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SUMMARY 

Neuroinflammation is implicated in the pathogenesis of various 

neurological disorders. Astrocytes not only actively maintain brain homeostasis 

but also capable of responding to various brain insults. Upon stimulation, 

activated astrocytes secrete various proinflammatory mediators like cytokines 

and chemokines that initiate and maintain inflammatory responses such as 

leukocyte infiltration. With increasing evidence of astrocytes’ role in mediating 

inflammation in brain injury and neurodegenerative disease, attenuating 

inflammatory responses elicited by astrocytes might potentially alleviate 

disease outcomes.  

Andrographolide is the main constituent isolated from Andrographis 

paniculata, a native plant in Southeast Asian countries with anti-inflammatory 

medicinal uses and is known to be brain-penetrant. Thus, I would like to 

investigate its potential in attenuating inflammatory responses elicited by 

astrocytes.  

IL-1β and TNF-α are important regulators and common cytokines 

released during inflammation. Both cytokines induced NF-κB activation and 

CCL-5 chemokine expression in astrocyte cultures. Andrographolide was 

shown to inhibit p65 and IκBα phosphorylation and CCL-5 secretion with better 

efficacy and lesser toxicity compared to artesunate and plumbagin when tested 

in astrocyte. Moreover, andrographolide downregulated expression of GFAP, a 

marker for astrogliosis. 

 Lipopolysaccharide (LPS), a constituent of the bacterial cell wall, 

effectively elicits inflammatory responses during bacterial infections. LPS-

induced activation of NF-κB and JNK as well as mRNA expression of various 

cytokines/chemokines including IL-1β, TNF-α, CCL-2, CCL-5, CXCL-1, 

CXCL-2, CXCL-5, CXCL-10, and CX3CL-1 was attenuated by 

andrographolide. Treatment with TPCK (NF-κB inhibitor) and SP600126 (JNK 

inhibitor) prevented elevation of cytokines/chemokines. Thus, andrographolide 

was proposed to attenuate cytokines/chemokines expression through NF-κB 

and JNK pathways. Moreover, oral administration of andrographolide in animal 

model of bacterial infection-related neuroinflammation (LPS injection) 

attenuated various chemokines (CCL-2, CCL-5, CXCL-1, CXCL-2, CXCL-9) 
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in mice brains. This implies that peripherally administered andrographolide 

could exert anti-neuroinflammatory effects.  

 Andrographolide mediates antioxidantive effects by activating Nuclear 

factor (erythroid-derived 2)-like 2 (Nrf2); a transcription factor that regulates 

expression of various antioxidant protein including heme-oxygenase 1 (HO-1) 

and NAD(P)H dehydrogenase quinone 1 (Nqo-1). In primary astrocytes, 

andrographolide induced mRNA expression of Nrf2, HO-1, and Nqo-1. Instead 

of inducing de novo synthesis of Nrf2, andrographolide enhanced Nrf2 protein 

stability. Andrographolide activated ERK and p38 also play a role in regulating 

Nrf2. 

 In conclusion, andrographolide effectively attenuated activation of NF-

κB and JNK signaling pathways and expression of various 

cytokines/chemokines in astrocytes in response to proinflammatory cytokines 

and bacterial components. Its antioxidant properties were mediated by 

activation of Nrf2 signaling through Nrf2 protein stabilization and ERK/p38 

activation. Moreover, its ability to cross BBB and mitigate inflammatory 

responses in the brain suggest its potential use as an anti-neuroinflammation 

therapeutic. 
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CHAPTER 1: INTRODUCTION
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1.1 The immune-privileged CNS 

The central nervous system (CNS) has previously been regarded as an 

“immune-privileged” organ which is immunologically inert. This belief is 

largely due to lack to of resident antigen-presenting dendritic cells and draining 

lymphatic system in CNS, immune-incompetence of CNS immune cells, and 

separation of the CNS from peripheral immune system by blood brain barrier 

(BBB) (Carson et al., 2006a; Ransohoff et al., 2012). The BBB forms a highly 

selective permeability barrier separating the brain extracellular fluid from the 

peripheral circulation that prevents bacterial infections and limits 

neuroinflammation by restraining peripheral innate and adaptive immune cells, 

presumably to protect the vulnerable non-regenerating neurons (Ransohoff et 

al., 2012). Therefore, one might easily have construed that CNS is immune-

privileged but this view has recently been vigorously revised. 

1.2 Mediators of neuroinflammation 

 In healthy individuals, low or near undetectable levels of inflammatory 

factors are found in the CNS. However, immune responses could be activated 

by traumatic brain injury, stroke, autoimmune disease, peripheral infection, and 

neurodegenerative diseases (Rivest, 2009; Wohleb et al., 2013). In comparison 

to the periphery, the CNS has more conservative immune response with modest 

recruitment of leukocytes as a strategy to protect neurons that largely do not 

regenerate (Jensen et al., 2013; Lucas et al., 2006). Mediators of 

neuroinflammation are divided into two components; the cellular and molecular 

components. Although many cells in the CNS including neurons, 

oligodendrocytes, and endothelia are capable of responding to inflammatory 
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stimuli, microglia and astrocytes are the main cellular components that mediate 

neuroinflammation.  

1.2.1 Microglia 

1.2.1.1 Origin and physiological functions 

Microglia are the resident macrophage in the CNS and contribute to 

approximately 12% of the cell population in the brain (Block et al., 2007). 

During CNS development, microglia play a pivotal role in synaptic clearance 

and reorganization of neuronal connections by actively engulfing synaptic 

materials and removing apoptotic neurons (Napoli et al., 2009; Paolicelli et al., 

2011). Under normal physiological condition, microglia constantly survey for 

pathogens or cellular damage in the brain parenchyma. Hence, they are usually 

the first to detect brain injury and the first line of defense against invading 

pathogens (Kraft et al., 2011).  

1.2.1.2 Microglia activation 

Microglia express various pattern-recognition receptors (PRRs) such as 

toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-

like receptor (NLRs), mannose receptors, and scavenger receptors that 

recognize both exogenous pathogen-associated molecular pattern (PAMP) and 

endogenous altered molecules damage-associated molecular pattern (DAMP).  

(Husemann et al., 2002; Shastri et al., 2013). Moreover, they also recognize and 

respond to cytokines and complement proteins (Crehan et al., 2012; Doens et 

al., 2014) (Table 1.1). Microglia are readily activated when encounter with 

inflammatory stimuli or cellular debris. TLR agonists, tumour necrosis factor 

(TNF), and interferon (IFN)-γ induce classically activated phenotype (M1 
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state), whereby microglia response by upregulating expression of antigen 

presenting molecules; a response tending towards pathogen clearance (Cherry 

et al., 2014; Saijo et al., 2011). On the other hand, alternatively activated 

phenotype (M2 state) is induced by cytokines like IL-4 and IL-13 which 

promotes wound healing. (Cherry et al., 2014; Lyman et al., 2014; Saijo et al., 

2011). The M1 state is often associated with tissue destruction and up-regulation 

of inflammatory responses by generating cytokines, chemokines and reactive 

oxygen species (ROS) (Gordon et al., 2010). Microglia express TLR 1-9 and 

TLR4 is typically used to induce M1 state (Shastri et al., 2013). Recognition of 

lipopolysaccharide (LPS), an endotoxin secreted by Gram-negative bacteria by 

TLR4 receptor will activate NF-κB and multiple MAPK signaling pathway 

(Figure 1.1). This results in activation of transcription factors that upregulates 

expression of genes involved in mediating inflammatory responses (Guha et al., 

2001; Kaminska, 2005).  

1.2.1.3 Implication of microglia activation in neurological diseases 

Though activation of microglial is essential for pathogen elimination 

and neuronal survival, uncontrolled activation often leads to detrimental or 

neurotoxic effects. Microglial activation is implicated in Alzheimer’s disease 

progression and cognitive decline (Xiang et al., 2006). Reactive microglia are 

found clustered around amyloid plaque, a hallmark of Alzheimer’s disease in 

human post-mortem brain (Mcgeer et al., 1987). Several lines of evidence 

showed that microglia could phagocytose amyloid deposits but the process is 

slow and inefficient (Frautschy et al., 1992; Weldon et al., 1998). Qin et al. 

showed that low concentration of Aβ induced significant neuronal death in 

neuron-microglia co-culture but not in neuron-enriched culture. This clearly 
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indicates that microglia play a role in potentiating neurotoxicity of Aβ (Qin et 

al., 2002). Microglia also induce neurotoxicity through production of ROS by 

upregulating expression of inducible nitric oxide synthase (iNOS) (Qin et al., 

2002; Weldon et al., 1998). Moreover, the importance of reactive microglia in 

mediating neurological disorder is observed in amyotrophic lateral sclerosis 

(ALS) mouse model with dominant mutation of superoxide dismutase (SOD). 

Selective deletion of mutant SOD gene in microglia considerably extend the 

lifespan of the animal, indicating a role of microglia in mediating disease 

progression (Boillee et al., 2006). In Parkinson’s disease, matrix 

metalloproteinase 3 (MMP3) and α-synuclein are released from the 

degenerating dopaminergic neurons. MMPs proteinase stimulates microglia 

resulting in NF-κB activation and secretion of proinflammatory TNF-α (Kim et 

al., 2005). Attempts to clear α-synuclein by phagocytosis leads to activation of 

microglia which subsequently enhance NADPH oxidase (NOX) activity and 

exacerbate neurodegeneration (Zhang et al., 2005b). Hence, it is crucial that 

microglia activation is remained tightly regulated as they could release various 

pro-inflammatory mediators and induce oxidative stress that potentially cause 

neuronal damages and aggravate neurological disease conditions.   

Receptor Descriptions and Functions 

TLR - Membrane bound PPR that recognise PAMPs (bacteria, 

virus, fungi, and parasites) and DAMPs (DNA, ATP, uric acid 

and heat shock proteins) (Shastri et al., 2013) 

-Twelve TLR has been identified in mammals. Other than 

TLR3, all TLRs activate the MyD88-dependent signaling 

pathways which leads to NF-κB and MAPK activation (Guha 

et al., 2001).   

- The most well studied TLR 4 is known to be activated by 

LPS and amyloid beta. This leads to IL-1β, TNF-α, IL-6 and 

NO production (Shastri et al., 2013). 

NLR - Cytoplasmic PPR that detects PAMPs and DAMPs 
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- Consist of 4 subfamilies: NLRA (A for acidic transactivating 

domain), NLRB (B for BIR domain), NLRC (C for CARD 

domain), NLRP (P for pyrin domain) (Rosenstiel et al., 2009) 

- Binding to agonist activates NF-κB and MAPKs signaling 

pathways and expression cytokines/chemokines (Shastri et 

al., 2013). 

- NLR could form a multiprotein complexes termed 

inflammasome that activates caspase-1 which subsequently 

induce production of IL-1β and IL-18 (Ransohoff et al., 

2012).  

- Phagocytosis of Aβ by microglia activates NLRP3 

inflammasome and causes inflammation and tissue damage in 

Alzheimer’s disease (Halle et al., 2008).  

Scavenger  - Transmembrane glycoprotein PPR that binds LPS, 

lipoteichoic acids, Escherichia coli, Streptococcus 

pneumonia, apoptotic cells, and modified lipoprotein (Shastri 

et al., 2013). 

- Family of scavenger receptors (SR) includes: SR-A, SR-B, 

and receptor for advanced glycation end products (RAGE) 

(Doens et al., 2014). 

- Activation of SR results in ligand endocytosis and 

production of superoxide (Block et al., 2007).  

- SR-A promotes cerebral ischemic injury by pivoting 

microglia polarization to M1 state. SR-A deficient mice 

displayed reduced infarct size as well as IL-1β and TNF-α 

expression (Xu et al., 2012)  

Complement - Membrane bound receptors 

- Complement receptor types: CR1 binds C3b, C4b, and C1q 

whereas CR2, CR3 and CR4 are relatively specific for iC3b 

(Crehan et al., 2012) 

-  Activities initiated by complement receptors activation 

includes: chemotaxis, phagocytosis, leukocyte migration, 

ROS and NO production (Shastri et al., 2013). 

- CR3 is implicated in Aβ activation of microglia. Use of CR3 

antagonist  attenuates proinflammatory mediators and free 

radicals production from microglia (Doens et al., 2014). 

Cytokine - Receptors that bind to cytokines and chemokines 

- Classified based on structures and activities: Type I cytokine 

receptors, Type II cytokine receptors, chemokine receptor, 

TNF receptor superfamily, TGFβ receptors, Immunoglobulin 

superfamily (Foxwell et al., 1992).  

- Activation of IL-1R and TNFR usually induce 

proinflammatory responses while IL-10R and TGFR 

generally elicit anti-inflammatory responses. CCR5 and 

CXCR4 activate chemotaxis (Shastri et al., 2013).   

- CX3CR1 is only expressed by microglia in the CNS. It was 

found to play a role in regulating amyloid deposition and tau 

pathologies (Bhaskar et al., 2010; Lee et al., 2010; Nash et 

al., 2013).   

Table 1.1 Immune receptors expressed in microglia  
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Figure 1.1 Binding of LPS to TLR4 triggers NF-κB and MAPK signaling. 
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1.2.2 Astrocyte 

1.2.2.1 Origin and physiological functions 

Similar to microglia, astrocyte is a type of neuroglia that is found in all 

regions of the CNS. They are the most abundant cell type in the CNS, 

constituting approximately 35% of the total cell population (Carson et al., 

2006b). Astrocytes were once regarded as merely supporting cells in the CNS, 

providing structural support and maintaining an optimal microenvironment for 

neuronal functions and survival (Brambilla et al., 2013). However, this 

viewpoint has dramatically changed in the past decade as growing interest in 

the study of biology and pathology of astrocytes slowly reveals its functions and 

roles in healthy and diseased CNS.     

During development, astrocytes guide migration of developing neurites 

by forming boundaries with extracellular matrices and assist in neuronal 

synapse refinement (Bialas et al., 2013; Powell et al., 1999). In the adult brain, 

astrocyte play essential roles in maintaining brain health and functions. 

Astrocytes help to maintain ion, fluid, pH and neurotransmitter homeostasis of 

the synaptic interstitial fluid (Sofroniew et al., 2010). Furthermore, astrocytes 

express high levels of glutamate transporters to quickly remove glutamate 

released to the synaptic cleft upon action potential to prevent over-excitation of 

glutamate receptors which potentially leads to excitotoxicity (Sattler et al., 

2006).  

Astrocyte end-feet encircles endothelial cells, helping to maintain the 

tight junctions of blood brain barrier (BBB); a highly selective permeability 

barrier that limits passage of molecules into brain parenchyma (Abbott, 2002; 

Rossi, 2015). Astrocytes also take part in CNS blood flow regulation (Gordon 
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et al., 2007) and provide supply metabolic support to adjacent neurons 

(Sofroniew et al., 2010). Moreover, astrocytes are capable of releasing a variety 

of gliotransmitters including glutamate, GABA, D-serine, purines into the 

synaptic cleft; modulating  potentiation and learning by depressing or 

reinforcing pre-and post-synaptic membrane (Jensen et al., 2013; Nedergaard 

et al., 2003; Perea et al., 2009).   

1.2.2.2 Reactive astrogliosis 

Due to its high resemblance with peripheral macrophage, microglia is 

often being regarded as the primary immune cells of the CNS. Nevertheless, 

astrocytes are able to respond to CNS insults ranging from subtle cellular 

perturbation to severe tissue injuries (Sofroniew, 2009). Thus, astrocytes should 

also be considered as another key immune cell in the CNS and given equal 

attention as microglia. In fact, there is evidence of crosstalk between microglia 

and astrocytes resulting in enhanced inflammatory responses. Co-cultures of 

microglia and astrocytes stimulated with LPS induces greater neurotoxicity than 

either cell type alone and hence supports role of astrocyte in mediating 

inflammatory responses (Saijo et al., 2011).  

In addition, astrocytes also share a comparable number of PRRs with 

microglia which is crucial for recognition of endogenous damage signals and 

infectious agents. TLR3 are known to be highly expressed in astrocytes (Park 

et al., 2006) while TLR2, TLR4, TLR5, and TLR9 are found expressed at basal 

level (Farina et al., 2007). However, expression of TLR3 and TLR4 is known 

to be upregulated during inflammation (Bsibsi et al., 2002). Astrocytes also 

express a number of NOD-like receptors (NLRs) including NLRC such as 

NOD1 and NOD2 (Farina et al., 2007; Sterka et al., 2006) and NLRP like 
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NLRP2 (Minkiewicz et al., 2013). NLRP2 complexes with adaptors proteins 

and caspase 1 to form inflammasome which activates caspase leading to 

processing and secretion of IL-1β upon ATP stimulation (Minkiewicz et al., 

2013). Astrocytes also endocytose native or pathologically modified molecules 

through expression of scavenger receptors (SRs) like SR-A, SR-B1, and RAGE 

(Godoy et al., 2012; Husemann et al., 2001). Together with expression of 

various complement and cytokine receptors, PPRs allow astrocytes to rapidly 

initiate inflammatory response to counteract with infection and cellular 

damages (Farina et al., 2007; Shastri et al., 2013). 

Many molecules released during infection or CNS injury such as LPS, 

cytokines, glutamate, ATP, NO, ROS, hypoxia, and glucose deprivation, 

misfolded proteins like Aβ are known to activate astrocytes (Sofroniew et al., 

2010). Recognition by related PPRs triggers morphological and molecular 

changes in astrocytes, a phenomenon commonly knowns as reactive astrogliosis 

(Rossi, 2015). Reactive astrogliosis is a finely gradated continuum of 

progressive alterations in molecular expression (Sofroniew, 2009; Sofroniew et 

al., 2010). When activated, astrocytes will undergo changes including 

upregulation of intermediate filaments, proliferation, and hypertrophy of cell 

bodies and processes. In severe cases, reactive astrogliosis form dense and 

compact glial scars with extracellular matrices (Sofroniew, 2009). One of the 

hallmarks of reactive astrogliosis observed in human pathology and animal 

experimental models is upregulation of glial fibrillary acidic protein (GFAP) 

intermediate filament and GFAP level is known to correspond to the extent of 

astrogliosis (Eng et al., 1994). Thus, GFAP has become a prototypical marker 
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for reactive astrogliosis and often used as a marker for astroglial activation (Eng 

et al., 2000).  

1.2.2.3 Protective and detrimental effects of reactive astrogliosis 

Activation of astrocytes serves several beneficial functions in protecting 

CNS by production of glutathione to protect against oxidative stress (Chen et 

al., 2001), buffering extracellular K+ and H+ to prevent anoxic depolarization 

and cell swelling  (Chen et al., 2003), mediating blood brain barrier repair 

(Sofroniew et al., 2010), clearing and degrading of Aβ peptides (Koistinaho et 

al., 2004), and production of growth factors such as brain-derived neurotrophic 

factor (BDNF) and ciliary neurotrophic factor (CTNF). In addition, astrocytes 

express glutamate transporters like GLAST and GLT-1 to uptake extracellular 

glutamate which potentially induce excitotoxicity in the vulnerable neurons 

(Chen et al., 2003; Rothstein et al., 1996). Glial scar formation also serves as a 

physical barrier to restrict the spread of microbial agents or inflammatory cells 

(Bush et al., 1999; Drogemuller et al., 2008).  

Nonetheless, growing evidence reveals numerous undesired effects of 

reactive astrogliosis especially when astrogliosis persist and do not get resolved 

after injury. Dysfunction of reactive astrogliosis becomes instrumental 

contributor of many neurological diseases through either loss of essential 

functions or gain of detrimental functions (Sofroniew et al., 2010). Activated 

astrocytes release proinflammatory cytokines like IL-1β, TNF-α, IL-6 that 

activate surrounding microglia and astrocytes which in turn release more pro-

inflammatory cytokines, forming a positive-feedback loop that exacerbate 

neuroinflammation (Farina et al., 2007). Reactive astrogliosis increases 

infiltration of peripheral leukocytes into the brain parenchyma by secreting 
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chemokines such as CCL-2, CCL-5, CXCL-1, CXCL-2, CXCL-5, CXCL-12, 

and CX3CL-1 (Babcock et al., 2003; Farina et al., 2007). Moreover, infiltration 

of leukocytes is also enhanced by astrocytic production of vascular endothelial 

growth factor (VEGF), matrix metalloproteinases (MMPs), intercellular 

adhesion molecule 1 (ICAM-1) and vascular adhesion molecule 1 (VCAM-1). 

VEGF increases BBB permeability (Argaw et al., 2012), MMP2 and MMP9 

induce BBB breakdown by degradation of extracellular matrix (Rosenberg et 

al., 2001) while ICAM-1 and VCAM-1 adhere to leukocytes and facilitate their 

migration into CNS parenchyma (Carpentier et al., 2005; Gimenez et al., 2004). 

Activated astrocytes also lead to cellular dysfunction with ROS/RNS 

production that damage lipid, DNA, and protein (Sheng et al., 2013; Swanson 

et al., 2004). Moreover, expression of cyclooxygenase-2 (COX-2) as well as its 

main metabolite, prostaglandin E2 (PGE2, a strong inducer of inflammation), 

are both elevated during astrogliosis, (Brambilla et al., 1999). Glutamate uptake 

disruption or efflux of glutamate increases extracellular concentration of 

glutamate and potentiate excitotoxicity (Chen et al., 2003). In addition, failure 

to maintain water balance potentially leads to CNS edema (Manley et al., 2000).  

Compelling evidence demonstrates that reactive astrogliosis is the 

fundamental factor impeding axon regeneration after brain trauma (Cho et al., 

2005). Mouse models devoid of GFAP and vimentin exhibit limited astroglial 

reactivity and hypertrophy of cell processes (Wilhelmsson et al., 2004). GFAP-

/- Vim-/- mice also showed significant synaptic regeneration and locomotor 

function recovery after entorhinal cortex and spinal cord lesion respectively 

(Menet et al., 2003; Wilhelmsson et al., 2004). Furthermore, attenuation of 

reactive astrogliosis with natural compound also promotes axon regeneration 
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and gains functional recovery after traumatic spinal cord injury, denoting a role 

of reactive astrogliosis in impeding axon regeneration (Su et al., 2010). Several 

studies on spinal cord injury also revealed that removing glycosaminoglycan 

(GAG) chains from chondroitin sulfate proteoglycans CSPGs (a major 

component of glial scar) with chondroitinase ABC (ChABC) increased axons 

regeneration, improved locomotor functions, and proprioceptive behaviors 

(Bradbury et al., 2002; Yick et al., 2000). These findings highlight the 

significance of reactive astrogliosis and glial scar in forming a 

microenvironment adverse to CNS regeneration. 

1.2.2.4 Implication of reactive astrogliosis in neurological diseases 

Although reactive astrogliosis may serve some beneficial function with 

production of neurotrophic factors and demarcate healthy brain parenchyma 

from infected or damaged tissue through glial scar formation, it is often being 

viewed in a negative light due to its potential pathogenic role in several 

neurological diseases.  

Reactive astrogliosis is a prominent feature of CNS trauma and plays an 

instrumental role in determining clinical outcome (Sofroniew et al., 2010).  It 

has been reported that human astrocytes expressed NLRP2 inflammasome when 

activated by ATP during trauma (Minkiewicz et al., 2013). Activation of 

NLRP2 markedly enhances processing of caspase-1 and the proinflammatory 

cytokine IL-1β (Minkiewicz et al., 2013). Due to its high abundance as well as 

its close proximity with BBB, astrocytes are exclusively positioned to create 

chemotactic gradient to recruit microglia and circulating leukocytes into site of 

injury (Rossi, 2015). Activation of astrocytes in response to spinal cord injury 

aggravate inflammation by promoting influx of leukocytes into lesion site and 
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cause secondary tissue loss by producing proinflammatory cytokines and 

chemokines such as CCL-2, CXCL-1, and CXCL-2 (Pineau et al., 2010).  

ALS is a progressive neurodegenerative disease characterized by 

neuronal loss in the brain and spinal cord. While most ALS cases appear to be 

sporadic, SOD1 mutation is associated with about 20% of familial cases (Rossi, 

2015). Few studies have addressed the relative contribution of astrocyte in 

motor neuron loss in ALS. Attenuating expression of hSOD1G37R mutant protein 

in astrocytes in transgenic mice slowed down ALS progression (Yamanaka et 

al., 2008).  A more recent study also reported delayed disease onset and lifespan 

extension when expression of hSOD1G85R protein in astrocytes was reduced 

(Wang et al., 2011). In addition, significant reductions in glutamate transport in 

ALS patient suggest glutamate-induced excitotoxicity in motor neuron 

(Rothstein et al., 1992). Ablating glutamate type I transporter (GLT-1) 

expression in SOD1 mutant mice decreases glutamate uptake resulting in motor 

neuron loss as a consequence of excitotoxicity (Pardo et al., 2006). Expression 

of ion pump sodium/potassium ATPase α2 subunit (α2-Na/K ATPase) is found 

upregulated in SOD1G93A astrocytes and associated with motor neurons 

degeneration. Interesting, α2-Na/K ATPase also induces expression of a battery 

of proinflammatory cytokines and chemokines which mediate and perpetuate 

neuroinflammation in ALS (Gallardo et al., 2014).   

Synaptic loss and dysfunction caused by age-dependent accumulation of 

Aβ1–42 is proposed to underlie cognitive decline in AD. High level of presenilins, 

the catalytic subunits of the γ-secretase are detected in sporadic Alzheimer 

brains and prominently found in the reactive astrocytes (Walker et al., 2006; 

Weggen et al., 1998). Neurons express higher level of β-secretase 1 (BACE1) 
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than glia cells thus is considered the major contributor of amyloid plaque (Laird 

et al., 2005). That being said, it should be noted that astrocytes outnumber 

neurons by more than five-fold in the brain, and thus may contribute to the Aβ 

load in the brain and exacerbate AD pathology as disease progresses (Sofroniew 

et al., 2010). Cytokines combination (TNF-α and IFN-γ) or Aβ1-42 have been 

documented to elevate BACE1 and APP level and induce amyloidogenic APP 

processing in astrocytes, suggesting Aβ and cytokine-driven feed-forward 

mechanism that stimulate Aβ production in astrocyte (Zhao et al., 2011).  

Another hallmark of AD is neurofibrillary tangles formed by aggregation of 

hyperphosphorylated tau protein.  As the degree of neurofibrillary pathology 

advances (as indicated by Braak staging), level of reactive astrogliosis increases 

with concurrent reduction in astrocytic glutamate transported, potentiating 

excitotoxicity in neurons (Simpson et al., 2010). Recently, Aβ1–42
 has been 

demonstrated to induce release of glutamate from astrocytes through 

stimulation of α7 nicotinic receptors (α7nAChRs). Excessive release of 

glutamate in turn activates extrasynaptic NMDA-type glutamate receptors 

(eNMDARs) followed by decrease in mEPSC frequency, increase tau 

hyperphosphorylation, NO production, and caspase-3 activation, resulting in 

synaptic dysfunction and cognitive decline (Talantova et al., 2013). Moreover, 

reactive astrocytes aberrantly produce high levels of inhibitory gliotransmitter 

GABA through monoamine oxidase-B, impairing synaptic plasticity and 

memory function in AD mice (Jo et al., 2014).   

Due to high energetic cost of the ATP-dependent glutamate reuptake, 

dramatic increase in extracellular concentration of glutamate is unavoidable 

during energy failure conditions like ischemic (Chen et al., 2003). During 
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ischemic damage, disruption of glutamate uptake and elevation of glutamate 

efflux have both been reported. ATP depletion-induced glutamate release is 

substantially attenuated by astrocytic glutamate transporter GLT-1 inhibitor, 

dihydrokinate (DHK), indicating that reversal of glutamate transporter is a 

potential route of glutamate efflux from astrocytes (Longuemare et al., 1995; 

Seki et al., 1999). ATP released from damaged cells coupled with purinergic 

receptor such as P2Y1  (Domercq et al., 2006) and P2X7 (Duan et al., 2003) 

receptor and evoked Ca2+-dependent glutamate release from astrocytes, 

suggesting an alternative mechanism astrocyte mediate excitotoxicity. High 

expression of AQP4 in astrocyte pericapillary end-feet processes implies a role 

in maintaining brain water balance (Chen et al., 2003). Cerebral edema is 

markedly decreased in AQP4 deficient mice subjected to ischemic stroke 

compared to control and has better neurological outcome and survival (Manley 

et al., 2000). Similarly, elevation of AQP9 expression in astrocytes is also 

detected at the peri-infarct area upon transient ischemia suggesting a role of 

astrocytic AQP9 in regulating water homeostasis (Badaut et al., 2001).  

Together, these findings indicate involvement of astrocyte activation in 

mediating CNS diseases and neuroinflammation through multiple mechanisms 

and attenuating reactive astrogliosis may bring beneficial outcomes. 

Neuroinflammation is a complex integration of responses from CNS 

resident cells as well as the molecular immune components released. These 

molecular components include signaling molecules involved in inflammatory 

signaling pathways, chemical messengers like cytokines and chemokines, and 

reactive oxygen and nitrogen species. Most of these molecules work jointly to 

initiate, enhance, and propagate neuroinflammatory response. 



17 
 

1.2.3 Inflammatory signaling pathways  

1.2.3.1 Nuclear Factor-κB (NF-κB)  

NF-κB has long been regarded an archetypical proinflammatory 

signaling pathway which is rapidly activated in response to infection, injury and 

inflammation. It is a transcription factor that regulates cell proliferation, 

differentiation, survival and well-known for its role as a central mediator of 

inflammatory response (Viatour et al., 2005). Understanding of NF-κB 

signaling primarily come from studying activation of IL-1β and TNF-α 

receptors as well as TLRs (Lawrence, 2009). All members of NF-κB share a 

Rel homology domain (RHD), which is crucial for DNA binding and protein 

dimerization. RelA/p65, RelB, and cRel contain a transactivation domain in 

their C-termini necessary for transcriptional activation whereas the other 

remaining two members, p50 and p52 lack intrinsic ability to activate 

transcription. p50 and p52 are synthesized as large precursor; p105 and p100 

respectively which undergo proteasome processing to generate mature proteins. 

Though formation of several homodimers or heterodimers of NF-κB family 

subunits have been described, the two main signaling pathways identified are 

the canonical and the alternative NF-κB pathways (Fischer et al., 2015).  

Canonical NF-κB pathway 

NF-κB’s role in mediating inflammatory responses is mediated 

primarily, though not exclusively, through activation of the canonical pathway 

via p65/p50 dimers (Fischer et al., 2015). Under activating conditions, NF-κB 

is sequestered in the cytoplasm by IκBα. Activation of TLRs by PAMPs and 

DAMPs, or proinflammatory cytokines (IL-1β and TNF-α) stimulation triggers 
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a cascade of signaling molecules leading to recruitment and activation of IκB 

kinase (IKK) complex which comprises of IKKα, IKKβ, and IKKγ (also known 

as NEMO). Once activated, the IKK complex phosphorylates IκBα at Ser32 and 

Ser36. Subsequently, IκBα is ubiquitinated and degraded by 26S proteasome 

(Figure 1.2). Degradation of IκBα release inhibition on NF-κB, allowing its 

translocation into the nucleus where it binds to specific κB sites and transcribe 

numerous target genes (Viatour et al., 2005).  

NF-κB activation in neurological disorders 

NF-κB activation is implicated in several neuroninflammatory and 

neurodegenerative diseases. NF-κB activation is detected in neuron, microglia, 

and astrocytes at the close vicinity of early amyloid plaque from patients with 

AD (Ferrer et al., 1998; Kaltschmidt et al., 1997). Immunoreactivity of NF-κB 

is also significantly elevated in dopaminergic neurons of PD patients (Hunot et 

al., 1997). Moreover, prolonged activation of NF-κB is found in the same 

regions undergoing progressive atrophy, suggesting NF-κB role in mediating 

chronic inflammatory processes following CNS trauma (Nonaka et al., 1999). 

The neuroprotective properties of NF-κB in neurodegenerative diseases have 

been proposed by several studies which demonstrated greater neuronal loss 

when NF-κB is inhibited in HD and ischemic stroke animal model (Hill et al., 

2001; Yu et al., 2000). However, there are also compelling evidences 

supporting a detrimental role of NF-κB activation in neurological disease. For 

example, attenuating NF-κB activation with pyrrolidine dithiocarbamate 

(PDTC) remarkably reduced infarct size (Nurmi et al., 2004). In line with 

previous data, neuronal deletion of IKKβ resulted in remarkably smaller 
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ischemic infarct size while constitutive IKKβ activation had the reversed effects 

(Herrmann et al., 2005).  

The pathological function of NF-κB may be attributed to its ability to 

regulate a vast number of proinflammatory mediators. NF-κB induces secretion 

of cytokines such as IL-1β, TNF-α, IFN-γ and chemokines like CCL-2, CCL-3, 

CCL-5, CCL-7, CXCL-9, and CXCL-10 (Brambilla et al., 2005; Van Loo et al., 

2006; Werts et al., 2007). Induction of ICAM-1 and VCAM-1 expression by 

NF-κB, together with upregulation of chemokines, promotes recruitment of 

peripheral leukocytes into the CNS that further contribute to the inflammatory 

process (Zhou et al., 2007). Notably, NF-κB is a strong inducer of pro-oxidative 

enzymes like inducible nitric oxide synthase (iNOS) and nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (NOX) that generates ROS/RNS. 

