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Summary

Obesity is a global epidemics that has not been tackled through traditional

prevention techniques, and which deserves attention as it is bound to be one

of the biggest strain on countries′ health budgets in the 21st century, alongside

age-related diseases. This is why novel strategies to treat obesity are currently

explored, a most promising one being cell therapy. Due to the recent discovery

of brown fat cells, which burn energy through uncoupling of the mitochondrial

proton gradient, as opposed to white adipocytes that store energy, extensive

work has been carried out to find triggers to brown fat differentiation or white

to brown adipocyte conversion.

In this study, I characterized a member of the Transient Receptor Potential

(TRP) family, Transient Receptor Potential Polycystic 3 (TRPP3), which has

not previously been studied in adipocytes. After having proven that it has a

different distribution expression on brown and white adipocytes, we sought to

further understand its role, studying it in two different types of stem cells (Stro-

mal vascular fraction (SVF) and mesenchymal stem cells (MSC)). We then did a

localization study to see if its emplacement in the cell could help us understand

its role better. We sought to co-localize it with the primary cilium, which turned

out to be inconclusive and we decided to explore other strategies.

We then optimized a silencing protocol to test the effect of silencing TRPP3
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on the function and differentiation of cells. We show that reducing TRPP3 ex-

pression by the small interfering RNA technique induces a decrease in UCP1 ex-

pression, which is characteristic of brown adipocytes. We also observe a decrease

in mitochondrial uncoupled respiration, which prove that TRPP3 is necessary

for cells to show a brown phenotype.

These results therefore show that TRPP3 is necessary for brown fat differen-

tiation. We have therefore identified a novel receptor that could be a promising

target for cell therapy against obesity.
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Introduction

0.1 Why do we need to study brown fat?

0.1.1 Obesity is on the rise

The definition of obesity, given by the World Health Organisation (WHO), is

having a Body mass index (BMI) above a 30. It has long been considered a

developed countries′ problem. However, the prevalence of obesity has increased

worldwide, and is bound to continue on this trend as Western life-style and

consumption habits are adopted by larger swathes of global population (James

(2004)). While obesity in itself is not a disease, it leads to increased risks of

developing various conditions. Due to higher prevalence of diabetes in Asians

compared to Caucasians at equivalent BMI, the BMI threshold has been adjusted

downwards in those populations to define obesity (Ntuk et al. (2014)).

0.1.2 The health-related problems caused by obesity

Two of the most important issues for which obesity is an aggravating factor are

cardiovascular diseases and diabetes, which both cause millions of deaths each

year around the world (WHO (2012)). They make obesity a worrying public

health issue, that has been qualified as a global epidemic. Finding ways to

cure obesity-related metabolic diseases, or reduce the prevalence of obesity, is

therefore one of the most pressing issues facing 21st century governments and
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health-care firms, along with aging-related disorders.

0.1.3 Current treatments against obesity

While some governments have focused on prevention and health care education,

as obesity is a mostly preventable condition, this has not seemed to stem the

epidemic, and increasing public funding is dedicated to fighting obesity through

other means. While some treatments aim to diminish the sensation of hunger

or increase the feeling of satiety, these have side effects that complicate further

patients′ lives. And the current treatments of diabetes require a quasi-permanent

control of the patient′s insulin and sugar levels, which cause diabetes to be a

disabling condition. They allow the patient to live a normal life, but with no

hope of ever being free of the disease, as they treat the symptoms but not the

cause.

0.1.4 Novel therapies

Due to the importance of the issue at hand and the current lack of satisfy-

ing treatment options for obesity and its related metabolic diseases, consequent

funding has been dedicated in the past years to finding a cure through bioengi-

neering techniques. An important part of these novel therapies are cell-based:

they aim to use the patient′s own cells to fight his or her disease. These methods

have the advantage of being tailor-made for a patient, and to cure the disease

instead of merely treating the symptoms. A natural target for those therapies

are adipocytes, the fat and energy-storing cells of the body.
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0.1.5 The functions of adipose tissue

Obesity is caused by an imbalance between energy expenditure and energy in-

take. Evolutionarily, adipose tissue, composed of adipocytes, was used to store

excess energy as triglycerides (Kershaw and Flier (2004)), acting as a buffer en-

ergy store which could be used in times of food shortage. Adipose tissue also

provided heat isolation, and it is now known to be an important paracrine and

endocrine organ (Siiteri (1987)). Therefore, when energy intake excesses energy

expenditure, as can be the case in humans enjoying food security and a sedentary

lifestyle, the fat tissue functions as it was evolved to do and stores this extra

energy. A continuous storing of this extra energy eventually turns into weight

gain and obesity if the patient′ habits remain unchanged. The cells storing this

energy excess are called white fat cells, or white adipocytes, as opposed to brown

adipocytes described thereafter.

0.1.6 The recent discovery of brown fat in human adults

It was thought until 2009 that only hibernating rodents or human babies pos-

sessed another type of fat, called brown fat or brown adipocyte, which burns

lipids when properly stimulated, in a process termed "non-shivering thermogen-

esis". This was evolved to maintain the hibernating animals′ temperature, or the

baby′ temperature before its muscles fully develop. However, in 2009, brown fat

was discovered in humans through positron-emission tomography (PET) scans,

as highly metabolically active zones in the body after cold exposure (Virtanen

et al. (2009)). Those cells have the potential to dissipate the body′s energy ex-

cess instead of storing it. The therapeutic potential of brown fat led to increased

research on its mechanisms and activation strategies.
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0.1.7 UCP1: its role in brown fat

UCP1 is a protein found on the mitochondrial membrane, that uses the proton

gradient of the electron transport chain to dissipate energy and produce heat in-

stead of adenosine triphosphate (ATP) (see Figure 1). It has become a hallmark

of brown adipose tissue (BAT) (Aquila et al. (1985), Cannon and Nedergaard

(2004)).

(a) (b)

Figure 1: Energy dissipation as heat by UCP1
(a) The proton gradient over the inner mitochondrial membrane facilitates ATP
production by ATP synthetase. (b) UCP1 uncouples the proton gradient from
ATP synthesis, dissipating energy as heat.
Figures reproduced with permission from Anna Goralczyk

0.1.8 Origins of increased thermogenesis

There are three different pathways to obtain increased thermogenesis of adipose

tissue that need to be understood:

1. Stimulation: the stimulation of already-expressing UCP1 brown adipocytes,

which then exhibit more important uncoupled respiration and thermogen-

esis.
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2. Conversion: the conversion of white adipocytes into brown adipocytes.

Those two cells types come from different developmental origins but some

white cells, deemed "beige", can be converted to a brown phenotype despite

their different histories. The gain of UCP1 by those cells is also called

browning.

3. Differentiation: the differentiation of progenitor cells residing within the

adipose tissue into brown adipocytes. This process is also called recruit-

ment

Those three processes need to be differentiated when interpreting experimen-

tal results, and particularly increased UCP1 expression.

0.1.9 Adrenergic activation of brown fat

The first step to unlock brown adipocytes′ therapeutic potential is to understand

how they develop and their usual pathways of activation.

Two main transcription factors regulate both white and brown adipocyte dif-

ferentiation: peroxisome proliferator activated receptor γ (PPARγ) and CCAT/enhancer

binding protein (C/EBPs) (Schulz and Tseng (2013),Wu et al. (1999)). More

specifically, both nuclear PPARγ co-activator α (PGC-1α) and the transcription

factor PR domain containing 16 (PRDM16), known to interact with C/EBPs

(Kajimura et al. (2009),Schulz and Tseng (2013)), control the brown adipocyte

differentiation program.

Once differentiated, cold temperatures stimulation activates brown adipocytes

through the sympathetic nervous system (SNS). Norepinephrine released from

sympathetic neurons activates β-adrenergic and cAMP-dependent pathways (Bonet

et al. (2013)). PKA is activated by increased intracellular levels of cAMP, and

5



Figure 2: Activation of thermogenesis in brown adipocytes via the β-
adrenergic pathway: β-adrenergic pathway stimulation through cold exposure
or pharmaceutical reagents leads to increased level of cyclic adenosine monophos-
phate (cAMP) (Gannier et al. (1994)). This augments levels of protein kinase A
(PKA), which in turn initiates a signalling pathway that results in a surge in the
metabolic capacity of the cell, UCP1 transcription and thermogenesis. Figures
reproduced with permission from Michelle Lee.

then phosphorylates p38 mitogen-activated protein kinase (p38MAPK). Phos-

phorylated p38MAPK can drive UCP1 expression in a dual manner: it either

phosphorylates activating transcription factor 2 (ATF-2) (Lee et al. (2016)) or

activates PGC-1α (Bonet et al. (2013)) (see Figure 2). This is why it is known

as a key player in brown adipocyte response to sympathetic stimulation (Cao

et al. (2004)).

Other reports have described activators of the thermogenic program in brown

adipocytes: β-adrenergic agonists (like isoproterenol) and cAMP inducers (like

forskolin) (Seale et al. (2008), Wang et al. (2008)).
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0.1.10 Need for non-adrenergic activation strategies

However, using the adrenergic pathway previously described is not neutral for

the patient, with possible implication of the SNS in heart failure if systematically

activated (Triposkiadis et al. (2009)) . Therefore, numerous studies have looked

into other ways to activate brown fat. It has been proven in mice that activation

of the cold receptor Transient Receptor Potential Melastatin 8 (TRPM8) triggers

UCP1-dependent thermogenesis (Ma et al. (2012)). Following these findings,

it was shown in humans that stimulation of TRPM8 can induce browning of

white adipocytes, ie: up-regulation of UCP1 in white adipocytes that did not

go through the same lineage differentiation as brown fat cells (Rossato et al.

(2014)). This raises hopes for non-adrenergic activation of brown fat through

TRP channels.

0.2 The Transient Receptor Potential channels fam-

ily

0.2.1 Structural commonalities of TRP channels

The TRP channels are a family of receptors, defined through sequence homology.

They are poly-modal, having been shown to answer to various stimuli such as

pH, temperature, mechanical forces, voltage or chemical signals. They ultimately

transform those various signals into biochemical signals that can be interpreted

by the cell (Hilton et al. (2015)). They have first been discovered in Drosophila,

but since have been identified across almost all species. The 27 members of

the human family have been classified in 6 sub-families: canonical (TRPC),

melastatin (TRPM), vanilloid (TRPV), ankyrin (TRPA), mucolipin (TRPML)

and polycystin (TRPP) (Bishnoi et al. (2013)). Sequence analysis that all TRPs
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comprise 6 transmembrane polypeptide subunits that can assembled as homo or

hetero-dimers to form cation-permeable pores (see Figure 3 (Clapham (2003))).

(a) (b)

Figure 3: Positioning of TRP in cells (a) One TRP domain consists of 6
transmembrane domains (S1-6) with a loop between S5 and S6. Both the C ad
N terminal domains are intracellular. (b) 4 TRP units make one non-selective
cation channel. Both homo and hetero-tetramers have been described. Figures
reproduced with permission from Anna Goralczyk

The importance of calcium signaling in cells has been emphasized in numer-

ous study, and the fact that TRP channels regulate Ca2+ intake makes them

unavoidable in understanding complex signaling processes in cells. They can

generate changes in cytoplasmic Ca2+ concentrations either when located at the

plasma membrane or at intracellular organelles that act as Ca2+ stores.

0.2.2 The role of TRP in adipogenesis and obesity

The current state of knowledge about the role of TRP in adipocyte function has

been described (Ahern (2013)). They intervene in guts, liver, sensory pathways,

taste or satiety. Based on this review, as well as on Bishnoi et al. (2013), a sum-

mary of the elucidated functions of some TRPs in adipogenesis and particularly

in brown adipogenesis have been shown in Figure 4.

TRPC1 and TRPC5 have been shown by Sukumar et al. (2012), using a

micro-array analysis in mice, and over-expression in human HEK immortal-
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TRPs in
adipogenesis
and obesity

TRPC1/5: Expressed
in mature adipocytes.

Reduces the level
of adiponectin.

(Sukumar et al. (2012))

TRPV4: Modulates
energy metabolism,
pre-adipocyte dif-
ferentiation and

obesity-induced in-
flammatory pathways.
(Ye et al. (2012b))

TRPA1: induces
thermogenesis and
energy expenditure.
(Ono et al. (2011))

TRPM8: Activation
causes thermogenic
response and up-
regulates UCP1.
(Ma et al. (2012))

Figure 4: Members of the TRP channel family reported to have a role
in adipogenesis Figure amended and completed from Bishnoi et al. (2013)

ized cell line, to be constitutively open in adipocytes, therefore increasing in-

tracellular Ca2+ levels and inhibiting the production of insulin sensing and anti-

inflammatory adipokine-adiponectin. This process is prominent in late stages of

differentiation as well as in mature adipocytes (Ahern (2013)).

