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stable operation changes when different propellants are used. It is, however, fair 
to state that the engine is stable over a wide range of conditions for which it is 
qualified. The method of bombing to assess dynamic stability will be discussed 
briefly in Sec. VI. 

III. Fundamental Processes 

The purpose of the injection system and combustion chamber in a liquid rocket 
engine is to accomplish controllably the conversion ofliquid propellants to product 
gases at high temperature and pressure. Thrust is then produced by expansion 
through the exhaust nozzle, transforming potential and thermal energy into kinetic 
energy. Although the characteristics of the flow in the nozzle are significant in 
determining the overall efficiency of the engine, we are concerned here chiefly 
with unsteady processes upstream of the nozzle entrance. The only significant 
contribution of the nozzle to combustion instabilities arises from its position, 
setting the downstream boundary conditions on waves in the chamber; its most 
important influence is attenuating longitudinal oscillations. 

Figure 7 is a broad summary of the various elementary processes. It is con
venient to display them in serial form, roughly corresponding to the sequence 
of events from propellant supply to exhaust. It is important, however, to realize 
that several different processes may take place simultaneously in a given region 
of space. 

Several chapters in this volume provide good summaries of past work in this 
subject, the present state of understanding, and reports of research in progress. 
There is, therefore, no need here to dwell on details. We shall rather try to clarify 
the context within which the elementary processes may act as mechanisms for 
exciting and sustaining combustion instabilities. The discussion here, and in any 
consideration of fundamental processes, cannot be complete in a practical sense; 
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Fig. 7 Physicochemical processes involved in liquid rocket thrust chambers. 
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for a given engine, there are inevitably characteristics peculiar to the design. For 
example, we have seen in the case of the F-1 engine that accumulation of liquid fuel 
during film cooling of the chamber was responsible for an unacceptable spiking 
unsteady motion. 

To bring some order to the possible importance of the many processes shown 
in Fig. 7, it is helpful to overlay a classification according to injector types.9 

For that purpose, we lump all possibilities into three classes distinguished by the 
configurations of the liquids when they are discharged by the injection elements 
into the chamber: 1) impinging jets, 2) concentric jets, and 3) jet/sheet (noncoax
ial). The last class arises notably in the lunar descent module engine. Little is 
known about the fundamental processes involved in this type of pintle injector, 
although there is research in progress. 

We have already discussed the F-1 engine using injectors based on impinging 
jets; other examples include the lunar ascent engine, several launch vehicles, and 
the Space Shuttle orbital maneuvering engine. Notable applications of concentric 
injectors include the RL-10 and the Space Shuttle main engine. In this volume, 
problems of impinging jets are discussed in Chapter 8 by Anderson and Santoro; 
concentric or coaxial injection processes are covered in Chapter 6 by Vingert et aI., 
which includes an excellent review, and in Chapter 7 by Zaller and Klem. There 
seems to be no work which provides a basis for assessing quantitatively the relative 
stability of the various configurations. In this regard, there has been a suggestion 
that the Soviets regarded injectors with impinging jets as more prone to causing 
combustion instabilities than those using coaxial jets, even with hydrocarbon fuels. 
We have been unable to verify that conclusion. 

Figure 8, taken from Ref. 10, is a photograph showing one type of situation for 
a case of impinging liquid jets. Immediately following impingement, a spray fan 
or sheet is formed. Either because of disturbances already growing in the jets or 
because the sheet is itself unstable (possibly for both reasons), the sheet breaks up. 
There are several forms of the breakup but, in any event, a cloud of liquid drops or 
droplets is formed having a fairly broad distribution of size and velocity. Because 
of the surrounding atmosphere of moving gases, the sheet and the drops are subject 
to shear forces that encourage breakup of both. In a combustion chamber, these 
processes take place in an atmosphere consisting of combustion product gases and 
reactant gases as well. 

The greater part of what is known about the events in which liquid jets are 
transformed to drops has come from tests with liquids at room temperature and 
with no combustion. Whereas it is true that such tests are necessary, valuable, 
and do produce a great deal of useful information, one must never forget that 
the situation may be drastically different when combustion occurs. Heat transfer 
upstream and pressure disturbances generated by combustion of individual drops 
may have strong effects on the jets and spray sheets before and during breakup. 
For example, with hypergolic propellants, blow-a-part of the reactive streams and 
popping or intermittent explosion of liquid may be sufficiently vigorous to excite 
instabilities. 

Whatever the environment, the first step in the transformation of liquid jets to 
drops must involve some sort of instability. For the case of impinging jets, the 
jets themselves may be unstable, or the spray fan is unstable. Concentric jets are 
unstable at their interface. The basic processes responsible for the instabilities 
are characterized by various dimensionless groups that provide scaling laws (see 
Chapters 6 and 9 for particularly good discussions of scaling). 
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Fig. 8 Typical spray formed by two turbulent impinging water jets. 

Determining the distributions of drop size and velocity theoretically is an ex
tremely difficult problem, more so than the matter of incipient instability. In gen
eral, the influences of aerodynamic forces on the breakup of jets and the secondary 
breakup of drops is so complicated as to be beyond realistic analysis. 

Combustion occurs in the gaseous phase and must be preceded by mixing. In 
a LaX/hydrocarbon system, such as in the F-l, vaporization of the liquid oxygen 
occurs much more rapidly than that of the liquid fuel. Hence, a significant part 
of the spray combustion involves vaporization and subsequent combustion of the 
fuel in an oxygen-rich atmosphere. It appears that some of the consequences of 
detailed design changes on the injector elements may be explained ultimately 
by the large difference in vaporization rates. That characteristic must also have 
much to do with differences in the stability of concentric injectors compared with 
impinging jets when the same propellant combination is used. 

Whereas burning of single drops has been actively studied for many decades 
and is quite well understood (see Chap. 11 by Sirignano et al. for details), 
spray combustion, particularly for dense clouds of interacting drops under condi
tions found in a rocket combustion chamber, is poorly understood. Only ad hoc 
modeling is available for unsteady combustion of sprays. In addition to the purely 
fluid-mechanical and chemical problems, serious further complications arise in 
combustion chambers operated at high pressure, namely, those arising from be
havior in the supercritical regime. This is not a new subject, but thorough analysis 
for conditions appropriate to combustion instabilities in liquid rocket engines is 
recent and unfinished. II

-
14 The fundamental origin of the special behavior accom

panying combustion near the critical point is the rapid variations ofthermophysical 
properties. For a given substance or mixture of substances, the critical properties 
are well defined. However, the special characteristics of behavior at the critical 
point itself extend, albeit attenuated, into some region around the critical point. 
Hence, it is clearly unnecessary for the chamber conditions to be precisely at the 
critical state to cause unusual phenomena during combustion. 