Increasing oxidative/nitrosative stresses promote protein oxidation/nitration 

which leads to neuronal death (Mir et al., 2009). Furthermore, NF-κB activation 

upregulates cyclooxygenase-2 (COX-2) that converts arachidonic acid to 

prostaglandin H2 which produces superoxide during the second step of the 

reaction (Morgan et al., 2011). NF-κB induction of proinflammatory 

cytokine/chemokine, leukocyte infiltration, and oxidative/nitrosative stresses 

enhances tissue damage and exacerbates neuroinflammation therefore NF-κB 

may be a potential therapeutic target for neurological disorders. 
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Figure 1.2 Activation of NF-kB in response to IL-1β and TNF-α. 
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1.2.3.2 MAPKs 

Mitogen-activated protein kinases (MAPK) are serine/threonine kinases 

that regulate a range of cellular activities such as cell survival, death, 

proliferation, differentiation, and transformation (Kim et al., 2010b). The 

mammalian MAPK family is comprised of p38, and c-Jun NH2-terminal kinase 

(JNK), and extracellular signal-regulated kinase (ERK). The signaling axis of 

MAPK has at least 3 components; a MAPK kinase kinase (MAP3K), a MAPK 

kinase (MAP2K), and a MAPK. Upon activation by extracellular or intracellular 

stimuli, MAP3K is activated by MAP4Ks or GTPases. Subsequently, MAP3K 

will phosphorylate and initiate MAP2Ks which will in turn phosphorylate 

MAPKs. Activated MAPK phosphorylate various substrate proteins like 

transcription factors and other kinases (Kim et al., 2010b). 

JNK and p38 signaling pathways 

JNK and p38 are stress-induced kinases which are activated by cellular 

stresses such as osmotic shock, inflammatory cytokines, pathogenic stimuli, UV 

radiation, and oxidative stress (Matsuzawa et al., 2005). Activation of JNK and 

p38 are important for the regulation of various cellular activities like cell 

differentiation, apoptosis, and inflammatory cytokines (Hommes et al., 2003; 

Kim et al., 2010b). p38 and JNK are readily activated by IL-1β, TNF-α, and 

LPS which results in production of inflammatory mediators like cytokines, 

chemokines, COX-2, and iNOS (Kaminska, 2005; Oltmanns et al., 2003). ROS 

also triggers JNK and p38 activation leading to cell apoptosis by promoting 

cleavage and activation of pro-apoptotic BH3 interacting-domain death agonist 

(Bid) protein. Bid interacts with Bax and destabilizes mitochondria membrane, 

followed by release of cytochrome c or Smac/DIABLO from mitochondria and 
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eventually apoptosis (Deng et al., 2003; Zhuang et al., 2000). Persistent 

activation of JNK and p38 has also been implicated in neurological diseases. 

Inactivation of JNK and p38 signaling pathway with multi-lineage kinase 

(MLK) inhibitor; CEP-1347 attenuated MPTP-mediated loss of dopaminergic 

neurons  in PD mouse model (Saporito et al., 1999) and abated TNF-α, IL-6, 

and CCL-2 expression in microglia upon stimulation with various endotoxins 

or the plaque forming peptide Aβ1–40 (Lund et al., 2005). Furthermore, 

amyloidogenic Aβ1-42 induces ROS production which triggers JNK and p38 

activation and ultimately lead to neuronal death (Marques et al., 2003; Zhu et 

al., 2002). Attenuating JNK signaling with AS601245 inhibitor or with 

antisense RNA after induction of white matter injury mitigates against 

microgliosis, astrogliosis, TNF-α expression, BBB leakage, and apoptosis of 

oligodendrocyte progenitor, indicating role of JNK in mediating various 

neuroinflammatory responses (Wang et al., 2012).   

ERK signaling pathway 

On the other hand, growth factors and cytokines are the strong activators 

of ERK signaling which mainly involved in proliferation, differentiation and 

development (Balmanno et al., 2009). ERK signaling pathway is closely 

associated with cancer development where its activation has been shown to 

promote tumor survival and migration (Balmanno et al., 2009; Huang et al., 

2004). Constitutive activation of ERK1/2 in murine fibroblast cell line NIH 3T3 

is pro-survival and anti-apoptotic following H2O2 toxicity, indicating role of 

ERK in cell survival (Guyton et al., 1996). Indeed, there is much evidence 

supporting neuroprotective function of ERK signaling. ERK1/2 signaling has 

been demonstrated to mediate the neuroprotective activity of trophic factors like 
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nerve growth factor (NGF) (Xia et al., 1995). Attenuating ERK 1/2 signaling 

markedly enhanced neuronal apoptosis induced by cisplatin (Gozdz et al., 

2003). In parallel, ERK also mediates protective effects of BDNF on cortical 

neurons against apoptosis induced by camptothecin, an alkaloid that induces 

DNA damage. Moreover, ERK1/2 is known to exert its neuroprotective 

functions via regulation of pro- and anti-apoptotic molecules from the Bcl-2 

family (Hetman et al., 2004). Conversely, ERK signaling is demonstrated to 

mediate inflammatory response induced by LPS or ischemic stroke through 

production of proinflammatory mediators such as IL-1β, TNF-α, IL-6, and 

iNOS (Carter et al., 1999; Maddahi et al., 2010). Several findings showed that 

inhibiting ERK1/2 signaling confers protection to neurons in brain trauma, 

cerebral ischemia stroke, and epilepsy (Chu et al., 2004). Such contradictory 

findings are not yet fully resolved but it has been proposed that ERK1 and ERK2 

may play distinct roles in CNS pathophysiology (Yu, 2012). More studies need 

to be done to elucidate the role of ERK in CNS diseases.  

1.2.4 Cytokines  

Cytokines are a class of small proteins produced by a variety of immune 

cells that act as intercellular signaling molecules to modulate inflammation and 

regulate cellular activities like survival, growth, proliferation, and 

differentiation (Ramesh et al., 2013; Rubio-Perez et al., 2012). Many cytokines 

are themselves pleiotropic, exerting multiple actions and majority of them have 

overlapping actions (redundancy) (Leonard, 1994; Paul, 1989). In the CNS, 

cytokines serve to maintain immune surveillance, facilitate leukocyte 

recruitment and mediate innate and adaptive immune response (Takeshita et al., 

2012).  Cytokines in the brain play pivotal role in mediating a number of CNS 
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pathologies and they are primarily generated by microglia and astrocytes. In 

response to pathogen invasion or injury, a repertoire of cytokines/chemokines 

are released to initiate an appropriate immune response (Jensen et al., 2013). 

Cytokines are generally classified as anti-inflammatory and pro-inflammatory 

molecules which jointly regulate inflammation. Proinflammatory cytokines 

known to exacerbate neuroinflammation such as IL-1β, TNFα, and IL-6 (Basu 

et al., 2004; Kiguchi et al., 2012). These cytokines are acute phase cytokine 

which appear essential for the induction of other cytokines/chemokines and 

inflammatory mediators (Kaminska, 2005; Shimada et al., 2002; Van Miert, 

1995).  

1.2.4.1 IL-1β 

IL-1β is involved in the pathophysiology of various CNS disorders 

including infections, stroke and neurodegeneration diseases (Basu et al., 2004). 

Actions of IL-1β is primarily mediated by type I IL-1β receptor (IL-1RI) as IL-

1RII is a decoy receptor (Shaftel et al., 2008). Engaging to IL-1RI results in 

association with IL-1R accessory protein (IL-1R AcP) and recruitment of 

MyD88 adapter protein which is also shared by TLR signaling. This leads to 

IL-1R-associated kinase (IRAK) recruitment and activation of TNF receptor-

associated factor 6 (TRAF6) (Risbud et al., 2014; Rothwell et al., 2000). 

Subsequently, TRAF6 binds to transforming growth factor β (TGFβ)-activated 

kinase 1 (TAK1) and induces TAK1 activation which in turn phosphorylates 

and activates IκB kinase β (IKKβ) to initiate NF-κB signaling and mitogen-

activated protein kinase kinases (MKKs) to instigate MAPKs (JNK, ERK, and 

p38) signaling pathways (Moriguchi et al., 1996; Ninomiya-Tsuji et al., 1999; 

Shirakabe et al., 1997). 
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Exposure to IL-1β induces robust activation of microglia and astrocytes 

(Herx et al., 2000). Growing evidence shows that IL-1β mediate pathology of 

various neurological diseases through immunological and apoptosis pathway. It 

is known to drive production of other cytokines (TNF-α IL-6) and chemokines 

(CXCL-1 and CXCL-2) to exacerbate neuroinflammation (Mrak et al., 1995; 

Shaftel et al., 2008). Moreover, IL-1β has been shown to induce leukocytes 

infiltration by upregulating CCL-2 and intercellular adhesion molecule-1 

(ICAM-1) on vascular endothelial cells (Proescholdt et al., 2002). 

Intraparenchymal injection of IL-1β changes cerebral blood volume 

accompanied with increased diffusion coefficient of brain water indicating role 

of IL-1β in enhancing BBB permeability (Blamire et al., 2000). Implication of 

IL-1β in mediating neuronal damage has been demonstrated in mice deficient 

of IL-1β which develop smaller infarct size compared to controls when 

subjected ischemic stroke (Boutin et al., 2001; Schielke et al., 1998). In 

addition, IL-1β potentiates excitotoxicity by upregulating expression of 

neuronal glutaminase that convert glutamine to glutamate. This in turn leads to 

elevation of intracellular and extracellular glutamate level, promoting neuronal 

cell death (Ye et al., 2013).  

Elevated expression of IL-1β is correlated with severity of injury and 

undesirable clinical outcome and therefore abrogating IL-1β signaling would 

likely improve patients’ condition. Interleukin-1 receptor antagonist (IL-1ra) 

binds to IL-1R but does not induce any intracellular response therefore 

effectively attenuates IL-1β signaling. Due to its protective effects, IL-1ra has 

now been licensed for use in rheumatoid arthritis (Basu et al., 2004). 

Furthermore, when it is intracerebroventricularly injected into mice, it 
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attenuates ischemic and excitotoxic neuronal damage (Loddick et al., 1996; 

Relton et al., 1992). Unfortunately, IL-1ra is a large protein with limited access 

to CNS due to BBB and thus therapeutic delivery into the brain would be a 

challenge (Basu et al., 2004).  Laliberta et al. also identified a series of cytokine 

release inhibitory drugs (CRIDs) that abated IL-1β-induced cell death by 

preventing ATP-induced pro-IL-1 processing by caspase-1, potentially 

reversing the adverse effects of elevated IL-1β in CNS disorders (Laliberte et 

al., 2003).  

1.2.4.2 TNF-α 

Although TNF-α and IL-1β have structurally different receptors, they 

share considerable overlap in functional and post-receptor intracellular 

signaling cascades (Ziebell et al., 2010). TNF-α often acts synergistically with 

IL-1β leading to amplification of inflammatory response (Gouwy et al., 2005). 

TNF-α binds with TNF receptor type 1 (TNFR1) which is widely expressed in 

most tissue and TNF receptor type 2 (TNFR2) that is only found in immune 

cells (Grell et al., 1995). The majority of biological responses classically 

attributed to TNF-α are mediated by TNFR1 (Wajant et al., 2003). Interaction 

with TNFR1 induces receptor trimerization and recruits TNF receptor-

associated death domain (TRADD) that acts as an adapter protein for Fas-

associated death domain (FADD) and TNF receptor-associated factor 2 

(TRAF2). FADD mediates activation of caspase 8 and caspase 10 which initiate 

a protease cascade resulting in apoptosis (Olmos et al., 2014). On the other 

hand, TRAF2 acts similarly to TRAF6 in IL-1β signaling. It recruits TAK1 and 

promotes TAK1 activation which in turn leads to activation of NF-κB and 

MAPKs signaling pathways (Verstrepen et al., 2008). TNF-α robustly activates 
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the stress-induced protein kinases like JNK and p38 but only induce moderate 

ERK activation and may even absent sometimes (Wajant et al., 2003).   

Dysregulated TNF-α signaling has been implicated in the 

pathophysiology of a number of CNS disorders through several mechanism. 

TNF-α is a prototypic proinflammatory cytokine that stimulate expression of 

other inflammatory mediators like cytokines (IL-1α, IL-1β, and IL-6) (Kozawa 

et al., 1997; Turner et al., 2007) and chemokines (CCL-2, CCL-3, and CXCL-

2) (Barna et al., 1994; Czermak et al., 1999). Moreover, activation of TNFR1 

induced ICAM-1 and VCAM-1 expression on endothelial cells (Zhou et al., 

2007) and enhanced BBB permeability (Kim et al., 1992). Together, these 

processes promote recruitment of leukocytes into the brain parenchyma which 

further mediate inflammatory responses and potentially leads to more tissue 

damage. TNF-α also elevates superoxide (O2
-) and nitric oxide (NO) production 

by inducing iNOS and NOX expression (Brandes et al., 2014; Mir et al., 2009; 

Mir et al., 2008). NO and ROS promote protein oxidation and nitration that 

promote cellular dysfunction and induce neuronal death (Mir et al., 2009). 

Another mechanism contributing to neuronal death is through the induction of 

excitotoxicity via elevation of extracellular glutamate level. TNF-α upregulates 

neuronal glutaminase (Ye et al., 2013) and downregulates glutamate 

transporter-1 (GLT-1) thus reducing glutamate uptake by astrocyte (Sitcheran 

et al., 2005).  

TNF-α elevation in CNS is evident in numerous neurological diseases 

like brain trauma, stroke, AD, and PD (Helmy et al., 2011). Several preclinical 

and clinical studies in variety of disease models suggest that targeting TNF-α 

signaling may be an appealing strategy to attenuate or slow disease progression 
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(Mccoy et al., 2008). Several FDA-approved humanized IgG antibodies 

including infliximab, adalimumab, and etanercept has also been employed to 

attenuate TNF-α activity. As reported by Selmaj et al., administration of anti-

TNF antibody effectively attenuated leukocyte infiltration and demyelination in 

EAE, the mouse model of MS (Selmaj et al., 1991). However, inconsistent 

findings have been reported. Intravenous infusions of a humanized mouse 

monoclonal anti-TNF antibody (cA2) into MS patient did not observe any 

clinically significant neurologic changes (Van Oosten et al., 1996). While some 

studies found TNF receptor knockout to be protective against MPTP-induced 

striatal damage (Sriram et al., 2002, 2006), others reported that TNF receptor 

knockdown has little effects on striatal damage or dopaminergic neuron loss 

(Leng et al., 2005; Rousselet et al., 2002). Cytokine pleiotropy and redundancy 

may partly explain these discrepancies. TNF-α and IL-1β are known to share 

similar array of downstream effectors (Allan et al., 2005) and compensatory IL-

1β upregulation had also been documented when TNF-α expression was 

abrogated (Gowing et al., 2006).  

1.2.4.3 IL-6 

IL-6 is 26 kDa glycoprotein that has an important function in mediating 

acute phase response and fever. IL-6 receptor is consist of gp130 homodimer 

and a ligand-binding IL-6Rα chain (Helmy et al., 2011). Binding of IL-6 leads 

to dimerization of gp130 results in activation of Janus kinases (JAKs) that 

subsequently activates Signal Transducers and Activators of Transcription 

(STAT3) transcription factor. Alternatively, IL-6 initiates MAPKs through a 

second pathway involving G-protein Ras (Gadient et al., 1997). Other than IL-

1β and TNF-α, bacterial pathogens like LPS are known to exert a strong 
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inducing signal for IL-6 in astrocytes (Benveniste et al., 1990; Lee et al., 1993; 

Norris et al., 1994). IL-6 plays an essential role in orchestrating inflammatory 

response in the periphery by inducing production of acute phase proteins, 

development of effector T-cell, and stimulate antibody production (Tanaka et 

al., 2014). In the CNS, IL-6 induces production of cytokines, cell adhesion 

molecules, and promote leukocyte infiltration into brain parenchyma (Lemoli et 

al., 1996; Prudhomme et al., 1996).  Pathogenic role of IL-6 has been shown in 

transgenic mice overexpressing IL-6. Prominent activation of microglia and 

astrocytes activation is found in these animals along with neurodegeneration 

and development of severe neurologic disease (Campbell et al., 1993; Chiang 

et al., 1994; Fattori et al., 1995).  

Although IL-6 elevation is often correlated with stroke and 

neurodegenerative diseases such as AD and PD, there is as yet any clear 

evidence of IL-6 involvement in the pathologic process of these diseases and 

IL-6 could be a reflection of the ongoing inflammation caused by the 

progressive neuronal damage (Blum-Degena et al., 1995; Mogi et al., 1994; 

Suzuki et al., 2009). Growing evidence suggests that IL-6 exhibit both 

proinflammatory and anti-inflammatory / neuroprotective roles in the CNS. IL-

6 as a neurotrophic factor is first described by Hama and colleagues in year 1989 

and 1991. They showed that IL-6 promotes survival of cultured cholinergic 

neurons isolated from basal forebrain and septum as well as catecholaminergic 

neurons from mesencephalon (Hama et al., 1991; Hama et al., 1989). 

Subsequent study by Maeda et al. demonstrated that incubation with 

conditioned medium from astrocytes exposed to hypoxia/reoxygenation 

promoted survival of hypoxia/reoxygenation treated PC12 cells and the 
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beneficial effect was attenuated by IL-6 neutralizing antibody (Maeda et al., 

1994). Moreover, continuous injection of recombinant IL-6 into lateral ventricle 

of gerbils subjected to transient ischemia delayed neurodegeneration and 

prevented learning disabilities (Matsuda et al., 1996). In line with previous data, 

IL-6 deficient mice develop larger ischemic infarct volume, have poorer 

neurologic status, and higher mortality rate compared to controls (Herrmann et 

al., 2003).  

IL-6 protective effects may be mediated by preventing oxidative stress 

and cell apoptosis. Mice with IL-6 deficiency produce lower granulocyte-

macrophage colony-stimulating factor (GM-CSF) and metallothionein, an 

antioxidant protein compared to controls after cryolesion to fronto-parietal 

cortex (Penkowa et al., 1999). Follow up study with GFAP-IL-6 transgenic 

mice also revealed that increasing astrocytic IL-6 expression substantially 

decreased cell apoptosis and oxidative stress after cryolesion by inducing 

antioxidant proteins like metallothionein (Penkowa et al., 2003). Induction of 

vascular endothelial growth factor (VEGF) by IL-6 also encourages brain repair 

via vascular remodeling (Helmy et al., 2011). Together, these studies provide 

convincing evidences that IL-6 can have dual effects; proinflammatory and anti-

inflammatory/neuroprotective. It is therefore interesting to examine how 

prospective anti-inflammatory compounds modulate IL-6 expression and its 

role in neuroinflammation.   
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Chemokine 

subfamilies 

No. of residues 

between 

cysteine 

residues near 

N-terminus 

Type of recruited 

leukocyte 
Examples 

CC 0 

Mononuclear cells, 

eosinophils, 

basophils, dendritic 

cells, NK cells 

CCL-2, CCL-3, 

CCL-4, CCL-5, 

CCL-8, CCL-11 

CXC 1 

ELR domain: 

neutrophils 

CXCL-1, CXCL-2, 

CXCL-5, CXCL-8 

No ELR domain: 

monocytes, T cells, 

NK cells 

CXCL-9, CXCL-10, 

CXCL-11 

CX3C 3 
Monocytes, T cells, 

NK cells 
CX3CL-1 

C 

Has one 

cysteine 

residue 

T cells, NK cells XCL-1, XCL-2 

Table 1.2 Chemokine classification (modified from Jaerve et al., 2012; Ubogu 

et al., 2006). 

 

1.2.5 Chemokines and leukocytes infiltration 

Chemokines are small chemotactic cytokines ranging from 8-12 kDa 

that is produced by various inflammatory cells to facilitate leukocyte 

recruitment (Helmy et al., 2011). While IL-1β and TNF-α are key cytokines that 

initiate inflammatory response, chemokines are important mediators that 

perpetuate and sustain inflammation. Chemokines contain at least four cysteine 

residues that form two disulfide bonds and they are classified based on the 

position of two conserved cysteine residues in the N-terminus. Chemokines are 

divided into four subfamilies; namely CC, CXC, CX3C and C (De Haas et al., 

2007; Jaerve et al., 2012). Chemokine receptors are seven-transmembrane G-

protein coupled receptors that bind to various G-proteins and activate a variety 

of intracellular signaling pathways. Administration of pertussis toxin attenuated 
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most of the chemokine-induced response suggesting the role of Gαi protein in 

mediating effects of chemokines (Murphy, 1996). Notably, promiscuity and 

redundancy are key characteristics of chemokines. This implies that a 

chemokine ligand could stimulate more than one receptors, and multiple 

chemokines could act on a single receptor (Ubogu et al., 2006b). Nonetheless, 

these relationships are generally restricted to within chemokine subfamilies 

(Ubogu et al., 2006b).  

 

1.2.5.1 CC-chemokines 

This is the largest group among the chemokine subfamilies (Kiguchi et 

al., 2012). Most members from this subfamily exhibit chemotactic to 

mononuclear cells (monocytes, macrophage, and lymphocytes), eosinophils, 

basophils, NK cells (Jaerve et al., 2012). CCL-2 and CCL-5 are very well 

characterized in this subfamily. While neuroprotective role of CCL-2 and CCL-

5 has been suggested (Chiu et al., 2010; Tripathy et al., 2010), compelling 

evidences point towards their involvement in exacerbating neurological 

diseases such as multiple sclerosis (MS). CCR2 has been has been reported to 

play a necessary and non-redundant role in the pathogenesis of experimental 

autoimmune encephalomyelitis (EAE); an animal model of MS characterized 

by substantial infiltration of mononuclear cells (Izikson et al., 2000). Although 

CCL-2, CCL-7 and CCL-8 can activate signal transduction pathways through 

CCR2, CCL-2 is believed to be most potent inducer of leukocyte transmigration 

(Sozzani et al., 1994). On the other hand, CCL-5 is found robustly elevated 

among the cytokines and chemokines measured in EAE (Brambilla et al., 2009). 

Treatment with antibody against CCL-2 or CCL-5 in EAE inhibited leukocyte 
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adhesion to the brain microvasculature (Dos Santos et al., 2005). Furthermore, 

mice with CCR2-/-  failed to upregulate chemokines CCL-5, CCL-2, CXCL-10, 

chemokine receptors CCR1, CCR2, and CCR5 expression and had no evident 

influx of mononuclear cells, indicating the importance of chemokines and 

chemokines receptors in mediating leukocyte influx and EAE development 

(Izikson et al., 2000).  Chemokine expression level also has implication in the 

disease course as CCL-5 403*Gly polymorphism that produces lower amount 

of CCL-5 reduces risk of severe axonal damage while high-producer allele 

CCL-5 403*Ala is associated with poorer clinical outcomes (Van Veen et al., 

2007). 

In addition to the chemoattraction of leukocytes, chemokines also 

potentially exacerbate neuroinflammation by promoting chemotactic migration 

of microglia, activating microglia and astrocytes, and inducing expression of 

proinflammatory mediators. Several studies showed that CCL-2 and CCL-5 

overexpression induced chemotactic migration of microglia to amyloid plaque 

(Huang et al., 2009; Huang et al., 2010; Yamamoto et al., 2005). Interestingly, 

microglia accumulation at the site of amyloid plaque did not promote Aβ 

clearance, instead it increased fibrillary Aβ deposit (Yamamoto et al., 2005). 

Role of chemokines in mediating microglia and astrocytes activation has also 

been implicated in CCL3-/- and CCR5-/- mice. These animals exhibited 

decreased reactive astrogliosis and microgliosis in the hippocampus upon Aβ1-

40 intracerebroventricular injection that is associated with reduced NF-κB 

activation, Cox-2 and iNOS expression, and macrophage chemotaxis. Cognitive 

deficit and synaptic dysfunction are also attenuated in these animals (Passos et 

al., 2009). Furthermore, chemokines are potent inducer of other inflammatory 
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mediators. For instance, CCL-5 could elevate expression of 

cytokines/chemokines such as CXCL-1, CXCL-2, CCL-2, CCL3, TNF-α, IL-6 

and adhesion molecule ICAM-1 in astrocytes (Luo et al., 2002).  

1.2.5.2 CXC-chemokines 

CXC chemokines are further divided into ELR-positive or ELR-

negative depending on the presence of an glutamic acid-leucine-arginine (ELR) 

motif at the N-terminus of the chemokine (Ambrosini et al., 2004). ELR-CXC 

chemokine like CXCL-1 (KC), CXCL-2 (MIP-2), CXCL-5 (lix), and CXCL-8 

(IL-8) are potent angiogenic factors (Strieter et al., 1995). They act explicitly 

on neutrophils and bind to CXCR1 and CXCR2 receptors (Rossi et al., 2000). 

Primary injury after stroke, brain trauma or spinal cord lesion is followed by 

infiltration of leukocytes that mediates secondary degeneration events, causing 

further damage to the brain (Jaerve et al., 2012). CXCL-1 and CXCL-2 have 

been implicated in aggravating CNS injury by promoting transmigration of 

monocytes and neutrophils into the CNS. Spinal cord injury rapidly induced 

CXCL-1 and CXCL-2 secretion from astrocytes distributed throughout the 

spinal cord and attenuation of their expression remarkably reduced leukocyte 

infiltration which is associated with reduced neuronal death and improved 

motor function recovery (Kang et al., 2011; Pineau et al., 2010). Role of CXCL-

5 in CNS is less studied but it is found upregulated in cerebrospinal fluid (CSF) 

of bacterial meningitis as well as ischemic stroke patients where CXCL-5 is 

involved in neutrophil recruitment and associated with brain infract size 

(Zaremba et al., 2006; Zwijnenburg et al., 2003). 

Non-ELR-CXC chemokines bind to CXCR3, CXCR4, and CXCR5 and 

majority exhibit angiostatic properties with the exception of CXCL-12 (SDF-1) 



35 
 

(Rossi et al., 2000; Strieter et al., 1995).  CXCL-9 (MIG), CXCL-10 (IP-10), 

and CXCL-11 (I-TAC) share the common receptor CXCR3 receptor and recruit 

monocytes, T cells, and NK cells. These chemokines are strong angiostatic 

factors, inhibiting endothelial cell chemotaxis and neovascularization (Strieter 

et al., 1995). Injection of CXCL-9 and CXCL-10 into tumour resulted in tumour 

regression associated with increased tumour cell necrosis, T cell recruitment 

and angiogenesis inhibition (Angiolillo et al., 1995; Sgadari et al., 1996; 

Sgadari et al., 1997). Consistent with these findings, Glaser et al. (2004) also 

reported active role of CXCL-10 in vasculature remodeling and its upregulation 

after spinal cord injuries inhibited angiogenesis and reduced blood flow to the 

injury site (Glaser et al., 2004). Besides that, CXCL-10 promoted apoptosis and 

prevented corticospinal axon sprouting (Glaser et al., 2006). This was probably 

mediated through intracellular Ca2+ elevation that released cytochrome C from 

mitochondria which subsequently activated apoptosis (Sui et al., 2006). While 

elevation of CXCL-9 and CXCL-10 may diminish tumour growth, upregulation 

of these chemokines upon CNS lesion may be detrimental as they could 

exacerbate neuroinflammation by recruiting leukocytes into CNS, induce 

neuronal death and also prevent tissue repair by inhibiting angiogenesis and 

neovascularization (Keeley et al., 2011).       

1.2.5.3 CX3CL and C chemokines 

CX3C chemokine and C chemokine are two small chemokine 

subfamilies, having only one and two members respectively. CX3CL-1, also 

commonly known as fractalkine, is the only member identified in the CX3C 

subfamily so far. Unlike other chemokine receptors, CX3CL-1 is the only 

known ligand for CX3CR1 (Jaerve et al., 2012). In the CNS, CX3CL-1 is 
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constitutively expressed in neurons while its receptor is preferentially expressed 

in microglia, suggesting instrumental role of CX3CL-1 in regulating microglial 

activity (Briones et al., 2014). Neuroprotective properties have been 

demonstrated in ischemic stroke and inhibition of CX3CL-1/CX3CR1 signaling 

in hippocampus aggravates microglia activation, pro-inflammatory cytokines 

release, and cognitive impairment (Briones et al., 2014). In addition, CX3CR1 

receptor knockdown enhanced tau phosphorylation and aggregation upon LPS 

stimulation (Bhaskar et al., 2010). Meanwhile, several contradictory findings 

were reported, pointing towards detrimental role of CX3CL-1. CX3CR1 

deficiency in AD transgenic mice model was associated with reduced neuronal 

loss, microglial and astrocytes activation, cytokines expression (TNF-α and 

CCL-2), enhanced Aβ uptake and decreased amyloid deposits (Fuhrmann et al., 

2010; Lee et al., 2010; Liu et al., 2010). In an ischemia stroke model however, 

attenuating CX3CL-1 signaling by CX3CL-1 or CX3CR1 knockdown both did 

not result in microglia neurotoxicity but rather substantially reduced infarct size, 

cytokines expression (IL-1β and TNF-α), and leukocyte infiltration (Dénes et 

al., 2008; Soriano et al., 2002). Detrimental effects of CX3CL1 on microglia 

activation are evident as attenuation of CX3CL-1/CX3CR1 signaling with 

antibodies or gabapentin; a recommended first-line treatment for multiple 

neuropathic conditions, inhibited microglia activation arise from epileptic 

seizure or monoarthritis respectively (Ali et al., 2015; Yang et al., 2012).  

C chemokines subfamily is consists of XCL-1 and XCL-2. They have 

only one cysteine in the N-terminus and induce chemoattractant activities on T 

cell and NK cells (Ubogu et al., 2006b). XCL-1 can be produced by astrocytes, 

microglia, and monocytes. HIV-1 trans-activator of transcription (Tat) protein 
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has been reported to upregulate XCL-1 expression, consequently increased T 

cell infiltration into the brain, suggesting pathogenic function of XCL-1 in the 

development of HIV-induced neurological disorders (Kim et al., 2004a). 

Nevertheless, little is known about the role of this subfamily and further studies 

are required. 

Collectively, it is evident that chemokines play a critical function in 

pathogenesis of various neurological disorders by orchestrating leukocytes 

transmigration. Notably, chemokines are versatile proteins with the ability to 

induce expression of other proinflammatory cytokines/chemokines, adhesion 

molecules, mediate gliosis, promote neuronal death, inhibit angiogenesis, and 

facilitate microglia migration in addition to chemoattractant activities on 

peripheral leukocytes. Several chemokine receptor blockers have been designed 

and are currently being examined in vitro, in animal models, and in early clinical 

trials. BX471, a novel CCR1 antagonist is a potent, selective, orally available 

agent that is safe in Phase I clinical trials for MS. Unfortunately, it failed the 

larger Phase II clinical trials (Ubogu et al., 2006b). TAK779 is a quaternary 

ammonium salt that antagonizes the binding of chemokine ligands to CCR5 and 

CXCR3 receptors, making it a potential therapeutic for MS (Gao et al., 2003). 

However, it is limited by its poor oral absorption and rapid elimination (Ubogu 

et al., 2006b). On the other hand, a broad spectrum inhibitor of CC and CXC 

chemokines, NR58–3.14.3, has been documented to successfully reduce infarct 

size and improve neurological functions in animal model of ischemic stroke 

(Beech et al., 2001). As  dysregulation of cytokines and chemokines is a key 

feature in the development of neuroinflammation and neurodegeneration (Glass 

et al., 2010; Smith et al., 2012), molecules that target cytokines and chemokines 
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signaling may appear to be potential therapeutic for a variety of neurological 

diseases.  

1.2.6 Reactive oxygen/nitrogen species 

In neuroinflammatory diseases, proinflammatory mediators may cause 

a redox imbalance with production of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS). ROS that predominantly responsible for 

oxidative stress are superoxide (O2
-), hydrogen peroxide (H2O2), and hydroxyl 

radical (HO-) while RNS includes nitric oxide (NO). Reaction between O2
- and 

NO generates peroxynitrite (ONOO-), a strong oxidant that is highly cytotoxic 

(Fischer et al., 2015). While oxidative stress at low level is important for brain 

homeostasis and elimination of invading pathogens, high level of ROS/RNS is 

implicated is the pathogenesis of various neurological disorders such as 

neurodegenerative diseases and stroke (Kraft et al., 2011). Despite its relatively 

small size, representing only 2% of the body weight, the human brain accounts 

for 20% of the oxygen and thus energy consumption by the body. Due to high 

oxygen consumption and abundance of polyunsaturated fatty acids in neuronal 

lipid membrane which are susceptible to free radical attack, CNS is especially 

vulnerable to excessive generation of ROS/RNS (Kraft et al., 2011). 

