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Abstract

Recent scientific breakthroughs and technological advancements have

demonstrated the feasibility of various quantum computing and quan-

tum cryptographic tasks. Most of these works are focused on computa-

tion involving up to two parties where the parties are connected via a

direct quantum link. However, for computations involving more than

two parties the nodes have to be connected in a network. Because of

the quantum nature of the communication involved, the architecture of

these networks and protocols to operate them are completely different

from the classical networks. Therefore, many building blocks of the

classical networks do not translate to the quantum networks and re-

quire novel solutions of their own. Moreover, since the field is relatively

new, these building blocks have mostly remained unaddressed so far.

In this thesis we study how our existing knowledge of the two party

quantum protocols can be extended and used to build scalable multi-

party quantum networks. To be more specific, we give the first fault

tolerant protocols for reference frame agreement among n > 2 nodes

in both synchronous and asynchronous quantum networks. We also

study quantum routing using entanglement swapping and design effi-

cient routing protocols for this architecture. The design and analysis

techniques developed during our study of these problems provide us

with valuable insights and practical tools for further advancements

towards implementing a quantum Internet.
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1

Introduction

A quantum network is a telecommunication network that allows spatially separated

quantum systems to exchange quantum information. In this thesis we study

problems related to the construction and operation of such quantum networks.

We start this chapter describing our motivation and goals. We briefly introduce

some useful concepts related to quantum information and quantum computation

in Section 1.2. We describe quantum networks in general terms and discuss some

of the ongoing efforts to implement them in Section 1.3. In Section 1.4 we give a

brief introduction to Byzantine consensus problem. Finally, we end this chapter

with a detailed outline of the thesis.

1.1 Motivation and goals

Quantum networks are gaining importance [1–5] for a variety of tasks such as

quantum distributed computing [6–13], quantum cloud computing [14–16] and

quantum cryptography [17–21]. There are significant advantages in using a

quantum network over a classical network, especially in secure communication.

We know that most of the important encryption protocols that are currently

used in the internet infrastructure, such as RSA [22] and ElGamal [23], are

vulnerable to attacks using quantum computers. These classical encryption

protocols use computational assumptions, for example hardness of problems such

as factorisation and the discrete logarithm problem to guarantee security. Since a

quantum computer can efficiently solve these problems [24], these protocols are

1



1. INTRODUCTION

not quantum safe. There are efforts in designing quantum safe protocols that have

spurred the field of post-quantum cryptography [25]. There have been limited

successes in developing classical protocols for which quantum attacks are not

currently known [26]. However, it is not proven that these protocols are safe

against any quantum adversary; whereas we know that quantum cryptographic

protocols are safe against any quantum adversary [20, 27]. Moreover, implementing

many quantum cryptographic protocols does not require a full-fledged universal

quantum computer [28–30]. That is, quantum cryptography is feasible using

current technologies and will remain secure even when quantum computers become

available.

There are quantum cloud computing protocols that allow universal blind quan-

tum computation [14]. In these interactive protocols a server carries out a quantum

computation for a client such that the clients input, output and the computation

remain completely private from the server. Any scalable implementation of this

technology where many clients share a central server would require a quantum

network.

The idea of quantum computers was originally conceived by Feynman [31] for

performing quantum simulations where quantum computers provide significant

advantages in solving various physical problems [32–34]. In such applications, a

quantum network will allow separate quantum computers with limited resources

to cooperate in solving more resource-intensive problems.

From the current architecture of the Internet one can predict that any general

purpose quantum network will contain a large number of nodes that are distributed

over widespread geographical locations on earth [35–37] or on satellites [38–43]

and connected via quantum and classical communication channels [44].

Our study of quantum networks in this thesis can be grouped roughly in two

categories. In one category we study problems related to initialising a quantum

network. This involves the study of fault tolerant multiparty synchronisation

problems such as reference frame agreement in synchronous and asynchronous

networks, which are not only important for quantum communication but also have

many important non-quantum applications. We use the term ‘reference frame’ in

a broad sense, because depending on which quantum systems and which degrees

of freedom are used to carry quantum information the meaning of reference frame

2



1.2 Preliminaries

varies. It might mean for example, spatial Cartesian reference frame, or phase

reference, or synchronised clocks [45]. In Chapter 3 we study the spatial reference

frame agreement problem in a synchronous multiparty setting, in Chapter 4 we

study the asynchronous reference frame agreement problem.

In the other category, we study network architectures that uses entanglement

swapping to distribute entanglement over a quantum network. For such a network

to be effective, we need efficient routing protocols. We develop the concept

of routing graphs that allows efficient quantum routing over different network

topologies and give a routing protocol using it.

Before going into the details we first introduce some preliminaries.

1.2 Preliminaries

We give an informal introduction to quantum information and briefly define the

quantum primitives that we later use in this thesis. For example, the concepts of

unspeakable information (Section 1.2.15) and using qubits to carry direction infor-

mation (Section 1.2.13) in space are used in our reference frame agreement related

works in Chapter 2, 3 and 4. And the concept of teleportation (Section 1.2.11) and

entanglement swapping (Section 1.2.12) are used as primitives in the description

of quantum routing networks and for designing routing protocols in Chapter 5 and

6. For an in-depth introduction to quantum computing and quantum information

theory we refer to, for example [46–48].

1.2.1 Quantum information

When we talk about information processing we often think of information as an

abstract sequence of symbols or bits that we control and use by encoding them in

physical systems. For example, in digital computers bits are represented as states

of the flip-flop circuits [49] in a register, or charge in capacitors in a memory unit,

in optical fibre transmission lines bits are encoded in light pulses, in DVD’s they

are encoded as tiny dents, on a reflective surface. However, there is another way

of looking at information. That is, we could think of information as something

that describes the state of a physical system. We know that all the properties of

3



1. INTRODUCTION

information emerge from the logical operations that we are able to perform on

them. Without operations, a sequence of symbols is completely useless. However,

what do we mean by ‘performing an operation’? Since bits are descriptions of

states of a system, an operation means a physical process that evolves the initial

state of that system into the final state. This final state would correspond to the

output of the operation. This implies, there cannot be operations that corresponds

to any physically impossible evolution of such systems. This also implies, that for

every possible evolution of physical systems, there will be corresponding logical

operations that can be performed on the bits of information [50]. When quantum

systems are considered, this later phenomenon allows us to generalise the notion

of information to quantum information and to use quantum systems to perform

various information processing tasks that were thought to be impossible classically.

It is known that a classical computer can in principle simulate a quantum com-

puter with an exponential blowup in running time and memory requirements [50].

However, non-local correlations, and intrinsic randomness available in quantum

information allows us to perform tasks (such as randomness expansion [51]) that

are impossible in classical information theory. On the other hand, quantum

information can be used to perform any classical information processing and

communication related task. This is why quantum information is considered as a

generalisation of classical information.

1.2.2 Bits and qubits

To make our previous discussion more concrete, let us imagine a two state system

like the flip-flop of a computer register. It can have two perfectly distinguishable

voltage levels corresponding to two different states. We arbitrarily denote one

state as 0 and the other as 1. By measuring this voltage, one could retrieve

the information it contains and write it down using the symbols in {0, 1}. This

is called a bit. If we have a register with n such flip-flops, then a description

of the register’s state would be a string in {0, 1}n, that is a concatenation of n

bits. For example, when n = 2, the set of possible states is, {00, 01, 01, 11}. Any

operation that we can perform electronically on the register, would accordingly

change these bits. A sequence of such operations is called a computation. Instead

4
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of using flip-flops we could write down the bit symbols on paper, and perform the

sequence of logical operations by hand, and we would still have performed the

same computation.

However, the situation can change drastically if we use a different type of

system to encode our bits, for example the spin direction of a spin-1/2 particle,

such as an electron. This system can also be in perfectly distinguishable states

‘spin-up’ and ‘spin-down’ and all the previous logical operations could still be

performed on them [52]. Moreover, when isolated from the environment, quantum

mechanics allows the system to be in a superposition of such ‘up’ and ‘down’

states. This means, the system can, to some extent, be in both states at the same

time. To describe this phenomenon mathematically, let us first arbitrarily denote

the ‘up’ state by a symbol |0〉 and the ‘down’ state by |1〉. According to quantum

mechanics, a complete description of all possible pure states of this system would

look like, α |0〉+ β |1〉. Where, α and β, called amplitude, are complex numbers

satisfying |α|2 + |β|2 = 1. Here, one can interpret |α|2 as the probability of the

system to be in the state |0〉 and similarly |β|2 as the probability of the system

to be in the state |1〉. So, an ‘up’ state is where |α|2 = 1 and |β|2 = 0. The

choice (1, 0) for ‘up’ and (0, 1) for ‘down’ allows us to define a simple natural

isomorphism from {|0〉 , |1〉} to {(1, 0), (0, 1)} and to write,

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. (1.1)

They form a two dimensional orthonormal basis1, which we call the computa-

tional basis. This allows us to write their all possible superpositions as,

α |0〉+ β |1〉 =

[
α
β

]
. (1.2)

This shows, according to quantum mechanics, the state of such a two level

system lies in a two dimensional complex space in C2. We call the quantum

information represented by this system a qubit .

1Since, their vector inner product is 0. And they have unit lengths.
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However, one might still ask, why do the two level systems like the flip-flops

used in our computer’s registers not show such quantum behaviour? Note that,

we said, to observe quantum behaviour the system must be well isolated from

the environment. This is not the case with our computer flip-flops. Even though

they are governed by quantum mechanics, the constant interaction with the

environment destroys their superposition [53, 54]. That is why the state of a

flip-flop can be described using a single bit.

1.2.3 Two qubits

We have seen how a single two level quantum system or a qubit is mathematically

described. Let us consider what happens if we have two such systems. Intuitively

they can be in any of the four distinct states |0〉|0〉 , |0〉|1〉 , |1〉|0〉 , |1〉|1〉, where

we juxtapose the state of each qubit by arbitrarily fixing one as the first qubit.

However, remember the system is quantum mechanical. So, the whole system can

also be in any arbitrary superposition of these four distinct states. Formally, the

system can be in a state,

α |0〉|0〉+ β |0〉|1〉+ γ |1〉|0〉+ ζ |1〉|1〉 , (1.3)

where, α, β, γ and ζ are complex numbers (amplitudes) satisfying,

|α|2 + |β|2 + |γ|2 + |ζ|2 = 1. (1.4)

Similar to the single qubit case, we get a vector representation of this combined

state as well. For example, we define |0〉|0〉 (often written |00〉) to be the tensor

product of their vector representations from (1.1). That is,

|0〉|0〉 ≡ |00〉 ≡ |0〉 ⊗ |0〉 =

[
1
0

]
⊗
[
1
0

]
=

1×
[
1
0

]
0×

[
1
0

]
 =


1
0
0
0

. (1.5)

|0〉|0〉 Similarly, |0〉|1〉, |1〉|0〉 and |1〉|1〉 are also defined using tensor products.

6



1.2 Preliminaries

Using this notation, the 2-qubits state of the Term (1.3) becomes,

α |0〉|0〉+ β |0〉|1〉+ γ |1〉|0〉+ ζ |1〉|1〉 =


α
β
γ
ζ

. (1.6)

If there are n qubits in a system, then each qubit can be in one of the two

distinct orthonormal computational basis states as in Equation (1.1). Their

combined state can be in 2n distinct computational basis state as defined by the

tensor product. So, the whole system acts as a multilevel quantum system (defined

in Section 1.2.5) with states in C2n .

1.2.4 Product states and entangled states

If two distinct qubits are in state |ψ〉 and |φ〉 where, in computational basis the

first qubit is,

|ψ〉 = α1 |0〉+ β1 |1〉 =

[
α1

β1

]
, (1.7)

and the second qubit is,

|φ〉 = α2 |0〉+ β2 |1〉 =

[
α2

β2

]
, (1.8)

then their combined system is said to be in a product state,

|ψ〉|φ〉 = |ψ〉 ⊗ |φ〉 =

[
α1

β1

]
⊗
[
α2

β2

]
=

α1 ×
[
α2

β2

]
β1 ×

[
α2

β2

]
 =


α1α2

α1β2

β1α2

β1β2

, (1.9)

= α1α2 |0〉|0〉+ α1β2 |0〉|1〉+ β1α2 |1〉|0〉+ β1β2 |1〉|1〉 . (1.10)

It means this combined state can be factorised as,

|ψ〉|φ〉 = (α1 |0〉+ β1 |1〉)⊗ (α2 |0〉+ β2 |1〉). (1.11)

7
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However not all 2 qubits quantum states can be factorised like this. Such un-

factorable states are called entangled states. For example, |Ψ+〉 = 1√
2
(|01〉+ |10〉)

is an entangled state. Quantum entanglement plays a key role in many of the most

interesting applications of quantum computation and quantum information. It is

a uniquely quantum mechanical phenomenon that allows us to perform operations

such as teleportation (Section 1.2.11), which has no classical analog. Before we

can fully appreciate this idea we would need to introduce a few more concepts.

1.2.5 Multilevel systems

A d level closed quantum system can be described as a vector in Cd as,

|Ψ〉 =


α1

α2
...
αd

, (1.12)

where |Ψ〉 is a unit vector. That is
∑

i |αi|
2 = 1

We denote 〈Ψ| to be the conjugate transpose of the vector |Ψ〉, which is defined

to be,

〈Ψ| =
[
α∗1 α∗2 · · · α∗d

]
. (1.13)

1.2.5.1 Inner product

If another d level state |Φ〉 is described as,

|Φ〉 =


β1

β2
...
βd

. (1.14)
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then the inner product of |Φ〉 and |Ψ〉 is defined as,

(|Ψ〉 , |Φ〉) = 〈Ψ |Φ〉 =
[
α∗1 α∗2 · · · α∗d

]
×


β1

β2
...
βd

. (1.15)

Here ‘×’ represents matrix multiplication.

Taking the inner product of the quantum state |Ψ〉 with itself we get,

〈Ψ |Ψ〉 =
[
α∗1 α∗2 · · · α∗d

]
×


α1

α2
...
αd

, (1.16)

=
∑
i

|αi|2 = 1. (1.17)

A vector space with an inner product defined on its elements is called an inner

product space.

1.2.5.2 Linear operators and Unitary operators

A linear operator that takes elements from vector space A to B is defined by a

function L : A→ B which is linear in its inputs,

L

(∑
i

αi |ψi〉
)

=
∑
i

αiL(|ψi〉) (1.18)

If a linear operator maps elements form a vector space A to itself, then it is

said to be defined on A. If such an operator maps an element to itself, then it is

called an identity operator.

That is, an identity operator IA : A→ A would satisfy IA(|ψ〉) = |ψ〉, where

|ψ〉 is an element in the vector space A.

For |ψ〉, |φ〉 in some inner product space A, if linear operators L and L† on

this space satisfies

(|ψ〉 , L |φ〉) =
(
L† |ψ〉 , |φ〉

)
, (1.19)

9
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then L† is called the Hermitian conjugate or the adjoint of the operator L.

If L† = L, then L is called a Hermitian operator.

If such a Hermitian operator satisfies

〈φ|L |φ〉 ≥ 0, (1.20)

for any |φ〉 in the inner product space A, then L is called a positive operator.

Any linear operator acting on vector spaces has an equivalent matrix represen-

tation. For a linear operator L : A→ B from vector space A to B we often use

the symbol L as an operator or as a matrix interchangeably.

An operator U is called unitary if U †U = I. Such operators preserve inner

products between vectors. To see this, let |ψ〉 and |φ〉 be two state vectors. The

inner product of |ψ〉 and |φ〉 is the same as the inner product between U |ψ〉 and

U |φ〉,

(U |ψ〉 , U |φ〉) = 〈ψ|U †U |φ〉 = 〈ψ| I |φ〉 = 〈ψ |φ〉. (1.21)

1.2.5.3 Trace

Trace of a matrix L is defined as

tr(L) =
∑
i

Lii, (1.22)

where Lii is the ith diagonal element of the matrix L. The trace operator is

linear tr(L + M) = tr(L) + tr(M) and tr(αL) = α(L), where α ∈ C, and cyclic

tr(LM) = tr(ML).

For an unitary operator U , the cyclic property gives us tr(ULU †) = tr(U †UL) =

tr(IL) = tr(L). That is, trace is invariant under unitary similarity transform

L→ ULU †.

This allows us to define the trace of any linear operator L to be the trace of

any of its matrix representations.

1.2.5.4 Postulates regarding quantum states

So far, we have seen qubits and quantum states in an abstract mathematical

sense. What binds these mathematical objects to the physics are the postulates

10
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of quantum mechanics. We present the first postulate that relates an isolated

physical system with complex vector spaces. This formulation of the postulate is

taken from [47].

Postulate 1. Associated to any isolated physical system is a complex vector

space with inner product known as the state space of the system. The system is

completely described by its state vector, which is a unit vector in the system’s

state space.

The next postulate justifies our use of tensor products to represent multi-qubit

system.

Postulate 2. The state space of a composite physical system is the tensor product

of the state spaces of the component physical systems. Moreover, if we have systems

numbered 1 through n, and system number i is prepared in the state |ψi〉, then the

joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉.

1.2.5.5 Outer product

The outer product of |Φ〉 with |Ψ〉 is defined as,

|Φ〉 〈Ψ| =


β1

β2
...
βd

× [α∗1 α∗2 · · · α∗d
]
, (1.23)

where ‘×’ is the matrix multiplication.

1.2.6 Mixed states

States |Ψ〉, that are in the form of Equation (1.12) are called pure states. Using

the outer product formalism such pure states are often expressed as,

|Ψ〉〈Ψ| =


α1

α2
...
αd

× [α∗1 α∗2 · · · α∗d
]
. (1.24)
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We can see there is a one-to-one correspondence between states like |Ψ〉 and

matrices like |Ψ〉〈Ψ|. Since, |Ψ〉 is a quantum state the sum of the squares of its

amplitudes is 1. This gives us,

tr(|Ψ〉 〈Ψ|) = 1, (1.25)

where tr is the trace operator.

This change in representation allows us to define a powerful formalism called

the density operator . Imagine a machine that prepares a d dimensional quantum

system in state |Ψi〉 with probability pi. Let us assume we know the probability

distribution but do not know exactly which state is prepared. Therefore, upon

reception of such a system, to us, the state would look like a probabilistic mixture

of states |Ψi〉. Such mixed states are described as,

ρ =
∑
i

pi |Ψi〉〈Ψi| . (1.26)

ρ is called the density operator or the density matrix of the ensemble {pi, |Ψi〉}.
Density operators are the most general description of a quantum system.

Since, pi is a probability distribution using Equation (1.25) we have

tr(ρ) = tr

(∑
i

pi |Ψi〉〈Ψi|
)

=
∑
i

pitr(|Ψi〉〈Ψi|) = 1. (1.27)

1.2.6.1 Maximally mixed state

If a collection {|ψ〉i} of state vectors form an orthonormal basis of the state space

of a system, then we have ∑
i

|ψi〉 〈ψi| = I, (1.28)

where I is the identity operator, or equivalently, the identity matrix. If ψ is of

dimension d then the state I/d can be interpreted as a density operator, which is

called the maximally mixed state of that system.

12
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1.2.6.2 Partial trace

If a collection {|ψ〉i} state factors form an orthonormal basis of a state space A

and the collection {|φ〉i} for state space B, then from Postulate 2, we know that

the orthonormal basis of the joint state space of A and B is {|ψ〉i ⊗ |φ〉j}.
If a density operator ρAB describes a system with the joint state space A and

B, then

ρA = trB(ρAB), (1.29)

is the reduced operator for system A, where trB is the partial trace, defined by

trB(|ψ1〉 ⊗ |φ1〉 〈ψ2| ⊗ 〈φ2|) = tr(|φ1〉 〈φ2|) |ψ1〉 〈ψ2| . (1.30)

We say the system B is traced out from ρAB.

1.2.7 Measurements

A quantum system might be in a superposition of multiple orthonormal states.

Given an object in an unknown quantum state one can gain information about it

only via a quantum operation called measurement. A measurement might have

several outcomes, depending on the state of the system and the measurement

operation performed. These outcomes occur probabilistically. A measurement

operation is characterised by some measurement operators where each operator

corresponds to an outcome of the measurement. This correspondence of the mea-

surement operator and the physically measuring the system is also a fundamental

construct of quantum mechanics. It is formalised in [47] as follows,

Postulate 3. Quantum measurements are described by a collection {Mm} of

measurement operators. These are operators acting on the state space of the

system being measured. The index m refers to the measurement outcomes that

may occur in the experiment. If the state of the quantum system is ρ immediately

before the measurement then the probability that result m occurs is given by

p(m) = tr(M †
mMmρ), (1.31)
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and the state of the system after the measurement is

MmρM
†
m

tr(M †
mMmρ)

. (1.32)

The measurement operators satisfy the completeness equation,∑
m

M †
mMm = I. (1.33)

1.2.8 The Pauli matrices

A useful set of matrices, called the Pauli matrices [47] are defined as,

σ0 ≡ I ≡
[
1 0
0 1

]
, (1.34)

σ1 ≡ σx ≡ X ≡
[
0 1
1 0

]
, (1.35)

σ2 ≡ σy ≡ Y ≡
[
0 −i
i 0

]
, (1.36)

σ3 ≡ σz ≡ Z ≡
[
1 0
0 −1

]
. (1.37)

It is easily checked that the operators represented by the Pauli matrices are

unitary.

1.2.9 Evolution

A closed quantum system might evolve over time due to its internal dynamics.

Within the state space, this evolution is perceived as a unitary transformation of

the state vector (or equivalently, the density operator) that describe the system.

This correspondence of the evolution of a physical system with the unitary

transformation of the density operator describing its state, is also a postulate of

quantum mechanics. It is formulated in [47] as follows,

Postulate 4. The evolution of a closed quantum system is described by a unitary

transformation. That is, the state ρ of the system at time t1 is related to the state
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ρ′ of the system at time t2 by a unitary operator U which depends only on the

time t1 and t2,

ρ′ = U †ρU. (1.38)

1.2.9.1 Evolution of open quantum systems and quantum channels

We can use Postulate 4 to describe the evolution of a open quantum system as

well. To see this, let us consider an open quantum system that interacts with the

environment. If we consider the whole environment and the system together, then

the total system can be considered as a closed quantum system.

In an open quantum system a quantum state might interact with the envi-

ronment, or some other objects. To see this let us consider a quantum system

described by density operator ρ. If this system is open, then it must be interacting

with an external system. Let us call this external system the environment. Initially,

the environment is in state ρenv. Now, their joint system ρ⊗ρenv can be considered

as a closed system. According to the Postulate 4, the evolution of the joint system

is controlled by a unitary operator U . Therefore the evolved system is described

by

U †(ρ⊗ ρenv)U. (1.39)

After this evolution if we trace out the environment then we get the final state,

E(ρ) = trenv(U †(ρ⊗ ρenv)U). (1.40)

That is, if a open quantum system in the state state ρ evolves into some ρ′,

then we can always find an operator of the form E that maps the initial state to

the later.

ρ′ = E(ρ). (1.41)

This operator E that acts on other operators (the density operators that

describe quantum states) is called a superoperator.
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Since ρ′ is a density operator, from Equation (1.27) we have

tr(ρ′) = (E(ρ)) = 1. (1.42)

That is the superoperators E is trace preserving.

If the state space of the environment has an orthonormal basis {|ψi〉} and

initially ρenv = |ψ0〉 〈ψ0|, then

E(ρ) =
∑
i

〈ψi|U [ρ⊗ 〈ψ0| |ψ0〉]U † |ψi〉 , (1.43)

=
∑
i

EiρE
†
i , (1.44)

where Ei = 〈ψi|U |ψ0〉 is an operator on the state space of the system.

Equation (1.44) is the operator sum representation of the superoperator E.

Since superoperators are trace preserving (Equation (1.42)), one can show that∑
k

E†kEk = I. (1.45)

This is called the completeness relation.

If the operator sum representation of a superoperator E satisfies Equation (1.45)

then it is called a quantum channel.

Physical quantum links (for example, an optical fibre that carries photon

qubits) that carry quantum information from one place to another through a

physical medium are characterised by such quantum channels. To see the intuition

behind this, note that while propagating through a physical medium, the qubit

may interact with it. However, If we only look at the qubit system that enters

the link and want to know its state when it exits, then we have to consider it

as an open quantum system where the physical medium is considered as the

‘environment’. Therefore, its evolution would be described by a quantum channel.

1.2.9.2 Depolarising channel

An important example of a quantum channel is the depolarising channel that

takes in a d dimensional state ρ and either with probability p outputs a completely

mixed state I/d or with probability (1−p) outputs the original state ρ. Therefore,
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with probability p the state information is completely lost in this channel. That

is,

E(ρ) = p
I

d
+ (1− p)ρ. (1.46)

If ρ is a qubit, that is d = 2, then the map E has an operator sum representation

where operator elements {
√

1− 3p/4I,
√
pX/2,

√
pY/2,

√
pZ/2} are expressed

using the Pauli operators.

1.2.10 Bell states

The two qubit states,

|Φ+〉AB =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B), (1.47)

|Φ−〉AB =
1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B), (1.48)

|Ψ+〉AB =
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B), (1.49)

|Ψ−〉AB =
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B), (1.50)

are called the Bell states. A pair of qubits that are in a Bell state is called a Bell

Pair.