TRPV4 has been identified in white and brown mouse adipocytes and, ac-

cording to Ye et al. (2012b), its activation reduces expression of PGC-1α and

drives expression of pro-inflammatory cytokines. According to the same group,
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TRPV4-null mice exhibit greater energy expenditure, and their white adipocytes

express higher levels of UCP1, suggesting that inhibiting TRPV4 might result

in "browning" of white adipocytes.

Reports on the role of TRPV1 are contradictory in mice, so more research

is needed to elucidate its role (Bishnoi et al. (2013)). TRPA1, when activated

by capsiate (Shintaku et al. (2012)), induces thermogenesis in rats (Ono et al.

(2011)).

The role TRPM8 has already been mentioned (0.1.10). As shown in the

Figure, growing evidence suggests a role for TRPs in adipocyte function and

differentiation, a role that could potentially be exploited for therapeutic use.

0.2.3 The necessity of a human study

As has been shown in 0.2.2, the role of TRP channels in adipocytes and par-

ticularly in brown adipogenesis is slowly being uncovered. However, excepting

TRPM8, all of those studies were conducted in animals or in immortalized hu-

man cell lines fro one of them. However, there are important differences between

mouse and human biology, and understanding TRP channels′ roles in energy

homeostasis requires studies in human cells. This is why an extensive study of

TRPs in adipocyte differentiation was conducted in the tissue modulation lab

(TML).

0.2.4 The study of TRP in adipogenesis

The aim of this study was to identify potential TRP channels, not mentioned in

the literature, that could impact adipogenesis in general, and brown adipogenesis

in particular. The chosen method was to detect up-regulation of genes through

Polymerase Chain Reaction (PCR), during the lineage commitment of cells to
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either brown or white fat, with or without the crowding protocol used in the lab

and recently published (Lee et al. (2016)). Macromolecular crowding has been

shown to favor adipogenesis through increased matrix deposition (Ang et al.

(2014)), and in particular brown adipogenesis (Lee et al. (2016)).

This study was done in 3 parts. The first aim was to identify TRP genes that

were regulated differently in MSC, brown or white adipocytes (data not shown).

Once those few genes were identified, the second part consisted of a differentiation

study, comparing the regulation of those genes in the three lines of differentiation

possible for MSC: adipocytes, chondrocytes or osteoblasts (Figure 5). The aim

was to differentiate between genes that were linked to loss of pluripotency by

stem cells, or to their aging, and genes linked to gain of function by adipocytes.

Figure 5: Ct values for identified TRPs in trilineage differentiation
Figure adapted from Marc Van Vijven; n=3

If the up or down-regulation of those genes was lineage specific, the third part

of the study, a time-evolution of the occurrence of those genes, was conducted.

Those studies were conducted before my arrival. As expected, TRPM8 was

identified through this study.
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0.3 Characterization of TRPP3

0.3.1 Identification of TRPP3 as a potential target

Due to this previously conducted studies (0.2.4), TRPP3 was identified as an

interesting, and never studied in adipocyte, target for further characterization.

Being a known cation-permeable channel (Chen et al. (1999)), regulated by a

wide range of stimuli, ranging from pH, voltage and changes in cell volume

(Shimizu et al. (2009)) to alkalization (Shimizu et al. (2011)) or temperature

(Higuchi et al. (2014)), TRPP3, also known as Polycystic Kidney Disease 2-Like

1 (PKD2L1), has mostly been studied in sour tasting (Ishimaru et al. (2006)).

The robustness of the preliminary data and the lack of current literature on the

topic of TRPP3 involvement in adipogenesis induced us to want to characterize

it further.

0.3.2 Aim of the Masters project

This project was separated in a three different parts. The first part of the project

consisted of a full characterization of behaviors in SVF and MSC, as to assess

in which cell type we were to conduct further experiments. Once the results

were established on the Ribonucleic acid (RNA) level, the study was pursued

to establish them on the protein level. The second aim was to establish the

localization of TRPP3, which could give us hints as to its exact role. The third

part consisted of a silencing study in order to assess the effect of the absence of

TRPP3 on differentiation and function of the studied tissues.

The working hypothesis behind this work was that TRPP3 was a brown

adipocyte marker, that was involved in the differentiation and function of brown

fat.
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Chapter 1

Materials and Methods

1.1 Cell culture

All the mentioned media are filtered before each media change as we are culti-

vating the cells without antibiotics.

1.1.1 Cells extraction

The progenitor cells, isolated from the SVF of abdominal subcutaneous adipose

tissue were obtained from Dr Sue Anne Toh at passage 4.

Recruited subjects were 21 years old, obese with body mass index (BMI

>=35 kg · m−1), and candidates for bariatric surgery. Patients with the fol-

lowing conditions were excluded from this study: diabetes mellitus (defined as

HbA1c >6 or fasting glucose >=6.0 mmol · L−1), a history of malabsorption syn-

drome, Crohn′s disease, ulcerative colitis, pancreatitis, or a history of ingesting

drugs known to alter insulin sensitivity (e.g., corticosteroids). Informed consent

was obtained from all donors, recruited from a pool of patients of the Center

for obesity and metabolic surgery, National University Health System (NUHS,

Singapore). Their baseline anthropometric measurements, complete medical his-

13



tory, blood pressure measurement, presence of other cardiovascular disease risk

factors (e.g., hypertension, dyslipidemia, smoking, and alcohol intake), physical

examination, presence of albuminuria, and all existing medications prescribed

were collected as their detailed medical history.

The adipose tissue extracts were obtained from the subcutaneous abdominal

area towards the end of the bariatric surgery, without any additional surgical

procedure. Ethics approval was obtained from the National Healthcare Group

Domain Specific Review Board (Singapore) and the procedures were carefully

carried out in accordance with the approved guidelines.

The MSC were purchased from Lonza, extracted from young patients′s bone

marrows.

1.1.2 SVF and MSC culture

The following protocols are written for SVF, however, when MSC experiments

were carried out, we followed the same protocols.

The cells were cultured in (Low Glucose (LG)Dulbecco′s Modified Eagle′s

Medium (DMEM)) supplemented with GlutamaxTM (10567-04 Gibco) and 10

% Fetal Bovine Serum (FBS) at 37 ◦C in 5 % CO2 in T-75 cm flasks. The media

was changed every 2 d to 3 days.

They were then passaged at around 90 % confluence using a 5 min to 10 min

incubation with 2.5 mL TrypLETM Express (12604, Gibco/Life Technologies),

until observed detachment from the surface with a microscope. The trypsin was

then inhibited by dilution in 7.5 mL of media, the mixture transferred into a

15 mL tube and spun down to form a pellet at 10 000 rpm for 5 min. During

expansion, the cells were divided in 3 and seeded in T-75 cm flasks in 12 mL

media. Before seeding for experiments, the cells were counted using Trypan blue
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staining.

They were then seeded at passage 6 at a density of 10 000 cells · mL−1 with

1 mL per well for a 12-well plate, 0.5 mL per well for a 6-well plate or a 4-well

Labtek chamber and 250 µL per well for a 8-well Labtek chamber.

1.1.3 Freezing media

The freezing solution for cells designed to be kept for further experiments is made

of 50 % LGDMEM, 40 % FBS and 10 % dimethyl sulfoxide (DMSO) (D2650,

Sigma-Aldrich, St- Louis, MO, USA). The cells frozen with this solution were

kept in liquid nitrogen tanks, and gradually cooled down with a one-day incu-

bation at −80 ◦C before transfer in the tanks.

1.1.4 Macromolecular crowding

The differentiation are either supplemented with crowders (+) or not (-). We

use a combination of two crowders according to protocol from Dewavrin et al.

(2015). We supplement the culture media with 37.5 mg · mL−1 of Ficoll 70 (GE

Healthcare, FicollTM PM70, lot no 10085600) and 25 mg · mL−1 of Ficoll 400

(GE Healthcare, FicollTM PM400, lot no 10225087).

1.1.5 Osteoblast differentiation

The osteoblast differentiation media is made of High Glucose (HG)DMEM sup-

plemented with GlutamaxTM (10569-010 Gibco), supplemented with 10 % FBS,

0.1 µM Dexamethasone (D4902, Sigma-Aldrich, St- Louis, MO, USA), 100 µM

Ascorbic Acid (019-12063, Wako, Osaka, Japan) and 10 mM β-glycerophosphate

(35675, Calbiochem, Merck Millipore, Darmstadt, Germany).
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Figure 1.1: Time line of adipocyte differentiation.

1.1.6 Chondrocyte differentiation

Chondrocytes were obtained as a courtesy of Marc Rabaza Gairi who followed

this protocol and checked the differentiation using Quantitative Polymerase

Chain Reaction (qPCR) for chondrocyte genes. The cells are not plated but

cultured in pellet culture in 15 mL polypropylene tubes.

The chondrocyte differentiation media is made of HGDMEM supplemented

with GlutamaxTM (10569-010 Gibco), supplemented with 0.1 µM Dexametha-

sone (D4902, Sigma-Aldrich, St- Louis, MO, USA), 1 % ITS + Premix, 50 µg · mL−1

Ascorbic Acid (019-12063, Wako, Osaka, Japan), 1 % MEM Sodium Pyruvate

(Gibco), 4 mM Proline, 1 % Pen/Strep (Gibco), 1 % L-Glutamine (Gibco) and

10 ng · mL−1 TGF-β1.

1.1.7 Adipocyte differentiation

The differentiation is made of different phases. First, a pre-treatment phase, and

then 3 cycles of induction-maintenance each a week long, the induction lasting

4 days and the maintenance 3 (See Figure 1.1).

The pretreatment, when cells are confluent, lasts 3 days. The cells are still

cultured in LGDMEM and 10 % FBS. The macromolecular crowding starts at

this point for cells that will be differentiated in crowded media. For the cells
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that will be differentiated in brown cells, the media is supplemented with 8 nM

Bone Morphogenetic Protein 7 (BMP7) (354-BP, R & D Systems, Minneapolis,

MN, USA).

The white adipocyte induction media is made of HGDMEM, supplemented

with 10 % FBS, 1 µM Dexamethasone (D4902, Sigma-Aldrich, St- Louis, MO,

USA), 10 µg · mL−1 Insulin (I6634, Sigma-Aldrich, St- Louis, MO, USA), 0.2 mM

Indomethacin (I7378, Sigma-Aldrich, St- Louis, MO, USA) and 0.5 mM 3-isobutyl-

1methylxanthine (IBMX) (I5879, Sigma-Aldrich, St- Louis, MO, USA).

The brown adipocyte induction media is made of white adipocyte differenti-

ation media, supplemented with 1 µM Rosigliatazone (ALX-350-125, Enzo Life

Sciences Inc., Farmingdale, NY, USA) and 1 nM triiodothyronine (T3) (T5516,

Sigma-Aldrich, St- Louis, MO, USA).

For both differentiation protocols, the maintenance media is HGDMEM, sup-

plemented with 10 % FBS, and with or without macromolecular crowders in

accordance with the previous steps.

1.1.8 Silencing with Small interfering RNA (SiRNA)

We used a Lipofectamine® 2000 (11668, Invitrogen, Carlsbad, CA, USA)-mediated

SiRNA (SR305958, Origene, Rockville, MD, USA) method for silencing. We

combined manufacturers′ instructions to obtain the following protocol: the si-

lencing starts 1 week after the beginning of differentiation, at the step called

induction 2 in the previous time line (Figure 1.1). The following protocol is

applied with each media change, and written for a 24-well plate.

First, the media is changed according to usual protocols, with the concen-

trations of all reagents multiplied by 6/5, as 100 µL of silencing solution will be

added to the 500 µL of media already in the well.
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Then, the silencing solution is prepared: the SiRNA (20 nM concentration, or

12 pmol in total) is diluted in 50 µL of serum-free HG or LG media (depending on

the media used in the solution it will be added to). Then, Lipofectamine® 2000

is diluted 1/100 in 50 µL of serum-free HG or LG media, and incubated 5 min at

room temperature. The two solutions are then mixed and incubated 20 min at

room temperature. Finally, 100 µL of the SiRNA/Lipofectamine® solution are

added in each well.

For controls, we use the same protocol for the Universal Scrambler (SR30004,

Origene, Rockville, MD, USA), with does not recognize any human sequence

and therefore should not silence genes of interest. We also use the same protocol

without adding SiRNA to test the effect of Lipofectamine® 2000 alone. We also

keep a control where we just add the 100 µL of serum-free HG or LG media when

we add it in the other wells.

