Confocal Fluorescence Microscopy of the Morphology and Composition of Interstitial Fluids in Freezing Electrolyte Solutions

Jie Cheng, Cherrie Soetjipto, Michael R. Hoffmann, and A. J. Colussi*

W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125

ABSTRACT Ice rheology, the integrity of polar ice core records, and ice–atmosphere interactions are among the phenomena controlled by the morphology and composition of interstitial fluids threading polycrystalline ice. Herein, we investigate how ionic impurities affect such features via time-resolved confocal fluorescence microscopy of freezing electrolyte solutions doped with a pH probe. We find that the 10 μM probe accumulates into 12 μm thick glassy channels in frozen water, but it is incorporated into randomly distributed <1 μm diameter inclusions in freezing 1 mM NaCl. We infer that morphology is largely determined by the dynamic instabilities generated upon advancing ice by the rejected solute, rather than by thermodynamics. The protracted alkalization of the fluid inclusions reveals that the excess negative charge generated by the preferential incorporation of Cl− over Na+ in ice is neutralized by the seepage of the OH− slowly produced via H2O → H+ + OH− thermal dissociation.

SECTION Atmospheric, Environmental and Green Chemistry

Most technologically important materials are polycrystalline aggregates held together by disordered phases.1 The rheology of glacial ice,2–6 the tensile strength of steel, and the conductivity of superconductors7 are affected by the composition and geometry of grain boundaries. Grains arise because advancing solid/melt fronts are destabilized and bifurcate under the perturbations induced by the local release of latent heat and the rejection of impurities upon solidification.8,9 These inhomogeneities persist for dynamic rather than thermodynamic reasons. The global lowest free energy configuration in the case of water is an ice single sphere interactions are among the phenomena controlled by the morphology and composition of interstitial fluids threading polycrystalline ice. Herein, we investigate how ionic impurities affect such features via time-resolved confocal fluorescence microscopy of freezing electrolyte solutions doped with a pH probe. We find that the 10 μM probe accumulates into 12 μm thick glassy channels in frozen water, but it is incorporated into randomly distributed <1 μm diameter inclusions in freezing 1 mM NaCl. We infer that morphology is largely determined by the dynamic instabilities generated upon advancing ice by the rejected solute, rather than by thermodynamics. The protracted alkalization of the fluid inclusions reveals that the excess negative charge generated by the preferential incorporation of Cl− over Na+ in ice is neutralized by the seepage of the OH− slowly produced via H2O → H+ + OH− thermal dissociation.

ice carriers.15,21,22 The selective incorporation of cations into the ice lattice should therefore lead to the acidification of the unfrozen portion, and vice versa. The acidity of interstitial fluids determines whether weak volatile acids or bases are exchanged between ice and the gas phase or whether reactions between dopants are inhibited or catalyzed upon freezing.23–27 Chemical28,29 and biological activity30 in snow, ice cores, and permafrost actually occurs in intergranular microfluids containing the solutes and nutrients rejected by the solid matrix.

Much less information is available on interstitial fluids.3,4,37–39 The experimental study of optically transparent polycrystalline ice seems ideally suited to advance our understanding of the nature of grain boundaries. Herein, we report preliminary results of the first time-resolved confocal fluorescence microscopy study of freezing aqueous electrolyte solutions4,40–42 and their subsequent thawing.

Figure 1 shows that under a preset −10.0 K min−1 ramp, the sample temperature T_s actually fell to ∼268 K at −7.9 K min−1. At this point freezing began, raising T_s to 273 K. T_s remained at ∼273 K during freezing, before falling to 265 K for the rest of stage 2. The time elapsed between the onset and completion of freezing was ∼125 s.

Different cooling ramps affected the ice front velocity, v, rather than T_s. The ice front typically moved radially inward toward the axis of the cylindrical sample at v ≈ 5 μm s−1. In this process, the fluorescent probe is rejected into liquid inclusions whose morphology critically depends on the absence or presence of other electrolytes (Figure 2a–c). C-SNARF-1 in Milli-Q water or in μM electrolyte solutions accumulates into liquid channels arranged in a cellular network of well-developed δ = (12 ± 2) μm thick veins within very pure (deep blue) ice (Figure 2a). Figure 3a–d shows in more detail the fluorescence intensity and pH (x, y)-distributions during the

Received Date: October 4, 2009
Accepted Date: December 3, 2009
Published on Web Date: December 10, 2009
freezing and thawing of a ([C-SNARF-1] = 10 μM, [NaCl] = 0.1 mM) solution.

