

 J. ICT Res. Appl., Vol. 15, No. 3, 2021, 265-290 265

Received February 7th, 2021, 1st Revision May 18th, 2021, 2nd Revision September 8th, 2021, Accepted for
publication October 29th, 2021.
Copyright © 2021 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2021.15.3.5

Machine-Learning Classifiers for Malware Detection Using
Data Features

Saleh Abdulaziz Habtor* & Ahmed Haidarah Hasan Dahah

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,
43400, UPM Serdang, Selangor, Malaysia

*E-mail: sas.habtoor@gmail.com

Abstract. The spread of ransomware has risen exponentially over the past decade,
causing huge financial damage to multiple organizations. Various anti-
ransomware firms have suggested methods for preventing malware threats. The
growing pace, scale and sophistication of malware provide the anti-malware
industry with more challenges. Recent literature indicates that academics and anti-
virus organizations have begun to use artificial learning as well as fundamental
modeling techniques for the research and identification of malware. Orthodox
signature-based anti-virus programs struggle to identify unfamiliar malware and
track new forms of malware. In this study, a malware evaluation framework
focused on machine learning was adopted that consists of several modules: dataset
compiling in two separate classes (malicious and benign software), file
disassembly, data processing, decision making, and updated malware
identification. The data processing module uses grey images, functions for
importing and Opcode n-gram to remove malware functionality. The decision
making module detects malware and recognizes suspected malware. Different
classifiers were considered in the research methodology for the detection and
classification of malware. Its effectiveness was validated on the basis of the
accuracy of the complete process.

Keywords: artificial intelligence; cyber-attacks; machine learning; malware,
ransomware.

1 Introduction

Malware is defined as intrusive software that penetrates or destroys a system
without permission of the user. Malware is a common concept that threatens all
sorts of devices. A basic malware distinction is between file infectors and
individual malware. According to the specific behavior malware items can be
classified into adware, viruses, trojans, spyware, rootkits, etc. The process of
malware detection through traditional signature-based methods (Santos, et al. [1])
is very problematic because all older and new malware programs have
polymorphic layers to avoid detection; the use of lateral mechanisms assists in
developing new malware versions in a shorter time in order to avoid antivirus
detection. For malware identification through dynamic file review in a virtual

266 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

world, the interested reader is referred to Rieck et al. [2]. The classical methods
for detecting metamorphic viruses are discussed in Konstantinou, et al. [3].

Cyber threats become possible when criminals use malware as a primary weapon
in their operations. Therefore, one information protection issue is to detect
ransomware in time so that it can be blocked to prevent the attackers from
accomplishing their goals, or at least delay them long enough to stop
them.Various detection methods, such as regulatory or signature-based methods,
enable the analyst to apply rules manually based on specific data to identify and
automatically describe harmful or sensitive data to the specifications of the
detection model. The automated generation of signatures is a middle ground
between these two methods. To date, manual and automated rules and signatures
have been used in the information security field using machine learning and
mathematical techniques due to the low false positive rates they can achieve.

In recent years, however, three advances have strengthened the potential for
progress in machine-based learning techniques, suggesting that these strategies
will attain high detection rates at low false positive rates without the pressure of
producing manual signatures. The first such trend is the rise of commercial threat
intelligence feeds that offer large quantities of new malware, which means that
the safety community has access to labeled malware for the first time. The second
trend is that processing power has become cheaper, so researchers can travel more
easily around learning models in malware detection systems and fit larger and
more complex models to the results. Thirdly, machine learning has developed as
a discipline, which means that researchers have more resources for effective
detection models that can achieve both accuracy and scalability breakthroughs.

1.1 Motivation of the Study

Malware (such as viruses, trojans, ransomware, and bots) pose substantial
emerging security risks to Internet users. Anti-malware security services from a
variety of firms, including Comodo, Kaspersky, Kingsoft, and Symantec, offer
primary protection against malware. To keep up with the growing number of
malware items, intelligent methods for accurate and reliable malware
identification from large everyday sample collections are urgently needed. This
research first provides a brief introduction about malware, types of malware and
the need for malware detection using machine-learning techniques. In these
methods, the process of detection is usually divided into two stages: feature
extraction and classification. The result is subjected to malware detection by five
different classifiers that are used in the decision making process and among those
the best output is selected.

 Machine Learning Classifiers for Malware Detection 267

1.2 Malware

Malware is software that is used or designed to interrupt network processes,
capture personal information, or control private computer systems. It can be
found in JavaScript, scripts, active content, and applications. Malware is
commonly used as a term to refer to several types of software that is offensive,
disruptive, or irritating.

Malware Use:

1. Many early infectious programs were written as experiments or pranks,
including the first Internet worm.

2. Today, malware is mostly used to capture confidential information for the
benefit of others, including personal, financial and business information.

3. Malware is often used extensively to capture or destroy secured information
from government or business websites.

4. Malware, however, is also used to obtain personal data such as credit card
numbers, social security numbers, bank accounts etc.

1.3 Types of Malware

It is helpful to define malware and provide a clear understanding of the techniques
and reasoning behind it. Depending on its intent, malware can be classified into
several groups. The classes are the following:

1. Bugs – This is the most simple software type. It is a single piece of software
that starts excepting permission of the user when it is replicated, or other
software is corrupted/modified (Horton [4]).

2. Worms – This form of malware is pretty much like a virus, but a worm will
spread to other devices across a network (Smith [5]).

3. Trojans – This term is used to describe types of malware that are meant to
function as legitimate applications. Moffie, et al. [6] explain that social
engineering is the general spreading vector used in this field, which implies
that people believe they are installing a legitimate application.

4. Adware – The aim of this sort of malware is to display ads on a system.
Adware is considered as a subset of spyware but is unlikely to lead to
spectacular outcomes.

5. Spyware – As the name suggests, this is malware that enables hacking.
Typical spyware actions include monitoring of the user history to send
targeted ads and follow behaviors to market them to mediators (Chien, et al.
[7]).

6. Rootkit – Its interface allows intruders higher authorization to access data on
a system than is permissible. This may be used for example to provide illegal
administrative user permission. Rootkits often mask their presence and are

268 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

often unnoticeable on the device, rendering the identification and removal
exceedingly difficult (Chuvakin, et al. [8]).