For example, let us assume Alice and Bob share the Bell state |Ψ+〉AB where

Alice holds the qubit A and Bob holds the qubit B and they are spatially separated.

If Alice projectively measures her qubit in the computational basis {|0〉 , |1〉}
then with probability 1/2 she will get outcome 0 and with probability 1/2 outcome

1. Now, if Bob performs the same measurement on his qubit B under the

condition that Alice has already observed outcome 0, then he would definitely

observe outcome 1. If instead Alice has received outcome 1, then Bobs outcome

would be 0. That is their outcome are perfectly anti-correlated even thought they

are spatially separated from each other.

1.2.11 Teleportation

Teleportation [55] is one of the unique features of quantum information. If Alice

has a qubit |ψ〉C = α|0〉C + β|1〉C , she can teleport it to Bob using a pre-shared
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entangled Bell state. For example if Alice and Bob share the Bell state |Φ+〉AB,

where Alice holds qubit A and Bob holds qubit B, then the state of the combined

system is given by,

|Φ+〉AB ⊗ |ψ〉C =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)⊗ (α|0〉C + β|1〉C). (1.51)

Using Equation (1.47) to Equation (1.50), this can be written as,

|Φ+〉AB ⊗ |ψ〉C =

1

2

[
|Φ+〉AC ⊗ (α|0〉B + β|1〉B) + |Φ−〉AC ⊗ (α|0〉B − β|1〉B)

+ |Ψ+〉AC ⊗ (β|0〉B + α|1〉B) + |Ψ−〉AC ⊗ (β|0〉B − α|1〉B)
]
. (1.52)

Now Alice performs a measurement of Bell operator (defined in [56]) on her

share of the qubits AC and depending on which outcome she gets, the post

measurement state of the system becomes one of these,

|Φ+〉AC ⊗ (α|0〉B + β|1〉B), (1.53)

|Φ−〉AC ⊗ (α|0〉B − β|1〉B), (1.54)

|Ψ+〉AC ⊗ (β|0〉B + α|1〉B), (1.55)

|Ψ−〉AC ⊗ (β|0〉B − α|1〉B). (1.56)

At this point, Alice’s two qubits AC are in a Bell state. And the entanglement

between qubits A and B is broken. Moreover B is in a state whose amplitudes

are now related to |ψ〉C . Now, if Alice communicates the outcome that she has

observed to Bob, then, knowing this, Bob can apply the required correction unitary

and reconstruct |ψ〉C in his qubit B as α|0〉B + β|1〉B.

For example, If Alice’s result is |Φ+〉AC , then Bob knows he already has

α|0〉B + β|1〉B and does nothing.

If Alice’s result is |Φ−〉AC then Bob would apply a unitary operator (Pauli

matrix) σ3 =

[
1 0
0 −1

]
on B. This converts the qubit to α|0〉B + β|1〉B.

If Alice’s result is |Ψ+〉AC then Bob applies Pauli operator σ1 to construct

α|0〉B + β|1〉B.
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For the remaining cases Bob applies, −σ3σ1 = iσ2 =

[
0 −1
1 0

]
.

Here we emphasise that Bob can reconstruct |ψ〉C only after receiving informa-

tion from Alice about which one of the four outcomes she has observed. Since this

message must travel within the limit of the speed of light, quantum teleportation

cannot be used for instantaneous communication.

1.2.12 Entanglement swapping

Using similar techniques used in teleportation we can perform a more interesting

operation, namely entanglement swapping. The idea was originally proposed

by Zukowski et al. in [57] and later experimentally demonstrated in various

settings [58, 59]. A formulation of this process, proposed by Biham et al. in [60]

is most useful to us. We present it with an example below.

Let us assume that qubits A and B are in the Bell state |Φ+〉AB (see Equa-

tion (1.47)) and qubits C and D are in the Bell state |Φ+〉CD. We write the joint

state of the four qubits A,B,C and D as,

∣∣Φ+
〉
AB
⊗
∣∣Φ+

〉
CD

=
1

2
[|0〉A |0〉B |0〉C |0〉D + |1〉A |1〉B |0〉C |0〉D ,

+ |0〉A |0〉B |1〉C |1〉D ,
+ |1〉A |1〉B |1〉C |1〉D]. (1.57)

Now, if we perform a Bell state measurement (defined in [56]) on the pair of

qubits BC, depending on the four possible outcomes of the measurement 1, 2, 3

and 4, the joint state of the four qubits system becomes one of these,

|1〉 :=
1

2
[(|0〉B |0〉C + |1〉B |1〉C)⊗ (|0〉A |0〉D + |1〉A |1〉D)], (1.58)

|2〉 :=
1

2
[(|0〉B |0〉C − |1〉B |1〉C)⊗ (|0〉A |0〉D − |1〉A |1〉D)], (1.59)

|3〉 :=
1

2
[(|0〉B |1〉C + |0〉B |1〉C)⊗ (|0〉A |1〉D + |0〉A |1〉D)], (1.60)

|4〉 :=
1

2
[(|0〉B |1〉C − |0〉B |1〉C)⊗ (|0〉A |1〉D − |0〉A |1〉D)]. (1.61)

respectively.
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A

B C

D A

B C

D

(a) (b)

Figure 1.1: Entanglement swapping using the Bell state measurement -

The qubits are represented using small circles. The solid lines connect qubits that

are in Bell states. In (a) the dashed rounded rectangle encloses the two qubits

that are measured using the Bell operator. (b) shows that the entanglements are

swapped after the measurement.

These are essentially, (see Bell states from Equation (1.47) to (1.50))

|1〉 =
∣∣Φ+

〉
BC
⊗
∣∣Φ+

〉
AD

, (1.62)

|2〉 =
∣∣Φ−〉

BC
⊗
∣∣Φ−〉

AD
, (1.63)

|3〉 =
∣∣Ψ+

〉
BC
⊗
∣∣Ψ+

〉
AD

, (1.64)

|4〉 =
∣∣Ψ+

〉
BC
⊗
∣∣Ψ+

〉
AD

. (1.65)

That is, now qubit pairs BC and AD are pairwise entangled in the Bell states.

Figure 1.1 justifies the name entanglement swapping for this procedure.

It is a remarkable quantum effect that qubits A and D, which never came in

contact with each other, have became maximally entangled using entanglement

swapping. If we started with any Bell state other than |Φ+〉s then we would have

got the same entanglement swapping effect.

1.2.12.1 Entangling qubits in remote nodes using entanglement swap-

ping

We use this entanglement swapping procedure as a primitive to create entangle-

ment between remote nodes in a quantum network. We call the primitive an

entanglement swapping operation and represent it as follows. Imagine three
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A B C D

A B C D

A B C D

Alice Bob David

Alice Bob David

Alice Bob David

(a)

(b)

(c)

msg

Figure 1.2: Operation eswap(B,C) to remotely allocate entanglement -

The qubits are represented using small circles. The solid lines connect qubits that

are in the Bell state |Φ+〉. In (b) Bob performs Bell state measurement on his

qubits and communicates the outcome in a classical message msg to David. In (c)

upon receiving msg, David performs the necessary local operation on D to convert

the newly formed entanglement between D and Alice’s qubit A to the Bell state

|Φ+〉AD.
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players Alice, Bob and David. Alice holds qubit A, Bob holds qubits B and C

and David holds qubit D (see Figure 1.2). Qubits A,B are entangled in the Bell

state |Φ+〉AB and qubits C,D are in the bell state |Φ+〉CD. Bob, who has the

qubits B and C in his possession, performs the Bell state measurement on them

and gets one of the 4 outcomes indicating the post measurement states as in

Equation (1.62) to (1.65). For example, if the Bell measurements outcome was 3

then the post measurement state of qubits A an D is |Ψ+〉AD.

At this point though Alice’s and David’s qubits got remotely entangled, they

do not know which of the 4 Bell states they are in. However, Bob has observed

the outcome of the Bell measurement so he can communicate his outcome to

David. This communication is done using classical information. Upon receiving

this message from Bob, David performs local operations on its qubit D making

the final state of AD to be |Φ+〉AD. That is, even though AD was equally likely

to be in any of the 4 Bell states, the message from Bob allows David to convert

the entanglement to any specific shared Bell state between A and D. This whole

process is packaged into the operation eswap(B,C) as illustrated in Figure 1.2.

1.2.12.2 Bloch sphere

Any density matrix ρ for a single qubit can be written as,

ρ =
I + rxσx + ryσy + rzσz

2
, (1.66)

where, ~r = (rx, ry, rz) ∈ R3, such that, ‖~r‖ ≤ 1 and σx, σy and σz are Pauli

matrices.

This allows us to represent any qubit as a vector in a 3 dimensional unit sphere

called Bloch sphere [47] (see Figure 1.3). The vector ~r is called the Bloch vector

of the qubit.

1.2.13 Direction as a qubit

Incidentally, when a qubit is implemented with two level systems like electron

spin [61], or photon polarisation [62], the vector ~r actually indicates a direction

in space [47]. That is, the x̂, ŷ and ẑ axes of the Bloch vector are not only the

22



1.2 Preliminaries

ρ

r x

r y

r z

θz

Figure 1.3: Bloch sphere - The qubit ρ is represented as a vector (rx, ry, rz)

within the unit sphere.

axes of the state space, but also the axes of the physical spatial reference frame.

That is why, a Bloch vector of such a system can act as an arrow that points to a

direction in space.

1.2.14 Pauli measurements

The direction of a Bloch vector cannot be decoded from a single qubit. However,

if many identical qubits with Bloch vectors pointing to the same direction are

available, then a type of measurement, called the Pauli measurement, allows

us to approximate it [63]. For example Pauli σz measurement is defined by

measurement operators { (I+σz)
2

, (I−σz)
2
}. It can be applied n times on n of the

identical qubits. The statistics of the outcome is governed by the angle θz (see

Figure 1.3) that the state makes with the ẑ axis. From this, one can approximate

rz. Similarly using { (I+σx)
2

, (I−σx)
2
} and { (I+σy)

2
, (I−σy)

2
}, which are Pauli σx and

Pauli σy measurements respectively, it is possible to approximate rx and ry. The

approximation error depends on the number of qubits exchanged and can be

estimated using Hoeffding’s inequality (see, Chapter 2.6).
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1.2.15 Unspeakable information

Imagine two players Alice and Bob who share a spatial reference frame. That

is, they know the relative orientation of each others local Cartesian reference

frame. If Alice wants Bob to point to a certain direction, then she can send him

the description (coordinates) of the vector pointing to that direction and upon

reception Bob will be able to orient himself as intended. This method only works

because they have a common reference frame. Could they still communicate the

direction if they did not have a shared reference frame? Clearly, it is not possible

by exchanging only bits. However, if they could exchange an object that points

to the intended direction, like a compass needle, then they would be able to

communicate the direction. Here the object will carry the reference frame with

it (for an example see [64]). Luckily, as we have seen, qubits can act as such

needles and allow Alice and Bob to communicate a direction from scratch. The

information carried by such systems is called unspeakable information or non-

fungible information [45], in contrast to the fungible information [64] considered

in classical information theory where the means of encoding does not matter.

Communication of such reference frames is very important because without

them it is impossible to make sense of any quantum state encoded in some

directional quantity such as spin and polarisation. For example, let us assume a

spin qubit is prepared in state |0〉, as expressed in the computational basis, and

given to us. The Bloch vector ~r for this state is (1, 0, 0). If the orientations of the

x̂, ŷ and ẑ (see Figure 1.3) are not known to us, then (1, 0, 0) could be interpreted

as any point on the surface of the Bloch sphere. So, to us, the quantum state will

look completely arbitrary. Thus, no effective quantum communication will take

place.

Formally, If Alice and Bob have two different local reference frames, then there

will be a unitary operator U that takes states descriptions by Alice and transforms

them into the equivalent state description for Bob’s frame. Absence of a shared

reference frame means, not knowing this unitary. If Alice prepares a state |ψ〉
and tells Bob in which state she has prepared her system, and Bob does not know

which unitary operation transforms the description to a equivalent state in his

frame, then any state he prepares to reconstruct |ψ〉 will look (to Alice) as if a
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random unitary U is applied on |ψ〉. That is, U defines an isomorphism between

Alice and Bob’s local experimental operations. Therefore, if Alice prepares a qubit

in the state |ψ〉 and sends it to Bob, then Bob’s representation of the state would

be obtained by averaging over all possible isomorphism,

∫
dU U |ψ〉〈ψ|U† =

I

2
, (1.67)

which is a completely mixed state . Equation (1.67) is true for all possible |ψ〉
thus a state description without reference frame carries no information about the

system [65].

1.3 Quantum networks

A quantum network consists of multiple quantum nodes with varying degrees of

quantum computing capabilities and quantum links that connect adjacent quantum

nodes and allow exchange of quantum information between them. The nodes might

be full-fledged quantum computers that can perform universal quantum computing

or simple terminals that use a remote quantum computer over the network. These

terminals might have simple capabilities of preparing and measuring certain

quantum states and often do not require quantum memories [66]. Or, the nodes

might be quantum routers (Chapter 5.4), which, depending on the implementation,

might have a limited quantum memory and the ability to perform only a limited

number of operations on their memory. Example of such limited operations are

the teleportation and the entanglement swapping operations. Since a router

does not perform any general purpose quantum computation, rather facilitates

communication over a quantum network, it does not need to be a universal

quantum computer. The quantum links might be optical fibre carrying coherent

single photon pulses [67], or line of sight free space photon channels [68].

In this thesis our focus is on various problems related to quantum networks

that allow n ≥ 2 party quantum computations.
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1.4 Byzantine consensus

In this section we give some preliminaries to the concept of the consensus problems

in the classical distributed computing. We also introduce the Byzantine fault

tolerance model and a brief description of historical development of their studies

in synchronous and asynchronous networks. These works, though not directly

applicable in the quantum network, can give us valuable insight and useful tools

in designing reference frame agreement protocols in Chapter 3 and Chapter 4. We

first define general consensus problem.

1.4.1 Consensus

In distributed computing a fundamental problem is to achieve reliability where

some of the processes might be faulty. A basic step of achieving such reliability

involves all the process to agree on some value. For example, all the process

might want to agree on a classical bit, 0 or 1 before they could make a collective

decision over the network. This problem known as the consensus problem was

first introduced by Pease, Shostak and Lamport in [69]. In a network where each

process can be thought of as a network node, this problem can be defined more

formally as,

Definition 1. A protocol among n nodes is a Classical-Consensus protocol, if each

node Pi starts with an input bit gi and outputs a bit yi, that satisfies the following

properties:

Agreement All correct nodes should output the same bit;

Validity If all correct nodes start with the same input gi = b, then they should

all output this value, that is yi = b.

Integrity If all the correct nodes output a bit b, then there must be at least one

correct node Pi that has originally proposed the bit gi = b.

Termination Each correct node must complete the protocol by successfully

outputing a bit.
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1.4 Byzantine consensus

If a protocol among n nodes can guarantee consensus in the presence of t

faulty nodes, then the protocol is called t-resilient.

The importance of the consensus problem in fault tolerant computing have

inspired a plethora of works in this topic (See, for example, [70, 71] for surveys).

All of these results are achieved under various assumptions on the model of

computing and the network types.

1.4.2 Model of computation

There are several fault model under which the consensus problems are studied.

1.4.2.1 Fail-stop faults

The most basic type of faults under which a consensus protocol must have some

resilience is the crash failure. Here some node stops completely and never resumes

operation during the course of the protocol. These model of faults are called the

fail-stop model [72]. In the fail stop model the non-faulty nodes in the network

can identify which node has failed and take measures accordingly.

1.4.2.2 Byzantine faults

The most challenging model of faults in a distributed computing system is the

Byzantine faults [73]. Under this model of faults a faulty node might show

arbitrarily faulty behaviour. That is, a Byzantine faulty node cab eveb be

indistinguishable from a non-faulty node from its communication-input-output

behaviour. However it might send different inconsistent messages to different

correct nodes and thus confuse them. It is also assumed that the all the faulty nodes

might cooperate with each other and deploy arbitrarily sophisticated strategies to

thwart the consensus effort. A protocol designed under the assumption of such

powerful faulty node would be strong enough to survive any network faults. If a

consensus protocol can survive in the presence of t faulty nodes then it is called a

Byzantine conesn called a Byzantine consensus protocol.
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1.4.3 Network models

The Byzantine consensus problem is studied in both synchronous [74, 75] and

asynchronous [76–79] networks. In the synchronous network all the nodes share a

common clock and the delays in the network communication are deterministic. In

the asynchronous network there are no shared clocks and the transmission delays

might be arbitrarily long for each message. In this model the only guarantee is

that a message sent from a correct node to another correct node will eventually

arrive at the destination. For both synchronous and asynchronous networks, it is

known that Byzantine consensus is impossible in an n node network if there are

more than t < n/3 faulty nodes [80]. For asynchronous network it is known that

no deterministic protocol can guarantee the protocol termination in the presence

of fail-stop of Byzantine faulty nodes [81]. However, there exists finite expected

time protocols [76–79] for asynchronous Byzantine consensus.

1.5 Outline

The rest of this thesis is organised as follows.

In Chapter 2, we formalise the concept of spatial and temporal reference frames.

We define the general reference frame agreement problem and discuss the known

results about two party reference frame agreement protocols. Then we discuss

the problems that faulty nodes and imperfect communication introduces in an

n > 2 node reference frame agreement protocol. We discuss a two party direction

estimation protocol that was originally proposed by Massar and Popescu [63]

and analyse it under the effects of a depolarising channel. This protocol is later

used as an example two party primitive that we use to design our fault tolerant

multiparty reference frame agreement protocols. Finally, we discuss synchronous

and asynchronous networks and explain why multiparty protocols for these two

types of networks should be different.

In Chapter 3, we formalise the spatial reference frame agreement problem for

an n node synchronous quantum network and give a fault tolerant protocol that

achieves reference frame agreement in the presence of t < n/3 faulty nodes.
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In Chapter 4, we formalise the reference frame agreement problem for an

n node asynchronous quantum network and give a fault tolerant protocol that

achieves reference frame agreement in the presence of t < n/3 faulty nodes.

In Chapter 5, we discuss the quantum network architecture where entanglement

swapping is used to perform quantum routing. We discuss some existing results

and give detailed description of various network primitives such as quantum

repeaters, quantum routers and network graphs. We introduce the concept of

routing graphs and motivate how it can help to achieve efficient quantum routing.

We also briefly discuss global, local and circuit routing modes.

In Chapter 6, we give the first high-level protocol that runs on an entanglement

swapping based quantum network. We consider a network graph where all the

nodes are connected in a cycle and give a routing graph construction that facilitates

efficient local routing and requires a quantum memory of size logarithmic in the

number of nodes.

This thesis ends with Chapter 7 in a short conclusion and outlook.
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Reference frame agreement

In this chapter we introduce the reference frame agreement problem for a quantum

network. We discuss what we know about these problems in the bipartite setting

and what are the new challenges faced by any protocol involving more than two

parties. We discuss the differences of asynchronous and synchronous networks

and why reference frame agreement protocols have to be different in these two

settings. Through all these discussions we hope to gain the necessary insights and

preliminary knowledge that would be essential for understanding the synchronous

and asynchronous reference frame agreement protocols that we give in Chapter 3

and Chapter 4 respectively.

2.1 Reference frame

2.1.1 Spatial reference frame

A spatial reference frame defines a co-ordinate system in space. For example, in a

Cartesian coordinate system once the Cartesian frame (~x, ~y, ~z) is specified, any

vector v = α~x + β~y + γ~z can be represented as (α, β, γ) where α, β and γ are

scalers. For two distant parties who only have the knowledge of their own local

frame, it becomes necessary to establish a shared reference frame before they can

successfully communicate spatial information (such as, location and orientation).
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2.1.2 Temporal reference frame

Similar to spatial reference frames multiple parties might need to synchronise

their clock rates and time differences. Once they have established it, we say

that they share a temporal reference frame and they are synchronised in time.

Any multiparty protocol or computation performed by systems that do not

share a temporal reference frame are respectively called asynchronous protocol or

asynchronous computation.

2.2 The reference frame agreement problem

In a quantum channel, the qubits are encoded in some physical degree of freedom.

For example, the polarisation direction of a photon is often used to encode

qubits [62]. This requires the sender and the receiver to agree on some set of

orthonormal directions (the horizontal and the vertical) as their common spatial

reference frame. Another example is the time-bin qubits [82], where both of

the parties require synchronised clocks. That is, they must have a pre-agreed

temporal reference frame. Efficient implementations of many quantum protocols

(for example, [83]) require that the nodes share such common reference frames. This

imposes some challenges because during the initialisation of a quantum network

the pairwise channel delays might be unknown, clocks might be unsynchronised

and spatial reference frames might be unaligned. However, there are known

quantum protocols [83, 84] that allow two nodes to synchronise clocks if they

begin with a shared spatial reference frame. That is, the general reference frame

agreement problem can be thought of as a problem of aligning Cartesian reference

frames. This can be attained if there exist protocols that allow participating nodes

to agree on a direction.

Unlike in classical information theory, where information can be represented in

bits, a spatial reference frame can only be transferred from scratch by exchanging

systems that have an inherent sense of direction [85]. Examples of such systems

are electron spin qubits [61] and photon polarisation qubits [62]. The receiver

can extract direction information from these systems, for example, by performing

tomography on them.
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While preparing the direction, any sender node Pi knows the description of the

direction as an unit vector vi = (αi, βi, γi), which is the classical representation of

the vector αi~xi + βi~yi + γi~zi represented in Pi’s local Cartesian frame(~xi, ~yi, ~zi).

Once the quantum system, carrying that direction, arrives at a receiver Pj, the

receiver constructs a representation of the direction in it’s own local frame as vj.

Such an estimation procedure inevitably introduces some errors, even in correct

transmissions. That is, depending on the precision of the instruments one can

only expect to have d(vi, vj) ≤ δ for some δ > 0, where d(vi, vj) is the Euclidian

distance between vi and vj. However, this distance metric does not make sense

as it is, because vi and vj are vector representations in two different local frames.

Therefore, we must redefine our distance metric d(., .) where distance is computed

by converting both vectors in the frame of the first argument. As a result d(vi, vj)

remains a valid distance measure even though Pi and Pj do not know each other’s

local frame. Note that, a node can only compute distance between two directions

that are represented in its own local frame, a protocol for solving the reference

frame agreement problem should make sure that no distance computation between

vectors in two different local frame is needed to run the protocol. However, this

modified Euclidian distance can be used in the analysis.

Since, there are inherent imperfections in the direction transmission and

reception process, a direction agreement protocol for multiple nodes has to take

this into consideration. Therefore, we define a multiparty direction agreement

problem, which is equivalent to a reference frame agreement problem, as follows.

Definition 2. For η > 0, a set or nodes S in a network η-agree on a direction

if each node Pi ∈ S agrees on a direction vi such that for any Pj ∈ S we have

d(vi, vj) ≤ η.

That is, even though the nodes in S do not agree on the exact same (i.e. η = 0)

direction, if η is very small then all their agreed directions are close.

2.3 The 2-party problem

When two nodes try to agree on a reference frame we call it a bipartite reference

frame agreement problem, or a direction estimation problem. Barlett et al. [45]
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presents a comprehensive survey on the problems of quantum computation between

two parties without a shared reference frame and how to align reference frames

between them using ‘unspeakable’ information [64]. The task of optimally aligning

reference frames for two parties was first studied by Gisin and Popescu in [86] and

later by Massar [87] where they use electron spin to encode direction. In [64] Peres

and Scudo studies Cartesian frame alignment using quantum systems. Bagan

et al. [88] studied aligning reference frames using quantum channels. A more

recent work was done by Skotinotis and Gour [89] where they determine the

quantum states and measurements that optimise accessible information in a phase

reference alignment protocol. Chuang [83] gives a quantum algorithm for clock

synchronisation. However, the algorithm assumes shared Cartesian reference

frames among the parties.

2.4 Correct nodes and faulty nodes

In a 2-party protocol if any one of the nodes is faulty, then the protocol inevitably

fails. However, in a multiparty setting with more than two nodes, if some of

the nodes are faulty we still want the non-faulty nodes to closely agree on some

direction. This poses various challenges that were absent in the bipartite setting.

To understand and mitigate these challenges, we have to characterise the faulty

and non-faulty nodes.

2.4.1 Correct nodes

A correct node or a non-faulty node in a network is a node that acts only according

to the protocol specification. That is a correct node does not do anything extra

to gain advantage over other nodes and does not deviate from the instructions

given by the protocol. In classical cryptography such nodes are often referred as

an honest node or honest party.

2.4.2 Faulty nodes

A faulty node in a network is a node that does not always act according to the

protocol specification. To be more specific, a faulty node might,
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Be non-responding. Nodes might not communicate at all due to breakdown.

Send wrong message. Nodes might send wrong messages due to some internal

error (for example, failure in input-output modules).

Show correlated errors. Nodes might show correlated error because of similar

manufacturing defect, or being position in a geographical location that is

going through some natural disaster.

Be controlled by an adversary. Nodes might be controlled by an adversary

who can read all the public transmissions in the network and adapt its

strategy accordingly to thwart the network.