1.2.6.1 Source of ROS/RNS 

O2
̄ is produced in by complex I and complex III in the electron transport 

chain during mitochondria activity and O2
̄ can be converted by SOD to produce 

H2O2 which can be a source of the highly reactive HO ̄. Thus, mitochondria 

dysfunction in the pathological conditions could release copious amount of 

ROS, causing oxidative damage in the CNS (Hroudová et al., 2014). Alternative 

source of ROS/RNS comes from NADPH oxidases (NOX) and NO synthases 
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(NOS), particularly NOX2 and iNOS. Activated microglia and astrocytes 

induce expression of NOX2 and iNOS, resulting in high level of O2
̄ and NO 

respectively (Fischer et al., 2015). NOX is a multi-protein complex that 

catalyzes production of O2
̄ from oxygen and plays an instrumental role in host 

defense against pathogens by mediating rapid O2
̄  respiratory burst (Block et al., 

2007). Recent research supports emerging role of NOX2 in neurodegeneration. 

Activation of NOX2 is found in the patients’ brain with AD. Moreover, 

elevation of NOX2 induces neuronal cell death while NOX-2 deficient 

diminishes ischemic stroke injury (Infanger et al., 2006; Zekry et al., 2003). 

Elevation of extracellular glutamate can trigger excessive NMDA receptor 

activity that induces Ca2+ influx which in turn activates NOS resulting in 

overproduction of NO (Lipton et al., 2007).   

1.2.6.2 ROS/RNS damaging effects on CNS 

ROS/RNS causes damage to many cellular components including lipids, 

proteins, and DNA. Lipid peroxidation disrupts membrane fluidity and 

produces reactive aldehydes like 4-hydroxylnonenal (4-HNE) that is highly 

neurotoxic (Ran et al., 2006). Free radicals also triggers protein misfolding and 

contributes to neuronal injury and death. For instance, NO induces S-

nitrosylation of protein disulfide isomerase (PDI), an enzyme in endoplasmic 

reticulum that catalyzes proper protein folding, consequently leads to protein 

misfolding and accumulation (Lipton et al., 2007). Dysfunction of the ubiquitin-

proteasome system induced by ROS/RNS abolishes protein degradation and 

further aggravates accumulation of misfolded protein (Gao et al., 2012). As a 

consequence of oxidative stress, disrupted mitochondria integrity causes 

reduction in ATP production and enhances more ROS release from 
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mitochondria (Gao et al., 2012). Besides that, ROS is deleterious as it impedes 

tissue repair and regeneration by inhibiting neurogenesis (Taupin, 2010). 

Furthermore, oxidative stress induces sustained activation of NF-κB and MAPK 

signaling pathways that promote neuronal cell apoptosis and propagate 

neuroinflammation through cytokines/chemokines production (Deng et al., 

2003; Kaltschmidt et al., 1997; Zhuang et al., 2000). It is worth noting that 

neuroinflammation and oxidative stress are often featured in various 

neurological disorders. Both are known to work hand-in-hand to exacerbate 

neuroinflammation and neurodegeneration. Thus, therapeutic approaches that 

attenuate both processes will be potential treatments for various CNS diseases 

characterized by dysregulated neuroinflammation. 

1.2.7 Nrf2 as the key mediator of antioxidant response 

1.2.7.1 Nrf2 activation mechanism 

NF-E2-related factor 2 (Nrf2) is a basic leucine zipper transcription 

factor that plays a fundamental role in the cellular defense against oxidative 

stress. Nrf2 expression is maintained at low level under basal condition by 

interacting with Kelch-like ECH-associated protein 1 (Keap1) homodimer. In 

the absence of oxidative stress, Keap1 sequesters Nrf2 at the cytosol and acts as 

an adaptor for cullin-3 (Cul3) E3 ubiquitin ligase. Binding of Nrf2 to Keap1 is 

mediated by two distinctive binding motifs located at Neh2 domain of Nrf2; the 

ETGE motif that binds with high affinity and DLG with low affinity. These two 

binding sites hold Nrf2 into place to facilitate poly-ubiquitination at the Neh2 

domain by Cul3. The ubiquitinated Nrf2 is subsequently degraded by 26S 

proteasome, ensuring low expression level of Nrf2 (Bryan et al., 2013). In the 

presence of electrophiles, certain cysteine thiol groups in Keap1 react with 
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oxidants resulting in formation of disulfide bonds and thus conformational 

changes. This in turn causes release of Nrf2 from the low affinity binding site 

and impede ubiquitination of Nrf2. Nrf2 escapes from the Keap1-dependent 

degradation and translocate into the nucleus. It heterodimerizes with small 

masculoaponeurotic fibrosarcoma (Maf) proteins that facilitates Nrf2 binding 

to antioxidant response element (ARE) at the promoter of Nrf2-regulated gene 

and results in cytoprotective genes transcription (Bryan et al., 2013). Nrf2 

contains high percentage of serine, threonine, and tyrosine residues which allow 

several signaling kinases to act upon (Rojo et al., 2012). Protein kinase C (PKC) 

has been shown to phosphorylate Nrf2 at Ser40 in the Neh2 domain, disrupting 

the Keap1/Nrf2 interaction and promotes nuclear accumulation of Nrf2 (Huang 

et al., 2002; Niture et al., 2009). Nonetheless, Bloom and colleagues reported 

that although Ser40 phosphorylation promotes Nrf2 release from Keap1, it is 

not required for Nrf2 nuclear localization or transcriptional activities (Bloom et 

al., 2003). Thus, it is still debatable if phosphorylation of Ser40 is essential for 

Nrf2 activation and more investigation is required to elucidate its role in Nrf2 

activation.  

1.2.7.2 Nrf2-regulated genes 

Nrf2 activates a battery of detoxifying enzymes and antioxidant proteins 

including heme oxygenase-1 (HO-1), NAD(P)H:quinine oxidoreductase 

(NQO1), glutathione S-transferase (GST), and peroxiredoxin1 (Prx1) (Hun Lee 

et al., 2013). High expression of heme oxygenase in the CNS, a system that does 

not actively engage in red blood cell metabolism, proposes instrumental role of 

this enzyme in the CNS. CNS conditions that is accompanied with oxidative 

stress strongly elevates expression level of the inducible HO-1 (Jazwa et al., 
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2010). HO-1 is involved in the first step of heme metabolism, deterring heme-

mediated free radical production especially during conditions like hemorrhagic 

stroke and trauma that release hemoglobin into the CNS (Chen et al., 2003). 

HO-1 catalyzes degradation of heme to yield CO, ferrous iron (Fe2+), and 

biliverdin which is then converted to bilirubin by biliverdin reductase. 

Endogenously generated CO has important biologic activities like neuronal 

transmission and maintenance of cerebral vasculature (Kraft et al., 2011). 

Bilirubin is a potent antioxidant which is able to inhibit lipid peroxidation better 

than antioxidants like vitamin E (α-tocopherol).  

NQO1 catalyzes two-electron reduction of quinones to hydroquinones, 

preventing the deleterious one-electron reduction of quinones by other 

reductase that generate ROS as a result of redox cycling of reactive semiquinone 

(Vasiliou et al., 2006). Interestingly, induction of NQO1 expression reduced the 

glutamate toxicity in neuronal cell line that leads to glutathione depletion and 

oxidative stress (Murphy et al., 1991). As ROS/RNS is strongly implicated in 

the pathology of neuroinflammatory diseases, activating Nrf2 signaling and 

upregulating antioxidant proteins can be neuroprotective and protect against 

oxidative damage. 

1.3 Implication of inflammation in neurological disorders 

1.3.1 Neurodegenerative diseases  

Neurodegeneration usually progresses with a chronic neuropathy 

characterized by selective loss of neurons. The most common 

neurodegenerative disease is Alzheimer’s disease (AD). AD patients develop 

memory deficit and cognitive decline due to neurodegeneration that occurs 

predominantly at hippocampus and neocortex. Parkinson’s disease on the other 
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hand is a degenerative disorder that affects the dopaminergic neurons in the 

substantia nigra which causes manifestation of the cardinal motor symptoms 

(Glass et al., 2010). Protein aggregation is the disease hallmark shared by both 

disorders. AD is characterized formation of amyloid beta (Aβ) aggregates 

produced by proteolytic cleavage of amyloid precursor protein (APP) by β-

secretase and γ-secretase. Neurofibrillary tangles generated from aggregates of 

hyperphosphorylated tau protein are also generally found in the neurons of AD 

patients. In PD, α-synuclein accumulates and forms protein aggregates known 

as Lewy bodies (Glass et al., 2010).   

Neuroinflammation is implicated in the disease initiation and 

propagation of AD/PD. Both Aβ and α-synuclein are known to engage and 

activate TLRs, particularly TLR2 in microglia and astrocytes and induce 

production of inflammatory mediators (Fischer et al., 2015). Activation of 

TLRs initiates NF-κB signaling which leads to secretion of 

cytokines/chemokine and adhesion molecules that facilitate leukocyte 

recruitment to the CNS. NF-κB induction of COX-2 expression and 

prostaglandins production also further enhance leukocyte infiltration (Fischer et 

al., 2015). Moreover, NF-κB immunoreactivity is found to be significantly 

elevated in the diffuse Aβ plaques in AD patients (Ferrer et al., 1998; 

Kaltschmidt et al., 1997) as well as in the nuclei of mesencephalic dopaminergic 

neurons of PD patients (Camandola et al., 2007; Hunot et al., 1997), supporting 

the role of NF-κB activation in the pathophysiology of neurodegenerative 

diseases.  

Expression of proinflammatory cytokines and chemokines is evident in 

patients with AD/PD pathology. Studies showed that IL-1β and TNF-α can 
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induce γ-secretase activity and increase production of Aβ (Liao et al., 2004). 

High level of TNF-α also substantially increases Ca2+-dependent release of 

glutamate from astrocyte which potentially leads to neuronal excitotoxicity 

(Rossi, 2015). Several reports demonstrated that CCL-2 and CCL-5 

overexpression promotes chemotactic migration of microglia to amyloid plaque 

(Huang et al., 2009; Huang et al., 2010; Yamamoto et al., 2005). Nonetheless, 

microglia accumulation at the site of amyloid plaque did not enhance Aβ 

clearance, instead increased fibrillary Aβ deposit (Yamamoto et al., 2005). 

Interestingly, neutralizing CCL-5 with antibodies abrogated Aβ deposit 

enlargement (Huang et al., 2009). Role of CCL-5 in PD has also been described 

in hemiparkinsonian monkeys, enhancing dopaminergic neuronal loss by 

mediating T cell infiltration to the substantia nigra (Roy et al., 2015). 

Furthermore, attenuating CX3CL-1 signaling in AD transgenic mice model 

conferred protection to neurons, reduced glia activation, cytokines expression, 

increased Aβ uptake and decreased amyloid deposits, indicating importance of 

chemokines in mediating disease pathology (Fuhrmann et al., 2010; Lee et al., 

2010; Liu et al., 2010). 

Oxidative stress also appears to be a major determinant of 

neurodegenerative disease pathogenesis and progression. Activation of NF-κB 

promotes oxidative stress by inducing NOX2 and iNOS expression that result 

in generation of O2
̄ and NO by microglia as well as astrocytes (Fischer et al., 

2015). Aβ and mutated α-synuclein proteins can cause mitochondria 

dysfunction and release large amount of ROS, disrupting redox balance in the 

CNS (Hroudová et al., 2014). Oxidized α-synuclein in turn induces chronic 

activation of glia cells, creating a feedforward state that aggravates oxidative 
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damage and thus progressive neuronal loss (Fischer et al., 2015). Neurotoxic 

product of lipid peroxidation like 4-HNE has been reported to upregulate β-

secretase expression through JNK and p38 activation, thereby promoting Aβ 

generation (Tamagno et al., 2005). Furthermore, persistent activation of JNK 

has been associated with tau hyperphosphorylation and Aβ oligomerization, 

underscoring the role of stress-induced kinases in mediating disease 

development and progression (Ploia et al., 2011; Sclip et al., 2011).  

1.3.2 CNS trauma 

CNS trauma encompasses stroke, brain trauma and spinal cord injury. 

Stroke is one of the leading cause of death in industrialized countries while brain 

trauma is a common cause of disability and death among children and young 

adults (Bramlett et al., 2004). Stroke is a cerebrovascular accident that occurs 

when blood supply to the brain is disrupted or severely reduced, leading to brain 

cells death due to oxygen and nutrients deprivation, whereas external 

mechanical force causes injury to the brain or spinal cord. In CNS trauma, both 

the initial insult and the subsequent secondary degenerative processes magnify 

the initial tissue damage resulting in neurological dysfunction (Jaerve et al., 

2012).    

Activation of NF-κB is evident in stroke and CNS trauma. Importance 

of NF-κB activation in potentiating neuroinflammation and neuronal damage is 

depicted in IKKβ knockout animal studies. Attenuating NF-κB signaling 

reduced infarct size of ischemic stroke (Herrmann et al., 2005) and attenuated 

neuronal damage and motor activity deficits in traumatic spinal cord injury 

(Kang et al., 2011). Elevated TNF-α and IL-1β cytokines also promote 
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astrocytes and microglia activation and induce release of excitotoxic glutamate 

from astrocytes (Basu et al., 2002; Ye et al., 2013).  

Upregulation of various CC and CXC chemokines were reported in 

stroke, brain and spinal cord injury. This is particularly crucial as post-traumatic 

infiltration of leukocytes has been associated with secondary tissue damage and 

neuronal death (Jaerve et al., 2012). Indeed, elevation of CXCL-5 in the CSF of 

ischemic stroke patients increases neutrophil recruitment which correlates with 

infarct size (Zaremba et al., 2006). NR58–3.14.3 peptide, a broad spectrum 

inhibitor of CC and CXC chemokines decreases neuroinflammation and infarct 

volume of cerebral ischemia (Beech et al., 2001). Deleterious effects of 

chemokines have also been reported in spinal cord lesion studies. Gonzalez et 

al. demonstrated that CXCL-10 attenuation reduced T-cell infiltration, 

prevented secondary tissue damage and improved motor function (Gonzalez et 

al., 2003). Treatment with reparixin, a recently identified inhibitor that blocks 

CXCR1 and CXCR2 receptors substantially abolished neutrophil influx, 

astrocyte proliferation, and expression of cytokines (IL-1β, TNF-α, IL-6, and 

CXCL-2) after spinal cord injury (Gorio et al., 2007). 

Absence of functional NOX has been reported to improve ischemic 

stroke outcome indicating ROS in mediating neuronal damage (Block et al., 

2007). In addition, elevation of iNOS activity and NO level has been reported 

in cerebral ischemia model (Del Zoppo et al., 2000). ROS like superoxide can 

react with NO to form the highly reactive peroxynitrite and cause further 

cellular damage. Upregulation of adhesion molecules like P-selectin and ICAM-

1 in ischemic stroke sustained for up to 24 hours after reperfusion, supporting 
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the role of inflammatory cells infiltration in mediating secondary tissue damage 

(Del Zoppo et al., 2000). 

1.3.3 Brain infection- bacterial meningitis 

Bacterial meningitis is caused by peripheral bacterial infection that 

invades into meninges and causes inflammation in the arachnoid membrane and 

subarachnoid space. In many cases, the inflammatory process will spread from 

meninges to other brain parenchyma, the ventricles, and spinal cord 

(Kastenbauer et al., 2001; Swartz, 1984). The most common pathogens of 

bacterial meningitis in both children and adults are Streptococcus pneumoniae, 

Neisseria meningitides, and Hemophilus influenza (Ramesh et al., 2013). 

Bacterial meningitis requires immediate medical attention and treatment as 

CNS infection could be life-threatening causing memory deficits, edema, 

hearing loss, cerebral palsy, and seizures (Nelson Jr, 2006). Patients surviving 

bacterial meningitis showed cognitive slowness, poor performance in execution 

and linguistic functions as well as learning/memory tests even if they were 

clinically well recovered (Schmidt et al., 2006; Van De Beek et al., 2002).  

Bacterial invasion and release of PAMPs elicit a strong immune 

response, promoting inflammation, leukocyte recruitment and glia cells 

activation. Neuroinflammatory response in meningitis represent a “double-

edged sword”. While it is crucial to eliminate invading pathogens, excessive 

release of proinflammatory mediators can contribute to tissue damage (Braun et 

al., 2001). Activated microglia and astrocytes release cytokines/chemokines, 

free radicals, excitatory glutamate and proteases that mediates inflammatory 

processes, ultimately leads to neuronal death (Gerber et al., 2010). Bacteria and 

endotoxin like LPS activates microglia and astrocytes to rapidly produce IL-1β 
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and TNF-α which in turn initiate a cascade of secondary cytokines and 

chemokines to propagate inflammatory response (Van Miert, 1995).  

Bacterial meningitis is characterized by the infiltration of peripheral 

leukocytes into the subarachnoid space and their subsequent activation (Ramesh 

et al., 2013). Various chemokines including CCL-2, CCL-3, CCL-5, CXCL-1, 

and CXCL-2, CXCL-5 are upregulated during meningitis (Hanisch et al., 2001; 

Rock et al., 2004a; Zwijnenburg et al., 2003).  High levels of CXCL-5 was 

detected in the CSF of patients with bacterial meningitis, and CXCL-5 was 

shown to facilitate neutrophils transmigration to the CNS (Zwijnenburg et al., 

2003). Antibodies neutralizing CXCL-2 and CCL-3 mitigate neutrophil 

recruitment while CCL-2 neutralization attenuated macrophage infiltration, 

suggesting chemokine as a potential target for therapeutic intervention to inhibit 

leukocyte-mediated neuroinflammation in bacterial meningitis (Diab et al., 

1999).   

Moreover, MMPs and ROS expression are upregulated as a host defense 

response during bacterial meningitis. CSF concentrations of MMP-8 and MMP-

9 are remarkably higher in children with bacterial meningitis that develop 

neurological sequealae compared to those who have gained full recovery (Meli 

et al., 2003). MMPs produced by the resident brains cells have been suggested 

to mediate neuroinflammation and BBB dysfunction, and neuronal death (Meli 

et al., 2003). Hsieh et al. showed that lipoteichoic acids (a main constituent of 

Gram-positive bacteria) upregulated MMP-9 expression in astrocytes through a 

NF-κB-dependent pathway and promoted cell migration of astrocytes. In 

addition, various cytokines, ROS, and endotoxins have been demonstrated to 
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upregulate MMP-9 in astrocytes, indicating participation of astrocytes in 

mediating meningitis pathology through MMP-9. 

1.4 Rationale for novel therapeutics against neurological diseases 

Development of effective treatments for neurological disease has been 

challenging and with low success rate. This is mainly ascribed to the complexity 

of the CNS; a tendency for CNS drug to cause CNS-mediated side effects such 

as dizziness, nausea, and seizure, and tight-regulation of BBB; where most 

drugs failed to penetrate into the brain or reach a sufficient concentration to 

elicit desired effects (Pangalos et al., 2007). Nonetheless, several therapeutics 

are available to treat of neurodegenerative diseases, stroke, and bacterial 

meningitis. Their benefits and limitations are described here.  

1.4.1 Alzheimer’s Disease 

Currently available treatments for AD are acetylcholinesterase 

inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonist, memantine. 

Memantine also seems to benefit PD patient as reported in a double-blind, 

placebo-controlled, multicenter trial (Aarsland et al., 2009). Although 

acetylcholinesterase inhibitors and memantine, used alone or in combination 

improves disease symptoms and cognition test, very often their effectiveness 

decreases as AD progresses (Potter, 2010). This leads to the search for new AD 

therapeutics and anti-inflammatory agents appear as a potential new approach 

due to the increasing evidence implicating neuroinflammatory processes in 

pathogenesis of AD. One of such approaches include inhibition of inflammatory 

response with the use nonsteroidal anti-inflammatory drugs (NSAIDs) which is 

a cyclooxygenase (COX) inhibitors. NSAIDs inhibition on COX attenuates the 
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formation of proinflammatory mediator, prostaglandins from arachidonic acids 

(Krause et al., 2010). Prospective cohort study with 6989 subjects revealed that 

long-term use to NSAIDs protect against AD (In T' Veld et al., 2001). Another 

study performed by Szekely et al. reported similar but mainly in individuals 

with ApoE4 (Szekely et al., 2008). Nonetheless, not all trials demonstrated 

positive outcomes. NSAIDs like celecoxib and ibuprofen did not show 

significant improvement in cognitive function (Potter, 2010). Moreover, use of 

NSAIDs increase risk of gastrointestinal and cardiovascular complications. The 

side effect is mainly due to its non-selective inhibition on COX-1 and therefore 

depletion of COX-1-derived prostaglandins that serves protective role in 

stomach mucosa (Sostres et al., 2010).  

Another prospective approach to treat AD is to target TNF-α signaling 

using etanercept, a fusion protein that function as decoy receptor for TNF. A 

clinical pilot study involving individuals with mild-to-severe AD who received 

perispinal administration of etanercept (25-50 mg) once weekly for a period of 

six months claimed detectable cognitive improvement compared to individuals 

that received placebo (Tobinick et al., 2006). However, discrepant findings 

were reported in recent clinical trials. In a double-blind study, patients with mild 

to moderate AD were recruited and treated with subcutaneous etanercept (50 

mg) once a week over a period of 6 months. Although etanercept was well 

tolerated by the participants, no significant changes in cognitive function and 

behavior were detected (Butchart et al., 2015). Thus, etanercept need to be 

examined in a bigger and more heterogeneous group to determine its efficacy 

in treating AD.    
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1.4.2 Ischemic stroke    

Tissue plasminogen activator (tPA) is the only FDA approved treatment 

for ischemic stroke. It is a serine protease that improves blood flow to the 

affected area by dissolving blood clots. tPA may increase the chances of 

recovery if given within 3 hours (or sometimes up to 4.5 hours) after stroke 

event. Due to its side effects like bleeding and short therapeutic time window, 

and also low efficacy of other therapies like heparin, aspirin, and dipyridamole, 

new therapeutic approaches are critically needed (Turley et al., 2005). 

Interestingly, medical approaches targeting inflammatory processes seem 

promising. Minocycline, an antibiotic that exerts anti-inflammatory properties 

protects neuron against ischemic insult. Oral administration of minocycline 6 to 

24 hours after acute stroke for 5 days is associated with better clinical outcome 

(Plane et al., 2010). It is believed that minocycline mediates neuroprotective 

effects by inhibiting glial activation, ROS/RNS production, caspases, and 

MAPKs (Cai et al., 2010). Minocycline administration in spinal cord injury 

promoted recovery as reported in a pilot study. Nonetheless, sample size of the 

study was small, and conclusions on protective properties may be premature 

(Plane et al., 2010). Furthermore, an observational study involving 629 patients 

with chronic stroke and traumatic brain injury treated with perispinal etanercept 

showed a substantial improvements in cognitive, motor, and behavioral function 

with reduced spasticity and sensory impairment (Tobinick et al., 2012). 

Together, these studies suggest that attenuating neuroinflammation may be a 

promising therapeutic approach to produce clinical improvements in patients 

with CNS trauma.  
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1.4.3 Bacterial meningitis 

Rapid treatment with antibiotics is mandatory in patients suffering from 

bacterial meningitis. Mortality rate of patients with acute bacterial meningitis is 

high and neurologic sequelae among the individuals that survived is common 

(Schmidt et al., 2006; Van De Beek et al., 2002). CSF cultures showed that 

ineffectiveness of antibiotic therapy is unlikely the cause of these undesirable 

neurologic outcomes. Animal studies revealed that antibiotic-induced bacterial 

lysis mediates inflammatory response in the subarachnoid space which may 

explain the unfavorable outcomes (De Gans et al., 2002). Therefore, adjuvant 

treatment with anti-inflammatory agents like dexamethasone, a corticosteroid 

was proposed to reduce inflammation in both CSF and neurologic sequelae 

(Gerber et al., 2010). Clinical studies performed on children (Tunkel et al., 

2002) and adults (De Gans et al., 2002) with bacterial meningitis showed that 

early dexamethasone administration attenuated inflammation in subarachnoid 

space and reduced risk of undesirable outcome. Nevertheless, conflicting results 

were reported in other clinical trials. A more recent meta-analysis of patient data 

from five clinical trials did not find significant benefits in adjunctive treatment 

with dexamethasone, thus benefits of adjunctive dexamethasone in bacterial 

meningitis remain debatable.   

Taken together, therapeutics currently available for treating neurological 

disorders are limited. Drugs like acetylcholinesterase inhibitors and memantine 

only provide temporary symptomatic relieves while use of tPA is only 

applicable to ischemic stroke but not hemorrhagic stroke and has a short 

therapeutic window. Moreover, antibiotics are the only treatment for bacterial 

meningitis which unable to prevent neurologic sequelae that follows after 
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recovery. Due to these reasons, there is an urge for new therapeutic approaches 

to improve disease outcomes. Established research demonstrating the central 

role of neuroinflammation underlying the pathological features of many 

neurological disorder, thus making targeting of inflammatory processes in the 

CNS a promising therapeutic approach. Indeed, some of the new interventions 

such as NSAIDs, etanercept, minocycline, and dexamethasone target on 

inflammatory processes. Nonetheless, their use as a neuroprotectant in CNS 

diseases remains ambivalent as conflicting results has been reported. This 

prompted us to screen for anti-neuroinflammatory compounds that may 

potentially ameliorate neuroinflammatory diseases. Several natural bioactive 

compounds were investigated in the initial study and subsequent findings lead 

us to focus on andrographolide, a lipid soluble labdane diterpenoid that 

penetrates BBB (Bera et al., 2014b; Zheng, 1982) 

1.5 Andrographolide as a potential anti-neuroinflammatory therapeutic 

Andrographolide is a labdane diterpenoid compound derived from the 

herbaceous plant Andrographis paniculata belonging to the Family 

Acanthaceae. A. paniculata is widely known as ‘king of bitters’ and can be 

found throughout tropical and subtropical Asia, south-east Asia and India. The 

herb is also known by various vernacular names. It is known as Kalmegh in 

India; Chuan-Xin-Lian in China; Senshinren in Japan; Fah Tha Lai in Thailand; 

and Hempedu bumi in Malaysia (Lim et al., 2012a). The herb contains 

diterpenoids, flavonoids and polyphenols as the main bioactive components and 

andrographolide (C20H30O5) is the major diterpenoid found in A. paniculata 

(Chao et al., 2010b). A. paniculata is traditionally used to treat a variety of 

ailments, including fever, cough, tuberculosis, snake bites, respiratory tract, and 
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urinary tract infections (Panossian et al., 2002). A double-blind human study 

with oral administration of A. paniculata dried extract relieved cold symptoms 

and improved recovery. In this study, participants were given 1,200 mg/day of 

herb extract for 5 days and no side effects were detected when they were 

monitored for changes in blood counts, liver, heart and kidney functions 

together with other laboratory tests (Hancke et al., 1995). This shows that A. 

paniculata extract has low toxicity and effective against respiratory illnesses 

like flue and cold. These beneficial effects are found mainly attributed to 

andrographolide and its related derivatives (Panossian et al., 2002). In parallel 

with the human study, oral gavage of andrographolide to mice twice daily for a 

period of 7 days revealed that andrographolide has very low toxicity with 

LD50 >4000 mg/kg/day (Chen et al., 2009a).  

 

 

Figure 1.3 Chemical structure of andrographolide. 
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Pharmacologically, andrographolide has been found to have anticancer, 

anti-bacterial, anti-inflammatory, and antioxidative effects (Arifullah et al., 

2013; Lim et al., 2012a; Sheeja et al., 2006). However, there is a dearth of 

studies on the effects of andrographolide in the CNS. Here, I summarized the 

study of andrographolide in the CNS in Table 1.3. All studies reported 

beneficial effects of andrographolide with one exception. Yen et al. (Yen et al., 

2013) found that andrographolide induced cerebral endothelial cell apoptosis 

and enhanced infarct volume in transient middle cerebral artery occlusion 

(tMCAO) mouse model by disrupting the BBB integrity. Nonetheless, Chern et 

al. and Chan et al. reported the opposite with significantly smaller infarct size 

observed in transient MCAO and permanent MCAO animal model respectively 

(Chan et al., 2010; Chern et al., 2011). While andrographolide is well-known 

for its powerful anti-inflammatory activities in the peripheral tissues (Lim et al., 

2012a), few studies were done to address its potential effects on 

neuroinflammation. Of the few studies reported, study focus had been on the 

role of andrographolide in regulating microglial inflammatory response, and its 

effects on astrocyte-mediated neuroinflammation are largely unknown. As 

mentioned earlier, astrocytes are critically involved in mediating 

neuroinflammation. They also express various PRRs that enable them to 

respond to endogenous damage signals and infectious agent by releasing 

proinflammatory mediators like cytokines and chemokines (Bsibsi et al., 2002; 

Farina et al., 2007). Tzeng et al. showed that andrographolide reduced cytokines 

(IL-1β and IL-6) secretion and oxidative stress in TNF-α stimulated primary 

astrocytes (Tzeng et al., 2012). However, it is unclear whether the effects of 

andrographolide extend to astrocytic responses such as chemokine production 
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and astrogliosis. As growing evidence reveals numerous undesired effects of 

reactive astrogliosis  (Sofroniew et al., 2010) and role of chemokines in 

perpetuating and sustaining neuroinflammation (Ramesh et al., 2013; Ubogu et 

al., 2006b), it is particularly interesting to examine andrographolide’s effects on 

astrocytes-mediated chemokines expression.  Furthermore, andrographolide 

administered peripherally has been shown to penetrate the blood brain barrier 

(BBB) due to its high lipid solubility (Bera et al., 2014b; Zheng, 1982), 

indicating its use as a potential therapeutic for neurological disorders where 

detrimental role of astrocytes has been implicated such as brain trauma 

(Minkiewicz et al., 2013), amyotrophic lateral sclerosis (Yamanaka et al., 

2008), AD (Jo et al., 2014; Walker et al., 2006), stroke (Longuemare et al., 

1995; Seki et al., 1999), and cerebral edema (Manley et al., 2000). Therefore in 

my study, I investigated effects of andrographolide on astrocyte activation and 

proinflammatory mediators’ expression with special emphasis on chemokine 

expression in addition to cytokines. 

Antioxidant properties of andrographolide have been proposed in the 

peripheral tissues especially in the liver. Andrographolide was shown to 

attenuate carbon tetrachloride (CCl4)-induced hepatic injury by reducing lipid 

peroxidation, increasing GSH content and HO-1 (Ye et al., 2011). In order to 

establish the genes expression profile regulated by andrographolide, 

Chatuphonprasert et al. performed a microarray analysis on hepatocytes treated 

with andrographolide. Among the 28,853 genes analyzed, 18 genes were 

upregulated and most are detoxifying enzymes and antioxidant protein such as 

glutathione S-transferase (GST), carbonyl reductase (CBR), biliverdin 

reductase (BVR), Nqo1, glutathione peroxidase 2 (Gpx2) and glutathione 
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reductase (Gsr) (Chatuphonprasert et al., 2009). Ability of andrographolide in 

attenuating oxidative stress in the CNS has also been demonstrated in several 

studies (Chern et al., 2011; Das et al., 2009; Zhang et al., 2014). Although the 

antioxidant properties of andrographolide are well-recognized, the underlying 

molecular mechanisms involved are yet unequivocally determined. 

