysis requires generating examples.

6. Test Automation. Testing the impact of changes on all possible levels is not
feasible. As a result, levels may exist that contain bugs. The challenge is devising
a test harness that generates representative levels for finding bugs.

7. Debugging. Identifying and fixing bugs requires appropriate views and tools
for setting break points and making modifications, e.g., selecting one or more
adjacent tiles to filter and analyze selected properties.

7.4 grammar analysis and debugging

We approach the challenges of Section 7.3.3 from a software evolution perspective.
We propose two solutions, Metric of Added Detail (MAD) and Specification Analysis
Reporting (SAnR). Figure 7.8 schematically shows how designer activities and algo-
rithmic processes (respectively shown as pink and blue rounded rectangles) produce
(outgoing arrows) and consume (incoming arrows) artifacts (rectangles). The field
of software evolution studies how software evolves over time [Men08]. As software
ages, it conforms less and less to the changing expectations of its users. In addition,
for developers it also becomes harder over time to adjust software and maintain its
quality. Research includes methods and techniques for analyzing source code and for
making changes to improve the software quality. Since game requirements are mainly
non-functional and evolve rapidly, these techniques are also vital for game quality.

244 chapter 7 measuring quality of grammars for procedural level generation

Level
Design

Rules
Detail

hierarchy

MAD
Analysis

Rules +
Metrics

derive

(a) MAD Level Design

Level
Design

Select
a level

Rules
Level

Properties
Level +
History

SAnR
AnalysisGenerator

Level +
Report

Levels +
Histories

(b) SAnR Level Design

Figure 7.8: Producing MAD and SAnR level design artifacts

7.4.1 Metric of Added Detail

Metrics have been proposed to analyze how changes to source code impact software
quality. Volume (or size) can be measured by counting Lines Of Code (LOC), and
branch points in the control flow of methods can be measured using Cyclometric
Complexity (CC). At any moment, metrics are just abstract values, but when studied
over time they can provide insight into phenomena and quality, in particular when
developers have questions regarding the effect of maintenance and new requirements
that require programming. Heitlager et al. describe a software maintainability model
[HKV07], which requires that measures are 1) technology independent; 2) simply
defined; 3) easy to understand and explain; and 4) enablers of root cause-analysis,
relating source code properties to system qualities.

Herewe introduce theMetric ofAddedDetail (MAD), a simplemetric for grammars
operating on tile maps, which is easy to explain and understand. MAD does not
directly predict level quality, but instead measures the effect on detail of individual
rules by leveraging the assumption that details are gradually added (Figure 7.8(a)).

We define MAD in Figure 7.9, using the concise functional notation of Rascal.
MAD requires a detail hierarchy, represented as a binary relation on grammar symbols
(line 2). Rules are represented as lists of tuples of source and target symbols that
abstract from tile map dimensions (line 3). The result of the metric adds a score
element to each tuple that records if detail is added (score +1), removed (score -1) or
persisted (score 0) (line 4). The function getRuleScore specifies the rule metric as a list

7.4 grammar analysis and debugging 245

1 module u t i l : : mad : : Met r i c
2 a l ias De ta i l = r e l [st r greaterSymbol , st r lesserSymbol] ;
3 a l ias Rule = l r e l [st r lhs , st r rhs] ;
4 a l ias RuleScore = l r e l [st r lhs , st r rhs , i n t score] ;
5
6 RuleScore getRuleScore (Rule r , De t a i l d)
7 = [< lhs , rhs , ge tT i leScore (lhs , rhs , d)> | < lhs , rhs > ← r] ;
8
9 / / r ew r i t i n g a t i l e

10 i n t getT i leScore (st r lhs , st r rhs , De t a i l d) {
11 i f (< lhs , rhs > in d) return −1; / / removes d e t a i l
12 else i f (< rhs , lhs > in d) return 1; / / adds d e t a i l
13 else return 0; / / r e t a i n s d e t a i l
14 }

Figure 7.9: Metric of Added Detail as a Rascal program

comprehension (lines 6–7). Given a rule and a detail hierarchy, it calculates for each
symbol on the left hand side if the right hand side adds or removes detail using the
function getTileScore (lines 10–14). Displayed as a heat map, the result is aggregated
as a sum of tile detail scores.

7.4.2 Deriving Detail Hierarchies

MAD is tool independent and rule parametric, but it requires a detail hierarchy,
which needs to be derived. Modules imply a natural hierarchy for tools that use level
transformation pipelines, each phase introducing symbols that are more detailed
than the last. Using this approach, we derive the following detail hierarchy for the
example of Section 7.3.1 Figure 7.1 as follows: {water, pillar} > door > wall > empty, or
visually { , } > > > .

Competing non-deterministic rules do not sequentially add detail, e.g., r4 or r5
adds water or a pillar first. Therefore, deriving a symbol hierarchy for exposing
data generated and overwritten within a module is less straightforward. We see the
following alternatives:

1. Allow an explicit user-defined detail hierarchy, or derive it from an explicit rule
ordering such as a Ludoscope recipe.

2. Assume detail is sequential to the rules in the module.
3. Add the inverse to the relation for symbols with the same rank in the hierarchy,

e.g., ‘pillar > water’ and ‘water > pillar’. However, this is not very intuitive.

246 chapter 7 measuring quality of grammars for procedural level generation

1 s ta r t syntax LevelSpec
2 = spec : Proper ty ∗ ;
3 syntax Proper ty
4 = proper ty : Cond i t ion T i l eSe t ;
5 syntax Condi t ion
6 = none : " no " / / t i l e set i s empty
7 | count : INT s ize " x " ; / / t i l e set i s o f s p e c i f i c s i ze
8 syntax T i l eSe t / / de f ines a set o f t i l e s (now v i s i b l e)
9 = t i l e S e t : ID t i leName Fi l te rNow Fi l te rWhere ;

10 syntax Fi l te rNow / / f i l t e r s the t i l e set (now v i s i b l e)
11 = nowAny : / / empty a l t e r na t i v e , no f i l t e r
12 | nowAdjacent : " ad jacent to " ID t i leName ;
13 syntax Fi l te rWhere / / f i l t e r s a t i l e set (h i s t o r i c a l l y)
14 = everAny : / / empty a l t e r na t i v e , no f i l t e r
15 | everRule : " i n " ID ruleName ; / / topograph ica l l o ca t i o n

Figure 7.10: Syntax of the Level Property Language in Rascal

7.4.3 Analyzing Rules with MAD

Using the detail hierarchy derived in Section 7.4.2 we calculate MAD scores for rules
of modules m4a and m4b intended to fix broken levels, shown in Figure 7.3(a) and
Figure 7.4(a). Rule r6, which removes fire pillars, has a negative effect on detail, as
shown in Figure 7.3(b). The effect of rules r7 and r8 that instead move them, shown in
Figure 7.4(b), is neutral. MAD helps designers assess if rules contribute to generating
intended results, and augments intuitions with facts. Rules that remove details may
be fixes, but may also cause dead content or regressions in the level generation space
that waste time.

7.4.4 Expressing and Analyzing Level Properties

Here we address the challenges of expressing and analyzing level qualities from
a Software Language Engineering perspective [Läm18]. We propose Specification
Analysis Reporting (SAnR), a technique for analyzing level grammars against level
properties. In the mixed-initiative design process shown in Figure 7.8(b), designers
author a grammar (rules and modules) and SAnR level properties, a generator
generates levels, and the designers selects one level to analyze, for which SAnR
generates a report.

SAnR provides a property notation. This is a so-called Domain-Specific Language
(DSL), a language that offers appropriate notations and abstractions with expressive

7.4 grammar analysis and debugging 247

2x door in walls
1x water
3x pillar
no pillar adjacent to door
no pillar adjacent to water
(a) Level Property Language
specification encoding level
qualities

a01 . . . a21 a22 a23 a24 a25 a26

3

3

3

3 7

3

(b) Level generation report showing how
the level of Figure 7.2(b) evolved over
time in Figure 7.7

a27 (alt.)

7

3

(c) Certain
result of
module m4a

a27 (alt.)

3

7

(d) Possible
result of
module m4b

Figure 7.11: Level properties and a level generation report showing two alternatives

power and affordances over a particular problem domain [vDKV00], in this case
specifying properties of tile maps as correct outcomes of tile map transformations.

We show its syntax in Figure 7.10, and give an informal description of its language
semantics. Instead of writing new grammar rules, a SAnR level specification is a set of
declarative properties, which refer to names used in the grammar (line 1). Given a level
history as a sequence of rule-based model transformations, e.g., Figure 7.7, properties
can be evaluated at each point in time, yielding either true or false. Properties work on
tile locations, places on tile maps specified by x and y coordinates denoted as @(x,y),
the top left tile being @(0,0). A property is a condition on a set of tile locations visible
on a tile map (line 3), which must either be empty (line 6) or of a specific size (line 7).
The set is built by collecting tile locations using names from the grammar alphabet,
e.g., “door” retrieves a set containing each location of a door. On the example of
Figure 7.2(b) this yields {@(2,0), @(5,3)}, which means “2x door” is true and “1x door”
is false. Locations can be filtered in two optional ways.

1. Adjacency. The adjacent to keyword (lines 10–12), filters locations that do not
share at least one side with tiles of another kind, e.g.,“door adjacent to pillar”,
denotes a set of locations of door tiles next to at least one pillar.

2. Topography. The in keyword (lines 13–15), filters out locations that were never
affected by a rule rewrite. In other words, we use rule names to collect sets of
tile locations from the level generation history as “topographical regions”. The
resulting set is the intersection between the left and right hand operands. For
example “door in walls” gives the set of door locations in the region affected by
rule walls.

7.4.5 Analyzing Level Generation Histories

The SAnR analysis uses properties for generating level generation reports that show
when properties were valid, and when they became invalid. For example, given

248 chapter 7 measuring quality of grammars for procedural level generation

the level generation history of Figure 7.7, and the properties of Figure 7.11(a),
SAnR evaluates the properties after each transformation step, yielding the re-
port of Figure 7.11(b). From the report we read that at step a24 transformation
r4: → @(2,1) places a pillar in front of the north door, which invalidates the
property “no pillar adjacent to door”.

7.4.6 Analyzing Rule Impact

SAnR can also be used to analyze the impact of new rules on existing levels with
respect to level properties. For instance, we can spot problems at alternative steps
a27 in the report of Figure 7.11 caused by modules m4a and m4b intended as fixes,
shown in Figure 7.3(a) and Figure 7.4(a). On the one hand, Figure 7.11(c) shows that
when module m4a removes the pillar with transformation r6: → @(2,0) this
breaks the property “3x pillar”. On the other hand, Figure 7.11(d) shows that when
module m4b moves the pillar to the east with transformation r7: → @(2,0)
this breaks the property “no pillar adjacent to water”.

7.5 preliminary evaluation

Here, we report on a preliminary evaluation of the use of MAD and SAnR in the
implementation of a prototype level generator called Ludoscope Lite.

7.5.1 Implementation of LudoScope Lite

Ludoscope Lite (LL) is a light weight version of Ludoscope intended for rapid
prototyping, research and experimentation with analysis and generation techniques
for making better grammar-based game levels and generators. Its focus is initially on
designing and validating approaches for tile maps, which are later implemented and
applied in Ludoscope. Weuse languagework bench [EVV+13] andmeta-programming
language Rascal3 [KvdSV09] to implement MAD and SAnR as separate reusable
modules and integrate both in LL4.

Table 7.1 gives an overview of the components of LL and their size in Lines of
Code (LOC) relative to Ludoscope. Of course, the user-friendly IDE of Ludoscope has
many features LL lacks, explaining the size difference. LL integrates a grammar-based
parser that reads the storage format of Ludoscope. The ultimate goal is compatibility,
sharing syntax and semantics for generating and analyzing rules. We apply test-driven
development, encoding expected behaviors for most of its features in a combination
of unit and integration tests for regression testing. The histories and reports shown

3
https://www.rascal-mpl.org

4
https://github.com/visknut/LudoscopeLite

7.5 preliminary evaluation 249

https://www.rascal-mpl.org
https://github.com/visknut/LudoscopeLite

Table 7.1: Source code size of Ludoscope and Ludoscope Lite

Component Ludoscope (KLOC) LL (KLOC)

IDE (features differ) 10.5 0.3
Parser + execution 10 1.7 + 0.4
Test + test data ? 1.5 + 0.7
Metric of Added Detail not yet 0.1
Level Property Language not yet 0.3
Extension wrappers - 0.4

Total 20.5 5.5

Table 7.2: SAnR data on the example the pipeline of Figure 7.1 and its two extensions, modules
m4a and m4b

Data Example + m4a + m4b

Unique histories 9846 9858 9844
Unique tile maps 9171 9014 8775
Broken tile maps 6254 6132 4613
Bugs found 2 2 4

Table 7.3: SAnR level generation reports for 10K random executions. The rules rn refer to
Figure 7.1, Figure 7.3(a) and Figure 7.4(a)

Property Example + m4a + m4b

2x door in walls - - -
1x water - - -
3x pillar - r6 (3226x) r7 (111x)

r8 (112x)
no pillar adjacent to door r5 (3164x) - r5 (438x)
no water adjacent to pillar r5 (5686x) r5 (5209x) r5 (5482x)

in this paper are generated by LL, which currently still generates them as strings. A
more user friendly visualization is work in progress.

7.5.2 Test Automation

We use LL to evaluate SAnR on the running example5 of Section 7.3.1. We wish to
learn if LL and SAnR can help automate tests, and run 10K random executions (or

5There is one difference, LL implements Ludoscope recipes for limiting the amount of times that rules
are applied. As a side-effect, this limits sequences and reduces the level generation space.

250 chapter 7 measuring quality of grammars for procedural level generation

simulations) on the pipeline Figure 7.1, and its extensions, shown in Figure 7.3(a) and
Figure 7.4(a), which makes 30K executions total. For each execution, we record the
model transformation history and use SAnR and the properties of Figure 7.11(a) to
obtain a report.

Table 7.2 displays an overview of the results, which were obtained in about 10
minutes of run time. The unique number of histories is lower than 10K because some
executions yielded the same transformations. In addition, different transformation
sequences can produce the same tile map, which explains why there are fewer unique
tile maps. We consider a tile map broken when not all SAnR property are satisfied. In
addition, Table 7.3 shows which rules break properties (in how many histories) for
each pipeline version, which helps designers compare and analyze causes.

We gain the following insights. The test automation approach is feasible, and
issues can be found in seconds. In addition, by relating the number of unique outputs
to the number of broken outputs we can get an idea how serious issues are. Naturally,
10K random executions says nothing about test coverage, but it improves upon random
manual testing. We confirm that module m4a is a bad fix. We note that although
extension m4b increases the number bugs, it also generates fewer broken tile maps.
Clearly, the pipeline still requires fixes. Of course, the example is small and not
representative of the size and complexity of transformation pipelines of games such
as Unexplored. However, our test automation setup is reusable, and enables testing
other grammars with larger pipelines too.

7.6 discussion

MAD and SAnR provide a means for answering designer questions of Section 7.3.2.
Here we discuss the befits and limitations of the approaches and threats to validity.

7.6.1 MAD Level Design

MAD gives a partial answer to the question if rules generate levels efficiently. The
metric helps designers identify rules that remove detail, and possibly waste time
on generating cause dead content. It supports the single responsibility principle,
exposing modules add many details at once. However, MAD does not address the
challenge of analyzing the state space. At best, it can help identify rules that may lead
to longer level generation traces. In addition, we do not know if MAD can be used for
data structures other than tile maps, e.g., for grammars that work on graphs. Finally,
MAD is not yet empirically validated.

7.6 discussion 251

7.6.2 SAnR Level Design

SAnR properties enable analyzing how effectively rules generate intended levels,
e.g. for simple tile adjacency, counting, missing tiles, and topographical inclusion.
Properties depend only on the names of rules and tiles, which separates concerns but
complicates refactoring grammar rules. SAnR analyzes levels by checking properties
against generation histories, and assumes these are correctly generated. Therefore,
SAnR reports are only as good as the grammar engine, which may also contain
bugs. Of course, our approach is not the first that checks simple invariant conditions.
However, to the best of our knowledge, checking properties that use level generation
histories and grammar rule names to collect topographical regions of tile locations is
new.

SAnR can help designers analyze quality and remove unwanted situations from the
level generation space by identifying transformations and rules that break properties.
However, those rules may not be the root cause of the problem, which can originate
earlier in the pipeline. In addition, it is hard for developers to analyze the history,
since it is not clear where the branch points in the generation process are, and how
alternatives would have played out. Finally, the expressive range of properties is
currently still rather limited, and a formal semantics relating properties and histories
is not yet defined.

7.7 conclusion

This paper proposes two novel techniques that aim to improve the quality of grammar-
based procedural level generation for grammars that work on tile maps. The first, is
the Metric of Added Detail (MAD), a novel metric that indicates if a grammar rule
adds or removes detail to a tile map. The second, is Specification Analysis Reporting
(SAnR), a technique that offers level property language for expressing level qualities.
SAnR analyzes and reports how these properties evolve over time in level generation
histories. We demonstrated the feasibility of MAD and SAnR with LudoScope Lite, a
light-weight version of Ludoscope intended to study level quality.

Our preliminary evaluation shows that SAnR can express and analyze simple level
properties, and that MAD is intuitive and raises flags for rules that remove detail. In
addition, SAnR can be used in test automation. MAD and SAnR augment existing
approaches by supporting gradually adding detail and analyzing level generation
histories, which ultimately helps designers make better levels and level generators.
Of course, LL is an academic research prototype that is not yet extensively validated
in practice.

7.7.1 Future Work

Future work includes the following.

252 chapter 7 measuring quality of grammars for procedural level generation

• Validation. A case study on Boulder Dash is current work. We also plan to
study Unexplored to identify which additional SAnR property features are
needed to express design intent more fully, e.g., better filters, validity ranges,
and for shapes, paths and relative positions. We hope to identify bugs that
would otherwise be hard or impossible to find.

• Analyses. Additional analyses on rule dependencies, and partial orderings
may be identified of different rule orders generating the same levels, e.g., for
increasing test coverage and level generation variety. For assessing the variety
of generated content, existing metrics can be reused. For instance, Smith and
Whitehead assess the expressive range of a generator by comparing metrics for
linearity and leniency of platform levels [SW10].

• Generation. Here we use SAnR for analyzing level generation histories after
they are generated. However, by integrating SAnR into a level generator we
could also prune the search space and filter out potential unwanted levels before
they are ever produced. A feasibility study can assess the impact on efficiency
and scalability of this approach.

• Formal semantics. Reproducible dynamic analyses require a formal semantics
for the execution of generative grammars, separate from tools and games that
interpret them.

• Parsing. We observe that ambiguous grammars for parsing and level grammars
generating the same tile map with different rule orderings are related. Given a
bugged tile map, how many different rule orderings can reproduce it? When
changing the rules, can the new rules produce the tile map with a different
generation history?

• Debugging. Debugging level grammars requires an interactive debugger, in
particular for back in time debugging, exploring what-if scenarios and saving
and replaying generated levelswhile testing new rules. Additional visualizations
are needed to see how the generation space unfolds.

Acknowledgements

We thank Paul Klint, Anders Bouwer, Rafael Bidarra and the anonymous reviewers for
their insightful comments that helped improve this paper. We thank Joris Dormans
for collaborating with us and answering our many questions about the design of
Ludoscope.

7.7 conclusion 253

BIBLIOGRAPHY

[Aar11] E. Aarseth. “Define Real, Moron! Some Remarks on Game Ontologies”. In: DIGAREC
Keynote-Lectures 2009/10. Ed. by S. Günzel, M. Liebe, and D. Mersch. DIGAREC 6.
Potsdam UP, 2011, pp. 50–69 (cit. on p. 42).

[AC15] E. Aarseth and G. Calleja. “The Word Game: The Ontology of an Undefinable Object”.
In: Proceedings of the 10th International Conference on the Foundations of Digital Games, FDG
2015, Pacific Grove, CA, USA, June 22–25, 2015. Ed. by J. P. Zagal, E. MacCallum-Stewart,
and J. Togelius. Society for the Advancement of the Science of Digital Games, 2015
(cit. on p. 41).

[ASS03] E. Aarseth, S.M. Smedstad, and L. Sunnanå. “A Multi-Dimensional Typology of
Games”. In: Proceedings of the 2003 DiGRA International Conference: Level Up, DiGRA
2003, Utrecht, The Netherlands, November 4–6, 2003. Ed. by M. Copier and J. Raessens.
Utrecht University, 2003 (cit. on pp. 28, 43).

[AdGC+15] M. Abbadi, F. di Giacomo, A. Cortesi, P. Spronck, C. Giulia, and G. Maggiore. “High
Performance Encapsulation in Casanova 2”. In: Proceedings of the 7th Computer Science
and Electronic Engineering Conference, CEEC, Colchester, UK, September 24–25, 2015. IEEE,
2015, pp. 201–206. doi: 10.1109/CEEC.2015.7332725 (cit. on pp. 107, 108).

[Abb17] M.Abbadi. “Casanova 2: ADomain-Specific Language forGeneral GameDevelopment”.
PhD thesis. Tilburg University, Sept. 2017 (cit. on pp. 107, 108, 128).

[ADC+15] M. Abbadi, F. Di Giacomo, A. Cortesi, P. Spronck, G. Costantini, and G. Maggiore.
“Casanova: A Simple, High-Performance Language for Game Development”. In: Serious
Games – Proceedings of the 1st Joint International Conference on Serious Games, JCSG 2015,
Huddersfield, UK, June 3–4, 2015. Ed. by S. Göbel, M.Ma, J. BaalsrudHauge,M. F. Oliveira,
J. Wiemeyer, and V. Wendel. Springer, 2015, pp. 123–134. isbn: 978-3-319-19126-3. doi:
10.1007/978-3-319-19126-3_11 (cit. on pp. 107, 108).

[ALY15] R. Abela, A. Liapis, and G.N. Yannakakis. “A Constructive Approach for the Generation
of Underwater Environments”. In: Proceedings of the 6th International Workshop on
Procedural Content Generation in Games, PCG 2015, Pacific Grove, CA, USA, June 22–25,
2015. Society for the Advancement of the Science of Digital Games, 2015 (cit. on p. 41).

[AD12] E. Adams and J. Dormans. Game Mechanics: Advanced Game Design. 1st ed. Thousand
Oaks, CA, USA: New Riders Publishing, 2012. isbn: 9780321820273 (cit. on pp. 6, 7, 61,
136–138, 152, 162, 163, 172, 184–186, 189, 192, 194).

[AR06] E. Adams and A. Rollings. Fundamentals of Game Design. 1st ed. Prentice Hall, 2006.
isbn: 9780131687479 (cit. on p. 163).

[AJR12] N. Ahmadi, M. Jazayeri, and A. Repenning. “Engineering an Open-Web Educational
Game Design Environment”. In: Proceedings of the 19th Asia-Pacific Software Engineering
Conference, APSEC 2012, Hong Kong, China, December 4–7, 2012. IEEE, 2012, pp. 867–876.
isbn: 978-1-4673-4930-7. doi: 10.1109/APSEC.2012.88 (cit. on p. 91).

[Ahm11] N. Ahmadi. “Beyond Upload and Download: Enabling Game Design 2.0”. In: End-
User Development – Proceedings of the 3rd International Symposium, IS-EUD 2011, Torre
Canne, Italy, June 7–10, 2011. Ed. by M. F. Costabile, Y. Dittrich, G. Fischer, and A.
Piccinno. Vol. 6654. LNCS. Springer, 2011, pp. 371–374. isbn: 978-3-642-21530-8. doi:
10.1007/978-3-642-21530-8 (cit. on p. 91).

255

https://doi.org/10.1109/CEEC.2015.7332725
https://doi.org/10.1007/978-3-319-19126-3_11
https://doi.org/10.1109/APSEC.2012.88
https://doi.org/10.1007/978-3-642-21530-8

[Ahm12] N. Ahmadi. “Broadening Educational Game Design using the World Wide Web”.
PhD thesis. Università della Svizzera Italiana – Faculty of Informatics, 2012 (cit. on
pp. 91, 128).

[ASU86] A.V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986. isbn: 0-201-10088-6 (cit. on pp. 34, 101).

[AP03] M. Alanen and I. Porres. “Difference and Union of Models”. In: «UML» 2003 – The
Unified Modeling Language. Modeling Languages and Applications – Proceedings of the 6th
International Conference, San Francisco, CA, USA, October 20–24, 2003. Ed. by P. Stevens,
J. Whittle, and G. Booch. Vol. 2863. LNCS. Springer, 2003, pp. 2–17. isbn: 978-3-
540-45221-8. doi: 10.1007/978-3-540-45221-8_2 (cit. on pp. 204, 206, 208, 209, 211,
230).

[ARC+14] M. T.C. F. Albuquerque, G. L. Ramalho, V. Corruble, A. L.M. Santos, and F. Freitas.
“Helping Developers to Look Deeper inside Game Sessions”. In: Proceedings of the 13th
Brazilian Symposium on Computer Games and Digital Entertainment, SBGAMES 2014, Porto
Alegre, RS, Brazil, November 12–14, 2014. IEEE, 2014, pp. 31–40. isbn: 978-1-4799-8065-9.
doi: 10.1109/SBGAMES.2014.28 (cit. on p. 41).

[AIS+77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel.
A Pattern Language - Towns, Buildings, Construction. Oxford University Press, 1977. isbn:
978-0-19-501919-3 (cit. on p. 45).

[AdS13a] M. S. Almeida and F. S. da Silva. “Requirements for Game Design Tools: a Systematic
Survey”. In: Proceedings of the 12th Brazilian Symposium onGames andDigital Entertainment,
São Paulo, Brazil, October 16–18, 2013, SBGames 2013. 2013 (cit. on p. 126).

[AVG+13] M. S.O. Almeida, L.G. Valentin, R.A. Gonçalves, and F. S. C. da Silva. “Towards a
Game Design Patterns Suggestion Tool: The Documentation of a Computerized Textual
Analysis Experiment”. In: Proceedings of the 12th Brazilian Symposium on Computer
Games and Digital Entertainment, SBGames 2013), São Paulo, Brazil, October 16–18, 2013.
SBGames.org, 2013 (cit. on p. 41).

[AdS13b] M. S.O. Almeida and F. S. C. da Silva. “A Systematic Review of Game Design Methods
and Tools”. In: Entertainment Computing – Proceedings of the 12th International Conference,
ICEC 2013, São Paulo, Brazil, October 16–18, 2013. Ed. by J. C. Anacleto, E.W.G. Clua,
F. S. C. da Silva, S. Fels, and H. S. Yang. Vol. 8215. LNCS. Springer, 2013, pp. 17–29. isbn:
978-3-642-41106-9. doi: 10.1007/978-3-642-41106-9_3 (cit. on p. 126).

[AÇM09] D. Altunbay, M. E. Çetinkaya, and M.G. Metin. “Model-driven Approach for Board
GameDevelopment”. In: Proceedings of the 1st Turkish Symposium ofModel-Driven Software
Development, TMODELS 2009, Ankara, Turkey, May 20, 2009. Bilkent University, 2009
(cit. on p. 115).

[AR10] V. Alves and L. Roque. “A Pattern Language for SoundDesign inGames”. In: Proceedings
of the 5th Audio Mostly Conference: A Conference on Interaction with Sound, AM 2010, Piteå,
Sweden, September 15–17, 2010. ACM, 2010, pp. 1–8. isbn: 978-1-4503-0046-9. doi:
10.1145/1859799.1859811 (cit. on p. 48).

