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SUMMARY 

The pathogenesis of minimal change nephrotic syndrome (MCNS), the most 

common cause of significant morbidity amongst the childhood 

glomerulonephritides, is unknown.  We have demonstrated that IL-13 

overexpression in the rat resulted in podocyte foot process (FP) effacement with 

B7-1 upregulation and concurrent downregulation of the slit diaphragm proteins 

inducing a minimal change-like nephropathy.  We therefore hypothesized that 

IL-13 and/or other Th2 cytokines could act through the B7-1 danger signaling 

pathway, causing podocyte FP effacement and proteinuria (Figure 1). Our IL-

13 overexpression rat model of MCNS thus provided a platform to study the 

molecular signaling pathways that were differentially regulated, in order to 

better understand the pathogenesis of this intriguing disease. The aims of this 

study were firstly to delineate the glomerular “gene signature” related to our IL-

13 rat model of MCNS through microarray analysis of glomerular transcription 

profile in IL-13 overexpression and control rats; secondly, to validate the in vivo 

microarray results in human podocyte cell culture system; and lastly to 

investigate the mechanism of IL-13-induced B7-1 danger signaling in causing 

podocyte injury. 

 

RNA from glomeruli of six control and six IL-13 overexpressed rats with 

MCNS were reverse transcribed and hybridized into Sentrix® BeadChip Array 

RatRef-12v1. Differentially expressed genes (DEGs) were selected based on the 

criteria of fold change greater than 1.6, coefficient of variance less than 0.7 and 

t-test p<0.05. Gene ontology analysis was done using DAVID and pathway 

analysis was carried out using Ingenuity Pathway Analysis and MetaCoreTM. 

Protein expression of vav1 on the glomeruli and podocytes were validated using 

immunohistochemical staining on rat kidney section as well as 

immunofluorescence staining and Western blotting on podocytes. Morphology 

of podocyte actin cytoskeleton was examined using phalloidin staining. 

RhoA/Rac1 activity in IL-13 stimulated podocytes was measured using ELISA. 

The role of vav1 in IL-13 induced podocyte injury was studied using podocytes 

transfected with siRNA specific for vav1. Gene and protein expression levels 

were studied using real-time PCR and Western blotting respectively. 
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Transcriptional profile of the glomeruli in IL-13 overexpressed rats showed 

characteristic features of podocyte injury in which more than 87% of genes 

known to be related to podocytes were significantly downregulated.  Gene 

expression of vav1 was highly upregulated in the glomeruli of IL-13 

overexpressed rats and MetaCoreTM pathway analysis of the DEGs suggested a 

possible novel role of vav1 in podocyte cytoskeleton remodeling.  

Immunohistochemical staining confirmed the glomerular expression of vav1, 

which co-localized with synaptopodin in serial sections of the kidney.  

Moreover, the presence of vav1 in cultured podocytes was further confirmed by 

immunofluorescence staining and immunoblotting.  

 

In vitro IL-13 stimulation in podocytes resulted in significant increased 

expression of IL-13Rα2, B7-1 and phosphorylated vav1 compared to controls. 

This was associated with actin cytoskeleton rearrangement and activation of 

Rac1. Additionally, podocytes with vav1 siRNA transfection were protected 

from IL-13 induced actin cytoskeleton changes and Rac1 activity.   

 

In conclusion, we have shown that the direct action of IL-13 in inducing 

podocyte FP effacement in our rat model of MCNS was through activation of 

B7-1-vav1-Rac1 mediated actin cytoskeleton rearrangement in podocytes. 
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Figure 1: Proposed Th2 cytokine bias model of MCNS results from primary immune 
disturbance. 
IL-13 and/or other immune mediators may directly or indirectly act on podocytes and cause 
podocyte FP effacement, resulting in proteinuria and the nephrotic syndrome. 
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CHAPTER 1 
INTRODUCTION 

1.1. Nephrotic Syndrome 

With the decline in acute post-infectious glomerulonephritis, idiopathic 

nephrotic syndrome, in particular minimal change nephrotic syndrome (MCNS) 

is now the most common cause of significant morbidity amongst the childhood 

glomerular diseases both in Singapore and worldwide [1]. Up to 70% of children 

with MCNS will have multiple relapses, of whom at least half will require long-

term steroid therapy or courses of cytotoxic drugs, with their attendant adverse 

effects on growth and puberty, cataract formation, and risk of malignancy. 

Better therapeutic strategies based on a clearer understanding of the etiology of 

the disease are hence required. 

 

1.1.1 Definition of nephrotic syndrome 

Nephrotic syndrome is a kidney disease commonly seen in children. It is 

characterized by proteinuria, hypoalbuminemia, edema and 

hypercholesterolemia. Clinical diagnosis of nephrotic syndrome requires the 

presence of edema, nephrotic-range proteinuria (urinary protein excretion of ≥3 

g/day/1.73m2) and hypoalbuminemia (serum albumin level ≤25 g/L) [2]. 

Hypercholesterolemia associated with MCNS is usually much more severe with 

extremely high total serum cholesterol, typically 10-20 mmol/L [3, 4] (normal 

<5.1mmol/L) [5], primarily due to marked elevation of LDL-cholesterol, 

compared to other diseases with protein loss such as patients with chronic 

nephropathy or those on peritoneal dialysis whose protein losses can reach a 

similar range as nephrotic patients but serum total cholesterol levels rarely 

exceed 7 mmol/L [6]. Upon receiving corticosteroid therapy, the majority of 

children will respond to the treatment, entering remission, which is defined as 

resolution of edema and proteinuria (urine albumin reduced to <0.3 

g/24hr/1.73m2, or a urine protein/creatinine ratio of <0.02 g/mmol) and 

normalization of serum albumin level to at least ≥35 g/L [7, 8].  
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1.1.2 Classification of nephrotic syndrome 

Nephrotic syndrome presenting in the first three months of life, that is, 

congenital nephrotic syndrome, are mainly due to mutations in genes such as 

WT1, nephrin and podocin. More than 90% of children with nephrotic syndrome 

have a primary cause, that is, a disease specific to the kidneys. However, 

secondary causes, such as systemic lupus erythematosus, Henoch-Schonlein 

purpura and viral etiologies (hepatitis B, hepatitis C, parvovirus, human 

immunodeficiency virus (HIV)) have to be excluded. 

 

Primary nephrotic syndrome (also known as idiopathic nephrotic syndrome) can 

be classified histologically into MCNS, focal segmental glomerulosclerosis 

(FSGS), membranous nephropathy (MN), mesangial proliferative 

glomerulonephritis (GN) and membranoproliferative GN (MPGN). The most 

common histopathologic type in children is MCNS, accounting for more than 

80% of all cases [9]. 

 

1.1.3 Treatment of Nephrotic Syndrome 

Prednisolone is the mainstay of treatment for children with idiopathic nephrotic 

syndrome. The treatment regime is 60 mg/m2/day of prednisone for four to six 

weeks, followed by 40 mg/m2 on alternate days for a further six to twelve weeks. 

It is estimated that 70% of patients will respond to this treatment with complete 

resolution of proteinuria and edema, however, up to 40% may have frequent 

relapses or require long-term steroid treatment to maintain in remission.  

 

Based on the responses to corticosteroid treatment, these patients can be 

classified as: i) steroid-sensitive nephrotic syndrome (SSNS); ii) steroid-

resistant nephrotic syndrome (SRsNS); iii) steroid-dependent nephrotic 

syndrome (SDNS); or iv) frequent relapsing nephrotic syndrome (FRNS). 

Patients with SSNS are able to attain remission within eight weeks of treatment 

with corticosteroid treatment; patients with SRsNS fail to attain remission after 

eight weeks of corticosteroid treatment; patients with SDNS are able to respond 

to initial corticosteroid treatment but develop a relapse either while still on 

steroids or within two weeks of discontinuation of treatment following a steroid 
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taper, hence requiring the continued low-dose steroid treatment to prevent 

relapses; patients with FRNS enter complete remission in response to steroid 

treatment but develop four or more relapses in any 12-months period [2]. 

 

In addition to corticosteroid treatment, patients with SDNS and FRNS often 

require other immunosuppressive agents such as cyclophosphamide, 

levamisole, cyclosporine, tacrolimus, and mycophenolate mofetil. Similarly, 

patients with SRsNS require multiple immunosuppressive agents such as 

cyclosporine, tacrolimus, high dose intravenous methylprednisolone, 

mycophenolate mofetil, and rituximab to achieve remission.   

 

Prolonged use of corticosteroids and immunosuppressive agents result in 

adverse side effects such as growth retardation, obesity, infections, 

hypertension, osteoporosis, cataracts, infertility and nephrotoxicity [10-13].  

 

1.1.4 Epidemiology of Nephrotic Syndrome  

The annual incidence of nephrotic syndrome in most countries in the Western 

countries ranges from 2 to 7 new cases per 100,000 children [8, 14-16]. 

Countries in Asia, however, reported a higher incidence of about 16 new cases 

per 100,000 children [17]. 

 

Renal biopsy is commonly recommended for patients who are steroid-resistant.  

Among the 103 biopsy proven cases in the International Study of Kidney 

Disease in Children (ISKDC) series, MCNS, FSGS and MPGN were the most 

common lesions in SRsNS, each accounting for approximately 25% of the 

histological findings [7]. In Singapore, however, MCNS and FSGS formed the 

main fraction of SRsNS cases, accounting for 30% and 49% of the cases 

respective in renal biopsies of 47 children with SRsNS [18] (Table 1).   
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Table 1: Distribution of children with SRsNS by glomerular histopathology in ISKDC and 
Singapore. 
Histopathologic category ISKDC Singapore 

Minimal change nephrotic syndrome 25 14 

Focal segmental glomerulosclerosis 26 23 

Membranoproliferative glomerulonephritis 27 5 

Mesangial proliferative glomerulonephritis  9 3 

Membranous glomerulonephritis 6 ND 

Chronic glomerulonephritis 3 ND 

Diffuse Mesangial Hypercellularity 4 ND 

Focal Global Glomerulosclerosis 2 2 

Unclassified 1 ND 

Total 103 47 
Adopted from reference [7] and [18]. ND: not determined. 
 

1.2. Minimal change nephrotic syndrome 

MCNS is the most common cause of childhood nephrotic syndrome. Although 

it is not limited to children, studies have reported a median age of onset of four 

years, where MCNS accounts for close to 85% of all cases of childhood 

nephrotic syndrome [9, 19]. Although more than 90% of children with MCNS 

respond to corticosteroid therapy, up to 70% will have multiple relapses 

requiring long-term steroid therapy or courses of cytotoxic drugs, with their 

attendant adverse effects on growth and puberty, cataract formation, and risk of 

malignancy. 

 

In MCNS, the glomeruli appear normal by light microscopy or show a minimal 

increase in mesangial cells and matrix. Findings on immunofluorescence 

microscopy are typically negative, and electron microscopy reveals effacement 

of podocyte foot processes and absence of electron-dense immune deposits in 

the glomeruli [20]. 

 

The underlying mechanism in the majority of patients with nephrotic syndrome 

is a permeability defect in the glomerular filtration barrier that allows the loss 

of protein from the plasma into the urine. However, the fundamental cause and 

pathogenesis of MCNS is still largely unknown. 
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1.2.1 Minimal change nephrotic syndrome and the immune system 

In 1974, Shalhoub postulated that lipoid nephrosis, an older term for MCNS, is 

produced by a systemic disorder of T-cell function [21]. He hypothesized that 

the domination of an abnormal clone of T cells results in the production of a 

circulating lymphokine toxic to the glomerular basement membrane (GBM), 

resulting in increased glomerular permeability to protein.  

 

The onset of idiopathic nephrotic syndrome has been associated with prior 

respiratory tract infections or other immunogenic stimuli such as insect stings 

[22, 23], vaccinations [24, 25] or allergic reactions to inhaled allergens [26-29]. 

Clinical observations such as remission induced by measles, the occurrence of 

nephrotic syndrome in lymphoproliferative disease like Hodgkin’s disease [30-

32], leukemia [33], lymphoma [34] and thymoma [35-40], both of which modify 

cell-mediated immunity, and the therapeutic benefits of steroids and 

cyclophosphamide [41], which suppresses cell-mediated responses, all support 

Shalhoub’s hypothesis that MCNS might be related to T-cell dysfunction, 

resulting in the production of a lymphocyte-derived permeability factor that 

induces proteinuria. 

 

The association of interleukin (IL-) 13 (IL-13) with MCNS may also account 

for the relationship of MCNS with Hodgkin’s disease. IL-13 expression is a 

characteristic feature of Hodgkin’s disease. In situ hybridization of lymph node 

tissue from patients with Hodgkin’s disease showed elevated levels of IL-13 

and IL-13 receptor (IL-13Rα1) localized to Reed-Sternberg cells, a malignant 

cell population in Hodgkin’s disease [42-44]. Constitutive phosphorylation of 

signal transducer and activator of transcription 6 (STAT6) in Reed-Sternberg 

cells [45] and inhibition of Hodgkin's lymphoma growth by IL-13Rα2 (decoy 

receptor of IL-13) [46] further implicate IL-13 as an important growth factor in 

Hodgkin’s disease, and may account for the proteinuria in MCNS associated 

with this disease. 
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In addition, the lack of morphological changes in the kidney suggests that 

MCNS represents a generalized disorder of the immune system resulting in 

renal manifestations, rather than a specific disease of the kidney. A number of 

studies have shown immunologic abnormalities in this disease, including an 

increase in the CD4+CD25+ (IL-2 receptor-α chain) [47], CD4+CD45RO+ and 

CD8+CD45RO+ memory subsets [48] in patients with active relapse, selective 

recruitment of some νβ gene family in CD8+ T cells from nephrotic patients 

with frequent relapses [49], increased NF-κB DNA binding activity in T-cells 

in MCNS patients during relapse [50], as well as abnormalities in serum 

immunoglobulins during nephrotic relapses characterized by depressed IgG, 

and elevated IgM and IgE [51, 52].  

 

Although it is still unclear how an altered immune system may cause proteinuria 

in idiopathic nephrotic syndrome, there is strong evidence suggesting that the 

proteinuria in idiopathic nephrotic syndrome could be mediated by circulating 

factor(s) such as cytokines summarized in Table 2 [9, 53]. Persistent massive 

proteinuria, in turn, contributes to the phenomenon of glomerular hyperfiltration 

and ultimately progressive glomerulosclerosis, through the mediation of other 

cytokines like transforming growth factor-β (TGF-β), produced by the resident 

glomerular cells such as the mesangial cells [54]. 
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Table 2: Cytokine profile in MCNS. 
Cytokines Upregulation Downregulation No Change 

Th1-related 

IL-12 [55]  [56] 

IFN-γ [57] [56] [58, 59] 

Th2-related 

IL-4 [60, 61] [59] [57, 58, 62] 

IL-13 [58, 62]   

Th17-related 

IL-23 [63]   

IL-17 [63]   

Treg-related 

IL-10  [63, 64]  

TGF-β  [63]  

General activation 

IL-1 [65] [66] [57, 67] 

IL-2 [57, 59, 65]  [58] 

IL-6  [59] [67] 

TNF-α [67]  [57] 

Chemokines 

IL-8 [68] [57]  
Numbers in brackets corresponds to the published journals as indexed in the reference. 
 

1.2.2 Roles of Th2 cytokines in minimal change nephrotic syndrome 

Studies on the role of cytokines in MCNS suggested MCNS is a result of 

primary immune disturbance, with a Th2 bias [53]. Th2 cytokines are anti-

inflammatory and are associated with B-cells proliferation, class switching of 

B-cells to produce IgE and IgG4, and increased neutralizing antibody 

production [69, 70]. 

 

Our laboratory was the first to demonstrate that IL-13 gene expression was 

upregulated in both CD4+ and CD8+ T-cells in children with steroid-sensitive 

nephrotic syndrome in relapse [58].  This was associated with increased 

intracytoplasmic IL-13 production by CD3+ cells.  We also demonstrated a 
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significant increase in serum IgE levels during nephrotic relapses compared to 

remission, and this correlated with the percentage of IL-13-producing CD3+ 

cells suggesting the presence of polyclonal activation [51].  

 

Our findings were consistent with Kimata’s study where IL-13 was shown to be 

important for the spontaneous production of IgE and IgG4 by peripheral blood 

mononuclear cell (PBMC) from nephrotic patients [62]. Another Th2 cytokine, 

IL-4, was also found to be increased in PBMCs from patients with MCNS, and 

this was associated with increased B-cell expression of the type II IgE receptor 

and high IgE production [61], further supporting the association of atopy with 

nephrotic syndrome. In addition, Sahali et al. showed increased gene expression 

of c-maf, a Th2-specific transcription factor that binds to the IL-4 proximal 

promoter, while IL-12R β2 gene expression was downregulated during relapses 

of MCNS through cDNA library differential screening [71].  

 

Furthermore, we were able to demonstrate that genetic polymorphisms in the 3’ 

untranslated region (3’UTR) of the IL-13 gene correlated with long-term 

outcome of MCNS in Singapore Chinese children, rather than disease 

susceptibility [72]. Moreover, IL-13 mRNA expression in PBMC of patients 

with the haplotype AAT, associated with continuing relapses 5 years from onset, 

was significantly higher than those with the haplotype GCC, associated with 

long-term remission.  Unfortunately, the exact role of IL-13 in the pathogenesis 

of MCNS is not clear. 

 

1.3. Role of podocytes in genesis of nephrotic syndrome 

The ultrafiltration of plasma in the kidney occurs through the capillary wall of 

the glomerulus. The filtration barrier consists of three layers: (i) the glomerular 

endothelial cells (GECs), lining the interior side of the glomerular capillaries; 

(ii) the glomerular basement membrane (GBM); and (iii) the podocytes, lining 

the exterior of the glomerular capillary (Figure 2). Passage of plasma across this 

size-selective barrier results in water, small- and middle-sized molecules 

entering the urinary space; while serum albumin and macromolecules are 

retained in the capillary space. Our current understanding of the pathogenic 
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mechanism of nephrotic syndrome suggests that the podocyte is the main 

component of the glomerular filter and the crucial target in the development and 

progression of glomerulopathies. In fact, one of the hallmarks of MCNS is the 

effacement of podocyte foot processes (FP) and the degree of FP effacement 

has been shown to roughly correlate with the amount of proteinuria [73, 74].  

 
Figure 2: Glomerular filtration barrier.  
The filtration barrier is composed of glomerular endothelial cells, the glomerular basement 
membrane (GBM), and the podocytes. Adopted and modified from reference [75]. 
 

Podocytes are terminally differentiated cells with a cell body and large 

cytoplasmic projections (major processes) that divide into long thin processes 

(foot processes). The FP are attached firmly to the underlying GBM and form a 

tight network of interdigitating pattern with FP of neighbouring podocytes, 

which are bridged by ‘slit diaphragms’ (SD) [76]. The SD thus divides the 

plasma membrane of FP to the apical, the lateral (slit diaphragm), and the basal 

domains. In the cytoplasm, these three surfaces are interconnected via the actin-

based cytoskeleton (Figure 3) [77]. Disruption of any of the three domains or 

the underlying actin cytoskeleton can lead to FP effacement and hence 

proteinuria. 
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Figure 3: The three domains of the podocyte FP.  
The FP interdigitates with FP of neighbouring podocytes, bridged by slit SD. The SD divides 
the plasma membrane of FP to the apical, the lateral, and the basal domains. These three surfaces 
are interconnected via the actin-based cytoskeleton in the cytoplasm. Adopted and modified 
from reference [77]. 
 

A wide range of proteins molecules are expressed on the podocytes FP (Figure 

4), with diverse functions, such as structural support, adhesion, signaling and 

movement. The summation of the functions of these molecules forms the basis 

of the glomerular filtration barrier.  

 
Figure 4: Molecules expressed in the podocytes. 
Adopted and modified from reference [75]. 
 

1.3.1 Podocyte apical membrane domain 

The apical surface of podocytes, which faces the urinary space, is covered by 

sialylated, O-glycosylated, and negatively charged transmembrane protein – 

podocalyxin [78].  Podocalyxin deficient mice failed to form FP and SD thus 

causing a block in urine production [79]. Podocalyxin is linked to the actin 

cytoskeleton in the cytoplasm through ezrin [80] and Na+/H+ exchanger 
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regulatory factor 2 (NHERF2) [81]. Disruption of the 

podocalyxin/ezrin/NHERF/actin interaction resulted in drastic loss of FP. 

 

Another protein found at the apical surface of podocytes is glomerular epithelial 

protein 1 (GLEPP1). It is a podocyte-specific receptor tyrosine phosphatase. 

Structurally, it has a large ectodomain with multiple fibronectin type III repeats, 

a transmembrane domain, and a single cytoplasmic phosphatase active site 

sequence [82]. Podocytes of GLEPP1 deficient mice had an amoeboid instead 

of the typical octopoid structure. These mice showed reduced filtration surface 

area, reduced glomerular nephrin content and reduced glomerular filtration rate 

[83]. To date, cytoplasmic ligand of GLEPP1 has not been identified.  

 

1.3.2 Podocyte slit diaphragm 

The SD is characterized as modified adherens junction with rod-like proteins 

forming a zipper-like structure with a constant width of approximately 40 nm 

[84, 85]. The extracellular portion of the SD is composed of the extracellular 

domains of various transmembrane proteins such as nephrin [86-89], Neph1/2/3 

[90-94], P-cadherin [84], VE-cadherin [84, 95] and FAT [96]. The cytoplasmic 

portion of the SD is composed of non-structural proteins like podocin [97, 98], 

TRPC5/6 [99, 100], CD2AP [101], Nck [102], Par3/Par6/aPKC [103], ZO-1 

[104], dendrin [105], JAM4 [106], densin [107], MAGI-1/2 [108], CASK, 

IQGAP1, αII spectrin, and βII spectrin [109].  

 

Nephrin was the first transmembrane protein identified in the SD through 

positional cloning. Mutation in nephrin gene, NPHS1, was found to be the cause 

of congenital nephrotic syndrome of the Finnish type [87] and reduction or 

altered distribution of nephrin expression was reported in patients with MCNS 

and IgAN [110, 111]. Nephrin has a short intracellular domain, a 

transmembrane domain, and an extracellular domain. The intracellular domain 

is connected to the actin cytoskeleton via CD2-associated protein (CD2AP) 

[101] and Nck proteins [102]. The extracellular domain of nephrin forms the 

“bridge” of the filtration slit through homophilic interaction of nephrin 

molecules from neighbouring FP [112]. Nephrin knockout mice showed 
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podocyte FP effacement, lack SD, massive proteinuria, edema and died within 

a day [113]. 

 

Neph1, Neph2, and Neph3 (also known as filtrin) proteins are structurally 

related to nephrin. Studies showed that nephrin can form heterodimers with 

Neph1 or Neph2, but that Neph1 and Neph2 do not interact with each other 

[114, 115]. Neph1 knockout mice had early postnatal death due to podocyte FP 

effacement and proteinuria [116]. In addition, interaction of Neph1 with nephrin 

caused tyrosine phosphorylation of Neph1 by Fyn and recruitment of Grb2, an 

event that is crucial in Neph1-induced actin polymerization [117]. However, 

functional significance of Neph2 or Neph3 is unknown. 

 

P-cadherin, vascular endothelial cadherin (VE-cadherin or cadherin 5) and 

FAT1 are cadherin proteins which have been localized to the slit diaphragm. P-

cadherin is not indispensable for the functional renal filtration barrier [118] and 

P-cadherin deficient mice showed no kidney abnormalities or function [119]. 

The role of VE-cadherin in the podocyte is still unknown [75]. Fat1 is a large 

protein with 34 tandem cadherin-like repeats and is an important regulator of 

actin dynamics via Ena/VASP interaction [120-122]. Fat1 knockout mice 

caused perinatal death, loss of SD, podocyte FP effacement and proteinuria 

[123]. 

 

Podocin was discovered through positional cloning of the gene mutated in early-

onset steroid resistant nephrotic syndrome [97]. It is a member of stomatin 

family of protein containing a prohibitin homology domain for lipid recognition 

motif. It has a hairpin structure with both ends directed into the cytoplasmic side 

of SD. Studies showed that podocin served as the platform for recruitment of 

CD2AP, nephrin and Neph1 to SD [91, 124]. Podocin was also reported to 

cluster and regulate the ion channel TRPC6 thus enabling SD to act as the 

mechanosensor of the podocyte, to sense and respond to mechanical stimuli 

[125]. In addition to serving as a structural protein of the SD,  podocin was 

reported to also serve as a platform that connects the tight junction proteins to 

the actin cytoskeleton via coxsackievirus and adenovirus receptor (CAR) [126]. 
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Podocin knockout mice had podocyte FP effacement, lacked SD, and developed 

proteinuria and died a few days after birth [127]. 

 

TRPC5 or TRPC6 (transient receptor potential canonical type 5 or 6) are the 

two most extensively studied TRPC-channels in nephrotic syndrome. They 

belong to a member of a family of nonselective cation channels, regulating the 

intracellular calcium concentration in response to the activation of G-protein-

coupled receptors and receptor tyrosine kinases. Gain-of-function mutations in 

the TRPC6 gene have been identified in familial FSGS [99, 128] while no 

mutation has yet been reported for TRPC5 in patients with nephrotic syndrome. 

In acquired forms of kidney disease, gene expression of TRPC6 in patients with 

MCNS and MN was found to be significantly higher as compared to control 

patients. In vitro studies suggested that increased TRPC6 expression resulted in 

reorganization of the podocyte actin cytoskeleton and dysregulation of calcium 

influx [129, 130]. In addition, overexpression of wild-type TRPC6 was shown 

to be sufficient to cause proteinuria in mice [129]. Recent studies of the AT1R-

activated TRPC5 and TRPC6 channels delineated the antagonistic roles of 

TRPC5 and TRPC6 in the regulation of actin dynamics and cell motility in 

podocytes [100]. TRPC5 was shown to specifically activate Rac1; whereas 

TRPC6 specifically activates RhoA. 

 

CD2-associated protein (CD2AP) is an adaptor protein which binds directly to 

nephrin and podocin [101, 124] and also interacts with actin [131], actin-binding 

proteins CapZ [132], cortactin [133], and the α-actinin-modulating protein 

synaptopodin [134], thus completing the signaling pathway from SD to actin 

cytoskeleton in the podocytes. CD2AP knockout mice died due to massive 

proteinuria and exhibited FP effacement [135]. 

 

The Nck proteins (Nck1 and Nck2) composed of an SH2 domain, which can 

interact with phosphotyrosines, and SH3 domains, which can recruit proteins 

involved in the regulation of actin assembly. In podocytes, SH2 domain of Nck 

has been shown to interact with tyrosine phosphorylated nephrin following 

phosphorylation through Fyn, while the SH3 domains of Nck bind to neuronal 
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Wiskott–Aldrich syndrome protein (N-WASP) [102, 136, 137]. N-WASP, in 

turn, activates the Arp2/3 complex, thus linking nephrin with the underlying 

actin. Inactivation of Nck proteins in adult mouse podocytes led to reduced 

phosphorylation of nephrin, proteinuria, glomerulosclerosis, and FP effacement 

[138].  

 

Partitioning defective 3 (Par3), partitioning defective 6 (Par6) and atypical 

protein kinase C (aPKC) constitutes the cell polarity complex of the SD [103]. 

Binding of Par3 to nephrin and Neph1 resulting in recruitment of Par6/aPKC to 

the SD.  

 

Dendrin interacts with nephrin and CD2AP [105] and relocalization of dendrin 

to the nucleus of podocytes enhanced TGF-β1-mediated apoptosis in an 

experimental proteinuric model [139]. 

 

ZO-1 is a tight and adherens junction protein of the MAGUK family shown to 

bind with Neph1/2/3 [140] and cortactin [141] thus connecting the membrane 

proteins at the SD complex to the actin cytoskeleton.  

 

MAGI-1 and -2 serve as a platform for nephrin [108], α-actinin-4 [109] and 

synaptopodin [142]. In addition, MAGI-1 links the actin cytoskeleton to 

junctional adhesion molecule-4 (JAM4) [106, 108]. Densin, CASK, IQGAP1, 

αII- and βII-spectrin have also been reported to be associated with the SD [105, 

107, 109, 143] but their role in podocytes remains to be elucidated.  

 

1.3.3 Podocyte basal membrane domain 

The podocytes are attached to the GBM through transmembrane cell receptors, 

such as integrins, tetraspanins and dystroglycans. The predominant integrin in 

podocytes is α3β1 integrin which interacts with the laminin in GBM [144]. Mice 

with α3-knockout died neonatally due to severe abnormalities in the lung and 

kidney epithelia in which the branching of glomerular capillary loops was 

reduced and the podocytes were unable to form mature FP [145]. Conditional 

knockout of α3-chain or the β1-chain in adult mice both resulted in massive 
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proteinuria within a week, extensive FP effacement and widespread lamination 

with protrusions of the GBM [146-148].  

 

β3-chain binds to integrin-linked kinase (ILK) thus connecting the integrin to 

the cytoskeleton [149]. In addition, ILK also connects the GBM with the SD via 

interaction with nephrin, α-actinin, PINCH, and α-parvin [150, 151]. Podocyte 

specific inactivation of ILK in mice developed proteinuria, FP effacement, 

glomerulosclerosis, and died of renal failure [150, 152]. El-Aouni et al. 

observed thickening of the GBM in the mutant mice followed by abnormal 

distribution of α3-integrins [152]; while Dai et al. showed that ILK form a 

complex with nephrin and α-actinin-4, and mutation in mice resulted in 

redistribution of nephrin and α-actinin-4 [150]. Overexpression of ILK in 

podocytes induced Wnt signaling, decreased expression of CD2AP and P-

cadherin, caused podocyte detachment, proliferation [153].  

 

CD151 is a member of the tetraspanin family which interacts with α3β1 integrin 

[154, 155]. CD151 knockout mice developed proteinuria and also showed 

thickening and splitting of the GBM that preceded podocyte FP effacement 

[146]. 

 

In podocytes, dystroglycans are expressed specifically at the basal membrane 

of the FP [156, 157]. Dystroglycan is a heterodimeric transmembrane protein 

consisting of the α- and β-dystroglycan. The extracellular portion of 

dystroglycans binds to laminin and agrin of the GBM; whereas the cytoplasmic 

region of the dystroglycan is connected to the actin cytoskeleton of FP via 

utrophin. Expression of the α- and β-dystroglycan was shown to be significantly 

reduced in patients with MCNS, but normal in healthy kidneys and FSGS [156].  

 

Recently, podocyte FP basal membrane expression of uPAR was reported in 3- 

and 12-month old diabetic rats [158]. Gene expression of Plaur mRNA which 

encodes uPAR was also shown to be higher in patients with FSGS and diabetic 

nephropathy. Plaur knockout mice were protected from lipopolysaccharide 

(LPS)-induced proteinuria and the protective effect was removed after the 
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reconstitution of Plaur gene in LPS injected Plaur knockout mice. uPAR has 

many ligands [159] which includes the urokinase-type plasminogen activator 

(uPA or urokinase) [160], vitronectin [161], and ανβ3-integrin [162]. In 

podocyte cultures and murine models, uPAR was shown to cause vitronectin 

dependent ανβ3-integrin activation, followed by integrin-mediated activation of 

Rac and Cdc42, resulting in reorganization of the actin cytoskeleton and caused 

proteinuria in mice [158]. Activation of ανβ3-integrin was sufficient to induce 

proteinuria and inhibition of ανβ3-integrin activation had an anti-proteinuric 

effect. Vitronectin was also induced during proteinuria, and vitronectin 

knockout mice were protected from LPS-induced proteinuria. Another study 

identified activated nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) 

as a mediator of uPAR expression and β3-integrin activation in podocytes; and 

cyclosporine A (calcineurin inhibitors clinically used to reduce proteinuria in 

FSGS) interrupted NFATc1:uPAR:β3-integrin signaling and proteinuria [163]. 

 

1.3.4 Actin cytoskeleton of foot processes 

In healthy FP, the actin cytoskeleton is bundled in an highly ordered manner 

that run parallel to the longitudinal axis of FP whereas in effaced FP, these 

parallel actin bundles reorganize to dense network of short, branched actin 

filaments [77]. Other than the cytoplasmic proteins mentioned above that 

connect the membrane proteins from the three domains to the cytoskeleton, α-

actinin-4 and synaptopodin are two actin-associated proteins implicated to play 

an important role in regulating the actin cytoskeleton dynamics in podocytes 

FP.   

 

Mutation in the α-actinin-4 coding gene ACTN4 caused autosomal dominant 

FSGS [164]. Transgenic mice with podocyte specific mutation analogous to that 

affecting a human FSGS family developed proteinuria and had histologic 

features consistent with human ACTN4-associated FSGS [165]. The mutation 

was located to the actin-binding domain of α-actinin-4 which caused increased 

binding affinity to actin and abolished the Ca2+ regulation, resulting in FP 

effacement [166]. One study attributed the phenotype observed in the α-actinin-

4 knockout mice to the reduced adhesion of the mutant podocytes to the GBM 
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which caused shedding of podocytes into the urine resulting in kidney failure 

[167]. 

 

Synaptopodin is a proline-rich, actin-associated protein found in dendritic spine 

apparatus of neurons and podocyte FP [168]. In podocytes, synaptopodin was 

shown to bind α-actinin-4 and regulate its actin-bundling activity in which 

synaptopodin knockout podocytes lacked stress fibers [169]. Other interacting 

partners for synaptopodin include CD2AP (found near SD) [134] and MAGI-1 

(found near SD and also basal membrane domain) [142], connecting the 

signaling cascades of the SD and the basal membrane domain. In addition, 

synaptopodin was also shown to regulate RhoA signaling and cell migration in 

kidney podocytes [170]. Synaptopodin was able to compete with Smurf-1 for 

RhoA binding, thereby protecting RhoA from Smurf-1-mediated ubiquitination 

and subsequent proteasomic degradation, resulting in stress fibers formation and 

podocyte migration. Moreover, studies have shown that cyclosporine A seemed 

to have a direct anti-proteinuric effect on podocytes, by blocking the 

calcineurin-mediated dephosphorylation of synaptopodin thus protecting 

synaptopodin from cathepsin L mediated proteolysis and resulting in 

stabilization of the foot process cytoskeleton and resistance to proteinuria [171]. 

 

1.4. Role of IL-13 in nephrotic syndrome  

IL-13 is an important immunoregulatory protein produced by T-cells and 

dendritic cells [172].  It is a 12kDa protein consisting of 132 amino acids.  The 

human IL-13 gene is located on chromosome 5q31, in the same cluster of genes 

encoding IL-3, IL-4, IL-5, IL-9 and granulocyte-monocyte colony stimulating 

factor (GM-CSF) [173].  The receptor for IL-13 is a heterodimer of IL-13 

receptor α1 chain (IL-13Rα1) and IL-4 receptor α chain (IL-4Rα). IL-13 first 

binds to IL-13Rα1 with moderate affinity, followed by subsequent recruitment 

of IL-4Rα which helps to increase the binding affinity for IL-13 and stabilize 

this high affinity interaction [174, 175]. IL-13 receptor α2 chain (IL-13Rα2) is 

another IL-13R which has a higher binding affinity for IL-13 compared to IL-

13Rα1 [176]. IL-13Rα2 is traditionally considered a decoy receptor that 

regulates IL-13 response [177, 178].  However, recent studies suggested that IL-
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13Rα2 may have a role in signaling. IL-13 was shown to upregulate TGF-β in 

macrophages in an IL-13Rα2-dependent manner. Gene silencing of IL-13Rα2 

led to downregulation of TGF-β production [179].  Another study showed that 

IL-13Rα2 was involved in the immune evasion of tumour in mice [180]. 

 

IL-13 receptors are expressed on human B cells, basophils, eosinophils, mast 

cells, endothelial cells, fibroblasts, monocytes, macrophages, respiratory 

epithelial cells, and smooth muscle cells [181]. However, unlike IL-4, it fails to 

activate T cells since IL-13 receptors are virtually absent on T lymphocytes 

[182, 183]. IL-13 acts through its receptors on the cell surface, activating 

predominately the JAK/STAT pathway [181, 184, 185].  The cytoplasmic 

domains of IL-4Rα/IL-13Rα1 complex interact with tyrosine kinases (Tyk) of 

the Janus kinase (JAK) family. In non-hematopoietic cells, JAK2 is 

phosphorylated and activated instead of JAK3; while in hematopoietic cells, 

JAK3 is required for signal transducer and activator of transcription-6 (STAT6) 

[186]. Phosphorylation of Tyk leads to the recruitment and tyrosine 

phosphorylation of STAT6. Phosphorylated STAT6 migrates into the nucleus 

and binds to consensus sequences in the promoter regions of genes regulated by 

IL-4 and IL-13. Transcription factors c-fos, c-jun, and c-myc have been shown 

to be upregulated by IL-13 [187]. 

 

IL-13 exerts diverse functions on different cell types. It promotes B-cell 

proliferation and immunoglobulin isotype switching to IgE in combination with 

CD40/CD40 ligand costimulation [188]. It also promotes eosinophil survival, 

activation, and recruitment [189-191] activates mast cells and hence contributes 

to IgE priming of mast cells [192].  

 

IL-13 also has important functions on non-hematopoietic cells. It induces 

vascular cell adhesion molecule 1 expression in endothelial cells [193];  

enhances proliferation and cholinergic-induced contractions of smooth muscle 

cells [194]; induces chemokines expression in epithelial cells [195], changes 

mucociliary differentiation and decreases ciliary beat frequency of ciliated 

epithelial cells [196]; and causes goblet cell metaplasia [197-199]. 
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1.4.1 IL-13 as a modulator of monocyte function 

IL-13 is known to be an important modulator of monocyte function. It has been 

shown to induce significant changes in the phenotype and morphology of 

monocytes. It enhances the expression of CD11b, CD11c, CD18, CD29, MHC 

Class II and CD23 [183, 192], whereas it down-regulates the expression of 

CD64, CD16, CD32 and CD14 in a dose-dependent manner [200, 201]. IL-13 

has also been shown to exert its anti-inflammatory activities by inhibiting the 

production of pro-inflammatory cytokines, like IL-12, IL-8, IL-6, TNF-α, IL-

1α and IL-1β, by LPS-activated monocytes [192, 201] and upregulation of anti-

inflammatory molecules like interleukin 1 receptor antagonist (IL-1RA) [202]. 

This may account for the observation that children in nephrotic relapse are more 

susceptible to bacterial infections.  

 

Our laboratory has demonstrated that IL-13 downregulates proinflammatory 

cytokines, IL-8 and TNF-α in LPS-stimulated monocytes from patients with 

MCNS during nephrotic relapses as compared to remission and normal controls 

[203]. This was associated with decreased expression of CD14 and other 

monocyte surface markers, as well as soluble CD14. These results point to a 

major anti-inflammatory effect of IL-13 on monocytes which may place a 

crucial role in the pathogenesis of MCNS. 

 

1.4.2 Role of monocyte/macrophage in nephrotic syndrome 

The function of the monocyte-macrophage system in the pathogenesis of 

nephrotic syndrome has also been evaluated, considering that MCNS is a result 

of a primary immune disturbance, and the irrefutable role of monocytes in the 

host immune system.  

 

Monocytes from SRNS patients with proteinuria were shown to have enhanced 

phagocytosis of opsonized particles and suppressed chemotaxis which might be 

due to the alteration of the monocyte surface receptors and lymphokines [204]. 

In addition, depressed function of Fc-receptors of monocytes and macrophages 

were observed in children with MCNS [205].  



 

20 

 

 

Garin et al. have identified a supernatant factor that caused a significant increase 

in sulfate uptake in rat GBM and they showed that both lymphocytes and 

monocytes were needed for the production of that supernatant factor [206]. 

 

Using reporter podocytes, Takano, Y, et al. showed that bystander macrophages 

and macrophage-derived cytokines IL-1β and TNF-α significantly suppressed 

activity of the nephrin gene promoter in podocytes. The reduced nephrin 

promoter activity was attributed to the activation of the phosphatidylinositol-3-

kinase/Akt pathway [207]. 

  

Whether monocyte deficiency or activation found in MCNS is primary or 

secondary to the postulated T-cell defect in this disease remains to be elucidated.  

 

1.5. Role of IL-13 on podocytes  

As mentioned previously, MCNS is primarily caused by immune disturbance 

characterized by Th2 cytokine bias. However, the mechanism by which this 

observed cytokine imbalance in serum results in subsequent characteristic 

podocyte injury in MCNS is still unknown. Studies have shown that podocytes 

constitutively express functional receptors for cytokines IL-1 [208, 209], IL-4, 

IL-13 [210, 211], IL-10 [210] and TNF-α [212, 213], suggesting that cytokines 

could act directly on podocytes to cause injury. Studies have demonstrated that 

IL-4 and IL-13 increase transcellular ion transport in rat podocyte monolayer 

cultures [211]. Further work revealed that IL-4 and IL-13 induced H+ transport 

in podocytes, thus lowering the pH and affecting the integrity of basal 

membrane matrix by activating the proteolytic enzyme, cathepsin L [214]. 

 

In our experimental rat model of Th2 cytokine-induced MCNS, we have 

demonstrated that overexpression of IL-13 gene resulted in podocyte injury with 

downregulation of nephrin, podocin and dystroglycan and concurrent 

upregulation of B7-1 in the glomeruli [215, 216]. In this experimental model, 

we have demonstrated increased glomerular IL-4Rα and IL-13Rα2 gene 

expression, as well as increased fluorescent signal for IL-4Rα in most of the 
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glomeruli of nephrotic rats, suggesting that IL-13 may act directly on podocytes 

in the glomeruli. In addition, there was a significant correlation between serum 

IL-13 levels and B7-1 expression in the glomeruli of the IL-13 overexpressed 

rats with nephrotic syndrome. The concomitant upregulation of B7-1 expression 

in the glomeruli following IL-13 overexpression suggests a possible pathogenic 

link between IL-13 and podocyte dysfunction. 

 

Studies have suggested a novel role for the costimulatory molecule B7-1 in 

podocytes as an inducible modifier of glomerular permselectivity and 

proteinuria [217, 218]. Podocyte-specific expression of B7-1 has been 

implicated as the final common pathway in the genesis of proteinuria in 

glomerulopathies. In genetic, drug-induced, autoimmune, and bacterial toxin-

induced experimental kidney diseases with nephrotic syndrome, B7-1 

expression in podocytes was upregulated. Following in vitro LPS stimulation, 

podocyte expression of B7-1 was increased with concurrent actin cytoskeleton 

reorganization. B7-1 knockout mice were protected from LPS-induced 

proteinuria, suggesting a functional link between podocyte B7-1 expression and 

proteinuria. Specific urinary CD80 (B7-1) excretion was reported in MCNS 

patients in relapse which was not observed in other glomerular diseases [219, 

220]. In addition, renal biopsy results showed high expression of CD80 in 

glomeruli of MCNS patients in relapse but not MCNS patients in remission or 

FSGS patients. CD80 expression was shown to be co-localized with podocin 

expression in the glomeruli from an MCNS patient in relapse. 

