
DMD 043158 
 

1 
 

Predictions of CYP-Mediated Drug-Drug Interactions Using Cryopreserved 

Human Hepatocytes: Comparison of Plasma and Protein-Free Media 

Incubation Conditions  

 

Jialin Mao, Michael A. Mohutsky, John P. Harrelson, Steven A. Wrighton and Stephen 

D. Hall 

Drug Disposition, Lilly Research Labs, Eli Lilly and Co., Indianapolis, IN (JM, MAM, 

SAW and SDH); School of Pharmacy, Pacific University, Hillsboro, OR (JPH)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 DMD Fast Forward. Published on January 6, 2012 as doi:10.1124/dmd.111.043158

 Copyright 2012 by the American Society for Pharmacology and Experimental Therapeutics.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 6, 2012 as DOI: 10.1124/dmd.111.043158

 at A
SPE

T
 Journals on January 4, 2017

dm
d.aspetjournals.org

D
ow

nloaded from
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CommonKnowledge

https://core.ac.uk/display/48845761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dmd.aspetjournals.org/


DMD 043158 
 

2 
 

Running title: CYP2C9, CYP2D6 and CYP3A DDI Predictions Using Human Hepatocytes  
 
 

To whom correspondence should be addressed: 

Stephen D. Hall, Ph.D. 

Drug Disposition  

Lilly Research Labs, Eli Lilly and Co.  

Lilly Corporate Center  

Indianapolis, IN, 46285 

Phone: 317-277-0338 

Fax: 317-433-9287 

Email: HALL_STEPHEN_D@LILLY.COM 

 

The number of text pages: 25 

The number of tables: 4  

The number of figures: 3  

The number of reference: 86 

The number of words in the Abstract: 249 

The number of words in the Introduction: 397 

The number of words in the Discussion: 1781 

 

Abbreviations:  AUC: area under the curve; CYP3A/CYP2C9/CYP2D6: cytochrome P450 

3A/2C9/2D6; DDIs: drug-drug interactions; Km: Michaelis-Menten constant; Vmax: maximum rate 

of metabolism; fu,p: fraction unbound in human plasma; TDI: time-dependent inhibitor; HLM: 

human liver microsomes; HMM: hepatocyte maintenance medium; HHSHP: cryopreserved 

human hepatocytes suspended in human plasma  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 6, 2012 as DOI: 10.1124/dmd.111.043158

 at A
SPE

T
 Journals on January 4, 2017

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


DMD 043158 
 

3 
 

Abstract 

Cryopreserved human hepatocytes suspended in human plasma (HHSHP) have previously 

provided accurate CYP3A drug-drug interaction (DDI) predictions from a single IC50 that 

captures both reversible and time-dependent inhibition.  The goal of this study was to compare 

the accuracy of DDI predictions by a protein-free human hepatocyte system combined with the 

fraction unbound in plasma for inhibitor(s) with those obtained with protein-containing 

incubations. Seventeen CYP3A, CYP2C9 or CYP2D6 inhibitors were incubated with hepatocytes 

in human plasma or hepatocyte maintenance medium (HMM) for 20 min over a range of 

concentrations after which midazolam 1’-hydroxylation, diclofenac 4’-hydroxylation or (R)- 

bufuralol 1’-hydroxylation were used to quantify the corresponding CYP catalytic activities. Two 

methods were utilized to predict the human exposure ratio of the victim drug in the presence and 

absence of inhibitor. The HMM Ki, app values were combined with the free average systemic 

plasma concentration (“free [I] with HMM Ki,app”) and the plasma Ki, app values were combined 

with the total average systemic plasma concentration (“total [I] with Plasma Ki,app”). Of 63 

clinical DDI studies, the “total [I] with Plasma Ki,app” method predicted 89% of cases within 2-

fold of the reported interaction whereas the“free [I] with HMM Ki,app” method predicted only 

59%. There was a general underprediction by the“free [I] with HMM Ki,app” method, which is 

consistent with an underestimation of  in vitro inhibition potency in this system. In conclusion, 

the HHSHP system proved to be a simple, accurate predictor of DDIs for 3 major CYPs and 

superior to the protein-free approach. 
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Introduction 

In studies of drug disposition, it has often been assumed that an in vitro drug 

metabolizing systems used for clearance and DDI predictions perform equally well in the 

presence or absence of protein. Consequently the expectation is that after correcting for drug 

protein binding, the intrinsic clearance and inhibition potencies obtained with or without protein 

should be equivalent but exceptions to this expectation have been noted. Enhanced unbound 

clearance of rose bengal, oleic acid, sulfobromophthalein and bilirubin in the presence of 

albumin, relative to the absence of albumin, led to postulates that an albumin receptor present on 

the hepatocellular membrane facilitated hepatic elimination or that a protein binding dissociation 

rate limitation existed (Forker et al., 1982; Svenson et al., 1974; Goresky and Rose, 1977; Reed, 

1977; Weisiger et al., 1981). Although the unexpected effects of albumin on hepatic clearance led 

to complex hypotheses the reliability of the intrinsic clearance estimation in the presence and 

absence of protein was not investigated in these studies. 

Human hepatocytes have been used in several formats to predict drug clearance in vivo 

(Houston and Carlile, 1997; Li et al., 1999; Blanchard et al., 2006; Hallifax et al., 2008) and more 

recently to predict DDIs (McGinnity et al., 2005; Zhao et al., 2005; Lu et al., 2007; Xu et al., 

2009). Hepatocytes with a functioning cell membrane barrier and a realistic complement of phase 

I and phase II enzymes and their necessary coenzymes and cofactors, can be seen as better in 

vitro model for the quantitation of DDIs. However, a systematic comparison of the performance 

of hepatocytes DDI assays with and without human plasma has not been conducted (Lu et al., 

2007; Lu et al., 2008a; Lu et al., 2008b). A previous study from this laboratory demonstrated that 

a method using an IC50 measured from a single time point in human hepatocytes suspended in 

human plasma (HHSHP) provided a highly reliable CYP3A–mediated DDI prediction for both 

reversible inhibitors and TDIs (Mao et al., 2011). Therefore, the similar approach has been 

expanded to CYP2C9 and CYP2D6 inhibitors. A comprehensive evaluation was undertaken to 

determine whether HHSHP or protein-free hepatocyte maintenance media (HMM) provide 
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reliable and comparable DDI predictions using four reversible and two time dependent CYP3A 

inhibitors (HHSHP data was obtained from our previous publication Mao et al., 2011), six 

reversible CYP2C9 inhibitors and six CYP2D6 inhibitors (five reversible inhibitors and one 

TDI). 
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Materials and Methods 
 
Materials. Cryopreserved human hepatocytes (pool of five individuals) and InVitro GROTM HT 

Medium were obtained from Celsis In Vitro Technologies, Inc. (Baltimore, MD). Midazolam, 1’-

hydroxymidazolam, [13C5]-1’-hydroxymidazolam, 4’-hydroxydiclofenac, [13C6]-4’-

hydroxydiclofenac, 1’-hydroxybufuralol and [2H9]-1’-hydroxybufuralol were obtained from BD 

Gentest (Woburn, MA). Conivaptan was obtained from an internal Lilly chemical library. 

Diclofenac, diphenhydramine, duloxetine, fluconazole, fluvastatin, fluoxetine, ibuprofen, 

ketoconazole, nefazodone, miconazole, paroxetine, quinidine, sertraline, sulfaphenazole and 

tolbutamide were obtained from Sigma (St. Louis, MO). Aprepitant, (R)-bufuralol and 

voriconazole were obtained from Toronto Research Chemicals (North York, ON, Canada).  

Human plasma (Na-heparin) was obtained from Lampire Biological Laboratories, Inc. 

(Pipersville, PA). Hepatocyte Maintenance Medium (HMM) was obtained from Lonza, Inc. 

(Walkersville, MD). 