[AR11a] V. Alves and L. Roque. “A Deck for Sound Design in Games: Enhancements based
on a Design Exercise”. In: Proceedings of the 8th International Conference on Advances
in Computer Entertainment Technology, ACE 2011, Lisbon, Portugal, November 8–11, 2011.
ACM, 2011, pp. 1–8. isbn: 978-1-4503-0827-4. doi: 10.1145/2071423.2071465 (cit. on
pp. 41, 48).

256 bibliography

https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1109/SBGAMES.2014.28
https://doi.org/10.1007/978-3-642-41106-9_3
https://doi.org/10.1145/1859799.1859811
https://doi.org/10.1145/2071423.2071465

[AR11b] V. Alves and L. Roque. “An Inspection on a Deck for Sound Design in Games”. In:
Proceedings of the 6th Audio Mostly Conference: A Conference on Interaction with Sound, AM
2011, Coimbra, Portugal, September 7–9, 2011. ACM, 2011, pp. 15–22. isbn: 978-1-4503-
1081-9. doi: 10.1145/2095667.2095670 (cit. on p. 48).

[AR13] V. Alves and L. Roque. “Design Patterns in Games; The Case for Sound Design”. In:
Workshop Proceedings of the 8th International Conference on the Foundations of Digital Games,
as part of the 2nd Workshop on Design Patterns in Games, DPG 2013, Chania, Crete, Greece,
May, 14–17, 2013. Society for the Advancement of the Science of Digital Games, 2013
(cit. on pp. 41, 48).

[AGM+06] V. Alves, R. Gheyi, T.Massoni, U. Kulesza, P. Borba, and C. Lucena. “Refactoring Product
Lines”. In: Proceedings of the 5th International Conference on Generative Programming and
Component Engineering, GPCE 2006, Portland, Oregon, USA, October 22–26, 2006. ACM,
2006, pp. 201–210. isbn: 1-59593-237-2. doi: 10.1145/1173706.1173737 (cit. on p. 35).

[AS10] A. Ampatzoglou and I. Stamelos. “Software Engineering Research for Computer Games:
A Systematic Review”. In: Information & Software Technology 52.9 (2010), pp. 888–901.
doi: 10.1016/j.infsof.2010.05.004 (cit. on p. 126).

[And08a] E. F. Anderson. “On the Definition of Non-Player Character Behaviour for Real-Time
Simulated Virtual Environments”. PhD thesis. Bournemouth University, Apr. 2008
(cit. on pp. 70, 72, 128).

[And08b] E. F. Anderson. “Scripted Smarts in an Intelligent Virtual Environment: Behaviour
Definition Using a Simple Entity Annotation Language”. In: Proceedings of the 2008
Conference on Future Play: Research, Play, Share, Future Play 2008, Toronto, Ontario, Canada,
November 3–5, 2008. ACM, 2008, pp. 185–188. isbn: 978-1-60558-218-4. doi: 10.1145/
1496984.1497016 (cit. on pp. 41, 72).

[AR09] M. Araújo and L. Roque. “Modeling Games with Petri Nets”. In: Proceedings of the
3rd annual DiGRA conference Breaking New Ground: Innovation in Games, Play, Practice
and Theory, DiGRA 2009, London, UK, September 1–4, 2009. Ed. by T. Krzywinska, H.W.
Kennedy, and B. Atkins. Digital Games Research Association, 2009 (cit. on pp. 41, 58,
137, 162).

[Aše17] D. Ašeriškis. “Modeling and Evaluation of Software System Gamification Elements”.
PhD thesis. Kaunas University of Technology, 2017. isbn: 978-609-02-1375-9 (cit. on
pp. 93, 128).

[ABD17] D. Ašeriškis, T. Blažauskas, and R. Damaševičius. “UAREI: A Model for Formal
Description and Visual Representation /Software Gamification”. In: DYNA 84.200
(Mar. 2017), pp. 326–334. issn: 0012-7353. doi: 10.15446/dyna.v84n200.54017 (cit. on
p. 93).

[AD17] D. Ašeriškis and R. Damaševičius. “Player Type Simulation in Gamified Applications”.
In: Proceedings of the IVUS International Conference on Information Technology, Kaunas,
Lithuania, April 28, 2017. Ed. by R. Damaševičius, T. Krilavičius, and A. Lopata. Vol. 1856.
CEUR-WS, 2017, pp. 1–7 (cit. on p. 93).

[Ayc16] J. Aycock. “Endgame”. In: Retrogame Archeology: Exploring Old Computer Games. Springer,
2016, pp. 205–213. isbn: 978-3-319-30004-7. doi: 10.1007/978-3-319-30004-7 (cit. on
p. 82).

257

https://doi.org/10.1145/2095667.2095670
https://doi.org/10.1145/1173706.1173737
https://doi.org/10.1016/j.infsof.2010.05.004
https://doi.org/10.1145/1496984.1497016
https://doi.org/10.1145/1496984.1497016
https://doi.org/10.15446/dyna.v84n200.54017
https://doi.org/10.1007/978-3-319-30004-7

[AH14] A. Azadegan and C. Harteveld. “Work for or Against Players: On the Use of Collab-
oration Engineering for Collaborative Games”. In: Proceedings of Workshops Colocated
with the 9th International Conference on the Foundations of Digital Games – as part of the
3rd Workshop on Design Patterns in Games, DPG 2014, Liberty of the Seas, Caribbean, April
3–7, 2014. Society for the Advancement of the Science of Digital Games, 2014. isbn:
978-0-9913982-3-2 (cit. on pp. 41, 50).

[BSV14] H. Bäärnhielm, D. Sundström, and M. Vejdemo-Johansson. “A Haskell Sound Speci-
fication DSL: Ludic Support and Deep Immersion in Nordic Technology-Supported
LARP”. In: The Monad Reader 23 (2014). Ed. by E. Z. Yang (cit. on p. 108).

[BD10] S. Bakkes and J. Dormans. “Involving Player Experience in Dynamically Generated
Missions and Game Spaces”. In: Proceedings of the 11th International Conference on
Intelligent Games and Simulation, GAME-ON 2010, Leicester, United Kingdom, November
17–19, 2010. Ed. by A. Ayesh. 2010, pp. 72–79. isbn: 978-90-77381-58-8 (cit. on p. 41).

[BBA+08] D. Balas, C. Brom, A. Abonyi, and J. Gemrot. “Hierarchical Petri Nets for Story Plots
Featuring Virtual Humans”. In: Proceedings of the 4th Conference on Artificial Intelligence
and Interactive Digital Entertainment Conference, AIIDE 2008, Stanford, California, USA,
October 22–24, 2008. Ed. by M. Mateas and C. Darken. AAAI, 2008, pp. 2–9. isbn:
978-1-57735-392-8 (cit. on pp. 37, 58).

[BDF+17a] A. Baldwin, S. Dahlskog, J.M. Font, and J. Holmberg. “Mixed-Initiative Procedural
Generation of Dungeons using Game Design Patterns”. In: 2017 IEEE Conference on
Computational Intelligence and Games, CIG 2017, New York, NY, USA, August 22–25, 2017.
2017, pp. 25–32. isbn: 978-1-5386-3233-8. doi: 10.1109/CIG.2017.8080411 (cit. on pp. 37,
69, 70).

[BDF+17b] A. Baldwin, S. Dahlskog, J.M. Font, and J. Holmberg. “Towards Pattern-Based Mixed-
initiative Dungeon Generation”. In: Proceedings of the 12th International Conference on
the Foundations of Digital Games, FDG 2017 as part of the 8th International Workshop on
Procedural Content Generation, PCG 2017, Hyannis, Massachusetts, USA, August 14–17,
2017. ACM, 2017, pp. 1–10. isbn: 978-1-4503-5319-9. doi: 10.1145/3102071.3110572
(cit. on pp. 41, 69, 70).

[BC04] E. Baniassad and S. Clarke. “Theme: An Approach for Aspect-Oriented Analysis and
Design”. In: Proceedings of the 26th International Conference on Software Engineering, ICSE
2004, Edinburgh, UK, May 23–28, 2004. IEEE, 2004, pp. 158–167. isbn: 0-7695-2163-0.
doi: 10.1109/ICSE.2004.1317438 (cit. on p. 35).

[BT14] G.A. B. Barros and J. Togelius. “Exploring a Large Space of Small Games”. In: Proceedings
of the 2014 IEEE Conference on Computational Intelligence and Games, CIG 2014, Dortmund,
Germany, August 26–29, 2014. 2014, pp. 1–2. isbn: 978-1-4799-3547-5. doi: 10.1109/CIG.
2014.6932922 (cit. on pp. 37, 101).

[Bar16] R.A. Bartle. MMOs from the Inside Out: The History, Design, Fun, and Art of Massively-
Multiplayer Online Role-Playing Games. Apress, 2016. isbn: 978-1-4842-1723-8. doi:
10.1007/978-1-4842-1724-5 (cit. on p. 109).

[BK05] A. Begel and E. Klopfer. “Starlogo TNG: An Introduction to Game Development”. In:
Journal of E-Learning 53 (2005) (cit. on p. 91).

[BG16] C. Bell and M. Goadrich. “Automated Playtesting with RECYCLEd CARDSTOCK”. In:
Game & Puzzle Design 2.1 (2016), pp. 71–83. issn: 2376-5097 (cit. on p. 101).

[Bey11] L. Beyak. “SAGA: A Story Scripting Tool for Video Game Development”. MA thesis.
McMaster University – Department of Computing and Software, 2011 (cit. on p. 80).

258 bibliography

https://doi.org/10.1109/CIG.2017.8080411
https://doi.org/10.1145/3102071.3110572
https://doi.org/10.1109/ICSE.2004.1317438
https://doi.org/10.1109/CIG.2014.6932922
https://doi.org/10.1109/CIG.2014.6932922
https://doi.org/10.1007/978-1-4842-1724-5

[BC11] L. Beyak and J. Carette. “SAGA: A DSL for Story Management”. In: Proceedings IFIP
Working Conference on Domain-Specific Languages, DSL 2011, Bordeaux, France, September
6–8, 2011. Ed. by O. Danvy and C. Shan. Vol. 66. EPTCS. arXiv, 2011, pp. 48–67. doi:
10.4204/EPTCS.66.3 (cit. on pp. 80, 81).

[BH06] S. Björk and J. Holopainen. “Games and Design Patterns”. In: The Game Design Reader: A
Rules of Play Anthology. Ed. byK. Salen and E. Zimmerman.MIT Press, 2006, pp. 410–437.
isbn: 0-262-19536-4 (cit. on p. 47).

[BLH03] S. Björk, S. Lundgren, and J. Holopainen. “Game Design Patterns”. In: Proceedings of
the 2003 DiGRA International Conference: Level Up, DIGRA 2003, Utrecht, The Netherlands,
November 4–6, 2003. Digital Games Research Association, 2003, pp. 180–193 (cit. on
pp. 41, 47, 161, 186).

[Blo04] J. Blow. “Game Development: Harder Than You Think”. In:ACMQueue 1.10 (Feb. 2004),
pp. 28–37. issn: 1542-7730. doi: 10.1145/971564.971590 (cit. on p. 136).

[Boj08] N. Bojin. “LanguageGames/GameLanguages: ExaminingGameDesignEpistemologies
Through a ‘Wittgensteinian’ Lens”. In: Journal for Computer Game Culture 2.1 (2008),
pp. 55–71. issn: 1866-6124 (cit. on p. 50).

[Boj10] N. Bojin. “Ludemes and the Linguistic Turn”. In: Proceedings of the International Academic
Conference on the Future of Game Design and Technology, Future Play 2010, Vancouver, British
Columbia, Canada, May 6–7, 2010. ACM, 2010, pp. 25–32. isbn: 978-1-4503-0235-7. doi:
10.1145/1920778.1920783 (cit. on pp. 41, 50).

[Bor15] Y.C. Borghini. “An Assessment and Learning Analytics Engine for Games-Based
Learning”. PhD thesis. University of the West of Scotland, Dec. 2015 (cit. on pp. 56, 128).

[BCC+15] E. Bousse, J. Corley, B. Combemale, J. G. Gray, and B. Baudry. “Supporting Efficient
and Advanced Omniscient Debugging for xDSMLs”. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2015, Pittsburgh,
PA, USA, October 26–27, 2015. Ed. by R. F. Paige, D. di Ruscio, and M. Völter. ACM, 2015,
pp. 137–148. isbn: 978-1-4503-3686-4. doi: 10.1145/2814251.2814262 (cit. on p. 231).

[BA06] C. Brom andA. Abonyi. “Petri Nets for Game Plot”. In: Proceedings of Artificial Intelligence
and the Simulation of Behaviour as part of the Workshop on Narrative AI and Games. AISB,
2006 (cit. on pp. 58, 137, 162).

[BŠH07] C. Brom, V. Šisler, and T. Holan. “Story Manager in ’Europe 2045’ Uses Petri Nets”.
In: Virtual Storytelling. Using Virtual Reality Technologies for Storytelling – Proceedings
of the 4th International Conference, ICVS 2007, Saint-Malo, France, December 5–7, 2007.
Ed. by M. Cavazza and S. Donikian. Vol. 4871. LNCS. Springer, 2007, pp. 38–50. isbn:
978-3-540-77039-8. doi: 10.1007/978-3-540-77039-8_4 (cit. on pp. 39, 58).

[BM10] C. Browne and F. Maire. “Evolutionary Game Design”. In: IEEE Transactions on Com-
putational Intelligence and AI in Games 2.1 (Mar. 2010), pp. 1–16. issn: 1943-068X. doi:
10.1109/TCIAIG.2010.2041928 (cit. on pp. 37, 97, 186, 187, 200).

[BTS14] C. Browne, J. Togelius, and N. Sturtevant. “Guest Editorial: General Games”. In: IEEE
Transactions on Computational Intelligence and AI in Games 6.4 (Dec. 2014), pp. 317–319.
issn: 1943-068X. doi: 10.1109/TCIAIG.2014.2369009 (cit. on p. 93).

[Bro08] C. Browne. “Automatic Generation and Evaluation of Recombination Games”. PhD
thesis. Queensland University of Technology, Feb. 2008 (cit. on pp. 97, 128).

[Bro11] C. Browne. Evolutionary Game Design. Ed. by S. Zdonik, P. Ning, S. Shekhar, J. Katz,
X. Wu, L. C. Jain, D. Padua, X. Shen, and B. Furht. SpringerBriefs in Computer Science.
Springer, 2011. isbn: 978-1-4471-2178-7. doi: 10.1007/978-1-4471-2179-4 (cit. on
p. 97).

259

https://doi.org/10.4204/EPTCS.66.3
https://doi.org/10.1145/971564.971590
https://doi.org/10.1145/1920778.1920783
https://doi.org/10.1145/2814251.2814262
https://doi.org/10.1007/978-3-540-77039-8_4
https://doi.org/10.1109/TCIAIG.2010.2041928
https://doi.org/10.1109/TCIAIG.2014.2369009
https://doi.org/10.1007/978-1-4471-2179-4

[Bro16] C. Browne. “AClassGrammar forGeneralGames”. In:Computers andGames – Proceedings
of the 9th International Conference on Computers and Games, CG 2016, Leiden, The Netherlands,
June 29–July 1, 2016. Ed. by A. Plaat, W. Kosters, and J. van den Herik. Vol. 10068. LNCS.
Springer, 2016, pp. 167–182. isbn: 978-3-319-50935-8. doi: 10.1007/978-3-319-50935-
8_16 (cit. on pp. 41, 97).

[BP08] C. Brun andA. Pierantonio. “Model Differences in the EclipseModeling Framework”. In:
UPGRADE, The European Journal for the Informatics Professional 9.2 (Apr. 2008), pp. 29–34
(cit. on p. 207).

[BL07] J. Brusk and T. Lager. “Developing Natural Language Enabled Games in (Extended)
SCXML”. In: Proceedings of the International Symposium on Intelligence Techniques in
Computer Games and Simulations, GAME-ON-ASIA 2007, Shiga, Japan, March 1–3, 2007.
EUROSIS, 2007 (cit. on p. 112).

[Bru08] J. Brusk. “Dialogue Management for Social Game Characters Using Statecharts”. In:
Proceedings of the 2008 International Conference on Advances in Computer Entertainment
Technology, ACE 2008, Yokohama, Japan, December 3–5, 2008. ACM, 2008, pp. 219–222.
isbn: 978-1-60558-393-8. doi: 10.1145/1501750.1501801 (cit. on pp. 41, 112).

[BMS+08] D. Burgos, P. Moreno-Ger, J. L. Sierra, B. Fernández-Manjón, M. Specht, and R. Koper.
“Building Adaptive Game-based Learning Resources: The Integration of IMS Learning
Design and <e-Adventure>”. In: Simulation & Gaming 39.3 (July 2008), pp. 414–431.
doi: 10.1177/1046878108319595 (cit. on pp. 76, 77).

[BTP17] E. Butler, E. Torlak, and Z. Popović. “Synthesizing Interpretable Strategies for Solving
Puzzle Games”. In: Proceedings of the 12th International Conference on the Foundations
of Digital Games, FDG 2017, Hyannis, Massachusetts, August 14–17, 2017. Ed. by S.
Deterding, A. Canossa, C. Harteveld, J. Zhu, and M. Sicart. ACM, 2017, pp. 1–10. isbn:
978-1-4503-5319-9. doi: 10.1145/3102071.3102084 (cit. on p. 40).

[CP09] A. Calleja and G. J. Pace. “A Domain-Specific Embedded Language Approach for the
Scripting of Game Artificial Intelligence”. In: Proceedings of the 2nd National Workshop in
Information and Communication Technology, WICT 2009, Valletta, Malta, November 17, 2009.
University of Malta, 2009, pp. 1–7 (cit. on p. 107).

[CP10] A. Calleja andG. J. Pace. “ScriptingGameAI: AnAlternativeApproach using Embedded
Languages”. In: Proceedings of the 3rd National Workshop in Information and Communication
Technology, WICT 2010, Valletta, Malta, November 16, 2010. University of Malta, 2010
(cit. on p. 107).

[CD09] A. Canossa and A. Drachen. “Patterns of Play: Play-Personas in User-Centred Game
Development”. In: Proceedings of the 2009 DiGRA International Conference: Breaking New
Ground: Innovation in Games, Play, Practice and Theory, DiGRA 2009, West London, UK,
September 1–4, 2009. Brunel University, 2009 (cit. on pp. 41, 86).

[CCD+08] M. Carbonaro, M. Cutumisu, H. Duff, S. Gillis, C. Onuczko, J. Siegel, J. Schaeffer, A.
Schumacher, D. Szafron, and K. Waugh. “Interactive Story Authoring: A Viable form
of Creative Expression for the Classroom”. In: Computers & Education 51.2 (Sept. 2008),
pp. 687–707. issn: 0360-1315. doi: 10.1016/j.compedu.2007.07.007 (cit. on pp. 78, 79).

[Cha07] A. J. Champandard. Behavior Trees for Next-Gen Game AI. AIGameDev.com. Lecture
delivered at the Game Developers Conference, GDC 2007. Dec. 2007. url: http:
//aigamedev.com/open/article/behavior-trees-part1/ (visited on Oct. 22, 2018) (cit. on
pp. 38, 73, 74, 137).

[Cha12] A. J. Champandard. Understanding the Second-Generation of Behavior Trees – AltDev-
Conf. AIGameDev.com. Presentation. Feb. 2012. url: http://aigamedev.com/insider/
tutorial/second-generation-bt/ (visited on Oct. 22, 2018) (cit. on pp. 73, 74).

260 bibliography

https://doi.org/10.1007/978-3-319-50935-8_16
https://doi.org/10.1007/978-3-319-50935-8_16
https://doi.org/10.1145/1501750.1501801
https://doi.org/10.1177/1046878108319595
https://doi.org/10.1145/3102071.3102084
https://doi.org/10.1016/j.compedu.2007.07.007
http://aigamedev.com/open/article/behavior-trees-part1/
http://aigamedev.com/open/article/behavior-trees-part1/
http://aigamedev.com/insider/tutorial/second-generation-bt/
http://aigamedev.com/insider/tutorial/second-generation-bt/

[CCK12] C. Chang, T. Chuang, and W. Kuo. “Relationships between Engagement and Learning
Style for using VPL on Game Design”. In: Proceedings of the 4th IEEE International
Conference onDigital Game and Intelligent Toy Enhanced Learning, DIGITEL 2012, Takamatsu,
Japan, March 27–30, 2012. IEEE, 2012, pp. 153–155. isbn: 978-1-4673-0885-4. doi:
10.1109/DIGITEL.2012.43 (cit. on p. 90).

[CCH14] Y. Chaudy, T.M.Connolly, andT.Hainey. “EngAGe:ALink betweenEducationalGames
Developers and Educators”. In: Proceedings of the 6th International Conference on Games and
Virtual Worlds for Serious Applications, VS-GAMES 2014, Valletta, Malta, September 9–12,
2014. IEEE, 2014, pp. 1–7. isbn: 978-1-4799-4056-1. doi: 10.1109/VS-Games.2014.7012156
(cit. on p. 56).

[Chu99a] D. Church. “Formal Abstract Design Tools”. In: Game Developer (Aug. 1999), pp. 44–50.
issn: 1073-922X (cit. on pp. 38, 47, 161, 185).

[Chu99b] D. Church. “Formal Abstract Design Tools”. In: Gamasutra (July 1999), pp. 44–50. url:
http://www.gamasutra.com/view/feature/3357/formal_abstract_design_tools.php

(visited on Nov. 15, 2018) (cit. on pp. 38, 47).

[CDP10] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. “Model Patches in Model-Driven
Engineering”. In: Models in Software Engineering – Workshops and Symposia at MODELS
2009 Reports and Revised Selected Papers, Denver, CO, USA, October 4–9, 2009. Ed. by
S. Ghosh. Vol. 6002. LNCS. Springer, 2010, pp. 190–204. isbn: 978-3-642-12261-3. doi:
10.1007/978-3-642-12261-3_19 (cit. on p. 231).

[CCP12] B. Combemale, X. Crégut, andM. Pantel. “A Design Pattern to Build Executable DSMLs
and Associated V&V Tools”. In: Proceedings of the 19th Asia-Pacific Software Engineering
Conference, APSEC 2012, Hong Kong, China, December 4–7, 2012. Vol. 1. IEEE, 2012,
pp. 282–287. isbn: 978-1-4673-4930-7. doi: 10.1109/APSEC.2012.79 (cit. on p. 231).

[CKM15] K. Compton, B.A. Kybartas, and M. Mateas. “Tracery: An Author-Focused Generative
Text Tool”. In: Interactive Storytelling – Proceedings of the 8th International Conference on
Interactive Digital Storytelling, ICIDS 2015, Copenhagen, Denmark, November 30–December
4, 2015. Ed. by H. Schoenau-Fog, L. E. Bruni, S. Louchart, and S. Baceviciute. Vol. 9445.
LNCS. Springer, 2015, pp. 154–161. isbn: 978-3-319-27035-7. doi: 10.1007/978-3-319-
27036-4_14 (cit. on pp. 39, 84, 239).

[Con97] M. J. Conway. “Alice: Easy-to-Learn 3D Scripting for Novices”. PhD thesis. University
of Virginia, Dec. 1997 (cit. on p. 88).

[CAB+00] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and K. Christiansen. “Alice: Lessons
Learned from Building a 3D System for Novices”. In: Proceedings of the CHI 2000
Conference on Human factors in computing systems, The Hague, The Netherlands, April 1–6,
2000. Ed. by T. Turner and G. Szwillus. ACM, 2000, pp. 486–493. doi: 10.1145/332040.
332481 (cit. on p. 88).

[CC11] M. Cook and S. Colton. “Multi-faceted Evolution of Simple Arcade Games”. In: IEEE
Conference on Computational Intelligence and Games, CIG 2011, Seoul, South Korea, August
31–September 3, 2011. IEEE, Aug. 2011, pp. 289–296. isbn: 978-1-4577-0010-1. doi:
10.1109/CIG.2011.6032019 (cit. on p. 200).

[CCG13] M.Cook, S. Colton, and J. Gow. “Nobody’sACritic: OnThe EvaluationOfCreativeCode
Generators – A Case Study In Video Game Design”. In: Proceedings of the Fourth Interna-
tional Conference on Computational Creativity, ICCC 2013, Sidney, Australia, June 12–14, 2013.
Ed. by M.L. Maher, T. Veale, R. Saunders, and O. Bown. computationalcreativity.net,
2013, pp. 123–130 (cit. on p. 64).

261

https://doi.org/10.1109/DIGITEL.2012.43
https://doi.org/10.1109/VS-Games.2014.7012156
http://www.gamasutra.com/view/feature/3357/formal_abstract_design_tools.php
https://doi.org/10.1007/978-3-642-12261-3_19
https://doi.org/10.1109/APSEC.2012.79
https://doi.org/10.1007/978-3-319-27036-4_14
https://doi.org/10.1007/978-3-319-27036-4_14
https://doi.org/10.1145/332040.332481
https://doi.org/10.1145/332040.332481
https://doi.org/10.1109/CIG.2011.6032019

[CCG17] M. Cook, S. Colton, and J. Gow. “The ANGELINA Videogame Design System - Part
I”. In: IEEE Transactions on Computational Intelligence and AI in Games 9.2 (June 2017),
pp. 192–203. issn: 1943-068X. doi: 10.1109/TCIAIG.2016.2520256 (cit. on p. 57).

[CCR+13] M. Cook, S. Colton, A. Raad, and J. Gow. “Mechanic Miner: Reflection-Driven Game
Mechanic Discovery and Level Design”. In: Applications of Evolutionary Computation –
Proceedings of the 16th European Conference, EvoApplications 2013, Vienna, Austria, April
3–5, 2013. Ed. by A. I. Esparcia-Alcázar. Vol. 7835. LNCS. Springer, 2013, pp. 284–293.
isbn: 978-3-642-37191-2. doi: 10.1007/978-3-642-37192-9_29 (cit. on pp. 63, 64, 179).

[Coy05] R. Coyne. “Wicked problems revisited”. In: Design studies 26.1 (2005), pp. 5–17 (cit. on
p. 20).

[CD07] M. L. Crane and J. Dingel. “UML vs. Classical vs. Rhapsody Statecharts: Not all Models
are Created Equal”. In: Software and System Modeling 6.4 (2007), pp. 415–435. doi:
10.1007/s10270-006-0042-8 (cit. on p. 112).

[COS+06] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, J. Siegel,
and M. Carbonaro. “Evaluating Pattern Catalogs: The Computer Games Experience”.
In: Proceedings of the 28th International Conference on Software Engineering, ICSE 2006,
Shanghai, China, May 20–28, 2006. ACM, 2006, pp. 132–141. isbn: 1-59593-375-1. doi:
10.1145/1134285.1134305 (cit. on pp. 35, 78, 79).

[Cut09] M. Cutumisu. “Using Behaviour Patterns to Generate Scripts for Computer Role-
Playing Games”. PhD thesis. University of Alberta, 2009. isbn: 978-0-494-52438-1. doi:
10.7939/R30W2K (cit. on p. 79).

[COM+07] M. Cutumisu, C. Onuczko, M. McNaughton, T. Roy, J. Schaeffer, A. Schumacher,
J. Siegel, D. Szafron, K. Waugh, M. Carbonaro, H. Duff, and S. Gillis. “ScriptEase:
A Generative/Adaptive Programming Paradigm for Game Scripting”. In: Science of
Computer Programming 67.1 (June 2007). Special Issue onAspects of Game Programming,
pp. 32–58. issn: 0167-6423. doi: 10.1016/j.scico.2007.01.005 (cit. on pp. 36, 79).