1.2 Biochemistry on the RNA level

1.2.1 RNA isolation

Cells grown on 24-well plates are rinsed twice with Hank′s Balanced Salt Solu-

tion (HBSS) and incubated at room temperature for 5 min with Trizol® (15596,

Gibco/Life Technologies, Carlsbard, CA). We then proceed with phenol-chloroform

extraction (C2432, Sigma-Aldrich, St- Louis, MO, USA) and of RNeasy® Mini

Kit 250 (74106, Qiagen, Hilden, Germany) according to manufacturer′s instruc-

tions. The RNA is kept at −80 ◦C until further processing, as well as the Trizol

remains.
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Temperature (°C) 95 94 58 72 60 94 25
Time (min:sec) 5:00 0:15 0:30 0:30 0:30 0:30 0:30

Repeats 1 35 1 1 1

Table 1.1: qPCR thermal cycle.

1.2.2 complementary DNA (cDNA) synthesis

Concentration of the isolated RNA was measured after thawing, just before

cDNA synthesis, using Nanodrop (ND-1000, Thermo Fisher Scientific Inc., Waltham,

MA, USA) to determine the absorbance ratio at 260 280 nnm. The messen-

ger RNA (mRNA) was converted to cDNA using the MaximaTM First Strand

cDNA synthesis kit (K1642, Fermentas, Thermo Fisher Scientific Inc.,Rockford,

IL, USA) according to manufacturer′s instructions.

1.2.3 qPCR

Real-time qPCR was performed using MaximaTM SYBR Green/ROX qPCR

Master Mix (K0222, Fermentas, Thermo Fisher Scientific Inc, Rockford, IL,

USA) in a real-time PCR machine (MxPro 3000PQPCR, Stratagene, Agilent

Technologies Inc., Santa Clara, CA, USA). Primers are listed in Table 6.1. The

qPCR thermal profile is shown here 1.1

The expression is normalized with TBP (TATA-Box Binding Protein) as a

house-keeping gene, using the 2∆∆CT method. T-tests were performed and re-

sults are shown as follows on the graphs: * means p-value <0.05, ** means

p-value <0.01 and *** means p-value <0.001. No * means results are not sig-

nificant.
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1.2.4 Primers design

Primers listed in Table 6.1 have been either looked for in literature or designed

using the Primer Blast tool (Ye et al. (2012a)). Those found in literature have

been verified using this tool.

The design process is as follows: a first search with the accession number

of the gene of interest returns the 10 best primers according to Primer Blast.

Looking at the size of the final product and the sizes of the possible non-desired

side products, this list is reduced to one or two primers, that have only a few

side products and that are smaller than 300 bp (chosen given the sizes of known

primers used by the team: it should not be longer than this).

Then, a thorough investigation of those side products is conducted: I looked

at where the mismatches were, and due to which primer, the forward or the

reverse. Then, when the primer that is causing the side products is identified, I

looked at the sequence of the gene of interest, and launched Primer Blast searches

adding 2 bases at the end of the primers: either 2 one the same side or 1 on each

side. These new searches allowed me to find which design has no side products

that could disturb the PCR. The designed primers are then ordered.

1.3 Biochemistry on the protein level

1.3.1 Protein collection

Proteins are collected from cells mono-layers as whole cell lysates with Radioim-

munoprecipitation assay (Ripa) buffer ( 50 nM Tris(hydroxymethyl)aminomethane

(Tris) (1400, First Base, Selangor, Malaysia), 7.8 pH, 150 nM Sodium chloride

(NaCl), 0.5 % Na Deoxycholate, 1 % Triton X-100, 0.1 % Sodium dodecyl sulfate

(SDS)) supplemented with 1 nM protease inhibitor cocktail (04 906 845 001,
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Roche, Basel, Switzerland). Protein extracts can be stored at −80 ◦C at that

stage.

1.3.2 Protein extraction from Trizol®

Extraction from culture: See 1.2.1. For this protocol, we are using the Trizol®

leftovers after RNA extraction.

Removal of cDNA phase: First, 0.3 mL of 100 % ethanol per 1 mL Trizol®

Reagent used for the initial homogenization is added to the samples, and the

solution is mixed well before incubating the samples for 2 min to 3 min at room

temperature. The DNA is then pelleted by centrifugation at 2000 g for 5 min at

4 ◦C. The phenol-ethanol supernatant is transferred to a clean tube for protein

isolation.

Protein precipitation: 1.5 mL of isopropanol to the phenol-ethanol super-

natant per 1 mL of Trizol® Reagent used for the initial homogenization is added

to the samples, and the samples are incubated for 10 min at room temperature.

The tubes are then centrifuged at 12,000 g for 10 min at 4 ◦C to pellet the protein,

and the supernatant is discarded.

Protein wash (3 repeats): The protein pellet is washed with 2 mL of the wash

solution (0.3 M guanidine in 95 % ethanol) per 1 mL of Trizol® Reagent used

for the initial homogenization for 20 min at room temperature. The samples

are then centrifuged at 7500 g for 5 min at 4 ◦C to pellet the protein, and the

supernatant is discarded.

2 mL (per 1 mL of Trizol® Reagent) of 100 % ethanol is added to protein

pellet after the third wash, and incubated for 20 min at room temperature. The

samples are then centrifuged at 7500 g for 5 min at 4 ◦C to pellet the protein,

and the ethanol wash is discarded. The proteins are then left 5 min to 10 min to
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air dry before proceeding to re-suspension.

Protein re-suspension: We added 30 µL to 60 µL Urea-SDS solution (4 M

Urea and 0.5 % SDS in 1 M Tris-Hydrochloric acid (HCl), 8 pH) to the protein

pellet. We then incubated 40 min at 52 ◦C to dissolve the pellet. The insoluble

material is made to sediment by centrifugation at 10,000 g for 10 min at 4 ◦C.

The obtained proteins are then transferred to a new tube for further experiments.

Protein extracts can be stored at −80 ◦C at that stage.

1.3.3 Western blot

Separation: The proteins are separated under reducing conditions using 8 % (for

TRPP3) and 12 % (for UCP1) SDS-PAGE. They are then transferred onto a

nitrocellulose membrane (0115, BioRad, Hercules, CA, USA).

Blocking: The membrane was blocked with 5 % Bovine Serum Albumin

(BSA) Tris Buffered saline with 0.1 % Tween20 (TBST) for 1 h at room tem-

perature. For UCP1, we use fatty-acid free BSA. TBST is made of Tris Buffered

saline (TBS) with 0.1 % Tween 20 (Sinopharm Chemicals, China). The TBS

buffer is composed of 61 g Tris (1400, First Base, Selangor, Malaysia) and 90 g

NaCl dissolved in 1000 mL doudle-distilled water (H2O) and adjusted to 7.6 pH.

It is then stored at 4 ◦C.

Primary antibodies: The membranes are incubated overnight at 4 ◦C in 5 %

BSA TBST with the following antibodies: rabbit anti-TRPP3 (1:1000, 102-

12985, Raybiotech, Norcross, GA, USA), mouse anti-UCP1 (1:1000, mab6158,

R & D Systems, Minneapolis, MN, USA) and mouse anti-α-tubulin (1:1000,

T6074, Sigma-Aldrich, St-Louis, MO, USA) as a loading control.

The TRPP3 antibody has been raised against the following sequence (CTIS-

STGPLQPQPKKPEDEPQETMNAVG), which only matches with TRPP3 when
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a BLAST search is conducted on the unitprot website, in the UNITPROTKB

database, for E-values under 100.

Secondary antibodies: After washing with TBST, the cells are incubated 1 h

at room temperature in 3 % BSA TBST with the following antibodies: HRP

goat-anti mouse (1:3000, P0447, Dako, Glostrup, Denmark) or HRP goat-anti

rabbit (1:3000, P0448, Dako, Glostrup, Denmark)

Detection: Chemiluminescence was captured with a Chemidoc MP Imaging

System (Bio-Rad, Hercules, CA, USA) using SuperSignal West Pico (for TRPP3)

or Femto (for UCP1) Chemiluminescent Substrate for detection of HRP (34080

and 34096, Thermo Fisher Scientific, Waltham, MA, USA).

Stripping After detection the membranes were stripped using the following

protocol. The membranes are incubated 50 ◦C for 10 min while covered in harsh

stripping buffer ( 20 mL SDS 10 %, 12.5 mL Tris HCl 6.8 pH 0.5 M, 67.5 mL H2O

and 0.8 mL β-mercaptoethanol). It is then thoroughly washed with H2O and

incubated for 10 min at room temperature in mild stripping buffer ( 15 g glycine,

1 g SDS, 10 mL Tween20, volume brought up to 1 L with H2O, and adjusted to

2.2 pH. ). It is then washed with phosphate buffered saline (PBS) and TBST

before proceeding with loading control detection.

Size Control As can be seen in Figure 1.2a, our data is consistent with our

expectations: protein band slightly above 100 kDa, which is coherent both with

the data specifications (1.2b) and with expected molecular weight: 92 kDa, with-

out post-translational modifications, according to the manufacturer. U87 is our

positive control, as is seen in the figure. There is only one important band

around the expected size, which validates the quality of our antibody.

Normalization and quantification Our data is normalized using ImageJ soft-

ware. Tubulin is used as an internal control for loading: the quantities of proteins
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(a) (b)

Figure 1.2: Size control of the western blot Figure 1.2b taken from the
Raybiotech website

are first expressed as a ratio of expression compared to tubulin, and then fold-

changes are calculated to the control of the experiment (SVF, MSC, IB+ or IW-

as specified in the legend of the figure).

1.3.4 Alizarine Red staining

Fixation: Cells are fixated in 4 % paraformaldehyde (PFA) in PBS for 10 min

and rinsed 3 times. They can be stored in PBS at 4 ◦C at that stage.

Staining: They are then incubated in filtrated Alizarine Red 2 % in 4.1 pH

for 5 min and washed 3 times with H2O. Then are then left to dry and stored

at 4 ◦C. The well looks red if the osteoblast differentiation was successful (See

Figure 1.3).

1.3.5 Mitochondrial oxygen consumption rate

Cells were seeded at usual density in XFe 24 cell culture plates (102340-100, XFe

24 FluxPak, Seahorse Bioscience, Chicopee, MA, USA). At the end of the differ-

entiation protocol, cells are washed twice with XF assay medium (Seahorse Bio-
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(a) (b)

Figure 1.3: Alizarine Red staining: (a) Macroscopic view (b) Microscopic
view

science, Chicopee, MA, USA), before a 20 min incubation at 37 ◦C in the absence

of CO2 in the same assay medium. The oxygen consumption rate (OCR)is then

measured using the Seahorse XFe 24 analyzer (Seahorse Bioscience, Chicopee,

MA, USA).

Figure 1.4: Measuring the mitochondrial respiration: Figure taken from
the Seahorse website

10 µM Forskolin (or DMSO as vehicle control) was added in order to stimulate

the cells for 100 min. 2 µM of Oligomycin, 0.6 µM of carbonyl cyanide- 4 (trifluo-

romethoxy) phenylhydrazone (FCCP), 2 µM of rotenone and 2 µM of Antimycin

(XF Cell Mito Stress Test Kit, 101706-100, Seahorse Bioscience, Chicopee, MA,

USA) were sequentially added in each well to differentiate the components con-
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tributing to the total oxygen consumption of the cells of interest. The OCR

before adding oligomycin is defined as mitochondrial respiration, the minimum

OCR between addition of oligomycin and FCCP as uncoupled respiration, and

the highest OCR after adding FCCP is defined as the total respiratory capacity

(See Figure 1.4).

After those measurements, cells were lysed using 0.1 mg · mL−1 Proteinase K

(P2308, Sigma-Aldrich, St-Louis, MO, USA). A solution of 10 mM Tris-HCl of

8.5 pH to 9.0 pH with 40 % glycerol was used to dissolve the enzyme to a concen-

tration of 1 mg · mL−1. A lysis buffer (10 mM Tris-HCl (8.5 pH), 1 mM Ethylene-

diaminetetraacetic acid (EDTA), 0.1 % (v/v) Triton X-100) was used to dilute

the enzyme to a working concentration of 0.1 mg · mL−1. The double-stranded

DNA (dsDNA) content was measured using Quant-iTTM PicoGreen® dsDNA

Kit (MP7581, Molecular Probes®, Life Technologies, Carlsbad, CA, USA), and

the amount of dsDNA in each well was used to normalize OCR.