Hepatocyte studies.   Hepatocytes were thawed in InVitro GROTM HT Medium (25 ml per 5 

million hepatocytes) and centrifuged (50×g) at room temperature for 5 min.  The cell pellet was 

reconstituted in HMM and cell viability was found to be at least 80% using a Vi-Cell XR cell 

viability analyzer (Beckman Coulter Inc., Brea, CA).  After the cell viability was determined, 

hepatocytes were centrifuged at 50×g at room temperature for 5 min and resuspended in HMM or 

human plasma (1x106 cells/ml for kinetic studies and  2x106 cells/ml for inhibition studies). The 

cell suspension was incubated at 37 °C with 5% CO2 and 95% O2 before use. HMM is protein-

free hepatocyte maintenance medium, and its content is similar to Williams' E Medium 

containing water, inorganic salts, amino acids and vitamins with no growth factors.  

Kinetic studies. The stock hepatocyte suspension in HMM or human plasma (50 µ l) was added to 

50 µl of HMM or human plasma containing probe substrates such that the final concentration of 

hepatocytes was 0.5 × 106 cells/ml. Preliminary studies were conducted to determine the substrate 

range necessary to achieve maximal activity for each CYP-substrate pair.  For CYP3A, final 
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midazolam concentrations were 1.25 - 160 µM (HMM) and 15 - 1920 µM (human plasma).  For 

CYP2C9, final diclofenac concentrations were 1.5 - 192 µM (HMM) and 75 - 9600 µM (human 

plasma). For CYP2D6, the final concentration range of (R)-bufuralol in both HMM and human 

plasma was 2.25 - 288 µM. All incubations were conducted at 37 °C and 5% CO2. Incubations 

were terminated after 35, 45 and 25 minutes for CYP3A, CYP2C9, and CYP2D6, respectively by 

adding 200 µl of acetonitrile/methanol (3:1 v/v) containing the respective internal standard (150 

nM [13C5]-1’-hydroxymidazolam for CYP3A, 945 nM [13C6]-4’-hydroxydiclofenac for CYP2C9, 

and 80 nM [2H9]-1’-hydroxybufuralol for CYP2D6). Samples were centrifuged at 4000 rpm for 

20 min and an aliquot of the supernatant was analyzed by LC-MS/MS.  Preliminary experiments 

demonstrated that these incubation conditions resulted in linear formation of 1’-

hydroxymidazolam, 4’-hydroxydiclofenac and 1’-hydroxybufuralol with respect to incubation 

time and hepatocyte concentration at both high and low substrate concentrations. 

Inhibition studies. The studies with HHSHP and CYP3A inhibitors have appeared elsewhere ( 

Mao et al., 2011) and are included here to allow for direct comparison to the studies with 

hepatocytes suspended in protein-free HMM. The same hepatocytes lot was utilized for 

conducting all studies presented here. CYP3A inhibitor concentrations in HMM and human 

plasma were 0.03 - 20 µM for ketoconazole and 0.13 - 100 µM for aprepitant, conivaptan (TDI), 

fluconazole, nefazodone (TDI) and voriconazole. CYP2C9 inhibitor concentrations in HMM and 

human plasma were 0.13 - 100 µM for fluconazole, miconazole, sulfaphenazole and fluvastatin, 

and 1.65 - 1200 µM for ibuprofen and tolbutamide.  CYP2D6 inhibitor concentrations in HMM 

and human plasma were 0.13 - 100 µM for diphenhydramine, duloxetine and sertraline, 0.0013 - 

1 µM for quinidine, 0.013 - 10 µM for paroxetine (TDI), and 0.03 - 20 µM for fluoxetine. The 

final organic vehicle concentration was 0.5% methanol.  Incubations were performed in triplicate. 

The stock hepatocyte suspension in HMM or human plasma (25 µl) was added to 50 µl of HMM 

or human plasma containing inhibitor and incubated for 20 min (37 °C and 5% CO2) before the 

addition of the probe substrate. Probe substrates were dissolved in 25 µl of HMM or human 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 6, 2012 as DOI: 10.1124/dmd.111.043158

 at A
SPE

T
 Journals on January 4, 2017

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


DMD 043158 
 

8 
 

plasma and final incubation concentrations were: 0.6 µM in HMM and 30 µM in human plasma 

(midazolam), 5 µM in HMM and 160 µM in human plasma (diclofenac), and 2 µM in HMM and 

24 µM in human plasma ((R)-bufuralol).  Following addition of the probe substrate the 

incubations were continued for 35, 45 and 25 min for CYP3A, CYP2C9, and CYP2D6, 

respectively. Incubations were terminated similar to the method used for kinetic studies by the 

addition of 200 µl of acetonitrile/methanol (3:1 v/v) containing the respective internal standard. 

Samples were centrifuged at 4000 rpm for 20 min and an aliquot of the supernatant was analyzed 

by LC-MS/MS.  

Liquid chromatography/tandem mass spectrometry methods. Quantification of 1’-

hydroxymidazolam, 4’-hydroxydiclofenac and 1’-hydroxybufuralol was achieved using HPLC 

(Shimadzu LC10) interfaced to a triple quadrapole mass spectrometer (Sciex API 4000, Applied 

Biosystems, Foster City, CA).  

CYP3A. Detailed HPLC/MS conditions for the chromatographic separation for 1’-

hydroxymidazolam were previously described (Mao et al., 2011). 

CYP2C9. Chromatographic separation for 4’-hydroxydiclofenac was achieved using a reverse 

phase column (Varian Monochrome 5 µm C18 column, 50 × 2 mm, Varian, Palo Alto, CA) with 

a gradient consisting of 5% methanol in 5 mM ammonium acetate (mobile phase A) and 95% 

methanol in 5 mM ammonium acetate (mobile phase B) at a flow rate of 0.5 ml/min with 5 µl 

injection volume. Specifically, mobile phase B (20%) was increased linearly to 99% from 0 to 

1.15 min, and was held at 99% from 1.15 to 2.40 min, and the column was re-equilibrated to 20% 

B. The electrospray ionization probe was run in the negative mode with probe temperature of 450 

°C.  The m/z transitions of 4’-hydroxydiclofenac and [13C6]- 4’-hydroxydiclofenac were 310 

→266 and 316→272, respectively. The lower and upper limits of quantification were 113 and 

14418 nM 4’-hydroxydiclofenac. The interday accuracy ranged from -7.4% to -1.4%, and the 

intraday accuracy ranged from -10.9% to 0.9%. The interday precision ranged from 1.4% to 

7.5%, and the intraday precision ranged from 1.1% to 8.2%. 
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CYP2D6. Chromatographic separation for 1’-hydroxybufuralol was achieved using a reverse 

phase column (Varian Monochrome 5 µm C18 column, 50 × 2 mm, Varian, Palo Alto, CA) with 

a gradient consisting of 5% methanol in 5 mM ammonium acetate (mobile phase A) and 95% 

methanol in 5 mM ammonium acetate (mobile phase B) at a flow rate of 0.5 mL/min with 5 µl 

injection volume. Specifically, mobile phase B (10%) was increased linearly to 90% from 0 to 

1.70 min, and increased to 98% in the next 0.01 min. Mobile phase B was held at 98% from 1.71 

to 2.50 min, and the column was re-equilibrated to 10% B. The electrospray ionization probe was 

run in the positive mode with probe temperature of 550 °C. The m/z transitions of 1’-

hydroxybufuralol and [2H9]-1’-hydroxybufuralol were 278 →186 and 287 →186, respectively. 

The lower and upper limits of quantification were 2.45 and 624.6 nM 1’- hydroxybufuralol. The 

interday accuracy ranged from -8.1% to -1.6%, and the intraday accuracy ranged from -6.8% to 

6.7%. The interday precision ranged from 2.7% to 7.1%, and the intraday precision ranged from 

1.2% to 4.4%. 

Data analysis. 

Kinetic data.  Kinetic parameters (Vmax and Km) for each substrate in HMM and human plasma 

(based on the nominal concentration, no correction of unbound fraction) were obtained by fitting  

the untransformed data to the Michaelis-Menten equation (Eq. 1) using weighted nonlinear 

regression (WinNonlin 5.0, Pharsight Corp, Mountain View, CA).  