Nevertheless, andrographolide has been proposed to upregulate antioxidant 

enzymes by activating Nrf2 signaling pathway. In fact, many detoxifying 

enzymes upregulated by andrographolide in hepatocytes microarray analysis are 

primarily Nrf2 gene targets. Moreover, Guan et al. also showed that 

andrographolide protected against cigarette smoke-induced oxidative lung 

injury by promoting Nrf2 transcriptional activity of ARE-regulated gene (Guan 

et al., 2013). Notably, of all the 54 natural compounds examined, 

andrographolide had the highest efficacy in activating Nrf2 signaling, 

underscoring its potential as an effective antioxidant compound (Wu et al., 

2014b). While Nrf2 signaling activation is implicated in andrographolide-

mediated antioxidant effects in peripheral tissues like lung (Guan et al., 2013), 

liver (Chen et al., 2014a), macrophage (Zhang et al., 2013), and endothelial (Lu 

et al., 2014), the underlying mechanism of antioxidant effects in the CNS 

mediated by andrographolide is yet elucidated. Hence, in order to examine if 

andrographolide modulates oxidative stress in CNS through Nrf2 signaling, 

astrocytes which is a resident cell in the CNS was used in my study and the 

potential mechanisms involved were investigated. 
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Author 

Cell/ 

Animal 

model 

Stimul-

ant 

Anti-

inflammatory 

effects 

Other effects 

Clinical 

implicati-

on 

(Serran

o et al., 

2014) 

AβPPswe/ 

PS-1 mice 

Endoge

nous Aβ 

deposits 

- 

- ↓ Aβ 

depositions 

and phos-tau 

- ↓ GSK-3β 

- ↑ spatial 

memory 

functions 

AD 

(Tapia-

Rojas et 

al., 

2015) 

Primary rat 

hippocam-

pal neurons 

- - 

- ↑ Wnt/β-

catenin 

signaling 

- ↓ GSK-3β 

Neurodeg

enerative 

diseases 

(Yang 

et al., 

2014) 

C6 
glioblastoma 

- - - ↑ apoptosis 

Glioma 

cancer 
ICR mice 

C6 cells 

s.c 

injection 

- 
- ↓ tumour 

growth 

(Zhang 

et al., 

2014) 

SH-SY5Y 

and primary 

CGNs 

MPP+ 

- ↓ ROS, RNS 

- ↓ NF-κB 

activation 

- ↓ neuronal 

death 

PD 
MPTP 

mouse 

model of PD 

MPTP 

- ↓ phos-p65 

- ↓ NO and 

SOD 

- ↓ SNpc 

dopaminergic 

neuron loss 

- ↓ 

locomotion 

deficit 

(Yen et 

al., 

2013) 

Cerebral 

endothelial 

cells 

- - - ↑ apoptosis 

BBB 

integrity 

in stroke 
Ischemic 

stroke 

mouse 

model 

tMCAO - 
- ↑ infarct 

size 

(Li et 

al., 

2012b) 

U251 & 

U87 
glioblastoma 

- - 

- ↑ G2/M 

arrest 

- ↓ PI3K-Akt 

Glioma 

cancer 

(Tzeng 

et al., 

2012) 

Primary 

astrocytes 
TNFα 

- ↓ IL-1β, IL-6 

secretions  

- ↓ oxidative 

stress  

- ↓ 

chondroitin 

sulfate 

proteoglycan  

Astrocyte-

induced 

inflammat

ion 

PC12 cell 

line 
H2O2 - - ↓ cell death 

Oxidative 

stress 

(Chern 

et al., 

2011) 

Ischemic 

stroke 

mouse 

model 

tMCAO 

- ↓ nuclear 

translocation of 

p65 

- ↓ NO and 

ROS 

- ↓ NOX2, 

iNOS 

- ↓ CD11b 

staining 

- ↓ infarct 

size  

 

Ischemic 

stroke 
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Table 1.3 Andrographolide study in the CNS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mouse BV-

2 microglial  

Oxygen-

glucose 

deprivat

ion 

-↓ PI3K/AKT-

dependent 

degradation of 

IκBα 

- ↓ NO and 

ROS   

- 

(Chan 

et al., 

2010) 

Ischemic 

stroke rat 

model 

 

pMCAO 

- ↓ p65 nuclear 

translocation 

- ↓ IL-1β, 

TNFα, PGE2 

- ↓ microglia 

activation 

- ↓  infarct 

size 

- ↓ 

neurological 

deficits 

Ischemic 

stroke 

(Das et 

al., 

2009) 

Wistar rats Nicotine 

- ↓ NO 

- ↓ oxidative 

stress markers 

- ↑ antioxidant 

enzymes 

- ↑ activity of 

mitochondria

l complexes 

(I–III) 

 

Nicotine-

induced 

disorders 

(Wang 

et al., 

2004) 

Mesencepha

lic neuron-

glia culture 

LPS 

- ↓ microglia 

activation 

- moderately ↓ 

TNFα and 

PGE2 

- attenuate O2
-, 

NO 

- ↓ shortening 

of neurites  

- ↓ 

dopaminergic 

neuron 

degeneration 

PD 

Mouse BV-

2 microglia  
LPS 

- ↓ COX2  

- ↓ iNOS 
- 
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1.6 Aim and hypothesis:  

Neuroninflammation is a prominent feature in various neurological 

disorders, and there is increasing awareness of the pathogenic role played by 

dysregulated inflammatory processes in CNS disorders, leading to the 

advancement of treatment approaches based on immunomodulatory NSAIDs, 

neutralizing antibodies, and corticosteroids. Though some appeared to be 

beneficial, they are often hampered by adverse effects and have variable 

treatment efficacies, thus prompting the need to develop novel, safe and 

effective anti-neuroinflammatory drugs. Andrographolide has emerged as a 

potential candidate due to its low toxicity, ability to cross the blood-brain 

barrier, and more importantly, its inhibitory effects on inflammation has been 

reported in non-neural tissues like lung (Lim et al., 2012a). Much research focus 

on CNS inflammatory processes has been focused on microglia; in contrast, the 

potential role of astrocytes in regulating neuroinflammation is less well-studied. 

In this thesis, I investigated the potential use of andrographolide as an anti-

neuroinflammatory therapeutic in astrocyte-mediated inflammatory responses. 

I hypothesized that andrographolide is a powerful anti-neuroinflammatory 

compound that attenuate multiple inflammatory signaling pathways as well as 

the upregulation of proinflammatory cytokines and chemokines in activated 

astrocytes.  

Therefore, the first aim of this project is to examine andrographolide’s 

efficacy in attenuating NF-κB activation and the expression of its target gene, 

CCL-5 in astrocytes stimulated with IL-1β and TNF-α, in comparison with 

artesunate and plumbagin that has previously demonstrated anti-inflammatory 

effects (Chapter 3). The second aim is to examine andrographolide in more 
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disease relevant conditions like bacterial infection with the use of LPS. Its 

effects on LPS-activated signaling pathways and cytokine/chemokine profile 

will be examined. The potential of orally administered andrographolide in 

attenuating neuroinflammation arise from peripheral bacterial infection will 

also be explored in mouse model with peripheral LPS injection (Chapter 4). 

Lastly, as oxidative stress is an integral part of inflammation, I aim to investigate 

andrographolide’s role in regulating Nrf2 activation, a key transcription factor 

of antioxidant proteins (Chapter 5). 
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CHAPTER 2: MATERIAL AND METHODS 
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2.1 Chemicals and biologics  

Chemicals and biologics used are listed in Table 2.1. Plumbagin was a generous 

gift from A/P Gautam Sethi, Dept Pharmacology, NUS and artesunate was 

kindly provided by A/P Fred Wong Wai-Shiu, Dept Pharmacology, NUS.  

Reagents Source 

Andrographolide, 98% Sigma, MO, USA 

Polyethylene glycol 400 (PEG 400) Sigma, MO, USA 

Human IL-1β Cell Signaling, MA, 

USA 

Human TNF-α Cell Signaling, MA, 

USA 

Rat IL-1β Abcam, Cambridge, 

UK 

Rat TNF-α Abcam, Cambridge, 

UK 

Lipopolysaccharide (LPS) Sigma MO, USA 

TPCK (N-p-Tosyl-L-phenylalanine chloromethyl 

ketone) 

Sigma MO, USA 

SP 600125 (Anthra[1-9-cd]pyrazol-6(2H)-one) Tocris, BS, UK 

SB 202190 (4-[4-(4-Fluorophenyl)-5-(4-pyridinyl)-

1H-imidazol-2-yl]phenol) 

Tocris, BS, UK 

PD 98059 (2-(2-Amino-3-methoxyphenyl)-4H-1-

benzopyran-4-one) 

Tocris, BS, UK 

Cycloheximide Sigma MO, USA 

Table 2.1 Chemicals and biologics used in the study. 

 

2.2 Preparation of Andrographolide 

For in vitro treatment: 

Andrographolide was dissolved in DMSO and concentration of DMSO for cell 

treatment was no more than 0.1%. 

For in vivo mouse treatment: 

Andrographolide was prepared in PEG 400, mixed well before oral 

administration. 
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2.3 Cell cultures 

2.3.1 Mammalian cell line: 

Materials: 

- Human glioblastoma U373 cell line (A kind gift from Dr Michelle Tan, Dept 

Clinical Research, Singapore General Hospital) 

- U373 cell culture media 

 Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, CA, USA) 

 Fetal bovine serum (FBS) (Invitrogen, CA, USA) 

 100 IU/ml penicillin and 100 µg/ml streptomycin (Invitrogen, CA, 

USA) 

- 1X 0.25% Trypsin-EDTA with phenol red (Invitrogen, CA, USA) 

- Freezing media 

 80% DMEM (Invitrogen, CA, USA) 

 10% Dimethyl sulphoxide (DMSO) (Sigma, MO, USA) 

 10% FBS (Invitrogen, CA, USA) 

Methods: 

Human glioblastoma U373 cell line were maintained in DMEM 

supplemented with 10% heat-inactivated FBS, 100 U/ml penicillin and 100 

μg/ml streptomycin at 37 °C in a humidified atmosphere of 5% CO2. Sub-

culturing was performed by passaging confluent cell culture flask with 1X 

trypsin. Excess cells were frozen in freezing media and stored in -80˚C freezer. 

Cell treatment was performed with 10% FBS supplemented media unless 

otherwise stated. 
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2.3.2 Rat primary astrocytes: 

Materials: 

- Primary astrocyte culture media 

 Dulbecco’s Minimal Essential Medium: Nutrient Mixture F-12 

(DMEM/F12)  

 Fetal Bovine Serum (FBS)  

 100 IU/ml penicillin and 100 µg/ml streptomycin 

- 1X Phosphate buffer saline (PBS) 

- 1X 0.25% Trypsin-EDTA with phenol red (Invitrogen, CA, USA) 

- 40 μm nylon cell strainer (BD Falcon, NJ, USA) 

Methods: 

Primary astrocytes cultures were prepared from cortical tissues of 

postnatal day 1–3 Sprague Dawley rats using protocols adapted from A 

dissection and tissue culture manual of the nervous system (Cole et al., 1989). 

This is an established procedure producing primary culture with purity more 

than 98% (Mcleod et al., 1995; Strange et al., 1994). Briefly, isolated cortices 

were separated from the meninges in 1X PBS. 1X PBS was drained out and 

tissues were disassociated with 0.25% trypsin-EDTA and neutralized with three 

parts of culturing media. Disassociated tissues were then filtered through 40 μm 

nylon cell strainer. The resultant filtrate was centrifuged at 200 x g and 

resuspended in DMEM-F12 media supplemented with 10% heat-inactivated 

FBS, 100U/ml penicillin, and 100 μg/ml streptomycin. After 7-9 days of culture 

in a humidified atmosphere with 5% CO2 at 37 °C, astrocytes were enriched by 

vigorously shaking the cell culture flasks at 350 rpm for 2 hours to remove non-

adherent microglial cells. Shaking resume after overnight incubation with 350 
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rpm for another 12 hours to remove oligodendrocytes. The purified astrocyte 

culture was allowed to grow till confluent before plating for cell treatment. Cell 

treatment was performed with 10% FBS supplemented media unless otherwise 

stated. 

 

2.4 Mouse treatment regime: 

Materials: 

- Andrographolide (Sigma, MO, USA) 

- Lipopolysaccharide (LPS) (Sigma, MO, USA) 

- Polyethylene glycol 400 (PEG 400) (Sigma, MO, USA) 

- 1X Phosphate buffer saline (PBS) 

Methods: 

Upon arrival at NUS animal holding unit, ICR mice (male, 20g ± 3g) 

were allowed to acclimatize for 3 days. The animals were subjected to 3 

intraperitoneal injection of LPS (3 mg/kg) and followed by oral gavage of 

andrographolide (25mg/kg or 50mg/kg) 1 hour after each injection. Three LPS 

injection regimen was adopted from Erickson et al. (2011) which has shown to 

elicit robust cytokines and chemokines expression. The time interval of each 

treatment is illustrated in Figure 2.1. Injection and oral administration for each 

treatment groups are indicated in Table 2.2.  

 

 

 

 

Figure 2.1 Mouse treatment regime.  
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Treatment group Injection Gavage 

Control PBS PEG 400 

LPS 3 mg/kg LPS in 

PBS  

PEG 400 

LPS + Andrographolide 

25 mg/kg 

3 mg/kg LPS in 

PBS 

25 mg/kg Andrographolide  

LPS + Andrographolide 

50 mg/kg 

3 mg/kg LPS in 

PBS 

50 mg/kg Andrographolide  

Table 2.2 Mouse treatment groups.  

 

2.5 Preparation of mouse brain tissues 

Materials: 

- IKA® ULTRA-TURRAX® homogenizer (Sigma-Aldrich, MI, USA) 

- Homogenizing buffer 

 50 mM Tris-HCl (Invitrogen, CA, USA) 

 120 mM NaCl (Millipore, MA, USA) 

 5 mM KCl (Sigma, MO, USA) 

 2 μg/mL Pepstatin A (Sigma, MO, USA) 

 cOmplete ULTRA Tablets, Mini, EDTA free protease inhibitor (Roche 

Diagnostics, USA) 

 PhosSTOP EASYpack phosphatase inhibitor (Roche Diagnostics, USA) 

Methods: 

Frozen mouse brain tissues were homogenized with ice cold 

homogenizing buffer at a tissue concentration of 50 mg/ml. Homogenates were 

aliquoted and stored at -80 °C until use. In the preparation for immunoblotting, 

brain homogenates were added with 1:1 ration of boiling laemmli sample buffer 

and heated up to 95˚C for 5 minutes. For Luminex sample preparation, 200 μl 

aliquot of homogenates were agitated at 800 rpm for 40 min on ice and 
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subsequently centrifuged at 6,000 x g for 20 minutes at 4 °C. The supernatant 

was aliquoted and stored at -80 °C until use. 

 

2.6 Subcellular fractionation 

Materials: 

- Nuclear Extract Kit (Active Motif, Tokyo, Japan) 

Methods: 

Subcellular fractionation was performed using Nuclear extract kit 

according to manufacturer’s instructions (Active Motif, Tokyo, Japan). Briefly, 

media was aspirated out of 10 cm culture dish and rinsed with 5 ml ice cold 

PBS/phosphatase inhibitors. Primary cells were harvested and transferred to a 

pre-chilled conical tube. Cell suspension was then centrifuged at 200 x g for 5 

minutes at 4 °C and supernatant was discarded. Cells were resuspended with 1X 

Hypotonic buffer and allowed swelling for 15 minutes on ice. Subsequently, 25 

μl of Detergent was added and followed by vigorous vortex for 10 seconds. 

Upon checking under microscope to ensure complete cell lysis, cell suspension 

was centrifuged at 14,000 g for 30 seconds at 4 °C.  Cytoplasmic fraction 

(supernatant) was transferred into a new tube and nuclear pellet was 

resuspended in 50 μl Complete lysis buffer. Samples were incubated for 30 

minutes on a rocking platform set at 150 rpm at 4 °C before centrifugation at 

14,000 g for 10 minutes at 4 °C. Lastly, supernatant (nuclear fraction) was 

transferred to a new tube and stored at -20 °C until use.     

 

2.7 Immunoblotting 

. Materials: 
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- Lysis buffers 

 Laemmli sample buffer  

Laemmli sample buffer (Bio-Rad, CA, USA) added with 5% β-

mercaptoethanol (BDH, PA, USA) 

 RIPA buffer  

RIPA buffer (Santa Cruz Biotechnology, CA, USA) added with 

cOmplete ULTRA Tablets, Mini, EDTA free protease inhibitor (Roche 

Diagnostics, USA) and phosSTOP EASYpack phosphatase inhibitor 

(Roche Diagnostics, USA) (one tablet each for every 10 ml of RIPA 

buffer) 

- Protein quantification assay 

 Coomasie Plus reagent (Thermo Pierce, MA, USA) 

 Bovine serum albumin (BSA) (Sigma, MO, USA) 

- Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

 Precision Plus Protein™ Dual Color Standards (Biorad, CA, USA) 

 Running buffer (Biorad, CA, USA)  

 Stacking gel 

 Resolving gel 

 Nitrocellulose membrane  

iBlot gel transfer stacks nitrocellulose (Invitrogen, CA, USA) 

 Polyvinylidene difluoride (PVDF) membrane  

iBlot gel transfer stacks PVDF (Invitrogen, CA, USA) 

 HRP substrate (Detection solution) 

Luminata™ Forte (Merck Milipore, MA, USA) 
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Luminata™ Crescendo (Merck Milipore, MA, USA) 

- Blocking buffer 

 5% skim milk in PBST (0.1% Tween 20 (Sigma, MO, USA) in 1X 

PBST)  

- Antibody incubation solutions 

 Primary antibody incubation solution 

5% Bovine serum albumin (BSA) (Sigma, MO, USA) in PBST  

 Secondary antibody incubation solution 

5% skim milk in PBST 

- Stripping buffer  

 10X Reblot Plus Strong Solution (Merck Milipore, MA, USA) diluted 

into 1X solution 

- Primary Antibodies: 

Name Source 
Application 

(dilution) 

Anti-GFAP rabbit pAb Sigma, MO, USA WB (1:10,000) 

ICC (1:200) 

Anti-phospho-NFκB p65 

(Ser536) rabbit mAb 

Cell Signaling, MA, USA WB (1:1,000) 

Anti-NFκB p65 rabbit mAb Cell Signaling, MA, USA WB (1:1,000) 

Anti-phospho-IκBα (Ser32) 

rabbit mAb 

Cell Signaling, MA, USA WB (1:500) 

Anti-IκBα mouse mAb Cell Signaling, MA, USA WB (1:1,000) 

Anti-phospho-JNK 

(Thr183/Tyr185) (81E11) 

rabbit mAb 

Cell Signaling, MA, USA WB (1:1,000) 

Anti-JNK rabbit pAb Cell Signaling, MA, USA WB (1:1,000) 

Anti-phospho-Erk1/2 

(Thr202/Tyr204) rabbit pAb 

Cell Signaling, MA, USA WB (1:1,000) 

Anti-Erk1/2 rabbit pAb 
Cell Signaling, MA, USA WB (1:1,000) 

Anti-phospho-p38 

(Thr180/Tyr182) (D3F9) 

rabbit mAb 

Cell Signaling, MA, USA WB (1:1,000) 

Anti-p38 rabbit pAb Cell Signaling, MA, USA WB (1:1,000) 
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Anti-phospho-Nrf2 (Ser40) 

rabbit mAb 

Abcam, Cambridge, UK WB (1:1,000) 

Anti-Nrf2 (C-20) rabbit pAb Santa Cruz 

Biotechnology, CA, USA 

WB (1:1,000) 

Anti-NQO1 (C19) goat pAb Santa Cruz 

Biotechnology, CA, USA 

WB (1:1,000) 

Anti-HO1 rabbit pAb Abcam, Cambridge, UK WB (1:1,000) 

ICC (1:200) 

Anti-Keap1(E-20) goat pAb  Santa Cruz 

Biotechnology, CA, USA 

WB (1:1,000) 

Anti-EGFR rabbit pAb Cell Signaling, MA, USA WB (1:1,000) 

Anti-Lamin B1 rabbit Ab Abcam, Cambridge, UK WB (1:10,000) 

Anti-TBP mouse mAb Abcam, Cambridge, UK WB (1:5,000) 

Anti-GAPDH mouse mAb Millipore, MA, USA WB (1:5,000) 

Anti-β-actin mouse mAb Sigma, MO, USA WB (1:5,000) 

Table 2.3 List of primary antibodies.  

- Secondary Antibodies: 

Name Source 
Application 

(dilution) 

Anti-rabbit IgG, HRP-

linked goat Ab 

Jackson ImmunoResearch, 

PA, USA 

WB (1:5,000) 

Anti-mouse IgG, HRP-

linked goat Ab 

Jackson ImmunoResearch, 

PA, USA 

WB (1:10,000) 

Anti-goat IgG, HRP-

linked donkey Ab 

Jackson ImmunoResearch, 

PA, USA 

WB (1:5,000) 

Table 2.4 List of secondary antibodies. 

WB- Western Blot; ICC- Immunocytochemistry; IHC- Immunohistochemistry 

 

Methods: 

 Soluble cell lysate 

Cells were lysed either by addition of boiling laemmli sample buffer and 

heated up to 95˚C for 5 minutes. Alternatively, cells were lysed with ice-cold 

RIPA buffer followed by scrapping with a cell scrapper. RIPA lysates were 

further clarified by centrifugation at 16,000 x g for 20 minutes and collection of 

supernatant for protein concentration determination. Lysates were stored in -

20˚C until further use. 
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 Protein Quantification 

Each standard (ranging from 1.41 to 42.3 µg/ml of BSA) and test samples 

were added with 1:1 ratio of Coomasie Plus reagent, mix well and loaded into 

96-well assay plate. The intensity of blue colour developed was read at 595 nm 

using microplate reader (Biotek Flx800). Concentration of the test samples were 

then calculated based on the standard curve generated.  

 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

Samples were electrophoretically separated on 10% polyacrylamide gels 

and transferred onto nitrocellulose membranes (Invitrogen). Blocking of non-

specific binding of primary antibodies was achieved by incubating the 

membrane in blocking buffer (5% milk in PBST) at room temperature for an 

hour. Membranes were then probed with primary antibody  (listed in Table 2.3) 

diluted in PBST with 5% bovine serum albumin (BSA) overnight at 4 °C. 

Following incubation, blots were washed in PBST 3 times, 10 minutes each. 

Membranes were then incubated with respective horse radish peroxidase 

conjugated secondary antibodies (listed in Table 2.4) for one hour at room 

temperature and washed 3 times, 10 minutes each. Immunoblots were visualized 

using HRP substrate (Luminata™ Forte or Crescendo) and quantified by image 

analyser (UVItec Ltd., Cambridge, UK). Some membranes were also stripped 

and re-blotted with a different primary antibody. For detection of housekeeping 

genes (β-actin and GAPDH), membranes were incubated with primary antibody 

for one hour at room temperature.  
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2.8 Immunofluorescence staining 

Materials: 

- Fixative  

 4% paraformaldehyde (Sigma, MO, USA) in 1X phosphate buffered 

saline (PBS) 

- 1X Phosphate buffer saline (PBS) 

- Permeabilizing buffer 

 0.1% Triton-X-100 (Sigma, MO, USA) in 1X phosphate buffered saline 

(PBS) 

- Blocking solution 

 5% BSA (Sigma, MO, USA) in permeabilizing buffer 

- Antibody incubation solution 

 Primary antibody incubation solution 

5% BSA (Sigma, MO, USA) in permeabilizing buffer 

 Secondary antibody solution 

5% BSA (Sigma, MO, USA) in permeabilizing buffer 

- Mounting media 

 Vectashield mounting medium with nucleus-staining 4',6-diamidino-2-

phenylindole (DAPI) (Vector Laboratories, CA, USA) 

- Primary antibodies (refer to Table 2.3) 

- Secondary antibodies  

Anti-mouse IgG Alexa Flour® 488 (Cell Signaling, MA, USA) 

Method: 

Treated primary astrocytes plated on glass coverslips were fixed with 

4% paraformaldehyde/1X PBS for 15 minutes at room temperature, washed 
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trice with 1X PBS, then permeabilized with permeabilizing buffer  for 5 minutes 

in room temperature. The cells were then blocked in blocking solution (5% BSA 

in permeabilizing buffer) for an hour. Subsequently, cells were incubated 

overnight with primary antibodies against GFAP (1:200) or HO-1 (1:200) 

(Table 2.3) in blocking solution at 4 °C. Subsequently, the cell were washed 3 

times with 1X PBS and incubated with secondary antibody (dilution 1:400) for 

one hour in room temperature. Cells were washed 3 times with 1X PBS before 

mounting the coverslips onto glass slides using Vectashield mounting medium 

with DAPI nucleus-staining. Confocal images were taken with Axioplot 

microscope which was equipped with Carl Zeiss 510 confocal imaging scan-

head and software (Carl Zeiss MicroImaging, NY, USA). 

 

2.9 Cell viability and cytotoxicity assays 

Materials: 

- CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) 

(Promega, WI, USA) 

- CytoTox 96® Non-Radioactive Cytotoxicity Assay (LDH) (Promega, WI, 

USA) 

- Muse® Count &Viability Assay (Millipore, MA, USA) 

Methods:  

MTS assay is a colorimetric method to determine the number of viable 

cells in cytotoxicity assays. The MTS tetrazolium compound is reduced by 

NAD(P)H-dependent dehydrogenase into a soluble colored formazan product 

in metabolically active cells. First, cells were plated onto 24-well-tissue culture 

plates at a density of 1x105 cells per well in 500μl media supplemented with 
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0.5% FBS. 100μl of MTS reagent was added per culture well and incubated for 

3 hours at 37˚C. Cell viability was then assessed by measuring the absorbance 

of the formazan product at 490nm using a microplate reader (Biotek Flx800). 

Readings from treatment groups were normalized against control group. 

Cell membrane integrity is assessed using LDH assay which 

quantitatively measures a stable cytosolic enzyme, lactate dehydrogenase that 

was released into the culture supernatant upon cell lysis. Cells were seeded in 

96-well-tissue culture plates at a density of 1x104 cells per well and 100μl of 

0.5% FBS supplemented media was used for treatments. Upon completion of 

treatment, culture supernatant was collected, centrifuged at 16090 x g for 15 

minutes and plated in a new 96-well enzymatic assay plate. On the other hand, 

the adhesive cells were lysed with 50μl lysis buffer per culture well for 45 

minutes in 37˚C. Subsequently, 50μl of Substrate Mix were added into both cell 

lysate and culture supernatant, incubated in 37˚C for 30 minutes. Lastly, 50μl 

Stop Solution was added to stop the reaction and absorbance of the red formazan 

product were read at 490nm using a microplate reader. Readings from treatment 

groups were normalized against control group. 

Cell concentration and viability was determined with Muse Count and 

Viability using Muse™ Cell Analyzer (Millipore, Massachusetts, USA). The 

assay uses dual fluorescent probes that identify nucleated cells from debris and 

live cells from dead or dying therefore providing more accurate cell 

concentration and viability results. The assay was performed according to 

manufacturer’s instructions. 1x105 cells were plated in 24-well plate for 

treatment. Upon treatment, cells were trypsinized and neutralized with culturing 

media. 10μl of cell suspension was mixed with 490μl of Muse Count and 
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Viability reagent, allowed 5 minutes incubation at room temperature before 

reading. Percentage of viable cells were recorded. 

 

2.10 Luminex multiplex platform – Measurement of secreted cytokines  

Material: 

- Milliplex MAP kit  

 Rat Cytokine/Chemokine Magnetic Bead Panel (Merck Millipore, MA, 

USA) 

 Mouse Cytokine/Chemokine Magnetic Bead Panel (Merck Millipore, 

MA, USA) 

Methods:  

Measurement of secreted cytokines were performed using Luminex 

xMAP® based assays according to manufacturer’s instructions (Merck 

Millipore, MA, USA). Briefly, the 0.5% FBS supplemented media of U373 cells 

and rat astrocytes collected after 24hrs of stimulation was centrifuged at 16,090 

x g for 20 minutes at 4˚C.  Cell supernatant or mouse brain homogenates were 

added into 96-well-plate together with Assay Buffer and fluorescent-coded 

magnetic beads. Samples were incubated 16-18 hours at 4˚C before removing 

the contents and wash 2X with Wash Buffer. After incubation with biotinylated 

Detection Antibody for 1 hour at room temperature, well contents were removed 

and washed 2 times with Wash Buffer. Lastly, Sheath fluid was added into the 

plate and plate were ran on Luminex 200TM (Merk Millipore, MA, 

USA).Concentrations of cytokines were calculated based on standard curve 

generated. 
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2.11 Real-Time PCR (RT-PCR)  

Material: 

- Trizol (Ambion, CA, USA) 

- Chloroform-isoamyl alcohol (Sigma, MO, USA) 

- 70% ethanol  

 70ml of 100% ethanol with 30ml of water  

- NucleoSpin RNA kit (Macherey-Nagel, Düren, Germany) 

- High capacity cDNA reverse transcription kit (Applied Biosystems, CA, 

USA) 

- GoTaq® qPCR Master Mix (Promega, WI, USA) 

- Rat Primers: 

Gene Forward Primer Reverse Primer 

CCL-2 

5’-

ATGCAGTTAATGCCCCA

CTC-3’ 

5’-

TTCCTTATTGGGGTCAGC

AC-3’ 

CCL-5 

5’-

CCTTGCAGTCGTCTTTGT

CA-3’ 

5’-

ATCCCCAGCTGGTTAGG

ACT-3’ 

CXCL-1 

5’-

GCGGAGAGATGAGAGT

CTGG-3’ 

5’-

AGGCATTGTGCCCTACA

AAC-3’ 

CXCL-2 

5’-

TCAATGCCTGACGACCC

TA-3’ 

5’-

GGACGATCCTCTGAACC

AAG-3’ 

CXCL-5 

5’-

CGCTAATTTGGAGGTGA

TCC-3’ 

5’-

AGTGCATTCCGCTTTGTT

TT-3’ 

CXCL-10 

5’-

GCTTATTGAAAGCGGTG

AGC-3’ 

5’-

GGTCAGGAGAAACAGGG

ACA-3’ 

CX3CL-1 

5’-

CGCTCTGAATAGCTCCA

ACC-3’ 

5’-

CTGCTCCTCAGGCCTACA

AC-3’ 

IL-1β 

5’-

AGGCTTCCTTGTGCAAG

TGT-3’ 

5’-

TGAGTGACACTGCCTTCC

TG-3’ 
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TNF-α 

5’-

CCCAGACCCTCACACTC

AGAT-3’  

5’-

TTGTCCCTTGAAGAGAAC

CTG-3’ 

IL-6 

5’-

TGAGAAAAGAGTTGTGC

AATGG-3’ 

5’-

AACGGAACTCCAGAAGA

CCA-3’ 

Nrf2 

5’-

CAGTCTTCACCACCCCT

GAT-3’ 

5’-

CAGTGAGGGGATCGATG

AGT-3’ 

HO-1 

5’-

GGCTCTCTTTTCTTGGGC

CT-3’ 

5’-

GCCTCTACCGACCACAGT

TC-3’ 

Nqo1 

5’-

GCGAGCGGGGAAAATA

CTCT-3’ 

5’-

CCTCCTGCCCTAAACCAC

AG-3’ 

β-actin 

5’-

ACCCGCGAGTACAACCT

TCT-3’ 

5’-

TTCTGACCCATACCCACC

AT-3’ 

GAPDH 

5’-

CTCATGACCACAGTCCA

TGC-3’ 

5’-

TTCTGACCCATACCCACC

AT-3’ 

Table 2.5 List of rat primers for RT-PCR. 

-Mouse Primers: 

Gene Forward Primer Reverse Primer 

GFAP 

5’-

AATCCGTGTCAGAAGGCCA

C-3’ 

5’-

ACACCTCACATCACCACGT

C-3’ 

β-actin 

5’-

TGTACCCAGGCATTGCTGAC

-3’ 

5’-

AACGCAGCTCAGTAACAGT

CC-3’ 

GAPDH 

5’-

TGCGACTTCAACAGCAACTC

-3’ 

5’-

GCCTCTCTTGCTCAGTGTCC

-3’ 

Table 2.6 List of mouse primers for RT-PCR. 

Methods: 

RNA extractions were performed using NucleoSpin RNA kit according to 

manufacturer’s protocol. In brief, cells lysed with Trizol or mouse brain 

homogenized in Trizol were added wtih 200 μl chloroform, sample was 

vortexed for 1 minute and centrifuged at 16,090 xg for 10 minutes at 4˚C. The 

aqueous phase was collected, mixed with equal volume of 70% ethanol and 
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added into NucleoSpin RNA column. Salt was removed by washing with 

Membrane Desalting Buffer and DNA was digested with DNase reaction 

mixture provided in the kit. Subsequently, RAW2 Buffer was added to 

inactivate DNase and washed with RA3 Buffer before eluting RNA with 

RNAse-free water. The concentration and purity of RNA were assessed by 

absorbance at 260 and 280 nm using using Nanodrop (Spectrophotometer, ND 

1000 Biofrontier Technology). cDNA was synthesized from RNA samples 

using high capacity cDNA reverse transcriptase kit and quantitative real-time 

PCR was performed using Step One Plus Real-Time PCR System (Applied 

Biosystem, CA, USA). Genes of interest were normalized against geometric 

mean of GAPDH and β-actin. Relative gene expression were expressed as fold 

change computed using formula 2^(-[delta][delta]Ct). Whereby,  

[delta][delta]Ct = [delta]Ct,sample - [delta]Ct,reference 

 

2.12 Immunoprecipitation 

Materials: 

- 1X PBS 

- RIPA lysis buffer 

 RIPA buffer (Santa Cruz Biotechnology, CA, USA) added with 

cOmplete ULTRA Tablets, Mini, EDTA free protease inhibitor (Roche 

Diagnostics, USA) and phosSTOP EASYpack phosphatase inhibitor 

(Roche Diagnostics, USA) (one tablet each for every 10 ml of RIPA 

buffer) 

- Laemmli sample buffer  
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 Laemmli sample buffer (Bio-Rad, CA, USA) added with 5% β-

mercaptoethanol (BDH, PA, USA) 

- Anti-Ub (P4D1), agarose conjugated mouse IgG1 mAb (Santa Cruz 

Biotechnology, CA, USA) 

- Immunoprecipitation buffer 

 20 mM Tris-HCl pH 8 (Invitrogen, CA, USA)  

 140 mM NaCl (Millipore, MA, USA) 

 1% Triton X-100 (Sigma, MO, USA) 

 2 mM EDTA (Thermo Fisher Scientific, MA, USA) 

Methods: 

Primary astrocytes were plated and treated in 10 cm culture dish. Upon 

treatment, culture media was aspirated and cells were rinsed with 8 ml ice cold 

1X PBS. Primary cells were harvested with RIPA added with protease and 

phosphatase inhibitor (one tablet each for every 10 ml of RIPA buffer). Lysates 

were transferred to a pre-chilled eppendorf tube and incubated at 4 °C for 30 

minutes with rotation. Lysate was sonicated and followed by centrifugation at 

14,000 x g for 10 minutes at 4 °C. Supernatant was collected and subjected to 

protein assay for concentration determination. In the preparation for input 

sample, 55 μg protein was added with 1:1 ratio of boiling laemmli sample buffer 

and heated up to 95˚C for 5 minutes. For immunoprecipitation, 1 mg of protein 

were added with 30 μl of anti-Ub (P4D1), agarose beads conjugated mouse 

antibody and incubated in 4 °C for 3 hours with rotation. The agarose beads 

were pelleted and washed 4 times with cold immunoprecipitation buffer and the 

precipitates were subjected to immunoblot analysis. Immunoprecipitates and 

input samples were resolved on 8% and 10% SDS-PAGE respectively. Both 
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were immunoblotted for Nrf2 with anti-Nrf2 (C-20) rabbit pAb (Santa Cruz 

Biotechnology, CA, USA).   