To be specific, consider a liquid drop of oxygen injected as liquid (and hence 
having a temperature below the critical point) into a hot fuel-rich environment
the simplest case being hot hydrogen. Suppose that the chamber pressure is greater 
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than the critical value for some mixture of the fuel and oxidizer. As the drop fol
lows its trajectory, its temperature rises, oxygen vaporizes, and gaseous hydrogen 
diffuses inward. Somewhere between the center of the drop and the environment 
far away, the temperature and pressure may, if conditions are suitable, assume the 
critical values for the local mixture ratio of oxygen and hydrogen. For a spherically 
symmetric flow, the critical point is reached on a spherical surface. Locally, the 
sharp variations of properties with temperature will produce drastic changes in 
the flowfield at and near that surface. Globally, those effects have a substantial 
influence on the vaporization rate. 

If oscillations of pressure and temperature occur in the environment, then it 
is possible, even though the average chamber pressure may be far from critical, 
that critical conditions are reached in some point of the drop under unsteady 
conditions. Then transient fluctuations can be amplified by the large fluctuations 
of thermodynamic properties. The result is a new possibility for coupling between 
acoustical motions in the chamber and droplet burning. The most thorough analysis 
of droplet vaporization and combustion under supercritical conditions has been 
covered in recent publications in Refs. 11-14. As the preceding remarks suggest, 
calculations in which supercritical behavior is ignored are seriously in error when 
the chamber pressure is greater than the critical states of the injected propellants. 

IV. Analysis and Numerical Simulations 

As in many fields of engineering, the rapidly increasing power of computing 
resources continues to motivate increasingly elaborate calculations of unsteady 
behavior in combustion chambers. The term numerical simulation refers to nu
merical solution to the governing equations of motion, comprising the fundamental 
conservation equations and models of all physical processes included in the formu
lation. There are two sorts of inaccuracies in numerical simulation: computational 
errors and those arising from approximations in the equations. The numerical 
analysis itself cannot be perfect, although for most applications contemporary 
methods have practically negligible errors in their range of validity. Modeling 
the physical processes is necessarily imperfect and is by far the main reason for 
inaccurate results. Thus, even with the remarkable progress in computing power, 
it is still not realistic to attempt to solve fully three-dimensional, time-dependent 
problems for combustion chambers; both the modeling of combustion processes 
and available computing power are inadequate. 

Other than the unavoidable limitations just discussed and the expenses involved, 
the main disadvantage of numerical simulation is that each case computed is just 
that: one case. Understanding global behavior and trends over the possible ranges 
of parameters defining a given problem can be extremely expensive and time 
consuming and often does not lead to clear, simple rules useful for interpreting 
experimental data and for practical design. Hence, there will always be a need for 
formal analysis, which must in any event be approximate. 

An approximate analysis must be founded on the same governing equations as 
a numerical simulation, but commonly with some simplifications in models of the 
physical processes, to help gain solutions. Hence for a given problem, numerical 
simulations should be at least as accurate as analytical results. The great advantages 
of an approximate analysis are the possibility for deducing general rules and 
the opportunity to investigate theoretically the global behavior of a complicated 
system. For the subject of combustion instabilities, the most important use of the 
second characteristic is in understanding nonlinear behavior. 
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Thus, the entire subject of combustion instabilities may be viewed as divided into 
three parts: experiments and full-scale tests, analysis and theory, and numerical 
simulations, sometimes also viewed as a part of computational fluid dynamics 
(CFD). The case of the F-I engine discussed in Sec. II is an (perhaps, the) extreme 
example of how expensive a problem of combustion instabilities can be in a 
development program. Probably the chief practical purpose of both analysis and 
numerical simulations is to provide a sound basis for reducing the amount of 
experimentation and testing required. It will never be possible to eliminate testing 
entirely, but theoretical work can achieve a great deal by narrowing the ranges of 
parameters that must be covered in tests. 

In this section we first describe briefly the general formulation and modeling 
used presently for investigating combustion instabilities in liquid rocket engines. 
We then summarize one form of approximate analysis that has proved effective in 
other applications and for deriving some useful theoretical results. It is unnecessary 
here to cover numerical simulations that are treated quite thoroughly in this volume 
in Chapter 18 by Habiballah and in Chapter 19 by Grenda et al. 

A. Equations for Unsteady Motions in Combustion Chambers 

We shall neither derive equations of motion here nor deal with the most general 
forms. Our chief purpose is to convey as thoroughly as possible the main ideas 
and to outline the basis for the more important theoretical results. Even though the 
instabilities observed are mainly oscillations of the gaseous phase, it is essential to 
account for the presence of the liquid phase as well. To simplify the discussion, we 
lump the liquid fuel and oxidizer together as a single liquid phase and represent the 
multicomponent gas mixture as a single average gas.3.4 Thus, we treat a reacting 
two-phase mixture for which the equations of conservation are as follows. 

Conservation of mass: 

(8) 

Conservation of momentum: 

Conservation of energy: 

a at (pge gO + Peeeo) + \l . (pgugegO + PeUeeeo) 

= \l . (ig . Ug) - \l . qg + Q + Qe (10) 

Subscript g refers to the gas species and subscript e to the liquid; subscript 0 
denotes the stagnation state. External sources are denoted by subscript e. These 
terms do not normally appear in the literature but are included here because they 
may be used to represent the presence of active control, a subject to be addressed 
later. Stress tensor ig is assumed to depend on properties of the gas phase and may 
be written as the sum of the isotropic pressure and the viscous stress tensor iv, 

ig=-pI+iv (11) 
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All forces exerted in the flow by external influences are represented by the mo
mentum sources meg and mel. Distributed forces (gravity, electromagnetic, etc.) 
are not an issue in the problems considered here; nonzero values of meg and mee 
will arise due to momentum transfer associated with flow of material through the 
boundary of the combustion chamber and interactions associated with material 
injected for actuating control. Internal heat flow is represented by qg, sufficiently 
well approximated by Fourier's law for the gas phase; Q represents heat addition in 
the gas phase associated with combustion processes not accompanying conversion 
of the condensed phase to gas. Hence, the symbol ego stands for stagnation thermal 
energy only, containing no part related to chemical processes. For a mixture of 
perfect gases, each species having constant specific heat, 

(12) 

where Cv and ug strictly stand for values mass averaged over all gaseous species. 
Let We denote the rate at which the liquid phase is converted to gas, and Eq. (8) 

can be written as the sum of the following two equations. 
Conservation of mass (gas phase): 

apg - + '\1 . (pgU g ) = We + We at g 
(13) 

Conservation of mass (liquid phase): 

(14) 

The following manipulations are directed to eventually writing a nonlinear wave 
equation governing the behavior of waves in the mixture. Elasticity (the spring 
constant) for wave propagation is provided by the compressibility of the gas only, 
whereas the mass of an elementary oscillator in the medium is the sum of the 
masses of gas and liquid in a unit volume. 