                                                                                                                                                 (Eq.1) 

 

Inhibition data.  A same approach was described  previously (Mao et al., 2011), in which the 

relationship between the CYP activities in hepatocytes incubated in both systems at a given time 

and inhibitor concentration relative to the baseline CYP activity was used to determine an IC50. 

IC50 values were calculated with the mean of triplicate determinations using the following model 

(Eq. 2) by weighted nonlinear regression (WinNonlin 5.0, Pharsight Corp, Mountain View, CA).   

                                                                                                                                                                                                                                 (Eq.2) 
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Where X is the nominal concentration of an inhibitor (no correction of fu,p for the human plasma 

incubation); Y represents the percentage of baseline CYP activity remaining; a is the estimated 

response at zero concentration of inhibitor; γ is the slope factor, which describes the steepness of 

the curve.   

The apparent Ki, app for each inhibitor in HMM or human plasma was calculated by the 

following equation (Eq. 3). 

                                                                                                                                                (Eq. 3) 

 

where Km is the Michaelis-Menten constant for 1’-hydroxymidazolam, 4’-hydroxydiclofenac and 

1’-hydroxybufuralol formation obtained in either HMM or human plasma, and [S] represents the 

concentration of midazolam, diclofenac and (R)-bufuralol in the HMM and plasma inhibition 

assays.  

Predictions of drug-drug interactions.   

CYP3A. A general model (Eq. 5) of enzyme inhibition was used to predict a potential increase in 

exposure to a drug as a result of  the inhibition of hepatic and intestinal CYP3A (Ito et al., 1998; 

Wang et al., 2004; Obach et al., 2006). For competitive inhibitors, the Ki, app would be equivalent 

to the inhibition constant Ki.  In the case of TDIs, Ki, app would be equivalent to KI × kdeg /kinact 

when [I] << KI, where kdeg is degradation rate constant of CYP3A, KI is the inhibitor 

concentration required for half maximal inactivation, and kinact is the maximum inactivation rate 

constant (Wang et al., 2004). 
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AUC p.o.,i/AUC p.o is the predicted ratio of in vivo exposure of a CYP3A-cleared drug with and 

without oral coadministration of the inhibitor, fm,CYP is the fraction of total clearance CYP3A 

contributes for the affected drug, Fg is the fraction of the dose of the affected drug that passes 

through the intestine unchanged after p.o. administration in the control state. In four clinical 

studies (ketoconazole, aprepitant, conivaptan, and voriconazole) intravenous midazolam dosing 

was employed and AUC ratio was predicted using Eqs. 5 and 6 with Fg = 1 and under the 

reasonable assumption that midazolam has a low to moderate hepatic extraction ratio. 

The fraction of midazolam metabolized by CYP3A was assumed to be 0.93 as observed 

previously (Obach et al., 2006). The fraction of drug metabolized by CYP3A in the intestine was 

assumed to be 1 (assuming no other CYPs other than CYP3A metabolize midazolam in the 

intestine), and the Fg values for midazolam, was assumed to be 0.57, as described previously 

(Ernest et al., 2005; Obach et al., 2006).  Inhibitor concentrations were collected from three main 

sources. The average systemic plasma concentration of the inhibitor reported or calculated (i.e., 

plasma concentration area under curve from 0 to the dosing interval (AUC0-τ) divided by the 

dosing interval) from the primary literature was the preferred source. The second option utilized 

the inhibitor concentration at a specific time point reported in the primary literature. If the 

inhibitor concentration was not reported in the primary literature, values were obtained from 

secondary literature sources (Ito et al., 2003; Einolf, 2007; Fahmi et al., 2008; Fahmi et al., 2009). 

These values were previously derived from other literature in which similar dosing regimens were 

employed for individual inhibitors.  

The concentration of the inhibitor in the enterocyte during absorption ([I]g) (Eq. 6) was 

estimated based on the assumption that 1) no significant protein binding in the gut lumen 

and 2) inhibitors not subject to any first pass metabolism (Rostami-Hodjegan A, 2004; 

Galetin et al., 2008). D is the dose of the inhibitor (mg), ka is the oral absorption rate constant of 

the inhibitor, Fa is the fraction of the inhibitor absorbed into the gut wall from the intestinal 
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lumen following oral administration, Qent represents the blood flow to the enterocyte, and MW is 

the molecule weight for each inhibitor.  For ka and Qent values of 0.03 min-1 and 248 ml/min were 

respectively used, as described previously (Obach et al., 2006). An Fa value of 1 was used for all 

drugs (Einolf, 2007). 

                   

MWQ
Fk

×
××=

ent 

aa

g

D
[I]                                                (Eq. 6) 

 For HMM Ki, app, the free systemic plasma concentration ([I]  × fu,p) was employed for 

DDI predictions because the HMM Ki,app was generated in a plasma protein-free environment (the 

“free [I] with HMM Ki,app” method).   

For plasma Ki, app, the total systemic plasma concentration was employed for hepatic DDI 

prediction (the “total [I] with plasma Ki,app” method). The plasma Ki,app values were based on 

total inhibitor concentration in plasma and consequently there was no need to use 

unbound plasma concentrations in the predictions. The prediction of intestinal inhibition, 

Ki,app values were converted to unbound values (Ki,app  × fu,p) consistent with the assumption of no 

significant plasma protein binding in the gut lumen. The fraction unbound in human plasma (fu,p) 

for each compound was collected from Goodman & Gilman (Hardman et al., 2001).  

CYP2C9 and CYP2D6. A similar model (Eq.7) without considering the intestinal interaction was 

utilized for CYP2C9 and CYP2D6 inhibition. 

                                                                                                                                              (Eq. 7) 

 

The values for the fraction of object drug metabolized by CYP2C9 were assumed to be 

the same as that reported previously for tolbutamide, phenytoin, S-warfarin, lovastatin, 

fluvastatin, glimepiride and diclofenac (0.80, 0.75, 0.87, 0.81, 0.60, 0.95 and 0.75, respectively) ( 

Brown et al., 2005).  Likewise, the values for the fraction of object drug metabolized by CYP2D6 

were 0.83, 0.88, 0.46, 0.86, 0.49 and 0.76 for metoprolol, desipramine, imipramine, encainide, 
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mexiletine, and propafenone, respectively (Brown et al., 2005). Values of the inhibitor 

concentration were adopted from the calculated average systemic plasma concentration after 

repeated oral administration (Ito et al., 2003). 

Data sources.  Data from 63 clinical DDI studies were collected from the primary literature after 

having been identified by the University of Washington Metabolism and Transport Drug 

Interaction Database (http://www.druginteractioninfo.org/). The database was accessed on 

06/24/2009, and the data are reported in Table 3.  

Seventeen inhibitors were chosen based on the following considerations: 1) 

representative reversible inhibitors (i.e., ketoconazole a strong CYP3A inhibitor; sulfaphenazole, 

fluvastatin and miconazole strong CYP2C9 inhibitors; duloxetine, fluoxetine and quinidine strong 

CYP2D6 inhibitors; fluconazole a moderate CYP3A and CYP2C9 inhibitor, voriconazole and 

aprepitant moderate CYP3A inhibitors; ibuprofen and tolbutamide moderate CYP2C9 inhibitors; 

diphenhydramine and sertraline moderate CYP2D6 inhibitors) and TDIs (nefazodone and 

conivaptan moderate CYP3A TDIs; paroxetine a strong CYP2D6 TDI); 2) compounds with 

varied levels of plasma protein binding (conivaptan, ketoconazole, fluvastatin, miconazole, 

ibuprofen, tolbutamide, duloxetine, fluoxetine, paroxetine, quinidine and sertraline high plasma 

protein binding; voriconazole, sulfaphenazole and diphenhydramine moderate plasma protein 

binding; and fluconazole low plasma protein binding).  