7. Backdoor – This is a form of malware that allows attackers to access a device
in an additional hidden fashion. It is not dangerous on its own but offers more
room for attackers. As a result, backdoors are seldom used autonomously,
they typically precede other forms of malware attacks.

8. Keylogger – This malware is used to record all keys that are pressed by the
user and store sensitive information such as card numbers and passwords
(Chumachenk,o et al. [9]).

9. Malware – This malware is intended to encipher all data on a device and
force the target to send cash to obtain the decipher key. A ransom
compromised system is normally ‘frozen’, so the user is unable to access any
file. A screen image is used to supply data about the requests of the attacker
(Savage, et al. [10]).

10. Remote Control Software (RAT) – A RAT helps the intruders to enter a
device and make changes to it as if they have physical access. It can be built-
in but used with malicious motives, like in the example of TeamViewer.

Figure 1 Top 10 Windows malware [30].

2 Methods of Detection

Malware identification approaches can be categorized into signatures-based and
behavior-based strategies. It is crucial to consider the fundamentals of two
malware analysis approaches before moving to the discussion of these methods:
static analysis of malware, and dynamic analysis of malware. Static analysis takes

0
5

10
15
20
25
30

 Machine Learning Classifiers for Malware Detection 269

place ‘statically’, i.e. without processing any files. In contrast, dynamic file
processing is carried out on a virtual machine.

Static research is interpreted as ‘reading’ the source code of malware and
attempting to deduce behavioral features from the code. Various strategies can be
used in static analyses (Prasad, Annangi & Pendyala [11]):

1. File format inspection: The file metadata can be helpful. For example
Windows PE files contain information about time to compile, imported and
exported functions, etc.

2. String extraction: This means program output inspection (for example, status
or error messages) and the inference of malware process information.

3. Fingerprinting: This involves the calculation of the cryptographic hash, the
identification of environmental items, including hard-coded usernames,
passwords or strings in the registry.

4. AV scanning: If the examined file is known ransomware, it can possibly be
found by all anti-virus scanners available. While this identification can seem
insignificant, AV vendors or sandboxes use this identification tool to
‘confirm’ their results.

5. Disassembly: This involves the reverse of the program code to combine the
language and structure and purpose of applications. This is the most widely
used and accurate static analysis method.

6. Dynamic and static analysis: in contrast to static analysis, in dynamic
analysis the file under investigation is tracked during execution and the
features and purposes of the file are derived from these details. The file is
normally run in a simulated environment, such as a sandbox. All behavioral
characteristics such as opened directories, generated mutexes, etc. can be
found during this method of analysis. It is also easier compared to static
analysis. Static analysis only reveals the behavioral situation that is
applicable to the present device characteristics. If a virtual machine is built
under Windows 7, then the results may vary from those of Windows 8.1
malware (Egele, et al. [12]).

One form of static analysis is called signature-based analysis and is based on
pre-defined signatures, which may be fingerprints, static strings, SHA1 or
MD5 hash, or metadata tabs. The identification condition will be the
following: when a file appears on a device, the anti-virus program analyzes
it statically. If one of the signatures matches, an alarm is activated such as
‘This file is suspect’. Most frequently this analysis method is appropriate and
familiar malware samples are also found based on hash values.

270 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

2.1 The Need for Machine Learning

In the past decade, the study and the use of machine-learning tools have expanded
to solving tasks of malware identification and classification. Fig. 2 depicts the
machine-learning workflow of malware detection. Without the confluence of
three recent innovations, the progress and convergence of machine-learning
methods would not have been possible:

1. The first change is a spike in malware feeds, which means that for the first
time branded malware is not only available in the defense area but also in the
testing area. The size of this feed varies from small top-quality specimens,
such as those provided by Microsoft [13], to vast quantities of malware, such
as Zoo [14] and Chu [15].

2. Secondly, computing technology has grown exponentially and has become
affordable and closer to the budgets of most researchers at the same time. As
a result, researchers have improved the methods of iterative training and
applied bigger and more complicated models and results.

3. Thirdly, the field of machine learning has advanced more quickly over recent
decades, taking the precision and scalability of a variety of tasks such as
device perception, natural language processing and speech recognition to
new levels.

Signature-based malware detectors can do well with malware that has previously
been detected by many anti-virus vendors. However, they cannot detect
polymorphic malware that can modify its signatures or new malware, for which
no signatures have been created yet. The sensitivity of heuristic detectors is not
always sufficient to identify these correctly, resulting in numerous false positives
and false negatives (Baskaran, et al. [16]).

The high distribution rate of polymorphic viruses dictates the need for modern
detection methods. One solution to this problem is to focus on heuristic analysis
combined with machine learning approaches that provide better detection results
(Figure 2).

Figure 2 Machine learning workflow.

 Machine Learning Classifiers for Malware Detection 271

When using a heuristic process, there must be a certain level of malware activity,
which determines the number of heuristics necessary to identify a program as
malicious. For instance, a variety of suspicious operations such as ‘changed
registry key’, ‘link created’, ‘changed permit’, etc., may be identified. It would
also assume that every program that causes at least five of such operations may
be considered malicious. While this strategy gives some degree of reliability, it
is not necessarily valid, since there are features that may have extra ‘weight’
compared to others, for example, ‘modified allowances’ usually has more drastic
effects on a device than ‘adjusted registry key’. In comparison, certain
combinations of features may be more questionable than the features separately
(Rieck, et al. [17]).

3 Related Work

In 2001, Schultz, et al. [18] launched machine learning for finding new, static-
based malware, byte n-grams on program executables, and strings for
functionality extraction writers. In 2007, Bilar [19] released Opcode, a malware
finder to investigate the distribution of opcode frequency in non-malicious and
malicious scripts. In 2007, Elovici, et al. [20] used Feature Range and Decision
Tree (5 grams, top 300, FS), Bayesian Network (5 grams), Artificial Neural
Network (5 grams, top 300, FS), Decision Tree (using the PE), BN (using the PE)
and accuracy of 95.8 percent. In 2008, Moskovitch, et al. [21] used philtres for
the collection of functions. For the collection and classification of functions and
Decision Tree (DT), Naïve Bayes (NB), and Adaboost, Neural Support Networks
(ANN). The assistance of support vector machine (SVM) and M1 (DT and NB
boosted) using Fisher score and gain ratio (GR) had an accuracy of 94.9%.

