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Summary 

 

The advent of molecular targeted therapy in the late 1990s marks a major 

breakthrough in the fight against cancer. The critical role of tyrosine kinases in the 

control of cancer phenotypes, coupled to the presence of suitable binding domains for 

small molecules, has led to the development of many tyrosine kinase inhibitors (TKIs) 

as molecularly targeting anti-cancer agents. While the use of TKIs have largely 

mitigated the conventional toxicities of chemotherapeutic agents (such as nausea, 

vomiting, alopecia, myelosuppression), a range of previously unknown and 

sometimes unpredictable toxicities like cutaneous, cardiac and liver toxicities began 

to surface. Clearly, such toxicities can impede the wider acceptance of TKIs as a 

mainstream therapy. Therefore, it is important to find ways to decrease the incidence 

of these toxicities so that the risk/benefit balance can be further optimized. 

Furthermore, the introduction of TKIs has also raised several new issues such as the 

tailoring of cancer treatment to an individual patient’s tumor and the economics of 

cancer care. New approaches to determine optimal dosing, assess patient adherence to 

therapy and evaluate drug effectiveness and toxicity are also required with these novel 

targeted therapies. 

 

It is increasingly appreciated that the causes of variability in terms of responses and 

toxicities observed with TKIs are manifold. Yet, the variability is influenced not only 

by genetic heterogeneity of drug targets (i.e., pharmacodynamic differences), but also 

by the patients’ pharmacogenetic background. A significant source of variation arises 

from drug disposition, which includes the different processes of absorption, 

distribution, metabolism and excretion. Considerable pharmacokinetic (PK) 
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variability is also evident for virtually all of the TKIs. Current evidences have 

proposed an association between drug exposure with response or toxicities for several 

TKIs. Additionally, as a result of germline variation in the genes encoding for these 

enzymes and transporters, expression and activity of these enzymes and transporters 

are highly variable and may influence patient’s exposure to the drugs and sensitivity 

to the treatment toxicities. Moreover, cancer patients are susceptible to drug-drug 

interactions (DDIs) as they receive many medications, either for supportive care or for 

treatment of therapy-induced toxicity. As the cytochrome P450 3A4 (CYP3A4) 

enzyme is implicated in the metabolism of almost all of the TKIs, there is a 

substantial potential for interaction between TKIs and other drugs that modulate the 

activity of this metabolic pathway. 

 

Therefore, the overall aim of this thesis is to evaluate whether pharmacokinetic 

alterations in TKIs can contribute to toxicities, by focusing on three themes of drug 

exposure, genetic polymorphism and drug-drug interactions. It is important that these 

issues with toxicities are addressed to improve the management of anticancer therapy 

in patients so as to achieve anticancer efficacy and optimize risk/benefit ratio of these 

therapies. 
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1 Introduction  

The number of people diagnosed with cancer during their lifetime has been steadily 

increasing. [1] This increase in prevalence across the survivorship trajectory is 

attributed to improvements in cancer survival rates and the aging population, as 

cancer incidence rates tend to increase with age. At the same time, there is also a 

continual development of new anticancer drugs. Clinicians’ and patients’ hopes for 

elimination of cancer are renewed with each new class of drug(s); but each is also 

implicated with a new assortment of toxicities which may impact treatment 

tolerability and health outcomes. Although the survival trend is optimistic, it may 

come at a price. The need for routine monitoring, long term effects of the disease, and 

presence of treatment side effects may place a burden on the cancer patients.  

 

1.1 Introduction to tyrosine kinase inhibitors  

The advent of molecular targeted therapy in the late 1990s marks a major 

breakthrough in the fight against cancer. The significant advancement embodied by 

such pharmacotherapies is the ability to target specific proteins uniquely regulated in 

cancer cells or those involved in the mechanism for disease progression, so that off-

target effects on healthy tissues can be minimized. Targeted therapies may also be 

used in combination with conventional cytotoxic chemotherapy or even radiation to 

provide additive or synergistic anticancer activities as their toxicity profiles generally 

do not overlap. Thus, targeted therapies such as monoclonal antibodies and tyrosine 

kinase inhibitors (TKIs) represent a new and promising addition to the anticancer 

armamentarium.  
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Tyrosine kinases emerged as a major family of proteins frequently dysregulated in 

various cancers, either through somatic mutations or overexpression. Activated forms 

of these enzymes can lead to several biochemical effects such as increase in tumor 

cell proliferation and growth, induce anti-apoptotic effects, and promote angiogenesis 

and metastasis. Their critical role in the control of cancer phenotypes, coupled to the 

presence of suitable binding domains for small molecules, has led to the development 

of many TKIs as anti-cancer agents. Among them, imatinib, an inhibitor of Bcr-Abl 

and c-KIT, was the first to be approved and is used for the treatment of chronic 

myelogenic leukemia (CML) and gastro-intestinal stromal tumors (GIST). [2, 3] Non-

small cell lung cancers (NSCLC) that often carry dysregulation, specifically somatic 

mutations, such as the L858R mutation in the epidermal growth factor receptor 

(EGFR) pathway were also managed with the use of gefitinib [4], erlotinib [5] and 

more recently, afatinib. [6] Multi-targeted kinase inhibitors such as sunitinib and 

sorafenib were approved for the treatment of renal cell carcinoma [7] and 

hepatocellular carcinoma [8] respectively, and have resulted in unprecedented 

successes. The growth of this industry is accelerating in two directions: first is 

through identifying new indications of approved agents and second is through the 

development of new agents to target tyrosine kinases that are involved in the growth 

of various cancers.  

 

However, the introduction of targeted therapy has also raised several new issues such 

as the tailoring of cancer treatment to an individual patient’s tumor and the economics 

of cancer care. Additionally, new approaches to determine optimal dosing, assess 

patient adherence to therapy and evaluate drug effectiveness and toxicity are also 

required with these novel targeted therapies. [9] 
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1.2 Common toxicities associated with tyrosine kinase inhibitors 

While the use of TKIs have largely mitigated the conventional toxicities of 

chemotherapeutic agents (e.g. nausea, vomiting, alopecia, myelosuppression), a range 

of previously unknown and sometimes unpredictable toxicities began to surface. For 

example, cutaneous toxicity such as acneiform rash was observed with EGFR 

inhibitors. Sunitinib and sorafenib have caused hand-foot skin reaction (HFSR), while 

others have manifested more severe toxicities such as cardiotoxicity and 

hepatotoxicity as observed after therapy with nilotinib and pazopanib, respectively. 

[10, 11] In fact, 8 out of the 18 food and drug administration (FDA)-approved agents 

(as of October 2014) have black box warnings associated with their usage, suggesting 

the severity of toxicities in these agents. (Table 1) Among them, hepatotoxicity is the 

most recurrently highlighted toxicity, with black box warnings issued against 

lapatinib, sunitinib, pazopanib and most recently regorafenib and ponatinib. The sales 

and marketing of ponatinib has been previously suspended by the FDA due to the risk 

of life-threatening blood clots and severe narrowing of blood vessels, and which the 

FDA requires several safety measures to be in place before sale and marketing can be 

resumed. [12] Clearly, such toxicities can impede the wider acceptance of TKIs as a 

mainstream therapy. Therefore, it is important to identify strategies to decrease the 

incidence of these toxicities so that the risk/benefit balance can be further optimized. 
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Table 1. Overview of FDA-approved tyrosine kinase inhibitors (as of October 2014) 

 Year of 
approval Indication(s) Targets FDA black box 

warning 
Dosing 

administration Ref 

Afatinib 
(Gilotrif) 2013 - Metastatic NSCLC with 

EGFR mutations EGFR, HER2, HER4  40 mg once daily [6] 

Axitinib  
(Inlyta) 2012 - Advanced RCC VEGFR-1, VEGFR-2, and 

VEGFR-3  5 mg twice daily [13] 

Bosutinib 
(Bosulif) 2012 - CML Bcr-Abl, Src  500 mg once daily [14] 

Cabozantinib 
(Cometriq) 2012 - Thyroid Cancer 

RET, MET, VEGFR-1, -2 and -3, 
KIT, TRKB, FLT-3, AXL, and 
TIE-2 

Hemorrhage 140 mg once daily [15] 

Ceritinib 
(Zykadia) 2014 - ALK+ NSCLC ALK  750mg once daily [16] 

Crizotinib 
(Xalkori) 2011 - ALK+ NSCLC ALK, MET, RON  250 mg twice daily [17] 

Dasatinib 
(Sprycel) 2006 - CML 

- Ph+ ALL Bcr-Abl, Src  100 mg once daily [18] 

Erlotinib 
(Tarceva) 2004 

- NSCLC 
- Metastatic pancreatic 
cancer 

EGFR  100 – 150 mg once 
daily [19] 

Gefitinib 
(Iressa) 2003 - NSCLC EGFR  250 mg once daily [20] 

Imatinib 
(Gleevec) 2001 

- CML 
- GIST 
- Ph+ ALL 

Bcr-Abl  300 – 800 mg once 
daily* [21] 

Lapatinib 
(Tykerb) 2007 - Metastatic Breast Cancer EGFR, HER2 Hepatotoxicity 1250 – 1500 mg once 

daily* [22] 

Nilotinib 
(Tasigna) 2007 - CML Bcr-Abl QT prolongation 300 mg twice daily [23] 

Pazopanib 2009 - RCC VEGFR-1, VEGFR-2 and VEGFR- Hepatotoxicity 800 mg once daily [24] 
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(Votrient) - Soft Tissue Sarcoma 3 

Ponatinib 
(Iclusig) 2012 - CML 

- Ph+ ALL Bcr-Abl 
Arterial 
thrombosis and 
hepatotoxicity 

45 mg once daily [25] 

Regorafenib 
(Stivarga) 2012 

- Metastatic Colorectal 
Cancer 
- GIST 

VEGFR2 and TIE2 Hepatotoxicity 160 mg once daily [26] 

Sorafenib 
(Nexavar) 2005 - RCC 

- Unresectable HCC 
KIT, FLT-3, VEGFR-2, VEGFR-3 
and PDGFR-B  400 mg twice daily [27] 

Sunitinib 
(Sutent) 2006 

- RCC 
- GIST 
- pNET 

PDGFR (α,β) VEGFR (1, 2, 3), 
KIT, FLT3, CSF-1R, RET Hepatotoxicity 37.5 – 50 mg once 

daily* [28] 

Vandetanib 
(Caprelsa) 2011 - Thyroid Cancer EGFR, VEGFR, RET QT prolongation 800 mg once daily [29] 

Abbreviations: ALL, acute lymphoblastic leukemia; ALK+, anaplastic lymphoma kinase; CML, chronic myeloid leukemia; FDA, Food and Drug 
Administration; GIST, gastrointestinal stromal tumor; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; HCC, hepatocellular carcinoma; 
Ph+ ALL, Philadelphia chromosome-positive acute lymphoid leukemia; pNET, progressive, well-differentiated pancreatic neuroendocrine tumors 
* Dosing administration depends on indication 
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1.3 Inter-patient variability in exposure of tyrosine kinase inhibitors 

Unlike conventional chemotherapies, TKIs are typically administered orally at fixed 

doses and often on a daily basis. It is well recognized that equivalent drug doses may 

result in wide inter-patient variability with regards to drug response, as reflected by 

differences in drug activity and off-target toxicity and this is similarly observed with 

TKIs. Although each TKI have their specific targets, not all patients with the target 

mutation will respond and likewise the nature and severity of adverse events also 

exhibits extensive variations among patients. Considerable pharmacokinetic (PK) 

variability is also evident for virtually all of the TKIs. For example, inter-patient 

variation of area under the curve (AUC) levels is 55% [30], 47% [31] and 71% [32] 

for imatinib, sunitinib and pazopanib respectively. The variability in drug exposure to 

TKIs may play a role to the variation in the anti-cancer effects as well as the 

manifestation of toxicities. 

 

1.4 Sources of inter-patient variability 

No two individuals respond to a drug in the same way. A drug may work as expected 

in one patient, but may fail to exert any effect on another. The side effects of the drug 

may also be acceptable to most people, but may be harmful or lethal to some others. 

Certainly, there are many factors attributing to these differences. It is increasingly 

appreciated that the causes of variability observed with TKIs are manifold. The 

variability is influenced not only by genetic heterogeneity of drug targets (i.e., 

pharmacodynamics differences), but also by the patients’ pharmacogenetic 

background.  
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A significant source of variation arises from the PK processes of drug disposition, 

which includes the different processes of absorption, distribution, metabolism and 

excretion (ADME). As such, variations to any of the ADME processes, for example 

as a result of drug-drug interaction, could affect the drug disposition and 

consequently, patient’s response and toxicity. Since both pharmacokinetics and 

pharmacodynamics processes contribute to the clinical outcome of efficacy and/or 

toxicity, and genetic variation may occur in either or both of the process, the final 

clinical outcome is a result of an intricate relationship between all the processes. 

(Figure 1) Other identified factors that may also contribute to variability include age, 

gender, organ function, comorbidities, concomitant medications, environment, 

lifestyle (e.g. smoking, alcohol), and adherence to treatment. [33-35] 

 

 

Figure 1. Overview of the processes that influence treatment outcomes 
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1.4.1 Alterations in absorption 

As TKIs are typically taken orally, issues such as compliance, absorption and first-

pass metabolism may affect the process of absorption. Variability in intestinal 

absorption and entero-hepatic circulation, as well as the influence of food and other 

medications may contribute to the inter-patient variability in drug absorption. Certain 

diets such as high-fat meals have been known to affect absorption. For instance, the 

AUC of lapatinib and pazopanib can be increased under the influence of a high-fat 

meal. [36, 37] However, there are also some TKIs where absorption is not affected by 

diet, such as imatinib and sunitinib. [38, 39] Furthermore, presence of comorbidities 

such as gastrointestinal tumors may also affect absorption of drugs. Since absorption 

limits the amount of drug that goes into the blood stream, any differences in 

absorption will affect all subsequent processes. 

 

1.4.2 Alterations in distribution 

TKIs are extensively distributed into tissues and are highly protein bound, resulting in 

a large volume of distribution and a long terminal half-life. Hypoalbuminemia 

secondary to malignant cachexia or liver metastases can increase the amount of free 

drug, leading to higher risk for toxicity. [34] The distribution process may also be 

affected by body size. For example, the volume of distribution of sunitinib was 

affected by body size. [40] Consequently, patients with sarcopenia, low body mass 

index or low body surface area experienced significantly more dose-limiting 

toxicities. [41, 42] 
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1.4.3 Alterations in metabolism 

Almost all of the TKIs undergo metabolism by the cytochrome P450 (CYP) family of 

enzymes, with the CYP3A4 enzyme being the most commonly involved in the 

metabolism of the majority of the TKIs. Therefore, any alterations to the activity of 

the enzyme, such as drug-drug interactions (DDIs) or genetic polymorphisms, may 

have an influence on the drug and metabolite levels. 

 

1.4.4 Alterations in excretion 

The majority of TKIs are substrates for drug transporters in the form of efflux pumps 

(e.g. ABCB1 and ABCG2) or uptake transporters (e.g. SLC22A1). Transport proteins 

have an important role in regulating the absorption, distribution and excretion of 

many medications. Similar to drug metabolizing enzymes, the activity of drug 

transporters may be affected by DDIs or genetic polymorphisms in the transporter.  

 

Although there are various potential causes for such inter-individual variability, 

differences in metabolism and disposition of drugs, and genetic polymorphism in the 

drug target receptors may have a large influence on the efficacy and toxicity of 

medications. [43] 

 

1.5 Association between exposure and response/toxicities 

Current evidences have proposed an association between drug exposure with response 

or toxicities for several TKIs. [34, 44] (Table 2) Drug exposure is commonly 

measured by trough concentrations (Cmin) or AUC. For example, imatinib, the 
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archetypal TKI, clinical response as well as cytogenic and molecular response have 

been found to be associated with trough concentrations. Toxicities such as 

hematological toxicities have also been identified to be associated with imatinib 

concentrations. In another example, sunitinib, it was demonstrated in a meta-analysis 

that higher sunitinib AUC was associated with a better response, in terms of longer 

time to progression, longer overall survival and greater reduction in tumor size. It was 

also shown that higher exposure was associated with an increased risk of several 

adverse events including hypertension and neutropenia. [45] Consequently, any 

changes to the drug exposure as a result of the factors mentioned earlier may translate 

to a deviation in response and toxicities.  
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Table 2. Correlation of pharmacokinetic parameters, treatment efficacy and 
toxicity of tyrosine kinase inhibitors 

TKI PK parameter Clinical response Ref 
Erlotinib Css Improved survival [46] 

Gefitinib D8/D3 Cmin ratio  PFS [47] 
Cmin OS [48] 

Imatinib  

Cmin TTP [49] 
Cmin Molecular response [50] 
AUC Response [51] 

Cmin 
Cytogenic response 
Molecular response [52] 

Nilotinib Cmin TTP [53] 

Pazopanib Cmin 
PFS 
RR [54] 

Sunitinib  AUC 
Tumor response 
PFS 
OS 

[45] 

TKI PK parameter Toxicity Ref 

Afatinib AUC/Cmax 
Diarrhea 
Rash [55] 

Erlotinib Cmin Rash [56] 
AUC/ Cmax Rash  [57] 

Gefitinib Cmin Diarrhea [58] 

Imatinib  
Cmin Hematological toxicity [50] 
Cmin Hematological toxicity [59] 
AUC Nunber of adverse events [51] 

Nilotinib  AUC Anemia 
Bilirubin elevation [60] 

Cmin QT prolongation [60] 

Pazopanib Cmin 

Diarrhea 
Stomatitis 
HFSR 
Transaminases elevation 

[61] 

Sorafenib  

Cmin Grade 3 toxicity [62] 

Cmin 
HFSR 
Hypertension [63] 

AUC Grade 3 toxicity [64] 

Sunitinib Cmin Hypertension [45] 
AUC Neutropenia [45] 

Abbreviations: AUC, area under the curve; Cmax, peak concentration; Cmin, trough 
concentration; Css, steady-state concentration; D, day; HFSR, hand-foot skin reaction; OS, 
overall survival; PFS, progression free survival; PK, pharmacokinetic; RR, response rates; 
TTP, time to progression 
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1.6 Genetic variation of drug exposure 

The tumor or somatic genome, mainly determines the features of the tumor such as its 

aggressiveness and sensitivity to treatment. On the other hand, the patient or germline 

genome primarily dictates how the body handles and reacts to the chosen treatment. 

[65] The pharmacokinetics of a drug, which may determine its efficacy and toxicity, 

is dictated by the latter. As mentioned in the earlier sections, large variations in 

pharmacokinetics exist between patients. Although there are various potential causes 

for this variability, inherited differences in metabolism and disposition of drugs, and 

genetic polymorphism in the drug target receptors may have a large influence on the 

efficacy and toxicity of medications. [43] For every individual drug, several enzymes 

as well as transporters are involved in the ADME process. As a result of germline 

variation in the genes encoding for these enzymes and transporters, expression and 

activity of these enzymes and transporters are highly variable and may influence 

patient’s exposure to the drugs and sensitivity to the treatment toxicities.  

 

Almost every enzyme involved in drug metabolism exhibits genetic polymorphisms 

that may contribute to inter-individual variability in drug response. [66] However, not 

all polymorphisms are clinically relevant. Among the family of CYP enzymes, 

CYP2D6 represents one of the best studied and understood examples of 

pharmacogenetic variation in drug metabolism, which can affect drugs like 

antidepressants and antipsychotics etc. [67] Just about all of the TKIs undergo 

metabolism by CYP enzymes, with the CYP3A4 being involved in the metabolism of 

the majority of the TKIs. (Table 3) Additionally, as both CYP3A4 and CYP3A5 share 

substrate specificity, polymorphism in CYP3A5 would influence the overall CYP3A 

activity in humans. The defective CYP3A5 enzyme associated with the *3 allele may 
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cause an accumulation of the parent drug, therefore the single nucleotide 

polymorphism (SNP) in CYP3A5 is of importance as the mutant CYP3A5*3 allele is 

highly prevalent in Asians. [68]  

 

Transport proteins play an important role in regulating the absorption, distribution and 

excretion of many medications. The most extensively studied transporters are 

members of the adenosine triphosphate (ATP)-binding cassette (ABC) family of 

transporters, such as the P-glycoprotein (Pgp), which is encoded by the ABC sub-

family B member 1 (ABCB1) gene. Pgp affects the pharmacokinetics (PK) of a drug 

by affecting the processes of oral absorption, renal clearance and uptake into tissues 

such as the brain. In cases where an individual has an increased expression of Pgp, 

reduced oral bioavailability, decreased plasma concentrations, increased renal 

clearance and decreased drug exposure would be expected. [69] Therefore, 

polymorphisms with the ABCB1 gene may affect the expression of drug transporters 

and thus bioavailability, although the functional effect of the polymorphism on the 

Pgp has been heavily debated. [69]  

 

Furthermore, there is also marked heterogeneity in the types and frequencies of the 

polymorphisms among the different populations and ethnic groups. This means that 

the optimal dose of medications may also differ among the populations.  
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Table 3. Metabolism profile of FDA-approved tyrosine kinase inhibitors 

 Major CYPs Minor CYPs & others 
Afatinib Negligible 

Axitinib CYP3A4 
CYP3A5 

CYP1A2 
CYP2C19 
UGT1A1 

Bosutinib CYP3A4 - 
Cabozantinib CYP3A4 CYP2C9 

Crizotinib CYP3A4 
CYP3A5 - 

Dasatinib CYP3A4 FMO-3 
UGT 

Erlotinib CYP3A4 CYP1A2 
CYP1A1 

Gefitinib CYP3A4 
CYP2D6 - 

Imatinib CYP3A4 
CYP2C8 

CYP1A2 
CYP2D6 
CYP2C9 

CYP2C19 

Lapatinib CYP3A4 
CYP3A5 

CYP2C19 
CYP2C8 

Nilotinib CYP3A4 CYP2C8 

Pazopanib CYP3A4 CYP1A2 
CYP2C8 

Ponatinib CYP3A4 
CYP2C8 
CYP2D6 
CYP3A5 

Regorafenib CYP3A4 UGT1A9 
Sorafenib CYP3A4 UGT1A9 
Sunitinib CYP3A4 - 

Vandetanib CYP3A4 FMO-1 
FMO-3 

Note: All information was obtained from product information labels [70, 71] 
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1.7 Drug-drug interaction in the pharmacokinetic pathway 

DDIs occur when a patient’s pharmacological or clinical response to the drug is 

modified by administration or co-exposure to another drug. Pharmacokinetic 

interactions occur when one drug influences the pharmacokinetic processes such as 

absorption, distribution, metabolism and excretion, of another drug. This thesis 

focuses on DDI involving metabolism as altered metabolism is among the most 

complex of these processes by which DDIs can occur, and induction or inhibition of 

hepatic enzymes by drugs are often implicated. The clinical consequences of enzyme 

induction or inhibition depend on the pharmacological and toxic effect of both the 

parent drug and its metabolite(s). For example, if the parent compound is more active 

than its metabolite, inhibition of metabolism increases the exposure to the drug and 

also its therapeutic and/or toxic effects. However, if the parent compound is a pro-

drug, inhibition of metabolism may result in a decrease in therapeutic efficacy. More 

recently, another paradigm of interaction arises when the metabolite is more toxic, 

hence induction of metabolism down this pathway can exacerbate toxicity. 

 

Central to the metabolism of drugs are the CYP family of enzymes. This consists of 

numerous enzymes that are responsible for the Phase I metabolism of many drugs, 

nutrients, endogenous substances, and environmental toxins. The main CYP enzyme, 

CYP3A4, is responsible for the metabolism of more than 50% of all drugs in the 

market. It is also implicated in the metabolism of almost all of the TKIs. Therefore, 

there is a substantial potential for interaction between TKIs and other drugs that 

modulate the activity of this metabolic pathway. The degree of interaction is also 

dependent on the extent of hepatic clearance compared to overall clearance, and 

whether intrinsic clearance is a limiting factor for the drug of concern. 
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Cancer patients are susceptible to DDIs as they receive many medications, either for 

supportive care or for treatment of therapy-induced toxicity. [72] For instance, an 

observational study highlighted that patients were receiving on average 6.8 drugs in 

addition to sunitinib. Among them, antihypertensive drugs were most commonly 

prescribed, followed by analgesics, antiemetics and thyroid substitution therapy. [73] 

In certain cases, a cancer patient’s pharmacokinetic parameters may also be altered, 

for example, edema affecting volume of distribution or impaired drug absorption due 

to malnutrition or mucositis; these issues may also affect the consequences of DDIs. 

Since most cancers typically occur at a later age, these patients may also be receiving 

other drugs for the management of their comorbidities. Differences in DDI outcomes 

are generally minor because of the wide therapeutic windows of common drugs; 

however, in cancer chemotherapy with anti-cancer drugs, serious clinical 

consequences may occur from small changes in drug metabolism and 

pharmacokinetics. [74] 

 

1.8 Role of therapeutic drug monitoring and individualized therapy 

For conventional chemotherapy, therapeutic drug monitoring (TDM) is regarded as 

impractical for routine use in clinical practice due to various reasons such as the lack 

of established therapeutic ranges and concentration-effect relationships, the frequent 

use of multi-drug combinations with overlapping therapeutic and toxic effects, 

relatively short elimination half-lives and multiple blood samples are needed to 

adequately define systemic exposure. [35, 75-77] Hence, with the exception of 

methotrexate, TDM for anticancer drugs are not routinely used in clinical practice. 

[35] On the other hand, targeted therapy like TKIs are prime candidates for a TDM 

program. TKIs are administered daily via the oral route and at fixed doses for most of 
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the time. These drugs possess long elimination half-lives, which makes it possible to 

estimate drug exposure with a single measurement. TKIs also fulfill most of the 

traditional prerequisites of TDM, which are long-term therapy, significant inter-

individual and relative low intra-individual variability, a narrow therapeutic range, a 

defined and consistent exposure-response (efficacy/toxicity) relationships, availability 

of a validated sensitive bioanalytical method and the absence of an easily measurable 

biomarker for drug effects. [76, 78]  

 

There are several potential benefits of TDM in TKIs. Firstly, under-dosing and over-

dosing may be prevented by tailoring the doses to achieve desired drug levels. 

Secondly, drug concentrations may also be used to delineate whether toxicities are 

related to the targeted agent or to other causes. Next, it may also be useful in detecting 

drug-drug interactions as well as to monitor adherence. [35] Although 

pharmacokinetic targets have been proposed for several TKIs, most remains to be 

validated in prospective clinical studies. Clinicians should be aware of the limitations 

of the clinical studies of which the PK targets were based on. The type of patients 

enrolled, limited cohort of patients, blood sampling protocol as well as method of data 

analysis should be taken into consideration before adopting the respective PK targets 

in clinical practice. Although currently available evidences are insufficient to mandate 

TDM in clinical practice, this option should be further explored due to the favorable 

PK profile and benefits. The enhanced efficacy and abrogation of toxicity as a result 

of accurate dosing by TDM will give a competitive advantage for these drugs.  
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1.9 Research gaps and specific aims 

 

1.9.1 Research gaps and hypothesis 

The previous sections summarized the background literature surrounding the main 

topic of this thesis, which is how alterations in pharmacokinetics may affect the 

presence of toxicities. TKIs are administered orally and are reported to have large 

inter-individual differences in their pharmacokinetics. This leads to the following 

questions: (1) How does this inter-individual variation in pharmacokinetics play a role 

in the manifestation of toxicity? (2) How does this affect drug and metabolite levels 

and thus affecting the risk of toxicity? (3) By understanding the pharmacokinetics and 

its effect on toxicity, can we adopt an individualized therapy regimen, so as to ensure 

a balance between efficacy and toxicity?  

 

The key research question that this thesis aims to answer is whether pharmacokinetic 

alterations in TKIs can contribute to toxicities, by focusing on drug exposure, genetic 

polymorphisms and DDI. Although the exposure-response and pharmacokinetics 

targets (target drug levels) have been proposed for several TKIs, most of the 

information was derived through retrospective analysis. [76] Different malignancies 

were also grouped together to facilitate analysis, although cancer types may enact as a 

source of pharmacokinetic variation. The somatic genome primarily determines tumor 

prognosis and response while the germline genome modulates treatment exposure and 

toxicity. As genetic polymorphisms in the pharmacokinetic pathway may affect 

exposure, and thus toxicity, it is important to study them in an Asian population, 

where the frequencies of the various genotypes may be different from other 

population such as Caucasians or Africans. Cancer patients are at risk of DDIs due to 
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the large number of medications they receive. DDIs are important in patient receiving 

TKIs but prospective studies are limited and challenging. Outcomes of DDI of 

common drugs are broadly unnoticeable due to their wide therapeutic index; however, 

in anti-cancer drugs like TKIs, serious clinical consequences may occur from small 

changes in the drug metabolism and pharmacokinetics. 

 

This thesis hypothesizes that pharmacokinetic alterations in TKIs play a role in TKI-

associated toxicities. 

 

1.9.2 Specific aims 

The overall aim of this thesis is to evaluate whether pharmacokinetic alterations in 

TKIs can contribute to toxicities. There are three specific aims focusing on the three 

themes in this thesis – drug exposure, genetic polymorphism and drug-drug 

interactions. 

 

Most exposure-response correlations are defined by retrospective analysis. Hence, this 

thesis aimed to explore the association between the manifestation of TKI-associated 

toxicities and plasma drug levels and consequently, to determine the role of TDM as a 

possible management strategy for TKI-induced toxicity. 

 

The variability observed with TKIs is influenced not only by genetic heterogeneity of 

drug targets, but is also contributed by the patients’ pharmacogenetic background and 

also the environmental factors that influence pharmacokinetics. Thus, the disposition 

of TKIs, which may be affected by variability of proteins in their pharmacokinetic 

pathway, could play a role in explaining the differences in response and in toxicities 
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observed. Therefore, the thesis aimed to explore the role of genetic polymorphism in 

TKI-associated toxicities, by investigating the association between genetic 

polymorphisms of key drug metabolizing enzyme and drug transporters and their risk 

for toxicities. 

 

The main CYP enzyme, CYP3A4, is implicated in the metabolism of almost all of the 

TKIs. Therefore, there is a substantial potential for interaction between TKIs and 

other drugs that modulate the activity of this metabolic pathway. This thesis aims to 

assess the effect of metabolism-related pharmacokinetic drug-drug interactions on risk 

for TKI-associated toxicity. Based on what is known as risk factors for developing 

drug-induced liver injury (DILI), it is not surprising to observe this with TKIs use, as 

most of them possess the risk factors such as high daily dose, substrate of P450 

enzyme, generation of reactive metabolites and involved in significant hepatic 

metabolism. Moreover, the liver is the main site of metabolism and any metabolites 

formed could likely induce a localized damage, thereby convicting the liver at risk for 

metabolism-related DDI toxicities. Therefore, this thesis will use hepatotoxicity as a 

case study and will evaluate how the manifestation of DDI affects the risk of 

hepatotoxicity. 