Nineteen clinical DDI studies involved the inhibition of CYP3A with midazolam as the 

victim drug (three studies were related to TDIs); 15 studies involved the inhibition of CYP2C9 

with tolbutamide, phenytoin, S-warfarin, lovastatin, fluvastatin, glimepiride and diclofenac as 

victim drugs; 29 studies involved the inhibition of CYP2D6 with metoprolol, desipramine, 

imipramine, encainide, mexiletine, and propafenone as the victim drugs (eight studies were 

related to paroxetine).  
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Data analyses. Among 63 clinical DDIs, there were 15 strong interactions (AUC ratio > 5), 25 

moderate interactions (2 ≤ AUC ratio ≤ 5), 17 weak interactions (1.25 ≤AUC ratio < 2) and 6 no 

interaction (AUC ratio < 1.25, assuming no induction). Two methods were employed to quantify 

the accuracy of predicted DDIs. One was to compare the fold error of the ratio of predicted to 

observed AUC values (2-fold cut-off). The second method was called “categorical prediction” 

based on the definition of strong, moderate, weak, and no interactions (Draft FDA Guidance for 

Industry 2006, Drug Interaction Studies-Study Design, Data Analysis, and Implications for 

Dosing and 

Labeling;http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/Drug

InteractionsLabeling/ucm080499.htm). 

In addition, the bias and precision of both methods were evaluated by the geometric 

mean-fold error (GMFE) and the root-mean-square error (RMSE) with equations 8 and 9, 

respectively.   

sprediction ofNumber 

)
DDI Observed

DDI Predicted
log(

10GMFE 

∑

=                                                                                        (Eq. 8) 

sprediction ofNumber 

DDI) Observed-DDI (Predicted
RMSE 

2
∑=                                                     (Eq. 9) 
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Results 

Substrate kinetic studies 

Midazolam 1’-hydroxylation, diclofenac 4’-hydroxylation and (R)-bufuralol 1’-

hydroxylation data from human hepatocytes in HMM and human plasma were fitted to the 

Michaelis-Menten equation. The Km values were referenced to the nominal total concentration in 

the individual study system and also referenced to the corresponding unbound concentration for 

the plasma system; values in the HMM system were not corrected for nonspecific binding. 

Overall, Km values were higher in plasma than HMM for all three CYP-substrate pairs while 

maximal velocities were similar in both systems. The Km for midazolam 1’-hydroxylation in 

human plasma (Table 1) was approximately 6-fold higher than that in HMM (46 µM vs. 8 µM), 

although the maximum rates of 1’- OH midazolam formation in both systems were within 2-fold 

(0.036 and 0.021 nmol/min/million cells in human plasma and HMM, respectively). The Km of 

diclofenac in human plasma was about 41-fold higher than that in HMM (1408 µM vs. 35 µM), 

while the maximum rates of 4’-OH diclofenac formation in both systems were comparable (0.49 

and 0.41 nmol/min/million cells in human plasma and HMM, respectively). The Km of (R)-

bufuralol in human plasma was approximately 4.5-fold higher than that in HMM (55 µM vs. 12 

µM), and the maximum rates of (R)-bufuralol metabolism in both systems were comparable 

(0.048 and 0.059 nmol/min/million cells in human plasma and HMM, respectively). When 

corrected for protein binding the plasma Km values were generally lower than those estimated in 

the HMM system (Table 1). 

Enzyme inhibition parameter estimation 

CYP3A   

Six inhibitors were incubated with human hepatocytes suspended in human plasma (Mao 

et al., 2011) or HMM for 20 min over a range of concentrations in the absence of midazolam and 
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a further 35 min in the presence of midazolam. The IC50 value for each inhibitor was estimated 

using Eq. 1 and the values are shown in Table 2. Due to solubility issues, no IC50 value was 

obtained in HMM system for aprepitant. The addition of human plasma facilitated the solubility 

of aprepitant and an IC50 curve was obtained in this system (IC50 = 24.10 µM). Based on the 

assumption that the nominal concentration of inhibitor mimics the extracellular concentration, 

these IC50 values represent the total concentration of the inhibitors that inhibit 50% of CYP3A 

activity. The mean IC50 values were converted to the corresponding Ki,app in HMM and plasma 

(listed in Table 3) considering the difference in Km values measured in each system according to 

Eq. 3. Assuming there is minimal nonspecific binding, the ratio of HMM Ki, app and plasma Ki, app 

are expected to be equal to fu,p because the plasma Ki, app was generated using total inhibitor 

concentration while the HMM Ki, app was generated using free inhibitor concentration. Therefore, 

in order to compare the values of Ki, app generated from two matrices, the plasma Ki, app corrected 

by fu,p was plotted against HMM Ki, app in Figure 1. In order to prevent bias in the collection and 

use of fu,p,  the values of  fu,p were obtained from a single source, Goodman & Gilman (Hardman 

et al., 2001). For all five CYP3A inhibitors, the values of HMM Ki, app were higher than the 

plasma Ki, app corrected by fu,p.  

CYP2C9 

Six inhibitors were incubated with human hepatocytes suspended in human plasma or 

HMM for 20 min over a range of concentrations in the absence of diclofenac and a further 45 min 

in the presence of diclofenac. The IC50 value for each inhibitor was estimated using Eq. 1 and the 

values are shown in Table 2. For fluconazole, the plasma IC50 value was comparable to that 

previously reported (Lu et al., 2007; Lu et al., 2008a; Lu et al., 2008b). These IC50 values were 

converted to the corresponding Ki,app in HMM and plasma (listed in Table 3) considering the 

difference in Km values measured in each system according to the Eq. 3. Although plasma IC50, app 

values of ibuprofen and tolbutamide are higher than 1200 μM, the plasma Ki, app was calculated as 

the plasma IC50, app of 1200 μM in order to perform the DDI prediction. Despite this, no DDI was 
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predicted for ibuprofen and tolbutamide. With the exception of sulfaphenazole, the values of 

HMM Ki, app were higher than the plasma Ki, app corrected by fu,p (Figure 1), which was also 

observed with CYP3A inhibitors. Fluconazole had a higher Ki, app value in HMM than plasma for 

both CYP3A and CYP2C9.  

CYP2D6 

Six inhibitors were incubated with human hepatocytes suspended in human plasma or 

HMM for 20 min over a range of concentrations in the absence of the probe substrate and a 

further 25 min in the presence of (R)-bufuralol. (R)-bufuralol was selected rather than racemic 

bufuralol because CYP2D6 displays substrate enantioselectivity for (R)-bufuralol over (S)- 

bufuralol (Dayer et al., 1987; Narimatsu et al., 2003; Masuda et al., 2005). CYP2D6 is 

responsible for 95% of racemic bufuralol 1’- hydroxylation clearance, whereas CYP2C19 is 

responsible for 5% and CYP1A2 has a small contribution (<1%) (Mankowski, 1999). .  

The IC50 value for each inhibitor was estimated using Eq. 1 and the values are shown in 

Table 2. There were no major differences in IC50 values in HMM and plasma for quinidine and 

paroxetine. All IC50 values were converted to the corresponding Ki,app in HMM and plasma (listed 

in Table 3) considering the difference in Km values measured in each system according to the Eq. 

3. With the exception of diphenhydramine, the values of HMM Ki, app were higher than plasma Ki, 

app corrected by fu,p (Figure 1), which was also observed with  the CYP3A and CYP2C9 inhibitors. 

Prediction of DDIs 

Two methods were utilized for DDI predictions with six CYP3A inhibitors, six CYP2C9 

inhibitors and six CYP2D6 inhibitors in 63 clinical studies (Table 3). The assumptions behind 

these two methods were that for the “free [I] with HMM Ki,app” method, HMM Ki,app represents 

the “free” inhibition potency therefore the in vivo inhibitor concentration needs to be corrected by  

fu,p.  On the other hand for the “total [I] with plasma Ki,app” method, plasma Ki,app represents the 

“total” inhibition potency therefore there is no need to correct  the in vivo inhibitor concentration 

by  fu,p. Two criteria (2-fold cut-off and “categorical prediction”) were utilized to evaluate the 
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prediction outcomes (refer to “Materials and Methods” section for details). The predictive 

performance from both methods is summarized for individual CYP and all CYPs combined in 

Table 4. 