 

1.6. Gaps in current knowledge 

Despite recent advances in our understanding of podocyte biology, we do not 

know the exact pathogenesis of MCNS or why some children require long term 

steroid therapy or even cytotoxic drugs while some do not. There is a large body 

of evidence that immunogenic stimuli interacting with immunoregulatory 

proteins, form the basis for the immunopathogenesis of MCNS. We have 

demonstrated increased T-cell production of IL-13 in MCNS patients in relapse 

[58] as well as downregulation of proinflammatory cytokines, IL-8 and TNF-α 

in LPS-stimulated monocytes from patients with MCNS during nephrotic 
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relapses compared to remission and normal controls [203]. This was associated 

with decreased expression of CD14 and other monocyte surface markers, as 

well as soluble CD14. These results point to a major anti-inflammatory effect 

of IL-13 on monocytes. Whether IL-13-induced monokines acts directly on the 

podocytes to cause foot process loss or activate another cascade of enzymes or 

cytokines to mediate proteinuria remains to be elucidated. 

 

Current research by several groups worldwide has been focusing on the 

mechanism by which disruption in podocyte architecture results in podocyte FP 

effacement and proteinuria. As mentioned above, recent studies have suggested 

a novel role for the costimulatory molecule B7-1 in podocytes as an inducible 

modifier of glomerular permselectivity and proteinuria. Stimulation by LPS 

reorganized the podocyte actin cytoskeleton in vitro, and activation of B7-1 in 

cultured podocytes led to reorganization of vital slit diaphragm proteins [217, 

218].  In fact, increased B7-1 expression on podocytes has been described in the 

different models of nephrotic syndrome, namely genetic (α3β1-integrin 

deficiency), toxic (puromycin and adriamycin-induced) and immunological 

(murine lupus nephritis). Therefore, our results from the IL-13 overexpression 

rat model further strengthen the hypothesis that transient upregulation of B7-1 

could occur in MCNS, resulting in nephrotic-range proteinuria [215, 216], and 

also provide an explanation for the possible link between Th2 cytokine bias and 

MCNS. However, the exact mechanism by which IL-13 interacts with the B7-1 

danger signaling pathway remains an enigma. 

 

1.7. Research hypothesis and scope of thesis 

Our current understanding of the pathogenic mechanism of nephrotic syndrome 

suggests that the podocyte is the main component of the glomerular filter and 

the crucial target in the development and progression of glomerulopathies. In 

fact, the hallmark of nephrotic syndrome is effacement of podocyte foot 

processes (FP) seen on electron microscopy.  

 

Studies attempting to elucidate the underlying pathogenesis of MCNS have 

suggested a Th2 cytokine bias. Our group has previously demonstrated that IL-
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13 gene expression was upregulated in CD4+ and CD8+ T-cells of children with 

MCNS in relapse as well as downregulation of proinflammatory cytokines, IL-

8 and TNF-α in LPS-stimulated monocytes from patients with MCNS during 

nephrotic relapses compared to remission and normal controls. We have, in 

addition, shown that IL-13 overexpression in the rat resulted in podocyte injury 

with downregulation of the slit diaphragm proteins, namely nephrin and 

podocin, with upregulation of glomerular B7-1, inducing a minimal change-like 

nephropathy. In this model, we have also demonstrated increased glomerular 

IL-4Rα and IL-13Rα2 gene expression, as well as increased fluorescent signal 

for IL-4Rα in most of the glomerular podocytes of nephrotic rats, suggesting 

that IL-13 may act directly on podocytes in the glomeruli through a possible 

B7-1 mechanism.  In our preliminary studies, we have also shown that 

glomerular gene expression of toll-like receptor-4 (TLR-4) was significantly 

elevated in the IL-13 overexpressed rats, and also correlated significantly with 

glomerular B7-1 expression.  

 

Therefore, we hypothesize that modulation of podocyte actin cytoskeleton in 

MCNS may possibly be a consequent summative effect of immune mediators 

on podocyte B7-1 expression (Figure 5), namely: 

i) direct IL-13 stimulation; 

ii) indirect signaling by other immune mediators through other ligands or 

receptors such as TLR-4. 

As IL-13 is an important modulator of monocyte/macrophage function, it is 

plausible that the indirect action of IL-13 on podocytes may be mediated via 

monocyte/macrophage polarization with consequent secretion of monokine(s) 

acting on the TLR-4/B7-1 danger signaling, effecting podocyte actin 

cytoskeleton rearrangement. 
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Figure 5: Hypothetical Th2 cytokine bias model of MCNS results from a primary immune 
disturbance.  
IL-13 and/or other immune mediators may directly or indirectly act on podocytes and cause 
podocyte FP effacement, resulting in proteinuria and the nephrotic syndrome. 
 

1.7.1 Objectives of the study 

The primary aim of this project is to investigate the molecular mechanisms by 

which IL-13 downregulates the expression of podocyte-specific proteins 

resulting in proteinuria. The specific objectives are as follows: 

A. In vivo rat model:  

1 To characterize the molecular events in the glomeruli of the IL-13 rat 

model of MCNS using cDNA microarray and identifying differentially 

expressed genes (DEGs) induced by IL-13.   

2 To determine the mechanistic link between IL-13 and B7-1 signaling in 

the rat model using pathway analysis tools. 

3 To validate the microarray results both at the gene transcription level, 

using real-time PCR; and at the protein expression level, using 

immunohistochemistry staining.   

B. In vitro human podocyte cell culture: 

1 To set up a human podocyte cell culture system (gift by Professor Moin 

A. Saleem, University of Bristol) to validate the microarray glomerular 

gene expression results from the in vivo rat model.  

2 To study the direct effect of IL-13 on podocytes. The specific objectives 

are: 
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a) Quantitate the expression levels of IL-13 receptor subunits, B7-1, 

CTLA-4, TLR-4 and SD proteins, in particular, nephrin, podocin and 

dystroglycan at both gene transcription (real-time PCR) and protein 

level (Western blotting); 

b) Examine podocyte morphology, in particular, cytoskeletal changes 

associated with FP effacement using phalloidin staining and viewing 

with confocal microscopy. 

c) Measure RhoA/Rac1 activity levels in association with IL-13 induced 

podocyte actin cytoskeleton rearrangement. 

3 To perform functional study using podocytes transfected with siRNA 

specific to the selected DEGs, to delineate the mechanistic link of IL-13 

mediated podocyte injury downstream of B7-1 activation. The markers 

for podocyte injury used in this functional assay are stated in 2a, b and 

c. 

 

Knowledge of the signaling pathways involved in the pathogenesis of this 

disease may provide us more targeted treatment at the molecular level, allowing 

us to design new therapeutic strategies. Results of this proposed study should 

thus have an important impact on healthcare costs as nephrotic syndrome is one 

of the more important kidney disorders in childhood, as well as an important 

cause of end-stage kidney failure requiring dialysis and transplantation. 
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CHAPTER 2 

MATERIALS & METHODS 

2.1. IL-13 overexpression rat model of MCNS  

All animal studies were approved by the Institutional Animal Care and Use 

Committee of the National University of Singapore. Induction of frank 

nephrotic in rats has been reported before [216]. Six-week-old female Wistar 

rats weighing 150-180g were used in this study. Rats were put in metabolic 

cages 24 hours prior to the electroporation to collect 24-hour urine sample and 

the volume of urine was recorded. Before the electroporation, heparinized blood 

was collected from the ventral artery of the tail using a 23G needle. Rats were 

electroporated every 10 days over a period of 72 days with endotoxin-free, 

purified plasmid DNA injected into the quadriceps of rats. An electric current 

consisting 6 pulses of 20 milliseconds each at 160V was generated using the 

“Electro Square Porator ECM830” (BTX Technologies Inc, NY, USA) and 

delivered through the 10mm 2-Needle Array™ tip (BTX Technologies Inc, NY, 

USA) connected to a 2-Needle Array™ electrode (BTX Technologies Inc, NY, 

USA) [221]. Control rats received 200µg of the pCI (Promega, WI, USA) 

mammalian expression vector and test rats received 200µg of the pCI 

mammalian expression vector cloned with the rat IL-13 gene. Once proteinuria 

develops, the rats were euthanised by overdose of anaesthetic (ketamine 

75mg/kg and xylazine 10mg/kg) via intra-peritoneal injection. Heparinized 

blood was collected via cardiac puncture and kidney cortical tissue was 

harvested for isolation of glomeruli as well as snap-frozen and stored at –80oC 

for further use. Both blood and urine were centrifuged at 3,000rpm for 10 

minutes to obtain plasma and remove sediment respectively. Plasma levels of 

albumin, cholesterol, creatinine and IL-13, and urine albumin concentration 

were measured serially to ensure successful induction of frank nephrosis in rats. 

 

2.2. Plasma IL-13 ELISA  

Plasma level of IL-13 was measured using commercially available Enzyme 

Linked Immuno Sorbent Assay (ELISA) kit (Invitrogen, CA, USA) according 

to the manufacturer’s instructions. Briefly, 50μl of samples, IL-13 standards and 

positive controls were added to the wells, followed by 150μl of a biotinylated 
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secondary monoclonal antibody. Plasma from the IL-13 overexpression rats was 

diluted five times, while the control plasma was used undiluted. After two hours 

incubation, the wells were washed with wash buffer provided to remove excess 

biotinylated antibody. Following 30 minutes incubation with 100μl of 

streptavidin-peroxidase, the wells were washed to remove unbound enzyme and 

100μl of stabilized chromogen (substrate) was added to produce colour signal 

in proportion to the amount of IL-13 bound. The colour development was 

stopped by adding 100μl of stop solution and the intensity of the colour was 

measured using a microplate reader (Bio-Rad Laboratories, Inc, CA, USA) with 

wavelength set at 450 nm. The concentrations of IL-13 in the samples were 

determined from the standard curve, factoring in the dilution. 

 

2.3. Plasma albumin quantification 

Plasma albumin level was determined by bromocresol green (BCG) method 

using a commercial reagent kit (Randox Laboratories, Antrim, UK). Briefly, 5μl 

of samples and standard were added to 1.5ml of BCG reagent and incubated for 

5 minutes at room temperature. Two hundred μl of the reaction mixture was 

transferred to the microtiter plate in duplicate and the absorbance of the reaction 

mixtures was read at 600nm using a microplate reader (Bio-Rad Laboratories, 

Inc, CA, USA) against the reagent blank consisting of 0.9% w/v NaCl in 

distilled water. Concentration of albumin in the sample was calculated by 

multiplying the absorbance ratio of the sample (Asample) and the standard 

(Astandard) with the concentration of the standard provided by the manufacturer 

( Asample

Astandard
×	concentration of standard). 

 

2.4. Plasma cholesterol quantification 

Plasma cholesterol level was determined by an enzymatic endpoint method 

[222] using a commercial reagent kit (Randox Laboratories, Antrim, UK). 

Briefly, 10μl of the samples and standard were added to 1ml of the reagent 

provided and incubated for 10 minutes at room temperature. Two hundred μl of 

the reaction mixture was transferred to the microtiter plate in duplicate and the 

absorbance of the reaction mixtures was read at 500nm using a microplate 

reader (Bio-Rad Laboratories, Inc, CA, USA) against the reagent blank 
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consisting of 0.9% w/v NaCl in distilled water. Concentration of cholesterol in 

the sample was calculated by multiplying the absorbance ratio of the sample 

(Asample) and the standard (Astandard) with the concentration of the standard 

provided by the manufacturer ( Asample

Astandard
×	concentration of standard). 

 

2.5. Plasma creatinine quantification 

Plasma creatinine was determined by the alkaline picrate method [223]. Briefly, 

100μl of samples and standards were added to a mixture containing 100μl of 

ddH2O, 100μl of 5% w/v sodium tungstate in distilled water and 100μl of 2/3N 

sulphuric acid and incubated for 10 minutes at room temperature. The mixture 

was then centrifuged at 6,000rpm for 2 minutes. One hundred μl of the 

supernatant was transferred to the microtiter plate in duplicate. Following 20 

minutes incubation with 20μl of saturated aqueous picric acid and 30μl of 1N 

NaOH for colour development, the absorbance of the reaction mixtures was read 

at 490nm using a microplate reader (Bio-Rad Laboratories, Inc, CA, USA). The 

concentrations of creatinine in the samples were determined from the standard 

curve. 

 

2.6. Urine albumin ELISA  

A direct sandwich ELISA was developed [224] to detect the concentration of 

rat albumin in 24-hour urine samples. One hundred μl of rabbit antiserum to rat 

albumin antibody (MP Biomedicals, CA, USA) diluted 1/2000 was used as the 

coating antibody and 50μl of horseradish peroxidase (HRP)-conjugated sheep 

polyclonal antibody to rat albumin secondary antibody (MP Biomedicals, CA, 

USA) diluted 1/20000 was used as the detecting antibody. o-

Diphenylenediamine (OPD) (MP Biomedicals, CA, USA), in citrate buffer pH 

5.0, was used as the substrate for colour development. Rat albumin standards 

(MP Biomedicals, CA, USA) of known concentrations were included in each 

assay. Endpoint absorbance was read at 490nm by a microplate reader (Bio-Rad 

Laboratories, Inc, CA, USA). The total amount of albumin excreted in 24-hour 

urine was calculated by multiplying the concentration of albumin (mg/ml) with 

the total volume (ml) of 24-hour urine sample. (Appendix 2.1) 

 



 

29 

 

2.7. Isolation of glomeruli by graded sieving technique  

Glomeruli were isolated from kidney cortical tissue using graded sieving 

technique [225]. The cortical area of the kidney was cut into small pieces and 

pressed through a stainless steel sieve (W.S. TYLER Industrial Group, OH, 

USA) with a sieve diameter of 75μm with a spatula. The tissue was rinsed off 

with ice-cold 1x Hank’s balanced salt solution (HBSS) (Gibco®, Invitrogen Life 

Technologies, CA, USA) to a petri dish placed underneath the sieve. The filtrate 

collected was then passed through a 70μm nylon sieve (Falcon™, BD 

Biosciences, CA, USA) and the filtrate was collected in a 50ml collection tube. 

Glomeruli and large tubular tissue fragments were retained on the nylon sieve 

while red blood cells (RBC) and smaller tissue fragments passed through. The 

70μm nylon sieve was then inverted onto a new 50ml collection tube and the 

glomeruli washed down to the collection tube with 1x HBSS. Glomeruli 

obtained from the graded sieving technique were usually over 95% pure with 

minimal contamination from tubular epithelial cells. 

 

2.8. RNA extraction using TRIzol® reagent 

Total RNA was extracted by TRIzol® reagent (Invitrogen Life Technologies, 

CA, USA). Tissue or cells were lysed in 1ml of TRIzol® reagent and incubated 

for 5 minutes at room temperature for complete dissociation of nucleoprotein 

complexes. Two hundred μl of chloroform (Fisher Scientific, MA, USA) was 

then added per 1ml of TRIzol® reagent and the mixture was shaken vigorously 

for 15 seconds and incubated at room temperature for 3 minutes. The samples 

were then centrifuged at 12000g for 15 minutes at 4oC. Following 

centrifugation, the mixture separated into a lower red, phenol-chloroform phase, 

an interphase, and a colorless upper aqueous phase. RNA remained in the 

aqueous phase. The aqueous phase was transferred to a clean tube and 500μl of 

isopropanol (Fisher Scientific, MA, USA) was added per 1ml of initial TRIzol® 

reagent to precipitate the RNA. Samples were incubated at room temperature 

for 10 minutes and centrifuged at 12000g for 10 minutes at 4oC. The RNA pellet 

was then washed once with 1ml of 75% ethanol (Merck, NJ, USA) per 1ml of 

initial TRIzol® reagent and centrifuged at 7500g for 5 minutes at 4oC. The RNA 

pellet was then air dried briefly and dissolved with RNase-free water. 
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Concentration of RNA was measured using NanoDrop 1000 Spectrophotometer 

(NanoDrop products, Thermo Scientific, DE, USA). 

 

2.9. RNA cleanup using RNeasy Mini-kit  

Glomerular RNA for microarray was further purified using RNeasy Mini-kit 

(QIAGEN GmbH, Hilden, Germany) according to the manufacturer’s 

instructions. (Appendix 2.2)  

 

2.10. Quantification and quality analysis of RNA using Bioanalyzer 6000 

Nano kit (for microarray) 

The integrity of the total glomerular RNA was analysed by measuring the ratio 

of 28s/18s and the RIN number. The samples were processed using the 

Bioanalyzer 6000 Nano kit (Agilent Technologies, Inc, Waldbronn, Germany) 

and analysed using the Bioanalyzer 2100 (Agilent Technologies, Inc, 

Waldbronn, Germany). Briefly, RNA samples with concentration ranging from 

25 to 500ng/μl were used. For gel preparation, 550μl of RNA 6000 Nano gel 

matrix was added into a spin filter and centrifuged at 1,500g for 10 minutes at 

room temperature. Sixty five μl of filtered gel was then aliquoted to 0.5ml 

RNase-free microcentrifuge tube. For gel-dye mix preparation, 1μl of the RNA 

6000 Nano dye concentrated was added to the 65μl aliquot of filtered gel, mixed 

by vortexing and centrifuged at 13,000g for 10 minutes at room temperature. 

Loading of the gel-dye mixture was done on the chip priming station by adding 

9μl of gel-dye mix in the well mark , plunging the syringe in 1ml volume, 

waiting for exactly 30s before releasing the clip and pulling back the plunger 

back to the 1ml position. This is followed by adding 9μl of gel-dye mix in the 

well marked . Five μl of RNA 6000 Nano marker was then added to all the 

sample wells as well as the ladder well marked . The reaction mix was 

completed by adding 1μl of prepared ladder in the well marked  and 1μl of 

sample in the sample wells. The mixture was vortexed by placing the chip on 

the IKA vortexer for 1 minute at 2,400rpm and the chip was read using Agilent 

2100 bioanalyzer within 5 minutes. 
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2.11. Reverse Transcription to Synthesize First Strand cDNA using 

Illumina® TotalPrep RNA Amplification Kit (for microarray) 

Glomerular RNA sample was diluted to 300ng in final volume of 11ul with 

nuclease free water. Reverse Transcription Master Mix, consisting of 1μl of T7 

Oligo (dT) primer, 2μl of 10x First Strand Buffer, 4μl of dNTP Mix, 1μl of 

RNase Inhibitor and 1μl of ArrayScript per reaction, was added to the RNA 

sample. The reactions were run at 42oC for 2 hours followed by cooling at 4oC. 

 

2.12. Second strand cDNA sysnthesis using Illumina® TotalPrep RNA 

Amplification Kit (for microarray) 

Second Strand Master Mix, consisting of 63μl of nuclease free water, 10μl of 

10x Second Strand Buffer, 4μl of dNTP mix, 2μl of DNA polymerase and 1μl 

of RNase H per reaction, was added to the first strand cDNA sample. The 

reactions were run at 16oC for 2 hours followed by cooling at 4oC (for less than 

1 hour). The reactions should proceed to cDNA purification immediately or 

store at -20oC. 

 

2.13. cDNA Purification using Illumina® TotalPrep RNA Amplification 

Kit (for microarray) 

The cDNA was transferred into a 1.5ml microcentrifuge tube containing 250μl 

of cDNA binding buffer. The mixture was then transferred to a cDNA filter 

cartridge and centrifuged at 10,000g for 1 minute. This was followed by 

washing with 500μl of wash buffer and centrifuged at 10,000g for 1 minute. The 

filter cartridge was then transferred to a cDNA elution tube. The cDNA was 

eluted in two steps, first with 10μl of nuclease free water (pre-heated to 55oC), 

incubated at room temperature for 2 minutes and centrifuged at 10,000g for 1.5 

minutes, followed by another 9μl of nuclease free water (pre-heated to 55oC), 

centrifuged at 10,000g for 2 minutes and collected in the same collection tube. 

 

2.14. cRNA synthesis using Illumina® TotalPrep RNA Amplification Kit 

(for microarray) 

In Vitro Transcription Master mix, consisting of 2.5μl of T7 10x Reaction 

buffer, 2.5μl of T7 Enzyme Mix and 2.5μl of Biotin-16-UTP per reaction, was 
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added to the cDNA sample. The reaction was run at 37oC for 14 hours and then 

stopped by adding 75μl of nuclease free water to bring to final volume of 100μl. 

 

2.15. cRNA purification using Illumina® TotalPrep RNA Amplification 

Kit (for microarray) 

The cRNA was transferred into a 1.5ml microcentrifuge tube containing 350μl 

of cRNA binding buffer followed by 250μl of absolute ethanol. The mixture 

was then transferred to a cRNA filter cartridge and centrifuged at 10,000g for 1 

minute. This was followed by washing with 650μl of wash buffer and 

centrifuged at 10,000g for 1 minute. The filter cartridge was then transferred to 

a cRNA elution tube. The cRNA was eluted in two steps, first with 50μl of 

nuclease free water (pre-heated to 55oC), incubated at room temperature for 2 

minutes and centrifuged at 10,000g for 1.5 minutes, followed by another 30μl 

of nuclease free water (pre-heated to 55oC), centrifuged at 10,000g for 1.5 

minutes and collected in the same collection tube. The concentration of the 

cRNA was measured using NanoDrop 1000 Spectrophotometer (NanoDrop 

products, Thermo Scientific, DE, USA). Samples with concentration less than 

150ng/μl was concentrated by vacuum centrifugation. 

 

2.16. cRNA hybridization and array scanning 

Hybridization of 750ng of cRNAs was carried out for 18.5 hours on Sentrix® 

BeadChip Array RatRef-12 v1 (Illumina®, CA, USA) according to the 

manufacturer’s protocol. Array washing was performed followed by staining 

and scanning with BeadArray Reader (Illumina®, San Diego, CA, USA) using 

scan factor 1.5, PMT 531. (Appendix 2.3) 

 

2.17. Microarray analysis 

The raw intensity values of the array were extracted with background 

subtraction via BeadStudio (Illumina®, CA, USA) for analysis. The raw data 

was preprocessed to correct unreliable intensities for each array. The intensities 

with detection p-values greater than 0.05 were considered as unreliable and 

replaced by the intensity with detection p-value equal to 0.05. The preprocessed 

data was normalized by the Cross-Correlation method [226]. Differentially 
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expressed genes (DEGs) were selected based on the criteria of fold change 

greater than 1.6, coefficient of variance less than 0.7 and t-test p<0.05. 

Clustering of samples was generated with Cluster and TreeView software [227]. 

Gene ontology (GO) analysis was done using DAVID [228, 229] and pathway 

analysis were carried out using Ingenuity Pathway Analysis (Ingenuity, CA, 

USA) and MetaCoreTM (GeneGo Inc, MI, USA). 

 

2.18. Real-time PCR  

Single-stranded cDNA was synthesized from 150ng of total RNA using the 

Superscript III First-Strand Synthesis System for RT-PCR (Invitrogen Life 

Technologies, CA, USA), according to the manufacturer’s instructions 

(Appendix 2.4). Quantitative real-time PCR was performed using the 

LightCycler® 480 SYBR Green I Master (Roche, Germany). Briefly, the real-

time PCR was performed in a final volume of 10µl reaction mixture containing 

1µM each of the primers, 5µl of master mix, 1µl of PCR grade water and 2µl of 

cDNA. The thermal cycling conditions consisted of one cycle of 10 minutes at 

95ºC, 45 cycles of 5 seconds at 95ºC, 10 seconds at 58ºC, and 20 seconds at 

72ºC, followed by melting curve analysis and cooling to 40ºC. Standard curves 

were created for each PCR run using serial dilutions of plasmid standards that 

were cloned with the PCR products generated by their respective primers 

(Appendix 2.5). All samples were run in duplicates and copy number for each 

sample was determined from the respective standard curve. Results were 

expressed as an index of the housekeeping gene GAPDH. 

 

2.19. Protein expression study using immunohistochemical technique 

Formalin-fixed, paraffin-embedded kidney tissue was used for detection of vav1 

in the glomeruli using LSAB2 system-HRP (DakoCytomation, Glostrup, 

Denmark). The tissue sections were dewaxed and rehydrated through alcohol 

by going through incubation with two changes of xylene (J.T. Baker® 

Chemicals, Avantor Performance Materials, PA, USA) for 10 minutes each, two 

changes of absolute ethanol (Merck, NJ, USA) for 2 minutes each, followed by 

95% ethanol for 2 minutes and 70% ethanol for 2 minutes. The sections were 

then washed with tap water and incubated with peroxidase for 5 minutes. 
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Following avidin and biotin (DakoCytomation, Glostrup, Denmark) activity 

blocking for 10 minutes each, as well as antigen retrieval with proteinase K 

(DakoCytomation, Glostrup, Denmark) for 5 minutes, sections were 

sequentially incubated with rabbit anti-vav1 (1/50) (Bioworld Technology, Inc, 

MN, USA or Sigma-Aldrich, MO, USA), or mouse anti-synaptopodin (neat) 

(USBiological, MA, USA) primary antibody for 10 minutes, biotinylated goat 

anti-rabbit IgG for 10 minutes, and Streptavidin-HRP for 10 minutes. Staining 

was completed after incubation with 3-3’ diaminobenzine (DAB) Substrate-

Chromogen which produced brown colour precipitation at the antigen site. 

Nuclei were counterstained using Mayer’s hemalum (Merck, NJ, USA) for 1 

minute and blued in 0.05% aqueous ammonia solution (Merck, NJ, USA) for 1 

minute. The sections were dehydrated and cleared by going through incubation 

with 70% ethanol for 1 minute, 95% ethanol for 1 minute, two changes of 

absolute ethanol for 1 minute each and two changes of xylene for 2 minutes 

each. The sections were then mounted with cover slip using DEPEX mounting 

medium (BDH Chemicals, VWR, PA, USA). 

 

2.20. Protein expression study using Western blotting technique 

Protein lysate of 40ug were separated using 12% sodium dodecyl sulfate (SDS)-

polyacrylamide gel and transferred onto a polyvinylidene fluoride (PVDF) 

membrane. Membrane was blocked with 5% non-fat milk for 1 hour and probed 

with the following primary antibodies: rabbit anti-GAPDH (1/10,000) (Sigma-

Aldrich, MO, USA); rabbit anti-vav1 (phospho Y174) (1/2,000) (Bioworld 

Technology, Inc, MN, USA); rabbit anti-vav1 (1/800) (Proteintech Group, Inc, 

IL, USA); rabbit anti-B7-1 (1/3,000) (Epitomics, Inc, CA, USA); and rabbit 

anti-IL-13Rα2 (1/1000) (Proteintech Group, Inc, IL, USA). Following 

incubation with donkey anti-rabbit IgG HRP-conjugated secondary antibodies 

(Santa Cruz Biotechnology, CA, USA), blots were developed using Lumina 

Forte Western HRP Substrate (Merck Millipore, MA, USA) and quantified 

using ImageJ software (National Institute of Health, MD, USA). 
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2.21. Culture of human podocytes 

Conditionally immortalized human podocytes (kind gift from Dr. Moin Saleem, 

University of Bristol, UK) [230, 231] were cultured on 100mm type I collagen-

coated petri dishes (Iwaki, Japan) in complete medium consisting of RPMI 1640 

with L-glutamine (Gibco®, Invitrogen Life Technologies, CA, USA), 10% heat-

inactivated Fetal Bovine Serum (Gibco®, Invitrogen Life Technologies, CA, 

USA), 100units/ml Penicillin/Streptomycin solution (Gibco®, Invitrogen Life 

Technologies, CA, USA), ITS cocktail (Sigma-Aldrich, MO, USA) of 10μg/ml 

insulin, 5.5μg/ml of transferrin and 5ng/ml of sodium selenium.  The cells were 

grown at a permissive temperature of 33ºC with 5% CO2. Complete medium 

was changed every two days and cells were observed everyday under the light 

microscope. Upon achieving 90% confluency, the cells were thermoshifted to 

37ºC for differentiation. 

 

Briefly, the culture medium was removed and the culture dishes were washed 

twice with 1xPBS. The cells were then incubated with 1ml of 0.25% of trypsin-

ethylenediaminetetraacetic acid (trypsin-EDTA) solution at 37ºC for 3 minutes. 

Trypsin-EDTA activity was stopped by adding 10ml of complete medium. Cells 

were splited 1/5 and seeded to new petri dishes at a non-permissive temperature 

of 37ºC with 5% CO2  for up to 14 days to allow for differentiation. Fully 

differentiated cells were stimulated with IL-13 (20ng/ml) (R&D Systems, MN, 

USA) for 1 to 48 hours. Unstimulated cells were included as the baseline 

control. Changes in gene expression were assessed using real-time PCR; 

changes in protein expression were analysed using Western blotting; and 

changes in the organization of the actin cytoskeleton were observed after 

phalloidin staining. 

 

2.22. Transfection of human podocytes with sequence specific siRNA 

Differentiated cells were transfected with siRNA specific for vav1 (target 

sequence: 5’-CAGGTGGAGTCAGCCAGCAAA-3’; sense strand: 5’-

GGUGGAGUCAGCCAGCAAATT-3’; antisense strand: 5’-

UUUGCUGGCUGACUCCACCTG-3’) (QIAGEN GmbH, Hilden, Germany). 

Cells transfected negative control siRNA were included as negative control.  
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Briefly, conditionally immortalized human podocytes were cultured at 33oC and 

shifted to 37oC for differentiation for 10 to 14 days. Sequence specific siRNA 

was diluted in serum-free culture medium to final concentration of 6nM before 

adding 4% (v/v) transfection reagent (INTERFERin™, polyplus transfection, 

NY, USA). The transfection cocktail was incubated at room temperature for 10 

minutes to allow complex formation and then added dropwise to fully 

differentiated cells. Cells were then incubated at 37ºC with 5% CO2 for 24 hours 

before stimulation with 20ng/ml of IL-13 for 24 (for RNA analysis) or 48 hours 

(for protein analysis). 

 

2.23. Immunofluorescence staining of podocytes 

Cells were cultured on collagen-coated coverslips (Iwaki, Japan), fixed with 4% 

paraformaldehyde (Merck, NJ, USA) for 10 minutes, permeabilized with 0.3% 

w/v Triton-X100 (Bio-Rad Laboratories, Inc, CA, USA) in 1xPBS for 3 

minutes, and blocked with 5% w/v BSA (Sigma-Aldrich, MO, USA) in 1xPBS 

for 30 minutes. Cells were stained with following antibodies: rabbit anti-vav1 

(1/50) (Sigma-Aldrich, MO, USA or Abcam, Cambridge, UK) for 1 hour at 

room temperature and secondary antibody of goat polyclonal to rabbit IgG-

FITC (1/200) (Abcam, Cambridge, UK) for 30 minutes at room temperature; or 

FITC-conjugated phalloidin (1/80) (Sigma-Aldrich, MO, USA) for 1 hour at 

room temperature and counterstained nucleus with 4’6-diamidino-2-

phenylindole (DAPI) (1/1000) (Sigma-Aldrich, MO, USA) for 5 minutes. 

Images were taken at randomly selected fields using a confocal microscope 

(Olympus FluoView FV1000, Olympus, Tokyo, Japan). 

 

2.24. Cortical F-actin score index 

A cortical F-actin score index was derived as an indicator of the degree of 

cytoskelal rearrangement.  Cortical F-actin score index was determined from at 

least three independent experiments [232]. In each experiment, at least three 

images were taken blindly from each culture condition. The F-actin cytoskeletal 

reorganization for each cell was scored on a scale ranging from 0 to 3 based on 

the degree of cortical F-actin ring formation (score = 0, no cortical F-actin, 
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normal stress fibers; score = 1, cortical F-actin deposits below half of the cell 

border; score = 2, cortical F-actin deposits exceeding half of the cell border; 

score = 3, complete cortical ring formatting and/or total absence of central stress 

fiber). A minimum of 15 cells were examined from each culture condition in 

each independent experiment, and the cortical F-actin score index for is the 

average score of the counted cells±SEM. 

 

2.25. Podocyte cell culture treatment for RhoA and Rac1 assays 

Differentiated podocytes were cultured on 100mm type I collagen coated dish 

(Iwaki, Japan) and serum starved for 24 hours to inactivate the endogenous 

RhoA activity. Serum starved cells were then incubated with IL-13 (20ng/ml) 

(R&D Systems, MN, USA) for 5, 10, 20 and 30 minutes. Unstimulated 

podocytes were used as baseline control. Each specific time point was first 

completed before proceeding to the next time point so as to allow rapid 

processing of each single time point and hence minimizing changes in signal 

over time. Following the stimulation, culture dishes were placed on ice and 

washed with 10ml of ice cold 1xPBS. Cells were then lysed in 250µl of G-

LISA® Lysis Buffer and the lysate was clarified for 2 minutes at 14,000rpm, 

4°C. Aliquots of lysate for protein quantification, G-LISA, total Rho and Rac1 

assays were snap-frozen in liquid nitrogen and stored at -80oC for further 

experiments. 

 

2.26. RhoA activation assay 

Active RhoA was measured using G-LISA® RhoA Activation Assay Biochem 

KitTM (Cytoskeleton, Inc, CO, USA) according to the manufacturer’s 

instructions and normalized against total RhoA levels (refer to 2.27) 

(Cytoskeleton, Inc, CO, USA) in the cell lysate for accurate comparison of 

RhoA activity among samples. Protein lysate was equalized with Lysis Buffer 

and equal volume of Binding Buffer was added to the lysate. Fifty μl of 

equalized cell lysate samples, Lysis Buffer blank control and RhoA positive 

control were added separately to the wells coated with Rho-GTP-binding 

protein. The plate was placed on MicroMix 5 shaker (DPC Biermann GmbH, 

Bad Nauheim, Germany) at 390rpm, 4°C for 30 minutes. Active, GTP-bound 



 

38 

 

Rho in the cell lysates were bound to the wells. After incubation, the wells were 

washed twice with 200μl of Wash Buffer to remove the inactive GDP-bound 

Rho. Each well was incubated with 200μl of Antigen Presenting Buffer at room 

temperature for exactly 2 minutes and then washed thrice with 200μl of Wash 

Buffer. This was followed by sequential incubation of each well with 50µl of 

diluted anti-Rho primary antibody (1/250) and diluted HRP-conjugated 

secondary antibody (1/62.5) on MicroMix 5 shaker at room temperature for 45 

minutes each. Each incubation was followed by three washes with 200μl of 

Wash Buffer. Fifty μl of HRP detection reagent was added for color 

development and stopped after 15 minutes by adding 50μl of HRP stop solution. 

The intensity of the colour was measured using a microplate reader (Bio-Rad 

Laboratories, Inc, CA, USA) with wavelength set at 490nm. The amount of 

active RhoA in the samples was determined from the Rho control protein which 

is at 1ng with linear OD from 0.05 to 2ng. 

 

2.27. Total Rho assay 

Total RhoA in the samples was measured using Total RhoA ELISA KitTM 

(Cytoskeleton, Inc, CO, USA) according to the manufacturer’s instructions. 

Briefly, 50μl of equalized cell lysate samples, RhoA standard and Lysis Buffer 

blank control were added separately to the wells coated with anti-Rho Igγ 

antibody which has high affinity to all Rho isotypes. The plate was incubated 

for 2 hours at room temperature, followed by washing with 200μl of Wash 

Buffer and incubation with 200μl of Antigen Presenting Buffer at room 

temperature for exactly 2 minutes. This was followed by sequential incubation 

of each well with 50µl of diluted anti-RhoA primary antibody (1/2000) and 

diluted HRP-conjugated secondary antibody (1/250) at room temperature for 1 

hour each. Each incubation was followed by three washes with 200μl of Wash 

Buffer. Eighty μl of HRP detection reagent was added for color development 

and stopped after 20 minutes by adding 80μl of 1.8M sulfuric acid. The intensity 

of the colour was measured using a microplate reader (Bio-Rad Laboratories, 

Inc, CA, USA) with wavelength set at 490nm. The amount of RhoA in the 

samples was determined from the standard curve. 
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2.28. Rac1 activation assay 

Active Rac1 was measured using G-LISA® Rac1 Activation Assay Biochem 

KitTM (Cytoskeleton, Inc, CO, USA) according to the manufacturer’s 

instructions and normalized against total protein concentration. Briefly, 50μl of 

equalized cell lysate samples, Lysis Buffer blank control and Rac1 positive 

control were added separately to the wells coated with Rac-GTP-binding 

protein. The plate was placed on MicroMix 5 shaker (DPC Biermann GmbH, 

Bad Nauheim, Germany) at 390rpm, 4°C for 30 minutes. Active, GTP-bound 

Rac1 in the cell lysates were bound to the wells. After incubation, the wells were 

washed twice with 200μl of Wash Buffer to remove the inactive GDP-bound 

Rac1. Each well was incubated with 200μl of Antigen Presenting Buffer at room 

temperature for exactly 2 minutes and then washed thrice with 200μl of Wash 

Buffer. This was followed by sequential incubation of each well with 50µl of 

diluted anti-Rac1 primary antibody (1/50) and diluted HRP-conjugated 

secondary antibody (1/100) on MicroMix 5 shaker at room temperature for 45 

minutes each. Each incubation was followed by three washes with 200μl of 

Wash Buffer. Fifty μl of HRP detection reagent was added for color 

development and after 20 minutes by adding 50μl of HRP stop solution. The 

intensity of the colour was measured using a microplate reader (Bio-Rad 

Laboratories, Inc, CA, USA) with wavelength set at 490nm. The amount of 

active Rac1 in the samples was determined from the Rac1 control protein which 

is at 2ng with linear OD from 1 to 8ng. 

 

2.29. Statistical analysis 

Statistical analysis was performed using SPSS software (version 17.0 for 

Windows©, SPSS Inc, Ill, USA). Differences between groups were determined 

using the Mann-Whitney test, where p < 0.05 was considered significant. All 

values were expressed in mean ± SEM (standard error mean). 
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CHAPTER 3 

DELINEATING THE MOLECULAR MECHANISM OF IL-13 INDUCED NEPHROTIC 

SYNDROME IN RAT MODEL OF MCNS 

3.1. Introduction 

MCNS is the most common cause of significant morbidity amongst the 

childhood glomerulonephritides. However, its pathogenesis is still unknown. 

Studies attempting to elucidate the underlying pathogenesis have suggested a 

Th2 cytokine bias. Our group has previously demonstrated that IL-13 gene 

expression was upregulated in CD4+ and CD8+ T-cells of children with MCNS 

in relapse [58]. Moreover, IL-13 overexpression in the rat resulted in podocyte 

injury with downregulation of the slit diaphragm proteins, namely nephrin and 

podocin, inducing a minimal change-like nephropathy [215, 216]. In this model, 

increased glomerular IL-4Rα and IL-13Rα2 gene expression, as well as 

increased fluorescent signal for IL-4Rα were demonstrated in most of the 

glomerular podocytes of nephrotic rats, suggesting that IL-13 may act directly 

on podocytes in the glomeruli.  

 

Current understanding of the pathogenetic mechanism of nephrotic syndrome 

suggests that the podocyte is the main component of the glomerular filter and 

the crucial target in the development and progression of glomerulopathies [233-

235]. In fact, one of the hallmarks of nephrotic syndrome is the effacement of 

podocyte FP [236]. Recent studies have suggested a novel role for the 

costimulatory molecule B7-1 in podocytes as an inducible modifier of 

glomerular permselectivity and proteinuria [217, 218]. In genetic, drug-induced, 

autoimmune, and bacterial toxin-induced experimental kidney diseases with 

nephrotic syndrome, B7-1 expression in podocytes was upregulated. In our IL-

13 overexpression rat model of MCNS, upregulation of B7-1 expression was 

also demonstrated in the glomeruli, and this correlated strongly with serum IL-

13 levels. 

 

We therefore hypothesized that IL-13 and/or other Th2 cytokines could act 

through IL-13-induced B7-1 danger signaling, thus causing podocyte 

effacement and proteinuria. 
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3.2. Aim of Chapter 

In this chapter, we aimed to investigate the molecular mechanism by which IL-

13 downregulates the expression of podocyte-specific proteins via B7-1-danger 

signaling, resulting in massive proteinuria. The specific objectives are to: 

1 Characterize the molecular events in the glomeruli of the IL-13 rat 

model of MCNS using cDNA microarray and identifying differentially 

expressed genes (DEGs) induced by IL-13.   

2 Determine the mechanistic link of IL-13 and B7-1 signaling in this rat 

model of MCNS using pathway analysis tools. 

3 To validate the microarray results in the glomerular RNA using real-

time PCR.   
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3.3. Results 

3.3.1 Phenotype of rats used for microarray analysis 

Serum IL-13 levels in IL-13-overexpressed rats were significantly higher than 

control rats (788±290 vs. 3.50±1.96 pg/ml, p=0.002). The IL-13-overexpressed 

rats compared to control rats, showed minimal change-like nephropathy 

characterized by increased proteinuria (10000±4800 vs. 286±44.8 ug/24hr, 

p=0.002), hypoalbuminemia (25.0±2.51 vs. 44.7±2.67 g/L, p=0.002), 

hypercholesterolemia (7.23±1.23 vs. 1.66±0.07mmol/L, p=0.002) (Figure 6). 

No significant difference was detected in the serum creatinine levels. (Appendix 

3.1) 

 
Figure 6: Biochemistry profile of rats used in microarray analysis. 
Overexpression of IL-13 in rats resulted in proteinuria, hypoalbuminemia and 
hypercholesterolemia. Asterisk indicates statistically significant differences (p<0.05). 
 

3.3.2 Qualitative measurement of glomerular RNA 

RNA samples used in this microarray study consisted of RNA Integrity Number 

(RIN) values of more than six (Figure 7). The RIN was developed by Agilent 

Technologies to standardize the interpretation of RNA integrity, taking into 

account the entire electrophoretic trace. It has a numbering system from 1 to 10, 

with 1 being the most degraded profile and 10 being the most intact profile.  
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Figure 7: Electropherogram summary of a glomerular RNA sample.  
Figure showed one of the electropherograms for the glomerular RNA used in the microarray. 
Ribosomal RNA ratio (28s/18s) and RIN were stated below the electropherogram. 
 

3.3.3 Glomerular RNA transcriptional profile of IL-13 overexpression rat 

model of MCNS 

Transcriptional profile of the glomeruli in the IL-13 overexpression rats showed 

a distinct regulation pattern. Of the 22,523 genes analyzed in the IL-13-

transfected rats, 1322 genes showed differential regulation of at least 1.6-fold 

compared to control rats. These differentially expressed genes (DEGs) were 

hierarchically clustered into low (green) to high (red) expression level (Figure 

8). Of the 1322 DEGs, 847 (64.1%) genes were down-regulated (with a 

maximum fold change of 6.88) and 475 (35.9%) genes were up-regulated (with 

a maximum fold change of 15.2). 
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Figure 8: Hierarchy clustering of the 1322 DEGs. 
The 1322 genes that were differentially regulated in the glomeruli of the IL-13-transfected rats 
compared to control rats were hierarchically clustered. Expression was indicated by a colour 
scale from low (green) to high (red). C indicates biological replicate for control rats, and GII 
indicates biological replicate for IL-13 overexpression rats. 
 
Functional annotation clustering showed that these DEGs were principally 

related to vascular system development, cell adhesion/migration, cellular 

components, immune response, actin cytoskeleton, neuron development and 

protein binding (Table 3). The full list of DEGs is available at Appendix 3.2.  
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Table 3: DEGs were characterized according to their biological process classification 
using Gene Ontology analysis.  