 

1.9.3 Overall approaches 

This project adopts both prospective and retrospective approaches to investigate the 

role of pharmacokinetic alterations in TKI-associated toxicities in an Asian 

population. (Table 4) 
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To address the first and second aims, a prospective, cohort study will be conducted in 

Asian metastatic renal cell carcinoma (mRCC) patients receiving sunitinib. Drug 

exposure to sunitinib in these mRCC patients will be determined in chapter 2. The 

association between the manifestation of sunitinib-associated toxicities and plasma 

drug levels will be studied in chapter 3. In addition, the in-vitro toxic potential of 

sunitinib and its active equipotent metabolite, SU12662, will also be evaluated. 

Further, the relationship between genetic polymorphisms of CYP3A5 and ABCB1 

and their risk for toxicities will also be investigated in chapter 4.  

 

For the third aim, the role of metabolism-related DDI in TKI therapy will be explored. 

The effect of metabolism-related drug interaction on hepatotoxicity will be evaluated 

in a study involving lapatinib and dexamethasone, where a nested case-control study, 

as well as a parallel in-vitro cell culture set up will be adopted. Additionally, this 

thesis will further address why TKIs are at risk for hepatotoxicity and quantify the 

risk through a meta-analysis. 

  



Chapter 1 
_____________________________________________________________________ 

22 
 

Table 4. Overall aims, research questions and approaches outlined in this thesis 

Aims Research questions Approach 

1. To explore the 
association between the 
manifestation of TKI-
associated toxicities and 
plasma drug levels 

What is the association between plasma 
level of sunitinib and/or active metabolite 
and the manifestation of toxicity? 

Prospective, 
cohort study 

What is the difference in the in-vitro toxic 
potential of sunitinib vs. its active 
metabolite? 

In-vitro cell 
toxicity assays 

2. To explore the role of 
genetic polymorphism in 
TKI-associated toxicities 

What is the association between CYP3A5 
and ABCB1 SNPs with the manifestation of 
toxicity? Prospective, 

cohort study What is the association between CYP3A5 
and ABCB1 SNPs with the plasma level of 
sunitinib and/or active metabolite? 

3. To assess the effect of 
metabolism-related 
pharmacokinetic drug-
drug interactions on risk 
for TKI-associated 
toxicity 

What is the role of metabolism-related DDIs 
in TKI therapy? 

Systematic 
review  

What is the risk of TKI-induced 
hepatotoxicity in cancer patients? 

Meta-analysis  

Why is TKI at risk for hepatotoxicity? 
Systematic 
review 

Does the CYP3A4 inducer, dexamethasone, 
affect the incidence of hepatotoxicity of 
lapatinib? 

Nested case-
control  
In-vitro cell 
toxicity assays 
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1.10 Scope of thesis 

Two TKIs will be selected as drug candidates for investigation in this thesis. Sunitinib 

will be used for the first and second aims, while lapatinib will be used for the third 

aim.  

 

1.10.1 Sunitinib 

Sunitinib is a small molecule that inhibits multiple receptor tyrosine kinases, such as 

platelet-derived growth factor (PDGFRα and PDGFRβ), vascular endothelial growth 

factors (VEGFR1, VEGFR2, VEGFR3), stem cell factor receptor (KIT), Fms-like 

tyrosine kinase-3 (FLT3), colony stimulating factor receptor Type 1 (CSF-1R), and 

the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib demonstrates 

ability to inhibit PDGFRβ- and VEGFR2- dependent tumor angiogenesis in-vivo. The 

approval of sunitinib has significantly improved the outlooks of patients with mRCC. 

In the Phase III clinical trial that led to its approval, sunitinib showed significant 

prolongation of progression-free survival as compared with previous gold standard 

therapy, interferon-α (11 months vs. 5 months, p<0.001). [79] In a recent trial that 

compared the efficacy of sunitinib with another multi-targeted TKI, pazopanib, both 

demonstrated similar efficacy, although sunitinib was associated with a higher 

incidence of toxicities such as severe fatigue, HFSR and thrombocytopenia. [80] 

Currently, sunitinib is one of the recommended agents for first line treatment of 

mRCC. [44] 

 

Sunitinib is administered at 50 mg, orally daily for 4-weeks, followed by 2-weeks off, 

in a repeated 6-week dosing cycle for mRCC. Following administration in humans, 

sunitinib is primarily metabolized by CYP3A4 to an active N-desethyl metabolite, 
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SU12662. The metabolite, SU12662, exhibits similar potency as sunitinib in 

biochemical tyrosine kinase and cellular proliferation assays, acting towards VEGFR, 

PDGFR and KIT. [28] Sunitinib together with SU12662 form the major drug related 

compounds in plasma, accounting for 91.5% in pooled samples, with sunitinib having 

3 – 4 times higher exposure than SU12662. Combined plasma concentrations of 

sunitinib and SU12662 ranged from 50 – 100 ng/ml has been shown to be effective 

for its anti-proliferative effects. [81, 82] Both sunitinib and SU12662 have previously 

been shown to display linear pharmacokinetics and have prolonged half-lives of about 

40 and 80 h, respectively. [28] To a large extent, the exposure to sunitinib accounts 

for its efficacy in disease management. 

 

Although sunitinib produces favorable clinical outcomes, high incidences of toxicities 

are associated with its therapy. These toxicities such as HFSR, thrombocytopenia and 

stomatitis were dose-limiting and resulted in a high rate of dose reductions and 

discontinuations. [79, 83, 84] Incidence of dose reductions and toxicities were also 

observed more frequently in Asian populations. Dose reduction was observed to be 

46% in a Korean study [84], which is significantly higher than that previously 

observed in the pivotal phase III trial (32%) [79] and the expanded-access program 

(EAP) (33%). [83] High grade (more than grade 3) toxicities such as HFSR and 

thrombocytopenia were also more common in the Korean study (HFSR: 16% and 

thrombocytopenia: 16%), than in previous phase 3 trial (HFSR: 5% and 

thrombocytopenia: 8% respectively). In a sub-analysis conducted with the EAP 

population, incidence of high grade toxicities was more prevalent in the Asian 

population. [85] For instance, the incidence of high-grade HFSR was 13% in Asians 

compared with 6% in non-Asians and that of high-grade thrombocytopenia was 26% 
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and 13% in Asians and non-Asians, respectively. Altogether, these reports suggest a 

distinct difference in the incidence and severity of some adverse events observed 

between populations. 

 

Consequently, mRCC patients at our local cancer centre, National Cancer Centre 

Singapore (NCCS), are receiving an attenuated dose (AD) of sunitinib (37.5 mg daily 

for 4-weeks, followed by 2-weeks off). [86] In a recent study, Houk et al 

demonstrated that a higher sunitinib exposure was associated with longer time to 

progression, longer overall survival, greater reduction in tumor size and increased risk 

of adverse events (fatigue, hypertension and neutropenia). [45] Thus, leading to the 

question of whether sufficient exposure is achieved with the attenuated dose of 

sunitinib and how does this attenuated dose reflects in the incidence of toxicities. 

 

Sunitinib is a desirable choice to address both the first and second aims for various 

reasons. Firstly, since an AD of sunitinib is being used by local mRCC patients, this 

study seeks to provide an objective measure of effectiveness for this off-label AD 

regimen. As toxicities and consequently, dose reductions are common in this group of 

patients, sunitinib is an excellent candidate to study the effect of drug exposure with 

clinical response and toxicities. Furthermore, sunitinib is one of the TKIs where 

proposed pharmacokinetic targets are available. [76] Therefore, it would be valuable 

to study whether the AD provides sufficient exposure for our local patients, by taking 

reference to the recommended therapeutic target concentration. 

 

In addition, since both sunitinib and SU12662 acts on similar receptors like VEGFR, 

PDGFR and KIT, toxicities associated with sunitinib therapy could also be likely 
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attributed to SU12662. As such, could either sunitinib or SU12662 be more toxic than 

the other? If so, how does variation in the activation pathways affect toxicities? 

 

1.10.2 Lapatinib 

Lapatinib is a small molecule dual-kinase inhibitor which inhibits the growth of tumor 

cells that over-express the human epidermal growth factor receptor 2 (HER2) and 

EGFR. Lapatinib is indicated in combination with capecitabine, for the treatment of 

patients with HER2-positive advanced or metastatic breast cancer who have received 

prior therapy including an anthracycline, a taxane and trastuzumab. [87] It is also 

indicated in combination with letrozole for treatment of HER2-positive metastatic 

breast cancer in postmenopausal women. [88]  

 

Side effects of lapatinib are relatively mild, which include diarrhea, rash, pruritus, and 

nausea. However, a very small subset of patients (less than 1%) succumbs to 

potentially life threatening liver injury. A black box warning for lapatinib use has 

been issued to warn prescribers against the potential occurrence of hepatotoxicity. 

[22] Existing clinical evidence indicates that lapatinib-induced hepatotoxicity is 

idiosyncratic.  

 

A recent study demonstrated that metabolism of lapatinib generates a reactive 

metabolite (RM), which has been implicated in other examples of idiosyncratic 

hepatotoxicity. The generation of lapatinib RM has reported to be from metabolism 

by CYP3A4 and CYP3A5. [89-91] Many RMs have intrinsic reactivity towards 

certain types of cellular macromolecules, leading to disruption of protein, lipids, DNA 

and oxidative stress. Additionally, they may cause mitochondrial dysfunction and loss 
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of energy production. This impairment of cellular function can result in cell death and 

possible organ failure. [92] Therefore, factors that affect metabolism and thus 

generation of RM, such as polymorphism in drug metabolizing enzymes, and DDI 

could likely affect the manifestation of toxicity. For instance, metabolism of 

acetaminophen in the liver includes the formation of a RM, the N-acetyl-p-

benzoquinoneimine. [93] In the presence of an inducer, RM formation was increased 

which markedly enhanced hepatotoxicity. [94] Since the metabolism of lapatinib also 

generates reactive quinoneimine species, factors that increase metabolism may 

potentially affect toxicity.  

 

The liver is the regulator of chemical homeostasis in the body and is the main site for 

bioactivation and detoxification of drugs and their metabolites. Hence, any potentially 

toxic metabolite generated in the process can readily exert a localized damage. 

Therefore, we propose the use of hepatotoxicity as a model to study the effects of 

metabolism on lapatinib-induced toxicity.  

 

Lapatinib is a good drug candidate in this context because of its association with a 

black box warning for hepatotoxicity. The onset of hepatotoxicity appears to carry 

classical features of idiosyncrasy such as high dosage (> 100 mg) required for clinical 

use (also seen with acetaminophen, felbamate and procainamide), substrate of P450 

enzyme and has significant hepatic metabolism. [95, 96] Although several TKIs have 

been reported to be capable of generating RM, lapatinib is one of a few TKIs where 

its metabolites have been extensively characterized (the others being erlotinib, 

gefitinib and dasatinib).  
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1.11 Significance of thesis 

The number of people diagnosed with cancer during their lifetime has been steadily 

increasing. [1] Although the survival trend is optimistic, it may come at a price. The 

need for routine monitoring, long term effects of the disease, and presence of 

treatment side effects will place a burden on the cancer patients.  

 

Large clinical trials provide efficacy and safety data from a group of carefully 

selected patients. The characteristics of the population involved in the clinical trials 

may sometimes be different from the actual patients in clinical practice. Furthermore, 

although these clinical trials are useful for determining which drug is superior across 

the patient population, they provide little about which drug is best for an individual. 

Thus, not surprisingly, there is considerable variation between patients in response to 

a given drug therapy. 

 

The uncertain nature of patients’ response may impose further challenges to a 

patient’s therapy. The new anti-cancer TKIs are generally costly and ineffective 

therapy is a waste of financial resources. The presence of treatment-related toxicities 

may also impair the patient’s quality of life. Furthermore, an ineffective therapy may 

encourage tumor resistance, hampering tumor control with further lines of therapy. 

These costs make it critical that we develop strategies for selecting optimal treatments 

for individual patients. 

 

Dose reductions of TKIs as a result of toxicity are common, and are often empirical. 

Under-dosing compromises efficacy, yet determination of the appropriate extent of 

dose reductions to prevent an ineffective dosage is often difficult. By understanding 
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this association, a therapeutic window for these agents could be established and with 

that the role of TDM for TKIs could also be studied as a possibility.   

 

Variations in drug exposure and thus toxicity may be likely due to genetic 

polymorphisms. These genetic polymorphisms can arise from genes involved in either 

or both pharmacokinetics and pharmacodynamics of the TKI. Here, we focus on 

genetic polymorphisms in genes that affect the pharmacokinetics pathway of the TKI. 

By identifying specific populations of patients who may be at higher risk of toxicity, 

individualization of therapy could be performed for each patient. Appropriate starting 

dose and management strategies could be adopted for individual patients with an aim 

of balancing efficacy and toxicity. 

 

Polypharmacy is common among cancer patients, especially in elderly patients. Since 

most TKIs undergo metabolism by CYP enzymes, especially CYP3A enzymes, DDIs 

would be very common as these enzymes are responsible for the metabolism of more 

than 50% of the drugs available in the market. As DDIs may affect the exposure to 

TKIs, it is vital to understand how these interactions may affect exposure and thus 

risk of toxicity. This will be important in managing patients with DDIs. 

 

Since the significant enhancement of the anticancer armamentarium with the 

introduction of targeted anticancer therapies, cancer has transformed from a death 

sentence into a chronic disease. Therefore, it is important that we address these issues 

with toxicities so as to achieve anticancer efficacy and optimize risk/benefit ratio of 

these therapies. Ultimately, this project seeks to provide evidence for 

individualization of TKI therapy for cancer patients, to ensure a balance between 
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efficacy and toxicity. Furthermore, individualized therapy could also lead to cost 

savings, where a lower dose could be used in a patient who achieves adequate drug 

exposure with acceptable response and minimal toxicity.   
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2 Drug exposure in the use of an attenuated dosing regimen of sunitinib in 

Asian metastatic renal cell carcinoma patients 

 

2.1 Use of attenuated dosing regimen of sunitinib 

The approved dosing of sunitinib for mRCC is 50 mg once daily for 4 weeks followed 

by 2 weeks of rest in a repeated 6-week cycle. One study has demonstrated that an 

AUC at the steady state of above 0.8 µg•h/ml in mRCC patients is associated with a 

longer time to progression (TTP), longer overall survival, a higher probability of a 

response and greater reduction in tumor size. [45] A recent paper proposed a 

combined minimum sunitinib and SU12662 concentration of more than 50 ng/ml and 

less than 100 ng/ml as pharmacokinetic targets for efficacy and safety, respectively. 

[76]  

 

However, high rates of dose modifications, including dose reductions (32–46%) and 

discontinuations (38%), have been reported with the approved dosing regimen due to 

systemic toxicities. [79, 83, 84] In view of the high incidences of toxicity and dose 

modifications, patients at NCCS have been routinely prescribed attenuated doses of 

sunitinib at 37.5 mg once daily for 4 weeks followed by 2 weeks off in a repeated 6-

week cycle (referred to as attenuated dosing, AD) as the first line therapy for 

treatment of mRCC. 
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2.2 Evaluation of efficacy and safety outcomes between conventional and 

attenuated dosing regimen  

A retrospective analysis conducted by our collaborators compared the efficacy and 

safety outcomes between the conventional dosing and AD regimen. Clinical data was 

retrospectively collected on all patients receiving sunitinib at any line of therapy at the 

NCCS, Johns Hopkins-International Medical Center, National University Hospital 

Singapore, and Onco-Care of Gleneagles Medical Center from 2005 to 2012. A total 

of 160 patients were included in the analysis, where 127 received the AD while 33 

patients received the conventional dosing regimen.  

 

The disease control rate between patients on conventional dosing and AD regimens 

were similar, where 23 of 29 (79.3%) and 79 of 120 (65.8%) patients achieved disease 

control respectively (p=0.19). Likewise, objective response rates were 12/29 (41.4%) 

and 39/120 (32.5%) respectively (p=0.36). Overall survival from treatment initiation 

(OSinitiation), overall survival from the first documented metastasis (OStotal), and 

progression free survival (PFS) were similar for patients receiving first-line sunitinib 

for conventional relative to attenuated-dose regimens (OSinitiation: 18.3 vs. 16.5 months, 

p=0.68; OStotal: 27.4 vs. 21.8 months, p=0.84; PFS: 6.7 vs. 7.9 months, p=0.89 

respectively), similar to real-world outcomes in Western studies. Noticeably lower 

rates of severe toxicities (60% vs. 85%, p=0.008), dose delays (24% vs. 58%, p<0.001) 

and dose reductions (35% vs. 70%, p<0.001) were also observed with the AD regimen 

when compared with the conventional dosing regimen. [86] 
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Therefore, this analysis performed by our collaborators demonstrated that the AD 

sunitinib regimen has comparable efficacy and improved safety outcomes in 

comparison with the conventional sunitinib dosing regimen. This result represents the 

first data supporting an alternative sunitinib dosing regimen in a population differing 

from the typically Caucasian profiles of most clinical trials. This is particularly 

important since the prevalence and severity of toxicities in actual usage is commonly 

different from that observed in Phase III trials. [97] While the results do not represent 

the methodological equivalent of a randomized controlled trial (RCT) in comparing 

dosing regimens, it is unlikely that a RCT will ever be conducted to examine this 

dosing issue, given the high toxicities experienced in the Asian population at 

conventional-dose regimens reported here and by others. In summary, this regimen 

could be considered as a standard of care in Asian mRCC patients. 

 

2.3 Pilot study to determine drug exposure to sunitinib and SU12662 in 

patients receiving the attenuated dosing regimen 

To provide an objective measure of effectiveness for this off-label AD regimen, a 

prospective cohort study was conducted to determine the level of exposure to 

sunitinib and SU12662 in patients with mRCC receiving the AD regimen. In the 

following two chapters, further analysis with this cohort of mRCC patients will be 

conducted. The association between the manifestation of sunitinib-associated 

toxicities and plasma drug levels will be assessed. (Outlined in Chapter 3) Through 

the quantification of sunitinib and SU12662, a better understanding can be determined 

as to whether the parent or metabolite might be a better predictor for toxicity and 

efficacy. The relationship between genetic polymorphisms of CYP3A5 and ABCB1 

as key determinants of sunitinib disposition and their risk for toxicities will also be 
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investigated. (Outlined in Chapter 4) Ultimately, the results from these studies could 

provide potential evidence for the role of TDM in patients receiving this therapy. 

 

2.3.1 Methodology 

 

2.3.1.1 Study design 

This was a single-centred, prospective, longitudinal study conducted at the NCCS 

between June 2011 and October 2013. The study was approved by the SingHealth 

Centralized Institutional Review Board (CIRB 2011-142-B). The procedures were in 

accordance with the ethical standards of the responsible committee on human 

experimentation. 

 

2.3.1.2 Patients and follow up 

All adult patients with a confirmed diagnosis of mRCC and who are newly starting on 

sunitinib were invited to participate in the study. Patients need not be treatment-naïve. 

Written informed consent was sought from the potential subjects who met the 

inclusion criteria prior to inception of the study. Patients were excluded if they are 

unable to provide written informed consent, if they were not receiving sunitinib for 

the treatment of mRCC or if they were currently receiving sunitinib.  

 

During weeks 3–4 of each treatment cycle (when the steady state is achieved), a blood 

sample was drawn to assess the steady-state plasma levels of sunitinib and SU12662. 

Patients were followed up for up to a maximum of 3 cycles.  Due to the outpatient 
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setting of this study and taking into account the convenience and compliance of 

patients, and the feasibility of monitoring, only 1 sample was taken for each cycle. In 

this study, sampling may occur at any time during office hours, based on patient’s 

convenience. However, the time lapse between sampling time and last dose was noted 

and was used in the estimation of plasma concentrations. 

 

2.3.1.3 Treatment 

Due to the low tolerance of the standard dose in the Asian population, patients were 

initiated with an AD regimen of sunitinib. Dose discontinuations and adjustments 

(reductions and increases) of 6.75–12.5 mg were performed by the physician 

depending on patients’ treatment responses and toxicity. 

 

2.3.1.4 Data collection 

Treatment-related information was collected from the patients during every clinic visit. 

The following data was collected through patient interviews, patient case-notes and 

electronic medical records: demographics, disease characteristics, medical history, 

treatment records and investigations, such as diagnostic scans and laboratory tests 

results. Two commercially available databases, Micromedex [98] and Lexicomp [99], 

were utilized to check for any potential DDIs. Patient’s use of complementary and 

alternative medicine (CAM), if any, was also obtained. In the event when blood 

sampling was declined, toxicity, clinical response and other relevant study data were 

collected wherever possible.   
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2.3.1.5 Processing of blood samples 

Blood samples was collected from the patients in ethylenediaminetetraacetic acid 

(EDTA)-containing blood collection tubes and processed immediately by transfer to a 

15 ml centrifuge tube and centrifugation at 2500 rpm, 4 °C, for 10 minutes. 

Subsequently, plasma was extracted and stored at –80 °C until analysis. 

 

2.3.1.6 Analysis of plasma sample 

Plasma samples were analyzed according to the validated methodology adapted from 

Etienne-Grimaldi et al. [100]  

 

2.3.1.6.1 Chemicals and materials 

Sunitinib and vandetanib, the internal standard (IS), were obtained from BioVision 

(Mountain View, CA, USA), while SU12662 was obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Acetonitrile was from Merck (Darmstadt, 

Germany) and tert-butyl methyl ether was obtained from Sigma-Aldrich (St. Louis, 

MO, USA).  

 

2.3.1.6.2 Preparation of calibration curve 

The calibration curve was prepared in blank plasma. Final concentrations were 0–2.5–

5–10–25–50–100–250 ng/ml for sunitinib and SU12662 (500 µl per data point). 
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2.3.1.6.3 Extraction procedures 

Patients’ plasma (500 µl) was added into a 15 ml centrifuge tube, and was spiked with 

20 µl of vandetanib (IS) at 0.5 mg/ml. Four milliliter of tert-butyl methyl ether was 

then added and tubes were vortexed for 30 seconds, after which the tubes were 

centrifuged at 2500 rpm, 4 °C, for 10 minutes. Next, the resulting organic phase was 

extracted into a new tube and evaporated to dryness at 50 °C, under a nitrogen stream. 

The residue was then reconstituted with 200 µl of the mobile phase, vortexed for 10 

seconds and subsequently centrifuged at 2500 rpm, 4 °C, for 10 minutes, before being 

transferred into the microvials.  

 

2.3.1.6.4 High Performance Liquid Chromatography (HPLC) analysis 

The Hewlett Packard HP Agilent 1100 system was used for the analysis. The high 

performance liquid chromatography (HPLC) column was Superiorex ODS 5 µm, 4.6 

mm × 250 mm from Shiseido. The mobile phase was composed of 20 mM of 

ammonium formate at pH 3.25 (adjusted with formic acid) and acetonitrile, following 

a 60:40 ratio respectively. The flow rate was 0.8 ml/min, injection volume was 20 µl 

and each run time was 15 minutes. Detection was performed using ultraviolet (UV) at 

431 nm, which provided good sensitivity and selectivity for both the IS and the 

compounds (sunitinib and SU12662). [101] Integration was performed according to 

peak height. Concentrations were calculated from the calibration curves, normalized 

by the IS, using the following equation: Concentration (ng/ml) = Slope × [peak height 

of interest/peak height of IS] + constant.  
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2.3.1.7 Pharmacokinetic analysis 

With one blood sample obtained from the patient during each treatment cycle, patient-

specific parameters for sunitinib and SU12662, could not be determined in this study. 

Hence, clearance (Cl) and volume of distribution (Vd), were estimated by the 

application of equations reported by Houk et al. This was selected as opposed to the 

pharmacokinetic parameters reported in the product information as the Cl and Vd 

estimated from Houk et al accounts for the effects of body weight, gender, cancer type 

and Asian race. [40] Weight of the patient was obtained from patient’s case notes. If 

weight of the patient was missing for all cycles, the average weight of the patients 

(male or female) was used in the estimation. If weight of the patient was missing for 

any cycle, it was assumed there was no change in weight and the value for 

baseline/previous cycle was used.  

 

Although the models for both sunitinib and SU12662 were two-compartmental model 

with first-order absorption and first-order elimination [40], further pharmacokinetic 

parameters such as elimination rate constant and subsequently maximum 

concentration at the steady state (Cmax,ss) and the minimum concentration at the steady 

state (Cmin,ss) were determined using a one-compartmental model. Elimination rate 

constant (k) was approximated from the population Cl and Vd. [40] As blood samples 

were obtained during week 3–4 of the cycle, which is during “steady state”, peak and 

trough concentration are assumed to be similar for each dosing interval.  

 

After the plasma concentrations of sunitinib and SU12662 had been determined by 

HPLC, and taking into account the time of blood collection (number of hours since 
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last sunitinib dose), k and the dosing interval (τ, 24 hours), the Cmax,ss and the Cmin,ss 

were then determined by application of the equations found in Table 5. 

 

As sunitinib demonstrates a linear dose–concentration relationship at doses up to 100 

mg [28], all plasma Cmax,ss and Cmin,ss levels were normalized to 37.5 mg to 

compensate for differences in doses between cycles and between patients. Total 

plasma drug (sunitinib and SU12662) concentration and sunitinib to metabolite ratio 

(SM ratio) were also calculated accordingly.  
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Table 5. Equations used in the estimation of drug exposure 

Clearance (Cl) of sunitiniba 

Cl/Fparent = 51.8·(1–0.0876·sex)·(1–0.13·raceAsian)· 

(1–0.285·typeGIST)· (1–0.269·typeST)·(1–0.258·typemRCC) 

 

Sex is coded 0 for male and 1 for female; 

Asian race (raceAsian), presence of GIST (typeGIST), other 

solid tumor (typeST) and mRCC (typemRCC) are coded 0 if 

not present and 1 if present 

Clearance (Cl) of metabolite 

(SU12662)a 

Cl/Fmetabolite = 29.6·�weight (kg)
77.2

�0.296·(1–0.274·sex)·(1–

0.123·raceAsian)·(1– 0.0652·ECOG)·  

(1–0.224·typeGIST)·(1–0.287·typeST)·(1–0.257·typemRCC) 

 

Sex is coded 0 for male and 1 for female; 

ECOG is coded 0 for a score of 0 or 1, and 1 for a score of 2 

or greater; 

Asian race (raceAsian), presence of GIST (typeGIST), other 

solid tumor (typeST) and mRCC (typemRCC) are coded 0 if 

not present and 1 if present 

Volume of distribution (Vd) of 

sunitinib 
Vd/Fparent = 2030∙ �weight (kg)

77.2
�0.459 

Volume of distribution (Vd) of 

metabolite (SU12662) 
Vd/Fmetabolite = 3080∙ �weight (kg)

77.2
�0.510·(1–0.241·sex) 

Elimination rate constant k = Cl/Vd 

Maximum concentration at 

steady state (Cmax,ss) 

Ct = Cmax,ss (e-kt) 

Cmax,ss = Ct

e-kt 

Minimum concentration at 

steady state (Cmin,ss) 
Cmin,ss = Cmax,ss (e-kτ) 

a [40]  

Abbreviations: Ct, concentration at time t 
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2.3.1.8 Assessment of clinical response and toxicity 

An assessment of clinical responses was performed through a computed tomography 

(CT) scan at the end of the second cycle. The investigators objectively evaluated 

treatment responses using the response evaluation criteria in solid tumors (RECIST). 

[102] Responses were categorized as a complete response (CR), a partial response 

(PR), stable disease (SD) or progressive disease (PD).   

 

Treatment-associated toxicity was assessed at the end of each cycle, in conjunction 

with the scheduled blood sample. Laboratory parameters were collected from the 

patients’ medical records, while other toxicities were assessed through patient 

interviews. Toxicities were graded according to the Common Terminology Criteria 

for Adverse Events (CTCAE) criteria version 4.0.2. [103] 

 

2.3.1.9 Definitions 

The primary end-point was analyzed according to the intention-to-treat principle. 

Plasma levels of sunitinib, metabolite (SU12662) and total (combined sunitinib and 

SU12662) were reported as normalized to 37.5 mg. The SM ratio was the ratio of the 

level of sunitinib to the level of SU12662. The maximum CTCAE grade observed for 

each toxicity across the cycles was used for analysis. Grade 2 and above toxicities 

were considered clinically significant as they could affect patients’ daily functioning 

and living. Henceforth, patients who experienced grade 2 and above toxicities will be 

defined as those with toxicities, while patients who experienced grade 1 or no toxicity 

will be defined as those with no toxicities.  
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2.3.1.10 Statistical analysis 

Descriptive statistics were used to summarize the patients’ demographics, treatment 

outcomes and the incidence of toxicity. Data on the drug levels were reported, 

together with the patients’ treatment response. The Mann-Whitney U test was used to 

compare drug exposure in patients with different outcomes and toxicities. Given the 

explorative nature of this study, the p-values were not corrected for multiple testing. 

All tests of statistical significance were two-sided with p values of less than 0.05 and 

all data analysis was conducted using IBM SPSS Statistics 21. 

 

2.3.2 Results 

 

2.3.2.1 Patient demographics and disease characteristics 

A total of 36 patients were recruited in this study. After completion of the first, 

second and third cycles, 25,21 and 12 patients were available for analysis, 

respectively. The reasons for exclusion included discontinuation of therapy or patients’ 

refusal to have blood drawn due to reasons such as unable to take time off to return to 

the study center for blood draw and fear of blood taking (Figure 2). For cycle 1, as 

one patient provided the blood sample before steady-state drug levels are achieved, 

this sample was excluded from the pharmacokinetic analysis. For cycle 2, as one 

patient declared non-adherence of sunitinib throughout the cycle after blood sample 

collection, this sample was excluded from the pharmacokinetic analysis.  
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The mean age and weight of the patients were 59 ± 10 years and 66.1 ± 13.5 kg, 

respectively. The majority of the patients were males (80.6%) and of Chinese 

ethnicity (86.1%). More than half of the patients (63.9%) had co-morbidities, such as 

hypertension and hyperlipidemia, and about two-thirds (69.4%) had had a previous 

nephrectomy. x (Table 6). No DDIs were identified in the patients. 
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Figure 2. Distribution of patients 
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Table 6. Patient demographics and disease characteristics (n=36) 

 Mean ± SD  
Age, years  59 ± 10 
Weight, kg  
(range) 

66.1 ± 13.5 
(32.4–93.2) 

 n (%) 
Gender  
  Male  29 (80.6) 
  Female 7 (19.4) 
Ethnicity  
  Chinese 31 (86.1) 
  Malay 3 (8.3) 
  Indian 2 (5.6) 
Presence of co-morbidities 23 (63.9) 
Previous nephrectomy 25 (69.4) 
Site of metastasis  
  Lung 27 (75.0) 
  Bone 14 (38.9) 
  Adrenals 6 (16.7) 
  Brain 5 (13.9) 
  Liver  3 (8.3) 
  Others 1 (2.8) 
No. of MSKCC risk factors*  
  0 (favourable) 12 (34.3) 
  1–2 (intermediate) 18 (51.4) 
  ≥ 3 (poor) 5 (14.3) 
Abbreviations: SD, standard deviation; MSKCC, Memorial Sloan-Kettering Cancer Center 
* Risk factors associated with shorter survival according to the MSKCC risk classification 
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2.3.2.2 Total exposure to sunitinib and SU12662 

Most patients were started on 37.5 mg of sunitinib (86.7%), while 4 patients were 

started on 25 mg (13.3%). No reasons were provided for the 25 mg dosing; but it may 

be presumed that these patients were thought to be less tolerant to the 37.5 mg dose 

by their physicians. For the second cycle, 20 (76.9%) patients were given 37.5 mg, 

with the remaining 6 (23.1%) patients received 25 mg. The doses were reduced due to 

toxicity. For the third cycle, 1 (5.0%) patient received 18.75 mg, 5 (25.0%) received 

25 mg, 13 (65.0%) received 37.5 mg and 1 (5.0%) received 50 mg. All patients were 

on the 4-week on, 2-week off cycle. The main reasons for dose discontinuations and 

dose reductions were toxicity and disease progression. One patient had his dose 

increased from 37.5 to 50 mg daily due to disease progression and the absence of 

toxicity. 