CYP3A 

 Free [I] with HMM Ki,app 

Five out of nineteen studies were predicted within 2-fold (26% accuracy). This method 

failed to predict four out of nineteen studies (Figure 2; Table 3 and 4). The HMM system could 

not be used to predict four aprepitant clinical DDIs since no measurement of Ki,app could be 

obtained due to the poor aprepitant solubility in HMM. In addition, this method underpredicted 

the other 15 clinical studies by up to 8.24-fold for the ketoconazole study reported by Olkkola et 

al. (1994). With respect to categorical prediction, neither of the two clinical studies were correctly 

predicted as weak interactions (0% accuracy), two out of nine clinical studies were correctly 

predicted as moderate interactions (22% accuracy), and none of the eight clinical studies were 

correctly predicted as strong interactions (0% accuracy). 

Total [I] with plasma Ki,app 

Sixteen out of nineteen studies were predicted within 2-fold (84% accuracy) including 

four aprepitant clinical DDIs (Figure 3; Tables 3 and 4). Two out of two clinical studies were 

correctly predicted as weak interactions (100% accuracy),  six out of nine clinical studies were 

correctly predicted as moderate interactions (67% accuracy), and five out of eight clinical studies 

were correctly predicted as strong interactions (63% accuracy). 

CYP2C9 

Free [I] with HMM Ki,app  

Fourteen out of fifteen studies were predicted within 2-fold (93% accuracy; Figure 2 and 

Tables 3 and 4). For fluvastatin, ibuprofen and tolbutamide, this method predicted all 3 clinical 

studies within 2-fold and correctly predicted each as no interaction (100% accuracy). Although 

the majority of clinical studies related to fluconazole and miconazole were predicted within 2-
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fold, there was a bias towards underprediction (Fig. 2). Four out of five clinical studies were 

correctly predicted as weak interactions (80% accuracy), two out of six clinical studies were 

correctly predicted as moderate interactions (33% accuracy), and the only  clinical study with a 

strong interaction was not correctly predicted (0% accuracy). 

Total [I] with plasma Ki,app 

Fourteen out of fifteen studies were predicted within 2-fold (93% accuracy; Figure 3 and 

Tables 3 and 4). For fluvastatin, ibuprofen and tolbutamide, this method predicted all 3 clinical 

studies within 2-fold and correctly predicted each as no interaction (100% accuracy). With this 

method the predictions for 8 studies with fluconazole did not demonstrate a bias. An accurate 

DDI prediction for sulfaphenazole was also observed. Because of the high average plasma 

concentration of sulfaphenazole (160-640 μM), the maximum inhibition was reached even though 

the plasma Ki,app was high. Four out of five clinical studies were correctly predicted as weak 

interactions (80% accuracy), four out of six clinical studies were correctly predicted as moderate 

interactions (66% accuracy), and the only  clinical study with a strong interaction was not 

correctly predicted (0% accuracy). 

CYP2D6  

Free [I] with HMM Ki,app  

Eighteen out of twenty nine studies were predicted within 2-fold (62% accuracy; Figure 2 

and Tables 3 and 4). Similar to the observations with CYP3A and CYP2C9, this method 

underpredicted the majority of clinical DDI studies with a maximum 6.55-fold underprediction 

for the paroxetine study reported by Hemeryck et al. (2000). Three of three clinical studies were 

correctly predicted as no interactions (100% accuracy), two out of ten clinical studies were 

correctly predicted as weak interactions (20% accuracy; the rest were underpredicted as no 

interactions), one out of ten clinical studies was correctly predicted as a moderate interaction 

(10% accuracy), and none of six clinical studies were correctly predicted as a strong interaction 

(0% accuracy). 
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Total [I] with plasma Ki,app 

Twenty six out of twenty nine studies were predicted within 2-fold (90% accuracy; 

Figure 3 and Tables 3 and 4). Three of three clinical studies were correctly predicted as no 

interactions (100% accuracy), four out of ten clinical studies were correctly predicted as weak 

interactions (40% accuracy; the rest were underpredicted as no interaction). Six out of ten clinical 

studies were correctly predicted as moderate interactions (60% accuracy), and two out of six 

clinical studies were correctly predicted as strong interactions (33% accuracy). 

All CYPs 

Free [I] with HMM Ki,app  

Thirty seven out of sixty three clinical DDIs (59% accuracy) were predicted within 2-fold, and 

the accuracy in predicting no, weak, moderate and strong interactions was 100%, 35%, 20% and 

0%, respectively (Table 4). The values of GMFE and RMSE were 0.51 and 3.94, respectively.  

Total [I] with plasma Ki,app 

Fifty six out of sixty three clinical DDIs (89% accuracy) were predicted within 2-fold, and the 

accuracy in predicting no, weak, moderate and strong interactions was 100%, 59%, 64% and 

47%, respectively (Table 4). The values of GMFE and RMSE were 0.86 and 2.61, respectively.  
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Discussion  

To evaluate the relative utility of the “total [I] with Plasma Ki,app” and “free [I] with 

HMM Ki,app” methods for predicting in vivo DDIs with cryopreserved human hepatocytes, the 

apparent inhibition constants were determined from protein containing and protein-free systems, 

respectively.  After correcting for protein binding, the Ki,app values were generally higher in the 

protein-free hepatocyte system, with cases showing approximately 10 to 100-fold variation 

(Figure 1).  These system differences result in most inhibitors appearing to be more potent in the 

protein containing system.  One explanation for this observation is that the system is modified by 

the presence of protein such that an enhancement of unbound intracellular inhibitor concentration 

occurs.  This proposition would be analogous to previous discussions that question the free drug 

hypothesis by postulating the existence of hepatocyte membrane “albumin receptors” or an 

albumin-inhibitor complex “dissociation rate limited” uptake proposed for the hepatic clearance 

of iopanoic acid, rose bengal, sulfobromophthaletin, oleate, bilirubin and palmitate (Wilkinson, 

1987). The main assumption behind the “free drug” theory in the context of clearance is that the 

hepatic uptake of drug is solely dependent on the unbound concentration available at the surface 

of the liver cell, and the binding equilibrium existing within the sinusoid is maintained by the 

spontaneous dissociation of the protein-drug complex.  However,  apparent saturation kinetics 

were observed when the albumin-oleate complex concentration was increased at a constant 

fraction unbound (molar ratio of oleate to albumin constant at 1:1) in isolated perfused rat livers 

(Weisiger et al., 1981). This suggests that the uptake of highly protein bound compounds, such as 

oleate, may be attributable to an “albumin receptor” on the liver cell surface but this theory 

remains highly controversial despite many attempts to identify the molecular basis  for such a 

phenomenon (Burczynski et al., 1989; Tang et al., 2002; Cui and Walter, 2003).  An alternative 

explanation to the albumin receptor suggested that uptake removes the unbound moiety more 

rapidly than it can be replenished by spontaneous dissociation from albumin (see Wilkinson, 1987 
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for review). In this hypothesis, uptake is rate limited by dissociation from albumin and becomes 

proportional to the concentration of bound drug for a rapidly cleared compound (Ockner et al., 

1983).  More recently Iwatsubo et al., reported that the rate of hepatic uptake of compounds 

highly bound to albumin did not necessarily depend on the extracellular free concentration 

(Iwatsubo et al., 1996).  

However, greater unbound inhibitor potency and unbound substrate affinity observed 

here in the protein containing system can be explained without dismissing the free drug 

hypothesis but rather by hypothesizing that there is an artefactually low intracellular inhibitor 

concentration in the protein-free system due to nonspecific loss of inhibitor from the extracellular 

environment.  Although extracellular inhibitor concentrations were not measured in the current 

report, others have shown that substantial binding to system components can occur in non-protein 

media, such as the adsorption of compounds to plastic plates (DeWitte, 2006; Palmgren et al., 

2006). This phenomenon can also explain why the HMM Ki, app of fluconazole and voriconazole 

were higher than the corresponding plasma Ki, app before being corrected by fu,p. This explanation 

is attractive for the observations reported here not only because it is simple and precedented but 

also the in vivo DDIs examined were best predicted from the protein containing system which can 

be reasonably expected to be free from the nonspecific loss of inhibitor. 