Equation (8), the equation for the total density ofthe mixture, can be rewritten as 

ap at + '\1. (pUg) = W + We (15) 

where p = Pe + Pg, the total external source of mass is 

We = Weg + Wee (16) 

and 

W = -'\1 . (Peoue) (17) 

The slip velocity between the condensed phase and the gas is defined as ~Ue = 
Ue - ug • Now expand the momentum equation (9) and substitute the definitions 
to give the following. 

Conservation of momentum (gas phase): 
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where 

Fe = -pe[a:r
e 

+ue' Vue] 

U = (ug - ue)we = -ouewe 

Ue = UgWeg +uewee 

me = meg +mee 

(19) 

(20) 

(21) 

(22) 

Equation (19) is the momentum equation for the condensed phase, and U represents 
the rate at which momentum is supplied to the newly created gas phase by the 
gases already present. Hence -u in Eq. (18) represents the force exerted on the 
gas phase by the vaporizing condensed phase. 

To Eq. (18) add pe[aug/at + ug . VUg] to find 

[
aUg ] P at +ug ' VUg + Vp = V· t'v +oFe - (u +ue -me) (23) 

where 

[
aoue ] oFe = -Pe at + Oue . VOue + Oue . VU g + Ug . VOue (24) 

is the force of interaction between the condensed and gas phases. 
More elaborate manipulations eventually lead to the energy equation for the 

temperature of the gas phase, 

where 

pCv [a:r
g 

+Ug ' VTg] + pV· Ug 

= (t'v . V)Ug - V . qg + (Q + Qe) + Ug . (u + Ue - me) 

+oQe + weoeo + oue . Fe - (egoWeg + eeowee) 

Qe = -pe[aa:
e 

+ue' vee], and 

Corresponding to Eq. (24), the heat exchange between the two phases is 

[ 
aoTe ] oQe = -PeCe at + Oue . VoTe + Oue . VTg + Ug . VoTe 

(25) 

(26) 

(27) 

where 0 Te = Te - Tg. The mass-averaged specific heat for the mixture is defined as 

- 1 Cv + CmCe 
Cv = -(pgCv + PeCe) = ---'----

P 1 +Cm 
(28) 

and Cm = pel P is the liquid-phase loading, the fraction of mass in unit volume as 
liquid. 
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To simplify writing, we shall hereafter use the symbol U instead ofug for the gas 
velocity, T instead of Tg for the gas temperature, and drop the overbars on mass
averaged thermodynamic properties. Thus, the three basic equations for unsteady 
motions in a two-phase mixture are as follows. 

Conservation of mass: 

Dp 
- = - p 'V . U + W + We 
Dt 

Conservation of momentum: 

Conservation of energy: 

Du 
p- = -'Vp+F+Fe 

Dt 

DT 
PC - = -p'V . U + Q + Q 

v Dt e 

where the sources are 

W + We = -'V . (PeOUe) + Weg + Wee 

F + Fe = 'V . Tv - U + OFt - (ue - me) 

The substantial derivative is defined in terms of the gas velocity, 

D a 
-=-+u·'V 
Dt at 

The equation of state appropriate to this formulation is 

p = pRTg 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

where R is the mass-averaged gas constant, equal to C p - Cv . From the preceding 
equations, the equation for the pressure can be derived, 

with 

Dp - = -yp'V . U + P + Pe Dt 

R Df'n,R (R ) P + Pe = C
v 

Q - RT'V . (Peoue) + PDt + C
v 

Qe + RTwe 

(37) 

(38) 

Equations (29-31) and the equations of state (36) describe the motions of 
the two-phase mixture. With the possibility of small modifications or extensions 
to accommodate many species, these are the basic equations for all analyses 
of combustion instabilities. To obtain solutions, in addition to setting boundary 
conditions, the condensed phase must be treated separately with Eqs. (14), (19), 
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and (27), with suitable laws for the force and heat exchange between the two 
phases. 

We shall not pursue the matter of properly posed problems, a subject addressed 
in this volume in those chapters dealing with numerical simulations. Moreover, 
although the equations derived here can be used as the basis for nonlinear analysis, 
we shall restrict ourselves here to a short outline oflinear stability analysis that will 
serve sufficiently well for later discussion of some special topics. A comprehensive 
discussion of nonlinear oscillations in rocket engines is given in Chapter 13 of this 
volume. 

B. Wave Equation and Approximate Solution 

A wave equation may be constructed by analogy with a procedure followed in 
classical acoustics. Because nonlinear behavior will not be treated herein, we shall 
work from the beginning with the linearized forms of the governing equations. 
Write all variables as sums of mean and fluctuating parts, p = p + p', etc., and 
assume that the mean values are independent of time. Substitute in Eqs. (30) and 
(37) and ignore terms of second order and higher in the fluctuations to find 

_au' -(-'" '''-) ", ;:' '1::' P - = - P u . v U + u . v U - v p + + .r_ at e 

ap' _", '" - _", p' P' - = -yp v . U - yp v . U - U . v p + + 
at e 

(39) 

(40) 

We have also assumed that the mean pressure and density are uniform. Now 
differentiate Eq. (40) with respect to time, substitute Eq. (39), and rearrange the 
result to find 

where 

h h -" (- ", '''-) 1 - "ap' + e=-Pv· u·vu+u ·vU +-2U·v-:;-
a ot 

(41) 

yap' _ ;:' 1 ap' ,1 ap: 
+--'V·u+'V· ---+'V.;=:--- (42) {i2 at {i2 at e (i2 at 

Terms identified by subscript e always correspond. 
The boundary condition is set on the normal gradient of the pressure by taking 

the scalar product of Eq. (39) with the outward normal vector n, giving 

n . 'V p' = - I - Ie (43) 

where 

a~ . 
I + Ie = Pat . n + p(ii . 'Vu' + u' . 'Vii) . n - ;:' . n - ;:; . n (44) 

The first term I is commonly rewritten by introducing a response or admittance 
function characterizing the unsteady behavior of the boundary in response to 
imposed fluctuations. 
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Only gasdynamical interactions between the mean and fluctuating velocity fields 
are shown explicitly in Eqs. (41-44). All other processes are hidden in P' and 
F', those directly associated with external (control) actions being contained in F; 
and P;. 