Functional Annotation Cluster Enrichment score 

Vascular system development 9.95 

Cell adhesion 8.00 

Cellular component 6.63 

Cell migration 6.42 

Extracellular matrix 6.31 

Immune response 5.23 

Contractile fibre component 5.20 

Actin cytoskeleton 5.06 

Neuron development 4.84 

Protein binding (SH3 domain) 4.46 

 

A list of podocyte related genes known to be important for the structure and 

function of podocytes was compiled from studies related to podocytes [77, 237-

239] and 201 (15.2%) DEGs fell into this category (Appendix 3.3).  Of the 201 

DEGs, 173 (87.1%) genes were down-regulated 1.6-fold in comparison to 

control rats, with a profile carrying the characteristic signature of podocyte 

injury.  Eleven genes were selected and analyzed using real-time PCR to 

confirm the microarray results. There was good agreement between the real-

time PCR data and the microarray data, with confirmation of the up- or down-

regulation of each gene and the fold change was also of a comparable magnitude 

(Figure 9).  
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Figure 9: Microarray validation using real-time PCR quantification. 
Eleven genes were selected and analyzed using real-time PCR to confirm the microarray results. 
Downregulated genes were arbitrarily assigned a negative value. For real-time PCR, gene 
expression levels were normalized using GAPDH and fold change was calculated using formula 
2ΔΔCt (where ΔΔCt was converted to an absolute value). Results were presented as fold change 
± SEM. Asterisk (*) for real-time PCR data indicates significant difference with p < 0.05, 
between the ΔCt of control and IL-13 overexpression rats. The pattern of transcript abundance 
detected for these genes in the array and in real-time PCR showed nearly identical expression 
profiles. BMD (basal membrane domain), AMD (apical membrane domain). 
 

Decreased gene expression levels of podocyte slit diaphragm molecules namely 

kin of IRRE like 2 (Kirrel2 or NEPH2) and cadherin 11 (cdh11) were seen in 

the IL-13-overexpressed rats, as well as actin cytoskeleton related molecules 

namely NCK adaptor protein 2 (Nck2), membrane associated guanylate kinase, 

WW and PDZ domain containing 2 (Magi2), α-catenin (Ctnnal1) and α-actinin-

4 (Actn4). Additionally, downregulation of podocyte basal and apical 

membrane domain protein complex molecules, namely α3 integrin (Itga3) and 

protein tyrosine phosphatase, receptor type, O (Ptpro or GLEPP1) respectively, 

and linkage molecule Ezrin (Ezr), were demonstrated.  However, the gene 

expression of junb was shown to be highly upregulated (3.85-fold) in the 

glomeruli of the IL-13-overexpressed rats.  

 

The other highly upregulated gene (2.49-fold) was vav1 guanine nucleotide 

exchange factor (vav1) whose function in the kidney has not been previously 
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described. Vav2 and vav3 gene expression were not differentially regulated in 

the glomeruli of IL-13 overexpressed nephrotic rats. 

   

3.3.4 Pathway analysis of the differentially regulated genes in IL-13 

overexpressed rat model 

MetaCoreTM pathway analysis of the 1322 DEGs showed that the top pathway 

involved was cytoskeleton remodeling. The genes which were differentially 

regulated in this pathway were summarized in Table 4, in which vav1 showed 

the greatest increase in gene expression (Figure 10).  
Table 4: List of DEGs involved in cytoskeleton pathway. 

GenBank 
Accession No. 

Gene 
Symbol Gene Description Fold 

Change 
NM_031836.1 Vegfa vascular endothelial growth factor A -3.67 
XM_216679.4 Lamb1 laminin, beta 1 -2.84 
NM_031520.1 Myh10 myosin, heavy chain 10, non-muscle -2.47 
NM_031005.2 Actn1 actinin, alpha 1 -2.30 
XM_340884.2 Itga3 integrin alpha 3 -2.23 
NM_017198.1 Pak1 p21 (CDKN1A)-activated kinase 1 -2.19 
NM_012604.1 Myh3 myosin, heavy chain 3, skeletal muscle, 

embryonic 
-2.18 

NM_053356.1 Col1a2 collagen, type I, alpha 2 -2.08 
NM_012606.1 Myl3 myosin, light polypeptide 3 -2.06 
XM_343607.3 Col4a1 similar to procollagen, type IV, alpha 3 -1.99 
XM_230950.4 Itgav integrin alpha V -1.97 
XM_573030.2 Myh11 myosin, heavy polypeptide 11, smooth muscle -1.75 
NM_031675.2 Actn4 actinin alpha 4 -1.72 
NM_013151.2 Plat plasminogen activator, tissue -1.66 
XM_232064.4 Tcf3 transcription factor 3 -1.66 
XM_236367.4 Tln2 similar to talin 2 -1.63 
XM_001080622.1 Myh14 myosin, heavy polypeptide 14 -1.63 
NM_012759.1 Vav1 vav 1 oncogene 2.40 
NM_001012002.1 Zap70 zeta-chain (TCR) associated protein kinase 2.00 
XM_232763.4 Lck lymphocyte protein tyrosine kinase 1.99 
NM_021835.3 Jun Jun oncogene 1.88 
XM_219517.3 Map3k11 mitogen-activated protein kinase kinase kinase 

11 
1.82 

NM_053857.1 Eif4ebp1 eukaryotic translation initiation factor 4E 
binding protein 1 

1.68 

Each gene is given a representative GenBank accession number, gene symbol, gene description, 
and fold change (relative to control rats; negative values indicate down regulation). The list of 
genes was generated from MetaCoreTM pathway analysis and arranged by fold change. 
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Figure 10: Cytoskeleton remodeling pathway involving vav1. 
Figure was exported from MetaCoreTM during pathway analysis. Vav1 was boxed and the fold 
change was indicated in the diagram.  
 

3.3.5. Glomerular gene expression levels of B7-1 interaction partners 

Glomerular gene expression levels of three genes of interest known to interact 

with B7-1, namely TLR4, CTLA4 and CD28, were examined. Gene expression 

levels of these three genes in the microarray analysis did not reach the DEGs 

selection criteria of fold change greater than 1.6, coefficient of variance less 

than 0.7 and t-test p<0.05 (Table 5). 
Table 5: Gene expression of TLR4, CTLA4 and CD28 in the glomeruli of IL-13 
overexpression rats versus control rats. 

GenBank 
Accession No. 

Gene 
Symbol Gene Description Fold 

Change
cv p-value 

NM_019178.1 Tlr4 toll-like receptor 4 1.57 0.51 0.08 
NM_031674.1 Ctla4 cytotoxic T-lymphocyte-

associated protein 4 
1.41 0.31 0.06 

NM_013121.1 Cd28 Cd28 molecule Not 
detected 

N.A N.A. 

Each gene is given a representative GenBank accession number, gene symbol, gene description, 
fold change (relative to control rats), coefficient of variance (cv) and p-value. N.A., not 
applicable.   
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However, on further analysis of the expression levels of these three genes using 

quantitative real-time PCR, gene expression levels of TLR4 (11.5x10-

4±1.37x10-4 vs. 7.3x10-4±0.61x10-4, p=0.02) and CTLA4 (3.04x10-4±0.89x10-4 

vs. 1.01x10-4 ± 0.36x10-4, p=0.04) were significantly upregulated in IL-13 

overexpressed rats as compared to control rats (Figure 11). No significant 

difference was detected in gene expression of CD28 in the IL-13 overexpressed 

rats (9.7x10-3±2.6x10-3) in comparison to control rats (6.3x10-3±1.5x10-3) 

(p=0.38). (Appendix 3.4)  

 
Figure 11: Increased gene expression of TLR4 and CTLA4 in IL-13 overexpressed rats. 
Gene expression index of TLR4, CTLA4 and CD28 in control and IL-13 overexpressed rats. 
Asterisk indicates statistically significant differences (p<0.05). 
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3.4. Discussion 

Despite advances in the knowledge of podocyte biology, the etiology of MCNS 

remains unknown. We have recently reported that overexpression of IL-13 gene 

could induce a minimal change-like nephropathy with podocyte FP effacement 

and proteinuria [215, 216]. This rat model provided a platform to study the 

molecular signaling pathways that were differentially regulated in the 

glomeruli, in order to better understand the pathogenesis of this intriguing 

disease.  

 

MCNS represents a generalized disorder of the immune system resulting in 

renal manifestations. In this study, genes involved in immune response 

constituted one of the clusters highly enriched in the functional annotation 

analysis of the DEGs. IL-1b, IL-12a, IL-16, IL-18, receptors for interleukin (IL-

1RII, IL-2Rα and IL-2Rγ), surface receptors (CD1d1, CD3δ, CD8b, CD24, 

CD36, CD37, CD38, CD52, CD69, CD83, CD97, CD200, CD247, and TLR6) 

and complement component (C4-2 and Cfb) were differentially regulated in the 

IL-13 overexpressed rats, suggesting that IL-13 is a potent regulator of immune 

response genes in the glomeruli. As IL-13 is an important modulator of 

monocyte/macrophage function, it is also plausible that the glomerulopathy in 

our rat model may be a consequence of direct IL-13 stimulation and/or indirect 

signaling mediated by other immune mediators. Additionally, studies have 

suggested that the podocye itself may intensify immune glomerular injury 

through expression of receptors linked to pathways that induce proinflammatory 

molecules [240, 241]. However, the role of these receptor/surface molecules in 

podocytes remains to be elucidated. 

 

The hallmark of MCNS is glomerular FP effacement, which is the only 

morphologic lesion identifiable on electron microscopy. This has been shown 

to be associated with conspicuous changes in the cytoskeleton of podocytes [77, 

242, 243]. Microarray analysis of the glomeruli in our IL-13 overexpression rat 

model of MCNS revealed that molecules responsible for the key architecture of 

podocytes, namely the SD, actin cytoskeleton, basal and apical membrane 

domain protein complexes and molecules that link to the apical membrane 
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domain, were dysregulated (Figure 12).  Podocytes play a critical role in 

glomerular filtration, hence dysregulation of molecules important for the 

maintenance of the tertiary podocyte FP structure can conceivably result in 

albuminuria and development of frank nephrotic syndrome. 

 
Figure 12: Downregulation of genes related to podocytes was associated with podocyte FP 
effacement in IL-13 overexpression rat model of MCNS. 
Electron microscopy (reproduced from our previous work [216]) showed podocyte foot process 
effacement (arrows) in the glomeruli of IL-13 overexpressed rat. 
 

In addition to the decreased expression of nephrin and podocin previously 

reported in our rat model of MCNS, gene expression of NEPH2 was 

significantly downregulated in the glomeruli of the IL-13 overexpressed rat.  

Neph2 protein is structurally related to nephrin which can form heterodimers 

with nephrin at the SD [114, 115]. Recent studies in Caenorhabditis elegans 

identified Neph2 as a critical regulator of glomerular function required for 

glomerular maintenance and development [244]. Knock down of Neph2 

resulted in loss of SD and leakiness of the glomerular filtration barrier. 

 

A number of DEGs identified in the glomeruli of our IL-13 overexpressed rats 

were reported to be associated with nephrin.  GLEPP1, though found at the 

apical surface of podocytes, was shown to cause reduced glomerular nephrin 

content in GLEPP1-deficient mice [83].  Another molecule, Nck adaptor 

protein, was shown to bind to the phosphorylated form of nephrin.  SH2 domain 

of Nck interacts with tyrosine phosphorylated nephrin, while the SH3 domains 

of Nck bind to N-WASP and mediates interactions with downstream effectors 

of the actin cytoskeleton [102, 136, 245, 246].  Inactivation of Nck proteins in 

adult mouse podocytes reduced phosphorylation of nephrin, caused proteinuria, 

glomerulosclerosis, and FP effacement [138].  This was attributed to the role of 

Nck in facilitating signaling events at the SD by promoting Fyn-dependent 
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phosphorylation of nephrin, which may be important in the regulation of FP 

morphology and response to podocyte injury [247]. 

 

In a study examining the expression of nephrin, podocin and α-actinin-4, normal 

renal tissue showed linear and homogenous expression of these proteins along 

the glomerular capillary walls.  In contrast, in renal tissue of patients with 

nephrotic proteinuria, immunostaining of these proteins showed a fine granular 

appearance.  Moreover, among the 18 patients with nephrotic proteinuria, there 

was loss of at least one of these proteins in the glomeruli [248]. 

 

Decreased expression of ezrin has also been reported in children with nephrotic 

syndrome and the degree of reduced ezrin expression was correlated to severity 

of podocyte injury [249].  Ezrin expression has been noted to be lower in 

children with MCNS as compared to normal renal biopsy samples, and this was 

decreased even more in those with diffuse mesangial proliferation and those 

with FSGS respectively.  

 

One of the DEGs that was highly upregulated in the glomeruli of IL-13 

overexpressed rats was Junb.  Junb is a member of the jun family (jun, junb and 

jund) [250].  Structurally, it contains a JNK docking site, nuclear localization 

signal, basic domain for DNA binding and a leucine zipper domain for 

dimerization. Junb can form homodimers with one another, or dimerize with 

members of Fos and ATF families, to form AP-1 transcription factor. Although 

Junb was initially reported not to be phosphorylated by JNK [251], a later study 

showed that phosphorylation of JunB  at Thr102 and 104 by JNK resulted in 

increased IL-4 expression in T-helper cells [252]. Studies have reported that 

Junb regulates human heme oxygenase 1 (HO-1) gene expression in renal 

epithelial cells [253].  HO-1 mRNA expression within tubular, glomerular and 

Bowman’s epithelial cells have been shown to be more intense with greater 

degrees of proteinuria [254], indicating its role in oxidative stress. 

 

Interestingly, our microarray data showed that podocyte dysregulation in 

glomeruli from IL-13 overexpressed rats with MCNS was also associated with 
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increased gene expression of vav1.  The vav family of proteins consists of three 

isoforms – vav1, vav2 and vav3.  Vav1 is a member of the Dbl family of 

Guanine nucleotide exchange factor (GEF) for the Rho family of GTPases [255-

257]. Vav1 expression is generally restricted to the hematopoietic system [258, 

259], whereas vav2 and vav3, are more widely expressed [258].  In fact, vav2 

has also been described in podocytes [260], although both vav2 and vav3 gene 

expression were not differentially regulated in our IL-13 overexpressed rats.  

Studies have shown that the HIV protein Nef interacts with DIP to increase Src-

mediated phosphorylation of vav2, which is responsible for the loss of RhoA-

mediated stress fiber formation and the increase in Rac1-mediated lamellipodia 

formation and membrane ruffling observed in HIV associated nephropathy 

[260].  Although vav1 has been classically associated with T-cell activation, the 

absence of inflammatory infiltrates in the glomeruli of our IL-13 overexpression 

rat model of MCNS excludes T-cell expression as the source of increased vav1 

gene expression in our microarray data.   

 

We have reported increased glomerular expression of B7-1 in our rat model of 

MCNS.  Previous studies have suggested a novel role for the costimulatory 

molecule B7-1 in podocytes as an inducible modifier of glomerular 

permselectivity and proteinuria [217, 218]. Wild type and SCID mice exposed 

to LPS were shown to develop nephrotic-range proteinuria and upregulation of 

B7-1. These investigators demonstrated that podocytes constitutively expressed 

TLR-4 (a receptor for LPS in antigen presenting cells), as well as CD14 (a co-

receptor of TLR-4) and suggested that podocytes detected LPS through TLR-4, 

resulting in reorganization of the kidney-filtration apparatus, podocyte FP 

effacement and proteinuria. In our current study, gene expression of TLR4 was 

significantly upregulated in the glomeruli of the nephrotic rats, suggesting a 

possible role of TLR-4/B7-1 signaling in the pathogenesis of proteinuria. 

However, the role of this pathway in our rat model of MCNS remains to be 

elucidated.  

 

Other molecules of interest in our model are CTLA-4 (Cytotoxic T-Lymphocyte 

Antigen 4), also known as CD152, and CD28. Both are members of the 
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immunoglobulin superfamily, and are ligands of B7-1 (CD80) as well as CD86. 

CTLA-4 is constitutively expressed on regulatory T cells [261, 262] as well as 

on activated T cells [263, 264], whereas CD28 is constitutively expressed on 

both resting and activated conventional T cells. CTLA-4 interacts with both 

ligands at a higher affinity and avidity than CD28, with the CTLA-4-CD80 

interaction being the strongest [265].  Therefore, CTLA-4 acts as an antagonist 

of CD28-ligand interactions by competing for ligand binding and hence 

functions as a potent negative regulator of the T-cell response. On the other 

hand, CTLA-4 has been shown to be a potent activator of T cell polarization 

needed for motility [266]. Binding of T cell with anti-CTLA-4 and CD3/CTLA-

4 induced rapid T cell polarization with increased formation of lamellipodia, 

filopodia, and uropods. Polarization required activation of PI3K, Vav1, Cdc42, 

and myosin L chain kinase. However, key downstream target of PI3K, protein 

kinase B, as well as Rho kinase and RhoA, were not required. Glomerular  

expression of CTLA-4 has been previously reported[267]. Injection of mice 

with polyIC, a TLR-3 ligand, resulted in significant increase in glomerular 

expression of B7-1 and IL-10 with a mild non-significant increase in CTLA-4, 

and significant decreased expression of synaptopodin. On the other hand, our 

study has demonstrated significantly increased glomerular CLTA-4 expression 

in our IL-13 overexpression rat model of MCNS, suggesting a potential role for 

CTLA-4-B7-1 signaling in inducing podocyte injury.  

 

In summary, we have demonstrated that the transcription profile of the 

glomeruli in our IL-13 overexpressed rats displayed characteristic podocyte 

injury phenotype with significant decreased gene expression of podocyte SD 

molecules, actin cytoskeleton molecules, as well as podocyte basal and apical 

membrane domain protein complex molecules. In addition, the novel finding of 

increased gene expression of vav1 associated with increased B7-1 expression in 

the glomeruli of IL-13 overexpressed rats with MCNS suggest a possible 

downstream role in the regulation of glomerular filtration barrier. Increased 

Junb expression, on the other hand, could reflect its role in oxidative stress 

induced by glomerular proteinuria in this model of MCNS. Increased 

glomerular expression of TLR-4 and CTLA-4 in the IL-13 overexpressed rats 
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suggests that these molecules could play a role in regulation of B7-1 expression. 

The next chapter will explore the significance of the glomerular molecular 

signature in the IL-13 overexpressed rat model by studying the expression of 

these genes in IL-13 stimulated podocytes. In addition, we will address the role 

of vav1 in the kidneys and in particular whether it has a role in the regulation 

and maintenance of podocyte structure.   
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CHAPTER 4 

NOVEL ROLE OF VAV1 IN PODOCYTES 

4.1. Introduction 

Our current understanding of the pathogenesis of nephrotic syndrome suggests 

that the podocyte is the main component of the glomerular filter and the crucial 

target in the development and progression of glomerulopathies. In MCNS, the 

major morphologic lesion is FP effacement, and the degree of FP effacement 

has been shown to roughly correlate with the amount of proteinuria [73, 74]. 

 

Several studies involving large scale identification of genes in podocytes have 

been carried out. Using cDNA libraries and cDNA microarrays constructed 

from isolated glomeruli of mice, Takemoto et al. identified podocyte enriched 

transcripts in mice [239]. Cultured podocytes were also used in cDNA and 

oligonucleotide microarrays to examine the changing global gene expression 

profiles in response to various conditions [268, 269]. Another study used highly 

purified podocytes isolated from transgenic mice to define podocyte gene 

expression at different developmental stages [237]. These studies enhanced our 

understanding of genes expressed in podocyte and hence facilitated molecular 

characterization of podocytes. 

 

Our findings from the transcription profile of the glomeruli in our IL-13- 

overexpressed rats showed extensive downregulation of podocyte related genes, 

characteristic signature of podocyte FP effacement, with the decreased 

expression of key molecules important for the architecture of podocyte – SD, 

actin cytoskeleton, basal and apical membrane domain protein complexes and 

molecules that link to the AMD. Although both Junb and vav1 were highly 

upregulated in the glomeruli of IL-13 overexpressed rats, MetaCoreTM pathway 

analysis of the DEGs suggested only a possible role of vav1 in cytoskeleton 

remodeling. 
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4.2. Aim of chapter 

The aim of this chapter is therefore to identify potential pathways important in 

podocyte injury in the IL-13 overexpressed rat model of MCNS by studying the 

expression of the differentially expressed genes (DEGs) identified by the 

microarray studies as described in the previous chapter, in an in-vitro human 

podocyte culture stimulated by IL-13.  In addition, we will address the role of 

vav1 in the kidneys and in particular whether it has a role in the regulation and 

maintenance of podocyte structure.    
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4.3. Results  

4.3.1 Podocyte cell culture for microarray validation 

Podocyte cell lines were developed by transfection of the human podocytes with 

temperature sensitive SV40-T gene and telomerase gene (kind gift from Dr. 

Moin Saleem, University of Bristol, UK). These cells proliferate at a permissive 

temperature of 33oC and enter growth arrest and differentiate at a non-

permissive temperature of 37oC.  

 

Cells were observed daily under a light microscope to check the morphology, 

distribution and absence of contamination. During proliferation, podocytes were 

polygonal in shape and displayed characteristic cobblestone morphology 

(Figure 13).  

 
Figure 13: Morphology of podocytes at permissive temperature. 
(A) Cells were grown at 33oC for proliferation until reaching 80-90% confluency before 
thermoshift (magnification, x40). (B) Undifferentiated podocytes were polygonal and display 
characteristic cobblestone appearance (magnification, x100). 
 

Once the cells proliferated to 80% confluency, they were split 1:10 and cultured 

at 37oC for differentiation into mature podocytes. Cells were observed to 

continue replicating for the first 4 to 6 days after thermoshifting, following 

which the cells started to increase in size (decrease in nuclear-cytoplasmic 

ratio). The cells gradually changed from the cobblestone morphology into flat, 

irregular shape and arborized phenotype, with the formation of short and more 

rounded processes as well as long, spindle-like projections (Figure 14). 



 

59 

 

 
Figure 14: Morphology of podocytes at non-permissive temperature. 
The left panel showed cells at x100 magnification; right panel showed cells at x400 
magnification. (A-B) At day 6, podocytes were still replicating at a much slower rate than when 
they were at permissive temperature. (C-D) At day 8, cells ceased proliferation and started to 
form more short and rounded processes. (E-F) At day 10, majority of cells were fully 
differentiated. Cells were arborized with well developed cellular processes.  
 

4.3.2 Microarray validation in IL-13 stimulated human podocytes 

The 11 genes selected for real-time PCR validation in the rat glomeruli were 

further analysed in human podocyte cell culture system. To study the direct 

effect of these genes in IL-13 stimulated human podocytes, fully differentiated 

podocytes were incubated with IL-13 (20ng/ml) for 24 hours and the gene 

expression indices were compared to the respective unstimulated podocytes. 

Vav1 was the only gene that showed the same expression pattern (1.52-fold 

increased expression in IL-13 stimulated podocytes, p=0.02) as the microarray 

profile (Figure 15).  Junb, on the other hand was downregulated in IL-13 

stimulated podocytes, unlike in the glomeruli of nephrotic rats.  
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Figure 15: Expression profile for the selected DEGs from glomerular microarray in IL-13 
stimulated podocytes. 
Eleven DEGs selected from the microarray transcriptional profile of the glomeruli in the IL-13 
overexpression rats were analyzed in human podocyte cell culture using real-time PCR. 
Downregulated genes were arbitrarily assigned a negative value. For real-time PCR, gene 
expression levels were normalized using GAPDH and fold change was calculated using the 
formula 2ΔΔCt (where ΔΔCt was converted to an absolute value). Results were presented as fold 
change ± SEM. Asterisk (*) for real-time PCR data indicates significant difference (p<0.05), 
between the ΔCt of unstimulated podocytes and IL-13 stimulated podocytes. Vav1 was the only 
gene that showed the same expression pattern as the microarray profile. 
  
4.3.3 Expression of vav1 in human podocytes 

Gene expression of vav1 in podocytes was demonstrated using PCR (Figure 16). 

 
Figure 16: Gene expression of vav1 in podocytes. 
Representative agarose gel image of vav1 in 1) control unstimulated podocytes and 2) IL-13 
stimulated podocytes. 
 

Subsequently, protein expression of vav1 in podocytes was validated using 

Western blot (Figure 17). These results confirmed the presence of vav1 in the 

podocyte, a non-hematopoietic cell. 
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Figure 17: Protein expression of vav1 in podocytes. 
Representative gel images of phosphorylated vav1 (p-vav1) and total vav1 in 1) control 
unstimulated podocytes and 2) IL-13 stimulated podocytes. Blots were first incubated with 
antibody against phosphorylated vav1 and then re-probed with antibody against total vav1. 
GAPDH was used as loading control. 
 

The presence of vav1 in podocytes was further validated using 

immunofluorescence staining of vav1 in podocyte cell culture using antibodies 

from two different sources (SAB4503066 and Ab62622) (Figure 18). 

 
Figure 18: Podocytes expression of vav1. 
Immunofluorescence staining of vav1 on podocytes using antibodies from (A, D) Sigma-
Aldrich SAB4503066; and (B, E) Abcam Ab62622. (C, F) showed negative control for the 
immunofluorescence staining, without the primary antibody incubation. Images were taken at 
(A-C) x20 and (D-F) x60 magnification. 
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4.3.4 IL-13 induced B7-1 and vav1 expression in human podocytes 

Following IL-13 stimulation, podocyte gene expression of IL-13Rα2 (1.45x10-

3 ±0.35x10-3 vs. 0.64x10-3±0.10x10-3, p=0.001) and IL-4Rα (1.51x10-2±0.11x10-

2 vs. 1.15x10-2±0.14x10-2, p=0.02) were upregulated compared to controls. This 

was associated with significant higher gene expression of B7-1 (1.74x10-

4±0.25x10-4 vs. 1.00x10-4±0.19x10-4, p=0.001) and vav1 (2.21x10-5±0.26x10-5 

vs. 1.32x10-5± 0.24 x10-5, p=0.002) in IL-13 stimulated podocytes as compared 

to controls (Figure 19). No significant difference was detected in the gene 

expression of TLR4, CTLA4, CD28, IL-13Rα1, nephrin, podocin and 

dystroglycan. (Appendix 4.1) 

 
Figure 19: Increased gene expression of IL-13Rα2, IL-4Rα, B7-1 and vav1 in IL-13 
stimulated podocytes. 
Gene expression for IL-13Rα2, IL-4Rα, B7-1 and vav1 in control and IL-13 stimulated 
podocytes. Expression levels for the four genes were significantly higher in IL-13 stimulated 
podocytes compared to unstimulated podocytes. Asterisk indicates statistically significant 
differences (p<0.05). 
 

Western blot analysis demonstrated increased protein expression of IL-13Rα2 

(0.91±0.10 vs. 0.58±0.06, p=0.01) and B7-1 (0.97±0.12 vs. 0.63±0.11, p=0.04) 

in IL-13 stimulated podocytes compared to controls. No significant difference 

was detected for protein expression of vav1 in IL-13 stimulated podocytes 

(0.95±0.13) compared to controls (1.05±0.19) (p=0.82). However, activated 

phosphorylated form of vav1 was significantly increased in IL-13 stimulated 
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podocytes (3.45±0.63) compared to controls (1.97±0.47) (p=0.05) (Figure 20 

and Figure 21). (Appendix 4.2) 

 
Figure 20: Protein expression of IL-13Rα2, B7-1, phosphorylated vav1, total vav1 in 
podocytes. 
Representative gel images of IL-13Rα2, B7-1, phosphorylated vav1 and total vav1 in 1) control 
unstimulated podocytes and 2) IL-13 stimulated podocytes. GAPDH was used as loading 
control.  

 
Figure 21: Densitometric analysis of IL-13Rα2, B7-1, phosphorylated vav1 and total vav1 
in podocytes. 
Protein expression was determined using Western blot analysis. The intensity of each band was 
quantitated and expressed as an index of the housekeeping gene GAPDH. Values represent the 
mean of ten independent experiments. Protein expression for IL-13Rα2 and B7-1 were 
significantly higher in IL-13 stimulated podocytes. In addition, IL-13 stimulation resulted in 
increased phosphorylation of vav1 in podocytes. Asterisk indicates statistically significant 
differences (p<0.05). 
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4.3.5 Identification and validation of vav1 gene and protein expression in 

the rat glomeruli  

Microarray analysis of the glomeruli of IL-13 overexpression nephrotic rats has 

identified the potential biological relevance of vav1, a molecule which has not 

been described in kidneys previously. In addition, our studies on human 

podocytes confirmed the presence of vav1 expression.  To confirm glomerular 

expression of vav1, immunohistochemistry (IHC) staining of vav1 was 

performed on formalin-fixed, paraffin-embedded rat kidney tissue using 

antibodies from two different sources (BS1370 and SAB4503066). Glomeruli 

and tubular epithelial cells showed positive staining of vav1 (Figure 22). No 

different in vav1 signal intensity could be detected in the glomeruli of control 

and IL-13 overexpressed rats using IHC staining (Figure 23). 

 
Figure 22: Glomerular expression of vav1. 
Glomerular histology of vav1 expression in the glomeruli of IL-13 overexpressed rat using 
antibody from (A, D) Bioworld, BS370; and (B, E) Sigma-Aldrich SAB4503066. Brown-colour 
developed at the glomeruli and tubular epithelium cells after incubation with DAB Substrate-
Chromogen. (C, F) showed negative control for the immunohistochemical staining, without the 
primary antibody incubation. Images were taken at (A-C) x200 and (D-F) x400 magnification. 
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Figure 23: Glomerular expression of vav1 in control and IL-13 overexpressed rats. 
Histology of vav1 expression in the glomeruli of (A, B) control or (C, D) IL-13-overexpressed 
rats using antibody from (A, C) Bioworld, BS370; and (B, D) Sigma-Aldrich SAB4503066. 
Brown-colour developed at the glomeruli and tubular epithelium cells after incubation with 
DAB Substrate-Chromogen. Images were taken at x200 magnification. 
 

Rat kidney was sequentially sectioned, and the sections in series were stained 

with synaptopodin or vav1. Matching regions were identified to compare the 

staining pattern of synaptopodin (podocyte marker) and vav1. Regions staining 

positive for both synaptopodin and vav1 were indicated in Figure 24. 
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Figure 24: IHC analysis of synaptopodin and vav1 in paraffin-embedded renal cortex. 
Renal cortex sections in series from IL-13 overexpressed rat were stained with synaptopodin 
(left column) or vav1 (right column). Matching regions were identified to compare the staining 
pattern of synaptopodin and vav1. Arrows indicated regions of the glomeruli staining positive 
for both synatopodin and vav1 (magnification, x600). 
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4.4. Discussion 

Validation of the glomerular microarray studies in IL-13 stimulated human 

podocytes revealed that vav1 was the only gene showing the same expression 

pattern (1.52-fold increase compared to unstimulated podocytes) as the 

microarray profile.  Junb, on the other hand, was downregulated, though not 

statistically significant, in IL-13 stimulated podocytes, whereas it was 

upregulated in the glomeruli of nephrotic rats.  Similarly, none of the other nine 

downregulated podocyte-specific DEGs in the glomerular microarray profile 

were significantly downregulated in IL-13 stimulated podocytes. 

 

Junb was highly upregulated in the glomeruli of the IL-13 overexpressed 

nephrotic rat.  JunB is a transcription factor shown to be involved in the 

regulation of HO-1 gene expression in renal epithelial cells [253].  The HO-1 

gene is upregulated in oxidative stress, and its expression in glomerular and 

Bowman’s epithelial cells has been shown to be more intense with greater 

degrees of proteinuria [254].  HO-1 plays an important role in maintaining renal 

function by protecting renal epithelial cells from glomerular proteinuria which 

can become a cause of oxidative stress.  It is interesting that our microarray data 

confirmed its marked upregulation in the glomeruli of IL-13 overexpressed 

nephrotic rat. In contrast, IL-13 stimulated cultured podocytes showed a trend 

for downregulation of Junb gene expression compared to unstimulated 

podocytes.  This suggests that IL-13 stimulation per se was not the triggering 

factor for increased Junb expression in the rat model. 

 

We were able to demonstrate vav1 expression in both IL-13 stimulated and 

unstimulated podocytes, indicating the presence of this molecule in podocytes. 

In addition, phosphorylated vav1 was increased in IL-13 stimulated podocytes, 

suggesting that vav1 could have a functional role in podocytes.  In T-cells, 

binding of CD28 to B7-1 results in phosphorylation of vav1 by tyrosine kinases, 

with subsequent activation of Rac1 and actin cytoskeleton remodeling [270, 

271].  Vav1 activates Rac1 and Cdc24, which in turn activates JNK via MEKK1 

and MKK4/7.  Activated JNK phosphorylates transcription factors such as Jun, 

thereby activating AP1 complex, involved in regulation of cell proliferation. 
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Therefore, we postulate that vav1 could play a role in actin cytoskeleton 

remodeling or transcription regulation of genes in podocytes. 

 

The ratio of phosphorylated vav1 to total vavl was 1.97±0.47 in unstimulated 

podocytes, which increased by approximately two-fold to 3.45±0.63 following 

IL-13 stimulation. Several studies had demonstrated presence of 

phosphorylated vav1 under basal states. In an early study of guanine nucleotide 

exchange activity of vav in T cells, Gulbins et al. demonstrated constitutive 

tyrosine phosphorylation of vav1 in resting Jurkat cells at the basal level (Figure 

25A) and the phosphorylation level increased following stimulation with 

monoclonal antibody (mAbs) to CD3 [272]. Basal level of phosphorylated vav1 

was also present in BALB/c splenic T cells (Figure 25B) and the 

phosphorylation level increased substantially following stimulation by anti-

TCR, anti-TCR plus anti-CD4, anti-CD28, and anti-TCR plus anti-CD28 mAbs 

[270]. NIH 3T3 cell expressing wild-type vav showed presence of 

phosphorylated vav1 in unstimulated condition (Figure 25C) which was 

phosphorylated following epidermal growth factor stimulation [273]. Similar 

results were obtained using vav proteins obtained from transient transfections 

in COS-1 cells. CD4+ T cells transduced with wild type vav1 was shown to 

express 20% to 30% phosphorylation of vav1 under basal state (Figure 25D) 

and stimulation with anti-CD3ε and anti-CD28 antibodies resulted four-fold 

increased of phosphorylated vav1 at 1 minute and two-fold increased of 

phosphorylated vav1 at 3 minutes [274].   
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Figure 25: Basal level of Phosphorylated vav1. 
Figure showed results from different studies. Basal levels of phosphorylated vav1 in these 
studies were highlighted with red box. 
 

We have previously reported that IL-13 overexpression in rats resulted in 

podocyte injury with upregulation of glomerular B7-1.  In our in vivo rat model, 

we have shown increased glomerular IL-4Rα and IL-13Rα2 gene expression, as 

well as increased fluorescent signal for IL-4Rα in most of the glomerular 

podocytes of nephrotic rats, suggesting that IL-13 may act directly on podocytes 

in the glomeruli [215, 216]. Consistent with these findings, our in-vitro studies 

have demonstrated increased gene and protein expression of B7-1 on cultured 

human podocytes stimulated with IL-13.  This further strengthens the 

hypothesis that transient upregulation of B7-1 could occur in MCNS, resulting 

in nephrotic-range proteinuria, and also provide an explanation for the possible 

link between Th2 cytokine bias and MCNS.   

 

We have demonstrated that gene expression of TLR4 and CTLA4 in the IL-13 

stimulated podocytes was not significantly different compared to unstimulated 

podocytes, indicating that upregulation of B7-1 expression in IL-13 stimulated 

podocytes was independent of these two known modulators of B7-1 expression.  

In contrast, increased glomerular expression of these two molecules was seen 
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in the IL-13 overexpression rat model suggesting that the increased glomerular 

B7-1 could also occur via a second signal such as TLR-4.  This gives credence 

to the hypothesis that B7-1 upregulation following IL-13 stimulation in this rat 

model could be sustained by a ‘second-hit’ occurring via another signaling 

receptor, such as TLR-4.  Conceivably, IL-13 stimulation of other immune cells 

such as monocytes could produce mediators that can activate TLR-4 resulting 

in an additional signal for B7-1 upregulation.  As CTLA-4 is a known negative 

regulator of B7-1, the increased glomerular gene expression of CTLA-4 in the 

IL-13 overexpression rat model could be explained by positive feedback 

following increased B7-1 expression.  

 

Reiser et al. have suggested a novel role for the costimulatory molecule B7-1 in 

podocytes as an inducible modifier of glomerular permselectivity and 

proteinuria [217, 218].  They showed that induction of B7-1 on the podocytes 

resulted in an alteration in shape with actin rearrangement that altered 

glomerular permeability and caused proteinuria.  In patients with MCNS, 

urinary CD80 (B7-1) excretion has been reported, a finding not observed in 

other glomerular diseases [219, 220].  Renal biopsy also showed increased 

CD80 expression in glomeruli of MCNS patients in relapse, and this co-

localized with podocin expression in the glomeruli.  However, the mechanistic 

link between B7-1 and actin cytoskeleton remodeling remains to be elucidated.   

 

Using two different sources of primary antibody which detects endogenous 

levels of total vav1 protein, we were able to demonstrate vav1 staining of 

glomerular and tubular epithelial cells in rat kidney.  We further showed that 

vav1 co-localized with synaptopodin in serial sections of the kidney, confirming 

its location in podocytes.  However, protein expression of vav1 was not 

restricted to podocytes as tubular cells also stained positive for vav1. Consistent 

with this finding in the IL-13 overexpression rat model of MCNS, we were able 

to demonstrate significant increase in phosphorylated vav1 expression 

following IL-13 stimulation of cultured human podocytes, which was associated 

with upregulation of B7-1. Therefore it is conceivable that the effect of B7-1 on 

actin cytoskeleton rearrangement could be mediated via vav1 and its 
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downstream activation pathway mediated by Rac1 as has been described in 

activated T-cells [275]. 

 

In summary, we have confirmed the expression of vav1 in glomeruli and 

phosphorylated vav1 in IL-13 stimulated podocytes.  The role of vav1 in 

regulation of actin cytoskeleton remodeling in podocytes will be further 

explored in the subsequent chapter. 
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CHAPTER 5 

MECHANISM OF IL-13 INDUCED PODOCYTE INJURY 

5.1. Introduction 

In the previous chapter, we have demonstrated the presence of vav1 in rat 

glomeruli which co-localized with synaptopodin to the podocytes. We have also 

shown that podocyte injury in our rat model of MCNS was associated with 

increased gene expression of vav1. Vav1 is a member of the Dbl family of 

Guanine nucleotide exchange factor (GEF) for the Rho family of GTPases [255-

257]. Rearrangement of the actin cytoskeleton is highly regulated by the activity 

of Rho family GTPases. Rho GTPases switch between a GTP-bound ‘‘active’’ 

state and a GDP-bound ‘‘inactive’’ state. GEFs facilitate the exchange of GDP 

for GTP, thus activating RhoGTPases. 

 

The structure of vav proteins contains several domains which regulate the GEF 

activity (Figure 26). From the amino- to the carboxyl-terminal, it is lined with a 

calponin homology (CH) domain, an acidic (Ac) domain, Dbl homology (DH) 

domain, a pleckstrin homology (PH) domain, a C1 domain, ending with two 

SH3 domains and one SH2 domain [276]. The CH domain inhibits GEF activity 

by binding the cysteine-rich C1 domain; the Ac domain contains several sites 

of tyrosine phosphorylation; the DH domain has catalytic GEF activity for Rho-

family GTPases; the PH domain regulates GEF activity following binding of 

the phospholipids PIP2 and PIP3; the C1 domain contributes to GEF activity by 

binding to the GTPases; and the SH3 and SH2 domains are the binding sites for 

several proteins, e.g. Grb2, SLP-76, ZAP70, Syk, Nef, Zyxin, Ku-70, hnRNP-

K, hnRNP-C, Dynamin2 and VIK-1 [277-280]. 

 
Figure 26: Domain structure of vav1. 
The domain structure of vav1 showing from the amino (N)- to the carboxyl (C)-terminal: a 
calponin homology (CH) domain, an acidic (Ac) domain, Dbl homology (DH) domain, a 
pleckstrin homology (PH) domain, a C1 domain, ending with two SH3 domains and one SH2 
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domain. Ac domain contains several sites of tyrosine phosphorylation. Adopted and modified 
from reference [276]. 
 

In mammals, there are three members in the vav family of proteins – vav1, vav2 

and vav3. Vav1 expression is generally restricted to the hematopoietic system 

[258, 259], whereas vav2 and vav3, are more widely expressed [258]. Each vav 

protein is thought to activate specific GTPases. Vav1 is a GEF for Rac1, Rac2 

and RhoG; vav2 is a GEF for RhoA, RhoB and RhoG; whereas vav3 

preferentially activates RhoA, RhoG and, to a lesser extent, Rac1 [281-283]. 

However, vav1 has also been shown to activate RhoA and Cdc42 [284]. 

Moreover, vav1 was able to stimulate Rac1 and RhoA in ανβ3 integrin-

mediated adhesion of hematopoietic cells [285].  

 

Activation of its GEF activity is mediated via tyrosine phosphorylation of vav1 

[282, 284]. Many pathways are implicated in the vav-mediated reorganization 

of the cytoskeleton in T cells as summarized in Figure 27 [275]. In T-cells, 

binding of CD28 to B7-1 results in tyrosine phosphorylation of vav1 by kinases, 

and the subsequent activation of Rac1 and actin cytoskeleton remodeling [270, 

271].  

 
Figure 27: Vav-mediated regulation of cytoskeleton organization. 
Adopted and modified from reference [275] 
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Our finding of B7-1 upregulation following IL-13 stimulation of podocytes, 

which was associated with increased phosphorylation of vav1 has led to the 

hypothesis that IL-13 induced podocyte injury with actin cytoskeleton 

rearrangement could be mediated via B7-1 induced activation of vav1.  This 

would be analogous to the induction of podocyte FP effacement in the IL-13 

overexpressed rat model of MCNS via B7-1 upregulation. 

 
5.2. Aim of chapter 

The aim of this chapter is therefore to investigate the biological relevance of 

vav1 and Rho/Rac1 signaling pathway in inducing podocyte injury using an in-

vitro human podocyte culture system. The specific objectives are as follows:  

1. To study the direct effect of IL-13 on podocyte morphology, in particular, 

cytoskeletal changes associated with FP effacement, using phalloidin 

staining and viewing with confocal microscopy. 

2. To study the role of Rho/Rac1 in IL-13 induced podocyte actin cytoskeleton 

rearrangement. 

3. To validate the role of vav1 in the B7-1-vav1 pathway in actin cytoskeleton 

rearrangement by using podocytes transfected with siRNA specific for 

vav1. 
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5.3. Results 

5.3.1 Effect of IL-13 on podocyte actin cytoskeleton 

As shown in Figure 28, the actin cytoskeleton in the unstimulated podocytes 

was evenly distributed with strong transcellular stress fibers.  IL-13 stimulation 

resulted in actin cytoskeleton rearrangement with weak F-actin signal in the cell 

center and accumulation of F-actin at the cell peripheral, forming a cortical ring-

like structure, suggesting that IL-13 could act directly on podocytes, causing 

podocyte injury.  The cortical F-actin score index, a measure of the degree of 

cytoskelal rearrangement, was significantly increased in IL-13 stimulated 

podocytes (2.31±0.14) as compared to unstimulated podocytes (1.59±0.15) 

(p=0.02) (Figure 29). (Appendix 5.1) 

 
Figure 28: IL-13 induced actin cytoskeleton rearrangement in podocytes. 
Human podocytes were stimulated with IL-13 for one hour and stained with phalloidin for F-
actin (magnification, x60). A) Unstimulated podocytes showed features of larger size and strong 
transcellular stress fibers; B) IL-13 stimulation in podocytes resulted in smaller size and weak 
F-actin signal in the cell center and accumulation of F-actin at the cell peripheral. 