 

Although most patients were given an AD regimen of sunitinib, the median total 

exposure levels (normalized) for all 3 cycles were above the therapeutic target of 50 

ng/ml. Exposure levels (normalized) were also similar between the 3 cycles. Similar 

trends were also observed with the actual levels (Table 7). Of the 25 patients who 

provided blood samples for cycle 1, 84% achieved the minimum target concentration 

of 50 ng/ml (based on normalized levels). For cycles 2 and 3, 18 of 20 (90%) and 11 

of 12 (92%) patients achieved target concentrations, respectively (based on 

normalized levels). As for the actual levels, the percentage of patients who managed 

to achieve the minimum target concentration was 76%, 85% and 83% for cycle 1, 2 

and 3 respectively.  
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Table 7. Total exposure levels across 3 cycles of sunitinib therapy 

 Cycle 1 (n=25) Cycle 2 (n=20) Cycle 3 (n=12) P 
Cmin,ss 

Sunitinib, normalizedǂ 
62.60  

(43.15, 85.43) 
65.00  

(49.88, 87.15) 
64.94  

(50.11, 102.66) 0.84 

Sunitinib, actual¶ 56.07  
(42.33, 85.48) 

55.54  
(46.33, 74.34) 

62.13  
(49.74, 68.10) 

0.89 

Metabolite, normalizedǂ 
11.12  

(8.05, 17.85) 
11.16  

(7.08, 13.01) 
11.97  

(8.69, 21.94) 
0.81 

Metabolite, actual¶ 
10.09  

(6.18, 17.85) 
11.16  

(7.08, 13.01) 
11.85  

(5.97, 20.77) 0.93 

Total, normalizedǂ 83.03  
(50.75, 104.04) 

80.30  
(59.94, 108.83) 

80.43  
(60.48, 116.70) 

0.87 

Total, actual¶ 
67.00  

(49.33, 104.04) 
68.85  

(53.90, 91.92) 
71.17  

(60.22, 99.39) 
0.98 

SM Ratio 5.56 (4.29, 7.75) 5.18 (4.18, 7.03) 5.20 (4.25, 8.40) 0.92 
Cmax,ss 

Sunitinib, normalizedǂ 96.05  
(67.70, 128.11) 

99.94  
(74.51, 128.46) 

98.76  
(74.61, 152.68) 

0.85 

Sunitinib, actual¶ 
82.34  

(66.14, 128.11) 
85.04  

(71.54, 118.31) 
92.20  

(75.42, 104.00) 
0.92 

Metabolite, normalizedǂ 13.00  
(9.45, 20.39) 

14.89  
(11.96, 20.18) 

13.93  
(10.08, 25.50) 

0.75 

Metabolite, actual¶ 
11.70  

(7.25, 20.39) 
13.03  

(8.26, 15.20) 
13.87  

(6.91, 24.11) 
0.93 

Total, normalizedǂ 
119.93  

(76.14, 152.30) 
119.51  

(87.94, 159.00) 
116.89  

(87.14, 167.22) 0.85 

Total, actual¶ 95.01  
(74.40, 152.30) 

102.42  
(78.63, 135.31) 

101.65  
(86.88, 141.27) 

1.00 

SM Ratio 7.04 (5.62, 10.08) 6.70 (5.50, 9.10) 6.73 (5.56, 10.58) 0.91 
Abbreviations: Cmax,ss, steady-state peak concentration; Cmin,ss, steady-state trough concentration 
ǂ Levels reported as normalized to 37.5 mg (ng/ml/mg) and reported as the median (inter-quartile 
range). 
¶ Actual levels reported (ng/ml) and reported as the median (inter-quartile range). 
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2.3.2.3 Toxicities observed with sunitinib therapy 

Sunitinib-associated toxicities were commonly experienced by the patients. The most 

common were hypertension (91.3%), fatigue (76.9%), anemia (73.3%), altered taste 

(73.1%), mucositis (73.1%), dry skin (65.4%) and HFSR (65.4%). The most common 

grade 2 and above toxicities were mucositis (65.3%), HFSR (61.5%) and hypertension 

(60.9%). (Table 8) 
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Table 8. Incidence of toxicities 

 Ne All grades Grade 1 Grade 2 ≥ Grade 3 
n % n % n % n % 

Gastrointestinal 
Mucositis 26 19 73.0 2 7.7 16 61.5 1 3.8 
Dyspepsia 26 6 23.1 2 7.7 4 15.4 0 0 
Dry mouth 26 6 23.1 5 19.2 1 3.8 0 0 
Nausea 26 4 15.4 4 15.4 0 0 0 0 
Diarrhoea 26 7 26.9 5 19.2 2 7.7 0 0 
Constipation 26 3 11.5 2 7.7 1 3.8 0 0 
Cardiac 
Hypertension 23 21 91.3 7 30.4 6 26.1 8 34.8 
Dermatology 
Dermatological 
toxicitya 26 22 84.6 4 15.4 18 69.2 0 0 

Dry skin 26 17 65.4 10 38.5 7 26.9 0 0 
HFSR 26 17 65.4 1 3.8 16 61.5 0 0 
Rash 26 11 42.3 7 26.9 4 15.4 0 0 
Pruritus 26 7 26.9 4 15.4 3 11.5 0 0 
Neurology 
Altered Taste 26 19 73.1 11 42.3 8 30.8 0 0 
Headache 26 7 26.9 4 15.4 2 7.7 1 3.8 
Constitutional 
Fatigue 26 20 76.9 16 61.5 4 15.4 0 0 
Dizziness 26 8 30.7 7 26.9 1 3.8 0 0 
Fever 26 5 19.2 4 15.4 1 3.8 0 0 
Liver 
Hepatotoxicityb 30 10 33.3 7 23.3 3 10.0 0 0 
Transaminitisc 30 9 30.0 7 23.3 2 6.7 0 0 
↑ AST 30 7 23.3 6 20.0 1 3.3 0 0 
↑ ALT 30 7 23.3 6 20.0 1 3.3 0 0 
↑ TB 30 4 13.3 3 10.0 1 3.3 0 0 
Renal/ metabolic 
↑ Creatinine 30 17 56.6 10 33.3 7 23.3 0 0 
↓ Albumin 30 16 53.3 9 30.0 7 23.3 0 0 
Hematology 
Hematological 
toxicityd 30 30 100.0 11 36.7 13 43.4 6 20.0 

Anemia 30 22 73.3 13 43.3 8 26.7 1 3.3 
Neutropenia 30 14 46.7 5 16.7 7 23.3 2 6.7 
Leukopenia 30 14 46.7 8 26.7 6 20.0 0 0 
Thrombocytopenia 30 15 50.0 10 33.3 2 6.7 3 10.0 
Abbreviations: HFSR, hand-foot skin reaction; AST, aspartate transaminase; ALT, alanine 
transaminase; TB, total bilirubin 
a Includes dry skin, HFSR, rash and pruritus 
b Includes elevation of TB, ALT and AST 
c Includes elevation of ALT and AST 
d Includes anaemia, leukopenia, neutropenia and thrombocytopenia 
e Lack of blood pressure readings as measurements were not taken routinely by physicians; 
Lack of patient data for non-laboratory parameters as some patients declined interview for 
assessment of toxicities. 
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2.3.3 Discussion 

Although an AD was used in this study, 84–92% of the patients managed to achieve 

the minimum target concentration of 50 ng/ml, which is significantly higher than the 

52% reported in a similar study conducted in Caucasians. [104] Differences in the 

methodology may explain the divergence in the results. Firstly, it should be noted that 

sampling was performed in week 3–4 in our study, whereas sampling was performed 

on day 14 in the study by Lankheet et al, which may not be sufficient for both 

sunitinib and its metabolite to reach a steady state due to their long half-lives. 

Secondly, body weight, which affects the clearance of sunitinib, was lower in our 

study (range, 32.4–93.2 kg) and could have resulted in the higher levels. Lastly, 

because the clearance of sunitinib and its metabolite is most strongly affected by 

tumor type compared with other factors, such as gender and weight [40], our study 

included only patients with mRCC to exclude any effect of tumor type on exposure to 

sunitinib. However, it should be noted that although the target range is achieved, there 

are no evidence from this study and in the literature thus far to support its association 

with efficacy. 

 

Although patients receiving 25mg displayed lower exposure levels (sunitinib, 

metabolite and total levels) than those receiving 37.5mg, the difference was not 

statistically significant. Similar trends were observed for all three cycles. Despite 

receiving a lower dose, these patients managed to achieve the minimum target 

concentration. (Low dose vs. Normal dose: cycle 1 – 100% vs. 82%; cycle 2 – 100% 

vs. 86%; cycle 3 – 100% vs. 89%) [Data not shown] 
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It has been previously shown that plasma levels of sunitinib in patients do not vary 

greatly despite differences in doses [45], suggesting that patient factors that affect the 

disposition of sunitinib may influence the levels of TKIs and toxicity more than 

expected. Numerous factors, such as tumor type, Asian race, gender, body weight and 

elevated Eastern cooperative oncology group (ECOG) performance status, may 

explain a portion of the variability in the clearance of sunitinib and its metabolite. [40] 

Exposure to sunitinib and total drugs was predicted to increase by 15% in Asians 

relative to other races. In females relative to males, exposure was predicted to 

increase by 17% for total drugs. Furthermore, among Asian females, total drug 

exposure was predicted to increase by 34% relative to non-Asian male patients. [40] 

This may provide some explanation for the higher exposure that was observed in our 

study although a lower dose was used. In addition, it has been suggested that CYP3A4 

activity is approximately two-fold higher in women than in men. [105] However, it 

has also been suggested that the increase in CYP3A metabolism in females compared 

with males might be a result of their lower Pgp activity rather than gender differences 

in CYP3A activity. [106] Moreover, CYP3A4 activity varies widely within each 

gender, and other factors such as environmental factors have been proven to be far 

more clinically significant than gender differences in CYP3A4. [105] 

 

2.3.4 Limitations of study 

A major limitation of the study was that only 1 blood sample was taken for each cycle 

due to the outpatient setting of the study, to ensure feasibility and minimal 

inconvenience to the participants. The one-sample strategy may also useful as it is 

practical and mimics how the TDM of sunitinib may be performed in clinical settings. 

In addition, the chronic scheduling and long half-lives of most TKIs means that the 
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steady-state concentration of these agents (and/or their metabolites) has the potential 

to adequately represent systemic exposure. [35] Furthermore, it has been 

demonstrated that Cmin highly correlates with AUC of sunitinib, suggesting that TDM 

service could be provided based on the Cmin target. [76] Also, due to the lack of data, 

a one-compartmental model was used to estimate the drug levels despite both 

sunitinib and SU12662 assuming two-compartmental models based on literature. 

However, with a limited number of samples, pharmacokinetic models that describe 

more accurately the drug profile in the body could not be constructed. If possible, 

future studies may explore multiple sampling points, such that a more precise 

population pharmacokinetic models or even pharmacokinetic-toxicity model may be 

developed to predict the probability of toxicity at a given concentration. The time 

lapse between the last dose and blood draw were also not strictly controlled as this 

was to cater for patient’s convenience and ensure feasibility of the study. However, 

this poses a challenge to the analysis of the blood levels as actual levels were 

extrapolated to Cmin,ss and Cmax,ss. These PK parameters evaluated in our small study 

may limit the significance of the findings. The small sample size was another 

limitation of this study. This may be contributed by the uncommon nature of the 

disease. Although incidence of kidney cancer constitutes 2.4% of all cancers globally, 

it contributes to 1.7% of all cancer related deaths. Patients who were receiving 

sunitinib for other indications like GIST and pancreatic tumors could also have been 

included. Nonetheless, tumor type (mRCC, GIST and other solid tumors) accounts for 

a major portion of the variability in the clearance of sunitinib and its metabolite; 

hence our study included only patients with mRCC. Furthermore, the analysis could 

have included a comparison of patients who received the AD regimen and those who 

received standard doses, but this could not be carried out because all of the mRCC 
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patients at the cancer centre received the AD regimen. Moreover, due to ethical 

concerns, it is unlikely that a RCT will ever be conducted to examine this dosing issue, 

given the high toxicities experienced in the Asian population at conventional-dose 

regimens reported here and by others. As this was an exploratory study with small 

sample size, p-values were not corrected for multiple testings. Also, due to the 

outpatient setting, it is challenging to ensure patient compliance, thus it was assumed 

that patients adhered to the regimen. On the same note, it was unable to control 

patient’s diet as well as use of CAM, although in some cases, patients do provide the 

type of CAM used. Hence, it was assumed that the patient’s diet as well as CAM use 

does not affect the drug exposure of sunitinib and SU12662. 

 

2.3.5 Summary of important findings 

In this chapter, it was demonstrated that the AD regimen of sunitinib in Asian mRCC 

patients provided sufficient drug exposure. This provides an objective measure of 

effectiveness for this off-label AD regimen. Taken together with the findings of the 

evaluation of clinical efficacy and safety outcomes performed by our collaborators, 

the AD regimen proves to be a feasible choice for the management of mRCC in Asian 

patients. This regimen could be considered as a standard of care in Asian mRCC 

patients, as the lower dose not only diminished the incidence of high grade toxicities, 

but at the same time did not compromise clinical efficacy. 



Chapter 3 
_____________________________________________________________________  

54 
 

3 Exploring the association between toxicities with drug exposure of sunitinib 

and SU12662 

 

3.1 Association between toxicity and plasma levels in Asian mRCC patients 

receiving an attenuated dosing regimen of sunitinib 

 

3.1.1 Methodology 

The methodology adopted for this study was previously described under chapter 2.3.1 

(methodology)  

 

3.1.1.1 Definitions 

Definitions used are previously described under chapter 2.3.1.9 (definitions). As 

mentioned earlier, patients who experienced grade 2 and above toxicities will be 

defined as those with toxicities, while patients who experienced grade 1 or no toxicity 

will be defined as those with no toxicities. Grade 2 and above toxicities were 

considered clinically significant as they could either require intervention or affect 

patients’ daily functioning and living. [103] With that, the commonly encountered 

grade 2 and above toxicities were highlighted for comparison. The average exposure 

levels between cycles were then compared between patients with and without 

toxicities.  
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3.1.2 Results 

 

3.1.2.1 Patient demographics and disease characteristics 

As the cohort of patients were the same, please refer to chapter 2.3.2.1  

 

3.1.2.2 Toxicities observed with sunitinib therapy 

As the cohort of patients were the same, please refer to chapter 2.3.2.3 

 

3.1.2.3 Exposure levels and toxicities 

Those grade 2 and above toxicities with a high incidence were highlighted for 

comparison and they were: mucositis, HFSR, altered taste, anemia, neutropenia and 

hypertension.  

 

Generally, a trend of higher exposure was observed in patients who manifested 

toxicities compared with those who had no toxicity, with the exception of neutropenia.  

 

For both Cmin,ss and Cmax,ss of sunitinib, patients who experienced mucositis, HFSR, 

altered taste, anemia and hypertension largely demonstrated higher levels than those 

who did not experienced the toxicities. Similar trends were observed for actual and 

normalized levels. The Cmin,ss (normalized) of sunitinib was significantly higher for 

those who experienced mucositis than those who did not experienced mucositis (71.69 

vs. 47.30 ng/ml, p=0.04). (Table 9 & Table 10) 
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Exposure (both Cmin,ss and Cmax,ss) to the metabolite (SU12662) was higher in patients 

who experienced HFSR, altered taste, neutropenia and hypertension, although the 

differences were not statistically significant. Similar trends were observed for actual 

and normalized levels. (Table 9 & Table 10) 

 

Similarly, a trend of higher levels was observed with the total exposure (both Cmin,ss 

and Cmax,ss) in patients who experienced mucositis, HFSR, altered taste, anemia and 

hypertension than those who did not experienced the toxicities. The total maximum 

exposure (normalized) was significantly higher for those who experienced mucositis 

and altered taste than for those who had grade 1 or no events (mucositis: 126.46 vs 

84.81 ng/ml, p=0.04; altered taste: 159.91 vs 105.22 ng/ml, p=0.05). (Table 9) 

Likewise, the total minimum exposure (normalized) was also significantly higher for 

those who experienced mucositis and altered taste than for those who had no events 

(mucositis: 85.93 vs 57.53 ng/ml, p=0.04; altered taste: 109.37 vs. 71.15 ng/ml, 

p=0.04). (Table 10) Similar trends were observed for actual and normalized levels. 

 

The SM ratio was largely similar between the two groups of patients, although it was 

observed to be higher in patients who reported mucositis, HFSR and anemia. 

However, these differences were not statistically significant. (Table 9 & Table 10) 

  



Chapter 3 
_____________________________________________________________________  

57 
 

Table 9. Exposure levels (Cmax,ss) and toxicities 

Cmax,ss (ng/mL) Grade ≥ 2 Grade ≤ 1 P 

Mucositis  

(n=17 vs. 8) 

Sunitinib, N 110.74 (88.90, 144.73) 73.79 (63.33, 112.82) 0.06 

Sunitinib, A 106.11 (80.28, 144.73) 71.72 (51.64, 86.13) 0.01 

SU12662, N 13.13 (10.47, 21.65) 13.47 (10.77, 15.67) 0.49 

SU12662, A 13.10 (10.43, 21.58) 12.18 (7.68, 14.23) 0.35 

Total, N 124.46 (104.30, 169.36) 84.81 (76.50, 127.71) 0.04 

Total, A 121.83 (89.02, 167.33) 84.52 (60.12, 100.59) 0.01 

SM Ratio 7.65 (6.22, 10.08) 6.27 (4.95, 7.31) 0.10 

HFSR  

(n= 16 vs. 9) 

Sunitinib, N 101.08 (80.21, 144.42) 90.90 (64.99, 115.09) 0.28 

Sunitinib, A 91.29 (76.25, 137.12) 75.14 (64.99, 115.09) 0.61 

SU12662, N 15.28 (10.41, 19.38) 12.86 (11.30, 15.86) 0.61 

SU12662, A 12.30 (8.80, 18.47) 12.86 (10.79, 15.86) 0.96 

Total, N 124.63 (88.49, 170.67) 103.37 (78.47, 130.46) 0.19 

Total, A 110.85 (87.26, 167.63) 86.64 (78.47, 130.46) 0.46 

SM Ratio 7.19 (5.40, 9.98) 7.01 (5.38, 9.11) 0.78 

Altered taste  

(n=8 vs. 17) 

Sunitinib, N 123.33 (78.08, 151.57) 94.65 (70.38, 115.48) 0.22 

Sunitinib, A 107.12 (78.08, 150.08) 85.81 (64.99, 108.43) 0.16 

SU12662, N 19.00 (11.90, 28.51) 12.86 (10.45, 16.63) 0.06 

SU12662, A 14.72 (11.90, 28.51) 11.09 (8.34, 15.07) 0.05 

Total, N 159.91 (96.10, 215.06) 105.22 (82.68, 132.47) 0.05 

Total, A 145.20 (94.27, 180.58) 91.82 (78.47, 120.88) 0.06 

SM Ratio 6.94 (5.48, 8.31) 7.36 (5.41, 9.80) 0.52 

Anemia  

(n=6 vs. 18) 

Sunitinib, N 111.05 (64.00, 126.33) 92.78 (71.41, 122.95) 0.79 

Sunitinib, A 95.74 (64.00, 119.02) 87.41 (66.65, 109.29) 0.84 

SU12662, N 12.30 (9.78, 16.87) 13.61 (10.49, 18.78) 0.64 

SU12662, A 11.30 (8.71, 15.81) 13.00 (9.91, 16.45) 0.51 

Total, N 123.14 (74.09, 143.20) 110.85 (82.82, 158.40) 1.00 

Total, A 106.12 (74.09, 134.83) 104.60 (80.43, 144.33) 1.00 

SM Ratio 7.81 (5.74, 9.09) 6.97 (5.22, 9.75) 0.79 

Neutropenia  

(n=9 vs. 15) 

Sunitinib, N 87.93 (58.22, 137.93) 106.11 (77.98, 118.83) 0.39 

Sunitinib, A 80.74 (56.60, 124.41) 94.65 (74.75, 111.36) 0.33 

SU12662, N 14.51 (7.79, 21.65) 13.10 (10.56, 17.64) 0.88 

SU12662, A 12.86 (7.24, 19.97) 11.50 (10.48, 14.28) 0.79 

Total, N 103.99 (67.63, 160.21) 121.83 (86.64, 153.88) 0.30 
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Total, A 90.41 (63.84, 143.93) 116.49 (86.21, 136.46) 0.30 

SM Ratio 5.58 (5.02, 9.20) 7.36 (6.52, 9.98) 0.20 

Hypertension 

(n=13 vs. 8) 

Sunitinib, N 112.12 (76.56, 148.39) 91.29 (67.37, 110.05) 0.19 

Sunitinib, A 102.89 (74.94, 147.39) 84.33 (60.90, 103.25) 0.22 

SU12662, N 17.19 (11.30, 21.68) 11.83 (9.80, 14.40) 0.13 

SU12662, A 13.13 (11.28, 20.79) 10.47 (8.81, 13.84) 0.13 

Total, N 136.46 (84.98, 178.40) 104.60 (78.10, 122.46) 0.08 

Total, A 121.83 (86.43, 169.96) 97.20 (70.81, 113.67) 0.11 

SM Ratio 6.97 (5.29, 10.60) 8.70 (5.90, 9.57) 0.66 

Note: reported levels are average exposure levels across the 3 cycles and reported as median 

(interquartile range) 

Abbreviations: A, actual levels; Cmax,ss, steady-state peak concentration; HFSR, hand-foot skin 

reaction; N, normalized levels; SM ratio, sunitinib to metabolite ratio 
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Table 10. Exposure levels (Cmin,ss) and toxicities 

Cmin,ss (ng/mL) Grade ≥ 2 Grade ≤ 1 P 

Mucositis  
(n=17 vs. 8) 

Sunitinib, N 71.69 (57.45, 96.85) 47.30 (41.25, 72.33) 0.04 
Sunitinib, A 70.15 (51.75, 96.85) 46.59 (33.22, 55.94) 0.01 
SU12662, N 11.26 (8.94, 18.79) 11.53 (9.19, 13.39) 0.49 
SU12662, A 11.23 (8.94, 18.79) 10.40 (6.54, 12.13) 0.35 
Total, N 85.93 (69.10, 115.77) 57.53 (52.10, 85.02) 0.04 
Total, A 85.55 (61.27, 115.77) 57.53 (40.45, 68.30) 0.01 
SM Ratio 5.65 (4.78, 7.89) 4.75 (3.81, 5.44) 0.06 

HFSR  
(n= 16 vs. 9) 

Sunitinib, N 66.37 (54.65, 94.13) 59.20 (42.51, 76.81) 0.34 
Sunitinib, A 59.53 (48.73, 90.27) 48.16 (42.51, 76.81) 0.61 
SU12662, N 13.04 (8.92, 17.05) 10.99 (9.70, 13.59) 0.65 
SU12662, A 10.50 (7.57, 16.30) 10.99 (9.29, 13.59) 0.87 
Total, N 84.69 (61.26, 114.17) 69.92 (54.04, 89.35) 0.26 
Total, A 74.15 (58.11, 114.17) 57.98 (53.84, 89.35) 0.57 
SM Ratio 5.46 (4.14, 7.62) 5.32 (4.20, 7.19) 0.82 

Altered taste  
(n=8 vs. 17) 

Sunitinib, N 80.12 (50.05, 100.51) 59.29 (45.73, 76.64) 0.20 
Sunitinib, A 69.83 (50.05, 100.51) 57.41 (42.51, 73.06) 0.18 
SU12662, N 16.28 (10.18, 24.47) 10.99 (8.94, 14.20) 0.06 
SU12662, A 12.62 (10.18, 24.47) 9.58 (7.11, 12.91) 0.04 
Total, N 109.37 (64.97, 149.75) 71.15 (56.25, 88.00) 0.04 
Total, A 101.65 (62.77, 125.00) 64.97 (53.84, 84.29) 0.04 
SM Ratio 5.34 (4.24, 6.41) 5.56 (4.16, 7.75) 0.56 

Anemia  
(n=6 vs. 18) 

Sunitinib, N 75.32 (41.21, 82.16) 59.24 (46.24, 79.64) 0.74 
Sunitinib, A 63.10 (41.21, 81.16) 58.35 (43.76, 72.02) 0.84 
SU12662, N 10.54 (8.44, 14.42) 11.65 (8.96, 16.04) 0.69 
SU12662, A 9.70 (7.42, 13.61) 11.11 (8.51, 14.08) 0.55 
Total, N 85.74 (49.83, 96.58) 75.10 (56.67, 104.58) 1.00 
Total, A 72.66 (49.83, 93.79) 69.71 (55.26, 98.11) 0.89 
SM Ratio 5.92 (4.52, 7.02) 5.37 (4.01, 7.71) 0.84 

Neutropenia  
(n=9 vs. 15) 

Sunitinib, N 57.41 (38.85, 89.54) 70.15 (54.30, 77.66) 0.39 
Sunitinib, A 51.54 (38.75, 82.19) 59.77 (47.79, 75.97) 0.33 
SU12662, N 12.34 (6.72, 18.59) 11.23 (8.98, 15.10) 0.88 
SU12662, A 10.99 (6.25, 17.09) 9.81 (8.98, 12.15) 0.79 
Total, N 71.15 (46.93, 108.58) 85.55 (58.93, 101.38) 0.33 
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Total, A 59.76 (45.00, 100.20) 77.15 (57.57, 92.76) 0.33 
SM Ratio 4.26 (3.85, 7.11) 5.50 (4.89, 7.84) 0.25 

Hypertension 
(n=13 vs. 8) 

Sunitinib, N 75.97 (51.23, 99.25) 58.35 (45.18, 73.54) 0.17 
Sunitinib, A 64.99 (47.98, 99.25) 54.47 (41.09, 67.43) 0.15 
SU12662, N 14.66 (9.70, 18.70) 10.12 (8.44, 12.27) 0.15 
SU12662, A 11.23 (9.68, 17.87) 8.94 (7.57, 11.87) 0.15 
Total, N 92.76 (58.45, 122.44) 69.71 (54.73, 84.21) 0.08 
Total, A 85.55 (57.77, 117.36) 64.02 (49.62, 77.08) 0.13 
SM Ratio 5.27 (4.08, 8.40) 6.64 (4.55, 7.48) 0.61 

Note: reported levels are average exposure levels across the 3 cycles and reported as median 
(interquartile range) 
Abbreviations: A, actual levels; Cmin,ss, steady-state trough concentration; HFSR, hand-foot 
skin reaction; N, normalized levels; SM ratio, sunitinib to metabolite ratio 
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3.1.3 Discussion 

Higher exposures were observed for patients who developed toxicities (grade 2 or 

above) than for those who developed no toxicity (grade 0 or 1). The total exposure 

was observed to be significantly higher for those who experienced mucositis and 

altered taste than for those who had no events. 

 

In this study, the incidence of grade 3 and above toxicities was generally low and no 

grade 3 and above HFSR, fatigue or leukopenia were observed. In the Korean study 

that used the standard sunitinib dose of 50 mg, the most common grade 3 and above 

toxicities were HFSR (16%), thrombocytopenia (17%), anemia (6%), leukopenia (7%) 

and neutropenia (7%). [84] However, in our study of Asian patients receiving the AD 

of 37.5 mg, the incidence of these toxicities was either lower or similar (HFSR, 0%; 

thrombocytopenia, 11%; anemia, 0%; leukopenia, 0%; and neutropenia, 7%). The 

higher incidence of HFSR and anemia in the Korean study supports our observation 

that higher exposure is probably associated with these events. 

 

The study revealed a trend of higher total exposure in patients who reported grade 2 

and above toxicity such as mucositis, HFSR, altered taste, anemia and hypertension 

than those who developed grade 1 or no toxicity. Interestingly, the former group of 

patients was found to have a sunitinib exposure of more than 100 ng/ml, which is the 

proposed threshold level for toxicity [76], suggesting that sunitinib may play a more 

significant role in the manifestation of toxicities than its metabolite. However, the 

evidence for an association between the SM ratio and the incidence of toxicity 

remains inconclusive. The higher SM ratio indicated that these patients had relatively 
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higher plasma concentrations of sunitinib than its metabolite. This may also suggest 

that these patients have reduced ability to metabolize sunitinib. Although the 

differences were not statistically significant, this could be due to the small sample size 

and the large inherent variability in plasma concentrations across patients, which 

would minimize any differences in concentration. It could also be likely that not 

toxicities are concentration-dependent.  

 

The SM ratio is a robust measure because it adjusts for changes in the fluctuation of 

drug concentration. It is also useful for assessing toxicity, because it can help to 

pinpoint whether sunitinib or its major metabolite SU12662 may have different 

potential for toxicity. For instance, two patients given the same drug exposure but 

with a different incidence of HFSR may have different SM ratios; a higher SM ratio 

would probably be observed in a patient with grade 2 and above HFSR compared with 

that in a patient with no HFSR.    

 

Not surprisingly, the range of exposure levels achieved was highly variable. The 

coefficient of variation for the minimum and maximum total concentrations for cycle 

1 was 66% and 58%, respectively. Despite the lower dose used in the AD regimen, 

some patients may still achieve the 100 ng/ml threshold for toxicity and some may 

even require further dose reductions due to toxicity. Sunitinib engenders considerable 

and unpredictable inter-patient variability, and TDM could be a means to overcome 

this. A practical suggestion would be to measure blood levels when sunitinib is 

initiated for the first cycle, to observe whether therapeutic levels are achieved in 

relation to efficacy and toxicity. This is particularly important in groups such as 
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Asians, women and those with a low body weight, because these factors may affect 

the accumulation of sunitinib and thereby the risk of toxicity. If necessary, doses 

could also be decreased further to meet the minimum effective plasma concentration 

without affecting the efficacy, which could potentially lead to cost savings for the 

patient. Further studies with an active therapeutic drug monitoring component should 

be conducted to study the feasibility of such a strategy. Total plasma concentration of 

sunitinib could be used as a marker for therapeutic efficacy, whereas sunitinib levels 

could be used as a marker for toxicity. 