1.4 Immunostaining

1.4.1 TRPP3 and primary cilia staining

Fixation: After an ice incubation for 30 min in order to depolymerize non-

acetylated microtubules, cells are rinsed twice in HBSS. Cells are then fixated

in 4 % PFA in PBS for 7 min and rinsed thoroughly. They can be stored in PBS

at 4 ◦C at that stage.

Permeabilisation: Cells are permeabilised in 3 % Triton X-100 (161-0407,

BioRad, Hercules, CA, USA) in PBS for 3 min. Cells are then washed thrice

with PBS.

Blocking: The basis solution used from now on is made of 3 % BSA in PBS
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0.1 % Tween 20 (Sinopharm Chemicals, China). Cells are blocked for 30 min at

room temperature.

Primary antibodies: The cells are incubated overnight at 4 ◦C in the ba-

sis solution supplemented with 1/2000 mouse anti acetylated tubulin (T-6793,

Sigma-Aldrich, St- Louis, MO, USA) and 1/500 Rabbit anti-human PKD2L1

(102-12985, Raybiotech, Norcross, GA, USA).

Secondary antibodies: After washing twice with PBS, the cells are incubated

1 h at room temperature in the basis solution supplemented with 1/400 488

chicken anti-mouse (A21200) (Green) (A21200, Life Technologies, Carlsbad, CA,

USA), 1/400 594 goat anti-rabbit (Red) (A11072, Life Technologies, Carlsbad,

CA, USA) and 1/1000 4â£Ů,6- diamidino-2-phenylindole (DAPI). The cells are

then rinsed twice with PBS and can be stored in PBS at 4 ◦C.

Imaging: The cells are imaged using a confocal microscope from Yong Loo

Lin School of Medicine, National University of Singapore, Confocal Microscopy

Unit, unless stated otherwise.

Image analysis: The co-localisation coefficients were obtained using ImageJ

Coloc2 plugin, and the analysis automated by a macro that I designed.

Figure 1.5: Primary cilia staining. In blue, DAPI staining. In green, acety-
lated tubulin staining.
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1.4.2 Automated analysis

The ImageJ Coloc2 plugin allows to calculate different coefficients often used

in biochemical studies of co-localization. A few steps were automatized in this

process: a first macro was written to transform the images from oib format,

given by the confocal microscope, to a RGB image that ImageJ can work with

and a bright field image.

Then, a macro was written that took a folder of images that need to be

analyzed and processed it with the following steps:

1. Calling the bright field image and manually assess the presence or not of

lipid droplets to verify the state of differentiation

2. Calling the green image (acetylated tubulin) to verify the presence of pri-

mary cilia

3. Calling the red (TRPP3) and blue (DAPI) images to verify whether the

probes seem co-localized and to assess the quality of the image

4. If the image was of a good enough quality, the Coloc2 plugin was called

and automatically calculated the two interesting Manders′ coefficients as

well as importing the comments made by the plugin

5. The results were exported to an Excel file
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Chapter 2

Investigating the presence of

TRPP3

TRPP3 is a receptor from the TRP family, that has not been studied previously

in adipocytes, either differentiated from SVF or MSC. We therefore decided to

characterize it in those two cell types as a first step towards understanding its

role.

2.1 Cellular characteristics of MSC and SVF

2.1.1 Definitions of MSC and SVF

The first step before comparing the expression of TRPP3 in those two cell types

is to explain what they are.

The definition of MSC is given by the International Society for Cellular Ther-

apy (See Dominici et al. (2006)). They have to verify three criteria:

1. Plastic adherence: Mesenchymal Stem Cells must be plastic adherent in

standard in vitro conditions.

2. Marker expression: Those cells must verify the conditions presented in
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Table 2.1.

3. Differentiation potential: MSC must be able to differentiate in adipocytes,

osteoblasts and chondrocytes.

Marker State Role Reference
CD 14 or
CD 11b

Negative (≤ 2 %) Immune system
marker

Ziegler-Heitbrock and
Ulevitch (1993), Kawai
et al. (2005)

CD 19 or
CD79α

Negative (≤ 2 %) Markers of β cells Tedder and Isaacs
(1989), Chu and Arber
(2001)

CD 34 Negative (≤ 2 %) Marker of primitive
hematopoietic progen-
itors and epithelial
cells

Satterthwaite et al.
(1992)

CD 45 Negative (≤ 2 %) Leukocyte marker Altin and Sloan (1997)
CD 73 Positive (≥ 95 %) Found on MSC.

Converts Adeno-
sine monophosphate
(AMP) to adenosine

Tsukamoto (2014)

CD 90 Positive (≥ 95 %) Marker of a wide range
of stem cells

Wiesmann et al. (2006)

CD 105 Positive (≥ 95 %) Found on MSC. Glyco-
protein.

Maleki et al. (2014)

HLA-
DR

Negative (≤ 2 %) Human Leukocyte
Antigen

Parham and Ohta
(1996)

Table 2.1: MSC markers State represents the percentage of cells showing a
marker expression. In italic are shown the markers common with SVF.

Those cells are extracted from bone marrow, where they share a stem cell

niche with hematopoietic stem cells (Mendez-Ferrer et al. (2010)). Those cells,

in culture, exhibit a fibroblastoid morphology (See Figure 2.1).

A definition of SVF was given in a joint statement by the International Fed-

eration for Adipose Therapeutics and Science and the International Society for

Cellular Therapy (See Bourin et al. (2013)). We will call SVF what they define

as adherent stromal cell, as the plastic-adherent sub-group of SVF. Therefore,

the following criteria apply:

1. Plastic adherence: Stromal Vascular Cells must be plastic adherent in
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Figure 2.1: MSC in culture. Bright field image, ×4 magnification

Figure 2.2: SVF in culture. Bright field image, ×4 magnification

standard in vitro conditions.

2. Marker expression: Those cells must verify the conditions presented in

Table 2.2.

3. Differentiation potential: SVF must be able to differentiate in adipocytes,

osteoblasts and chondrocytes.

SVF are extracted from subcutaneous adipose, ubiquitous and easily ac-

cessible depots with a minimal invasive procedure (by liposuction aspiration)

(Baer and Geiger (2012)). Several investigations encouraged the hypothesis of

a perivascular localization of SVF within the fat tissue. Those cells, in culture,

exhibit a fibroblastoid morphology (See Figure 2.2).

For more information on patients′ characteristics, see 1.1.1.
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Marker State Role Reference
CD 11b Negative (≤ 2 %) Immune system

marker
Kawai et al. (2005)

CD 13 Positive (≥ 90 %) Marker of the myeloid
lineage

Winnicka et al. (2010)

CD 29 Positive (≥ 90 %) Integrin Xue et al. (2015)
CD 31 Negative (≤ 2 %) Platelet endothelial

cell adhesion molecule
Xue et al. (2015)

CD 34 Present at variable
levels

Marker of primitive
hematopoietic progen-
itors and epithelial
cells

Satterthwaite et al.
(1992)

CD 44 Positive (≥ 90 %) Cell-surface glycopro-
tein

Kang et al. (2013)

CD 45 Negative (≤ 2 %) Leukocyte marker Altin and Sloan (1997)
CD 73 Positive (≥ 90 %) Found on MSC. Con-

verts AMP to adeno-
sine

Tsukamoto (2014)

CD 90 Positive (≥ 90 %) Marker of a wide range
of stem cells

Wiesmann et al. (2006)

CD
105

Positive (≥ 90 %) Found on MSC. Glyco-
protein.

Maleki et al. (2014)

CD
235a

Negative (≤ 2 %) Glycoprotein, marker
of erythrocyte

Dahr et al. (1987)

Table 2.2: SVF markers State represents the percentage of cells showing a
marker expression. In italic are shown the markers common with MSC. in bold
are shown primary markers.

2.1.2 Differences between SVF and MSC

As mentioned previously, we are interested in brown and white adipose tissues,

and clinical applications to counteract effects of obesity.

We therefore decided to conduct most experiments on both cell types: SVF

are more clinically relevant, but MSC have higher reproducibility between ex-

periments. For each new donor of cells, a quality control was made to check

for their stemness, that is their ability to differentiate in osteoblasts, white and

brown adipocytes.
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Characteristic MSC SVF Reference
Plastic ad-
herence

Yes Yes 2.1.1

Marker ex-
pression

Similar Similar 2.1.1

Trilineage
differentia-
tion poten-
tial

Yes Yes 2.1.1

Localization
in the body

Young adults′ bone
marrow

Patients′ liposuction aspi-
rate

1.1.1

Way of
procuring

Bought from com-
pany

Obtained from hospital 1.1.1

Batch to
batch differ-
ences

Small, same lot
from the company

High donor to donor vari-
ability

1.1.1

Clinical rele-
vance

Relevant Higher clinical relevance due
to extraction from donor
and presence in the body

Table 2.3: Differences and similarities in cellular characteristics be-
tween SVF and MSC

2.2 Characterization on SVF-derived cells

2.2.1 TRPP3 expression in trilineage differentiation

As was mentioned previously (See 2.1), SVF have the potential for trilineage dif-

ferentiation, into the following lineages: osteoblasts, chondrocytes and adipocytes.

To assess whether TRPP3 was adipocyte-specific or a marker of all those differ-

entiated cells, I performed a PCR study in osteoblasts, adipocytes and chondro-

cytes. As we can see in Figure 2.3, there is no TRPP3 expression in undifferenti-

ated cells, osteoblasts or chondrocytes. However, there is high expression, more

than 60 fold more than in the control, in both types of adipocytes. There is

high variance in this experiment on the result for brown cells, but this does not

change the conclusion of this first experiment: TRPP3 is an adipocyte-specific

marker, which allows us to do further experiments, to characterize this recep-

tor in SVF-derived adipocytes. This experiment excludes the hypothesis that
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Figure 2.3: Gene expression of TRPP3 presence in SVF-derived trilin-
eage differentiated cells: fold changes in reference to SVF.
n=3 for each cell type. Significance is calculated compared to SVF. Not shown
when not significant. *: p<0.05

TRPP3 is a maturity marker of stem cells, a marker to their loss of pluripo-

tency or an age-related marker. The high standard deviation for both white

and brown adipocytes do not allow us to compare the expression between those

two lineages at the moment. The following study sought to differentiate the

expression of TRPP3 in those two lineages: 2.2.2.

2.2.2 Characterization on the mRNA level

The first step in characterizing TRPP3 in SVF-derived adipocytes was to study

it presence on the mRNA level. In order to do this, we decided to perform a

qPCR (See Materials and Methods 1.2 for the protocol, and see Appendix 6 for

primers references). We used TATA-binding protein (TBP) as a cDNA quantity

control, and plot here the fold changes based on the CT values. This experiment

was carried out by Anna Goralczyk, as there was high variability in the following

batches of SVF that were used.

As can be seen in Figure 2.4a, the expression of TRPP3 varies according to

the experimental conditions. As a reminder of what has been described in the

Materials and Methods (1), SVF stands for non-differentiated cells, IW- for cells
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(a) (b)

Figure 2.4: Gene expression of TRPP3 in SVF-derived adipocytes (a)
First repeat on donor BARSA061. (b) Second repeat on donor BARSA061.
n=3 for each cell type. Significance is calculated compared to SVF. Not shown
when not significant. Results reproduced with permission from Anna Goralczyk.

differentiated using the white differentiation protocol without macromolecular

crowding (the cells expressing the least amount of UCP1 in our experiments),

and IB+ stands for cells differentiated using the brown differentiation protocol

with macromolecular crowding (the cells expressing the most amount of UCP1 in

our experiments). SVF is used as a control, so its fold-change is defined as 1. We

are therefore comparing expression levels to this level, knowing that since there

is no Ct value for SVF, meaning the presence of TRPP3 cDNA is not detected

by the machine, this means there is actually no expression of the gene. As we

can see here, IW- cells express very low levels of TRPP3 mRNA, around the

same level as undifferentiated SVF, which means there is very little TRPP3 in

IW- cells. However, we can see that the fold change of TRPP3 in IB+ is around

18, which means it is much more expressed in those cells then in the other two

cell types. The results are very similar for Figure 2.4b, where IW- levels are

again close to SVF levels, meaning that there is almost no TRPP3 in IW- cells

either. The fold change of TRPP3 in IB+ is around 10, which means it is much

more expressed in those cells then in the other two cell types. This is lower than

in the other repeat, but we are there only analyzing a trend, which is the same

in both cell types.

35



The conclusion from this experiment on the gene expression level is that

TRPP3 seems to be expressed in brown cells, and not in undifferentiated or

white cells, on different repeats on the same experiment. Therefore, I decided

to find out whether this was also true on the protein level, since a number

of regulations intervene between the RNA expression and the presence of the

functional protein in the cell.