Again, Moskovitch, et al. [22] used the n-gram (2,3,4,5,6 grams) of opcodes as
standard and used the collection of document frequency (DF), GR and FS features
in 2008. They used the ANN, DT, Boosted DT, NB and Boosted NB classification
algorithms, which were outperformed by ANN, DT, BDT in retaining a low false
positive score.

Santos, et al. [23] concluded in 2011 that supervised learning includes labeling
data so that semi-controlled learning was introduced to recognize unknown
malware. In 2011, the frequency of operating codes was again provided by
Santos, et al. [24]. They used the function selection approach and various
classifiers, i.e. DT, K-Closest Neighbors (KNN, Bayesian Network), Support
Vector Machine (SVM) with an opcode sequence length of 92.92% and an
opcode sequence length of 95.90%. Shabtai, et al. used n-gram opcode pattern
features in 2012 to define the best available tool for document frequency (DF),
G-mean and Fisher ranking. They used several classifiers in their method, with
Random Forest exceeding 95.146% accuracy (Shabtai, et al. [25]).

272 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

In 2016, Ashu, et al. [26] proposed a new method for high-precision detection of
unknown malware. They studied the frequency of opcodes and put them together.
The authors tested thirteen classifiers, from which FT, J48, NBT, and Random
Forest were included in the WEKA machine learning stage, and obtained over
96.28% accuracy for malware. In 2016, Sahay, et al. [27] using the Optimal K
Means Clustering algorithm, clustered malware executables and these groups
were used by classifiers to identify unknown malware as promising training
features (FT, J48, NBT, and Random Forest). They found that the identification
by the proposed solution of unknown malware had 99.11% accuracy.

Some scholars have recently been working on a new malware dataset for Kaggle
[28]. In 2016, Ahmadi, et al. [29] collected Microsoft malware data and hex
dump-based characteristics used (string length, metadata, entropy, n-gram, and
image depiction) and also characteristics derived from unmounted files and the
classification algorithms of XGBoost (metadata, icon duration, opcodes,
registries, etc.). They achieved an accuracy of ~99.8%. For the 2017 classification
of polymorphic malware, Drew, et al. [30] employed the Super Threaded
Reference Free Alignment-Free N-sequence Decoder (STRAND) classifier.
They introduced an ASM sequence model and achieved a precision of more than
98.59% with a 10-fold cross-validation approach.

In Souri, et al. [31], a number of malware detection techniques are presented in
two categories:

1. signature-based methods, and
2. behavior-based methods. The survey, however, did not include either a study

of the current deep learning methods or the types of features used for malware
detection and classification in data-mining techniques. Ucci, et al. [32]
categorized the methods according to:
a. What is the objective problem they are trying to solve?
b. What are the types of characteristics taken from portable executable files

(PEs), and
c. Which machine learning algorithms they use. Although the research

provides a full overview of the taxonomy of functions, new research
trends, notably multimodal and deep learning approaches, are not
outlined.

Ye, et al. [33] cover common malware-detection machine-learning methods,
consisting of the discovery, compilation and classification of items. However,
core features like entropy or structural entropy and certain complex
characteristics such as network operation, opcodes and API tracks are absent. In
comparison, deep learning techniques or multimodal malware identification
techniques are not included. Finally, Razak, et al. [34] have done a malware
bibliometric study to examine publications related to malware by region,

 Machine Learning Classifiers for Malware Detection 273

organization, and author. However, the paper does not define the features of
malware detectors and does not consider the latest technologies in this field.
Sakhnini, et al. (2019) [44] present a bibliometric survey focusing on the security
aspects of IoT enabled smart grids. Furthermore, the authors address the problem
of the different types of cyber attacks that they found related to a particular topic.
Yazdinejad, et al. (2020) [45] designed a novel RNN model in order to detect
malware threats in cryptocurrencies. The authors for this particular study
collected 500 samples of cryptocurrency malware and 200 samples of goodware.

Table 1 Recent research in machine learning-based Android malware detection.

Authors Features Algorithm Comment

Sahs & Khan
(2012) [46]

Permissions,
CFG

subgraphs
1-class SVM

Sahs & Khan’s approach yielded high
recall with low precision. The vast
majority of our in-lab classifiers

yielded both a high recall and a high
precision.

Amos, et al.
(2013) [47]

Profiling
(dynamic)

Random
Forest,

C4.5, etc.

Our closest experiment (goodware/
malware ratio: 1/2) yielded dozens of
classifiers with equivalent or better

performance.

Yerima,
et al. (2013)

[48]

API calls,
external

tool execution,
permissions

(static)

Bayesian

Our closest in-lab experiment
(goodware/malware ratio: 1)

yielded 74 classifiers with both
higher recall and higher precision

than Yerima, et al.’s best classifier.

Canfora, et al.
(2013) [49]

SysCalls,
permissions

C4.5, Random
Forest, etc.

In our closest experiment by dataset
size (good ware/malware ratio: 1/2),
our worst classifier performed better

than Canfora, et al.’s best classifier. In
our closest experiment by good
ware/malware ratio (1), the vast

majority of our classifiers performed
better than Canfora, et al.’s best

classifier.

Wu, et al.
(2012) [50]

Permissions,
API calls,

etc.

KNN, Naive
Bayes

More than 100 of our in-lab classifiers
yielded both a higher recall and a

higher precision than Wu, et al.’s best
classifier.

3.1 Research Issues and Challenges

The following section discusses some of the problems and concerns that security
scientists face.

274 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

1. Class imbalance: Collecting successful training data complicates aspects of
any machine-learning problem. Machine-learning classifiers are as
successful as the data they are fed to be qualified. Correctly labeling
information is highly necessary to detect malware and can be a process that
takes a lot of time.