Such a model of faulty nodes was first introduced in the study of distributed

computing by Lamport et. al. [73]. For some historic reasons a protocol that

can operate in the presence of such faulty nodes is called Byzantine fault tolerant

protocol. For our study of reference frame agreement problems we model the

faulty nodes in this Byzantine fault model. A faulty node can successfully thwart

a protocol only if its identity is unknown. Otherwise, the correct nodes can leave

them out of the protocol. Therefore we assume the faulty nodes do perform any

action that exposes themselves. The idea behind assuming such strong faults is

that any protocol that works in the presence of such faulty nodes would be robust

in most fault situations that naturally occur, or are caused by an adversary.

2.5 The multiparty problem

When n > 2 nodes try to agree on a reference frame, we call it a n-party reference

frame agreement problem or multiparty reference frame agreement problem.

Given that some of the nodes among these n are faulty we would want only

the correct nodes to be able to agree on a reference frame. A reference frame

agreement protocol that achieves this, can be defined as:

Definition 3. For η > 0, a η-reference frame agreement protocol among n nodes

is a protocol such that,
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Termination. Each correct node Pi terminates the protocol, and outputs a

reference frame vi.

Consistency. For all pairs of correct nodes Pi and Pj we have d(vi, vj) ≤ η.

That is, no matter what the faulty nodes does an η-reference frame agreement

protocol should be able to get all the correct nodes to η-agree on a direction. Since,

initially the faulty nodes are indistinguishable from the correct nodes, this is a

highly non trivial task. To see what challenges the faulty nodes might cause, let us

consider a naive protocol where one node fixes an arbitrary reference frame, and

communicates it to all the other nodes using some two-party direction estimation

protocol. However, in a networked setting there might be faulty nodes and a faulty

sender might send different reference frames to different nodes. Therefore, the

receivers need to verify that they are indeed receiving the same (η close to each

other) reference frame. However, some of the receivers might also be faulty and

end-up confusing others by sending wrong messages during any such verification.

A reference frame agreement protocol must account for this. Recall that, any

protocol that overcomes these problems caused by the faulty nodes is said to be a

Byzantine fault tolerant protocol (Section 2.4.2).

2.6 2-party estimate direction protocol (2ED)

From our discussions in Section 2.2 we know that directions cannot be exchanged

perfectly. A receiver has to estimate the direction sent by a sender. A protocol

that achieves this is formally defined as,

Definition 4. For δ > 0 a δ-estimate direction protocol is a two-party protocol

where one node (the sender) sends a direction u to the other node (the receiver).

Upon termination the receiver gets a δ-approximation v of u, that is, d(u, v) ≤ δ.

Now, we show an example of a 2-party direction estimation protocol that was

first proposed by Massar and Popescu in [63]. This protocol, which we refer to

as 2ED, uses quantum communication to send a direction from a sender to a

receiver. It is one of the simplest possible protocols where a sender creates many

identical qubits with their Bloch vector pointing to the intended direction and
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the receiver measures them with Pauli measurements. From the statistics of the

measurement outcomes, the receiver then estimates the Bloch vector’s direction

closely with high success probability. We use this protocol, since it has some

experimental advantages for implementation: it does not require any quantum

memory or creation of entangled states, and it succeeds even if the quantum

channel has a depolarising noise. However, the downside of this choice is that this

protocol is not optimal in the number of qubits sent to achieve a certain accuracy.

Optimal protocols can align frames in the so-called Heisenberg limit, they have a

quadratic gain over 2ED [90].

We formally write the protocol in Protocol 1:2ED.

Protocol 1: 2ED
input : Sender, direction u

output : Receiver, direction v

1 Sender: 2ED-Send

2 Prepare 3n qubits with direction u

3 Send them to the receiver

4 Receiver: 2ED-Receive

5 Receive 3n qubits from the sender

6 Measure n qubits with σx and compute px, the frequency of getting

outcome +1

7 Similarly on the remaining qubits, compute py and pz with

measurements σy and σz on n qubits each

8 Assign x← 2px − 1, y ← 2py − 1, z ← 2pz − 1; Assign

l←
√
x2 + y2 + z2

9 Output v ← (x/l, y/l, z/l)

We analyse the properties of the protocol under depolarising noise in the

following theorem.

Theorem 1. For all δ > 0, using a depolarizing channel ρ 7→ (1 − ε)ρ + εI/2
between the sender and the receiver, protocol 2ED provides to the receiver a

(1− ε)δ + 5ε
2

approximation of the sender’s direction. It succeeds with probability

qsucc ≥ 1− e−Ω(δ2n).
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Proof. We prove this theorem in two steps. First, we consider the case when the

communication channel is noise free (ε = 0), and then, we see how depolarizing

noise affects the approximation factor.

In the noise-free case, let us fix δ > 0 and denote θx, θy, and θz to be the angles

between u and the x-, y-, and z-axis of the local frame of the receiver. Therefore,

cos2 θx
2

is the probability of getting outcome +1 after the Pauli measurement σx

on a qubit. Similarly, cos2 θy
2

and cos2 θz
2

are the probabilities for outcome +1 on

measurement σy and σz respectively.

Now, we show that each of the following three conditions

|px − cos2 θx
2
| ≤ δ/5, (2.1)

|py − cos2 θy
2
| ≤ δ/5, (2.2)

|pz − cos2 θz
2
| ≤ δ/5, (2.3)

holds with probability at least (1−2e−
2
25
nδ2), and later show that Equations (2.1), (2.2),

and (2.3) imply that d(u, v) ≤ δ.

We know in the ideal case, when n→∞ the relative frequency px → cos2 θx
2

.

However, in 2ED n is finite. Therefore, we use the Hoeffding’s inequality [91] to

estimate the probability with which Conditions (2.1), (2.2) and (2.1) are satisfied.

For this, note that each of the Pauli measurements σx performed on a single

qubit is an independent event. We can denote random variables Zj where,

Zj :=

1 if jth measurement outcome was +1,

0 if jth measurement outcome was −1,
(2.4)

Using this we define a random variable Z̄ :=
∑

j Zj. Note that, Z̄ counts

the number of times an outcome +1 is observed after a Pauli measurement σx is

performed on a qubit. Therefore, we have,

px =
Z̄

n
, (2.5)

and
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cos2 θx
2

=
E(Z̄)

n
, (2.6)

where E(Z) is the expectation value of Z̄. Now, the Hoeffding’s inequality tells

us, that with high probability, the value of Z̄ is not far from its expectation value.

That is for all t > 0 we have,

Pr
(∣∣Z̄ − E(Z̄)

∣∣ > tn
)
≤ 2 exp

(
−2t2n

)
, (2.7)

Taking t = δ/5 in Inequality (2.7), with Equation (2.5) and (2.6) gives us,

Pr

(∣∣∣∣px − cos2 θx
2

∣∣∣∣ > δ

5

)
≤ 2 exp

(
−2nδ2

25

)
. (2.8)

The same analysis holds true for Pauli measurements σy and σz. Hence Condi-

tions (2.1), (2.2), and (2.3) are all satisfied with probability at least
(

1− 2e(−2nδ2/25)
)3

.

That is the success probability,

qsucc ≥
(

1− 2e(−2nδ2/25)
)3

, (2.9)

≥ 1− e−Ω(δ2n). (2.10)

Where, the Equation (2.10) follows from the Bernoulli’s inequality, which is

(1 + x)r > 1 + rx for all real x ≥ −1 and integer r ≥ 2.

Denoting the vector u in the receiver’s basis by (xu, yu, zu), we have

xu = cos θx = 2 cos2 θx
2
− 1. (2.11)

So,

|x− xu| =
∣∣∣∣(2px − 1)−

(
2 cos2 θx

2
− 1

)∣∣∣∣ , (2.12)

= 2

∣∣∣∣px − cos2 θx
2

∣∣∣∣ , (2.13)

≤ 2δ/5. (2.14)

Here, Inequality (2.14) follows from Inequality (2.1). Similarly we have,

|y − yu| ≤ 2δ/5 and |z − zu| ≤ 2δ/5. (2.15)
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Using (2.14) and (2.15), we get,

d((x, y, z), u) =
√

(x− xu)2 + (y − yu)2 + (z − zu)2,

≤
√

(2δ/5)2 + (2δ/5)2 + (2δ/5)2, (2.16)

=
2
√

3δ

5
. (2.17)

This means that (x, y, z) is within a sphere of radius 2
√

3δ
5

centered in u, so its

angle θ with u is at most arcsin(2
√

3δ/5). Since v is the normalization of (x, y, z),

its angle with u is also θ and from a simple trigonometric observation, we have,

d(u, v) = 2 sin(θ/2) ≤ 2 sin

(
1

2
arcsin(2

√
3δ/5)

)
. (2.18)

Moreover, one can check that for all α ∈ [0, 1], sin
(

1
2

arcsin(α)
)
≤ 5

4
√

3
α, thus,

d(u, v) ≤ δ. (2.19)

Effects of noise. So far we have considered only a noiseless channel, let us now

turn to the case of a depolarizing channel: if the sender sends a pure state |ψ〉,
then the receiver gets the mixed state

ρ = (1− ε)|ψ〉〈ψ|+ ε
I
2
, (2.20)

where, 0 ≤ ε ≤ 1.

From Equation (2.20) one can see that the effective relative frequency px is

given by

px = (1− ε)p′x +
ε

2
, (2.21)

where p′x is the relative frequency that the receiver would have got if the channel

was noise-free, meaning that
∣∣p′x − cos2 θx

2

∣∣ ≤ δ/5. Therefore,

|px − cos2 θx
2
| = |(1− ε)p′x +

ε

2
− cos2 θx

2
|, (2.22)

≤ |(1− ε)δ
5

+
ε

2
− ε cos2 θx

2
|, (2.23)

≤ |(1− ε)δ
5

+
ε

2
|, (2.24)

= (1− ε)δ
5

+
ε

2
. (2.25)
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Here Inequality (2.24) follows because ε cos2(θx/2) is positive.

The rest of the analysis remains the same as the noise-free case by replacing

δ/5 by arcsin(2
√

3δ/5) in Equation (2.1).

2.7 Synchronous and Asynchronous networks

In the Synchronous network all the nodes share a common clock. That is their

timing devices have same ‘tick-rate’ and each pair knows the pairwise time offset.

This allows them to globally schedule and synchronise protocol steps performed by

each node. If any node fails to send some message at any time, then the receiver

node concludes that the node is faulty.

Whereas, in an asynchronous network no such global clocks are available.

The nodes might take arbitrarily different time to perform different steps of any

protocol. Furthermore, the message transmissions using the links between any two

nodes might take an arbitrary time at each use of the link. The only guarantee is

that if a correct node sends a message to another correct node, then the message

eventually arrives at the destination. In this setting, if a receiver node is waiting

for a message to arrive from a sender, then he cannot be certain whether the

message is not arriving because the sender is faulty, or the message is taking a very

long time in the network. Any protocol that waits for such a transmission event

before taking next action might hang indefinitely. Therefore, most of the protocols

for the synchronous networks are not applicable in asynchronous networks.
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3

A synchronous protocol

In this chapter we give the first multiparty reference frame agreement protocol for

a synchronous network. The chapter is organised as follows. In Section 3.1 we

formalise the problem. In Section 3.2 we define the communication model, give

the main result and present the protocols with their proof outlines. We give the

detailed proofs in Section 3.3 and finally, we discuss open problems in relation to

classical agreement protocols.

3.1 The problem

We want the correct nodes in an n node synchronous quantum network to be

able to establish a common reference frame from scratch, even though t of them

may be arbitrarily faulty. We assume a fully connected network graph. That is,

every node is connected to every other node using both classical and quantum

communication channels.

Using the modified Euclidian distance metric d(., .) specified in Chapter 2

Section 2.2, we formalise the problem by instantiating the general reference frame

agreement problem (Definition 3) for synchronous network as the following.

Definition 5. For η > 0, an η-synchronous reference frame consensus protocol

among n network nodes in a synchronous quantum network is a protocol such

that

43



3. A SYNCHRONOUS PROTOCOL

Termination. Each correct node Pi terminates the protocol, and outputs a

reference frame vi.

Consistency. For all pairs of correct nodes Pi and Pj we have d(vi, vj) ≤ η.

Note that consistency does not require that all the correct nodes share the

same reference frame (η = 0), but that each node has an approximation of it (η

is small). This is important because any two-node protocol using only a finite

number of rounds of communication cannot allow the two nodes to share a frame

exactly.

3.2 The main result and protocol outlines

We present a protocol that allows all the correctly functioning nodes in an n node

fully connected synchronous network to agree on a common spatial reference frame

as long as not more than t < n/3 nodes are arbitrarily faulty. Our Protocol 2:

RF-Consensus has the appealing feature that it can use any 2-party direction

estimation protocol as a black box and lift it to a fault tolerant reference frame

agreement protocol for n nodes. Such 2-party protocols are characterised by the

accuracy δ (i.e., the two nodes δ-agree) and the success probability qsucc with which

such an approximation guarantee is achieved. An example bipartite direction

estimation protocol 2ED was given in Chapter 2.6. The protocol RF-Consensus is

characterised in the following theorem.

Theorem 2. For δ > 0, in a complete network of n nodes that are pairwise

connected by public authenticated quantum and classical channels, if a bipartite

δ-estimate direction protocol that uses m qubits to achieve success probability

qsucc ≥ 1 − e−Ω(mδ2) is used, then protocol RF-Consensus is a 30δ-synchronous

reference frame consensus protocol with success probability at least 1−e−Ω(mδ2−logn),

that can tolerate up to t < n/3 faulty nodes.

Our protocol is efficient as we need only a linear (in the number of nodes n)

number of rounds of quantum communication. We also show that this setting is

robust to noise on the channel connecting any two nodes. To give some examples

of parameters, protocol RF-Consensus achieves accuracy 30δ = 0.02 with success
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3.2 The main result and protocol outlines

probability 99% in a network of n = 10 nodes with noiseless communication, if

each node transmits m ≈ 3.1× 108 qubits at each round.

Our protocol uses ideas of [92] which solves a simpler problem from classical

distributed computing called Byzantine agreement [73], in particular we use classi-

cal consensus as a subroutine. This classical problem has been extensively studied

using synchronous [74, 75] and asynchronous [76–79] classical communication, as

well as quantum communication [93], also in a fail-stop model in which the faulty

nodes can prevent the protocol from ever terminating [94]. There, the correct

nodes should perfectly agree on a single classical bit. Recall that we cannot send

a direction classically without a shared reference frame, and hence we cannot use

such protocols. In addition, we face two extra challenges: First, we are dealing

with a continuous set of outcomes; And second, it is impossible to transmit a

direction perfectly using a finite amount of communication, even on an otherwise

perfect channel. In quantum networks, furthermore, we also have errors on the

communication channel, which are pretty much unavoidable in a regime where

we cannot easily perform quantum error correction due to the lack of a common

frame. In the Byzantine problem such errors would be attributed to faulty nodes,

but in our setting this would mean that all nodes in the network are faulty and

no protocol could ever hope to succeed. Here, we thus require a careful treatment

of such approximation errors.

3.2.1 Model of communication

We assume that all the communication channels are

Public. Faulty nodes can adapt their strategy depending on the network traffic.

Authenticated. Faulty nodes cannot tamper with the channel connecting correct

nodes and

Synchronous. Correct nodes know when they are supposed to receive a message,

and if none is received, e.g. due to communication error, then the protocol

continues which ensures that our protocol cannot stall indefinitely.
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We only use quantum communications to send a direction between a sender

and a receiver. As an example we use protocol 2ED (Chapter 2 Section 2.6).

However in the protocol each direction might carry a classical ‘tag’ that describes

what type of message it is.

3.2.2 Protocols and the proof synopsis

In this Section, we present a summary of our protocols and subprotocols, and an

outline of their proof of correctness.

Our protocol works in two phases: First, a node is elected as the king Pk.

Second, the king choses a direction wk and sends it to all the other nodes. We

denote wi the direction received by the node Pi in its own frame. If the king is

not faulty, then 2ED ensures that d(wi, wk) ≤ δ. Then the correct nodes should

decide either all to accept this direction (they output vi ≈ wk in their respective

own frame), or all to reject it (output ⊥).

This second phase is known as king consensus. More formally, a king consensus

protocol should satisfy two properties:

δ-persistency: if the king is not faulty, all the correct nodes Pi, should output

vi such that d(vi, wk) ≤ δ; and

η-consistency: All the correct nodes reach a consensus, that is, they either all

output ⊥, or they all output directions that are η-close to each other, i.e., for all

correct nodes Pi and Pj, the distance d(vi, vj) ≤ η.

We repeat those two phases with different kings as long as a consensus is not

reached. In particular, the protocol will terminate after at most t+ 1 rounds since

there are at most t faulty nodes.

So the success of our RF-Consensus protocol depends on the success of the king

consensus protocol, which is achieved in three steps.

Step 1: Weak Consensus We first create a weaker protocol than king consen-

sus by relaxing the condition that the correct nodes either all output a direction,

or all output ⊥. In a weak consensus, some nodes can output ⊥ and the other
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Protocol 2: RF-Consensus
Input : None

Output : ∀i, Pi outputs direction vi

1 for k = 1 to t+ 1 do

2 vi = King-Consensus(Pk)

3 if vi 6=⊥ then

4 Output vi

a direction. However we keep the condition that if two correct nodes Pi and Pj

output directions ui and uj , then they should be close to each other. Formally, we

define a weak consensus protocol as a protocol with the following two properties:

δ-weak persistency : if there exists a direction wk such that for every correct node

Pi, d(wi, wk) ≤ δ, then d(ui, wk) ≤ δ; and η-weak consistency : For every pair

of correct nodes Pi and Pj that output ui 6=⊥ and uj 6=⊥ respectively, we have

d(ui, uj) ≤ η.

Protocol 3: Weak-Consensus
Input : ∀i, Pi inputs direction wi

Output : ∀i, Pi outputs direction ui or ⊥
1 Send wi to all other nodes

2 Receive ai[j]← direction received from Pj

3 Create the set Si ← {Pj : d(wi, ai[j]) ≤ 3δ}
4 if |Si| ≥ n− t then

5 Assign ui ← wi

6 else

7 Assign ui ←⊥
8 Output ui

Protocol 3: Weak-Consensus achieves δ-weak persistency and (8δ)-weak con-

sistency with probability at least qn
2−n

succ where δ is the accuracy achieved with

probability qsucc by the two-node protocol used to send directions.

Here, with probability at least qn
2−n

succ , for every correct node Pi and Pj,

d(ai[j], wj) ≤ δ. It is easy to see that this protocol is δ-weak persistent. We
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sketch the proof of the weak consistency. Consider the sets Si and Sj of two

correct nodes Pi and Pj. If ui 6=⊥ and uj 6=⊥, then Si and Sj contains

at least one correct node in common, let us call it Pα. Thus, d(ui, uj) ≤
d(ui, ai[α]) + d(ai[α], wα) + d(wα, aj[α]) + d(aj[α], uj) ≤ 3δ + δ + δ + 3δ = 8δ.

Step 2: Graded Consensus. In a king consensus protocol, the correct nodes

should have a “global” behaviour, as they should all either output a direction or

⊥, whereas in the weak consensus each node has a “local” strategy. A graded

consensus protocol behaves intermediately. Alongside a direction vi 6=⊥ the nodes

also output a grade gi ∈ {0, 1} which carries a “global” property, namely, η-graded

consistency : If any correct node outputs a grade 1, then the directions between

all the correct nodes should be η-close to each other, that is, for every pair (Pi, Pj)

of correct nodes, d(vi, vj) ≤ η.

Protocol 4: Graded-Consensus achieves (30δ)-graded consistency. It succeeds

with probability at least qn
2−n

succ .

The main idea of Graded-Consensus is that the nodes which output⊥ in the weak

consensus inform the other nodes (by sending the flags fi’s). The first consequence

is that for all correct nodes Pα and Pβ with fα = fβ = 1, d(uα, uβ) ≤ 8δ. The

second consequence is that if a correct node has grade 1, then for all correct nodes

Pi and Pj , the sets Ti and Tj each contains at least one correct node, let us denote

them Pα and Pβ. Thus, d(vi, uα) ≤ d(vi, ai[α]) + d(ai[α], uα) ≤ 10δ + δ = 11δ.

Finally, we get, d(vi, vj) ≤ d(vi, uk) + d(uk, ul) + d(ul, vj) ≤ 11δ + 8δ + 11δ = 30δ.

Step 3: King Consensus. We are ready to present the King-Consensus protocol

(Protocol 4) that achieves δ-persistency and (30δ)-consistency. Our protocol uses

Classical-Consensus as a subroutine. It solves a problem which is closely related

to Byzantine agreement. Here, every node Pi starts with a bit gi and outputs a

bit yi. All the correct nodes agree on a bit b, that is if Pi is correct, then yi = b

where at least one of the correct nodes, Pj has input gj = b. Classical consensus

can be reached if there are t < n/3 faulty nodes, for an example of such protocol,

see e.g. [69].

If the king is not faulty, then all the correct nodes will have grade gi = 1.

Hence the classical consensus will also be reached with value yi = 1. So, all the
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Protocol 4: Graded-Consensus
Input : ∀i, Pi inputs direction wi

Output : ∀i, Pi outputs direction vi and grade gi ∈ {0, 1}
1 Run Weak-Consensus(wi)

// This initialises the variables ui and ai[j]’s

2 if ui =⊥ then

3 Send flag fi = 0 to all other nodes

4 else

5 Send flag fi = 1 to all other nodes

6 forall the nodes Pj do

7 fi[j]← Receive fj

8 forall the nodes Pj with fi[j] = 1 do

9 Create set Ti[j]← {Pk : fi[k] = 1, and d(ai[j], ai[k]) ≤ 10δ}
10 Assign li ← arg max{|Ti[j]|}
11 if fi = 1 then

12 Assign vi ← wi

13 else

14 Assign vi ← ai[li]

15 if |Ti[li]| > n− t then

16 Assign gi ← 1

17 else

18 Assign gi ← 0

19 Output (vi, gi)

49



3. A SYNCHRONOUS PROTOCOL

Protocol 5: King-Consensus

Input : Id of the king Pk.

Output : ∀i, Pi outputs direction vi or ⊥
1 if I am the king then

2 Fix an arbitrary direction wk

3 Send wk to all other nodes

4 else

5 Receive wi ← direction received from the king

6 Assign (vi, gi)← Graded-Consensus(wi)

7 Assign yi ← Classical-Consensus(gi)

8 if yi = 1 then

9 Output vi

10 else

11 Output ⊥

correct nodes will accept the direction shared by the king. If the king is faulty

and yet the correct nodes reach a consensus with yi = 1, then it means that at

least one correct node had grade 1. In this case the (30δ)-graded consistency

implies that d(vi, vj) ≤ 30δ for all the correct nodes Pi and Pj . As a consequence,

King-Consensus is (30δ)-consistent, and so is our main protocol RF-Consensus.

3.2.3 Resource requirements and performance

The Protocol 2 runs King-Consensus t+ 1 times, which is O(n). Each of the King-

Consensus has O(1) steps. Therefore, the main protocol RF-Consensus performs

O(n) steps.

In the Protocol 3 each of the nodes sends (n− 1) quantum messages to other

nodes. Thus n(n− 1) messages are generated. This protocol is played at most

O(n) times. Therefore O(n3) quantum messages are generated to achieve reference

frame consensus.

The total number of classical messages exchanged in the protocol might vary

depending on which implementation of Classsical-Consensus is used as a subroutine

in the Protocol 5 King-Consensus. For example, if the protocol from [69] is used
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then the Classical-Consensus requires O(n3) classical message. Since this is played

O(n) time in our main protocol, the total number of classical messages exchanged

becomes O(n4). However, if we count the classical messages exchanged by our

protocol without counting the messages in the classical subroutine, then the

number is O(n3).

The messages that contains only classical data contains flag values of O(1)

length and origin-destination IDs which are O(log n) bits long. Thus the classical

messages are of O(log n) size in bits.

The number of qubits exchanged in a quantum message is dictated by the

success probability 1−e−Ω(mδ2−logn). After fixing the node count n and the 2-party

approximation error δ. This success probability term determines the number of

qubits m exchanged in each quantum message.

3.3 Proof of correctness

Now, we give the formal definitions of all the sub-protocols and their correctness

proofs. From the discussion of Section 3.2.2, we know that this would prove the

correctness of the main result presented in Theorem 2.

3.3.1 Step 1: Weak Consensus

Let us start by giving a more formal definition of a weak consensus protocol.

Definition 6. A (δ, η)-weak consensus protocol is an n-node protocol, in which

each node Pi has an input direction wi and outputs either a direction ui or ⊥,

that satisfies the following two properties:

δ-weak persistency If there exists a direction s such that for every correct node

Pi, d(s, wi) ≤ δ, then every correct node Pi outputs a direction ui with

d(s, ui) ≤ δ.

η-weak consistency For every pair of correct nodes Pi and Pj who output

ui 6=⊥ and uj 6=⊥ respectively, we have d(ui, uj) ≤ η.

Theorem 3. For δ > 0, using a two-node δ-estimate direction protocol that suc-

ceeds with probability qsucc, the protocol Weak Consensus is a (δ, 8δ)-weak consensus
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protocol tolerant to t < n/3 faulty nodes that succeeds with probability at least

qn
2−n

succ .