 
Figure 29: Increased cortical F-actin score index in IL-13 stimulated podocytes. 
Cortical F-actin score was determined from at least three independent experiments and the 
cortical F-actin score index was calculated from the ratio of the score of the counted cells to the 
total number of cells counted. Asterisk indicates statistically significant differences (p<0.05). 
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5.3.2 Effect of IL-13 on RhoA and Rac1 activity 

The activity levels of RhoA and Rac1 in IL-13 stimulated podocytes were 

measured using ELISA. Fold change of activated RhoA and Rac1 was 

expressed as ratio of activated RhoA or Rac1 in IL-13 stimulated podocytes 

versus unstimulated podocytes. RhoA activity in IL-13 stimulated podocytes 

remained largely unchanged at 5, 10, 20 and 30 minutes. In contrast, Rac1 

activity in IL-13 stimulated podocytes increased 1.37-fold at 5 minutes to 1.59-

fold at 20 minutes and returned to basal level at 30 minutes (Figure 30). 

Following 20 minutes stimulation of podocytes with IL-13, the Rac1 activity 

level (1.58±0.18) was significantly increased as compared to unstimulated 

podocytes (0.99±0.10) (p=0.01) (Figure 31). (Appendix 5.2) 

 
Figure 30: Time course of RhoA and Rac1 activity following IL-13 stimulation of human 
podocytes. 
Podocytes were stimulated with IL-13 (20ng/ml) and RhoA and Rac1 activity were measured 
at 5, 10, 20 and 30 minutes. The activity levels of RhoA and Rac1 were expressed as mean fold 
change (ratio of IL-13 stimulated:unstimulated podocytes). Asterisk indicates statistically 
significant differences (p<0.05). 
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Figure 31: Increased Rac1 activity in podocytes incubated with IL-13 for 20 minutes. 
Active Rac1 level was measured and normalized against total protein concentration. Asterisk 
indicates statistically significant differences (p<0.05). 
 

5.3.3 Effect of IL-13 on podocytes transfected with vav1 siRNA  

Following IL-13 stimulation in podocytes transfected with control siRNA, gene 

expression levels of IL-13Rα2 (6.19x10-3±2.38x10-3 vs. 1.28x10-3±0.19x10-3, 

p<0.001), B7-1 (4.36x10-4±1.36x10-4 vs. 1.28x10-4±0.27x10-4, p=0.03) and vav1 

(2.48x10-4±0.70x10-4 vs. 0.71x10-4±0.16x10-4, p=0.04) were significantly 

increased as compared to unstimulated podocytes transfected with control 

siRNA (negative control) (Figure 32). (Appendix 5.3) 

 
Figure 32: Increased gene expression of IL-13Rα2, B7-1 and vav1 in podocytes transfected 
with control siRNA following IL-13 stimulation. 
Gene expression of A) IL-13Rα2, B) B7-1, and C) vav1 in unstimulated podocytes transfected 
with control siRNA, and IL-13 stimulated podocytes with control siRNA transfection. Asterisk 
indicates statistically significant differences (p<0.05). 
 

Western blot analysis showed that following incubation with IL-13, protein 

expression of IL-13Rα2 (1.39±0.20 vs. 0.65±0.07, p=0.009), B7-1 (0.92±0.15 

vs. 0.50±0.08, p=0.02) and phosphorylated vav1 (1.32±0.16 vs. 0.79±0.15, 

p=0.003) were significantly increased in IL-13 stimulated podocytes with 

control siRNA transfection as compared to negative control (Figure 33 and 

Figure 34). Protein expression of vav1 in IL-13 stimulated podocytes with 
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control siRNA transfection remained unchanged as compared to negative 

control (Figure 35). (Appendix 5.4) 

 
Figure 33: Increased protein expression of IL-13Rα2, B7-1 and phosphorylated vav1 in 
podocytes transfected with control siRNA following IL-13 stimulation. 
Protein expression of A) IL-13Rα2, B) B7-1, C) vav1, and D) p-vav1/vav1 in unstimulated 
podocytes transfected with control siRNA, and IL-13 stimulated podocytes with control siRNA 
transfection. Asterisk indicates statistically significant differences (p<0.05). 
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Figure 34: Protein expression of IL-13Rα2, B7-1, phosphorylated vav1, total vav1 in 
podocytes. 
Representative gel images of IL-13Rα2, B7-1, phosphorylated vav1 and total vav1 in 1) 
unstimulated podocytes transfected with control siRNA and 2) IL-13 stimulated podocytes with 
control siRNA transfection. GAPDH was used as loading control. 
 

 
Figure 35: Vav1 and respective GAPDH blot images from four independent experiments. 
Representative gel images of total vav1 in 1) unstimulated podocytes transfected with control 
siRNA and 2) IL-13 stimulated podocytes with control siRNA transfection. GAPDH was used 
as loading control. 
 

Transfection of podocytes with siRNA specific for vav1 resulted in 84.2% 

reduction in gene expression level of vav1 which translated to reduction in vav1 

protein expression by 42.8% (Figure 36).  

 
Figure 36: Protein expression of vav1 in podocytes. 
Representative gel images of vav1 in podocytes transfected with 1) control siRNA and 2) vav1 
siRNA. GAPDH was used as loading control.  
 

Following IL-13 stimulation, gene expression levels of IL-13Rα2 (3.66x10-3± 

1.19x10-3 vs. 1.28x10-3±0.19x10-3, p=0.04) and B7-1 (3.33x10-4±0.71x10-4 vs. 
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1.28x10-4±0.27x10-4, p=0.01) were significantly increased in vav1 knock down 

podocytes as compared to negative control (Figure 37). 

 
Figure 37: Increased gene expression of IL-13Rα2 and B7-1 in IL-13 stimulated podocytes 
transfected with vav1 siRNA. 
Gene expression of A) IL-13Rα2 and B) B7-1 in unstimulated podocytes transfected with 
control siRNA, and IL-13 stimulated podocytes with vav1 siRNA transfection. Asterisk 
indicates statistically significant differences (p<0.05). 
 
Similarly, increased protein expression levels of IL-13Rα2 (1.23±0.18 vs. 

0.65±0.07, p=0.01) and B7-1 (1.30±0.44 vs. 0.50±0.08, p=0.03) were also 

demonstrated in IL-13 stimulated podocytes transfected with vav1 siRNA in 

comparison to negative control (Figure 38 and Figure 39). 

 
Figure 38: Increased protein expression of IL-13Rα2 and B7-1 in IL-13 stimulated 
podocytes transfected with vav1 siRNA. 
Protein expression of A) IL-13Rα2 and B) B7-1 in unstimulated podocytes transfected with 
control siRNA, and IL-13 stimulated podocytes with vav1 siRNA transfection. Asterisk 
indicates statistically significant differences (p<0.05). 
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Figure 39: Protein expression of IL-13Rα2 and B7-1 in IL-13 stimulated podocytes 
transfected with vav1 siRNA. 
Representative gel images of IL-13Rα2 and B7-1 in 1) unstimulated podocytes transfected with 
control siRNA and 2) IL-13 stimulated podocytes with vav1 siRNA transfection. GAPDH was 
used as loading control. 
 

5.3.4 Effect of IL-13 on actin cytoskeleton in podocytes transfected with 

vav1 siRNA  

As shown in Figure 40, transfection of podocytes with control siRNA did not 

change the arrangement of actin cytoskeleton, with bright actin staining in the 

center of the cells. Following stimulation with IL-13 in podocytes transfected 

with control siRNA, less stress fibers were formed at the center of the cells. 

Podocytes transfected with vav1 siRNA showed similar features as that of 

podocytes transfected with control siRNA. However, IL-13 stimulation in 

podocytes transfected with vav1 siRNA showed strong stress fibers content at 

the center of the cells indicating that vav1 siRNA transfection had prevented the 

action of IL-13 on actin cytoskeleton rearrangement.   

 
Figure 40: Vav1 knock down podocytes were protected from IL-13 induced actin 
cytoskeleton rearrangement. 
Human podocytes were stained with phalloidin for F-actin (magnification, x60). A) Podocytes 
tranfected with control siRNA showed features of larger size and strong transcellular stress 
fibers; B) IL-13 stimulation in podocytes transfected with control siRNA resulted in smaller 
size and weak F-actin signal in the cell center and accumulation of F-actin at the cell peripheral; 
C) Podocytes transfected with vav1 siRNA showed similar features as that of podocytes 
transfected with control siRNA; D) IL-13 stimulation in podocytes transfected with vav1 siRNA 
showed high stress fibers signal at the cell center. 
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Similarly, cortical F-actin score index was significantly increased in IL-13 

stimulated podocytes with control siRNA transfection (2.41±0.10) as compared 

to unstimulated podocytes with control siRNA transfection (1.48±0.05) 

(p=0.05). Transfection of podocytes with vav1 siRNA did not affect the cortical 

F-actin score index compared to that of negative controls. No significant 

difference in cortical F-actin score index was detected in IL-13 stimulated vav1 

knock down podocytes (1.57±0.10) as compared to the unstimulated podocytes 

with control siRNA transfection (1.48±0.05) (p=0.28) (Figure 41). (Appendix 

5.5) 

 
Figure 41: Cortical F-actin index in podocytes transfected with control siRNA or vav1 
siRNA. 
Graph showing cortical F-actin index in podocytes transfected with control siRNA (negative 
control), IL-13 stimulated podocytes with control siRNA transfection, podocytes transfected 
with vav1 siRNA; and IL-13 stimulated vav1 knock down podocytes.  
 

5.3.5 Effect of IL-13 on RhoA and Rac1 activity in podocytes transfected 

with vav1 siRNA 

Rac1 activity level was significantly increased in podocytes transfected with 

control siRNA following IL-13 stimulation (1.17±0.15) as compared to negative 

control (0.71±0.10) (p=0.05) (Figure 42B); while no statistical difference in the 

RhoA activity level was detected (Figure 42A). Following IL-13 stimulation of 
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podocytes transfected with vav1 siRNA, no significant change in both Rac1 and 

RhoA activity levels were detected. (Appendix 5.6) 

 
Figure 42: RhoA and Rac1 activity levels in podocytes transfected with control siRNA or 
vav1 siRNA. 
Activity levels of A) RhoA and B) Rac1 in podocytes transfected with control siRNA (negative 
control), IL-13 stimulated podocytes with siRNA transfection, and IL-13 stimulated vav1 knock 
down podocytes. *p<0.05, compared to negative control; and #p<0.05, compared to IL-13 
stimulated podocytes with siRNA transfection.  
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5.4. Discussion 

The hallmark of nephrotic syndrome in the glomerulus is podocyte FP 

effacement, the corollary of which in the in-vitro podocyte culture system is that 

of actin cytoskeleton rearrangement [77].  In healthy podocytes, distinct bundles 

of actin filament are characteristically seen to traverse the cells from one end to 

the other. On the other hand following podocyte injury, a cortical ring of F-actin 

is formed.  Our in vitro IL-13 stimulated podocytes displayed this characteristic 

feature of weak F-actin signal in the cell center with accumulation of F-actin at 

the cell periphery (Figure 28B), which was also reflected by the significantly 

increased cortical F-actin score index (Figure 29), suggesting that IL-13 could 

induce podocyte injury.  

 

This change in actin cytoskeleton arrangement was associated with increased 

Rac1 activity in the IL-13 stimulated podocytes. Rho family small GTPases, 

namely RhoA, Rac1 and CDC42, are known regulators of the actin 

cytoskeleton.  Activation of RhoA induces the assembly of contractile actin and 

stress fibres [286, 287].  Activation of Rac1 induces actin polymerization to 

form lamellipodia [287, 288], whereas activation of CDC42 stimulates the 

polymerization of actin to filopodia [287, 289].  Healthy, stationary podocytes 

with intact FP are generally thought to have predomoninat RhoA activity, 

whereas in injured, motile podocytes with retracted FP, Cdc42 or Rac1 activity 

is more prevalent [77].  

 

Several studies have implicated the role of RhoA and Rac1 in podocyte FP 

effacement.  Rho GDIα-/- mice developed massive proteinuria resembling 

nephrotic syndrome and died due to renal failure [290].  This was associated 

with increased Rac1 (but not RhoA) and mineralocorticoid receptor signaling 

in the kidney [291]. Pharmacological intervention with a Rac1-specific small-

molecule inhibitor diminished mineralocorticoid receptor hyperactivity and 

reduced proteinuria and renal damage in this mouse model of proteinuria.  

 

Tian, D., et al. have shown that TRPC5 and TRPC6 channels were antagonistic 

regulators of actin dynamics and cell motility in podocytes through the 
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regulation of Rac1 and RhoA, respectively [100].  TRPC5-mediated Ca2+ influx 

was shown to activate Rac1, promoting cell migration; whereas TRPC6-

mediated Ca2+ influx induced RhoA activity, inhibiting cell migration. 

 

Rac1 has either beneficial or deleterious effects depending on the context of 

podocyte injury.  Using the protamine sulfate model of acute podocyte injury, 

podocyte-specific deletion of Rac1 prevented podocyte FP effacement.  In a 

long-term model of chronic hypertensive glomerular damage, however, loss of 

Rac1 led to worsening of albuminuria and glomerulosclerosis [292]. 

 

To date, there have been no reports of the role of vav1 in actin cytoskeleton 

reorganization in podocytes.  However, in T-cells, reorganization of the 

cytoskeleton is needed for T cell activation and function [293-296] upon binding 

with co-receptors such as CD28, ICOS and CTLA-4 [297-299]. The full co-

stimulatory effect of CD28 on T-cells involves the vav1-MEKK1-JNK 

pathway, whereas the ICOS signaling pathway is less understood and probably 

involves the PI3K-PDK-PKB pathway [299].  The polarization of T-cells by 

CTLA-4 requires PI3K, vav1, Cdc42, and myosin L chain kinase, but protein 

kinase B, Rho kinase and RhoA are not required [266]. Regulation of the actin 

cytoskeleton is subsequently mediated via vav1 activation of Rac1 and Cdc42 

[275, 300]. 

 

The classical hematopoietic markers, CD80 (B7-1) [217, 218] and CTLA-4 

[267, 301], have also been shown to be expressed in podocytes.  Podocyte-

specific expression of B7-1 has been implicated as the final common pathway 

in the genesis of proteinuria in glomerulopathies [211, 212]. Following in vitro 

LPS stimulation, podocyte expression of B7-1 was shown to be increased with 

concurrent actin cytoskeleton reorganization.  B7-1 knockout mice were 

protected from LPS-induced proteinuria, suggesting a functional link between 

podocyte B7-1 expression and proteinuria.  Our in vitro IL-13-stimulated 

podocytes showed increased B7-1 expression as well as actin cytoskeleton 

rearrangement, suggesting that IL-13 could induce podocyte injury possibly 

through B7-1 upregulation, correlating with the findings of increased B7-1 
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glomerular expression and FP effacement in our IL-13 overexpression rat model 

of MCNS. 

 

In this chapter, we have demonstrated increased expression of IL-13Rα2, B7-1 

and phosphorylated vav1 following IL-13 stimulation of podocytes transfected 

with control siRNA. This was associated with activation of Rac1 and actin 

cytoskeleton rearrangement.  On the other hand, podocytes with vav1 siRNA 

transfection was protected from this IL-13 induced actin cytoskeleton 

rearrangement and Rac1 activation.  In our vav1 knock-down studies, B7-1 

expression remained upregulated following IL-13 stimulation, but no 

significant changes were seen in the actin-cytoskeleton, suggesting that B7-1 

activation could be the upstream event of vav1 activation in podocytes.  B7-1 

has been shown in previous knock-down studies to be responsible for 

involvement in actin cytoskeleton rearrangement [217, 218].   

 

In summary, we have demonstrated that vav1 plays a role in the IL-13 induced 

podocyte injury which could be mediated via Rac1 (Figure 43).  These findings 

are consistent with the hypothesis that the podocyte FP effacement seen in our 

IL-13 overexpression rat model of MCNS involves the activation of B7-1 and 

subsequent phosphorylation of vav1 and activation of Rac1 resulting in actin 

cytoskeleton rearrangement in podocytes. 

 
Figure 43: Proposed mechanism of IL-13 induced podocyte injury. 
IL-13-induced actin cytoskeleton rearrangement in podocytes through activation of B7-1, 
phosphorylation of vav1 and activation of Rac1. 
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Knowledge of the signaling pathways involved in the pathogenesis of this 

disease may provide us more targeted treatment at the molecular level, allowing 

us to design new therapeutic strategies. Therapeutic strategies could either target 

the source, or stabilize the end point. In our case of increase IL-13 levels in the 

plasma of MCNS patient in relapse which then acts on the IL-13 receptors on 

the podocytes when blood pass through kidney, drugs could be designed to 

sequester IL-13, increasing the level of the IL-13Rα2, or blocking the IL-13Rα1 

on the podocytes. The subsequent activation of B7-1 and vav1-Rac1 signaling 

pathway, could conceivably use Abatacept (CTLA-4-Ig) to block B7-1 

activation or Azathioprine which was shown to have antagonistic effect in the 

vav-Rac signaling pathway in T cells [302, 303]. The challenge, however, will 

be to selectively target these effects to the podocytes (i.e. not affecting the T 

cells). In addition, targeting IL-13 might not be effective if there is a “second 

hit” which, by itself, may cause podocytes FP effacement.  
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

6.1. Conclusion 

In this study, we have delineated the molecular signature of the glomerulopathy 

associated with our IL-13 overexpressed rat model of MCNS. This was defined 

by differential regulation of genes involved in immune responses, transcription 

regulation and actin cytoskeleton remodeling. In addition, more than 87% of 

genes known to be related to podocytes were significantly downregulated, 

suggesting extensive podocyte injury at the molecular level, whose phenotypic 

expression in this rat model translates to podocyte FP effacement and 

proteinuria.  Moreover, we have identified a possible role of vav1 in the 

regulation of actin cytoskeleton rearrangement seen in podocyte FP effacement.  

This role of vav1 in the regulation of podocyte actin cytoskeleton rearrangement 

is novel, and has not been previously described in kidneys.  We have further 

demonstrated protein expression of vav1 in the glomeruli and tubular epithelial 

cells of rat kidney and showed that vav1 co-localized with synaptopodin, 

confirming its location in podocytes.   

 

Using in vitro human podocyte cell culture, we showed that gene expression of 

vav1 was upregulated by IL-13. We have also demonstrated gene and protein 

expression of vav1 as well as the phosphorylated form of vav1 in pure podocyte 

cell culture systems.  Following IL-13 stimulation, expression levels of IL-

13Rα2, B7-1 and phosphorylated vav1 were significantly increased from the 

basal level, indicating the possible roles of B7-1 and vav1 in IL-13 mediated 

podocyte injury.  

 

IL-13 stimulated podocytes displayed the characteristic feature of actin 

cytoskeleton rearrangement consisting of weak central F-actin, but strong 

peripheral F-actin signal. This was associated with activation of Rac1, 

indicative of motile podocytes with retracted FP.  Vav1 knock-down podocytes 

were protected from IL-13 induced actin cytoskeleton changes and Rac1 

activity, suggesting that the podocyte injury caused by IL-13 via B7-1 involved 

phosphorylation of vav1 and subsequent Rac1 activation. 
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In conclusion, the mechanism of IL-13 induced podocyte FP effacement seen 

in our rat model of MCNS was partly due to the direct action of IL-13 on 

podocytes through activation of B7-1-vav1-Rac1 mediated actin cytoskeleton 

rearrangement (Figure 44). 

 
Figure 44: Mechanism of IL-13 induced podocyte foot process effacement in the rat model 
of MCNS. 
IL-13 could act directly on podocytes, resulting in activation of B7-1 and phosphorylation of 
vav1, switching the Rac1 to the GTP-bound active state, resulting in actin cytoskeleton 
rearrangement.  The podocyte FP effacement in the rat model of MCNS thus could be the result 
of this direct effect of IL-13 induced podocyte injury (direct pathway) or the indirect effect of 
IL-13 on other immune mediators which caused the dysregulation of other podocytes proteins 
not seen in the direct effect of IL-13 on podocytes (accessory pathway). 
 

6.2. Future directions 

We have demonstrated that IL-13 stimulation in cultured human podocytes 

resulted in upregulation of B7-1 gene expression, leading to increased 

phosphorylation of vav1.  This was associated with increased level of activated 

Rac1, and subsequent actin cytoskeleton rearrangement. Though IL-13 was able 

to upregulate B7-1 gene expression in the podocyte cell cultures, the degree of 

upregulation was not as marked as that seen in the glomeruli of the IL-13 

overexpressed rats.  Therefore it is conceivable that a second signal could result 

in perpetuation of the glomerular B7-1 expression.  We have shown that 
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glomerular gene expression of TLR-4 was also significantly elevated in the IL-

13 overexpressed rats, however, this was not seen in IL-13 stimulated human 

podocyte cell cultures.  Stimulation of TLR-4 by specific ligands is a known 

potent inducer of B7-1 expression.  Therefore, we hypothesized that the IL-13 

induced podocyte FP effacement and subsequent proteinuria in our rat model 

could, in part, be due to the presence of an accessory pathway which augments 

and perpetuates the increased B7-1 expression with consequent actin 

cytoskeleton rearrangement.   

 

This is in contrast to the ‘Two-Hit’ hypothesis proposed by Garin et al. [301, 

304].  Reiser et al, in 2004 [217, 218], hypothesized that the initial hit is 

induction of B7-1 on the podocyte, and that this results in change in shape of 

the podocyte with actin rearrangement, leading to increase in glomerular 

permeability and proteinuria.  Induction of B7-1 may result from either direct 

binding of podocyte receptors by activated T-cell cytokines, such as IL-13, or 

by activation of podocyte TLR by viral products or allergens.  Garin et al. 

further hypothesized that under normal circumstances, B7-1 expression is only 

transiently expressed and proteinuria is minimal due to rapid autoregulatory 

response resulting in downregulation of B7-1 response.  The second ‘hit’ in 

MCNS therefore consists of abnormal censoring of podocyte B7-1 expression 

due to a defective autoregulatory response by Tregs or by defective upregulation 

of podocyte CTLA4, a negative regulator of B7-1, resulting in persistent 

podocyte expression of B7-1 and hence proteinuria [304].  Our current study 

could not demonstrate defective upregulation of podocyte CTLA4 in the IL-13 

overexpressed rat, instead, we showed significant upregulation of glomerular 

CTLA4, suggesting that this could be a positive feedback following 

upregulation of B7-1 in this model. 

  
In our model, we are proposing that perpetuation of B7-1 expression occurred 

due to a consequent summative effect of direct IL-13 stimulation as well as 

indirect signaling through TLR-4 mediated by other immune mediators, on B7-

1 (Figure 45).  The identity of the mediator(s) which, via the accessory pathway, 
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augments B7-1 expression with consequent actin cytoskeleton rearrangement 

is, however, unclear. 

 

As IL-13 is an important modulator of monocyte/macrophage function, it is 

plausible that the indirect action of IL-13 on podocyte may be mediated via 

monocyte polarization with consequent secretion of monokine(s) acting on the 

TLR-4/B7-1 danger signaling, resulting in podocyte actin cytoskeleton 

rearrangement. Therefore, we will be studying the monocyte transcription 

profile as well as cytokines/chemokines profile in our population of children 

with MCNS in order to identify the molecules which may be the crucial 

mediator(s) providing the “second hit” in the pathogenesis of MCNS in both 

humans and IL-13 overexpressed rats.   

 
Figure 45: Direct and accessory pathways in the pathogenesis of MCNS (‘Two-Hit’ 
Hypothesis). 
Perpetuation of B7-1 expression occurred due to a consequent summative effect of direct IL-13 
stimulation as well as indirect signaling through TLR-4 mediated by other immune mediators, 
on B7-1. 
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APPENDICES 

 

Appendix 2.1: Protocol for rat urine albumin ELISA 

1. Coat 96 well microtiter plate (Corning, MA, USA) with 100μl of rabbit 

antiserum to rat albumin antibody (MP Biomedicals, CA, USA) diluted 

1/2000 in 0.1M carbonate buffer, 4°C, overnight. 

2. Thoroughly aspirate and discard the coating antibody and wash with 3 

changes of 400µl of 1X PBS.  

3. Blocking with 100μl of 1% BSA in 1X PBS with 0.05% Tween 20 for 45 

minutes, room temperature. 

4. Thoroughly aspirate and discard the blocking solution. Do not wash. 

5. Add 50μl of standards, diluted urine samples and diluent, as blank, to each 

well in triplicate. Incubate for 2 hours, 37°C. 

6. Thoroughly aspirate and discard the liquid and wash with 3 changes of 

400µl of 1X PBS. 

7. Incubate with 50μl of HRP-conjugated sheep polyclonal antibody to rat 

albumin (MP Biomedicals, CA, USA), diluted 1/20000 in 1% BSA in 1X 

PBS with 0.05% Tween 20, for 1 hour at 37°C.  

8. Thoroughly aspirate and discard the detecting antibody and wash with 4 

changes of 400µl of 1X PBS. 

9. Add 50μl of 0.05% OPD substrate (MP Biomedicals, CA, USA) in each 

well and incubate for 10 minutes at room temperature in dark. 

10. Stop reaction with 60μl of 4.5 N sulphuric acid. Gently mix and incubate for 

5 minutes. 

11. Read the absorbance at 490 nm using a microplate reader. 

 

Preparation of standards: 

• Rat albumin (MP Biomedicals, CA, USA) stock solution = 20mg/ml  

• Diluent = 0.05% Tween 20 in 1X PBS 

• Dilute the 20 mg/ml stock solution 1/100 to final concentration of 200μg/ml: 

10μl of stock solution + 990μl of diluent 

• Dilute the 200μg/ml rat albumin solution 1/100 to 2μg/ml: 50μl of 200μg/ml 

rat albumin solution + 4950μl of diluent 
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• Make a 2X standard serial dilutions from the 2μg/ml rat albumin solution  

• Concentration of standards: 2000, 1000, 500, 250, 125, 62.5, 31.25, 15.625 

ng/ml 

 

Dilution of urine samples: 

• Dilute the urine samples 1/10: 50μl of urine sample + 450μl of diluent. 

• Further serial dilute the urine samples ranging from 1/10 to 1/100 as shown 

in the table below. 
Dilution factor 
(Final dilution) Volume from first dilution/ μl Volume of diluent/ μl 

1/10 (1/100) 20 180 

1/20 (1/200) 15 285 

1/30 (1/300) 15 435 

1/40 (1/400) 15 585 

1/50 (1/500) 15 735 

1/60 (1/600) 15 885 

1/70 (1/700) 15 1035 

1/80 (1/800) 15 1185 

1/90 (1/900) 15 1335 

1/100 (1/1000) 15 1485 

 

 Reagent preparation: 

0.1M Sodium carbonate buffer, pH 9.6: 

0.2M Sodium carbonate (Na2CO3)   8ml 

0.2M Sodium bicarbonate (NaHCO3)   17ml 

ddH2O       25ml 

 

0.2M Sodium carbonate (Na2CO3): 

Sodium carbonate (Na2CO3)    21.2g 

ddH2O       1000ml 

 

0.2M Sodium bicarbonate (NaHCO3): 

Sodium bicarbonate (NaHCO3)   16.8g 

ddH2O       1000ml 
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Blocking solution: 

1X PBS      50ml 

BSA       0.5g 

Tween 20      25μl 

 

Diluent for standards and urine samples: 

1X PBS      500ml 

Tween 20      250μl 

  

OPD substrate: 

Phosphate-citrate buffer, pH 5.0   6ml 

OPD (o-Diphenylenediamine)   300μl 

30% H2O2*      3μl 

*Add the H2O2 just before use. 

 

Phosphate-Citrate buffer pH 5.0 for OPD substrate: 

0.1M Citrate buffer     24.3ml 

0.2M Phosphate buffer    25.7ml 

ddH2O       50ml 

 

0.1M Citrate buffer: 

Citric acid      3.84g 

ddH2O       200ml 

 

0.2M Phosphate buffer: 

Na2HPO4 (anhydrous)     5.68g 

ddH2O       200ml 
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Appendix 2.2: Protocol for RNA cleanup using RNeasy® Kit (RNeasy® Mini 

Handbook, 4th Edition, 09/2010) 

1. Adjust the sample to final volume of 100μl with RNase-free water.  

2. Add 350μl Buffer RLT, and mix well. 

3. Add 250μl absolute ethanol to the mixture and mix well by pipetting.  

4. Transfer all the sample to an RNeasy Mini spin column placed in a 2 ml 

collection tube supplied. Close the lid, and centrifuge for 15s at 13,000rpm. 

Discard the flow-through. 

5. Add 350μl of Buffer RW1 to the RNeasy spin column. Close the lid, and 

centrifuge for 15s at 13,000rpm. Discard the flow-through. 

6. Add 10μl of DNase I stock solution to 70μl Buffer RDD. Mix by gently 

inverting the tube, and centrifuge briefly to collect residual liquid from the 

sides of the tube. 

7. Add the DNase I incubation mix (80μl) directly to the RNeasy spin column 

membrane, and incubate at room temperature for 15 minutes. 

8. Add 350μl of Buffer RW1 to the RNeasy spin column. Close the lid, and 

centrifuge for 15s at 13,000rpm. Discard the flow-through. 

9. Add 500μl of Buffer RPE to the RNeasy spin column. Close the lid, and 

centrifuge for 15s at 13,000rpm. Discard the flow-through. 

10. Add 500μl of Buffer RPE to the RNeasy spin column. Close the lid, and 

centrifuge for 2 minutes at 13,000rpm. Discard the flow-through. 

11. Place the RNeasy spin column in a new 2ml collection tube (supplied) and 

discard the old collection tube with the flow-through. Close the lid gently, 

and centrifuge at 13,000rpm for 1 minute. 

12. Place the RNeasy spin column in a new 1.5ml collection tube (supplied). 

Add 30μl of RNase-free water directly to the spin column membrane. Close 

the lid gently, and centrifuge for 1 minute at 13,000rpm to elute the RNA. 

13. Repeat step 12 using the eluate from step 12 for high RNA concentration. 

Reuse the collection tube from step 12. 
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Reagent preparation: 

Buffer RPE working solution: 

Buffer RPE is supplied as a concentrate. Before using for the first time, add 4 

volumes of absolute ethanol as indicated on the bottle to obtain a working 

solution. 

 

DNase I stock solution: 

Prepare DNase I stock solution before using the RNase-Free DNase Set for the 

first time. Dissolve the lyophilized DNase I (1500 Kunitz units) by injecting 

550μl of the RNase free water provided using RNase-free needle and syringe. 

Mix gently by inverting the vial. Do not vortex. Aliquot the stock solution into 

single-use volume and store at –20°C. 
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Appendix 2.3: Protocol for cRNA hybridization and array scanning 

(Illumina® Whole-Genome Expression for BeadStation) 

Hybridization: 

Preheat the oven (with rocking platform) to 58°C. 

 

Mix with Hyb Reagents: 

1. Add up to 5μl of RNase free water to 750ng cRNA, and mix. 

2. Incubate at room temperature for 10 minutes to resuspend cRNA. 

3. Place the HYB and HCB bottles in the 58°C oven for 10 minutes to dissolve 

any salt precipitation. Cool to room temperature and mix thoroughly before 

use. 

4. Add 10μl of HYB to each cRNA sample. 

 

Set up Hybridization: 

1. Place Illumina Hyb Chamber Gaskets into BeadChip Hyb Chamber. 

2. Dispense 200μl of HCB into each of the two humidifying buffer reservoirs 

in each Hyb Chamber. Only add buffer to chambers that will be used. 

3. Seal Hyb Chamber with lid and keep on bench at room temperature until 

ready to load BeadChips into Hyb Chamber. 

4. Remove all BeadChips from their packages. (3 fingers at the notches to 

release) 

5. Holding BeadChip by coverseal tab with tweezers using powder-free gloved 

hands, slide BeadChip into Hyb Chamber Insert such that the barcode lines 

up with barcode symbol on the Insert. 

6. Preheat the assay sample at 65°C for 5 minutes. 

7. Briefly vortex, then briefly centrifuge to collect the liquid in the bottom of 

the tube. Allow sample to cool to room temperature before using. Pipet 

sample immediately after cooling to room temperature. 

8. Dispense 15μl of assay sample onto the large sample port of each array, 

ensuring pipet tip does not touch array. 

9. Load Hyb Chamber Inserts containing BeadChips into the Hyb Chamber 

with rocker speed at 5. 
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10. Seal lid onto the Hyb Chamber by applying the back of the lid first and then 

bringing it down to the front to avoid dislodging the Hyb Chamber Insert(s). 

11. Incubate for 18.5 hours at 58°C. 

 

Prepare for High-Temp Wash & Overnight Incubation: 

1. Prepare 1X High-Temp Wash buffer by adding 50ml of 10X stock to 450ml 

of RNAse free water. 

2. Place waterbath insert into heat block, and add 500ml of 1X High-Temp 

Wash buffer. 

3. Set heat block temperature to 55°C and pre-warm High-Temp Wash buffer 

to that temperature overnight. 

 

Prepare Reagents: 

1. The next day, prepare Wash E1BC solution by adding 3ml of E1BC buffer 

to 1L of RNase free water. 

2. Pre-warm Block E1 buffer (4ml/chip) to room temperature.  

 

Room-Temperature Incubation: 

1. Remove Hyb Chamber from oven and disassemble. (Observe for bubbles, 

if any, and locate them on the tracking sheet). 

2. Remove coverseal in a zig-zag manner in a container with 1L of Wash E1BC 

solution. Using tweezers or powder-free gloved hands, place the BeadChip 

into the slide rack submerged in the staining dish containing 250ml of Wash 

E1BC solution. 

3. Using the slide rack handle, transfer the rack into the Hybex Waterbath 

insert containing High-Temp Wash buffer. 

 

High-Temp Wash: 

Incubate static for 10 minutes with the Hybex lid closed. 
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1st Room-Temp Wash: 

1. During the 10 minutes High-Temp Wash buffer incubation, add fresh 250ml 

of Wash E1BC solution to a clean staining dish. 

2. After the 10 minutes High-Temp Wash buffer incubation is complete, 

immediately transfer the slide rack into the above prepared staining dish. 

3. Briefly agitate using rack, then shake on orbital shaker for 5 minutes at 

110rpm. 

 

Ethanol Wash: 

Transfer rack to a clean staining dish containing 250ml of absolute ethanol. 

Briefly agitate using rack handle, then shake on orbital shaker for 10 minutes at 

110rpm. 

 

2nd Room-Temp Wash: 

Transfer rack to a clean staining dish containing fresh 250ml of Wash E1BC 

solution. Briefly agitate using rack handle, then shake on orbital shaker for 2 

minutes at 110rpm. 

 

Block: 

1. Pipette 4ml of Block E1 buffer into the Wash Tray(s). 

2. Transfer the BeadChip, face up into BeadChip Wash Tray(s) on rocker. 

3. Rock at medium speed for 10 minutes.  

4. Prepare Block E1 buffer (cloudy looking, normal) (2 ml/chip) with 

streptavidin-Cy3 (2μl of 1mg/ml stock per chip). Use a single conical tube 

for all BeadChips. Store in dark until detection step. 

 

Detect: 

1. Pipette 2ml of Block E1 buffer + streptavidin-Cy3 into fresh Wash Tray(s). 

2. Transfer the BeadChip, face up into Wash Tray(s) on rocker. 

3. Place cover on tray and rock at medium speed for 10 minutes. 

 

3rd Room-Temp Wash: 

1. Add 250ml of Wash E1BC solution to a clean staining dish. 
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2. Transfer the BeadChip to the slide rack submerged in the staining dish. 

3. Briefly agitate using rack, and then shake at room temperature on orbital 

shaker for 5 minutes. 

 

Dry: 

1. Prepare centrifuge with plateholders, paper towels and balance rack. Set 

speed to 270rcf. 

2. Transfer rack of BeadChips from staining dish to centrifuge and spin at 

room temperature for 4 minutes. 

3. Store dry chips in slide box until scanned. 

 

Scanning: 

Scan the arrays with scan factor 1.5, PMT 551 using Illumina® BeadArray 

Reader. Ensure the signal is strong enough, i.e. green colour on the slot instead 

of red. Check that all the housekeeping genes and other parameters are normal. 
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Appendix 2.4: Protocol for single-stranded cDNA synthesis using 

Superscript III First-Strand Synthesis System for RT-PCR 

Single-stranded cDNA was synthesized from 150ng of total RNA using the 

Superscript III First-Strand Synthesis System for RT-PCR (Invitrogen Life 

Technologies, CA, USA), according to the manufacturer’s instructions. The 

initial reaction mixture for cDNA conversion was prepared as shown below. 

Reagent Volume for 1 reaction 
50pmol Oligo(dT) 1µl 
10mM dNTP 1µl 
150ng total RNA  Variable 
DEPC-treated water Top up to 13µl 
Final Volume 13 µl 

 
The mixture was incubated at 65 ºC for 5 minutes followed by incubation at 4ºC 

for at least 1 minute. A second reaction mixture was prepared as shown in the 

table below and added to each tube and mixed by gentle pipetting. All tubes 

were incubated at 50ºC for 1 hour, followed by inactivation at 70 ºC for 15 

minutes and cooling at 4ºC. 

Reagent Volume for 1 
reaction 

5X First Strand Buffer 4µl 
0.1M DTT 1µl 
RNaseOUT recombinant RNase Inhibitor (40U/µl) 1µl 
Superscript III Reverse Transcriptase (200U/µl) 1µl 
Final Volume 7 µl 
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Appendix 2.5: Protocol for plasmid standard curve generation 

Polymerase chain reaction (PCR) was carried out using podocyte cDNA and 

specific primer sequences as shown in the table below to obtain the genes of 

interest. The reactions were run at 95°C for 5 minutes, followed by 40 

amplification cycles of 95°C for 30 seconds, annealing temperature of 58°C for 

30 seconds and 72°C for 30 seconds. A final 9 minutes of extension at 72°C was 

performed after the last amplification cycle, followed by cooling at 4°C.  
Nucleotide sequence of primers for the respective genes of interest in rat glomeruli. 

Gene 
Accession no. Primers  Nucleotide sequence 5’ - 3’ bp 

Rat vav1 Forward 5’- GGGTGAAAGATACAGCGGAA -3’ 234 
NM_012759 Reverse 5’- GCTTGTTGATGGCTCTCCTC -3’  

Rat Kirrel2 Forward 5’- TCTGTGTCTCTGGTTGCTGG -3’ 169 

XM_218486 Reverse 5’- AGGTGTTTTCAACTGTCCCG -3’  

Rat Cdh11 Forward 5’- CTTTGCAGCAGAAATCCACA -3’ 299 

XM_001059464 Reverse 5’- CACGTCGGGCATATACTCCT -3’  

Rat Nck2 Forward 5’- TCCACAGATCAGCTACACCG -3’ 184 

NM_001108216 Reverse 5’- TGATGCTTTGAGAGACACGG -3’  

Rat Magi2 Forward 5’- CGAGAGTGTCATTGGCAGAA -3’ 228 

NM_053621 Reverse 5’- GGGTCCTTGCAGTGTTTGAT -3’  

Rat Actn4 Forward 5’- AGTGGGATAACCTGGGCTCT -3’ 227 

NM_031675 Reverse 5’- GGTGGACTTGAACTGGTCGT -3’  

Rat Ctnnal1 Forward 5’- GTGTGGAGGACTTCACCGAT -3’ 253 

NM_001106649 Reverse 5’- TGGAATTTTAACAGGTCGGC -3’  

Rat Itga3 Forward 5’- AGGGACCTTAGGGCACATCT -3’ 179 

NM_001108292 Reverse 5’- TTCACAGTCTTCATGGCAGC -3’  

Rat Ptpro Forward 5’- CTTGGAGAGGGAAGGGAAA -3’ 281 

NM_017336 Reverse 5’- GATCTGCAGCAAAGTGTGGA -3’  

Rat Ezr Forward 5’- AAGATGACAAGTTGACCCCG -3’ 187 

NM_019357 Reverse 5’- ATGTACAGCTCGTGGTTCCC -3’  

Rat Junb Forward 5’- GCAGCTACTTTTCGGGTCAG -3’ 247 

NM_021836 Reverse 5’- TGGTTCATCTTGTGCAGGTC -3’  

Rat GAPDH Forward 5’- GGTGATGCTGGTGCTGAGTA-3’ 273 

NM_017008 Reverse 5’- GACTGTGGTCATGAGCCCTT-3’  
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Nucleotide sequence of primers for the respective genes of interest in human podocytes. 

Gene 
Accession No. Primers Nucleotide sequence 5’ - 3’ bp 

GAPDH 
NM_002046.3 

Forward 5’ – CTGGCATGGCCTTCCGTGTC – 3’ 194 
Reverse 5’ – GGAGGAGTGGGTGTCGCTGT – 3’  

B7.1 
NM_005191.3 

Forward 5’ – CACGGAGGCAGGGAACATCA – 3’ 183 
Reverse 5’ – AGATGCGAGTTTGTGCCAGC – 3’  

Nephrin 
NM_004646.3 

Forward 5’ – GAGCACCCCACTCCCCTAAC – 3’ 212 
Reverse 5’ – GCAGACACGTTGGCAATGGT – 3’  

Podocin 
NM_014625.2 

Forward  5’ – CAGGACTCCGCACAAGGAGA – 3’ 159 
Reverse 5’ – ACCTCATCCACGTCCACCAC – 3’  

dystroglycan   
NM_004393.4 

Forward 5’ – AGGATGTCTGTGGGCCTCTC – 3’ 240 
Reverse 5’ – GGTCACTCGAAATGAGCGCC – 3’  

IL-4R 
NM_000418.2 

Forward  5’ – CCTGGAGCCAAGTCCTCCTG – 3’ 200 
Reverse 5’ – CACAGGGCATCTCGGGTTCT – 3’  

IL-13Rα1 
NM_001560.2 

Forward  5’ – GCTCCGGAAACTCGTCGTTC – 3’ 187 
Reverse 5’ – AGCTCAGGTTGTGCCAAATGC – 3’   

IL-13Rα2 
NM_000640.2     

Forward  5’ – CAATGGCAACCCCCACTGTC – 3’ 186 
Reverse 5’ – GCATTGCCATGGTAAAAGCGTG – 3’  

Vav1 
NM_005428.2     

Forward  5’ – CCCTGTCTGCTCTGTCCTGG  – 3’ 241 
Reverse 5’ – TCTGTCATCTTGGGCGGCAT – 3’  

ACTN4 
(NM_004924.4) 

Forward  5’ – CAGCTTCTACCATGCCTTTT – 3’ 195 
Reverse 5’ – TCCTGGATAGTCTTTTGGGG – 3’  

CDH11 
(NM_001797.2) 

Forward  5’ –  TTGTACCTTCTGCCCATAGT – 3’ 200 
Reverse 5’ – ATGACCAGGAGAATGACGAT – 3’  

CTNNAL1 
(NM_003798.2) 

Forward  5’ – AGCTCTTCGGGAGAATCTTT – 3’ 193 
Reverse 5’ – TTGAGCTTGAATCCACACAG – 3’  

EZR 
(NM_003379.4) 

Forward  5’ – ATGCCGAAACCAATCAATGT – 3’ 192 
Reverse 5’ – CTTCTTATCCAGCTTCAGCC – 3’  

ITGA3   
(NM_002204.2) 

Forward 5’ – GCCAAGCTAATGAGACCATC – 3’ 197 
Reverse 5’ – TGTATAGTCCACCAGCAGAG – 3’  

JUNB 
(NM_002229.2) 

Forward 5’ – ACACGACTACAAACTCCTGA – 3’ 200 
Reverse 5’ – TGCTGTTGGGGACAATCA – 3’  

KIRREL2 
(NM_199179.2) 

Forward 5’ – TCTCTGTGCTACACATTTCG – 3’ 188 
Reverse 5’ – CCCAGTGATGACCATAAGGA – 3’  

MAGI2 
(NM_012301.3) 

Forward  5’ – CGAAAAAGGCTAAACCTCCA – 3’ 192 
Reverse 5’ – TTGTTCCAAGTTCTGTGTGG – 3’  

NCK2 
(NM_003581.4) 

Forward 5’ – GACCAGAGGCAGCTCTTGGT – 3’ 198 
Reverse 5’ – GCAGCCAGCAAGAAGCATCA – 3’  

PTPRO 
(NM_030667.2) 

Forward 5’ – ACGGACAGGAACATTCATTG – 3’ 187 
Reverse 5’ – GAACTGCTGCTTCTTCTTCA – 3’  
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The PCR products were cloned into pCR 2.1-TOPO vector using the TOPO® 

TA cloning kit (Invitrogen Life Technologies, CA, USA). The TA cloning 

reaction was set up as shown in the table below. 