2. Open and available benchmarks: The role of identifying and classifying
malware is not the same as other programs with rich databases in the testing
community. It includes digit scoring, voice recognition, photo labeling, etc.
Legal limitations make this problem worse. Although web pages like
VirusShare and VX Heaven openly distribute malware binaries, benign
binaries are also protected by copyright laws from sharing. Nevertheless,
benign and malicious binaries can only be accessed in bulk through providers
such as VirusTotal for internal use, but subsequent distribution is forbidden.

3. Concept drift: The word ‘concept drift’ is used in the machine-learning
literature to refer to the issue of interaction evolution in knowledge.
Supervised learning is a function of the computer to transform an input to an
output based on a series of input output samples. In technical terms, the
problem is that the mapping function (f) given input data (x) is approximated
in order to estimate an output (y), y = f(x). Common computer apps such as
automated sorting, text categorization, or voice recognition presume that the
data is taken from a population that is stationary. They believe that data
mapped in the past will remain true in the future and that new data and the
relations between input and output do not change over time. This does not
extend to the issue of malware detection and classification.

4. Adversarial learning: Malware learns to live and function. In other words,
malicious software must continuously improve in order to resist anti-malware
detection. As a result, there is a strong incentive for malware authors to
attempt to evade detection by using obscuring strategies (You, et al., 2010
[35]; O’Kane, et al., 2011 [36]).

5. Form interpretability: Understanding the latest available mechanical learning
techniques is a problem (Shirataki & Yamaguchi, 2017[37]; Gilpin, et al.,
2018 [38]). Many models being used are called a black box. A black box
comes with an input X, which generates an output Y by a series of operations
that are difficult for a human being to comprehend. This could pose a
challenge when a false alert occurs in a cyber security application and
researchers try to find out why it has occurred. The model’s interpretability
defines how quickly examiners can handle and analyze the output and correct
the working of the defined model.

4 Materials and Method

We see malware analysis and identification as a binary classification problem,
where the two types of software to be classified are malware and goodware.

 Machine Learning Classifiers for Malware Detection 275

Figure 3 shows that the proposed approach is a multi-step process consisting of
various steps performing several tasks. The system can be divided into three parts:
clustering, decision making, data processing, and dataset preparation and
division.

4.1 System Architecture

Figure 3 Block diagram of research methodology.

4.2 System Description

4.2.1 Description of Dataset

It is important to create a large dataset with several different samples to test the
effectiveness of classical machine learning and deep learning architectures.
Because of the privacy-preserving policies of individuals and organizations,
publicly available databases for potential cyber security research for malware
detection are extremely limited. Over time, the provision of one source for all
kinds of malware families has become increasingly difficult as malware has
evolved. Researchers share their findings, but all the necessary samples have not

276 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

been collected in one single dataset or repository yet. In this study, the publicly
accessible dataset Ember was used, with a subset containing 70,140 benign and
69,860 malicious files. This dataset was randomly divided into 60% training and
40% testing data using Scikit-learn. The training dataset consisted of 42,140
benign files and 41,860 malicious files. In the training dataset, 28,000 benign files
and 28,000 malicious files existed. These samples were derived from VirusTotal,
VirusShare and privately collected samples of benign and malware samples
(Kaggle [28]).

4.2.2 Feature Extraction

As discussed above, our data kit consisted of 140,000 executable files. We
disassembled these functions by translating the .exe file into an .asm file. The
object dump tool that is part of the GNU Binutils package was used. When some
executable files were disabled or encrypted, these files were deleted from the
dataset.

4.2.3 Opcode n-gram

In order to reverse the malware review, we used IDA Pro. IDA Pro is a versatile
dynamic disassembler published by Hex-Rays (Tian, et al. [39], Ye, et al. [40]).
It is necessary to access the malware assembly code and use it to define function
blocks and explain the process flow map, import methods, etc.

4.2.4 n-gram

In this analysis, we used an n-gram model to remove opcode functionality from
the malware. It is an easy way to remove text functions. The presence of n terms
is only correlated with the previous n − 1 terms, n being the length of one function
sequence. If we have a set of L opcodes, then the set will be split into sequences
of L – n + 1 attributes. This model seeks sequences of functions in a sliding pane.
A 3-gram model, for example, is used to obtain functional sequences from for
example, call, push, mov, add, pop, inc and xor. As shown in Figure 4, we take
out five short strings, and three opcodes are used in each sequence.

push call add mov xor inc pop

push call add mov xor inc pop

push call add mov xor inc pop

push call add mov xor inc pop

push call add mov xor inc pop

Figure 4 Opcode 3-gram model

 Machine Learning Classifiers for Malware Detection 277

4.2.5 Feature Selection

Choosing features that can discern malware families is important. The features
are extracted via the n-gram model as high-dimensional data. A modern approach
is used to reduce the dimensionality of the data to increase classification accuracy
and to minimize time usage. We discuss some definitions that aid in the
definition. Y = {0,1,...} is the malware family, symbol Si refers to a set of
functions. The given Eq. (1) shows a frequency series:

 𝑓(𝑠௜) = 𝑠𝑢𝑚(𝑠௜|𝑦௜)/ ∑ 𝑠𝑢𝑚(𝑠௜|𝑦௜)௜௦௡೔
 (1)

where the number of the sequence belonging to family yj is denoted by sum(si)
and the frequency of the sequence in Y is F(si):

 𝐹(𝑠௜) =
∑ ௦௨௠ቀ𝑠௜ ቚ𝑦௝ቁ೔ೞ೙ೕ

∑ ೕೞ೙ ∑ ௦௨௠ቀ𝑠௜ ቚ𝑦௝ ቁ೔ೞ೙೔

 (2)

The data gained by the series is:

 𝐼௪(𝑆; 𝑌) = ∑ ∑ 𝑝(𝑠௜𝑦௜)𝑙𝑜𝑔
௣(௦೔௬೔)

௣(௦೔).௣(௬೔)௦೔∈ௌ௬೔∈௒ (3)

p(si, y) is a combined distribution of probability of si and y, and p(si) and p(y) are
the cumulative distribution of likelihood functions of S and Y respectively.
Information gain is used to calculate the malware sequence’s ability to
differentiate. We use a two-step dimension reduction technique.