2.2.3 Characterization on the protein level

Since an up-regulation of TRPP3 in brown fat has been shown in the mRNA

level, we decided to perform a Western Blot (WB) (See Materials and Methods

1.3 for the protocol) in order to assess whether or not this up-regulation was also

reflected on the protein level. Since this protocol had not been used previously

in the laboratory, I optimized it and verified the quality of the TRPP3 antibody

using both the expected size control and a positive control.

As can be seen in Figure 2.5, the expression of TRPP3 varies according to the

experimental conditions. As we can see here, SVF cells express very low levels

of TRPP3 protein (which we assume to be basal levels), IW- express TRPP3

on an appreciably higher level, whereas IB+ express TRPP3 at an even higher

level. To confirm those results, we decided to analyze this blot using ImageJ

software, which allows for quantification of blots. Those results are presented

in Figure 2.6, confirming what we saw on the blot: brown cells express TRPP3

protein at a higher level than SVF and white fat cells, around 3 times as much in

one case. Run A does not show such a significant difference when analyzing the

fold changes, even though we can see on the Western Blot that IB+ expresses

TRPP3 on higher levels. We can still see the marked difference that existed

between adipocytes and SVF on the gene level on the protein level.
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(a)

(b)

Figure 2.5: Protein expression of TRPP3 in SVF-derived adipocytes
(a) First repeat on donor BARSA061. (b) Second repeat on donor BARSA061.
n=1 for each cell type.

The high levels of TRPP3 in IW- cells can be explained by the fact that their

gene expression is slightly higher than SVF, which means there is translation of

the proteins, and by the fact that some cells undergoing brown or white differ-

entiation protocols still express characteristics from the other type of adipocyte.

This experiment proves that the up-regulation of TRPP3 that we saw at the

mRNA level is also present at the protein level on SVF-derived brown adipocytes,

and that TRPP3 is only present at a basal protein level on undifferentiated

SVF. Now that we have characterized the TRPP3 expression at the end of the

differentiation, as well as the correlation between mRNA and protein levels in
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(a) (b)

Figure 2.6: Protein expression of TRPP3 in SVF-derived adipocytes
(fold changes) (a) Fold changes for the first repeat. (b) Fold changes for the
second repeat.
n=1 for each cell type.

this cell line, I decided to characterize its time evolution, in order to see at what

stage of differentiation it appeared.

2.2.4 Time evolution of TRPP3 presence

Figure 2.7: Time evolution of the appearance of TRPP3 mRNA in SVF-
derived cells: gene expression using PCR on SVF, white and brown adipocytes.
n=3 for each cell type.

We can see thanks to these results that at induction 2 (see time-line 1.1 for

more information), there is only little TRPP3 mRNA expressed, whereas it is

highly present at induction 3, and close to the final levels it will reach at the

end of culture. This is consistent with the PCR data presented in 2.2.2 up to

induction 3. As mentioned in 2.1, there is high batch to batch variability in SVF

38



donors, and the donor used in this time evolution experiment did not differentiate

correctly according to brown or white induction protocols, which does not put

into question the time-line for its occurrence but only the comparison between

IB+ and IW- TRPP3 expressions.

Now that we have fully characterized TRPP3 in SVF, we will also characterize

it in MSC. This MSC study has been done before my arrival except for the protein

data which I obtained.

2.3 Characterization on MSC-derived cells

2.3.1 Trilineage differentiation

As was mentioned previously (See 2.2.1), MSC, as SVF, have the potential for

trilineage differentiation. This study was conducted before my arrival on MSC-

derived cells, to prove that TRPP3 was adipose-specific and not present in the

other SVF-derived lineages. (See 0.2.4). The absence of TRPP3 in other MSC-

derived lineages allows for further characterization in MSC-derived adipocytes.

2.3.2 Characterization on the mRNA level

Just as for SVF-derived cells, the first step in characterizing TRPP3 in MSC-

derived cells was to study it presence on the mRNA level. In order to do this,

a qPCR study was carried out, that showed higher TRPP3 RNA expression in

white adipocytes than in brown ones, contrary to the results obtained in SVF-

derived cells, which will be analyzed more in depth in the next part 2.4.

The conclusion from this experiment on the mRNA level is that TRPP3

seems to be highly expressed in white cells, expressed in brown cells, and not in

undifferentiated cells, on different repeats on the same experiment. Therefore,
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I decided to find out whether this was also true on the protein level, since a

number of regulations intervene between the RNA expression and the presence

of the functional protein in the cell. I thought a protein study was necessary

before making any conclusions or hypothesis from the work that was done before

my arrival.

2.3.3 Characterization on the protein level

Since an up-regulation of TRPP3 in white and brown fat has been shown in the

mRNA level, I decided to perform a WB (See Materials and Methods 1.3 for the

protocol) in order to assess whether or not this up-regulation was also reflected

on the protein level.

As can be seen in Figure 2.8, the expression of TRPP3 varies according to the

differentiation protocol used. MSC and IW- cells express low levels of TRPP3

protein, whereas IB+ express TRPP3 at a much higher level. To confirm those

results, we decided to analyze this blot using ImageJ software, which allows for

quantification of blots. Those results are presented in Figure 2.9, confirming

what we saw on the blot: brown cells express TRPP3 protein at a higher level

than MSC and white fat cells: around 2.7 times higher according to the fold

changes presented in figure 2.9a, and around 2.2 times higher according to the

fold changes presented in figure 2.9b. Those results are surprising at first, given

the trend obtained on the mRNA level, which was opposite to the one obtained

on the protein level, itself similar to the one obtained for SVF-derived cells.

There are however a few explanations for this discrepancy between results on the

mRNA and protein levels. First of all, we could be dealing with a receptor with

a very long half-life, stabilized by interactions with other proteins for example.

Therefore, a basal level even without detected mRNA signal can be expected.
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(a)

(b)

Figure 2.8: Protein expression of TRPP3 in MSC-derived adipocytes
(a) First repeat. (b) Second repeat from the same donor.
n=1 for each cell type.

Another explanation is that there is some mRNA coding for TRPP3, but

in very low quantities, such as to ensure only the renewal of the basal level of

proteins that we see, and it is therefore not picked up by qPCR, which only

detects higher signals. This mRNA could also have a very short life, which

would explain why we cannot pick up a signal, except in some cell types where

it is stabilized.

One last explanation resides in experimental issues: the primer could detect

another gene (highly unlikely according to primerblast) or the antibody could

detect the wrong protein (highly unlikely as it is at the expected size and there
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(a) (b)

Figure 2.9: Protein expression of TRPP3 in MSC-derived adipocytes
(fold changes) (a) Fold changes for the first repeat. (b) Fold changes for the
second repeat from the same donor.
n=1 for each cell type.

is a positive control).

Now that we have characterized the TRPP3 expression at the end of the

differentiation, as well as compared the presence of mRNA and protein in this

cell line, we can compare those results with its time evolution, in order to see at

what stage of differentiation it appeared.

2.3.4 Time evolution of TRPP3 presence

It was found out that at induction 2 (see Time-line 1.1 for more information),

there is still no TRPP3 mRNA expressed, whereas it is present at induction 3,

and rising to its final levels during the last week of culture. This is consistent

with the PCR data presented previously 2.3.2.

2.4 Conclusions

2.4.1 Similarities and differences between SVF and MSC

The time evolution analysis I conducted in SVF as well as the protein study I

optimized and then led in SVF and MSC allowed me to summarize differences

and similarities in TRPP3 expression between SVF and MSC in Table 2.4.
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Characteristic MSC SVF
Trilineage
differentia-
tion

Present only in adipocytes Present only in adipocytes

Gene expres-
sion

Higher in white adipocytes
than in brown adipocytes

Higher in brown
adipocytes than in white
adipocytes

Protein ex-
pression

Higher in brown
adipocytes than in white
adipocytes

Higher in brown
adipocytes than in white
adipocytes

Consistency
between
those ex-
pressions

Discrepancy explained in
2.3.3

Yes

Time occur-
rence

Occurrence at induction 3 Earlier occurrence but at
very low levels

Differences
between
repeats

Small between experiments High between experiments,
with the same trend be-
tween donors

Table 2.4: Differences and similarities in TRPP3 expression between
SVF and MSC

2.4.2 Results analysis

Those results were interesting for various reasons. First of all, we have estab-

lished that TRPP3 is present in adipocytes and not in undifferentiated cells,

which make it an interesting topic of research in adipocytes. It is not a marker

of stem cell aging, loss of pluripotency or stem cell maturity.

Secondly, we have established that it is regulated differently in brown and

white cells, which makes it ever more interesting as our team is focused on the

differences between those two types of adipocytes and the regulation of their

differentiation.

We have also established a time evolution of the occurrence of this marker,

which is not an age-related marker, as it is not present on undifferentiated cells,

time-evolution which will be interesting for next planned experiments such as

silencing.

Then, we have also established that those regulations are different on SVF
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or MSC-derived cells, which means that analyzing both might lead to useful

insights.

2.4.3 Choices for future experiments

Those results made me hypothesize that TRPP3 had a role in brown adipogenesis

or functionality, as it is present in late differentiation stages and highly so in

differentiated cells. Moreover, TRPP3 protein is present in much higher quantity

in cells having undergone the brown differentiation protocol, which leads me to

hypothesize its role in brown adipogenesis in particular rather than adipogenesis

in general.

Given my results, I decided to further the study using both SVF and MSC.

However, some of the experiments (such as localization and optimization) were

conducted on SVF only. This is motivated for different reasons.

First of all, there is a direct correlation between WB and PCR data, which

allows for easier analysis of results.

Secondly, SVF are cells with higher UCP1 expression, which that it will allow

for more important reduction of its expression if our hypothesis about the role

of TRPP3 as controlling brown differentiation in SVF-derived cells is true.

However, although SVF have more clinical relevance, as they are extracted

directly from donors, they have higher batch to batch variation, as well as vari-

ations according to where the biopsy was made, which is why we decided to also

conduct the silencing experiment on MSC.

For those different reasons, I decided to continue experiments on SVF-derived

adipocytes for localization, optimization of protocols and silencing, while Anna

Goralczyk used my protocols for study on MSC.
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Chapter 3

Localization study

TRPP3 is a receptor that has been described in a few cell types, in different

organisms, but never in adipocytes or SVF. First, I will describe its supposed

localization according to existing literature, then present the results of the ex-

periments that were carried out, and draw some conclusions from this study. All

the experiments presented in this chapter were carried out in SVF-derived cells.

3.1 Expected localization

3.1.1 TRPP3′s expected localization

DeCaen et al. (2013) showed that TRPP3, when interacting with PKD1-L1

through heteromeric pores, regulates calcium influx in the primary cilia (3.1.2).

Other members of the Polycystic Kidney Disease (PKD) channels have been

shown to interact with the primary cilia (Delmas (2005), Zhou (2009)). Studies

looking into the regulation of TRPP3 by various conditions (heat, voltage, or

alkalization to cite a few) use over-expression techniques, and find a membrane

localization, which is not contradictory with a cilia localization since TRPP3 is

over-expressed (Shimizu et al. (2009),Shimizu et al. (2011) and Higuchi et al.
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(2014)). Therefore, we decided to investigate whether or not TRPP3 was co-

localized with the primary cilia, whose role in adipocyte differentiation has been

studied (3.1.2), or whether or not it was localized at the membrane of cells.

3.1.2 Primary cilia is involved in adipogenesis

Primary cilia is a solitary organelle, protruding from the cell surface above the

centrosome, that senses cell environment thanks to its dense pool of receptors

Phua et al. (2015). It is made of acetylated tubulin, which allows for its specific

staining (See Materials and Methods for reference 1.5).

The suspected role of cilia in obesity and metabolic disorders has been de-

tailed in Oh et al. (2015). Apart from a role in the hypothalamus and in regu-

lation of food intake, increasing evidence points towards a role in adipogenesis

itself. Mature adipocytes are unique vertebrate cells, as they are not thought to

be ciliated. However, transient ciliogenesis could to be fundamental to regulate

adipogenesis (Marion et al. (2009)). When disturbing Bardet-Biedl syndrome

(BBS) proteins that are necessary for ciliogenesis, adipogenesis is increased,

showing a direct link between the primary cilia and adipogenesis (Marion et al.

(2012)).