[Daw02] B. Dawson. “GDC 2002: Game Scripting in Python”. In: Gamasutra (Aug. 2002). url:
https://www.gamasutra.com/view/feature/131372/ (visited on Oct. 10, 2018) (cit. on
pp. 103, 162).

[dTvBV17] O. de Troyer, F. van Broeckhoven, and J. Vlieghe. “Creating Story-Based Serious Games
Using a Controlled Natural Language Domain SpecificModeling Language”. In: Serious
Games and Edutainment Applications: Volume II. Ed. by M. Ma and A. Oikonomou.
Springer, 2017, pp. 567–603. isbn: 978-3-319-51645-5. doi: 10.1007/978-3-319-51645-
5_25 (cit. on p. 55).

[DKV06] A. Denault, J. Kienzle, and H. Vangheluwe. “Model-Based Design of Game AI”.
In: Proceedings of the 2nd International North American Conference on Intelligent Games
and Simulation, GAME-ON-NA 2006, Monterey, USA, September 19–20, 2006. Ed. by P.
McDowell. EUROSIS, 2006, pp. 67–71. isbn: 90-77381-29-5 (cit. on pp. 41, 112).

[dGia14] F. di Giacomo. “Design of an Optimized Compiler for Casanova Language”. MA thesis.
Università Ca’Foscari Venezia – Corso di Laurea magistrale in Informatica, 2014 (cit. on
pp. 107, 108).

[dGAC+17a] F. di Giacomo, M. Abbadi, A. Cortesi, P. Spronck, G. Costantini, and G. Maggiore.
“High Performance Encapsulation and Networking in Casanova 2”. In: Entertainment
Computing 20 (May 2017), pp. 25–41. issn: 1875-9521. doi: 10.1016/j.entcom.2017.03.
001 (cit. on pp. 107, 108).

262 bibliography

https://doi.org/10.1109/TCIAIG.2016.2520256
https://doi.org/10.1007/978-3-642-37192-9_29
https://doi.org/10.1007/s10270-006-0042-8
https://doi.org/10.1145/1134285.1134305
https://doi.org/10.7939/R30W2K
https://doi.org/10.1016/j.scico.2007.01.005
https://www.gamasutra.com/view/feature/131372/
https://doi.org/10.1007/978-3-319-51645-5_25
https://doi.org/10.1007/978-3-319-51645-5_25
https://doi.org/10.1016/j.entcom.2017.03.001
https://doi.org/10.1016/j.entcom.2017.03.001

[dGAC+16] F. di Giacomo, M. Abbadi, A. Cortesi, P. Spronck, and G. Maggiore. “Building Game
Scripting DSLs with the Metacasanova Metacompiler”. In: Intelligent Technologies for
Interactive Entertainment – Proceedings of the 8th International Conference, Revised Selected
Papers, INTETAIN 2016, Utrecht, The Netherlands, June 28–30, 2016. Ed. by R. Poppe,
J.-J. Meyer, R. Veltkamp, and M. Dastani. Vol. 178. LNICST. Springer, 2016, pp. 231–242.
isbn: 978-3-319-49616-0. doi: 10.1007/978-3-319-49616-0_22 (cit. on pp. 107, 108).

[dGAC+17b] F. di Giacomo, M. Abbadi, A. Cortesi, P. Spronck, and G. Maggiore. “Metacasanova:
An Optimized Meta-Compiler for Domain-Specific Languages”. In: Proceedings of the
10th ACM SIGPLAN International Conference on Software Language Engineering, SLE
2017, Vancouver, BC, Canada, October 23–24, 2017. ACM, 2017, pp. 232–243. isbn:
978-1-4503-5525-4. doi: 10.1145/3136014.3136015 (cit. on pp. 35, 107, 108).

[DN12] C. Dormann and M. Neuvians. “Humor Patterns: Teasing, Fun and Mirth”. In: Pro-
ceedings of the 1st Workshop on Design Patterns in Games, DPG 2012, Raleigh, USA, May
29, 2012. ACM, 2012, pp. 1–4. isbn: 978-1-4503-1854-9. doi: 10.1145/2427116.2427118
(cit. on p. 41).

[Dor09] J. Dormans. “Machinations: Elemental Feedback Patterns for Game Design”. In: Proceed-
ings of the 5th International North American Conference on Intelligent Games and Simulation,
GAME-ON-NA 2009, Atlanta, USA, August 26–28, 2009. Ed. by J. Saur and M. Loper.
EUROSIS, 2009, pp. 33–40. isbn: 978-90-77381-49-6 (cit. on pp. 6, 41, 60, 61, 161, 169,
172).

[Dor10] J. Dormans. “Adventures in Level Design: Generating Missions and Spaces for Action
Adventure Games”. In: Proceedings of the 1st Workshop on Procedural Content Generation
in Games, PCG 2010, Monterey, California, USA, June 18, 2010. ACM, 2010, pp. 1–8. isbn:
978-1-4503-0023-0. doi: 10.1145/1814256.1814257 (cit. on pp. 41, 68, 239).

[Dor11a] J. Dormans. “Integrating Emergence and Progression”. In: Proceedings of the 2011 DiGRA
International Conference: Think, Design, Play, DiGRA 2011, Hilversum, The Netherlands,
September 14-17, 2011. Ed. by M. Copier, A. Waern, and H.W. Kennedy. Digital Games
Research Association, 2011 (cit. on p. 41).

[Dor11b] J. Dormans. “Level Design asModel Transformation: A Strategy for Automated Content
Generation”. In: Proceedings of the 2ndWorkshop on Procedural Content Generation in Games,
PCG 2011, Bordeaux, France, June 28, 2011. ACM, 2011, pp. 1–8. isbn: 978-1-4503-0872-4.
doi: 10.1145/2000919.2000921 (cit. on pp. 41, 61, 68, 137).

[Dor11c] J. Dormans. “Simulating Mechanics to Study Emergence in Games”. In:Workshops at the
7th Artificial Intelligence and Interactive Digital Entertainment Conference, AIIDE 2011, as
part of the workshop on Artificial Intelligence in the Game Design Process, Stanford University,
October 10–14, 2011. Vol. WS-11-19. AAAI Workshops. AAAI, 2011 (cit. on p. 61).

[Dor12a] J. Dormans. “Engineering Emergence: Applied Theory for Game Design”. PhD thesis.
University of Amsterdam, 2012. isbn: 9789461907523 (cit. on pp. 60, 61, 128, 162, 163).

[Dor12b] J. Dormans. “Generating Emergent Physics for Action-Adventure Games”. In: Proceed-
ings of the 3rd Workshop on Procedural Content Generation in Games, PCG 2012, Raleigh,
NC, USA, May 29–June 01, 2012. ACM, 2012, pp. 1–7. isbn: 978-1-4503-1447-3. doi:
10.1145/2538528.2538535 (cit. on p. 61).

[DB11] J. Dormans and S. Bakkes. “Generating Missions and Spaces for Adaptable Play
Experiences”. In: IEEE Transactions on Computational Intelligence and AI in Games 3.3
(Sept. 2011), pp. 216–228. issn: 1943-068X. doi: 10.1109/TCIAIG.2011.2149523 (cit. on
pp. 9, 37, 68, 239).

263

https://doi.org/10.1007/978-3-319-49616-0_22
https://doi.org/10.1145/3136014.3136015
https://doi.org/10.1145/2427116.2427118
https://doi.org/10.1145/1814256.1814257
https://doi.org/10.1145/2000919.2000921
https://doi.org/10.1145/2538528.2538535
https://doi.org/10.1109/TCIAIG.2011.2149523

[DL13] J. Dormans and S. Leĳnen. “Combinatorial and Exploratory Creativity in Procedural
Content Generation”. In:Workshop Proceedings of the 8th International Conference on the
Foundations of Digital Games, as part of the 4th Workshop on Procedural Content Generation
in Games, PCG 2013, Chania, Crete, Greece, May, 14–17, 2013. Society for the Advancement
of the Science of Digital Games, 2013 (cit. on p. 68).

[DGE+16] R. Dörner, S. Göbel, W. Effelsberg, and J. Wiemeyer, eds. Serious Games. Springer, 2016.
isbn: 978-3-319-40611-4. doi: 10.1007/978-3-319-40612-1 (cit. on p. 53).

[Dow13] C. Dowd. “The Scrabble of Language towards Persuasion: Changing Behaviors in
Journalism”. In: Persuasive Technology – Proceedings of the 8th International Conference,
PERSUASIVE 2013, Sydney, NSW, Australia, April 3–5, 2013. Ed. by S. Berkovsky and
J. Freyne. Vol. 7822. LNCS. Springer, 2013, pp. 39–50. isbn: 978-3-642-37157-8 (cit. on
p. 45).

[ELL+13] M. Ebner, J. Levine, S.M. Lucas, T. Schaul, T. Thompson, and J. Togelius. “Towards a
Video Game Description Language”. In: Artificial and Computational Intelligence in Games.
Ed. by S.M. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius. Vol. 6. Dagstuhl
Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 85–100. isbn:
978-3-939897-62-0. doi: 10.4230/DFU.Vol6.12191.85 (cit. on pp. 100, 101).

[Ecl12] Eclipse Foundation. EMF Compare Project. Eclipse Public License v1.0. 2012. url:
https://www.eclipse.org/emf/compare/ (visited on Nov. 9, 2018) (cit. on pp. 207, 227).

[EO12] M. P. Eladhari andE.M. I.Ollila. “Design forResearchResults: Experimental Prototyping
and Play Testing”. In: Simulation & Gaming 43.3 (2012), pp. 391–412. doi: 10.1177/
1046878111434255 (cit. on p. 20).

[EM08] M. P. Eladhari and M. Mateas. “Semi-Autonomous Avatars in World of Minds: A Case
Study of AI-based Game Design”. In: Proceedings of the 2008 International Conference on
Advances in Computer Entertainment Technology, ACE 2008, Yokohama, Japan, December 3–5,
2008. ACM, 2008, pp. 201–208. isbn: 978-1-60558-393-8. doi: 10.1145/1501750.1501798
(cit. on p. 41).

[EHvdW+09] A. Eliëns, H.C. Huurdeman, M.R. van de Watering, and W. Bhikharie. “XIMPEL
Interactive Video - Between Narrative(s) and Game Play”. In: Proceedings of the 10th
International Conference on Intelligent Games and Simulation, GAME-ON 2009, Dusseldorf,
Germany, November 26–28, 2009. Ed. by L. Breitlauch. EUROSIS, 2009, pp. 132–136. isbn:
978-90-77381-53-3 (cit. on p. 41).

[EA07] C. Elverdam and E. Aarseth. “Game Classification and Game Design: Construction
Through Critical Analysis”. In: Games and Culture 2.1 (Jan. 2007). doi: 10 . 1177 /
1555412006286892 (cit. on pp. 43, 44).

[EVV+13] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman, W.R. Cook, A.
Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al. “The State of the Art in Language
Workbenches – Conclusions from the Language Workbench Challenge”. In: Software
Language Engineering – Proceedings of the 6th International Conference, SLE 2013, Indianapolis,
IN, USA, October 26–28, 2013. Ed. by M. Erwig, R. F. Paige, and E. Van Wyk. Vol. 8225.
LNCS. Springer, 2013, pp. 197–217. isbn: 978-3-319-02653-4. doi: 10.1007/978-3-319-
02654-1_11 (cit. on pp. 21, 116, 204, 215, 249).

[ES14] R. Evans andE. Short. “Versu–ASimulationist Storytelling System”. In: IEEETransactions
onComputational Intelligence andAI inGames 6.2 (June 2014), pp. 113–130. issn: 1943-068X.
doi: 10.1109/TCIAIG.2013.2287297 (cit. on pp. 37, 84, 186, 187).

264 bibliography

https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.4230/DFU.Vol6.12191.85
https://www.eclipse.org/emf/compare/
https://doi.org/10.1177/1046878111434255
https://doi.org/10.1177/1046878111434255
https://doi.org/10.1145/1501750.1501798
https://doi.org/10.1177/1555412006286892
https://doi.org/10.1177/1555412006286892
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1109/TCIAIG.2013.2287297

[EB10] M. Eysholdt and H. Behrens. “Xtext: Implement Your Language Faster Than the Quick
and Dirty Way – Tutorial Summary”. In: Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages and Applications Companion,
SPLASH 2010, Reno/Tahoe, Nevada, USA, October 17–21, 2010. ACM, 2010, pp. 307–309.
isbn: 978-1-4503-0240-1. doi: 10.1145/1869542.1869625 (cit. on p. 207).

[FL12] P. Féher and L. Lengyel. “The Power of Graph Transformation – Implementing a
Shadow Casting Algorithm”. In: Proceedings of the 10th Jubilee International Symposium
on Intelligent Systems and Informatics, SISY 2012, Subotica, Serbia, October 25, 2012. IEEE,
2012, pp. 121–127. doi: 10.1109/SISY.2012.6339500 (cit. on p. 116).

[FB14] N. Fenton and J. Bieman. Software Metrics: A Rigorous and Practical Approach. 3rd ed.
CRC press, 2014. isbn: 9780429106224. doi: 10.1201/b17461 (cit. on p. 85).

[Fla11] M. Flatt. “Creating Languages in Racket”. In: Queue 9.11 (Nov. 2011), pp. 20–34. issn:
1542-7730. doi: 10.1145/2063166.2068896 (cit. on pp. 36, 118).

[Fla12] M. Flatt. “Creating Languages in Racket”. In: Communications of the ACM 55.1 (Jan. 2012),
pp. 48–56. issn: 0001-0782. doi: 10.1145/2063176.2063195 (cit. on pp. 36, 118).

[FMM+13a] J.M. Font, T. Mahlmann, D. Manrique, and J. Togelius. “A Card Game Description
Language”. In: Applications of Evolutionary Computation – Proceedings of the 16th European
Conference, EvoApplications 2013, Vienna, Austria, April 3–5, 2013. Ed. by A. I. Esparcia-
Alcázar. Vol. 7835. LNCS. Springer, 2013, pp. 254–263. isbn: 978-3-642-37192-9 (cit. on
p. 99).

[FMM+13b] J.M. Font, T. Mahlmann, D. Manrique, and J. Togelius. “Towards the Automatic
Generation of Card Games through Grammar-Guided Genetic Programming”. In:
Proceedings of the 8th International Conference on the Foundations of Digital Games, FDG
2013, Chania, Crete, Greece, May 14–17, 2013. Society for the Advancement of the Science
of Digital Games, 2013, pp. 360–363. isbn: 978-0-9913982-0-1 (cit. on pp. 41, 99).

[FGH+12] Y. Francillette, A. Gouaïch, N. Hocine, and J. Pons. “A Gameplay Loops Formal Lan-
guage”. In: Proceedings of the 17th International Conference on Computer Games, CGAMES
2012, Louisville, KY, USA, August 30–July 1, 2012. 2012, pp. 94–101. isbn: 978-1-4673-
1121-2. doi: 10.1109/CGames.2012.6314558 (cit. on p. 41).

[FBM+10a] F. Frapolli, A. Brocco, A. Malatras, and B. Hirsbrunner. “FLEXIBLE RULES: A Player
Oriented Board Game Development Framework”. In: Proceedings of the 3rd International
Conference on Advances in Computer-Human Interactions, ACHI 2010, Sint Maarten, Nether-
lands, Antilles, February 10–16, 2010. IEEE, 2010, pp. 113–118. isbn: 978-1-4244-5694-9.
doi: 10.1109/ACHI.2010.14 (cit. on p. 114).

[FMH10] F. Frapolli, A. Malatras, and B. Hirsbrunner. “Exploiting Traditional Gameplay Charac-
teristics to Enhance Digital Board Games”. In: Proceedings of the 2nd International
IEEE Consumer Electronics Society’s Games Innovations Conference, GiC 2010, Hong
Kong, China, December 21–23, 2010. IEEE, 2010, pp. 1–8. isbn: 978-1-4244-7178-2.
doi: 10.1109/ICEGIC.2010.5716897 (cit. on p. 114).

[FBM+10b] F. Frapolli, A. Brocco, A. Malatras, and B. Hirsbrunner. “Decoupling Aspects in Board
Game Modeling”. In: International Journal of Gaming and Computer-Mediated Simulations
2.2 (Apr. 2010), pp. 18–35. issn: 1942-3888. doi: 10.4018/jgcms.2010040102 (cit. on
p. 114).

[FH02] D. Fu and R. T. Houlette. “Putting AI in Entertainment: An AI Authoring Tool for
Simulation and Games”. In: IEEE Intelligent Systems 17.4 (July 2002), pp. 81–84. issn:
1941-1294. doi: 10.1109/MIS.2002.1024756 (cit. on p. 75).

265

https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1109/SISY.2012.6339500
https://doi.org/10.1201/b17461
https://doi.org/10.1145/2063166.2068896
https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1109/CGames.2012.6314558
https://doi.org/10.1109/ACHI.2010.14
https://doi.org/10.1109/ICEGIC.2010.5716897
https://doi.org/10.4018/jgcms.2010040102
https://doi.org/10.1109/MIS.2002.1024756

[FHJ03] D. Fu, R.Houlette, andR. Jensen. “AVisual Environment for Rapid BehaviorDefinition”.
In:Prococeedings of the 12thConference on Behavior Representation inModeling and Simulation,
BRIMS 2003, Scottsdale, Arizona, USA, May 12–15, 2003. SISO, 2003. isbn: 978-1-61567-
168-7 (cit. on pp. 74, 75, 137).

[FHL07] D. Fu, R. Houlette, and J. Ludwig. “AnAIModeling Tool for Designers andDevelopers”.
In: IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, March 3–10, 2007. IEEE,
2007, pp. 1–9. doi: 10.1109/AERO.2007.352769 (cit. on pp. 74, 75, 162).

[FSH04] T. Fullerton, C. Swain, and S. Hoffman. Game Design Workshop: Designing, Prototyping,
and Playtesting Games. CMP Books, 2004. isbn: 1578202221 (cit. on p. 56).

[FSH08] T. Fullerton, C. Swain, and S. Hoffman. Game Design Workshop: A Playcentric Approach to
Creating Innovative Games. 2nd ed. Morgan Kaufmann, 2008. isbn: 1578202221 (cit. on
pp. 20, 39).

[FR12] M. Funk and M. Rauterberg. “PULP Scription: A DSL for Mobile HTML5 Game
Applications”. In:EntertainmentComputing –Proceedings of the 11th International Conference
on Entertainment Computing, ICEC 2012, as part of the 2nd Workshop on Game Development
and Model-Driven Software Development, GD&MDSD 2012, Bremen, Germany, September
26–29, 2012. Ed. by M. Herrlich, R. Malaka, and M. Masuch. Vol. 7522. LNCS. Springer,
2012, pp. 504–510. isbn: 978-3-642-33542-6. doi: 10.1007/978- 3- 642- 33542- 6_65
(cit. on p. 41).

[FSR+11] A.W.B. Furtado, A. L.M. Santos, G. L. Ramalho, and E. S. de Almeida. “Improving
Digital Game Development with Software Product Lines”. In: IEEE Software 28.5 (Sept.
2011), pp. 30–37. issn: 0740-7459. doi: 10.1109/MS.2011.101 (cit. on p. 113).

[FS06a] A.W. B. Furtado and A. L.M. Santos. “Tutorial: Applying Domain-Specific Modeling to
Game Development with the Microsoft DSL Tools”. In: Proceedings of the 5th Brazilian
Symposium on Computer Games and Digital Entertainment, SBGames 2006, Recife, Brazil,
November 8–10, 2006. Ed. by B. Feĳó, A. Neves, E. Clua, L. Freire, G. Ramalho, and
M. Walter. UFPE, 2006. isbn: 85-7669-098-5 (cit. on pp. 35, 41, 113).

[FS06b] A.W.B. Furtado and A. L.M. Santos. “Using Domain-Specific Modeling Towards
Computer Games Development Industrialization”. In: Proceedings of the 6th Workshop on
Domain-Specific Modeling, DSM 2006, Portland, Oregon, USA, October 22, 2006. Computer
Science and Information System Reports, Technical Reports, TR-37. University of
Jyväskylä, Finland, 2006, pp. 1–14. isbn: 951-39-2631-1 (cit. on p. 113).

[FSR11] A.W. B. Furtado, A. L.M. Santos, and G. L. Ramalho. “SharpLudus Revisited: From Ad
Hoc and Monolithic Digital Game DSLs to Effectively Customized DSM Approaches”.
In: SPLASH ’11 Workshops: Proceedings of the Compilation of the Co-located Workshops on
DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11 – as part of the 11th
workshop on Domain-Specific Modeling, DSM 2011, Portland, Oregon, USA, October 23–24,
2011. ACM, 2011, pp. 57–62. isbn: 978-1-4503-1183-0. doi: 10.1145/2095050.2095061
(cit. on pp. 35, 113).

[Fur06] A.W. B. Furtado. “SharpLudus: Improving Game Development Experience Through
Software Factories and Domain-Specific Languages”. MA thesis. Universidade Federal
de Pernambuco (UFPE) – Mestrado em Ciência da Computação – Centro de Informática
(CIN), 2006 (cit. on p. 113).

[Fur12] A.W.B. Furtado. “Domain-Specific Game Development”. PhD thesis. Universidade
Federal de Pernambuco, 2012 (cit. on pp. 113, 128).

[FSR07] A.W.B. Furtado, A. L.M. Santos, and G. L. Ramalho. “A Computer Games Software
Factory and Edutainment Platform for Microsoft.NET”. In: IET Software 1.6 (Dec. 2007),
pp. 280–293. issn: 1751-8806. doi: 10.1049/iet-sen:20070023 (cit. on p. 113).

266 bibliography

https://doi.org/10.1109/AERO.2007.352769
https://doi.org/10.1007/978-3-642-33542-6_65
https://doi.org/10.1109/MS.2011.101
https://doi.org/10.1145/2095050.2095061
https://doi.org/10.1049/iet-sen:20070023

[Gam10] I. A. Games. “Gamestar Mechanic: Learning a Designer Mindset through Communica-
tional Competence with the Language of Games”. In: Learning, Media and Technology
35.1 (Mar. 2010), pp. 31–52. issn: 1743-9884. doi: 10.1080/17439880903567774 (cit. on
p. 89).

[GHJ+94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994. isbn: 9780201633610 (cit. on pp. 46,
218).

[Gau16] S. Gaudl. “Building Robust Real-Time Game AI: Simplifying & Automating Integral
Process Steps in Multi-Platform Design”. PhD thesis. University of Bath, May 2016
(cit. on pp. 75, 128).

[GDB13] S. E. Gaudl, S. Davies, and J. J. Bryson. “Behaviour Oriented Design for Real-Time-
Strategy Games”. In: Proceedings of the 8th International Conference on the Foundations of
Digital Games, FDG 2013, Chania, Crete, Greece, May 14–17, 2013. Ed. by G.N. Yannakakis,
E. Aarseth, K. Jørgensen, and J. C. Lester. Society for the Advancement of the Science of
Digital Games, 2013, pp. 198–205 (cit. on p. 75).

[GBU08] T. Goldschmidt, S. Becker, and A. Uhl. “Classification of Concrete Textual Syntax
Mapping Approaches”. In: Model Driven Architecture – Foundations and Applications
– Proceedings of the 4th European Conference, ECMDA-FA 2008, Berlin, Germany, June
9–13, 2008. Ed. by I. Schieferdecker and A. Hartman. Vol. 5095. LNCS. Springer, 2008,
pp. 169–184. isbn: 978-3-540-69095-5. doi: 10.1007/978-3-540-69100-6_12 (cit. on
p. 207).

[GBF15] S. Götz, N. Bencomo, and R. France. “Devising the Future of the Models@Run.Time
Workshop”. In: SIGSOFT Software Engineering Notes 40.1 (Feb. 2015), pp. 26–29. issn:
0163-5948. doi: 10.1145/2693208.2693249 (cit. on p. 231).

[Gro03] A. Grossman, ed. Postmortems from GameDeveloper. CMP Books, 2003. isbn: 1-57820-
214-0 (cit. on p. 38).

[GGG+14] A. Grow, S. E. Gaudl, P. Gomes, M. Mateas, and N. Wardrip-Fruin. “A Methodology for
Requirements Analysis of AI Architecture Authoring Tools”. In: Proceedings of the 9th
International Conference on the Foundations of Digital Games, FDG 2014, Liberty of the Seas,
Caribbean, April 3–7, 2014. Ed. by M. Mateas, T. Barnes, and I. Bogost. Society for the
Advancement of the Science of Digital Games, 2014 (cit. on p. 75).

[Grü05] S. Grünvogel. “Formal Models and Game Design”. In: Game Studies 5.1 (Oct. 2005)
(cit. on p. 39).

[Gua17] V. Guana. “End-to-end Fine-grained Traceability Analysis in Model Transformations
andTransformationChains”. PhD thesis.Department ofComputingScience –University
of Alberta, 2017 (cit. on pp. 115, 128).

[GS14] V. Guana and E. Stroulia. “PhyDSL: A Code-generation Environment for 2D Physics-
based Games”. In: IEEE Games, Entertainment, and Media Conference, GEM 2014, Toronto
ON Canada, October 22–24, 2014. IEEE, 2014, pp. 1–6 (cit. on p. 115).

[GSN15] V. Guana, E. Stroulia, and V. Nguyen. “Building a Game Engine: A Tale of Modern
Model-Driven Engineering”. In: Proceedings of the 4th International Workshop on Games
and Software Engineering, GAS 2015, Florence, Italy, May 18, 2015. IEEE, 2015, pp. 15–21.
isbn: 978-1-4673-7046-2. doi: 10.1109/GAS.2015.11 (cit. on pp. 35, 115).

[Guo15] H. Guo. “Concepts and Modelling Techniques for Pervasive and Social Games”. PhD
thesis. Norwegian University of Science et al., June 2015. isbn: 978-82-326-0944-4
(cit. on pp. 45, 128).

267

https://doi.org/10.1080/17439880903567774
https://doi.org/10.1007/978-3-540-69100-6_12
https://doi.org/10.1145/2693208.2693249
https://doi.org/10.1109/GAS.2015.11

[GTW+15a] H. Guo, H. Trætteberg, A. I.W. Wang, and S. Gao. “AWorkflow for Model Driven Game
Development”. In: Proceedings of the IEEE 19th International Enterprise Distributed Object
Computing Conference, EDOC 2015, Adelaide, SA, Australia, September 21–25, 2015. IEEE,
2015, pp. 94–103. isbn: 978-1-4673-9203-7. doi: 10.1109/EDOC.2015.23 (cit. on pp. 44,
45).

[GTW+14] H. Guo, H. Trætteberg, A. I. Wang, and S. Gao. “PerGO: An Ontology Towards Model
Driven Pervasive Game Development”. In: On the Move to Meaningful Internet Systems:
OTM 2014 Workshops, as part of Ontologies, DataBases, and Applications of Semantics,
ODBASE 2014 Posters, Amantea, Italy, October 27–31, 2014. Ed. by R. Meersman, H.
Panetto, A. Mishra, R. Valencia-García, A. L. Soares, I. Ciuciu, F. Ferri, G. Weichhart,
T. Moser, M. Bezzi, and H. Chan. Vol. 8842. LNCS. Springer, 2014, pp. 651–654. isbn:
978-3-662-45550-0. doi: 10.1007/978-3-662-45550-0_67 (cit. on pp. 44, 45).

