Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring-Closing Metathesis

Kevin M. Kuhn,† Timothy M. Champagne,‡ Soon Hyeok Hong,‡ Wen-Hao Wei,‡ Andrew Nickel,‡ Choon Woo Lee,‡ Scott C. Virgil,‡ Robert H. Grubbs,† and Richard L. Pederson*,‡

The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, and Materia Inc., Pasadena, California 91107

rpederson@materia-inc.com

Received December 30, 2009

ABSTRACT

A series of ruthenium catalysts have been screened under ring-closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate series could be run neat, the six-membered carbamate series could be run at 1.0 M, and the seven-membered carbamate series worked best at 0.2–0.05 M.

Olefin metathesis has become an indispensable tool for the formation of new carbon–carbon bonds; its success in organic synthesis and materials chemistry has been driven by the development of increasingly efficient catalysts.1 Ruthenium-based catalysts have received considerable attention because of their tolerance to moisture, oxygen, and a large number of organic functional groups.2 Ring-closing metathesis (RCM), in particular, has become the most commonly employed metathesis reaction in organic synthesis.3 RCM has had an especially large impact on the pharmaceutical industry because the reaction allows for an efficient and direct formation of heterocycles from acyclic dienes.3h, j

The evolution of ruthenium-based catalysts (Figure 1) from first generation catalyst 1 to the highly active catalyst complex 10 bearing a tetramethyl-substituted NHC ligand has been driven by a continued need for increasingly efficient catalysts. Generally, phosphine-ligated catalysts, such as 1 and 3, have been suitable for the formation of disubstituted olefins.4 The increased activity of H2IMes-ligated catalyst complexes (H2IMes = 1,3-dimesitylimidazolidine-2-ylidene), such as 2, 4, 5, and 6, has allowed for the facile production of trisubstituted olefins.5 More recently, decrease-
ing N-aryl steric bulk (7 and 8) on the N-heterocyclic carbene (NHC) and adding methyl groups to the backbone (9 and 10) have greatly increased activity and stability, allowing for efficient synthesis of highly hindered olefin products.6,7

Despite their effectiveness, the use of homogeneous olefin metathesis is limited by high catalyst costs and the often difficult loadings in the metathesis event. Herein we report our studies on both reaction conditions and substrate design. With this in mind, several commercially available catalysts along with recently reported variants were utilized in this study (Figure 1), reaffirming the notion that no single catalyst is best for all olefin metathesis applications.1,6c,d

Our research focused on the RCM of carbamate-protected acyclic amines to form the corresponding di-, tri-, and tetrasubstituted five-, six-, and seven-membered carbamate-protected cyclic amines (eq 1); where and = 1 or 2, which are valuable intermediates in organic synthesis and pharmaceuticals.3h,j

Initial reaction parameters were chosen on the basis of the results from a recent complementary study on catalyst efficiency.6a In that work methylene chloride, a solvent often used in olefin metathesis reactions, was shown to greatly decrease catalyst efficiency and was therefore not utilized in our experiments.6a Instead, methyl tert-butyl ether (MTBE) and toluene were utilized. Both solvents consistently provided the results from a recent complementary study on catalyst efficiency.6a In that work methylene chloride, a solvent often used in olefin metathesis reactions, was shown to greatly decrease catalyst efficiency and was therefore not utilized in our experiments.6a Instead, methyl tert-butyl ether (MTBE) and toluene were utilized. Both solvents consistently provided excellent yields throughout our studies. MTBE, in particular, is a prudent alternative to chlorinated solvents and other peroxide-forming ethers.

While increased temperatures have previously been shown to improve metathesis efficiency,6c,3h temperatures above 55 °C decreased assay consistency and resulted in solvent losses.

To minimize introducing experimental errors into the system, all assays were carried out at 50 °C, which was the best compromise between fast reaction rates and solvent loss.

The choice of substrate, substrate concentration, solvent, and catalyst had an effect on RCM yields. For example, five-membered rings can be formed neat. Notably, RCM yields of five-membered rings were comparable when run neat or in 1.0 M concentrations (see Table 1 and Figure 5); reactions were not optimized.