Another study of particular interest to our project was conducted by Qiu

et al. (2010). They partially inactivated Polycystic Kidney Disease 1 (PKD1),

member of a family known to interact with TRPP3 (Zheng et al. (2015)), and

this activated adipogenesis in mouse bone marrow MSC. However, this proadi-

pogenic effect of PKD1 inactivation was reversed by a partial decrease of another

ciliary protein, Kinesin Family Member 3A (Kif3a). This proves that some cil-

iary proteins, known to form pores with TRPP3-like channels, are involved in

controlling adipocyte differentiation, whether increasing or decreasing it. More-
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over, the role of those ciliary proteins in regulating the balance between brown

and white adipogenesis has not been elucidated yet. Therefore, we hypothesized

that TRPP3 could be located at the primary cilia of adipocytes during differ-

entiation: the role of cilia in adipogenesis is important and not elucidated, and

known interaction partners of TRPP3 are located there.

3.2 Results of this localization study

3.2.1 No link between primary cilia and TRPP3 could be estab-

lished

Figure 3.1: Staining for TRPP3 of a ciliated cell In blue, DAPI. In red,
TRPP3. In green, acetylated tubulin. This cell was stained at T5 1.1 (beginning
of maintenance 2), after undergoing an IB- differentiation protocol.

The protocol for cilia staining was adapted from Prosser and Morrison (2015),

and optimized, as it was not done previously by the team. According to the

literature review that has been presented in 3.1, we expected co-localization

with primary cilia, which is not visible according to those images 3.1. We can

see the primary cilia, a short and hair-like organelle, protruding from the cell,

near the nucleus. This is coherent with a cilia′ location, which is generated by
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the centrosome. In this picture, the red staining corresponding to TRPP3 is

present in the whole cytoplasm as well as in the nucleus. Therefore, we observe

no co-localization in this picture. We chose this picture taken at T5 as it showed

the cilia, which did not appear as clearly in later pictures. It was not observed in

any of the cells presenting both cilia and TRPP3 staining. Therefore, this first

hypothesis was abandoned. We then sought to establish whether localization of

TRPP3 was dependent on differentiation protocol, and therefore dependent on

the cell type.

3.2.2 No pattern of localization according to differentiation pro-

tocol was identified

Staining at the end of the differentiation period for different protocols is shown

in Figure 3.2. The green channel represents acetylated tubulin, the component

of cilia also present in the rest of the cytoskeleton. Here, no structure resembles

a primary cilia. We can decipher cytoskeleton staining around the lipid droplets

in Figure 3.2c. However, what is of most interest to us in this staining is the red

channel, which represents TRPP3 staining. We can see in all pictures that there

is very little or no staining in the cytoplasm of cells. However, a pronounced nu-

clear (DAPI, blue channel) stain is present in all cases. This study can therefore

be deemed inconclusive, as the localization of TRPP3 is apparently the same

after all differentiation protocols: brown differentiation with (see Figure 3.2a)

or without crowding (see Figure 3.2b), white differentiation with (results not

shown) or without (see Figure 3.2c) crowding or even basal levels in SVF (see

Figure 3.2d).

Therefore, we have established that differentiation does not impact TRPP3

localization. However, those images suggest a novel localization for TRPP3, that
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(a) (b)

(c) (d)

Figure 3.2: Localization study at the end of differentiation In blue, DAPI.
In red, TRPP3. In green, acetylated tubulin. (a) Staining after full IB+ differ-
entiation. (b) Staining after full IB- differentiation. (c) Staining after full IW-
differentiation. (d) Staining after 3 weeks of SVF maintenance.
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has not been reported in literature and is surprising given the protein sequence

of TRPP3, as it seems that TRPP3 has a nuclear localization. Surprising as this

nuclear localization may be according to known characteristics of TRPP3, we

decided to investigate this hypothesis of a nuclear localization.

Some z-stack images were taken (results not shown) and it appears that

the signal was not confined to the nucleus membrane but also present inside

the nucleus. I then decided to run a co-localization analysis using the ImageJ

Coloc2 plug-in (Dunn et al. (2011)), and more precisely using Manders′ overlap

coefficient.

3.2.3 Co-localization analysis

Two main techniques exist to quantify co-localization (See Dunn et al. (2011)),

that do not make the same assumptions on the samples and probes.

The first one, called Pearson′s correlation coefficient (PCC), takes the fol-

lowing form, taking as example red and green channels:

PCC =
∑

i(Ri − R̄) × (Gi − Ḡ)√∑
i(Ri − R̄)2 ×

∑
i(Gi − Ḡ)2

where Ri is the intensity value of the red channel for pixel i, Gi is the intensity

value of the green channel for pixel i, and R̄ and Ḡ refer to the mean intensities

of those channels.

Therefore, PCC ranges from 1 where intensities are linearly correlated to -1

when they are inversely correlated. Values near 0 reflect distribution of probes

that are uncorrelated to each other. Since there is a subtraction between the

pixels and the mean intensity, this coefficient is independent of signal background

or offset. However, despite its ease of use and other advantages, I chose not to
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use this coefficient, as it is only adapted for probes that are linearly related to

each other and that there is not reason in our study to have a linear correlation

between our probes of interest.

The second technique, that I opted for, is called Manders′ overlap coefficient

(MOC), named after Manders who first published it (Manders et al. (1993)).

Manders′ coefficient is defined as follows:

MOC =
∑

i(Ri ×Gi)√∑
iR

2
i ×

∑
iG

2
i

This coefficient is almost independent of signal proportionality, but is mainly

sensitive to co-occurrence, that is the fraction of pixels that present high signals

for both probes.

More precisely, we did not use MOC, but MCC (Manders′ co-localization

coefficient), characterizing the fractional overlap, that is the fraction of a probe

that is co-localized with the other one. Those coefficients are simply calculated

as:

MOC =
∑

iRi,colocal∑
iRi

where Ri,colocal = Ri if Gi > 0 and 0 otherwise. Given that pixel values of 0

are rare if non-existent in microscopy, the image needs to be go through a first

threshold-making step before being analyzed. Given the technique that we used

to image and to threshold, there is not quantification possible between samples,

it is only meaningful to see whether those values are high or low, but comparing

numerical values between samples is not correct.

A technique has been developed to threshold images removing user bias for

calculating those coefficients. The coefficients I am showing are therefore either

without threshold or with Costes method (See Dunn et al. (2011)).
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3.2.4 Manders′ analysis

This process was automatized and all taken images went through this analysis

process (see 1.4.2 for more details). The results are presented in Figure 3.3. We

consider values to be significant when this coefficient is above 0.8 (co-localization)

or below 0.2 (the probes are not co-localized), which means that no result here

is significant. There is a difference between IB+ and IW- that could be con-

sidered numerically significant. However, the standard error plotted here does

not take into account staining and imaging variations, which render this result

insignificant, as it only takes into account the value given by the plug-in.

In this study, Manders′ overlap coefficient 2 represents the fraction of TRPP3

that is co-localized with DAPI.

Figure 3.3: Manders′ overlap coefficient:
The number of cells and images used are presented in Table 3.1. Significance is
calculated compared to SVF. Not shown when not significant.

SVF IW- IW+ IB- IB+
Number of cells 48 84 61 112 96
Number of images 14 20 22 26 29

Table 3.1: Mander′s analysis: number of cells and images used in the auto-
mated analysis
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3.2.5 Different staining patterns were observed without any cor-

relation to expected parameters: time or differentiation

protocol

Even if the previous study (3.2.2) had been conclusive, other patterns obtained

during the staining would have shed some doubts on the results. Those are

presented in Figure 3.4. We can see in Figure 3.4a (Brown differentiation pro-

tocol plus crowding, after the first induction) a light staining in the cytoplasm

that could be background, and a nuclear staining by very small aggregates. In

Figure 3.4b (Brown differentiation protocol plus crowding, after two weeks of

differentiation protocol), TRPP3 staining is dispersed in the cytoplasm. The

same protocol with the same cells further in the plate gives very different re-

sults in Figure 3.4c: there is a very important nuclear staining, with little or

no cytoplasmic background. We can see in Figure 3.4d (White differentiation

protocol without crowding, after the third induction) a strong nuclear staining

by aggregates.

As shown in Figure 3.4, very different staining patterns were observed, even

in the same staining conditions as in 3.4b and 3.4c. Those do not follow any

distinguishable pattern, whether depending on time or differentiation, as could

have been expected.

3.3 Conclusions

3.3.1 Results are inconclusive

No link between primary cilia and TRPP3 could be established (3.2.1). No pat-

tern of localization according to differentiation protocol was identified (3.2.2),

and, surprisingly, different staining patterns were observed without any correla-
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(a) (b)

(c) (d)

Figure 3.4: Different staining patterns were presented In blue, DAPI. In
red, TRPP3. In green, acetylated tubulin. (a) Staining after induction 1 of
IB+ differentiation. (b) Staining after maintenance 2 of IB+ differentiation. (c)
Staining after maintenance 2 of IB+ differentiation. (d) Staining after induction
3 of IW- differentiation.
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tion to expected parameters: time or differentiation protocol (3.2.5). The results

of this study are therefore deemed inconclusive.

3.3.2 How do we account for those inconclusive results?

A few explanations exist for those results. The first one is that the antibody

might not have been fit for immunochemistry. According to manufacturer′s

instructions, this antibody was meant for western blot analysis, and no mention

of histochemistry was made in the data sheet. However, according to protein

banks, it should stain an intracellular domain of the receptor, which is why we

tried this experiment nonetheless. A nuclear localization is however consistent

within most our samples, so one explanation is that those results, surprising as

they might be, are actually true and TRPP3 is at the nucleus. We decided not to

investigate this path of research further and focus on other studies which could

give us a more direct insight into TRPP3′s role.
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Chapter 4

TRPP3 silencing study

Two methods are useful to understand the effect of a gene: either repressing it or

over-expressing it, and to study more specifically a receptor, to block it or over-

activate it. Since there is no known agonist or antagonist of TRPP3 available on

the market as of yet, we decided to do interfere with the gene expression instead

of with the receptor directly. However, since over-expressing the gene would

necessitate plasmid transplantation, this is not feasible in a primary cell culture

where cells loose differentiation potential after a few passages. We therefore

decided to silence TRPP3 expression using the SiRNA method.

4.1 Principle of silencing

Adipocytes are known to be hard to transfect (Kilroy et al. (2009)), one of the

main reasons being that only dividing cells are prone to transfection whereas

adipocytes do not proliferate.

4.1.1 Lipofectamine transfection

The idea to use cationic lipids for transfection was expressed in 1987 (Felgner

et al. (1987)), and has been further researched (Felgner et al. (1994)) and com-
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Figure 4.1: Lipofectamine transfection principle Figure obtained from the
Thermo Fisher website

mercialized since. The principle of the technique, as illustrated in 4.1, is the

following: since nucleic acid polymers (RNA,DNA) are anionic, they can form

complexes with cationic lipids. These lipids, of a composition close to a cell′

membrane, as they are both made of phospholipid bilayers, can then merge with

the cell membrane, bringing the nucleic acid polymer into the cell′ cytoplasm.

The cell can then read this material are produce the desired effect (silencing,

protein production or gene editing).

This allows us to understand the different steps of the silencing protocol

(1.1.8):

1. Lipofectamine incubation in media: The aim of this step is to ensure that

Lipofectamine assembles itself in lipid bilayers forming micelles, for 5 min.

2. Lipofectamine and SiRNA incubation: During this 20 min incubation, the

SiRNA and the Lipofectamine form complexes as illustrated in the second

step of 4.1.

3. Transfection: Once these complexes are formed, we can proceed to trans-

fection, adding these complexes to the culture media.

57



4.1.2 SiRNA and PCR primers design

Once we have chosen the transfection method, we still have two questions: what

SiRNA should we choose and how are we going to ascertain that the silencing

worked? Those two questions are, as we will see, closely linked.

PCR is not always the best readout for silencing: the mRNA is still produced

and might still be amplified by the PCR cycle even though it might be destroyed

by RNA interference before translation of the protein, and therefore will still be

picked up by the PCR at normal level although the silencing is efficient.

However, the manufacturer advises on SiRNA kit instructions to measure the

RNA knock-down of gene expression with PCR for the following reasons: "the

measurement of protein levels, enzyme activity, or phenotype can vary widely

depending on protein half-life, turnover rates, and other factors such that it is

possible to observe a seemingly negative result even when mRNA levels have been

substantially suppressed. Protein levels and phenotype effects can be assessed

after it has been established that mRNA levels are reduced".