If the condition of the function is satisfied, it is deleted. This indicates that the
characteristics are not found in the malware categories. Then, a new value of the
data is determined:

 𝐼௪(𝑆; 𝑌) =
ଵ

ி(ௌ)
∑ ∑ 𝑝(𝑠௜𝑦௜)𝑙𝑜𝑔

௣(௦೔௬೔)

௣(௦೔).௣(௬೔)௦೔∈ௌ௬೔∈௒ (4)

The phrase has a weight definition. This concept seeks to increase the value of
certain low frequencies and high discrimination characteristics. We maintain 500
settings with greater values when measuring the information gain.

4.3 Decision Making System

This paper proposes a decision making method to catch malicious applications
that could be part of a common family or a new malware program. It defines the
product labels by combining several findings. A weight vector is built for each
grouping in accordance with previous ensemble schemes (Hu, et al. [41], Tao, et
al. [42]). The vector weight includes n weight quantities, where n represents the
sample family number. In Figure 5, N graders and N weight vectors are available.
The Bootstrap sample of a training kit classifier is programmed. Test range T1 is
used to evaluate each classifier’s ability. The ability reaches a specific increased

278 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

amount and then correctly categorizes the individual unit. Different classifiers
can influence different families. Each classifier is therefore able to provide
classification outcomes with a greater degree of trust.

Figure 5 Decision making system.

Table 2 Similarities of the samples.

Sample A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

P1 1 1 0 0 0 0 0 0 0 0

P2 0 0 0 0 0 0 0 0 1 1

P3 0 0 0 0 1 1 1 1 1 1

D(P1, P2) = 2, D(P2, P3) = 2, and D(P1, P3) = 6 are determined. There are two
conclusions:

1. P1 and P3 have the same relation to P2, i.e. they have the same distance to
P2.

2. P1 and P3 are similar to P2; P1 is also similar to P3.

Suppose the abovementioned three examples are instances of malware. Suppose
further that these samples contain the value of a variable that is not zero. Table 1
reveals P1 and P2 have no similar characteristics while P2 and P3 have two
similar characteristics. That is why the Euclidean distance does not necessarily
demonstrate the resemblance of samples in a wide space.

 Machine Learning Classifiers for Malware Detection 279

Given the problems described above we followed the SNN approach, which
works well in high-dimensional spaces. Jarvis & Patrick [43] first proposed this
method. The similarity between two points is featured by the fact that they share
a major quarter C with at least k points. This approach has the advantage that it
can cluster points of varying densities. As shown in Figure 6, the clustering of
varying densities represents circles of different sizes.

In each row of the matrix of similarities the relation of position M between two
points is stored. M(A, B) = 1 means that B is nearest to A. In-row saves only k
minimum values, and all values are set to 0. The matrix is used to create the
nearest K (K-NN) line. From Fig. 10, the points O and P are noise or outliers, but
graphs are not used to differentiate them. The extent of the relationship is
calculated by:

 𝑠𝑡𝑟(𝑂, 𝑃) = ∑(𝑘 + 1 − 𝑚). (𝑘 + 1 − 𝑛) (5)

If a point’s value is smaller than a unique threshold it looses all edges. In Fig. 10,
O and P points are listed as outliers. Ertoz, et al. have focused on the link strength
to choose the main points of each cluster with a higher connection capacity. In
each cluster, a point is either one of the core points or linked to the core points.

Figure 6 (a) Near neighbor graph and (b) weighted shared near neighbor graph.

The SNN model may be defined as follows:

1. calculate the matrix of similarities;
2. build the K-NN graph;
3. calculate the relation intensity and set the threshold to find low-strength noise

and outliers.
4. select the high-strength core points;
5. assign, or mark as an outlier, a new point to the clustering.

280 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

5 Result and Analysis

In the analysis of the research methodology presented in the current work a
dataset with 1,40,000 different samples was considered, from which 60% of the
data were considered for the purpose of training and the remaining 40% were
considered for the testing process. The complete dataset is a collection of benign
and malicious files with 70,140 benign files and 69,860 malicious files. Different
known classifiers, i.e. Decision Tree, K-Nearest Neighbor, Naïve Bayes, Support
Vector Machine, Random Forest, and J48 Decision Tree, were used in the
decision making process. The performance of all of the classifiers was evaluated
based on the accuracy of the process, which is the percentage of correctly
identified instances.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
஼௢௨௡௧ (஼௢௥௥௘௖௧௟௬ ௜ௗ௘௡௧௜௙௜௘ௗ ௦௔௠௣௟௘௦)

஼௢௨௡௧ (்௢௧௔௟ ௦௔௠௣௟௘௦)
 (6)

5.1 K-Nearest Neighbor

Figure 7 below shows the outcome of the K-Nearest Neighbor method, as can
seen in Table 3. The results are shown in terms of the accuracy of each class of
malware. Here, the maximum accuracy was 100%, achieved by CyberGate, and
the minimum accuracy was 79.2%, achieved by CTB- Locker.

Figure 7 Classification of different classes of malware using k-Nearest
Neighbor.

Table 3 shows the classification of files as goodware or malware using K-Nearest
Neighbor. As the results show, around 82.3% accuracy was seen for benign files
and around 98% accuracy for the malware considered in the dataset. Table 4
below shows the exact accuracy for the classification/ identification of benign

0
500

1000
1500
2000
2500
3000
3500
4000

Correctly Classified Incorrectly Classified

 Machine Learning Classifiers for Malware Detection 281

files and malware detected, where the accuracy of the classification of malicious
files was about 98%.

Table 3 Detection evaluation using K-Nearest Neighbor.

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy
1. Benign 3499 834 82.3%
2. Dridex 1880 340 84.2%
3. Locky 1340 280 83.4%
4. TeslaCrypt 2600 40 98%
5. Vawtrak 920 160 84.5%
6. Zeus 1820 580 78%
7. DarkComet 2840 100 96%
8. CyberGate 2300 0 100%
9. Xtreme 1880 160 93%

10. CTB-Locker 1040 280 79.2%

Table 4 Benign and malicious file accuracy using K-Nearest Neighbor.