[GTW+15b] H. Guo, H. Trætteberg, A. I. Wang, S. Gao, and M. L. Jaccheri. “RealCoins: A Case Study
of Enhanced Model Driven Development for Pervasive Games”. In: International Journal
of Multimedia and Ubiquitous Engineering 10.5 (2015), pp. 395–410. issn: 1975-0080. doi:
10.14257/ijmue.2015.10.5.37 (cit. on pp. 44, 45).

[HS07] J. S. Harbour and J. R. Smith. DarkBASIC Pro Game Programming. 2nd ed. Thomson
Course Technology, 2007. isbn: 1-59863-287-6 (cit. on p. 102).

[HZD+11] K. Hartsook, A. Zook, S. Das, and M.O. Riedl. “Toward Supporting Stories with
Procedurally Generated GameWorlds”. In: IEEE Conference on Computational Intelligence
and Games, CIG 2011, Seoul, South Korea, August 31–September 3, 2011. IEEE, 2011, pp. 297–
304. isbn: 978-1-4577-0011-8. doi: 10.1109/CIG.2011.6032020 (cit. on pp. 186, 187).

[Has13] T. Hastjarjanto. “Strategies for Real-Time Video Games”. MA thesis. Utrecht University,
Mar. 2013 (cit. on p. 75).

[HJL13] T.Hastjarjanto, J. Jeuring, andS. Leather. “ADSL forDescribing theArtificial Intelligence
in Real-time Video Games”. In: Proceedings of the 3rd International Workshop on Games
and Software Engineering: Engineering Computer Games to Enable Positive, Progressive
Change, GAS 2013, San Francisco, CA, USA, May 18–26, 2013. IEEE, 2013, pp. 8–14. isbn:
978-1-4673-6263-4. doi: 10.1109/GAS.2013.6632583 (cit. on pp. 35, 75).

[Hei18] Q. Heĳn. “Improving the Quality of Grammars for Procedural Level Generation: A
Software Evolution Perspective”. MA thesis. University of Amsterdam, Aug. 2018
(cit. on p. 11).

[HKV07] I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring Maintain-
ability”. In: Proceedings of the 6th International Conference on the Quality of Information
and Communications Technology, QUATIC 2007, Lisbon, Portugal, September 12–14, 2007.
Ed. by R. J. Machado, F. B. e Abreu, and P. R. da Cunha. IEEE, 2007, pp. 30–39. isbn:
0-7695-2948-8. doi: 10.1109/QUATIC.2007.8 (cit. on p. 245).

[HMV+13] M.Hendrikx, S.Meĳer, J. VanDerVelden, andA. Iosup. “Procedural ContentGeneration
for Games: A Survey”. In: ACM Transactions on Multimedia Computing, Communications
and Applications 9.1 (Feb. 2013), pp. 1–22. issn: 1551-6857. doi: 10.1145/2422956.2422957
(cit. on p. 123).

[HO10] F. E. Hernandez and F. R. Ortega. “Eberos GML2D: A Graphical Domain-Specific
Language for Modeling 2D Video Games”. In: Proceedings of the 10th Workshop on
Domain-Specific Modeling, DSM 2010, Reno/Tahoe, Nevada, USA, October 17–18, 2010.
Ed. by M. Rossi, J.-P. Tolvanen, J. Sprinkle, and S. Kelly. Aalto-Print, 2010, pp. 1–6. isbn:
978-952-60-1043-4. doi: 10.1145/2060329.2060342 (cit. on pp. 35, 113, 114).

268 bibliography

https://doi.org/10.1109/EDOC.2015.23
https://doi.org/10.1007/978-3-662-45550-0_67
https://doi.org/10.14257/ijmue.2015.10.5.37
https://doi.org/10.1109/CIG.2011.6032020
https://doi.org/10.1109/GAS.2013.6632583
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/2060329.2060342

[HJM+13] P. Herzig, K. Jugel, C.Momm,M. Ameling, andA. Schill. “GaML: AModeling Language
for Gamification”. In: Proceedings of the IEEE/ACM 6th International Conference on Utility
and Cloud Computing, Dresden, Germany, December 9–12, 2013. IEEE, 2013, pp. 494–499.
isbn: 978-0-7695-5152-4. doi: 10.1109/UCC.2013.96 (cit. on p. 92).

[HRS+04] A.R. Hevner, S. Ram, T.M. Salvatore, and J. Park. “Design Science in Information
Systems Research”. In: MIS Quarterly 28.1 (Mar. 2004). Ed. by A. S. Lee, pp. 75–105
(cit. on pp. 6, 8, 9).

[Hol16] L. T. Holloway. “Modeling and Formal Verification of Gaming Storylines”. PhD thesis.
The University of Texas at Austin, May 2016 (cit. on p. 128).

[Hol14] I. Holmes. “A Web-Based Editor for Multiplayer Choice Games”. In: Proceedings of the
9th International Conference on the Foundations of Digital Games, FDG 2014, Liberty of the
Seas, Caribbean, April 3–7, 2014. Ed. byM.Mateas, T. Barnes, and I. Bogost. Society for the
Advancement of the Science of Digital Games, 2014, pp. 1–4. isbn: 978-0-9913982-2-5
(cit. on p. 40).

[HBK07] J. Holopainen, S. Björk, and J. Kuittinen. “Teaching Gameplay Design Patterns”.
In: Organizing and Learning through Gaming and Simulation – Proceedings of the 38th
Conference of the International Simulation And Gaming Association, ISAGA 2007, Nĳmegen,
The Netherlands, July 9–13, 2007. Ed. by I. Mayer and H. Mastik. Eburon, 2007. isbn:
9789059722316 (cit. on pp. 39, 47).

[HB03] J. Holopainen and S. Björk. “GameDesign Patterns – LectureNotes”. In:GameDevelopers
Conference, GDC 2003. 2003. url: http://www.gents.it/FILES/ebooks/Game_Design_
Patterns.pdf (visited on Oct. 24, 2018) (cit. on pp. 38, 47).

[HB08] J. Holopainen and S. Björk. “Gameplay Design Patterns for Motivation”. In: Games:
Virtual Worlds and Reality – Proceedings of the 39th Conference of the International Simulation
And Gaming Association, ISAGA 2008, Kaunas, Lithuania, July 7–11, 2008. Ed. by E.
Bagdonas, I. Patasiene, and D. Jovarauskiene. Kaunas University of Technology, 2008.
isbn: 978-9955-25-528-4 (cit. on pp. 39, 47).

[Hol03] G. Holzmann. The Spin Model Checker: Primer and Reference Manual. 1st ed. Addison-
Wesley, 2003. isbn: 0-321-22862-6. url: http://spinroot.com/spin/Doc/Book_extras/
(visited on Nov. 8, 2018) (cit. on p. 136).

[Hor14] I. D. Horswill. “Architectural Issues for Compositional Dialog in Games”. In: Papers
from the 2014 AIIDEWorkshop – Proceedings of the Workshop on Games and Natural Language
Processing, GAMNLP 2014, Raleigh, NC, USA, October 3–7, 2014. AAAI Technical Report
WS-14-17. AAAI, 2014. isbn: 978-1-57735-686-8 (cit. on p. 39).

[Hor99] E. Horvitz. “Principles of Mixed-Initiative User Interfaces”. In: Proceeding of the CHI ’99
Conference on Human Factors in Computing Systems: The CHI is the Limit, Pittsburgh, PA,
USA, May 15–20, 1999. Ed. by M.G. Williams and M.W. Altom. ACM, 1999, pp. 159–166.
doi: 10.1145/302979.303030 (cit. on p. 66).

[Hui38] J. Huizinga. Homo Ludens: Proeve Ener Bepaling van het Spelelement der Cultuur. Wolters-
Noordhoff, 1938 (cit. on p. 39).

[HW10] K. Hullett and J. Whitehead. “Design Patterns in FPS Levels”. In: Proceedings of the
Fifth International Conference on the Foundations of Digital Games, FDG 2010, Monterey,
California, USA, June 19–21, 2010. ACM, 2010, pp. 78–85. isbn: 978-1-60558-937-4. doi:
10.1145/1822348.1822359 (cit. on pp. 41, 51).

[HLZ04] R. Hunicke, M. Leblanc, and R. Zubek. “MDA: A Formal Approach to Game Design
and Game Research”. In: Proceedings of the AAAI workshop on Challenges in Game Artificial
Intelligence. AAAI, 2004, pp. 1–5 (cit. on pp. 20, 48, 185).

269

https://doi.org/10.1109/UCC.2013.96
http://www.gents.it/FILES/ebooks/Game_Design_Patterns.pdf
http://www.gents.it/FILES/ebooks/Game_Design_Patterns.pdf
http://spinroot.com/spin/Doc/Book_extras/
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/1822348.1822359

[IDC05] R. Ierusalimschy, L.H. De Figueiredo, and W. Celes Filho. “The Implementation of
Lua 5.0”. In: Journal of Universal Computer Science 11.7 (2005), pp. 1159–1176. doi:
10.3217/jucs-011-07 (cit. on p. 103).

[IdFC07] R. Ierusalimschy, L.H. de Figueiredo, and W. Celes. “The Evolution of Lua”. In:
Proceedings of the 3rd ACM SIGPLAN Conference on History of Programming Languages,
HOPL III, San Diego, California, June 9–10, 2007. ACM, 2007, pp. 1–26. isbn: 978-1-59593-
766-7. doi: 10.1145/1238844.1238846 (cit. on p. 103).

[IvdSE14] P. Inostroza, T. van der Storm, and S. Erdweg. “Tracing Program Transformations with
String Origins”. In: Theory and Practice of Model Transformations – Proceedings of the 7th
International Conference, ICMT 2014, York, UK, July 21–22, 2014. Ed. by D. Di Ruscio and
D. Varró. Vol. 8568. LNCS. Springer, 2014, pp. 154–169. isbn: 978-3-319-08788-7. doi:
10.1007/978-3-319-08789-4_12 (cit. on p. 207).

[IRW08] A. Ioannidou, A. Repenning, and D. Webb. “Using Scalable Game Design to Promote
3D Fluency: Assessing the AgentCubes incremental 3D End-user Development Frame-
work”. In: Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2008, Herrsching amAmmersee, Germany, September 15–19, 2008. Ed. by
P. Bottoni, M. B. Rosson, and M. Minas. IEEE, 2008, pp. 47–54. isbn: 978-1-4244-2528-0.
doi: 10.1109/VLHCC.2008.4639057 (cit. on p. 91).

[Isl05a] D. Isla. “GDC 2005 Proceeding: Handling Complexity in the Halo 2 AI”. In: Gamasutra
(Mar. 2005). url: https://www.gamasutra.com/view/feature/130663 (cit. on pp. 73, 74).

[Isl05b] D. Isla. “Managing Complexity in the Halo 2 AI System”. In: Proceedings of the Game
Developers Conference, GDC 2005. Audio recording. Gdcvault.com, 2005. url: https:
//gdcvault.com/play/1020270/Managing-Complexity-in-the-Halo (visited on Oct. 25,
2018) (cit. on pp. 38, 73, 74).

[Jon05] R. Jones. “Rapid Game Development in Python”. In: OpenSource Developers’ Conference.
2005, pp. 84–90 (cit. on p. 103).

[Juu11] J. Juul. Half-real: Video Games between Real Rules and Fictional Worlds. MIT press, 2011
(cit. on pp. 19, 56).

[KBB15] D. Karavolos, A. Bouwer, and R. Bidarra. “Mixed-Initiative Design of Game Levels:
Integrating Mission and Space into Level Generation”. In: Proceedings of the 10th
International Conference on the Foundations of Digital Games, FDG 2015, Pacific Grove, CA,
USA, June 22–25, 2015. Ed. by J. P. Zagal, E. MacCallum-Stewart, and J. Togelius. Society
for the Advancement of the Science of Digital Games, 2015 (cit. on pp. 68, 239).

[KKP+12] T. Kehrer, U. Kelter, P. Pietsch, and M. Schmidt. “Adaptability of Model Comparison
Tools”. In: Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, Essen, Germany, September 3–7, 2012. ACM, 2012, pp. 306–309.
isbn: 978-1-4503-1204-2. doi: 10.1145/2351676.2351731 (cit. on p. 227).

[KKT11] T. Kehrer, U. Kelter, and G. Taentzer. “A Rule-Based Approach to the Semantic Lifting
of Model Differences in the Context of Model Versioning”. In: Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2011, Lawrence,
KS, USA, November 6–10, 2011. IEEE, 2011, pp. 163–172. isbn: 978-1-4577-1638-6. doi:
10.1109/ASE.2011.6100050 (cit. on p. 230).

[KTB12] J. Kessing, T. Tutenel, andR. Bidarra. “Designing SemanticGameWorlds”. In:Proceedings
of the 3rd workshop on Procedural Content Generation in Games, PCG 2012, Raleigh, NC, USA,
May 29–June 1, 2012. ACM, 2012, pp. 1–9. doi: 10.1145/2538528.2538530 (cit. on p. 67).

270 bibliography

https://doi.org/10.3217/jucs-011-07
https://doi.org/10.1145/1238844.1238846
https://doi.org/10.1007/978-3-319-08789-4_12
https://doi.org/10.1109/VLHCC.2008.4639057
https://www.gamasutra.com/view/feature/130663
https://gdcvault.com/play/1020270/Managing-Complexity-in-the-Halo
https://gdcvault.com/play/1020270/Managing-Complexity-in-the-Halo
https://doi.org/10.1145/2351676.2351731
https://doi.org/10.1109/ASE.2011.6100050
https://doi.org/10.1145/2538528.2538530

[KT17] A. Khalifa and J. Togelius. “Marahel: A Language for Constructive Level Generation”.
In: Proceedings of the 4th Workshop on Experimental AI in Games, EXAG 2017, co-located
with the 13th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
AIIDE 2017, Snowbird, Utah, USA, October 5–9, 2017. AAAI, 2017 (cit. on p. 37).

[KDV07] J. Kienzle, A. Denault, and H. Vangheluwe. “Model-Based Design of Computer-
Controlled Game Character Behavior”. In: Model Driven Engineering Languages and
Systems – Proceedings of the 10th International Conference, MoDELS 2007, Nashville, USA,
September 30–October 5, 2007. Ed. by G. Engels, B. Opdyke, D.C. Schmidt, and F.
Weil. Vol. 4735. LNCS. Springer, 2007, pp. 650–665. isbn: 978-3-540-75209-7. doi:
10.1007/978-3-540-75209-7_44 (cit. on pp. 36, 112).

[KC07] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Reviews in
Software Engineering. Tech. rep. EBSE-2007-01. Keele University and Durham University
Joint Report, 2007 (cit. on pp. 5, 18, 23, 127).

[KRvR12] P. Klint, L. Roosendaal, and R. van Rozen. “Game Developers Need Lua AiR: Static
Analysis of Lua Using Interface Models”. In: Entertainment Computing – Proceedings
of the 11th International Conference on Entertainment Computing, ICEC 2012, as part of the
2nd Workshop on Game Development and Model-Driven Software Development, GD&MDSD
2012, Bremen, Germany, September 26–29, 2012. Ed. by M. Herrlich, R. Malaka, and M.
Masuch. Vol. 7522. LNCS. Springer, 2012, pp. 530–535. isbn: 978-3-642-33542-6. doi:
10.1007/978-3-642-33542-6_69 (cit. on pp. 12, 41, 103).

[KvdSV09] P. Klint, T. van der Storm, and J. J. Vinju. “Rascal: A Domain Specific Language
for Source Code Analysis and Manipulation”. In: Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta,
Canada, September 20–21, 2009. IEEE, 2009, pp. 168–177. isbn: 978-0-7695-3793-1. doi:
10.1109/SCAM.2009.28 (cit. on pp. 198, 215, 232, 249).

[KvdSV11] P. Klint, T. van der Storm, and J. J. Vinju. “EASY Meta-programming with Rascal”.
In: Generative and Transformational Techniques in Software Engineering III – International
Summer School, GTTSE 2009, Braga, Portugal, July 6–11, 2009. Revised Papers. Ed. by
J.M. Fernandes, R. Lämmel, J. Visser, and J. Saraiva. Vol. 6491. LNCS. Springer, 2011,
pp. 222–289. doi: 10.1007/978-3-642-18023-1_6 (cit. on p. 136).

[KvR13] P. Klint and R. van Rozen. “Micro-Machinations: a DSL for Game Economies”. In:
Software Language Engineering – Proceedings of the 6th International Conference on Software
Language engineering, SLE 2013, Indianapolis, IN, USA, October 26–28, 2013. Ed. by M.
Erwig, R. F. Paige, and E. Van Wyk. Vol. 8225. LNCS. Springer, 2013, pp. 36–55. isbn:
978-3-319-02654-1. doi: 10.1007/978-3-319-02654-1_3 (cit. on pp. 10, 20, 35, 63, 124,
135, 162, 164, 184, 185, 187, 199).

[KB13] M. Klotzbuecher and H. Bruyninckx. “A Lightweight, Composable Metamodelling
Language for Specification and Validation of Internal Domain Specific Languages”.
In: Model-Based Methodologies for Pervasive and Embedded Software. Ed. by R. J. Machado,
R. S. P. Maciel, J. Rubin, and G. Botterweck. Vol. 7706. LNCS. Springer, 2013, pp. 58–68.
isbn: 978-3-642-38208-6. doi: 10.1007/978-3-642-38209-3_4 (cit. on p. 163).

[KDP+09] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. “Different Models for Model
Matching: An Analysis of Approaches to Support Model Differencing”. In: Proceedings
of the 2009 ICSE Workshop on Comparison and Versioning of Software Models, CVSM 2009,
Vancouver, BC, USA, May 17, 2009. IEEE, 2009, pp. 1–6. isbn: 978-1-4244-3714-6. doi:
10.1109/CVSM.2009.5071714 (cit. on pp. 228, 230).

271

https://doi.org/10.1007/978-3-540-75209-7_44
https://doi.org/10.1007/978-3-642-33542-6_69
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1007/978-3-319-02654-1_3
https://doi.org/10.1007/978-3-642-38209-3_4
https://doi.org/10.1109/CVSM.2009.5071714

[KPP08] D. S. Kolovos, R. F. Paige, and F.A.C. Polack. “The Epsilon Transformation Language”.
In: Theory and Practice of Model Transformations: Proceedings of the 1st International
Conference onModel Transformations, ICMT 2008, Zürich, Switzerland, July 1–2, 2008. Ed. by
A. Vallecillo, J. Gray, and A. Pierantonio. Vol. 5063. LNCS. Springer, 2008, pp. 46–60.
isbn: 978-3-540-69927-9. doi: 10.1007/978-3-540-69927-9_4 (cit. on p. 230).

[Kos05a] R. Koster. “A Grammar of Gameplay”. In:Game Developers Conference, GDC 2005. Presen-
tation slides. 2005. url: https://www.raphkoster.com/gaming/atof/grammarofgameplay.
pdf (visited on Oct. 24, 2018) (cit. on pp. 38, 49, 50, 161).

[Kos05b] R. Koster. Theory of Fun for Game Design. 1st ed. Paraglyph Press, 2005. isbn: 1932111972
(cit. on p. 50).

[Kos16] R. Koster. “The Limits of Formalism”. In: Presentation delivered at the BIRS Workshop
on Computational Modeling in Games. Raph Koster’s Website, 2016. url: https://www.
raphkoster.com/games/presentations/the-limits-of-formalism/ (cit. on pp. 49, 50).

[Kre02] B. Kreimeier. “The Case for Game Design Patterns”. In: Gamasutra (Mar. 2002). url:
https://www.gamasutra.com/view/feature/132649/ (visited on Oct. 15, 2018) (cit. on
pp. 38, 47, 186).

[KBW14] S. Kriglstein, R. Brown, and G. Wallner. “Workflow Patterns as a Means to Model
Task Succession in Games: A Preliminary Case Study”. In: Entertainment Computing –
Proceedings of the 13th International Conference on Entertainment Computing, ICEC 2014,
Sydney, Australia, October 1–3, 2014. Ed. by Y. Pisan, N.M. Sgouros, and T. Marsh.
Vol. 8770. LNCS. Springer, 2014, pp. 36–41. isbn: 978-3-662-45212-7 (cit. on p. 41).

[KB17] B. Kybartas and R. Bidarra. “A Survey on Story Generation Techniques for Authoring
Computational Narratives”. In: IEEE Transactions on Computational Intelligence and AI in
Games 9.3 (Sept. 2017), pp. 239–253. issn: 1943-068X. doi: 10.1109/TCIAIG.2016.2546063
(cit. on pp. 76, 123).

[Läm04] R. Lämmel. “Coupled Software Transformations”. In: Proceedings of the 1st International
Workshop on Software Evolution Transformations, SET 2004, Delft, the Netherlands, November
9, 2004. Ed. by Y. Zou and J. R. Cordy. Queen’s University, 2004, pp. 31–35. url:
http://post.queensu.ca/~zouy/files/set-2004.pdf (visited on Nov. 9, 2018) (cit. on
p. 228).

[Läm18] R. Lämmel. Software Languages: Syntax, Semantics, and Metaprogramming. Springer, 2018.
isbn: 978-3-319-90798-7. doi: 10.1007/978-3-319-90800-7. url: http://www.softlang.
org/book (cit. on pp. 34, 247).

[LMK14] P. Langer, T. Mayerhofer, and G. Kappel. “Semantic Model Differencing Utilizing
Behavioral Semantics Specifications”. In:Model-Driven Engineering Languages and Sys-
tems: Proceedings of the 17th International Conference, MODELS 2014, Valencia, Spain,
September 28 – October 3, 2014. Ed. by J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and
E. Insfran. Vol. 8767. LNCS. Springer, 2014, pp. 116–132. isbn: 978-3-319-11653-2. doi:
10.1007/978-3-319-11653-2_8 (cit. on p. 231).

[LWB+13] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdörfer, M. Seidl, K. Wieland, and
G. Kappel. “A Posteriori Operation Detection in Evolving Software Models”. In: Journal
of Systems and Software 86.2 (2013), pp. 551–566. issn: 0164-1212. doi: 10.1016/j.jss.
2012.09.037 (cit. on p. 230).

[LBT+11] G. Lehmann, M. Blumendorf, F. Trollmann, and S. Albayrak. “Meta-Modeling Runtime
Models”. In: Models in Software Engineering – Workshops and Symposia at MODELS 2010
Reports and Revised Selected Papers, as part of the Workshop on Models@run.time 2010,
Oslo, Norway, October 2–8, 2010. Vol. 6627. LNCS. Springer, 2011, pp. 209–223. isbn:
978-3-642-21210-9. doi: 10.1007/978-3-642-21210-9_21 (cit. on p. 232).

272 bibliography

https://doi.org/10.1007/978-3-540-69927-9_4
https://www.raphkoster.com/gaming/atof/grammarofgameplay.pdf
https://www.raphkoster.com/gaming/atof/grammarofgameplay.pdf
https://www.raphkoster.com/games/presentations/the-limits-of-formalism/
https://www.raphkoster.com/games/presentations/the-limits-of-formalism/
https://www.gamasutra.com/view/feature/132649/
https://doi.org/10.1109/TCIAIG.2016.2546063
http://post.queensu.ca/~zouy/files/set-2004.pdf
https://doi.org/10.1007/978-3-319-90800-7
http://www.softlang.org/book
http://www.softlang.org/book
https://doi.org/10.1007/978-3-319-11653-2_8
https://doi.org/10.1016/j.jss.2012.09.037
https://doi.org/10.1016/j.jss.2012.09.037
https://doi.org/10.1007/978-3-642-21210-9_21

[LBB15] S. Leĳnen, P. Brinkkemper, and A. Bouwer. “Generating Game Mechanics in a Model
Economy: a MoneyMaker Deluxe Case Study”. In: Proceedings of the 6th Workshop on
Procedural Content Generation, PCG 2015, Pacific Grove, CA, USA, June 22–25, 2015. Society
for the Advancement of the Science of Digital Games, 2015 (cit. on p. 41).

[Lem07] P. Lemay. “Developing a Pattern Language for Flow Experiences in Video Games”. In:
Proceedings of the 2007 DiGRA International Conference: Situated Play, DiGRA 2007, Tokyo,
Japan, September 24–28, 2007. The University of Tokyo, 2007 (cit. on pp. 41, 52).

[LYN+19] A. Liapis, G.N. Yannakakis, M. J. Nelson, M. Preuss, and R. Bidarra. “Orchestrating
Game Generation”. In: IEEE Transactions on Games 11.1 (2019), pp. 48–68. doi: 10.1109/
TG.2018.2870876 (cit. on p. 123).

[LYT13] A. Liapis, G.N. Yannakakis, and J. Togelius. “Sentient Sketchbook: Computer-Aided
Game Level Authoring”. In: Proceedings of the 8th International Conference on the Foun-
dations of Digital Games, FDG 2013, Chania, Crete, Greece, May 14–17, 2013. Ed. by G.N.
Yannakakis, E. Aarseth, K. Jørgensen, and J. C. Lester. Society for the Advancement of
the Science of Digital Games, 2013, pp. 213–220 (cit. on p. 68).

[LF95] H. Lieberman and C. Fry. “Bridging the Gulf between Code and Behavior in Pro-
gramming”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 1995, Denver, Colorado, USA, May 7–11, 1995. ACM Press/Addison-Wesley
Publishing Co., 1995, pp. 480–486. isbn: 0-201-84705-1. doi: 10.1145/223904.223969
(cit. on p. 203).

[LH14] C.U. Lim and D. F. Harrell. “An Approach to General Videogame Evaluation and
Automatic Generation using a Description Language”. In: Proceedings of the 2014 IEEE
Conference on Computational Intelligence and Games, CIG 2014, Dortmund, Germany, August
26–29, 2014. IEEE, 2014, pp. 1–8. isbn: 978-1-4799-3547-5. doi: 10.1109/CIG.2014.
6932896 (cit. on pp. 37, 109, 110).

[LBC10] C. Lim, R. Baumgarten, and S. Colton. “Evolving Behaviour Trees for the Commercial
Game DEFCON”. In: Applications of Evolutionary Computation, EvoApplicatons 2010:
EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC,
Proceedings, Part I – as part of EvoGAMES, Istanbul, Turkey, April 7–9, 2010. Ed. by C.
Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. Esparcia-Alcázar, C.K. Goh,
J. J. Merelo Guervós, F. Neri, M. Preuss, J. Togelius, and G.N. Yannakakis. Vol. 6024.
LNCS. Springer, 2010, pp. 100–110. doi: 10.1007/978-3-642-12239-2_11 (cit. on p. 74).

[LGJ07] Y. Lin, J. Gray, and F. Jouault. “DSMDiff: A Differentiation Tool for Domain-Specific
Models”. In: European Journal of Information Systems 16.4 (Aug. 2007), pp. 349–361. issn:
1476-9344. doi: 10.1057/palgrave.ejis.3000685 (cit. on pp. 227, 231).

[Lin68] A. Lindenmayer. “Mathematical Models for Cellular Interactions in Development”. In:
Journal of Theoretical Biology 18.3 (1968), pp. 280–299. issn: 0022-5193. doi: 10.1016/0022-
5193(68)90079-9 (cit. on p. 68).

[Llo10] N. Llopis. “Data Oriented Design”. In: Game Developer 17.8 (Sept. 2010), pp. 31–33. issn:
1073-922X (cit. on p. 38).