 

As sunitinib has considerable inter-patient variability, TDM may be considered as a 

strategy to optimize sunitinib therapy. With the aid of information on drug levels, 

physicians can adjust doses objectively. However, as pharmacokinetic targets of 

sunitinib have yet to be validated, and TDM of sunitinib or any TKI has yet to be 

implemented in clinical practice, we believe that it would be more practical to 

measure drug concentrations in the event of severe toxicity. This may help to 

ascertain if the toxicity is exposure-related; if so, dose titration may be performed. 

Otherwise, supportive management of toxicity may be more appropriate. If necessary, 

doses could also be reduced further to meet the minimum effective plasma 

concentration without affecting efficacy, which could potentially lead to cost savings 

for the patients and the healthcare system. 

 

3.1.4 Limitations of study 

Refer to chapter 2.3.4 
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3.1.5 Summary of important findings 

In this section, we have reported a trend of higher exposures in patients who 

experienced toxicities. The total exposure was observed to be significantly higher for 

those who experienced mucositis and altered taste than for those who had no events. 
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3.2 Evaluating the in-vitro dermatological and hepatotoxic potential of 

sunitinib and SU12662 

 

Although current evidence from the literature as well as from our studies have 

suggested a probable association between exposure and toxicity, the exact cause of 

most sunitinib-associated toxic effects is still largely unknown. As both sunitinib and 

SU12662 act on similar receptors, such as VEGFR, PDGFR and KIT [28], the toxic 

effects associated with sunitinib therapy may also be attributed to SU12662. 

 

Dermatological toxicity and hepatotoxicity were chosen for this study as they are 

clinically significant toxicities of sunitinib; dermatological toxicity because of its 

ubiquity and hepatotoxicity because of its severity. Moreover, these toxicities can be 

modeled at the in-vitro level using suitable cell culture models. 

 

Currently, data are lacking from studies undertaken to properly elucidate the 

underlying mechanisms causing the dermatological toxicities. [107, 108] Some had 

suggested that dermatological toxicities were due to the deregulation of signaling 

pathways between the different epidermal cells. [107, 109] For instance, HFSR was 

postulated to be dose-dependent and a consequence of an indirect effect of the 

inhibition of pro-angiogenic pathways. [110, 111] Inhibition of VEGFR and PDGFR 

interferes with endothelial cell survival mechanisms, preventing the vascular repair 

mechanisms from functioning properly, thereby causing HFSR in high-pressure areas, 

such as the palms and soles, which may be repeatedly exposed to subclinical trauma 

with daily activities. [111, 112] Others also discussed the possibility of direct toxic 

effects of sunitinib on keratinocytes. For instance, it has been demonstrated that the 
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toxicity of sorafenib and sunitinib for keratinocytes was induced by decreased 

apoptosis suppressors via the inhibition of STAT3 activity. [113] In addition, 

sunitinib, due to its action on VEGFR, could have interfered with the autocrine loop 

of VEGF suggested to be present in the epidermis, thus, affecting the survival of 

keratinocytes. [108, 114] Hence, given that SU12662 is a pharmacologically active 

metabolite that also inhibits VEGFR, toxicities mediated by the inhibition of VEGFR 

may arise from exposure to both sunitinib and SU12662. In such event, any 

differential toxicity between sunitinib and SU12662 may arise from their relative 

distribution and accumulation in the tissue of concern. Therefore we conducted this 

study to compare the in-vitro dermatotoxic and hepatotoxic potential of sunitinib and 

SU12662. This investigation is important as it can help to determine which might be a 

better marker to monitor in TDM should this be implemented subsequently. 

 

3.2.1 Methodology 

HaCaT keratinocytes, 3T3 mouse fibroblast, THLE-2 human hepatocytes and 

transforming growth factor α mouse hepatocytes (TAMH) were selected in this study.  

 

The immortal human keratinocyte cell line, HaCaT, provided a good representation of 

the normal keratinocytes with good consistency, durability and availability. [115, 116] 

HaCaT keratinocyte and 3T3 fibroblast cultures gave an appropriate in-vitro model 

for skin irritation as keratinocytes and fibroblasts are considered biologically relevant 

targets for skin irritants and photo-irritants. [117-119] THLE-2 is an immortalized 

primary human hepatocyte that expresses phenotypic characteristics of normal adult 

liver epithelial cells. [120] The TAMH cell line was adopted for this study as a stable 

and metabolically-competent system to support the mechanistic investigation of drug 
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cytotoxicity. [121] It is of murine liver origin and is capable of maintaining a 

differentiated phenotype irrespective of the number of passages. [122] It is also non-

tumorigenic and expresses drug metabolizing enzymes such as CYP3A and CYP2E1. 

[123] 

 

3.2.1.1 Cell culture conditions 

HaCaT cells were cultured in Dulbecco's modified eagle medium (DMEM) with 10% 

fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). The 3T3 cells were 

cultured in DMEM with 5% v/v FBS and 1% P/S and incubated under 5% CO2 

environment at 37 °C. THLE-2 cells were cultured in commercially available LHC-9 

media with 10% FBS. TAMH cells (kind gift from Prof. Nelson Fausto, University of 

Washington) were cultured in serum free Dulbecco’s modified Eagle’s Media/Ham’s 

F12 (DMEM/F-12) media, supplemented with ITS (5 µg/ml insulin, 5 µg/ml 

transferrin, 5 ng/ml selenium), 10 mM nicotinamide, 100 nM dexamethasone and 10 

µg/ml gentamicin. [59] 

 

Additionally, THLE-2 cells were also cultured with pre-coated flasks and plates. A 

fibronectin/collagen coating solution (0.01 mg/ml fibronectin, 0.03 mg/ml bovine 

collagen type I in LHC-9 media) were used for the coating. A volume of the coating 

solution was introduced (3 ml for T75 flasks and 50 µl per well for 96-well plates), 

and left to stand for 24 hours in the incubator. Thereafter the coating solution is 

removed and the coated plates stored in a 4 ºC refrigerator until use. 

 

All cells were incubated under 5% CO2 environment at 37 °C. Upon reaching 70 – 

90% confluence, trypsin was used to passage the cells and was inhibited by fresh 
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media (HaCaT, 3T3 and THLE-2) or 0.5 mg/ml soybean trypsin inhibitor (TAMH) 

before the cells were plated. 

 

3.2.1.2 Treatment and cell viability assay 

Cells (2,000 – 10,000/well) were seeded in 96-well plates and incubated for 24 hours. 

Sunitinib or SU12662 dissolved in dimethyl sulfoxide (DMSO), with concentrations 

ranging from 0.5 to 100 μM were then added and allowed to incubate for another 24 

hours (6 wells per concentration). After incubation, media was aspirated and replaced 

with 50 μl of 2 mg/ml of methylthiazolyldiphenyl-tetrazolium bromide (MTT) dye in 

phosphate buffered saline (PBS) and 200 μl of serum free media (HEPES-buffered for 

TAMH). [124, 125] Plates were then incubated in the dark for 2 hours at 37 °C. 

Subsequently, medium was then aspirated and the residual dye re-dissolved in 25 μl 

of Sorensen’s buffer (0.1 M glycine and 0.1 M NaCl equilibrated to pH 10.5 with 0.1 

M NaOH) and 200 μl of DMSO. Plates were read at 570 nm using the Infinite® 200. 

Experiments were performed in triplicates for each compound. Cell viability was 

expressed as a ratio normalized to the vehicle-treated control. 

 

3.2.1.3 Statistical analysis 

Average percentage viabilities at each concentration were calculated and the IC50 was 

estimated with Prism 6 (GraphPad, La Jolla, USA). T-test was conducted with SPSS 

21, to compare IC50 of the two compounds. A p-value of less than 0.05 was 

considered statistically significant. 
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3.2.2 Results 

 

3.2.2.1 Toxic potential of sunitinib and SU12662 

A dose dependent relationship between concentration and cell viability was observed 

for all cell lines. 

 

The IC50 for sunitinib was 23.76, 24.90 and 21.34 μM, while IC50 for SU12662 was 

37.02, 39.09 and 29.84 μM. The lower mean IC50 observed with sunitinib indicated 

that it was more toxic than SU12662 towards HaCaT cells and this was statistically 

significant (23.33 ± 1.82 µM vs. 35.32 ± 4.85 μM, p=0.02). (

HaCaT 

Table 11) 

 

The IC50 for sunitinib was 28.22, 20.08 and 17.65 μM, while IC50 for SU12662 was 

31.92, 20.55 and 24.06 μM. The mean IC50 of sunitinib was 21.98 ± 5.54 µM and for 

SU12662 25.51 ± 5.82 µM, which were not significantly different (p=0.49), 

indicating that both sunitinib and SU12662 have an equal potential to cause direct 

toxic effect to 3T3 cells. (

3T3 

Table 11) 

 

The IC50 for sunitinib was 15.29, 15.03 and 9.48 μM, while IC50 for SU12662 was 

17.87, 16.65 and 10.85 μM. The mean IC50 of sunitinib was 13.27 ± 3.28 µM and for 

SU12662 15.12 ± 3.75 µM, which were not significantly different (p=0.55), 

indicating that both sunitinib and SU12662 have an equal potential to cause direct 

toxic effect to THLE-2 cells. (

THLE-2 

Table 11) 
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The IC50 for sunitinib was 27.04, 31.75 and 22.42μM, while IC50 for SU12662 was 

12.76, 19.70 and 21.80 μM. The mean IC50 of sunitinib was 27.07 ± 4.67 µM and for 

SU12662 18.09 ± 4.73 µM, which were not significantly different (p=0.08), 

indicating that both sunitinib and SU12662 have an equal potential to cause direct 

toxic effect to TAMH cells. (

TAMH 

Table 11) 
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Table 11. Mean IC50 of sunitinib and SU12662 in various cell lines 

 IC50 (µM)  
 Sunitinib  SU12662 p 
HaCaT 23.33 ± 1.82 35.32 ± 4.85 0.02 
3T3 21.98 ± 5.54 25.51 ± 5.82 0.49 
THLE-2 13.27 ± 3.28 15.12 ± 3.75 0.55 
TAMH 27.07 ± 4.67 18.09 ± 4.73 0.08 
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3.2.3 Discussion 

The results suggest a differential contribution of sunitinib and metabolite to toxicity. 

Sunitinib was observed to be more toxic towards keratinocytes while both sunitinib 

and metabolite were equally toxic to hepatocytes.  

 

Although sunitinib has been shown to be more toxic than SU12662 in keratinocytes, it 

should also be noted that this statistical difference may not equate to a clinically 

significant difference. Previous clinical studies reported a correlation with oral 

adverse events, such as mucositis and HFSR. [126] Although we did not find such a 

correlation among our patients in the clinical study, our findings that the incidence of 

mucositis was related to high levels of exposure to sunitinib led us to believe that 

sunitinib rather than its metabolite may be the major contributor to mucositis. Our 

clinical study revealed a trend of higher total exposure in patients who reported grade 

2 and above toxicity such as mucositis, HFSR, altered taste, anemia and hypertension 

than those who developed grade 1 or no toxicity. (Table 9 & Table 10) Patients who 

experience toxicities was also observed to have a high sunitinib exposure of more 

than 100 ng/ml, providing further indication that sunitinib may indeed be more toxic 

than its metabolite SU12662. As both in-vitro and clinical findings exhibits a trend 

where sunitinib was observed to be more toxic, it can thus be postulated that the 

toxicity arising from sunitinib is an extension of a pharmacological effect on 

keratinocytes and other skin cells, instead of an idiosyncratic outcome.  

 

The differential toxicity of sunitinib and SU12662 in other cell types has not yet been 

specified. If differential toxicity exists for diverse cell types, variations in the 
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activation pathway, such as drug–drug interactions involving enzyme inducers or 

enzyme inhibitors, could affect the manifestation of toxicity. For example, a patient 

may experience greater dermatological toxicity when receiving sunitinib concurrently 

with a CYP3A4 inhibitor, due to the accumulation of the more dermatotoxic parent 

drug. Moreover, as not all toxicities are likely to be dose-dependent, dose reduction 

may not be a worthwhile strategy in all cases because efficacy could be compromised 

with no improvement in the risk of toxicity. Clinicians may have to adopt other 

strategies, such as providing supportive care or, if toxicity is severe, switching to an 

alternative agent. 

 

3.2.4 Limitations of study 

There may be an issue of longer term damage being done by the test drugs to cells 

that cannot be easily quantified, and which may not necessarily have a trend in the 

same direction as direct toxicity. In addition, hepatotoxicity and dermatological 

toxicity are ultimately organ-level phenomena, so while in-vitro studies like these 

provide a general indication as to what one may expect, emergent complexities within 

the organ system may yet lead to a different, unexpected result. Furthermore, only two 

cell lines per toxicity type was used, which may not be representative of the toxicity 

as a whole. Although there may be a difference between the IC50 of sunitinib and 

metabolite, the concentrations were much higher than reported human levels. There 

are also other toxicities relevant to the clinical usage of sunitinib which in-vitro 

studies are unable to model – such as effects on the nervous and digestive systems, 

among others. Fatigue, diarrhea and nausea are among the most common side effects 

of sunitinib therapy, which involve systems too complex for any tissue culture to 

satisfactorily model. Even should it be the case that hepatotoxicity and dermatological 
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toxicity are less significant with SU12662 usage as these results suggest, other 

toxicities may become more significant; as such would be challenging to alter therapy 

without being able to see the overall toxicity picture. 

 

3.2.5 Summary of important findings 

The results of this section suggest a differential contribution of sunitinib and 

metabolite to toxicity. Sunitinib was observed to be more toxic towards keratinocytes 

while both sunitinib and metabolite were equally toxic to hepatocytes. As SU12662 

has similar clinical efficacy to sunitinib, and the clinical potential of sunitinib therapy 

is limited by the associated toxicities, modification of the balance between sunitinib 

and SU12662 has the potential to reduce side effects; this increases the clinical 

potential of sunitinib therapy in the event that the ratio of active effect to adverse 

effect between the two clinically active agents are different. By altering metabolism 

or changing the administered drug, it may possible to change the concentration 

balance between sunitinib and SU12662 to achieve this effect. 
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3.3 Supplementary analysis – association of toxicity with health-related quality 

of life (HRQoL) 

 

Studies investigating health-related quality of life (HRQoL) with sunitinib and other 

TKIs in patients with mRCC have highlighted the importance of patient reported 

outcomes (PROs) in determining the overall treatment benefit to the patient. [127] 

Given the generally poor prognosis of patients with mRCC and the toxicities 

associated with therapy, PROs have become an increasingly important outcome in this 

patient population. [128] While some treatment-related toxicities such as HFSR or 

hypertension may not directly affect survival, they do adversely impact patients’ 

HRQoL. The magnitude of these treatment-related toxicities may be serious enough to 

warrant dose reductions so as to improve patients’ HRQoL, with the possibility to 

compromise treatment effectiveness or even treatment discontinuation. Hence, a 

trade-off between the impact of toxicities on patients’ HRQoL and treatment efficacy 

appears inevitable. 

 

It is a concern that toxicities would result in poor treatment adherence and thus poor 

treatment outcome. Nonetheless, although sunitinib is associated with multiple 

toxicities, not all of them may lead to poor treatment adherence and not all may 

warrant interventions. It is likely that only those with an impact on PRO will prompt 

self-initiated treatment discontinuation among patients. Hence, we conducted 

additional analysis on the same cohort of mRCC patients, with an objective to 

evaluate the association between toxicities and PRO. This would help inform 
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treatment prioritization with regards to the management of toxicities among patients 

on sunitinib, with higher priority given to those toxicities that impair PRO. 

 

3.3.1 Methodology 

 

3.3.1.1 Patient recruitment and follow up 

In addition to the procedures mentioned under chapter 2.3.1.2, questionnaires 

assessing PRO were administered before treatment commencement, to capture 

baseline PRO responses. Subsequently, patients were followed-up for PRO responses 

during week 4 of each treatment cycle. 

 

3.3.1.2 Assessment of patient reported outcomes  

Three tools were utilized to measure PRO: (1) EuroQoL Group’s Five Dimensions 

Questionnaire (EQ-5D), (2) Functional Assessment of Cancer Therapy-General 

(FACT-G), and (3) Functional Assessment of Cancer Therapy-Kidney Symptom 

Index (FKSI-15). 

 

EQ-5D is a validated and reliable generic measure of health outcome which comprises 

of a five-level health state classifier and a visual analog scale. [129] The classifier 

measures five different health dimensions namely, mobility, self-care, usual activities, 

pain/discomfort and anxiety and depression. Each dimension is described by three 

different statements, indicating “no problem”, “moderate problem” or “extreme 

problem”, with corresponding scores of 1, 2 and 3. The scores are translated into a 
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single summary index (EQ-5D Index), where a higher index value corresponds to a 

better HRQoL. The vertical 0-100 point visual analogue scale (EQ-5D VAS) indicates 

the overall health state of patients. Zero indicates the worst imaginable health state 

while 100 indicates the best imaginable health state. [76] Clinically significant 

differences in scores are defined as a minimal 0.08-point change for EQ-5D Index and 

a minimal 7-point change for EQ-5D VAS. [130] 

 

FACT-G is a validated 27-item scale to assess general HRQoL in cancer patients in 

the four domains of physical well-being (PWB), social/family well-being (SWB), 

emotional well-being (EWB) and functional well-being (FWB). [131] Patients rate the 

extent to which they agree with each statement using the 5-points Likert Scale (“not at 

all”, “a little bit”, “some-what”, “quite a bit”, “very much”). For negatively-phrased 

questions, scores are reversed. From each individual domain, question scores are 

summed up to obtain subscale scores. Subsequently, all 4 subscale scores are summed 

up to obtain the FACT-G Total score. The higher the total score, the better is the 

HRQoL (score range 0 – 108). [132] Clinically significant differences in scores are 

defined as a minimal 5-point change in FACT-G Total and a 2-point change in its 

subscale scores. [133] 

 

FKSI-15 is a validated 15-item symptom index developed specifically to assess 

disease-related and treatment-related symptoms for patients with advanced kidney 

cancer. [134] Patients rate the extent to which they agree with each statement using a 

similar scale and scoring system as FACT-G. Functional Assessment of Cancer 

Therapy-Kidney Symptoms Index – Disease Related Symptom (FKSI-DRS) is a 
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subscale derived from 9 of the FKSI-15 questions and measures disease-related 

symptoms for patients with advanced kidney cancer. The higher the total score, the 

better is the HRQoL (score range 0 – 60). Clinically significant differences in scores 

are defined as a minimal 5-point change in FKSI-15 and 3-point change in FKSI-DRS. 

[134] 

 

3.3.1.3 Statistical analysis 

PRO scores for cycle 1 were compared between patients who experienced grade 2 and 

above toxicities and those who did not were compared using Mann-Whitney U test. 

PRO were compared between patients with and without Grade 2 and above AEs after 

cycle 1 as the number of patients is highest at this time point and also to determine the 

initial impact of the toxicity on QoL. Multiple linear regression was performed to 

adjust for age, gender and co-morbidities. These factors were selected as they are 

known to associate with PRO. [135, 136] Due to the small sample size, the number of 

confounders adjusted for was limited to three. All tests of statistical significance were 

two-sided with p-value of less than 0.05. A 5-point difference in total FACT-G scores 

[133] and a 5-point difference in total FKSI-15 scores [134] were considered 

clinically significant. All data analyses were conducted with IBM SPSS Statistics 21.  
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3.3.2 Results 

 

3.3.2.1 Association between toxicity and HRQoL 

Among the 36 patients recruited, 24, 21 and 13 sets of completed questionnaires were 

received at the end of cycle 1, 2 and 3 respectively, and analyzed. Patients were 

excluded for reasons such as did not initiate sunitinib therapy, unable to return for 

follow up to complete questionnaires and discontinuation of therapy.  

 

In general, across commonly encountered Grade 2 and above toxicities (mucositis, 

HFSR, altered taste, anemia, neutropenia and hypertension), patients with toxicities 

reported lower PRO compared to patients with no events, reaching statistical 

significance for selected PRO in hypertension, neutropenia and altered taste. (Table 

12) 

 

Patients with altered taste reported significantly lower FKSI-15 (38.50 vs. 46.50, 

p=0.45) and FKSI-DRS (26.00 vs. 32.00, p=0.013) scores compared to patients 

without altered taste. After adjustment with age, gender and co-morbidities, the p-

values were 0.09 and 0.03 respectively. Clinically significant poorer scores were 

observed in patients with altered taste compared to those without, for all scores with 

the exception of EQ-5D VAS. (Table 12) 

 

Patients with hypertension reported significantly lower EQ-5D Index score compared 

to patients without (TTO: 0.73 vs. 1.00, p=0.03 and uVAS: 0.69 vs. 1.00, p=0.03). 
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After adjustment with age, gender and co-morbidities, p-values were 0.05 and 0.04 

respectively. The difference in scores for all tools (EQ-5D, FACT-G and FKSI-15) 

were also clinically significant for hypertension, in other words, patients with 

hypertension reported clinically poorer scores compared to those without 

hypertension. (Table 12) 

 

The EQ-5D Index scores were also significantly lower for patients with Grade 2 

neutropenia compared to patients without (TTO: 0.66 vs. 0.80, p=0.05 and uVAS: 

0.63 vs. 0.76, p=0.05). After adjustment with age, gender and co-morbidities, p-values 

were 0.05 and 0.13 respectively. Likewise, patients with neutropenia reported 

clinically poorer scores compared to those without, for EQ-5D index, FACT-G total 

and FKSI-DRS. (Table 12) 

 

Clinically significant lower scores was also observed in patients with mucositis (EQ-

5D VAS and FACT-G total), HFSR (EQ-5D uVAS and FACT-G total) and anemia 

(FACT-G total). (Table 12) 
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Table 12. Comparison of PROs at the end of cycle 1 between patients with and 
without grade 2 and above toxicities 

 Grade ≥ 2 Grade ≤ 1 P 
EQ-5D Index (TTO) 
Mucositis 0.73 (0.62, 0.88) 0.80 (0.66, 1.00) 0.53 
HFSR 0.71 (0.66, 0.82) 0.82 (0.66, 1.00) 0.40 
Altered taste 0.67 (0.63, 0.84) 0.80† (0.66, 0.97) 0.27 
Anemia 0.85 (0.66, 0.88) 0.80 (0.66, 1.00) 1.00 
Neutropenia 0.66 (0.39, 0.83) 0.80† (0.69, 0.94) 0.05/0.05¶ 
Hypertension 0.73 (0.67, 0.87) 1.00† (0.85, 1.00) 0.03/0.05¶ 
EQ-5D Index (uVAS) 
Mucositis 0.70 (0.60, 0.81) 0.76 (0.63, 1.00) 0.53 
HFSR 0.67 (0.63, 0.77) 0.77† (0.63, 1.00) 0.37 
Altered taste 0.64 (0.60, 0.78) 0.76† (0.64, 0.95) 0.27 
Anemia 0.77 (0.63, 0.81) 0.76 (0.63, 1.00) 1.00 
Neutropenia 0.63 (0.48, 0.81) 0.76 (0.66, 0.91) 0.05/0.13¶ 
Hypertension 0.69 (0.64, 0.79) 1.00† (0.82, 1.00) 0.03/0.04¶ 
EQ-5D VAS 
Mucositis 70.00 (65.00, 80.00) 80.00† (70.00, 90.00) 0.25 
HFSR 72.50 (65.00, 90.00) 77.50 (68.75, 86.25) 0.67 
Altered taste 72.50 (70.00, 78.75) 77.50 (65.00, 90.00) 0.63 
Anemia 75.00 (75.00, 80.00) 80.00 (65.00, 90.00) 0.86 
Neutropenia 80.00 (72.50, 87.50) 75.00 (65.00, 90.00) 0.65 
Hypertension 75.00 (62.50, 85.00) 90.00† (68.75, 100.0) 0.20 
FACT-G 
Mucositis 91.00 (71.33, 101.83) 80.33† (67.25, 93.67) 0.57 
HFSR 79.50(73.08, 97.83) 91.75† (62.50, 96.46) 0.98 
Altered taste 77.00 (60.75, 95.87) 83.34† (72.25, 99.29) 0.53 
Anemia 67.17 (58.33, 77.50) 92.25† (71.33, 100.83) 0.05 
Neutropenia 67.17 (60.84, 87.67) 92.50† (78.09, 98.83) 0.14 
Hypertension 83.00 (65.09, 95.75) 96.75† (83.41, 101.58) 0.30 
FKSI-15 
Mucositis 45.00 (34.00, 55.00) 46.00 (42.00, 52.00) 0.82 
HFSR 44.00 (42.00, 52.50) 46.50 (40.75, 52.75) 0.47 
Altered taste 38.50 (32.25, 44.75) 46.50† (42.45, 53.50) 0.05/0.09¶ 
Anemia 46.00 (42.00, 46.00) 45.00 (42.00, 54.00) 0.72 
Neutropenia 42.00 (32.50, 50.00) 46.00 (44.00, 53.00) 0.10 
Hypertension 45.00 (43.00, 52.00) 52.00† (44.00, 54.75) 0.41 
FKSI-DRS 
Mucositis 29.00 (26.00, 34.00) 31.00 (28.50, 33.00) 0.42 
HFSR 31.00 (26.75, 33.00) 30.00 (26.75, 34.25) 0.67 
Altered taste 26.00 (22.25, 28.25) 32.00† (27.75, 33.75) 0.01/0.03¶ 
Anemia 31.00 (31.00, 34.00) 30.00 (26.00, 33.00) 0.52 
Neutropenia 27.00 (23.50, 33.50) 33.00† (28.00, 33.50) 0.40 
Hypertension 30.00 (26.50, 33.50) 33.00† (30.75, 34.50) 0.30 
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Note: All values presented as median (Interquartile range); mucositis (n=24), HFSR (n=24); 
Altered taste (n=24), Anemia (n=22), Neutropenia (n=22), Hypertension (n=17) 
Abbreviations: EQ-5D Index (TTO), EuroQoL Group’s Five Dimension Questionnaire Index 
(Time Trade Off); EQ-5D Index (uVAS), EQ-5D Index (Visual Analogue Scale); EQ-5D VAS, 
EQ-5D Visual Analogue Scale; FACT-G, Functional Assessment of Cancer Therapy-General 
Total score; FKSI-15, Functional Assessment of Cancer Therapy – Kidney Symptoms Index 
15 items; FKSI-DRS, Functional Assessment of Cancer Therapy – Kidney Symptoms Index 
Disease Related Symptoms 
¶ Significant p-values are presented as before adjustment p-value/after adjustment p-value. 
Variables used for adjustment include age, gender and co-morbidities. 
† Clinically significant (i.e. exceed 0.08 points for EQ-5D, 7-points for EQ-VAS, 5-point for 
FACT-G Total, 2-point for FACT-G subscales, 5-point for FKSI-15 Total and 3-point for 
FKSI-DRS subscale) 
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3.3.3 Discussion 

Among several common Grade 2 and above toxicities, we found that hypertension, 

neutropenia and altered taste were most significantly associated with PRO. Instead of 

responding immediately to the presence of toxicities by dose reducing or 

discontinuation of treatment, the impact of toxicities on HRQoL may serve as a useful 

guide to inform the appropriate timing for dose reduction or treatment discontinuation. 

Our observation with regards to the impact of Grade 2 and above altered taste is novel 

as we are not aware of any previous reports, although a published systemic review did 

suggest that altered taste in chemotherapy patients could affect their diet, leading to 

weight loss and malnutrition, therefore affecting PRO. [137] One study reported that 

pharmacists who provided guidance and confirmed patients’ awareness and 

knowledge regarding sunitinib toxicities were able to help patients better manage the 

toxicities and improved their treatment outcomes. [138] As such, our study provided 

important information on those sunitinib-induced toxicities that most significantly 

impaired PRO.  

 

With regards to the effects of toxicities and PRO in mRCC patients, there was a 

published study that evaluated the association between HFSR and PRO among 23 

patients treated with sorafenib or sunitinib. [139] The authors reported that HFSR had 

the most significant impact on the symptoms domain of the Skindex16 questionnaire, 

where the clinical severity was Grade 2 in 74% of the patients. In our study, patients 

with Grade 2 and above HFSR experienced only marginally lower PRO scores 

compared to patients without HFSR. For example, FKSI-DRS score was 31.00 among 

patients with Grade 2 and above HFSR while the FKSI-DRS score was 30.00 among 

patients without HFSR. This could suggest that the FKSI-DRS is less sensitive than 
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the symptoms domain of the Skindex16 questionnaire in detecting the impact of 

HFSR in patients with mRCC. However, this needs to be confirmed in a head-to-head 

comparison of the two instruments in the same study. The findings of that study 

would inform the choice of the optimal instrument for assessing the impact of HFSR 

on PRO among patients with mRCC.   

 

3.3.4 Limitations of study 

As this study was conducted with the same group of patients, limitations of the study 

have been previously described under chapter 2.3.4. Additionally, as we have 

terminated follow-up at the end of 3 cycles, we were unable to evaluate the long-term 

impact of sunitinib on PRO. 