Figure 4.2: TRPP3 sequence with SiRNA cutting sites and primers
used

For those reasons, we decided to optimize our protocol by assessing mRNA

levels, and to then confirm those results on the protein level in a second round. It

is necessary to also assess the effect of silencing on the protein level because of the

variability on the mRNA level according to its degradation rate. As has been

shown in numerous studies (Holen et al. (2002), Shepard et al. (2005), Hahn

et al. (2004), Holmes et al. (2010)), the distance between the SiRNA binding
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site and the amplified sequence is of paramount importance: if the sequence

flanked by the primers comprises the binding site, then this sequence will be cut

thanks to RNA interference and the PCR will faithfully show the proportion of

silenced cells compared to the control. If this sequence is close to the binding site,

the mRNA will likely be degraded and the PCR will likely reflect the silencing

efficiency. However, the further the amplified sequence is from the binding site,

the likelier it is that the cut fragment will not be degraded and still be amplified,

showing no impact on the PCR level, even though the gene is silenced.

We therefore decided to use the two SiRNA duplexes and the two primer sets

as can been seen in Figure 4.2.

4.2 Optimization

The first step before using this method efficiently is to choose and optimize the

transfection reagents. We decided to use a Lipofectamine® 2000-mediated trans-

fection, as adipocytes are known to be hard to transfect and that this technique

has been proven to work in that cell type (Guan et al. (2005), Oberkofler et al.

(2002)).

We then decided to optimize the quantity of reagents, based on both manufacturers′

instructions: they gave different concentrations for Lipofectamine® 2000 and

SiRNA, which is why we used a range of SiRNA concentrations. The universal

scrambler is used at C1, Lipofectamine=1/50 and the Lipofectamine control is

Lipofectamine=1/50.

The results of this optimization study are given in figure 4.3. The fold changes

are calculated using the IB+ control as a reference. We can see, in the column

"Lipofectamine=1/50", that the lower the concentration of SiRNA, the higher

the expression of TRPP3, or in other words the lower the repression. More
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Figure 4.3: Silencing optimization study: PCR results for TRPP3, fold
changes compared to IB+ differentiation
C1= 20 nM SiRNA
C2= 10 nM SiRNA
C3= 5 nM SiRNA
C4= 1 nM SiRNA
n=3 for each cell type. Significance is calculated compared to IB+. Not shown
when not significant. *: p<0.05. **: p<0.01. ***:p<0.001

precisely, we can see a expression of TRPP3 expression around 40 % for C1=

20 nM, C2= 10 nM SiRNA and C3= 5 nM SiRNA, but an expression around

60 % for C4= 1 nM. This means that the repression of TRPP3 is around 60 %

for C1, C2 and C3 but around 40 % for C4.

The lowest value for TRPP3 expression is obtained for C1 and Lipofec-

tamine=1/100. This value is around 25 %, which is comparable to the maximum

repression that could be guaranteed by the manufacturer. Therefore, we decided

to use those concentrations for further experiments, as can be seen in 1.1.8.

In this experiment, the Lipofectamine and Universal Scrambler controls were

not as close to the IB+ solution control as expected, since in the Lipofectamine

control the TRPP3 expression is reduced by more than 30 %, and is around 40 %

for the Universal Scrambler control, when they should not have affected TRPP3
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expression.

Despite the surprising controls, we decided to proceed with experiments, as

the repression we obtained with the chosen condition were close to the maximum

we could hope for. The chosen experiments were

1. Differentiation study: we wanted to compare the effect of TRPP3 silencing

on brown and white differentiations, as well as in SVF maintenance in

culture (4.3.1)

2. Functionality study: we wanted to analyze the effect of TRPP3 silencing

on brown fat function, as assessed by a Seahorse experiment (4.3.4)

These two experiments allow us to assess the role of TRPP3 in both adipocyte

differentiation and function.

4.3 Results in SVF

After this optimization protocol was finalized, I proceeded to a study of the effect

of silencing of TRPP3 on brown and white adipocytes differentiation on SVF

cells.

4.3.1 Quality of differentiation

When using a batch of cells from a new donor, we first check the quality of

their differentiation, by measuring UCP1 (brown marker) and leptin (maturity

and white marker) expression. We can see in Figure 4.4 that with this donor,

expressions in TRPP3, UCP1 and leptin are very similar, which means, given the

high UCP1 expression, that both those differentiation protocols led to a majority

of brown fat cells. Therefore, the discrepancy with previous results (2.4) is due

to the propensity of this new batch to differentiate in brown fat cells, even under
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Figure 4.4: Differentiation control of the silencing donor: TRPP3, UCP1
and Leptin expressions in cells having undergone the following protocols: LG
(low glucose, SVF cells), IW-: white adipocytes without macromolecular crowd-
ing, IB+: brown adipocytes with macromolecular crowding.
n=3 for each cell type. Significance is calculated compared to IB+ for each gene.
Not shown when not significant. *: p<0.05. **: p<0.01. ***: p<0.001

the IW- protocol. The TRPP3 expression levels are consistent with the UCP1

and Leptin expression levels. More explanations on this issue are given in the

Discussion chapter 5.6.2.

4.3.2 Silencing of brown fat cells

Now that we have established that both differentiations seem to have led to

brown fat cells, we are first going to study the effect of silencing of cells having

undergone the IB+ differentiation protocol.

According to Figure 4.5a, we can see that our three controls (IB+ alone,

IB+ and Lipofectamine and IB+ and Universal Scrambler) have similar levels of

TRPP3. This shows that Lipofectamine and Universal Scrambler did not change

TRPP3 expression, and that the effect of adding the SiRNA is due to the RNA

interference and not the other reagents. We can see that TRPP3 expression is

decreased in IB+ and SiRNA wells, although not to a significant level.

In 4.5b, we can wee the mRNA levels in all precedent conditions, to under-
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(a)

(b)

Figure 4.5: TRPP3 and UCP1 gene expressions in silenced brown SVF:
(a) TRPP3 expression (b) UCP1 expression Ctrl: control, IB+ differentia-
tion media, Lipo: Lipofectamine only, US: universal scrambler, Si: SiRNA-
transfected cells.
n=3 for each condition. Significance is calculated compared to IB+ for each
gene. Not shown when not significant.

stand the impact of TRPP3 silencing. We can see no effect of silencing in this

experiment, as all conditions show the same level of UCP1. However, since the

effect of silencing was not significant on TRPP3 level, this does not mean that

TRPP3 silencing does not affect differentiation.

Therefore, we decided to also study the effect of silencing on the cells that

went through the IW- differentiation protocol, since they expressed similar UCP1

levels as those which went through the IB+ protocol.
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(a)

(b)

Figure 4.6: TRPP3 gene and protein expression in silenced brown SVF:
(a) TRPP3 expression (gene) n=3 for each condition. Significance is calculated
compared to IB+ for each gene. Not shown when not significant. (b) TRPP3 ex-
pression (protein) Ctrl: control, IB+ differentiation media, Lipo: Lipofectamine
only, US: universal scrambler, Si: SiRNA-transfected cells.

4.3.3 Silencing of white fat cells

According to Figures 4.6a and 4.6b, TRPP3 expression is reduced in silenced

cells on the mRNA and protein levels (not significant). However, we can also see

a decrease in the controls on both mRNA and protein levels, which means that

Lipofectamine alone might influence TRPP3 expression. This will be further

detailed in the Discussion section 5. What can be noted is that PCR and WB

data are consistent, which means that even though we cannot deduct from this

a causality between TRPP3 expression and differentiation, we will be able to

deduct correlations.

We can see in Figure 4.7a that UCP1 levels are highly decreased in all con-
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(a)

(b)

Figure 4.7: UCP1 and leptin expressions in silenced brown SVF: (a)
UCP1 expression (gene) (b) Leptin expression (gene) Ctrl: control, IB+ differ-
entiation media, Lipo: Lipofectamine only, US: universal scrambler, Si: SiRNA-
transfected cells.
n=3 for each condition. Significance is calculated compared to IB+ for each
gene. Not shown when not significant.

ditions where TRPP3 level was decreased. We can therefore see a correlation

between TRPP3 and UCP1 expression. Leptin expression is also slightly higher

in silenced white adipocytes than in the controls, (4.7b), which indicates that

without TRPP3 cells seem to have more expression of white markers and less

expression of brown markers.

However, since the expression of the controls do not allow us to make any

causality links but only correlations, we decided to reproduce this experiment

on MSC, which have less batch to batch variability (See 4.4).
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4.3.4 Effect on brown fat cells activity

We also decided to do a study of brown fat cells metabolic activity, to assess

whether or not silencing of TRPP3 would allow for a change in cell metabolic

activity despite the apparent lack of effect of UCP1 expression on brown fat

cells. First, we verified the effect of silencing on TRPP3 protein levels. We

had the same trend as with previous experiments on SVF: the controls with

Lipofectamine and Universal Scrambler also show down-regulation compared to

IB+ control. However, those results show that TRPP3 levels went down (See

Figure 4.8).

(a)

(b)

Figure 4.8: Effect of TRPP3 silencing in SVF Ctrl: control, IB+ differen-
tiation media, Lipo: Lipofectamine only, US: universal scrambler, Si: SiRNA-
transfected cells (a) Protein expressions n=1 for each condition. (b) Fold changes
in protein expression n=1 for each condition.

Once this down-regulation on TRPP3 protein expression was established,

we performed a Seahorse experiment (See 1.3.5 for Materials and Methods).

The aim of this experiment was to see the impact of TRPP3 silencing on mito-
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chondrial respiration (the consumption of oxygen by mitochondria), respiratory

capacity (their maximal consumption) and uncoupled respiration (also called

proton leak, this is what corresponds to UCP1 activity and heat generation) in

cells.

(a) (b)

(c)

Figure 4.9: Cell metabolic activity assessment in silenced SVF-derived
brown adipocytes Vehicle: DMSO loaded cells, Forskolin: forskolin loaded
cells (a) Mitochondrial respiration (b) Respiratory capacity (c) Uncoupled res-
piration.
n=5 for each condition. Significance is calculated compared to IB+ for each
gene. Not shown when not significant.

As we can see in Figure 4.9, there is a visible difference between IB+ and IB+

with SiRNA in respiratory capacity, mitochondrial and uncoupled respiration,

although it is not significant. The most important one for our analysis, which

concerns itself with the metabolism of brown fat, is the uncoupled respiration.

This is responsible for heat generation by brown adipocytes. Even though the
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results are not significant, their trend implies that TRPP3 silencing reduces

brown fat metabolic activity, which means that TRPP3 would be necessary for

brown fat activity. This could also be linked to the side effects of gene silencing,

which were coupled with TRPP3 decrease in expression as shown in 4.8.

Since those results show a trend without proof, expression of the controls

do not allow us to make any causality links but only correlations, we decided

to reproduce this experiment on MSC (See 4.4). The effect on mitochondrial

respiration showed the same trend as those presented here, but were significant

(results not shown here).

4.4 Results in MSC

Despite those unconvincing results for SVF, Anna Goralczyk used the protocol

I developed and optimized for SVF to transfect MSC, as those are less batch to

batch dependent. I will briefly present those results as they support my study.

4.4.1 Effectiveness of silencing

There is no decrease in TRPP3 expression on the mRNA level in MSC, which can

be explained easily as we are not using the same duplex for silencing MSC as we

were using for silencing SVF, and this duplex is further away from the primer am-

plification site, which means that the degradation products can still be amplified

by PCR (4.2 in the Principles of silencing section). This is why differentiation

was also verified on the protein level: there is a decrease in TRPP3 expression

on the protein level, confirming the effectiveness of my silencing protocol. This

decrease is important (only 20 % protein expression of TRPP3 compared to the

control), which means that results are more likely to be significant. Moreover,

the Lipofectamine and Universal Scrambler controls presented similar levels as
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IB+ only controls.

4.4.2 Influence on brown differentiation

(a) (b)

Figure 4.10: Effect of TRPP3 silencing on UCP1 expression in MSC
Ctrl: control, IB+ differentiation media, Lipo: Lipofectamine only, US: universal
scrambler, Si: SiRNA-transfected cells (a) Gene levels (b) Protein expressions
(c) Fold changes in protein expression. n=3 for each condition. Courtesy of
Anna Goralczyk

As shown in Figure 4.10a, UCP1 gene expression is similar for all the con-

trols (IB+ alone, IB+ and Lipofectamine and IB+ and Universal Scrambler),

and highly decreased (close to 77 fold decrease)for the silenced cells (1 % sig-

nificance). Since all the controls (transfection reagent and universal scrambler)

express similar levels of TRPP3 and UCP1 as the normal differentiation proto-

col, this decrease is due to the TRPP3 silencing. This is confirmed on the protein

level (See Figure 4.10a and 4.10b), as this decrease is important (only 20 % pro-

tein expression of UCP1 compared to the control). We have therefore proven

that TRPP3 silencing and decrease induces a decrease of similar importance in

UCP1 expression in MSC-derived brown adipocytes.