The higher values of HMM Ki, app versus plasma Ki, app × fu,p and the less accurate 

prediction from HMM Ki, app suggested that the “free” inhibition potency represented by HMM Ki, 

app has underpredicted the in vivo inhibition potency. However this does not mean that it could not 

serve as an in vitro system to measure CYP inhibition assays. Either measuring the unbound 

fraction of inhibitor with human hepatocytes in the protein-free incubation (equivalent medium to 

HMM) to correct for the nonspecific binding (McGinnity et al., 2005; Zhao et al., 2005) or 

incorporating the inhibitor loss to correct the inhibition potency (Zhao et al., 2005) have been 

employed when cryopreserved hepatocytes were utilized to generate the inhibition potency. 

However, both studies suggested that the improvement in DDI prediction after additional 
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correction steps was limited to one or two compounds, and no general recommendation for the 

protein-free medium was given despite the rational basis for such corrections. It is also possible 

that the hepatocytes maintain key metabolic capabilities in the presence of plasma and 

consequently provide better DDI predictions. 

McGinnity et al. compared the IC50 values of 14 drugs obtained between cDNA expressed 

CYP2C9 (rCYP2C9) and cryopreserved human hepatocytes in hepatocyte suspension buffer 

(similar to HMM) (McGinnity et al., 2005). The CYP2C9 IC50, apparent values generated in human 

hepatocytes were systematically higher than those determined with rCYP2C9, and there was a 

correlation between IC50,unbound values generated in the different milieu after correcting for 

nonspecific binding. It is interesting to note that the unbound fractions of 14 drugs in hepatocytes 

suspension buffer are lower than that of recombinant enzyme, which suggests that there is more 

nonspecific binding in hepatocytes suspension buffer for CYP2C9 inhibitors. However, the 

method employed by these investigators significantly under predicted the majority of the DDIs 

examined.  

Zhao and colleagues compared the IC50 values of six CYP3A inhibitors measured in 

cryopreserved human hepatocytes (suspended in William’s E Medium) to that predicted with 

human liver microsomes (HLM), although there was no attempt to predict DDIs from the in vitro 

parameters (Zhao et al., 2005). Hepatocyte IC50 values were 2- to 60-fold higher than those 

measured in HLMs after correcting for factors such as nonspecific binding and inhibitor 

consumption in hepatocytes. In addition, the reported hepatocyte IC50 values for diltiazem, 

erythromycin and troleandomycin from Zhao’s investigation (3.22, 18.02 and 2.14 μM, 

respectively) were higher than plasma IC50,app (2.28, 2.58, 0.23 μM, respectively) from 

incubations with hepatocytes in plasma as reported in a  previous investigation from this 

laboratory (Mao et al., 2011). As a result, it is reasonable to speculate that if the hepatocyte IC50 

values from Zhao’s study were combined with the free inhibitor concentration utilized in the 

current studies, an under prediction would be expected. This example suggests that the correction 
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for nonspecific binding and inhibitor depletion in the HMM equivalent system may not be 

sufficient to result in robust DDI predictions.  More recently, the hepatic clearance of  twenty six 

compounds encompassing a 50-fold range of clearance and a wide range of protein binding was 

assessed with cryopreserved human hepatocytes in the presence and absence of  human serum, 

and more accurate predictions  of in vivo clearance were observed in the presence of the human 

serum (Blanchard et al., 2006).   

For the purpose of predicting in vivo DDIs with human cryopreserved hepatocytes, the 

“total [I] with Plasma Ki,app” is superior to the “free [I] with HMM Ki,app” method under the 

conditions employed. For nineteen clinical CYP3A mediated DDIs, the “total [I] with Plasma 

Ki,app” method demonstrated a greater accuracy in predicting the observed in vivo DDIs (Table 3 

and 4). More clinical DDIs were predicted within 2-fold of the observed DDI magnitude by the 

“total [I] with Plasma Ki,app” method, and more accurate categorical prediction of weak, moderate 

and strong interactions were observed. Due to the limited solubility of the CYP3A inhibitor 

aprepitant in HMM, no IC50 value was obtained. In the plasma system, however, an IC50 value 

was obtained for this poorly soluble compound and an accurate prediction was made for two 

weak and two moderate interactions precipitated by aprepitant.  The “total [I] with plasma Ki,app” 

method was also the most predictive method relative to the “free [I] with HMM Ki,app” method for 

the twenty nine clinical CYP2D6 DDIs (Table 3 and 4).  More clinical DDIs were predicted 

within 2-fold of the observed DDI magnitude by the “total [I] with plasma Ki,app” method (89% 

accuracy), and more accurate categorical prediction of no, weak, moderate and strong interactions 

were observed. However, the majority of weak interactions related to diphenhydramine and 

sertraline were under predicted as “no interactions” by both methods. These observations may be 

explained by the “substrate-dependent inhibition” phenomenon (Vandenbrink et al., 2011) 

whereby the in vitro victim-inhibitor pairs (R)-bufuralol- diphenhydramine and (R)-bufuralol- 

sertraline may not fully reflect the in vivo interaction of the clinical victim-inhibitor pairs 

metoprolol-diphenhydramine and desipramine/imipramine-sertraline. 
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 The “total [I] with plasma Ki,app” method was clearly superior to the “free [I] with HMM 

Ki,app” method for predicting DDIs with CYP3A and CYP2D6 inhibitors. However, the difference 

in methods was much less apparent for CYP2C9 inhibitors because of the high inhibitor 

concentrations achieved in the sulfaphenzole clinical studies (insensitive to the difference Ki 

estimates) and the weak inhibition by fluconazole that is captured by both hepatocyte systems. 

Previous studies with HLMs failed to predict CYP2C9 mediated DDIs (Andersson et al., 2004). 

In contrast, the “total [I] with plasma Ki,app” method accurately predicted no inhibition by 

fluvastatin, ibuprofen and tolbutamide (the observed and predicted AUC change in diclofenac 

were 1.07 and 1.12, 0.99 and 1.08, 0.93 and 1.11, respectively). Although with the HHSHP did 

not yield an accurate measurement of Ki,app  for ibuprofen and tolbutamide (plasma IC50, app > 1200 

μM), the maximum prediction (assuming IC50, app = 1200 μM) predicted the interaction as 1.08 

and 1.11. Therefore, the true interactions should be weaker than predicted, and this speculation 

was confirmed with the observed data (0.99 and 0.93, respectively). 

A possible concern with this method is that there is no correction for the possible 

depletion of the inhibitor concentration in HHSHP. However, based on the kinetic data for 

midazolam, an efficiently metabolized CYP3A substrate, it is unlikely that inhibitor depletion 

would be a significant concern. Specifically, the media concentration of 1’-hydroxymidazolam 

was at most 0.7% of midazolam after the 35-minute incubation with various concentrations of the 

parent drug in HHSHP. Assuming 90% of midazolam is eliminated by 1’-hydroxylation and half 

of the 1’-hydroxymidazolam generated is further metabolized, it is estimated that 1.3% of the 

parent drug would be depleted during the 35-minute incubation. This would not significantly 

impact the assumed substrate nominal concentration of midazolam. For time dependent inhibitors 

the progressive loss of enzyme throughout the incubations would also serve to minimize the loss 

of inhibitor from the media. The molar concentration of CYP form is small compared to the total 

drug concentration and relatively little loss of inhibitor from the plasma can completely inhibit 

the entire target CYP.  
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In conclusion, the single time point HHSHP Ki,app provided relatively simple and accurate 

DDI predictions mediated by three major drug metabolizing CYPs for both TDI and reversible 

inhibitors. This method simplified the prediction process by utilizing the total average systemic 

plasma concentration as a universal concentration for inhibitors and by obviating the need to 

correct for the unbound fraction in human plasma.  
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Footnotes 
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Figure Legends 
 
Figure 1.  Comparison of HMM Ki,app and plasma Ki,app × fu,p .  The solid line depicts the line of 

unity. Values of HMM Ki,app and plasma Ki,app are listed in Table 3, which were calculated from 

measured HMM and plasma IC50,app. Unbound fraction (fu,p) were collected from Goodman & 

Gilman’s The Pharmacological Basis of Therapeutics (10th Edition) (Hardman et al., 2001). 