Under these reaction conditions, 500 ppm catalyst loadings of 4 afforded excellent yields (87%) of 12 when run neat and >99% yields at 1 M; 14 was produced in 96% yields when run at 1 M and >99% yields at 0.2 M. Not too surprisingly, as the ring size increased from five to seven, more dilute substrate concentrations were needed to produce 82% yields of 16 at 0.2 M and 90% yields at 0.05 M, as shown in Table 1.

Having determined that concentrated reactions (neat to 1 M) will produce 87–99% yields of 12, with 500 ppm of catalyst 4, we sought to compare 4 to a range of other commonly used ruthenium metathesis catalysts; see Figure 2. The results indicated that catalysts 3 and 4 performed this RCM most efficiently. Lower yields were attained with catalysts containing a labile phosphine (1, 2, 5, and 7) compared to Hoveyda and Piers type catalysts (3, 4, 6, 8, 9, and 10). The lower yields with 1, 2, 5, and 7 may be a result of competitive phosphine-based decomposition pathways.

Excellent yields (95% to >99%) of 14 were produced using 1 M solutions of 13 in MTBE with 500 ppm catalyst loadings of 2, 3, 4, and 5. More variation in yields were seen using 19, a more sterically hindered substrate than 13; see Figure 3. Catalyst 5 performed exceptionally well by producing >99% yield of 20, compared to 88% yield with 2 and 68% yield with 4.

While disubstituted cyclic olefins were easily formed by a variety of catalysts, NHC-bearing catalysts were required to produce trisubstituted cyclic olefins at low catalyst loadings, as seen in Figure 4 by the failure of 1 and 3 to perform the ring-closing of substrate 17. This highlights the general trend that NHC-ligated catalysts display increased activity compared to their non-NHC counterparts.

Changes in a substrate’s steric or chain length can have a dramatic effect in catalyst efficacies. This is evident from the results in Figures 2, 3, and 4 which reinforce the axioms that metathesis catalysts need to be screened to determine the best catalyst for a reaction and more importantly that not one catalyst is best for every reaction.

Recent catalyst design and synthesis has focused on increasing the utility of olefin metathesis when working with highly hindered substrates. We began a study to determine catalyst trends in the RCM of sterically hindered 23 to 24, utilizing 1000 ppm catalyst loadings (see Figure 5). Changes in concentration had a negligible effect on the yields of 24. As in previous examples, the Grubbs–Hoveyda catalysts (8–10) outperformed the phosphine variant (7).

The RCM of 25 using 1000 ppm catalyst loadings of 8 and 9 produced 17% and 34% of 26, respectively. Thus
Catalyst loadings of 5000 ppm were needed to produce >90% yields of 26 and 28; see Figure 6. The 52% yield of 26 was suspected to be an anomaly since the yield of 28, the more challenging product, was 98%. Furthermore, only catalysts 8, 9, and 10 were found to effectively accomplish this RCM reaction, providing a reminder that more efficient catalysts still need to be developed.

In conclusion, we have synthesized di-, tri-, and tetrasubstituted five-, six-, and seven-membered carbamate-protected cyclic amines via RCM using as low as 500 ppm of ruthenium metathesis catalysts. This method has provided an overall assessment of metathesis catalyst activities with nine carbamate substrates. In general, every carbamate-protected cyclic amine in this study could be produced in >90% yields using catalyst loadings of 500 ppm for the di- and trisubstituted five- and six-membered carbamate-protected cyclic amines and 1000–5000 ppm catalyst loadings for the more demanding tetrasubstituted five-, six- and seven-membered carbamate-protected cyclic amines. Two final observations were that the five-membered carbamate-protected cyclic amines could be run neat and that MTBE was a practical solvent in these RCM reactions.

Acknowledgment. We gratefully acknowledge financial support from the DOE (DE-FG02-08ER15933), the NIH (5R01 GM31332), and the Gordon and Betty Moore Foundation. We thank Dr. Xiaohong Bei and Dr. Daryl Allen, Matera Inc., for helpful discussions.

Supporting Information Available: Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL9029808