Class Correctly Classified Incorrectly Classified Accuracy
Benign 3499 834 82.3%

Malicious 16620 1940 98%

5.2 Support Vector Machine

Support Vector Machine was the next algorithm that was tested. In Table 5 and
Figure 8, the outcome of the predictions can be seen. The overall accuracy
obtained for multi-class classification was 87.6% and for binary classification
94.6%. The maximum accuracy was 100%, achieved by CTB-Locker, and the
minimum accuracy was 59.3%, achieved by Vawtrak. Table 6 shows the
classification of files as goodware or malware using Support Vector Machine. As
the results show, around 83.8% accuracy was seen for benign files and around
89.3% accuracy in the case of malware.

Table 5 Detection evaluation using Support Vector Machine.

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy
1. Benign 3996 335 93%
2. Dridex 1940 280 87.3%
3. Locky 1280 340 78.7%
4. TeslaCrypt 2240 400 85.1%
5. Vawtrak 620 460 59.3%
6. Zeus 1880 520 79.1%
7. DarkComet 2900 40 98.2%
8. CyberGate 2240 40 98%
9. Xtreme 1880 160 92.1%

10. CTB-Locker 1320 0 100%

282 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

Figure 8 Classification of the different classes of malware using Support Vector
Machine.

Table 6 Accuracy of benign and malicious files using Support Vector Machine.

Class Correctly Classified Incorrectly Classified Accuracy
Benign 3996 8335 83.8%
Malicious 16300 2240 89.37%

5.3 J48 Decision Tree

J48 Decision Tree was the third algorithm studied (Table 7 and Figure 9). The
benefit of the decision tree method is that it works in a ‘white box’ approach and
we can see which decisions resulted from our prediction. Here, maximum
accuracy was 100% (Drdex, TeslaCrypt and CyberGateis) and the minimum
accuracy was 83.7% (Zeus).

Table 7 Detection evaluation using J48 Decision Tree.

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy
1. Benign 3854 477 89.7%
2. Dridex 2240 0 100%
3. Locky 1460 160 90.1%
4. TeslaCrypt 2240 0 100%
5. Vawtrak 980 100 91.3%
6. Zeus 2000 400 83.7%
7. DarkComet 2840 100 96.3%
8. CyberGate 2240 0 100%
9. Xtreme 1940 100 95.6%

10. CTB-Locker 1280 40 96.3%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Correctly Classified Incorrectly Classified

 Machine Learning Classifiers for Malware Detection 283

Table 8 shows the classification of files as goodware or malware using J48
decision tree. As the results show, around 83.8% accuracy was seen for benign
files and around 99.5% accuracy in the case of malware.

Figure 9 Classification of the different classes of malware using J48 Decision
Tree.

Table 8 Accuracy of benign and malicious files using J48 Decision Tree.

Class Correctly Classified Incorrectly Classified Accuracy
Benign 3996 8335 83.8%

Malicious 16300 2240 99.5%

5.4 Naïve Bayes

Naïve Bayes was the next algorithm that was evaluated. Table 9 lists the results
of the predictions. Here, the maximum accuracy was 100%, achieved by Dark
Comet and CTB-Locker, and the minimum accuracy was of 3.5%, achieved by
Dridex (Figure 10).

Table 9 Detection evaluation using Naïve Bayes.

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy
1. Benign 2434 1897 60%
2. Dridex 80 2140 3.5%
3. Locky 1520 100 93%
4. TeslaCrypt 2000 640 93.6%
5. Vawtrak 500 580 50%
6. Zeus 1700 700 72%
7. DarkComet 2940 0 100%
8. CyberGate 2240 40 98.1%
9. Xtreme 1880 160 92.8%

10. CTB-Locker 1320 0 100%

0
1000
2000
3000
4000
5000

Correctly Classified Incorrectly Classified

284 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

Table 10 the classification of files as goodware or malware using J48 Decision
Ttree. As the results show, around 100% accuracy was seen for benign files and
around 68.3% accuracy in the case of malware in the dataset.

Figure 10 Classification of the different classes of malwares using naïve Bayes.

Table 10 Accuracy of benign and malicious files using naïve Bayes.

Class Correctly Classified Incorrectly Classified Accuracy
Benign 4331 0 100%

Malicious 13180 4360 68.3%

5.5 Random Forest

Random Forest was the last algorithm that was tested. The algorithm resulted in
good prediction accuracy. Table 4 presents the results of its predictions. Here, the
maximum accuracy was 100%, achieved by DarkComet, CyberGate, Xtreme, and
CTB- Locker (Figure 11).

Table 11 Detection evaluation using Random Forest.

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy
1. Benign 4138 193 96.1%
2. Dridex 2120 100 95.7%
3. Locky 1520 100 93.3%
4. TeslaCrypt 2640 0 100%
5. Vawtrak 920 160 84.7%
6. Zeus 2120 280 88.7%
7. DarkComet 2940 0 100%
8. CyberGate 2280 0 100%
9. Xtreme 2040 0 100%

10. CTB-Locker 1320 0 100%

0

500

1000

1500

2000

2500

3000

3500

Correctly Classified Incorrectly Classified

 Machine Learning Classifiers for Malware Detection 285

Table 11 shows the classification of files as goodware or malware using Random
Forest. The results show that around 87.2% accuracy was seen for benign files
and around 99.2% accuracy in the case of malwares class in the dataset.

Figure 11 Classification of the different classes of malware using Random Forest.

Table 12 Accuracy of benign and malicious files using Random Forest.

Class Correctly Classified Incorrectly Classified Accuracy
Benign 4138 193 87.2%

Malicious 16580 640 99.2%

Figure 12 shows that the different models provided different results in
classification. Naive Bayes had the lowest accuracy (100% and 68.3%), followed
by K-Nearest Neighbor and Support Vector Machine (82.3%, 98% and 83.8%,
89.37% respectively). The highest precision was achieved with J48 and Random
Forest (83.8%, 99.5%, and 87.2%, 99.5% respectively).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Correctly Classified Incorrectly Classified

286 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

Figure 12 Comparison graph for the accuracy of the different classifiers.