 

2.13 Statistical analysis 

All statistical analyses were performed with the SPSS 13.0 for Windows 

software (SPSS Inc. USA). Data was reported as mean ± S.E.M of three (or 

more) independent experiments unless otherwise stated. Time course 

experiments and dose effects of andrographolide and LPS were compared with 

controls (DMEM/F12 with 0.1% DMSO for andrographolide experiments and 

DMEM/F12 for LPS experiments) using one-way analysis of variance 

(ANOVA) followed by Dunnett’s post-hoc tests, while other multiple pair-wise 

comparisons were performed using ANOVA followed by Bonferroni’s post-hoc 

tests, with p values <0.05 considered to be statistically significant.*p < 0.05, 

**p < 0.01 and ***p < 0.001. 
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CHAPTER 3: ANTI-NEUROINFLAMMATORY 

EFFECTS OF ANDROGRAPHOLIDE IN 

CYTOKINES (IL1-β AND TNF-α) MEDIATED 

INFLAMMATION 
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3.1 Results 

3.1.1 IL1-β and TNF-α activated NF-κB and induced CCL-5 secretion in 

U373 glioblastoma 

As detailed in Chapter 1, IL-1β and TNF-α are the main initiators of 

inflammation.  Therefore, these cytokines were selected to induce inflammatory 

responses in an astrocyte cell line (U373). U373 was chosen in the initial study 

because it has been widely used as a model for inflammatory responses in the 

CNS and TNF-α strongly activated NF-κB pathway in U373 as demonstrated 

by DNA microarray (Schwamborn et al., 2003). Upon stimulation with human 

IL-1β (hIL-1β) or human TNF-α (hTNF-α) for 24 hours, conditioned media of 

U373 cells was collected and assayed for secreted CCL-5 using the Luminex 

xMAP® based assays. Results showed that hIL-1β and hTNF dose-dependently 

induced secretion of CCL-5 (Figure 3.1). From this assay, 1 ng/ml IL-1β and 10 

ng/ml TNF-α were chosen as the optimal stimulation concentrations used for 

subsequent experiments. Previous studies had shown that IL-1β and TNF-α can 

activate the NF-κB pathway (Jiang et al., 2003; Sakurai et al., 1999). Therefore, 

I incubated U373 cells with hIL-1β or hTNF-α, and collected cell lysates at 

various time-points for immunoblotting, and found that maximal 

phosphorylation of p65 at Ser536 residue (a marker for p65 transactivation, 

(Sasaki et al., 2005)) occurred at 7 minutes for both cytokines (Figure 3.2 A & 

C). Furthermore, maximal IκB phosphorylation was observed between 2 to 7 

minutes incubation while total IκB reached maximal degradation at around 30 

minutes for hIL-1β and around 10 to 20 minutes for hTNF-α (Figure 3.2 B & 

D). Therefore, 7 minutes stimulation time was selected for subsequent 

experiments.    
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Figure 3.1 hIL1-β and hTNF-α dose dependently induced CCL-5 secretion 

in U373 glioblastoma. CCL-5 secretion in U373 cells was determined using 

Luminex assays after 24 hours of hIL-1β or hTNF-α stimulation. Sample size n 

= 3. Data shown are mean ± S.E.M.  
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Figure 3.2 hIL1-β and hTNF-α induced NF-κB activation in U373 cells. 

U373 were incubated with 1 ng/ml IL-1β (A, B) or 10 ng/ml TNF-α (C, D) for 

various indicated time. Phosphorylation levels of p65 and IκBα were analyzed 

with immunoblotting. Data shown are mean ± S.E.M of two separate 

experiments.   

 

3.1.2 Investigating potential anti-neuroinflammatory compounds in U373 

glioblastoma 

 A few natural compounds including andrographolide (Andro), 
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inflammatory effects (Wang et al., 2014; Xia et al., 2004; Xu et al., 2007). In 

order to identify a potentially efficacious anti-neuroinflammation compound, I 

screened these three compounds for their anti-neuroinflammatory properties. 

3.1.2.1 Cytotoxicity and anti-neuroinflammatory effects of plumbagin 
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from each compound was chosen to treat U373 to investigate their ability to 

reduce CCL-5 secretion. U373 cells were pretreated with 10 μM artesunate, 30 

μM andrographolide, or 5 μM plumbagin for 16 hours followed by 24 hours of 

hIL-1β or hTNF-α stimulation with the presence of the compounds. Secreted 

CCL-5 was then measured with Luminex assay. Results demonstrated that only 

andrographolide significantly abated CCL-5 secretion induced by hIL-1β and 

hTNF-α (Figure 3.3). Study of plumbagin was then discontinued due to its 

toxicity and inability to attenuate CCL-5 cytokine secretion.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Andrographolide abated CCL-5 secretion induced by hIL-1β 

and hTNF-α in U373 cells. U373 cells were pretreated with 10 μM artesunate, 

30 μM andrographolide, or 5 μM plumbagin for 16 hours followed by 24 hours 

of hIL-1β (A) or hTNF-α (B) stimulation with the presence of the test 

compounds. CCL-5 secretion was measured using Luminex assay. Sample size 

n = 3. Data shown are mean ± S.E.M. Multiple pair-wise comparisons were 

performed using one way ANOVA followed by Bonferroni’s post-hoc tests. (*p 

< 0.05 and **p < 0.01) 

B) 

A) 
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3.1.2.2 Cytotoxicity and anti-neuroinflammatory effects of 

andrographolide and artesunate 

 More detailed study was then performed on andrographolide and 

artesunate. Effects of andrographolide and artesunate on U373 cell viability and 

cell cytotoxicity were examined using MTS and LDH assays respectively (see 

Chapter 2). U373 cells were incubated in 0.5% FBS supplemented media for up 

to three days with various concentrations of andrographolide or artesunate, 

MTS and LDH measurements were taken every 24 hours. Though no difference 

was observed in cell viability, both compounds significantly enhanced cell 

cytotoxicity at high concentration (Figure 3.4).  Thus, compound treatment time 

was kept within two days in the subsequent experiments.  

 

 

 

 

 

 

 

 

 

 

 

A)                       MTS - Andrographolide    

B)                     LDH - Andrographolide 
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Figure 3.4 Andrographolide and artesunate induced cell cytotoxicity in 

U373 cells at high concentration. MTS (A) and LDH (B) assay of U373 cells 

treated with various concentrations of andrographolide for up to three days. 

Similarly, U373 cells incubated with various artesunate concentrations for up to 

three days were subjected to MTS (C) and LDH (D) assays. Sample size n = 3. 

Data shown are mean ± S.E.M. Test compound dose effects were compared 

with controls (0.1% DMSO) with one way ANOVA followed by Dunnett’s 

post-hoc tests (*p < 0.05 and ***p < 0.001) 
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 In order to compare the efficiency of andrographolide and artesunate in 

reducing neuroinflammatory responses, both compounds were tested side by 

side. U373 cells were pretreated with 16 hours (according to protocols used in 

(Chao et al., 2011)) of andrographolide or artesunate (3μM to 100μM) followed 

by 24 hours of hIL-1β or hTNF-α stimulation in the presence of the test 

compounds (in 0.5% FBS supplemented media). Luminex assay results 

suggested that andrographolide reduced CCL-5 secretion to a greater extend 

compared to artesunate regardless of the cytokine administered (Figure 3.5). 

Moreover, immunoblots revealed that U373 cells pretreated with 

andrographolide abrogated hIL-1β or hTNF-α induced phosphorylation of p65 

and IκBα (Figure 3.6 and Figure 3.7). However, equivalent doses of artesunate 

could not significantly reduce p65 and IκBα phosphorylation. Together, these 

results demonstrated that andrographolide may be a more efficacious anti-

neuroinflammatory compound which led to my decision to focus on 

andrographolide. 
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Figure 3.5 Andrographolide reduces CCL-5 secretion to a greater extend 

compared to artesunate. CCL-5 secretion was determined by Luminex assay. 

U373 cells were pretreated for 16 hours with andrographolide or artesuante 

followed by 24 hours of hIL-1β (A) or hTNF-α (B) stimulation with the 

presence of the test compounds. Sample size n = 3. Data shown are mean ± 

S.E.M. Multiple pair-wise comparisons with hIL-1β/hTNF-α stimulation were 

performed using one way ANOVA followed by Bonferroni’s post-hoc tests. (*p 

< 0.05 and **p < 0.01); ns = not significant (p > 0.05) 
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Figure 3.6 Andrographolide but not artesunate abrogated hIL-1β induced 

NF-κB activation. U373 cells were first pretreated with andrographolide or 

artesunate for 16 hours followed by 7 minutes of stimulation with hIL-1β (with 

presence of test compounds). Whole cell lysate were immunoblotted with phos-

p65 and p65 antibodies (A) or phos-IκBα and IκBα antibodies (B). β-actin was 

used as a loading control. Sample size n = 4. Data shown are mean ± S.E.M. 

Multiple pair-wise comparisons with hIL-1β stimulation were performed using 

one way ANOVA followed by Bonferroni’s post-hoc tests. (*p < 0.05 and **p 

< 0.01); ns = not significant (p > 0.05) 
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Figure 3.7 Andrographolide but not artesunate abrogated hTNF-α induced 

NF-κB activation. U373 cells were first pretreated with andrographolide or 

artesunate for 16 hours followed by 7 minutes of stimulation with hTNF-α (with 

presence of test compounds). Whole cell lysate were immunoblotted with phos-

p65 and p65 antibodies (A) or phos-IκBα and IκBα antibodies (B). β-actin was 

used as a loading control. Sample size n = 4. Data shown are mean ± S.E.M. 

Multiple pair-wise comparisons with hTNF-α stimulation were performed using 

one way ANOVA followed by Bonferroni’s post-hoc tests. (*p < 0.05 and ***p 

< 0.001) ); ns = not significant (p > 0.05) 
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3.1.3 Andrographolide did not affect primary astrocytes cell viability 

 Cancer derived cell lines (e.g., U373) may exhibit abnormal metabolic 

functions and proliferative properties, resulting in phenotypes which may be 

different from normal cells in many important aspects. Primary cell cultures, on 

the other hand, retains many if not all cellular properties functions and 

phenotypes in vitro. Therefore, in order to increase the biological relevance of 

cell-based studies, I followed up with rat primary astrocyte cultures. MUSE® 

cell count and viability assays revealed that andrographolide induced no or low 

toxicity to rat primary astrocytes (Figure 3.8). Specifically, no obvious change 

in cell viability was observed when incubated with andrographolide for up to 

two day with concentrations up to 100 μM (in 10% FBS supplemented media). 

 

Figure 3.8 Andrographolide did not reduce cell viability in rat primary 

astrocytes.  Upon incubation with andrographolide for the indicated time, cell 

viability was determined with Muse Count and Viability assay. Sample size n = 

3. Data shown are mean ± S.E.M. Test compound dose effects were compared 

with controls (0.1% DMSO) with one way ANOVA followed by Dunnett’s 

post-hoc tests. 
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3.1.4 Andrographolide pretreatment inhibited CCL-5 secretion and NF-κB 

activation induced by cytokines (rIL-1β and rTNF-α) in primary astrocytes 

In corroboration with findings in U373, andrographolide attenuates rat 

IL-1β (rIL-1β) and rat TNF-α (rTNF-α) activated NF-κB pathway and CCL-5 

secretion in rat primary astrocytes. Upon 16 hours of peincubation with 

andrographolide, primary astrocytes were either stimulated with rIL-1β 30 

minutes or rTNF-α 10 minutes. Whole-cell lysates were collected and 

immunoblotted for phos-p65 and p65 (Figure 3.9 A and Figure 3.10 A) or phos-

IκBα and IκBα (Figure 3.9 B and Figure 3.10 B). Andrographolide significantly 

inhibited phosphorylation of p65 and IκBα in a dose-dependent manner. 

Conditioned media collected from primary astrocytes pretreated 16 hours with 

andrographolide and stimulated 24 hours were subjected to Luminex assay. 

Results revealed that andrographolide remarkably lowered CCL-5 secretion 

induced by rIL-1β or rTNF-α (Figure 3.9 C and Figure 3.10 C). 

 

 

 

 

 

 

 

 



96 
 

 

 

 

 

  

 

  

 

 

 

 

 

 

Figure 3.9 Andrographolide attenuated rIL-1β induced NF-κB activation 

and CCL-5 secretion in primary astrocytes. Primary astrocytes were 

pretreated for 16 hours with andrographolide before rIL-1β stimulation in the 

presence of test compound. Whole-cell lysates collected after 30 minutes of 

stimulation were probed for phos-p65 and p65 (A) or phos-IκBα and IκBα (B). 

β-actin was used as a loading control. (C) Media collected from primary 

astrocytes stimulated for 24 hours were subjected to Luminex assay where 

CCL-5 secretion was measured. Sample size n = 4 for (A) and (B), n = 3 for 

(C). Data shown are mean ± S.E.M. Multiple pair-wise comparisons were 

performed using one way ANOVA followed by Bonferroni’s post-hoc tests. (*p 

< 0.05 and ***p < 0.001) 
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Figure 3.10 Andrographolide pretreatment attenuated rTNF-α induced 

NF-κB activation and CCL-5 secretion in primary astrocytes. Primary 

astrocytes were pretreated for 16 hours with andrographolide before rTNF-α 

stimulation in the presence of test compound. Whole-cell lysates collected after 

10 minutes of stimulation were probed for phos-p65 and p65 (A) or phos-IκBα 

and IκBα (B). β-actin was used as a loading control. (C) Media collected from 

primary astrocytes stimulated for 24 hours were subjected to Luminex assay 

where CCL-5 secretion was measured. Sample size n = 4 for (A) and (B), n = 3 

for (C). Data shown are mean ± S.E.M. Multiple pair-wise comparisons were 

performed using one way ANOVA followed by Bonferroni’s post-hoc tests. 

(**p < 0.01 and ***p < 0.001) 
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3.1.5 Andrographolide administration following cytokines (rIL-1β and 

rTNF-α) stimulation also attenuated CCL-5 secretion in primary 

astrocytes 

 The preceding studies were conducted with pretreatment of 

andrographolide before cytokine stimulation. Hence, it is interesting to examine 

if andrographolide could also abolish CCL-5 release when administered after 

IL-1β and TNF-α stimulations. Rat primary astrocytes were stimulated with rat 

rIL-1β (Figure 3.11 A) or rTNFα (Figure 3.11 B) followed by addition of 

andrographolide 1, 4, or 8 hours later. Cytokine stimulation was maintained for 

a total of 24 hours in 0.5% FBS supplemented media. CCL-5 release was 

measured using Luminex assay. Results showed that andrographolide could 

reduce CCL-5 secretion even when administered up to 4 hours after rIL-1β or 

TNF-α stimulation. This implied that andrographolide did not require pre-

incubation in order to exert its anti-neuroinflammatory effects. Nonetheless, 

andrographolide had a therapeutic time window and no CCL-5 reduction was 

detected when it was given 8 hours after stimulation.   
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Figure 3.11 Andrographolide attenuated CCL-5 release in primary 

astrocyte when administered after cytokines (rIL-1β and rTNF-α) 

stimulation. Rat primary astrocytes were stimulated with rIL-1β (A) or TNF-α 

(B) followed by addition of andrographolide 1,4 , or 8 hours later, as indicated 

on the graph by the IL-1β-Andrographolide delay or TNFα-Andrographolide 

delay. Cytokine stimulation was maintained for a total of 24 hours and media 

collected were subjected to Luminex assay for CCL-5 measurement. Sample 

size n = 3. Data shown are mean ± S.E.M. Multiple pair-wise comparisons were 

performed using one way ANOVA followed by Bonferroni’s post-hoc tests. (*p 

< 0.05, **p < 0.01 and ***p < 0.001); ns = not significant (p > 0.05) 
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3.1.6 Inhibition of NF-κB by TPCK decreased CCL-5 secretion induced by 

IL-1β and TNF-α 

3.1.6.1 TPCK inhibited phosphorylation of p65 

 Thus far I have found that andrographolide efficiently attenuated CCL-

5 secretion in astrocytes. Nevertheless, the mechanisms by which 

andrographolide regulated CCL-5 was unclear. I proposed that andrographolide 

attenuates CCL-5 secretion through inhibition of NF-κB. Therefore, a known 

NF-κB inhibitor was employed to study the causal relationship between NF-κB 

inhibition and CCL-5 reduction. N-p-Tosyl-L-phenylalanine chloromethyl 

ketone (TPCK) is a serine/cysteine protease inhibitor. It modifies thiol groups 

(-C-SH) on Cys-179 of IKKβ and Cys-38 of p65 to tosylphenylalanylmethyl 

group and inhibits p65 binding to DNA (Ha et al., 2009). Primary astrocytes 

was preincubated with TPCK for an hour followed by rIL-1β or rTNF-α 

stimulation. Immunoblot results revealed that TPCK prevented p65 activation 

(Figure 3.12), confirming its action in deactivating p65.  
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Figure 3.12 TPCK inhibited p65 phosphorylation. Primary astrocytes was 

preincubated with TPCK for an hour followed by rIL-1β or rTNF-α stimulation. 

Whole-cell lysate was probed for phos-p65 and p65. β-actin was used as loading 

control. Sample size n = 3. Data shown are mean ± S.E.M. Multiple pair-wise 

comparisons were performed using one way ANOVA followed by Bonferroni’s 

post-hoc tests. (**p < 0.01 and ***p < 0.001) 

 

3.1.6.2 TPCK decreased CCL-5 secretion induced by cytokines 

 Effects of TPCK on CCL-5 was then examined by preincubating 

primary astrocytes with TPCK for an hour followed by 24 hours of rIL-1β or 

rTNF-α stimulation in 0.5% FBS supplemented media. Concentration of 

secreted CCL-5 was later determined by Luminex assay. Similar to 

andrographolide, TPCK also dramatically reduced CCL-5 release (Figure 3.13). 

This suggested that andrographolide could possibly attenuated CCL-5 release 

via NF-κB inhibition.    
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Figure 3.13 TPCK decreased CCL-5 release induced by cytokines. Primary 

astrocytes was preincubated with TPCK for an hour followed by 24 hours of 

rIL-1β or rTNF-α stimulation. Concentration of secreted CCL-5 was determined 

by Luminex assay. Sample size n = 3. Data shown are mean ± S.E.M. Multiple 

pair-wise comparisons were performed using one way ANOVA followed by 

Bonferroni’s post-hoc tests. (**p < 0.01 and ***p < 0.001) 

 

3.1.7 Andrographolide abated GFAP expression elevated by rIL-1β in 

primary astrocytes 

 Any form of CNS insults ranging from subtle cellular perturbation to 

severe brain injury could cause astrocytes to undergo molecular and 

morphological changes termed reactive astrogliosis (Sofroniew, 2009). 

Detrimental effects of astrogliosis include production of cytokines/chemokines 

that exacerbate neuroinflammation, generation of reactive oxygen species, 

compromise of the blood brain barrier, and release of glutamate that potentially 

leads to cell excitotoxicity (Sofroniew, 2009). Glial fibrillary acidic protein 

(GFAP) is intermediate filament specifically expressed by astroglial cells in the 

CNS (Pekny et al., 2004). It is widely used as a marker for astrogliosis. To 

access andrographolide’s capability in moderating GFAP expression, primary 

astrocytes were pretreated with andrographolide for 16 hours followed by 24 

hours of rIL-1β and GFAP level were visualized with immunofluorescence 
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staining or quantified with immunoblotting (Figure 3.14). Andrographolide 

treatment successfully lowered GFAP immunofluorescence staining and protein 

level induced by rIL-1β.           
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Figure 3.14 Andrographolide abated GFAP expression elevated by rIL-1β 

in primary astrocytes. Primary astrocytes were pretreated with 

andrographolide for 16 hours and stimulated with rIL-1β (using 10 ng/ml for 

immunoblotting, 1 ng/ml for immunofluorescence) for a further 24 hours before 

processing for immunofluorescence staining (A) or immunoblotting with GFAP 

antibody (B). Scale bar denotes 50 μm. β-actin was used as a loading control. 

Sample size n = 4. Data shown are mean ± S.E.M. Multiple pair-wise 

comparisons were performed using one way ANOVA followed by Bonferroni’s 

post-hoc tests. (*p < 0.05 and **p < 0.01) 
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3.2 Discussion 

Neuroinflammation is implicated in the pathogenesis of ischemic stroke, 

traumatic brain injury, multiple sclerosis, meningitis, and neurodegenerative 

diseases (Rivest, 2009; Wohleb et al., 2013). Being the most abundant cell type 

in the CNS, astrocytes, once thought to merely serve in supportive roles, have 

recently emerged as a crucial participant in brain development, function and 

disease. Activation of astrocyte initiates inflammatory signaling pathways, 

induces release of proinflammatory cytokines/chemokines and reactive oxygen 

species (ROS) that exacerbate various neurological diseases (Sofroniew et al., 

2010). Therefore, in my study, I used astrocytic culture as cell model to 

investigate natural bioactive compounds for potential anti-neuroinflammation 

properties.  

IL-1β and TNF-α are elevated in many neuroinflammatory conditions 

like injuries, infections, and neurodegeneration (Basu et al., 2004; Olmos et al., 

2014). They are early mediators released during inflammatory events (Van 

Miert, 1995) which act to promote a cascade of  secondary cytokines production 

(Mrak et al., 1995). Moreover, they are known to activate NF-κB; the key 

regulator of immune response through well-established mechanism (Beg et al., 

1993). Indeed, I showed that IL-1β and TNF-α induced phosphorylation of p65 

subunit of NF-κB at Ser536 which enhances its transactivation potential (Jiang 

et al., 2003; Sakurai et al., 1999). They also promote degradation of IκBα that 

sequester NF-κB in the cytoplasm through ubiquitin/proteasome-mediated 

pathway by inducing phosphorylation IκBα at Ser32 residue (Chen et al., 1996; 

Zandi et al., 1997). My study suggested that IL-1β and TNF-α cytokines are 

both effective inducer of neuroinflammation.  
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In the first part of my study, CCL-5 was used as the readout of NF-κB 

and inflammatory activation. This is mainly because CCL-5 is a recognized 

gene target of the NF-κB transcription factor (Werts et al., 2007). Not only is 

CCL-5 found in the neurons and microglia, astrocytes also highly express it in 

the CNS (Kim et al., 2004b; Rock et al., 2004b). It is a chemotactic cytokine 

(a.k.a. chemokine) that facilitates leukocyte adhesion to brain microvessels and 

migration into the CNS (Dos Santos et al., 2005; Ubogu et al., 2006a). Other 

than recruiting peripheral leukocytes into brain parenchyma to mediate 

inflammatory responses, CCL-5 is also a potent mediator that induce secretions 

of other cytokines/chemokines to further perpetuate neuroinflammation (Luo et 

al., 2002; Škuljec et al., 2011). It is robustly elevated among the cytokines and 

chemokines measured in experimental autoimmune encephalomyelitis (EAE) 

indicating its role in mediating neurological diseases (Brambilla et al., 2009). 

Moreover, growing body of evidence supported the pathological role of CCL-5 

in multiple sclerosis and Alzheimer’s disease (Huang et al., 2010; Van Veen et 

al., 2007). Thus, CCL-5 expression may be a pertinent indicator of 

inflammation in CNS.   

 

Andrographolide is the most potent anti-neuroinflammatory compound 

among three bioactive compounds tested in U373 glioblastoma 

Many plants produce a vast number of bioactive compounds that protect 

them against microbial infection and herbivory. Some of these bioactive 

compounds also help defend against abiotic stresses like UV exposure (Padhye 

et al., 2012). Many of these compounds have desired biological properties such 
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as anti-bacterial, anti-inflammatory, and anti-cancer making them prospective 

candidates for further development as therapeutics for human diseases. I started 

the study by examining three natural compounds; andrographolide, artesunate, 

and plumbagin which have been previously found to exhibit anti-inflammatory 

effects (Wang et al., 2014; Xia et al., 2004; Xu et al., 2007). Andrographolide 

and plumbagin are both natural compounds extracted from plants. 

Andrographolide is a labdane diterpenoid derived from the herbaceous kalmegh 

plant, Andrographis paniculata. It is traditionally used in India, China, and 

other parts of Asia to treat a variety of ailments including tuberculosis, snake 

bites, respiratory tract, and urinary tract infections (Panossian et al., 2002). 

Plumbagin is a simple hydroxy-naphthoquinone found in the root of Plumbago 

zeylanica with therapeutic properties against dyspepsia, diarrhea, and skin 

diseases (Sandur et al., 2006). On the other hand, artesunate is a semi-synthetic 

derivative of artemisinin isolated from Artemisia annua (sweet wormwood) (Xu 

et al., 2007). Artemisinin and its derivatives are considered a safe antimalarial 

agent with higher efficacies against parasites compared to chloroquine and 

pyrimethamine (Liu et al., 2011). Therefore, World Health Organization has 

recommended it to be the first line treatment of severe malaria (Noubiap, 2014). 

Preliminary toxicity study of andrographolide, artesunate, and 

plumbagin on U373 glioblastoma suggested that plumbagin had the greatest 

anticancer effect among the three compounds tested, substantially reducing 

U373 cell viability at 10 μM (Appendix 1). This is not surprising as anticancer 

properties of plumbagin had been well-described in various cancer cell lines 

(Gomathinayagam et al., 2008; Sandur et al., 2006). It also inhibited intestinal 

tumorigenesis in animal study (Sugie et al., 1998). Mechanisms proposed on 
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how plumbagin exert its anticancer activities include NF-κB pathway inhibition 

(Ahmad et al., 2008; Sandur et al., 2006), ROS generation (Aziz et al., 2008), 

and S-G2/M cell cycle arrest (Wang et al., 2008a). Plumbagin was eventually 

excluded for further study when potentially cytotoxic concentrations (5 μM) 

failed to attenuate CCL-5 secretion. However, my data points to plumbagin as 

a potential anti-glioma agent which should be further studied.  

High concentration and long incubation of andrographolide and 

artesunate could also induce cell cytotoxicity in U373 glioblastoma as 

demonstrated by LDH assay. Evident release of LDH was observed after 2 days 

of artesunate incubation, followed by andrographolide on the third day of 

incubation (Figure 3.4). Consistent with previous findings, both compounds 

exhibited anticancer properties (Liu et al., 2011; Rajagopal et al., 2003). Hence, 

treatment time of andrographolide and artesunate in U373 cells were kept within 

2 days to prevent non-specific effects induced by cell cytotoxicity. When 

andrographolide and artesunate were compared side by side for their ability to 

attenuate NF-κB activation and CCL-5 secretion induced by hIL-1β and hTNF-

α, andrographolide abrogated p65 phosphorylation and CCL-5 release to a 

greater extent than artesunate. This suggests that andrographolide is a more 

efficacious anti-neuroinflammatory compound compared to artesunate. While 

my group had recently demonstrated neuroprotective effects of andrographolide 

in rodent stroke model (Chan et al., 2010), several studies found neurotoxic 

effects of artemisinins. In vitro studies reported neuronal cells susceptibility to 

artesiminins-induced toxicity but not in glioma cell (Wesche et al., 1994). In 

addition, Smith et al. reported that neurite outgrowth is prohibited by artesunate 

in differentiating NB2a neuroblastoma (Smith et al., 1997). In vivo studies 
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further confirmed neurotoxic properties of artesunate. Mice (Nontprasert et al., 

2000) and  rats (Genovese et al., 2000) administered with artesunate developed 

abnormalities in balance and coordination. Based on these evidences, 

andrographolide was therefore selected for further evaluation as an anti-

neuroinflammatory agent.   

 

Andrographolide abrogated cytokines (hIL-1β and hTNF-α) induced 

inflammatory responses in primary astrocytes 

I supplemented U373 studies with rat primary astrocytes prepared by an 

adaptation of A dissection and tissue culture manual of the nervous system (Cole 

et al., 1989). This is an established procedure producing primary culture with 

purity more than 98% (Mcleod et al., 1995; Strange et al., 1994). Viability assay 

confirmed that andrographolide did not affect primary astrocyte viability even 

up to 2 days of treatment. Primary astrocytes were maintained in 10% FBS 

supplemented media. As high concentration of protein, albumin, and growth 

factors present in FBS may interfere with antigen-antibody binding in ELISA 

for detection of secreted CCL-5, it was replaced with 0.5% FBS supplemented 

media during drug/cytokine treatment. Cell viability assay was also performed 

to ensure lowering FBS in culture media does not affect cell viability of primary 

astrocytes (Appendix 2). Moreover, I verified that andrographolide treatment 

alone did not induce CCL-5 secretion (Appendix 3).  

Andrographolide pretreatment significantly inhibited CCL-5 secretion 

and NF-κB activation induced by IL-1β and TNF-α in a dose dependent manner. 

Interestingly, andrographolide treatment attenuated CCL-5 release even when 
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it was administered 4 hours after exposure to cytokine stimulants. This implies 

that andrographolide does not require preincubation in order to observe its anti-

neuroinflammatory effects. However, it should be noted that andrographolide 

has a therapeutic time window and no CCL-5 reduction was detected when it 

was given 8 hours after stimulation.  Nonetheless, when an inflammatory 

response is unresolved after initiation, inflammatory mediators like IL-1β and 

TNF-α are continuously produced/present in the brain parenchyma and will 

continue to induce cytokine release that further perpetuates inflammatory 

responses. Thus, administration of andrographolide may be beneficial even 

hours after initiation of neuroinflammation due to brain injury or infection. 

 

Molecular mechanisms underlying andrographolide’s anti-inflammatory 

action 

Andrographolide remarkably abated CCL-5 secretion stimulated by 

cytokines but the underlying mechanisms remain unclear. Since 

andrographolide effectively attenuated activation of NF-κB and CCL-5 is a 

known gene target of NF-κB, I proposed that inhibition of NF-κB leads to 

reduction of CCL-5 release. I then used TPCK, a known NF-κB inhibitor in 

parallel experiments to show the cytokine-induced CCL-5 secretion can indeed 

be ameliorated by p65 dephosphorylation/deactivation. This suggests that 

andrographolide’s inhibitory effects on CCL-5 secretion in astrocytes may at 

least be partially mediated through NF-κB inactivation (Lim et al., 2012b). 

However, the detailed molecular mechanisms have yet been fully elucidated and 

may be controversial. For instance, Xia et al. (2004) reported that 
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andrographolide formed a covalent adduct with p50, but did not suppress either 

the degradation of inhibitory IκBα or the nuclear translocation of p50/p65; 

processes initiated by phosphorylation of IκBα and p65 which lead to activation 

of NF-κB-mediated transcriptional activities (Jiang et al., 2003; Traenckner et 

al., 1995). In contrast, my group previously demonstrated that andrographolide 

suppressed p65 nuclear translocation in rat brain (Chan et al., 2010). I also 

demonstrated in this study that andrographolide reduced phosphorylation of 

both IκBα and p65, in agreement with Zhu et al. (Zhu et al., 2013). In my study, 

IκBα phosphorylation was only occasionally accompanied by detectable 

degradation of IκBα (Fig. 3.7B), which mainly due to differences in the time 

course of IL-1β- versus TNF-α-mediated signaling events although both 

cytokines activate NF-κB through a relatively similar pathway (Figure 1.2). 

TNF-α mediated IκBα degradation was evident after 10 minutes of incubation 

while IL-1β activated IκBα degradation was detected slightly later (Figure 3.2 

B & D). As IκBα degradation occurs after its phosphorylation and IL-1β/TNF-

α stimulation time was decided based on detection of p65 and IκBα 

phosphorylation rather than IκBα degradation, a relatively short stimulation 

time was usually chosen. Thus, reduction in total IκBα level may or may not be 

observed in such case and inhibitory effects of andrographolide on IκBα 

degradation could not be reliably assessed.  Nonetheless, I showed that 

phospho-IκBα/IκBα ratios were consistently decreased by andrographolide pre-

treatment and on the occasions where cytokine-stimulated IκBα degradation 

was detectable, andrographolide was able to reverse this process (Figure 3.7 B). 

Conversely, Hsieh et al. showed in rat vascular smooth muscle cells that 

andrographolide reduced p65 phosphorylation in a protein phosphatase 2A-
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dependent manner, but did not affect IκBα phosphorylation and degradation 

(Hsieh et al., 2011). Taken together, these results suggested that 

andrographolide's anti-inflammatory effects likely involve multiple actions on 

NF-κB which may vary depending on cell-types and stimuli used.  