Reagent Volume for 1 reaction 
Fresh PCR product 3µl 
Water 1µl 
Salt Solution 1µl 
TOPO vector 1µl 
Final Volume 6µl 

 

The reaction mixture for each gene was mixed gently and incubated at room 

temperature for 15 minutes. Two µl of the reaction mixture was then added to a 

vial of OneShot® TOP10 Chemically Competent E. coli cells and incubated for 

15 minutes on ice before being subjected to heat shock for 30 seconds at 42ºC 

without shaking. The vial was placed on ice for 2 minutes before adding 250µl 

of S.O.C. medium to each vial and incubated for 1 hour at 37ºC with shaking at 

250rpm. 

 

One hundred µl of the incubation mixture was spread onto a pre-warmed Luria-

Bertani (LB) agar plate containing 100µg/ml ampicillin and 40µg/ml 5-bromo-

4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) (Promega, WI, USA) for 

blue-white selection. Plates were incubated overnight at 37ºC. Isolated white 

colonies were picked for sub-culturing. Each colony was grown in 3ml of LB 

broth containing 100µg/ml ampicillin at 37ºC with shaking at 250rpm. After 8 

hours, the bacterial culture was diluted by topping up the LB broth to 10ml and 

was incubated overnight under the same conditions but not more than 16 hours. 

Cells were then centrifuged at 6000g and 4ºC for 15 minutes. The supernatant 

was discarded and plasmids were extracted using the QIAprep Spin Miniprep 

Kit (QIAGEN GmbH, Hilden, Germany) according to the manufacturer’s 

protocol. Concentration of the plasmid DNA stock was measured using 

NanoDrop 1000 Spectrophotometer (NanoDrop products, Thermo Scientific, 

DE, USA). Presence of gene inserts was confirmed by EcoRI restriction and 

agarose gel electrophoresis. Serial dilutions were done to get a series of plasmid 

standards, ranging from 109 copy number to 101 copy number. Plasmid 
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standards were run in triplicates in real-time PCR using LightCycler® 480 

SYBR Green I Master reagent (Roche, Germany). Good standard curves should 

have efficiency of 2 and gradient of -3.3 in the curve of Cp value against copy 

number. 
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Appendix 3.1: Biochemistry data of control and IL-13 overexpressed rats 
 

Biochemistry profile of rats used for the microarray analysis. 

Code Sample Serum IL-13 
(pg/ml) 

Serum 
albumin 

(g/L) 

Serum 
cholesterol 
(mmol/L) 

Serum 
creatinine 
(μmol/L) 

urine 
albumin 
excretion 
(μg/24hr) 

(3)C2 C2 0 41 1.94 88.2 218 
(3)C3 C3 0 42.4 1.53 65.2 303 
(3)C4 C4 0 56.9 1.63 67.2 194 
(3)C5 C5 2 38.6 1.81 84.9 231 
(6)C3 C15 11 42.4 1.5 82.2 495 
(6)C5 C17 8 46.7 1.55 82.2 275 
(3)J2 J2 1578 27.9 7.8 69.7 2331 
(3)J4 J4 376 29.3 5.83 89.5 3098 
(4)J5 J11 28 29 4.3 70.5 2996 
(4)J9 J15 336 29.3 4.45 67.6 6846 
(4)J13 J19 1753 18.9 8.78 79.3 12087 
(4)J16 J22 657 15.5 12.2 56.8 32845 

Sample starts with C represent control rat; sample starts with J represent IL-13-overexpressed 
rat. 
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Appendix 3.2: Full list of DEGs  
 

List of genes differentially expressed in the glomeruli of IL-13 overexpression rats versus 
control rats. 

GenBank 
Accession No. Gene Symbol Gene Description Fold 

Change 
Vasculature development 
NM_053394.2 Klf5 Kruppel-like factor 5 -4.09 
NM_031836.1 Vegfa vascular endothelial growth factor A -3.67 
XM_241275.4 Sema5a sema domain, seven thrombospondin 

repeats (type 1 and type 1-like), 
transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 5A

-3.01 

NM_022950.1 C1galt1 core 1 synthase, glycoprotein-N-
acetylgalactosamine 3-beta-
galactosyltransferase, 1

-2.38 

XM_344806.3 Hey2 hairy/enhancer-of-split related with 
YRPW motif 2 -2.36 

NM_016991.2 Adra1b adrenergic, alpha-1B-, receptor -2.19 
XM_001070551.1 Reck reversion-inducing-cysteine-rich protein 

with kazal motifs -2.09 

NM_053356.1 Col1a2 collagen, type I, alpha 2 -2.08 
NM_133386.2 Sphk1 sphingosine kinase 1 -2.01 
XM_001079521.1 Fgfr2 fibroblast growth factor receptor 2 -1.97 
XM_001060648.1 Tiparp TCDD-inducible poly(ADP-ribose) 

polymerase -1.69 

NM_013151.2 Plat plasminogen activator, tissue -1.66 
NM_001024781.1 Sox18 SRY (sex determining region Y)-box 18 1.90 
NM_019386.2 Tgm2 transglutaminase 2, C polypeptide 1.77 
NM_022277.1 Casp8 caspase 8 1.64 
Cell adhesion 
XM_579693.1 Spon1 spondin 1, extracellular matrix protein -6.88 
NM_021682.1 Negr1 neuronal growth regulator 1 -4.93 
XM_229775.4 LOC317070 similar to nidogen 2 -4.28 
XM_342325.3 Col11a1 collagen, type XI, alpha 1 -3.62 
NM_013137.1 Ddr1 discoidin domain receptor tyrosine kinase 

1 -3.08 

NM_138525.1 Mucdhl mucin and cadherin like -3.02 
NM_031753.1 Alcam activated leukocyte cell adhesion 

molecule -2.93 

NM_053848.1 Opcml opioid binding protein/cell adhesion 
molecule-like -2.92 

NM_031716.1 Wisp1 WNT1 inducible signaling pathway 
protein 1 -2.77 

XM_213902.4 Lamc2 laminin, gamma 2 -2.76 
XM_213560.4 Pkp2 plakophilin 2 -2.76 
NM_019358.1 Pdpn podoplanin -2.72 
NM_019140.2 Ptprd protein tyrosine phosphatase, receptor 

type, D -2.59 

XM_241632.4 Col18a1 collagen, type XVIII, alpha 1 -2.53 
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XM_221337.3 LOC288010 LIM domain containing preferred 
translocation partner in lipoma -2.38 

XM_001076220.1 Celsr2 cadherin, EGF LAG seven-pass G-type 
receptor 2 (flamingo homolog, 
Drosophila) 

-2.38 

XM_223583.4 Aebp1 AE binding protein 1 -2.28 
NM_031521.1 Ncam1 neural cell adhesion molecule 1 -2.19 
XM_001072297.1 RGD1564327 similar to integrin alpha 8 -2.00 
XM_230950.4 Itgav integrin alpha V -1.97 
XM_235308.4 Col14a1 collagen, type XIV, alpha 1 -1.97 
XM_345584.3 Col16a1 collagen, type XVI, alpha 1 -1.96 
XM_227117.4 Pcdh18 protocadherin 18 -1.93 
NM_022944.1 Inppl1 inositol polyphosphate phosphatase-like 1 -1.91 
NM_013016.2 Sirpa signal-regulatory protein alpha -1.88 
NM_198747.1 Col27a1 collagen, type XXVII, alpha 1 -1.74 
XM_001076634.1 LOC686988 discoidin domain receptor tyrosine kinase 

2 -1.73 

NM_030842.1 Itga7 integrin alpha 7 -1.70 
NM_001004090.2 Tspan5 tetraspanin 5 -1.67 
XM_575373.2 RGD1564980 ribosomal protein L29; similar to 60S 

ribosomal protein L29 (P23); ribosomal 
protein L29, pseudogene 1; similar to 60S 
ribosomal protein L29

3.26 

NM_001025750.1 Plek pleckstrin 2.43 
XM_579351.1 LOC497761 Cd2 molecule 2.23 
XM_575338.2 RGD1562323 similar to CD36 antigen; similar to fatty 

acid translocase/CD36; CD36 molecule 
(thrombospondin receptor) 

2.19 

NM_020308.1 Adam15 a disintegrin and metallopeptidase 
domain 15 (metargidin) 2.07 

NM_019177.1 Sell selectin, lymphocyte 2.05 
NM_024360.2 Hes1 hairy and enhancer of split 1 (Drosophila) 2.01 
XM_575339.1 LOC499985 similar to fatty acid translocase/CD36 2.01 
NM_133306.1 Olr1 oxidized low density lipoprotein (lectin-

like) receptor 1 2.00 

NM_031691.1 Itgad integrin, alpha D 1.91 
XM_001067562.1 Itgb7 integrin, beta 7 1.88 
XM_342930.2 Ptpru protein tyrosine phosphatase, receptor 

type, U 1.69 

XM_219001.4 Xlkd1 lymphatic vessel endothelial hyaluronan 
receptor 1 1.63 

XM_001055526.1 Pcdhb10 protocadherin beta 10 1.61 
Intrinsic to plasma membrane 
XM_001055768.1 Tmeff1 transmembrane protein with EGF-like 

and two follistatin-like domains 1 -6.67 

NM_031739.1 Kcnd3 potassium voltage gated channel, Shal-
related family, member 3 -5.64 

NM_019214.1 Slc26a4 solute carrier family 26, member 4 -4.26 
NM_019276.2 Ugt8 UDP glycosyltransferase 8 -4.19 
NM_024376.1 Gja3 gap junction protein, alpha 3 -3.70 
NM_145881.1 Rims2 regulating synaptic membrane exocytosis 

2 -3.69 
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NM_012813.1 St8sia1 ST8 alpha-N-acetyl-neuraminide alpha-
2,8-sialyltransferase 1 -3.68 

NM_173103.1 Clcnkb chloride channel Kb -3.48 
XM_234108.4 Prkcm protein kinase D1 -3.21 
XM_001075775.1 Mpv17l Mpv17 transgene, kidney disease mutant-

like -3.09 

NM_173293.1 Olr59 olfactory receptor 59 -2.96 
NM_152938.1 Slc4a9 solute carrier family 4, sodium 

bicarbonate cotransporter, member 9 -2.88 

NM_012799.1 Nmbr neuromedin B receptor -2.87 
NM_001014171.1 Veph1 ventricular zone expressed PH domain 

homolog 1 (zebrafish) -2.86 

NM_053981.1 Kcnj12 potassium inwardly-rectifying channel, 
subfamily J, member 12 -2.80 

NM_001025413.1 Tmem184a transmembrane protein 184A -2.71 
NM_053445.1 Fads1 fatty acid desaturase 1 -2.67 
NM_019243.1 Ptgfrn prostaglandin F2 receptor negative 

regulator -2.63 

XM_217033.4 LOC300191 solute carrier family 48 (heme 
transporter), member 1 -2.62 

NM_001034014.1 Accn1 amiloride-sensitive cation channel 1, 
neuronal -2.57 

XM_001057885.1 Atp2b3 ATPase, Ca++ transporting, plasma 
membrane 3 -2.56 

NM_031007.1 Adcy2 adenylate cyclase 2 (brain) -2.47 
NM_021688.2 Kcnk1 potassium channel, subfamily K, member 

1 -2.46 

NM_053570.1 Cxadr coxsackie virus and adenovirus receptor -2.45 
NM_022590.2 Slc5a2 solute carrier family 5 (sodium/glucose 

cotransporter), member 2 -2.45 

NM_198786.2 Mal2 mal, T-cell differentiation protein 2 -2.45 
NM_031841.1 Scd stearoyl-CoA desaturase (delta-9-

desaturase) -2.44 

NM_021266.2 Fzd1 frizzled homolog 1 (Drosophila) -2.41 
NM_001004282.1 Tmem178 transmembrane protein 178 -2.41 
NM_031034.1 Gna12 guanine nucleotide binding protein, alpha 

12 -2.40 

XM_225718.3 Kcng2 potassium voltage-gated channel, 
subfamily G, member 2 -2.38 

NM_031795.1 Ugcg UDP-glucose ceramide 
glucosyltransferase -2.34 

NM_053571.1 Sec16b SEC16 homolog B (S. cerevisiae) -2.33 
XM_344661.3 Reep5 receptor accessory protein 5 -2.31 
NM_031344.2 Fads2 fatty acid desaturase 2 -2.30 
NM_001005562.1 Creb3l1 cAMP responsive element binding 

protein 3-like 1 -2.24 

NM_017060.1 Hrasls3 phospholipase A2, group XVI -2.19 
NM_017049.1 Slc4a3 solute carrier family 4 (anion exchanger), 

member 3 -2.18 

NM_001013185.1 Cabc1 presenilin 2; chaperone, ABC1 activity of 
bc1 complex homolog (S. pombe) -2.16 

NM_172091.1 Gcgr glucagon receptor -2.15 
XM_342986.2 Tas1r1 taste receptor, type 1, member 1 -2.12 
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NM_001005558.1 Fam151a family with sequence similarity 151, 
member A -2.11 

NM_012507.2 Atp1b2 ATPase, Na+/K+ transporting, beta 2 
polypeptide -2.08 

NM_199105.1 MGC72614 hypothetical LOC310540 -2.08 
NM_130822.1 Lphn3 latrophilin 3 -2.07 
NM_053735.1 Pi4k2a phosphatidylinositol 4-kinase type 2 

alpha -2.06 

NM_001010958.1 Slc25a29 solute carrier family 25, member 29 -2.06 
NM_001007672.1 Tmem98 transmembrane protein 98 -2.05 
NM_031648.1 Fxyd1 FXYD domain-containing ion transport 

regulator 1 -2.04 

NM_181639.3 Slc29a3 solute carrier family 29 (nucleoside 
transporters), member 3 -1.99 

NM_001003705.1 LOC291840 solute carrier family 38, member 7 -1.99 
NM_017136.1 Sqle squalene epoxidase -1.97 
NM_184050.2 Ermp1 endoplasmic reticulum metallopeptidase 

1 -1.97 

NM_017206.1 Slc6a6 solute carrier family 6 (neurotransmitter 
transporter, taurine), member 6 -1.95 

NM_139325.1 Eno2 enolase 2, gamma, neuronal -1.94 
NM_017299.1 Slc19a1 solute carrier family 19 (folate 

transporter), member 1 -1.93 

NM_053485.2 S100a6 S100 calcium binding protein A6 -1.90 
NM_173145.1 Dlgap4 discs, large homolog-associated protein 4 

(Drosophila) -1.88 

NM_139082.2 Bambi BMP and activin membrane-bound 
inhibitor, homolog (Xenopus laevis) -1.88 

NM_022219.2 Fut4 fucosyltransferase 4 (alpha (1,3) 
fucosyltransferase, myeloid-specific) -1.87 

NM_022862.1 Unc13b unc-13 homolog B (C. elegans) -1.87 
NM_183332.1 Myadm myeloid-associated differentiation marker -1.87 
NM_012919.2 Cacna2d1 calcium channel, voltage-dependent, 

alpha2/delta subunit 1 -1.87 

NM_001031652.1 St6galnac2 ST6 (alpha-N-acetyl-neuraminyl-2,3-
beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-
sialyltransferase 2 

-1.85 

XM_001054081.1 Galnt2 UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase 2 
(GalNAc-T2) 

-1.83 

NM_001007679.1 Tmem206 transmembrane protein 206 -1.82 
NM_001012345.1 Dgat2 diacylglycerol O-acyltransferase homolog 

2 (mouse) -1.82 

NM_001014209.1 LOC363060 similar to RIKEN cDNA 1600029D21 -1.81 
XM_574680.1 Cnnm2 cyclin M2 -1.81 
NM_001013903.1 Tmem171 transmembrane protein 171; proline rich 

protein 2 -1.77 

NM_080582.1 Abcb6 ATP-binding cassette, sub-family B 
(MDR/TAP), member 6 -1.77 

NM_001013126.1 Cyb5r1 cytochrome b5 reductase 1 -1.75 
NM_176861.1 Kcnmb2 potassium large conductance calcium-

activated channel, subfamily M, beta 
member 2 

-1.75 
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NM_012716.1 Slc16a1 solute carrier family 16, member 1 
(monocarboxylic acid transporter 1) -1.74 

NM_134363.1 Slc12a5 solute carrier family 12 (potassium-
chloride transporter), member 5 -1.73 

NM_033352.1 Abcd2 ATP-binding cassette, sub-family D 
(ALD), member 2 -1.72 

NM_001012018.1 B4galt4 UDP-Gal:betaGlcNAc beta 1,4-
galactosyltransferase, polypeptide 4 -1.71 

NM_001008358.1 Tmem106c transmembrane protein 106C -1.69 
NM_001007002.1 Mxra8 matrix-remodelling associated 8 -1.68 
XM_001080929.1 RGD1565432 similar to hypothetical protein -1.66 
NM_001004204.2 MGC94190 similar to 0610007L01Rik protein -1.66 
NM_080480.1 Pip5k2c phosphatidylinositol-5-phosphate 4-

kinase, type II, gamma -1.66 

XM_220982.3 Ptrf polymerase I and transcript release factor -1.66 
NM_031559.1 Cpt1a carnitine palmitoyltransferase 1a, liver -1.64 
NM_012661.1 Sts steroid sulfatase -1.64 
NM_017223.2 Slc20a2 solute carrier family 20 (phosphate 

transporter), member 2 -1.62 

NM_001024897.1 Ehd2 similar to hypothetical protein; 
hypothetical gene supported by X51706; 
similar to ribosomal protein L9; similar to 
60S ribosomal protein L9; ribosomal 
protein L9; EH-domain containing 2 

-1.61 

NM_017037.1 Pmp22 peripheral myelin protein 22 2.85 
XM_001064152.1 Loc266761 cytochrome P450, family 4, subfamily v, 

polypeptide 3; family with sequence 
similarity 149, member A

2.51 

NM_030848.1 Bst1 bone marrow stromal cell antigen 1 2.45 
NM_031664.1 Slc28a2 similar to solute carrier family 28, 

member 2; solute carrier family 28 
(sodium-coupled nucleoside transporter), 
member 2 

2.24 

NM_020100.2 Ramp3 receptor (G protein-coupled) activity 
modifying protein 3 2.21 

XM_001071501.1 St8sia4 similar to CMP-N-acetylneuraminate-
poly-alpha-2,8-sialyltransferase (Alpha-
2,8-sialyltransferase 8D) (ST8Sia IV) 
(Polysialyltransferase-1); ST8 alpha-N-
acetyl-neuraminide alpha-2,8-
sialyltransferase 4 

2.15 

XM_001077664.1 LOC691312 cytochrome P450 4F5; cytochrome P450, 
family 4, subfamily f, polypeptide 37 2.11 

NM_001008843.1 RT1-CE5 RT1 class I, CE5 2.07 
NM_017054.1 Tbxa2r thromboxane A2 receptor 2.03 
NM_012800.1 P2ry1 purinergic receptor P2Y, G-protein 

coupled 1 1.96 

NM_019354.1 Ucp2 uncoupling protein 2 (mitochondrial, 
proton carrier) 1.96 

NM_053822.1 S100a8 S100 calcium binding protein A8 1.92 
NM_001024995.1 Lrrc33 leucine rich repeat containing 33 1.91 
NM_031684.2 Slc29a1 solute carrier family 29 (nucleoside 

transporters), member 1 1.91 

NM_031349.2 Aplnr apelin receptor 1.90 
NM_001005384.1 Osmr oncostatin M receptor 1.90 
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NM_001025415.1 Ch25h cholesterol 25-hydroxylase 1.90 
NM_173124.1 Cyp4f5 cytochrome P450 4F5; cytochrome P450, 

family 4, subfamily f, polypeptide 37 1.88 

NM_001024968.1 Slc46a3 solute carrier family 46, member 3 1.88 
XM_001069340.1 Prr7 proline rich 7 (synaptic) 1.88 
NM_001008306.1 Calhm2 calcium homeostasis modulator 2 1.87 
NM_139341.1 Slc15a3 solute carrier family 15, member 3 1.86 
NM_144758.1 Slc15a4 solute carrier family 15, member 4 1.85 
NM_001010964.1 Klrb1a killer cell lectin-like receptor subfamily 

B, member 1A 1.81 

NM_053607.1 Acsl5 acyl-CoA synthetase long-chain family 
member 5 1.80 

NM_023021.1 Kcnn4 potassium intermediate/small 
conductance calcium-activated channel, 
subfamily N, member 4 

1.78 

NM_053596.1 Ece1 endothelin converting enzyme 1 1.77 
NM_023099.1 Gpr27 G protein-coupled receptor 27 1.77 
NM_053951.1 Mcf2l MCF.2 cell line derived transforming 

sequence-like 1.77 

NM_198754.2 Cmtm8 CKLF-like MARVEL transmembrane 
domain containing 8 1.77 

NM_053827.1 Plod1 procollagen-lysine 1, 2-oxoglutarate 5-
dioxygenase 1 1.76 

NM_001002802.1 Bace2 beta-site APP-cleaving enzyme 2 1.75 
NM_031740.1 B4galt6 UDP-Gal:betaGlcNAc beta 1,4-

galactosyltransferase, polypeptide 6 1.75 

NM_031322.1 Lrp4 low density lipoprotein receptor-related 
protein 4 1.74 

NM_001013895.1 Prkd2 protein kinase D2 1.71 
NM_031079.1 Pde2a phosphodiesterase 2A, cGMP-stimulated 1.71 
XM_001078922.1 Gprc5b G protein-coupled receptor, family C, 

group 5, member B 1.71 

NM_020543.3 Cnr2 cannabinoid receptor 2 (macrophage) 1.70 
NM_173310.2 GalNAc4S6S

T 
B cell RAG associated protein 1.70 

NM_013091.1 Tnfrsf1a tumor necrosis factor receptor 
superfamily, member 1a 1.68 

NM_139110.1 Gpr116 G protein-coupled receptor 116 1.68 
NM_001008845.1 RT1-CE7 similar to RT1 class I, CE11; RT1 class I, 

CE11; RT1 class I, CE7 1.67 

XM_342524.3 Plcb1 phospholipase C, beta 1 
(phosphoinositide-specific) 1.66 

NM_053821.2 Ralb v-ral simian leukemia viral oncogene 
homolog B (ras related; GTP binding 
protein) 

1.66 

NM_001004269.1 Jam3 junctional adhesion molecule 3 1.66 
NM_145679.1 Lrrc3 leucine rich repeat containing 3 1.65 
NM_030844.1 Ica1 islet cell autoantigen 1 1.65 
NM_017292.1 Gabrr2 gamma-aminobutyric acid (GABA) 

receptor, rho 2 1.65 

NM_172040.1 Hyal2 hyaluronoglucosaminidase 2 1.65 
NM_173135.1 Accn3 amiloride-sensitive cation channel 3 1.64 
XM_344616.3 MGC112790 frizzled homolog 8 (Drosophila) 1.64 
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NM_001008834.1 RT1-CE11 similar to RT1 class I, CE11; RT1 class I, 
CE11; RT1 class I, CE7 1.63 

NM_053492.2 Cdw92 CDW92 antigen 1.62 
NM_001008840.1 RT1-CE2 RT1 class I, CE2 1.62 
NM_017071.1 Insr insulin receptor 1.62 
NM_031649.1 Klrg1 killer cell lectin-like receptor subfamily 

G, member 1 1.62 

NM_001007728.1 Mpzl1 myelin protein zero-like 1 1.62 
NM_001014059.1 RGD1304952 similar to RIKEN cDNA C530028O21 

gene 1.61 

XM_235609.4 Prickle1 prickle homolog 1 (Drosophila) 1.61 
NM_020086.1 Plvap plasmalemma vesicle associated protein 1.61 
NM_053321.2 Ptafr platelet-activating factor receptor 1.60 
NM_057201.1 Gpr37 G protein-coupled receptor 37 1.60 
Cell motion 
XM_217250.3 Ephb1 Eph receptor B1 -6.40 
NM_012648.1 Scnn1b sodium channel, nonvoltage-gated 1 beta -4.12 
NM_080778.1 Nr2f2 nuclear receptor subfamily 2, group F, 

member 2 -3.64 

NM_012807.1 Smo smoothened homolog (Drosophila) -3.27 
XM_222785.4 Astn1 astrotactin 1 -3.00 
XM_001070296.1 Plxna2 plexin A2 -2.73 
NM_012934.1 Dpysl3 dihydropyrimidinase-like 3 -2.57 
NM_031520.1 Myh10 myosin, heavy chain 10, non-muscle -2.47 
NM_053503.1 Jub jub, ajuba homolog (Xenopus laevis) -2.35 
NM_017003.2 Erbb2 v-erb-b2 erythroblastic leukemia viral 

oncogene homolog 2, neuro/glioblastoma 
derived oncogene homolog (avian)

-2.30 

NM_017195.1 Gap43 growth associated protein 43 -2.10 
NM_013040.2 Abcc9 ATP-binding cassette, sub-family C 

(CFTR/MRP), member 9 -2.09 

NM_001033701.1 Zeb2 zinc finger E-box binding homeobox 2 -2.01 
XM_573530.1 Enah enabled homolog (Drosophila) -2.01 
NM_031022.1 Cspg4 chondroitin sulfate proteoglycan 4 -1.87 
NM_031321.1 Slit3 slit homolog 3 (Drosophila) -1.72 
NM_031056.1 Mmp14 matrix metallopeptidase 14 (membrane-

inserted) -1.62 

XM_215451.4 Cspg2 versican 2.28 
NM_013114.1 Selp selectin, platelet 2.20 
NM_017076.1 PVR poliovirus receptor 2.14 
NM_130411.2 Coro1a coronin, actin binding protein 1A 2.12 
NM_021759.1 Lypd3 Ly6/Plaur domain containing 3 2.09 
XM_227600.4 RGD1565941 vav 3 guanine nucleotide exchange factor 1.98 
NM_022206.1 Unc5a unc-5 homolog A (C. elegans) 1.75 
NM_201272.1 Plekhg5 pleckstrin homology domain containing, 

family G (with RhoGef domain) member 
5 

1.72 

NM_175756.1 Fcgr2b Fc fragment of IgG, low affinity IIb, 
receptor (CD32); Fc fragment of IgG, low 
affinity IIa, receptor (CD32) 

1.71 
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NM_012945.1 Hbegf heparin-binding EGF-like growth factor 1.69 
NM_012967.1 Icam1 intercellular adhesion molecule 1 1.64 
XM_001057564.1 Csf3r colony stimulating factor 3 receptor 

(granulocyte) 1.62 

NM_001007729.1 Pf4 platelet factor 4 1.62 
Extracellular region 
NM_001012039.1 Efemp1 epidermal growth factor-containing 

fibulin-like extracellular matrix protein 1 -4.76 

NM_020071.1 Fgb fibrinogen beta chain -4.33 
XM_001060132.1 C1qtnf7 C1q and tumor necrosis factor related 

protein 7 -4.16 

NM_021586.1 Ltbp2 latent transforming growth factor beta 
binding protein 2 -3.52 

XM_001066152.1 Egfl6 EGF-like-domain, multiple 6 -3.47 
NM_001012225.1 Mgat4a mannoside acetylglucosaminyltransferase 

4, isoenzyme A -3.28 

NM_053385.1 Prelp proline arginine-rich end leucine-rich 
repeat protein -3.10 

NM_012559.2 Fgg fibrinogen gamma chain -2.92 
NM_031810.1 Defb1 defensin beta 1 -2.74 
NM_053856.1 Scg3 secretogranin III -2.64 
NM_032616.1 Lsr lipolysis stimulated lipoprotein receptor -2.64 
NM_017061.1 Lox lysyl oxidase -2.58 
XM_001064272.1 Crim1 cysteine rich transmembrane BMP 

regulator 1 (chordin like) -2.57 

NM_031609.1 Nbl1 neuroblastoma, suppression of 
tumorigenicity 1 -2.54 

NM_130741.1 Lcn2 lipocalin 2 -2.54 
XM_001056704.1 RGD1560408 similar to Mannoside 

acetylglucosaminyltransferase 4, 
isoenzyme A; mannosyl (alpha-1,3-)-
glycoprotein beta-1,4-N-
acetylglucosaminyltransferase, isozyme 
A 

-2.52 

NM_053606.1 Mmp23 matrix metallopeptidase 23 -2.43 
NM_013122.1 Igfbp2 insulin-like growth factor binding protein 

2 -2.41 

NM_019237.1 Pcolce procollagen C-endopeptidase enhancer 
protein -2.35 

NM_001014104.1 Metrnl meteorin, glial cell differentiation 
regulator-like -2.31 

NM_080698.1 Fmod fibromodulin -2.26 
NM_031826.1 Fbn2 fibrillin 2 -2.25 
NM_001007710.1 Acpl2 acid phosphatase-like 2 -2.24 
XM_001076441.1 Cilp cartilage intermediate layer protein, 

nucleotide pyrophosphohydrolase -2.22 

NM_013144.1 Igfbp1 insulin-like growth factor binding protein 
1 -2.20 

NM_001014140.1 RGD1309676 similar to RIKEN cDNA 5730469M10 -2.13 
NM_012880.1 Sod3 superoxide dismutase 3, extracellular -2.12 
NM_001006979.1 Matn1 matrilin 1, cartilage matrix protein -2.09 
XM_343607.3 Col4a3 collagen, type IV, alpha 3 -1.99 
NM_012590.1 Inha inhibin alpha -1.98 
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NM_133557.1 Cda08 integrin alpha FG-GAP repeat containing 
1 -1.94 

XM_001077795.1 Ltbp4 latent transforming growth factor beta 
binding protein 4 -1.89 

NM_172030.1 Entpd2 ectonucleoside triphosphate 
diphosphohydrolase 2 -1.87 

NM_023967.1 Gfra4 GDNF family receptor alpha 4 -1.83 
NM_053629.2 Fstl3 follistatin-like 3 -1.82 
NM_031697.1 St3gal3 ST3 beta-galactoside alpha-2,3-

sialyltransferase 3 -1.79 

NM_031640.1 Pgcp plasma glutamate carboxypeptidase -1.76 
XM_001070303.1 Gpld1 glycosylphosphatidylinositol specific 

phospholipase D1 -1.75 

NM_203493.2 Dmp1 dentin matrix acidic phosphoprotein 1 -1.72 
NM_021989.2 Timp2 tissue inhibitor of metalloproteinase 2 -1.71 
XM_001058647.1 Pappa pregnancy-associated plasma protein A -1.68 
XM_001060614.1 Olfml2a olfactomedin-like 2A -1.68 
NM_001004218.1 Fuca2 fucosidase, alpha-L- 2, plasma -1.61 
NM_031766.1 Cpz carboxypeptidase Z -1.60 
XM_001061784.1 Chit1 chitinase 1 (chitotriosidase) 3.18 
NM_022221.1 Mmp8 matrix metallopeptidase 8 3.07 
NM_001024240.1 RGD1310251 similar to RIKEN cDNA 2010001M09 2.59 
NM_031645.1 Ramp1 receptor (G protein-coupled) activity 

modifying protein 1 2.57 

NM_053373.1 Pglyrp1 peptidoglycan recognition protein 1 2.36 
NM_172328.2 Tac4 tachykinin 4 2.30 
NM_012908.1 Faslg Fas ligand (TNF superfamily, member 6) 2.24 
XM_001058441.1 RGD1565970 mast cell protease 8-like 2; similar to 

mast cell protease 8; mast cell protease 8 2.21 

NM_134361.1 Xcl1 chemokine (C motif) ligand 1 2.11 
NM_012636.1 Pthlh parathyroid hormone-like hormone 2.09 
NM_012548.1 Edn1 endothelin 1 2.08 
NM_001003403.1 Apold1 apolipoprotein L domain containing 1 2.02 
XM_239260.4 Sez6 seizure related 6 homolog (mouse) 2.00 
NM_012859.1 Lipe lipase, hormone sensitive 1.99 
NM_021664.1 Dnase2b deoxyribonuclease II beta 1.96 
NM_013092.1 Cma1 chymase 1, mast cell 1.94 
NM_017066.2 Ptn pleiotrophin 1.94 
XM_001074055.1 LOC690312 Fc receptor-like A; similar to Fc receptor-

like and mucin-like 1 1.89 

NM_017330.2 Prf1 perforin 1 (pore forming protein) 1.89 
NM_153721.1 Ppbp pro-platelet basic protein (chemokine (C-

X-C motif) ligand 7) 1.88 

NM_212507.2 Ltb lymphotoxin beta (TNF superfamily, 
member 3) 1.87 

NM_020074.2 Srgn serglycin 1.86 
NM_012762.2 Casp1 caspase 1 1.86 
NM_001012467.1 Rnase10 ribonuclease, RNase A family, 10 (non-

active) 1.85 

XM_001067964.1 Tgfbi transforming growth factor, beta induced 1.82 
NM_153294.1 Npw neuropeptide W 1.81 
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XM_001061982.1 Col5a2 collagen, type V, alpha 2 1.79 
NM_022534.1 Tcn2 transcobalamin 2 1.77 
NM_139104.1 Egfl7 EGF-like-domain, multiple 7 1.76 
NM_020082.2 Rnase4 ribonuclease, RNase A family 4 1.76 
XM_235461.3 Apol3 similar to apolipoprotein L, 3; 

apolipoprotein L, 3 1.71 

XM_001063886.1 LOC685462 EMI domain containing 1 1.71 
XM_236642.3 Camp cathelicidin antimicrobial peptide 1.66 
NM_030988.1 Tg thyroglobulin 1.66 
NM_021587.1 Ltbp1 latent transforming growth factor beta 

binding protein 1 1.64 

NM_138882.1 Pla1a phospholipase A1 member A 1.62 
Immune response 
NM_013163.1 Il2ra interleukin 2 receptor, alpha -2.83 
NM_012752.2 Cd24 CD24 molecule -2.51 
NM_052807.1 Igf1r insulin-like growth factor 1 receptor -2.48 
NM_181086.2 Tnfrsf12a tumor necrosis factor receptor 

superfamily, member 12a -2.45 

NM_001002805.1 C4-2 complement component 4, gene 2 -2.43 
NM_019165.1 Il18 interleukin 18 -2.42 
NM_145765.1 Tnfsf15 tumor necrosis factor (ligand) 

superfamily, member 15 -2.03 

NM_012671.1 Tgfa transforming growth factor alpha -1.82 
NM_012895.3 Adk adenosine kinase -1.69 
NM_053858.1 Ccl4 chemokine (C-C motif) ligand 4 3.12 
XM_001059278.1 LOC301133 tumor necrosis factor (ligand) 

superfamily, member 14 2.93 

NM_031539.1 Cd8b CD8b molecule 2.71 
NM_053953.1 Il1r2 interleukin 1 receptor, type II 2.67 
NM_053647.1 Cxcl2 chemokine (C-X-C motif) ligand 2 2.63 
NM_017124.1 Cd37 CD37 molecule 2.57 
NM_031512.1 Il1b interleukin 1 beta 2.39 
NM_022205.3 Cxcr4 chemokine (C-X-C motif) receptor 4 2.37 
NM_017079.1 Cd1d1 CD1d1 molecule 2.22 
NM_053983.1 Cd52 CD52 antigen 2.17 
NM_134327.1 Cd69 Cd69 molecule 2.17 
NM_053634.1 Fcnb ficolin B 2.14 
NM_013169.1 Cd3d CD3 molecule delta polypeptide 2.14 
NM_013127.1 Cd38 CD38 molecule 2.12 
NM_019311.1 Inpp5d inositol polyphosphate-5-phosphatase D 2.12 
NM_030845.1 Cxcl1 chemokine (C-X-C motif) ligand 1 

(melanoma growth stimulating activity, 
alpha) 

2.09 

XM_001059172.1 RGD1562408 SH2 domain protein 1A 2.07 
NM_130399.2 Ada adenosine deaminase 2.04 
XM_218851.4 Il16_mapped interleukin 16 2.01 
NM_053390.1 Il12a interleukin 12a 2.00 
NM_001012002.1 Zap70 zeta-chain (TCR) associated protein 

kinase 2.00 
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NM_031561.2 Cd36 similar to CD36 antigen; similar to fatty 
acid translocase/CD36; CD36 molecule 
(thrombospondin receptor) 

1.99 

NM_212466.2 Cfb complement factor B 1.99 
NM_031116.2 Ccl5 chemokine (C-C motif) ligand 5 1.96 
NM_145672.3 Cxcl9 chemokine (C-X-C motif) ligand 9 1.95 
NM_031518.1 Cd200 Cd200 molecule 1.95 
NM_145680.3 Gimap5 GTPase, IMAP family member 1; 

GTPase, IMAP family member 5 1.92 

NM_012745.2 Klrd1 killer cell lectin-like receptor, subfamily 
D, member 1; killer cell lectin-like 
receptor, family E, member 1 

1.92 

NM_170789.1 Cd247 Cd247 molecule 1.91 
NM_133534.1 Cx3cr1 chemokine (C-X3-C motif) receptor 1 1.85 
NM_022303.1 Card9 caspase recruitment domain family, 

member 9 1.84 

XM_343800.2 Il2rg interleukin 2 receptor, gamma 1.83 
NM_001008839.1 RT1-CE16 RT1 class I, CE14; RT1 class I, CE16; 

RT1 class Ia, locus A2; RT1 class Ib, 
locus Cl; RT1 class Ia, locus A1; RT1 
class I, A3

1.83 

NM_138880.2 Ifng interferon gamma 1.72 
NM_001012164.1 Cd97 CD97 molecule 1.70 
NM_001017478.1 Cxcl16 chemokine (C-X-C motif) ligand 16 1.66 
XM_344184.3 Hlx1 H2.0-like homeobox 1.65 
NM_207604.1 Tlr6 toll-like receptor 6 1.63 
XM_341509.3 Cd83 CD83 molecule 1.60 
Cytoskeletal component/process 
XM_001054365.1 Arhgap28 Rho GTPase activating protein 28 -4.83 
XM_215469.4 Map1b microtubule-associated protein 1B -3.55 
NM_031613.1 Tmod2 tropomodulin 2 -3.46 
XM_225259.4 Dsp desmoplakin -3.33 
XM_214338.3 LOC290704 similar to palladin -3.18 
NM_053309.1 Homer2 homer homolog 2 (Drosophila) -3.16 
XM_223229.4 Shroom3 shroom family member 3 -3.02 
NM_001009645.1 Kif22 kinesin family member 22 -2.97 
XM_230774.4 Myh7b myosin, heavy chain 7B, cardiac muscle, 

beta -2.96 

NM_001034105.1 Tnnc1 troponin C type 1 (slow) -2.74 
NM_024396.1 Abca2 ATP-binding cassette, sub-family A 

(ABC1), member 2 -2.72 

NM_024127.2 Gadd45a growth arrest and DNA-damage-
inducible 45 alpha -2.67 

NM_133545.1 Ptpn21 protein tyrosine phosphatase, non-
receptor type 21 -2.67 

NM_001034075.1 Tpm1 tropomyosin 1, alpha -2.55 
XM_342179.3 Rgnef Rho-guanine nucleotide exchange factor -2.47 
NM_013082.2 Sdc2 syndecan 2 -2.46 
XM_216688.4 Arhgap5 Rho GTPase activating protein 5 -2.43 
NM_145682.1 Filip1 filamin A interacting protein 1 -2.41 
XM_237042.4 Dst dystonin -2.39 
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XM_220031.4 Myof myoferlin -2.38 
XM_001064622.1 Itgb5 integrin beta 5 -2.37 
XM_001065955.1 Ttn titin -2.34 
XM_238004.3 RGD1309427 tubulin, beta 2b -2.32 
XM_238004.3 Tubb2b tubulin, beta 2B -2.32 
NM_032071.1 Synj2 synaptojanin 2 -2.28 
XM_574117.2 RGD1561153 myosin VIIb -2.26 
NM_183054.1 Rhbg Rh family, B glycoprotein -2.25 
NM_001013246.1 Arhgef12 Rho guanine nucleotide exchange factor 

(GEF) 12 -2.21 

NM_012909.2 Aqp2 aquaporin 2 (collecting duct) -2.19 
NM_017327.1 Gnao1 guanine nucleotide binding protein (G 

protein), alpha activating activity 
polypeptide O 

-2.19 

NM_022178.1 Myo5a myosin Va -2.18 
NM_138921.1 Eml2 echinoderm microtubule associated 

protein like 2 -2.18 

NM_012604.1 Myh3 myosin, heavy chain 3, skeletal muscle, 
embryonic -2.18 

XM_235213.3 Srgap1 SLIT-ROBO Rho GTPase activating 
protein 1 -2.17 

NM_017137.1 Clcn2 chloride channel 2 -2.16 
NM_017032.1 Pde4d phosphodiesterase 4D, cAMP-specific 

(phosphodiesterase E3 dunce homolog, 
Drosophila) 

-2.14 

XM_240464.3 Ank1 ankyrin 1, erythrocytic -2.13 
NM_017083.1 Myo5b myosin Vb -2.08 
NM_017180.1 Phlda1 pleckstrin homology-like domain, family 

A, member 1 -2.06 

XM_001058944.1 RGD1565118 actin binding LIM protein family, 
member 3 -2.06 

NM_012606.1 Myl3 myosin, light chain 3, alkali; ventricular, 
skeletal, slow -2.06 