[LB11] R. Lopes and R. Bidarra. “Adaptivity Challenges in Games and Simulations: a Survey”.
In: IEEE Transactions on Computational Intelligence and AI in Games 3.2 (May 2011),
pp. 85–99. issn: 1943-0698. doi: 10.1109/TCIAIG.2011.2152841 (cit. on p. 200).

[LHH+08] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. “General Game
Playing: Game Description Language Specification”. In: (Mar. 2008). Technical Report
LG-2006-01 (cit. on p. 96).

273

https://doi.org/10.1109/TG.2018.2870876
https://doi.org/10.1109/TG.2018.2870876
https://doi.org/10.1145/223904.223969
https://doi.org/10.1109/CIG.2014.6932896
https://doi.org/10.1109/CIG.2014.6932896
https://doi.org/10.1007/978-3-642-12239-2_11
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1109/TCIAIG.2011.2152841

[Mac11a] M. B. MacLaurin. “The Design of Kodu: A Tiny Visual Programming Language for
Children on the Xbox 360”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, Texas, USA,
January 26–28, 2011. Invited talk – Video recording accessible via ACM. ACM, 2011,
pp. 241–246. isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926413. url: http:
//delivery.acm.org/10.1145/1930000/1926413/22-MPEG-4.mp4 (visited on Oct. 15, 2018)
(cit. on pp. 36, 89).

[Mac11b] M. B. MacLaurin. “The Design of Kodu: A Tiny Visual Programming Language for
Children on the Xbox 360”. In: SIGPLAN Notices 46.1 (Jan. 2011), pp. 241–246. issn:
0362-1340. doi: 10.1145/1925844.1926413 (cit. on pp. 36, 89).

[MBO11] G.Maggiore,M. Bugliesi, and R. Orsini. “Monadic Scripting in F# for Computer Games”.
In: Proceedings of the 5th International Workshop on Harnessing Theories for Tool Support in
Software, TTSS 2011, Oslo Norway, September 13, 2011. UIO, 2011 (cit. on pp. 107, 108).

[MSO+12a] G. Maggiore, A. Spanò, R. Orsini, M. Bugliesi, M. Abbadi, and E. Steffinlongo. “A
Formal Specification for Casanova, a Language for Computer Games”. In: Proceedings of
the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2012,
Copenhagen, Denmark, June 25–26, 2012. ACM, 2012, pp. 287–292. isbn: 978-1-4503-1168-7.
doi: 10.1145/2305484.2305533 (cit. on pp. 41, 107, 108).

[MSO+12b] G.Maggiore, A. Spanò, R. Orsini, G. Costantini, M. Bugliesi, andM. Abbadi. “Designing
Casanova: A Language for Games”. In: Advances in Computer Games – Proceedings of the
13th International Conference, Revised Selected Papers, ACG 2011, Tilburg, The Netherlands,
November 20–22, 2011. Ed. by H. J. van den Herik and A. Plaat. Vol. 7168. LNCS. Springer,
2012, pp. 320–332. isbn: 978-3-642-31866-5. doi: 10.1007/978- 3- 642- 31866- 5_27
(cit. on pp. 107, 108).

[MSO+12c] G.Maggiore, P. Spronck, R. Orsini, M. Bugliesi, E. Steffinlongo, andM. Abbadi. “Writing
Real-Time .Net Games in Casanova”. In: Entertainment Computing – Proceedings of the
11th International Conference on Entertainment Computing, ICEC 2012, Bremen, Germany,
September 26-29, 2012. Ed. by M. Herrlich, R. Malaka, and M. Masuch. Vol. 7522. LNCS.
Springer, 2012, pp. 341–348. isbn: 978-3-642-33542-6. doi: 10.1007/978-3-642-33542-
6_30 (cit. on pp. 41, 107, 108).

[Mag12] G. Maggiore. “Casanova: A Language for Game Development”. PhD thesis. Università
Ca’ Foscari di Venezia, Dec. 2012 (cit. on p. 127).

[MTY11a] T. Mahlmann, J. Togelius, and G.N. Yannakakis. “Modelling and Evaluation of Complex
Scenarios with the Strategy Game Description Language”. In: Proceedings of the 2011
IEEE Conference on Computational Intelligence and Games, CIG 2011, Seoul, South Korea,
August 31–September 3, 2011. 2011, pp. 174–181. isbn: 978-1-4577-0011-8. doi: 10.1109/
CIG.2011.6032004 (cit. on pp. 37, 98).

[Mah13] T. Mahlmann. “Modelling and Generating Strategy Games Mechanics”. PhD thesis. IT
University of Copenhagen, Mar. 2013 (cit. on pp. 98, 128).

[MTY11b] T. Mahlmann, J. Togelius, and G.N. Yannakakis. “Towards Procedural Strategy Game
Generation: Evolving Complementary Unit Types”. In: Applications of Evolutionary
Computation – Proceedings of EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP,
EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Torino, Italy, April 27–29, 2011. Ed. by
C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I. Esparcia-Alcázar, J. J. Merelo,
F. Neri, M. Preuss, H. Richter, J. Togelius, and G.N. Yannakakis. Vol. 6624. LNCS.
Springer, 2011, pp. 93–102. isbn: 978-3-642-20525-5 (cit. on p. 98).

274 bibliography

https://doi.org/10.1145/1926385.1926413
http://delivery.acm.org/10.1145/1930000/1926413/22-MPEG-4.mp4
http://delivery.acm.org/10.1145/1930000/1926413/22-MPEG-4.mp4
https://doi.org/10.1145/1925844.1926413
https://doi.org/10.1145/2305484.2305533
https://doi.org/10.1007/978-3-642-31866-5_27
https://doi.org/10.1007/978-3-642-33542-6_30
https://doi.org/10.1007/978-3-642-33542-6_30
https://doi.org/10.1109/CIG.2011.6032004
https://doi.org/10.1109/CIG.2011.6032004

[MV08] S. Maier and D. Volk. “Facilitating Language-Oriented Game Development by the Help
of LanguageWorkbenches”. In: Proceedings of the 2008 Conference on Future Play: Research,
Play, Share, Future Play 2008, Toronto, Ontario, Canada, November 3–5, 2008. ACM, 2008,
pp. 224–227. isbn: 978-1-60558-218-4. doi: 10.1145/1496984.1497029 (cit. on pp. 41,
117, 118).

[MR15] S. Maoz and J.O. Ringert. “A Framework for Relating Syntactic and Semantic Model
Differences”. In: Proceedings of the ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems, MODELS 2015, Ottawa, ON, Canada, September
30 – October 2, 2015. IEEE, 2015, pp. 24–33. isbn: 978-1-4673-6908-4. doi: 10.1109/
MODELS.2015.7338232 (cit. on p. 231).

[MRR11] S. Maoz, J. O. Ringert, and B. Rumpe. “A Manifesto for Semantic Model Differencing”.
In: Models in Software Engineering – Workshops and Symposia at MODELS 2010, Oslo,
Norway, October 2–8, 2010, Reports and Revised Selected Papers. Ed. by J. Dingel and A.
Solberg. Vol. 6627. LNCS. Springer, 2011, pp. 194–203. isbn: 978-3-642-21210-9. doi:
10.1007/978-3-642-21210-9_19 (cit. on p. 231).

[MTdB+12] E. J. Marchiori, J. Torrente, Á. del Blanco, P. Moreno-Ger, P. Sancho, and B. Fernández-
Manjón. “A Narrative Metaphor to Facilitate Educational Game Authoring”. In: Com-
puters & Education 58.1 (2012), pp. 590–599. issn: 0360-1315. doi: 10.1016/j.compedu.
2011.09.017 (cit. on p. 77).

[MWH+12] B. Marne, J. Wisdom, B. Huynh-Kim-Bang, and J.-M. Labat. “A Design Pattern Library
for Mutual Understanding and Cooperation in Serious Game Design”. In: Intelligent
Tutoring Systems – Proceedings of the 11th International Conference, ITS 2012, Chania, Crete,
Greece, June 14–18, 2012. Ed. by S.A. Cerri, W. J. Clancey, G. Papadourakis, and K.
Panourgia. Vol. 7315. LNCS. Springer, 2012, pp. 135–140. isbn: 978-3-642-30950-2
(cit. on p. 52).

[MBB+12] E. Marques, V. Balegas, B. F. Barroca, A. Barisic, and V. Amaral. “The RPG DSL: A Case
Study of Language Engineering Using MDD for Generating RPG Games for Mobile
Phones”. In: Proceedings of the 12th Workshop on Domain-Specific Modeling, DSM 2012,
Tucson, Arizona, USA, October 22 2012. ACM, 2012, pp. 13–18. isbn: 978-1-4503-1634-7.
doi: 10.1145/2420918.2420923 (cit. on p. 35).

[Mar15] C. Martens. “Ceptre: A Language for Modeling Generative Interactive Systems”. In:
Proceedings of the 11th AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2015, University of California, Santa Cruz, USA, November 14–18,
2015. AAAI, 2015 (cit. on pp. 37, 79, 80, 128).

[MBO18] C. Martens, E. Butler, and J. C. Osborn. “A Resourceful Reframing of Behavior Trees”.
In: CoRR abs/1803.09099 (2018). url: http://arxiv.org/abs/1803.09099 (cit. on pp. 73,
74).

[MFB+14] C. Martens, J. F. Ferreira, A.-G. Bosser, and M. Cavazza. “Generative Story Worlds
as Linear Logic Programs”. In: Proceedings of the 7th Intelligent Narrative Technologies
Workshop, Wisconsin, USA, June 17–18, 2014. AAAI, 2014 (cit. on pp. 39, 79, 80).

[MR05] M. Masuch and M. Rueger. “Challenges in Collaborative Game Design: Developing
Learning Environments for Creating Games”. In: Proceedings of the 3rd International
Conference on Creating, Connecting and Collaborating through Computing, C5 2005, Kyoto,
Japan, Japan, January 28–29, 2005. IEEE, 2005, pp. 67–74. doi: 10.1109/C5.2005.7 (cit. on
p. 90).

275

https://doi.org/10.1145/1496984.1497029
https://doi.org/10.1109/MODELS.2015.7338232
https://doi.org/10.1109/MODELS.2015.7338232
https://doi.org/10.1007/978-3-642-21210-9_19
https://doi.org/10.1016/j.compedu.2011.09.017
https://doi.org/10.1016/j.compedu.2011.09.017
https://doi.org/10.1145/2420918.2420923
http://arxiv.org/abs/1803.09099
https://doi.org/10.1109/C5.2005.7

[MHZ15] A. Matallaoui, P. Herzig, and R. Zarnekow. “Model-Driven Serious Game Development
Integration of the Gamification Modeling Language GaML with Unity”. In: Proceedings
of the 48th Annual Hawaii International Conference on System Sciences, HICSSS 2015, Kauai,
HI, USA, January 5–8, 2015. IEEE, 2015, pp. 643–651. doi: 10.1109/HICSS.2015.84 (cit. on
p. 92).

[MS02] M. Mateas and A. Stern. “A Behavior Language for Story-Based Believable Agents”. In:
IEEE Intelligent Systems 17.4 (July 2002), pp. 39–47. issn: 1541-1672. doi: 10.1109/MIS.
2002.1024751 (cit. on p. 71).

[MN09] M. Mateas and W.-F. Noah. “Defining Operational Logics”. In: Proceedings of the 2009
DiGRA International Conference: Breaking New Ground: Innovation in Games, Play, Practice
and Theory, DiGRA 2009, London, UK, September 1–4, 2009. Ed. by T. Krzywinska, H.W.
Kennedy, and B. Atkins. Brunel University and Digital Games Research Association,
2009 (cit. on pp. 52, 53).

[MS05a] M. Mateas and A. Stern. “Build It to Understand It: Ludology Meets Narratology in
Game Design Space”. In: Proceedings of the 2005 DiGRA International Conference: Changing
Views: Worlds in Play, DiGRA 2005, Vancouver, Canada, June 16–20, 2005. Digital Games
Research Association, 2005 (cit. on pp. 20, 41, 71).

[MS05b] M. Mateas and A. Stern. “Structuring Content Within the Façade Interactive Drama
Architecture”. In: Proceedings of the 1st AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE 2005, Marina del Rey, California, USA, June 1–3,
2005. Ed. by R.M. Young and J. Laird. AAAI, 2005. isbn: 978-1-57735-235-8 (cit. on
pp. 37, 71).

[May17] M. Mayer. “Interactive Programming by Example”. PhD thesis. École Polytechnique
Fédérale de Lausanne, Apr. 2017 (cit. on pp. 115, 128).

[MK13] M. Mayer and V. Kuncak. “Game Programming by Demonstration”. In: Proceedings of
the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013, Indianapolis, Indiana, USA, October 29–31, 2013.
ACM, 2013, pp. 75–90. isbn: 978-1-4503-2472-4. doi: 10.1145/2509578.2509583 (cit. on
pp. 35, 115).

[MB95] D. L. McGuinness and A. T. Borgida. “Explaining Subsumption in Description Logics”.
In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume
1, ĲCAI 1995, Montreal, Quebec, Canada, August 20–25, 1995. Morgan Kaufmann, 1995,
pp. 816–821. isbn: 978-1-558-60363-9 (cit. on p. 232).

[MCS+04a] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and D. Parker.
“ScriptEase: Generating Scripting Code for Computer Role-Playing Games”. In: Pro-
ceedings of the 19th International Conference on Automated Software Engineering, ASE 2004,
Linz, Austria, September 20–24, 2004. IEEE, 2004, pp. 386–387. isbn: 0-7695-2131-2. doi:
10.1109/ASE.2004.1342770 (cit. on pp. 35, 79).

[MCS+04b] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and D. Parker.
“ScriptEase: Generative Design Patterns for Computer Role-Playing Games”. In: Pro-
ceedings of the 19th International Conference on Automated Software Engineering, ASE 2004,
Linz, Austria, September 20–24, 2004. IEEE, 2004, pp. 88–99. isbn: 0-7695-2131-2. doi:
10.1109/ASE.2004.1342727 (cit. on pp. 35, 79, 137, 162).

[MRS+03] M. McNaughton, J. Redford, J. Schaeffer, and D. Szafron. “Pattern-based AI Scripting
using ScriptEase”. In: Proceedings of the 16th Canadian Society for Computational Studies of
Intelligence Conference on Advances in Artificial Intelligence, AI 2003, Halifax, Canada, June
11–13, 2003. Springer, 2003, pp. 35–49. isbn: 3-540-40300-0 (cit. on pp. 77, 79).

276 bibliography

https://doi.org/10.1109/HICSS.2015.84
https://doi.org/10.1109/MIS.2002.1024751
https://doi.org/10.1109/MIS.2002.1024751
https://doi.org/10.1145/2509578.2509583
https://doi.org/10.1109/ASE.2004.1342770
https://doi.org/10.1109/ASE.2004.1342727

[Meh13] F. Mehm. “Authoring of Adaptive Single-Player Educational Games”. PhD thesis.
Technische Universität Darmstadt, Jan. 2013 (cit. on pp. 54, 128).

[MDM16] F. Mehm, R. Dörner, and M. Masuch. “Authoring Processes and Tools”. In: Serious
Games: Foundations, Concepts and Practice. Ed. by R. Dörner, S. Göbel, W. Effelsberg, and
J. Wiemeyer. Springer, 2016, pp. 83–106. isbn: 978-3-319-40612-1. doi: 10.1007/978-3-
319-40612-1_4 (cit. on p. 54).

[MGR+09] F. Mehm, S. Göbel, S. Radke, and R. Steinmetz. “Authoring Environment for Story-
Based Digital Educational Games”. In: Proceedings of the 1st International Open Workshop
on Intelligent Personalization and Adaptation in Digital Educational Games. Ed. by M.D.
Kickmeier-Rust. 2009, pp. 113–124 (cit. on pp. 53, 54).

[MRG+12] F. Mehm, C. Reuter, S. Göbel, and R. Steinmetz. “Future Trends in Game Authoring
Tools”. In: Entertainment Computing – Proceedings of the 11th International Conference on
Entertainment Computing, ICEC 2012, as part of the 2nd Workshop on Game Development and
Model-Driven Software Development, GD&MDSD 2012, Bremen, Germany, September 26–29,
2012. Ed. by M. Herrlich, R. Malaka, and M. Masuch. Springer, 2012, pp. 536–541. isbn:
978-3-642-33542-6. doi: 10.1007/978-3-642-33542-6_70 (cit. on p. 127).

[MWG+10] F. Mehm, V. Wendel, S. Göbel, and R. Steinmetz. “Bat Cave: A Testing and Evaluation
Platform for Digital Educational Games”. In: Proceedings of the 4th European Conference on
Games Based Learning, ECGBL 2010, Copenhagen, Denmark, October 21–22, 2010. Academic
Conferences International Limited, 2010, pp. 251–260. isbn: 978-1-62276-708-3 (cit. on
p. 54).

[Men14] P. Mennig. “Modeling Gamification Rules with Ontologies for Achieving a Generic
Platform Architecture”. In: FHWS Science Journal 2.1 (2014), pp. 60–70 (cit. on p. 42).

[Men08] T.Mens. “Introduction andRoadmap:History andChallenges of SoftwareEvolution”. In:
Software Evolution. Springer, 2008, pp. 1–11. isbn: 978-3-540-76440-3. doi: 10.1007/978-
3-540-76440-3_1 (cit. on pp. 20, 244).

[MHS05] M. Mernik, J. Heering, and A.M. Sloane. “When and How to Develop Domain-Specific
Languages”. In:ACMComputing Surveys 37.4 (Dec. 2005), pp. 316–344. issn: 0360-0300.
doi: 10.1145/1118890.1118892 (cit. on pp. 28, 29).

[MM85] W. Miller and E.W. Myers. “A File Comparison Program”. In: Software Practice and
Experience 15.11 (Nov. 1985), pp. 1025–1040. doi: 10.1002/spe.4380151102 (cit. on p. 208).

[MC09a] E.MonteroReyno and J. Á. Carsí Cubel. “APlatform-IndependentModel forVideogame
Gameplay Specification”. In: Proceedings of the 2009 DiGRA International Conference:
Breaking New Ground: Innovation in Games, Play, Practice and Theory, DiGRA 2009, West
London, UK, September 1–4, 2009. Brunel University, 2009 (cit. on pp. 41, 111).

[MC08] E. Montero Reyno and J.Á. Carsí Cubel. “Model Driven Game Development: 2D
Platform Game Prototyping”. In: Proceedings of the 9th International Conference on
Intelligent Games and Simulation, GAME-ON 2008, Valencia, Spain, November 17–19, 2008.
EUROSIS, 2008, pp. 5–7. isbn: 978-90-77381-45-8 (cit. on pp. 41, 111).

[MC09b] E. Montero Reyno and J.Á. Carsí Cubel. “Automatic Prototyping in Model-driven
Game Development”. In: Computers in Entertainment – Special Issue on Media Arts and
Games 7.2 (June 2009), pp. 1–9. issn: 1544-3574. doi: 10.1145/1541895.1541909 (cit. on
pp. 41, 111).

277

https://doi.org/10.1007/978-3-319-40612-1_4
https://doi.org/10.1007/978-3-319-40612-1_4
https://doi.org/10.1007/978-3-642-33542-6_70
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1002/spe.4380151102
https://doi.org/10.1145/1541895.1541909

[MBS+07] P. Moreno-Ger, D. Burgos, J. L. Sierra, and B. Fernández-Manjón. “An eLearning
Specification Meets a Game: Authoring and Integration with IMS Learning Design and
<e-Adventure>”. In:Organizing and Learning through Gaming and Simulation – Proceedings
of the 38th Conference of the International Simulation And Gaming Association, ISAGA 2007,
Nĳmegen, The Netherlands, July 9–13, 2007. Ed. by I. Mayer and H. Mastik. Eburon, 2007.
isbn: 9789059722316 (cit. on pp. 39, 76, 77).

[MFS+09] P. Moreno-Ger, R. Fuentes-Fernández, J.-L. Sierra-Rodríguez, and B. Fernández-Manjón.
“Model-Checking for Adventure Videogames”. In: Information and Software Technology
51.3 (2009), pp. 564–580. issn: 0950-5849. doi: 10.1016/j.infsof.2008.08.003 (cit. on
pp. 76, 77).

[MMS+06] P. Moreno-Ger, I. Martínez-Ortiz, J. L. Sierra, and B. F. Manjón. “Language-Driven
Development of Videogames: The <e-Game> Experience”. In: Entertainment Computing
– Proceedings of the 5th International Conference on Entertainment Computing, ICEC 2006,
Cambridge, UK, September 20–22, 2006. Ed. byR.Harper,M. Rauterberg, andM.Combetto.
Vol. 4161. LNCS. Springer, 2006, pp. 153–164. isbn: 978-3-540-45261-4. doi: 10.1007/
11872320_19 (cit. on pp. 41, 76, 77).

[MSM+07] P. Moreno-Ger, J. L. Sierra, I. Martínez-Ortiz, and B. Fernández-Manjón. “A Documental
Approach to Adventure Game Development”. In: Science of Computer Programming –
Special Issue on Aspects of Game Programming 67.1 (June 2007). Ed. by K. de Leeuw,
pp. 3–31. issn: 0167-6423. doi: 10.1016/j.scico.2006.07.003 (cit. on pp. 36, 76, 77).

[MBJ+09] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. “Models@Runtime
to Support Dynamic Adaptation”. In: Computer 42.10 (Oct. 2009), pp. 44–51. issn:
0018-9162. doi: 10.1109/MC.2009.327 (cit. on p. 232).

[MRF+16] J. B. Mossmann, R. Rieder, C.D. Flores, and M. S. Pinho. “Project and Preliminary
Evaluation of VR-MED, a Domain-Specific Language for Serious Games in Family
Medicine Teaching”. In: Proceedings of the IEEE 40th Annual Computer Software and
Applications Conference, COMPSAC 2016, Atlanta, Georgia, USA, June 10–14 2016. IEEE,
2016, pp. 663–667. doi: 10.1109/COMPSAC.2016.171 (cit. on p. 56).

[MFJ05] P.-A.Muller, F. Fleurey, and J.-M. Jézéquel. “Weaving Executability into Object-Oriented
Meta-Languages”. In: Model Driven Engineering Languages and Systems – Proceedings
of the 8th International Conference, MoDELS 2005, Montego Bay, Jamaica, October 2–7,
2005. Vol. 3713. LNCS. Springer, 2005, pp. 264–278. isbn: 978-3-540-32057-9. doi:
10.1007/11557432_19 (cit. on pp. 204, 231).

[Mur89] T. Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings of the IEEE
77.4 (Apr. 1989), pp. 541–580. issn: 0018-9219. doi: 10.1109/5.24143 (cit. on p. 58).

[Mye86] E.W. Myers. “An O(ND) Difference Algorithm and its Variations”. In: Algorithmica
1.1-4 (Nov. 1986), pp. 251–266. issn: 1432-0541. doi: 10.1007/BF01840446 (cit. on p. 213).

[EDC16] M. S. El-Nasr, A. Drachen, and A. Canossa. Game Analytics. Springer, 2016. isbn:
978-1-4471-4769-5. doi: 10.1007/978-1-4471-4769-5 (cit. on p. 86).

[ES06] M. S. El-Nasr and B.K. Smith. “Learning Through Game Modding”. In: Computers in
Entertainment 4.1 (Jan. 2006). issn: 1544-3574. doi: 10.1145/1111293.1111301 (cit. on
p. 41).

[NV03] S. Natkin and L. Vega. “Petri Net Modelling for the Analysis of the Ordering of Actions
in Computer Games”. In: Proceedings of the 4th International Conference on Intelligent
Games and Simulation, GAME-ON 2003, London, UK, November 19–21, 2003. Ed. by Q.H.
Mehdi, N. E. Gough, and S. Natkin. EUROSIS, 2003, pp. 82–89. isbn: 9-0773-8105-8
(cit. on pp. 41, 58).

278 bibliography

https://doi.org/10.1016/j.infsof.2008.08.003
https://doi.org/10.1007/11872320_19
https://doi.org/10.1007/11872320_19
https://doi.org/10.1016/j.scico.2006.07.003
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1109/COMPSAC.2016.171
https://doi.org/10.1007/11557432_19
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/978-1-4471-4769-5
https://doi.org/10.1145/1111293.1111301

[NVG04] S. Natkin, L. Vega, and S. Grünvogel. “A new Methodology for Spatiotemporal Game
Design”. In: Proceedings of the 5th Game-On International Conference on Computer Games:
Artificial Intelligence, Design and Education, CGAIDE 2004, Reading, UK, November 8–10,
2004. Ed. by Q. Mehdi and N. Gough. University of Wolverhampton, 2004, pp. 109–113.
isbn: 0-9549016-0-6 (cit. on pp. 41, 58).

[Nei12] K. Neil. “Game Design Tools: Time to Evaluate”. In: Proceedings of 2012 International
DiGRA Nordic Conference: Local and Global: Games in Culture and Society, Tampere, Finland,
June 6–8, 2012. Digital Games Research Association, 2012 (cit. on p. 161).

[Nei15] K. Neil. “Game Design Tools: Can They Improve Game Design Practice?” PhD thesis.
Flinders University, Dec. 2015 (cit. on pp. 127, 128).

[Nel12] M. J. Nelson. Sicart’s ’Against Procedurality’ – A reply. Kmjn.org. May 2012. url: http:
//www.kmjn.org/notes/sicart_against_proceduralism.html (visited on Oct. 25, 2018)
(cit. on p. 57).

[NM07] M. J. Nelson and M. Mateas. “Towards Automated Game Design”. In: Artificial Intel-
ligence and Human-Oriented Computing – Proceedings of the 10th Congress of the Italian
Association for Artificial Intelligence, AI*IA 2007, Rome, Italy, September 10–13, 2007. Ed. by
R. Basili and M.T. Pazienza. Vol. 4633. LNCS. Springer, 2007, pp. 626–637. isbn:
978-3-540-74782-6. doi: 10.1007/978-3-540-74782-6_54 (cit. on p. 59).

[NM08a] M. J. Nelson and M. Mateas. “An Interactive Game-Design Assistant”. In: Proceedings
of the 13th International Conference on Intelligent User Interfaces, IUI 2008, Gran Canaria,
Spain, January 13–16, 2008. ACM, 2008, pp. 90–98. isbn: 978-1-59593-987-6. doi:
10.1145/1378773.1378786 (cit. on pp. 37, 59, 161, 162, 187).

[NM08b] M. Nelson and M. Mateas. “Recombinable Game Mechanics for Automated Design
Support”. In: Proceedings of the 4th Conference on Artificial Intelligence and Interactive
Digital Entertainment Conference, AIIDE 2008, Stanford, California, USA, October 22–24,
2008. Ed. by M. Mateas and C. Darken. AAAI, 2008, pp. 84–89. isbn: 978-1-57735-392-8
(cit. on p. 60).

[NK06] T. Nishimori and Y. Kuno. “Mogemoge: A Programming Language Based on Join
Tokens”. In: Proceedings of The International Workshop on Information Science Education
& Programming Languages, Korean University & University of Tsukuba. 2006, pp. 22–27
(cit. on p. 106).

[NK12a] T. Nishimori and Y. Kuno. “Join Token: A Language Mechanism for Programming
Interactive Games”. In: Entertainment Computing 3.2 (May 2012), pp. 19–25. issn:
1875-9521. doi: 10.1016/j.entcom.2011.09.001 (cit. on p. 106).