Proof. After line 2 of Protocol 3: Weak Consensus, the property

∀ correct nodes Pi, Pj, d(ai[j], wj) ≤ δ, (3.1)

holds with probability at least qn
2−n

succ since each of the n nodes uses 2ED n−1 times.

The rest of the proof shows that Property (3.1) implies δ-weak persistency and

8δ-weak consistency. This means that Weak-Consensus succeeds with probability

at least qn
2−n

succ .

Weak persistency. We assume there exists a direction s such that the input

wi of every correct node Pi satisfies d(s, wi) ≤ δ. Let Pi be a correct node.

We now show that d(s, ui) ≤ δ. The idea is to show that |Si| ≥ n − t, hence

d(s, ui) = d(s, wi) ≤ δ. This is done by showing that every correct node is in the

set Si. Indeed, let us consider a correct node Pj , then by triangular inequality we

get,

d(wi, ai[j]) ≤ d(wi, s) + d(s, wj) + d(wj, ai[j]). (3.2)

Each of the first two terms is at most δ by assumption, and the last one is also at

most δ by Property (3.1). Thus,

d(wi, ai[j]) ≤ 3δ. (3.3)

Since there are at least (n− t) non faulty nodes, |Si| ≥ (n− t). This completes

the proof of the δ-weak persistency.

Weak consistency. Let us consider two correct nodes Pi and Pj which output

ui 6=⊥ and uj 6=⊥ respectively. Now we show that d(ui, uj) ≤ 8δ. The idea is to

show that there exists a direction wα such that d(ui, wα) ≤ 4δ and d(uj, wα) ≤ 4δ.

This is done by first showing that there exists one correct node Pα in both sets Si

and Sj.

For that, let us define the sets Ci and Cj by,

Ci = {Pl : Pl ∈ Si and node Pl is correct}, (3.4)

Cj = {Pl : Pl ∈ Sj and node Pl is correct}. (3.5)
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3.3 Proof of correctness

We need to prove that Ci ∩Cj 6= ∅. We do it by contradiction: let us assume that

Ci ∩ Cj = ∅. (3.6)

Note that,

|Sj| ≥ m− t⇒ |Sj − Cj|+ |Cj| ≥ n− t, (3.7)

⇒ t+ |Cj| ≥ n− t, (3.8)

⇒ |Cj| ≥ n− 2t, (3.9)

⇒ |Cj| >
n

3
. (3.10)

Inequality (3.8) follows because there can be at most t faulty nodes, and Inequal-

ity (3.10) since t < n/3. Now,

|Si ∪ Sj| = |(Si − Ci) ∪ (Sj − Cj) ∪ Ci ∪ Cj|, (3.11)

= |(Si − Ci) ∪ (Sj − Cj)|+ |Ci|+ |Cj|, (3.12)

≥ |(Si − Ci)|+ |Ci|+ |Cj|, (3.13)

= |(Si − Ci) ∪ Ci|+ |Cj|, (3.14)

= |Si|+ |Cj|, (3.15)

≥ (n− t) + |Cj|, (3.16)

> n− n

3
+
n

3
. (3.17)

Here, Equation (3.12) follows from Equation (3.6), and Inequality (3.17) from

Inequality (3.10). We just proved that |Si ∪ Sj| > n which contradicts the fact

that there are exactly n nodes. So, we have Ci ∩ Cj 6= ∅.
Consider a correct node Pα ∈ (Ci ∩ Cj). We have:

d(ui, wα) = d(wi, wα), (3.18)

≤ d(wi, ai[α]) + d(ai[α], wα), (3.19)

≤ 3δ + δ. (3.20)

The factor 3δ comes from the fact that Pα is in Si and the remaining δ since Pα

is correct. We can do the same reasoning with the node Pj, hence we also have:

d(uj, wα) ≤ 4δ. (3.21)
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By combining Equations (3.20) and (3.21), we prove the 8δ-weak consistency:

d(ui, uj) ≤ d(ui, wk) + d(wk, uj) ≤ 4δ + 4δ = 8δ. (3.22)

3.3.2 Step 2: Graded Consensus

Again, we shall start by giving a formal definition of a graded consensus protocol.

Definition 7. A (δ, η)-graded consensus protocol is an n-party protocol, in which

each node Pi has an input direction wi and outputs a direction vi as well as a

grade gi ∈ {0, 1}, that satisfies the following properties:

δ-graded persistency If there exists a direction s such that for every correct

node Pi, d(s, wi) ≤ δ, then every correct node Pi outputs a direction vi such

that d(s, vi) ≤ δ and gi = 1;

η-graded consistency If there exists a correct node Pc who outputs grade

gc = 1, then for all pairs (Pi, Pj) of correct nodes, d(vi, vj) ≤ η.

From Line 2 to Line 7 of Protocol 4: Graded-Consensus, the nodes send and

receive classical bits, there is no approximation here. An important consequence

is that fi[j] = fj whenever the nodes Pi and Pj are correct.

Theorem 4. For δ > 0, Consider that Weak Consensus uses a δ-estimate direction

protocol that succeeds with probability qsucc. Protocol Graded Consensus is a (δ, 30δ)-

graded consensus protocol tolerant to t < n/3 faulty nodes that succeeds with

probability at least qn
2−n

succ .

Proof. Similarly to the Weak Consensus protocol, with probability at least qn
2−n

succ ,

the following property holds:

∀ correct nodes Pi, Pj, d(ai[j], wj) ≤ δ. (3.23)
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Graded persistency. We assume there exists a direction s such that, for each

correct node Pi, d(s, wi) ≤ δ. We first show that every correct node Pi outputs

grade gi = 1, and then show their output vi satisfies d(s, vi) ≤ δ.

Let us consider a correct node Pi. It outputs gi = 1 if and only if |Ti[li]| ≥ n−t.
To show that the later condition holds, we first show that for each of the (n− t)
correct nodes Pj we |Ti[j]| ≥ n − t. Therefore, by definition of li, we have

|Ti[li]| ≥ |Ti[j]| ≥ n− t. This is proved by showing that for every correct nodes

Pα, we have d(ai[j], ai[α]) ≤ 4δ, that is, every correct node Pα ∈ Ti[j].
Since the nodes Pj and Pα are both correct, and Weak Consensus is δ-weak

persistent, we know that uj 6=⊥, uα 6=⊥ with

d(s, uj) ≤ δ and d(s, uα) ≤ δ. (3.24)

As a consequence fi[j] = fi[α] = 1. We also know that ai[j] and ai[α] are

δ-approximations of uj and uα respectively, that is,

d(ai[j], uj) ≤ δ and d(ai[α], uα) ≤ δ. (3.25)

Using the triangular inequality again with the Inequalities (3.24) and (3.25), we

get,

d(ai[j], ai[α]) ≤ d(ai[j], uj) + d(uj, s)

+ d(s, uα) + d(uα, ai[α]), (3.26)

≤ 4δ. (3.27)

Since fi[j] = 1, the set Ti[j] exists, and since fi[α] = 1 and d(ai[j], ai[α]) ≤ 4δ ≤
10δ, Pα ∈ Ti[j]. This proves that gi = 1.

Now, let us show that d(s, vi) ≤ δ. By δ-weak persistency, we know that

ui 6=⊥, therefore, fi = 1. In this case, Line 12 assigns vi ← wi. As a direct

consequence, we get, d(s, vi) = d(s, wi) ≤ δ. This concludes the proof of the

δ-graded persistency.

Graded consistency. Let us assume that there exists a correct node Pc that

outputs grade 1. In this case we show that for any two correct nodes Pi and Pj,

the distance d(vi, vj) ≤ 30δ.

This proof is in three steps. First, we will show that all the correct nodes

who are in the sets created at Line 9 are close to each other. More precisely, we
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will show that for all the correct nodes Pα and Pβ with fα = fβ = 1, we have

d(uα, uβ) ≤ 8δ. The second step shows that vi and vj are 11δ-close to some uα

and uβ respectively where Pα and Pβ are correct nodes with fα = fβ = 1. The

last step combines this two facts to conclude the proof.

Step 1) This first step is a consequence of the 8δ-weak consistency of the

Weak Consensus protocol used at Line 1. Indeed, consider two correct nodes Pα

and Pβ such that fα = fβ = 1. This means that uα 6=⊥ and uβ 6=⊥, hence they

satisfy

d(uα, uβ) ≤ 8δ. (3.28)

Step 2) We now prove that there exists a correct node Pα such that d(vi, uα) ≤
11δ. There are two cases to consider here. First fi = 1: in this case, the correct

node Pi outputs vi = ui, thus d(vi, ui) = 0 ≤ 11δ. The more interesting case

is fi = 0. We are going to show that in this case, there exists a correct node

Pα ∈ Ti[li]. This is done by showing that the number of nodes in the set Ti[li] is

more than the number of faulty nodes, that is, |Ti[li]| > n/3. In a similar way to

the graded persistency, we will in fact prove that for every correct node Pk with

fk = 1, |Ti[k]| > n/3, hence |Ti[li]| ≥ |Ti[k]| ≥ n/3.

Let us then consider a correct node Pk with fk = 1. By Equation (3.28), we

have d(uk, uk′) ≤ 8δ for every correct node Pk′ with fk′ = 1. As a consequence,

we also have

d(ai[k], ai[k
′]) ≤ d(ai[k], uk) + d(uk, uk′) + d(uk′ , ai[k

′]),

≤ δ + 8δ + δ. (3.29)

This with Line 9 implies that the set Ti[k] contains every correct node Pk′ with

fk′ = 1. Let us argue that there are more than n/3 such correct nodes. Recall

that we have assumed that the correct node Pc has outputted grade gc = 1. We

thus have |Tc[lc]| > (n− t). We also know that there are at most t < n/3 faulty

nodes. So, there must be at least n − 2t > n/3 correct nodes in Tc[lc], that is,

there are more than n/3 correct nodes Pk′ with fk′ = 1.

We just proved that there exists at least one correct node Pα in Ti[li], therefore,

d(vi, uα) = d(ai[li], uα), (3.30)

≤ d(ai[li], ai[α]) + d(ai[α], uα), (3.31)

≤ 10δ + δ. (3.32)
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Using similar arguments, there exists at least one correct node Pβ such that

d(vj, uβ) ≤ 11δ. (3.33)

Step 3) Now using triangular inequality with Inequalities (3.32), (3.28),

and (3.33) we get,

d(vi, vj) ≤ d(vi, uα) + d(uα, uβ) + d(uβ, vj), (3.34)

≤ 11δ + 8δ + 11δ. (3.35)

This proves the (30δ)-graded consistency of the protocol.

3.3.3 Step 3: King Consensus

Definition 8. A (δ, η)-king consensus protocol is an n-node protocol in which

one node Pk, called the king, choses a direction wk and each of the other nodes

Pi outputs either a direction vi or each of them outputs ⊥, which satisfies the

following two properties:

δ-persistency If the king is correct, then all the correct nodes Pi output vi 6=⊥
with d(wk, vi) ≤ δ.

η-consistency All correct nodes reach a consensus, that is, they either all output

⊥, or they all output directions that are η-close to each other, i.e., for all

correct nodes Pi and Pj, the distance d(vi, vj) ≤ η.

Our protocol for solving the king consensus problem uses Graded-Consensus

and Classical-Consensus as a subroutines. This classical protocol was introduced

in the Chapter 1.4 Definition 1 (for a protocol see, e.g., [69]).

Theorem 5. For δ > 0, using a δ-estimate direction protocol that succeeds with

probability qsucc, King-Consensus is a (δ, 30δ)-king consensus protocol that succeeds

with probability at least qn
2

succ.

Proof.
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Persistency. Let us assume that the king is correct. We want to show that

every correct node Pi outputs vi 6=⊥ with d(wk, vi) ≤ δ. Since the king is non

faulty, with probability at least qnsucc, we have that for all correct players Pi, the

distance d(wk, wi) ≤ δ.

From the δ-graded persistency of Graded-Consensus used in Line 6, we know

that for all correct nodes Pi, d(vi, wk) ≤ δ and gi = 1 with success proability at

least qn
2−n

succ ; And from the validity of Classical-Consensus, we have that yi = 1 for

all correct nodes Pi. Hence all the correct nodes output a δ-approximation of wk

with probability at least qn
2

succ.

Consistency. To prove consistency we will show that all the correct nodes

output ⊥, or they all output a direction. In this case we also have to show that

for every pair (Pi, Pj) of correct nodes, d(vi, vj) ≤ 30δ.

Since the variables yi are outputs of Classical-Consensus, the agreement property

ensures that there exists a bit b such that for all the correct nodes Pi, yi = b.

If b = 0, then all the correct nodes output ⊥.

If b = 1, then by validity of Classical-Consensus, at least one of the correct nodes,

let us denote it by Pi, has flag gi = 1. Recall that the (30δ)-graded consistency

of Protocol 4:Graded-Consensus says that we have in this case d(vi, vj) ≤ 30δ for

every correct nodes Pi and Pj.

Finally we need to show that the over all success probability of RF-Consensus

scales as 1 − e−Ω(mδ2−logn) where n is the number of nodes and δ and m are

parameter specified by the 2-party direction estimation protocol used. For example,

for Protocol 1: 2ED δ and m represents the approximation accuracy and number

or qubits used respectively. The following lemma shows that,

Lemma 1. For δ > 0, n,m ∈ N and n > 2, if qsucc ≥ 1 − e−Ω(mδ2) then

qn
2

succ ≥ 1− e−Ω(mδ2−logn).

Proof. We show this using Bernoulli’s inequality, which is, (1 + x)r > 1 + rx for

all real x ≥ −1 and integer r ≥ 2. Using this we have,
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qn
2

succ ≥ (1− e−Ω(mδ2))n
2

, (3.36)

≥ 1− n2e−Ω(mδ2), (3.37)

≥ 1− e−Ω(mδ2−logn). (3.38)

From Theorem 5 and Lemma 1 we see that the success probability of the

King-Consensus protocol is at least 1− e−Ω(mδ2−logn). However, the main protocol

RF-Consensus in the worst case playes King-Consensus at most t+ 1 ≤ n/3 times.

Using Bernoulli’s inequality one can see that the overall success probability of the

RF-Consensus remains at least 1− e−Ω(mδ2−logn). This observation with Theorem 5

proves Theorem 2 which is the main result.

3.4 Discussion

We have presented the first protocol for spatial reference frame agreement in a

synchronous quantum network. Even in the classical setting, the algorithms to

solve the Byzantine agreement problem, where multiple nodes try to agree on

a bit, is surprisingly complicated. It remains open if simpler and more efficient

protocols could be designed for our setting, possibly by using entangled states. It

is an interesting question to construct protocols that also work in an asynchronous

communication model. The latter is already challenging for the classical case [76–

79]. This is the topic of the next chapter. Another interesting question is whether

more faulty nodes than t < n/3 can be tolerated. If our protocol were to succeed

with probability 1 and η were sufficiently small, then we can prove that it is optimal

in that sense by adapting the classical proof [80] to our setting. However, for

aligning reference frames, any protocol can only succeed with probability strictly

less than 1. This problem has been partially studied in the classical case [95].

Even in the constant error scenario the optimal number of faulty nodes that can

be tolerated is not known for the classical Byzantine agreement problem [96]. This

leaves hope to find protocols that can tolerate t < n/2 faulty nodes when allowing

constant success probability both for Byzantine and reference frame agreement.
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An asynchronous protocol

In this chapter we give the first multiparty reference frame agreement protocol for

an asynchronous network. The chapter is organised as follows: we first formalise

the problem. Then, in Section 4.2 we define the communication model, give the

main result and present the protocol with proof outlines. We give the detailed

proofs in Section 4.3.1. Finally, we conclude the chapter with a discussion of

related classical works and open problems.

4.1 The problem

An efficient implementation of many multiparty protocols for quantum networks

requires that all the nodes in the network share a common reference frame.

Establishing such a reference frame from scratch is especially challenging in an

asynchronous network where network links might have arbitrary delays and the

nodes do not share synchronised clocks. Here, we study the problem of establishing

a common reference frame in an asynchronous network of n nodes of which at most

t are affected by arbitrary unknown error, and the identities of the faulty nodes are

not known. We present a protocol that allows all the correctly functioning nodes

to agree on a common reference frame as long as the network graph is complete

and not more than t < n/4 nodes are faulty. As the protocol is asynchronous, it

can be used with some assumptions to synchronise clocks over a network. Also,

the protocol has the appealing property that it allows any existing two-node
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asynchronous protocol for reference frame agreement to be lifted to a robust

protocol for an asynchronous quantum network.

We formalise the problem using the modified Euclidian distance metric d(., .)

specified in Chapter 2 Section 2.2.

Definition 9. For η > 0, a protocol in an asynchronous network of n nodes is

an η-asynchronous reference frame agreement protocol if it satisfies the following

conditions.

Termination. Every correct node Pi eventually terminates and outputs a direc-

tion vi.

Correctness. If correct node Pi outputs vi and correct node Pj outputs vj then

d(vi, vj) ≤ η.

However, we have to achieve these termination and correctness conditions in

the presence of incorrect or faulty nodes.

4.2 The main result and protocol outlines

We give a protocol that can take any 2-party asynchronous direction estimation

protocol and lift it up to a fault tolerant multiparty asynchronous reference frame

agreement protocol. More specifically, we present the first Protocol A-Agree which

allows n nodes in a fully connected asynchronous quantum network to agree on

a reference frame in the presence of t < n/4 faulty nodes. The result can be

summarised in the following theorem.

Theorem 6. For δ > 0, in a complete network of n nodes that are pairwise

connected by public authenticated quantum and classical channels, if a bipartite

δ-estimate direction protocol that uses m qubits to achieve success probability

qsucc ≥ 1− e−Ω(mδ2) is used, then Protocol A-Agree is a 42δ-asynchronous reference

frame agreement protocol with success probability at least 1− e−Ω(mδ2−logn), that

can tolerate up to t < n/4 faulty nodes.

We have discussed in Chapter 2 classical Byzantine agreement protocols for

asynchronous networks cannot solve the problem of reference frame agreement on

a asynchronous quantum network. However, classical literature can still inform us
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on important questions such as, how to achieve constant expected time, how to

handle asynchronicity. Some of the approaches of our protocol regarding these

questions are influenced by [79]. We also use the interactive consistency protocol

by Ben-Or et al. [84] as a subroutine (Section 4.2.2.4).

4.2.1 Communication model

We achieve the result in Theorem 6 under the following assumptions about the

communication channels and faulty nodes. For quantum networks our assumptions

are,

• The pairwise channels are public. That is, the messages are not secret. As a

result, an adversary can see the content of a message between two correct

nodes and adapt its strategy accordingly.

• The pairwise channels are authenticated. That is, if a correct node sends

a message to another correct node, then the message cannot be altered by

any adversary. However, there might be channel noises, which can be dealt

with, as in (Chapter 2 Section 2.6).

• The pairwise channel delays might be controlled by the faulty nodes. That is,

the faulty nodes can control the channel delays, even the delays for message

passing between any pair of correct nodes.

• If a correct node sends a message to another correct node, then the message

eventually reaches the receiver. That is, even though the delay is controlled

by some adversaries they cannot put infinite delay on the message between

two correct nodes. However, the delay can be arbitrarily large.

• The faulty nodes might have correlated error. To create a protocol which

tolerates the worst kind of faults, we also assume that the faulty nodes can

cooperate with each other and have a global strategy to thwart the protocol.

This is a realistic assumption because some nodes in a region might show

correlated error which affects a part of the network.

63



4. AN ASYNCHRONOUS PROTOCOL

4.2.2 Preliminaries

The problem of reference frame agreement over an asynchronous quantum network

is necessarily multidisciplinary in nature. That is, it combines various concepts

from quantum physics, information theory, cryptography and distributed comput-

ing. In this section we introduce several concepts from these fields that will be

useful throughout this chapter.

4.2.2.1 Asynchronous communication

In an asynchronous network we assume that the nodes do not share any syn-

chronised clock and the communication channel between each pair is such that a

message takes an arbitrary amount of time to propagate through it. Here the only

guarantee is, if a message is transmitted from a correct node then the message

will eventually reach to the receiver. Also, a node might take an arbitrary amount

of time to perform the next step in a protocol. Therefore, the execution time of

an asynchronous protocol should be carefully defined.

4.2.2.2 Asynchronous time

We briefly present a standard definition of the running time of an asynchronous

protocol. For more general definitions of asynchronous time see, for instance, [79,

97, 98].

Imagine a ‘global clock’ is measuring time in the network. This is a virtual

clock, so the network nodes cannot read it. Time elapsed from the sending of

a message to its reception is denoted the delay of the message. Let period be

the longest delay in a finite execution of a protocol. The running time of the

finite execution of the asynchronous protocol is the total time measured by the

global clock, until the protocol ends, divided by the period of this execution. If

the protocol never terminates, then the running time is infinite.

More formally, consider an execution of an asynchronous protocol. All the

nodes executing the protocol should perform a sequence of steps. At the very

first step some init messages were generated by a node to start the protocol. Let

s0 denote this step. We define the round 0 to contain only this step. Also, we

call any message generated at round i an i-message. (For example, all the init
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messages that are sent to different nodes are 0-messages.) Now, for each i > 0, let

si be the last step where an (i − 1)-message is received by some node. All the

steps after step si−1 until (including) step si are defined to be in round i. The

running time of the execution is the round number of the final step.

The performance, in terms of execution time, of an asynchronous agreement

protocol is determined by its expected running time. The expectation is thereby

taken over all possible random inputs of the nodes, random bits used by the nodes,

as well as all possible random behaviour of the faulty nodes. The exact probability

distributions may not be known, but the goal is to show that the expected running

time is low for all possible distributions.

4.2.2.3 Asynchronous message

In the absence of a synchronised clock, each message must have a ‘begin’ and ‘end’

tag. Also, depending on the particular application, a message might carry a [type]

tag. In our problem we don’t have a shared reference frame. For this reason, we

cannot use the quantum channel to carry these [type] tags. This requires us to

have a parallel classical channel that uses some classical degree of freedom to

carry bits.

We assume that each pair of nodes are connected by an asynchronous public

authenticated CQ-channel (classical quantum channel), which can send a message

using both classical and quantum degrees of freedom in the absence of a shared

reference frame. An example of such combined message is shown in Table 4.1

where each quantum message mq is sandwiched between a classical ‘begin’ and an

‘end’ tag and also accompanied by a classical type tag mc. The symbol ⊥ denotes

quantum signals that can be ignored.

Table 4.1: Channel primitive: A message

Step Classical Quantum

1 begin ⊥
2 mc mq

3 end ⊥
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The only assumption is the nodes can match the classical and quantum parts

of the message.

4.2.2.4 Asynchronous interactive consistency

Our protocol uses the solution to the following interactive consistency problem

which was first proposed by Pease, Shostak and Lamport [69].

Definition 10 (The Interactive Consistency Problem). Consider a complete

network of n nodes in which communication lines are private. Among the n nodes

up to t might be faulty. Let P1, P2, . . . , Pn denote the nodes. Suppose that each

node Pi has some private value of information Vi ∈ |V | ≥ 2. The question is

whether it is possible to devise a protocol that, given n, t ≥ 0, will allow each

correct node to compute a vector of values with an element for each of the n

processors, such that:

1. All the correct nodes compute exactly the same vector;

2. The element of this vector corresponding to a given correct node is the

private value of that node.

For an asynchronous network, Ben-Or and El-Yaniv [84] gives a Protocol Asynchronous-

IC that solves this problem for t < n/3 in constant expected time. We use this

protocol as a subroutine.

Note that the Asynchronous-IC requires private asynchronous classical channels.

Whereas, we only require public authenticated classical and quantum channels

between each pair of nodes in the network. The reason is, with authenticated public

quantum channels each pair of nodes can play 2ED type protocol and establish

a bipartite reference frame. Once the bipartite reference frame is established

between each pair using the public authenticated classical and quantum channels,

they can perform QKD that gives them a private classical channel. Therefore,

they can play Asynchronous-IC at a later stage of the protocol.
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4.2.3 Protocols and the proof synopsis

Now we will give the protocols and their proof synopsis. The formal proofs are

given in Section 4.3.1 However, we first need to define some notations.

wi[j] represents a vector received by node Pi from node Pj using the bipartite

direction estimation protocol. This vector is represented with respect to Pi’s local

reference frame.

In our protocol sending (type, v) to some node means the sender uses a δ-

estimate direction protocol to send the direction v to the receiver. The sender also

sends the classical tag [type] associated to this direction. The receiver will receive

an approximation of the sent direction as v′ where d(v, v′) ≤ δ. Our protocol uses

four different tags as types. They are, init, echo, ready1 and ready2.

Next we fix a notation for a cluster of vectors of certain types where the cluster

has a certain cluster centre and a cluster parameter. We write it as Cδ
i ([types], wc).

This means the cluster with cluster centre wc is computed and stored by node Pi,

has a cluster parameter δ and contains only the vectors with associated tags in

[types]. Here [types] is a comma separated list of [type]s. The cluster parameter δ

denotes that for all u, v ∈ Cδ
i ([types], wc) their distance d(u, v) ≤ δ.

For example, Cδ
i ([ready1,ready2], vc) denotes a cluster in which each vector has

tags ready1 or ready2 with cluster centre vc such that ∀u, v ∈ Cδ
i ([ready1,ready2], vc),

and d(u, v) ≤ δ. We say that this cluster has a diameter δ.