NM_001007150.1 Stau2 staufen, RNA binding protein, homolog 2 
(Drosophila) -2.05 

XM_227658.3 Fnbp1l formin binding protein 1-like -2.03 
XM_217035.4 Krt7 keratin 7 -2.01 
NM_001002798.1 Top1mt DNA topoisomerase 1, mitochondrial -2.01 
XM_001078859.1 Farp1 FERM, RhoGEF (Arhgef) and pleckstrin 

domain protein 1 (chondrocyte-derived) -2.00 

NM_019167.1 Sptbn2 spectrin, beta, non-erythrocytic 2 -1.98 
NM_053326.1 Pdlim5 PDZ and LIM domain 5 -1.91 
NM_012935.2 Cryab crystallin, alpha B -1.90 
XM_341538.2 Kif5b kinesin family member 5B -1.87 
NM_031552.1 Add3 adducin 3 (gamma) -1.85 
NM_080689.3 Dnm1 dynamin 1 -1.81 
NM_012676.1 Tnnt2 troponin T type 2 (cardiac) -1.81 
XM_001080795.1 LOC366669 similar to mKIAA1011 protein -1.80 
XM_001074984.1 Bbs4 Bardet-Biedl syndrome 4 homolog 

(human) -1.77 

XM_573030.2 Myh11 myosin, heavy chain 11, smooth muscle -1.75 
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XM_345195.3 Tbl1xr1 transducin (beta)-like 1 X-linked receptor 
1 -1.75 

NM_001024341.1 Fam110b family with sequence similarity 110, 
member B -1.74 

XM_001072750.1 RGD1308350 similar to hypothetical protein 
MGC13251 -1.72 

XM_001061392.1 Myo6 myosin VI -1.72 
NM_139231.1 Nexn nexilin (F actin binding protein) -1.72 
NM_017155.1 Adora1 adenosine A1 receptor -1.72 
XM_573863.2 RGD1564875 LIM domain binding 3 -1.71 
XM_343248.3 Mtss1 metastasis suppressor 1 -1.71 
NM_001009966.2 Pacsin3 protein kinase C and casein kinase 

substrate in neurons 3 -1.69 

NM_001014070.1 LOC313672 kazrin -1.68 
XM_218858.4 Cpeb1 cytoplasmic polyadenylation element 

binding protein 1 -1.68 

NM_024368.1 Frk fyn-related kinase -1.66 
NM_001033987.1 Map2k5 mitogen activated protein kinase kinase 5 -1.65 
XM_001066467.1 RGD1310722 ubinuclein 2 -1.65 
XM_001081714.1 Evpl envoplakin -1.63 
XM_236367.4 RGD1565416 similar to talin 2 -1.63 
XM_001080622.1 Myh14 myosin, heavy chain 14 -1.63 
NM_053603.1 Clic5 chloride intracellular channel 5 -1.62 
XM_576473.1 LOC367171 microtubule-associated protein 4 -1.61 
XM_226175.4 Mib1 mindbomb homolog 1 (Drosophila) -1.61 
NM_130894.2 Mfn2 mitofusin 2 -1.60 
NM_001008384.1 Rac2 ras-related C3 botulinum toxin substrate 2 

(rho family, small GTP binding protein 
Rac2) 

2.52 

NM_012759.1 Vav1 vav 1 guanine nucleotide exchange factor 2.40 
NM_019169.2 Snca synuclein, alpha (non A4 component of 

amyloid precursor) 2.28 

NM_021909.1 Fxyd5 FXYD domain-containing ion transport 
regulator 5 2.12 

XM_232763.4 Lck_mapped similar to lymphocyte protein tyrosine 
kinase; lymphocyte-specific protein 
tyrosine kinase

1.99 

NM_001012044.1 Lcp1 lymphocyte cytosolic protein 1 1.98 
NM_001013430.1 Rhoh ras homolog gene family, member H 1.97 
NM_022542.1 Rhob ras homolog gene family, member B 1.86 
XM_219517.3 Map3k11 mitogen-activated protein kinase kinase 

kinase 11 1.82 

NM_017317.2 Rab27a RAB27A, member RAS oncogene family 1.80 
NM_030857.1 Lyn v-yes-1 Yamaguchi sarcoma viral related 

oncogene homolog 1.80 

XM_001059351.1 Hist1h2bc histone cluster 1, H2bc 1.77 
NM_030863.1 Msn moesin 1.76 
XM_217152.3 Pstpip1 proline-serine-threonine phosphatase-

interacting protein 1 1.75 

XM_219540.4 RGD1310168 fermitin family homolog 3 (Drosophila) 1.75 
NM_001037195.1 Rhog ras homolog gene family, member G (rho 

G) 1.75 
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NM_001025680.1 Gpr4 G protein-coupled receptor 4 1.74 
NM_133392.1 Stk17b serine/threonine kinase 17b 1.74 
XM_001070203.1 Itga5_mappe

d 
integrin alpha 5 (fibronectin receptor 
alpha) 1.72 

NM_138520.1 Klc3 kinesin light chain 3 1.71 
XM_221956.3 LOC288515 MICAL-like 2 1.71 
NM_017280.2 Psma3 proteasome (prosome, macropain) 

subunit, alpha type 3; proteasome subunit 
alpha type 3-like; similar to Proteasome 
subunit alpha type 3 (Proteasome 
component C8) (Macropain subunit C8) 
(Multicatalytic endopeptidase complex 
subunit C8) (Proteasome subunit K)

1.68 

XM_001054737.1 Adam10 ADAM metallopeptidase domain 10 1.67 
NM_001025733.2 Procr protein C receptor, endothelial 1.67 
NM_198787.1 Sgsm3 small G protein signaling modulator 3 1.66 
XM_001060919.1 Dapk1 death associated protein kinase 1 1.64 
NM_053484.1 Gas7 growth arrest specific 7 1.63 
NM_001011965.1 Stom stomatin; ABO-family member 5 1.61 
NM_053783.1 Ifngr1 interferon gamma receptor 1 1.61 
NM_053920.1 Trip10 thyroid hormone receptor interactor 10 1.60 
NM_001039207.1 Narf nuclear prelamin A recognition factor 1.60 
Neuron development 
XM_001062426.1 Sema3g sema domain, immunoglobulin domain 

(Ig), short basic domain, secreted, 
(semaphorin) 3G 

-3.98 

NM_001033757.1 Cdkn1c cyclin-dependent kinase inhibitor 1C 
(P57) -3.26 

XM_231354.4 Sema3e sema domain, immunoglobulin domain 
(Ig), short basic domain, secreted, 
(semaphorin) 3E 

-3.24 

XM_236640.4 Plxnb1 plexin B1 -2.78 
NM_022589.1 Tspan2 tetraspanin 2 -2.74 
XM_001063804.1 Hoxd10 homeo box D10 -2.72 
NM_012827.1 Bmp4 bone morphogenetic protein 4 -2.41 
NM_013088.1 Ptpn11 protein tyrosine phosphatase, non-

receptor type 11 -2.26 

XM_001056831.1 LOC681886 acyl-CoA synthetase short-chain family 
member 1; visual system homeobox 1 -2.05 

XM_001068573.1 Hoxc10 homeo box C10 -2.00 
NM_053896.1 Aldh1a2 aldehyde dehydrogenase 1 family, 

member A2 -1.88 

NM_017129.1 Ctf1 cardiotrophin 1 -1.83 
NM_052803.1 Atp7a ATPase, Cu++ transporting, alpha 

polypeptide -1.79 

NM_019284.1 Cspg5 chondroitin sulfate proteoglycan 5 -1.71 
NM_017259.1 Btg2 B-cell translocation gene 2, anti-

proliferative 2.91 

NM_012566.1 Gfi1 growth factor independent 1 transcription 
repressor 2.34 

XM_001069879.1 Bcl11b B-cell CLL/lymphoma 11B (zinc finger 
protein) 1.90 

NM_013058.2 Id3 inhibitor of DNA binding 3 1.90 



139 

 

NM_053594.1 Ptprr protein tyrosine phosphatase, receptor 
type, R 1.79 

XM_220712.4 Scarf1 scavenger receptor class F, member 1 1.67 
NM_022673.1 Mecp2 methyl CpG binding protein 2 1.64 
Motif/Domain 
XM_222763.4 Tdrd5 tudor domain containing 5 -3.84 
XM_001073627.1 Plekha5 pleckstrin homology domain containing, 

family A member 5 -3.79 

XM_001055725.1 Kank1 KN motif and ankyrin repeat domains 1 -2.88 
XM_001069410.1 Hoxc6 homeobox C6 -2.87 
XM_001058167.1 Sgip1 SH3-domain GRB2-like (endophilin) 

interacting protein 1 -2.78 

NM_019316.1 Mafb v-maf musculoaponeurotic fibrosarcoma 
oncogene family, protein B -2.71 

XM_001053668.1 Rc3h2 ring finger and CCCH-type zinc finger 
domains 2 -2.66 

XM_001062112.1 Sh3bgrl2 SH3 domain binding glutamic acid-rich 
protein like 2 -2.44 

XM_342682.3 Mpp6 membrane protein, palmitoylated 6 
(MAGUK p55 subfamily member 6) -2.39 

NM_001012048.1 Sh2d4a SH2 domain containing 4A -2.28 
NM_001014268.1 Lrrc1 leucine rich repeat containing 1 -2.11 
NM_001011922.1 Nedd9 neural precursor cell expressed, 

developmentally down-regulated gene 9 -1.84 

NM_012828.1 Cacnb3 calcium channel, voltage-dependent, beta 
3 subunit -1.76 

NM_001007148.1 Btrc beta-transducin repeat containing protein -1.73 
NM_001002277.1 Ahi1 Abelson helper integration site 1 -1.66 
XM_233830.4 Plekhh2 pleckstrin homology domain containing, 

family H (with MyTH4 domain) member 
2 

-1.65 

XM_001081287.1 Ankrd40 ankyrin repeat domain 40 -1.61 
NM_130821.1 Samsn1 SAM domain, SH3 domain and nuclear 

localization signals, 1 2.75 

XM_576306.2 LOC500904 neutrophil cytosolic factor 4 2.52 
NM_001013118.1 Abi3 ABI family, member 3 2.23 
NM_017168.1 Plcg2 phospholipase C, gamma 2 1.98 
NM_031238.1 Sh3gl3 SH3-domain GRB2-like 3 1.96 
NM_001024260.1 Nostrin nitric oxide synthase trafficker 1.92 
NM_001024255.1 Txk TXK tyrosine kinase 1.92 
NM_053851.1 Cacnb2 calcium channel, voltage-dependent, beta 

2 subunit 1.86 

NM_001011961.1 Srms src-related kinase lacking C-terminal 
regulatory tyrosine and N-terminal 
myristylation sites 

1.83 

XM_340911.3 Mpp3 membrane protein, palmitoylated 3 
(MAGUK p55 subfamily member 3) 1.77 

NM_130413.1 Skap2 src family associated phosphoprotein 2 1.75 
AMD protein complexes 
NM_017336.1 Ptpro protein tyrosine phosphatase, receptor 

type, O -2.42 

NM_019357.1 Ezr ezrin -1.82 
BMD protein complexes 
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XM_342410.3 Aif1l allograft inflammatory factor 1-like -3.43 
NM_012649.1 Sdc4 syndecan 4 -2.79 
NM_001012032.1 Arhgap24 Rho GTPase activating protein 24 -2.48 
NM_012983.2 Myo1d myosin ID -2.28 
XM_340884.2 Itga3 integrin alpha 3 -2.23 
XM_343483.3 Dag1 dystroglycan 1 -2.07 
XM_001066264.1 Tenc1 tensin like C1 domain-containing 

phosphatase -2.00 

NM_012904.1 Anxa1 annexin A1 -1.91 
XM_001078155.1 Parvb parvin, beta 1.65 
SD protein complexes 
NM_053621.1 Magi2 membrane associated guanylate kinase, 

WW and PDZ domain containing 2 -3.93 

NM_021695.1 Synpo synaptopodin -3.62 
XM_218486.3 Kirrel2 kin of IRRE like 2 (Drosophila) -3.47 
XM_001059464.1 Cdh11 cadherin 11 -3.16 
NM_022628.1 Nphs1 nephrosis 1 homolog, nephrin -3.06 
NM_130828.2 Nphs2 nephrosis 2 homolog, podocin -3.02 
NM_001012055.1 Cdh16 cadherin 16 -2.73 
XM_001059679.1 Ctnnal1 catenin (cadherin associated protein), 

alpha-like 1 -2.42 

NM_031005.2 Actn1 actinin, alpha 1 -2.30 
XM_001059817.1 Nck2 NCK adaptor protein 2 -2.10 
XM_237115.1 Nck2 NCK adaptor protein 2 -1.62 
XM_226213.4 Cdh5 cadherin 5 1.88 
Cell junction 
XM_236385.4 Cgnl1 cingulin-like 1 -2.54 
NM_012528.1 Chrnb1 cholinergic receptor, nicotinic, beta 

polypeptide 1 (muscle) -2.40 

NM_017198.1 Pak1 p21 protein (Cdc42/Rac)-activated kinase 
1 -2.19 

NM_012663.2 Vamp2 vesicle-associated membrane protein 2 -1.60 
Tight junction 
NM_031699.1 Cldn1 claudin 1 -3.19 
XM_001080868.1 Mpp5 membrane protein, palmitoylated 5 

(MAGUK p55 subfamily member 5) -2.33 

NM_031675.2 Actn4 actinin alpha 4 -1.72 
NM_017093.1 Akt2 thymoma viral proto-oncogene 2 -1.68 
XM_342223.3 Prkci protein kinase C, iota -1.61 
Cell morphogenesis 
XM_216679.4 Lamb1 laminin, beta 1 -2.84 
NM_031235.1 Pard3 par-3 (partitioning defective 3) homolog 

(C. elegans) -2.64 

NM_012715.1 Adm adrenomedullin -2.10 
XM_242297.4 Ntng2 netrin G2 -1.93 
NM_024159.1 Dab2 disabled homolog 2 -1.74 
NM_017089.2 Efnb1 ephrin B1 -1.65 
Ion transport 
NM_001033693.1 Slc31a2 solute carrier family 31, member 2 -2.15 
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NM_022269.1 Cd55 CD55 antigen -1.95 
NM_139332.3 Tpcn1 two pore channel 1 -1.81 
Kidney development 
XM_213677.3 Robo2 roundabout homolog 2 -4.77 
NM_031534.1 Wt1 Wilms tumor 1 homolog -4.05 
NM_001032397.1 Tcf21 transcription factor 21 -3.54 
NM_053758.1 Plce1 phospholipase C, epsilon 1 -3.29 
XM_001053727.1 Bmp7 bone morphogenetic protein 7 -2.68 
NM_012774.1 Gpc3 glypican 3 -2.37 
NM_030849.1 Bmpr1a bone morphogenetic protein receptor, 

type 1A -2.13 

XM_213954.4 Nid1 nidogen 1 -2.12 
NM_173101.1 Myo1e myosin IE -2.03 
NM_053566.1 Ptch1 patched homolog 1 -1.99 
NM_053698.2 Cited2 Cbp/p300-interacting transactivator, with 

Glu/Asp-rich carboxy-terminal domain, 2 -1.68 

XM_001070482.1 Cutl1 similar to CCAAT displacement protein 
isoform b; cut-like homeobox 1 -1.67 

XM_340765.2 Pkd1 polycystic kidney disease 1 homolog 
(human) -1.65 

NM_001002827.1 Notch4 Notch homolog 4 (Drosophila) 1.76 
XM_001054314.1 Tek TEK tyrosine kinase, endothelial 1.71 
Protein modification 
XM_001057269.1 Mgat5 mannoside acetylglucosaminyltransferase 

5 -3.21 

XM_219805.4 Prkg1 protein kinase, cGMP-dependent, type I -3.02 
XM_001076056.1 Uck2 uridine-cytidine kinase 2 -2.70 
XM_001080770.1 Cpd carboxypeptidase D -2.30 
XM_236687.4 Oxsr1 oxidative-stress responsive 1 -1.89 
XM_227618.4 Cdc14a CDC14 cell division cycle 14 homolog A -1.66 
Regulation of transcription 
NM_012760.1 Plagl1 pleiomorphic adenoma gene-like 1 -3.08 
XR_007660.1 Zfp462 zinc finger protein 462 -2.29 
NM_133560.2 Trak2 trafficking protein, kinesin binding 2 -2.26 
NM_031346.1 Rod1 ROD1 regulator of differentiation 1 -2.04 
NM_053583.1 Zfp423 zinc finger protein 423 -1.72 
NM_021597.1 Eif2c2 eukaryotic translation initiation factor 2C, 

2 -1.67 

NM_021836.2 Junb jun B proto-oncogene 3.85 
XM_001076072.1 Lmcd1 LIM and cysteine-rich domains 1 1.96 
NM_021835.3 Jun Jun 1.88 
NM_012855.1 Jak3 Janus kinase 3 1.63 
Signal transduction 
NM_001002829.1 Rasl11a RAS-like, family 11, member A -2.31 
XM_001073244.1 Plxdc2 plexin domain containing 2 -2.31 
NM_080904.2 Arf3 ADP-ribosylation factor 3 -1.92 
NM_032076.2 Ptger4 prostaglandin E receptor 4 (subtype EP4) -1.78 
NM_001009405.1 Arhgap29 Rho GTPase activating protein 29 -1.61 
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Vesicle 
NM_022251.1 Enpep glutamyl aminopeptidase -2.92 
NM_145081.3 Optn optineurin -2.84 
XM_341428.2 Clcn3 chloride channel 3 -2.14 
XM_342271.3 Lrba LPS-responsive beige-like anchor -1.83 
Miscellaneous (podocyte related) 
NM_022943.1 Mertk c-mer proto-oncogene tyrosine kinase -3.12 
XM_217192.4 Rora RAR-related orphan receptor alpha -2.70 
XM_236376.4 Fam81a family with sequence similarity 81, 

member A -2.65 

NM_017031.2 Pde4b phosphodiesterase 4B, cAMP specific -2.49 
NM_133569.1 Angptl2 angiopoietin-like 2 -2.45 
XM_221276.3 Arvcf armadillo repeat gene deleted in velo-

cardio-facial syndrome -2.39 

XM_575387.2 Thsd7a thrombospondin, type I, domain 
containing 7A -2.38 

XM_219201.4 Ppfibp2 PTPRF interacting protein, binding 
protein 2 (liprin beta 2) -2.37 

XM_001053270.1 Ccpg1 cell cycle progression 1 -2.34 
NM_013220.1 Ankrd1 ankyrin repeat domain 1 -2.32 
XM_226988.4 Fndc3b fibronectin type III domain containing 3B -2.30 
XM_001061817.1 Erlin2 ER lipid raft associated 2 -2.26 
XM_001075785.1 Fam65a family with sequence similarity 65, 

member A -2.26 

XM_340875.3 Rnft1 ring finger protein, transmembrane 1 -2.04 
XM_340886.3 Nfe2l1 nuclear factor, erythroid derived 2,-like 1 -2.01 
NM_133601.1 Cblb Casitas B-lineage lymphoma b -1.94 
NM_001013882.1 Dctd dCMP deaminase -1.92 
NM_021850.2 Bcl2l2 Bcl2-like 2; poly(A) binding protein, 

nuclear 1 -1.89 

NM_001005888.1 Galc galactosylceramidase -1.85 
NM_001014102.1 Spats2l spermatogenesis associated, serine-rich 2-

like -1.80 

NM_001007654.1 Agtrap angiotensin II receptor-associated protein -1.80 
NM_001025627.1 Leprel1 leprecan-like 1 -1.77 
XM_343420.3 Fam63b family with sequence similarity 63, 

member B -1.75 

XM_230036.4 Ssfa2 sperm specific antigen 2 -1.68 
XM_001070133.1 Nbeal1 neurobeachin like 1 -1.65 
NM_033485.2 Pawr PRKC, apoptosis, WT1, regulator -1.64 
NM_012868.1 Npr3 natriuretic peptide receptor 3 -1.61 
NM_199412.1 Cbara1 calcium binding atopy-related 

autoantigen 1 -1.61 

NM_031970.1 Hspb1 heat shock protein 1 2.42 
NM_053704.1 Bik BCL2-interacting killer (apoptosis-

inducing) 2.15 

NM_173153.2 Gimap4 GTPase, IMAP family member 4 2.02 
NM_012938.1 Ctse cathepsin E 2.01 
XM_001067588.1 Tm6sf1 transmembrane 6 superfamily member 1 1.83 
NM_023962.2 Pdgfd platelet-derived growth factor, D 

polypeptide 1.80 
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NM_057138.2 Cflar CASP8 and FADD-like apoptosis 
regulator 1.80 

XM_215117.4 Ifitm1 interferon induced transmembrane protein 
1 1.74 

XM_001059368.1 Ldb2 LIM domain binding 2 1.74 
NM_001025141.1 Ccnb1ip1 cyclin B1 interacting protein 1 1.67 
Miscellaneous (functional annotation enrichment scores <4.46) 
NM_145093.1 Aard alanine and arginine rich domain 

containing protein -6.02 

XM_001056569.1 RGD1312005 similar to DD1 -5.88 
XM_347233.3 LOC368066 indolethylamine N-methyltransferase -5.10 
NM_001012475.1 Rxfp2 relaxin/insulin-like family peptide 

receptor 2 -4.83 

XM_573676.1 LOC498427 similar to ubiquitin specific protease 34 -4.81 
XR_008037.1 RGD1561455 similar to Ras GTPase-activating-like 

protein IQGAP2 -4.53 

NM_153300.1 Aldh1a3 aldehyde dehydrogenase 1 family, 
member A3 -4.26 

NM_017081.1 Hsd11b2 hydroxysteroid 11-beta dehydrogenase 2 -4.17 
XM_001081892.1 Ngfg kallikrein 1-related peptidase b3 -4.14 
XM_575542.1 LOC500190 similar to IgM kappa chain variable 

region -4.14 

XM_001072453.1 RGD1560652 RGD1560652; hypothetical protein 
LOC690830 -4.07 

XM_575706.1 LOC500353 RGD1566261 -4.06 
XM_576597.1 LOC501170 similar to adaptor-related protein complex 

AP-1, sigma 3 -3.95 

XM_238042.4 RGD1564108 Hedgehog-interacting protein -3.85 
XM_001062343.1 Marveld2 MARVEL domain containing 2 -3.84 
XM_001065454.1 Elovl7 ELOVL family member 7, elongation of 

long chain fatty acids (yeast) -3.83 

XM_344015.3 RGD1562717 similar to ABI gene family, member 3 
(NESH) binding protein -3.82 

XM_001060350.1 Large like-glycosyltransferase -3.82 
XM_342632.3 Pftk1 PFTAIRE protein kinase 1 -3.81 
XM_001054726.1 RGD1561985 dystrobrevin alpha -3.79 
NM_001034160.1 Apeg3 antisense paternally expressed gene 3 -3.78 
XM_001067936.1 RGD1561090 protein tyrosine phosphatase, receptor 

type, D -3.75 

XM_238275.3 LOC295976 RGD1560837 -3.73 
XM_575380.2 RGD1563612 similar to testhymin -3.67 
XM_575721.2 RGD1559723 sarcospan -3.64 
NM_001014244.1 Cyb5r2 cytochrome b5 reductase 2 -3.64 
XM_001063197.1 RGD1559717 RPE-spondin -3.56 
XM_574931.1 LOC499605 similar to LRRGT00057 -3.54 
XM_219909.4 RGD1307524 similar to Friedreich ataxia region gene 

X123 -3.53 

XM_001069399.1 LOC684205 similar to MIC2 like 1 -3.44 
XM_001053430.1 RGD1559891 similar to synaptonemal complex protein 

3 -3.40 

XM_573889.1 LOC498611 similar to LRRGT00176 -3.38 
NM_012593.1 Klk1l kallikrein 1-like peptidase; kallikrein-

related peptidase 7 -3.36 
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XM_001079138.1 RGD1563574 similar to Hypothetical protein 
MGC30332 -3.36 

XM_001078963.1 Usp43 ubiquitin specific peptidase 43 -3.33 
XM_213993.4 Abhd7 epoxide hydrolase 4 -3.33 
XM_215016.3 Sox6 SRY (sex determining region Y)-box 6 -3.31 
NM_001024297.1 Spz1 spermatogenic leucine zipper 1 -3.29 
XM_001059530.1 RGD1305809 Na+/K+ transporting ATPase interacting 

4 -3.28 

XM_224841.4 Odz3 odz, odd Oz/ten-m homolog 3 
(Drosophila) -3.26 

XM_001053329.1 RGD1311196 tudor and KH domain containing -3.26 
XM_577046.1 LOC501651 similar to LRRGT00057 -3.25 
XM_573435.1 LOC498217 similar to LRRG00135 -3.19 
XM_001070775.1 Sorcs1 sortilin-related VPS10 domain containing 

receptor 1 -3.19 

NM_053352.1 Cxcr7 chemokine (C-X-C motif) receptor 7 -3.18 
XM_575335.1 LOC499981 similar to lamin B3 -3.10 
XM_574804.1 LOC499481 similar to LRRGT00057 -3.05 
NM_175759.2 Klks3 kallikrein, submaxillary gland S3 -3.04 
XM_574907.1 LOC499582 similar to LRRGT00176 -3.02 
XM_001059696.1 LOC498331 protein tyrosine phosphatase, non-

receptor type 13 -3.02 

XM_575738.1 LOC500380 similar to LRRGT00008 -2.99 
XM_575195.1 LOC499854 similar to putative RNA binding protein 1 -2.98 
XM_575790.1 LOC500428 similar to putative RNA binding protein 1 -2.97 
XM_577047.1 LOC501652 similar to LRRGT00194 -2.96 
XM_574687.1 LOC499372 similar to ORF1 -2.96 
XM_575071.1 LOC499737 similar to LRRGT00057 -2.95 
XM_574880.1 LOC499555 similar to LRRGT00082 -2.94 
XM_342147.2 LOC361853 family with sequence similarity 184, 

member A -2.94 

XM_575748.1 LOC500389 similar to LRRGT00176 -2.92 
XM_233266.3 Ttc22 tetratricopeptide repeat domain 22 -2.92 
XM_574484.1 LOC499197 similar to LRRGT00057 -2.90 
XM_221497.4 Bbx bobby sox homolog (Drosophila) -2.89 
NM_001004278.2 Tsga10ip testis specific 10 interacting protein -2.88 
XM_576800.1 LOC501387 similar to LRRGT00173 -2.87 
XM_001079607.1 RGD1560542 proline rich Gla (G-carboxyglutamic 

acid) 4 (transmembrane) -2.87 

XM_574888.1 LOC499564 similar to LRRGT00057 -2.86 
XM_576360.1 LOC500949 similar to LRRGT00176 -2.85 
XM_573538.2 RGD1564105 vasohibin 2 -2.85 
XM_342182.2 LOC361885 similar to LRRGT00194 -2.83 
XM_341843.2 Ankrd27 ankyrin repeat domain 27 (VPS9 domain) -2.83 
XM_576325.1 LOC500916 similar to LRRGT00176 -2.82 
XR_009191.1 RGD1309847 similar to peptidylglycine alpha-

amidating monooxygenase COOH-
terminal interactor; peptidylglycine 
alpha-amidating monooxygenase COOH-
terminal interactor protein-1 

-2.82 
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XM_001062695.1 RGD1562954 aldo-keto reductase family 1, member 
C19 -2.81 

XM_574855.1 LOC499531 similar to LRRGT00176 -2.81 
NM_017058.1 Vdr vitamin D (1,25- dihydroxyvitamin D3) 

receptor -2.81 

XM_575541.1 LOC500189 similar to Ig kappa chain -2.79 
NM_001002830.2 Rasl11b RAS-like family 11 member B -2.76 
NM_001024265.1 RGD1311251 similar to RIKEN cDNA 4930550C14 -2.76 
NM_001030024.1 Slc19a2 solute carrier family 19 (thiamine 

transporter), member 2 -2.76 

XM_234454.4 Ston2 stonin 2 -2.76 
XM_213964.4 Disp1 dispatched homolog 1 (Drosophila) -2.75 
XM_001059200.1 LOC681982 tuftelin 1 -2.75 
XM_574260.1 LOC498973 similar to LRRGT00176 -2.74 
XM_575869.1 LOC500507 similar to LRRGT00194 -2.74 
XM_574084.1 LOC498799 similar to LRRGT00057 -2.74 
XM_573613.1 LOC498378 similar to LRRGT00176 -2.74 
XM_576530.1 LOC501112 similar to putative RNA binding protein 1 

(LOC501112) -2.73 

NM_001024888.1 Gatad2b GATA zinc finger domain containing 2B -2.73 
XM_001079075.1 Ppl periplakin -2.72 
XM_573829.1 LOC498553 similar to putative RNA binding protein 1 

(LOC498553) -2.72 

XM_574081.1 LOC498795 coiled-coil domain containing 3 -2.72 
NM_001013863.1 Ydjc YdjC homolog (bacterial) -2.71 
XM_574492.1 LOC499206 similar to LRRGT00057 -2.70 
XM_573952.1 LOC498669 similar to LRRGT00176 -2.70 
XM_576174.1 LOC500788 similar to LRRGT00176 -2.70 
XM_575859.1 LOC500495 similar to LRRGT00176 -2.69 
NM_019249.1 Ptprf protein tyrosine phosphatase, receptor 

type, F -2.69 

NM_177426.1 Gstm2 glutathione S-transferase mu 2 -2.69 
XM_579642.1 LOC497701 hypothetical gene supported by 

NM_134459 -2.69 

XM_225733.4 Pard6g par-6 partitioning defective 6 homolog 
gamma (C. elegans) -2.68 

XM_574023.1 LOC498745 similar to LRRGT00057 -2.68 
XM_001067343.1 Arhgef17 Rho guanine nucleotide exchange factor 

(GEF) 17 -2.68 

XM_001060502.1 RGD1566180 RGD1566180 -2.67 
XM_576284.1 LOC500883 similar to LRRGT00082 -2.67 
XM_340961.2 LOC360690 similar to LRRGT00194 -2.66 
XM_579538.1 LOC497706 hypothetical gene supported by 

NM_031819 -2.66 

XM_001056810.1 RGD1309701 family with sequence similarity 114, 
member A1; similar to RIKEN cDNA 
9130005N14 

-2.65 

XM_575567.1 LOC500216 similar to LRRGT00194 -2.64 
XM_001064705.1 RGD1564709 similar to ATP-binding cassette, sub-

family G (WHITE), member 3 -2.63 

XM_342428.2 LOC362127 similar to putative RNA binding protein 1 -2.63 
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NM_130738.1 Snurf similar to small nuclear 
ribonucleoparticle-associated protein; 
SNRPN upstream reading frame 

-2.62 

XM_001054725.1 Ogn osteoglycin -2.62 
XM_001069683.1 RGD1565408 SERTA domain containing 4 -2.61 
XM_001069787.1 Snx12 sorting nexin 12 -2.61 
XM_001070222.1 Dcdc2 doublecortin domain containing 2 -2.60 
XM_573579.1 LOC498346 similar to putative RNA binding protein 1 -2.59 
XR_009111.1 RGD1311309 similar to 2510002A14Rik protein -2.58 
XM_343130.2 LOC362803 similar to putative RNA binding protein 1 -2.56 
NM_001007645.1 MGC95152 similar to B230212L03Rik protein -2.56 
XM_227030.4 Ttc14 tetratricopeptide repeat domain 14 -2.55 
NM_053573.1 Olfm1 olfactomedin 1 -2.55 
NM_031745.2 Clip1 CAP-GLY domain containing linker 

protein 1 -2.55 

XM_574188.1 LOC498901 similar to LRRGT00176 -2.55 
XM_343479.3 Sema3b sema domain, immunoglobulin domain 

(Ig), short basic domain, secreted, 
(semaphorin) 3B 

-2.53 

XM_001061697.1 Susd1 sushi domain containing 1 -2.53 
XM_345984.2 LOC501057 similar to Mtap4 protein -2.51 
XM_237064.4 RGD1310819 similar to putative protein (5S487) -2.50 
NM_001015017.1 Olfm2 olfactomedin 2 -2.50 
XM_576950.1 LOC501548 similar to LRRG00135 -2.49 
NM_133402.2 Nap1l3 nucleosome assembly protein 1-like 3 -2.49 
XM_001074148.1 Piwil4 piwi-like 4 (Drosophila) -2.49 
XM_215728.4 Smarca3 helicase-like transcription factor -2.49 
XM_577034.1 LOC501637 similar to LRRG00135 -2.49 
XM_573309.1 LOC498105 similar to LRRGT00176 -2.48 
XM_342281.3 Muc1 mucin 1, cell surface associated -2.47 
NM_001024791.1 Epn3 epsin 3 -2.47 
NM_001011984.1 Asb2 ankyrin repeat and SOCS box-containing 

2 -2.46 

XM_576904.1 LOC501503 nucleic acid binding protein; hypothetical 
protein LOC689117 -2.46 

XM_218462.4 RGD1310942 similar to R27328_1 -2.45 
XM_579778.1 LOC498061 RGD1564312 -2.45 
XM_574001.2 Elovl2 elongation of very long chain fatty acids 

(FEN1/Elo2, SUR4/Elo3, yeast)-like 2; 
similar to Elongation of very long chain 
fatty acids protein 2 

-2.44 

XM_001071030.1 Kbtbd9 kelch-like 29 (Drosophila) -2.44 
XM_226397.2 RGD1308358 similar to 2210023G05Rik protein -2.44 
XM_001065428.1 Ccbe1 collagen and calcium binding EGF 

domains 1 -2.44 

XM_579677.1 LOC497785 hypothetical gene supported by 
NM_147211 -2.43 

XM_574960.1 LOC499638 similar to LRRGT00057 -2.43 
XM_573611.1 LOC498376 similar to ORF4 -2.42 
XM_341405.2 LOC361117 similar to Rb1-inducible coiled coil 

protein 1 -2.41 
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XM_001063544.1 LOC362564 BEN domain containing 5 -2.41 
XM_232253.3 LOC312683 similar to KIAA0819 protein -2.40 
XM_576977.1 LOC501573 similar to LRRGT00194 -2.40 
XM_001062086.1 RGD1564964 similar to WD repeat domain 11 protein -2.40 
XM_001067324.1 RGD1564560 similar to RCK -2.40 
XM_575756.1 LOC500397 similar to LRRGT00176 -2.40 
XM_575955.1 LOC500586 similar to LRRGT00057 -2.40 
XM_226455.4 Zfp612 zinc finger protein 23 (KOX 16) -2.39 
XM_217293.4 Ctdspl CTD (carboxy-terminal domain, RNA 

polymerase II, polypeptide A) small 
phosphatase-like 

-2.38 

NM_001014095.1 Dzip1l DAZ interacting protein 1-like -2.38 
XM_574268.1 LOC498979 similar to LRRGT00194 -2.37 
XM_579762.2 RGD1562012 RGD1562012 -2.37 
XM_345970.3 Chst2 carbohydrate sulfotransferase 2 -2.36 
XR_005694.1 LOC680293 similar to developmental pluripotency 

associated 4 isoform 1 -2.35 

XM_575695.1 LOC500343 similar to LRRGT00176 -2.35 
XM_573278.1 LOC498076 similar to RIKEN cDNA 2410116I05 -2.35 
NM_001008364.1 Snx24 sorting nexin 24 -2.35 
XM_573468.1 LOC498245 similar to LRRGT00176 -2.34 
XM_221263.4 Slc7a4 solute carrier family 7 (cationic amino 

acid transporter, y+ system), member 4 -2.34 

XM_579843.1 LOC498652 RGD1562341 -2.34 
XM_001059291.1 Klhdc8a kelch domain containing 8A -2.34 
XM_578457.1 LOC502952 similar to alpha-2u globulin PGCL4 -2.32 
XM_576350.1 LOC500940 similar to LRRGT00126 -2.31 
XM_579720.1 LOC497836 hypothetical gene supported by 

NM_181475 -2.29 

XM_001063318.1 Xpo4 exportin 4 -2.29 
XM_001061729.1 RGD1565886 RGD1565886 -2.29 
XM_001054590.1 LOC679075 similar to l(3)mbt-like 3 -2.29 
XM_573902.1 LOC498623 similar to LRRGT00176 -2.28 
XM_575635.1 LOC500285 similar to LRRGT00176 -2.28 
XM_213921.3 Creg cellular repressor of E1A-stimulated 

genes 1 -2.27 

XM_001071978.1 RGD1306151 similar to hypothetical protein 
DKFZp761D0211 -2.27 

NM_001025063.1 Scrn1 secernin 1 -2.26 
XM_575503.1 LOC500151 similar to RIKEN cDNA 2410116I05 -2.26 
XM_001076815.1 RGD1310958 similar to RIKEN cDNA C130090K23 -2.24 
XM_578934.1 LOC503396 similar to Ac1147 -2.24 
XM_342055.3 Sema4g sema domain, immunoglobulin domain 

(Ig), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 
4G 

-2.23 

NM_001014199.1 Atp6v1c2 ATPase, H+ transporting, lysosomal V1 
subunit C2 -2.23 

XM_001056150.1 LOC362068 G protein-coupled receptor 98 -2.23 
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XM_001071508.1 Sema5b sema domain, seven thrombospondin 
repeats (type 1 and type 1-like), 
transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 5B 

-2.22 

XM_576443.1 LOC501032 similar to LRRGT00176 -2.22 
XM_344817.2 LOC365104 similar to hypothetical protein cgd4_1450 -2.21 
XM_234584.3 LOC299356 similar to RIKEN cDNA 4831426I19 -2.18 
XM_576580.1 LOC501156 similar to LRRGT00176 -2.17 
XM_001078792.1 RGD1309576 transmembrane protein 220 -2.17 
XM_577983.2 RGD1565105 small EDRK-rich factor 1 -2.16 
XM_576265.1 LOC500867 similar to LRRG00116 -2.16 
NM_172038.1 Gstm5 glutathione S-transferase, mu 5 -2.16 
XM_577051.1 LOC501656 similar to LRRGT00057 -2.15 
XM_573248.1 LOC498048 similar to ORF4 -2.15 
NM_017303.2 Kcnab1 potassium voltage-gated channel, shaker-

related subfamily, beta member 1 -2.14 

XM_001078124.1 Arhgap8 proline rich 5 (renal) -2.14 
XM_223428.4 RGD1307468 RELT-like 1 -2.13 
XM_001055013.1 RGD1561255 leucine-rich repeats and immunoglobulin-

like domains 3 -2.13 

XM_230024.4 RGD1562244 SEC14 and spectrin domains 1 -2.13 
XM_001071349.1 Lrp6 low density lipoprotein receptor-related 

protein 6 -2.12 

XM_001068317.1 RGD1563354 similar to hypothetical protein 
D630003M21 -2.12 

XM_001068586.1 RGD1564808 ubiquitin specific peptidase 46 -2.12 
NM_001014240.2 LOC364773 aldo-keto reductase family 1, member 

C13 -2.11 

XM_001076292.1 RGD1565496 similar to Butyrate-induced transcript 1 -2.11 
XM_001070748.1 Lrrc16 leucine rich repeat containing 16A -2.11 
XM_213633.4 Hoxd3_mapp

ed 
homeo box D3 -2.10 

XM_573616.1 LOC498381 similar to ORF1 -2.10 
XM_576615.1 LOC501187 hypothetical protein LOC501187 -2.10 
XM_215524.4 Tpd52 tumor protein D52 -2.09 
XM_345665.2 LOC366608 similar to mKIAA0716 protein -2.09 
XM_220693.4 RGD1307222 similar to mKIAA0664 protein -2.09 
XM_342631.2 LOC362315 similar to Retrovirus-related POL 

polyprotein -2.09 

XM_237794.3 LOC287564 transmembrane protein 132E -2.08 
XR_009616.1 LOC498759 hypothetical protein LOC685873; 

LRRGT00094 -2.08 

XM_342241.2 LOC361942 similar to ORF4 -2.08 
XM_342864.2 LOC362543 similar to LRRG00116 -2.08 
NM_019363.2 Aox1 aldehyde oxidase 1 -2.08 
XM_227657.4 Bcar3 breast cancer anti-estrogen resistance 3 -2.07 
NM_177425.3 Csrp2 cysteine and glycine-rich protein 2 -2.07 
XM_576501.1 LOC501087 similar to LRRGT00057 -2.07 
XM_576860.1 LOC501449 similar to ORF2 consensus sequence 

encoding endonuclease and reverse 
transcriptase minus RNaseH 

-2.06 
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NM_017226.1 Padi2 peptidyl arginine deiminase, type II -2.06 
XM_574702.1 LOC499388 similar to LRRGT00082 -2.05 
XM_001063599.1 Odz4 odz, odd Oz/ten-m homolog 4 

(Drosophila) -2.05 

XM_001059473.1 Lysmd2 LysM, putative peptidoglycan-binding, 
domain containing 2 -2.04 

XM_001057514.1 Fcmd fukutin -2.04 
XM_343815.2 LOC363492 similar to Ac1262 -2.04 
NM_001031660.1 Msrb2 methionine sulfoxide reductase B2 -2.04 
XM_575847.1 LOC500480 similar to ORF1 -2.04 
XM_001058156.1 Lrpap1 low density lipoprotein receptor-related 

protein associated protein 1 -2.03 

XM_001058239.1 Syngr3 synaptogyrin 3 -2.03 
XM_575569.1 LOC500218 similar to LRRGT00173 -2.03 
XM_001072062.1 Wdr35 WD repeat domain 35; WD repeat 

domain 35-like -2.03 

XM_001080610.1 Nxn nucleoredoxin -2.02 
XM_224972.3 LOC306577 similar to expressed sequence BB049667 -2.02 
NM_031117.1 Snrpn small nuclear ribonucleoprotein 

polypeptide N; small nuclear 
ribonucleoprotein polypeptides B and B1 

-2.02 

NM_001025402.1 Umps uridine monophosphate synthetase -2.01 
XM_342067.3 RGD1307158 similar to oocyte-testis gene 1 -2.01 
XM_001054328.1 RGD1564930 similar to novel protein similar to Tensin 

Tns -2.01 

XM_238787.4 Rhpn2 rhophilin, Rho GTPase binding protein 2 -2.01 
NM_001024978.1 RGD1305844 hypothetical LOC294883 -2.00 
XM_222679.4 RGD1560834 zinc finger and BTB domain containing 

41 -2.00 

XM_573943.2 LOC498662 similar to RIKEN cDNA 2610019F03 -2.00 
XM_574144.2 RGD1561942 coiled-coil domain containing 112 -2.00 
XM_579646.1 LOC497726 hypothetical gene supported by 

NM_138518 -2.00 

XM_343907.3 Gtlf3b gene trap locus F3b -2.00 
XM_342331.3 Agl amylo-1,6-glucosidase, 4-alpha-

glucanotransferase -1.99 

XR_008124.1 RGD1565779 similar to hypothetical protein 
E230025N22 -1.98 

NM_031141.2 Pax8 paired box 8 -1.98 
XM_001074613.1 RGD1311980 family with sequence similarity 20, 

member C -1.97 

XM_225864.4 Spire1 spire homolog 1 (Drosophila) -1.96 
XM_227409.4 Ash1l ash1 (absent, small, or homeotic)-like 

(Drosophila) -1.96 

XM_243652.4 Plxnb2 plexin B2 -1.95 
NM_001012091.1 Foxs1 forkhead box S1 -1.94 
XM_001073019.1 Zfp521 zinc finger protein 521 -1.94 
XM_577516.1 LOC502081 similar to LRRGT00049 -1.94 
XR_008228.1 RGD1566399 similar to MYST histone 

acetyltransferase monocytic leukemia 4; 
similar to Histone acetyltransferase 
MYST4 (MYST protein 4) (MOZ, 

-1.94 
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YBF2/SAS3, SAS2 and TIP60 protein 4) 
(Querkopf protein) 