Traditional calculations of linear behavior are based on the differential equations 
(39) and (40), augmented by the linearized equation of state and possibly by 
linearized forms of other equations given in Sec. IV.A. In the remainder of this 
chapter we will use the integrated form based on spatial averaging described, for 
example, by Culick and Yang.4 The fundamental idea is that the actual problem 
defined by Eq. (41) with its boundary condition, Eq. (43), differs in some sense by 
small amounts from the classical acoustics problem defined by setting h = I = 
he = Ie = O. That is, the influences of all processes are small perturbations. This 
formulation, then, has the form naturally suited to an iteration procedure readily 
constructed by introducing a Green's function as first accomplished by Culick. 15 

However, the identical first-order result (the only order legitimately considered 
with these equations) is obtained more directly in the following way. 

The unperturbed problem defines the normal modes, with mode shapes Vrn and 
natural frequencies (J)n = iikn, where kn is the wave number, 

V2Vrn + k~Vrn = 0 

n . VVrn = 0 

(45) 

(46) 

The idea is then to compare the perturbed (actual) and unperturbed (classical) 
problems quite literally by comparing their difference in a spatially averaged 
sense. Multiply Eq. (41) by Vrn, Eq. (45) by p', and subtract and integrate over the 
volume of the chamber to give 

Upon application of Green's theorem and substitution of the boundary conditions, 
Eqs. (43) and (46), we find 

;2/ Vrn[B::Z' +(J)~P'JdV=-[/ VrnhdV+fj VrnldSJ 

-[I VrnhedV+fj VrnledSJ (47) 

The preceding calculations are formally correct and introduce no errors. Now 
we make the approximation that the pressure field in the actual chamber can be 
expanded in a series of normal modes for the classical unperturbed problem, 

00 

p' = p L 17n (t)Vrn (r) (48) 
n=! 
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The error incurred in the results arises because Vtn (r), and therefore the right-hand 
side, do not satisfy the correct boundary condition (43) set on pI in the actual 
problem. When the series is used in the given integrals, the error is attenuated, and 
for other formal reasons not covered here (see, e.g., Morse and Feshback16

) the use 
ofEq. (48) is entirely legitimate. The inaccuracy is not as serious an inaccuracy as 
one might think. We assume also, not a practical constraint, that the normal modes 
are orthogonal, 

f VtmVtn dV = E;;8mn (49) 

Substitution in Eq. (47) leads finally to the second-order equations for the ampli
tudes 1)n (t), 

(50) 

and the forcing terms are 

Fn = - p~~ {f hVtn dV + If fVtn dS} (51) 

Fne = - pa;~ { f heVtn dV + If feVtn dS} (52) 

With proper interpretation and suitable modeling of the processes represented 
in functions h, f, he, and fe, the representation of combustion instabilities by 
Eqs. (50-52) has wide applications to all propulsion systems. Relatively little has 
been done with this formulation applied specifically to liquid rocket engines but, 
as we shall see shortly, it is quite easy to obtain general results equivalent to those 
obtained with methods more familiar in this field. 

An important point to emphasize is that the approach taken here provides a 
useful viewpoint as well as a framework useful for both theoretical and practical 
computations. According to Eqs. (48) and (50), any unsteady motion may be 
regarded as a collection of oscillators, one associated with each normal mode of 
oscillation appearing in the synthesis, Eq. (48). The problem then comes down to 
determining the time evolution of the amplitudes YJn (t) of the oscillators (modes). 
Although we have assumed linear motions here, the same formal representation 
applies to nonlinear motions, so long as the amplitudes do not become so large as 
to violate the approximations taken to give the governing differential equations. 

v. Some Results of Analysis 

The point has been emphasized that with the analysis involving spatial averag
ing, as constructed in the preceding section, we can accommodate practically any 
process active in real combustion. Of course, some approximations are involved, 
and it is necessary to work out explicit representations or models of the processes 
in question, but the situation is quite different from that which arises when one 
chooses to solve the partial differential equations governing the motion. In that 
case, numerical solutions accentuate errors in modeling because of the differenti
ation required. Moreover, it is easier with the framework available here to discuss 
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quite general results in a relatively simple and clear fashion. With a few exceptions, 
we will not be concerned with detailed examples in the remainder of this chapter. 

A. Linear Stability 

As remarked earlier, there is really only one problem of linear stability, and 
it is readily solved within the present analysis. According to the principles of 
Fourier analysis, with essentially no practical restrictions, any function can be 
synthesized as a finite or infinite series of orthogonal functions. Here, we apply 
the idea to a pressure record represented as a sum of the normal modes 1/In (r) of 
a chamber, with time-dependent amplitudes 1]n(t), Eq. (48). Finding the normal 
modes requires solving the classical problem of the scalar wave equation for a 
closed volume that has the same shape as the combustion chamber in question, 
with the exception that the exhaust nozzle is closed at its entrance. Both the mode 
shapes 1/In (r) and the natural frequencies are found in this calculation, the solution 
to Eqs. (45) and (46). 

For the problem of linear stability, the amplitudes are assumed to have the form 

1]n(t) = fineiiiKnt 

where the actual complex wave number is 

Kn = (Qn - iCin)/ii 

(53) 

(54) 

Now the perturbed mode corresponding to the nth classical mode may either grow 
(Cin > 0) or decay (Cin < 0) in time. The actual frequency is 

Q n = Wn + OWn (55) 

Hence, the problem of linear stability comes down to determining the frequency 
shift OWn and growth constant Cin for each perturbed mode. The basis for the 
calculation is the linearized form of the equations already treated. 

Substitute Eqs. (53-55) in Eq. (50), with Fne = 0 to find" 

(Qn - iCin )2 = w~ - Fn/fin 

where, for linear behavior, we write h = heiiiKnt and f = j eiiiKnt, so that Fn = 
FneiiiKnt. For the usual case, Cin «Qn and (Qn - wn)/wn « 1, which must be 
satisfied to be consistent with approximations already made. Then separating the 
real and imaginary parts of the last equation, with the definition (51), gives 

ii
2 I! hCr) If jer) } 

Q n = Wn + 2 - E2 -A-1/In dV + -A-1/In dS 
Wn P n 1]n 1]n 

(56) 

(57) 

"The result and therefore Eqs. (56) and (57) are obtained only if no linear coupling of 
modes is contained in Eqs. (51) and (52) after the expansion (48) and the corresponding 
representation of the velocity fluctuation have been substituted. Linear coupling can be 
formally eliminated by constructing a new set of orthogonal modes. However, normally the 
corrections will contribute only higher order terms in Eqs. (56) and (57), and so no error is 
committed by simply ignoring linear coupling throughout the analysis. 
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in which superscripts (r) and (i) denote real and imaginary parts. These two 
formulas are the solution to the problem of linear stability. In particular, setting 
an = 0 defines the stability boundary in terms of the various parameters arising 
in the functions hand f. That result is the basis for the Standard Stability Predic
tion Program!7 written for the U.S. Air Force and widely used by industrial and 
governmental organizations to analyze the stability of unsteady motions in solid 
propellant rockets. 