[NK12b] T. Nishimori and Y. Kuno. “Join Token-Based Event Handling: A Comprehensive
Framework for Game Programming”. In: Software Language Engineering – Proceedings of
the 4th International Conference, SLE 2011, Braga, Portugal, July 3–4, 2011, Revised Selected
Papers. Ed. by A. Sloane and U. Aßmann. Vol. 6940. LNCS. Springer, 2012, pp. 119–138.
isbn: 978-3-642-28830-2. doi: 10.1007/978-3-642-28830-2_7 (cit. on pp. 35, 106).

[Num08] T. Nummenmaa. “Adding Probabilistic Modeling to Executable Formal DisCo Specifica-
tions with Applications in Strategy Modeling in Multiplayer Game Design”. MA thesis.
University of Tampere – Department of Computer Sciences, June 2008 (cit. on p. 104).

[NBM09] T. Nummenmaa, E. Berki, and T. Mikkonen. “Exploring Games as Formal Models”.
In: Proceedings of the 4th South-East European Workshop on Formal Methods, SEEFM 2009,
Thessalonihi, Greece, December 4–5, 2009. IEEE, 2009, pp. 60–65. isbn: 978-0-7695-3943-0.
doi: 10.1109/SEEFM.2009.15 (cit. on p. 104).

279

http://www.kmjn.org/notes/sicart_against_proceduralism.html
http://www.kmjn.org/notes/sicart_against_proceduralism.html
https://doi.org/10.1007/978-3-540-74782-6_54
https://doi.org/10.1145/1378773.1378786
https://doi.org/10.1016/j.entcom.2011.09.001
https://doi.org/10.1007/978-3-642-28830-2_7
https://doi.org/10.1109/SEEFM.2009.15

[NKH09] T. Nummenmaa, J. Kuittinen, and J. Holopainen. “Simulation as a Game Design Tool”.
In: Proceedings of the International Conference on Advances in Computer Entertainment
Technology, ACE 2009, Athens, Greece, October 29–31, 2009. ACM, 2009, pp. 232–239. isbn:
978-1-60558-864-3. doi: 10.1145/1690388.1690427 (cit. on pp. 41, 104).

[OZ10] S. Ontañón and J. Zhu. “Story and Text Generation through Computational Analogy
in the Riu System”. In: Proceedings of the 6th Artificial Intelligence and Interactive Digital
Entertainment Conference, AIIDE 2010, Stanford, CA, USA, October 11–13, 2010. AAAI,
2010. isbn: 978-1-57735-479-6 (cit. on p. 37).

[OHB+13] F. R. Ortega, F. Hernandez, A. Barreto, N.D. Rishe, M. Adjouadi, and S. Liu. “Exploring
Modeling Language forMulti-touch SystemsUsing Petri Nets”. In:Proceedings of the 2013
ACM International Conference on Interactive Tabletops and Surfaces, ITS 2013, St. Andrews,
Scotland, UK, October 6–9, 2013. ACM, 2013, pp. 361–364. isbn: 978-1-4503-2271-3. doi:
10.1145/2512349.2512400 (cit. on p. 58).

[Orw00a] J. Orwant. “EGGG: The Extensible Graphical Game Generator”. PhD thesis. Mas-
sachusetts Institute of Technology, Feb. 2000. url: http://hdl.handle.net/1721.1/9164
(cit. on pp. 105, 106).

[Orw00b] J. Orwant. “EGGG: Automated Programming for Game Generation”. In: IBM Systems
Journal 39.3 (2000), pp. 782–794. issn: 0018-8670. doi: 10.1147/sj.393.0782 (cit. on
p. 106).

[OSM+15] J. Osborn, B. Samuel,M.Mateas, andN.Wardrip-Fruin. “Playspecs: Regular Expressions
for Game Play Traces”. In: Proceedings of the 11th AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, AIIDE 2015, University of California, Santa Cruz
November 14–18, 2015. AAAI, 2015 (cit. on pp. 37, 86).

[OSM17] J. C. Osborn, A. Summerville, and M. Mateas. “Automated Game Design Learning”. In:
IEEE Conference on Computational Intelligence and Games, CIG 2017, New York, NY, USA,
August 22–25, 2017. IEEE, 2017, pp. 240–247. doi: 10.1109/CIG.2017.8080442 (cit. on
pp. 52, 53).

[OWM17] J. C. Osborn, N. Wardrip-Fruin, and M. Mateas. “Refining Operational Logics”. In:
Proceedings of the International Conference on the Foundations of Digital Games, FDG 2017,
Hyannis, MA, USA, August 14–17, 2017. Ed. by S. Deterding, A. Canossa, C. Harteveld,
J. Zhu, andM. Sicart. ACM, 2017, pp. 1–10. doi: 10.1145/3102071.3102107 (cit. on pp. 52,
53).

[Osb18] J. C. Osborn. “Operationalizing Operational Logics”. PhD thesis. UC Santa Cruz, June
2018 (cit. on pp. 52, 53, 86, 128).

[OGM13] J. C. Osborn, A. Grow, and M. Mateas. “Modular Computational Critics for Games”.
In: Proceedings of the 9th AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2013, Boston, USA, October 14–15, 2013. Ed. by G. Sukthankar and
I. Horswill. AAAI, 2013. isbn: 978-1-57735-607-3 (cit. on pp. 37, 64, 186, 187).

[Ove04a] M. Overmars. “Teaching Computer Science Through Game Design”. In: Computer 37.4
(Apr. 2004), pp. 81–83. issn: 0018-9162. doi: 10.1109/MC.2004.1297314 (cit. on p. 105).

[Ove04b] M.Overmars. “LearningObject-OrientedDesign byCreatingGames”. In: IEEEPotentials
23.5 (2004), pp. 11–13. issn: 1558-1772. doi: 10.1109/MP.2005.1368910 (cit. on p. 105).

[PAB06] R. F. Paige, T. S. Attridge, and P. J. Brooke. “Game Development using Design-by-
Contract”. In: Journal of Object Technology 5.7 (Sept. 2006), pp. 57–73. doi: 10.5381/jot.
2006.5.7.a3 (cit. on p. 105).

280 bibliography

https://doi.org/10.1145/1690388.1690427
https://doi.org/10.1145/2512349.2512400
http://hdl.handle.net/1721.1/9164
https://doi.org/10.1147/sj.393.0782
https://doi.org/10.1109/CIG.2017.8080442
https://doi.org/10.1145/3102071.3102107
https://doi.org/10.1109/MC.2004.1297314
https://doi.org/10.1109/MP.2005.1368910
https://doi.org/10.5381/jot.2006.5.7.a3
https://doi.org/10.5381/jot.2006.5.7.a3

[PKP13] R. F. Paige, D. S. Kolovos, and F.A.C. Polack. “Metamodelling for Grammarware
Researchers”. In: Software Language Engineering, 5th International Conference, SLE 2012,
Dresden, Germany, September 26–28, 2012, Revised Selected Papers. Ed. by K. Czarnecki
and G. Hedin. Vol. 7745. LNCS. Springer, 2013, pp. 64–82. isbn: 978-3-642-36089-3.
doi: 10.1007/978-3-642-36089-3_5 (cit. on pp. 35, 110).

[Pal10] J. D. Palmer. “Ficticious: MicroLanguages for Interactive Fiction”. In: Proceedings of
the ACM International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH 2010, as part of Onward! 1010, Reno/Tahoe,
Nevada, USA, October 17–21, 2010. ACM, 2010, pp. 61–68. isbn: 978-1-4503-0240-1. doi:
10.1145/1869542.1869551 (cit. on pp. 35, 118, 119).

[PFM+08] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. “Systematic Mapping Studies in
Software Engineering”. In: 12th International Conference on Evaluation and Assessment
in Software Engineering, EASE 2008, University of Bari, Italy, June 26–27, 2008. Ed. by
G. Visaggio, M. T. Baldassarre, S. G. Linkman, andM. Turner. Workshops in Computing.
BCS, 2008 (cit. on p. 26).

[Phi14] D. Phillips.CreatingApps in Kivy:Mobile with Python. O’Reilly, 2014. isbn: 9781491946671
(cit. on p. 103).

[PVM05] C. J. F. Pickett, C. Verbrugge, and F. Martineau. “(P)NFG: A Language and Runtime
System for Structured Computer Narratives”. In: Proceedings of the 1st International North
American Conference on Intelligent Games and Simulation, GAME-ON-NA 2005, Montreal,
Canada, August 22–23, 2005. EUROSIS, 2005, pp. 23–32. isbn: 90-77381-19-8 (cit. on
pp. 41, 80, 82).

[PLW+10] D. Pizzi, J. Lugrin, A.Whittaker, andM. Cavazza. “Automatic Generation of Game Level
Solutions as Storyboards”. In: IEEE Transactions on Computational Intelligence and AI in
Games 2.3 (Sept. 2010), pp. 149–161. issn: 1943-068X. doi: 10.1109/TCIAIG.2010.2070066
(cit. on pp. 37, 83).

[PCW+08] D. Pizzi, M. Cavazza, A. Whittaker, and J.-L. Lugrin. “Automatic Generation of
Game Level Solutions as Storyboards”. In: Proceedings of the 4th Conference on Artificial
Intelligence and Interactive Digital Entertainment Conference, AIIDE 2008, Stanford, California,
USA, October 22–24, 2008. Ed. by M. Mateas and C. Darken. AAAI, 2008, pp. 96–101.
isbn: 978-1-57735-392-8 (cit. on pp. 37, 83).

[PKG15] T. Pløhn, J. Krogstie, and H. Guo. “Extending the Pervasive Game Ontology through a
Case Study”. In: NOKOBIT 23.1 (2015) (cit. on pp. 44, 45).

[RKB13] K. Raies, M. Khemaja, and R. Braham. “Towards Game Based Learning Design Process
Based on Semantic Service Oriented Architecture (SSOA)”. In: Proceedings of the 7th
European Conference on Games Based Learning, ECGBL 2013, Porto, Portugal, October 3–4,
2013. Ed. by C.V. de Carvalho and P. Escudeiro. Academic Conferences International
Limited, 2013, pp. 698–705. isbn: 978-1-62993-139-5 (cit. on p. 42).

[Rep11] A. Repenning. “Making Programming More Conversational”. In: Proceedings of the
2011 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2011,
Pittsburgh, Pennsylvania, USA, September 18–22, 2011. Ed. by G. Costagliola, A. Ko,
A. Cypher, J.N.C. Scaffidi, C. Kelleher, and B. Myers. IEEE, 2011, pp. 191–194. doi:
10.1109/VLHCC.2011.6070398 (cit. on p. 91).

[RS95] A. Repenning and T. Sumner. “AgentSheets: A Medium for Creating Domain-Oriented
Languages”. In: IEEE Computer 28.3 (Mar. 1995), pp. 17–25. doi: 10.1109/2.366152
(cit. on p. 91).

281

https://doi.org/10.1007/978-3-642-36089-3_5
https://doi.org/10.1145/1869542.1869551
https://doi.org/10.1109/TCIAIG.2010.2070066
https://doi.org/10.1109/VLHCC.2011.6070398
https://doi.org/10.1109/2.366152

[RMM+09] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan,
A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. “Scratch: Programming
for All”. In: Communications of the ACM 52.11 (Nov. 2009), pp. 60–67. issn: 0001-0782.
doi: 10.1145/1592761.1592779 (cit. on pp. 36, 90).

[RBG97] J.W. Romein, H. E. Bal, and D. Grune. “An Application Domain Specific Language
for Describing Board Games”. In: Parallel and Distributed Processing Techniques and
Applications. CSREA, 1997, pp. 305–314 (cit. on p. 94).

[Rom01] J.W. Romein. “Multigame - An Environment for Distributed Game-Tree Search”. PhD
thesis. Vrĳe Universiteit Amsterdam, Jan. 2001 (cit. on p. 94).

[RBG00] J.W. Romein, H. E. Bal, and D. Grune. The Multigame Reference Manual. Tech. rep. Vrĳe
Univeristeit Amsterdam, 2000. url: https://research.vu.nl/en/publications/the-
multigame-reference-manual (visited on Nov. 13, 2018) (cit. on p. 94).

[RPK+08] L.M. Rose, R. F. Paige, D. S. Kolovos, and F.A.C. Polack. “Constructing Models with
the Human-Usable Textual Notation”. In: Model Driven Engineering Languages and
Systems – Proceedings of the 11th International Conference, MoDELS 2008, Toulouse, France,
September 28 – October 3, 2008. Ed. by K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and
M. Völter. Vol. 5301. LNCS. Springer, 2008, pp. 249–263. isbn: 978-3-540-87874-2. doi:
10.1007/978-3-540-87875-9_18 (cit. on p. 230).

[RDS08] G. Russell, A. F. Donaldson, and P. Sheppard. “Tackling Online Game Development
Problems with a Novel Network Scripting Language”. In: Proceedings of the 7th ACM
SIGCOMM Workshop on Network and System Support for Games, NetGames 2008, Worcester,
Massachusetts, October 21–22, 2008. ACM, 2008, pp. 85–90. isbn: 978-1-60558-132-3. doi:
10.1145/1517494.1517512 (cit. on p. 107).

[Sad17] D.V. Sadanand. “Model Checking in General Game Playing: Automated Translation
from GDL-II to MCK”. MA thesis. Auckland University of Technology – School of
Engineering, Computer and Mathematical Sciences, Aug. 2017 (cit. on p. 96).

[Saf14] A. Saffidine. “The Game Description Language is Turing Complete”. In: IEEE Transac-
tions on Computational Intelligence and AI in Games 6.4 (Dec. 2014), pp. 320–324. issn:
1943-068X. doi: 10.1109/TCIAIG.2014.2354417 (cit. on pp. 37, 96).

[SMO+12] M.G. Salazar, H.A. Mitre, C. L. Olalde, and J. L. G. Sánchez. “Proposal of Game Design
Document from Software Engineering Requirements Perspective”. In: Proceedings
of the 17th International Conference on Computer Games, CGAMES 2012, Louisville, KY,
USA, July 30–August 1, 2012. IEEE, 2012, pp. 81–85. isbn: 978-1-4673-1121-2. doi:
10.1109/CGames.2012.6314556 (cit. on p. 41).

[Sal07] K. Salen. “Gaming Literacies: A game Design Study in Action”. In: Journal of Educational
Multimedia and Hypermedia 16.3 (July 2007), pp. 301–322. issn: 1055-8896. url: https:
//www.learntechlib.org/p/24374 (visited on Nov. 8, 2018) (cit. on p. 89).

[SZ03] K. Salen and E. Zimmerman. Rules of Play - Game Design Fundamentals. The MIT Press,
2003. isbn: 9780262240451 (cit. on pp. 20, 39, 56, 163, 169).

[SMM07] P. Salomoni, S. Mirri, and L.A. Muratori. “YEAST: The Design of a Cooperative
Interactive Story Telling and Gamebooks Environment”. In: Proceedings of the 8th
International Conference on Intelligent Games and Simulation, GAME-ON 2007, Bologna,
Italy, November 20–22, 2007. Ed. by M. Roccetti. EUROSIS, 2007, pp. 83–87 (cit. on p. 41).

282 bibliography

https://doi.org/10.1145/1592761.1592779
https://research.vu.nl/en/publications/the-multigame-reference-manual
https://research.vu.nl/en/publications/the-multigame-reference-manual
https://doi.org/10.1007/978-3-540-87875-9_18
https://doi.org/10.1145/1517494.1517512
https://doi.org/10.1109/TCIAIG.2014.2354417
https://doi.org/10.1109/CGames.2012.6314556
https://www.learntechlib.org/p/24374
https://www.learntechlib.org/p/24374

[SAA12] V. T. Sarinho, A. L. Apolinário, and E. S. Almeida. “A Feature-Based Environment
for Digital Games”. In: Entertainment Computing – Proceedings of the 11th International
Conference on Entertainment Computing, ICEC 2012, as part of the 2nd Workshop on Game
Development and Model-Driven Software Development, GD&MDSD 2012, Bremen, Germany,
September 26–29, 2012. Ed. by M. Herrlich, R. Malaka, and M. Masuch. Vol. 7522. LNCS.
Springer, 2012, pp. 518–523. isbn: 978-3-642-33542-6. doi: 10.1007/978-3-642-33542-
6_67 (cit. on p. 112).

[SA09] V. T. Sarinho and A. L. Apolinário. “A Generative Programming Approach for Game
Development”. In: Proceedings of the 8th Brazilian Symposium on Games and Digital
Entertainment, SBGAMES 2009, Rio de Janeiro, Brazil, October 8–10, 2009. IEEE, 2009,
pp. 83–92. doi: 10.1109/SBGAMES.2009.18 (cit. on pp. 41, 112).

[Sch13] T. Schaul. “A Video Game Description Language for Model-Based or Interactive
Learning”. In: Proceedings of the 2013 IEEE Conference on Computational Intelligence in
Games, CIG 2013, Niagara Falls, ON, Canada, August 11–13, 2013. IEEE, 2013, pp. 1–8.
isbn: 978-1-4673-5311-3. doi: 10.1109/CIG.2013.6633610 (cit. on pp. 37, 100, 101, 186).

[Sch14a] T. Schaul. “An Extensible Description Language for Video Games”. In: IEEE Transactions
on Computational Intelligence and AI in Games 6.4 (Dec. 2014), pp. 325–331. issn: 1943-
068X. doi: 10.1109/TCIAIG.2014.2352795 (cit. on pp. 37, 100, 101).

[Sch14b] J. Schell. The Art of Game Design: A Book of Lenses. AK Peters/CRC Press, 2014 (cit. on
pp. 20, 39, 56).

[SLC+13] K. Schenk, A. Lari, M. Church, E. Graves, J. Duncan, R. Miller, N. Desai, R. Zhao,
D. Szafron, M. Carbonaro, and J. Schaeffer. “ScriptEase II: Platform Independent Story
Creation Using High-Level Patterns”. In: Proceedings of the Ninth AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment, AIIDE 2013, Boston, Massachusetts,
USA, October 14–18, 2013. Ed. by G. Sukthankar and I. Horswill. AAAI, 2013 (cit. on
pp. 78, 79).

[Sch14c] G. Schmidt. “The Axiom General Purpose Game Playing System”. In: IEEE Transactions
on Computational Intelligence and AI in Games 6.4 (Dec. 2014), pp. 332–342. issn: 1943-
068X. doi: 10.1109/TCIAIG.2014.2302303 (cit. on p. 37).

[STN16] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. Computational Synthesis and Creative
Systems. Springer, 2016. isbn: 978-3-319-42714-0. doi: 10.1007/978-3-319-42716-4.
url: http://pcgbook.com (cit. on pp. 85, 123, 239).

[Sic08] M. Sicart. “DefiningGameMechanics”. In:Game Studies 8.2 (Dec. 2008). issn: 1604-7982
(cit. on pp. 39, 56).

[Sic11] M. Sicart. “Against Procedurality”. In: Game Studies 11.3 (Dec. 2011). issn: 1604-7982
(cit. on p. 57).

[SBI+08a] C. Simpkins, S. Bhat, C. Isbell Jr., and M. Mateas. “Towards Adaptive Programming:
Integrating Reinforcement Learning into a Programming Language”. In: Proceedings of
the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems Languages
and Applications, OOPSLA 2008, Nashville, TN, USA, October 19–23, 2008. ACM, 2008,
pp. 603–614. isbn: 978-1-60558-215-3. doi: 10.1145/1449764.1449811 (cit. on pp. 35, 71).

[SBI+08b] C. Simpkins, S. Bhat, C. Isbell Jr., and M. Mateas. “Towards Adaptive Programming:
Integrating Reinforcement Learning into a Programming Language”. In: SIGPLAN
Notices 43.10 (Oct. 2008), pp. 603–614. issn: 0362-1340. doi: 10.1145/1449955.1449811
(cit. on pp. 36, 71).

283

https://doi.org/10.1007/978-3-642-33542-6_67
https://doi.org/10.1007/978-3-642-33542-6_67
https://doi.org/10.1109/SBGAMES.2009.18
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1109/TCIAIG.2014.2352795
https://doi.org/10.1109/TCIAIG.2014.2302303
https://doi.org/10.1007/978-3-319-42716-4
http://pcgbook.com
https://doi.org/10.1145/1449764.1449811
https://doi.org/10.1145/1449955.1449811

[STdK+11] R.M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra. “A Declarative Approach
to Procedural Modeling of Virtual Worlds”. In: Computers & Graphics 35.2 (2011).
Special issue on Virtual Reality in Brazil Visual Computing in Biology and Medicine
Semantic 3D media and content Cultural Heritage, pp. 352–363. issn: 0097-8493. doi:
10.1016/j.cag.2010.11.011 (cit. on p. 67).

[STdK+10] R. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra. “Integrating Procedural Generation
and Manual Editing of Virtual Worlds”. In: Proceedings of the 1st Workshop on Procedural
Content Generation in Games, PCG 2010, Monterey, CA, USA, June 19–21, 2010. ACM, 2010,
pp. 1–8. isbn: 978-1-4503-0023-0. doi: 10.1145/1814256.1814258 (cit. on pp. 41, 67).

[SM10] A.M. Smith and M. Mateas. “Variations Forever: Flexibly Generating Rulesets from a
Sculptable Design Space of Mini-Games”. In: Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, CIG 2010, Dublin, Ireland, August 18–21, 2010. IEEE,
2010, pp. 273–280. isbn: 978-1-4244-6296-4. doi: 10.1109/ITW.2010.5593343 (cit. on
pp. 37, 60).

[SM11a] A.M. Smith and M. Mateas. “Answer Set Programming for Procedural Content Gener-
ation: A Design Space Approach”. In: IEEE Transactions on Computational Intelligence and
AI in Games 3.3 (Sept. 2011), pp. 187–200. issn: 1943-068X. doi: 10.1109/TCIAIG.2011.
2158545 (cit. on pp. 37, 60, 239).

[SNM10] A.M. Smith, M. J. Nelson, and M. Mateas. “LUDOCORE: A Logical Game Engine for
Modeling Videogames”. In: Proceedings of the 2010 IEEE Conference on Computational
Intelligence and Games, CIG 2010, Dublin, Ireland, August 18–21, 2010. IEEE, 2010, pp. 91–98.
isbn: 978-1-4244-6296-4. doi: 10.1109/ITW.2010.5593368 (cit. on pp. 37, 59, 60).

[Smi09] A.M. Smith. “The Intelligent Game Designer: Game Design as a New Domain for
Automated Discovery”. PhD thesis proposal. UC Santa Cruz, 2009 (cit. on p. 60).

[Smi12] A.M. Smith. “Mechanizing Exploratory Game Design”. PhD thesis. University of
California, Santa Cruz, 2012 (cit. on pp. 60, 128).

[SLH+11] A.M. Smith, C. Lewis, K. Hullett, G. Smith, and A. Sullivan. An Inclusive Taxonomy
of Player Modeling. Tech. rep. UCSC-SOE-11-13. Santa Cruz, California., 2011 (cit. on
pp. 37, 67, 187).

[SM11b] A.M. Smith andM.Mateas. “Towards Knowledge-Oriented Creativity Support in Game
Design”. In: Proceedings of the 2nd International Conference on Computational Creativity,
ICCC 2011, Mexico City, April 27–29, 2011. Ed. by D. Ventura, P. Gervás, D. F. Harrell,
M. L. Maher, A. Pease, and G. Wiggins. Universidad Autónoma Metropolitana, 2011,
pp. 129–131. isbn: 978-607-477-487-0 (cit. on p. 60).

[SNM09a] A.M. Smith, M. J. Nelson, and M. Mateas. “Computational Support for Play Testing
Game Sketches”. In: Proceedings of the 5th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE 2009, Stanford, California, USA, October 14–16, 2009.
Ed. by C. J. Darken and G.M. Youngblood. Research poster. AAAI, 2009, pp. 167–172.
isbn: 978-1-57735-431-4 (cit. on pp. 37, 59, 60, 186, 187).

[SNM09b] A.M. Smith, M. J. Nelson, and M. Mateas. “Prototyping Games with BIPED”. In:
Proceedings of the 5th AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2009, Stanford, California, USA, October 14–16, 2009. Ed. by C. J.
Darken and G.M. Youngblood. Demo. AAAI, 2009, pp. 167–172. isbn: 978-1-57735-
431-4 (cit. on pp. 37, 60).

[SWM+11] G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, and M. Cha. “Launchpad:
A Rhythm-Based Level Generator for 2-D Platformers”. In: IEEE Transactions on Com-
putational Intelligence and AI in Games 3.1 (Mar. 2011), pp. 1–16. issn: 1943-068X. doi:
10.1109/TCIAIG.2010.2095855 (cit. on pp. 37, 86).

284 bibliography

https://doi.org/10.1016/j.cag.2010.11.011
https://doi.org/10.1145/1814256.1814258
https://doi.org/10.1109/ITW.2010.5593343
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1109/ITW.2010.5593368
https://doi.org/10.1109/TCIAIG.2010.2095855

[STW+09] G. Smith, M. Treanor, J. Whitehead, and M. Mateas. “Rhythm-Based Level Generation
for 2D Platformers”. In: Proceedings of the 4th International Conference on Foundations of
Digital Games, FDG 2009, Orlando, Florida, April 26–30, 2009. ACM, 2009, pp. 175–182.
isbn: 978-1-60558-437-9. doi: 10.1145/1536513.1536548 (cit. on p. 86).

[SW10] G. Smith and J. Whitehead. “Analyzing the Expressive Range of a Level Generator”.
In: Proceedings of the 1st Workshop on Procedural Content Generation in Games, PCG 2010,
Monterey, California, USA, June 18, 2010. ACM, 2010, pp. 1–7. isbn: 978-1-4503-0023-0.
doi: 10.1145/1814256.1814260 (cit. on p. 253).

[SWM10a] G. Smith, J. Whitehead, and M. Mateas. “Tanagra: A Mixed-Initiative Level Design
Tool”. In: Proceedings of the 5th International Conference on the Foundations of Digital
Games, FDG 2010, Monterey, CA, USA, June 19–21, 2010. ACM, 2010, pp. 209–216. isbn:
978-1-60558-937-4. doi: 10.1145/1822348.1822376 (cit. on pp. 41, 67).

[SWM10b] G. Smith, J. Whitehead, andM. Mateas. “Tanagra: An Intelligent Level Design Assistant
for 2D Platformers”. In: Proceedings of the 6th Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE 2010, Stanford, California, USA, October 11-13, 2010.
Ed. by G.M. Youngblood and V. Bulitko. Demo. AAAI, 2010. isbn: 978-1-57735-479-6
(cit. on pp. 37, 67).

[Spr04] P. Spronck. “CGAIDE AND GAME-ON 2004”. In: ICGA Journal 27.4 (Dec. 2004),
pp. 241–241. issn: 2468-2438. doi: 10.3233/ICG-2004-27410 (cit. on p. 41).

[SSP04] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma. “Enhancing the Performance of
Dynamic Scripting in Computer Games”. In: Entertainment Computing – Proceedings of
the 3rd International Conference on Entertainment Computing, ICEC 2004, Eindhoven, The
Netherlands, September 1–3, 2004. Ed. by M. Rauterberg. Vol. 3166. LNCS. Springer, 2004,
pp. 296–307. isbn: 978-3-540-28643-1. doi: 10.1007/978-3-540-28643-1_38 (cit. on
p. 41).