 

3.3.5 Summary of important findings 

This is the first study to evaluate the PRO among Asian patients receiving the AD 

sunitinib for mRCC. This study has incorporated a wide range of tools, including both 

generic and disease-specific tools, which can provide a better understanding of the 

PRO. At the same time, this study identified several toxicities that significantly 

impaired PRO, namely hypertension, neutropenia and altered taste. Furthermore, we 

previously report that patients who develop altered taste demonstrated higher total 

exposure than those who did not develop altered taste. Altogether, this suggests that 

exposure levels as a result of intra-patient factors may affect the manifestation of 

altered taste, which in turn may adversely impact a patient’s HRQoL. Hence, actively 

monitoring and managing these toxicities in patients taking sunitinib are warranted to 

prevent self-initiated treatment discontinuation among patients. Since altered taste 
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significantly impaired PRO, and it may be potentially associated with exposure levels, 

the impact of altered taste on HRQoL may serve as a useful guide to inform the 

appropriate timing for dose reduction or treatment discontinuation while a TDM 

program may serve as an objective guide for the optimization of dose. This can help 

to tailor the patient’s dose of sunitinib such as there will be minimal impact on 

HRQoL, yet without compromising on treatment efficacy.  
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4 Exploring the association between genetic polymorphism of CYP3A5 and 

ABCB1 with the manifestation of toxicities in Asian mRCC patients 

receiving an attenuated dose of sunitinib 

 

Disposition of sunitinib involves transportation through the ABCB1 transport protein 

and subsequent metabolism by CYP3A4/5 enzyme to its principal equipotent 

metabolite, SU12662. Differences in the safety profile of sunitinib in Asian and non-

Asian patients allude to the possible role of genetic variability, although 

environmental differences cannot be excluded. [85] 

 

The variability observed with TKIs is influenced not only by genetic heterogeneity of 

drug targets (i.e., pharmacodynamic differences), but is also contributed to by the 

patients’ pharmacogenetic background (e.g., CYP450 and ABC drug transporter 

polymorphisms), adherence to treatment, and environmental factors that influence 

pharmacokinetics. [85] Thus, the disposition of sunitinib, which may be affected by 

the variability of proteins including drug metabolizing enzymes and transporters in its 

pharmacokinetic pathway, could play a role in explaining the differences in response 

and in toxicities observed. [45]  

 

Highly polymorphic genes that play a significant role in sunitinib’s pharmacological 

action may also play a role in explaining the variability in sunitinib exposure. [140] 

One enzyme of interest is the CYP3A5 enzyme. Although both CYP3A5 and 

CYP3A4 enzymes share substrate specificity, the relative importance of CYP3A5 and 
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CYP3A4 in overall CYP3A-mediated metabolism may differ between substrates. [141] 

The SNP in CYP3A5 is of importance as the mutant CYP3A5*3 allele is not 

uncommon in Asians (59 – 77%). [68] The defective CYP3A5 enzyme associated 

with the *3 allele may cause an accumulation of the parent drug, which has been 

shown in the previous sections to be more dermatotoxic than its metabolite. Coupled 

with the fact that Asian race and low body weight decrease sunitinib clearance [40], 

the defective CYP3A5 enzyme in Asians may exacerbate toxicities by further 

accumulating the parent drug. Furthermore, it has been previously suggested that 

there is an increased risk of dose reductions of sunitinib due toxicity associated with 

CYP3A5*1 allele. [142] 

 

Pgp is a transmembrane efflux pump encoded by the ABCB1 gene. It is expressed in 

the intestines and liver and is involved in the oral absorption and biliary secretion of 

drugs. The genotype frequency of the homozygous TT genotype in the ABCB1 gene 

(C3435T) ranged from 28 to 43% in Asians compared with 0–6% in the African 

group [143] and 24% in the Caucasians. [144] Although this polymorphism is 

synonymous and there is no change in the amino acid of the resulting proteins, studies 

have demonstrated and suggested that it is likely to affect overall expression and 

function of the Pgp. [144] It has been proposed that the TT genotype could lead to 

increase activity or affinity of the efflux pump for sunitinib, hence leading to lower 

sunitinib levels. The TT genotype was also associated with a delay in dose reductions 

[145] and increased sunitinib clearance. [146] 
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The effect of SNPs on various response and toxicities has been studied previously. 

(Table 13) Effects of SNPs for both pharmacodynamics and pharmacokinetics targets 

have been evaluated. However, because the rates of SNPs differ across various 

populations, a focused population study was conducted to determine the effect of 

CYP3A5 and ABCB1 SNPs on the manifestation of toxicities and disposition of 

sunitinib and SU12662, in Asian mRCC patients. 
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Table 13. Effects of single nucleotide polymorphisms on sunitinib therapy 

 N Gene 
studied 

Significant findings 

Garcia-Donas et al  
[142] 

95 
(mRCC) 

VEGFR2  
VEGFR3  
PDGFR-α   
VEGF-A  
IL8  
CYP3A4  
CYP3A5  
ABCB1  
ABCG2  

• Reduced PFS associated with VEGFR3 
• Increased risk of dose reductions due to 

toxicity associated with CYP3A5*1  

van Erp et al 
[147] 

203 
(152 
mRCC, 
46 GIST, 
5 others) 

NR1l2  
NR1l3  
CYP3A5  
CYP1A1  
CYP1A2  
ABCG2  
ABCB1  
PDGFRα  
VEGFR2  
VEGFR3  
RET  
FLT3 

• Leukopenia associated with CYP1A1, 
FLT3, NR1l3 haplotype 

• Increased risk of developing any 
toxicity higher than grade 2 associated 
with VEGFR2, ABCG2 

• Increased risk of mucosal inflammation 
associated with CYP1A1 

• Increased prevalence of HFSR 
associated with ABCB1 haplotype 

 

Van der Veldt et al 
[148] 

136  
(mRCC) 

ABCG2  
ABCB1  
NR1I2  
NR1I3  
CYP3A5 
CYP1A1  
CYP1A2  
VEGFR-2  
VEGFR-3 
PDGFR-α 
FLT-3 

• PFS associated with CYP3A5, NR1I3 
haplotype and ABCB1 haplotype 

Beuselinck et al 
[149] 

88  
(mRCC) 

ABCB1  
CYP3A5  
NR1l2  
NR1l3  
HIF1A  
PDGFRA  
VEGFR2  
VEGFR3  
FGFR2  
IL8  

• PFS and OS were associated with 
ABCB1, NR1/3 and VEGFR3  

• PFS was associated with FGFR2 and 
NR1/2  

• OS was associated with NR1/3 and 
VEGFR3 

Kim HR et al 
[150] 

65  
(mRCC) 

CYP1A1 
CYP3A5 
ABCB1  
ABCG2  
PDGFRα  
VEGFR2  
RET 
FLT3 

• HFSR associated with ABCG2 
• Thrombocytopenia, neutropenia also 

associated with ABCG2 
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Beuselinck et al 
[145] 
 

98 
(mRCC) 

ABCB1  
CYP3A5  
NR1/2  
NR1/3  
VEGFR1 
VEGFR3 

• Increased time-to-dose-reduction 
associated with ABCB1  

Beuselinck et al 
[149] 

91 
(mRCC) 

VEGFR1  • Poorer response rate associated with 
VEGFR1 

Eechoute et al 
[151] 

255 
(mRCC) 

VEGFA  
VEGFR2 
EDN1  
eNOS 

• Greater elevations in SBP and MAP 
were associated with VEGFA  

• Hypertension associated with VEGFA 
And eNOS 

Kim J et al 
[152] 

63 
(mRCC) 

VEGF 
 

• Hypertension and duration of 
hypertension associated with VEGF  

Scartozzi et al 
[153] 

84 
(mRCC) 

VEGFA  
VEGFC  
VEGFR1 
VEGFR2  
VEGFR3  
 

• PFS associated with VEGFA and 
VEGFR3 

Abbreviations: GIST, gastrointestinal stromal tumor; HFSR, hand-foot skin reaction; mRCC, 
metastatic renal cell carcinoma; MAP, mean arterial blood pressure; OS, overall survival; 
PFS, progression free survival; SBP, systolic blood pressure 
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4.1 Methodology 

The methodology adopted in this study was previously described under chapter 2.3.1 

(methodology).  

 

4.1.1 Definitions 

Definitions used are previously described under chapter 2.3.1.9 (definitions). Patients 

will be genotyped if they provided at least one blood sample for the whole study, 

regardless of the number of cycles completed. Two mutually exclusive groups were 

defined based on patients’ genotype. For CYP3A5 SNP, patients were categorized 

into *1*1/*1*3 genotype versus *3*3 genotype. For ABCB1 SNP, patients were 

categorized into CC genotype versus CT/TT genotype.  

 

The maximum observed CTCAE grade for each toxicity across the cycles was used 

for analysis. Patients will be included in the analysis of the relative risk of toxicities if 

both genotype and toxicities data were available. Relative risk was compared in (1) 

patients with toxicities (any grade) vs. patients with no toxicities and (2) patients with 

clinically significant toxicities (grade 2 and above) vs. patients with no clinically 

significant toxicities (grade 1 and 0). Grade 2 and above toxicities were considered 

clinically significant as they could either require intervention or affect patients’ daily 

functioning and living.  Average exposure between cycles was used to compare these 

2 groups of patients. If a patient had completed only 1 cycle, then only data from 1 

cycle will be used. Exposure levels were compared between the two groups 

(*1*1/*1*3 versus *3*3 and CC versus CT/TT). Patients who had provided blood 

samples for pharmacokinetic analysis and genotyping will be included in the analysis 
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between genotype and drug exposure. Patients will be included in the analysis of the 

relative risk of toxicities if both genotype and toxicities data were available. 

 

4.1.2 Genotyping 

This study assessed ABCB1 SNPs (C3435T, rs1045642) and CYP3A5 SNPs 

(CYP3A5*1*3, rs776746) relevant to sunitinib transport and metabolism. DNA was 

extracted from the buffy coat layer using DNeasy Blood and Tissue Kit (Qiagen, 

Venlo, The Netherlands), performed according to manufacturer’s instructions. 

Genotyping was conducted with Polymerase Chain Reaction-Restriction Fragment 

Length Polymorphism (PCR-RFLP). For CYP3A, the forward primer was 5’-CTT 

TAA AGA GCT CTT TTG TCT CTC A-3’ and the reverse primer was 5’-CCA GGA 

AGC CAG ACT TTG AT-3’. [154] For ABCB1, the forward primer was 5’-TGT 

TTT CAG CTG CTT GAT GG-3’ and the reverse primer was 5’-AAG GCA TGT 

ATG TTG GCC TC-3’. [155] 

 

The PCR assay was performed in a 50 µl reaction volume containing 200 ng genomic 

DNA, 2 µl of 10 µM of forward and reverse primers, 5 µl of 10x hot start buffer, 2 µl 

of 25 µM MgSO4, 5 µl of dNTPs, 1 µl KOD hot start polymerase, 20 µl of betaine 

and distilled water. PCR conditions were initial denaturation at 95 °C for 7 minutes, 

denaturation at 95 °C for 30 seconds, annealing at 60 °C for 20 seconds, elongation at 

68 °C for 10 seconds, final elongation at 68 °C for 7 minutes and cooling at 12 °C. 

DNA was then purified using the DNA purification plate (Merck Millipore, 

Massachusetts, USA).  
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For CYP3A5 SNP, digestion of the amplified product with restriction enzyme, DdeI 

(New England Biolabs, Massachusetts, USA), for 2 hours at 37 °C yielded fragments 

of 107, 71 and 22 bp in the *3 allele, and fragments of 129 and 71 bp in the *1 allele. 

For ABCB1 SNP, digestion of the amplified product with restriction enzyme, Sau3A1 

(New England Biolabs, Massachusetts, USA) for 2 hours at 37 °C yielded fragments 

of 158 bp and 39 bp in the mutant allele, and no fragments in the wild type allele. This 

was followed by separation of the digested DNA fragments on a 2.5% w/v agarose gel 

in 1X TAE buffer for 30 minutes at 120 V (New England Biolabs, Massachusetts, 

USA). DNA bands were stained with GelRedTM (Biotium, California, USA) for 

visualization of bands using Molecular Imager® Gel DocTM XR System (Bio-Rad 

Laboratories, California, USA). 

 

4.1.3 Statistical analysis 

Descriptive statistics was utilized to summarize patients’ characteristics, incidence of 

toxicities and prevalence of SNPs. Chi-square or Fishers’ exact test was performed to 

determine the association between SNPs and toxicities. Relative risks (RR) were also 

estimated. Genotype frequencies were tested for Hardy–Weinberg equilibrium. Mann-

Whitney U test was used for determination of the relationship between SNPs and 

exposure. Given the explorative nature of this study, the p-values were not corrected 

for multiple testing. All tests of statistical significance were two-sided with p-values 

of less than 0.05 and analysis was conducted with the IBM SPSS statistics 21. 
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4.2 Results 

 

4.2.1 Patient demographics and disease characteristics 

As the cohort of patients were the same, please refer to chapter 2.3.2.1 

 

4.2.2 Toxicities observed with sunitinib therapy 

As the cohort of patients were the same, please refer to chapter 2.3.2.3 

 

4.2.3 Frequencies of the genotype 

The frequency of the CYP3A5*1 allele was 40% and frequency of the ABCB1 CC 

genotype was 66%. Allelic frequencies were in Hardy-Weinberg equilibrium. The 

allelic frequencies were also largely similar to a previous paper conducted in the 

Singaporean population, where the reported frequency of CYP3A5*1 allele was 34% 

[68] and frequency of the ABCB1 CC genotype was 44%. [156] The difference in the 

frequencies of the ABCB1 allele could be due to the small sample size in our study.  

 

For the CYP3A5 SNP, the genotype frequencies for *1*1, *1*3 and *3*3 were 20% 

(n = 5), 40% (n = 10) and 40% (n = 10), respectively. For ABCB1 SNP, the genotype 

frequencies for CC, CT and TT were 36% (n = 9), 60% (n = 15) and 4% (n = 1), 

respectively.  
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4.2.4 Incidence of toxicities and SNPs 

There was no significant association between CYP3A5 SNPs and the incidence of 

toxicities, with the exception of anemia. Patients with the *1*1/*1*3 genotype had a 

lower risk of all-grade anemia than patients with the *3*3 genotype (RR 0.47, 95% CI 

0.27 – 0.80). However, this was not observed for grade 2 and above anemia. Risk of 

all-grade dermatological toxicities appeared to be similar between patients with the 

*1*1/*1*3 genotype and patients with the *3*3 genotype (RR 0.98, 95% CI 0.72 – 

1.32). Risk of both all-grade (RR 0.90, 95% CI 0.35 – 2.35) and grade 2 and above 

(RR 0.30, 95% CI 0.03 – 2.86) rash was observed to be lower in *1*1/*1*3 carriers. 

There was a reduction in risk observed for all-grade anemia, neutropenia and 

thrombocytopenia, while a reverse trend was observed for leucopenia. There was a 

trend of *1*1/*1*3 carriers having a lower risk of all-grade transaminitis and 

elevations of total bilirubin (TB), alanine transaminase (ALT) and aspartate 

transaminase (AST), however this was not statistically significant. For other general 

toxicities, *1*1/*1*3 carriers were observed to have a reduced risk for toxicities 

compared with the other group. (Table 14) 

 

A significant association between ABCB1 SNP and incidence of all-grade rash was 

observed, with the incidence of rash being 3 times higher in patients who were 

homozygous CC wild type than in patients who were heterozygous CT or mutant TT 

(RR 3.00, 95% CI 1.17 – 7.67). CC carriers were also at a higher risk for both all-

grade (RR 1.60, 95% CI 1.10 – 2.34) and grade 2 and above (RR 2.00, 95% CI 1.23 – 

3.27) mucositis. There was no significant association between ABCB1 SNPs and 

incidence of other toxicities. Risk of all-grade dermatological toxicities was observed 

to be higher in patients with CC genotype than in CT/TT patients (RR 1.23, 95% CI 
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0.97 – 1.56). Risk of grade 2 and above hematological toxicities was lower in CC 

patients than in CT/TT patients (RR 0.73, 95% CI 0.34 – 1.57). A trend of CC carriers 

having a higher risk of hepatotoxicity was observed. This trend was consistent for 

hepatotoxicity as a group, and for individual elevations of TB, ALT and AST, but it 

was not statistically significant. For other general toxicities, CC carriers were 

observed to have similar risk for all-grade fatigue, increase in blood pressure, and 

altered taste, compared with the other group. (Table 15)  
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Table 14. Incidence of toxicities and CYP3A5 SNPs 

 
CYP3A5 

*1*1/ *1*3 (n = 15) vs. *3*3 (n = 9) 
RR (95% CI) All-grade Grade 2 and above 
Dermatological Toxicity a 0.98 (0.72 – 1.32) 0.86 (0.52 – 1.41) 
Dry Skin 1.00 (0.56 – 1.79) 1.20 (0.27 – 5.29) 
HFSR 1.32 (0.68 – 2.55) 1.20 (0.61 – 2.38) 
Rash 0.90 (0.35 – 2.35) 0.30 (0.03 – 2.86) 
Pruritus N.A. N.A. 

 
Hematological Toxicity b N.A. 1.20 (0.61 – 2.38) 
Anemia 0.47 (0.27 – 0.80) 0.60 (0.15 – 2.36) 
Leucopenia 2.70 (0.74 – 9.81) 3.00 (0.41 – 21.76) 
Neutropenia 0.96 (0.45 – 2.04) 2.10 (0.55 – 7.99) 
Thrombocytopenia 0.90 (0.35 – 2.35) 1.20 (0.13 – 11.43) 

 
Hepatotoxicity c 1.00 (0.31 – 3.22) N.A. 
Transaminitis d 0.80 (0.23 – 2.79) N.A. 
Increase in TB 0.60 (0.04 – 8.46) N.A. 
Increase in ALT 0.60 (0.10 – 3.55) N.A. 
Increase in AST 0.40 (0.08 – 1.96) N.A. 
   
Gastrointestinal   
Mucositis 0.94 (0.59 – 1.50) 1.00 (0.56 – 1.79) 

 
Constitutional   
Fatigue 0.83 (0.56 – 1.21) 0.60 (0.10 – 3.55) 

 
Cardiac   
Increase in BP 1.14 (0.88 – 1.49) 2.00 (0.77 – 5.18) 

 
Neurology   
Altered Taste 0.68 (0.42 – 1.08) 1.00 (0.31 – 3.22) 
Abbreviations: ALT, Alanine transaminase; AST, Aspartate transaminase; BP, Blood pressure; 
CI, Confidence interval; HFSR, Hand-foot skin reaction; RR, Relative risk; TB, Total bilirubin 
a Includes dry skin, HFSR, rash, pruritus 
b Includes anemia, leucopenia, neutropenia, thrombocytopenia 
c Includes elevation of TB, ALT, AST 
d Includes elevation of ALT, AST 
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Table 15. Incidence of toxicities and ABCB1 SNPs 

 
ABCB1 

CC (n = 8) vs. CT/TT(n = 16) 
RR (95% CI) All-grade Grade 2 and above 
Dermatological Toxicity a 1.23 (0.97 – 1.56) 1.09 (0.65 – 1.83) 
Dry Skin 1.20 (0.69 – 2.08) 2.00 (0.52 – 7.77) 
HFSR 1.20 (0.69 – 2.08) 1.33 (0.74 – 2.40) 
Rash 3.00 (1.17 – 7.67) 1.00 (0.11 – 9.44) 
Pruritus 2.00 (0.52 – 7.77) N.A. 

 
Hematological Toxicity b N.A. 0.73 (0.34 – 1.57) 
Anemia 0.67 (0.32 – 1.41) 0.40 (0.06 – 2.88) 
Leucopenia 0.44 (0.12 – 1.59) 1.00 (0.23 – 4.35) 
Neutropenia 0.36 (0.11 – 1.26) 0.57 (0.15 – 2.15) 
Thrombocytopenia 1.33 (0.52 – 3.41) 4.00 (0.42 – 37.78) 

 
Hepatotoxicity c 2.00 (0.67 – 5.98) 2.00 (0.14 – 27.99) 
Transaminitis d 2.67 (0.78 – 9.15) N.A. 
Increase in TB 2.00 (0.14 – 27.99) N.A. 
Increase in ALT 2.00 (0.34 – 11.70) N.A. 
Increase in AST 3.00 (0.62 – 14.49) N.A. 

 
Gastrointestinal   
Mucositis 1.60 (1.10 – 2.34) 2.00 (1.23 – 3.27) 

 
Constitutional   
Fatigue 0.92 (0.58 – 1.47) N.A. 

 
Cardiac   
Increase in BP 1.08 (0.93 – 1.25) 1.67 (0.88 – 3.14) 

 
Neurology   
Altered Taste 1.09 (0.65 – 1.83) 0.29 (0.04 – 1.94) 
Abbreviations: ALT, Alanine transaminase; AST, Aspartate transaminase; BP, Blood pressure; 
CI, Confidence interval; HFSR, Hand-foot skin reaction; RR, Relative risk; TB, Total bilirubin 
a Includes dry skin, HFSR, rash, pruritus 
b Includes anemia, leucopenia, neutropenia, thrombocytopenia 
c Includes elevation of TB, ALT, AST 
d Includes elevation of ALT, AST 
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4.2.5 Exposure levels and SNPs 

When exposure levels (Cmin,ss) were compared between the CYP3A5 *1*1/*1*3 

genotype and the *3*3 genotype, there was no difference in the normalized and actual 

sunitinib levels, total levels and SM ratio between the 2 groups for CYP3A5. On the 

other hand, normalized and actual metabolite SU12662 levels were significantly 

higher in the *3*3 genotype than the other group (Normalized: 13.74 vs. 9.82 ng/ml, p 

= 0.05; Actual: 13.74 vs. 9.58 ng/ml, p = 0.05). Similar trends were observed with the 

Cmax,ss exposure levels. (Table 16 & Table 17) 

 

Patients who were CC genotype for ABCB1 were observed to have higher normalized 

and actual sunitinib exposure (Cmin,ss) than those who were CT/TT genotype 

(Normalized: 76.81 vs. 56.55 ng/ml, p = 0.02; Actual: 76.81 vs. 49.85 ng/ml, p = 

0.003). Likewise, the CC genotype group demonstrated higher SM ratio for Cmin,ss 

when the 2 groups were compared (7.89 vs. 5.25, p = 0.02). However, no difference 

was observed between the 2 groups for total  and metabolite levels of Cmin,ss. Similar 

trends were observed with the Cmax,ss exposure levels. (Table 16 & Table 17) 
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Table 16. Exposure levels (Cmin,ss) and SNPs 

CYP3A5  *1*1/*1*3 (n = 15) *3*3 (n = 9) P 
Sunitinib, normalized 59.20 (45.66, 85.58) 74.67 (56.55, 87.19) 0.36 
Sunitinib, actual 59.29 (39.79, 75.97) 70.15 (53.62, 87.19) 0.33 
Metabolite, normalized 9.82 (8.29, 15.81) 13.74 (11.67, 18.90) 0.05 
Metabolite, actual 9.58 (5.98, 12.15) 13.74 (10.08, 18.90) 0.05 
Total, normalized 68.27 (53.95, 101.38) 89.65 (75.10, 115.75) 0.09 
Total, actual 64.97 (47.13, 85.55) 85.93 (65.46, 115.75) 0.08 
SM Ratio 5.50 (4.10, 7.93) 5.32 (4.00, 6.64) 0.42 

ABCB1 CC (n = 8) CT/TT (n = 16) P 
Sunitinib, normalized 76.81 (64.49, 101.46) 56.55 (45.18, 76.65) 0.02 
Sunitinib, actual 76.81 (64.49, 101.46) 49.85 (39.84, 63.57) 0.003 
Metabolite, normalized 13.16 (9.07, 17.05) 11.13 (8.98, 15.29) 0.85 
Metabolite, actual 12.16 (9.07, 16.64) 10.40 (7.57, 13.35) 0.54 
Total, normalized 89.15 (80.05, 114.17) 69.10 (54.31, 98.45) 0.11 
Total, actual 89.15 (80.05, 114.17) 58.87 (48.10, 83.74) 0.04 
SM Ratio 7.89 (5.40, 9.10) 5.25 (4.07, 6.31) 0.02 
Note: All values are average exposure (Cmin,ss, ng/ml) between the cycles and reported as 

median (inter-quartile range) 
Abbreviations: SM ratio, Sunitinib to metabolite ratio 

 

  



Chapter 4 
_____________________________________________________________________  

101 
 

Table 17. Exposure levels (Cmax,ss) and SNPs 

CYP3A5  *1*1/*1*3 (n = 15) *3*3 (n = 9) P 

Sunitinib, normalized 90.90 (67.06, 135.31) 111.36 (87.41, 131.56) 0.30 

Sunitinib, actual 85.81 (58.43, 110.74) 106.11 (83.82, 130.42) 0.25 

Metabolite, normalized 11.50 (9.61, 18.57) 16.06 (13.59, 21.61) 0.06 

Metabolite, actual 11.09 (7.01, 14.28) 16.06 (11.74, 21.61) 0.06 

Total, normalized 103.37 (76.67, 153.88) 135.62 (110.24, 166.34) 0.13 

Total, actual 91.82 (66.95, 121.83) 124.46 (97.20, 166.34) 0.14 

SM Ratio 7.36 (5.34, 9.98) 6.97 (5.22, 8.70) 0.46 

ABCB1 CC (n = 8) CT/TT (n = 16) P 

Sunitinib, normalized 114.78 (98.57, 156.00) 87.41 (67.37, 118.67) 0.02 

Sunitinib, actual 114.78 (98.57, 151.44) 77.94 (59.24, 100.83) 0.008 

Metabolite, normalized 15.39 (10.56, 19.38) 12.98 (10.53, 17.94) 0.85 

Metabolite, actual 14.15 (10.56, 18.87) 12.18 (8.80, 15.61) 0.50 

Total, normalized 129.15 (117.35, 170.67) 103.68 (78.10, 149.31) 0.11 

Total, actual 129.15 (117.35, 167.63) 88.53 (68.85, 122.63) 0.03 

SM Ratio 10.08 (7.14, 11.88) 6.91 (5.26, 8.31) 0.02 

Note: All values are average exposure (Cmax,ss, ng/ml) between the cycles and reported as 

median (inter-quartile range) 

Abbreviations: SM ratio, Sunitinib to metabolite ratio 
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4.3 Discussion  

This study demonstrated that the ABCB1 polymorphism may affect the risk for 

toxicities and sunitinib levels, but that there was a lack of statistically significant 

evidence associating the polymorphism of CYP3A5 to the same outcomes. Patients 

expressing the CC genotype for ABCB1 were more likely than the CT/TT genotype to 

develop rash and mucositis in the course of their sunitinib therapy. Patients expressing 

the CC genotype had an increased risk for all-grade rash (3-fold increase), all-grade 

mucositis (1.6-fold increase) and grade 2 and above mucositis (2-fold increase) as 

compared with patients expressing the CT/TT genotype. Patients expressing the CC 

genotype for ABCB1 also achieved higher sunitinib levels, and consequently higher 

SM ratio, than patients who were CT/TT genotype.  

 

Metabolism of sunitinib was unaffected by variations in the CYP3A5 SNP. This may 

be attributed to the redundancy between CYP3A5 and CYP3A4 enzymes as the 

relative metabolizing capacity of CYP3A4 for sunitinib may greatly exceed, and 

adequately compensate for, any variability in the CYP3A5 enzyme. As sunitinib 

possesses an intermediate hepatic extraction ratio (0.48), the dependence of the 

clearance on P450 activity may not be as strong as a low hepatic extraction ratio drug. 

It has been proposed that sunitinib is a much better substrate of CYP3A4 compared 

with CYP3A5, and therefore the contribution of CYP3A5 to the metabolism of 

sunitinib may be low. [141] A recent study has also suggested that CYP3A5 SNPs do 

not affect the clearance of sunitinib and SU12662. [146] This is in agreement with our 

findings that the CYP3A5 polymorphism may not be an important contributor to the 

disposition of sunitinib. One other study has demonstrated that the presence of a copy 

of the *1 allele in CYP3A5 is associated with an increased risk of dose reduction due 
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to toxicity. [142] For that reason, we conducted additional analysis to evaluate 

whether CYP3A5*1 carriers were more likely to have their dose reduced, but did not 

observe such an association. Although CYP3A5 plays a minimal role in the 

disposition of sunitinib, several studies have highlighted the contributions of CYP3A4 

in sunitinib exposure. Midazolam exposure was found to be highly correlated with 

sunitinib exposure and this accounted for 51% of the observed inter-patient variability 

in sunitinib pharmacokinetics. [157] A further study in a Caucasian population has 

also found that the clearance of sunitinib is affected by the CYP3A4*22 

polymorphism. [146] These findings further support CYP3A4 as the main contributor 

to sunitinib metabolism and the reduced dependence on CYP3A5. However, the 

CYP3A4*22 polymorphism was not detected in Asians so it cannot explain the 

differences in exposure in Asians. [158] In addition, patients with the *3*3 

polymorphism possessed higher median metabolite levels than the *1*1/*1*3 group. 

This can be attributed to one patient in the former group displaying an extremely high 

metabolite level, which skewed the results. In this patient, the level was 144 ng/ml, 

whereas the metabolite level in the rest of the patients ranged from 4 to 26 ng/ml. 

When the outlier was excluded from the *3*3 group, the statistical difference was no 

longer present. 

  

Our results also demonstrated that presence of the ABCB1 SNP is correlated with a 

higher sunitinib level and SM ratio in patients with the CC genotype compared with 

those with the CT/TT genotype. The functional effect of the ABCB1 polymorphism 

on Pgp has been heavily debated. [69] Several studies have provided conflicting 

results, with the 3435 TT genotype associated with both increased [159-161] and 

decreased [144, 162-164] expression of Pgp. For sunitinib, it has been shown that the 
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TT, TC and CC genotypes for ABCB1 affect sunitinib clearance by +7%, +3%, and -

11.5%, respectively. [146] This is in line with our results in which the CC group 

displayed higher levels of sunitinib, possibly due to a decrease in its clearance. 

Patients exhibiting the CC genotype had an increased risk for all-grade rash (3-fold 

increase), all-grade mucositis (1.6-fold increase) and grade 2 and above mucositis (2-

fold increase) compared with the CT/TT patients. This is not surprising, as the 

accumulation of sunitinib in the former group of patients could have resulted in the 

higher exposure and occurrence of toxicity. This is further supported by our previous 

findings in which sunitinib exhibited greater dermatological toxicity than its 

metabolite. [165] 

 

Studies conducted in Korea and Japan have demonstrated an association between the 

ATP-binding cassette sub-family G member 2 (ABCG2) polymorphism, toxicities 

such as thrombocytopenia, HFSR, and hypertension [150], and the pharmacokinetics 

of sunitinib. [166] The polymorphic effects of ABCG2, which encodes for the breast 

cancer resistance protein (BCRP) have also been very recently identified as a 

significant covariate for the prediction of sunitinib clearance. [166] To confirm such 

associations with ABCB1, future studies should be performed in our local South-East 

Asian population, which encompasses different ethnicities of that in Korea and Japan. 

As all the patients in our study used the AD regimen and demonstrated a lower 

incidence and severity of toxicities, the effects of SNPs on severe toxicities may have 

been downplayed. Future studies involving a larger sample should be conducted to 

confirm these findings. If the role of the ABCB1 polymorphism on exposure and 

toxicities is confirmed, genotyping for ABCB1 and TDM should be considered in 

clinical practice to aid in the personalization of drug therapy. Even with the AD 
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sunitinib, our patients managed to achieve sufficient exposure to sunitinib and 

experience frequent toxicities, thus further dose reductions may be necessary in this 

group of patient. Thus, TDM may complement clinical evaluation by providing 

additional information on efficacy, adherence and toxicity. By ensuring that the 

optimal dose is prescribed to the right patient according to the genotype, we can 

achieve maximum efficacy with minimal toxicity.   

 

4.4 Limitations of study 

As previously mentioned under chapter 2.3.4, the limitations of our study included 

limited sampling points and a small sample size.  As tumor type (mRCC, GIST and 

other solid tumor) accounted for a major portion of the variability in the clearance of 

sunitinib and its metabolite [40], our study only included patients with mRCC and this 

may have resulted in the small sample size. Furthermore, as this was an exploratory 

study with small sample size, no statistical adjustments was performed. 

 

4.5 Summary of important findings 

In Asian mRCC patients, polymorphism of ABCB1 may be associated with drug 

exposure and manifestation of toxicities, but the polymorphism of CYP3A5 is not. 