B. Rayleigh's Criterion 

Probably the most widely quoted general principle in the field of combustion 
instabilities is the criterion formulated by Rayleigh in 187818.19: 

If heat be periodically communicated to, and abstracted from, a mass 
of air vibrating (for example) in a cylinder bounded by a piston, the 
effect produced will depend upon the phase of the vibration at which 
the transfer of heat takes place. If heat be given to the air at the moment 
of greatest condensation, or be taken from it at the moment of greatest 
rarefaction, the vibration is encouraged. On the other hand, if heat be 
given at the moment of greatest rarefaction, or abstracted at the moment 
of greatest condensation, the vibration is discouraged. 

Roughly, the gist of the principle is that heat addition tends most strongly 
to drive acoustic waves if the energy is added in the region of space where 
the oscillating pressure reaches greatest amplitude and is in phase. Although 
the principle seems fairly obviously true, these remarks do not serve as proof. 
The formulation described can be used not only to establish the criterion but also 
to extend its application to all processes and nonlinear behavior as we11.3

•
20 Zinn21 

has recently discussed Rayleigh's criterion but only for linear heat addition. 
We take advantage of the fact that each acoustic mode has an associated oscilla

tor having unit mass and natural frequency W n , whose motion (i.e., time evolution 
of its amplitude '1n) is described by Eq. (50). The energy of a simple oscillator is 
the sum of its kinetic and potential energies, 

(58) 

We interpret Rayleigh's criterion to be a statement concerning the change !:l.£n of 
the energy in one cycle. The product of the force (Fn + Fne) times the velocity ~n 
is the power input, and so 

j
t+rn 

!:l.£n(t) = t (Fn + Fne)~n dt' (59) 

In general, !:l.£n (t) varies with time, increasing from cycle to cycle for an unstable 
mode. 

Indeed, for linear motions, if all processes are taken into account, !:l.£n is 
proportional to the growth constant an, and this extended form of Rayleigh's 
criterion is equivalent to the principle of linear stability,3.4 

(60) 
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Consequently, the precise form of Rayleigh's stated criterion is found by taking 
only the part of Fn that represents heat addition and setting Fne = o. The result is20 

t:.&n(t) = (y - 1) ~~2 f 1J!n dV 11H

" T}nQ' dt' 
pEn 1 

(61) 

in which Q' must be expressed in terms of real quantities. Thus, instead of the 
complex form we write in the case Q' proportional to p', 

Q' = Q01J!n(f31T}n + f32i}n) 

where fh and f32 are real. The formula (61) leads to 

(62) 

(63) 

Thus, t:.&n is positive if f31 Qo > 0, requiring that some portion of the heat addition 
must be in phase with the pressure fluctuation, as stated by Rayleigh. 

Combination of Eqs. (60) and (61) gives the convenient formula for the growth 
constant due to heat addition, 

= Y - Wn ,/, d V Q' dt' ( 1) f 11

+," 
otn 2 E2 'l'n T}n 

1T p n t 
(64) 

where we have used the fact that T}n Q' has period Tn = 21T / Wn to shift the limits of 
the integral. We should also note that whereas the time derivative a Q' fat appears 
as the source in the wave equation (41) and in the oscillator equations (50), Q' itself 
occurs in Eqs. (61) and (64), also as a consequence of periodicity as explained by 
Culick.20 

C. Response Factors 

Particularly during the time when a great deal of effort was being devoted to 
problems of combustion instabilities in engines intended for the Apollo vehicle, the 
notion of a response factor was frequently applied. Although the various definitions 
used may differ in detail, the essential idea is common to all: a response factor is a 
quantity whose numerical value is a measure of the destabilizing effect of a process 
whose behavior is approximated by a linear model. It appears that all definitions of 
response factors are equivalent to the definition of the growth (or decay) constant 
otn given by formula (57) through the approximate analysis formulated in Sec. IV. 
The interpretation of otn follows from its definition and the definition of the energy 
in an acoustic wave. For small amplitude motions, the energy per unit volume is 
the sum of kinetic and potential energies, 

(65) 

To the approximation required in this analysis, u' and p' can be replaced by 
their classical, unperturbed relations; for the nth mode, 

(66) 
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The total time-averaged energy in the chamber is 

(en) = ~ 11

+,. dt'! dv[!p(Re{U~})2 + ! (Re{~~})2J (67) 
Tn 1 2 2 P 

Substitution of Eq. (66) and carrying out the integrals gives 

(68) 

where eno is a constant. Hence, 

1 1 d(en ) 
CL - -----

n - 2 (en) dt 
(69) 

is half of the fractional rate of change of the time-averaged energy in the mode. 
Since it is a result for linear behavior, the formula (57) for CLn is a sum of terms 

on the right-hand side, with each term being associated with a single process. For 
example, consider only the first term in I on the right-hand side of Eq. (44) and 
ignore all others in h + he and I + Ie; then Eq. (57) becomes 

CLn = -y 2 If .J- (au' . n){i) 1{!n dS 
2wnEn '1n at (70) 

where the superscript caret means taking the factor multiplying eiwnl . It is common 
practice in acoustics to represent the response of a surface with an admittance func
tion A. Here, that model implies assuming that the velocity normal to the surface 
induced by an imposed pressure fluctuation is proportional to that fluctuation, 

u' . n = A(iijp)p' (71) 

where the ratio iij p has been introduced to make A dimensionless. [Note that 
n is positive outward. A negative sign should be added to the definition of the 
admittance function if u is positive inward. See Ref. 4 for a thorough discussion.] 
Because A = A (r) + i A (i) is complex, it follows that 

and 

au' . ii ap' -.n = (A(r) +iA(I»-;:-
at p at 

~ (A(r) + iA(i»(iijp)iwnfln1{!neiwnl 

(aa~' .nr) = (ii/p)wnA(r)~n1{!n 
The formula (70) becomes 

CL = -yii If A(r),'r2 dS 
n 2 -E2 'I'n p n 

(72) 

This is a familiar result; with the definition of the growth constant used here, 
CLn is negative (stabilizing) if the real part of the admittance function is positive. 
Moreover, those parts of the surface contribute most where the mode shape has 
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the greatest amplitude. These conclusions amount to a Rayleigh's criterion for the 
response of a surface. 

Similar special formulas can be deduced for processes in volume. Each formula 
for a contribution to the net growth constant is proportional to a response factor 
whose form depends on the definitions chosen. A response method, then, consists 
generally in computing the various response factors and summing the results. In 
short, a response method is entirely equivalent to a computation of linear stability 
that, as we have shown in the preceding section, amounts to the most general form 
of Rayleigh's criterion. 