 

Andrographolide attenuates reactive astrogliosis 

Neurodegenerative diseases, traumatic brain injury, infection, and 

ischemia stroke release molecules like misfolded protein Aβ, proinflammatory 

cytokines, endotoxins, glutamate, and ROS which are known to result in 

astrogliosis (Rossi, 2015; Sofroniew, 2009). Although reactive astrogliosis may 

serve some beneficial functions, it is often being viewed in a negative light due 

to its deleterious role in mediating various neurological diseases with 

production of proinflammatory cytokines, promote leukocyte infiltration, 

induce oxidative stress, release of excitotoxic glutamate, and induce BBB 

breakdown (Chen et al., 2003; Farina et al., 2007; Rosenberg et al., 2001; Sheng 

et al., 2013). One of the hallmarks of reactive astrogliosis observed in human 

pathology and animal experimental models is upregulation of GFAP 

intermediate filament and the elevation of GFAP is known to correspond to the 

extent of astrogliosis (Eng et al., 1994). Thus, GFAP has become a prototypical 

marker for reactive astrogliosis and often used to detect astrocyte activation 

(Eng et al., 2000). In my study, exposure to IL-1β increased GFAP expression 

which is attenuated with pretreatment of andrographolide as shown in 

immunofluorescence and immunoblots. This suggests andrographolide’s 

capability to abrogate reactive astrogliosis.   
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When using rabbit polyclonal antibody (from Sigma) for GFAP 

immunoblots, multiple bands were observed with a prominent band detected at 

50 kDa. This is likely due to the detection of various GFAP isoforms by the 

polyclonal antibody. To date, a number of GFAP isoforms has been identified. 

The transcript level of various isoforms in mouse brain has been determined; 

with the well-established GFAP-α being the most abundant isoform expressed 

(100%) followed by GFAP-δ (7.9%), GFAP-ζ (4.5%), GFAP-κ (1.0%), GFAP-

γ (0.3%), and GFAP-β (0.008%) (Kamphuis et al., 2012). GFAP-α has nine 

exon which encodes for a 50 kDa protein that appear as the most prominent 

band in immunoblots while GFAP-β has an alternative upstream transcriptional 

start site in the 5’UTR (Kamphuis et al., 2012). GFAP-δ and GFAPκ isoforms 

are encoded by alternative splice variant of the GFAP gene (Blechingberg et al., 

2007). Interestingly, GFAP-δ is found highly expressed in subventricular zone 

and rostral migratory stream in both human and mice brain and probably play a 

role in modulating intermediate filament cytoskeleton properties (Roelofs et al., 

2005). However, little is known about the role of the other isoforms as they are 

only beginning to be investigated.  

Astrocyte isolation and primary cultures have been used for decades to 

study astrocyte’s roles and functions in healthy or diseased brain. However, 

these isolated astrocytes maintained in the conventional two-dimensional 

culture systems could lose some features found in the in vivo cells. These 

include reduced morphological complexity and undesired baseline reactivity of 

astrocytes upon in vitro culture (Lange et al., 2012; Puschmann et al., 2013). 

Consistent with these observations, primary astrocyte immunofluorescence 

staining of GFAP did not exhibit complex morphology of astrocytes with long 
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cellular processes commonly observed in vivo. Moreover, relatively high basal 

expression of GFAP was detected in the untreated cell. This undesired baseline 

reactivity of astrocytes could potentially affect the study of induced-astrogliosis. 

Therefore, effects of andrographolide on astrogliosis was further evaluated in 

animal model of neuroinflammation which will be discussed in the next chapter. 
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CHAPTER 4: EFFECTS OF ANDROGRAPHOLIDE 

IN LPS-MEDIATED NEUROINFLAMMATION 
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4.1 Results 

4.1.1 LPS induced neuroinflammation in primary astrocytes 

 Earlier, I used cytokines (IL-1β and TNF-α) to model conditions where 

cytokines are released to initiate and perpetuate neuroinflammation. Here, I 

aimed to expand my investigations into andrograholide’s ability to regulate 

neuroinflammation under bacterial/meningeal infection by using 

lipopolysaccharide (LPS), a polyglycan found in the outer membrane of gram-

negative bacteria. It is a prototypical endotoxin used to elicit strong immune 

responses in mammalian cells.  

4.1.1.1 LPS caused little or no effects on primary astrocyte cell viability 

 Cytotoxic dosage of LPS was first determined before subsequent 

experiments. Primary astrocytes were incubated with LPS for up to two days 

and cell viability was measured with MUSE® viability assays. Figure 4.1 

showed that LPS caused little or no decreases in primary astrocytes cell viability 

at doses up to 1 μg/ml.  

 

Figure 4.1 LPS effects on primary astrocytes cell viability.  Data shown are 

mean ± S.E.M. Sample size n = 4. LPS dose effects were compared with 

controls with one way ANOVA followed by Dunnett’s post-hoc tests. 
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4.1.1.2 LPS activated NF-κB, JNK, ERK, and p38 pathways in primary 

astrocytes 

 LPS is known to activate many signaling pathways including NF-κB and 

mitogen-activated protein kinases (MAPK) whose family comprises of c-Jun N-

terminal kinases (JNKs), extracellular-signal-regulated kinases (ERKs), and 

p38 MAPK. Treatment of primary astrocytes with LPS at various time-points 

indicated that optimal activation of NF-κB, JNK, and p38 pathways occur 

mostly at 1 hour of stimulation while ERK activation occurs within half an hour 

stimulation (Figure 4.2). Furthermore, LPS stimulation for 12 hours in primary 

astrocytes induced mRNA expression of several cytokines/chemokines 

(Appendix 5). 
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Figure 4.2 LPS activated NF-κB, JNK, ERK and p38 pathways.  Primary 

astrocytes were treated with or without LPS for indicated timepoints. Whole-

cell lysate collected were immunoblotted for phos-p65 and p65 (A), phos-JNK 

and JNK (B), phos-ERK and ERK (C), or phos-p38 and p38 (D). Sample size n 

= 3. Data shown are mean ± S.E.M.  

 

4.1.2 Effects of andrographolide on NF-κB and MAPKs activation 

 Incubation of primary astrocytes with 50 μM andrographolide for 

various time-points revealed that andrographolide lowered the level of 

phosphorylated p65 while JNK phosphorylation remained unchanged. 

Interestingly, it enhanced phosphorylation of ERK and p38 (Figure 4.3).  Dose-

dependent activation of ERK and p38 by andrographolide became more 

apparent when primary astrocytes were treated with increasing concentration of 

andrographolide for 6 hours (Figure 4.4). 
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Figure 4.3 Incubation of andrographolide for various timepoints.  Primary 

astrocytes were treated with or without andrographolide for indicated 

timepoints. Whole-cell lysate collected were immunoblotted for phos-p65 and 

p65 (A), phos-JNK and JNK (B), phos-ERK and ERK (C), or phos-p38 and p38 

(D). Sample size n = 3. Data shown are mean ± S.E.M.  
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Figure 4.4 Dose effects of andrographolide on p65 and MAPKs activation.  
Primary astrocytes were treated with increasing concentration of 

andrographolide for 6 hours. Whole-cell lysate collected were immunoblotted 

for phos-p65 and p65 (A), phos-JNK and JNK (B), phos-ERK and ERK (C), or 

phos-p38 and p38 (D). Sample size n = 4. Data shown are mean ± S.E.M. 

Andrographolide dose effects were compared with controls with one way 

ANOVA followed by Dunnett’s post-hoc tests. (**p < 0.01 and ***p < 0.001) 
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4.1.3 Andrographolide attenuated LPS-activated NF-κB and JNK 

pathways 

 NF-κB plays an important role in regulationg immune response to 

infection and activation of JNK pathway promotes pro-inflammatory cytokines 

production and apoptosis (Kim et al., 2010b; Viatour et al., 2005). In order to 

assess effects of andrographolide in regulating these pathways, primary 

astrocytes were pretreated with andrographolide for 4 hours and stimulated with 

LPS for 1 hour (with presence of andrographolide) before processed for 

immunoblotting. Dose dependent reduction in phosphorylated phos-65, phos-

IκBα and phos-JNK indicates that andrographolide substantially mitigated LPS-

induced NF-κB and JNK activation (Figure 4.5). 
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Figure 4.5 Andrographolide attenuated LPS-activated NF-κB and JNK. 
Primary astrocytes were pretreated with andrographolide for 4 hours followed 

by 1 hours LPS stimulation with the presence of andrographolide. Whole-cell 

lysate collected were immunoblotted for phos-p65 and p65 (A), phos-IκBα and 

IκBα (B), or phos-JNK and JNK (c). Sample size n = 3. Data shown are mean 

± S.E.M. Multiple pair-wise comparisons were performed using one way 

ANOVA followed by Bonferroni’s post-hoc tests. (**p < 0.01 and ***p < 

0.001); ns = not significant (p > 0.05) 
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4.1.4 Andrographolide further enhanced LPS-activated ERK and p38 

pathways 

Earlier, I showed evidence of andrographolide treatment leading to 

increased phosphorylation of ERK and p38. Because LPS induces an 

inflammatory action which by itself could activate these kinases, I 

immunoblotted whole-cell lysates collected from primary astrocytes pretreated 

4 hours with andrographolide followed by 1 hours LPS stimulation (in the 

presence of andrographolide) and found that andrographolide added to LPS-

activated ERK and p38 pathways (Figure 4.6).     

 

 

 

 

 

 

Figure 4.6 Andrographolide further enhanced LPS-activated ERK and 

p38. Primary astrocytes were pretreated with andrographolide for 4 hours 

followed by 1 hours LPS stimulation with the presence of andrographolide. 

Whole-cell lysate collected were immunoblotted for phos-ERK and ERK (A), 

or phos-p38 and p38 (B). Sample size n = 3. Data shown are mean ± S.E.M. 

Multiple pair-wise comparisons were performed using one way ANOVA 

followed by Bonferroni’s post-hoc tests. (*p < 0.05 and **p < 0.01); ns = not 

significant (p > 0.05) 
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4.1.5 Andrographolide effects on various cytokines/chemokines expression 

induced by LPS 

 Next, given the signaling kinase and transcription factor activation 

results in upregulation of many inflammatory markers, the effects of 

andrographolide on several LPS-induced cytokines/chemokines was examined. 

Andrographolide was administered 4 hours before or after LPS stimulation; 

treatment was in 0.5% FBS supplemented media. Primary astrocytes were 

harvested for real-time PCR after 12 hours of LPS stimulation. Elevated mRNA 

levels of cytokines, IL-1β and TNF-α; CC motif chemokines (CCL-2 and CCL-

5); CXC motif chemokines (CXCL-1, CXCL-2, CXCL-5, and CXCL-10); 

CX3C motif chemokine (CX3CL-1) were dose-dependently attenuated by 

andrographolide (Figure 4.7). Andrographolide also substantially reduced 

mRNA levels of all these cytokines/chemokines when it was administered 4 

hours after LPS stimulation. Therefore, preincubation with andrographolide is 

not required in order to observe its anti-neuroinflammatory effects, in line with 

my previous finding on cytokine-stimulated CCL-5 secretion (see Chapter 3). 

Unexpectedly, andrographolide further enhanced IL-6 expression induced by 

LPS in a dose-dependent manner suggesting possible induction of IL-6 by 

andrographolide (Figure 4.7J). Follow up study with andrographolide 

incubation for increasing time revealed that indeed andrographolide alone could 

induce IL-6 expression (Figure 4.8).      
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Figure 4.7 Andrographolide effects on LPS-induced cytokines/chemokines 

mRNA expression. Andrographolide was administered 4 hours before or after 

LPS stimulation. Primary astrocytes were harvested after 12 hours of 100 ng/ml 

LPS stimulation. Transcript level of CCL-2, CCL-5, CXCL-1, CXCL-2, CXCL-

5, CXCL-10, CX3CL-1, IL-1β, TNF-α, and IL-6, were analyzed by real-time 

PCR. Sample size n = 3. Data shown are mean ± S.E.M. Multiple pair-wise 

comparisons were performed using one way ANOVA followed by Bonferroni’s 

post-hoc tests. (*p < 0.05, **p < 0.01, and ***p < 0.001); ns = not significant 

(p > 0.05) 
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Figure 4.8 Andrographolide elevated IL-6 expressions in primary 

astrocytes. Primary astrocytes were incubated with andrographolide 50 μM for 

the indicated timepoints. Transcript level of IL-6 were analyzed by real-time 

PCR. Sample size n = 3. Data shown are mean ± S.E.M. Andrographolide time 

effects were compared with controls with one way ANOVA followed by 

Dunnett’s post-hoc tests. (*p < 0.5, **p < 0.01, and ***p < 0.001) 

 

4.1.6 Inhibition of NF-κB and JNK by TPCK and SP600125 respectively 

decreased cytokines/chemokines expression induced by LPS 

 As previously reviewed, NF-κB plays a central role in inflammation 

through regulating expression of proinflammatory cytokines and mediators. 

JNK activation was involved in cytokines production including TNF-α and 

CCL-5 during inflammation (Oltmanns et al., 2003). To understand role of NF-

κB and JNK in LPS-induced cytokines/chemokines expressions, TPCK, an 

established inhibitor of NF-κB or SP600125, a JNK inhibitor with high 

selectivity for JNK-1/ -2/ -3 (Bennett et al., 2001) were used. Primary astrocytes 

were incubated 1 hour with TPCK or SP600125, followed by 12 hours of LPS 

stimulation in 0.5% FBS supplemented media. Trizol®-lysed samples were 

processed for real-time PCR to quantify transcript levels of 
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cytokines/chemokines. Majority of LPS-induced cytokines/chemokines were 

dose dependently diminished by TPCK and SP600125 (Figure 4.9).  These may 

suggest that andrographolide could potentially inhibit NF-κB and JNK 

concurrently and result in partial if not complete reduction of cytokines 

expression. Results also demonstrated that NF-κB inhibitor could significantly 

reduce IL-6 expression level but not JNK inhibitor proposing that the JNK-

mediated pathway may not be important player in inducing IL-6 expression 

(Figure 4.9 S & T). It is worthwhile noting that in contrast to NF-κB inhibitor 

that suppress IL-6 expression, andrographolide (which also inhibited NF-κB 

pathway) elevates IL-6 expression. This directs toward the involvement of other 

signaling pathways in andrographolide-mediated IL-6 expression. 
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Figure 4.9 Effects of NF-κB and JNK inhibitors on LPS-induced 

cytokine/chemokines. Primary astrocytes were pretreated with NF-κB 

inhibitor, TPCK (A, C, E, G, I, K, M, O, Q, S) or JNK inhibitor, SP600125 (B, 

D, F, H, J, L, N, P, R, T) for 1 hours before 12 hours stimulation with LPS. 

Transcript level of CCL-2, CCL-5, CXCL-1, CXCL-2, CXCL-5, CXCL-10, 

CX3CL-1, IL-1β, TNF-α, and IL-6, were analyzed by real-time PCR. Sample 

size n = 3. Data shown are mean ± S.E.M. Multiple pair-wise comparisons were 

performed using one way ANOVA followed by Bonferroni’s post-hoc tests. (*p 

< 0.05, **p < 0.01, and ***p < 0.001); ns = not significant (p > 0.05) 
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evidence indicated that infection-induced peripheral inflammation could lead to 

neuroinflammation and neurodegeneration (Biesmans et al., 2013; Jeong et al., 

2010; Qin et al., 2007). To assess potentially beneficial effects of 

andrographolide on neuroinflammatory responses, ICR mice were subjected to 

3 intraperitoneal injection of LPS (3mg/kg) and followed by oral gavage of 

vehicle or andrographolide (25mg/kg or 50mg/kg) 1 hour after each injection 

(refer to Material and Methods for detail descriptions on mouse treatment 

regime). Mice were sacrificed 5 hours after the last injection, and the cortex was 

dissected, homogenized and processed for Luminex assay or immunoblots. 

Expression of several chemokines including CCL-2, CCL-5, CXCL-1, CXCL-

2, CXCL-9, CXCL-10 were elevated in the brains of LPS-injected animals, and 

all measured cytokines except CXCL-10 were considerably abated by 

andrographolide (Figure 4.10 A-E). Andrographolide gavage alone (up to 

100mg/kg) did not induce any cytokine expression (data not shown). Though a 

decreasing trend was observed in the expression of CXCL-10, it did not reach 

statistical significance (Figure 4.10 F). IL-1β and TNF-α expression in the brain 

were measured but no significant difference was detected among the different 

treatment groups (data not shown).   
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Figure 4.10 Andrographolide effects on LPS-mediated 

cytokines/chemokines expression in mouse brain. Data shown were derived 

from Luminex assays and are mean ± S.E.M. (control, n = 9; LPS, n = 7; LPS 

+ andrographolide 25 mg/kg, n = 8; LPS + andrographolide 50 mg/kg, n = 7). 

Multiple pair-wise comparisons were performed using one way ANOVA 

followed by Bonferroni’s post-hoc tests. (*p < 0.05, **p < 0.01, and ***p < 

0.001); ns = not significant (p > 0.05) 
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4.1.8 Andrographolide abolished elevated GFAP expression in LPS-

mediated neuroinflammation mouse model   

 Being the most abundant cell in the brain, astrocytes are important in 

providing structural supports and maintaining brain homeostasis. Recently, 

more findings point to the roles of astrocytes in mediating neuroinfammation. 

For example, astrocyte activation resulted in elevated secretions of various 

proinflammatory cytokines and chemokines leading to infiltration of leukocytes 

which further perpetuated inflammatory processes. Moreover, astrocytes 

activation was often accompanied with release of reactive oxygen species that 

cause neuronal damages (Sheng et al., 2013; Swanson et al., 2004). GFAP 

elevation is a hallmark of astrogliosis. Therefore, GFAP expression level was 

investigated in mice treated to LPS / andrographolide (as above) using 

immunoblotting or RT-PCR to examine effects of andrographolide on 

astrogliosis. (Figure 4.11). 50 μg of protein was loaded for each sample and 

each sample was normalized against internal control. Internal control was a 

collection of brain homogenates from individuals of various treatment groups. 

mRNA level of GFAP was significantly reduced by andrographolide 

prophylactic treatment. Though there was a reducing trend in GFAP protein 

level with andrographolide oral admistration, it did not reach statistical 

significance. 
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Figure 4.11 Andrographolide abolished elevated GFAP expression in LPS-

mediated neuroinflammation mouse model. ICR mice were subjected to 3 

intraperitoneal injection of LPS (3mg/kg) and followed by oral gavage of 

andrographolide (25mg/kg or 50mg/kg) 1 hour after each injection. Brain 

homogenates were processed for real-time PCR (A) or immunoblotting for 

GFAP (B). 50 μg of protein was loaded for each sample and each sample was 

normalized against internal control. GAPDH was used as loading control.  Data 

shown are mean ± S.E.M. (control, n = 8; LPS, n = 5, LPS + andrographolide 

25 mg/kg, n = 7; LPS + andrographolide 50 mg/kg, n = 7). Multiple pair-wise 

comparisons were performed using one way ANOVA followed by Bonferroni’s 

post-hoc tests. (*p < 0.05, **p < 0.01, and ***p < 0.001); ns = not significant 

(p > 0.05) 
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4.2 Discussion 

In Chapter 3, IL-1β and TNF-α were used to induce inflammatory 

responses in order to address general inflammatory events whereby cytokines 

are released to mediate and perpetuate neuroinflammation; a typical 

phenomenon in various forms of brain insults (Basu et al., 2004; Mccoy et al., 

2008). After validating effects of andrographolide in cytokine-mediated 

inflammation, I carry on to examine andrographolide’s therapeutic effects in 

disease condition like CNS infection. Lipopolysaccharide (LPS), a polyglycan 

found in the cell wall of gram-negative bacteria is a prototypical endotoxin 

known to illicit robust immune responses. Recognition of LPS by toll-like 

receptor 4 (TLR4) triggers various signal pathways and lead to an array of 

cytokines and chemokines production (Block et al., 2007; Guha et al., 2001). 

Thus, I accessed andrographolide’s effect on LPS-mediated inflammatory 

response in the second part of the study. 

Primary astrocytes are resistant to LPS-induced apoptosis 

LPS-induced apoptosis is dependent on activation of TNF receptors. 

Mice with ablated TNF receptor had reduced fibroblastic cell apoptosis when 

treated with LPS as compared to wild type mice (Alikhani et al., 2003). Upon 

binding of TNF-α to tumor necrosis factor receptor 1 (TNFR1), TRADD, RIP1, 

and TRAF2 are rapidly recruited to the receptor to form complex I. 

Subsequently, RIP1 dissociates and binds to FADD death adaptor and 

procaspase 8 forming complex II where procaspase undergo autocleavage to 

form active caspase 8 and resulting in apoptosis (Jin et al., 2006; Micheau et 

al., 2003). Likewise, cytokines from TNF family such as Fas and TRAIL 
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ligands bind to their respective receptor and directly recruits FADD to form 

death-inducing signaling complex (DISC) and mediate apoptosis through 

similar mechanism (Ashkenazi et al., 1999). Nonetheless, I reported that LPS 

treatment up to 1 μg/ml did not affect cell viability of primary astrocyte, in 

agreement with Brahmachari et al. (Brahmachari et al., 2006). Interestingly, 

Song et al. (2006) also reported similar whereby FAS/TRAIL ligands was able 

to trigger cell death in U343 glioblastoma cells in a dose-dependent manner but 

not in human fetal astrocytes. The constitutively activated calcium/calmodulin-

dependent protein kinase II (CaMKII) was found to be the main factor for 

human astrocyte resistance to Fas/TRAIL-induced apoptosis (Song et al., 2006). 

CaMKII mediates the phosphorylation of phosphoprotein enriched astrocytes-

15 kDa/phosphoprotein enriched in diabetes (PEA-15/PED) and cellular Fas-

associated death domain-like interleukin-1-converting enzyme-inhibitory 

protein (c-FLIP).  This leads to their recruitment to the DISC through DED–

DED domain interaction with FADD which inhibits procaspase 8 autocleavage 

and therefore resistance to apoptosis (Song et al., 2006). Differ from other 

vulnerable brain cells, astrocytes resistance to death receptor-induced 

programmed cell death suggest that they are capable of surviving through 

inflammatory insults and may play fundamental role in regulating 

inflammation. 

LPS activates NF-κB and MAPKs signaling pathways and induces 

cytokines/chemokines production 

LPS recognition triggers TLR4 and initiates a cascade of downstream 

signaling molecules through MyD88- and TRIF-dependent pathways which 

also commonly shared by other TLRs when activated by pathogen associated 
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molecular patterns (PAMPs) or damage associated molecular patterns (DAMPs) 

released during infections or tissue injuries (Lu et al., 2008). Compelling 

evidence showed that activation of TLRs is involved in the pathogenesis of 

neurodegeneration. TLR2 knockout or TLR4 mutation reduced brain damage 

and neurological deficits in animal model of ischemic stroke (Tang et al., 2007). 

Activation of TLR4 signaling resulted in rapid downstream activation of NF-

κB and mitogen-activated protein kinases (MAPKs) indicated by increased 

phosphorylation of p65, JNK, p38 and ERK within 1 hour LPS exposure (Figure 

4.2). Killic et al. demonstrated that mice with TLR4 deficiency exhibited 

reduced infarct size and enhanced survival of striatal neurons after cerebral 

ischemia through mechanisms involving deactivation of JNK, p38, and ERK, 

indicating contributory role of MAPKs in neurological diseases (Kilic et al., 

2008). JNK and p38 are stress-induced kinases which are activated by cellular 

stresses including cytokines, pathogenic stimuli, UV radiation, and ROS.  

Activation of JNK and p38 results in regulation of various cellular activities like 

cell differentiation, apoptosis, and inflammatory cytokines (Hommes et al., 

2003; Kaminska et al., 2009; Kim et al., 2010a). On the other hand, growth 

factors and cytokines are the strong activators of ERK signaling which mainly 

involved in proliferation, differentiation and development (Kim et al., 2010a). 

ERK signaling pathway is closely associated with cancer development where 

its activation has been shown to promote tumor survival and migration 

(Balmanno et al., 2009; Huang et al., 2004). Nevertheless, ERK signaling also 

mediates inflammatory response induced by LPS or ischemic stroke through 

production of inflammatory mediators such as IL-1β, TNF-α, IL-6, and iNOS 

(Carter et al., 1999; Maddahi et al., 2010). LPS is a strong inflammatory stimuli 
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which potentially induced multiple inflammatory cytokines. I showed that 

stimulation with LPS significantly upregulated transcript level of multiple 

cytokines/chemokines including CCL-2, CCL-5, CXCL-1, CXCL-2, CXCL-5, 

CXCL-10, CX3CL-1, IL-1β, TNF-α, and IL-6 in primary astrocytes (Figure 

4.7). These data suggest that LPS stimulation generates a robust inflammatory 

response via activation of NF-κB and MAPKs signaling pathways which 

potentially leads to production of cytokines/chemokines that perpetuate 

neuroinflammation. Impeding activation of these signaling pathways may 

therefore be an effective therapeutic strategy for neuroinflammatory diseases.    

Andrographolide abrogates LPS-induced NF-κB and JNK activation but 

initiates ERK and p38 signaling 

Previously, I demonstrated that andrographolide attenuated cytokines-

induced activation of NF-κB. LPS-induced phosphorylation of p65 and IκBα 

were also attenuated by pretreatment of andrographolide as anticipated. 

Likewise, andrographolide mitigated phosphorylation of JNK in dose-

dependent manner (Figure 4.5). He et al. (2013) reported that andrographolide 

impaired LPS-induced expression of cytokines, adhesion molecules, and 

coagulant mediators through inhibition of NF-κB and all family members of 

MAPKs in rat cardiac microvascular endothelial cells (He et al., 2013). 

However, pretreatment of andrographolide in primary astrocyte culture did not 

attenuate ERK or p38 activation; rather, it further enhanced their 

phosphorylation (Figure 4.6) which suggests cell-type specific responses on the 

effects of andrographolide. When treated with andrographolide alone, ERK and 

p38 phosphorylation increased in a dose-dependent manner (Figure 4.4 C & D). 

Such discrepancies were observed in several in vitro studies that investigated 
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anti-cancer properties of andrographolide. Andrographolide was reported to 

abrogate expression of matrix metalloproteinases (MMPs), cytokines, and 

epithelial mesenchymal transition (EMT) markers in several cancer cell types 

including, colon, breast and prostate cancer. And these anti-cancer activities 

were mainly accredited to andrographolide inhibition on ERK signaling (Chao 

et al., 2013; Chao et al., 2010a; Chun et al., 2010; Kayastha et al., 2015). In 

addition, p38 attenuation by andrographolide treatment promoted vascular 

smooth muscle cells death that prevented abnormal cell growth; a crucial 

pathogenic progress of inflammatory vascular disease (Chen et al., 2014b). 

Immunomodulatory effects of andrographolide were also investigated in non-

cancerous cells. Attenuation of ERK signaling abolished LPS-induced 

cytokines expression and macrophage activation (Qin et al., 2006; Wang et al., 

2010). Similarly, andrographolide prevented p38 activation and elevation of 

TNF-α, IL-1β, IL-6 and iNOS expression in liver from septic mice injected with 

LPS (Guo et al., 2012). 

Although majority of studies reported inhibitory activity of 

andrographolide on ERK and p38 signalings, Yang et al. (Yang et al., 2014) 

recently showed that andrographolide remarkably increased ERK and p38 

phosphorylation and induced C6 glioblastoma cells apoptosis via ERK-

mediated activation of tumor suppressor p53. This finding may imply cell-

specific effects of andrographolide; activating ERK and p38 signaling in 

astrocytic culture and promotes apoptosis in glioblastoma while inhibiting 

ERK/p38-mediated inflammatory response and cancer development in other 

cell types.  It is unclear whether the role of ERK and p38 signaling mediated by 

andrographolide may play in primary astrocytes, however some antioxidant 
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compounds have been shown to induce Nrf2 signaling and cytoprotective 

proteins expression through ERK and p38 activation, suggesting potential 

protective effects against oxidative stress (Choi et al., 2015; Ci et al., 2015; Lee 

et al., 2015). Therefore, prospective anti-oxidant properties of andrographolide 

mediated through ERK and p38 signaling were investigated and discussed in 

the following chapter.   

Andrographolide attenuates NF-kB- and JNK-dependent cytokines/ 

chemokines expression and its potential therapeutic indications  

In the CNS, cytokines and chemokines serve to maintain immune 

surveillance, facilitate leukocyte recruitment and mediate innate and adaptive 

immune response (Takeshita et al., 2012). Under physiological conditions, most 

proinflammatory cytokines/chemokines are maintained at low or undetectable 

level. In response to pathogen invasion or injury, a repertoire of 

cytokines/chemokines are then released by resident cells (primarily microglia 

and astrocytes) in the brain parenchyma (Jensen et al., 2013). While 

upregulating inflammatory cytokines/chemokines helps to clear harmful stimuli 

by initiating inflammatory responses and recruiting other immune cells, 

dysregulation of cytokines/chemokines is the key feature in the development of 

neuroinflammation and neurodegeneration (Glass et al., 2010; Smith et al., 

2012). Due to its high abundance as well as its close proximity with BBB, 

astrocytes are exclusively positioned to create chemotactic gradient to recruit 

microglia and circulating leukocytes into site of injury. Thus, I examined effect 

of andrographolide on astrocyte-secreted cytokines/chemokines and to my 

delight, LPS-induced transcript level of IL-1β, TNF-α, CC motif, CXC motif, 

and CX3C motif chemokines were all dose dependently attenuated by 
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andrographolide (Figure 4.7). Administration of andrographolide after LPS 

exposure also effectively abated expression of almost all cytokines/chemokines 

measured.   

CCL-2 (MCP-1) and CCL-5 (Rantes) are CC-motif chemokines that 

promote chemotaxis of a variety of leukocytes including granulocytes, 

monocytes, T-cell, natural killer (NK) cells and dendritic cells (Jaerve et al., 

2012). Pneumococcal meningitis; the most common type of meningitis 

significantly induced microglial expression of various chemokines including 

CCL-2, CCL-3, and CCL-5 and remarkably increased leukocytes infiltration to 

the CSF (Hanisch et al., 2001). While leukocyte transmigration is a strategies 

to eliminate pathogens, it was proposed that overwhelming inflammatory 

response caused more tissue damage (Ramesh et al., 2013). Antibodies 

neutralizing CXCL-2 and CCL-3 mitigate neutrophil recruitment while CCL-2 

neutralization attenuated macrophage infiltration, suggesting that chemokine 

may be a potential target for therapeutic intervention to inhibit leukocyte-

mediated neuroinflammation in bacterial meningitis (Diab et al., 1999). In 

addition to infection, CCL-2 and CCL-5 are also been implicated in several 

neurological diseases. CCL-2 is believed to be most potent inducer of leukocyte 

transmigration among the chemokines that activate signal transduction 

pathways through CCR2 which has been reported to play a non-redundant role 

in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) 

(Izikson et al., 2000; Sozzani et al., 1994). Moreover, CCL-5 is found robustly 

elevated among the cytokines and chemokines measured in EAE (Brambilla et 

al., 2009). Treatment with antibody against CCL-2 or CCL-5 in EAE inhibited 

leukocyte adhesion to the brain microvasculature (Dos Santos et al., 2005). 
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Several studies showed that CCL-2 and CCL-5 overexpression induced 

chemotactic migration of microglia to amyloid plaque (Huang et al., 2009; 

Huang et al., 2010; Yamamoto et al., 2005). Interestingly, microglia 

accumulation at the site of amyloid plaque however did not promote Aβ 

clearance, instead increasing fibrillary Aβ deposit (Yamamoto et al., 2005). 

CXC chemokines are further divided into ELR-positive or ELR-

negative depending on the presence of an glutamic acid-leucine-arginine (ELR) 

motif at the N-terminus of the chemokine (Ambrosini et al., 2004). ELR-CXC 

chemokine like CXCL-1 (KC), CXCL-2 (MIP-2), and CXCL-5 (lix) act 

explicitly on neutrophils and binds to CXCR1 and CXCR2 receptors (Rossi et 

al., 2000). Expression of CXCL-1 and CXCL2 was induced in microglial upon 

stimulation of pneumococcal cell walls, suggesting role in promoting 

leukocytes migration during bacterial infection like meningitis (Hanisch et al., 

2001). Moreover, CXCL-1 and CXCL-2 have been implicated in aggravating 

CNS injury by promoting transmigration of monocytes in addition to 

neutrophils into CNS. Spinal cord injury rapidly induce secretion of CXCL-1 

and CXCL-2 from astrocytes distributed throughout the spinal cord and 

attenuation of chemokines expression remarkably reduced neutrophils and 

monocytes infiltration which is associated with reduced neuronal death and 

improved motor function recovery (Kang et al., 2011; Pineau et al., 2010). High 

level of CXCL-5 was detected in the CSF of patients with bacterial meningitis 

and upregulation of CXCL-5 was shown to facilitate neutrophils transmigration 

to the CNS (Zwijnenburg et al., 2003). Detrimental effect of CXCL-5 mediated 

neutrophils has also been demonstrated in ischemic stroke patients where 
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CXCL-5 elevation in CSF was associated with brain infract size (Zaremba et 

al., 2006; Zwijnenburg et al., 2003). 