P (Cδ
i ([type], wc)) is the set of all the nodes Pj such that, wi[j] ∈ Cδ

i ([type], wc).

That is, it is the set of node id’s from which Pi have received the vectors in the

cluster Cδ
i ([type], wc).

Now we give our protocol in two steps. First, we give a protocol for asyn-

chronous broadcast, that allows any sender to securely send a direction to all

the other nodes. However, if the sender is faulty then the protocol might never

terminate. Using this as a primitive we later give our asynchronous agreement

protocol.

4.2.3.1 Asynchronous broadcast

As the name suggests using this protocol a sender node can send some message to

all the other nodes in an asynchronous network. At first sight a naive protocol
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of just sending the message to all other nodes one by one seems to be a valid

protocol. However, this naive protocol does not work if the sender intentionally

sends different messages to different nodes, which can easily happen in a network

with faulty nodes. To guard from it, all the other nodes must communicate

between each other to make sure they are receiving the same message, or a close

approximation to it. However, as we have at most t faulty nodes, this verification

also becomes tricky. The whole thing becomes more challenging because the

network is not synchronous. As a result a receiver who is waiting for a message,

cannot be certain whether to keep waiting (because the message might be taking

a long time in the channel) or move on (the sending node might be faulty and not

sending the message at all). Our protocol takes care of all these challenges.

Formally the protocol is defined as,

Definition 11. For η > 0, ζ > 0, a protocol which is initiated by a sender node

Ps, in an asynchronous network of n nodes, is an (η, ζ)-asynchronous reference

frame broadcast protocol if it satisfies the following conditions.

Termination.

1. If the sender is correct then every correct node eventually completes

the protocol.

2. If any correct node completes the protocol, then all the correct nodes

eventually complete the protocol.

Consistency. If one correct node Pk outputs a direction vk then all pairs of correct

nodes Pi and Pj eventually output directions vi, vj where d(vi, vj) ≤ η.

Correctness. If Ps is correct and broadcasts a direction u and if a correct node

Pi outputs vi then d(u, vi) ≤ ζ.

We emphasize that the Termination condition of asynchronous reference frame

broadcast is much weaker than the Termination condition of asynchronous

reference frame agreement because in the broadcast protocol we do not require

that the correct nodes complete the protocol if the sender is faulty. Also, in an
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Protocol 6: AR-Cast
input : Sender inputs direction u

output : ∀i Pi outputs direction vi

1 Epoch 0: (Only Sender)

2 Send-to-all (init, u).

1 Epoch 1: (Player Pi)

2 Listen to init, echo, ready1 and ready2 type messages.

3 Wait until Either received one (init, ui) Then

4 Send-to-all (echo, ui).

5 Goto Epoch 2.

6 Or until received a cluster of directions C4δ
i ([echo], wc) of size at least

(n− 2t) And a cluster of directions C10δ
i ([ready1,ready2], vc) of size at

least (t+ 1), so that, d(wc, vc) ≤ 10δ Then

7 Send-to-all (ready2, wc).

8 Goto Epoch 3.

1 Epoch 2: (Player Pi)

2 Listen to echo, ready1 and ready2 type messages.

3 Wait until Either there exists a cluster of directions C4δ
i ([echo], wc) of

size at least (n− t) Then

4 Send-to-all (ready1, wc).

5 Goto Epoch 3.

6 Or until there exists a cluster of directions C4δ
i ([echo], wc) of size at

least (n− 2t) And a cluster of directions C10δ
i ([ready1,ready2], vc) of size

at least (t+ 1), so that, d(wc, vc) ≤ 10δ, Then

7 Send-to-all (ready2, wc).

8 Goto Epoch 3.

1 Epoch 3: (Player Pi)

2 Wait until there exists a cluster of directions C20δ
i ([ready1,ready2], vc)

of size at least (n− t) Then

3 Output vc.

4 Halt
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agreement protocol there is no designated sender node, whereas the broadcast

protocol has a sender node.

We achieve asynchronous broadcast by our Protocol AR-Cast. The following

theorem summarises its properties.

Theorem 7. In a complete network of n nodes that are pairwise connected by

public authenticated classical and quantum channels, if a bipartite δ-estimate

direction protocol that uses m qubits to achieve success probability qsucc ≥ 1 −
e−Ω(mδ2) is used, then Protocol AR-Cast is a (42δ, 14δ)-asynchronous reference

frame broadcast protocol, with success probability at least 1− e−Ω(mδ2−logn) that

can tolerate up to t < n/4 faulty nodes.

The Protocol 6: AR-Cast works roughly as follows. In Epoch 0 the sender sends

its intended direction to all as a [init] type message. In Epoch 1 all the nodes

wait until they receive an [init] from sender or sufficient number of confirmations

from other nodes that they have received some directions and proceed to the next

epoch. This way, even if some correct node never receives an [init] message, if

the other correct nodes are advancing through the protocol, then this node in

Epoch 1 will not stay behind waiting. In Epoch 2 the correct nodes, which have

decided upon a direction, notify the other nodes about their decision by sending

ready1 or ready2 type messages to all. All these previous epochs make sure that

all the correct nodes eventually arrive at Epoch 3 and output a direction that

satisfies Theorem 7. The formal proofs are given in Section 4.3.1.

4.2.3.2 Asynchronous agreement

Now we give our main Protocol A-Agree that uses AR-Cast as a subroutine and

allows the correct nodes in an asynchronous network to agree on a reference frame.

In Epoch 0 of Protocol 7: A-Agree each of the nodes Pi proposes a direction ui

that represents their local frame. They broadcast this direction using AR-Cast. All

the correct nodes wait for at least (3t+ 1) such broadcasts to be complete. Then

they enter Epoch 1. Since, there are (3t+ 1) correct nodes they will eventually

arrive at Epoch 1. In this step all the correct nodes create a bit string of length n

where the j’th bit represents if the j’th AR-Cast has been completed successfully in

Epoch 0. Then all the nodes send this bit strings to all by playing Asynchronous-IC.
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Protocol 7: A-Agree
input : ∀i, Pi inputs direction ui

output : ∀i, Pi outputs direction vi

1 Epoch 0: (Player Pi)

2 Create a direction array wi of size n.

3 ∀j, initialize wi[j]←⊥.

4 Run AR-Cast(ui).

// everyone broadcasts their local input

5 Store received direction from Pj in wi[j].

6 After receiving (3t+ 1) such directions Goto Epoch 1. However, still

continue the incomplete AR-Casts in parallel.

1 Epoch 1: (Player Pi)

2 Create a bit string ai of size n.

3 for j ← 1 to n do

4 if wi[j] 6=⊥ then

5 Assign ai[j]← 1.

6 else

7 Assign ai[j]← 0.

// ai records which A-Casts are completed so far by Pi

8 Run Asynchronous-IC(ai).

// This step reports to all which A-Casts are successfully received

by Pi

9 Store the output of Asynchronous-IC in vector bi such that, element bi[j] is

received from Pj .

// After this step every correct nodes know which A-Casts are

reported to be complete by which node

10 Wait until Asynchronous-IC completes Then

11 Goto Epoch 2

1 Epoch 2: (Player Pi)

2 Let ki be the index of a column which has at least (t+ 1) 1s in it. So that, for

any other index l of column with (t+1) 1s k < l. // After completion

of Asynchronous-IC each row of bi is a bit string of length n.

That is bi is essentially an n× n bit matrix.

3 Wait until the A-Cast initiated by Pki completes Then

4 Assign v ← wi[ki].

5 Abort all incomplete A-Casts that are running since Epoch 0.

6 Output v.
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After this they enters Epoch 2. In this Epoch every node has the same set of

bit strings. They now look for the lowest inter k such that at least (t + 1) bit

strings have a 1 in the k’th index of the string. If they have completed that k’th

AR-Cast, then they output their direction received from that broadcast. If the

k’th AR-Cast is not complete for a node, it waits until it completes and then

output. The election of k ensures that at least one correct node has completed

the k’th AR-Cast so by Consistency of asynchronous reference frame broadcast all

the correct nodes will eventually complete the k’th AR-Cast. This ensures that

the A-Agree eventually completes. There is no conditional loop in this protocol

and all the subroutines run in constant expected time. So, the A-Agree is also a

constant expected time protocol.

4.2.4 Resource requirements and performance

There are no conditional loops in the protocol and all the subroutines runs in

O(1) expected rounds. Thus our main Protocol 7: A-Agree is a constant expected

round protocol.

The Protocol 6: AR-Cast requires O(n2) quantum messages, where each of the

n nodes sends O(n) quantum messages to others. However, in the main protocol

each of the n nodes initiates its own AR-Cast in parallel. Therefore, the total

number of quantum messages exchanged is O(n3)

The main protocol A-Agree usages a classical interactive consistency protocol

as a subroutine. Depending on the implementation chosen, this subroutine might

require different number of classical messages. If we do not count the classical

messages internal to this subroutine then the total number of classical message

in our protocol is O(n3) because each of the quantum message have a classical

part carrying type information. However, if we chose a classical asynchronous

byzantine agreement subroutine that requires O(n4) messages, then the number

classical message exchanged by the asynchronous interactive consistancy becomes

O(n5). Therefore, the classical message count of the whole protocol becomes

O(n5).

Some of these classical message contains a bit string of size O(n), which

determine the classical message size. This is learger than the synchronous case
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where we only needed O(log n) bit length messages.

The number of qubits exchanged in each quantum message is determined by

the success probability 1− e−Ω(mδ2−logn). Here, once the network size n, 2-party

direction estimation error δ and required success probability is fixed then we get

m, the number of qubit required.

Now we are ready to give the formal proofs.

4.3 Proof of correctness

4.3.1 Asynchronous broadcast

To prove correctness of Protocol 6: AR-Cast we have to prove Theorem 7. We do

this in a few steps that are formalised as lemmas. Note that at various Epochs

the nodes send init, echo, ready1 and ready2, type messages. We first show that

all the ready1 and ready2type message sent by correct nodes carries directions

that are close to each other. This implies that when they terminate they output

directions which are close to each other. We also show, that if one correct node

terminates then all the other correct nodes also eventually terminate. For this, we

show that when any correct node terminates it indicates that in the network, there

exist sufficient number of echo, ready1 and ready2 type messages originating from

correct nodes so that, all the correct nodes eventually complete all the Epochs of

the protocol and successfully terminate.

For this, first we observe that, if two different correct nodes send [ready1] type

messages then the directions they send are close to each other with high probability.

Lemma 2. For t < n/4, δ > 0, qsucc > 0, if two correct nodes Pi and Pj send

([ready1],u) and ([ready1],v) respectively, then d(u, v) ≤ 10δ with probability at

least qn+n2

succ .

Proof. In step 4 of Epoch 2 when a [ready1] message is generated there are at most

n init messages originated from the sender and at most n2 echo messages generated

by the other nodes. So, with probability at least qn+n2

succ all the transmissions that

are among correct nodes are successful. Conditional on this, we prove,

d(u, v) ≤ 10δ. (4.1)
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We show this in two steps. First, we show that there exists a common correct

node Pk in P (C4δ
i ([echo], u)) and P (C4δ

j ([echo], v)). Then using the triangle

inequality with the fact that the echo vector from Pk must be close to both of the

cluster centers u and v, we derive Inequality (4.1).

Now, for the first step, let us denote Ai and Aj to be the set of nodes from

which the vectors in (C4δ
i ([echo], u) have originated. And Bi and Bj to be the

correct nodes in Ai and Aj respectively. Formally,

Ai = P (C4δ
i ([echo], u)), (4.2)

Aj = P (C4δ
j ([echo], v)), (4.3)

Bi = {Pl : Pl ∈ Ai and Pl is correct.}, (4.4)

Bj = {Pl : Pl ∈ Aj and Pl is correct.}. (4.5)

Note that at this step |Ai| ≥ n− t and |Aj| ≥ n− t. We want to show that,

Bi ∩Bj 6= ∅. (4.6)

We do this by contradiction: let us assume that,

Bi ∩Bj = ∅. (4.7)

Note that,

|Ai| ≥ n− t (4.8)

⇒ |Ai −Bi|+ |Bi| ≥ n− t, (4.9)

⇒ t+ |Bi| ≥ n− t, (4.10)

⇒ |Bi| ≥ n− 2t, (4.11)

⇒ |Bi| > n− 2(n/4) = n/2. (4.12)

Here, Inequality (4.10) holds because at most t of the nodes are faulty. And

Inequality (4.12) holds because t < n/4.
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Now,

|Ai ∪ Aj| = |(Ai −Bi) ∪ (Aj −Bj) ∪Bi ∪Bj| ,
≥ |(Aj −Bj)|+ |Bi|+ |Bj| , (4.13)

= |Aj|+ |Bi| , (4.14)

> (n− t) + n/2, (4.15)

> n− n/4 + n/2 = 5n/4. (4.16)

Here, Inequality (4.14) uses Inequality (4.7), Inequality (4.15) follows from the

definition from the size of Aj and Inequality (4.12). And Inequality (4.16) follows

because, t < n/4. However, this is a contradiction, because there are only n nodes

in the network. Therefore, we have,

Bi ∩Bj 6= ∅. (4.17)

So, there exists a common correct node Pk ∈ Bi ∩ Bj in P (C4δ
i ([echo], u))

and P (C4δ
j ([echo], v)). Since Pk is correct, it must have sent the same echo type

message to both Pi and Pj. So, using the triangle inequality we have,

d(wi[k], wj[k]) ≤ d(wi[k], uk) + d(uk, wj[k]), (4.18)

≤ δ + δ = 2δ. (4.19)

Now Inequality (4.1) follows because,

d(u, v) ≤ d(u,wi[k]) + d(wi[k], wj[k]) + d(wj[k], v), (4.20)

≤ 4δ + d(wi[k], wj[k]) + 4δ, (4.21)

≤ 4δ + 2δ + 4δ = 10δ. (4.22)

Here, Inequality (4.21) follows from the definitions of C4δ
i ([echo], u) and C4δ

j ([echo], v)

and Inequality (4.22) follows from Inequality (4.19).

In Lemma 2 we have shown the relation between two [ready1] type directions

from two different correct nodes. Now we show that if a correct node sends

a [ready1] and another correct node sends a [ready2] type message then the

directions they send are close with high probability. Both of these proofs use

similar techniques.

75



4. AN ASYNCHRONOUS PROTOCOL

Lemma 3. For t < n/4, δ > 0, qsucc > 0, if two correct nodes Pi and Pj send

([ready1],u) and ([ready2],v) accordingly, then d(u, v) ≤ 10δ with probability at

least qn+2n2

succ .

Proof. When a [ready2] message is generated there are at most n init, n2 echo

and in total n2 [ready1] or [ready2] messages generated in the protocol. With

probability at least qn+2n2

succ all the transmissions that are among correct nodes are

successful. Conditional on this, we show that,

d(u, v) ≤ 10δ. (4.23)

We do this in two steps, first we show that there is a common correct node

Pk in P (C4δ
i ([echo], u)) and P (C4δ

j ([echo], v)). Then using the triangle inequality

with the fact that both of the cluster centers u and v must be close to the echo

direction sent from Pk we prove the Inequality (4.23).

Now, for the first step, let us denote Ai and Aj to be the set of nodes from

which the vectors in (C4δ
i ([echo], u) have originated. And Bi and Bj to be the

correct nodes in Ai and Aj respectively. Formally,

Ai = P (C4δ
i ([echo], u)), (4.24)

Aj = P (C4δ
j ([echo], v)), (4.25)

Bi = {Pl : Pl ∈ Ai and Pl is correct.}, (4.26)

Bj = {Pl : Pl ∈ Aj and Pl is correct.}. (4.27)

Note that here |Ai| ≥ n− t and |Aj| ≥ n− 2t. We want to show that,

Bi ∩Bj 6= ∅. (4.28)

We do this by contradiction: let us assume that,

Bi ∩Bj = ∅. (4.29)
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Note that,

|Ai| ≥ n− t (4.30)

⇒ |Ai −Bi|+ |Bi| ≥ n− t, (4.31)

⇒ t+ |Bi| ≥ n− t, (4.32)

⇒ |Bi| ≥ n− 2t, (4.33)

⇒ |Bi| > n− 2(n/4) = n/2. (4.34)

Here, Inequality (4.32) holds because at most t of the nodes are faulty. And

Inequality (4.34) holds because t < n/4.

Now,

|Ai ∪ Aj| = |(Ai −Bi) ∪ (Aj −Bj) ∪Bi ∪Bj| ,
≥ |(Aj −Bj)|+ |Bi|+ |Bj| , (4.35)

= |Aj|+ |Bi| , (4.36)

> (n− 2t) + n/2, (4.37)

> n− n/2 + n/2 = n. (4.38)

Here, Inequality (4.37) follows from the definition of Aj and Inequality (4.34).

And Inequality (4.38) follows because, t < n/4. However, this is a contradiction,

because there are only n nodes in the network. Therefore, we have,

Bi ∩Bj 6= ∅. (4.39)

So, there exists a common correct node Pk in P (C4δ
i ([echo], u)) and P (C4δ

j ([echo], v)).

As Pk is correct, it must have sent the same echo type message to both Pi and Pj .

So, using the triangle inequality we have,

d(wi[k], wj[k]) ≤ d(wi[k], uk) + d(uk, wj[k]), (4.40)

≤ δ + δ = 2δ. (4.41)

Now Inequality (4.1) follows because,

d(u, v) ≤ d(u,wi[k]) + d(wi[k], wj[k]) + d(wj[k], v), (4.42)

≤ 4δ + d(wi[k], wj[k]) + 4δ, (4.43)

≤ 4δ + 2δ + 4δ = 10δ. (4.44)
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Here, Inequality (4.43) follows from the definitions of C4δ
i ([echo], u) and C4δ

j ([echo], v)

and Inequality (4.44) follows from Inequality (4.41).

Now we show that all the correct nodes cannot send only [ready2] type messages.

That is, if there exists a [ready2] message sent from a correct node, then there

must pre-exist a [ready1] message sent from another correct node.

Lemma 4. For t < n/4, δ > 0, qsucc > 0, if a correct node Pj sends ([ready2],v),

then with probability at least qn+2n2

succ , there exists a correct node Pi which has sent

([ready1],u) .

Proof. When a [ready2] message is generated there are at most n [init], n2 [echo]

and in total n2 [ready1] or [ready2] messages generated in the protocol. With

probability at least qn+2n2

succ all the transmissions that are among correct nodes are

successful. In this case, just before making the decision to send a ([ready2],v)

message node Pj must have received at least (t+1) [ready1] or [ready2] messages

from nodes in P (C10δ
i ([ready1,ready2]vc)). Of these, at least one node—let’s call it

Pk—is correct. If Pk has also sent a [ready2] type message, then we can find another

correct node in its P (C10δ
k ([ready1,ready2]vc)) and so on. This way, eventually we

will find a correct node which has sent a [ready1] type message.

To see this, let us define a directed graph G(V,E) with vertex set V = {Pi :

Pi is correct}, and

E = {(Pk, Pi) : Pk has sent ready2

after receiving ready1 or ready2 from Pi}. (4.45)

One can convince oneself that G is a directed acyclic graph because any cycle

in the graph would violate the cause and effect relation of the edge directions. Now

if we look at the connected component of this graph containing Pj there must exist

a node Pi in this component with no outgoing edges. Because V only contains

correct nodes. This implies Pi is a correct node, which has sent a [ready1] type

message ([ready1],u). This completes the proof.

Now the only thing that remains is to show that two [ready2] type directions

sent from two correct nodes are close with high probability.
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Lemma 5. For t < n/4, δ > 0, qsucc > 0, if two nodes Pi and Pj sends ([ready2],u)

and ([ready2],v) respectively, then d(u, v) ≤ 20δ with probability at least qn+2n2

succ .

Proof. When a [ready2] message is generated there are at most n [init], n2 [echo]

and in total n2 [ready1] or [ready2] messages generated in the protocol. With

probability at least qn+2n2

succ all of these transmissions that are among correct nodes

are successful. Conditional on this, we show that, if correct Pi sends ([ready2],u)

then from Lemma 4 there exists a correct node Pk which has sent ([ready1],w).

From Lemma 3,

d(u,w) ≤ 10δ, (4.46)

and

d(v, w) ≤ 10δ. (4.47)

Using the triangle inequality with these we get,

d(u, v) ≤ d(u,w) + d(w, v) ≤ 10δ + 10δ = 20δ. (4.48)

Now we are ready to prove that our Protocol 6 satisfies the first termination

condition of definition 11.

Lemma 6 (Termination 1). For t < n/4, δ > 0, qsucc > 0, if the sender Pk is

correct then the Protocol 6 AR-Cast eventually terminates with probability at least

qn+n2

succ .

Proof. There are at most n [init] messages, n2 [echo] messages and n2 [ready1] or

[ready2] type messages exchanged in the protocol. With probability at least qn+2n2

succ

all of these transmissions that are among correct nodes are successful. In this

case, if the sender is correct then all the correct nodes eventually receive [init]

messages that are at most 2δ apart from each other and send an echo message. So,

all the received [echo] messages are at most 3δ apart from the received direction

in the [init] message of any correct node. Any node that has sent a [ready1] type

message will go to epoch 3. The faulty nodes cannot stop the [init] and [echo]

messages from correct nodes but they can manipulate the delays, so that some of
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the correct nodes send [ready2] type messages. After sending the [ready2] these

correct nodes will eventually arrive at Epoch 3. From Lemma 2 and Lemma 3 we

can see that for any correct Pi all the received [ready1] and [ready2] directions will

be in C16δ
i ([ready1,ready2], vc). And because there are (n− t) of them originating

from the correct nodes the Protocol 6 AR-Cast will eventually terminate. Note

that, if the sender is faulty, then the definition of (η, ζ)-reference frame broadcast

protocol (Derinition 11) do not require any termination.

Now we show that if one correct node outputs a direction, then all the correct

nodes eventually output directions that are close to each other.

Lemma 7 (Consistency). For t < n/4, δ > 0, qsucc > 0, in Protocol AR-cast, if a

correct node Pk outputs vk then all pair of correct nodes Pi, Pj eventually output

vi, vj respectively such that, d(vi, vj) ≤ 42δ with probability at least qn+n2

succ .

Proof. When a [ready2] message is generated there are at most n init, n2 echo

and in total n2 [ready1] or [ready2] messages generated in the protocol. With

probability at least qn+2n2

succ all of these transmissions that are between correct

nodes are successful. In this case, we prove,

d(vi, vj) ≤ 42δ, (4.49)

by showing that the successful completion of Pk implies there are enough echo,

[ready1] and [ready2] type messages generated by correct nodes so that all the

other correct nodes eventually receive them and successfully terminate and each

pair of their outputs satisfies Inequality (4.49).

Now, if a correct node Pk outputs vk then this implies it has received at least

(n− t) [ready1] or [ready2] messages from nodes in P (C20δ
k ([ready1,ready2], vk)), of

which at least (n− 2t) are correct. Messages from these correct nodes eventually

reach all the other correct nodes. Also, from Lemma 4 there exists a correct node

that has sent a [ready1] message, which implies all the correct nodes eventually

receive at least (n− 2t) echo messages. That is, all the correct nodes waiting in

Epoch 1 or Epoch 2 will satisfy the condition of sending a [ready2] message and go to

Epoch 3. Any correct node Pi, Pj waiting in Epoch 3 will eventually receive all the

[ready1] or [ready2] messages sent from correct nodes in P (C20δ
i ([ready1,ready2], vi))

and P (C20δ
j ([ready1,ready2], vj)) accordingly, and output vi, vj accordingly.
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Now we show that P (C20δ
i ([ready1,ready2], vi)) and P (C20δ

j ([ready1,ready2], vj))

have at least one common correct node, which implies the cluster centers are close.

To see this note that each of these clusters have at least (n−2t) > n−2(n/4) =

n/2 correct nodes. That is more than n correct nodes in total. However there are

total n nodes in the networks. This implies at least some of the correct nodes are

common in both clusters. Let Pl be such a node.

Now using triangular inequality we have,

d(vi, vj) ≤ d(vi, vi[l]) + d(vi[l], vl)

+ d(vl, vj[l]) + d(vj[l], vj), (4.50)

≤ 20δ + δ + δ + 20δ = 42δ. (4.51)

Here Inequality (4.51) follows using Lemma 5.

Now the second termination condition.

Lemma 8 (Termination 2). For t < n/4, δ > 0, qsucc > 0, if a correct node

Pi completes the protocol then all the correct nodes complete the protocol with

probability at least qn+2n2

succ .

Proof. This lemma is a corollary of Lemma 7. Because Lemma 7 ensures comple-

tion with probability at least qn+2n2

succ .

Now we are ready to prove that our protocol satisfies the correctness condition

of definition 11.

Lemma 9 (Correctness). For t < n/4, δ > 0, qsucc > 0, if a correct sender Ps

sends (init,u) and a correct node Pi outputs vi then d(u, vi) ≤ 14δ with probability

qn+2n2

succ .

Proof. There are at most n init messages, n2 echo messages and n2 [ready1] or

[ready2] type messages exchanged in the protocol. With probability at least qn+2n2

succ

all of these transmissions that are between correct nodes are successful.

In this case we prove the lemma in three steps. First, we show that all the

[ready1] type directions sent from correct nodes are close to u. Secondly, we show

that all the [ready2] type directions sent from the correct nodes are close to u.