D. Time Lag (n, r) Representation 

Shortly after oscillations were encountered in early tests of liquid-propellant 
rocket engines in the United States, von Karman suggested representing the mech
anism with a time lag.22 The idea was also independently introduced by Gunder 
and Friane3 in 1950 and was subsequently developed to the greatest degree possi
ble by Crocco and his students at Princeton; see Ref. 1 for thorough coverage of 
the subject. 

The essential idea is that a finite interval-the time lag--exists between the 
time at which an element of propellant enters the chamber and the time at which 
it burns and releases its chemical energy. Such a lag must always exist, and there 
is no unique value because combustion is distributed throughout the chamber. If 
the pressure has the time dependence p' = jJ'l/ln(r) sinwnt, then the simplest way 
to introduce a time lag is to assume that the fluctuation of energy release has the 
form 

Q' = Q(r) sinwn{t - r) (73) 

where r represents the time lag. Substitution in the form of Rayleigh's criterion, 
Eq. (61), gives 

t1t:n = 21iwnan 

= (y - 1) ~~2 f l/In(r)Q(r) dV [Hr. sinwnt' sinwn{t' - r) dt' (74) 
pEn t 

and an is 

1 f ~ an = (y - 1)---=---2 l/In(r)Q(r) dV coswnr 
2pEn 

(75) 

If Q is itself proportional to the local pressure amplitude l/In, then the integral 
is positive, and an is positive if 0 < Wn r < 1i /2, 31i /2 < Wn r < 51i /2, .... The 
process is destabilizing if r is in the ranges of 

31i 51i 
-<r<-' 
2wn 2wn' 

(76) 

Although the oscillating behavior of an given by Eq. (75) is not in any sense 
fundamentally unacceptable, many examples of attempts to infer time lags for real 
processes suggest that such a result is unrealistic.24

,25 Part of the difficulty comes 
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from the assumption usually made (in the absence of other information) that the 
time lag is independent of frequency. Even on intuitive grounds, one should expect 
that behavior is not the case. In at least one case for the response of a burning 
solid propellant, both theory and experiment show that any time lag introduced to 
represent the behavior must depend significantly on frequency. 

It appears that all applications of the time-lag model are based on the reasoning l
. 3 

given by Crocco. The principal result is the formula for the fluctuation of conver
sion ofliquid to gas, the source term in the continuity equations (13) and (14), 

w~ = wen [ p~t) - pl(t P- r) ] (77) 

where the interaction index n represents the sensitivity of propellant combustion to 
pressure oscillation. No details of physical processes are treated in the construction 
of this result, although of course they are implied in the definitions of nand 
r. To analyze linear stability, assume that a single mode is present and that 
pi = PT]neiwnt 1/In (r), w~ = weeiwnt to give 

(78) 

It is perhaps best to interpret Eq. (78) as a particular two-parameter represen
tation of the complex function We. The real and imaginary parts of the formula 
are 

A (r) - (1 ) A ,I, ( ) A (i) -. ( ) A ,I, ( ) (79) we =nWe -coswnr Yln'l'n r, we =nWesm WnT Yln'l'n r 

Formally, the (n - r)model simply replaces the two functions wY) and wY) with 
the two quantities nand T. There is some advantage in having even a crude 
understanding of the physical basis for this form. Any advantage is lost if the 
model is taken too seriously without recognizing its serious limitations, the chief 
one being the fact that nand r are not constant in reality and, thus, the serious 
uncertainties in w~ are not clarified by simply introducing nand r. 

There have been successful applications of the idea, notably in laboratory 
experiments at Princeton reported by Crocco et al. 26 and as a means of corre
lating extensive data taken in some development programs during the 1960s.2 The 
way in which the results (78) or (79) are used in applications can be explained 
very simply with formulas we have derived with the approximate analysis. With 
the external contributions dropped, the general formulas (56) and (57) for linear 
stability are 

Q n = Wn _ _ l_(~n)(r) 
2wn Yin 

(80) 

otn = _1_ ( ~n )(i) 
2wn Yin 

(81) 

It is a simple matter to trace the contribution of the mass source We from Eq. (79) 
to Eqs. (51) and (52). Obviously, there will be a term linear in the fluctuation w~; 
in fact, it is aw~/at that appears so that the term in Fn is proportional to iwe. The 
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details are unimportant here; the essential point is that Eqs. (80) and (81) take the 
form 

nn = Wn + C3 f y,nwiil dV - C4 

an = C1 f y,nWY) dV - C2 

(82) 

(83) 

On the stability boundary, an = 0, and after substitution of Eq. (79), we can 
write the two formulas for the two unknowns nand r: 

n sinwnr = [(nn - Wn + C4 ) / (C3 f Y,;'Wl dV) ] (84) 

n(1 - coswnr) = (C2/C1 f Y,;'Wl dV) (85) 

The right-hand sides are functions of the parameters defining the system according 
to injector type, geometry, dominant processes, and so forth. In practice, the idea 
is to vary those parameters and find the loci of values in such a way that small 
changes in one direction produce unstable oscillations and that changes in the 
other direction (i.e., to the other side of the locus) cause small disturbances to 
be attenuated. Then the right-hand sides of Eqs. (84) and (85) are known on 
the stability boundary, and the two equations can be solved for nand r. Further 
discussion and some results may be found in the early work by Crocco et al. 26 and 
in Ref. 2. 

It may at times be useful to introduce the n-r model providing its limitations 
are understood, but the time has passed when this should be a major part of any 
analysis of combustion instabilities. With the increasing growth oflarge numerical 
simulations, any serious need for the n-r model is rapidly disappearing. Money, 
time, and effort are now much better spent on more fundamental investigations of 
the processes actually present in an engine. 

VI. Stability Rating 

As interesting and challenging as understanding combustion instabilities is, the 
eventual purpose in practice is to guarantee their nonexistence. Theory, analysis, 
and laboratory work should establish the basic laws governing unsteady behavior, 
that is, scaling laws--dependence on geometry and other parameters that define 
the system, generally representing as thoroughly as possible linear and nonlinear 
behavior. If the task could be carried out to completion, then the basis would exist 
for minimum development costs of stable engines, with test programs planned 
mainly to confirm expected performance and stability. The actual case is still 
far from the ideal, and important testing procedures devised to establish stabil
ity characteristics of engines remain an important-and expensive-part of any 
development program. Such procedures define the process called stability rating. 

As is the case for much of this subject, Ref. 2 remains the most complete ref
erence for stability. Little seems to have changed in the past 20 years except for im
provements in instrumentation, data acquisition, and data processing. 
Although other methods have been used to investigate special aspects of sta
bility (e.g., oscillations involving the propellant supply system), here we shall 
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discuss briefly only the two basic methods used routinely to determine the stabil
ity of high-frequency wave modes in a chamber. Bombing a chamber by initiating 
small explosive charges, the older of the two, was introduced in the 1950s. The 
second method is called temperature ramping in which the temperature of one 
of the propellants, usually the fuel, is increased more or less linearly in time 
until an unstable motion develops spontaneously, or, less commonly, the transient 
following a small explosion becomes a sustained oscillation. Because ample guid
ance is available elsewhere for applying these methods, there is no need here for 
elaborating details. Rather, only a general context with examples is provided. 