 On the other hand, CXCL-10 (IP-10) is like CXCL-9 (MIG), are non-

ELR-CXC chemokines that bind to CXCR3 receptor and recruit monocytes, T 

cells, and NK cells (Rossi et al., 2000). Expression of CXCL9 and CXCL10 are 

strongly induced in the CNS following viral infection. CXCL-10 is mainly 

expressed by astrocytes and was shown to promote migration of leukocytes such 

as B cells into the parenchyma (Phares et al., 2013). While elevation of CXCL-

10 was thought to confer protective immunity during infection, Bhowmick and 

colleagues demonstrated that upregulation of CXCL-10 in viral encephalitis 

enhanced severity of virus infection and induced neuronal injury (Bhowmick et 

al., 2007). This is in parallel with previous finding that CXCL-10 contributes to 

enhanced severity in clinical diseases (Liu et al., 2001).  ELR-CXC chemokines 

are strong angiostatic factors that inhibits endothelial cell chemotaxis and 

neovascularization (Strieter et al., 1995). Injection of CXCL-9 and CXCL-10 

into tumour results in tumour regression associated with increased tumour cell 

necrosis, T cell recruitment and angiogenesis inhibition (Angiolillo et al., 1995; 

Sgadari et al., 1996; Sgadari et al., 1997). In consistent with these findings, 

Glaser et al. (2004) has also reported active role of CXCL-10 in vasculature 

remodeling and its upregulation after spinal cord injuries inhibits angiogenesis. 

Treatment with antibody neutralizing CXCL-10 brought great functional 

improvements ascribed to improved blood flow and oxygenation at the site of 

lesion (Glaser et al., 2004).  

Another chemoattractant investigated in my study is CX3CL-1 

(Fractalkine) that recognized by CX3CR1 and promotes monocytes, T-cells, 
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and NK cells chemotaxis. In the CNS, CX3CL-1 is constitutively expressed in 

neurons while its receptor is preferentially expressed in microglia, indicating 

instrumental role of CX3CL-1 in regulating microglial activity (Briones et al., 

2014). Neuroprotective effects have been demonstrated in ischemic stroke and 

inhibition of CX3CL-1/CX3CR1 signaling in hippocampus aggravated 

microglia activation, pro-inflammatory cytokines release, and cognitive 

impairment (Briones et al., 2014). Meanwhile, several contradicting findings 

were reported, pointing towards detrimental role of CX3CL-1. CX3CR1 

deficiency in AD transgenic mice model is associated with reduced neuronal 

loss, microglial and astrocytes activation, cytokines expression (TNF-α and 

CCL-2), enhanced Aβ uptake and decreased amyloid deposits (Fuhrmann et al., 

2010; Lee et al., 2010; Liu et al., 2010). In ischemia stroke model, attenuating 

CX3CL-1 signaling by CX3CL-1 or CX3CR1 knockdown both did not result in 

microglia neurotoxicity but rather substantially reduced infarct size, cytokines 

expression (IL-1β and TNF-α), and leukocyte infiltration (Dénes et al., 2008; 

Soriano et al., 2002). Effect of CX3CL1 on microglia activation is evident as 

attenuation of CX3CL-1/CX3CR1 signaling with antibodies or gabapentin; a 

recommended first-line treatment for multiple neuropathic conditions inhibited 

microglia activation arise from epileptic seizure or monoarthritis respectively 

(Ali et al., 2015; Yang et al., 2012). In my study, I showed that astrocytes could 

upregulate CX3CL-1 expression upon LPS stimulation implying crosstalk 

between activated astrocytes and microglia. Growing evidence suggests that 

crosstalk between astrocytes and microglia can lead to amplification of 

inflammatory responses. For instance, LPS-activated microglia release pro-

inflammatory mediators that induce astrogliosis which in turn release cytokines 
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and further promotes microglial activation, forming a positive feedback loop. 

Indeed, co-cultures of microglia and astrocytes stimulated with endotoxins 

generated more neurotoxic factors than either cell type alone (Saijo et al., 2011). 

Therefore, andrographolide may interfere with astrocyte-microglia crosstalk 

and abate microglia activation by attenuating CX3CL-1 expression, though 

further experiments on microglia will be needed to confirm this.  

IL-1β and TNF-α are early injury signals which are pivotal for the 

induction of other cytokines/chemokines and inflammatory mediators like 

adhesion molecules, prostaglandin E2, leukotrienes, and NO (Kaminska, 2005; 

Van Miert, 1995). Bacterial recognition rapidly induce expression of IL-1β and 

TNF-α which upregulate expression of adhesion molecules in addition to 

chemokines to facilitate migration of leukocyte (Ramesh et al., 2013). In animal 

model of pneumococcal meningitis, several cytokines such as TNF-α and IL-6 

were upregulated. Attenuation of cytokines expression mitigated leukocyte 

infiltration to the CSF, indicating importance of inflammatory cytokines in 

modulating inflammatory response in CNS infection (Hanisch et al., 2001). IL-

1β or TNF-α has been reported to enhance neuronal damage through 

excitotoxicicty potentiation by upregulating expression of glutaminase which 

result in elevation of intracellular and extracellular glutamate levels in rat and 

human neuronal cultures (Ye et al., 2013). Abrogating IL-1β signaling through 

treatment with IL-1β neutralizing antibody or IL-1R1 knockout mice exhibited 

numerous beneficial effects after stroke event including decreased ischemic 

infarct volume, leukocyte infiltration and brain edema (Basu et al., 2005; 

Yamasaki et al., 1995). Importantly, microglia and astrocyte activation were 
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attenuated together with a number of proinflammatory cytokines such as IL-1β, 

IL-6, and TNF-α (Basu et al., 2002; Basu et al., 2005).  

Compelling evidence shows that neuroinflammation is implicated in 

many neurological disorders including CNS infection, neurodegenerative 

disease, stroke and trauma. And elevation of various cytokines and chemokines 

is one of the key features of neuroinflammation (Ramesh et al., 2013). 

Cytokines play an important role in initiating inflammation while chemokines 

propagate and sustain inflammatory responses. Notably, though chemokines are 

well-known for their roles in facilitating leukocyte infiltration into CNS, they 

are versatile proteins capable of modulating inflammatory responses through 

various means. Thus, andrographolide that inhibits expression of various 

cytokines and chemokines as demonstrated in my study, is a potential anti-

neuroinflammatory therapeutic suitable for various neurological diseases 

including but not limited to CNS infections.    

In this study, I demonstrated that all cytokines and chemokines 

examined were dose-dependently attenuated by TPCK and SP600125; which 

are NF-κB and JNK inhibitor respectively. With exception of IL-1β that did not 

exhibit dose dependency inhibition and had an abrupt plunge at highest TPCK 

concentration. Meanwhile SP600125 showed a clear dose response in IL-1β 

reduction suggest that LPS-induced IL-1β is likely a downstream response of 

JNK-dependent signaling (Figure 4.9 O & P). The sudden plunge observed at 

highest TPCK concentration may due to nonspecific activity of TPCK as TPCK 

is also a known serine/cysteine protease inhibitor (Huang et al., 1999) and 

recently shown to inhibit caspases too (Frydrych et al., 2008). Even at highest 

concentration, SP600125 could only partially reduced CX3CL-1 level while 
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TPCK could lower its expression close to the basal level suggesting that LPS-

induced CX3CL-1 is mainly NF-κB dependent (Figure 4.9 M & N). I have 

shown that andrographolide efficiently abrogated NF-κB and JNK activation as 

well as cytokines/chemokines upregulation by LPS stimulation. Therefore, 

andrographolide is proposed to inhibit various cytokines/chemokines by 

attenuating NF-κB and JNK signaling.  

Potential anti-inflammatory role of andrographolide-mediated IL-6 

expression  

IL-6 is often considered a proinflammatory cytokine where elevated 

expression level has been reported in serum, plasma, and CSF of ischemic 

stroke patients. The high level of IL-6 was positively correlated with infarct 

size, body temperature, early neurological decline, and poor functional outcome 

(Beamer et al., 1995; Fassbender et al., 1994; Ferrarese et al., 1999; Tarkowski 

et al., 1995; Vila et al., 2000). Pathogenic role of IL-6 was also shown in 

transgenic mice overexpressing IL-6. Microglia and astrocytes activation was 

prominent in these animals, accompanied with neurodegeneration and 

development of severe neurologic diseases (Campbell et al., 1993; Chiang et 

al., 1994; Fattori et al., 1995). Although andrographolide abated expression of 

various LPS-induced cytokines/chemokine, IL-6 was the only one among the 

examined cytokines/chemokines that was not attenuated. Rather, 

andrographolide further elevated IL-6 expression level in a dose dependent 

manner (Figure 4.7 J). IL-1β and TNF-α are recognized inducer of IL-6 

(Benveniste et al., 1990; Norris et al., 1994). However, IL-6 was upregulated 

even when IL-1β and TNF-α were inhibited by andrographolide suggesting that 

IL-1β and TNF-α did not play a role in IL-6 elevation here. Time course 
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experiment with andrographolide treatment alone also showed time dependent 

increase of IL-6 transcript. This confirms that andrographolide treatment indeed 

induces IL-6 expression in primary astrocyte (Figure 4.8). IL-6 expression is 

significantly attenuated by NF-κB inhibitor but not JNK inhibitor, suggesting 

that IL-6 expression is not primarily mediated by JNK signaling (Figure 4.9 S 

& T). I have demonstrated that andrographolide is an effective blocker of NF-

κB, but instead of inhibiting IL-6, it further enhances IL-6 expression implying 

that other mechanism is involved in andrographolide-mediated IL-6 expression 

in astrocytes. Interestingly, Brambilla et al. found that transgenic mice with 

astroglial NF-κB inactivation (GFAP-IκBα-dominant negative) exhibit higher 

IL-6 level than wild type mice and exhibited a remarkable functional 

improvement after EAE induction (Brambilla et al., 2009). This may indicate 

that overexpressing IL-6 in astrocytes has neuroprotective effects. Though IL-6 

elevation in CSF or parenchyma is often correlated with stroke and 

neurodegenerative diseases such as AD and PD, there is yet any evidence of IL-

6 involvement in the pathologic process of these diseases (Blum-Degena et al., 

1995; Mogi et al., 1994; Tarkowski et al., 1995). IL-6 could be a reflection of 

the ongoing inflammation caused by the progressive neuronal damage and using 

IL-6 as a clinical marker for disease severity remains controversial (Suzuki et 

al., 2009). In fact, potential neuroprotective roles of IL-6 have long been 

proposed.  In 1994, Maeda et al. demonstrated paracrine neurotrophic effect of 

IL-6 secreted by astrocytes. Incubation with conditioned medium from 

astrocytes exposed to hypoxia/reoxygenation promoted survival of 

hypoxia/reoxygenation treated PC12 cells and the beneficial effect was 

attenuated by IL-6 neutralizing antibody (Maeda et al., 1994). More recent 
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study by Herrmann et al. supported the protective role of IL-6 against ischemic 

stroke as IL-6 deficient mice developed larger infarct volume, had poorer 

neurologic status, and higher mortality rate compared to controls (Herrmann et 

al., 2003). IL-6 deficient astrocytes also resulted in higher levels of CXCL-1 

and CCL-5 upon LPS stimulation, implying autocrine modulatory activities of 

IL-6 on other cytokines (Bolin et al., 2005). Together, these studies provide 

convincing evidence that IL-6 can have dual effects; proinflammatory or anti-

inflammatory/neuroprotective and IL-6 elevation in astrocytes mediated by 

andrographolide is likely a neuroprotective response. 

Recently, Nrf2 is reported to induce IL-6 expression via an antioxidant 

response element (ARE) located within IL-6 promoter. Nrf2 knockout mice 

failed to induce IL-6 expression and suffer from oxidative stress and neuronal 

death in response to oxidant treatment (Wruck et al., 2011). My earlier study 

showed that andrographolide activated ERK and p38 MAPKs which had been 

indicated in Nrf2 activation and cytoprotective proteins expression (Choi et al., 

2015; Ci et al., 2015; Lee et al., 2015). Undeniably, there seems to be a link 

between andrographolide-activated MAPKs, Nrf2 activation, and IL-6 

expression. I later revealed that andrographolide is indeed a strong inducer of 

Nrf2, and MAPKs does play a role in mediating Nrf2 activation (which will be 

discussed in more details in the next chapter). Thus, I proposed that 

andrographolide mediates IL-6 expression through Nrf2 activation. 

Nonetheless, precise mechanism involved in IL-6 production and the exact role 

of IL-6 elevation in inflammation mediated by andrographolide remain to be 

elucidated. 
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Therapeutic effects of oral andrographolide in neuroinflammation mouse 

model 

From primary cell culture, I further the investigation in intact animal 

model as cultured cell could not provide physiological conditions and lack of 

complex interactions among different cell types and tissues. In my study, 

neuroinflammation was induced in mice by systematically administrating LPS. 

Systemic LPS elicits a rapid and strong inflammatory response. A sharp 

increase in serum and brain TNF-α level was observed 1 hour after 

intraperitoneal (i.p.) LPS injection which sustained up to 10 months in the brain 

(Qin et al., 2007). Elevation of multiple cytokines/chemokines in the CNS and 

sickness behavior were manifested as early as 2 hours after i.p. LPS (Biesmans 

et al., 2013). Systemic inflammation also leads to microglia activation, reactive 

astrogliosis, neutrophil infiltration, upregulation of CNS cytokines/chemokines 

expression and TLRs; which are indications of neuroinflammation (Biesmans 

et al., 2013; Jeong et al., 2010; Noh et al., 2014; Qin et al., 2007). Emerging 

evidences showed that peripheral immune activation is a risk factor of 

neuroinflammatory and neurodegenerative diseases. Denes et al. reported that 

gut infection substantially exacerbated experimental stroke by upregulating 

CCL-5 expression (Denes et al., 2010). Moreover Lee et al. demonstrated that 

systemic endotoxin challenge could contribute to AD pathology. Memory 

impairment was observed in mice with i.p. LPS injection. Repeated LPS 

injections activated astrocytes and upregulated β- and γ-secretase activities 

resulted in Aβ1-42 accumulation in cerebral cortex and hippocampus (Lee et al., 

2008). Furthermore, intranasal inoculation of Chlamydia pneumonia and release 

of chlamydial products like LPS into the brain stimulates neuroinflammation 
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which induces Alzheimer-like amyloid plaques in mice brain that increase in 

density, size, and number as the infection progressed (Itzhaki et al., 2004; Little 

et al., 2004). These studies indicate that systemic administration of LPS is a 

relevant model to examine neuroinflammation and neurodegeneration arise 

from or exacerbated by peripheral infection.  

Bacterial meningitis is neuroinflammatory disease caused by peripheral 

bacterial infection that invade into meninges and causes inflammation in the 

arachnoid membrane and subarachnoid space. (Kastenbauer et al., 2001; 

Swartz, 1984). The most common pathogens of bacterial meningitis in children 

and adults are Streptococcus pneumoniae, Neisseria meningitides, and 

Hemophilus influenza (Ramesh et al., 2013). Bacterial meningitis could be life-

threatening causing memory deficits, edema, hearing loss, cerebral palsy, and 

seizures; thus requires immediate diagnosis and prompt treatment (Nelson Jr, 

2006). Patients surviving bacterial meningitis develop cognitive impairment 

even if they were clinically well recovered (Schmidt et al., 2006; Van De Beek 

et al., 2002). Peripheral administration of LPS simulate bacterial meningitis 

where infectious agent could be originated from the peripheral tissue and finally 

make its way to the brain parenchyma. In my study, I performed three i.p. LPS 

injections to ICR mice with 6 hours’ time interval in between 1st and 2nd 

injection and 18 hours’ time interval between 2nd and 3rd injection, a treatment 

regime adopted from Erickson et al. (2011). Such treatment regime had 

demonstrated to produce a significantly higher levels of cytokines and 

chemokines in mice brain as compared to single LPS injection (Erickson et al., 

2011). In consistent with previous finding, I found substantial elevation in CCL-

2, CCL-5, CXCL-1, CXCL-2, CXCL-9, and CXCL-10 expression in mice brain 
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(Figure 4.10). Leukocytes recruitment into the CSF is a hallmark of bacterial 

meningitis (Hoffman et al., 2009), therefore chemokines elevation observed 

here may be the major source of leukocyte infiltration. In fact, both CCL-2 and 

CCL-5 are potent chemoattractant that recruit a range of leukocytes including 

granulocytes, monocytes, T-cell, natural killer (NK) cells and dendritic cells 

(Jaerve et al., 2012). Among the measured chemokines, CXCL-1 was 

upregulated most, reaching more than 1500 pg/mg brain tissue. This may imply 

that large number of neutrophils and monocytes were being recruited into the 

CNS to mediate neuroinflammation. Moreover, upregulation in astrogliosis 

marker GFAP was also evident, indicating activation of astrocytes. These 

provide evidences of inflammation process in the CNS upon peripheral LPS 

administration.  

Inflammatory response evoked by meningitis is a protective response to 

eradicate pathogens but at the same time it could also contribute to 

inflammatory mediator-induced tissue damage (Braun et al., 2001). In order to 

access therapeutic effects of orally administered andrographolide on 

neuroinflammation, andrographolide was given through oral gavage. As LPS 

elicit a rapid inflammatory response within 1 hour, andrographolide is 

administered 1 hour after each LPS injection. This treatment regime could 

resemble episodes of inflammatory responses after bacterial infection and 

andrographolide treatment is given after occurrence of each inflammatory 

episodes to control neuroinflammation. Oral administration of andrographolide 

significantly attenuated all chemokines measured except CXCL-10 though a 

reducing trend was observed. Besides that, GFAP mRNA level was 

considerably downregulated. Nonetheless, GFAP protein level did not reach 
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statistical significance which may be improved by increasing the number of 

animal. Together, results imply that orally administered andrographolide could 

exert anti-neuroinflammatory effects. This is further supported by previous 

findings which demonstrated  that andrographolide administered peripherally 

can penetrate the blood brain barrier (BBB) due to its high lipid solubility (Bera 

et al., 2014b; Zheng, 1982). In addition, andrographolide's accumulation in the 

brain may also be enhanced in neuroinflammatory conditions where the BBB is 

disrupted (Chan et al., 2010). While effective antibiotic therapy is compulsory 

in patient suffering bacterial meningitis, andrographolide could be used as an 

adjunctive treatment to ameliorate neuroinflammation to prevent secondary 

tissue damage. These observations suggest that orally administered 

andrographolide may be efficacious in CNS diseases like meningitis, stroke and 

neurodegenerative disease where neuroinflammation is implicated. 
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CHAPTER 5: ANDROGRAPHOLIDE 

REGULATION ON NRF2 EXPRESSION; 

MECHANISM MEDIATING ANTIOXIDATIVE 

EFFECTS 
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5.1 Results 

5.1.1 LPS induced Nrf2 and HO-1 expression in primary astrocytes 

Maladaptive neuroinflammation often comes hand in hand with 

oxidative stress which generates reactive oxygen species that leads to neuronal 

death (Hsieh et al., 2013). Being referred as the “master regulator” of 

antioxidant response, NF-E2-related factor 2 (Nrf2) is a transcription factor that 

regulates expression of many antioxidant proteins including heme oxygenase-1 

(HO-1) and NAD(P)H quinone oxidoreductase 1 (Nqo1) (Kumar et al., 2014; 

Niture et al., 2014; Rushworth et al., 2005). First, I showed that primary 

astrocytes treated with LPS 100 ng/ml time dependently increased Nrf2 mRNA 

and protein expression (Figure 5.1 A & B). Furthermore, both mRNA and 

protein level of HO-1 also induced by LPS treatment (Figure 5.1 C & D). This 

was likely an adaptive mechanism that protects the cells from LPS-induce 

oxidative damage. Interestingly, coincubation of LPS with andrographolide for 

8 hours dramatically enhanced HO-1 mRNA level (Figure 5.2). This result 

revealed possible antioxidative properties of andrographolide.    
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Figure 5.1 LPS induced Nrf2 and HO-1 expression in primary astrocytes. 
Primary astrocytes were incubated with 100 ng/ml LPS for various timepoints. 

Transcript level of Nrf2 (A) and HO-1 (C) were analyzed by real-time PCR. 

Protein level of Nrf2 and (B) and HO-1 (D) were quantified by immunoblotting. 

β-actin was used as loading control. Sample size n = 3 for (A) and (C); n = 4 for 

(B) and (D). Data shown are mean ± S.E.M. LPS time effects were compared 

with controls with one way ANOVA followed by Dunnett’s post-hoc tests. (*p 

< 0.05, **p < 0.01, and ***p < 0.001) 
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Figure 5.2 Andrographolide further enhanced LPS induced Nrf2 and HO-

1 mRNA expression in primary astrocytes. Andrographolide was 

coincubated with LPS for 8 hours. Transcript level of HO-1 was analyzed by 

real-time PCR. Sample size n = 3. Data shown are mean ± S.E.M. Multiple pair-

wise comparisons were performed using one way ANOVA followed by 

Bonferroni’s post-hoc tests. (*p < 0.05, **p < 0.01, and ***p < 0.001) 

 

5.1.2 Andrographolide elevated HO-1 and Nqo1 in primary astrocyte 

Expression of HO-1 and Nqo1 were then further evaluated to confirm 

the antioxidative property of andrograpaholide in astrocytes. When treated with 

50 μM andrographolide, primary astrocytes showed a time-dependent elevation 

of HO-1 and Nqo1 in both mRNA and protein levels (Figure 5.3). 

Immunofluorescence staining of HO-1 also corresponded with the immunoblot 

result. HO-1 staining intensified with an overall increase in all cells when 

incubated with andrographolide during a time course experiment (Figure 5.4).  
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Figure 5.3 Andrographolide elevated HO-1 and Nqo1 expressions in 

primary astrocytes. Primary astrocytes were incubated with andrographolide 

50 μM for the indicated timepoints. Transcript level of HO-1(A) and Nqo1 (C) 

were analyzed by real-time PCR. Protein level of HO-1 and (B) and Nqo1 (D) 

were quantified by immunoblotting. β-actin was used as loading control. 

Sample size n = 3. Data shown are mean ± S.E.M. Andrographolide time effects 

were compared with controls with one way ANOVA followed by Dunnett’s 

post-hoc tests. (**p < 0.01 and ***p < 0.001) 
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Figure 5.4 Andrographolide time dependently increased HO-1 

immunofluorescence staining. Primary astrocytes were incubated with 

andrographolide 50 μM for the indicated timepoints and processed for 

immunofluorescence staining. Scale bar denotes 50 μm. Mean fluorescence 

intensity per cell is computed by dividing area fluorescence intensity with total 

number of cells.  

  

5.1.3 Andrographolide increased Nrf2 protein level independently of 

mRNA transcription 

 As shown in Figure 5.3, transcript levels of HO-1 and Nqo1 were also 

elevated by andrographolide. As HO-1 and Nqo1 are both target genes of Nrf2, 
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it was proposed that expression of Nrf2 may be elevated as well. Thus, primary 

astrocytes were incubated with 50 μM andrographolide for various timepoints 

and cells were then harvested and processed for real-time PCR or western 

blotting. Interestingly, mRNA level of Nrf2 did not increase even up to 8 hours 

of andrographolide incubation and significant increase was only observed at 24 

hours of incubation (Figure 5.5 A). On the other hand, protein levels showed a 

significant increase as early as 30 minutes and the increment sustained until 24 

hours which was the longest timepoint tested (Figure 5.5 B). Dose-dependent 

effects of andrographolide on Nrf2 protein level were also observed (Figure 5.5 

C). Apparent elevation of HO-1 mRNA was observed by 2 hours of 

andrographolide incubation (Figure 5.3 A), much earlier than the elevation of 

Nrf2 mRNA level. Hence, the results suggested that andrographolide induced 

elevation of Nrf2 protein level was independent of mRNA level. Moreover, 

subcellular fractionation revealed that andrographolide promoted Nrf2 

accumulation in both nuclear and cytoplasmic compartments (Figure 5.6). 

Significant nuclear translocation of Nrf2 was observed at early 30 minutes 

which coincides with early upregulation of HO-1 transcript level. Together, my 

results implied that andrographolide acutely promoted nuclear accumulation of 

Nrf2 and induced transcription of HO-1 and Nqo1.  
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Figure 5.5 Andrographolide elevated Nrf2 protein level independently of 

mRNA level. (A) Transcript level of Nrf2 was analyzed by real-time PCR while 

(B) protein level of Nrf2 was quantified by immunoblotting after incubation 

with andrographolide 50 μM for the indicated timepoints.  (C) Primary 

astrocytes treated with indicated doses of andrographolide for 1 hour was 

processed and immunoblotted for Nrf2. β-actin was used as loading control. 

Sample size n = 4 for (A) and (B); n = 3 for (C). Data shown are mean ± S.E.M. 

Andrographolide time effects were compared with controls with one way 

ANOVA followed by Dunnett’s post-hoc tests. (*p < 0.05, **p < 0.01 and ***p 

< 0.001) 
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Figure 5.6 Andrographolide increased nuclear and cytoplasmic 

accumulation of Nrf2. Primary astrocytes were incubated with 

andrographolide 50 μM for the indicated timepoints and subjected to subcellular 

fractionation. Nrf level in nuclear compartment (A) and cytoplasmic 

compartment (B) were quantified by immunoblotting. TATA box binding 

protein (TBP) was used as loading control for nuclear protein while β-actin was 

used as loading control cytoplasmic protein. Sample size n = 3. Data shown are 

mean ± S.E.M. Andrographolide time effects were compared with controls with 

one way ANOVA followed by Dunnett’s post-hoc tests. (*p < 0.05 and **p < 

0.01) 
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5.1.4 Andrographolide increased Nrf2 level by enhancing Nrf2 protein 

stability 

 The observation that andrographolide promoted early accumulation of 

Nrf2 protein in the absence of increased rate of transcription inferred that 

turnover rate for Nrf2 may be decreased in response to andrographolide 

treatment. In order to examine this possibility, primary astrocytes were treated 

with 10 μg/ml cycloheximide (CHX), a protein synthesis inhibitor (Egorova et 

al., 2015) in a time-course experiment for 0, 10, 20, 40, 60, and 90 minutes. 

Whole cell lysate collected were immunoblotted for Nrf2. Result showed that 

Nrf2 protein level reduced to about 50% within 10 minutes of CHX treatment 

and only a trace amount of Nrf2 was detected after 40 minutes, indicated that 

Nrf2 had a high turnover rate. However when primary astrocytes were 

pretreated with andrographolide 50 μM for 1 hour prior co-incubation with 

CHX in a similar time-course experiment, Nrf2 protein degradation was 

delayed. Nrf2 protein level remained high for at least 20 minutes and substantial 

decrease was only detected after 40 minutes of CHX exposure (Figure 5.7). 

These findings suggested that andrographolide enhanced protein stability of 

Nrf2 and therefore decreased Nrf2 turnover rate. 
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Figure 5.7 Andrographolide enhanced protein stability of Nrf2. Primary 

astrocytes were incubated in culture media or andrographolide 50 μM for 1 hour 

prior co-incubation of CHX (10 μg/ml) for the indicated timepoints. Whole-cell 

lysate collected were immunoblotted for Nrf2. β-actin was used as loading 

control. Sample size n = 4. Data shown are mean ± S.E.M. Andrographolide 

coincubated group was compared with vehicle group with Student’s t-tests. (*p 

< 0.05) 

 

5.1.5 Andrographolide enhanced Nrf2 protein stability by reducing 

ubiquitination of Nrf2 

Under basal conditions, Nrf2 is sequestered in the cytoplasm by Keap1, 

which acts as a substrate adapter for E3 ubiquitin ligase complex. Nrf2 was then 

subjected to ubiquitination and degradation by 26S proteasome (Furukawa et 

al., 2005). As ubiquitination plays a crucial role in regulating Nrf2 stability, I 

further examined endogenous level of ubiquitinated Nrf2 in andrographolide 

treated primary astrocytes. After treatment with 0.1% DMSO or 

andrographolide 50 μM for 1 hour, cells were lysed and incubated with ubiquitin 

antibody-conjugated agarose beads followed by Nrf2 immunoblotting. 
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Immunoprecipitation result revealed that absolute amount of ubiquitinated Nrf2 

did not change with andrographolide treatment. In contrast, total Nrf2 level 

increased in an andrographolide dose-dependent manner (Figure 5.8). 

Therefore, the proportion of ubiquitinated Nrf2 in andrographolide treated cells 

were substantially reduced. Thus, I inferred that andrographolide enhanced 

protein stability by impeding Nrf2 ubiquitination and degradation. 

 

Figure 5.8 Andrographolide decreased ubiquitination of Nrf2. Primary 

astrocyte were treated with 0 and 50 μM of andrographolide for 1 hours and 

processed for immunoprecipitation. Lysates were incubated with ubiquitin 

antibody-conjugated agarose beads for 3 hours in 4 ْC and subjected to 

immunoblotting for Nrf2. Heavy chain of IgG was used a loading control for 

immunoprecipitation. 70 μg input protein (from crude lysate) were 

immunoblotted for Nrf2 and β-actin was used as a loading control. Sample size 

n = 4. Data shown are mean ± S.E.M. Andrographolide was compared with 

control group with Student’s t-tests. (***p < 0.001)  

 

5.1.6 Andrographolide did not decrease Keap-1 expression level 

Keap1 is an important regulator of Nrf2, binding of Nrf2 to Keap1 

promotes Nrf2 degradation (Furukawa et al., 2005). Thus, disruption of Keap1 

expression level may play a part in modulating Nrf2 protein stability. Zhang et 
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al. (2005a) demonstrated that quinone-induced oxidative stress promoted 

Keap1 ubiquitination and subsequently led to degradation of Keap1 (Zhang et 

al., 2005a). To examine this possibility, a time-course study was performed with 

50 μM andrographolide. Immunoblot result showed no change in Keap1 protein 

level upon andrographolide time-course treatment, suggesting that 

andrographolide exerted no effect on Keap1 protein level (Figure 5.9). 

 

Figure 5.9 Andrographolide effects on Keap1 protein level. Primary 

astrocytes were exposed to 50 μM andrographolide for the indicated timepoints. 

Whole-cell lysate collected were immunoblotted for Keap1 and β-actin was 

used as loading control. Sample size n = 4. Data shown are mean ± S.E.M. 

 

5.1.7 Andrographolide reduced Nrf2 phosphorylation at Ser40 site 

Several studies reported that phosphorylation at Ser40 by protein kinase 

C (PKC) disrupted Nrf2 binding to Keap1, hence induced nuclear accumulation 

of Nrf2 (Huang et al., 2002; Niture et al., 2009). In order to examine if 

andrographolide promoted Nrf2 nuclear accumulation through Ser40 

phosphorylation, time-course experiments were performed with 50 μM 

andrographolide. Negligible change was detected in the absolute amount of 
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phospho-Ser40 but total Nrf2 protein increased along the treatment time course. 

Thus, the proportion of phospho-Ser40 reduced as incubation time increases. 

This implied that andrographolide did not enhance Nrf2 protein stability 

through Ser40 phosphorylation-mediated Nrf2 escape from Keap1. 

 

 

 

 

 

 

Figure 5.10 Andrographolide reduced Nrf2 phosphorylation at Ser40 

residue. Primary astrocytes were incubated with andrographolide 50 μM for the 

indicated timepoints. Whole cell lysates were collected and probed for phos-

Nrf2 Ser40 and Nrf2. β-actin was used as a loading control. Sample size n = 4. 

Data shown are mean ± S.E.M. Multiple pair-wise comparisons were performed 

using one way ANOVA followed by Bonferroni’s post-hoc tests. (***p < 0.001) 

 

5.1.8 ERK and p38 inhibitors attenuated andrographolide-induced Nrf2 

accumulation in both nuclear and cytoplasmic compartment 

 There are recent reports on MAPKs activating Nrf2 and increasing 

expression of Nrf2 target genes (Eom et al., 2009; Keum et al., 2006; Nguyen 

et al., 2003; Zipper et al., 2000). I previous showed that andrographolide 

activated ERK and p38 kinases (Figure 4.4 C & D). Possible role of ERK and 

p38 in inducing Nrf2 accumulation was thus investigated. Primary astrocytes 

were pretreated with ERK inhibitor (PD98059) or p38 inhibitor (SB202190) for 

an hour followed by another one hour of incubation with 30 μM 

andrographolide. SB202190 and PD98059 both inhibitors considerably reduced 
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Nrf2 in nuclear and cytoplasmic compartments in a dose dependent manner 

(Figure 5.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 ERK and p38 inhibitors attenuated andrographolide-induced 

Nrf2 accumulation in nuclear and cytoplasmic compartment. Primary 

astrocytes were pretreated with ERK inhibitor (PD98059) or p38 inhibitor 

(SB202190) for an hour followed by another one hour of incubation with 30 μM 

andrographolide (with presence of inhibitors). Nuclear (A) and cytoplasmic 

fraction (B) were subjected to immunoblotting for Nrf2. Lamin B1 was used as 

loading control for nuclear protein while β-actin was used as loading control for 

cytoplasmic protein.  Sample size n = 3. Data shown are mean ± S.E.M. Multiple 

pair-wise comparisons were performed using one way ANOVA followed by 

Bonferroni’s post-hoc tests. (*p < 0.05, **p < 0.01, and ***p < 0.001); ns = not 

significant (p > 0.05) 
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5.1.9 ERK and p38 inhibitors attenuated andrographolide-induced mRNA 

expression of HO-1 and Nqo1 

 After demonstrating that inhibition of ERK and p38 could lead to 

reduction of Nrf2 level, expression of Nrf2 target genes, HO-1 and Nqo1 were 

examined. Primary astrocytes were either pretreated with or without MAPK 

inhibitors for 1 hour followed by andrographolide treatment for 4 hours (with 

presence of inhibitors). Increasing concentration of andrographolide leds to 

dose dependent increase of HO-1 and Nqo1. In corroboration with Nrf2 levels, 

inhibitors of ERK and p38 also attenuated HO-1 and Nqo1mRNA level induced 

by andrographolide (Figure 5.10). These results supported the role of ERK and 

p38 in mediating Nrf2 accumulation and thus transcription of anti-oxidative 

genes.   
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Figure 5.12 ERK and p38 inhibitors attenuated andrographolide-induced 

HO-1 and Nqo1 mRN expression. Primary astrocytes were pretreated with or 

without MAPK inhibitors for an hour followed by 4 hour of incubation with 

andrographolide (with presence of inhibitors). Transcript of HO-1 (A) and Nqo1 

(B) were quantified with real-time PCR. Data shown are mean ± S.E.M. 