[SC13] M. Stephan and J. R. Cordy. “A Survey of Model Comparison Approaches and Applica-
tions”. In: Proceedings of the 1st International Conference on Model-Driven Engineering and
Software Development, MODELSWARD 2013, Barcelona, Spain, February 19–21, 2013. Ed. by
S. Hammoudi, L. F. Pires, J. Filipe, and R.C. das Neves. SciTePress, 2013, pp. 265–277.
isbn: 978-989-8565-42-6. doi: 10.5220/0004311102650277 (cit. on p. 230).

[Sto10] K. T. Stolee. Kodu Language and Grammar Specification. Microsoft Research. 2010 (cit. on
p. 89).

[SMS+17] A. Summerville, J. R.H. Mariño, S. Snodgrass, S. Ontañón, and L.H. S. Lelis. “Under-
standing Mario: An Evaluation of Design Metrics for Platformers”. In: Proceedings of the
International Conference on the Foundations of Digital Games, FDG 2017, Hyannis, MA, USA,
August 14-17, 2017. Ed. by S. Deterding, A. Canossa, C. Harteveld, J. Zhu, and M. Sicart.
ACM, 2017, pp. 1–10. isbn: 978-1-4503-5319-9. doi: 10.1145/3102071.3102080 (cit. on
p. 239).

[SMH+19] A. Summerville, C. Martens, S. Harmon, M. Mateas, J. C. Osborn, N. Wardrip-Fruin,
and A. Jhala. “From Mechanics to Meaning”. In: IEEE Transactions on Games 11.1 (Mar.
2019). Online first: October 23rd 2017, pp. 69–78. issn: 2475-1510. doi: 10.1109/TCIAIG.
2017.2765599 (cit. on pp. 37, 65, 66).

[Swe06] T. Sweeney. “The Next Mainstream Programming Language: a Game Developer’s
Perspective”. In: Conference record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January
11–13, 2006. Invited talk – Slides available on https://www.cs.princeton.edu/~dpw/

popl/06/Tim-POPL.ppt (Accessed October 15 2018). ACM, 2006, pp. 269–269. isbn:
1-59593-027-2. doi: 10.1145/1111037.1111061 (cit. on pp. 36, 104).

285

https://doi.org/10.1145/1536513.1536548
https://doi.org/10.1145/1814256.1814260
https://doi.org/10.1145/1822348.1822376
https://doi.org/10.3233/ICG-2004-27410
https://doi.org/10.1007/978-3-540-28643-1_38
https://doi.org/10.5220/0004311102650277
https://doi.org/10.1145/3102071.3102080
https://doi.org/10.1109/TCIAIG.2017.2765599
https://doi.org/10.1109/TCIAIG.2017.2765599
https://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
https://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
https://doi.org/10.1145/1111037.1111061

[Szi07] N. Szilas. “BEcool: Towards an Author Friendly Behaviour Engine”. In: Virtual Story-
telling. Using Virtual Reality Technologies for Storytelling – Proceedings of the 4th International
Conference, ICVS 2007, Saint-Malo, France, December 5-7, 2007. Ed. by M. Cavazza and
S. Donikian. Vol. 4871. LNCS. Springer, 2007, pp. 102–113. isbn: 978-3-540-77039-8.
doi: 10.1007/978-3-540-77039-8_9 (cit. on pp. 39, 73).

[TH08] S. Tang and M. Hanneghan. “Towards a Domain Specific Modelling Language for
Serious Game Design”. In: Proceedings of the 6th International Game Design and Technology
Workshop and Conference, GDTW 2008, Liverpool, UK, November 12–13, 2008. Liverpool
John Moores University, 2008. isbn: 9781902560212 (cit. on pp. 111, 112).

[TH11] S. Tang and M. Hanneghan. “State-of-the-Art Model Driven Game Development: A
Survey of Technological Solutions for Game-Based Learning”. In: Journal of Interactive
Learning Research 22.4 (Dec. 2011), pp. 551–605. issn: 1093-023X (cit. on pp. 111, 112,
126).

[THC13] S. Tang, M. Hanneghan, and C. Carter. “A Platform Independent Game Technology
Model for Model Driven Serious Games Development”. In: The Electronic Journal of
e-Learning 11.1 (Feb. 2013), pp. 61–79. issn: 1479-4403 (cit. on pp. 111, 112).

[Tan13] S. L. Tanimoto. “A Perspective on the Evolution of Live Programming”. In: Proceedings
of the 1st International Workshop on Live Programming, LIVE 2013, San Francisco, CA, USA,
May 19, 2013. IEEE, 2013, pp. 31–34. isbn: 978-1-4673-6265-8. doi: 10.1109/LIVE.2013.
6617346 (cit. on p. 204).

[Thi10] M. Thielscher. “A General Game Description Language for Incomplete Information
Games”. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11–15, 2010. Ed. by M. Fox and D. Poole. AAAI,
2010 (cit. on pp. 95, 96).

[Thi11a] M. Thielscher. “The General Game Playing Description Language is Universal”. In:
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, ĲCAI 2010,
Barcelona, Spain, July 16–22, 2011. AAAI, 2011, pp. 1107–1112. doi: 10.5591/978-1-57735-
516-8/IJCAI11-189 (cit. on p. 96).

[Thi11b] M. Thielscher. “Translating General Game Descriptions into an Action Language”.
In: Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays
Dedicated to Michael Gelfond on the Occasion of His 65th Birthday. Ed. by M. Balduccini
and T.C. Son. Vol. 6565. LNCS. Springer, 2011, pp. 300–314. isbn: 978-3-642-20832-4.
doi: 10.1007/978-3-642-20832-4_19 (cit. on pp. 95, 96).

[TL14] N. Thillainathan and J.M. Leimeister. “Serious Game Development for Educators - A
Serious Game Logic and StructureModeling Language”. In: EDULEARN14 Proceedings –
6th International Conference on Education and New Learning Technologies, EDULEARN 2014,
Barcelona, Spain, July 7–9, 2014. IATED, 2014, pp. 1196–1206. isbn: 978-84-617-0557-3
(cit. on p. 92).

[Tic84] W. F. Tichy. “The String-to-string Correction Problem with Block Moves”. In: ACM
Transactions on Computer Systems 2.4 (Nov. 1984), pp. 309–321. issn: 0734-2071. doi:
10.1145/357401.357404 (cit. on p. 229).

[TMvdB+13] U. Tikhonova, M. Manders, M. van den Brand, S. Andova, and T. Verhoeff. “Applying
Model Transformation and Event-B for Specifying an Industrial DSL”. In: Proceedings of
the 10th International Workshop on Model Driven Engineering, Verification and Validation
MoDeVVa 2013, co-located with 16th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2013), Miami, Florida, USA, October 1st, 2013. Ed. by
F. Boulanger, M. Famelis, and D. Ratiu. Vol. 1069. CEUR Workshop Proceedings.
CEUR-WS.org, 2013, pp. 41–50 (cit. on p. 21).

286 bibliography

https://doi.org/10.1007/978-3-540-77039-8_9
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-189
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-189
https://doi.org/10.1007/978-3-642-20832-4_19
https://doi.org/10.1145/357401.357404

[TS08] J. Togelius and J. Schmidhuber. “An Experiment in Automatic Game Design”. In:
Proceedings of the 2008 IEEE Symposium On Computational Intelligence and Games, CIG
2008, Perth, WA, Australia, December 15–18, 2008. 2008, pp. 111–118. isbn: 978-1-4244-
2973-8. doi: 10.1109/CIG.2008.5035629 (cit. on pp. 37, 96, 200).

[TYS+11] J. Togelius, G.N. Yannakakis, K.O. Stanley, and C. Browne. “Search-Based Procedural
Content Generation: A Taxonomy and Survey”. In: IEEE Transactions on Computational
Intelligence and AI in Games 3.3 (2011), pp. 172–186. doi: 10.1109/TCIAIG.2011.2148116
(cit. on p. 93).

[TBM+12] M. Treanor, B. Blackford, M. Mateas, and I. Bogost. “Game-O-Matic: Generating
Videogames That Represent Ideas”. In: Proceedings of the 3rd Workshop on Procedural
Content Generation in Games, PCG 2012, Raleigh, NC, USA, May 29–June 01, 2012. ACM,
2012, pp. 1–8. isbn: 978-1-4503-1447-3. doi: 10.1145/2538528.2538537 (cit. on pp. 41,
63, 200).

[TM13] M. Treanor and M. Mateas. “An Account of Proceduralist Meaning”. In: Proceedings of
the 2013 DiGRA International Conference: DeFragging Game Studies, DiGRA 2013, Atlanta,
GA, USA, August 26–29, 2013. Ed. by C. Pearce, J. Sharp, and H.W. Kennedy. Digital
Games Research Association, 2013 (cit. on p. 57).

[TSB+11] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas. “Proceduralist Readings: How to
find meaning in games with graphical logics”. In: Proceedings of the 6th International
Conference on the Foundations of Digital Games, FDG 2011, Bordeaux, France, June 28–July
1, 2011. Ed. by M. Cavazza, K. Isbister, and C. Rich. ACM, 2011, pp. 115–122. doi:
10.1145/2159365.2159381 (cit. on pp. 63, 65, 66).

[TSB+12] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas. “The Micro-Rhetorics of Game-o-
Matic”. In: Proceedings of the 7th International Conference on the Foundations of Digital Games,
FDG 2012, Raleigh, North Carolina, USA, May 29–June 01, 2012. ACM, 2012, pp. 18–25.
isbn: 978-1-4503-1333-9. doi: 10.1145/2282338.2282347 (cit. on p. 63).

[TZE+15] M. Treanor, A. Zook, M. P. Eladhari, J. Togelius, G. Smith, M. Cook, T. Thompson,
B. Magerko, J. Levine, and A. Smith. “AI-Based Game Design Patterns”. In: Proceedings
of the 10th International Conference on the Foundations of Digital Games, FDG 2015, Pacific
Grove, CA, USA, June 22–25, 2015. Society for the Advancement of Digital Games, 2015
(cit. on p. 41).

[TBW+07] C. Treude, S. Berlik, S. Wenzel, and U. Kelter. “Difference Computation of Large
Models”. In: Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ESEC-FSE 2007, Dubrovnik, Croatia, September 3–07, 2007. ACM, 2007, pp. 295–304. isbn:
978-1-59593-811-4. doi: 10.1145/1287624.1287665 (cit. on p. 227).

[TSB+10] T. Tutenel, R.M. Smelik, R. Bidarra, and K. J. de Kraker. “A Semantic Scene Description
Language for Procedural Layout SolvingProblems”. In:Proceedings of the 6thConference on
Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2010, Stanford, California,
USA, October 11–13, 2010. Ed. by G.M. Youngblood and V. Bulitko. 2010. isbn: 978-1-
57735-479-6 (cit. on pp. 37, 67).

[UDNa] UDN Staff. Unreal Kismet User Guide. Unreal Engine 3. Epic Games – Unreal Developer
Network. url: http://udn.epicgames.com/Three/KismetUserGuide.html (visited on
Oct. 24, 2018) (cit. on p. 162).

[UDNb] UDN Staff. UnrealScript Language Reference. Unreal Engine 3. Epic Games – Unreal
Developer Network. url: http://udn.epicgames.com/Three/UnrealScriptReference.
html (visited on Oct. 24, 2018) (cit. on p. 162).

287

https://doi.org/10.1109/CIG.2008.5035629
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1145/2538528.2538537
https://doi.org/10.1145/2159365.2159381
https://doi.org/10.1145/2282338.2282347
https://doi.org/10.1145/1287624.1287665
http://udn.epicgames.com/Three/KismetUserGuide.html
http://udn.epicgames.com/Three/UnrealScriptReference.html
http://udn.epicgames.com/Three/UnrealScriptReference.html

[vdBvdS11] J. van den Bos and T. van der Storm. “Bringing Domain-Specific Languages to Digital
Forensics”. In: Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. Ed. by R.N. Taylor, H.C. Gall,
and N. Medvidovic. ACM, 2011, pp. 671–680. doi: 10.1145/1985793.1985887 (cit. on
pp. 21, 216).

[vdLLB13] R. van der Linden, R. Lopes, and R. Bidarra. “Designing Procedurally Generated Levels”.
In: Proceedings of the 2nd workshop on Artificial Intelligence in the Game Design Process.
AAAI, 2013 (cit. on p. 239).

[vdLLB14] R. van der Linden, R. Lopes, and R. Bidarra. “Procedural Generation of Dungeons”. In:
IEEE Transactions on Computational Intelligence and AI in Games 6.1 (Mar. 2014), pp. 78–89.
issn: 1943-068X. doi: 10.1109/TCIAIG.2013.2290371 (cit. on pp. 37, 66, 123, 239).

[vdSto13] T. van der Storm. “Semantic Deltas for Live DSL Environments”. In: Proceedings of the 1st
InternationalWorkshop on Live Programming, LIVE 2013, San Francisco, California, USA,May
19 2013. IEEE, 2013, pp. 35–38. isbn: 978-1-4673-6265-8. doi: 10.1109/LIVE.2013.6617347
(cit. on p. 204).

[vdSCL14] T. van der Storm, W.R. Cook, and A. Loh. “The Design and Implementation of Object
Grammars”. In: Science of Computer Programming 96, Part 4.0 (2014). Selected Papers
from the 5th International Conference on Software Language Engineering, SLE 2012,
pp. 460–487. issn: 0167-6423. doi: 10.1016/j.scico.2014.02.023 (cit. on p. 230).

[vBVdT15] F. van Broeckhoven, J. Vlieghe, and O. de Troyer. “Mapping between Pedagogical
Design Strategies and Serious Game Narratives”. In: Proceedings of the 7th International
Conference on Games and Virtual Worlds for Serious Applications, VS-GAMES 2015, Skovde,
Sweden, September 16–18, 2015. 2015, pp. 1–8. isbn: 978-1-4799-8102-1. doi: 10.1109/VS-
GAMES.2015.7295780 (cit. on p. 55).

[vBdT13] F. van Broeckhoven andO. de Troyer. “ATTAC-L: AModeling Language for Educational
Virtual Scenarios in the Context of Preventing Cyber Bullying”. In: Proceedings of the
IEEE 2nd International Conference on Serious Games and Applications for Health, SeGAH
2013, Algarve, Portugal, May 2–3, 2013. IEEE, 2013, pp. 1–8. isbn: 978-1-4673-6165-1. doi:
10.1109/SeGAH.2013.6665300 (cit. on pp. 54, 55).

[vBVD15] F. van Broeckhoven, J. Vlieghe, andO. De Troyer. “Using a ControlledNatural Language
for Specifying the Narratives of Serious Games”. In: Interactive Storytelling – Proceedings
of the 8th International Conference on Interactive Digital Storytelling, ICIDS 2015, Copenhagen,
Denmark, November 30–December 4, 2015. Ed. byH. Schoenau-Fog, L. E. Bruni, S. Louchart,
and S. Baceviciute. Vol. 9445. LNCS. Springer, 2015, pp. 142–153. isbn: 978-3-319-27036-
4 (cit. on pp. 39, 54, 55).

[vDeu97] A. van Deursen. “Domain-Specific Languages versus Object-Oriented Frameworks: A
Financial Engineering Case Study”. In: Proceedings Smalltalk and Java in Industry and
Academia, STJA’97, Erfurt, September 1997. Ilmenau Technical University, 1997, pp. 35–39
(cit. on p. 21).

[vDKT93] A. van Deursen, P. Klint, and F. Tip. “Origin Tracking”. In: Symbolic Computation 15.5/6
(May 1993), pp. 523–545. doi: 10.1016/S0747-7171(06)80004-0 (cit. on p. 207).

[vDKV00] A. van Deursen, P. Klint, and J. Visser. “Domain-Specific Languages: An Annotated
Bibliography”. In: ACM SIGPLAN NOTICES 35 (2000), pp. 26–36 (cit. on pp. 21, 22, 163,
185, 248).

[vGOK19] C. vanGrinsven,M.Otten, andO.Koops.GamesMonitor TheNetherlands 2018 – Full Report.
Ed. by E. Nazarova, E. Muĳres, W. Hölzel, A. Loeb, T. Jongens, T. Huisman, K. Kimmel,
A. Reimink, and v. S. J. de Wit Richie and. 2019. url: https://www.dutchgamegarden.nl
(cit. on p. 17).

288 bibliography

https://doi.org/10.1145/1985793.1985887
https://doi.org/10.1109/TCIAIG.2013.2290371
https://doi.org/10.1109/LIVE.2013.6617347
https://doi.org/10.1016/j.scico.2014.02.023
https://doi.org/10.1109/VS-GAMES.2015.7295780
https://doi.org/10.1109/VS-GAMES.2015.7295780
https://doi.org/10.1109/SeGAH.2013.6665300
https://doi.org/10.1016/S0747-7171(06)80004-0
https://www.dutchgamegarden.nl

[vHSD+16] S. van Hoecke, K. Samyn, G. Deglorie, O. Janssens, P. Lambert, and R. van de Walle.
“Enabling Control of 3D Visuals, Scenarios and Non-linear Gameplay in Serious Game
Development Through Model-Driven Authoring”. In: Serious Games, Interaction, and
Simulation – Proceedings of the 5th International Conference, SGAMES 2015, Novedrate, Italy,
September 16–18, 2015. Ed. by C. Vaz de Carvalho, P. Escudeiro, and A. Coelho. Vol. 161.
LNICST. Springer, 2016, pp. 103–110. isbn: 978-3-319-29060-7. doi: 10.1007/978-3-
319-29060-7_16 (cit. on p. 55).

[vNvOM+11] C. van Nimwegen, H. van Oostendorp, J. Modderman, and M. Bas. “A Test Case
for GameDNA: Conceptualizing a Serious Game to Measure Personality Traits”.
In: Proceedings of the 16th International Conference on Computer Games, CGAMES 2011,
Louisville, KY, USA, July 27–30, 2011. IEEE, 2011, pp. 217–222. isbn: 978-1-4577-1452-8.
doi: 10.1109/CGAMES.2011.6000342 (cit. on pp. 41, 54).

[vRoz15a] R. van Rozen. “A Pattern-Based Game Mechanics Design Assistant”. In: Proceedings of
the 10th International Conference on the Foundations of Digital Games, FDG 2015, Pacific Grove,
CA, USA, June 22–25, 2015. Ed. by J. P. Zagal, E. MacCallum-Stewart, and J. Togelius.
Society for the Advancement of the Science of Digital Games, 2015 (cit. on pp. 11, 40, 62,
63, 183, 228).

[vRoz19] R. van Rozen. “Languages of Games and Play: A Systematic Mapping Study”. Under
submission to ACM Computing Surveys. 2019 (cit. on p. 10).

[vRD14] R. van Rozen and J. Dormans. “Adapting Game Mechanics with Micro-Machinations”.
In: Proceedings of the 9th International Conference on the Foundations of Digital Games, FDG
2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Ed. by M. Mateas, T. Barnes, and
I. Bogost. Society for the Advancement of the Science of Digital Games, 2014. isbn:
978-0-9913982-2-5 (cit. on pp. 10, 40, 62, 63, 161, 184, 185, 187, 188, 228).

[vRH18] R. van Rozen and Q. Heĳn. “Measuring Quality of Grammars for Procedural Level
Generation”. In: Proceedings of the 13th International Conference on Foundations of Digital
Games, FDG 2018, as part of the 9th Workshop on Procedural Content Generation, PCG
2018, Malmö, Sweden, August 7–10, 2018. Ed. by S. Dahlskog, S. Deterding, J. Font, M.
Khandaker, C.M. Olsson, S. Risi, and C. Salge. ACM, 2018, pp. 1–8. isbn: 978-1-4503-
6571-0. doi: 10.1145/3235765.3235821 (cit. on pp. 11, 41, 68, 87, 237).

[vRvdS15] R. van Rozen and T. van der Storm. “Origin Tracking + Text Differencing = Textual
Model Differencing”. In: Theory and Practice of Model Transformations – Proceedings of the
8th International Conference on Model Transformation, ICMT 2015, L’Aquila, Italy, July 20–21,
2015. Ed. by D. Kolovos and M. Wimmer. Vol. 9152. LNCS. Springer, 2015, pp. 18–33.
isbn: 978-3-319-21155-8. doi: 10.1007/978-3-319-21155-8_2 (cit. on pp. 11, 203, 204,
216).

[vRvdS19] R. van Rozen and T. van der Storm. “Toward Live Domain-Specific Languages: From
Text Differencing to Adapting Models at Run Time”. In: Software & Systems Modeling
18.1 (Feb. 2019). Special Section Paper on STAF2015. Received June 27th 2016. Revised
May 26th 2017. Accepted June 20th 2017. First Online August 14th 2017, pp. 195–212.
issn: 1619-1374. doi: 10.1007/s10270-017-0608-7 (cit. on pp. 11, 203).

[VEB+07] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. “Tranquility: A Low Disruptive
Alternative to Quiescence for Ensuring Safe Dynamic Updates”. In: IEEE Transactions
on Software Engineering 33.12 (Dec. 2007), pp. 856–868. issn: 0098-5589. doi: 10.1109/
TSE.2007.70733 (cit. on p. 232).

[Var03] A. Varanese. Game Scripting Mastery. Ed. by A. LaMothe. Premier Press, 2003. isbn:
9781931841573 (cit. on p. 103).

289

https://doi.org/10.1007/978-3-319-29060-7_16
https://doi.org/10.1007/978-3-319-29060-7_16
https://doi.org/10.1109/CGAMES.2011.6000342
https://doi.org/10.1145/3235765.3235821
https://doi.org/10.1007/978-3-319-21155-8_2
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1109/TSE.2007.70733
https://doi.org/10.1109/TSE.2007.70733

[Ver03] C. Verbrugge. “A Structure for Modern Computer Narratives”. In: Proceedings of the 3rd
international conference on Computers and Games, CG 2002, Edmonton, Canada, July 25-27,
2002, Revised Papers. Ed. by J. Schaeffer, M. Müller, and Y. Björnsson. Vol. 2883. LNCS.
Springer, 2003, pp. 308–325. doi: 10.1007/978-3-540-40031-8_21 (cit. on pp. 41, 58, 82).

[VZ10] C. Verbrugge and P. Zhang. “Analyzing Computer Game Narratives”. In: Entertainment
Computing – Proceedings of the 9th International Conference on Entertainment Computing,
ICEC 2010, Seoul, Korea, September 8–11, 2010. Ed. by H. S. Yang, R. Malaka, J. Hoshino,
and J.H. Han. Vol. 6243. LNCS. Springer, 2010, pp. 224–231. isbn: 978-3-642-15399-0.
doi: 10.1007/978-3-642-15399-0_21 (cit. on pp. 41, 82).

[VJP09] K. Villaverde, C. Jeffery, and I. Pivkina. “Cheshire: Towards an Alice Based Game
Development Tool”. In: Proceedings of the International Conference on Computer Games,
Multimedia & Allied Technology, CGAT 2009, Singapore, May 11–12, 2009. Research Pub.
Services, 2009, pp. 321–328. isbn: 9789810831905 (cit. on p. 88).

[VKM+08] S. Virmani, Y. Kanetkar, M. Mehta, S. Ontañón, and A. Ram. “An Intelligent IDE for
Behavior Authoring in Real-Time StrategyGames”. In: Proceedings of the 4th Conference on
Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2008, Stanford, California,
USA, October 22–24, 2008. Ed. by M. Mateas and C. Darken. AAAI, 2008. isbn: 978-1-
57735-392-8 (cit. on p. 37).

[WGC04] R.Wages, B. Grützmacher, and S. Conrad. “Learning from theMovie Industry: Adapting
Production Processes for Storytelling in VR”. In: Technologies for Interactive Digital
Storytelling and Entertainment – Proceedings of the 2nd International Conference, TIDSE
2004, Darmstadt, Germany, June 24–26, 2004. Ed. by S. Göbel, U. Spierling, A. Hoffmann, I.
Iurgel, O. Schneider, J. Dechau, andA. Feix. Vol. 3105. LNCS. Springer, 2004, pp. 119–125.
isbn: 978-3-540-27797-2. doi: 10.1007/978-3-540-27797-2_16 (cit. on p. 39).

[Wal14] R. Walter. “Engineering Domain-Specific Languages for Games”. In: Game Development
Tool Essentials. Ed. by P. Berinstein, R. Arnaud, A. Ardolino, S. Franco, A. Herubel, J.
McCutchan, N. Nedelcu, B. Nitschke, D. Olmstead, F. Robinet, C. Ronchi, R. Turkowski,
R. Walter, and G. Samour. Apress, 2014, pp. 173–188. isbn: 978-1-4302-6701-0. doi:
10.1007/978-1-4302-6701-0_13 (cit. on p. 119).

[WM11] R.Walter andM.Masuch. “How to Integrate Domain-Specific Languages into the Game
Development Process”. In: Proceedings of the 8th International Conference on Advances
in Computer Entertainment Technology, ACE 2011, Lisbon, Portugal, November 8–11, 2011.
ACM, 2011, pp. 1–8. isbn: 978-1-4503-0827-4. doi: 10.1145/2071423.2071475 (cit. on
pp. 41, 119, 127).

[WMW+06] K.Wang,C.McCaffrey,D.Wendel, andE.Klopfer. “3DGameDesignwith Programming
Blocks in StarLogo TNG”. In: Proceedings of the 7th International Conference on Learning
Sciences, ICLS 2006, Bloomington, Indiana, June 27–July 01, 2006. International Society of
the Learning Sciences, 2006, pp. 1008–1009. isbn: 0-8058-6174-2 (cit. on p. 91).

[WSA+10] B.H. Wasty, A. Semmo, M. Appeltauer, B. Steinert, and R. Hirschfeld. “ContextLua:
Dynamic Behavioral Variations in Computer Games”. In: Proceedings of the 2nd Inter-
national Workshop on Context-Oriented Programming, COP 2010, Maribor, Slovenia, June
22, 2010. ACM, 2010, pp. 1–6. isbn: 978-1-4503-0531-0. doi: 10.1145/1930021.1930026
(cit. on pp. 103, 104, 162).

[Wes07] M. West. “Domain-Specific Languages”. In: Game Developer 14.7 (Aug. 2007), pp. 33–36.
issn: 1073-922X (cit. on pp. 38, 117, 118).

290 bibliography

https://doi.org/10.1007/978-3-540-40031-8_21
https://doi.org/10.1007/978-3-642-15399-0_21
https://doi.org/10.1007/978-3-540-27797-2_16
https://doi.org/10.1007/978-1-4302-6701-0_13
https://doi.org/10.1145/2071423.2071475
https://doi.org/10.1145/1930021.1930026

[Wet13] R. Wetzel. “A Case for Design Patterns Supporting the Development of Mobile Mixed
Reality Games”. In: Workshop Proceedings of the 8th International Conference on the
Foundations of Digital Games – as part of the 2nd Workshop on Design Patterns in Games,
DPG 2013, Chania, Crete, Greece, May, 14–17, 2013. Society for the Advancement of the
Science of Digital Games, 2013 (cit. on pp. 41, 51).

[Wet14] R. Wetzel. “Introducing Pattern Cards for Mixed Reality Game Design”. In: Proceedings
of Workshops Colocated with the 9th International Conference on the Foundations of Digital
Games – as part of the 3rd Workshop on Design Patterns in Games, DPG 2014, Liberty of the
Seas, Caribbean, April 3–7, 2014. Society for the Advancement of the Science of Digital
Games, 2014. isbn: 978-0-9913982-3-2 (cit. on pp. 41, 51).