Figure 3a shows that the probe is evenly distributed in the sample solution at pH 6.4 over the entire field of view prior to freezing. About 10 s after the onset of freezing, the C-SNARF-1 rejected by solid accumulates within a ∼30 μm half-width diffuse band centered ∼20 μm ahead of the ice front (Figure 3b). Figure 3b and c shows that the pH increases from 6.4 to 7.2 at the band center on this time scale and up to 7.0 in the liquid inclusions farther away. The pH, however, rises to 8.4 upon thawing samples that have been frozen for 5 min. This slow response is seemingly associated with the seepage of OH− into liquid inclusions at rates consistent with its production via the thermal dissociation of water, H2O → H+ + OH−, with a rate constant k = K_w/k_b ≈ 10^{-14} M^{-1} s^{-1} ≈ 10^{-3} s^{-1}.17,18,43 The pH reverts to its initial 6.4 value after the thawed sample homogenizes itself. A similar freeze-and-thaw cycle for 0.05 mM CH3COONH4 solutions initially at pH 7.9 leads to a more acidic melt at pH 6.8, as expected from the preferential incorporation of NH4+ in the ice lattice (Figure S1, Supporting Information, SI).17,43 Note that the concentration of aqueous NaCl solutions in equilibrium with pure ice at 268 K is 2.27 mM.44 The volume fraction of interstitial fluids, VF_if = 1 mm/2.27 mm = 0.044 %, in a frozen 1 mM (∼1 mm) NaCl solution in equilibrium at 268 K corresponds to an interstitial volume V_if = 13.2 nL in our 30 μL samples. This volume is equivalent to N > 2.5 × 10^7 quasi-spherical inclusions of <1 μm diameter. Since the solubility of C-SNARF-1 is certainly exceeded in frozen water at 268 K, the fluorescence emissions observed in Figure 2a represent evidence that the probe has not crystallized but remains dispersed in a glassy medium.

The cellular structures evident in frozen doped water are typical of those produced by spontaneous dynamic instabilities in systems far from equilibrium (Figure 2a).45 The brine inclusions from which the probe emits in frozen 1 mM NaCl or (NH4)2SO4 solutions (Figure 2b, c) represent an alternative outcome of freezing from otherwise identical initial conditions. Upon freezing, latent heat is released while rejected solutes concentrate in the liquid at the ice front.46-48 The consequences of these perturbations depend on the competition between ice front velocities with thermal and mass diffusion rates, respectively. Thermal and concentration fluctuations eventually trigger the formation of ice protrusions at planar fronts, which amplify themselves because the thermal conductivity of ice is ∼3.5 times larger than that of water.
Depending on the conditions, these columnar arrays become themselves unstable toward perturbations normal to the advancing dendrites. Ice bridges may develop across dendrites that will encapsulate the liquid into spheroidal inclusions. This process is akin to the breakup of liquid jets into droplets via Rayleigh instabilities. Thermodynamics dictates that these inclusions should ultimately coalesce to minimize the overall surface-to-volume ratio. The processes by which equilibrium is reached may, however, be immeasurably slow. It is apparent that any explanation for the dissimilar outcomes of freezing water and 1 mM electrolytes on the time scale of present experiments cannot be exclusively based on thermodynamics (see Appendix S1, SI). The complex dynamics of freezing in a supersaturated solution may be affected, but it is not determined by the short-range dispersive and long-range shielded Coulombic forces that would arise among approaching ice grains. Recent molecular dynamics calculations actually suggest that the role of impurities is to perturb the cooperativity of molecular motions during freezing and that interstitial fluids at grain boundaries resemble glassy materials whose properties and morphology are very sensitive to impurities.

Summing up, we have shown that confocal fluorescence microscopy of freezing aqueous solutions is an incisive experimental tool for investigating the development and properties of interstitial fluids. A more comprehensive study of solute concentration, undercooling, and annealing effects on the morphology of grain boundaries is underway.

Experimental Methods

The dual-emission fluorescence pH indicator C-SNARF-1 (Scheme 1) was used in our experiments. Fluorescence spectra of C-SNARF-1 excited at \(\lambda_{exc} = 488 \) or 514 nm display two maxima at \(\lambda_1 = 581 \) nm and \(\lambda_2 = 635 \) nm (isosbestic emission point at \(\lambda_{iso} = 615 \) nm) whose relative intensities...
sensitively depend on pH (Figure 4 and Figure S2, SI). Temporally and spatially resolved fluorescence emission spectra from test solution samples (30 μL; 6 mm diameter, 1 mm deep) were obtained with a confocal laser scanning microscope equipped with a programmable cryostage set to (1) cool at -10 K min$^{-1}$ from 298 to 268 K, (2) hold at 268 K for 5 min after freezing completion, and (5) warm at 10 K min$^{-1}$ to 298 K. Actual sample temperatures, T_s, were determined with a fast-response thermocouple dipping into the test solution. Further details are provided in the SI.

SUPPORTING INFORMATION AVAILABLE Additional data and experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

ACKNOWLEDGMENT This project was financially supported by the National Science Foundation (ATM-0534990). C.S. thanks a James J. Morgan SURF Fellowship.

REFERENCES