Moreover, the Seahorse study (data not shown) shows that there is a signif-
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icant decrease in uncoupled respiration in silenced cells compared to the IB+

control, which confirms the trend that was obtained in SVF.
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Chapter 5

Discussion

5.1 On the importance of understanding adipocyte

differentiation

The global obesity problem is expected to become one of the most important

health-related issues of the 21st century, as it is affecting hundreds of millions

and this epidemics shows no sign of slowing down. As traditional prevention

techniques have had only limited impact on this trend, finding ways to reduce

the metabolic diseases related to obesity is becoming a crucial problem. Most

current therapies tackle the symptoms and not the main cause of obesity, which is

an energy imbalance between energy intake and energy consumption in the body.

Linked to this are the two types of fat present in our body: white adipocytes

which stores this excess of energy, and brown adipocytes which dissipate this

extra energy as heat when stimulated. Understanding how those two cell types

are linked and might switch from one to the other might give useful insights into

the development of new drugs to target those cells.
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5.2 Identification of TRPP3 as a target of interest

The TRP channels being of therapeutic interest, a study was conducted to iden-

tify which of this channels were present on adipocytes and whether they could

be targets of interest.

5.2.1 TRPP3 is an adipocyte-specific marker

First, receptors that were up-regulated in adipocytes compared to undifferen-

tiated cells were identified. Then, they were studied in osteoblasts and chon-

drocytes to ensure they were adipose-specific markers. No TRPP3 mRNA

was detected in osteoblasts nor chondrocytes in both MSC (2.3.1)and SVF-

differentiated (2.2.1) cells. This means that TRPP3 is adipose-specific, an is not

a marker for loss of pluripotency or aging of stem cells.

5.2.2 TRPP3 is either a maturity or a brown adipocytes differ-

entiation marker

Then, a time evolution study was carried out on both cell types. This shows

that TRPP3 slowly appears during differentiation in both SVF and MSC-derived

cells, under white and brown induction cocktails (2.3.4, 2.2.4). This means that

TRPP3 could either be:

1. A marker of adipocyte maturity: this hypothesis would explain why TRPP3

is present in both white and brown differentiated cells, even though it would

not explain the differences between the two types of adipocytes.

2. A brown adipocytes differentiation marker: this hypothesis would explain

why TRPP3 is more highly present in brown adipocytes. The fact that

it is also present in white-differentiated cells would then be explained by
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the fact that some cells still express brown markers after ongoing a white

differentiation protocol, as can be seen by their UCP1 expression (data not

shown).

Further experiments were designed to opt between those two hypotheses.

5.3 Localization of TRPP3

Before characterizing further the role of TRPP3, we sought to localize it, as this

often brings valuable information as to a receptor′s role.

5.3.1 No visible pattern for the localization of TRPP3

As mentioned in 3.2, there is no visible pattern for TRPP3 localization, whether

depending on maturity of differentiation or differentiation protocol. We therefore

deemed this study inconclusive. According to literature on the topic, we were

expecting it to be either co-localized with cells′ primary cilia or with the cyto-

plasmic membrane. However, due to our results, it looked like TRPP3 could be

localized at the nuclear membrane, which has not been mentioned in literature.

5.3.2 Calcium signaling is a key process in the nucleus

As reported in Santella and Carafoli (1997), Gomes et al. (2006) and Bootman

et al. (2009), calcium signaling plays a vital role in the nucleus, a role that is

not yet fully understood. It controls a number of nuclear function, from pore

opening to gene expression, and the channels regulating it are not all identified

as of yet.
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5.3.3 TRPP3 could be a nucleus membrane channel

Therefore, although we did not decipher a pattern for TRPP3 localization, and

we accepted that our results were inconclusive, further studies with better-

characterized antibodies might find that TRPP3 is indeed a nucleus membrane

channel, hypothesis that we rejected for the time being.

5.4 Characterizing the role of TRPP3

5.4.1 The silencing of TRPP3 in SVF is inconclusive

Although the results obtained in SVF cells (See 4.3) are not significant, they

show some trends that will be discussed here. Due to high batch to batch

variability among SVF donors, as well as a number of donors which cells did not

differentiate as expected, those results were not reproducible.

After going through the usual IB+ differentiation protocol, TRPP3 silencing

was not efficient and no result could be obtained on UCP1 expression for that

reason. However, since the cells that underwent our IW- differentiation protocol

exhibited brown cells features (similar levels of marker expressions), we decided

to effect of silencing on that batch of cells. Important decrease of TRPP3 ex-

pression on the protein level was obtained in Lipofectamine, Universal Scrambler

and SiRNA transfected cells, which we cannot explain at the moment. However,

this correlates with a decrease in UCP1 expression and an increase in leptin

expression, which leads us to hypothesize that TRPP3 is a marker of brown fat

and that inhibiting or activating it could help switch from one phenotype to

another.

Moreover, results from the metabolic activity assessment, although not sig-

nificant either, imply that silencing TRPP3 reduces uncoupled respiration, char-
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acteristic of brown adipocytes. The same results, but here conclusive, were

obtained in MSC (data not shown in this study).

5.4.2 The silencing of TRPP3 in MSC helps discover a new role

for TRPP3

In 4.4, we show that by silencing TRPP3, UCP1 is also reduced. Since the levels

of UCP1 of all the controls are similar, we can deduce from this experiment that

TRPP3 silencing is what reduces UCP1 levels. The trend is not as clear for

Leptin, which is a maturity marker (and can also be considered a white marker,

although this is questionable), since the controls are not as good as for UCP1.

Therefore, we will only consider the effect of silencing on UCP1.

5.4.3 TRPP3 is not a maturity marker but is necessary for

brown fat differentiation

The conclusion of this set of silencing experiments is that TRPP3 is necessary

for brown fat differentiation, and might also be necessary for white adipocyte

differentiation although our results are not entirely conclusive on that point.

Therefore, we have identified a new receptor necessary for brown fat differenti-

ation.

5.5 Pathways

Once we know that TRPP3 has an important role in brown fat differentiation,

we then wondered what pathways it might act through.
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5.5.1 Interaction with the cytoskeleton

It is known that cytoskeleton plays an important part in cellular functions and

can control them (Chen et al. (1997)). In particular, the shape of mesenchymal

stem cells can direct their differentiation into osteoblasts and adipocytes, as has

been shown using micro-patterning techniques (McBeath et al. (2004), Kilian

et al. (2010), Peng et al. (2011)). Thus, receptors known to interact with the

cytoskeleton could use this effective pathway to influence cell fate. It has been

proven that TRPP3 interacts with the cytoskeleton, either through α-actinin (Li

et al. (2007)) or troponin I (Li et al. (2003)) and that this either up-regulates

(actinin) or down-regulates (troponin) channel function . Therefore, more inves-

tigation is needed to understand the link between TRPP3 and the cytoskeleton,

which is a promising way to uncover its pathway of action.

5.5.2 Calcium signaling in adipocyte differentiation

It has been established thanks to numerous studies that calcium signaling plays

an important role in adipocyte differentiation, whether in early stages (Hu et al.

(2009b), Hu et al. (2009a)) or at late stages of differentiation (Shi et al. (2000)

,Bishnoi et al. (2013)). Therefore, TRPP3 could control brown fat differentiation

by modulating global calcium flux into the cells. The downstream effectors of

that pathways are still to be identified.

5.5.3 Other pathways

receptor for activated C kinase 1 (RACK1) is a scaffolding/anchoring protein

implicated in various cellular functions. In Yang et al. (2012), an interaction

between the N-terminal domain of TRPP3 and RACK1 is established, and that

this interaction inhibits TRPP3 channel function. Furthermore, a link has been
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established between Wnt signaling and RACK1, as "RACK1 negatively regulates

disheveled stability and Wnt signaling" (Cheng et al. (2016)), disheveled being

a key component of the Wnt pathway. This pathway is known to be a key

regulator in adipocyte differentiation, as Wnt signaling inhibits pre-adipocyte

differentiation (Ross et al. (2000)).

5.6 Limitation of my study

5.6.1 Available tools to study TRPP3

The tools to study TRPP3 are still limited at this stage. Primer sequences for

gene expression studies are easy to design using PrimerBlast, but antibodies for

protein expression or immunochemistry are harder to obtain. Only two compa-

nies sell TRPP3 antibodies, and they do not allow for good immunochemistry,

as has been shown in this study.

Then, to understand its function, only one tool is available: SiRNA silencing.

Other methods exist but they are impossible to use for our study: there is no

known agonist or antagonist of TRPP3 available, plasmid transplantation is only

feasible in immortalized cell lines and we work with primary cells.

I therefore limited my study to the available tools and made the most of

them.

5.6.2 Working with SVF

I also decided to work with SVF cells instead of MSC, as they are more clinically

relevant. However, the very high variability between experiments, higher than

what I expected, make MSC a better choice. This is especially true when working

on brown and white adipocytes. Indeed, the SVF cells we use are obtained
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from liposuction extracts. Since white, beige and brown adipocytes, as well

as progenitors, are present in different amounts in different localizations within

the adipose tissue, there would be high variability between samples extracted

from the same patient. This means that with the same differentiation protocols,

cells obtained from the same donor but from different localizations will present

different ratios of brown and white adipocytes. This is even truer in samples

obtained from different patients on different operations, which explains our high

batch to batch variability. On the contrary, MSC are obtained from a company,

and from the same donor for all repeats of our experiments. The experiments

are therefore highly reproducible and might have been a better choice for a first

study of this novel receptor, with the SVF study, more clinically relevant, in a

second time. this is why MSC data is presented in this study alongside SVF

data.
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Conclusion and outlook

I studied the TRPP3 receptor in white and brown adipocytes in order to extend

the toolbox for altering adipocyte differentiation.

TRPP3 is a member of the Transient Receptor Potential family, which have

been shown to be sensitive to a wide range of stimuli. It has mostly been studied

in the tongue as a potential sour receptor. It was identified by the team as having

a different pattern of apparition in brown fat cells, which burn energy through

uncoupling of the proton gradient, and in white adipocytes that store energy.

We first characterized extensively this apparition on two types of cells, SVF

and MSC, in both white and brown adipocytes: time evolution, gene expression

and protein expression. It was also shown that this was not present in other cells

derived from those stem cells such as osteoblasts or chondrocytes, which means

it would have been a stem cell maturity marker.

Then, we sought to localize it within cells, but this study was inconclusive,

due to lack of adequate tools (antibodies) to effectively conduct this type of

study at the moment. The localization we found was contradicting with existing

literature and we decided to focus on other aspects of TRPP3 characteristics.

We then decided to understand its role by silencing its expression and see the

impact on differentiation and function of cells. We proved that it was necessary

79



for brown adipocyte differentiation, as its silencing induced decreased levels of

UCP1 and mitochondrial respiration.

To my knowledge, this is the first time TRPP3 was identified as being a key

target in adipocyte differentiation.

5.6.3 Outlook

Further studies are needed to understand the pathways of action of TRPP3.

Using arrays to identify up-regulated proteins between silenced and control cells

is a promising way to identify those pathways.

To conclude, we find that greater attention should be devoted to identifying

key regulators of adipocyte differentiation, in particular those controlling brown

and white cell fate, as they will give more tools for clinicians to develop effective

cell therapies.
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Chapter 6

Appendix

Primers table

Gene Accession no. Sequence(5′ - 3′) Reference

TBP NM_003194.4
CACGAACCACGGCACTGATT

Spinsanti et al.
TTTTCTTGCTGCCAGTCTGGAC

UCP1 NM_021833.4
CTGGAATAGCGGCGTGCTT

Virtanen et al.
AATAACACTGGACGTCGGGC

TRPP3 NM_016112.2
ATCTGTCAAGGCATCAGAGGAC

Virtanen et al.
CAGATGTCCACCAGGAACACA

Leptin NM_000230.2
TTTGGCCCTATCTTTTCTATGTCC

Degawa Yamauchi et al.
TGGAGGAGACTGACTGCGTG

FABP4 NM_001442.2
TGTGCAGAAATGGGATGGAAA

Elabd et al.
CAACGTCCCTTGGCTTATGCT

GLUT4 NM_001042.2
TCAACAATGTCCTGGCGGTG

Lee et al.
TTCTGGATGATGTAGAGGTAGCGG

CIDEA NM_001279.3
GGCAGGTTCACGTGTGGATA

Sharp et al.
GAAACACAGTGTTTGGCTCAAGA

Table 6.1: Primers used in the study.
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