And finally, from these we conclude the proof.
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For the first step, let us assume that correct node Pi has sent a ([ready1], vi)

message in Epoch 2. So, it has received at least (n− t) echo type messages, of

which at least (n− 2t) are from correct nodes. Let’s assume for some correct node

Pj wi[j] ∈ C4δ
i (vi). Since Pj is correct, using the triangle inequality, we have,

d(u,wi[j]) ≤ d(u, uj) + d(uj, wi[j]), (4.52)

≤ δ + δ = 2δ. (4.53)

The diameter of the cluster C4δ
i (vi) is 4δ. So, we have, d(vi, wi[j]) ≤ 2δ. Using

this and (4.53) with the triangle inequality, we have,

d(u, vi) ≤ d(u,wi[j]) + d(wi[j], vi), (4.54)

≤ 2δ + 2δ = 4δ. (4.55)

Now, for the second step, let us assume that a correct node Pl has sent a

([ready2], vl) message from Epoch 1 or Epoch 2. So, vl is a cluster center of at

least (n− 2t) echo type messages. Of which at least (n− 3t) are correct. So, a

similar reasoning to the previous step shows,

d(u, vl) ≤ 4δ. (4.56)

Finally, since the sender is correct from Lemma 6 we know, all the correct

nodes eventually enter Epoch 3 and successfully complete the epoch.

Let us assume a correct node Pi has received a cluster of [ready1] or [ready2] type

directions C20δ
i ([ready1,ready2], vc) of size at least (n− t). So, there is a correct

node Pk for which vi[k] ∈ C20δ
i ([ready1,ready2], vc). Here, C20δ

i ([ready1,ready2], vc)

is a cluster of diameter 20δ. So, we have d(vi[k], vc) ≤ 10δ. Using the triangle

inequality with this, and (4.55) and (4.56), we have,

(.u, vc) ≤ d(u,wi[k]) + d(wi[k], vc), (4.57)

≤ 4δ + 10δ = 14δ. (4.58)

This concludes the proof.
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Now we give an auxiliary lemma that shows how the probability of success

scales with the number of nodes and the success probability of the δ-estimate

direction protocol.

Lemma 10. For δ > 0 if a two-node direction estimation protocol is used that

transmits m qubits to δ-estimate a direction with success probability qsucc ≥ (1−
e−Ω(mδ)) then with probability at least qn+2n2

succ ≥ 1− e−Ω(mδ2−logn), all the direction

transmissions of init, echo, [ready1] and [ready2] type messages are successful.

Proof. There are at most n init messages, n2 echo messages and n2 [ready1] or

[ready2] type messages exchanged in the protocol. With probability at least qn+2n2

succ

all of these transmissions that are between correct nodes are successful. Now,

qn+2n2

succ ≥ (1− e−Ω(mδ2))n+2n2

, (4.59)

≥ 1− (n+ 2n2)e−Ω(mδ2), (4.60)

≥ 1− e−Ω(mδ2−logn). (4.61)

Here Inequality (4.60) follows using Bernoulli’s inequality, which is, (1 + x)r >

1 + rx for all real x ≥ −1 and integer r ≥ 2.

We see that, Theorem 7 follows from Lemma 6, 7, 8, 9 and 10.

4.3.2 Asynchronous agreement

We have presented an asynchronous broadcast protocol where a designated sender

initiates the protocol with a direction. This protocol has a weaker success condi-

tion than an asynchronous agreement protocol. If the sender is faulty, then an

asynchronous broadcast protocol might never terminate because in this case the

correct receivers cannot decide whether the sender is faulty and not sending the

[init] message, or correct but very slow. Whereas, in an asynchronous reference

frame agreement protocol the main goal is to allow the correct nodes to agree on

some direction despite the presence of, up to a certain number of, unidentified

faulty nodes in the network. This requires extra caution to make sure that the

protocol eventually terminates. We show that our Protocol 7:A-Agree successfully

solves this problem by proving Theorem 6.
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There are three epochs in Protocol 7. Any correct node that successfully

terminates must start at Epoch 0 and terminate at Epoch 3. At each Epoch

the nodes inside it, and all the messages transmitted and received by the node

while in that Epoch satisfies some invariance properties. We describe and prove

these properties in the following lemmas. We first show that a correct node will

eventually enter Epoch 1.

Lemma 11. For t < n/4, all the correct nodes eventually enter Epoch 1 of a-agree

with probability at least qn
2+2n3

succ ≥ 1− e−Ω(mδ2−logn).

Proof. Each of the n nodes has initiated an AR-Cast in Epoch 0. Each of the

AR-Casts has a success probability at least qn+2n2

succ . So, with probability at least

qn
2+2n3

succ all the AR-Casts from correct senders are successful. From Lemma 10 this

is at least 1− e−Ω(mδ2−logn).

As t < n/4, there are at least (3t+ 1) correct nodes who initiates AR-Cast as

sender. According to Theorem 7 these (3t+ 1) AR-Casts will eventually terminate.

So, every correct receiver will eventually receive at least (3t+ 1) directions and go

to Epoch 1 with probability at least qn
2+2n3

succ .

Each of the correct nodes stores the output of the Asynchronous-IC protocol in

an array bi. Here bi can be seen as a n× n matrix of bits where row j is received

from node j. We can observe the following property of this matrix.

Lemma 12. For t < n/4 and correct node Pi, after instruction 9 of Epoch 1 of

a-agree, there exists a column in bi with at least (t+ 1) 1s in it.

Proof. We show this by a counting argument. Note that a correct node arrives at

Epoch 1 only after it have received at least (3t+ 1) directions from other players.

As a result after step 7 of Epoch 1 ai contains at least (3t + 1) 1’s. These ai’s

become the rows of bi after step 9. There are at most t faulty nodes. So, at least

(3t + 1) rows of bi are originated from correct nodes. Each of these rows must

contain at least (3t+ 1) 1’s. So bi has at least (3t+ 1)2 1s.

However, if no column had at least (t + 1) 1s, then there would be at most

(4t+ 1)× t 1s in bi. This contradicts the fact that bi has at least (3t+ 1)2 1s. So,

there must exist a column with at least (t+ 1) 1s in it.
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We show that all the correct nodes select the same column, which has at least

t+ 1 1s in it.

Lemma 13. After instruction 2 of Epoch 2 of a-agree, if correct node Pi has ki

and correct node Pj has kj, then ki = kj.

Proof. After completion of Protocol Asynchronous-IC in Epoch 1, all the correct

nodes compute the same output vector. That is, bi = bj for all correct Pi and Pj.

Also, from Lemma 12 we know there exists a column in bi with at least (t + 1)

1s. So, in Epoch 2 step 2 when correct node Pi and Pj selects ki and kj to be the

chronologically smallest column index that has at least (t+ 1) 1s. They select the

same column. i.e., ki = kj.

Now that every correct node Pi agrees on a column ki of bi, we observe that.

Lemma 14. If a correct node Pi selects ki in instruction 2 of Epoch 2, then the

AR-Cast initiated by Pki in Epoch 0 eventually completes successfully.

Proof. We show this by showing that at least one correct node has completed the

AR-Cast initiated by Pki . Then the lemma follows from the termination condition

of AR-Cast.

Each row bi[j] represents Pi’s knowledge of which AR-Casts are successfully

received by Pj . For example, if bi[j][l] = 1, then it means node Pj has reported to

Pi that it has completed the AR-Cast initiated by node Pl in Epoch 0. If there

are at least (t + 1) 1s in the kith column of bi, then it means that there are

(t+ 1) nodes who report that they have received the AR-Cast initiated by node

Pki in Epoch 0. At least one of these reports is from a correct node. So, from

the termination condition of AR-Cast (Lemma 7) all the correct nodes eventually

successfully complete the AR-Cast by Pk.

Now we are ready to prove Theorem 6.

Proof. There are at most n AR-Casts initiated in Epoch 0 of which (n − t)

are by correct nodes. From Lemma 10 each of these succeeds with probability

qn+2n2

succ ≥ 1− e−Ω(mδ2−logn). So all the correct AR-Casts succeed with,

qn
2+2n3

succ ≥ (1− e−Ω(mδ2−logn))n, (4.62)

≥ 1− e−Ω(mδ2−logn). (4.63)
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Here Inequality (4.63) follows from Bernoulli’s inequality. Contitional on this, we

show the correctness and termination of Protocol 7: A-Agree.

Correctness. To prove consistency we show that if a correct node Pi outputs

vi and a correct node Pj outputs vj then d(vi, vj) ≤ 42δ. From step 4 of Epoch 2

of A-Agree we see that,

vi = wi[ki], (4.64)

vj = wj[kj]. (4.65)

From Lemma 7 we know that for t < n/4,

d(wi[ki], wj[kj]) ≤ 42δ. (4.66)

This with (4.64) and (4.65) gives,

d(vi, vj) ≤ 42δ. (4.67)

Termination To prove termination we have to show that every correct node Pi

terminates with an output direction vi.

To prove this we show that Pi eventually completes all the Epochs of A-Agree.

From Lemma 11 we see that Pi must enter Epoch 1 from Epoch 0. All the steps in

Epoch 1 are of constant expected time. So, a correct node will eventually complete

them and go to Epoch 2. Only in step 3 of Epoch 2 Pi waits for completion of

AR-Cast from Pki . However, from Lemma 14 we know that this AR-Cast eventually

successfully completes. All the other incomplete AR-Casts are then aborted at

Step 5 and the protocol terminates with output vi.

4.4 Discussion

We have presented the first asynchronous reference frame agreement protocol. The

synchronous protocol for spatial reference frame agreement that we have presented

in Chapter 3 can tolerate up to t < n/3 faulty nodes. Whereas, our asynchronous

protocol tolerates t < n/4 faulty nodes. Even though we pay this extra price
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in fault tolerance, an asynchronous protocol is a fully general reference frame

agreement protocol. For example, if we have a network where the local clocks of

the nodes are not synchronised but the communication delay of each link is fixed,

then our Protocol A-Agree would still work in this setting and allow the nodes to

align their Cartesian reference frames. Once this is done, any bipartite quantum

clock synchronisation protocol (for example, [83]) can be used as a primitive to

achieve network-wide clock synchronisation.

For classical Byzantine agreement problems, where multiple nodes want to

agree on a bit, it is known that any optimal protocol can only tolerate at most

t < n/3 faulty nodes [80]. There exists asynchronous protocols that achieve this

fault tolerance in the classical setting [76–79]. However, no such bounds are

known for our setting where communication is imperfect even among the correct

nodes. Since our synchronous protocol from Chapter 3 achieves t < n/3 fault

tolerance, there is hope that asynchronous protocols might be found that achieve

this bound. It also remains open whether entanglement can help to achieve better

fault tolerance in the asynchronous multiparty setting.
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5

Routing in a quantum network

In this chapter, we study a particular type of quantum network that uses entan-

glement swapping for routing quantum information. We discuss the operations

and design principles for such a network. We give an overview of related works

and define the idealised network primitives that we later use to design our routing

protocols. As a contribution of this thesis we introduce the concept of routing

graphs that facilitate efficient routing.

5.1 Motivation and related works

There are many uses for entangled states that are spatially separated. A few

of such are super dense coding [99], Bell’s theorem based cryptography [18],

reducing communication complexity [100], quantum secret sharing [101] and

testing local hidden variable theories [56, 102–104]. Moreover, Bell states that are

shared between two spatially separated nodes can be used to teleport unknown

quantum states [55]. Therefore, any quantum network that facilitates entanglement

distribution between any pair of its nodes allows distributed quantum computing [8–

10, 12, 13] over it.

A quantum network that allows any two spatially separated nodes to create en-

tanglement between them by performing entanglement swapping (Chapter 1.2.12)

on Bell pairs is called an entanglement swapping based quantum network. Such a

network was first proposed by Biham et al. [60] in the context of cryptographic

applications. This network was later studied by Bose et al. [105] for applications in
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creating multi-particle entangled Greenberger-Horne-Zeilinger (GHZ) states [106].

Li et al. [107] studied how to create long range entanglement using this network

where the Bell pair creation and local entanglement swapping operations are

imperfect. There are works related to entanglement percolation [108] that study

how entanglement swapping on weakly entangled pairs of qubits along multiple

paths connecting two spatially separated nodes can increase the success probability

of creating entanglement between them. This entanglement percolation model for

quantum network is also studied in the context of quantum random graphs [109].

However, routing protocols that efficiently distribute entanglement between any

pair of source and destination nodes in an entanglement swapping based quantum

network remaines unstudied.

We briefly discuss how different types of quantum repeaters work and how

these repeating techniques enable the construction of quantum routers. However,

before going into that, we start with a brief description of quantum links.

5.2 Physical quantum links

A physical quantum link is a direct connection between two distant nodes that

allows them to exchange quantum information between each other. Examples of

such links are line of sight free space photon channels [40, 110, 111] and optical

fibres [112–115]. These links enable us to exchange photon polarisation qubits [116]

where the quantum information is encoded in the polarisation direction of a photon,

or time-bin qubits [82, 117] where the quantum information is encoded in the

discrete time-bins in which a single photon either exists or not. In some protocols

the physical quantum links (for example, in DLCZ protocol [118]) are only used

to establish entanglement between spatially separated nodes. We refer to all of

these types of links as physical quantum links or quantum links, to contrast it

from virtual links that we define later. All these links are physical realisations of

different types of direct quantum channels (see Chapter 1.2.9.1).
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5.3 Quantum repeater

Communication over a long distance suffers from losses. In classical signal process-

ing, such losses are overcome using repeaters that enhance the signal’s strength

without losing its information content. However, in quantum communication such

repeaters are not possible due to the no cloning theorem [119], which rules out

replication of any unknown quantum state. Therefore, quantum repeaters are

necessarily different from classical repeaters.

Consider a direct quantum link between two spatially separated nodes A and

C that are a distance L apart from each other. If L is very large, then the overall

transmission of the link would be very small. The idea of a quantum repeater

approach [120, 121] is that a Bell state shared between this long distance L can

be created by entanglement swapping (see, Chapter 1.2.12) where we start with

two Bell pairs that are only L/2 distance apart. A node in the middle performs

entanglement swapping on these two Bell pairs to attain a Bell pair over the

distance L. We can cascade this method and start with Bell pairs which are L/4

distance apart (see Figure 5.1). And in two steps of entanglement swapping we

are able to create entanglement between nodes which are L distance apart. Note

that, we could, in principle, perform the entanglement swapping operation in

the middle nodes in any order. For example, for the setting in Figure 5.1 (a)

nodes B, C and D could perform the entanglement swapping operation one by one

respectively to achieve the final state of Figure 5.1 (c). This requires O(n) steps

for repeating to n hops compared to O(log(n)), as originally shown in Figure 5.1.

One approach to create the entanglement between the nodes which are close

to each other is to locally create a Bell pair and send one of them to the other

node via a direct quantum link. Implementing such an approach would require the

ability to detect whether a photon has arrived without destroying entanglement,

which is very difficult in practice [121]. A better way is to create the entanglement

at a distance [122, 123] where an entanglement between atoms A and B can

be created by detecting a photon that could have been emitted by either one.

The detection is performed in such a way that it is impossible to determine this

‘which-way’ information which effectively entangles the atoms. If no photon is

detected, then we know that the entanglement creation failed and we have to try
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Figure 5.1: Quantum repeater using entanglement swapping. - Small

circles represent the qubits held by the nodes A,B,C,D and E. The lines connecting

two small circles indicate that they are in a Bell state. In (a) nodes B and D

performs entanglement swapping, which creates entanglement between nodes A,C

and C,E. In (b)) the node C performs entanglement swapping on its qubits

that allows the nodes A and E to be entangled. This way, in two steps, initial

entanglement created between nodes, which are L/4 distance apart, can be used to

create entanglement between nodes L distance apart.
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again. The most influential proposal of a quantum repeater protocol that uses

this technique is the DLCZ protocol [118], which has inspired a large number of

successful experiments (for example, [124–126]) that demonstrate the practicality

of this approach. A study of the advantages of quantum repeating approach over

directly sending an entangled qubit to a distance L can be found in [121].

So far, we have not discussed the effect of transmission loss, imperfect entan-

glement creation between the adjacent repeaters, and imperfect entanglement

swapping operations. A recent survey by Munro et al. [127] has summarised

various techniques that are being investigated to overcome these issues. They

categorise the entanglement swapping based repeaters in two generations.

In the first generation approach, the process begins with establishing multiple

copies of weakly entangled pair of qubits in adjacent repeaters. Then a process

called entanglement purification [128–131] is used to generate a Bell pair out of

them. On the next step, entanglement swapping is performed on these spatially

separated Bell pairs to get long distance entanglement. Since the entanglement

swapping operations might be imperfect due to the techniques used or due to the

imperfection of the instruments [120], multiple copies of these newly generated

long distance entanglements are again purified to get a state close to a Bell

pair. That is, after every entanglement swapping step, these repeaters perform

entanglement purification. The entanglement purification protocols used in these

first generation repeaters require round trip classical communication between the

participating nodes. Thus the frequency of performing such quantum repeating

gets bottlenecked.

The second generation repeater approach usages entanglement swapping oper-

ations which are deterministic [59]. They also use error correction codes [132–135]

to perform entanglement purification. These new techniques allow the entangled

links to be used for the next step, before the classical message generated at the

purification step travel from one node to other. This approach substantially

decreases the performance bottleneck suffered by the first generation repeaters.

Munro et al. [127] also discusses a third type of repeater, that does not require

quantum memory [136] in the nodes. However, to achieve quantum routing, we

want to use the repeating techniques similar to the first and second generation

repeaters that use quantum memory.
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5.4 Quantum router

A router in a computer network forwards data packets in the network while deciding

which path the packets take to reach its destination. A functioning quantum

network would also require such routers where the data packet carry quantum

information encoded in qubits. One approach of achieving such routing capability

is via entanglement swapping and teleportation (Chapter 1.2.12 and 1.2.11). In

this mode of quantum routing, the routers should cooperate with each to distribute

Bell pairs between any two nodes in a network. Once a Bell pair is established,

the nodes can use it to teleport a qubit in an arbitrary unknown quantum state

from one to another.

In the previous section, we have seen that a node, which can perform entan-

glement swapping, can act as a quantum repeater. Now we show how this node

can act as a quantum router. In Figure 5.2, we see that initially each of the nodes

A,C,D shares a Bell pair with node B. In the node B, the qubit BX forms a

Bell pair with a qubit in the node X for X ∈ {A,C,D}. In the figure these Bell

pairs are represented by lines connecting two small circles. Here node B can act

as a quantum router in the following way. If it decides to create entanglement

between node A and C then it performs entanglement swapping operation on its

qubit BA and BC . Similarly, if it decides to create entanglement between node

A and D then it performs entanglement swapping on BA and BD. The outcome

of these two alternate routing decisions are shown in the figure. There is a third

alternative, where the entanglement swapping can be performed on BC and BD.

In general, such quantum routers could have multiple qubits entangled to

various other nodes. And by collaborating with each other they allow entanglement

distribution between any two nodes in the network, thus achieving quantum

routing.

5.4.1 Necessary properties of a quantum router

From this discussion we see that an entanglement swapping based quantum router

should have the following properties:

• A quantum router has quantum memory.
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Figure 5.2: Quantum router using entanglement swapping. - Small circles

represent the qubits held by the nodes A,B,C and D. The lines connecting two

small circles indicate that they are Bell pairs. (a) is the initial configuration. If

eswap(BA, BC) operation is performed by B then A and C get entangled as shown

in (b). Alternately, B can chose to entangle A and D as in (c). The third alternative,

where C and D get entangled, is not shown here is not shown.
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• A quantum router can store qubits for at least the time required to perform

any communication over the network.

• A quantum router can perform the Bell state measurement on any pair of

qubits in its memory.

• A quantum router can communicate with any other node using classical

channels.

• A quantum router can create entanglement with another router, which is

directly connected to it via physical quantum links

If any quantum node has these capabilities, it can act as a quantum router

by selectively teleporting a qubit to any of its neighbours or to a distant node

with which it shares a Bell state. The simplicity of these assumptions allow such

a quantum node to be physically realised using current technologies [126, 137].

Moreover, to perform quantum routing in this method we do not require any full-

fledged quantum computer. This opens up opportunities to implement quantum

protocols over a network even before building full-fledged quantum computers.

5.5 Network graph

A network graph G = (V,E) is a graph with vertex set V and edge set E where

each vertex v ∈ V represents a quantum node, (for example, quantum router,

quantum computer, or other quantum devices) and each edge e ∈ E represents a

physical quantum link that connects two adjacent quantum nodes in the network.

In Figure 5.3 (a) the small circles represent the nodes and the back solid lines

represent the quantum links.

5.6 Routing in a quantum network

Now we illustrate quantum routing over a network of quantum routers using

an example. In Figure 5.3 (a) we see 6 nodes A,B,C,D,E and F , connected

using physical links represented by black lines. Let us start at a situation, where,
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Figure 5.3: Routing example in a quantum network. - Small circles

represent quantum nodes. (a) shows the network graph where solid balk lines

represent quantum links. In (b) some of the nodes have shared entanglement

between each other (shown in blue). After performing entanglement swapping in

node C and B on the respective qubits, we get a new entanglement between A,D as

in (c). This new entanglement is again swapped in D to get entanglement between

A and E as shown in (d).
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using these physical quantum links, some of the nodes have created entanglement

between them. These pairwise shared Bell pairs are represented by blue dotted

lines in Figure 5.3 (b). Note that if two nodes are directly connected by a physical

link, then they can share entanglement directly (for example, using the DLCZ

protocol [118]), i.e. without performing any entanglement swapping. Now, node

A wants to create an entanglement with node D. One can see that, there exists a

blue path from A to D via nodes B and C. These middle nodes B and C can

perform an entanglement swapping operation on the entangled qubits along this

path resulting in the next picture (Figure 5.3 (c)) where A and D are entangled.

After this, if A wants to share entanglement with F , node D can perform the

entanglement swapping operation between the newly created Bell pair and the

Bell pair it previously shared with F . The outcome is shown in Figure 5.3 (d).

5.6.1 Physical link vs. virtual link

From the example in Figure 5.3 we note that, once a Bell pair is established

between two nodes, it does not matter whether they are directly connected by a

physical quantum link or not. They can use this newly established entanglement

to perform quantum routing for any later request over the network. This brings in

the concept of the virtual links. In a quantum network two nodes have a virtual

link if they share a Bell pair between them. A virtual link can only be used once,

because after the entanglement swapping operation on it, this link is destroyed

and some other virtual link is create in different part of the network. Also a

virtual link can be used to teleport quantum information between the connecting

nodes, which also destroys the link. In contrast, a physical link always exists

except for malfunctions. Two node might be connected using physical links, still

they might not have a shared entanglement. However they can generate shared

Bell pairs on demand by playing bipartite entanglement sharing protocol over the

physical link. In Figure 5.3 (b) node C and F have a physical link that connects

them (the black line), but they do not have a shared Bell state.
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5.7 Routing graph

From the idea of virtual links in the previous section we see that, during the

service of a single routing request over a quantum network, the most important

factors are the virtual links. That is, at any time, two distant nodes can share

an entanglement if there exist a set of virtual links that connects the nodes. For

example in Figure 5.3 (c) when node A wants to create an entanglement with

node E the virtual links between nodes A,D and D,E are used. Therefore, a

good strategy is to carefully create some virtual links in the network such that

any request to share Bell states between any two nodes can be served using a

minimum number of entanglement swapping operations. For this, we might have

to create a graph of virtual links over the network, which we call the routing

graph, that has different connectivity than the underlying network graph. For

example, in Figure 5.4 (a) we have a network graph that has 16 nodes connected

in a cycle using physical links, and in (b) we have a routing graph, which has a

different connectivity, on top of the same network, where each line denotes a Bell

pair shared between the nodes.
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Figure 5.4: An example routing graph with 16 nodes - (a) Shows a network

graph where 16 nodes are connected in a cycle with physical quantum links and (b)

is one possible routing graph on it. Each link in (b) represents an Bell pair shared

between two adjacent nodes.

While designing the routing graph for a network, one should try to minimise

the number of entanglement swapping required to perform a routing request on it.

That is, one might want to design a routing graph which has virtual links between
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nodes that are a long distance apart on the network graph. However, virtual links

require entangled qubits and qubits are scarce resources. Also creating the initial

entanglements using the physical links takes time. Therefore, while designing a

routing graph a trade-off has to be made between the routing efficiency (in terms

of the number of entanglement swapping operation performed) and quantum

memory requirements.

5.7.1 Replenishing the routing graph

Once a virtual link is used for routing, it gets destroyed. Therefore, if a routing

protocol wants to take advantage of a pre-established routing graph, it must have

an efficient way of replenishing the lost virtual links after serving each request.

This efficiency might be measured in the number of time steps it takes to rebuild

the routing graph. Note that, this replenishing happens after the routing request

is served. Therefore, the efficiency criteria of the replenishing phase might be

more relaxed than the criteria for routing efficiency.

5.8 Classical communication

A quantum network would still need classical communication among its nodes. For

example a teleportation operation requires a classical message to be sent from the

source to the destination. Also the quantum routing protocols would require many

classical tags, such as, network address and entanglement swapping decisions, to

be propagated throughout the network. Therefore, it is assumed that each pair

of the nodes can exchange classical information between them without any error.