Although CYP3A5 is highly polymorphic in Asian population, the CYP3A5 

polymorphism may be excluded as a cause of high drug exposure and/or toxicity as 

this enzyme plays a minimal role in the disposition of sunitinib. The ABCB1 

polymorphism may affect sunitinib levels and the occurrence of dermatological 

toxicities, including rash and mucositis.  
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5 Metabolism-related pharmacokinetic drug-drug interactions in tyrosine 

kinase inhibitors 

 

5.1 Role of metabolism-related drug-drug interactions in tyrosine kinase 

inhibitor therapy 

DDIs occur when a patient’s pharmacological or clinical response to the drug is 

modified by administration or co-exposure to another drug. Pharmacokinetic 

interactions occur when one drug influences the pharmacokinetic processes such as 

absorption, distribution, metabolism and excretion, of another drug. Altered 

metabolism is among the most complex of these processes by which DDIs can occur, 

and induction or inhibition of hepatic enzymes by drugs are often implicated. The 

clinical consequences of enzyme induction or inhibition depend on the 

pharmacological and toxic effect of both the parent drug and its metabolite(s). For 

example, if the parent compound is more active than its metabolite, inhibition of 

metabolism increases the exposure to the drug and also its therapeutic and/or toxic 

effects. However, if the parent compound is a pro-drug, inhibition of metabolism may 

result in a decrease in therapeutic efficacy. More recently, another paradigm of 

interaction arises when the metabolite is more toxic, and hence induction of 

metabolism down this pathway can exacerbate toxicity. (Figure 3) 
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Figure 3. (A) Metabolism of parent drug to metabolite by drug metabolizing 
enzyme (B) Enzyme induction and increased formation of metabolite (C) 
Enzyme induction and increased formation of toxic metabolite (D) Enzyme 
inhibition and decreased formation of metabolite (E) Enzyme inhibition and 
decreased formation of toxic metabolite 
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A recent study revealed that co-prescription of drugs that induce or inhibit metabolic 

pathways used by TKIs was high. Overall co-prescribing rates for DDI drugs that may 

decrease TKIs effectiveness ranged from 23 – 57%, while co-prescribing rates with 

drugs that may increase TKI toxicity ranged from 24 – 74%. [167] In another study 

which studied the pattern of DDI in cancer patients, the frequency of at least one 

potential DDI occurring was 63%. Among them, almost 62% of the identified DDIs 

were considered as major, where the effects of the interaction may result in serious 

consequences such as hospitalization, therapeutic failure, permanent injury or even 

death. [168] Although many studies highlighted the problem of frequent DDI among 

TKIs, these studies did not address the clinical consequences of the potential DDIs, 

such as increased toxicity or therapeutic failure. In some cases, these combinations 

could have been intentionally prescribed, where physicians may have knowingly 

prescribed a potentially interacting combination because they considered the potential 

benefits to outweigh the risks or because the patient had tolerated the combination in 

the past. [169] As these TKIs are relatively new to the market, the scientific evidence 

that support their DDI is limited. Therefore, it is not unexpected to observe that 

oncology professionals are unable to identify TKI DDI pairs which that might have a 

high probability of causing deleterious effects in cancer patients. [170] 

 

Cancer patients are susceptible to DDIs as they receive many medications, either for 

supportive care or for treatment of therapy-induced toxicity. [72] For instance, an 

observational study highlighted that patients were receiving on average 6.8 drugs in 

addition to sunitinib. Among them, antihypertensive drugs were most commonly 

prescribed, followed by analgesics, antiemetics and thyroid substitution therapy. [73] 

In certain cases, a cancer patient’s pharmacokinetic parameters may be also altered, 
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for example, edema affecting volume of distribution or impaired drug absorption due 

to malnutrition or mucositis; these issues may also affect the consequences of DDIs. 

Since most cancers typically occur at a later age, these patients may also be receiving 

other drugs for the management of their comorbidities. Differences in DDI outcomes 

are generally minor due to the wide therapeutic windows of common drugs; however, 

in cancer chemotherapy with anti-cancer drugs, serious clinical consequences may 

occur from small changes in drug metabolism and pharmacokinetics. [74] We 

described in previous chapters that sunitinib is more dermatotoxic than SU12662, 

suggesting that patients who receive concomitant CYP3A4 inhibitors would be at a 

higher risk of dermatological toxicities, due to a lower ability to metabolize sunitinib. 

Consequently, this may result in an increased risk of non-compliance, dose reduction, 

or therapy discontinuation and thereby leading to suboptimal therapy.  

 

Due to the substantial potential for interaction between TKIs and other drugs that 

modulate the activity of metabolic pathways, unwanted clinical consequences may 

occur from small changes in drug metabolism and pharmacokinetics in cancer patients. 

Furthermore, it is a challenge to determine the clinical effects of the DDIs due to the 

large inter-patient variability in the pharmacokinetics of the TKIs. Therefore, the 

objective of this chapter is to highlight the current understanding of DDIs among 

TKIs, with a specific focus on DDIs involving metabolism, to identify challenges in 

the prediction of DDIs and provide some possible recommendations. Henceforth, this 

chapter provides insights on DDIs among TKIs, which will be helpful in appreciating 

the following chapters, when actual DDIs cases involving TKIs like lapatinib and also 

erlotinib are studied.  
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5.2 Methods 

A search was conducted to identify all small molecule TKIs approved by the FDA 

from January 2000 to February 2014. A comprehensive literature search of articles 

involving TKIs was performed using the PubMed and Scopus databases. Meetings 

abstracts presented at American Association for Cancer Research (AACR) and 

American Society of Clinical Oncology (ASCO) were also reviewed. The search was 

conducted by using the generic names of all the identified TKIs (afatinib, axitinib, 

bosutinib, cabozantinib, crizotinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, 

nilotinib, pazopanib, ponatinib, regorafenib, sorafenib, sunitinib, vandetanib), and 

terms such as ‘‘drug interaction’’, ‘‘metabolism’’ and “pharmacokinetics”. The search 

was limited to English language articles published between January 1995 and 

February 2014. 

 

5.3 Results 

 

5.3.1 Metabolic profile of tyrosine kinase inhibitors 

Almost all of the TKIs undergo metabolism by CYP enzymes. The CYP3A4 is the 

CYP enzyme involved in the metabolism of the majority of the TKIs. Some of these 

TKIs, including imatinib, sunitinib and dasatinib, form an active metabolite upon 

metabolism. These TKIs can also act as an inducer or inhibitor to the CYP enzymes. 

All TKIs are primarily excreted in the feces.  However, the percentage of unchanged 

drug recovered in the feces and urine varies widely between the TKIs. For instance, 

the percentage of unchanged erlotinib recovered in the feces was 1%, compared to 

almost 70% for nilotinib. (Table 18) 
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Table 18. Metabolism profile of FDA-approved tyrosine kinase inhibitors 

 
% of dose recovered 

(% recovered 
unchanged) 

Metabolism 

Induces Inhibits 

 Feces Urine Major 
CYPs 

Minor 
CYPs & 
others 

Afatinib 85 (N.R.) 4 (N.R.) Negligible - - 

Axitinib 41 (12) 23 (N.D.) CYP3A4 
CYP3A5 

CYP1A2 
CYP2C19 
UGT1A1 

- CYP1A2 
CYP2C8 

Bosutinib 91 (N.R.) 3 (N.R.) CYP3A4 - - - 

Cabozantinib 54 (N.R.) 27 (N.R.) CYP3A4 CYP2C9 CYP1A1 

CYP2C8 
CYP2C9 

CYP2C19 
CYP3A4 

Crizotinib 63 (53) 22 (2) CYP3A4 
CYP3A5 - - CYP3A 

CYP2B6 

Dasatinib 85 (19) 4 (< 1) CYP3A4 FMO-3 
UGT - CYP3A4 

Erlotinib 83 (1) 8 (< 1) CYP3A4 CYP1A2 
CYP1A1 - 

CYP1A1 
CYP3A4 
CYP2C8 

Gefitinib 86 (N.R.) 4 (N.R.) CYP3A4 
CYP2D6 - - CYP2C19 

CYP2D6 

Imatinib 68 (20) 13 (5) CYP3A4 
CYP2C8 

CYP1A2 
CYP2D6 
CYP2C9 

CYP2C19 

- 

CYP2C8 
CYP2C9 

CYP3A4/5 
CYP2D6 

Lapatinib (27) (< 2) CYP3A4 
CYP3A5 

CYP2C19 
CYP2C8 - CYP3A 

CYP2C8 

Nilotinib 93 (69) N.R. CYP3A4 CYP2C8 
CYP2B6 
CYP2C8 
CYP2C9 

CYP3A4 
CYP2C8 
CYP2C9 
CYP2D6 

Pazopanib Majority in 
feces 4 CYP3A4 CYP1A2 

CYP2C8 - 

CYP1A2 
CYP3A4 
CYP2B6 
CYP2C8 
CYP2C9 

CYP2C19 
CYP2D6 
CYP2E1 

Ponatinib 87 (N.R.) 5 (N.R.) CYP3A4 
CYP2C8 
CYP2D6 
CYP3A5 

- - 

Regorafenib 71 (47) 19 (2) CYP3A4 UGT1A9 - 

CYP2C8 
CYP2C9 
CYP2B6 
CYP3A4 
CYP2C19 

Sorafenib 77 (51) 19 (N.D) CYP3A4 UGT1A9 - CYP2B6 
CYP2C8 
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CYP2C9 
CYP2C19 
CYP2D6 
CYP3A4 

Sunitinib 61 (N.R.) 16 (N.R.) CYP3A4 - - - 

Vandetanib 44 (N.R.) 25 (N.R.) CYP3A4 FMO-1 
FMO-3 - - 

Note: All information was obtained from product information labels [70, 71] 
Abbreviations: N.R., not reported; N.D., not detected 
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5.3.2 Potential effect of enzyme inducer/inhibitor on pharmacokinetics of 

tyrosine kinase inhibitors  

As most of these TKIs are substrates of the CYP3A4 enzyme, inducers and inhibitors 

of this enzyme can affect the exposure to these TKIs. The most common inducer and 

inhibitor used for the study of the potential pharmacokinetic interaction are rifampicin 

and ketoconazole respectively. As expected, ketoconazole increases the exposure of 

TKIs due to the inhibition of metabolism. However, the extent to which the exposure 

is increased varied widely between the TKIs. For instance, concomitant ketoconazole 

can result in a slight increase of imatinib AUC by 40%. [171] But for bosutinib, the 

increase in AUC is more than 8 times with concomitant ketoconazole. [172] It is also 

interesting to note that exposure to TKI is much increased by concomitant 

ketoconazole, as CYP3A4 is the only enzyme involved in the TKI’s metabolic 

pathway. This is also supported by a report by Scripture et al, whereby drug 

interactions are likely to be significant when drug elimination occurs primarily 

through a single metabolic pathway. [173] Similarly for rifampicin, the combination 

of drugs resulted in a decrease in exposure to the TKIs. However, the extent to which 

the exposure is decreased is not as large as that observed with ketoconazole. The 

decrease in TKI AUC ranged from 40% for vandetanib [174] to 94% for bosutinib. 

[14] Among all the TKIs, sorafenib seems to be an exception, where studies have 

consistently demonstrated that clinically important interaction between sorafenib and 

drugs metabolized primarily by CYPs 3A4, 2C19, or 2D6 are not expected. [175, 176] 

Although co-administration of sorafenib with capecitabine has been shown to result in 

a mild increase in capecitabine exposure, these findings were not statistically 

significant and the mechanism of interaction is unclear. [177] As strong CYP3A4 

inducers and inhibitors generally cause a change in exposure, the concomitant use of 
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such agents with TKIs is not recommended and should be avoided if possible. If such 

combinations must be used, manufacturers generally recommend that dose increase or 

decrease may be considered and that patients should be monitored closely following 

any changes in dosages. (Table 19)  
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Table 19. Potential effect of enzyme inhibitor/inducer on pharmacokinetics of 
tyrosine kinase inhibitors 

 Changes in PK of TKI Recommendations Ref 
Afatinib Unlikely Unlikely [6] 

Axitinib 

Ketoconazole: ↑ 1.5x Cmax,  
↑ 2x AUC of axitinib 
 
 
Rifampicin: ↓ 71% Cmax,  
↓ 79% AUC of axitinib 

Strong 3A4/5 inhibitors  Avoid; 
Consider alternative agents; 
Consider ↓ dose of axitinib by half 
 
Strong 3A4/5 inducers  Avoid; 
Consider alternative agents 

[178] 
[179] 
[13] 

Bosutinib 

Ketoconazole: ↑ 5.2x Cmax,  
↑ 8.6x AUC of bosutinib 
 
Rifampicin: ↓ 86% Cmax,  
↓ 94% AUC of bosutinib 

Strong 3A inhibitors  Avoid  
 
 
Strong 3A inducers  Avoid 

[172] 
[14] 

Cabozantinib 

Ketoconazole: ↑ 38% AUC of 
cabozantinib 
 
 
Rifampicin : ↓ 77% AUC of 
cabozantinib 

Strong 3A4 inhibitors  Avoid; 
Consider ↓ daily dose of 
cabozantinib by 40 mg 
 
Strong 3A4 inducers  Avoid; 
Consider ↑ daily dose of 
cabozantinib by 40 mg 

[15] 

Crizotinib 

Ketoconazole: ↑ 1.4x Cmax,  
↑ 3.2x AUC of crizotinib 
 
Rifampicin: ↓ 69% Cmax,  
↓ 82% AUC of crizotinib 

Strong 3A4 inhibitors  Avoid 
 
 
Strong 3A4 inducers  Avoid 

[17] 

Dasatinib 

Ketoconazole: ↑ 4x Cmax,  
↑ 5x AUC of dasatinib 
 
 
 
 
 
Rifampicin  : ↓ 81% Cmax,  
↓ 82% AUC of dasatinib 

Strong 3A4 inhibitors  Avoid; 
Consider alternative agents; 
Consider ↓ dose of dasatinib to 20 
mg daily (for patients taking 100 
mg) or 40 mg daily (for patients 
taking 140 mg) 
 
Strong 3A4 inducers  Consider 
alternative agents; Consider ↑ dose 
of  dasatinib 

[180] 
[18] 

Erlotinib 

Ketoconazole: ↑ 67% AUC of 
erlotinib 
Ciprofloxacin: ↑ 17% Cmax,  
↑ 39% AUC of erlotinib 
 
Rifampicin: ↓ 58% AUC of 
erlotinib 

Strong 3A4 inhibitors  Use with 
caution 
 
 
 
Strong 3A4 inducers  Consider 
alternative agents; consider ↑ dose 
of  erlotinib (up to maximum of 
450 mg) 

[19] 

Gefitinib 

Itraconazole: ↑ 51% Cmax,  
↑ 78% AUC of gefitinib 
 
Rifampicin: ↓ 65% Cmax,  
↓ 83% AUC of gefitinib 
Phenytoin: ↓ 26% Cmax,  
↓ 47% AUC of gefitinib 

Strong 3A4 inhibitors  Use with 
caution 
 
Strong 3A4 inducers  Consider ↑ 
dose of gefitinib to 500 mg daily 

[181] 
[182] 
[20] 
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Imatinib 

Ketoconazole: ↑ 26% Cmax,  
↑ 40% AUC of imatinib 
Gemfibrozila: ↓ 56% Cmax,  
↓ 48% AUC of N-
desmethylimatinib 
 
Rifampicin: ↓ 54% Cmax,  
↓ 74% AUC of imatinib 
EIAEDs: ↓ 68% Ctrough of 
imatinib 

Strong 3A4 inhibitors  Use with 
caution 
 
 
 
 
Strong 3A4 inducers  Consider 
alternative agents 

[171] 
[183] 
[184] 
[185] 
[21] 

Lapatinib 
 

Ketoconazole: ↑ 114% Cmax ,  
↑ 257% AUC of lapatinib 
 
 
Carbamazepine: ↓ 59% Cmax,  
↓ 72% AUC of lapatinib 

Strong 3A4 inhibitor  Avoid; 
Consider ↓ dose of lapatinib to 500 
mg daily 
 
Strong 3A4 inducers  Avoid; 
Consider ↑ dose of lapatinib up to 
4500 mg daily (for HER2+ 
metastatic breast cancer) or 5500 
mg daily (for HR+, HER2+ breast 
cancer) 

[186] 
[22] 

Nilotinib 
 

Ketoconazole: ↑ 1.8x Cmax,  
↑ 3x AUC of nilotinib 
 
 
 
 
Rifampicin: ↓ 64% Cmax,  
↓ 80% AUC of nilotinib 

Strong 3A4 inhibitors  Avoid ; 
Consider ↓ dose of nilotinib to 300 
mg daily (in resistant or intolerant 
Ph+ CML) or 200 mg daily (newly 
diagnosed Ph+ CML-CP) 
 
Strong 3A4 inducers  Avoid; 
Consider alternative agents 

[187] 
[23] 

Pazopanib 

Ketoconazole: ↑ 45% Cmax,  
↑ 66% AUC of pazopanib 
 

Strong 3A4 inhibitors  Avoid; 
Consider ↓ dose of pazopanib to 
400 mg 
 
Strong 3A4 inducers  Pazopanib 
should not be used 

[188] 
[24] 

Ponatinib Ketoconazole: ↑ 47% Cmax, 
↑ 78% AUC of ponatinib 

Strong 3A4 inhibitors  Consider 
↓ dose of ponatinib to 30 mg daily 

[189] 
[25] 

Regorafenib 

Ketoconazole: ↑ AUC of 
regorafenib 
 
Rifampicin: ↓ AUC of 
regorafenib 

Strong 3A inhibitors  Avoid 
 
 
Strong 3A4 inducers  Avoid 

[26] 

Sorafenib 

Ketoconazole: no change in 
AUC of sorafenib 
 
Rifampicin: ↓ 37% AUC of 
sorafenib 

 
 
 
Strong 3A4 inducers  Consider ↑ 
dose of sorafenib 

[27] 

Sunitinib 

Ketoconazole: ↑ 49% Cmax,  
↑ 51% AUC of combined 
sunitinib & N-desethyl 
sunitinib 
Ritonavirb: ↓ 48% Cmax,  
↓ 40% AUC of N-desethyl 
sunitinib 
 

Strong 3A4 inhibitor  Consider 
alternative agents; Consider ↓ dose 
reduction of sunitinib to a 
minimum of 37.5 mg (GIST & 
RCC) or 25 mg (pNET) 
 
 
 

[28] 
[190] 
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Rifampicin: ↓ 23% Cmax,  
↓ 50% AUC of combined 
sunitinib & N-desethyl 
sunitinib 
Efavirenzc: ↑ 410% Cmax,  
↑ 390% AUC of N-desethyl 
sunitinib 

Strong 3A4 inducers  Consider 
alternative agents; Consider ↑ dose 
of sunitinib to a maximum of 87.5 
mg (GIST & RCC) or 62.5 mg 
(pNET) 

Vandetanib 

Itraconazole: ↑ 9% AUC of 
vandetanib 
 
Rifampicin: ↓ 40% AUC of 
vandetanib 

 
 
 
Strong 3A4 inducers  Avoid 

[174] 
[29] 

Abbreviations: AUC, area under the curve; Cmax, peak concentration; Ctrough, trough 
concentration; EIAEDs, enzyme-inducing antiepileptic drugs; GIST, gastrointestinal stromal 
tumor; PK, pharmacokinetics; Ph+ CML, Philadelphia chromosome-positive chronic myeloid 
leukemia; Ph+ CML-CP, Philadelphia chromosome-positive chronic myeloid leukemia in 
chronic phase; pNET, progressive, well-differentiated pancreatic neuroendocrine tumors; 
RCC, renal cell carcinoma; TKI, tyrosine kinase inhibitor 
a Gemfibrozil inhibits the CYP2C8-mediated formation of N-desmethylimatinib (equipotent 
metabolite of parent imatinib) 
b Ritonavir inhibits the CYP3A4-mediated formation of N-desethyl sunitinib (equipotent 
metabolite of parent sunitinib) 
c Efavirenz induces the CYP3A4-mediated formation of N-desethyl sunitinib (equipotent 
metabolite of parent sunitinib) 
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5.3.3 Effect of tyrosine kinase inhibitors as an enzyme inducer/ inhibitor on 

pharmacokinetics of other drugs 

While the effect of enzyme inhibitors or inducers (such as ketoconazole and 

rifampicin) on pharmacokinetics of TKI has been extensively studied, the reciprocal 

effect of a TKI acting as an enzyme inducer or inhibitor has been comparatively less 

investigated. The ability for TKIs to increase or decrease plasma concentration of 

non-anticancer drugs is mainly unclear, especially within in-vivo conditions. 

Concomitant imatinib and simvastatin has resulted in a 2-fold increase in 

simvastatin’s Cmax and 3-fold increase in simvastatin AUC. This is likely due to 

inhibition by imatinib of the CYP3A4 enzyme, which is responsible for the 

metabolism of simvastatin to other metabolites. This also suggests that in the presence 

of imatinib, plasma levels of standard doses of drugs which are degraded by CYP3A4 

enzyme may also be increased. As such, caution is required when imatinib is 

administered with other CYP3A4 substrates with a narrow therapeutic window. [191] 

Imatinib has also shown to increase the exposure to metoprolol (23% increase in 

metoprolol AUC) when both agents are used together, due to the inhibition of 

CYP2D6 enzyme by imatinib. [192] Although the combination of gefitinib and 

metoprolol also resulted in an increased exposure to metoprolol (35% increase in 

metoprolol AUC), this change was not statistically significant. Despite this, gefitinib 

has a potential to increase plasma concentrations of CYP2D6 substrates and caution 

should be exercised when using CYP2D6 substrates that have a narrow therapeutic 

window. [181] Concomitant use of two TKIs has also been investigated in certain 

cases. Clearance of erlotinib was markedly enhanced by sorafenib when the 2 agents 

were given concurrently, although the potential mechanism for this seeming 

interaction is not obvious. [193] In another example, co-administration of lapatinib 



Chapter 5 
_____________________________________________________________________  

119 
 

and pazopanib lead to an increase in pazopanib exposure, and it has been suggested 

that this might be the result of inhibition of CYP3A4 and/or cellular transporters such 

as ABCB1 and ABCG2 by lapatinib. [194] The effect of lapatinib on clearance of 

vinorelbine has also been studied, where lapatinib resulted in a lower clearance of 

vinorelbine due to the inhibition of CYP3A4. [195] (Table 20) 
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Table 20. Reported effect of TKIs as enzyme inhibitor/inducer on 
pharmacokinetics of other drugs 

TKI Interacting  
drug Change in PK Remarks Ref 

Imatinib Simvastatin ↑ 2-fold simvastatin Cmax 
↑ 3-fold simvastatin AUC  [191] 

Metoprolol ↑ 23% metoprolol AUC  [192] 
Erlotinib Sorafenib ↓ erlotinib AUC & Cmax Mechanism unclear [193] 

Lapatinib 

Pazopanib ↑ pazopanib AUC & Cmax 

Inhibition of CYP3A4 
and/or cellular transporters 
such as ABCB1 and 
ABCG2 by lapatinib 

[194] 

Vinorelbine 
↓ 30–40% vinorelbine 
clearance 
 

Inhibition of CYP3A4 by 
lapatinib, resulting in lower 
clearance of vinorelbine 

[195] 

Abbreviations: PK pharmacokinetics, TKI tyrosine kinase inhibitor, Cmax maximum 
concentration, AUC area under the curve 
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5.3.4 Applicability of in-vitro and in-vivo data within clinical practice 

Majority of the available pharmacokinetics information are resulting from in-vitro 

data, preclinical animal studies or from small phase I studies which evaluated healthy 

volunteers who were administered single dose of the drugs. Emerging methods 

includes creating a simulator where in-vivo clearances can be predicted from their in-

vitro data. For instance, the impact of co-administration of ketoconazole was 

simulated, and the predicted two-fold increase in erlotinib exposure was found to be 

consistent with the results of a clinical study. [196] However, in most cases, the 

prediction may not be entirely accurate, especially when most of these studies 

evaluate DDIs in the form of two interacting drugs, and these results may not be 

realistic where multiple drugs are used concurrently. In addition, several reasons have 

been proposed to highlight the inability of clinical interactions to be accurately 

predicted. Firstly, the therapeutic concentration of a new drug and its metabolites in 

specific tissues are not always possible to determine. To further complicate the issue, 

the multiplicity of enzymes and transporters involved in the disposition of the said 

drugs and the intricacy of the pathways and interactions, in addition to overlapping 

substrate specificities of these proteins result in complex and sometimes perplexing 

pharmacokinetic interactions with multidrug regimens. Large differences in genotype 

and expression level of each of these contributors can lead to a very complex 

influence on actual drug disposition. There can also be compensatory responses when 

one enzyme or transporter is inhibited, “cushioning” any resulting change in 

metabolism. Each drug has a different level of dependence on intrinsic clearance for 

its overall clearance. Drugs with a high extraction ratio may be less sensitive to 

enzyme inhibition and induction, as their clearance is limited by blood flow rather 

than intrinsic activity. This makes it very challenging to test all of them in an in-vitro 
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system. Furthermore, the clinical significance of an interaction is unknown even if the 

in-vitro or in-vivo effect was established. Moreover, underlying disease states may 

influence the occurrence of an interaction that is unaccounted for by in-vitro studies 

or by studies involving healthy volunteers alone. [197, 198] Endogenous CYP 

isoforms expressed in tumor cells also contributes to the metabolism of active drug, 

thereby playing a role in altering the half-life and pharmacokinetics of the 

administered TKI. [199] In summary, it is complex and challenging to extrapolate 

these preliminary results to routine clinical practice, where TKIs are used to treat 

patients with cancer, many of whom are receiving multiple drugs and many of whom 

have impaired renal or hepatic function. [200] 

 

5.3.5 Formation of reactive intermediates/ metabolites and implications for 

toxicity 

Several TKIs such as dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, 

pazopanib, sorafenib and sunitinib undergo bioactivation to form reactive 

intermediates, which has implications in the generation of idiosyncratic adverse drug 

reactions (ADR). [201] One TKI whose metabolism and implications for toxicity has 

been extensively studied is lapatinib. Lapatinib has been shown to be extensively 

metabolized, as exemplified by diverse biotransformations to form metabolites. A 

number of the metabolites could potentially form reactive electrophilic intermediates 

that could contribute to hepatotoxicity. [202] It is also worthy of note that the daily 

dose of these TKIs are high, for example the daily dose of lapatinib is more than 1000 

mg. A high daily dose of more than 50 mg has been demonstrated to be a risk factor 

for ADR [95]; thereby setting 14 out of the 18 approved TKIs at risk. (Table 21) Due 

to the high dose, there would be high amounts of these reactive intermediates or 
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metabolites generated, thus increasing the risk for toxicities. [203] A recent study also 

further demonstrates that a dose more than 100 mg per day and being a substrate of 

CYP450 enzymes are two important predictors of DILI. [96] This further suggests 

that TKIs are at a significant risk of DILI due to its high daily dose (Table 21) and 

being a substrate of CYP450 enzymes (Table 18). 
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Table 21. Characteristics of TKIs (daily dose and substrate of CYP450 enzymes) 

 
Daily dose (mg) 

Substrate of CYP450 
enzymes 

Afatinib (Gilotrif) 40 No 
Axitinib (Inlyta) 10 Yes 
Bosutinib (Bosulif) 500  Yes 
Cabozantinib (Cometriq) 140  Yes 
Ceritinib (Zykadia) 750 Yes 
Crizotinib (Xalkori) 500  Yes 
Dasatinib (Sprycel) 100 Yes 
Erlotinib (Tarceva) 100 – 150  Yes 
Gefitinib (Iressa) 250 Yes 
Imatinib (Gleevec) 300 – 800* Yes 
Lapatinib (Tykerb) 1250 – 1500* Yes 
Nilotinib (Tasigna) 600  Yes 
Pazopanib (Votrient) 800  Yes 
Ponatinib (Iclusig) 45  Yes 
Regorafenib (Stivarga) 160  Yes 
Sorafenib (Nexavar) 800 Yes 
Sunitinib (Sutent) 37.5 – 50* Yes 
Vandetanib (Caprelsa) 800 Yes 
* Daily dose may differ depending on indication 
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5.3.6 Actual drug-drug interaction cases involving tyrosine kinase inhibitors as 

documented in literature  

There have been several reports demonstrating actual DDI cases in clinical practice. 

(Table 22) The events reported were potentially fatal ones such as hepatotoxicity and 

anticoagulation abnormalities. The concomitant use of imatinib and voriconazole 

resulted in markedly elevated levels of imatinib (between 3500 – 4700 ng/ml), than 

compared to when imatinib was used alone (2000 ng/ml). The raised plasma levels 

resulted in severe pustular eruption in the patient, and this was deemed due to the 

inhibition of imatinib metabolism by voriconazole. [204] Transaminase elevations 

have also been observed in drug pair involving pazopanib and simvastatin. As both 

drugs are substrates of the same enzymes and transporters, it is plausible that the 

concomitant administration of pazopanib and statins may alter systemic and/or hepatic 

exposures, leading to increased toxicities such as liver injury. [205] However, this list 

of DDI cases is not exhaustive as there remains a possibility that many DDI cases 

remain unreported in the literature. Even if the drug pair is not listed in this table, it 

does not indicate that it is entirely safe for use. Healthcare professionals should still 

be aware of the potential interactions that may occur, and be vigilant in monitoring 

those patients who are receiving any potentially-interacting drug pairs. 
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Table 22. Actual drug-drug interaction cases involving tyrosine kinase inhibitors as documented in literature 

TKI Interacting 
drug Event Remarks Recommendations Ref 

Gefitinib 

Anastrozole Liver toxicity - Routinely monitor liver transaminases in 
all patients treated with gefitinib [206] 

Warfarin 

Coagulation 
abnormalities 
(Prothrombin time 
[PT] & international 
normalized ratio 
[INR] abnormalities)  

Gefitinib could inhibit the metabolism of 
warfarin, which is a substrate of CYP1A2, 
CYP2C9, and CYP3A4. The degree of the 
inhibitory effect of gefitinib on CYP enzymes 
varies from patient to patient. This may in part 
explain the variability of the PT-INR values 
observed on the coadministration of gefitinib 
and warfarin 

Close monitoring of PT-INR are 
recommended for patients receiving 
gefitinib and warfarin, especially during 
the first 2 weeks in the beginning of 
warfarin therapy. Appropriate adjustment 
of the warfarin dose should be done if an 
altered response to warfarin is observed. 

[207] 

Imatinib 

Voriconazole Severe pustular 
eruption 

Plasma levels of imatinib markedly elevated 
during simultaneous administration with 
voriconazole, possibly due to inhibition of 
imatinib metabolism by voriconazole 

Use of imatinib in association with 
CYP3A4 inhibitors has to be considered 
with caution. When such association is 
considered, the monitoring of imatinib 
plasma levels in patients may be of help 
for identifying individuals with high 
imatinib concentration who are at risk of 
developing toxicity, including skin 
lesions. 

[204] 

Amlodipine Peripheral 
neuropathy 

Amlodipine inhibits CYP3A4, which could 
increase imatinib levels 

Therapeutic monitoring of plasma 
imatinib levels may be useful to 
investigate unexpected imatinib toxicity. 

[208] 

Phenytoin  

AUC of imatinib was decreased by about 80%. 
After phenytoin was discontinued and the 
imatinib dose was increased to 500 mg/day, a 
complete hematological response was observed. 