6 Conclusion

Because of the ever growing number of malware variants and the variety of
malware activities there is renewed interest in and need for effective malware
detectors to protect against zero-day attacks. Anti-virus firms typically collect
millions of malicious samples, which are obtained and analyzed in the usual
manner, delaying the identification of any unusual samples that harm users. Our
primary aim was to create a machine-learning system that commonly detects as
many malware samples as possible, with the tough constraint of having a zero
false positive rate. We came quite close to our goal, but still have a non-zero false
positive rate. For this method to become part of a highly competitive commercial
product, a number of deterministic exemption mechanisms must be added. In the
proposed work, the Random Forest and Naïve Bayes classifiers showed the best
results.

The system was validated using a sample of 140,000 files consisting of malware
and benign files. The malware was further divided into 9 different classes on the
basis of their properties. The complete sample list was categorized into groups at
a 60% and 40% ratio for further processing of system training and decision
making as training dataset and testing dataset respectively. Given that most anti-
virus products achieve a detection rate of more than 90% there was a very
significant increase in the overall detection rate of 3 to 4% produced by our
algorithms.

 Machine Learning Classifiers for Malware Detection 287

7 Future Scope

In the future more features will be considered to develop a better model that will
use a more robust deep learning technique for the detection of cyber attacks. It
will also be capable of detecting all types of different malware attacks and
automatically deal with all types of cyber attacks.

References

[1] Santos, I., Penya, Y.K., Bringas, P.G. & Devesa, J., N-grams-based File
Signatures for Malware Detection, Proceedings of the 11th International
Conference on Enterprise Information Systems - Artificial Intelligence and
Decision Support Systems, pp. 317-320. 9, 2009.

[2] Rieck, K., Holz, T., Willems, C., Düssel, P. & Laskov, P., Learning and
Classification of Malware Behavior, International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pp.
108-125, 2008.

[3] Konstantinou, E. & Wolthusen, S., Metamorphic Virus: Analysis and
Detection, Technical Report, RHUL-MA-2008-02, Royal Holloway
University of London, 2008.

[4] Horton, J. & Seberry, J., Computer Viruses: An Introduction, University of
Wollongong , 1997.

[5] Smith, C., Matrawy, A., Chow, S. & Abdelaziz, B., Computer Worms,
Architectures, Evasion Strategies, and Detection Mechanisms, Journal of
Information Assurance and Security, 4, pp. 69-83, 2009.

[6] Moffie, M., Cheng, W., Kaeli, D. & Zhao, Q. Hunting Trojan Horses,
Proceedings of the 1st Workshop on Architectural and System Support for
Improving Software Dependability, pp. 12-17, October, 2006.

[7] Chien, E., Techniques of Adware and Spyware, Proceedings of the
Fifteenth Virus Bulletin Conference, Dublin Ireland, 47, 2005.

[8] Chuvakin, A., An Overview of Unix Rootkits, iALERT White Paper,
iDefense Labs, http://www.megasecurity.org/papers/Rootkits.pdf, 2003.

[9] Chumachenko, K., Machine Learning Methods for Malware Detection and
Classification, Department of Information Technology, University of
Applied Science, Bremen, 2017.

[10] Savage, K., Coogan, P. & Lau, H., The Evolution of Ransomware, Version
1.0, Symantec Corporation, http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/the-evolution-of-
ransomware.pdf., August 6, 2015.

[11] Prasad, B.J., Annangi, H. & Pendyala, K.S., Basic Static Malware Analysis
Using Open-Source Tools, 2016.

288 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

[12] Egele, M., Scholte, T., Kirda, E. & Kruegel, C., A Survey on Automated
Dynamic Malware-analysis Techniques and Tools, ACM computing
surveys (CSUR), 44(2), pp. 1-42. 2008.

[13] Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E. & Ahmadi, M.,
Microsoft Malware Classification Challenge, arXiv preprint
arXiv:1802.10135, 2018.

[14] Gibert, D., Mateu, C. & Planes, J., The Rise of Machine Learning for
Detection and Classification of Malware: Research Developments, Trends
and Challenge, Journal of Network and Computer Applications, 153,
102526, 2020.

[15] Chu, Q., Liu, G. & Zhu, X., Visualization Feature and CNN Based
Homology Classification of Malicious Code, Chinese Journal of
Electronics, 29(1), pp. 154-160, 2020.

[16] Baskaran, B. & Ralescu, A., A Study of Android Malware Detection
Techniques and Machine Learning, MAICS, pp. 15-23, 2016.

[17] Rieck, K., Trinius, P., Willems, C. & Holz, T., Automatic Analysis of
Malware Behavior Using Machine Learning, Journal of Computer
Security, 19(4), pp. 639-668, 2011.

[18] Schultz, M.G., Eskin, E., Zadok, E. & Stolfo, S.J., Data Mining Methods
for Detection of New Malicious Executables, in Proceedings 2001 IEEE
Symposium on Security and Privacy, pp. 38-49, IEEE, 2000.

[19] Bilar, D., Opcodes as Predictor for Malware, International Journal of
Electronic Security and Digital Forensics, 1(2), pp. 156-168, 2007.

[20] Sharma, S., Krishna, C.R. & Sahay, S.K., Detection of Advanced Malware
by Machine Learning Techniques, Soft Computing: Theories and
Applications, Springer, Singapore, pp. 333-342., 2019.

[21] Shabtai, A., Moskovitch, R., Elovici, Y. & Glezer, C., Detection of
Malicious Code by Applying Machine Learning Classifiers on Static
Features: A State-of-the-Art Survey, Information Security Technical
Report, 14(1), pp. 16-29, 2009.

[22] Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev,
S. & Elovici, Y., Unknown Malcode Detection Using Opcode
Representation, European Conference on Intelligence and Security
Informatics, Springer, Berlin, Heidelberg, pp. 204-215, 2008.

[23] Santos, I., Nieves, J. & Bringas, P.G., Semi-supervised Learning For
Unknown Malware Detection, International Symposium on Distributed
Computing and Artificial Intelligence, Springer, Berlin, Heidelberg, 2011.