Figure 2.  The “free [I] with HMM Ki,app ’’ method: comparison of predicted versus observed 

DDIs.  The solid line depicts the line of unity; the long dashed line represents a two-fold 

deviation from unity; the short dashed line represents a three-fold deviation from unity (17 drugs 

and 59 clinical DDIs).  The grids highlight four areas which represent the correct predictions for 

strong (observed AUC > 5, predicted AUC > 5), moderate (2 ≤ observed AUC ≤ 5, 2 ≤ predicted 

AUC ≤ 5), weak interaction (1.25 ≤ observed AUC < 2, 1.25 ≤ predicted AUC < 2) and no 

interaction (observed AUC < 1.25, predicted AUC < 1.25).  

Figure 3.  The “total [I] with plasma Ki,app’’ method: comparison of predicted versus observed 

DDIs.  The solid line depicts the line of unity; the long dashed line represents a two-fold 

deviation from unity; the short dashed line represents a three-fold deviation from unity (17 drugs 

and 59 clinical DDIs).  The grids highlight four areas which represent the correct predictions for 

strong (observed AUC > 5, predicted AUC > 5), moderate (2 ≤ observed AUC ≤ 5, 2 ≤ predicted 

AUC ≤ 5), weak interaction (1.25 ≤ observed AUC < 2, 1.25 ≤ predicted AUC < 2) and no 

interaction (observed AUC < 1.25, predicted AUC < 1.25).  
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Table 1.  Kinetic parameters for CYP3A, CYP2C9 and CYP2D6 substrates from human 

hepatocyte suspensions in HMM or human plasma 

Substrate Parameters HMM Plasma Unbound plasma 
Midazolam Km (µM)* 8.11 ± 0.65 45.83 ± 4.38 1.47 ± 0.14 

Midazolam Vmax (nmol/min/ million cells) * 0.021 ± 0.001 0.036 ± 0.001 - 

Diclofenac Km (µM)* 34.58 ± 2.14 1408 ± 304 4.22 ± 0.91 

Diclofenac Vmax (nmol/min/ million cells) * 0.41 ± 0.01 0.49 ± 0.03 - 

(R)-bufuralol Km (µM) * 12.22 ± 1.42 54.83 ± 7.38 10.42 ± 1.40 

(R)-bufuralol Vmax (nmol/min/ million cells) * 0.059 ± 0.002 0.048 ± 0.002 - 

Note: The values of fu,p for midazolam, diclofenac and (R)-bufuralol were 0.032, 0.003 and 0.19. 
* Two systems (nominal values) showed the significant difference by T-test, p<0.05. 
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Table 2. IC50 values for CYP3A, CYP2C9 and CYP2D6 inhibitors from human hepatocyte 

suspensions in HMM and human plasma. Both HMM and plasma IC50 values represented 

the nominal values obtained from each system. 

Inhibitor IC50 (µM) fu,p 
 HMM IC50      Plasma IC50   

CYP3A Inhibitors 
Ketoconazole 0.28 ± 0.02  1.26 ± 0.23a 0.01 

Fluconazole 27.00 ± 1.50  7.61 ± 2.67a 0.89 

Voriconazole 22.40 ± 4.90  3.01 ± 0.58a 0.42 

Conivaptan 1.90 ± 0.18  1.70 ± 0.56a 0.01 

Nefazodone 0.49 ± 0.08  1.70 ± 0.31a 0.01 

Aprepitant Poor solubility  24.10 ± 7.30a 0.05 

CYP2C9 Inhibitors 
Miconazole 2.12 ± 0.37  2.02 ± 0.37  0.1  

Fluconazole 53.96 ± 2.95  14.34 ± 1.27  0.89  

Sulfaphenazole 0.29 ± 0.06  9.49 ± 1.89  0.32  

Fluvastatin 4.07 ± 1.84  6.78 ± 1.01  0.01  

Ibuprofen 151.30 ± 29.25  > 1200  0.01  

Tolbutamide 101.08 ± 22.70  > 1200  0.04  

CYP2D6 Inhibitors 
Diphenhydramine 1.71 ± 0.19  30.54 ± 4.34  0.22  

Sertraline 3.10 ± 0.34  13.97 ± 3.49  0.01  

Quinidine 0.03 ± 0.01    0.02 ± 0.01  0.13  

Paroxetine 0.03 ± 0.01   0.07 ± 0.02  0.05  

Fluoxetine 0.04 ± 0.00   0.35 ± 0.09  0.06  

Duloxetine 0.22 ± 0.04   0.67 ± 0.37  0.05  

Note: Each number represents the mean and standard error of estimate of triplicates.  

aFrom Mao et al., 2011  
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Table 3.  Predictions of clinical DDIs from in vitro inhibition parameters of CPY3A, 

CYP2C9 and CYP2D6 inhibitors (63 clinical DDIs) 
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Inhibitor Victim drug [I] ave, total 

(µM) 
HMM 
Ki,app 

(µM) 

Plasma  
Ki,app 

(µM) 

Predicted 
fold-increase 
in AUC by 
“Free [I] with 
HMM Ki,app” 

Predicted fold-
increase in 

AUC by “Total 
[I] with 

Plasma Ki,app” 

Observed 
fold-

increase in 
AUC 

Reference 

Ketoconazole Midazolam 2.82 0.26 0.75 1.93 6.60 15.90 (Olkkola et al., 1994) 

Ketoconazole Midazolam 3.46  0.26 0.75 1.96 7.41 16.00 (Tsunoda et al., 1999) 

Ketoconazole Midazolam 4.76  0.26 0.75 2.04 8.89 6.47 (Eap et al., 2004) 

Ketoconazole Midazolam 1.88  0.26 0.75 1.86 5.21 7.72 (Lam et al., 2003) 

Ketoconazole Midazolam 2.82 0.26 0.75 1.65 5.66 9.51 (Chung et al., 2006) 

Ketoconazole Midazolam 
iv. 

3.46  0.26 0.75 1.12 4.24 5.10 (Tsunoda et al., 1999) 

Ketoconazole Midazolam 1.87  0.26 0.75 1.47 4.09 6.45 (McCrea et al., 1999) 

Fluconazole Midazolam 21.55 25.23 4.56 2.66 6.84 3.51 (Olkkola et al., 1996) 

Fluconazole Midazolam 29.99  25.23 4.56 2.84 7.70 3.60 (Olkkola et al., 1996) 

Fluconazole Midazolam 5.6  25.23 4.56 1.60 2.78 2.16 (Kharasch et al., 2005) 

Aprepitant Midazolam 1.72  - 14.43 - 1.92 2.27 (Majumdar et al., 2003) 

Aprepitant Midazolam 2.22  - 14.43 - 1.97 3.30 (Majumdar et al., 2003) 
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Aprepitant Midazolam 0.41 - 14.43 - 1.72 1.28 (Majumdar et al., 2003) 

Aprepitant Midazolam 
iv. 

3.11 - 14.43 - 1.26 1.47 (Majumdar et al., 2007) 

Voriconazole Midazolam 
iv. 

1.64 20.93 1.80 1.03 1.79 3.64 (Saari et al., 2006) 

Voriconazole Midazolam 1.46 20.93 1.80 1.64 2.74 9.85 (Saari et al., 2006) 

Nefazodone Midazolam 1.73 0.46 1.02 1.79 4.17 4.44 (Lam et al., 2003) 

Conivaptan Midazolam 1.57 1.78 1.02 1.57 3.58 3 (NDA 021697) 

Conivaptan Midazolam 
iv. 