We have emphasized that there are two general kinds of stability, linear and 
nonlinear. Stability rating in the linear sense means determining the stability 
boundary in some space of parameters. For example, when the n-r model of 
unsteady combustion is used, the essential parameters are, of course, nand r. 
As explained in Sec. VD, however, the values of nand r can only be inferred 
as functions of parameters that can be controlled experimentally, e.g., oxidizer
fuel ratio or geometrical properties of the chamber. Determining nand r from 
experimental work requires a model, normally that producing Eq. (77), and a 
linear stability theory that gives, for example, relations such as Eqs. (84) and 
(85). Thus, the procedure is truly semi empirical, based on a mixture of theoretical 
and observational results. As used in engine development, methods of stability 
rating do not appeal to any theoretical results. A limited number of parameters are 
changed (e.g., explosive charge size or propellant temperature), and the stability 
of motions is then assumed in some simple terms, such as rate of decay or growth 
of oscillations. Frequency shifts are normally small, or cannot be interpreted 
meaningfully, so that the best one can do in rating linear stability is to determine 
the rate of growth or decay. 

Nonlinear stability is intrinsically a far more difficult matter than linear sta
bility. There is no satisfactory, comprehensive theory for nonlinear combustion 
instabilities even though much is known in respect to the stability of nonlinear 
dynamical systems in general. Nonlinear instability means that a linearly stable 
system becomes unstable to a sufficiently large disturbance. We are concerned 
here with systems that contain sources and sinks of energy. The problem of non
linear instability is, therefore, not simply an elaboration of the motion of a rotating 
pendulum in a gravitational field; in that case, small initial disturbances produce 
small-amplitude to-and-fro oscillations but sufficiently large disturbances cause 
the pendulum to execute continuing circular motions. 

For rocket engines, the only practical means of assessing nonlinear stability is 
based on detonating small explosive charges. A typical strategy involves a sequence 
of charges, increasing in size to reach a condition at which the disturbance no longer 
decays but continues as more-or-Iess periodic large-amplitude motions. Empirical 
rules have been constructed to define what constitutes acceptable dynamic stability 
of a chamber. 

VII. Passive and Active Control of Combustion Instabilities 

The ultimate practical purpose of studying combustion instabilities is to develop 
sufficient understanding to be able to control the amplitudes at acceptable levels. 
Quite generally, there are only two strategies to follow: change the basic design of 
the system (geometry, injector type, etc.) or introduce some sort of control. Because 
constraints set for other reasons often prevent sufficient changes in design, much 
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effort has necessarily been exerted to devise means of control, always by passive 
means in operational propulsion systems. 

A. Passive Control 

The term "passive control" applies to the installation of baffles, resonators, or 
acoustic liners that suppress acoustic waves in the chamber. The essential point is 
to force the resonance to occur in frequency ranges where the driving mechanisms 
are inadequate to sustain oscillations or to directly damp the mechanical energy 
of unsteady motions. A secondary, but potentially more significant reason for 
the effectiveness of baffles, remarked upon in connection with the F-l engine 
in Sec.lI.A, is the possibility for shadowing regions of sensitive processes from 
disturbances. Figure 4 illustrates the idea that radial baffles extending axially into 
the chamber cause certain modes to be suppressed. A single baffle placed along 
a diameter, for example, will discourage spinning modes. These symmetrically 
placed radial baffles act against tangential oscillations. The effectiveness of baffles 
is limited by the practical constraint that they cannot extend too far from the 
injector face because structural integrity may be sacrificed and flow losses may be 
unacceptable. 

Whatever the device used, limitations always arise because of its frequency 
response. Resonators may be the most obvious example, typically showing a fairly 
narrow peaked response whose height is reduced and width is increased for larger 
amplitude motions. Although the data on the behavior of passive devices taken in 
scale models at room temperature is inexpensive to acquire and usually serves as 
a useful guide in design, care must be exercised when extrapolating these results 
to practical rocket engines due to the differences in temperature and associated 
speed of sound. The performance of these devices is most conveniently expressed 
directly as an attenuation constant or, if more detailed behavior is known, an 
impedance or admittance function may be defined and used in a formula such as 
Eq. (72). 

B. Active Control 

Active control of combustion instabilities has received considerable attention 
in the past 10 years even though it is not a new concept. Tsien27 suggested that 
the chugging instability in a liquid rocket motor could be stabilized by controlling 
the supply of propellant. Figure 9 is a sketch explaining his proposal. The main 
item is a feedback control loop based on sensing the pressure and controlling the 
line capacitance. The system may be modeled with the simple analysis outlined 
in Sec. IV. With a time-lag model of combustion, Eq. (1) becomes 

d2 p' dp' 
-2- + 2a- + W5P' = (3p'(t - T) + u(t) 
dt dt 

(86) 

where u(t) is the control force. In the chugging mode, the chamber pressure 
is practically uniform so that p' here, indeed, represents the pressure measured 
everywhere. Taking the Laplace transform ofEq. (86), we find the relation between 
the transform P (s) of the pressure and that of the control force U (s) 

P(s) = [G/(l - GQ)]U(s) (87) 
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Fig. 9 Feedback control of chugging instability. 

where G is the transfer function of the chamber (or the plant in the terminology 
of control theory), 

(88) 

and 

(89) 

The result (87) has exactly the form interpreted with the block diagram drawn 
in Fig. 3. Well-known methods of classical control theory may be applied to 
investigate the performance and stability of this feedback system, although things 
are complicated somewhat by the presence of the time lag. 

Tsien's method27 of active control has never been successfully applied in prac
tice. When it was first proposed, the available instrumentation and transducers 
were likely inadequate. Subsequently, the problem of chugging, most familiar in 
the form of the POGO instability, has been satisfactorily solved by passive control 
in operational systems. 

Contemporary ideas of active control began about 10 years ago as an outgrowth 
of the field of noise control. A common and successful method of noise control 
is based on the idea of antisound28 in which destructive interference is caused 
by injecting an appropriate acoustic field to cancel unwanted noise. Almost all 
demonstrated applications of active control have been based on that idea. Culick 
has provided a brief review ofthe work through 1988 in Ref. 3. Similar work has 
continued, largely associated with the development of air-breathing engines such 
as afterburners and gas-turbine combustors. 