XR_007788.1 RGD1309368 crumbs homolog 2 (Drosophila) -1.93 
NM_001004246.1 Ttc12 tetratricopeptide repeat domain 12 -1.93 
XM_238219.2 RGD1562890 RGD1562890 -1.93 
XM_001076726.1 RGD1561651 similar to zinc finger protein 609; zinc 

finger protein 609 -1.93 

XM_234092.4 RGD1311444 patatin-like phospholipase domain 
containing 8 -1.93 

XM_343313.3 RGD1308012 family with sequence similarity 116, 
member B -1.91 

XR_009418.1 LOC688018 similar to SH3-domain binding protein 3 -1.91 
NM_134398.1 P34 p34 protein; similar to Alpha- and 

gamma-adaptin-binding protein p34 -1.91 

XM_574161.2 Nedd4l neural precursor cell expressed, 
developmentally down-regulated 4-like -1.91 

XM_233953.3 LOC313940 similar to Hypothetical protein 
KIAA1240 -1.91 

XM_001060542.1 LOC681153 hypothetical protein LOC681153 -1.90 
XM_579502.1 LOC497745 hypothetical gene supported by 

NM_031049 -1.90 

NM_001013132.1 Fbxo16 F-box protein 16 -1.89 
XM_342207.2 LOC361912 similar to LRRG00116 -1.89 
XM_225526.4 Larp5 La ribonucleoprotein domain family, 

member 5 -1.89 

NM_001013984.1 Npl N-acetylneuraminate pyruvate lyase -1.89 
XM_575855.1 LOC500490 similar to Retrovirus-related POL 

polyprotein -1.89 

XM_341148.3 Pou2f1 POU domain, class 2, transcription factor 
1 -1.88 

NM_133586.1 Ces2 carboxylesterase 2 (intestine, liver) -1.88 
XM_347084.2 LOC362870 RGD1566301 -1.88 
XM_001079241.1 LOC687582 outer dense fiber of sperm tails 2-like -1.87 
XM_215939.4 Pltp phospholipid transfer protein -1.87 
XM_580203.1 LOC501498 LOC501498 -1.87 
XM_001066967.1 Kctd3 potassium channel tetramerisation 

domain containing 3 -1.87 

XM_341918.2 LOC361639 similar to CG14182-PA -1.87 
XM_579486.1 LOC497780 hypothetical gene supported by 

NM_024353 -1.87 

NM_022400.1 Bcat2 branched chain aminotransferase 2, 
mitochondrial -1.87 

NM_001025772.1 MGC114440 similar to RIKEN cDNA 4930555I21 -1.86 
XM_222190.3 LOC304500 similar to acetyl-coA dehydrogenase -

related (111.6 kD) (5G231) -1.86 

NM_031347.1 Ppargc1a peroxisome proliferator-activated 
receptor gamma, coactivator 1 alpha -1.85 

XM_236411.4 Myo5c myosin VC -1.85 
XM_001072989.1 Sulf2 sulfatase 2 -1.85 
XM_001074860.1 RGD1559432 RGD1559432 -1.84 
XM_225941.4 Dmxl1 Dmx-like 1 -1.84 
XM_001067729.1 Mll_mapped myeloid/lymphoid or mixed-lineage 

leukemia 1 -1.84 

XM_575799.1 LOC500437 similar to LRRGT00094 -1.84 
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NM_001007628.1 Cxxc5 CXXC finger 5 -1.84 
XM_575015.2 RGD1560967 G-protein signaling modulator 2 (AGS3-

like, C. elegans) -1.83 

XM_001061692.1 Pus7 pseudouridylate synthase 7 homolog (S. 
cerevisiae) -1.83 

XM_574879.1 LOC499554 similar to ORF2 consensus sequence 
encoding endonuclease and reverse 
transcriptase minus RNaseH 

-1.83 

NM_001013979.1 LOC304131 similar to C21ORF7 -1.82 
XM_001067414.1 Phldb1 pleckstrin homology-like domain, family 

B, member 1 -1.82 

NM_181362.1 Cand2 cullin-associated and neddylation-
dissociated 2 (putative) -1.82 

XM_574477.1 LOC499184 similar to LRRGT00082 -1.82 
NM_199376.1 Sil1 SIL1 homolog, endoplasmic reticulum 

chaperone (S. cerevisiae) -1.81 

XM_001081128.1 Zc3h6 zinc finger CCCH type containing 6 -1.80 
XM_573393.1 LOC498177 zinc finger protein ZFOC1 -1.80 
NM_001008861.2 Usp11 ubiquitin specific peptidase 11 -1.80 
XM_001071113.1 RGD1562920 androgen-induced 1 -1.80 
XM_579872.1 LOC498813 LOC498813 -1.79 
XR_009136.1 LOC360932 ATPase, class V, type 10D -1.79 
XM_574910.1 LOC499585 similar to LRRG00135 -1.79 
NM_001009537.1 MGC72997 zinc finger protein 799 -1.79 
XM_221043.4 Tex2 testis expressed 2 -1.79 
XM_236938.4 RGD1310693 radial spoke head 9 homolog 

(Chlamydomonas) -1.78 

XM_218816.4 Man2a2 mannosidase 2, alpha 2 -1.78 
XM_576459.2 Ppp2r3a protein phosphatase 2 (formerly 2A), 

regulatory subunit B'', alpha -1.78 

XM_574735.1 Pcbp3 poly(rC) binding protein 3 -1.78 
XM_001062225.1 Kctd1 potassium channel tetramerisation 

domain containing 1 -1.78 

XM_222685.3 Hrpt2 cell division cycle 73, Paf1/RNA 
polymerase II complex component, 
homolog (S. cerevisiae) 

-1.77 

XM_222288.3 LOC304592 similar to olf186-F CG11430-PB, isoform 
B; ORAI calcium release-activated 
calcium modulator 2 

-1.77 

XM_235064.4 Eea1 early endosome antigen 1 -1.76 
XM_579655.1 LOC497844 hypothetical gene supported by 

NM_138846 -1.76 

NM_001005906.1 Chpf chondroitin polymerizing factor -1.76 
XM_341029.3 RGD1307396 similar to RIKEN cDNA 6330406I15 -1.76 
XM_001054836.1 LOC300472 vacuolar protein sorting 26 homolog B 

(S. pombe) -1.76 

NM_053642.2 Sc5dl sterol-C5-desaturase (ERG3 delta-5-
desaturase homolog, S. cerevisiae)-like -1.76 

NM_001008316.1 Plag1 pleiomorphic adenoma gene 1 -1.75 
XM_573911.2 RGD1559427 WW and C2 domain containing 2 -1.75 
XM_573735.1 LOC498477 similar to Spetex-2C protein -1.75 
XM_341877.3 Iqgap1 IQ motif containing GTPase activating 

protein 1 -1.75 
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NM_139330.1 Sipa1l1 signal-induced proliferation-associated 1 
like 1 -1.75 

XM_579393.1 LOC497757 guanylate cyclase 1, soluble, alpha 3 -1.75 
NM_001007646.1 Fkbp9 FK506 binding protein 9, 63 kDa -1.75 
XM_573448.1 LOC498228 major facilitator superfamily domain 

containing 4 -1.75 

XM_576133.1 LOC500755 similar to LRRGT00008 -1.75 
XM_225213.4 Aof1 amine oxidase (flavin containing) domain 

1 -1.75 

NM_080899.1 Ikbkap inhibitor of kappa light polypeptide gene 
enhancer in B-cells, kinase complex-
associated protein 

-1.74 

XM_234923.4 RGD1304737 similar to KIAA1086 protein -1.74 
XM_001070228.1 Braf v-raf murine sarcoma viral oncogene 

homolog B1 -1.74 

XM_001055328.1 Fign fidgetin -1.74 
XM_575991.1 LOC500617 similar to LRRGT00014 -1.74 
XM_001071417.1 Gpr126 G protein-coupled receptor 126 -1.73 
NM_032074.1 Irs3 insulin receptor substrate 3 -1.73 
XM_001080455.1 Klk1c10 T-kininogenase -1.73 
NM_184046.1 Rtkn rhotekin -1.73 
NM_001013071.1 Tm7sf2 transmembrane 7 superfamily member 2 -1.73 
XM_001069309.1 RGD1562848 RGD1562848 -1.73 
XM_238063.4 Ibrdc1 ring finger protein 217 -1.73 
XM_228042.3 RGD1309887 potassium channel tetramerisation 

domain containing 20 -1.72 

NM_001033656.1 Man1a mannosidase, alpha, class 1A, member 1 -1.72 
XM_232620.3 Mybl1 myeloblastosis oncogene-like 1 -1.72 
XM_236192.2 Ddx6 DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 6 (Ddx6) -1.72 

XM_001063707.1 Msc musculin -1.72 
XM_573061.2 Rgs11 regulator of G-protein signaling 11 -1.72 
NM_053456.1 Plcl1 phospholipase C-like 1 -1.72 
XM_579620.1 LOC497747 hypothetical gene supported by 

NM_133395 -1.72 

XM_580006.1 LOC499701 RGD1563244 -1.72 
XM_001057150.1 Ptpdc1 protein tyrosine phosphatase domain 

containing 1 -1.72 

XM_001060543.1 RGD1560335 phosphatidylinositol glycan anchor 
biosynthesis, class G -1.71 

XM_343376.2 Znf500 zinc finger protein 500 -1.71 
XM_227769.2 LOC310926 hypothetical protein LOC310926 -1.71 
NM_031503.1 Ascl2 achaete-scute complex homolog 2 

(Drosophila) -1.71 

XM_577031.1 LOC501634 similar to LRRGT00176 -1.71 
NM_001014165.1 RGD1310039 similar to hypothetical protein FLJ10058 -1.70 
XM_001073363.1 Chst9 carbohydrate (N-acetylgalactosamine 4-0) 

sulfotransferase 9 -1.70 

NM_017220.1 Pts 6-pyruvoyl-tetrahydropterin synthase -1.70 
XM_342286.3 Slc39a1 solute carrier family 39 (zinc transporter), 

member 1 -1.70 

NM_001014131.1 RGD1309708 similar to RIKEN cDNA 4930455F23 -1.70 
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XM_001079385.1 Jmjd3 jumonji domain containing 3 -1.70 
XM_001069011.1 RGD1566359 similar to RIKEN cDNA B230219D22 -1.70 
NM_001024315.1 LOC499949 similar to hypothetical protein FLJ90166 -1.70 
NM_012736.1 Gpd2 glycerol-3-phosphate dehydrogenase 2, 

mitochondrial -1.70 

XM_342731.2 Sumf1 sulfatase modifying factor 1 -1.70 
XM_222315.4 Baz2a bromodomain adjacent to zinc finger 

domain, 2A -1.69 

XM_576928.1 LOC501527 similar to LRRGT00057 -1.69 
NM_133541.1 Gtf3c1 general transcription factor III C 1 -1.69 
XM_575347.1 LOC499992 similar to Retrovirus-related POL 

polyprotein -1.69 

XM_001071807.1 RGD1566054 tetratricopeptide repeat domain 15 -1.69 
XM_001070393.1 RGD1307696 fat storage-inducing transmembrane 

protein 2 -1.68 

XM_001061189.1 RGD1306493 WD repeat domain 60 -1.68 
XM_574587.2 RGD1562983 HCCA2 protein -1.68 
XM_001053950.1 RGD1566050 similar to hypothetical protein FLJ32745 -1.68 
XM_001056091.1 LOC499337 dedicator of cytokinesis 8 -1.68 
NM_022857.1 N5 DNA binding protein N5 -1.68 
NM_133421.1 Lkap hypothetical gene supported by 

AB012133; NM_133421; similar to 
limkain b1; limkain b1

-1.68 

XM_578786.2 RGD1565095 similar to hypothetical protein 
MGC52110 -1.68 

XM_001056385.1 Ptchd1 patched domain containing 1 -1.68 
NM_001024975.1 Morn4 MORN repeat containing 4 -1.68 
XM_575480.2 RGD1564419 similar to hypothetical gene supported by 

BC025338 -1.67 

XM_342548.3 Snta1 syntrophin, acidic 1 -1.67 
XM_001055537.1 LOC679271 rhomboid, veinlet-like 2 (Drosophila) -1.67 
XM_341106.3 Fvt1 3-ketodihydrosphingosine reductase -1.67 
XM_001071547.1 LOC689581 eukaryotic translation initiation factor 5B, 

pseudogene 1; eukaryotic translation 
initiation factor 5B 

-1.67 

XM_234373.4 Ttc8 tetratricopeptide repeat domain 8 -1.67 
XM_579510.1 LOC497724 hypothetical gene supported by 

NM_031525 -1.67 

XM_001060860.1 LOC685778 pyruvate dehydrogenase E1 alpha 1 
pseudogene; pyruvate dehydrogenase 
(lipoamide) alpha 1

-1.66 

XM_001058768.1 Thoc2 similar to THO complex subunit 2 
(Tho2); THO complex 2 -1.66 

XM_001072660.1 Chchd6 coiled-coil-helix-coiled-coil-helix domain 
containing 6 -1.66 

XM_220933.3 Arf4l ADP-ribosylation factor 4-like -1.66 
XM_001071249.1 Kcnq5 potassium voltage-gated channel, 

subfamily Q, member 5-like -1.66 

NM_001012075.1 Tspyl4 TSPY-like 4 -1.66 
XM_232064.4 Tcf3 transcription factor 3 -1.66 
XM_342683.3 RGD1564287 oxysterol binding protein-like 3 -1.66 
XM_217443.3 Glb1l galactosidase, beta 1-like -1.66 
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XM_579478.2 Gucy1a2 guanylate cyclase 1, soluble, alpha 2 -1.66 
NM_001015012.1 Rab30 RAB30, member RAS oncogene family -1.66 
NM_153302.1 Dcps decapping enzyme, scavenger -1.66 
XM_001060916.1 RGD1308290 similar to RIKEN cDNA 5730454B08; 

similar to Zinc finger CCCH-type 
domain-containing protein 11A 

-1.66 

XM_345130.1 LOC365612 similar to putative aminopeptidase Fxna -1.65 
XM_347115.2 LOC363240 RGD1565696 -1.65 
NM_012988.1 Nfia nuclear factor I/A -1.65 
XM_001053119.1 LOC360728 hypothetical protein LOC678704; 

ATPase type 13A3 -1.64 

XM_223592.3 Zfp278 zinc finger protein 278 -1.64 
NM_147145.1 Dclre1c DNA cross-link repair 1C, PSO2 

homolog (S. cerevisiae) -1.64 

XM_224461.3 Klf12 Kruppel-like factor 12 -1.64 
XM_576559.1 LOC501139 similar to Ormdl1 protein -1.64 
NM_021581.1 Sc65 synaptonemal complex protein SC65 -1.64 
XR_009288.1 RGD1564206 synapse defective 1, Rho GTPase, 

homolog 2 (C. elegans) -1.64 

XM_223945.4 Samd4 sterile alpha motif domain containing 4A -1.63 
NM_001004095.1 S100a11 S100 calcium binding protein A11 

(calizzarin) -1.63 

XM_214734.4 RGD1311558 similar to 4930506M07Rik protein -1.63 
NM_001003957.1 Dnmt3a DNA (cytosine-5-)-methyltransferase 3 

alpha -1.63 

NM_182672.1 Cbr4 carbonyl reductase 4 -1.63 
XM_216149.3 LOC297099 homeobox A9-like -1.63 
NM_022268.1 Pygl phosphorylase, glycogen, liver -1.63 
NM_001014065.1 Zcchc12 zinc finger, CCHC domain containing 12 -1.63 
NM_053718.1 Mllt3 myeloid/lymphoid or mixed-lineage 

leukemia (trithorax homolog, 
Drosophila); translocated to, 3 

-1.63 

XM_001078585.1 RGD1564019 similar to GTPase activating RANGAP 
domain-like 3 -1.62 

XM_340870.3 RGD1305547 integrator complex subunit 2 -1.62 
XM_001075851.1 RGD1309779 similar to ENSANGP00000021391 -1.62 
XM_236292.4 Npat nuclear protein, ataxia-telangiectasia 

locus -1.62 

XM_579481.1 LOC497728 hypothetical gene supported by 
NM_024137 -1.62 

XM_574868.1 Pip3ap myotubularin related protein 12 -1.61 
XM_343923.2 Kctd11 potassium channel tetramerisation 

domain containing 11 -1.61 

XM_228708.4 RGD1563226 ubiquitin-conjugating enzyme E2Q 
family member 2-like -1.61 

XM_001055855.1 Mtf1 metal-regulatory transcription factor 1 -1.61 
XM_575067.1 LOC499732 leucine-rich repeats and IQ motif 

containing 3 -1.61 

XM_236739.4 Fyco1 FYVE and coiled-coil domain containing 
1 -1.61 

NM_001025755.1 MGC116197 similar to RIKEN cDNA 1700001E04 -1.60 
XM_001060093.1 RGD1561059 methyltransferase like 8 -1.60 
XM_579986.1 LOC499614 RGD1559718 -1.60 
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XM_214751.3 Mrpl18 mitochondrial ribosomal protein L18 15.19 
XM_575546.1 LOC500194 similar to immunoglobulin kappa-chain 3.48 
NM_001013063.1 Raet1l retinoic acid early transcript 1L 3.36 
XR_009489.1 Cd300le CD300 molecule-like family member E 3.28 
XM_575513.1 LOC500161 similar to Immunoglobulin kappa-chain 

VJ precursor 3.18 

XM_578288.1 LOC502789 similar to Immunoglobulin kappa-chain 
VJ precursor 3.14 

NM_001014132.1 Traf3ip3 TRAF3 interacting protein 3 3.09 
XM_221094.3 LOC303666 similar to dendritic cell-derived 

immunoglobulin(Ig)-like receptor 1, 
DIgR1 - mouse 

2.93 

NM_001009541.1 Ier2 immediate early response 2 2.76 
XM_234930.2 Edg6 sphingosine-1-phosphate receptor 4 2.74 
XM_001072477.1 Sema7a sema domain, immunoglobulin domain 

(Ig), and GPI membrane anchor, 
(semaphorin) 7A 

2.73 

XM_236646.2 Ngp neutrophilic granule protein 2.72 
XM_345752.2 LOC366765 similar to Ig H-chain 2.71 
XM_001070786.1 Stfa2 stefin A2-like 2; stefin A2-like 3 2.70 
XM_573293.1 RGD1560676 stefin A2-like 2; stefin A2-like 3 2.70 
XM_341195.2 Igj immunoglobulin joining chain 2.69 
XM_217791.4 Tagap T-cell activation GTPase activating 

protein 2.65 

NM_138547.1 LOC191574 aldo-keto reductase family 1, member 
C14 2.61 

XM_577145.1 LOC501744 similar to Immunoglobulin superfamily, 
member 7 2.59 

XM_343664.2 LOC363326 hypothetical LOC363326 2.57 
XM_575732.1 LOC500374 Ig kappa chain V region S211 2.57 
XM_578343.1 LOC502843 similar to immunoglobulin kappa-chain 2.55 
XM_341534.2 Tcrg T cell receptor gamma locus 2.53 
XM_001075162.1 LOC690672 similar to Discs large homolog 5 

(Placenta and prostate DLG) (Discs large 
protein P-dlg) 

2.52 

XM_575512.1 LOC500160 similar to Immunoglobulin light chain 2.48 
XM_576812.2 LOC501399 similar to Discs large homolog 5 

(Placenta and prostate DLG) (Discs large 
protein P-dlg) 

2.46 

XM_575930.2 RGD1564994 glycine/arginine rich protein 1 2.43 
XM_575544.1 LOC500192 similar to Ig kappa chain V-IV region 

precursor 2.42 

XM_222692.4 Rgs18 regulator of G-protein signaling 18 2.42 
XM_001061476.1 Tcf15 transcription factor 15 2.38 
XM_575525.1 LOC500173 similar to immunoglobulin light chain 

precursor 2.38 

XM_217546.3 LOC302210 similar to RIKEN cDNA 4930555G01 2.37 
NM_001009681.1 Oasl 2'-5'-oligoadenylate synthetase-like 2.35 
XM_579453.1 Gcnt1 glucosaminyl (N-acetyl) transferase 1, 

core 2 2.35 

XM_236658.4 Ccrl2 chemokine (C-C motif) receptor-like 2 2.35 
NM_001014125.1 Pdia5 protein disulfide isomerase family A, 

member 5 2.35 
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XM_575524.1 LOC500172 similar to immunoglobulin kappa-chain 2.35 
XM_576305.1 LOC500903 similar to RIKEN cDNA 2210421G13 2.32 
NM_001024289.1 Ptprcap protein tyrosine phosphatase, receptor 

type, C-associated protein 2.31 

XM_001061883.1 LOC363181 similar to RIKEN cDNA 1700001E04 2.31 
NM_001025115.1 Stap1 signal transducing adaptor family 

member 1 2.31 

NM_001014039.1 Tnfaip8l2 tumor necrosis factor, alpha-induced 
protein 8-like 2 2.30 

XM_579388.1 LOC497767 hypothetical gene supported by 
BC081816; NM_017043 2.30 

NM_053713.1 Klf4 Kruppel-like factor 4 (gut) 2.29 
NM_181087.2 Cyp26b1 cytochrome P450, family 26, subfamily 

b, polypeptide 1 2.28 

XM_575447.1 LOC500096 similar to T cell receptor variable 
region:SUBUNIT=beta:ISOTYPE=8.3 2.27 

XM_225319.3 RGD1306939 similar to mKIAA0386 protein 2.27 
XM_576504.1 LOC501089 similar to Discs large homolog 5 

(Placenta and prostate DLG) (Discs large 
protein P-dlg) 

2.26 

XM_224344.3 Dok2 docking protein 2 2.25 
XM_345803.3 Ankrd47 KN motif and ankyrin repeat domains 3 2.25 
XM_580254.1 LOC502542 RGD1565497 2.25 
XM_001059693.1 RGD1311960 transmembrane and coiled-coil domain 

family 2 2.25 

NM_001009717.1 Lrg1 leucine-rich alpha-2-glycoprotein 1 2.21 
XM_001059284.1 RGD1560455 similar to RIKEN cDNA A630033H20 

gene 2.21 

XM_579438.1 LOC497816 hypothetical gene supported by 
NM_019371 2.20 

XM_228320.4 Prdm1 PR domain containing 1, with ZNF 
domain 2.19 

NM_001012469.1 Il21r interleukin 21 receptor 2.17 
NM_001009489.1 Oas1k 2 ' -5 ' oligoadenylate synthetase 1K 2.17 
NM_001008518.1 MGC105649 hypothetical LOC302884 2.16 
XM_001073723.1 Kif23 kinesin family member 23 2.16 
XM_001059303.1 RGD1560293 SAM and SH3 domain containing 3 2.15 
XM_234747.2 LOC314521 similar to BWK3 2.15 
XM_214825.3 Nova2 neuro-oncological ventral antigen 2 2.15 
NM_133540.1 Nkg7 natural killer cell group 7 sequence 2.15 
NM_001030043.1 RGD1311300 similar to T cell receptor V delta 6 2.13 
XM_579551.1 LOC497748 hypothetical gene supported by 

NM_053313 2.13 

XM_573856.2 RGD1561145 similar to novel protein 2.12 
XM_574335.1 LOC499056 similar to KRAB-zinc finger protein; 

similar to 3110052M02Rik protein; zinc 
finger protein 53; zinc finger protein 51 

2.11 

XM_001078162.1 Dapp1 dual adaptor of phosphotyrosine and 3-
phosphoinositides 2.11 

XM_001062861.1 Akr1cl1 aldo-keto reductase family 1, member C-
like 1 2.11 

XR_009153.1 RGD1559899 similar to mannose receptor precursor-
like isoform 4 2.10 
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XM_216745.3 Batf basic leucine zipper transcription factor, 
ATF-like 2.10 

XM_220513.4 Cias1 NLR family, pyrin domain containing 3 2.08 
XM_222017.3 Hrbl ArfGAP with FG repeats 2 2.07 
NM_024356.1 Gch1 GTP cyclohydrolase 1 2.07 
XM_001055834.1 LOC680128 similar to phospholipase C-like 2 2.05 
XM_213490.4 RGD1307288 similar to Protein C21orf58 2.05 
XM_234419.4 Rps6kl1 ribosomal protein S6 kinase-like 1 2.05 
XM_578684.1 LOC503160 similar to Ly6-C antigen gene 2.03 
NM_053847.1 Map3k8 mitogen-activated protein kinase kinase 

kinase 8 2.03 

NM_001030025.1 Upp1 uridine phosphorylase 1 2.02 
XM_001058249.1 LOC680665 Fc receptor-like 1 2.01 
XM_001060043.1 Ptk9l protein tyrosine kinase 9-like (A6-related 

protein) 2.01 

XM_001058119.1 Mcpt10 mast cell protease 8-like 3; mast cell 
protease 10 2.00 

XM_221216.4 Cd7 Cd7 molecule 2.00 
NM_017016.1 Hdc histidine decarboxylase 1.98 
XM_213365.3 Centb1 ArfGAP with coiled-coil, ankyrin repeat 

and PH domains 1 1.98 

NM_001012226.1 Stat4 signal transducer and activator of 
transcription 1; signal transducer and 
activator of transcription 4 

1.96 

NM_145683.1 Ptpn7 protein tyrosine phosphatase, non-
receptor type 7 1.96 

XR_008288.1 RGD1565895 kelch-like 35 (Drosophila) 1.95 
XM_573119.2 RGD1560850 phosphoinositide-3-kinase, regulatory 

subunit 6 1.95 

XM_219476.3 Ifitm6 interferon induced transmembrane protein 
6 1.95 

XM_001078275.1 RGD1563164 G-2 and S-phase expressed 1 1.95 
XM_223423.4 Klf3_mapped Kruppel-like factor 3 (basic) 1.94 
XM_001067912.1 LOC684490 similar to methylenetetrahydrofolate 

dehydrogenase (NAD) (EC 
1.5.1.15)/methenyltetrahydrofolate 
cyclohydrolase (EC 3.5.4.9) precursor; 
methylenetetrahydrofolate dehydrogenase 
(NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase 

1.94 

XM_001055140.1 Dscr6 Down syndrome critical region homolog 
6 (human) 1.93 

XM_344042.2 LOC363828 similar to immunoglobulin light chain 
variable region 1.93 

XM_342673.2 LOC362350 similar to T-cell receptor beta-2 chain C 
region 1.92 

XM_228821.3 RGD1561019 G protein-coupled receptor associated 
sorting protein 2 1.92 

XM_001068004.1 Ap1s2 adaptor-related protein complex 1, sigma 
2 subunit 1.92 

XM_343880.2 Itk IL2-inducible T-cell kinase 1.92 
NM_172044.1 Mcpt2 mast cell protease 2 1.91 
NM_053769.2 Dusp1 dual specificity phosphatase 1 1.91 
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NM_199110.1 Mfng MFNG O-fucosylpeptide 3-beta-N-
acetylglucosaminyltransferase 1.90 

NM_001024776.1 Hipk4 homeodomain interacting protein kinase 4 1.90 
XM_230610.4 Hspa12b heat shock protein 12B 1.89 
XM_573745.2 RGD1565031 REST corepressor 2; similar to REST 

corepressor 2 1.89 

XM_001063436.1 RGD1566325 similar to regulator of sex-limitation 
candidate 16 1.89 

XM_001069146.1 RGD1311012 sterile alpha motif domain containing 5 1.89 
XM_576127.1 LOC500748 similar to Rap guanine nucleotide 

exchange factor 5 (Guanine nucleotide 
exchange factor for Rap1) (M-Ras-
regulated Rap GEF) (MR-GEF) 

1.88 

NM_053502.1 Abcg1 ATP-binding cassette, sub-family G 
(WHITE), member 1 1.88 

XR_000311.1 LOC501207 similar to 2810022L02Rik protein 1.88 
XM_224699.3 LOC306324 tetraspanin 14; SH2 domain containing 

4B 1.87 

XM_001071145.1 RGD1311490 TBC1 domain family, member 10C 1.87 
XM_220639.3 Nek8 NIMA (never in mitosis gene a)- related 

kinase 8 1.87 

XM_579446.1 LOC497690 hypothetical gene supported by 
NM_021684 1.87 

XM_214592.4 Stard4 StAR-related lipid transfer (START) 
domain containing 4 1.86 

NM_133290.2 Zfp36 zinc finger protein 36 1.86 
XM_577148.2 RGD1562974 glutamine rich 2 1.86 
XM_578296.1 LOC502797 similar to immunoglobulin kappa-chain 1.86 
NM_001009662.1 Car8 carbonic anhydrase 8 1.86 
XM_224403.4 RGD1304929 similar to chromosome 13 open reading 

frame 18 1.86 

XM_001072042.1 RGD1311475 similar to FLJ00354 protein 1.85 
XM_576264.2 RGD1564335 Golgi-localized protein 1.85 
XM_235398.4 RGD1311559 DENN/MADD domain containing 3 1.85 
XM_341876.3 RGD1564385 feline sarcoma oncogene 1.83 
XM_579397.1 LOC497811 xanthine dehydrogenase 1.83 
XM_580072.1 LOC500488 LOC500488 1.83 
NM_031821.1 Plk2 polo-like kinase 2 (Drosophila) 1.83 
XM_001072174.1 RGD1311132 exocyst complex component 3-like 1.82 
XM_231388.4 RGD1305854 DBF4 homolog (S. cerevisiae) 1.82 
XM_580016.1 LOC499785 RGD1564003 1.82 
NM_001039204.1 LOC290071 similar to RIKEN cDNA A430107P09 

gene 1.81 

NM_053391.1 Hs3st1 heparan sulfate (glucosamine) 3-O-
sulfotransferase 1 1.81 

XM_001076779.1 LOC499828 copine VIII; similar to copine VIII 
isoform 1 1.81 

XM_001078315.1 Def6 differentially expressed in FDCP 6 
homolog (mouse) 1.80 

XM_343579.2 Raph1 Ras association (RalGDS/AF-6) and 
pleckstrin homology domains 1 1.80 

NM_001024316.1 Gata5 GATA binding protein 5 1.80 
NM_001025693.1 Cdca7 cell division cycle associated 7 1.80 
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XM_001071550.1 Arrdc1 arrestin domain containing 1 1.79 
NM_175761.2 Hsp90aa1 similar to heat shock protein 1, alpha; 

heat shock protein 90, alpha (cytosolic), 
class A member 1 

1.79 

XM_001054586.1 RGD1565985 tetratricopeptide repeat domain 9 1.79 
XM_341832.2 LOC361546 similar to mKIAA0841 protein 1.79 
XM_219594.3 LOC293746 membrane-spanning 4-domains, 

subfamily A, member 4C 1.79 

XM_575036.1 LOC499708 similar to 60S ribosomal protein L7a 1.79 
XM_001071725.1 RGD1560608 similar to novel protein 1.78 
XM_217350.4 Mrpl14 mitochondrial ribosomal protein L14 1.78 
NM_001025688.1 Palmd palmdelphin 1.78 
XM_342414.3 Sh2d3c SH2 domain containing 3C 1.78 
XM_001072688.1 Mmp17 matrix metallopeptidase 17 1.78 
NM_012964.2 Hmmr hyaluronan mediated motility receptor 

(RHAMM) 1.78 

NM_001011968.1 Gimap6 GTPase, IMAP family member 6 1.77 
XM_576214.1 LOC500824 FYVE, RhoGEF and PH domain 

containing 6 1.77 

XM_340854.3 RGD1564005 similar to novel protein 1.77 
XM_001068254.1 RGD1561783 StAR-related lipid transfer (START) 

domain containing 5 1.77 

NM_207605.3 Sh2d2a SH2 domain protein 2A 1.77 
NM_001008398.2 Gimap9 GTPase, IMAP family member 9 1.76 
XM_340836.3 RGD1308747 hypothetical protein LOC680565; family 

with sequence similarity 64, member A 1.76 

XM_578149.1 LOC502655 similar to heat shock 90kDa protein 1, 
beta 1.76 

XM_001055379.1 Arhgef3 Rho guanine nucleotide exchange factor 
(GEF) 3 1.76 

XM_001067802.1 Pcdh19 protocadherin 19 1.76 
NM_031085.2 Prkch protein kinase C, eta 1.76 
XM_001065725.1 RGD1565540 cytotoxic T lymphocyte-associated 

protein 2 alpha 1.76 

XM_001079575.1 RGD1310788 similar to RIKEN cDNA 0610039P13 1.76 
XM_233480.3 RGD1309802 defects in morphology 1 homolog (S. 

cerevisiae) 1.75 

XM_001066862.1 Nalp12 NACHT, leucine rich repeat and PYD 
containing 12 1.75 

NM_001007694.1 Ifit3 interferon-induced protein with 
tetratricopeptide repeats 3 1.75 

NM_199491.1 Fut7 fucosyltransferase 7 (alpha (1,3) 
fucosyltransferase) 1.75 

XM_573480.1 LOC498256 immediate early response 5 1.75 
NM_001033963.1 Prkx protein kinase, X-linked 1.75 
NM_001025708.1 Ogfrl1 opioid growth factor receptor-like 1 1.75 
XM_216334.3 Hspcal3 heat shock 90kDa protein 1, alpha-like 3 1.75 
NM_153468.1 Gzma granzyme A 1.74 
XM_216310.4 Casc1 cancer susceptibility candidate 1 1.74 
NM_001014050.1 Fam110a family with sequence similarity 110, 

member A 1.73 

XM_001079908.1 Ifi44 interferon-induced protein 44 1.73 
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XM_227546.3 LOC295340 similar to Acidic ribosomal 
phosphoprotein P0 1.73 

NM_001007684.1 Klf2 Kruppel-like factor 2 (lung) 1.73 
XM_216547.4 Sh3bgrl3 SH3 domain binding glutamic acid-rich 

protein-like 3 1.73 

XM_001081251.1 RGD1561062 family with sequence similarity 117, 
member A 1.72 

XM_001062502.1 RGD1564040 similar to methylenetetrahydrofolate 
dehydrogenase (NAD) (EC 
1.5.1.15)/methenyltetrahydrofolate 
cyclohydrolase (EC 3.5.4.9) precursor; 
methylenetetrahydrofolate dehydrogenase 
(NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase 

1.72 

NM_172021.2 Tbkbp1 TBK1 binding protein 1 1.72 
XM_001061125.1 RGD1564160 solute carrier family 37 (glycerol-3-

phosphate transporter), member 2 1.70 

XM_235547.4 RGD1560783 family with sequence similarity 118, 
member A 1.70 

XM_001053661.1 Stim2 stromal interaction molecule 2 1.69 
XM_213896.2 LOC289084 similar to RIKEN cDNA 1700025G04 

gene 1.69 

XM_001065344.1 RGD1560731 G protein-coupled receptor 146 1.69 
NM_001014236.1 Ssbp4 single stranded DNA binding protein 4 1.69 
XM_001058176.1 RGD1563721 OTU domain containing 7A 1.69 
NM_017119.1 Gzmk granzyme K 1.69 
XM_001068837.1 RGD1563517 C-type lectin domain family 1, member b 1.69 
XM_230560.2 LOC311382 similar to ribosomal protein S2 1.68 
XM_346339.2 LOC367874 similar to 60S ribosomal protein L29 

(P23) 1.68 

XM_343921.3 Sox15 SRY (sex determining region Y)-box 15 1.68 
NM_053857.1 Eif4ebp1 eukaryotic translation initiation factor 4E 

binding protein 1 1.68 

NM_001024299.1 Zfp458 zinc finger protein 458 1.68 
XM_579288.1 Ly49s4 Ly49 stimulatory receptor 4; Ly-49 

stimulatory receptor 3 1.68 

NM_001006998.1 Aldh3b1 aldehyde dehydrogenase 3 family, 
member B1 1.68 

NM_001024361.1 LOC501110 similar to Glutathione S-transferase A1 
(GTH1) (HA subunit 1) (GST-epsilon) 
(GSTA1-1) (GST class-alpha) 

1.68 

XM_213626.4 Pvrl3 poliovirus receptor-related 3 1.67 
XR_008282.1 RGD1565661 similar to RIKEN cDNA 3110001I22 1.67 
NM_053826.2 Pdk1 pyruvate dehydrogenase kinase, isozyme 

1 1.67 

NM_053736.1 Casp11 caspase 4, apoptosis-related cysteine 
peptidase 1.67 

XM_577892.1 LOC502411 similar to Mature alpha chain of major 
histocompatibility complex class I 
antigen 

1.67 

NM_213561.2 Tcf19 transcription factor 19 1.66 
XM_234898.4 Hmha1 histocompatibility (minor) HA-1 1.66 
XM_001053269.1 Asah3l alkaline ceramidase 2 1.65 
NM_206815.1 Rnase6 ribonuclease, RNase A family, 6 1.65 
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XM_575130.1 LOC499794 ribosomal protein L10; similar to 
ribosomal protein L10; ribosomal protein 
L10-like 

1.65 

NM_001007667.1 Sat1 spermidine/spermine N1-acetyl 
transferase 1 1.65 

XM_212694.3 LOC288178 similar to extracellular signal-related 
kinase 1c 1.64 

XM_001061731.1 Galntl2 UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase-like 2 

1.64 

XR_009158.1 RGD1565520 similar to 60S ribosomal protein L7a 1.64 
NM_001007144.1 Adfp adipose differentiation related protein 1.64 
XR_008840.1 RGD1564580 similar to ribosomal protein S10 1.64 
XM_575291.1 LOC366258 similar to 60S ribosomal protein L7a 1.64 
NM_001013880.1 Isyna1 inositol-3-phosphate synthase 1 1.64 
XM_001054287.1 Rnpc1 RNA binding motif protein 38 1.64 
XM_001072744.1 RGD1309543 similar to 2310014H01Rik protein 1.63 
NM_001008876.1 Rsl1d1 ribosomal L1 domain containing 1 1.63 
XM_001061369.1 Luzp5 leucine zipper protein 5 1.63 
XM_234471.4 Rin3 Ras and Rab interactor 3 1.63 
XM_001080759.1 Rasip1 Ras interacting protein 1 1.63 
NM_001037775.1 Chst12 carbohydrate sulfotransferase 12 1.63 
XR_009032.1 RGD1565356 similar to RIKEN cDNA 2210421G13 1.63 
NM_199089.2 Tcirg1 T-cell, immune regulator 1, ATPase, H+ 

transporting, lysosomal V0 subunit A3 1.63 

NM_020103.1 Ly6c Ly6-C antigen 1.62 
XM_574285.2 RGD1566426 nuclear receptor coactivator 7 1.62 
XM_001081011.1 RGD1562705 Src homology 2 domain containing F 1.62 
XM_341842.3 Cebpg CCAAT/enhancer binding protein 

(C/EBP), gamma 1.62 

XM_226529.3 LOC307907 similar to RIKEN cDNA 6430548M08 1.62 
XR_007676.1 RGD1560557 similar to minichromosome maintenance 

protein 8 isoform 1 1.62 

NM_019339.1 Rgs12 regulator of G-protein signaling 12 1.61 
XM_578590.1 LOC503070 similar to immunoglobulin heavy chain 

variable region 1.61 

XM_001064856.1 Thsd1 thrombospondin, type I, domain 
containing 1 1.61 

XM_001060148.1 RGD1306498 zinc finger and SCAN domain containing 
20; zinc finger protein 362 1.61 

XM_342643.3 Mdfic MyoD family inhibitor domain 
containing 1.61 

XM_233741.2 Tyk2 tyrosine kinase 2 1.60 
XM_001062249.1 LOC685088 Src homology 2 domain containing E 1.60 
XR_008462.1 RGD1305138 similar to expressed sequence AW556797 1.60 

Each gene is given a representative GenBank accession number, gene symbol, gene description, 
and fold change (relative to control rats; negative values indicate down regulation). Genes are 
grouped according to the functional annotation cluster analysed using DAVID and arranged by 
fold change.   
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Appendix 3.3: Differentially expressed podocyte related genes 
 

List of podocyte related genes differentially expressed in IL-13 overexpression rat versus 
control rat. 

GenBank 
Accession No. 