1.57 1.78 1.02 1.00 2.29 2 (NDA 021697) 

Sulfaphenazole Tolbutamide 160 0.25 8.55 4.90 4.16 5.28 (Veronese et al., 1990) 

Sulfaphenazole Tolbutamide 320 0.25 8.55 4.95 4.53 3.09 (Back et al., 1988) 

Sulfaphenazole Phenytoin 640 0.25 8.55 3.99 3.85 3.05 (Hansen et al., 1979) 

Fluconazole S-warfarin 46.5 47.33 12.92 1.68 3.13 2.84 (Black et al., 1996) 

Fluconazole Tolbutamide 11.68 47.33 12.92 1.17 1.61 2.09 (Lazar and Wilner, 1990) 

Fluconazole Phenytoin 24 47.33 12.92 1.30 1.95 1.75 (Blum et al., 1991) 

Fluconazole Phenytoin 46.5 47.33 12.92 1.54 2.42 1.33 (Touchette et al., 1992) 

Fluconazole Losartan 23.4 47.33 12.92 1.33 2.01 1.69 (Kazierad et al., 1997) 
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Fluconazole Losartan 23.4 47.33 12.92 1.33 2.01 1.27 (Kaukonen et al., 1998) 

Fluconazole Fluvastatin 23.4 47.33 12.92 1.22 1.63 1.84 (Kantola et al., 2000) 

Fluconazole Glimepiride 23.4 47.33 12.92 1.41 2.58 2.38 (Niemi et al., 2001) 

Miconazole S-warfarin 0.27 1.86 1.82 1.01 1.13 4.72 (O'Reilly et al., 1992) 

Fluvastatin Diclofenac 1 3.57 6.11 1.00 1.12 1.07 (Andersson et al., 2004) 

Ibuprofen Diclofenac 114 132.72 1081 1.00 1.08 0.99 (Andersson et al., 2004) 

Tolbutamide Diclofenac 165 88.67 1081 1.05 1.11 0.93 (Andersson et al., 2004) 

Diphenhydramine Metoprolol 0.26 1.46 21.21 1.03 1.01 1.61 (Hamelin et al., 2000) 

Diphenhydramine Metoprolol 0.26 1.46 21.21 1.03 1.01 1.10 (Hamelin et al., 2000) 

Diphenhydramine Metoprolol 0.26 1.46 21.21 1.03 1.01 1.92 (Sharma et al., 2005) 

Diphenhydramine Metoprolol 0.26 1.46 21.21 1.03 1.01 0.82 (Sharma et al., 2005) 

Sertraline Desipramine 0.071 2.65 9.70 1.00 1.01 1.24 (Preskorn et al., 1994) 

Sertraline Desipramine 0.065 2.65 9.70 1.00 1.01 1.37 (Alderman et al., 1997) 

Sertraline Desipramine 0.2 2.65 9.70 1.00 1.02 1.74 (Zussman et al., 1995) 

Sertraline Desipramine 0.2 2.65 9.70 1.00 1.02 1.54 (Kurtz et al., 1997) 

Sertraline Imipramine 0.2 2.65 9.70 1.00 1.01 1.68 (Kurtz et al., 1997) 
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Sertraline Desipramine 0.2 2.65 9.70 1.00 1.02 2.29 (Kurtz et al., 1997) 

Paroxetine Desipramine 0.14 0.03 0.05 1.23 2.87 4.64 (Brosen et al., 1993) 

Paroxetine Imipramine 0.14 0.03 0.05 1.11 1.52 1.74 (Albers et al., 1996) 

Paroxetine Despramine 0.14 0.03 0.05 1.23 2.87 4.28 (Albers et al., 1996) 

Paroxetine Metoprolol 0.14 0.03 0.05 1.21 2.60 7.93 (Hemeryck et al., 2000) 

Paroxetine Metoprolol 0.14 0.03 0.05 1.21 2.60 5.08 (Hemeryck et al., 2000) 

Paroxetine Desipramine 0.14 0.03 0.05 1.23 2.87 5.21 (Alderman et al., 1997) 

Paroxetine Desipramine 0.017 0.03 0.05 1.03 1.29 1.36 (Alderman et al., 1997) 

Paroxetine Desipramine 0.14 0.03 0.05 1.23 2.87 4.8 (Laine et al., 2004) 

Quinidine Desipramine 0.451 0.03 0.01 2.56 6.83 7.5 (Brosen and Gram, 1989) 

Quinidine Imipramine 0.451 0.03 0.01 1.47 1.81 1.54 (Brosen and Gram, 1989) 

Quinidine Encainide 0.451 0.03 0.01 2.47 6.03 3.18 (Funck-Brentano et al., 1989b) 

Quinidine Encainide 0.41 0.03 0.01 2.37 5.94 11.4 (Turgeon et al., 1990) 

Quinidine Metoprolol 0.23 0.03 0.01 1.80 4.59 3.24 (Johnson and Burlew, 1996) 

Quinidine Mexiletine 0.45 0.03 0.01 1.51 1.91 1.32 (Turgeon et al., 1991) 

Quinidine Propafenone 0.34 0.03 0.01 1.91 3.70 2.7 (Funck-Brentano et al., 1989a) 
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Quinidine Desipramine 4.6 0.03 0.01 6.38 8.15 3.14 (Ayesh et al., 1991) 

Fluoxetine Desipramine 0.57 0.03 0.24 1.88 2.63 2.25 (Bergstrom et al., 1992) 

Fluoxetine Desipramine 1.54 0.03 0.24 2.98 4.19 7.43 (Bergstrom et al., 1992) 

Duloxetine Desipramine 0.3 0.19 0.47 1.07 1.53 2.9 (Skinner et al., 2003) 
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Table 4. Performances of two predictive methods for individual and all CYPs (CYP3A, CYP2C9 and CYP2D6 inhibitors)  

 CYP3A CYP2C9 CYP2D6 All CYPs 

 Free [I] 
with 
HMM 
Ki,app  

Total [I] 
with 

Plasma 
Ki,app 

Free [I] 
with 
HMM 
Ki,app  

Total [I] 
with 

Plasma 
Ki,app 

Free [I] 
with 
HMM 
Ki,app  

Total [I] 
with 

Plasma 
Ki,app 

Free [I] 
with 
HMM 
Ki,app  

Total [I] 
with 

Plasma 
Ki,app 

2-fold of 
Observed 

26%a 

(5/19) 
84% 
(16/19) 

93% 
(14/15) 

93% 
(14/15) 

62% 
(18/29) 

90% 
(26/29) 

59%d 

(37/63) 
89% 
(56/63) 

No 
Interaction 

NAb NA 100% 
(3/3) 

100% 
(3/3) 

100% 
(3/3) 

100% 
(3/3) 

100%e 

(6/6) 
100% 
(6/6) 

Weak 
Interaction 

0% 
(0/2) 

100% 
(2/2) 

80% 
(4/5) 

80% 
(4/5) 

20% 
(2/10) 

40% 
(4/10) 

35% 
(6/17) 

59% 
(10/17) 

Moderate 
Interaction 

22%c 

(2/9) 
67% 
(6/9) 

33% 
(2/6) 

66% 
(4/6) 

10% 
(1/10) 

60% 
(6/10) 

20% 
(5/25) 

64% 
(16/25) 

Strong 
Interaction 

0% 
(0/8) 

63% 
(5/8) 

0% 
(0/1) 

0% 
(0/1) 

0% 
(0/6) 

33% 
(2/6) 

0% 
(0/15) 

47% 
(7/15) 

GMFE - - - - - - 0.51 0.86 
RMSE - - - - - - 3.94 2.61 

a. 26% (5/19) means that there are total 19 clinical studies related to CYP3A inhibitors. This method was able to predict 5 out of 19 within 2-
fold of observed data; 

b. NA: there is no “No Interaction” in 19 CYP3A clinical studies; 
c. 22% (2/9) means that there are 9 (out of total 19) CYP3A clinical studies as “Moderate Interaction”. Among these 9 studies, this method 

was able to predict 2 clinical studies as moderate interactions;  
d. 59% (37/63) means that there are total 63 clinical studies related to CYP3A, CYP2C9 and CYP3D6 inhibitors. This method was able to 

predict 37 out of  63 within 2-fold of observed data; 
e. 100% (6/6) means that there are 6 (out of total 63) CYP3A clinical studies as “No Interaction”. Among these 6 studies, this method was 

able to predict all clinical studies as no interactions 
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