This is a reasonable assumption, because we know how to build fault tolerant

classical computer networks. It is safe to assume that, in a quantum network this

classical communication happens through a parallel classical network.

5.9 Routing modes

Routing in an entanglement swapping based quantum network might happen in

several modes.
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5.9.1 Global routing

If there exists in the network an external agent, or a master node, that has the

complete information of the state of the network at all times and makes all the

routing decisions, then we call it a global routing scheme. Here, the state of the

network at time t means the network graph and all the virtual links that are

present at time t. With this information in hand, the agent can decide which path

to take to serve a routing request. It can also decide which physical links should

create shared Bell pairs if a pre-existing virtual path is not found.

This is a reasonable model, where the quantum network consists of a local

cluster of quantum processors or memory units, for which, all the operations

can be orchestrated by a management unit. A global routing scheme would have

applications in a large quantum memory bank from where the qubits are teleported

to a set of quantum processors using a quantum network.

5.9.2 Local routing

In a local routing scheme, each router has information of its own connectivity in

the network graph, and remembers only the virtual links that are adjacent to it.

In some schemes a router might have the virtual links information of a selected

few neighbouring nodes. However, the routing decision is made by the router

locally using the available partial information of the connectivity and the network

address of the origin and destination nodes. This is a more reasonable mode of

routing where the quantum network has many nodes spread over a large area

because, for such a large network, it is impractical for each node to remember the

connectivity of all the virtual links in the network, which might change over time.

5.9.3 Circuit routing

This mode of routing is useful when many shared Bell pairs are required between

the source and the destination nodes. In a circuit routing, first a path (the circuit)

from the source to the destination is found on the network graph. Then the virtual

links are created along this path. After this, the swap operations are performed

in the middle nodes. By repeating these steps over and over, many pairs of
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entangled qubits can be created between the source and the destination. Note,

that the virtual link vanishes after it is used once. So, in this mode of routing

it is important that the nodes on the selected path are connected with physical

links to allow repeated use.

5.10 Creating large distributed entangled states

So far, we have discussed sharing Bell pairs over the network among spatially

separated nodes. We can use this network to create a large entangled state of n

qubits ρ1,2,3,··· ,n where each qubit is located in a separate node. To see this, let us

assume node A,B and C want to create a 3 qubits state ρABC where each of the

nodes hold one qubit. We achieve this in the following steps.

1. Node A uses the quantum network to create entanglement with node B and

C. Let us denote these two entangled pairs as |ψAB〉 and |ψAC〉 respectively.

2. Then Node A prepares the intended large state ρAB̃C̃ in it local registers.

Here the B̃ and C̃ parts represent the qubits that should be held by node B

and C.

3. Then Node A teleports qubit B̃ to node B using |ψAB〉 and qubit C̃ to C

using |ψAC〉.

After these steps nodes A,B and C holds their respective share of the large

entangled state ρABC . This method can easily be generalised to create a large

shared entangled state among any n ≥ 3 nodes. Bose et al. [105] have studied

some nontrivial techniques to share large entangled states among multiple nodes

using entanglement swapping on Bell pairs.

5.11 Classical routing vs. quantum routing

In classical networks, most of the routing protocols take advantage of the fact

that the data packets can be replicated [138]. While sending a packet from a

source to a destination, the source node might save a copy of the packet so that,

if some irreversible error occurs, then the node can resend the packet. If the next
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node does not respond, the packet could be re-routed via other nodes. Whereas,

unknown quantum states cannot be cloned [119]. Therefore, any routing protocol

that requires the packets to be resent in case of a failure, cannot be adapted for a

quantum network. In the routing scheme presented in this chapter, no actual data

is transmitted through the middle nodes of the network. Rather, entanglement

Bell pairs are distributed between distant paris of nodes. If one attempt to create

an entanglement fails, then it can be attempted again. If some nodes in the

middle fail, the path can be rerouted. That is, a different set of virtual links might

be established, which upon entanglement swapping, allow the target and the

destination to share a Bell pair. After this, the actual qubit is teleported to the

destination. Therefore, no failure in initial routing attempt forces the quantum

data to be resent. Thus, eliminating the necessity to copy an unknown quantum

state.

5.12 Discussion

We have seen that, a router in the entanglement swapping based quantum network

is functionally a quantum repeater. Therefore, along with distributing entan-

glement over the network it also provides all the advantages of using quantum

repeaters for long distance quantum communication [121, 127]. Most of the

primitive operations these routers use, such as Bell pair creation, entanglement

purification and swapping cannot be performed perfectly using current technolo-

gies. However, we assume idealised versions of these primitives, such as perfect

entanglement swapping operations and perfect entanglement creation between

adjacent nodes. We also assume long coherence times for the quantum memories

in the router. These idealisations are realistic in a sense, that elaborate sub-

protocols might be played to achieve shared Bell pairs which mitigates the effects

of imperfect basic operations [120]. Moreover, it is reasonable to hope that future

technological breakthroughs will closely approximate these idealised primitives.

Thus, in our high level study we only focus on building efficient routing protocols

using these idealised primitives. This is the subject of the next chapter.

103



5. ROUTING IN A QUANTUM NETWORK

104



6

Routing protocols for a quantum

network

In this chapter, we give the first routing protocol for the entanglement swapping

based quantum network networks described in Chapter 5. We discuss the protocol

from a very high level, in a sense that we assume some idealised network primitives

to build the protocol. Our protocol is a representative of a larger class of resource

efficient quantum routing protocols that utilise a pre-established routing graph.

We discuss the design principles for such routing graphs, and analyse various

properties of a particular class of routing graphs that we use in a ring network.

Then we give the routing protocol, prove its correctness, give bounds on its

performance and resource requirements.

6.1 Designing quantum routing protocols

If node a and node b in a quantum network share a Bell pair, then they can

teleport an arbitrary unknown qubit from one node to the other. Therefore, the

problem of quantum routing from node a to node b is essentially the problem of

sharing Bell pairs between them.

To achieve this we design a protocol where some virtual links (Bell states) are

pre-established before any routing request arrives in the network. These virtual

links give rise to a routing graph (Chapter 5.7) that allows efficient quantum

routing between any pair of nodes. The design of the routing graph depends on
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the size and the topology of the network graph. However, we want the routing

graph to have the following general properties.

1. The routing graph has to be of low degree, so that a router does not need a

very large quantum memory.

2. The routing graph should have lower diameter compared to the network

graph, so that an optimal route needs few entanglement swapping operations.

3. The routing graph should allow local routing, so that the nodes do not need

to remember the whole routing graph.

4. The routing graph should allow the protocol to minimise the associated

classical communication overload.

5. The routing graph should allow the protocol to replenish it (the routing

graph) efficiently after the loss of some virtual links.

With these considerations in mind, we give a routing graph construction and

an associated sufficient routing protocol where the nodes are physically connected

in a ring.

6.2 The ring network

We consider a quantum network where m nodes are connected by physical quantum

links in a cycle (appendix A.1). We refer to this network as a ring of size m.

This network has nice properties such as it has only m physical quantum links

and it has high rotational symmetry.

The symmetry of the ring greatly simplifies the construction and analysis of

the routing graphs and the associated protocol. Moreover, a ring is a practical

and a fairly common network structure. This gives us a good starting point for

designing quantum routing protocols.
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6.2.1 The goal

On a ring network of size m, the most naive protocol would be to pre-establish

Bell pairs (virtual links) along each of the edges. Once these virtual links are

established any pair of nodes in the ring would be connected by two paths. We

call one clockwise and other the anti-clockwise path. If node A wants to share

Bell pair with node B, then it picks the shortest among these two paths and uses

it for routing.

Since, each of the middle node have to perform an entanglement swapping

operation, this protocol would require O(m) entanglement swapping to serve a

request in the worst case. However, it requires only a constant quantum memory

(namely 2 qubits for the two links) at each node.

We want to minimise the number or entanglement swapping to O(logm)

without blowing up the quantum memory requirement too much. Note that, even

though the underlying physical links are connected in a ring, we could create any

m vertex routing graph on top of this network. Therefore, a carefully designed

routing graph would allow us to reduce the number of entanglement swappings

required in the worst case, find the shortest path efficiently and allow efficient

replenishing of the lost virtual edges of the routing graph.

More specifically, for an m node ring network, we give a routing graph that

has a diameter O(logm) and where each node has a maximum degree O(logm).

The associated protocol for finding the optimal path runs in O(logm) and to

find the optimal route the nodes can make only local decisions depending on the

source and destination addresses of the routing request. The network address

for each node is O(logm) and the classical memory requirement for each node is

O(log3m). Since the routing graph has maximum degree O(logm), the quantum

memory requirement for each node is O(logm).

6.2.2 The ring routing graph

Now, we design a routing graph for a ring network of size 2n where n ∈ N and

analyse its various properties. Based on these analyses, we design our routing

protocol. Later, we show how this protocol can be used to perform routing on a

ring network of any size m ∈ N.
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We represent the physical connectivity of the ring network using a cycle

C2n = (VC2n
, EC2n

), where the vertex set VC2n
= {0, 1, . . . , 2n − 1} represents the

nodes, and the edges set EC2n
= {a, b ∈ VC2n

and {a, b} : |a − b| ≡ 1 (mod 2)n}
represents the physical quantum links. In graph theoretic terms, this cycle has a

diameter O(2n) (see, Appendix A.5). Thus a naive protocol would require O(2n)

entanglement swapping operations to serve a routing request. However, we want

to create a routing graph, on top of this ring, that has a diameter and quantum

memory requirement logarithmic in the number of nodes, and allows the routers

to make local routing decisions, to achieve the global optimal route.

For the ring C2n = (VC2n
, EC2n

) of size 2n, we design a routing graph Gn =

(Vn, En), which we call the routing graph of order n, where the vertex set Vn = VC2n

and the edge set En contains the virtual edges. However, before giving the formal

definition of the routing graph we need to introduce two useful functions p and

gcd2.

We define a function p : Vn 7→ N ∪ {0} such that,

p(a) :=

{
n if a = 0,

max{k : 2k divides a} otherwise.
(6.1)

This function counts the number of 2’s in the prime factorisation of a. We

also define another function gcd2 : Vn × Vn 7→ N such that,

gcd2(a, b) = 2min{p(a),p(b)}. (6.2)

As the notation suggests, integer gcd2(a, b) is the largest power of 2 that divides

both a and b. Since, gcd2(0, 0) = 2n, strictly speaking, gcd2 is also a function of

n. However, this special case is not of much importance to us. Therefore, for the

sake of simplicity, we would not make this dependence explicit. And leave it to

be understood from the context.

Now, we are ready to define our routing graph for the ring network.

Definition 12. A graph Gn = (Vn, En) is called a routing graph of order n

where the vertex set Vn = {0, 1, . . . , 2n − 1} represents the nodes and the edge set

En = {{a, b} : a, b ∈ Vn, and |a− b| ≡ gcd2(a, b) (mod 2n)} represents the virtual

links.
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Figure 6.1: Network graph vs. routing graph - (a) is the network graph C24

and (b) is the corresponding routing graph G4

For example, in Figure 6.1 (a) we illustrate the ring C24 , which is a network

graph of size 16, and in Figure 6.1 (b) we illustrate the routing graph G4 of order

4 that has the same nodes as C24 , but different connectivity.

A close observation of the routing graphs G2, G3 and G4 side by side as in

Figure 6.2 reveals that if we remove all the odd vertices of G4 then we get a graph

that is isomorphic (Appendix A.6) to G3. Similarly, removing all the odd vertices

from G3 would give us a graph isomorphic to G2. We generalise this observation

for any Gn in the following lemma.

Lemma 15. For all n ≥ 2, the subgraph induced by the even vertices of Gn is

isomorphic to Gn−1 via mapping each even vertex a of Gn to the vertex a/2 of

Gn−1.

Proof. Let Hn−1 = (Ṽn−1, Ẽn−1) be the subgraph induced by the even vertices of

Gn. To establish the lemma, we show that Hn−1 is isomorphic to Gn−1 via the

bijection f : Ṽn−1 7→ Vn−1 defined by

f(a) = a/2 (6.3)

To accomplish this, we need to establish that for all a, b ∈ Ṽn−1 we have {a, b} ∈
Ẽn−1 if and only if {f(a), f(b)} ∈ En−1.
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Figure 6.2: Routing graphs G2, G3 and G4 - Each larger routing graph contains

all the smaller graphs as a subgraphs in it

For this we first note that according to the definition of an induced subgraph

(Appendix A.8), for all a, b ∈ Ṽn−1 we have {a, b} ∈ Ẽn−1 if and only if {a, b} ∈ En.

This means according to the Definition 12 for all a, b ∈ Ṽn−1 for each {a, b} ∈
En−1 if and only if

|a− b| ≡ gcd2(a, b) (mod 2n), (6.4)

⇔
∣∣∣∣a2 − b

2

∣∣∣∣ ≡ gcd2(a, b)

2
(mod 2n−1), (6.5)

⇔|f(a)− f(b)| ≡ q
(
f(a), f(b)

)
(mod 2n−1), (6.6)

where the last equivalence follows from the fact that a and b are distinct even

vertices. Therefore, we have

gcd2(a, b)

2
= q

(
a

2
,
b

2

)
= gcd2(f(a), f(b)). (6.7)

To complete the proof, it remains to note that according to the definition of Gn−1

(Definition 12) Equation (6.6) holds if any only if {f(a), f(b)} ∈ En−1.

6.2.3 Sub-routing-graphs

Lemma 15 shows that the routing graphs have a nice hierarchical structure, where

a subgraph isomorphic to the routing graph Gn−1 can be found in the routing
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graph Gn and Gn−2 in Gn−1 and so on. This gives rise to a useful idea that we

call sub-routing-graphs.

Definition 13. For n,m ∈ N where m ≤ n and for Gn, the routing graph of order

n, a sub-routing-graph Hm(Gn) = (Ṽm, Ẽm) is the vertex induced subgraph of

Gn, induced by vertex set Ṽm = {1× 2n−m, 2× 2n−m, . . . , (2m − 1)× 2n−m} that

is isomorphic to the routing graph Gm of order m.

Note that, we usually do not show the parameter Gn from Hm(Gn) and simply

write Hm where the parameter Gn is understood from the context.
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Figure 6.3: Sub-routing-graphs of G4 - The sub-routing-graphs H3, H2, H1 are

shown enclosed in dashed rounded rectangles.

For example, Figure 6.3 shows routing graph G4 and all of its sub-routing-

graphs H3, H2 and H1.

For two sub-routing-graphs Hm and Hk of routing graph Gn, if m < k, then

Hm is called an inner sub-routing-graph compared to Hk and Hk an outer

sub-routing-graph compared to Hm.
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We also define an outer node (or an outer vertex ) of a sub-routing-graph to be

the vertex that has only 2 adjacent nodes within that sub-routing-graph. Formally,

Definition 14. For a routing graph Gn and any of its sub-routing-graph Hm, a

vertex a is called an outer node or outer vertex of Hm if a is on Hm and it

does not have more than 2 adjacent nodes that are also on Hm.

For example, in Figure 6.3 node 2 is an outer node of H3 because it has only

two neighbours within H3, namely node 0 and 4. Node 4 is not an outer node of

H3. However, it is an outer node or H2.

Now we characterise an outer node in terms of the function p (defined in (6.1))

that counts the number or 2’s in the prime factorisation of any node a. Later, we

use this characterisation to design and analyse our routing protocol.

Lemma 16. If a is a node in a routing graph Gn such that p(a) = k, then a is

an outer node of the sub-routing-graph Hn−k of Gn. If a = 2kt for some t ∈ N,

then 2k(t+ 1 (mod 2n)) and 2k(t− 1) (mod 2n) are the only two vertices on Hn−k

that are adjacent to a.

Proof. We prove this by showing that a is on sub-routing-graph Hn−k and then

we give two other nodes adjacent to a that are also on Hn−k. We complete the

proof by showing that any other edge from a connects to nodes that are not on

Hn−k.

Now, from definition of p we have,

a = 2kt, (6.8)

where c is a positive odd integer and t < 2k.

a can also be written as a = 2n−(n−k)t, which from the definition of sub-

routing-graph (Definition 13), allows us to conclude that a is on sub-routing-graph

Hn−k.

Now consider nodes b = 2k(t+ 1) (mod 2n) and c = 2k(t− 1) (mod 2n) from

the definition of sub-routing-graph (Definition 13) we see that both of these nodes

are also on sub-routing-graph Hn−k. And from the definition of routing graph

(Definition 12) we see that {a, b} and {a, c} are both edges in the routing graph

Gn therefore they are also in Hn−k.
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6.2 The ring network

Finally, we note that any other node that are adjacent to the node a must have

the form 2k
′
(t′ ± 1) where k′ < k. However, these nodes are on sub-routing-graph

Hn−k′ , which is an outer sub-routing graph compared to Hn−k. This completes

the proof.

Gn

Hi

Hj

P

P ′

a
b

Figure 6.4: Paths going through sub-routing-graphs of Gn - Path P con-

necting a and b goes through Hi. Any path P ′ that goes through an outer sub-

routing-graph Hj should be at least as long as P .

Now we are ready to show a very interesting property of distances between

any pair of nodes in a routing graph. To be more precise, we show that, for a

routing graph Gn, if two nodes a and b are on some sub-routing-graph Hi then,

distance between a and b in Hi is the same as the distance between a and b in Hj

for any i ≤ j. To understand this let us consider Figure 6.4. Here, node a and b

are on the sub-routing-graph Hi. An optimal path P connecting a and b is shown

using a solid curve that goes only through Hi. The length of this path should

be dHi
(a, b). Now we claim that even if the path is allowed to use edges that go
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through the outer sub-routing-graph Hj, no shorter path can be found. That is,

paths P ′ shown using dashed curve that goes through outer sub-routing-graph

Hj, cannot be shorter than P . This is a very important observation because the

construction and correctness proof of our routing protocol heavily depends on it.

We prove this claim as a corollary of the following lemma.

Lemma 17. For any n, k ∈ N and any two nodes a and b of Gn we have,

dGn(a, b) = dGn+k
(2ka, 2kb).

Proof. From Lemma 15 we know that a routing graph Gn recursively contains

all the smaller routing graphs Gn−1, Gn−2, . . . , G1 in it. The distance between a

and b in Gn will be the same as the distance between the nodes 2ka and 2kb in

Gn+k because these are the same nodes in the sub-routing-graph of Gn+k, which

is isomorphic to Gn.

Let us first establish the k = 1 case. It will be useful for us to consider the

graph Hn = (Ṽn, Ẽn) induced by the even vertices of Gn+1. From Lemma 15 we

know that Gn is isomorphic to Hn via mapping a vertex a of Gn to the vertex 2a of

Hn. Therefore, dGn(a, b) = dHn(2a, 2b) for all a, b ∈ Vn and to get that dGn(a, b) =

dGn+1(2a, 2b), it suffices to show that dHn(2a, 2b) = dGn+1(2a, 2b). We accomplish

this, using a proof by contradiction. For this, assume that dHn(a, b) > dGn+1(a, b)

for some a, b ∈ Ṽn. Since Hn is an induced subgraph of Gn+1, our assumption

implies that any optimal path Pab in Gn+1 must contain vertices from Vn+1 \ Ṽn.

Let us consider the subpaths Pa′b′ of Pab which start and end with with vertices

from Hn but have all other vertices belonging to Vn+1 \ Ṽn (Figure 6.5). For

at least one of these subpaths Pa′b′ it must be that dHn(a′, b′) > dGn+1(a
′, b′) as

otherwise we could replace all of them with paths of the same length contained

entirely in Hn. Let us now focus on some such Pa′b′ .

Since any k ∈ Vn+1 \ Ṽn is odd and no two odd vertices are adjacent, we

conclude that the path Pa′b′ has length 2, i.e., Pa′b′ = (a′, c, b′) for some odd

c. This implies that dGn+1(a
′, b′) = 2. Furthermore, since any odd vertex c is

adjacent to only c+ 1 (mod 2n+1) and c− 1 (mod 2n+1), we obtain |a′ − b′| ≡ 2

(mod 2n+1). Combining this with the fact that a′ and b′ are even nodes, we see

that a′ is adjacent to b′ in Hn. That is, dHn(a′, b′) = 1 < 2. This is a contradiction.

Therefore, dGn+1(2a, 2b) = dHn(2a, 2b) = dGn(a, b) for any a, b ∈ Vn.

114



6.2 The ring network

a
b

Gn+1

Hn

c

a′
b′

Pa′b′

Figure 6.5: An optimal path connecting a and b through nodes not in

Hn - There exist a segment Pa′b′ = a′ . . . c . . . b′ that exits Hn at a′ and reenters at

b′. Here c is an odd vertex implying sections a′ . . . c and c . . . b′ of this subpath are

edges in Gn+1

Now that we have established the k = 1 case, observe that for any k we have

dGn(a, b) = dGn+1(2a, 2b) = dGn+2(2
2a, 22b) = . . . = dGn+k

(2ka, 2kb), (6.9)

which completes the proof.

Now our intended result about the path lengths between nodes on a sub-

routing-graph follows as a corollary of this lemma.

Corollary 1. For n, i, j ∈ N, routing graph Gn of order n and nodes a and

b on Gn, if i ≤ j ≤ n and nodes a and b are on sub-routing-graph Hi then

dHi
(a, b) = dHj

(a, b).

Proof. From definition of sub-routing-graphs (Difinition 13) we know that Hi is

isomorphic to Gi where a in Hi maps to a/2(n−i) in Gi. Similarly Hj is isomorphic

to Gj where a in Hj maps to a/2(n−j). From Lemma 17, we get,
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dHi
(a, b) = dGi

(
a

2(n−i) ,
b

2(n−i)

)
, (6.10)

= dGj

(
a2(j−i)

2(n−i) ,
b2(j−i)

2(n−i)

)
, (6.11)

= dGj

(
a

2(n−j) ,
b

2(n−j)

)
, (6.12)

= dHj
(a, b), (6.13)

where, Equation (6.11) and Equaiton (6.13) follows from Lemma 17.

We are now ready to bound the diameter (Appendix A.5) of the routing

graph Gn. This is important because the diameter corresponds to the number of

necessary entanglement swaps performed in the worst case, to allow any two nodes

to communicate. We utilise the hierarchical structure of the routing graph that

was shown in Lemma 15 and the fact that going through outer sub-routing-graphs

does not decrease the distance between two nodes as shown in Corollary 1.

Lemma 18. For a routing graph Gn of order n, we have that D(Gn) ≤ D(Gn−1)+2

and and D(G1) = 1 where D(G) is the diameter of a graph G In particular, we

have D(Gn) = O(log(|Vn|)) = O(n).

Proof. From Lemma 15 we know, subgraph Hn−1 induced by the set of even

vertices Ṽn−1 of Gn is isomorphic to Gn−1. Therefore,

D(Hn−1) = D(Gn−1). (6.14)

For any vertex v of Gn, we consider an even vertex v′. We let v′ := v if v is

even and we let v′ := v + 1 (mod 2n) if v is odd. In the latter case, we have that

gcd2(v, v
′) = 1 and hence it follows from Definition 12 that {v, v′} ∈ En. Thus,

for any vertex v of Gn, we have d(v, v′) ≤ 1 and v′ ∈ Hn−1. Using this simple

observation we now show that for any two vertices a, b ∈ Vn the distance between
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a and b in Gn is,

dGn(a, b) ≤ (a, a′) + dGn(a′, b′) + d(b, b′), (6.15)

= d(a, a′) + dHn−1(a
′, b′) + d(b, b′), (6.16)

≤ dHn−1(a′, b′) + 2, (6.17)

≤ D(Hn−1) + 2, (6.18)

= D(Gn−1) + 2. (6.19)

Here, (6.16) follows from Corollary 1. Since for any two vertices a and b of Gn we

have dGn(a, b) ≤ D(Gn−1) + 2, it follows directly from the definition of diameter

that D(Gn) ≤ D(Gn−1) + 2.

Now, using the fact that D(G1) = 1 we get, D(Gn) = O(n) = O(log(|Vn|)).

6.2.4 A recursive construction

The existence of sub-routing-graphs Hn−1, Hn−2, . . . , H1, which are isomorphic to

Gn−1, Gn−2, . . . , G1, in the routing graph Gn provides us a way of constructing

the routing graph recursively. This recursive construction gives us some structural

insights. Moreover, similar recursive constructions might be used for constructing

various types of routing graphs for different network topologies.

For this, first we define an operation ND(.). For any routing graph Gn =

(Vn, En), this operation creates a new graph ND(Gn) = G′n = (V ′n, E
′
m) where

vertex set V ′n = {2a : a ∈ Vn} and edge set E ′n = {{2a, 2b} : {a, b} ∈ En}.
Now we give the recursive construction of the routing graph Gn.

Base step:

G1 = ({0, 1}, {{0, 1}}). (6.20)

Recursive step:

Gn = ND(Gn−1) ∪ C2n . (6.21)

Where C2n = (VC2n
, EC2n

) is the cycle graph of 2n elements with vertex set

VC2n
= {0, 1, . . . , 2n−1} and edge set EC2n

= {{a, b} : a, b ∈ VC2n
and a = b + 1

(mod 2n)} and ∪ is the graph union operation (Appendix A.9).
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G3 = ND(G2) ∪ C22(a) (b) (c)

Figure 6.6: Recursively constructing G3 from G2 and C22 - The recursive

step is shown here. ND(G2) is unioned with C22 to get G3 = ND(G2) ∪ C22 .