As emphasized earlier, the analysis described in Sec. IV has a form that is 
naturally adapted to the application of modern control theory. In the control field, 
the subject is called control of distributed systems. The source terms denoted by 
SUbscript e in the analysis accommodate any practical means of control, inch,lding 
actions in the chamber and at the boundary. The only systematical work on the 
control of combustion instabilities based on this approach appears in Fung29 and 
in associated publications.3

O-
32 

In this context, any analysis of active control begins with the set of cou
pled oscillator equations (50). The theoretical work is then divided into two 
main parts: modeling the dominant physical processes and designing a con
troller. The most difficult part of the problem is the modeling, which by necessity 
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also includes modeling the actuators used. Combustion systems offer especially 
challenging problems in this respect because they are intrinsically nonlinear and 
contain substantial noise, and the activity of control changes the characteristics 
of the plant being controlled. Another way of expressing the last point is that 
there are inevitably uncertainties in the value of the parameters characterizing 
the plant. 

If linear behavior is assumed, and the system has been satisfactorily modeled, 
then the available methods of modern control theory can be applied. It is a much 
more difficult matter if nonlinear processes are taken into account. For practical 
applications, the most serious obstacle is probably actuation. There seems to be 
general agreement that if active control is to succeed with operational systems, 
actuation will likely involve control of the propellant supply. The few results 
available were obtained with gas-filled laboratory devices. Control with liquid 
propellants is evidently much more difficult, with no successes reported. 

A fundamental reason for difficulties of controlling the propellant supply, and 
therefore combustion processes, is the lack of understanding of the internal pro
cesses: modeling is again a central problem. It is likely that significant time 
lags are unavoidable; indeed, time lags are probably variable and non-uniform in 
space. Whereas active control of combustion instabilities seems to be a promis
ing approach, success with large-scale systems is by no means assumed. Much 
research remains to be accomplished. 

VIII. Concluding Remarks 

Most of the progress in the area of combustion instabilities in liquid rocket en
gines was achieved prior to the early 1970s. Although there have been some notable 
advances since then, there has been relatively little change in basic understanding. 
This is the case partly because there has been no pressing need for a large, vigor
ous, and continuing research program that involves both theory and experiment. 
A significant exception has been the ONERA work in France, begun in 1981 as 
a result of flight failures of the Ariane vehicle. The relatively modest size of the 
program has probably limited the rate of accomplishments, but the sustained effort 
is unique in the field. 

As in virtually all fields of terrestrial fluid mechanics, any successful research 
effort must comprise three parts: experiment, theory, and numerical simula
tion (CFD). The rocket propUlsion community has generally been slow to take 
advantage of the rapid advances in computing resources and computational fluid 
mechanics, but that situation has been changing in the past several years. Some 
of the chapters in this volume summarize recent progress and suggest what is 
possible in the near future. 

It is essential in a thorough investigation of combustion instabilities that all 
relevant driving and damping processes be accounted for. Stability depends on 
the balance of energy gains and losses; no matter how attractive a particular 
mechanism may appear, a proper conclusion can be reached only in the context of 
a framework treating all aspects of the problem. Experimental results, of course, 
necessarily contain all physical and chemical processes. Computing resources 
have advanced to the stage at which most relevant processes can be included in 
numerical simulations. 

More traditional analysis, such as that outlined in this chapter, remains a cen
tral part of the basis for interpreting experimental results, understanding observed 
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behavior, and for theoretical work. There is a broad spectrum of problems to be 
treated, having many applications in combustion devices generally. It is funda
mentally important that analytical work be integrated as thoroughly as possible 
with numerical simulations and experimental results. Purely theoretical work in 
this field is practically impossible. The problems are so complicated that analysis 
must be motivated by observations and, as we have emphasized in the introductory 
remarks, it is a fruitful strategy to incorporate from the beginning certain global 
aspects of observed behavior and then develop an analysis. Numerical simulations 
are in that respect closer to a level of proceeding directly from first principles. 
Therefore, an important role for numerical simulations is to provide a basis for 
assessing the validity of approximate results. Accurate confirmation leads to con
fidence in extending the analysis to situations for which numerical simulations are 
prohibitively expensive. 

There is presently a large mismatch between available theories and experi
mental results. Theoretical and analytical results for linear behavior are the most 
advanced. Indeed, for all practical purposes, one might argue that linear theory is 
now complete. That is not to claim that highly accurate results can be obtained 
because many processes are still imperfectly understood; modeling is inaccurate, 
and necessary ancillary data are often uncertain as well. Even though the basic 
theory is well understood, there are relatively few experimental results available 
to check the theory in detail. 

On the other hand, the greater part of observational data have to do with nonlinear 
behavior for which the theory is in a very primitive state. Particularly outstanding 
in this regard is the matter of nonlinear instability, the general characteristic that 
is investigated with the experimental technique called bombing. Nearly 30 years 
have passed since Crocco and his students first began treating nonlinear behavior, 
yet there is really no practical question that can be satisfactorily answered in any 
useful and general sense. 

There are two basic approaches to the problem of nonlinear behavior. The first, 
entirely mathematical, concerns the behavior of solutions to nonlinear differential 
equations. Great progress has been made recently in nonlinear dynamical systems; 
many of the methods and formal results are probably applicable to combustion 
instabilities, but only limited use has been made of the theory. Two topics in 
particular are clearly relevant: the theory of subcritical bifurcations, which includes 
the phenomenon called triggering or nonlinear instability; and the very broad 
matter of nonlinear behavior with noise. 

The second basic aspect of nonlinear behavior is the physical theory of the 
dominant nonlinear processes. Remarkably little attention has been paid to this 
subject, other than qualitative descriptive commentary. Yet nonlinear models of 
physical behavior must be constructed to be consistent with observations if the the
oretical work is to produce meaningful results. Nonlinear gasdynamics is always 
present, is easily modeled accurately, and should therefore always be included 
in any nonlinear analysis. In liquid rocket engines, observational results suggest, 
we believe, that in addition to gasdynamics, the dominant nonlinear processes 
are most probably associated with the fluid mechanics of injected propellants and 
subsequent spray field. The sensitivity of these processes is enhanced further by 
supercritical vaporization and combustion processes. Cold-flow tests are a nec
essary first step, and many have been made, but the influences of large rates of 
heat addition associated with combustion processes are probably too severe to be 
ignored. 
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The general matter of control merits much continued attention. Although 
the results of passive control devices are fairly well understood, the possible 
application of active control should be pursued vigorously. This is not simply a 
matter of wrapping a feedback loop around the system. Intelligent-and there
fore successful-use of control will be based on thorough understanding of the 
available control theory and realistic modeling of the system. Results obtained to 
date with laboratory devices do not indicate whether active control will be either 
effective or ineffective. The subject remains in its initial stages. 
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