[24] Santos, I., Brezo, F., Ugarte-Pedrero, X. & Bringas, P.G., Opcode
Sequences as Representation of Executables for Data Mining-based
Unknown Malware Detection, Information Sciences, 231, pp. 64-82, 2013.

[25] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C. & Weiss, Y.,
‘Andromaly’: A Behavioral Malware Detection Framework for Android

 Machine Learning Classifiers for Malware Detection 289

Devices, Journal of Intelligent Information Systems, 38(1), pp. 161-190,
2012.

[26] Sharma, A. & Sahay, S.K., An Effective Approach for Classification of
Advanced Malware with High Accuracy, arXiv preprint arXiv:1606.06897,
2016.

[27] Sahay, S.K. & Sharma, A., Grouping the Executables to Detect Malware
with High Accuracy, arXiv preprint arXiv:1606.06908, 2016.

[28] Rohan, P., Microsoft Malware Classification Challenge (BIG 2015),
Microsoft, https://www.kaggle.com/c/malware-classification, (10 Dec.
2016.

[29] Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M. & Giacinto, G.
Novel Feature Extraction, Selection and Fusion for Effective Malware
Family Classification, Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy, pp. 183-194, 2016.

[30] Drew, J., Hahsler, M. & Moore, T., Polymorphic Malware Detection Using
Sequence Classification Methods, 2016 IEEE Security and Privacy
Workshops (SPW), IEEE, 2016.

[31] Souri, A. & Hosseini, R., A State-of-the-Art Survey of Malware Detection
Approaches Using Data Mining Techniques, Human-Centric Computing
and Information Sciences 8, 3, 2018. DOI: 10.1186/s13673-018-0125-x.

[32] Ucci, D., Aniello, L. & Baldoni, R., Survey of Machine Learning
Techniques for Malware Analysis, Computers & Security, 81, pp. 23-147,
2019.

[33] Ye, Y., Li, T., Adjeroh, D. & Iyengar, S.S., A Survey on Malware Detection
Using Data Mining Techniques, ACM Computing Surveys (CSUR), 50,
pp. 31-40, 2017.

[34] Ab Razak, M.F., Anuar, N.B., Salleh, R. & Firdaus, A., The Rise of
‘Malware’: Bibliometric Analysis of Malware Study, Journal of Network
and Computer Applications, 75, pp. 58-76, 2016.

[35] You, I. & Yim, K., Malware Obfuscation Techniques: A Brief Survey,
International Conference on Broadband, Wireless Computing,
Communication and Applications, IEEE, 2010. DOI:
10.1109/BWCCA.2010.85.

[36] O’Kane, P., Sezer, S. & McLaughlin, K., Detecting Obfuscated Malware
Using Reduced Opcode Set and Optimised Runtime Trace, Security
Informatics, 5, 2, 2016. DOI: 10.1186/s13388-016-0027-2.

[37] Shirataki, S. & Yamaguchi, S., A Study on Interpretability of Decision of
Machine Learning, 2017 IEEE International Conference on Big Data (Big
Data), IEEE, PP. 4830-4831, 2017.

[38] Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M. & Kagal, L.,
Explaining Explanations: An Overview of Interpretability of Machine
Learning, 2018 IEEE 5th International Conference on Data Science and
Advanced Analytics (DSAA), pp. 80-89, IEEE, 2018.

290 Saleh Abdulaziz Habtor & Ahmed Haidarah Hasan Dahah

[39] Tian, R., Batten, L., Islam, Md.R. & Versteeg, S., An Automated
Classification System Based on the Strings of Trojan and Virus Families,
2009 4th International Conference on Malicious and Unwanted Software
(MALWARE), pp. 23-30, IEEE, 2009.

[40] Ye, Y., Li, T., Chen, Y. & Jiang, Q, Automatic Malware Categorization
Using Cluster Ensemble, Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
95-104, July, 2010.

[41] Qinghua, H., Yu, D., Xie, Z. & Li, X., EROS: Ensemble Rough Subspaces,
Pattern Recognition, 40(12), pp. 3728-3739, 2007.

[42] Tao, H., Ma, X-P. & Qiao, M-Y., Subspace Selective Ensemble Algorithm
Based on Feature Clustering, Journal of Computers 8(2), pp. 509-516,
2013.

[43] Jarvis, R.A. & Patrick., E.A., Clustering using a Similarity Measure Based
on Shared Near Neighbors, IEEE Transactions on Computers, 100(11), pp.
1025-1034, 1973.

[44] Sakhnini, J., Karimipour, H., Dehghantanha, A., Parizi, R.M. & Srivastava,
G., Security Aspects of Internet of Things Aided Smart Grids: A
Bibliometric Survey, Elsevier’s Internet of Things, 100111, 2019.

[45] Yazdinejad, A., HaddadPajouh, H., Dehghantanha, A., Parizi, R.M.,
Srivastava, G. & Chen, M-Y., Cryptocurrency Malware Hunting: A Deep
Recurrent Neural Network Approach, Applied Soft Computing, 96,
106630, 2020.

[46] Laitner, J.A., Nadel, S., Elliott, R.N., Sachs, H. & Khan, S., The Long-Term
Energy Efficiency Potential: What The Evidence Suggests, E121, American
Council for an Energy-Efficient Economy, Washington DC, 2012.

[47] Amos, B., Turner, H. & White, J., Applying Machine Learning Classifiers
to Dynamic Android Malware Detection at Scale, 2013 9th International
Wireless Communications And Mobile Computing Conference (IWCMC),
pp. 1666-1671, IEEE, 2013.

[48] Yerima, S.Y., Sezer, S. & McWilliams, G., Analysis of Bayesian
Classification-based Approaches for Android Malware Detection, IET
Information Security, 8(1), pp. 25-36, 2013.

[49] Canfora, F., Nonlinear Superposition Law and Skyrme Crystals, Physical
Review D, 88(6), 065028, 2013.

[50] Wu, D-J., Mao, C-H., Wei, T-E., Lee, H-M. & Wu, K-P., Droidmat:
Android Malware Detection through Manifest and API Calls Tracing, 2012
Seventh Asia Joint Conference on Information Security, pp. 62-69, IEEE,
2012.