Andrographolide dose effects were compared with control with one way 

ANOVA followed by Dunnett’s post-hoc tests. (*p < 0.05, **p < 0.01, and *** 

p < 0.001). Sample size n = 3. Multiple pair-wise comparisons with 

andrographolide 30 μM were performed using one way ANOVA followed by 

Bonferroni’s post-hoc tests. (#p < 0.05, ##p < 0.01, and ###p < 0.001) 
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5.2 Discussion 

Neuroinflammatory processes induce oxidative stress which has 

detrimental effects on the vulnerable brain due to its high content of 

polyunsaturated fatty acids that are highly susceptible to lipid peroxidation 

(Mariani et al., 2005). Lipid peroxidation decreases membrane fluidity and 

elasticity, leading to cell death. These modifications are particularly deleterious 

to cells with limited regenerative capacity like neurons (Richter, 1987). Hence, 

interventions that targets both neuroinflammation and oxidative stress are 

deemed to bring many medical benefits. As Nrf2 plays an essential role in 

cellular redox homeostasis and also some indications of andrographolide-

mediated Nrf2 activation (demonstrated in the previous chapter), I further the 

investigation of andrographolide on its potential antioxidative effects by 

examining Nrf2 pathway. One of the cytoprotective enzymes regulated by Nrf2 

is HO-1 which mediates heme catabolism (Jazwa et al., 2010). Biliverdin 

generated from heme catabolism is quickly converted to bilirubin which had 

been shown to protect against lipid peroxidation as effective as α-tocopherol 

(Stocker et al., 1987a; Stocker et al., 1987b). Therefore, HO-1 was being used 

in this study as an indication of antioxidant effects and also a read out of Nrf2 

transcriptional activity.   

In order to ensure the purity of nuclear and cytoplasmic preparation, cell 

lysate prepared from subcellular fractionation was immunoblotted for TATA-

box binding protein (TBP), lamin B1, epidermal growth factor receptor 

(EGFR), GAPDH, and actin. Cytoplasmic preparation was clearly devoid of 

nuclear protein such as TBP and lamin B1 whereas negligible cytoplasmic 

protein like EGFR and GAPDH were detected in nuclear preparation (Appendix 
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6). Actin was detected in both nuclear and cytoplasmic fraction as reported by 

previous studies.  Actin could form complex with DNA (Miller et al., 1991) or 

associate with nuclear matrix (Nakayasu et al., 1983). Actin has been proposed 

to have structural or regulatory role within chromatin-remodeling complexes 

and facilitates nuclear export of mRNA transcripts (Bettinger et al., 2004).    

Rat and human Nrf2 contains 597 and 605 amino acids respectively. The 

predicted molecular weight of Nrf2 is ~66 kDa. In vitro transcription and 

translation of full-length Nrf2 cDNA generates distinct band at ~96 kDa which 

is larger than the predicted 66 kDa (Moi et al., 1994). Moi et al. proposed that 

such discrepancy could be due to high acidic residues content in Nrf2, resulting 

in anomalous migration in SDS/PAGE. Moreover, Kang et al. showed that Nrf2 

is an actin-binding protein. The 100 kDa protein detected in immunoblots and 

immunoprecipitation assay contained both Nrf2 and actin (Kang et al., 2002). 

Using antibodies from Santa Cruz and laboratory generated antibodies, Nrf2 

overexpression significantly increased protein band at 100 kDa in neuronal and 

astrocytic cultures (Li et al., 2005). Though the nature of anomalous migration 

pattern of Nrf2 is still undefined, growing evidence supports the biologically 

relevant size of Nrf2 to be ~95-110 kDa under denatured condition. Therefore, 

I reported Nrf2 as the evident band detected ~100 kDa in my study. 

LPS activates Nrf2 as an adaptive mechanism to oxidative stress    

LPS stimulation triggers production of ROS (Hsu et al., 2002). In 

response to oxidative stress, astrocytes upregulate cytoprotective enzymes like 

HO-1 through activation of Nrf2. This was indicated by elevation of both 

transcript and protein level of Nrf2 and its target gene, HO-1. This shows that 
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cells have adaptive mechanism to endure oxidative stress. Potential antioxidant 

properties of andrographolide was revealed when andrographolide markedly 

enhanced LPS-induced HO-1 transcript level. 

Andrographolide is a potent Nrf2 activator  

I then followed up the study by looking at andrographolide effects on 

HO-1 and Nqo1, another gene targets of Nrf2. Nqo1 is a quinone reductase that 

catabolizes two-electron reduction of quinone to hydroquinones, diverting away 

from one-electron reduction that generates semiquinones and ROS (Vasiliou et 

al., 2006). Moreover, Nqo1 has been shown to protect neuroblastoma cells 

against oxidative stress induced by glutamate (Murphy et al., 1991). 

Andrographolide time-course experiments showed induction of both HO-1 and 

Nqo1 suggestive of antioxidant activity. Andrographolide triggered rapid HO-

1 transcription. Noticeable elevation of HO-1 transcripts were observed as early 

as 1 hour andrographolide incubation and reached statistical significance by 2 

hours (Figure 5.3). Increase in Nqo1 transcript was also evident by 4 hours of 

andrographolide treatment. Andrographolide strongly induced transcription of 

HO-1 and Nqo1, increasing their transcripts level up to 130 fold and 30 fold 

respectively. Dose response experiment of andrographolide demonstrated a 

substantial Nrf2 protein increase with concentration as low as 1 μM (Figure 

5.5). Screening of 54 natural dietary compounds as potential Nrf2 activator had 

identified andrographolide as the compound with highest efficacy and has EC50 

value lower than tert-Butylhydroquinone (tBHQ); an effective antioxidant 

frequently used to study Nrf2/ARE activation (Wu et al., 2014b). This implies 

that andrographolide is a potent activator of Nrf2.  
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Andrographolide-mediated early induction of Nrf2 is independent of Nrf2 

transcription 

Time course experiment of andrographolide demonstrated that Nrf2 

protein level increased remarkably at a very early time-course (30 minutes) and 

peaked at 4 hours. Intriguingly, elevation of Nrf2 protein level was not 

accompanied with mRNA increment. Nrf2 mRNA did not increase even up to 

8 hours of andrographolide incubation (Figure 5.5). Subcellular fractionation 

also showed elevation of Nrf2 in both nuclear and cytoplasmic compartments 

upon andrographolide incubation. In parallel with HO-1 and Nqo1 rapid 

transcription in andrographolide time-course experiment, nuclear accumulation 

of Nrf2 occurs as early as 30 minutes. The instantaneous rise of nuclear Nrf2 

promotes rapid transcription of HO-1 and Nqo1. Results indicate that 

andrographolide’s regulation on Nrf2 is biphasic and early activation of Nrf2 is 

independent of Nrf2 mRNA transcription.    

Andrographolide enhances Nrf2 protein stability by reducing 

ubiquitination 

The early accumulation of Nrf2 protein in the absence of transcript level 

may infer that andrographolide reduced turnover rate for Nrf2. In order to 

examine this possibility, primary astrocytes were treated with cycloheximide 

(CHX) which is a 80S ribosome inhibitor that blocks protein translation and 

therefore prevent de novo protein synthesis (Egorova et al., 2015). Nrf2 is 

known to have high turnover rate (Nguyen et al., 2003; Stewart et al., 2003). 

Nearly 50% protein reduction was observed within 10 minutes of CHX time-

course treatment and only a trace amount of Nrf2 was detected after 40 minutes. 
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Nonetheless, when primary astrocytes were pretreated with andrographolide, 

Nrf2 protein level sustained and noticeable decrease was only detected after 40 

minutes of CHX exposure (Figure 5.7). These findings indicate that 

andrographolide-mediated Nrf2 protein accumulation does not depend on de 

novo Nrf2 synthesis but rather due to enhanced Nrf2 protein stability.  

Under basal conditions, Nrf2 is sequestered in the cytoplasm by Keap1. 

Nrf2 interacts with Keap1 via high affinity ETGE and a low affinity DLG 

binding motifs in the Neh2 domain (Bryan et al., 2013; Hun Lee et al., 2013). 

Keap1 acts as a substrate adapter for Cullin-3 (Cul3) which forms an E3 

ubiquitin ligase complex with ring-box 1 protein (Rbx1) (Furukawa et al., 

2005). The Keap1-Cul3-Rbx1 complex promotes ubiquitination of Nrf2 and 

targets it for degradation by 26S proteasome, maintaining Nrf2 expression at 

low level. As ubiquitination plays a major role in regulating Nrf2 stability, I 

further examined endogenous level of ubiquitinated Nrf2 in andrographolide 

treated primary astrocytes. Immunoprecipitation revealed that absolute amount 

of ubiquitinated Nrf2 did not change with andrographolide treatment. However, 

it was well-appreciated that andrographolide dose-dependently increased Nrf2 

total protein level. Hence, the ratio of ubiquitinated to non-ubiquitinated Nrf2 

in andrographolide treated cells was markedly reduced. Therefore, it is 

reasonable to conclude that andrographolide enhanced protein stability by 

impeding Nrf2 ubiquitination and degradation. One advantage of my current 

studies is the measurement of endogenous level of ubiquitinated Nrf2 in primary 

astrocytes instead of ectopically expressed Nrf2 and ubiquitin commonly used 

by many studies to examine Nrf2 ubiquitination and protein-protein interactions 

due to general low abundance of Nrf2 in unstimulated cells (Ichikawa et al., 
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2009; Li et al., 2012a; Sun et al., 2007). Such results obtained from forced 

protein expression approach may lead to ectopically expressed, non-

physiological functions of proteins under study. 

Andrographolide neither enhance protein stability through regulation of 

Keap1 protein expression nor Nrf2 Ser40 phosphorylation  

The cysteine-rich Keap1 is a sensitive sensor for oxidative stress. When 

exposed to oxidative stress or electrophiles, cysteine thiol groups in the 

intervening region (IVR) of Keap1 interact with ROS or electrophile and results 

in formation of disulfide bonds (Hun Lee et al., 2013). This leads to Keap1 

conformational changes which render its ability to sequester Nrf2 (Bryan et al., 

2013; Kansanen et al., 2012). Keap1 was previously reported to be ubiquitinated 

in response to quinone-induced oxidative stress and resulted in subsequent 

degradation of Keap1 (Zhang et al., 2005a). In my study, Keap1 expression did 

not change in response to andrographolide time-course treatment suggesting 

that andrographolide exert no effect on Keap1 protein level. My present study 

however, could not rule out that andrographolide may react and form adduct 

with Keap1. A few reactive cysteine residues (C257, C273, C288, C297, and 

C613) in Keap1 had been identified to react with Nrf2 inducers to form covalent 

adducts. This would induce Keap1 conformational changes and disrupt Keap1-

Nrf2 association which eventually cause nuclear accumulation of Nrf2 (Bryan 

et al., 2013; Dinkova-Kostova et al., 2002; Kansanen et al., 2012). 

Nrf2 is an acidic protein. About 16% of its total amino acids are made 

up of serine, threonine, and tyrosine residues, making it a potential substrate for 

several signaling kinases (Rojo et al., 2012). Protein kinase C (PKC) had been 
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shown to phosphorylate Nrf2 at Ser40 in the Neh2 domain (Bloom et al., 2003; 

Huang et al., 2002; Niture et al., 2009). PKC phosphorylation was prevented 

when Ser40 was mutated to alanine residue. This mutation disrupts association 

between Keap1 and Nrf2, promoting nuclear accumulation of Nrf2 (Huang et 

al., 2002; Niture et al., 2009). In order to investigate if andrographolide 

promotes Nrf2/Keap1 complex dissociation and consequently leads to Nrf2 

nuclear accumulation by inducing Ser40 phosphorylation, a time-course 

experiment was performed. Change in the absolute amount of phospho-Ser40 

detected was negligible (Figure 5.9). On the other hand, total Nrf2 protein 

increased along the treatment time course. Thus, the proportion of phospho-

Ser40 reduced as incubation time increases. My finding coincided with Li et al. 

who also reported minimal change in phos-Ser40 despite marked increase in 

total Nrf2 and reduction in Nrf2 ubiquitination (Li et al., 2012a). I could 

therefore rule out the possibility of Nrf2 stabilization through Ser40 

phosphorylation-mediated Nrf2 escape from Keap1. 

ERK and p38 mediate Nrf2 activation potentially through GSK-3β 

inhibition 

Emerging evidence showed that Nrf2 phosphorylation positively 

regulates Nrf2 stability. Using phosphatase inhibitors to induce Nrf2 

hyperphosphorylation resulted in accumulation of Nrf2 and activation of ARE-

mediated reporter gene (Nguyen et al., 2003). Moreover, several xenobiotics 

like tert-Butylhydroquinone (tBHQ), Pyrrolidine dithiocarbamate (PDTC), and 

sulforaphane from cruciferous vegetables were shown to induce Nrf2 stability 

and transactivation activity through activation of ERK and p38 kinases (Keum 

et al., 2006; Nguyen et al., 2003; Zipper et al., 2000). Consistent with these 
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studies, I discovered that andrographolide also activated ERK and p38 in a time- 

and dose- dependent manner (Figure 4.3 and Figure 4.4). Using ERK inhibitor 

(PD98059) and p38 inhibitor (SB202190), I demonstrated that Nrf2 

accumulation in both cytoplasmic and nuclear compartments were attenuated 

(Figure 5.11). Transcript level of HO-1 and Nqo1 were also significantly 

reduced (Figure 5.12). These results indicate that ERK and p38 play a role in 

regulating Nrf2 activation. In actual fact, andrographolide and andrographolide 

derivatives have formerly shown to activate MAPKs and induce Nrf2 

accumulation (Lee et al., 2014; Lu et al., 2014; Zhang et al., 2013). Lu et al. 

reported that andrographolide induced Nrf2 by activating ERK but not p38. In 

contrast, Lee et al. showed that p38 mediates upregulation of Nrf2 and HO-1 

but no significant ERK phosphorylation was detected in response to 

andrographolide treatment (Lee et al., 2014). Thus, I have now demonstrated 

for the first time that andrographolide could activate both ERK and p38 MAPKs 

and inhibition of these two kinases would negatively regulate Nrf2, HO-1 and 

Nqo1. The discrepancy among the findings is largely unknown. One of the 

suspects why Lee et al. could not detect phosphorylation of ERK is probably 

due to insufficient andrographolide incubation time. The group incubated 

andrographolide for only 2 hours but my time-course experiment revealed that 

upregulation of ERK phosphorylation was only evident after 4 hours of 

incubation (Figure 4.3 C). The other reason for such discrepancy may be due to 

cells of different origins were used in the studies. Lu et al. and Lee et al. used 

human endothelial and hepatoma cell lines respectively while I cultured primary 

astrocytes for my studies.  
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Other than ERK and p38 MAPKs, JNK and Akt also potentiate Nrf2 

activation (Li et al., 2005; Wang et al., 2008b; Yuan et al., 2006). Induced Nrf2 

accumulation was attenuated by LY294002 and wortmannin which inhibit 

phosphatidylinositol 3-kinase (PI3K), an upstream signaling molecule of Akt 

(Li et al., 2005; Wang et al., 2008b; Wu et al., 2014a). Though MAPKs and Akt 

are known to activate Nrf2, the molecular mechanisms underlying their roles in 

Nrf2 activation remain unknown. Sun et al. identified a number of serine or 

threonine residues that MAPKs potentially target. Unexpectedly, none of the 

alanine substitution on these residues, neither single nor combined mutations 

caused an apparent reduction in Nrf2 accumulation. This indicates that MAPKs 

regulate Nrf2 activation through an indirect mechanism (Sun et al., 2009). 

Nonetheless, some insight on how phosphorylation may activate Nrf2 was 

obtained when glycogen synthase kinase-3β (GSK-3β) was identified as a 

regulator of Nrf2. It was found that Akt activation oppose GSK-3β activity (Li 

et al., 2014). While Nrf2 activation was upregulated by GSK-3β inhibitor, it 

was abated by PI3K inhibitors (Wu et al., 2014a). It is well-recognized that Akt 

could inhibit GSK-3β by phosphorylating at its Ser9 residue (Van Weeren et 

al., 1998). Interestingly, MAPKs like ERK also phosphorylate GSK-3β at Ser9 

(Ding et al., 2005). Meanwhile, p38 and potentially JNK inhibit GSK-3β by 

phosphorylating at Ser389 (Rojo et al., 2012; Thornton et al., 2008). Rada et al. 

found that GSK-3β can phosphorylate Nrf2 at Neh6 domain which is a docking 

site of β-TrCP adaptor protein that facilitate Nrf2 ubiquitination by recruiting 

Cullin1-Rbx1 E3 ligase complex. Hence, inhibition of GSK-3β by MAPKs and 

Akt would inhibit phosphorylation at Neh6 domain and prevented Nrf2 

ubiquitination and degradation. In addition, report showed that mutation at 
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Neh2 domain disrupted Neh2/Keap1 association while Neh6 domain mutation 

affected Nrf2 stability (Rada et al., 2011). These results suggested alternative 

regulation of Nrf2 through Keap1-independent mechanism. Succeeding study 

by Li et al. demonstrated that proteasome inhibitor treatment elevated Nrf2 level 

in murine embryonic fibroblasts (MEF) expressing wild type Keap1, indicating 

Keap1-dependent Nrf2 regulation. Nevertheless, inhibiting protein degradation 

with proteasome inhibitor in Keap1 knockout MEF also enhanced Nrf2 level 

compared to untreated cells, suggesting a Keap1-independent mechanism in 

Nrf2 regulation (Li et al., 2012a). Taken together, these findings shed light on 

how multiple signaling pathways may converge at GSK-3β level and regulate 

Nrf2 stability through Keap1-independent mechanism on top of the canonical 

Keap1-dependent mechanism.  
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CHAPTER 6: SUMMARY OF MAJOR FINDINGS 

AND CONCLUSIONS 
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Neuroinflammation is implicated in the pathogenesis of ischemic stroke, 

traumatic brain injury, multiple sclerosis, meningitis, and neurodegenerative 

diseases (Rivest, 2009; Wohleb et al., 2013). Though inflammation is activation 

of host defense system in response to infection or insult to eliminate pathogens 

and toxic, excess and dysregualted inflammatory responses could be 

detrimental. Understanding of neuroinflammation mainly derives from 

investigation of microglia and there is a general lack of knowledge of 

astrocytes’ role in mediating inflammatory responses. Astrocytes that was once 

believed to only serve supportive roles in central nervous system (CNS) have 

recently emerged as a crucial participant in brain development, function and 

disease. Like microglia, astrocyte express various pathogen-associated 

molecular patterns (PAMPs) and damage-associated molecular patterns 

(DAMPs) receptors which allow them to respond to various stimuli. Activation 

of astrocyte initiates inflammatory signaling pathways, induces release of 

proinflammatory cytokines/chemokines and reactive oxygen species (ROS) that 

exacerbate various neurological diseases (Sofroniew et al., 2010). 

Currently available therapeutics for CNS disorders are scarce and many 

have their own limitations. Therefore, more effective and safer new therapeutic 

are critically needed. Anti-inflammatory agents should be evaluated as one of 

such approach due to the increasing evidence implicating neuroinflammatory 

processes in pathogenesis of various neurological disorder. Therefore, I 

examined andrographolide, artesunate, and plumbagin that have previously 

reported to exhibit anti-inflammatory effects. Andrographolide appears to be a 

potential candidate due to its low toxicity, lipid solubility and ability to cross 
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blood brain barrier (BBB) (Bera et al., 2014b; Hancke et al., 1995; Zheng, 

1982). 

Andrographolide has been reported to exhibit anticancer, anti-bacterial, 

anti-inflammatory, and antioxidative effects (Arifullah et al., 2013; Lim et al., 

2012a; Sheeja et al., 2006). Nevertheless, there is a dearth of studies on the 

effects of andrographolide in the CNS. Moreover, there are few studies of 

andrographolide in astrocytes. There is only one study thus far that investigated 

andrographolide’s antineuroinflammatory effects  on primary astrocytes. That 

study investigated andrographolide’s effects on cytokines and oxidative stress, 

but did not access chemokines expression and astrocyte activation (Tzeng et al., 

2012). Hence in this thesis, I performed comprehensive experiments to address 

the above mentioned knowledge gap.    

At the initial stage of my study, I used interleukin-1β (IL-1β) and tumour 

necrosis factor-α (TNF-α) to model conditions where cytokines are released to 

initiate and perpetuate neuroinflammation. As described in Chapter 3, I found 

that andrographolide exhibited higher efficacy in attenuating cytokines-

mediated nuclear factor-κB (NF-kB) activation and CCL-5 secretion in 

astrocyte as compared to artesunate and plumbagin. Andrographolide 

attenuated NF-κB signaling through inhibition of IκBα Ser32 and p65 Ser536 

phosphorylation which promotes inhibitory IκBα protein degradation and p65 

transactivation activity respectively (Figure 6.1). Andrographolide also 

significantly decreased glial fibrillary acidic protein (GFAP) level which is a 

reactive astrogliosis marker.  

I then further investigated andrographolide’s ability to regulate 

neuroinflammation under bacterial infection by using lipopolysaccharide (LPS). 
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Andrographolide attenuated LPS-induced NF-κB and c-Jun N-terminal kinase 

(JNK) activation and various cytokines/chemokines including IL-1β and TNF-

α; CC motif chemokines (CCL-2 and CCL-5); CXC motif chemokines (CXCL-

1, CXCL-2, CXCL-5, and CXCL-10); CX3C motif chemokine (CX3CL-1). 

Treatment with tosyl phenylalanyl chloromethyl ketone (TPCK) (NF-κB 

inhibitor) and SP600126 (selective JNK inhibitor) prevented elevation of 

cytokines/chemokines. Thus, andrographolide was proposed to attenuate 

cytokines/chemokines expression through NF-κB and JNK pathways. 

Nonetheless, I found that LPS-induced IL-1β is likely a downstream response 

of JNK-dependent signaling whereas LPS-induced CX3CL-1 is mainly NF-κB 

dependent (Figure 6.1). 

Interestingly, andrographolide treatment on primary astrocyte culture 

enhanced LPS-induced extracellular signal-regulated kinase (ERK) and p38 

mitogen-activated protein kinase phosphorylation (Figure 4.6, see also (Keum 

et al., 2006; Nguyen et al., 2003; Zipper et al., 2000). Treatment with 

andrographolide alone activated ERK and p38 in a time- and dose- dependent 

manner (Figure 4.3 and Figure 4.4). It was found that andrographolide regulates 

ERK and p38 signaling in a cell-specific manner; activating ERK and p38 

signaling in astrocytic culture and promotes apoptosis in glioblastoma while 

inhibiting ERK/p38-mediated inflammatory response and cancer development 

in other cell types. In non-cortical tissues, ERK and p38 activation may induce 

Nrf2 stability and transactivation activity, and thus are involved in modulating 

antioxidant protein expression (Keum et al., 2006; Nguyen et al., 2003; Zipper 

et al., 2000). Indeed, chemically inhibiting ERK and p38 attenuated nuclear 

factor (erythroid-derived 2)-like 2 (Nrf2) accumulation and Nrf2 transcriptional 



188 
 

activity as indicated by reduction of heme oxygenase -1 (HO-1) and NAD(P)H 

dehydrogenase, quinone 1 (Nqo1) mRNA level (Figure 5.12). This suggests that 

andrographolide-stimulated ERK/p38 signaling is cytoprotective. 

Moreover, oral administration of andrographolide attenuated brain 

expression of various chemokines (CCL-2, CCL5, CXCL-1, CXCL-2, CXCL-

9) in a mouse model of bacterial infection-related neuroinflammation (LPS 

treatment). This implies that peripherally administered andrographolide could 

exert anti-neuroinflammatory effects. GFAP expression was also decreased. My 

results suggested that andrographolide is a potential anti-neuroinflammatory 

therapeutic that can penetrate the BBB (Bera et al., 2014a) and inhibit 

leukocytes recruitment to the CNS by modulating chemokines expression in 

astrocytes.  

Andrographolide has been previously reported to activate Nrf2 in the 

peripheral tissues (Chen et al., 2014a; Guan et al., 2013), however there is yet 

any study that examine andrographolide regulation on Nrf2 in CNS. Therefore, 

my study on astrocytes would allow a better understanding of the mechanism 

that underlies andrographolide’s antioxidant effects in the CNS. 

Andrographolide’s regulation on Nrf2 in astrocytes is summarized in Figure 6.2.  

 In conclusion, andrographolide’s anti-neuroinflammatory and 

antioxidant mechanisms have been comprehensively investigated. My studies 

in cell lines, primary astrocytes as well as animal models have pointed to the 

efficacy of andrographolide to ameliorate astrogliosis as well as the 

accompanying upregulation of various cytokines and chemokines. 

Addditionally, andrographolide’s antioxidant property is at least partly 

mediated by activation of Nrf2 signaling through Nrf2 protein stabilization and 
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ERK/p38 activation. Taken together, my study support that Andrographolide is 

a potential anti-neuroinflammatory therapeutic that ameliorates inflammatory 

response and upregulates antioxidative proteins. Thus, it may exhibit clinical 

benefits to CNS disorders where neuroinflammation is implicated for instance 

bacterial meningitis, stroke, and Alzhiemer’s disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Summary of andrographolide’s effects on NF-κB and MAPKs 

signaling pathways upon IL-1β, TNF-α, and LPS stimulation.   
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Figure 6.2 Andrographolide regulation on Nrf2 signaling.i) 
Andrographolide upregulated Nrf2 protein level independently of mRNA level.  

ii) Elevation of Nrf2 however was not due to andrographolide’s inhibition on 

Keap1 expression level or iii) induction of Nrf2 Ser40 phosphorylation that 

promotes Keap1/Nrf2 dissociation. Nonetheless, iv) andrographolide attenuated 

Nrf2 ubiquitination which v) enhanced Nrf2 protein stability and decreased 

protein turnover rate. Interestingly, vi) andrographolide induced activation of 

ERK and p38 which at least partially contributed to Nrf2 activation. vii) ERK 

and p38 was previously reported to phosphorylate GSK-3β at Ser9 and Ser 389 

respectively which inhibits its activity. On the other hand, viii) GSK-3β has 

been proposed to inhibit Nrf2 by phosphorylating it at Neh6 domain which is a 

docking site of β-TrCP adaptor protein. ix) β-TrCP could then facilitate Nrf2 

ubiquitination and degradation by recruiting Cullin1-Rbx1 E3 ligase complex. 

Thus, I conclude that andrographolide reduces ubiquitination of Nrf2 therefore 

enhancing its protein stability and activates ERK and p38 which potentially 

regulate Nrf2 activity through a Keap1-independent pathway. 

 

 

 

Chapter 5: 
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CHAPTER 7: FUTURE STUDY 
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Though ERK and p38 inhibition significantly attenuated 

andrographolide-induced HO-1 and Nqo1 mRNA expression, subsequent 

increase in inhibitor concentration had subtle effect on HO-1 and Nqo1 level 

(Figure 5.12). Highest inhibitor concentration (50 μM) used did not reduce HO-

1 and Nqo1 level close to their basal expression. Hence, other mechanisms may 

be mediated by andrographolide to regulate expression of these cytoprotective 

genes. Andrographolide is a diterpenoid that can modify sulfhydryl groups of 

cysteine via adduct formation. It inhibits NF-κB DNA binding by forming a 

covalent adduct with Cys62 of p50 subunit (Xia et al., 2004). As Keap1 and 

Neh2 domain are rich in cysteine, andrographolide is likely to impede 

Keap1/Neh2 interaction by forming adduct with either of them. Recently, p21 

was discovered to compete with Keap1 to bind at Neh2 domain of Nrf2 which 

subsequently abrogated Nrf2 degradation (Chen et al., 2009b). p21 is a cyclin-

dependent kinase inhibitor that function as a tumor suppressor whereas 

andrographolide is well-known for its tumor suppression and one of its 

anticancer mechanism is through induction of p21 (Lim et al., 2012a; Yan et 

al., 2012). Hence, andrographolide may induce p21 and inhibit Keap1/Nrf2 

association and prevented Nrf2 degradation. Unequivocal findings suggest 

numerous mechanisms could be involved in andrographolide mediated Nrf2 

activation and more studies need to be done in order to validate these potential 

mechanisms.  

Labdane diterpenoids are the major constituents of A. paniculata. Other 

than andrographolide, other labdane diterpenoids present include 

andrographiside, neoandrographolide, isoandrographolide, 14-deoxy-11,12-

didehydroandrographiside and more (Lim et al., 2012a). Though therapeutic 
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benefits of andrographolide has been slowly uncovered, the biological activities 

of most andrographolide derivatives are largely unknown. The anti-

neuroinflammatory effects of these derivatives have yet been examined and 

therefore in the future study, these derivatives could be compared side by side 

to determine which derivative is the most potential anti-neuroinflammtory 

compound.     

In my study, I showed that andrographolide elevated IL-6 expression. 

Instead of NF-κB and JNK, other signaling pathway seems to be involved in 

andrographolide-mediated upregulation of IL-6. Interestingly, Nrf2 has been 

reported to induce IL-6 expression via an antioxidant response element (ARE) 

located within IL-6 promoter. Nrf2 knockout mice failed to induce IL-6 

expression and suffer from oxidative stress and neuronal death in response to 

oxidant treatment (Wruck et al., 2011). Thus, proposing that andrographolide 

mediates IL-6 expression through Nrf2 activation. Nonetheless, the precise 

mechanism involved in andrographolide-mediated IL-6 production needs to be 

validated and the exact role of IL-6 elevation in neuroinflammation remains to 

be elucidated. 

Anti-neuroinflammatory effects of andrographolide was investigated in 

mice induced with neuroinflammation arisen from peripheral infection and 

results showed a significant downregulation of several chemokines measured. 

Therefore, in the future study, effects of andrographolide can be examined in 

animal models with profound inflammation originated from the CNS for 

instance Alzheimer’s disease transgenic mouse model. Moreover, behavioral 

studies like Morris water maze and passive avoidance test could be performed 

to investigate the effects of andrographolide in improving memory deficits.    
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APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1: Plumbagin reduced U373 cell viability. MTS assay of U373 

cells incubated with various concentration of andrographolide (A), artesunate 

(B), or plumbagin (C) for 24 hours. Data shown are mean ± S.E.M of two 

separate experiments. 
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Appendix 2: Cell viability of primary astrocytes does not differ in 0.5% and 

10% FBS supplemented media. Cell viability of primary astrocytes grown in 

0.5% or 10% FBS supplemented media up to 48 hours was determined with 

Muse Count and Viability assay. Sample size n = 3. Data shown are mean ± 

S.E.M.  

 

 

Appendix 3: Andrographolide alone does not induce CCL-5 secretion. 

Upon 24 hours of andrographolide incubation, 0.5% FBS supplemented media 

was collected from primary astrocytes and processed for Luminex assay. Data 

shown are mean ± S.E.M of two separate experiments. 
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Appendix 4: Stimulation of primary astrocytes with various doses of LPS. 

Primary astrocytes were stimulated with increasing doses of LPS 12 hours in 

0.5% FBS supplemented media. Transcript level of various cytokines were 

analyzed by real-time PCR. Results exhibit a LPS dose dependency in cytokines 

mRNA expression.  
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Appendix 5: mRNA expression profile of various cytokines in LPS-

stimulated primary astrocytes. Primary astrocytes were stimulated with LPS 

100 ng/ml for indicated timing in 0.5% FBS or 10% FBS supplemented media. 

Transcript level of various cytokines were analyzed by real-time PCR. In most 

cases, 0.5% FBS condition induces higher level of mRNA expression and it 

usually peaks at 12 hours LPS stimulation. Therefore, cell treatment was in 

0.5% FBS media with LPS stimulation being kept at 12 hours for real-time 

quantification of cytokines mRNA level.  
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Appendix 6: Determination of subcellular fractionation efficiency via 

immunoblotting. Primary astrocytes cultured in 10% FBS supplemented media 

were harvested and subjected to subcellular fractionation. Both cytoplasmic 

(Cyto) and nuclear (Nuclear) fractions were immunoblotted for nuclear protein, 

TATA box binding protein (TBP) and lamin B1; cytoplasmic protein,  

epidermal growth factor receptor (EGFR), GAPDH, and β-actin. 10 μg protein 

was loaded for each sample.       

 

 

 

 