- 

[209] 

Levothyroxine Hypothyroidism Mechanism unclear Evaluate thyroid function in hypothyroid 
patients on tyrosine kinase inhibitors [210] 
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Lapatinib Dexamethasone Hepatotoxicity 

Concomitant use may cause an increase in 
metabolizing capacity by dexamethasone, 
which in turn increases the formation of 
lapatinib-derived RM and thereby, elevating the 
risk of toxicity 

Clinicians should be aware of this risk 
when considering the use of this 
combination and follow through with 
close monitoring where necessary. 

[211] 

Pazopanib Simvastatin Transaminase 
elevations 

As pazopanib and statins are substrates for the 
same key metabolizing enzymes e.g. CYP3A4 
and drug transporters, it is plausible that 
concomitant administration of pazopanib and 
statins may alter their systemic and/or hepatic 
exposures, leading to increased toxicities such 
as liver injury 

In addition to implementing the 
recommended dose modification 
guidelines for pazopanib, discontinuation 
of simvastatin should be considered to 
manage the risk of liver injury in cancer 
patients receiving both medications 

[205] 

Sorafenib Prednisolone  

Serum concentration of sorafenib was gradually 
increased following tapering of prednisolone, 
possibly due to prednisolone inducing sorafenib 
metabolism 

Therapeutic drug monitoring could be 
useful during sorafenib therapy in 
combination with prednisolone and for 
determining the optimal dosage of 
sorafenib. 

[212] 

Sunitinib Levothyroxine Hypothyroidism Mechanism unclear Evaluate thyroid function in hypothyroid 
patients on tyrosine kinase inhibitors [210] 
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5.3.7 Challenges and recommendations 

The large amount of published research into drug interactions might have 

overwhelmed most healthcare practitioners. As a clinician cannot know all potential 

clinically significant drug interactions, this emphasizes the need for practical 

identification and management systems. [72] The inefficiency of updating and 

maintaining drug labels poses a serious threat to patients. For example, despite the 

recent evidence supporting a larger contribution of CYP2C8 and a less significant role 

for CYP3A4 in the metabolism of imatinib, drug labels continue to warn against 

potential interactions with CYP3A4 inhibitors but fail to mention any risk with a 

CYP2C8 inhibitor. [213] Few databases and software programs are capable of 

checking for all potential interactions among multiple medications. More importantly, 

the absence of reported interactions does not guarantee of a lack of interaction. [214] 

 

Majority of the phase I trials evaluated two drug combinations of therapeutic interest, 

rather than combinations hypothesized to have a DDI. When DDI studies were 

performed with a clear rationale, the probability of identifying a DDI increased from 8% 

to 32%. This demonstrates the importance of understanding the mechanism behind a 

DDI and the value to which this translates clinically and suggests that DDI studies 

should only be performed when there is a pre-specified plausible hypothesis. [215] 

 

Most pharmacokinetic studies would report changes in TKI exposure as a result of the 

enzyme inhibitor or inducer; however it would be useful if the investigators also 

provided information regarding its potential effect on toxicity or efficacy. [216] 
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5.3.8 Utilization of therapeutic drug monitoring in drug-drug interactions 

The prerequisites of being a candidate for TDM in clinical practice include long-term 

therapy, significant inter-individual but limited intra-individual PK variability, narrow 

therapeutic index, a well-defined exposure-response (efficacy/toxicity) relationship, 

availability of appropriate bio-analytical methods for quantification. [35, 75-77] As 

most of the TKIs fulfill the traditional criteria for a TDM program, the role of TDM in 

TKI therapy is increasingly being studied. Furthermore, as TKIs have the potential to 

be involved in multiple interactions (e.g. drug-drug, drug-food and drug-herb) 

involving the pharmacokinetic or pharmacodynamics pathways, TDM could 

complement clinical evaluation by providing additional information on efficacy, 

adherence and toxicity. [77]  

 

The application of TDM may be useful in DDIs for several reasons: for monitoring of 

patient when high-risk drug pairs cannot be avoided; for diagnosis of DDIs; for dose 

adjustments. [75] In such cases, the changes in drug levels, together with patient’s 

response and toxicity, could be used together to make an informed decision, on 

whether the drug pair can be continued safely or whether dose adjustments should be 

performed. For example, we have demonstrated that sunitinib is more dermatotoxic 

than its active metabolite, SU12662. If sunitinib is used concomitantly with a 

CYP3A4 inducer, the total effective plasma concentration (sunitinib and SU12662) 

may still be above the therapeutic target, however, patients may experience less 

toxicity due to the lesser accumulation of the parent drug. 
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Although TDM of TKIs is still in its infancy, there are growing suggestions that dose 

adjustments based on pharmacokinetic targets would help to increase efficacy and 

reduce toxicity of TKIs, and might be beneficial for patients treated with most of the 

TKIs. [76] Currently, target plasma concentration of TKIs and its respective dose-

adaptation strategy are only available for several of the FDA-approved TKIs. 

Recommended therapeutic targets for efficacy are available for crizotinib, erlotinib, 

gefitinib, imatinib, nilotinib, pazopanib and sunitinib, and targets for safety are 

available for dasatinib and sunitinib. [76] Thus, application of TDM may be limited to 

those TKIs which have a recommended target for and may be challenging in those 

TKIs which have a lack of information. Although there are recommended therapeutic 

targets available for some of the TKIs, there has not been prospective studies 

conducted to validate these targets, and thus applications of TDM may best be 

reserved for individual situations relating to a lack of therapeutic response, severe or 

unexpected toxicities, drug-drug interactions or treatment adherence. [77] In summary, 

future research should focus on the role and benefits of TDM in TKI therapy, 

especially those with a well-established dose-response relationship and well 

established pharmacokinetic targets. Prospective, randomized studies should be 

performed to confirm the benefits of implementation of TDM, such as reductions in 

toxicity and/or improvement in outcomes. 

 

5.4 Summary 

As we are able to achieve a better control of the disease over the longer lifespan of a 

patient, these TKIs are now being considered as chronic medications taken in an 

outpatient setting. Due to the large inter-patient variability in pharmacokinetics of 

these TKIs, any potential DDI could have serious consequences in a patient’s therapy. 
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Thus far, there have been numerous phase I and in-vitro studies conducted to evaluate 

DDIs. These information have been incorporated into drug labels or drug information 

databases, to warn prescribers of the risk of such DDIs. However, as previously 

mentioned, it is somewhat challenging to extrapolate results from phase I and in-vitro 

studies to routine clinical practice. During the drug development phase, potentially 

clinically relevant drug interactions are not usually detected. Only after receiving 

regulatory approval and after widespread usage, new DDI may surface. Therefore, 

healthcare professionals especially physicians and pharmacist play a vital role in 

identifying these new interactions. Perhaps scheduled drug utilization reviews can be 

conducted routinely to identify any common DDI-pairs. Prospective data can then be 

collected regarding these DDI pairs, to identify any increase in toxicity or lack of 

efficacy events. Where possible, investigators can also subsequently recreate the 

interaction in an in-vitro system to determine the mechanisms which may be involved. 

However, such research takes time and in the meantime, suspected DDI pairs would 

have to be used cautiously in patients. Nevertheless, using both clinical and in-vitro 

data to validate claims of potential DDI would ensure accuracy of data as well as 

clinical relevance. The utilization of TDM in DDIs may be useful when high-risk drug 

pairs cannot be avoided, especially during initiation of therapy or when there is lack 

of response or occurrence of severe toxicities. Instead of withholding a beneficial 

drug therapy from a patient, the high-risk drug pair may be continued safely with 

regular monitoring if the patient is not experiencing excessive toxicity, even when the 

drug levels are increased. In these situations, using additional information on drug 

levels together with patient’s response and toxicity data, a more informed decision 

can be made.  
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6 Understanding tyrosine kinase inhibitor associated toxicities: a focus on 

hepatotoxicity 

 

The liver is the regulator of chemical homeostasis in the body and is the main site for 

bioactivation and detoxification of drugs and their metabolites. Hence, any potentially 

toxic metabolite generated in the process can readily exert a localized damage. The 

human liver has immense regenerative and recovery capabilities, such that even after 

a drastic resection, the liver responds with rapid regrowth to its original size. 

Unfortunately, it is also this extensive regenerative capacity that threatens it with 

cytotoxicity from chemotherapy. As such, hepatic injury may be an inadvertent 

ramification of attempting to kill cancerous cells, but which may also generate more 

problems if the secondary hepatotoxicity becomes too severe. [217] 

 

6.1 Hepatotoxicity with tyrosine kinase inhibitors 

Hepatotoxicity is one of the serious class-related safety issues signaled in pre-

approval clinical trials with TKIs and is now gradually being reported relatively more 

frequently following their wider clinical use. Among the 18 FDA-approved TKIs (as 

of October 2014), 5 of them have black box warnings issued, namely lapatinib, 

sunitinib, pazopanib, regorafenib and ponatinib. Frequencies of all grade hepatic 

adverse events of TKIs varies from 11%, as seen with gefitinib [20] to more than 50% 

as seen with pazopanib. [24] The frequency of grade 3 and above hepatic adverse 

events for all FDA-approved TKIs ranges from 1% to 12%. Although these 

hepatotoxicity events may be self-limiting or even undetected, there have been several 

fatalities. [218, 219] Therefore, hepatotoxicity is a rare but serious issue with the use 
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of TKIs and a better understanding of the problem may help in the management of 

patients and improve the use of TKIs. 

 

6.2 Risk of tyrosine kinase inhibitor-induced hepatotoxicity 

Although existing evidence from clinical trials has demonstrated manifestation of 

hepatotoxicity with the use of TKIs, overall risks among all commercially available 

TKIs of such events have yet to be reported. By and large, individual studies are 

designed with the key purpose on testing efficacy outcomes. Consequently, sample 

sizes of these studies are insufficiently powered to detect the occurrences of adverse 

events. By conducting a meta-analysis, multiple studies can be pooled to increase the 

sample size and thus the power to study rare events of interest, which in this case, is 

hepatotoxicity. Therefore, a meta-analysis was conducted with an objective to 

determine the risk of hepatotoxicity associated with the use of TKIs, by comparing the 

occurrence of hepatotoxicity of the TKI arms against that of comparison arms. 

 

6.2.1 Methodology 

 

6.2.1.1 Search strategy 

A search was conducted to identify all small molecule TKIs approved by the FDA 

since January 2000. A comprehensive literature search of RCTs involving TKIs was 

performed using the PubMed, Scopus and ClinicalTrials.gov databases. The search 

was conducted by using the generic names of all the identified TKIs, and terms such 

as “randomized controlled trials”, “phase 2” and “phase 3”. The search was limited to 
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English language articles of human studies published between January 1995 and June 

2012. 

 

6.2.1.2 Study selection 

In this analysis, only randomized, double-blind and placebo-controlled phase II or 

phase III human trials were included. The included studies must involve the 

comparison of a TKI against placebo, or the comparison of TKI with chemotherapy 

agent against placebo with the same chemotherapy agent. Since the objective of this 

analysis was to quantify the differences in occurrence of hepatotoxicity of the TKIs 

arm compared to the comparison arms, phase I trials, single-arm studies and those 

studies which did not report any liver adverse events (AEs) were excluded. When 

encountered with multiple publications of the same trial, only the most recent 

publication was selected. Study quality was assessed using the Jadad scoring system 

[220], with poor quality studies, indicated by a score of 2 or less, being excluded from 

analysis. 

 

6.2.1.3 Data collection 

Data collection was performed by the candidate on all the included studies. Data 

collected were: first author’s name, year of publication, name of journal, trial phase, 

targeted malignancy, TKI involved, treatment arms, line of treatment, number of 

patients enrolled, name and version of adverse event criteria used, presence of 

randomization, type of blinding, and data on events of interest. The events of interest 

in this analysis are all-grades and high-grade (grade 3 and above) liver AEs, which 

can be further classified into the elevation of ALT, AST and TB. 
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6.2.1.4 Endpoints 

The primary endpoint of this analysis was the risk of all-types high-grade 

hepatotoxicity. Secondary endpoints include the risk of all-types all-grades 

hepatotoxicity, high-grade ALT, AST and TB elevation. High-grade ALT, AST and 

TB elevations were defined as grade 3 or higher elevation of the corresponding liver 

enzyme, which is an elevation of more than 5 times upper limit of normal (ULN). 

 

6.2.1.5 Data analysis 

Data were included and analyzed using the RevMan 5.1 software. [221] The odds of 

experiencing all-grades and high-grade liver AEs were calculated as the proportion of 

patients with these events divided by the proportion of patients without these events. 

The OR and corresponding 95% confidence intervals (CIs) were computed as the ratio 

of these odds in the TKI arm compared to the comparison arm. Pooled estimates of 

OR were computed using the Mandel-Haenszel method, which is recommended when 

there is low event rates and substantial variability in effect sizes. [221] Statistical 

heterogeneity between trials was assessed using the Cochran’s Q statistic, with a p-

value of less than 0.1 representing statistically significant heterogeneity. 

Inconsistency between trials was quantified with the I2 statistic, which represents the 

percentage of variability in effect estimate that is due to heterogeneity rather than 

sampling error. [221] Random-effects model was used for evaluation when there is 

statistically significant heterogeneity. Effect measures were presented for all studies, 

as well as pre-determined subgroup and sensitivity analyses. For the subgroup 

analyses, trials were classified into two subgroups: (1) TKI versus placebo and (2) 

TKI with chemotherapy versus placebo with chemotherapy. This was to determine 

whether the administration of chemotherapy would impact the risk of manifesting 
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hepatotoxicity. Sensitivity analyses were conducted to compare the following: 

random-effects versus fixed-effects model, phase II versus phase III studies, small 

sized versus large sized studies, first-line treatment versus non-first-line treatment 

studies, epidermal growth factor receptor inhibitor (EGFRI) versus non-EGFRI and 

long duration versus short duration of therapy. Funnel plots were generated to identify 

for any publication bias within included studies. 

 

6.2.2 Results 

 

6.2.2.1 Literature search results 

A total of 14 TKIs were approved by the FDA between January 2000 to June 2012 

and they are: axitinib, crizotinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, 

nilotinib, pazopanib, ruxolitinib, sorafenib, sunitinib, vandetanib, vemurafenib. 

Among them, there are 4 EGFRIs and they are erlotinib, gefitinib, lapatinib and 

vandetanib. From the literature search, 3269 articles were identified. After duplicates 

were removed and abstracts were screened, 136 articles were left to be assessed for 

eligibility. A total of 12 articles were included in the analysis, and reasons for 

exclusion were lack of liver AEs (n=92), duplicate trials (n=3), single-arm trials (n=9), 

TKI versus TKI comparison (n=8) and non-placebo controlled (n=12). (Figure 4) 
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Figure 4. Study flow diagram 
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6.2.2.2 Study characteristics 

Eight studies were categorized under subgroup 1 (TKI versus placebo) [11, 135, 222-

227] and 4 studies under subgroup 2 (TKI with chemotherapy versus placebo with 

chemotherapy). [228-231] TKIs included in the analysis were gefitinib (n=4), 

lapatinib (n=2), pazopanib (n=2), erlotinib (n=1), imatinib (n=1), sorafenib (n=1) and 

vandetanib (n=1). As per inclusion criteria, all included studies were randomized, 

double-blind, placebo-controlled trials, with a Jaded score of 3 or more. Four studies 

(33%) were investigating the use of TKIs as first-line therapy. [223, 228, 229, 231] 

There were 5 (42%) phase II [222, 225, 228-230] and 7 (58%) phase III trials. [11, 

135, 223, 224, 226, 227, 231] Only 1 out of 12 studies (8%) had a Jadad score of less 

than 4. [230] Almost all studies adopted the CTCAE criteria for grading of adverse 

events, with the exception of one study which did not mention the grading criteria 

used. [228] Nine out of 12 studies [11, 135, 223-225, 227, 229-231] adopted version 

3.0 of the CTCAE which another 2 studies [222, 226] adopted version 2.0. 

Nevertheless, the grading criteria were consistent between the 2 versions. 

Summarized characteristics of the included studies can be found in Table 23. 
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Table 23. Characteristics of included studies 
Reference n Phase Malignancy TKI arm Control arm 
(1) TKI alone vs. Placebo 
Arnold, 2007 [222] 105 II SCLC Vandetanib Placebo 
De Matteo, 2009 
[223] 682 III GIST Imatinib Placebo 

Sternberg, 2010 
[11] 435 III Locally advanced or 

metastatic RCC Pazopanib Placebo 

Kudo, 2011 [224] 456 III Unresectable HCC Sorafenib Placebo 
De Censi, 2011 
[225] 60 II HER2-positive 

breast cancer Lapatinib Placebo 

Gaafar, 2011 [226] 171 III Advanced NSCLC Gefitinib Placebo 

Zhang, 2012 [135] 295 III Locally advanced or 
metastatic NSCLC Gefitinib Placebo 

Van der graaf, 
2012 [227] 362 III Metastatic soft 

tissue sarcoma Pazopanib Placebo 

(2) TKI + Chemotherapy vs. Placebo + Chemotherapy 
Guarneri, 2007 
[228] 90 II Breast cancer Gefitinib + 

Chemotherapy 
Placebo + 
Chemotherapy 

Mok, 2009 [229] 153 II Advanced NSCLC 

Erlotinib + 
Platinum 
doublet 
chemotherapy 

Placebo + 
Platinum 
doublet 
chemotherapy 

Viéitez, 2010 [230] 76 II Metastatic 
colorectal cancer 

Gefitinib + 
Raltitrexed 

Placebo + 
Raltitrexed 

Schwartzberg, 
2010 [231] 219 III 

HER2- and 
hormone-receptor- 
positive advanced or 
metastatic breast 
cancer 

Lapatinib + 
Letrozole 

Placebo + 
Letrozole 

Abbreviations: GIST, Gastrointestinal stromal tumor; HCC, Hepatocellular carcinoma; HER2, 
Human epidermal receptor type 2; TKI, Tyrosine kinase inhibitor; NSCLC, Non-small cell 
lung cancer; RCC, Renal Cell Carcinoma; SCLC, Small cell lung cancer 
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6.2.2.3 Primary endpoint – all-type, high-grade hepatotoxicity 

There was a significant overall increase in the odds of developing high-grade 

hepatotoxicity with the use of TKIs compared to the control arms (Pooled OR 4.35, 

95% CI 2.96 – 6.39, p<0.001). However, increase in odds was observed for only 

subgroup 1 (OR 5.61, 95% CI 3.63 – 8.68, p<0.001). The ORs between the two 

subgroups were statistically different (p<0.001). (Figure 5) 

 

 

Figure 5. All-types high-grade hepatotoxicity 

 

  



Chapter 6 
_____________________________________________________________________  

141 
 

6.2.2.4 Secondary endpoints 

 

6.2.2.4.1 All-type, all-grade hepatotoxicity 

There was a significant overall increase in the odds of hepatotoxicity with the use of 

TKIs compared to the controls (Pooled OR 2.42, 95% CI 1.52 – 3.85, p<0.001). 

Increase in odds were observed for both subgroups, although increase in odds for 

subgroup 2 did not achieve statistical significance (Subgroup 1 vs. Subgroup 2: OR 

3.43, 95% CI 2.02 – 5.83, p<0.001 vs. OR 1.13, 95% CI 0.58 – 2.21, p=0.18). (Figure 

6) 

 

 

Figure 6. All-types all-grades hepatotoxicity 
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6.2.2.4.2 High-grade ALT elevation 

The odds of developing high-grade hepatotoxicity due to elevation in ALT was higher 

with the use of TKI than compared to the controls (Pooled OR 5.22, 95% CI 2.88 – 

9.46, p<0.001). Similarly, increase in odds was observed for only subgroup 1 (OR 

6.35, 95% CI 3.32 – 12.16, p<0.001). The ORs between the two subgroups were 

statistically different (p=0.03). (Figure 7) 

 

 

Figure 7. High-grade hepatotoxicity due to ALT elevation 
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6.2.2.4.3 High-grade AST elevation 

The odds of developing high-grade hepatotoxicity due to AST elevation was higher 

with the use of TKI than compared to the controls (Pooled OR 6.15, 95% CI 3.09 – 

12.25, p<0.001). There were no trials in subgroup 2 for this group analysis, hence 

pooled OR was contributed by studies in subgroup 1 only. (Figure 8) 

 

 

Figure 8. High-grade hepatotoxicity due to AST elevation 
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6.2.2.4.4 High-grade TB elevation 

The odds of developing high-grade hepatotoxicity due to TB elevation was higher 

with the use of TKI than compared to the controls (Pooled OR 1.76, 95% CI 0.59 – 

5.24, p=0.31). However, this was not statistically significant. There were no trials in 

subgroup 2 for this group analysis, hence pooled OR was contributed by studies in 

subgroup 1 only. (Figure 9) 

 

 

Figure 9. High-grade hepatotoxicity due to TB elevation 
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6.2.2.5 Sensitivity and bias analysis 

There was no statistical difference between using the random-effects model or the 

fixed effects model, although using the fixed-effects model tends to generate higher 

ORs. A statistical difference was observed between phase II and phase III studies for 

all-types, high-grade hepatotoxicity, where phase III studies reported higher ORs 

(phase II vs. phase III: OR 1.57, 95% CI 0.73 – 3.38 vs. OR 5.7, 95% CI 3.61 – 9.05). 

A similar trend was observed between phase II and phase III studies for elevation of 

ALT, where higher OR was observed with phase III studies (phase II vs. phase III: 

OR 1.28, 95% CI 0.36 – 4.57 vs. OR 7.09, 95% CI 3.49 – 14.41). When small sized 

studies (defined as sample size 200 or less) were compared against large sized studies 

(defined as sample size greater than 200), a statistical difference was observed in all-

type, high-grade hepatotoxicity, where larger studies had higher OR than smaller 

studies. (large size vs. small size: OR 5.66, 95% CI 3.45 – 9.29 vs. OR 2.49, 95% CI 

1.33 – 4.68). Studies that investigated the use of TKIs as first-line therapy tend to 

offer higher ORs than studies where TKIs were investigated as non-first-line therapy; 

nevertheless there was no statistical difference between the groups. Comparing 

between non-EGFRIs and EGFRIs, the former was associated with a higher risk of 

all-types, all-grades hepatotoxicity (non-EGFRIs vs. EGFRIs: OR 3.21, 95% CI 1.54 

– 6.68 vs. OR 1.90, 95% CI 1.04 – 3.47), although the ORs were not statistically 

different. The trend of non-EGFRIs associating with a higher risk of hepatotoxicity 

compared to EGFRIs was similarly observed for all-types high-grade hepatotoxicity 

as well as high-grade ALT and AST elevation. In terms of the duration of therapy, 

shorter duration of therapy (defined as median therapy of less than 12 weeks) tend to 

demonstrated significantly higher ORs than compared to a longer duration (defined as 

median therapy of 12 weeks or more) for all-types all-grades hepatotoxicity. The 
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association of higher ORs with shorter duration of therapy was also observed for 

high-grade elevation of ALT and AST, though not statistically significant. Due to a 

small number of studies reporting elevations in TB (n=3), sensitivity analysis for TB 

elevation was not conducted. (Table 24)   

 

The fixed-effects model was used for all-types high-grade hepatotoxicity, as well as 

for high-grade ALT, AST and TB elevation, due to a lack of heterogeneity within the 

included studies. The random-effects model was used for all-types all-grades 

hepatotoxicity due to presence of heterogeneity. Funnel plot for all-types, high grade 

hepatotoxicity was largely symmetrical, with equal number of studies on each side 

and 90% of the included studies were within the lines of 95% CI. (Figure 10) This 

suggests that publication bias is unlikely.  
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Table 24. Sensitivity analyses 

 
All-types ALT-type AST-type 

All grades Grades 3 and above Grades 3 and above Grades 3 and above 
n OR 95% CI n OR 95% CI n OR 95% CI n OR 95% CI 

Random-effects model 11 2.42 1.52 – 3.85 10 3.63 2.00 – 6.59 7 4.79 2.24 – 10.22 5 5.43 2.71 – 10.89 
Fixed-effects model 11 2.94 2.52 – 3.44 10 4.35 2.96 – 6.39 7 5.22 2.88 – 9.46 5 6.15 3.09 – 12.25 
 
Phase II 5 1.53 0.57 – 4.07* 5 1.57 0.73 – 3.38*¶ 2 1.28 0.36 – 4.57*¶ - - - 
Phase III 6 3.03 1.77 – 5.19 5 5.71 3.61 – 9.05¶ 5 7.09 3.49 – 14.41¶ 5 6.15 3.09 – 12.25 
 
Small sized (n≤200) 5 1.53 0.57 – 4.07* 6 2.49 1.33 – 4.68ǂ 3 2.81 1.04 – 7.62 1 7.63 0.92 – 63.41* 
Large sized (n>200) 6 3.03 1.77 – 5.19 4 5.66 3.45 – 9.29ǂ 4 6.76 3.17 – 14.38 4 5.99 2.89 – 12.42 
 
First-line 5 1.65 0.94 – 2.90* 4 3.83 1.67 – 8.80 3 3.20 1.14 – 8.94 1 15.68 0.89 – 275.65* 
Non-first-line 6 3.42 2.15 – 5.43 6 4.50 2.91 – 6.94 4 6.35 3.04 – 13.26 4 5.63 2.76 – 11.49 
 
EGFRI 7 1.90 1.04 – 3.47 7 2.73 1.48 – 5.03 4 3.20 1.25 – 8.16 2 6.02 1.05 – 34.55 
Non-EGFRI 4 3.21 1.54 – 6.68 3 5.57 3.37 – 9.20 3 6.73 3.08 – 14.69 3 6.17 2.92 – 13.07 
 
Long duration  
(≥ 12 weeks) 7 1.91 0.97 – 3.74^ 7 2.88 1.18 – 7.06 5 4.51 2.21 – 9.22 4 5.20 2.50 – 10.83 

Short duration  
(< 12 weeks) 3 4.27 3.27 – 5.57^ 3 5.53 2.68 – 11.40 2 6.74 2.31 – 19.70 1 12.40 1.66 – 92.80 

 
Abbreviations: ALT, Alanine transaminase; AST, Aspartate transaminase; EGFRI, Epidermal growth factor receptor inhibitor; OR, Odds ratio 
* p>0.05 for OR 
¶ p<0.05 for difference between  phase II and phase III 
ǂ p<0.05 for difference between small sized and large sized 
^ p<0.05 for difference between long duration and short duration 
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Figure 10. Funnel plot of trials included for analysis for all-types high-grade 
hepatotoxicity (primary endpoint) 
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6.2.3 Discussion 

It is currently recognized that the use of TKIs can lead to hepatic AEs; however, the 

risk has yet to be evaluated. This is the first meta-analysis to demonstrate a 

significantly increased risk of hepatic AEs associated with TKIs use. Overall, the risk 

of developing hepatic AEs was more than two-fold higher in patients receiving TKIs 

compared to patients in the control or placebo arms. As for more serious high-grade 

hepatic AEs, patients receiving TKIs were 4-times more likely to experience such 

events, compared to patients receiving placebo. On the whole, there was also a 

significant increase in odds of hepatotoxicity due to the elevation of AST and ALT. 

There was however a lack of significant effect on elevation of TB. A similar meta-

analysis was conducted recently by Ghatalia et al, which evaluated the effect of 

VEGFR inhibitors on hepatotoxicity. Likewise, an increased risk of all-grades and 

high-grades ALT, AST and TB elevation was observed. [232] 

 

The use of TKIs increased the risk of hepatotoxicity independently of trial phase, the 

sequence of therapy and mechanism of action. The OR of subgroup 1 (TKI alone vs. 

placebo) tend to be higher than that of subgroup 2 (TKI with chemotherapy vs. 

placebo with chemotherapy). This is expected as the use of chemotherapy contributes 

to some toxicity itself, and thus leading to a smaller difference in the event rates 

across the 2 groups. The odds of developing high-grade hepatotoxicity due to ALT 

and AST elevation were also comparable, at 5-fold and 6-fold respectively. Although 

non-statistically significant, the risk of hepatotoxicity for non-EGFRI was 

demonstrated to be higher compared to EGFRIs. There were four non-EGFRIs trials 

in the analysis, namely pazopanib (n=2), imatinib (n=1) and sorafenib (n=1). High 

frequencies of ALT and AST elevations have been observed with pazopanib therapy, 
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where 53% and more than 10% of patients experienced all-grades and high-grade 

ALT elevation respectively. [24] This could have significantly contributed to the high 

OR observed with non-EGFRIs. Higher ORs have been demonstrated due to shorter 

duration of therapy. There are only 3 trials which were categorized as short duration 

of therapy, and they were vandetanib, lapatinib and pazopanib. Both lapatinib and 

pazopanib are at a considerably higher risk of hepatotoxicity, as observed with its 

mandatory black-box warning. As such, this could have influenced the higher ORs 

observed. Generation of RM upon metabolism of lapatinib have been demonstrated 

previously [89], and these RM have been implicated in other examples of 

idiosyncratic hepatotoxicity. [233] 

 

Despite our stringent inclusion and exclusion criteria, we managed to include more 

than 3000 patients in this meta-analysis, even though a number of phase II or III trials 

evaluating TKIs were excluded. The most common reason for exclusion was due to 

lack of reporting of liver AEs, where 89 out of 133 (67%) full articles assessed for 

eligibility did not report such events. The rigorous criterion offers confidence of good 

quality data and a purer comparison, whereby the risk of hepatotoxicity can be 

regarded with assurance to be associated with TKI.  

 

Existing clinical evidence indicates that TKIs are associated with hepatotoxicity, and 

although we have demonstrated an increased risk of hepatotoxicity with the use of 

TKIs, the mechanism of toxicity remains largely unknown. Some have attributed the 

toxicity to generation of RM upon metabolism. [89, 234, 235] These RM are highly 

reactive and can interfere with cellular molecules and thereby affecting cell function 
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and cell death. Immune-mediated mechanisms have also been proposed to be a 

mechanism of toxicity. [236]  

 

6.2.4 Limitations of study 

There were several challenges and limitations in this analysis. Firstly, the analysis was 

based on published aggregated data and not using individual patient’s data. Secondly, 

TKIs of various mechanism of action were pooled and analyzed as a group. However, 

sensitivity analysis was conducted to assess the effects of the different mechanisms of 

action. Studies were classified as ‘EGFRIs’ and ‘non-EGFRIs’ and although there 

were some differences observed between the 2 groups, it was not statistically 

significant. Thirdly, the reporting of hepatic AEs were lacking in many studies, 

leading to their exclusion from analysis. Unlike efficacy outcomes, AEs are rarely 

predetermined for systematic data collection in clinical trials. Therefore, reporting of 

adverse events depends highly on the investigators, and could likely be confounded 

by other variables as well, such as presence of liver metastasis. Furthermore, it may 

be possible that in studies that did not report elevations in liver AEs, it may be due to 

the absence of such events. Hence, the increase in risk could have been inflated. 