We show this construction with an example in Figure 6.6 where routing graph

G3 is built from G2.

To see why this is an equivalent construction to Definition 12, one should note

that ND(Gn−1) is essentially the sub-routing-graph Hn−1 of Gn.

6.2.5 Similarity with the overlay networks in classical dis-

tributed computing

From the construction of the routing graphs for the ring network in Definition 12

one can note some structural similarity with the Chord [139] or Pastry [140] overlay

networks [141, 142] studied in the field of classical distributed computing [143].

However, we should note that, even thought the graphs look similar, one cannot

replace the ring-routing graph with these overlay networks to achieve the same

quantum routing goals. To be more precise, the virtual links in the overlay

networks are determined by the routing tables stored in each node. If a node

stores the address of a remote node in the overlay layer, then it is considered

to have a virtual link to that remote node. However, in the quantum routing

graph the virtual links represents some physical resources pre-distributed over

the network, namely the entangled Bell pairs. Unlike the virtual links in the

classical overlay network the quantum virtual links can only be used once. After
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that, they have to play some background protocol steps to recreate a shared Bell

pairs, thus recreate the lost virtual links. This constraint of replenishment is

absent in the classical network where the only goal is to achieve resiliency against

network failures. Therefore, the protocols, and analysis techniques used in the

study of classical distributed computing are not directly applicable in the context

of entanglement swapping based quantum routing studied in this thesis.

6.3 Routing protocol for the ring network

The routing graph that we have constructed for a ring network has highly regular

structure. Specially, Lemma 15 shows that a 2n node routing graph Gn = (Vn, En)

recursively contains all the smaller sub-routing-graphs Hn−1, Hn−2, . . . , H1, which

are isomorphic to Gn−1, Gn−2, . . . , G1 respectively.

There can only be O(log(|Vn|)) such inner sub-routing-graphs. If a protocol

for routing starts traversing from both the source and the destination and at each

move goes to the innermost sub-routing-graph possible then they will eventually

arrive at H1 and meet each other. This would allow for a routing protocol that

gives a path of length O(log(|Vn|) = O(n). However, this is not always optimal.

A slight modification, namely, checking the condition if the current traversal head

and tail have a common neighbour before making any move would give rise to the

optimal routing protocol. We prove this in Theorem 8.

We give the pseudocode of our routing protocol in Protocol 8: RinglogRoute,

that takes as input, the source and destination node IDs a and b respectively and

a number n that indicates the routing graph Gn and outputs an optimal path P

connecting a and b in Gn.

Theorem 8. For any n ∈ N and source node a and destination node b the protocol

RinglogRoute(a, b, n) outputs an optimal path P connecting a and b in Gn.

Proof. In Protocol 8: RinglogRoute the traversal starts from both the source and

destination nodes. The current node of traversal starting from the source is the

head and the current node of traversal starting from destination is the tail. The

head and the tail traverse the network according to the protocol and when they

meet each other the protocol outputs the path constructed from their movement.
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Protocol 8: RinglogRoute

input : a, b ∈ {0, 1, . . . , 2n − 1} the source and destination nodes

respectively, n indicating the routing graph Gn

output : P: a list containing the shortest path from a to b in Gn

1 assign head := a, tail := b

2 for i = 0 to n− 1 do

3 A.append(head)

4 B.append( tail)

5 if head and tail are adjacent then

6 break

7 else if head and tail have a common neighbour then

8 A.append(common-neighbour’s ID)

9 break

10 else

11 aleft := head + 2i (mod 2n),

12 aright := head− 2i (mod 2n),

13 if p(tail) == i and p(aleft) > p(aright) then

// p is defined in Equation (6.1). If head is an

outer node of (n− i)th sub-routing graph then move

14 head := aleft,

15 A.append(head)

16 else if p(head) == i then

17 head := aright,

18 A.append(head),

19 bleft := tail + 2i (mod 2n),

20 bright := tail− 2i (mod 2n),

21 if p(tail) == i and p(bleft) > p(bright) then

22 tail := bleft,

23 B.append(tail),

24 else if p(head) == i then

25 tail := bright,

26 B.append(tail) ,

27 P = A.append(reverse(B)) // construct the complete path

28 Output:P
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We show the correctness of the protocol by showing that at each step any move

made by head or tail going to some newhead or newtail respectively satisfies

the loop invariant,

d(head, tail) =d(head,newhead) + d(newhead,newtail)

+ d(newtail, tail). (6.22)

That is, newhead and newtail are also on an optimal path connecting head

and tail. Since we start with head = a and tail = b, this equation (6.22) proves

that the final path P constructed from the traversal of head and tail is optimal.

Let us consider some properties of the traversal from the head. The traversal

from the tail would have the same properties. Note that in the ith step of the

for loop of Protocol 8 the head is moved only if

p(head) = i. (6.23)

From Lemma 16, head must be an outer node of the sub-routing-graph Hn−i. If

tail is also on Hn−i, then from Corollary 1 there exists an optimal path connecting

head and tail that entirely lies in Hn−i. The only two nodes that are adjacent to

head and also in Hn−i are,

aleft = head+ 2i (mod 2n), (6.24)

and

aright = head− 2i (mod 2n). (6.25)

Therefore, an optimal path from head to tail must go through one of these two

nodes. If we show that the newhead, chosen from these two nodes by the protocol,

does not increase the path length, then this will prove the loop invariant (6.22).

For the clarity of appearance, from now on we do not explicitly write (mod 2n)

in the equations. However, we should assume that all the addition and subtractions

are performed modulo 2n.

Now, from definition of the function p (Equation (6.1)) and the fact that

p(head) = i, we can write,

head = 2ic, (6.26)
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where c ∈ N is an odd integer.

Using this aleft and aright can be written as,

aleft = head+ 2i = 2i(c+ 1), (6.27)

aright = head− 2i = 2i(c− 1). (6.28)

Let us also define integer l and u such that,

c = 2lu+ 1, (6.29)

where l = p(c− 1).

Now from Equation (6.27) and Equaiton (6.29) we have,

aleft = 2i+lu. (6.30)

And from Equation (6.28) and Equation (6.29) we have,

aright = 2i+1(2l−1u− 1). (6.31)

If p(aleft) > p(aright), then the head moves to the node newhead = aleft. For

the loop invariant (Equation (6.22)) to hold, we have to show that moving to the

other node aright does not give any advantage.

To see this, if the newhead was aright instead of aleft, then on the very next

move it either goes to 2i+lu, which is just aleft, (this can be seen from in (6.30))

or to a′ = 2i+1(2l−1u−2), which can be reached from the aleft in one step. Either

way, the move to aright does not give any advantage over moving to aleft. This is

illustrated with an example in Figure 6.7.

In the other case, if p(aleft) ≤ p(aright), then head moves to newhead = aright.

A similar argument to the previous case shows that the alternative move in this

case ,which takes the head to aleft, does not give any advantage.

Note that, for these arguments to hold we have considered two consecutive

moves of head. The protocol makes sure that the head and tail are at least 2

distance apart before making this move. This is done by checking beforehand

whether they are neighbours, or have a common neighbour.

To ensure that head and tail are at least 2 distance apart while making the

choice between aleft and aright we have the if condition in line 7 of Protocol 8.
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Figure 6.7: Optimal move for head in the ring routing protocol on G4 -

One of the nodes aleft and aright is on the optimal path from head to tail. Since

p(aleft) > p(aright) the protocol would move head from node 3 to aleft = 4 (blue

dashed line). If the head was moved to aright instead (red dotted line), then on

the next move the head would return to node 4 (green dash-dotted line) or go to

0, which is reachable from 4 in one step. This implies taking the red dotted path

cannot decrease the distance more than taking the blue dashed path. Therefore,

moving to aleft cannot be non-optimal.
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A similar reasoning also applies on the movement of the tail to a new node

newtail during the protocol.

From the for loop in Protocol 8 we see that the head and tail start at a

and b respectively. And in ith steph when either of them is moved they are on

sub-routing-graph Hn−i moreover the moved head or tail are outer nodes of Hn−i.

This shows that the loop invariant of Equation (6.22) holds throughout the

protocol whenever head or tail makes a move as an outer node. This completes

the proof.

6.3.1 Replenishing the used virtual links

After serving any routing request, the routing graph would lose some of its virtual

links. One way to replenish a virtual link is to recursively replenish a longer

virtual link by performing entanglement swapping on shorter links, until we reach

the outer cycle that has the physical quantum links. The virtual links that are

along this outer cycle can be replenished by directly creating Bell pairs using the

physical quantum links.

For a routing graph Gn with 2n nodes, virtual links between the nodes a and

b can be replenished using the following two recursive steps.

1. If a and b are connected by a physical link, then replenish the virtual link

by sharing a Bell pair using this link and halt.

2. Denote c := (a+ b+ 2n) (mod 2n) Perform entanglement swapping on the

virtual links {a, c} and {c, b} to create the virtual link {a, b}.

3. Replenish the virtual links {a, c} and {c, b}.

Note that all these replenishing steps happen after the original routing request

has already been served. Therefore, they do not affect the service time of a request.

However, this replenishing phase has to complete before new requests can be

served. Therefore, it affects the frequency with which the new requests can be

served.
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6.3.2 Resource requirements for the routing protocol

Our routing protocol for a ring network of size 2n that uses a routing graph

Gn = (Vn, En) or order n has the following requirements.

6.3.2.1 Quantum memory

Each virtual edge of the routing graph indicates a Bell pair, that requires 2 qubits

to sustain. If there are N edges in a routing graph, then the network has to deploy

at least 2N qubits to sustain it.

If we define a function count(·) which counts the number of edges in a routing

graph Gn, then from the recursive construction (Equations (6.21) and (6.21)) of

the routing graph we get,

count(G1) = 1 (6.32)

count(Gn) = count(Gn−1) + 2n (6.33)

Here, Equation (6.33) holds because cycle C2n has 2n edges. This gives us

count(Gn) = 2n+1 − 3 = O(|Vn|). Therefore, the total number of qubits spent on

this routing graph construction is linear with the number of nodes in the network.

From the recursive construction we see that, each time each new cycle is added

in (6.21) all the previous nodes’ degree increases by 2. For a routing graph Gn

there are n such levels and G1 has only 1 edge. Therefore, the oldest node’s (for

example example node 0) degree would be, 2n− 1. That is, each of the quantum

nodes (quantum routers) requires a quantum memory of size O(log |Vn|).

6.3.2.2 Classical memory

While running the protocol, the current head has to check whether it is adjacent to

the tail or has a common neighbour with it. This requires each node to remember

the node ID of all the nodes that are at least 2 distance apart from it. Since each

node has a degree O(log |Vn|), and the node ID’s are O(log |Vn|), this requires

O(log3 |Vn|) classical memory. However, since the network structure is known to

all the nodes they can compute these neighbourhood in the runtime. And efficient
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methods might be designed that does not require these neighbourhood relations

to be explicitly saved in the node.

6.3.2.3 Entanglement swapping operation

Since the routing graph has a diameter O(log |Vn|) (see Lemma 18) the optimal

path will be of length O(log |Vn|) requiring collectively O(log |Vn|) entanglement

swapping operations to be performed by the middle nodes.

6.3.2.4 Running time

The main for loop of the Protocol 8: RinglogRoute runs O(n) = O(log |Vn|) times.

All the operations inside the loop can be implemented to run in O(1). So the

running time of the protocol is O(log |Vn|).

6.3.3 Running the protocol in a distributed manner on a

network

We have seen how the protocol finds an optimal path from node a to b in a routing

graph Gn. However, in a network all the nodes would be running as independent

processes. When node a, the source, wants to create a Bell pair with a remote

node b, it would run the protocol and find the next neighbouring node in the

routing graph Gn that lies on the optimal path. Then it would send a classical

message informing that the new node should also run RinglogRoute(a, b, n), find its

position in the path, and pass on the message to the next node. While passing this

message, each of the middle nodes performs the entanglement swapping operation

on the two virtual links that are adjacent to it, and on the path.

This way when the message finally arrives at the destination node b, the node

knows that it is entangled to a and the routing is complete. Note that the classical

messages propagated in the network during the protocol contain the node IDs

which are of logarithmic length in terms of the network size.

Therefore, we see that our protocol Protocol 8: RinglogRoute can perform local

routing (see Chapter 5.9.2).
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6.3.4 Ring networks with an arbitrary number of nodes

Until now, we have designed and analysed a routing protocol for a ring network

that has 2n nodes, where n ∈ N. Now, we demonstrate how this protocol can be

adapted to work on a ring network with an arbitrary number of nodes.

Let us assume that we have a ring network Cm with m routers such that,

2n−1 < m < 2n. We create a routing graph for a ring of 2n nodes and make 2n−m
of the routers simulate 2 nodes each. It is done in the following steps.

1. Build routing graph Gn.

2. For i = 0→ 2(2n −m)− 1 let node bi/2c of the routing graph be simulated

by the ith router in the network.

3. For i = 2(2n −m)→ 2n − 1 let node i of the routing graph be simulated by

the ith router in the network.

In Figure 6.8 we see an example, where a routing graph with 16 nodes is

simulated by a ring network that has 13 routers.

While running Protocol 8 RinglogRout on a network of size any m, which is

not a power of 2, some of the nodes have to simulate at most 2 nodes each and

have to maintain all the virtual links necessary for simulating these two nodes.

After an optimal path P is computed by RinglogRout, the routers check if there

exist nodes u and v on P that are simulated by the same router r. In that case,

the path segment from u to v is replaced by r to compute the final path.

Since, in this mode of operation each node has to simulate at most 2 nodes,

the quantum memory requirement for each node still remains O(log(m)) for an m

node ring.

6.4 Discussion

We have given an efficient protocol for routing in the ring quantum network. The

associated routing graph that we introduce, allows the length of the node IDs to

be logarithmic in the network size. It allows the network to efficiently compute

the route between any pair of nodes using only the node IDs of the pair. Usually,
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Figure 6.8: Routing protocol for a ring with an arbitrary number of

nodes - Here the network has 13 nodes. Therefore, the routing graph G4 of size

16 is simulated by this network. Each dashed rounded rectangle corresponds to a

router. Each of the node pair (0,1), (2,3) and (4,5) are simulated by one router and

the rest of the nodes are simulated by one router each.
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computer simulations are used to quantify various properties of a routing protocol.

However, the nice recursive structure of our routing graph and the associated

protocol have allowed us to analytically quantify all of their important properties.

This leaves hope to find routing graphs and associated protocols that have similar

advantages for networks with other topologies.
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7

Conclusion and outlook

The goal of this thesis has been to study various problems related to construction

and operation of multiparty quantum networks. We have studied reference frame

agreement problems for synchronous and asynchronous quantum networks and

given protocols that solve them for n ≥ 2 nodes. We have also studied problems

related to routing quantum information in an entanglement swapping based

quantum network.

Our protocols for reference frame agreement are fault tolerant because the

protocol for synchronous networks can tolerate up to t < n/3 arbitrarily faulty

nodes and the protocol for asynchronous networks can tolerate up to t < n/4

arbitrarily faulty nodes. In classical computing, the consensus (Byzantine agree-

ment) and broadcast problems are studied in the cryptographic and fault tolerant

settings where multiple nodes try to agree on a bit in the presence of faulty nodes.

These protocols assume that the communication between any two non-faulty

nodes are error-free. However, the reference frames that we agree on, cannot be

transmitted using fungible information (i.e. only bits). The physical processes that

are used to transmit the reference frames introduces inherent imperfection even

in the communication between non-faulty nodes. Our reference frame agreement

protocols take care of these challenges and provides a method to reach agreement

on continuous values. Therefore, our model further generalises the Byzantine

agreement problem.

We have given a very high level protocol for routing quantum information in

an entanglement swapping based quantum network. Our approach has introduced
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and demonstrated the advantages of a pre-established routing graph. Our protocol

allows any pair of nodes on a ring network of size n to establish a Bell pair in

O(log n) steps and requires only O(log n) quantum memory in each of the nodes.

7.1 Ongoing research

There are several ongoing research works, at various stages of completion, originat-

ing from our studies of quantum networks. These works are not included in this

thesis. However, we briefly state them here to give a general idea of the direction

towards which this thesis drives the research efforts in the field.

Our work on reference frame agreement problems has attracted considerable

interest in the community and there are ongoing efforts to experimentally imple-

ment them in laboratories. The author in collaboration with the experimental

physics group of Prof. Alexander Ling in Centre for Quantum Technologies, NUS

is building the first prototype implementation of the synchronous reference frame

agreement protocol. In this implementation, a network of 4 nodes are created

which can tolerate 1 faulty node. In this prototype we use the polarisation direc-

tion of photons to transmit direction information. In the first proof-of-concept

implementation each node has its own photon detectors. However, a single po-

larised photon source, which acts as the direction sending device of a node, is

shared by all 4 nodes in turn. Currently, we are constructing a fully general

prototype where each of the nodes would have their own photon sources.

The synchronous reference agreement protocol assumes that all the nodes

share a common clock. That is, their local clocks are synchronised. However,

synchronising clocks over a network is an important problem in itself. Our

asynchronous reference frame agreement protocol, which, by definition, does

not assume shared clocks, provides necessary frameworks for developing such

clock synchronisation protocols. Clock synchronisation involves both frequency

(tick rate) synchronisation among participating nodes and alignment of their

time indices (agreeing on a 0th time index). The author is participating in an

ongoing effort to develop fault tolerant clock synchronisation protocols using our

asynchronous reference frame agreement protocol. Here the challenges involve

identifying the communication assumptions that are subtly different from a fully
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asynchronous model, and to identify and adapt a bipartite clock synchronisation

protocol that can be lifted to the n party fault tolerant setting.

Various properties of the routing protocol that we introduce in this thesis

can be determined analytically. However, in a realistic operating condition most

routing protocols might show certain behaviours that can only be identified using

extensive simulation. Since quantum primitives are often substantially different

from classical primitives, the existing network simulators for classical networks are

not usable in the quantum context. The author is involved in an ongoing effort to

build a simulator for an entanglement swapping based quantum network that allows

arbitrarily complicated protocols to be simulated for arbitrary network topologies.

The simulation system is based on a discrete event simulation framework SimPy in

python. The project focuses on performance of the routing protocols. Therefore,

the actual quantum operations and evolution are not numerically simulated.

However, the implementation assumes that these operations are performed by the

routers as a black-box. Only the network layers higher than the physical layer

are simulated to study network congestion and other properties. This project is

currently in the testing and documentation phase.

7.2 Open problems

It is known that any optimal Byzantine agreement protocol can only tolerate

up to t < n/3 faulty nodes. The known proofs of this bound assume error-free

communication between non-faulty nodes. There are efficient classical protocols

both in synchronous and asynchronous settings that achieve this bound. In our

reference frame agreement protocol the agreement is achieved on a continuous value

where even the communication between pairs of non-faulty nodes are inherently

imperfect. Therefore, the proof techniques used to find the bounds on classical

protocols do not directly translate here. This leaves hope that a different bound

might be found using novel techniques, possibly using entanglement. Moreover,

our asynchronous protocol achieves fault tolerance in the presence of at most

t < n/4 faulty nodes, whereas the classical asynchronous protocol achieves t < n/3.

Since our synchronous protocol achieves the classical bound, this gives strong

hope that an asynchronous reference frame agreement protocol might also be
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found that achieves this. In our work related to reference frame agreement, we

did not consider relativistic effects. This is equivalent to assuming that all the

nodes are on the same inertial frame, or the relativistic effects are negligible for

the particular application. However, in many applications, for example in some

networks involving satellites, the relativistic effects might play an important role.

How to model these types of multi-party agreement problems in such relativistic

scenarios remains open.

The pre-shared routing graph technique for efficient quantum routing has

inspired efforts to construct such protocols for other network topologies. It

remains open how such routing graph techniques might be extended in a setting

where nodes constantly change their relative positions resulting in a dynamic

network graph. For example, with quantum nodes spread over satellites in space,

or on moving vehicles on earth, the dynamic network graph is a reasonable

model to be investigated. In some distributed quantum computing schemes, a

sorting network is used to redistribute qubits among the network nodes [13].

For such applications, one might investigate routing graphs that allow efficient

re-permutation of n qubits over an n node network.

7.3 Concluding remark

This thesis introduces some novel ideas, to tackle several basic problems related to

quantum networks, which also have many non-quantum applications. The work

generalises important results in distributed computing and introduces many open

questions to motivate future research efforts. My sincere hope is that this thesis

will provide some useful tools and a reference point for researchers interested in

this field.

134



Appendices

135





Appendix A

Graph theory

Graph theory has many uses specially in the study of communication networks.

Here, we briefly introduce some of the concepts that are used in this thesis. For

an in-depth introduction to graph theory we refer to, for example [144].

A.1 Graph

A graph G = (V,E) is an order pair of sets where the set V is the set of vertices

and the set E is the set of edges. If the elements e ∈ E are of the form e = (u, v)

where u, v ∈ V and e is an ordered pair then the graph is called a directed graph.

If all e ∈ E are two element sets of the form e = {u, v} then the graph is called

an undirected graph.

For example in Figure A.1 (a) graph T = ({1, 2, 3, 4}, {(1, 2), (1, 3), (1, 4)})
is a graph with 4 vertices and 3 edges. It is a directed graph and all the edges

starts at vertex 1 and points to other vertices. Here the edges are represented as

ordered pairs to preserve this directionality. Whereas, in Figure A.1 (b) graph

H = ({1, 2, 3, 4}, {{1, 2}, {1, 3}, {4, 1}}) is an undirected graph. Since the edges

or H have no directionality they are represented by 2 element sets.

Two vertices u, v ∈ V in a graph G = (V,E) are adjacent, if there exists an

edge {u, v} ∈ E. If {u, v} /∈ E, then they are called non-adjacent. For example 1

and 3 are called adjacent in the graph H but 2 and 3 are non-adjacent.

Now we define two special types of graphs, namely the cycle and the complete

graph.
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Figure A.1: Directed and undirected graphs - (a) is a representation of

the directed graph T = ({1, 2, 3, 4}, {(1, 2), (1, 3), (1, 4)}) and (b) is the undirected

graph H = ({1, 2, 3, 4}, {{1, 2}, {1, 3}, {4, 1}}).

Definition 15. A graph C = (V,E) with n vertices V = {v0, v1, . . . , vn−1} is

called a cycle or a ring if and only if for any vertex va ∈ V there exists an edge

{va, vb} ∈ E such that, b = a+ 1 (mod n).

Definition 16. A complete graph is a simple graph G = (V,E) where for each

pair of vertices u, v ∈ V , where u 6= v and there exists an edge {u, v} ∈ E.

A.2 Path

A path of length n in a graph G = (V,E) is a sequence of n + 1 vertices Pab =

(v1, v2, . . . , vn+1) such that v1 = a and vn+1 = b and for all i < n, {vi, vi+1} ∈ E.

We say that Pab is a path of length n, that connects nodes a and b. For example,

in Figure A.1 (2, 1, 4) is a path of length 2 in H.

A simple path of length n in a graph G = (V,E) is a path P = (v1, v2, . . . , vn+1)

such that no vertices are repeated in the sequence. That is in P if i 6= j then

vi 6= vj.
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A.3 Distance

In a graph G = (V,E), the distance between two vertices u, v ∈ V is the length

of the shortest simple path connecting u and v. It is represented as a function

d : V × V 7→ N. To avoid confusion we often use a subscript to d to indicate the

graph concerned. For example in Figure A.1 (a) graph H, d(2, 3) = 2. This can

alternatively be written as dH(2, 3) = 2.

A.4 Optimal path

A path P of length n in a graph G = (V,E) connecting two nodes a and b is an

optimal path if d(a, b) = n. Note that for a given pair of nodes, there might be

multiple optimal paths that connects them.

A.5 Diameter

The diameter of a graph G = (V,E) is the length of the longest optimal path in

it. Formally, diameter D(G) = maxu,v∈V dG(u, v). For example, the graph H in

Figure A.1 has a diameter D(H) = 2.

A.6 Graph isomorphism

A graph isomorphism f from a graph G = (V,E) to a graph G′ = (V ′, E ′) is a

bijection f : V 7→ V ′ from the vertex set of G to the vertex set of G′ such that

{u, v} ∈ E if and only if {f(u), f(v)} ∈ E ′. If such a bijection f is found then G′

is isomorphic to G.

A.7 Subgraph

A subgraph G′ = (V ′, E ′) of a graph G = (V,E) is a graph such that V ′ ⊆ V and

E ′ ⊆ E.
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A.8 Induced subgraph

A induced subgraph (sometimes called an ‘vertex induced subgraph’) is a subset

of the vertices of a graph G together with any edges whose endpoints are both in

this subset. Formally, an induced subgraph or a vertex induced subgraph of a graph

G = (V,E) is a graph G′ = (V ′, E ′) where vertex set V ′ ⊆ V and for u, v ∈ V ,

the edge {u, v} ∈ E ′ if and only if {u, v} ∈ E.

Here, the graph G′ is induced by the vertex set V ′ from the graph G.

A.9 Graph union

Graph G = (VG, EG) is the union of two graphs A = (VA, EA) and A = (VB, EB)

if VG = VA ∪ Vb and EG = EA ∪ EB.
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