[WDK+07] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan. “Scaling Games to
Epic Proportions”. In: Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2007, Beĳing, China, June 11–14, 2007. ACM, 2007,
pp. 31–42. isbn: 978-1-59593-686-8. doi: 10.1145/1247480.1247486 (cit. on p. 107).

[WKG+08] W. White, C. Koch, J. Gehrke, and A. Demers. “Better Scripts, Better Games”. In: Queue
6.7 (Nov. 2008), pp. 18–25. issn: 1542-7730. doi: 10.1145/1483101.1483106 (cit. on
p. 107).

[WKG+09] W. White, C. Koch, J. Gehrke, and A. Demers. “Better Scripts, Better Games”. In:
Communications of the ACM 52.3 (Mar. 2009), pp. 42–47. issn: 0001-0782. doi: 10.1145/
1467247.1467262 (cit. on pp. 36, 107).

[WSG+08] W. White, B. Sowell, J. Gehrke, and A. Demers. “Declarative Processing for Computer
Games”. In: Proceedings of the 2008 ACM SIGGRAPH Symposium on Video Games, Sandbox
2008, Los Angeles, California, USA, August 9–10, 2008. ACM, 2008, pp. 23–30. isbn:
978-1-60558-173-6. doi: 10.1145/1401843.1401847 (cit. on pp. 36, 107).

[WMM+06] R. Wieringa, N.A.M. Maiden, N. R. Mead, and C. Rolland. “Requirements Engineering
Paper Classification and Evaluation Criteria: A Proposal and a Discussion”. In: Require-
ments Engineering 11.1 (Mar. 2006), pp. 102–107. issn: 1432-010X. doi: 10.1007/s00766-
005-0021-6 (cit. on p. 26).

[Wil07] B. Wilcox. “Reflections on Building Three Scripting Languages”. In: Gamasutra (Apr.
2007). url: http://www.gamasutra.com/view/feature/1570/ (visited on Oct. 15, 2018)
(cit. on p. 38).

[WZ13] G. J. Winters and J. Zhu. “Attention Guiding Principles in 3D Adventure Games”. In:
SIGGRAPH 2013 Posters. ACM, 2013, pp. 71–71 (cit. on p. 51).

[WZ14] G. J. Winters and J. Zhu. “Guiding Players through Structural Composition Patterns in
3DAdventure Games”. In: Proceedings of the 9th International Conference on the Foundations
of Digital Games, FDG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Ed. byM.Mateas,
T. Barnes, and I. Bogost. Society for the Advancement of the Science of Digital Games,
2014 (cit. on p. 51).

[Wit53] L. Wittgenstein. Philosophical Investigations. Translated by G.E.M. Anscombe. Blackwell,
1953 (cit. on p. 127).

[WM00] I. Wright and J. Marshall. “RC++: A Rule-based Language for Game AI”. In: Proceedings
of the 1st International Conference on Intelligent Games and Simulation, GAME-ON 2000,
London, United Kingdom, November 11–12, 2000. SCS Europe BVBA, 2000, pp. 42–46
(cit. on p. 41).

291

https://doi.org/10.1145/1247480.1247486
https://doi.org/10.1145/1483101.1483106
https://doi.org/10.1145/1467247.1467262
https://doi.org/10.1145/1467247.1467262
https://doi.org/10.1145/1401843.1401847
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1007/s00766-005-0021-6
http://www.gamasutra.com/view/feature/1570/

[Wri03] W. Wright. Dynamics for Designers – Presentation at the Game Developers Conference, GDC
2003. GDC Vault. Available online are presentation slides https://www.slideshare.

net/geoffhom/gdc2003-will-wright-presentation, and a video recording https://www.

gdcvault.com/play/1019938/. 2003. (Visited on Nov. 22, 2018) (cit. on p. 152).
[Yan91] W. Yang. “Identifying Syntactic Differences Between Two Programs”. In: Software

Practice and Experience 21.7 (July 1991), pp. 739–755. doi: 10.1002/spe.4380210706
(cit. on pp. 209, 230).

[YT18] G.N. Yannakakis and J. Togelius. Artificial Intelligence and Games. Springer, 2018. isbn:
978-3-319-63518-7. doi: 10.1007/978-3-319-63519-4. url: http://gameaibook.org
(cit. on pp. 37, 239).

[Zag10] J. P. Zagal. Ludoliteracy: Defining Understanding and Supporting Games Education. ETC
Press, 2010. isbn: 978-0-557-27791-9 (cit. on p. 43).

[ZBL13] J. P. Zagal, S. Björk, and C. Lewis. “Dark Patterns in the Design of Games”. In: Proceedings
of the 8th International Conference on the Foundations of Digital Games, FDG 2013, Chania,
Crete, Greece, May 14–17, 2013. Ed. by G.N. Yannakakis, E. Aarseth, K. Jørgensen, and J. C.
Lester. Society for the Advancement of the Science of Digital Games, 2013, pp. 39–46.
isbn: 978-0-9913982-0-1 (cit. on pp. 41, 47).

[ZMF+05] J. P. Zagal, M. Mateas, C. Fernández-vara, B. Hochhalter, and N. Lichti. “Towards an
Ontological Language for GameAnalysis”. In: Proceedings of the 2005DiGRA International
Conference: Changing Views: Worlds in Play, DiGRA 2005, Vancouver, Canada, June 16–20,
2005. Digital Games Research Association, 2005 (cit. on pp. 41, 43, 161, 186).

[ZMF+07] J. P. Zagal, M. Mateas, C. Fernández-vara, B. Hochhalter, and N. Lichti. “Towards an
Ontological Language for Game Analysis”. In: Worlds in Play, International Perspectives
on Digital Games Research. Ed. by S. de Castell and J. Jenson. Peter Lang, 2007, pp. 21–35.
isbn: 978-0-8204-8643-7 (cit. on p. 43).

[ZTS12] J. P. Zagal, N. Tomuro, andA. Shepitsen. “Natural Language Processing in Game Studies
Research: An Overview”. In: Simulation & Gaming 43.3 (Oct. 2012), pp. 356–373. issn:
1552-826X. doi: 10.1177/1046878111422560 (cit. on p. 39).

[ZGT+06] N. Zagalo, S. Göbel, A. Torres, R. Malkewitz, and V. Branco. “INSCAPE: Emotion
Expression and Experience in an Authoring Environment”. In: Technologies for Interactive
Digital Storytelling and Entertainment – Proceedings of the 3rd International Conference,
TIDSE 2006, Darmstadt, Germany, December 4–6, 2006. Ed. by S. Göbel, R. Malkewitz,
and I. Iurgel. Vol. 4326. LNCS. Springer, 2006, pp. 219–230. isbn: 978-3-540-49935-0.
doi: 10.1007/11944577_23 (cit. on p. 39).

[Zhu14] M. Zhu. “Model-Driven Game Development Addressing Architectural Diversity and
Game Engine-Integration”. PhD thesis. Norwegian University of Science et al., Mar.
2014 (cit. on pp. 116, 128).

[Zoo16] A. Zook. “Automated Iterative Game Design”. PhD thesis. Georgia Institute of Technol-
ogy, Dec. 2016 (cit. on p. 128).

[ZR14a] A. Zook and M.O. Riedl. “Automatic Game Design via Mechanic Generation”. In:
Proceedings of the 28th AAAI Conference on Artificial Intelligence, AAAI 2014, Québec City,
Canada, July 27–31, 2014. AAAI, 2014, pp. 530–537. isbn: 978-1-57735-661-5 (cit. on
pp. 65, 186, 187).

[ZR14b] A. Zook andM.O. Riedl. “Generating andAdaptingGameMechanics”. In: Proceedings of
the 5th Workshop on Procedural Content Generation, PCG 2014, Liberty of the Seas, Caribbean,
April 3–7, 2014. Society for the Advancement of the Science of Digital Games, 2014
(cit. on pp. 41, 65).

292 bibliography

https://www.slideshare.net/geoffhom/gdc2003-will-wright-presentation
https://www.slideshare.net/geoffhom/gdc2003-will-wright-presentation
https://www.gdcvault.com/play/1019938/
https://www.gdcvault.com/play/1019938/
https://doi.org/10.1002/spe.4380210706
https://doi.org/10.1007/978-3-319-63519-4
http://gameaibook.org
https://doi.org/10.1177/1046878111422560
https://doi.org/10.1007/11944577_23

SUMMARY

Languages of Games and Play
Automating Game Design & Enabling Live Programming

In game development, themaximumnumber of game design iterations determines the
achievable quality. This thesis explores what informs the design and construction of
good games in order to help speed-up game development processes, and create better
games more quickly. On the one hand, we study how Domain-Specific Languages
(DSLs) can help automate game design by offering developers and designers abstractions
and notations that raise their productivity, reduce iteration times, and improve the
quality of player experiences and a game’s source code. On the other hand, we
explore how generic language technology can be leveraged and developed, in particular
for constructing DSLs for live programming and automating game design.

The thesis begins with an extensive literature review. We study to what extent
languages, structured notations, patterns and tools, can offer designers and developers
theoretical foundations, systematic techniques and practical solutions they need to
raise their productivity and improve the quality of games and play. We propose
the term ‘languages of games and play’ for language-centric approaches for tackling
challenges and solving problems related to game design and development. Despite
the growing number of publications on this topic there is currently no overview
describing the state-of-the-art that relates research areas, goals and applications. As a
result, efforts and successes are often one-off, lessons learned go overlooked, language
reuse remains minimal, and opportunities for collaboration and synergy are lost.

Chapter 2 presents a systematic mapping study to map the state of the art in
languages of games and play which contributes the following:

1. A systematic map on languages of games and play that provides an overview of
research areas and publication venues.

2. A set of fourteen complementary research perspectives on languages of games
and play synthesized from summaries of over 100 distinct languages we identi-
fied in over 1400 publications.

3. An analysis of general trends and success factors, and one unifying perspective
on ‘automated game design’, which discusses challenges and opportunities for
future research and development.

Our map provides a good starting point for anyone who wishes to learn more about
the topic.

295

The next three chapters focus on game mechanics, one of the identified challenge
areas. Many games have an internal economy, an abstract rule-system that determines
player choices and actions that impact gameplay. Using its mechanisms, players face
challenges, enact strategies, and manage trade-offs by accumulating, spending and
distributing in-game resources (e.g., gems, bricks, or life essence). Unfortunately,
game designers lack a common vocabulary for expressing gameplay, which hampers
specification, communication and agreement.

The languageMachinations has provided a conceptual framework that foregrounds
structures and feedback loops associated with patterns of gameplay. We aim to speed
up the game development process by improving designer productivity and design
quality. We demonstrate how Micro-Machinations (MM), a DSL for game-economic
mechanics that evolved from Machinations, can speed-up the game development
process by improving designer productivity and game design quality. First, we show
in Chapter 3 how meta-programming and model-checking technology can be used
to formalize a DSL for game mechanics, and analyze and predict qualities of games.
Next, we show in Chapter 4 how the game development process can be accelerated
and feedback on game design quality can be improved by adapting and improving
the game mechanics of running game software. Finally, we show in Chapter 5 how
patterns can be used for constructing an interactive game design assistant (a tool) that
statically analyzes and generates game mechanics. We have performed this research
in continuous collaboration with industry partners in applied research projects on
better languages and tools for automated game design.

Chapter 6 addresses a general software engineering challenge, which is also a key
challenge for automated game design. Live programming is a style of development
characterized by incremental change and immediate feedback. Instead of long edit-
compile cycles, developers modify a running program by changing its source code,
receiving immediate feedback as it instantly adapts in response. However, little is
known about how the benefits of live programming can be obtained for DSLs. We
demonstrate how generic language technology can be developed for constructing
DSLs for live programming in a two-part solution. The first, leverages origin tracking
and text differencing for textual model differencing that produces model-based deltas.
The second, demonstrates how to leverage these model-based deltas in the design
of DSLs that migrate an application’s run-time state by run-time model patching. We
consider these contributions first steps towards supporting the construction of “live
DSLs” in language workbenches.

Finally, Chapter 7 reports preliminary results on improving tool support for
automated game level design. Grammar-based procedural level generation raises the
productivity of level designers for games such as dungeon crawl and platform games.
However, the improved productivity comes at the cost of level quality assurance.
Authoring, improving and maintaining grammars is difficult because it is hard to

296 summary

predict how each grammar rule impacts the overall level quality, and tool support is
lacking. We address the lack of tool support by proposing two novel techniques. The
first is a novel metric calledMetric of Added Detail (MAD) that indicates if a rule adds
or removes detail with respect to its phase in the transformation pipeline. The second,
Specification Analysis Reporting (SAnR) enables 1) expressing level properties in
a simple DSL, and 2) analyzing how qualities evolve in level generation histories.
The approach opens a research area for leveraging metaprogramming techniques to
address a lack of tool support. The chapter was written as an introductory example,
and has the purpose of engaging students as collaborators in future applied research
projects to continue this work.

297

SAMENVATTING

Talen voor Spellen en Spelen
Spelontwerp Automatiseren & Live Programmeren

Mogelĳk Maken

Bĳ spelontwerp is het maximale aantal spelontwerpiteraties bepalend voor de kwa-
liteit die je kunt behalen. Dit proefschrift onderzoekt wat er bepalend is voor het
ontwerp en de constructie van goede spellen om te helpen het spelontwikkelproces
te versnellen en om sneller betere spellen te maken. Enerzĳds bestuderen we hoe
Domein-Specifieke Talen (DSLs) kunnen helpen om spelontwerp te automatiseren door
ontwikkelaars en ontwerpers abstracties en notaties aan te bieden die hun producti-
viteit verhogen, iteratietĳden verkorten, en de kwaliteit van spelervaringen en van
de broncode van een spel verbeteren. Anderzĳds onderzoeken we hoe generieke
taaltechnologie kan worden toegepast en ontwikkeld, in het bĳzonder voor het bouwen
van DSLs voor live programmeren om spelontwerp te automatiseren.

Het proefschrift begint met een uitgebreide literatuurstudie. We bestuderen
in hoeverre talen, gestructureerde notaties, patronen en gereedschappen, ontwerpers en
ontwikkelaars theoretische fundamenten, systematische technieken en praktische
oplossingen kunnen bieden om hun productiviteit te verhogen en de kwaliteit van
spellen en spelen te verbeteren. We introduceren de term talen voor spellen en spelen
voor taalgerichte benaderingen voor het aanpakken van uitdagingen en het oplossen
van problemen met betrekking tot het ontwerp en de ontwikkeling van spellen.
Ondanks het groeiende aantal publicaties over dit onderwerp is er op dit moment
geen overzicht dat de state-of-the-art in kaart brengt en onderzoeksgebieden, doelen
en toepassingen relateert. Hierdoor zĳn inspanningen en successen veelal eenmalig,
worden wĳze lessen over het hoofd gezien, blĳft hergebruik van talen minimaal en
gaan kansen voor samenwerking en synergie verloren.

Hoofdstuk 2 presenteert een studie die systematisch de state-of-the-art van talen
voor spellen en spelen in kaart brengt, en die het volgende bĳdraagt:

1. Een systematische kaart van talen voor spellen en spelen die een overzicht biedt
van onderzoeksgebieden en publicatieplaatsen.

2. Een lĳst van veertien complementaire onderzoeksperspectieven op talen voor
spellen en spelen samengesteld uit samenvattingen van meer dan 100 verschil-
lende talen die we geïdentificeerd hebben in meer dan 1400 publicaties.

299

3. Een analyse van algemene trends en succesfactoren, en een verbindend per-
spectief op ‘geautomatiseerd spelontwerp’, waarin uitdagingen en kansen voor
toekomstig onderzoek en ontwikkeling worden besproken.

Onze kaart levert een goed beginpunt voor een ieder die meer wil weten over dit
onderwerp.

De volgende drie hoofdstukken richten zich op game mechanics, een van de geï-
dentificeerde onderzoeksuitdagingen. Veel spellen hebben een interne economie, een
abstract regelsysteem dat speleracties en keuzes bepaalt die van invloed zĳn op de
spelervaringen. Met behulp van deze mechanismen worden spelers geconfronteerd
met uitdagingen, voeren ze strategieën uit enmaken ze afwegingen door in-game hulp-
bronnen te verzamelen, te besteden en te verplaatsen (bĳv. edelstenen, bouwstenen
of levenselixer). Helaas missen spelontwerpers een gemeenschappelĳk vocabulaire
voor het uitdrukken van spelervaringen, wat de specificatie, de communicatie en de
afstemming belemmert.

De taal Machinations heeft een conceptueel raamwerk geleverd dat voorziet in
structuren en terugkoppelingslussen geassocieerd met patronen van spelervaringen.
We stellen tot doel omhet spelontwikkelingsproces te versnellen door de productiviteit
van ontwerpers en de ontwerpkwaliteit te verbeteren. We demonstreren hoe Micro-
Machinations (MM), een DSL voor game-economischemechanics die is voortgekomen
uit Machinations, het spelontwikkelingsproces kan versnellen door de productiviteit
van de ontwerper en de kwaliteit van het spelontwerp te verbeteren.

Eerst laten we in Hoofdstuk 3 zien hoe metaprogrammeren en modelcheckingtech-
nologie gebruikt kunnen worden om een DSL voor game mechanics te formaliseren,
en om de spelkwaliteit te analyseren en te voorspellen. Vervolgens laten we in
Hoofdstuk 4 zien hoe het spelontwikkelingsproces versnelt kan worden en hoe
terugkoppeling over de kwaliteit van het spelontwerp verbetert kan worden door
aanpassingen en verbeteringen te maken aan de spelmechanica van spelsoftware die
in uitvoering is. Ten slotte laten we in Hoofdstuk 5 zien hoe patronen gebruikt kunnen
worden voor het construeren van een interactief ontwerpgereedschap dat statische
analyses maakt van game mechanics en ze ook genereert. We hebben dit onderzoek
uitgevoerd in voortdurende samenwerking met industriële partners in projecten van
toegepast onderzoek naar betere talen en gereedschappen voor geautomatiseerd
spelontwerp.

Hoofdstuk 6 gaat in op een algemene uitdaging voor software engineering, die ook
een belangrĳke uitdaging is voor geautomatiseerd spelontwerp. Live programmeren
is een stĳl van ontwikkelen die wordt gekenmerkt door incrementele verandering
en onmiddellĳke terugkoppeling. In plaats van lange bewerk-vertaalcycli, passen
ontwikkelaars de broncode van een programma aan terwĳl het in uitvoering is,
waardoor ze onmiddellĳk terugkoppeling krĳgen wanneer het zich in reactie daarop
direct aanpast. Er is echter nog maar weinig bekend over hoe de voordelen van

300 samenvatting

live programmeren kunnen worden behaald voor DSLs. Wĳ laten in een tweedelige
oplossing zien hoe generieke taaltechnologie ontwikkeld kan worden voor het
construeren van DSLs voor live programmeren. Het eerste deel maakt gebruik van
oorsprongtracering en tekstverschillen om textual model differencing te realiseren dat
op modellen gebaseerde delta’s produceert. Het tweede deel laat zien hoe deze op
modellen gebaseerde delta’s kunnen worden gebruikt bĳ het ontwerp van DSLs die
de runtimestatus van een applicatie migreren middels run-time model patching. We
beschouwen deze bĳdragen als eerste stappen ter ondersteuning van de bouw van
“live DSLs” in taalontwikkelingsgeedschappen (language workbenches).

Tot slot rapporteert Hoofdstuk 7 voorlopige resultaten over het verbeteren van
gereedschapsondersteuning voor geautomatiseerd ontwerp van gamelevels. Op
grammatica’s gebaseerde procedurele generatie van gamelevels verhoogt de producti-
viteit van levelontwerpers voor spellen als dungeon crawl and platform-games. De
verbeterde productiviteit gaat echter ten koste van de de borging van de kwaliteit
van gamelevels. Het schrĳven, verbeteren en onderhouden van grammatica’s is
moeilĳk omdat het lastig te voorspellen is hoe elke grammaticaregel de algehele
kwaliteit beïnvloedt, en het ontbreekt aan ondersteuning voor gereedschappen. We
pakken het gebrek aan gereedschappen aan door twee nieuwe technieken voor te
stellen. De eerste is een nieuwe metriek met de naam Metric of Added Detail (MAD)
die aangeeft of een regel details toevoegt of verwĳdert met betrekking tot zĳn fase
in de transformatiepĳplĳn. De tweede, Specification Analysis Reporting (SAnR)
maakt het mogelĳk 1) level-eigenschappen uit te drukken in een eenvoudige DSL, en
2) te analyseren hoe kwaliteiten evolueren in geschiedenis van levelgeneratie. De
aanpak opent een onderzoeksgebied dat metaprogrammeertechnieken gebruikt om
het gebrek aan gereedschappen aan te pakken. Het hoofdstuk is geschreven als
een inleidend voorbeeld en heeft als doel studenten te betrekken bĳ toekomstige
toegepaste onderzoeksprojecten om dit werk voort te zetten.

301

Titles in the IPA Dissertation Series since 2017

M.J. Steindorfer. Efficient Immutable Col-
lections. Faculty of Science, UvA. 2017-01

W. Ahmad. Green Computing: Effi-
cient EnergyManagement of Multiprocessor
Streaming Applications via Model Checking.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2017-02

D.Guck. Reliable Systems – Fault tree anal-
ysis via Markov reward automata. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2017-03

H.L. Salunkhe. Modeling and BufferAnal-
ysis of Real-time Streaming Radio Applica-
tions Scheduled on Heterogeneous Multi-
processors. Faculty of Mathematics and
Computer Science, TU/e. 2017-04

A. Krasnova. Smart invaders of private
matters: Privacy of communication on the In-
ternet and in the Internet of Things (IoT). Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty of
Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering Source
Code: Empirical Studies of Limitations
and Opportunities. Faculty of Science,
UvA. 2017-07

W. Lueks. Security and Privacy via Cryp-
tography – Having your cake and eating it
too. Faculty of Science, Mathematics and
Computer Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse of
Domain-Specific Languages: an exploration

with MetaMod. Faculty of Mathematics
and Computer Science, TU/e. 2017-09

U. Tikhonova. Engineering the Dynamic
Semantics of Domain Specific Languages.
Faculty of Mathematics and Computer
Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2017-11

A.Amighi. Specification andVerification of
Synchronisation Classes in Java: A Practical
Approach. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-01

S. Darabi. Verification of Program Paral-
lelization. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-02

J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty
of Science, Mathematics and Computer
Science, RU. 2018-03

P. Fiterău-Broştean. Active Model Learn-
ing for the Analysis of Network Protocols.
Faculty of Science, Mathematics and
Computer Science, RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java Code.
Faculty of Mathematics and Computer
Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2018-06

A. Lele. Response Modeling: Model Re-
finements for Timing Analysis of Runtime
Scheduling in Real-time Streaming Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2018-07

N.Bezirgiannis. Abstract Behavioral Spec-
ification: unifying modeling and program-
ming. Faculty of Mathematics and Natu-
ral Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis: Bridg-
ing Algorithms and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2018-09

E.J.J. Ruĳters. Zen and the art of railway
maintenance: Analysis and optimization of
maintenance via fault trees and statistical
model checking. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2018-10

F. Yang. A Theory of Executability: with a
Focus on the Expressivity of Process Calculi.
Faculty of Mathematics and Computer
Science, TU/e. 2018-11

L. Swartjes. Model-based design of baggage
handling systems. Faculty of Mechanical
Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Similarity
Measures for Curves and Surfaces. Faculty
of Mathematics and Computer Science,
TU/e. 2018-13

M. Talebi. Scalable Performance Analy-
sis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quantitative
security analysis using attack trees. Faculty

of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software Develop-
ment. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2018-16

M. Mehr. Faster Algorithms for Geo-
metric Clustering and Competitive Facility-
Location Problems. Faculty of Mathemat-
ics andComputer Science, TU/e. 2018-17

M. Alizadeh. Auditing of User Behavior:
Identification, Analysis and Understanding
of Deviations. Faculty of Mathematics
and Computer Science, TU/e. 2018-18

P.A. Inostroza Valdera. Structuring Lan-
guages as Object-Oriented Libraries. Fac-
ulty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance - Model-
Based Testing of Stochastic Behaviour. Fac-
ulty of Electrical Engineering,Mathemat-
ics & Computer Science, UT. 2018-20

A. Serrano Mena. Type Error Customiza-
tion for Embedded Domain-Specific Lan-
guages. Faculty of Science, UU. 2018-21

S.M.J. de Putter. Verification of Concur-
rent Systems in aModel-Driven Engineering
Workflow. Faculty of Mathematics and
Computer Science, TU/e. 2019-01

S.M. Thaler. Automation for Information
Security using Machine Learning. Faculty
of Mathematics and Computer Science,
TU/e. 2019-02

Ö. Babur. Model Analytics and Manage-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova. Practi-
cal General Top-down Parsers. Faculty of
Science, UvA. 2019-04
S. Kisfaludi-Bak. ETH-Tight Algorithms
for Geometric Network Problems. Faculty
of Mathematics and Computer Science,
TU/e. 2019-05
J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learning.
Faculty of Science, Mathematics and
Computer Science, RU. 2019-06
V. Bloemen. Strong Connectivity and
Shortest Paths for CheckingModels. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2019-07
T.H.A. Castermans. Algorithms for Visu-
alization in Digital Humanities. Faculty
of Mathematics and Computer Science,
TU/e. 2019-08
W.M. Sonke. Algorithms for River Net-
work Analysis. Faculty of Mathematics
and Computer Science, TU/e. 2019-09
J.J.G. Meĳer. Efficient Learning and Anal-
ysis of System Behavior. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix Lan-
guage and its Application in Control and Au-
diting. Faculty of Science, UvA. 2019-11

A.A. Sawant. The impact of API evolu-
tion on API consumers and how this can
be affected by API producers and language
designers. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2019-12

W.H.M. Oortwĳn. Deductive Techniques
for Model-Based Concurrency Verification.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2019-13

M.A. Cano Grĳalba. Session-Based Con-
currency: Between Operational and Declar-
ative Views. Faculty of Science and Engi-
neering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2020-02

R.A. van Rozen. Languages of Games and
Play: Automating Game Design & Enabling
Live Programming. Faculty of Science,
UvA. 2020-03

	Contents
	Acknowledgements
	Introduction
	Perspectives
	Research Questions
	Origin of the Chapters
	Thesis Structure
	Conclusion

	Languages of Games and Play: A Systematic Mapping Study
	Introduction
	Research Vision
	Methodology
	Review Protocol
	Research Areas
	Research Perspectives
	Challenges and Opportunities
	Related Work
	Threats to Validity
	Conclusion

	Analyzing Game Mechanics
	Introduction
	Micro-Machinations
	MM AiR Framework
	Case Study: SimWar
	Conclusion

	Adapting Game Mechanics
	Introduction
	Background
	Adapting Game Mechanics
	Case Study: AdapTower
	Conclusion

	Designing Game Mechanics with Patterns
	Introduction
	Related Work
	Mechanics Design Assistant
	Discussion
	Conclusion

	Toward Live Domain-Specific Languages
	Introduction
	From Text Differencing to Live Models at Run Time
	TMDiff: Textual Model Diff
	RMPatch: Generic Run-time Model Patching
	Case Study: Live State Machine Language
	Discussion and Related Work
	Conclusion

	Measuring Quality of Grammars for Procedural Level Generation
	Introduction
	Related Work
	Grammars for Level Generation
	Grammar Analysis and Debugging
	Preliminary Evaluation
	Discussion
	Conclusion

	Bibliography
	Summary
	Samenvatting