Gene 
Symbol Gene Description Fold 

Change 
AMD protein complexes 
NM_017336.1 Ptpro protein tyrosine phosphatase, receptor type, O -2.42 
NM_019357.1 Ezr ezrin -1.82 
BMD protein complexes 
XM_342410.3 Aif1l allograft inflammatory factor 1-like -3.43 
NM_012649.1 Sdc4 syndecan 4 -2.79 
NM_001012032.1 Arhgap24 Rho GTPase activating protein 24 -2.48 
NM_012983.2 Myo1d myosin ID -2.28 
XM_340884.2 Itga3 integrin alpha 3 -2.23 
XM_343483.3 Dag1 dystroglycan 1 -2.07 
XM_001066264.1 Tenc1 tensin like C1 domain-containing phosphatase -2.00 
NM_012904.1 Anxa1 annexin A1 -1.91 
XM_001078155.1 Parvb parvin, beta 1.65 
SD protein complexes 
NM_053621.1 Magi2 membrane associated guanylate kinase, WW 

and PDZ domain containing 2 -3.93 

NM_021695.1 Synpo synaptopodin -3.62 
XM_218486.3 Kirrel2 kin of IRRE like 2 (Drosophila) -3.47 
XM_001059464.1 Cdh11 cadherin 11 -3.16 
NM_022628.1 Nphs1 nephrosis 1 homolog, nephrin -3.06 
NM_130828.2 Nphs2 nephrosis 2 homolog, podocin -3.02 
NM_001012055.1 Cdh16 cadherin 16 -2.73 
XM_001059679.1 Ctnnal1 catenin (cadherin associated protein), alpha-

like 1 -2.42 

NM_031005.2 Actn1 actinin, alpha 1 -2.30 
XM_001059817.1 Nck2 NCK adaptor protein 2 -2.10 
XM_237115.1 Nck2 NCK adaptor protein 2 -1.62 
XM_226213.4 Cdh5 cadherin 5 1.88 
Cell junction 
XM_236385.4 Cgnl1 cingulin-like 1 -2.54 
NM_012528.1 Chrnb1 cholinergic receptor, nicotinic, beta 

polypeptide 1 (muscle) -2.40 

NM_017198.1 Pak1 p21 protein (Cdc42/Rac)-activated kinase 1 -2.19 
NM_012663.2 Vamp2 vesicle-associated membrane protein 2 -1.60 
Tight junction 
NM_031699.1 Cldn1 claudin 1 -3.19 
XM_001080868.1 Mpp5 membrane protein, palmitoylated 5 (MAGUK 

p55 subfamily member 5) -2.33 

NM_031675.2 Actn4 actinin alpha 4 -1.72 
NM_017093.1 Akt2 thymoma viral proto-oncogene 2 -1.68 
XM_342223.3 Prkci protein kinase C, iota -1.61 
Extracellular region 
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NM_001012039.1 Efemp1 epidermal growth factor-containing fibulin-
like extracellular matrix protein 1 -4.76 

XM_001060132.1 C1qtnf7 C1q and tumor necrosis factor related protein 
7 -4.16 

NM_001012225.1 Mgat4a mannoside acetylglucosaminyltransferase 4, 
isoenzyme A -3.28 

XM_001064272.1 Crim1 cysteine rich transmembrane BMP regulator 1 
(chordin like) -2.57 

NM_031609.1 Nbl1 neuroblastoma, suppression of tumorigenicity 
1 -2.54 

NM_053606.1 Mmp23 matrix metallopeptidase 23 -2.43 
NM_019237.1 Pcolce procollagen C-endopeptidase enhancer protein -2.35 
XM_343607.3 Col4a3 collagen, type IV, alpha 3 -1.99 
NM_053629.2 Fstl3 follistatin-like 3 -1.82 
NM_031697.1 St3gal3 ST3 beta-galactoside alpha-2,3-

sialyltransferase 3 -1.79 

NM_031640.1 Pgcp plasma glutamate carboxypeptidase -1.76 
NM_021989.2 Timp2 tissue inhibitor of metalloproteinase 2 -1.71 
NM_001004218.1 Fuca2 fucosidase, alpha-L- 2, plasma -1.61 
Intrinsic to plasma membrane 
NM_053570.1 Cxadr coxsackie virus and adenovirus receptor -2.45 
NM_017206.1 Slc6a6 solute carrier family 6 (neurotransmitter 

transporter, taurine), member 6 -1.95 

NM_183332.1 Myadm myeloid-associated differentiation marker -1.87 
NM_001007002.1 Mxra8 matrix-remodelling associated 8 -1.68 
NM_139110.1 Gpr116 G protein-coupled receptor 116 1.68 
NM_173135.1 Accn3 amiloride-sensitive cation channel 3 1.64 
Cell adhesion 
NM_031753.1 Alcam activated leukocyte cell adhesion molecule -2.93 
NM_019358.1 Pdpn podoplanin -2.72 
NM_019140.2 Ptprd protein tyrosine phosphatase, receptor type, D -2.59 
XM_223583.4 Aebp1 AE binding protein 1 -2.28 
XM_230950.4 Itgav integrin alpha V -1.97 
NM_013016.2 Sirpa signal-regulatory protein alpha -1.88 
NM_001004090.2 Tspan5 tetraspanin 5 -1.67 
Cell morphogenesis 
XM_216679.4 Lamb1 laminin, beta 1 -2.84 
NM_031235.1 Pard3 par-3 (partitioning defective 3) homolog (C. 

elegans) -2.64 

NM_012715.1 Adm adrenomedullin -2.10 
XM_242297.4 Ntng2 netrin G2 -1.93 
NM_024159.1 Dab2 disabled homolog 2 -1.74 
NM_017089.2 Efnb1 ephrin B1 -1.65 
Cytoskeletal component/process 
XM_214338.3 Palld similar to palladin -3.18 
XM_001054365.1 Arhgap28 Rho GTPase activating protein 28 -4.83 
XM_223229.4 Shroom3 shroom family member 3 -3.02 
NM_024127.2 Gadd45a growth arrest and DNA-damage-inducible 45 

alpha -2.67 
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NM_133545.1 Ptpn21 protein tyrosine phosphatase, non-receptor 
type 21 -2.67 

NM_001034075.1 Tpm1 tropomyosin 1, alpha -2.55 
NM_013082.2 Sdc2 syndecan 2 -2.46 
XM_216688.4 Arhgap5 Rho GTPase activating protein 5 -2.43 
XM_237042.4 Dst dystonin -2.39 
XM_220031.4 Myof myoferlin -2.38 
XM_001064622.1 Itgb5 integrin beta 5 -2.37 
XM_238004.3 Tubb2b tubulin, beta 2B -2.32 
NM_001013246.1 Arhgef12 Rho guanine nucleotide exchange factor 

(GEF) 12 -2.21 

XM_235213.3 Srgap1 SLIT-ROBO Rho GTPase activating protein 1 -2.17 
NM_017180.1 Phlda1 pleckstrin homology-like domain, family A, 

member 1 -2.06 

XM_227658.3 Fnbp1l formin binding protein 1-like -2.03 
XM_217035.4 Krt7 keratin 7 -2.01 
NM_001002798.1 Top1mt DNA topoisomerase 1, mitochondrial -2.01 
NM_053326.1 Pdlim5 PDZ and LIM domain 5 -1.91 
NM_012935.2 Cryab crystallin, alpha B -1.90 
XM_341538.2 Kif5b kinesin family member 5B -1.87 
NM_080689.3 Dnm1 dynamin 1 -1.81 
XM_573030.2 Myh11 myosin, heavy chain 11, smooth muscle -1.75 
XM_001061392.1 Myo6 myosin VI -1.72 
XM_343248.3 Mtss1 metastasis suppressor 1 -1.71 
NM_053603.1 Clic5 chloride intracellular channel 5 -1.62 
XM_001059351.1 Hist1h2bc histone cluster 1, H2bc 1.77 
NM_030863.1 Msn moesin 1.76 
XM_001070203.1 Itga5 integrin alpha 5 (fibronectin receptor alpha) 1.72 
NM_053783.1 Ifngr1 interferon gamma receptor 1 1.61 
Ion transport 
NM_001033693.1 Slc31a2 solute carrier family 31, member 2 -2.15 
NM_022269.1 Cd55 CD55 antigen -1.95 
NM_139332.3 Tpcn1 two pore channel 1 -1.81 
Kidney development 
XM_213677.3 Robo2 roundabout homolog 2 -4.77 
NM_031534.1 Wt1 Wilms tumor 1 homolog -4.05 
NM_001032397.1 Tcf21 transcription factor 21 -3.54 
NM_053758.1 Plce1 phospholipase C, epsilon 1 -3.29 
XM_001053727.1 Bmp7 bone morphogenetic protein 7 -2.68 
NM_012774.1 Gpc3 glypican 3 -2.37 
NM_030849.1 Bmpr1a bone morphogenetic protein receptor, type 1A -2.13 
XM_213954.4 Nid1 nidogen 1 -2.12 
NM_173101.1 Myo1e myosin IE -2.03 
NM_053566.1 Ptch1 patched homolog 1 -1.99 
NM_053698.2 Cited2 Cbp/p300-interacting transactivator, with 

Glu/Asp-rich carboxy-terminal domain, 2 -1.68 

XM_001070482.1 Cutl1 similar to CCAAT displacement protein 
isoform b; cut-like homeobox 1 -1.67 
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XM_340765.2 Pkd1 polycystic kidney disease 1 homolog (human) -1.65 
NM_001002827.1 Notch4 Notch homolog 4 (Drosophila) 1.76 
XM_001054314.1 Tek TEK tyrosine kinase, endothelial 1.71 
Neuron development 
XM_001062426.1 Sema3g sema domain, immunoglobulin domain (Ig), 

short basic domain, secreted, (semaphorin) 3G -3.98 

NM_001033757.1 Cdkn1c cyclin-dependent kinase inhibitor 1C (P57) -3.26 
XM_231354.4 Sema3e sema domain, immunoglobulin domain (Ig), 

short basic domain, secreted, (semaphorin) 3E -3.24 

XM_236640.4 Plxnb1 plexin B1 -2.78 
NM_022589.1 Tspan2 tetraspanin 2 -2.74 
NM_017259.1 Btg2 B-cell translocation gene 2, anti-proliferative 2.91 
Protein modification 
XM_001057269.1 Mgat5 mannoside acetylglucosaminyltransferase 5 -3.21 
XM_219805.4 Prkg1 protein kinase, cGMP-dependent, type I -3.02 
XM_001076056.1 Uck2 uridine-cytidine kinase 2 -2.70 
XM_001080770.1 Cpd carboxypeptidase D -2.30 
XM_236687.4 Oxsr1 oxidative-stress responsive 1 -1.89 
XM_227618.4 Cdc14a CDC14 cell division cycle 14 homolog A -1.66 
Regulation of transcription 
NM_012760.1 Plagl1 pleiomorphic adenoma gene-like 1 -3.08 
XR_007660.1 Zfp462 zinc finger protein 462 -2.29 
NM_133560.2 Trak2 trafficking protein, kinesin binding 2 -2.26 
NM_031346.1 Rod1 ROD1 regulator of differentiation 1 -2.04 
NM_053583.1 Zfp423 zinc finger protein 423 -1.72 
NM_021597.1 Eif2c2 eukaryotic translation initiation factor 2C, 2 -1.67 
NM_021836.2 Junb jun B proto-oncogene 3.85 
XM_001076072.1 Lmcd1 LIM and cysteine-rich domains 1 1.96 
NM_021835.3 Jun Jun 1.88 
NM_012855.1 Jak3 Janus kinase 3 1.63 
Signal transduction 
NM_001002829.1 Rasl11a RAS-like, family 11, member A -2.31 
XM_001073244.1 Plxdc2 plexin domain containing 2 -2.31 
NM_080904.2 Arf3 ADP-ribosylation factor 3 -1.92 
NM_032076.2 Ptger4 prostaglandin E receptor 4 (subtype EP4) -1.78 
NM_001009405.1 Arhgap29 Rho GTPase activating protein 29 -1.61 
Vasculature development 
NM_031836.1 Vegfa vascular endothelial growth factor A -3.67 
XM_241275.4 Sema5a sema domain, seven thrombospondin repeats 

(type 1 and type 1-like), transmembrane 
domain (TM) and short cytoplasmic domain, 
(semaphorin) 5A 

-3.01 

XM_001070551.1 Reck reversion-inducing-cysteine-rich protein with 
kazal motifs -2.09 

NM_053356.1 Col1a2 collagen, type I, alpha 2 -2.08 
NM_013151.2 Plat plasminogen activator, tissue -1.66 
Vesicle 
NM_022251.1 Enpep glutamyl aminopeptidase -2.92 
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NM_145081.3 Optn optineurin -2.84 
XM_341428.2 Clcn3 chloride channel 3 -2.14 
XM_342271.3 Lrba LPS-responsive beige-like anchor -1.83 
Motif/Domain 
XM_222763.4 Tdrd5 tudor domain containing 5 -3.84 
XM_001073627.1 Plekha5 pleckstrin homology domain containing, 

family A member 5 -3.79 

XM_001055725.1 Kank1 KN motif and ankyrin repeat domains 1 -2.88 
XM_001069410.1 Hoxc6 homeobox C6 -2.87 
XM_001058167.1 Sgip1 SH3-domain GRB2-like (endophilin) 

interacting protein 1 -2.78 

NM_019316.1 Mafb v-maf musculoaponeurotic fibrosarcoma 
oncogene family, protein B -2.71 

XM_001053668.1 Rc3h2 ring finger and CCCH-type zinc finger 
domains 2 -2.66 

XM_001062112.1 Sh3bgrl2 SH3 domain binding glutamic acid-rich 
protein like 2 -2.44 

NM_001012048.1 Sh2d4a SH2 domain containing 4A -2.28 
NM_001014268.1 Lrrc1 leucine rich repeat containing 1 -2.11 
NM_001011922.1 Nedd9 neural precursor cell expressed, 

developmentally down-regulated gene 9 -1.84 

NM_001007148.1 Btrc beta-transducin repeat containing protein -1.73 
XM_233830.4 Plekhh2 pleckstrin homology domain containing, 

family H (with MyTH4 domain) member 2 -1.65 

XM_001081287.1 Ankrd40 ankyrin repeat domain 40 -1.61 
NM_130413.1 Skap2 src family associated phosphoprotein 2 1.75 
Miscellaneous 
NM_022943.1 Mertk c-mer proto-oncogene tyrosine kinase -3.12 
XM_217192.4 Rora RAR-related orphan receptor alpha -2.70 
XM_236376.4 Fam81a family with sequence similarity 81, member A -2.65 
NM_017031.2 Pde4b phosphodiesterase 4B, cAMP specific -2.49 
NM_133569.1 Angptl2 angiopoietin-like 2 -2.45 
XM_221276.3 Arvcf armadillo repeat gene deleted in velo-cardio-

facial syndrome -2.39 

XM_575387.2 Thsd7a thrombospondin, type I, domain containing 
7A -2.38 

XM_219201.4 Ppfibp2 PTPRF interacting protein, binding protein 2 
(liprin beta 2) -2.37 

XM_001053270.1 Ccpg1 cell cycle progression 1 -2.34 
NM_013220.1 Ankrd1 ankyrin repeat domain 1 -2.32 
XM_226988.4 Fndc3b fibronectin type III domain containing 3B -2.30 
XM_001061817.1 Erlin2 ER lipid raft associated 2 -2.26 
XM_001075785.1 Fam65a family with sequence similarity 65, member A -2.26 
XM_340875.3 Rnft1 ring finger protein, transmembrane 1 -2.04 
XM_340886.3 Nfe2l1 nuclear factor, erythroid derived 2,-like 1 -2.01 
NM_133601.1 Cblb Casitas B-lineage lymphoma b -1.94 
NM_001013882.1 Dctd dCMP deaminase -1.92 
NM_021850.2 Bcl2l2 Bcl2-like 2; poly(A) binding protein, nuclear 

1 -1.89 

NM_001005888.1 Galc galactosylceramidase -1.85 
NM_001014102.1 Spats2l spermatogenesis associated, serine-rich 2-like -1.80 
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NM_001007654.1 Agtrap angiotensin II receptor-associated protein -1.80 
NM_001025627.1 Leprel1 leprecan-like 1 -1.77 
XM_343420.3 Fam63b family with sequence similarity 63, member B -1.75 
XM_230036.4 Ssfa2 sperm specific antigen 2 -1.68 
XM_001070133.1 Nbeal1 neurobeachin like 1 -1.65 
NM_033485.2 Pawr PRKC, apoptosis, WT1, regulator -1.64 
NM_012868.1 Npr3 natriuretic peptide receptor 3 -1.61 
NM_199412.1 Cbara1 calcium binding atopy-related autoantigen 1 -1.61 
NM_031970.1 Hspb1 heat shock protein 1 2.42 
NM_053704.1 Bik BCL2-interacting killer (apoptosis-inducing) 2.15 
NM_173153.2 Gimap4 GTPase, IMAP family member 4 2.02 
NM_012938.1 Ctse cathepsin E 2.01 
XM_001067588.1 Tm6sf1 transmembrane 6 superfamily member 1 1.83 
NM_023962.2 Pdgfd platelet-derived growth factor, D polypeptide 1.80 
NM_057138.2 Cflar CASP8 and FADD-like apoptosis regulator 1.80 
XM_215117.4 Ifitm1 interferon induced transmembrane protein 1 1.74 
XM_001059368.1 Ldb2 LIM domain binding 2 1.74 
NM_001025141.1 Ccnb1ip1 cyclin B1 interacting protein 1 1.67 

Each gene is given a representative GenBank accession number, gene symbol, gene description, 
and fold change (relative to control rats; negative values indicate down regulation). Genes are 
grouped according to the functional annotation cluster analysed using DAVID and arranged by 
fold change. 
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Appendix 3.4: Gene expression index of TLR4, CTLA4 and CD28 in control 

and IL-13 overexpression rats. 

 
Glomerular gene expression index normalized against GAPDH. 

Code Sample TLR-4 CTLA-4 CD28
(3)C1 C1 6.84E-04 3.16E-04 1.62E-02
(3)C2 C2 6.81E-04 1.94E-04 5.18E-03 
(3)C3 C3 7.12E-04 7.16E-05 5.72E-03
(3)C4 C4 5.32E-04 4.79E-05 6.64E-03 
(3)C5 C5 6.97E-04 5.27E-05 4.90E-03 
(3)C6 C6 5.70E-04 2.19E-05 2.98E-03 
(6)C4 C16 9.27E-04 6.47E-05 5.23E-03 
(6)C5 C17 1.04E-03 3.72E-05 3.42E-03 
(3)J1 J1 7.96E-04 3.62E-05 4.07E-03 
(3)J2 J2 1.65E-03 6.50E-05 4.71E-03 
(3)J3 J3 1.23E-03 9.51E-05 4.70E-03 
(3)J4 J4 1.15E-03 4.73E-04 8.58E-03 
(3)J5 J5 9.07E-04 5.87E-05 7.52E-03 
(3)J6 J6 5.57E-04 8.97E-05 6.26E-03 
(4)J1 J7 6.80E-04 2.84E-04 3.08E-02
(4)J2 J8 1.15E-03 1.90E-04 1.38E-02 
(4)J3 J9 1.17E-03 2.02E-04 2.21E-02
(4)J4 J10 1.19E-03 4.66E-04 2.57E-02 
(4)J5 J11 9.04E-04 5.45E-04 1.76E-02 
(4)J6 J12 1.18E-03 1.86E-04 1.40E-02 
(4)J7 J13 1.69E-03 2.64E-04 1.97E-02 
(4)J8 J14 8.26E-04 1.92E-04 6.76E-03 
(4)J9 J15 9.07E-04 2.46E-04 3.86E-03 
(6)J1 J25 1.04E-03 2.91E-04 1.71E-02 
(6)J2 J26 1.12E-03 1.62E-04 1.24E-02 
(6)J6 J30 1.36E-03 9.93E-05 1.17E-02 
(6)J7 J31 1.35E-03 1.78E-04 1.23E-02
(6)J8 J32 1.32E-03 1.83E-04 1.60E-02 
(6)J9 J33 1.26E-03 2.67E-04 1.64E-02
(6)J13 J37 9.89E-04 2.42E-04 1.04E-02 
(6)J16 J40 1.26E-03 1.02E-04 1.10E-02 

Sample starts with C represent control rat; sample starts with J represent IL-13-overexpressed 
rat. 
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Appendix 4.1: Gene expression index of B7-1, IL-13 receptors, vav1, 

dystroglycan, nephrin and podocin in unstimulated and IL-13 stimulated 

podocytes. 
 

Human podocytes gene expression index normalized against GAPDH (Part I).  

Group B7-1 IL13Rα2 IL13Rα1 IL4Rα vav1 dystro nephrin podocin 
1 1.27E-04 8.51E-04 7.96E-03 1.06E-02 6.54E-06 1.55E-02 2.36E-05 3.47E-05 
1 2.00E-04 6.34E-04 1.05E-02 1.56E-02 2.03E-05 1.41E-02 1.30E-05 2.85E-05 
1 5.26E-05 3.03E-04 8.56E-03 9.32E-03 1.42E-05 8.14E-03 2.74E-05 5.77E-05 
1 1.77E-05 8.97E-04 4.14E-03 4.80E-03 2.29E-05 4.84E-03 2.57E-04 7.48E-06 
1 2.30E-05 4.88E-04 3.34E-03 3.47E-03 5.20E-06 1.86E-03 7.20E-06 3.73E-05 
1 9.21E-05 1.35E-03 1.27E-02 1.56E-02 7.69E-06 1.21E-02 6.43E-05 4.35E-05 
1 3.47E-05 7.91E-04 1.09E-02 1.43E-02 1.06E-05 1.25E-02 2.05E-05 2.54E-05 
1 1.89E-04 1.17E-03 1.55E-02 1.42E-02 2.95E-05 2.05E-02 5.26E-04 1.83E-04 
1 1.70E-04 4.52E-04 1.73E-02 1.30E-02 4.77E-06 1.73E-02 1.89E-04 9.14E-05 
1 1.74E-04 1.40E-04 3.95E-03 3.88E-03 1.68E-05 5.59E-03 3.93E-06 2.07E-06
1 1.10E-04 4.57E-04 1.57E-02 8.92E-03 4.31E-06 1.52E-02 2.32E-05 4.26E-05 
1 6.94E-05 4.66E-04 1.26E-02 1.95E-02 2.46E-05 2.85E-02 3.01E-05 3.57E-05
1 3.44E-05 2.99E-04 1.76E-02 1.57E-02 4.76E-06 2.92E-02 8.83E-05 1.57E-05 
2 1.46E-04 1.63E-03 1.03E-02 1.77E-02 9.50E-06 1.58E-02 1.31E-05 3.04E-05
2 2.47E-04 9.45E-04 1.13E-02 1.96E-02 1.83E-05 1.80E-02 1.38E-05 2.44E-05 
2 1.37E-04 6.37E-04 1.43E-02 1.55E-02 1.95E-05 1.25E-02 2.41E-05 1.09E-04
2 4.45E-05 1.08E-03 5.63E-03 1.17E-02 2.61E-05 5.44E-03 1.34E-03 6.94E-06 
2 1.08E-04 4.94E-03 1.45E-02 1.57E-02 1.89E-05 9.82E-03 7.93E-05 3.59E-05 
2 2.77E-04 2.96E-03 1.43E-02 1.90E-02 2.72E-05 1.42E-02 1.01E-04 5.11E-05 
2 6.27E-05 1.55E-03 1.22E-02 1.88E-02 2.00E-05 1.69E-02 1.70E-05 4.08E-05 
2 3.52E-04 1.76E-03 1.53E-02 1.72E-02 3.54E-05 1.71E-02 5.46E-04 1.29E-04 
2 2.52E-04 8.12E-04 2.06E-02 1.57E-02 8.25E-06 2.44E-02 4.39E-04 5.60E-06 
2 1.83E-04 3.98E-04 5.44E-03 7.21E-03 3.06E-05 1.05E-02 6.88E-06 2.18E-06 
2 1.80E-04 5.91E-04 1.68E-02 9.58E-03 9.13E-06 8.93E-03 2.05E-05 3.02E-05 
2 9.01E-05 8.64E-04 1.02E-02 1.14E-02 3.05E-05 2.41E-02 7.69E-05 3.57E-05 
2 1.80E-04 7.14E-04 1.32E-02 1.69E-02 3.39E-05 2.62E-02 1.72E-04 1.98E-05 

Group 1 represents unstimulated podocytes; Group 2 represents IL-13 stimulated podocytes. 
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Human podocytes gene expression index normalized against GAPDH (Part II). 

group TLR4 CTLA4 CD28 
1 1.60E-02 3.51E-03 2.49E-04 
1 2.13E-02 4.38E-04 4.04E-04 
1 1.86E-02 3.13E-04 2.81E-04 
1 1.72E-02 9.54E-04 1.18E-03 
1 2.04E-02 3.78E-03 3.07E-04 
1 1.40E-02 5.39E-03 1.76E-03 
1 2.04E-02 3.13E-04 5.51E-04 
1 9.81E-03 2.18E-04 6.54E-04 
1 1.35E-02 5.02E-04 9.01E-04 
1 1.34E-02 1.54E-03 3.64E-04 
1 1.46E-02 3.95E-04 1.25E-04 
1 1.83E-02 6.39E-04 1.57E-04 
1 ND 5.96E-04 ND 
1 ND 3.28E-04 ND 
2 1.27E-02 5.63E-04 1.91E-04 
2 1.70E-02 2.56E-04 4.66E-04 
2 1.79E-02 4.36E-04 3.40E-04 
2 6.71E-03 7.98E-04 8.73E-04 
2 2.55E-02 4.67E-03 2.27E-04 
2 1.14E-02 5.12E-04 1.10E-03 
2 1.39E-02 1.85E-04 2.28E-04 
2 1.51E-02 3.39E-04 2.65E-04 
2 1.20E-02 4.74E-04 9.68E-04 
2 1.56E-02 1.07E-03 2.51E-04 
2 1.06E-02 5.70E-04 1.57E-04 
2 1.27E-02 3.35E-04 2.33E-04 
2 ND 1.09E-04 ND 
2 ND 1.38E-03 ND 

Group 1 represents unstimulated podocytes; Group 2 represents IL-13 stimulated podocytes. 
ND, not determined 
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Appendix 4.2: Protein expression index of B7-1, IL-13Rα2, vav1, 

phosphorylated vav1 and phosphor-vav1/vav1 in unstimulated and IL-13 

stimulated podocytes. 
 

Human podocytes protein expression index normalized against GAPDH. 

Group B7-1 IL-13Rα2 vav1 p-vav1 p-vav1/vav1 
1 0.36 1.00 1.76 0.56 0.32 
1 0.19 0.58 1.16 1.03 0.89 
1 0.89 0.49 2.13 2.39 1.12 
1 0.11 0.61 0.64 1.64 2.57 
1 1.03 0.41 1.21 3.63 3.00 
1 0.42 0.66 0.63 1.56 2.48 
1 0.60 0.77 1.02 5.57 5.46 
1 1.06 0.49 1.32 1.76 1.33 
1 1.03 0.49 0.31 0.38 1.24 
1 0.59 0.27 0.31 0.38 1.24 
2 0.38 1.22 0.77 0.68 0.88 
2 0.73 0.72 0.75 2.32 3.09 
2 1.11 0.60 1.86 2.44 1.31 
2 0.37 1.09 1.10 4.51 4.10 
2 1.26 0.61 0.47 1.52 3.24 
2 1.43 0.77 0.60 1.79 2.99 
2 1.04 0.98 1.38 10.93 7.92 
2 1.23 1.56 1.12 3.02 2.70 
2 1.23 1.00 0.68 2.01 2.96 
2 0.88 0.58 0.76 4.01 5.27 

Group 1 represents unstimulated podocytes; Group 2 represents IL-13 stimulated podocytes. 
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Appendix 5.1: Cortical F-actin scores in unstimulated and IL-13 stimulated 

podocytes. 

 
Cortical F-actin scores in podocytes. 

Batch Group Total no. 
of cells 

Number of cells Scores sum of 
score 0 1 2 3 0 1 2 3 

H30 1 3 0 2 1 0 0 2 2 0 4 
H30 1 10 0 6 2 2 0 6 4 6 16 
H30 1 12 0 7 5 0 0 7 10 0 17 
H30 1 6 1 5 0 0 0 5 0 0 5 
H30 1 1 0 1 0 0 0 1 0 0 1 
H30 Total 32 1 21 8 2 0 21 16 6 43 
H29 1 7 1 6 0 0 0 6 0 0 6 
H29 1 8 0 2 4 2 0 2 8 6 16 
H29 1 1 0 1 0 0 0 1 0 0 1 
H29 Total 16 1 9 4 2 0 9 8 6 23 
H23 1 3 0 2 1 0 0 2 2 0 4 
H23 1 2 1 0 0 1 0 0 0 3 3 
H23 1 6 0 1 2 3 0 1 4 9 14 
H23 1 5 0 0 4 1 0 0 8 3 11 
H23 1 3 0 0 2 1 0 0 4 3 7 
H23 1 3 0 1 0 2 0 1 0 6 7 
H23 1 2 0 1 0 1 0 1 0 3 4 
H23 1 2 0 0 2 0 0 0 4 0 4 
H23 1 3 0 2 1 0 0 2 2 0 4 
H23 Total 29 1 7 12 9 0 7 24 27 58 
H22 1 5 0 4 1 0 0 4 2 0 6 
H22 1 4 0 3 0 1 0 3 0 3 6 
H22 1 1 0 1 0 0 0 1 0 0 1 
H22 1 3 0 0 3 0 0 0 6 0 6 
H22 1 2 0 1 1 0 0 1 2 0 3 
H22 1 4 0 1 2 1 0 1 4 3 8 
H22 Total 19 0 10 7 2 0 10 14 6 30 
H30 2 2 0 1 0 1 0 1 0 3 4 
H30 2 1 0 0 0 1 0 0 0 3 3 
H30 2 2 0 0 2 0 0 0 4 0 4 
H30 2 5 0 1 0 4 0 1 0 12 13 
H30 2 3 0 0 2 1 0 0 4 3 7 
H30 2 7 0 2 2 3 0 2 4 9 15 
H30 2 9 0 1 3 5 0 1 6 15 22 
H30 2 3 0 1 0 2 0 1 0 6 7 
H30 2 12 0 1 8 3 0 1 16 9 26 
H30 Total 44 0 7 17 20 0 7 34 60 101 
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H29 2 1 0 0 0 1 0 0 0 3 3 
H29 2 1 0 0 0 1 0 0 0 3 3 
H29 2 8 0 6 2 0 0 6 4 0 10 
H29 2 8 0 0 3 5 0 0 6 15 21 
H29 Total 18 0 6 5 7 0 6 10 21 37 
H23 2 4 0 0 1 3 0 0 2 9 11 
H23 2 6 0 1 0 5 0 1 0 15 16 
H23 2 6 0 0 1 5 0 0 2 15 17 
H23 2 1 0 0 0 1 0 0 0 3 3 
H23 2 3 0 0 0 3 0 0 0 9 9 
H23 2 2 0 0 0 2 0 0 0 6 6 
H23 2 3 0 0 2 1 0 0 4 3 7 
H23 2 3 0 0 3 0 0 0 6 0 6 
H23 2 1 0 0 0 1 0 0 0 3 3 
H23 Total 29 0 1 7 21 0 1 14 63 78 
H22 2 4 0 0 4 0 0 0 8 0 8 
H22 2 3 0 0 2 1 0 0 4 3 7 
H22 2 7 0 1 6 0 0 1 12 0 13 
H22 2 1 0 0 0 1 0 0 0 3 3 
H22 2 1 0 0 1 0 0 0 2 0 2 
H22 2 6 0 0 0 6 0 0 0 18 18 
H22 2 10 0 1 9 0 0 1 18 0 19 
H22 Total 32 0 2 22 8 0 2 44 24 70 

Group 1 represents unstimulated podocytes; Group 2 represents IL-13 stimulated podocytes. 
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Appendix 5.2: RhoA and Rac1 activities in unstimulated and IL-13 

stimulated podocytes. 
 

Normalized RhoA and Rac1 activities in podocytes. 

 Normalized RhoA Normalized Rac1 
Group 5 mins 10 mins 20 mins 30 mins 5 mins 10 mins 20 mins 30 mins 

1 3.99 3.76 0.98 1.63 0.31 0.88 0.72 0.59 
1 3.58 3.99 1.66 1.44 1.37 1.08 1.18 1.15 
1 4.23 4.53 1.81 2.57 0.72 0.58 0.74 0.53 
1 1.23 4.02 1.14 1.34 2.43 2.16 0.85 2.31 
1 3.81 1.99 2.41 1.88 1.22 1.08 1.17 1.15 
1 4.79 5.50 3.61 3.06 0.28 0.32 0.78 0.71 
1 1.94 2.71 2.32 3.23 0.16 0.30 1.51 1.11 
1 0.97 1.36 2.03 1.62 0.26 0.29 1.00   
2 3.27 4.27 1.35 1.14 0.38 0.64 1.28 0.69 
2 3.35 2.92 1.20 1.39 1.53 1.51 2.05 1.56 
2 4.28 3.96 2.13 2.09 0.64 0.63 0.98 0.64 
2 1.33 3.33 0.85 1.09 3.22 4.32 1.06 2.28 
2 2.84 3.42 1.46 2.15 2.76 2.41 1.51 1.14 
2 4.98 6.23 3.46 3.52 0.23 0.24 1.57 0.61 
2 2.23 1.80 2.35 1.92 0.18 0.18 1.66 0.87 
2 1.26 1.32 1.37 1.06 0.29 0.29 2.51   

Group 1 represents unstimulated podocytes; Group 2 represents IL-13 stimulated podocytes. 
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Appendix 5.3: Gene expression index of B7-1, IL-13 receptors, vav1, 

dystroglycan, nephrin and podocin in podocyte siRNA experiments. 
 

Human podocytes gene expression index normalized against GAPDH.  

Group B7-1 IL-13Rα2 IL-13Rα1 IL-4Rα dystro nephrin podocin vav1 
3 2.24E-04 8.21E-04 1.47E-02 1.19E-02 1.79E-02 2.63E-05 3.21E-05 1.62E-05 
3 6.03E-05 1.10E-03 3.19E-02 4.15E-02 6.17E-02 4.62E-05 1.18E-04 3.86E-05 
3 7.74E-05 7.45E-04 1.28E-02 1.73E-02 2.11E-02 3.67E-05 2.29E-05 1.57E-04 
3 1.83E-04 6.44E-04 2.01E-02 2.87E-02 4.37E-02 1.16E-04 6.88E-05 6.72E-05 
3 8.86E-05 2.24E-03 1.59E-02 2.50E-02 3.12E-02 2.28E-04 2.48E-05 5.66E-05 
3 2.12E-04 8.76E-04 2.21E-02 2.71E-02 3.76E-02 2.67E-04 6.81E-05 4.57E-05 
3 1.77E-05 1.92E-03 1.31E-02 2.40E-02 2.95E-02 3.97E-05 1.42E-05 2.78E-05 
3 7.28E-05 1.50E-03 1.68E-02 2.58E-02 3.46E-02 5.27E-05 6.79E-05 8.73E-05 
3 2.16E-04 1.71E-03 1.59E-02 3.33E-02 3.62E-02 8.36E-05 1.27E-05 1.40E-04 
4 3.83E-04 2.44E-02 2.00E-02 5.23E-02 2.83E-02 2.53E-03 3.45E-05 6.65E-04 
4 1.19E-03 2.77E-03 2.06E-02 3.37E-02 2.09E-02 5.91E-05 5.72E-05 1.96E-04 
4 1.25E-04 3.22E-03 3.30E-02 3.53E-02 3.57E-02 6.42E-05 7.69E-05 4.71E-04 
4 2.05E-04 6.50E-03 2.10E-02 2.96E-02 4.05E-02 5.20E-04 4.86E-05 3.16E-04 
4 2.91E-04 2.68E-03 1.67E-02 2.83E-02 3.67E-02 8.14E-05 1.84E-05 2.00E-04 
4 1.15E-04 8.13E-03 3.27E-02 4.85E-02 3.58E-02 2.31E-04 5.76E-05 1.16E-04 
4 1.76E-04 2.11E-03 2.64E-02 2.95E-02 2.97E-02 2.92E-04 2.40E-05 2.14E-04 
4 1.08E-03 2.60E-03 1.61E-02 3.05E-02 3.23E-02 3.27E-05 6.44E-05 3.30E-05 
4 3.59E-04 3.29E-03 1.58E-02 3.04E-02 3.60E-02 1.23E-04 2.46E-05 2.39E-05 
5 5.71E-04 1.18E-02 3.34E-02 8.24E-02 3.86E-02 5.39E-04 3.86E-05 1.30E-05 
5 6.85E-04 1.05E-03 2.07E-02 3.60E-02 2.47E-02 2.17E-05 8.07E-05 0.00E+00 
5 2.68E-04 1.33E-03 1.88E-02 1.02E-02 1.17E-02 4.63E-05 7.93E-05 3.46E-05 
5 1.32E-04 6.25E-03 2.80E-02 3.22E-02 5.37E-02 4.88E-04 8.09E-05 3.68E-06 
5 5.20E-04 1.46E-03 1.71E-02 2.62E-02 4.17E-02 1.71E-04 2.54E-05 0.00E+00 
5 2.64E-04 5.09E-03 3.41E-02 3.15E-02 4.73E-02 2.75E-03 4.04E-05 2.70E-06 
5 9.73E-05 2.27E-03 1.28E-02 3.24E-02 3.57E-02 3.72E-05 3.05E-05 3.78E-05 
5 1.38E-04 1.24E-03 1.90E-02 3.24E-02 3.99E-02 3.66E-05 6.90E-05 6.22E-06 
5 3.12E-04 2.46E-03 2.13E-02 3.30E-02 4.28E-02 6.06E-05 1.25E-05 2.70E-06 

Group 3 represents podocytes transfected with control siRNA (negative control); Group 4 
represents IL-13 stimulated podocytes with control siRNA transfection; Group 5 represents IL-
13 stimulated podocytes with vav1 siRNA transfection. 
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Appendix 5.4: Protein expression index of B7-1, IL-13 receptors, vav1, 

dystroglycan, nephrin and podocin in podocyte siRNA experiments. 
 

Human podocytes protein expression index normalized against GAPDH. 

Group B7-1 IL-13Rα2 vav1 p-vav1 p-vav1/vav1 
3 0.34 0.82 1.34 1.69 1.26 
3 0.71 0.64 1.78 0.27 0.15 
3 0.11 0.37 1.04 1.07 1.03 
3 0.59 0.45 1.68 0.97 0.58 
3 0.63 0.91 1.7 1.96 1.15 
3 0.56 0.67 1.82 1.20 0.66 
3 0.56 0.72 1.82 1.31 0.72 
4 0.79 1.94 0.95 1.56 1.64 
4 0.91 1.51 1.61 1.13 0.7 
4 0.59 0.8 2.62 3.69 1.41 
4 0.66 1.01 0.99 0.78 0.79 
4 0.62 2.05 0.41 0.73 1.77 
4 1.61 1.63 0.42 0.63 1.5 
4 1.28 0.81 0.23 0.34 1.46 
5 1.25 1.9 0.74 0.57 0.77 
5 0.69 0.95 1.15 0.63 0.55 
5 0.95 1.81 1.08 0.60 0.56 
5 3.89 1.14 1.04 0.36 0.35 
5 1.13 0.68 1.07 0.58 0.54 
5 0.63 1.38 0.82 0.16 0.2 
5 0.55 0.77 0.49 0.45 0.92 

Group 3 represents podocytes transfected with control siRNA (negative control); Group 4 
represents IL-13 stimulated podocytes with control siRNA transfection; Group 5 represents IL-
13 stimulated podocytes with vav1 siRNA transfection. 
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Appendix 5.5: Cortical F-actin scores in podocyte siRNA experiments. 

 
Cortical F-actin scores in podocytes. 

Batch Group Total no. 
of cells 

Number of cells Scores sum of 
score 0 1 2 3 0 1 2 3 

H30 3 6 0 4 2 0 0 4 4 0 8 
H30 3 3 0 2 1 0 0 2 2 0 4 
H30 3 1 0 1 0 0 0 1 0 0 1 
H30 3 19 0 9 10 0 0 9 20 0 29 
H30 3 21 0 7 13 1 0 7 26 3 36 
H30 3 16 0 9 4 3 0 9 8 9 26 
H30 3 2 0 2 0 0 0 2 0 0 2 
H30 3 5 0 4 0 1 0 4 0 3 7 
H30 3 4 0 2 2 0 0 2 4 0 6 
H30 3 6 0 3 3 0 0 3 6 0 9 
H30 3 1 0 1 0 0 0 1 0 0 1 
H30 Total 84 0 44 35 5 0 44 70 15 129 
H29 3 4 0 3 1 0 0 3 2 0 5 
H29 3 5 0 3 2 0 0 3 4 0 7 
H29 3 14 0 4 7 3 0 4 14 9 27 
H29 3 9 0 5 3 1 0 5 6 3 14 
H29 3 1 0 1 0 0 0 1 0 0 1 
H29 3 19 0 11 7 1 0 11 14 3 28 
H29 3 1 1 0 0 0 0 0 0 0 0 
H29 3 14 0 9 3 2 0 9 6 6 21 
H29 3 1 1 0 0 0 0 0 0 0 0 
H29 Total 68 2 36 23 7 0 36 46 21 103 
H31 3 3 0 3 0 0 0 3 0 0 3 
H31 3 6 0 4 2 0 0 4 4 0 8 
H31 3 13 0 10 3 0 0 10 6 0 16 
H31 3 11 0 7 4 0 0 7 8 0 15 
H31 3 6 0 4 2 0 0 4 4 0 8 
H31 3 12 0 5 7 0 0 5 14 0 19 
H31 3 9 0 5 4 0 0 5 8 0 13 
H31 3 4 0 3 1 0 0 3 2 0 5 
H31 3 6 0 4 2 0 0 4 4 0 8 
H31 3 6 0 2 4 0 0 2 8 0 10 
H31 Total 76 0 47 29 0 0 47 58 0 105 
H30 4 2 0 0 0 2 0 0 0 6 6 
H30 4 2 0 0 0 2 0 0 0 6 6 
H30 4 5 0 0 3 2 0 0 6 6 12 
H30 4 11 0 4 6 1 0 4 12 3 19 
H30 4 13 0 0 12 1 0 0 24 3 27 
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H30 4 11 0 4 4 3 0 4 8 9 21 
H30 4 1 0 0 1 0 0 0 2 0 2 
H30 4 1 0 0 0 1 0 0 0 3 3 
H30 4 8 0 0 3 5 0 0 6 15 21 
H30 4 12 0 0 3 9 0 0 6 27 33 
H30 4 7 0 1 2 4 0 1 4 12 17 
H30 Total 73 0 9 34 30 0 9 68 90 167 
H29 4 6 0 1 0 5 0 1 0 15 16 
H29 4 1 0 0 0 1 0 0 0 3 3 
H29 4 11 0 1 1 9 0 1 2 27 30 
H29 4 11 0 1 8 2 0 1 16 6 23 
H29 4 4 0 0 1 3 0 0 2 9 11 
H29 4 22 0 3 5 14 0 3 10 42 55 
H29 4 3 0 0 0 3 0 0 0 9 9 
H29 4 32 0 10 10 12 0 10 20 36 66 
H29 4 1 1 0 0 0 0 0 0 0 0 
H29 Total 91 1 16 25 49 0 16 50 147 213 
H31 4 5 0 0 0 5 0 0 0 15 15 
H31 4 3 0 0 0 3 0 0 0 9 9 
H31 4 9 0 0 2 7 0 0 4 21 25 
H31 4 4 0 1 2 1 0 1 4 3 8 
H31 4 4 0 0 3 1 0 0 6 3 9 
H31 4 6 0 0 3 3 0 0 6 9 15 
H31 Total 31 0 1 10 20 0 1 20 60 81 
H30 5 11 0 6 4 1 0 6 8 3 17 
H30 5 15 0 10 5 0 0 10 10 0 20 
H30 5 18 0 10 8 0 0 10 16 0 26 
H30 5 11 0 8 2 1 0 8 4 3 15 
H30 5 1 0 1 0 0 0 1 0 0 1 
H30 Total 56 0 35 19 2 0 35 38 6 79 
H29 5 5 0 3 1 1 0 3 2 3 8 
H29 5 1 0 0 0 1 0 0 0 3 3 
H29 5 6 0 2 2 2 0 2 4 6 12 
H29 5 5 0 3 2 0 0 3 4 0 7 
H29 5 5 0 1 1 3 0 1 2 9 12 
H29 5 4 1 2 1 0 0 2 2 0 4 
H29 5 1 0 0 1 0 0 0 2 0 2 
H29 5 5 1 2 0 2 0 2 0 6 8 
H29 Total 32 2 13 8 9 0 13 16 27 56 
H31 5 7 0 1 2 4 0 1 4 12 17 
H31 5 1 0 1 0 0 0 1 0 0 1 
H31 5 3 0 1 0 2 0 1 0 6 7 
H31 5 11 0 5 6 0 0 5 12 0 17 
H31 5 19 0 14 5 0 0 14 10 0 24 
H31 5 13 0 8 4 1 0 8 8 3 19 
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H31 5 10 0 6 4 0 0 6 8 0 14 
H31 5 6 0 2 4 0 0 2 8 0 10 
H31 Total 70 0 38 25 7 0 38 50 21 109 

Group 3 represents podocytes transfected with control siRNA (negative control); Group 4 
represents IL-13 stimulated podocytes with control siRNA transfection; Group 5 represents IL-
13 stimulated podocytes with vav1 siRNA transfection.  
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Appendix 5.6: RhoA and Rac1 activities in podocyte siRNA experiments. 

 
Normalized RhoA and Rac1 activities in podocytes. 

Group RhoA Rac1 
3 3.23 0.97 
3 2.63 0.86 
3 2.97 0.96 
3 1.23 0.73 
3 0.29 0.31 
3 0.08 0.42 
3 0.82 0.74 
4 3.86 0.87 
4 3.46 1.6 
4 4.12 1.8 
4 1.23 0.92 
4 1.03 0.71 
4 1.64 1.03 
4 1.81 1.25 
5 2.88 0.71 
5 1.68 0.47 
5 2.77 1.02 
5 0.77 1.04 
5 2.1 0.19 
5 1.33 0.35 
5 1.17 0.69 

Group 3 represents podocytes transfected with control siRNA (negative control); Group 4 
represents IL-13 stimulated podocytes with control siRNA transfection; Group 5 represents IL-
13 stimulated podocytes with vav1 siRNA transfection. 
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