Fourthly, the type of reporting of hepatic AEs were highly variable, where some 

studies reported hepatotoxicity as a whole, whereas some presented hepatotoxicity in 

terms of elevation of various liver chemistries such as ALT, AST etc. In spite of that, 

studies were consistent in grading the adverse events, where the CTCAE criteria were 

used for grading. A total of two versions of the CTCAE criteria were involved, 

version 2 and version 3, though classifications of the various liver adverse events 

were unchanged across the two versions.  
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6.2.5 Summary of important findings  

In summary, this meta-analysis has quantified the risk for TKI-associated 

hepatotoxicity and has demonstrated that TKI usage is associated with a two-fold and 

four-fold increased risk of all-types all-grades and all-types high-grade hepatotoxicity 

respectively. It is currently recognized that the use of TKIs can lead to hepatic AEs; 

however, the risk has yet to be evaluated. This study provides evidence as well as 

quantification of this risk. Clinicians should be aware of this risk and provide close 

monitoring in patients receiving these therapies.  

 

Following the quantification of the risk of hepatotoxicity, in the next few sections, 

this thesis will seek to understand why these TKIs are at risk for hepatotoxicity as 

well as to look into the various proposed strategies to managed TKI-associated 

hepatotoxicity. 

 

6.3 Why tyrosine kinase inhibitors are at risk for hepatotoxicity 

A recent study reported that a high daily dose (≥ 100  mg) and being a substrate of 

P450 enzyme had significantly higher likelihood of causing DILI. [96] In a separate 

study, compounds with significant hepatic metabolism (> 50%) were found to be 

more likely to cause elevation of liver enzymes, liver failure and fatal DILI. [237] The 

authors described that drugs that fulfill both criteria of significant hepatic metabolism 

and daily doses of more than 50 mg are at the highest risk of hepatic adverse events. 

[237] Therefore, based on what is known as the risk factors for development of 

hepatotoxicity, it is not surprising to observe these events with TKIs use, as most of 

these drugs possess the risk factors for developing DILI. 
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Genetic characterization of hepatotoxicity caused by TKIs has been well studied in 2 

TKIs, lapatinib and pazopanib. Lapatinib-related liver injury has a robust, confirmed 

association with the class II HLA locus containing DRB1*07:01/DQA1*02:01 alleles 

[236], while pazopanib-associated ALT elevations have a robust, confirmed 

association with HFE polymorphisms. [33] A recent review by Spraggs et al 

highlighted the benefits of genetic characterization of liver safety signals observed for 

TKI therapies, as it will reveal insights into the mechanisms of DILI, and inform the 

characteristics and risk. [238] This may allow individualization of therapy according 

to the severity of the hepatotoxicity and the risk associated with the genotypes. This is 

particularly important in the use of TKI therapies in cancer treatment, since improved 

characterization and understanding of the hepatotoxicity may enable continued 

treatment for many non-susceptible patients, without increasing the risk of serious 

DILI. This may then lead to more favorable clinical outcomes with improved disease 

management and patient survival. [238] 

 

Additionally, several of the TKIs were capable of forming reactive metabolites, which 

constitutes a risk for potential toxicity. In the following subsections, those TKIs which 

form RM will be highlighted, together with the effect of RM on direct and indirect 

toxicity.  

 

6.3.1 Tyrosine kinase inhibitors that form reactive metabolites 

It has been demonstrated that TKIs such as dasatinib, erlotinib, gefitinib, imatinib, 

lapatinib, nilotinib, pazopanib, and sunitinib were capable of generating reactive 

intermediates upon bioactivation. [201] Hence, these agents are at risk for potential 
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toxicity. However, RM has only been characterized in erlotinib, gefitinib, lapatinib 

and dasatinib, and they will be highlighted below. (Table 25) 

 

Bioactivation of erlotinib is proposed to be related to the formation of a reactive 

epoxide and quinoneimine, which may contribute to some of the serious clinical 

toxicities, such as hepatotoxicity, interstitial lung disease and severe skin disorders 

such as Stevens-Johnson syndrome and toxic epidermal necrolysis. The CYP3A4 

enzyme in the liver and intestines, and the CYP1A1/2 enzyme in the lungs, are the 

main enzymes responsible for the catalysis of reactive erlotinib metabolites. Although 

reactive epoxides and quinoneimine metabolites cannot diffuse significant distances 

from the organ where they were formed, para-hydroxyerlotinib is in general 

circulation and is the major erlotinib metabolite in human plasma. This may diffuse to 

other tissues where it is oxidized to generate the reactive quinoneimine. [234] 

 

Similar to erlotinib, the P450-mediated bioactivation of gefitinib generates reactive 

quinoneimine and epoxide compounds. The CYP3A4 and CYP1A1 were found to be 

the major enzymes responsible for adduct formation in the liver and intestines and in 

the lungs respectively. Furthermore, the significant distribution of gefitinib to the liver 

and lung tissue, where it can be bioactivated to reactive compounds, is likely to 

increase the incidence of toxicity. [235] 
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Dasatinib is bioactivated by CYP3A4 to form of both quinoneimine and imine-

methide reactive intermediates, indicating that dasatinib is likely to form protein 

adducts in the liver. [239] 

 

Lapatinib has been shown to be extensively metabolized, as exemplified by diverse 

biotransformations to form metabolites. A number of the metabolites generated from 

the metabolism by CYP3A4 and CYP3A5 could potentially form reactive 

electrophilic intermediates that could contribute to hepatotoxicity. [202] An 

electrophilic quinoneimine reactive intermediate can be generated from further 

oxidation of the O-dealkylated lapatinib. [89] Subsequent studies demonstrated that 

CYP3A4, an enzyme that catalyzes the formation of the reactive quinoneimine 

metabolite, is inactivated by another lapatinib metabolite that it generated, most likely 

a nitroso compound. [90] Similarly, the CYP3A5 enzyme can also be inactivated by 

lapatinib. [91] These studies confirmed the reactivity of lapatinib metabolites and the 

likely risk they can impose on the liver, where CYP3A4 is the major drug 

metabolizing enzyme.   
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Table 25. Tyrosine kinase inhibitors and their reactive metabolites 

 Parent compound Reactive metabolites Ref 

Erlotinib 

 

 
[234] 

 

Gefitinib 

 
 

[235] 

Lapatinib 

 

 [90] 

 

Dasatinib 

 
 

[239] 
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6.3.2 Effect of reactive metabolites on direct and indirect toxicity  

During drug metabolism, a drug is converted to a more hydrophilic metabolite, which 

can be readily excreted from the body. However, in some situations, the process of 

metabolism gives rise to the formation of chemically reactive species or RM and this 

includes a diverse group of compounds including unstable conjugates, reactive 

oxygen species (ROS) and other free radicals, electrophilic metabolites such as 

epoxides and quinones. [240] These RM can cause direct toxicity or can lead to 

secondary immune reactions, depending, in part, on the reactivity and formation rate 

of the reactive metabolites as well as host response.  

 

The RMs are capable of inducing dysfunction through direct adduction to neighboring 

host proteins or macromolecular targets. The binding to nucleophilic macromolecules 

in target cells, leads to covalent modifications which are often disruptive to 

endogenous protein, lipids and DNA function. The presence of RM may lead to DNA 

damage, induction of proapoptotic proteins, depletion of hepatic glutathione, 

disruption of intercellular calcium concentrations and ultimately resulting in 

mitochondrial permeability transition as a hallmark commitment to cell death via both 

apoptotic and necrotic mechanisms. In addition, oxidative stress as an orthogonal 

mode of cellular damage may occur as a result of oxidative imbalance between the 

large production of ROS and the depletion of endogenous antioxidants. This may then 

result in several sites of cellular damage (i.e. protein damage, lipid peroxidation and 

nucleotide oxidation), leading to loss of function. Consequently, this alters cellular 

homeostasis, resulting in impairment of cellular function, which can lead to cell death 

and possible organ failure. [92, 233, 241-243] Similar mechanisms have been 

demonstrated to be responsible for other drug-induced toxicities such as 
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acetaminophen and diclofenac-mediated liver injury. [244, 245] Although most drugs 

form RM, not all drugs are associated with idiosyncratic drug toxicities. This may be 

due to the RM being detoxified by cellular defense mechanisms. [233] The covalently 

modified proteins may be repaired or degraded; otherwise they may impair important 

cellular functions, which could be directly pathogenic. [233] Moreover, a larger dose 

of a drug may exacerbate the toxicity, by generating a larger quantity of toxic 

metabolites, which may likely overwhelm the host defense mechanism.  

 

Some modifications may also elicit a host immune response if the structurally altered 

proteins are recognized as a foreign macromolecule. This may lead to drug-induced 

immune toxicities. Such immunological consequences were demonstrated with 

tienilic acid-induced hepatitis. [246] The formation of a reactive compound that 

covalently binds to proteins alone might be insufficient to trigger an immune reaction 

or induce a non-pathogenic immune response. [247] In the presence of a ‘danger’ 

signal, such as underlying infection or presence of cytokines due to inflammation and 

cellular injury, a full-blown immune response may be triggered. [248] The outcome in 

either direct or indirect toxicity event is cell death caused by either apoptosis or 

necrosis, depending on several factors like the inherent properties of the drug, dose, 

duration of exposure, and a variety of environmental and genetic factors that modulate 

drug metabolism and transport, and the innate and adaptive immune systems. [249] 

 

The liver is the main site for bioactivation and detoxification of drugs and their 

metabolites. Hence, any potentially toxic metabolite generated in the process can 



Chapter 6 
_____________________________________________________________________  

159 
 

readily exert a localized damage. As such, the sites of RM formation usually correlate 

with the major targets of idiosyncratic reactions, in this case, hepatotoxicity.  

 

There also seems to be a correlation between the amount of RM formed and the risk 

of idiosyncratic reactions. One study demonstrates that a dose more than 100 mg per 

day and being a substrate of CYP450 enzymes are two important predictors of drug-

induced liver injury. [96] High levels of RM may also be due to presence of high 

levels of enzyme that activates the drug to the RM or low activities of enzymes to 

detoxify the RM. The activities of the enzymes may be influenced by genetic 

polymorphisms, such as CYP2D6, or DDIs. For instance, in the case of 

acetaminophen, an archetypal example of DILI, metabolism of acetaminophen in the 

liver includes the formation of a RM, the N-acetyl-p-benzoquinoneimine, [93] and in 

the presence of an inducer, RM formation was increased which markedly enhanced 

hepatotoxicity. [94]  

 

6.4 Characteristics of tyrosine kinase inhibitors-induced hepatotoxicity 

The onset of TKI-induced hepatotoxicity is highly variable. A literature search of 

published case reports suggests that the median onset is 7 weeks, with a range of 1 – 

72 weeks. (Table 26) Although most manufacturers recommend close monitoring of 

LFTs prior initiation of TKI, liver toxicity can also occur even after long periods of 

TKI treatment. It is also important to note that drugs that produce severe injury often 

induce a higher incidence of mild injury. Cases of apparent drug-induced 

hepatotoxicity may be rare, and they belong to a large subset of patients who display 

asymptomatic ALT abnormalities, which in certain cases may transform into severe 
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injury. [250, 251] Take tacrine for example, although overt hepatic injury only 

occurred in 2% of the patients receiving the drug, half of patients developed minor 

elevations of liver enzymes and one-quarter had ALT levels that are greater than three 

times the upper normal limit. [252] The incidence of mild, asymptomatic, and 

transient ALT abnormalities may occur 10 to 20 times more often than the overt 

disease [250] and therefore serves as an excellent proxy for the low frequency of 

severe DILI events which do not frequently occur in clinical practice. 

 

In most instances, TKI-induced hepatotoxicity is mostly reversible. Unfortunately, it 

has been reported that the liver injury may be fatal in some cases, especially when the 

liver injury is detected too late and complications such as lactic acidosis have 

occurred. Based on our literature search, the median time to recovery of LFTs to 

baseline or normal range was around 6 weeks, with a range of 1 to 44 weeks. (Table 

26) 

 

6.5 Overcoming tyrosine kinase inhibitors-induced hepatotoxicity 

Currently, there are several strategies that have been adopted to overcome TKI-

induced hepatotoxicity. The strategies that have been successful so far are (1) 

switching to an alternative TKI with similar mechanism of action; (2) using an 

alternative dosing of the TKI and (3) introduction of steroids for treatment and 

prevention of hepatotoxicity. However, it should be noted that although these 

strategies have been successfully introduced to patients without the recurrence of 

hepatotoxicity, their effect on survival benefits have not been evaluated. Hence, these 

strategies should be adopted with caution.  
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6.5.1 Switching tyrosine kinase inhibitors 

Substituting with an alternate TKI of similar mechanism of action has been adopted as 

a strategy in clinical practice. As some TKIs have similar pharmacological action by 

acting on similar receptors, such as erlotinib and gefitinib, the alternative TKI can be 

prescribed if patients experience serious toxicities with one TKI. Successful use of 

erlotinib has been observed in patients who experience gefitinib-associated toxicities, 

including hepatotoxicity, and vice versa for the use of gefitinib in erlotinib-associated 

toxicities. [253-258] Although the structures of gefitinib and erlotinib are highly 

similar, the successful switch between the two TKIs without inducing another episode 

of hepatotoxicity suggests that minor differences in chemical structure in substituents 

attached to quinazoline and aniline rings between gefitinib and erlotinib may present 

different haptens to induce allergic reaction. [255] The positive switches for other 

classes of TKIs like from imatinib to dasatinib or nilotinib have also been observed. 

This observation indicates that these TKIs represent an option for maintaining 

therapeutic responses in patients in whom continuation of imatinib is not possible 

because of its hepatic toxicity. [259] The successful switch between TKIs to prevent 

hepatotoxicity also proposes the lack of cross-reactivity between the TKIs. In another 

words, this implies that the toxicological target is unrelated to the common 

pharmacological target shared between the TKIs. Also, this effectively eliminates 

hepatotoxicity as an on-target toxicity related to the inhibition of the target tyrosine 

kinase pathway shared by the TKIs at risk. [260] (Table 26) 

 

6.5.2 Alternative dosing 

Re-challenge of the implicated TKI usually leads to a second episode of 

hepatotoxicity with a quicker onset, suggesting that the underlying mechanism is 
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immune-mediated. Nevertheless, re-initiation of the implicated TKI at reduced doses 

or at reduced dosing frequency have been effective in prevent further hepatotoxicity. 

 

The use of reduced doses of TKIs has been implemented in a few cases. The alteration 

of the dosing frequency of gefitinib from every day to every other day [261] or every 

5 days [262] has been successful to prevent recurrent toxicity. However, as these 

dosing regimens are neither properly studied nor approved, there is no evidence on its 

effect on disease response and survival, and this may pose a risk of under-dosing in a 

patient. Seki et al hypothesized a reduction of hepatotoxicity when gefitinib is 

administered once every 5 days as the Cmax and AUC of gefitinib were dependent on 

the number of consecutive days it was administered and the development of hepatitis 

depended on the dosage of gefitinib in the IDEAL-1 trial. [262] (Table 26) 

 

6.5.3 Reversibility of toxicities with corticosteroids 

Current limited information on TKI-associated hepatotoxicity suggest that it is an 

idiosyncratic drug reaction (IDR), due to characteristics like rare occurrence, 

generation of reactive metabolites, dose-independent although a higher daily dose 

may pose as a risk factor for toxicity etc. If TKI-associated hepatotoxicity is immune-

mediated, then corticosteroids may be useful for management of the toxicity. There 

have been documented cases in the literature where TKI-associated hepatotoxicity has 

been successfully treated and prevented with the introduction of corticosteroids. 

Harbaum et al [259] and Ferrero et al [263] demonstrated that when corticosteroids 

are applied early after the onset of imatinib-induced hepatotoxicity, it may result in 

rapid and complete hepatic recovery. The concurrent use of corticosteroids with 
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imatinib has also allowed the continuance of imatinib therapy without hepatotoxicity 

recurrence in many cases. [263-269] (Table 26) 

 

In most of the cases, the corticosteroid of choice is prednisolone, although 

methylprednisolone has also been used. Unlike dexamethasone, prednisolone and 

methylprednisolone do not induce CYP3A4, hence avoiding the potential interactions 

with TKIs which are mostly CYP3A4 substrates. The dosing regimens as well as the 

duration of usage of the corticosteroids are also highly variable. For the purpose of 

treatment, doses of prednisolone can be up to 100 mg/day and duration of usage 

ranges from several days to 3 months. For the prevention of subsequent episodes of 

hepatotoxicity, prednisolone has been used at doses ranging from 12.5 – 50 mg daily 

and for several months of usage. (Table 27) 

 

A danger hypothesis has been suggested by Matzinger, which proposes that 

presentation of an antigen in the absence of danger results in tolerance, while the 

presence of a danger signal will result in a full-blown immune response. [248] 

Therefore, if only a small amount of RM is formed, a significant response is unlikely. 

However, if the RM formed is more toxic, either due to a larger amount formed or the 

nature of the RM, cell stress or necrosis can result which may present as an additional 

‘danger’ signal that amplifies the response. This unprogrammed cell death serve as a 

sign to the immune system that an unplanned destruction is impending, which leads to 

the activation of a full-fledge immune response. Additionally, in the context of a clear 

danger signal, such as underlying inflammation, infection or trauma, all of which may 

constitute the danger signal, the risk of idiosyncratic drug reactions increases. [270] 
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The usefulness of corticosteroids may be based on their ability to suppress the 

inflammatory response in the liver as a part of drug-hypersensitivity or an immuno-

allergic reaction, and supports the speculation that an allergic mechanism may be 

involved in the TKI-associated liver injury seen in these patients. [266, 267] 

Therefore, cautiously re-challenging after complete resolution of the liver injury 

under steroid administration and with very gradual dose increment may allow patients 

who have developed severe liver toxicity to continue taking the drug. [269] In 

summary, corticosteroids are a promising approach for managing TKI-induced 

hepatotoxicity, in order to avoid the permanent discontinuation of a very effective 

anti-neoplastic drug. [263] Future studies should evaluate the choice of the 

corticosteroids, dose and duration of usage for the purpose of treatment as well as 

prevention of TKI-induced hepatotoxicity. More importantly, the effect of the 

corticosteroids on the efficacy of TKIs should also be evaluated. As some 

corticosteroids such as dexamethasone possess CYP3A4-inducing capabilities, 

pharmacokinetics and safety of the combination of steroids and TKIs should also be 

assessed. 
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Table 26. Strategies to overcome TKI-induced hepatotoxicity 

 Age, 
gender Malignancy Onset 

(weeks) Outcome 
Time to 
recovery 
(weeks) 

Treatment and successful approaches  adopted to 
overcome hepatotoxicity Reference 

(1) Switching tyrosine kinase inhibitor 

ERL 64, F NSCLC 5 Recovery 2 
ERL discontinued  
Ursodeoxycholic acid for treatment 
Switched to GEF 

[253] 

ERL 31, F NSCLC 4 Recovery N.A. ERL discontinued  
Switched to GEF [254] 

GEF 67, F Metastatic lung 
carcinoma 4 Recovery 4 GEF discontinued  

Switched to ERL [255] 
GEF 83, F Metastatic lung 

carcinoma 8 Recovery 8 GEF discontinued  
Switched to ERL 

GEF 52, M NSCLC 10 Recovery 4 GEF discontinued  
Switched to ERL [256] 

GEF 88, M NSCLC 20 Recovery 5 GEF discontinued  
Switched to ERL 

GEF 73, M NSCLC 6 Recovery N.A. GEF discontinued  
Switched to ERL [257] 

GEF 66, F NSCLC 13 Recovery 7 GEF discontinued  
Switched to ERL [258] 

IMA 32, F CML 24 N.A. N.A. 
IMA discontinued 
Prednisolone for treatment 
Switched to DASA 

[259] 

IMA 41, F CML 24 Recovery N.A. IMA discontinued  
Switched to NILO [271] 

IMA F GIST 7 Recovery 9 IMA discontinued  
Switched to SUNI [272] 

IMA 53, F GIST 10 Recovery N.A. IMA discontinued 
Prednisolone for treatment  [273] 
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Switched to SUNI 

SUNI 76, M mRCC 2 Recovery N.A. SUNI discontinued  
Switched to SORA [274] 

(2) Alternative dosing 

GEF 69, F NSCLC 4 Recovery 20 GEF use reduced from daily to every other day at the 
same dosage [261] 

GEF 61, F NSCLC 8 Recovery 4 GEF discontinued  
GEF dosing changed to 250 mg once every 5 days [262] 

IMA 64, M CML 1 Recovery 6 IMA discontinued  
IMA restarted at reduced dose [275] 

(3) Use of corticosteroids 

ERL 74, M NSCLC 4 Recovery 1 ERL discontinued 
Methylprednisolone for treatment [276] 

IMA 65 M GIST 4 Recovery 12 

IMA discontinued 
Ursodeoxycholic acid and prednisone for treatment 
IMA re-initiated with ursodeoxycholic acid and 
prednisone 

[264] 

IMA 18, F CML 2 Recovery 15 
IMA discontinued 
Prednisolone for treatment 
IMA re-initiated with prednisolone 

[265] 

IMA 50, M CML 8 Recovery 8 IMA discontinued  
IMA re-initiated with prednisolone 

[263] 

IMA 66, F CML 32 Recovery 4 
IMA discontinued 
Prednisolone for treatment 
IMA re-initiated with prednisolone 

IMA 79, F CML 20 Recovery 12 
IMA discontinued 
Methylprednisolone for treatment 
IMA re-initiated with prednisolone 

IMA 78, M CML 24 Recovery N.A. 
IMA discontinued 
Prednisolone for treatment 
IMA re-initiated with prednisolone 

IMA 60, F CML 24 Recovery 4 IMA discontinued 
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Prednisolone for treatment 
IMA re-initiated with prednisolone 

IMA 20, F CML 2 Recovery 3 IMA discontinued  
IMA re-initiated with prednisolone [266] 

IMA 51, F CML 13 Recovery N.A. 

IMA discontinued 
Preparation of glycyrrhizin (Stronger Neo-
Minophagen C [SNMC]) and ursodeoxycholic acid for 
treatment 
IMA re-initiated with prednisolone 

[267] 

IMA 17, F CML 72 Recovery 3 IMA discontinued  
IMA re-initiated with steroids [268] 

IMA 57, F CML 12 Recovery 4 
IMA discontinued 
Prednisolone for treatment 
IMA re-initiated with prednisolone 

[269] 

IMA 32, F CML 24 N.A. N.A. 
IMA discontinued 
Prednisolone for treatment 
Switch to DASA 

[259] 

IMA 53, F GIST 10 Recovery N.A. 
IMA discontinued 
Prednisolone for treatment 
Switch to SUNI 

[273] 

Abbreviations: CML, chronic myeloid leukemia; DASA, dasatinib; ERL, erlotinib; GEF, gefitinib; GIST, gastrointestinal stromal tumours; IMA, imatinib; 
mRCC, metastatic renal cell carcinoma; N.A., not available; NSCLC, non-small cell lung cancer; NILO, nilotinib; SORA, sorafenib; SUNI, sunitinib 
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Table 27. The use of corticosteroids to manage TKI-induced hepatotoxicity 

 Steroids for treatment/ 
prevention Choice of steroids Dosing regimen Duration of 

usage Reference 

ERL Treatment Methylprednisolone IV high dose pulse therapy (1000 mg/day) 3 days [276] 
IMA Treatment Prednisolone 100 mg/day 3 days [259] 
IMA Treatment Prednisolone 0.8 mg/kg/day 2 months [273] 
IMA Prevention Prednisolone 25 mg/day 5 months [263] 
IMA Prevention Prednisolone 25 mg/day 2 months [266] 
IMA Prevention Prednisolone 20 mg/day N.A. [267] 
IMA Prevention Prednisolone 50 mg/day N.A [268] 
IMA Treatment & prevention Prednisolone 1 mg/kg/day  6 months [264] 
IMA Treatment & prevention Prednisolone (T) 1 mg/kg/day 

(P) 30 mg/day* 
N.A. [265] 

IMA Treatment & prevention Prednisolone (T) 50 mg/day 
(P) 25 mg and then 12.5 mg/day 

(T) 6 weeks 
(P) 6 months 

[263] 

IMA Treatment & prevention (T) Methylprednisolone 
(P) Prednisolone 

(T) 40 mg/day 
(P) 25 mg/day 

(T) 3 months 
(P) 8 months 

IMA Treatment & prevention Prednisolone (T) 25 mg/day 
(P) 12.5 mg/day 

(T) 3 weeks 
(P) N.A 

IMA Treatment & prevention Prednisolone (T) 25 mg and then 37 mg/day 
(P) 25 mg and then 12.5 mg/day 

(T) 4 weeks 
(P) 2 months 

IMA Treatment & prevention Prednisolone (T) 30 mg/day 
(P) 30 mg/day 

(T) 1 month 
(P) 4 months [269] 

Note: Outcomes were positive in all cases except in Dhalluin-Venier et al, where ALT and AST elevation occurred again after imatinib was reintroduced with 
prednisolone and therapy was eventually switched to peg-IFN (*) 
Abbreviations: ERL, erlotinib; IMA, imatinib; IV, intravenous; N.A, not available; P, prevention; T, treatment 
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6.5.3.1 Supplementary analysis – concurrent use of erlotinib and 

dexamethasone – where steroids help to reduce toxicity 

The management of DILI with corticosteroids has often been discussed and has been 

highlighted in the previous section. Corticosteroids may be useful in patients whose 

hepatic injury display immune-like features. It is also well recognized that the use of 

corticosteroids may mask the manifestations of injury in some patients, while hasten 

the recovery in others. [277] While there are no prospective studies performed to 

investigate the role of corticosteroids in the management of hepatotoxicity, there are 

numerous cases in the literature as previously mentioned, where they have been 

successfully implemented.  

 

Although corticosteroids are able to suppress the immune system and prevent or treat 

hepatotoxicity, there is also a possible risk of drug-drug interaction. More than 50% 

of the drugs in the market are metabolized by CYP3A4, and most steroids are 

inducers of CYP3A4. Hence, a theoretical drug-drug interaction risk exists. In the 

case of most TKIs, induction of metabolism may increase the formation of reactive 

metabolites and therefore increase in risk of hepatotoxicity. Therefore, there seems to 

be a dual and competing role of corticosteroids in hepatotoxicity.  

 

In order to investigate the role of corticosteroids on hepatotoxicity, an observational 

study was conducted with an objective to evaluate the incidence of dose modification, 

which is defined as discontinuation, dose reduction or hold and re-challenge of 

erlotinib due to hepatotoxicity event. 
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Erlotinib has been selected as it is metabolized by CYP3A4, CYP1A2 in the liver and 

by the inducible hepatic isoform CYP1A1 in the lungs [278] and current findings 

suggest that para-hydroxyerlotinib can generate reactive quinoneimine by oxidation in 

the liver. Due to the electrophilic nature of quinoneimine, it can covalently bind to 

proteins to trigger oxidative stress, and react with glutathione to form adducts. As 

cancer patients with brain metastases usually manifest neurologic symptoms 

associated with increased intra-cranial pressure, corticosteroids have been used to 

alleviate these symptoms by reducing cerebral edema. [279] Moreover, 

corticosteroids are generally utilized in managing chemotherapy-induced nausea and 

vomiting in pancreatic cancer patients. [280] Therefore, concomitant usage of 

erlotinib with dexamethasone is not uncommon among cancer patients. Due to the co-

administration of dexamethasone with erlotinib, a potential theoretical drug-drug 

interaction may potentially occur, as erlotinib is extensively metabolized by the 

hepatic CYP3A4 enzyme [234], and dexamethasone induces CYP3A4 via pregnane X 

receptor (PXR) gene activation in the liver. In addition, there is currently limited 

evidence on the clinical impact of the interaction between erlotinib and 

dexamethasone on hepatotoxicity. 

 

6.5.3.2 Methods 

 

6.5.3.2.1 Study design 

This was a single-centered, observational, retrospective study conducted in NCCS. 

Patients who received erlotinib between October 2007 and June 2012 were reviewed 

for eligibility. Patients who used erlotinib concurrently with CYP3A4 inhibitor drugs, 
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and drugs that affect absorption of erlotinib were excluded. [98, 99] In addition, this 

study excluded patients who did not receive baseline LFT assessment before the 

erlotinib therapy, and at least one follow-up of LFT during or within 6 half-lives after 

the cessation of erlotinib therapy. 

 

6.5.3.2.2 Definitions and endpoints 

Those who received erlotinib without dexamethasone were classified under group E 

while patients who received erlotinib with dexamethasone were classified under group 

E+D. Concomitant usage or co-administration was defined as the use of 

dexamethasone during the period of erlotinib treatment. A hepatotoxicity event was 

defined as the first clinically significant increase (comparing against baseline levels) 

of any liver enzyme including TB, ALT, and AST levels by at least 1 grade in the 

subsequent liver function tests. The grading is according to the CTCAE criteria 

version 4.0.2. [103] The primary endpoint was the incidence of dose modification, 

which is defined as discontinuation, dose reduction or hold and re-challenge of 

erlotinib due to hepatotoxicity event. In addition, the secondary endpoint was the 

incidence of clinically significant hepatotoxicity event. 

 

6.5.3.2.3 Statistical analysis 

For the continuous variables, parametric test such as the independent samples t-test 

and non-parametric test like Mann Whitney-U test was used to determine statistical 

significance between the two groups. For the categorical variables, the Chi-square test 

or Fisher’s test was used. Multivariate logistic regression was performed to adjust the 

relative risk ratio based on clinically important (such as baseline LFTs) and 
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statistically significant variables. A p-value of less than 0.05 was considered 

statistically significant. All data was recorded and analyzed using IBM SPSS 

Statistics 20.0. 

 

6.5.3.3 Results 

 

6.5.3.3.1 Patient demographics and disease characteristics 

A total of 202 patients were screened for eligibility. After application of the inclusion 

and exclusion criteria, 127 patients were excluded due to various reasons such as: lack 

of LFTs monitoring, drug-drug interactions via absorption and/or CYP enzymes 

inhibition. Out of the 75 patients included in the analysis, 16 (21%) were classified 

into group E+D while 59 (79%) were classified into group E. (Figure 11) 
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Figure 11. Distribution of patients (erlotinib and dexamethasone) 
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Majority of the patients were males (56%) and the median age was 63 years old 

(Inter-quartile range, IQR – 57, 70). Majority of the patients received erlotinib for 

treatment of NSCLC (88%) and 53 patients (71%) had previously received at least 

one prior chemotherapy regimen before the usage of erlotinib. Half of the patients 

(53%) had bone metastasis and 24 (32%) had liver metastasis. Three patients (4%) 

had underlying liver disease. The overall median baseline LFTs was within the 

normal range. Twenty-one patients (28%) received erlotinib in combination with 

chemotherapy. Most of the patients (65%) received 150 mg of erlotinib.  In the E+D 

group, the median dose of dexamethasone used was 4 mg/day (IQR – 4, 8). 

Meanwhile, the median duration of concomitant usage with erlotinib was 2 days (IQR 

– 1, 6). (Table 28) 
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Table 28. Patient demographics and disease characteristics (erlotinib and 
dexamethasone) 

 Total (%) 
n = 75 

E + D (%) 
n = 16 

E (%) 
n = 59 

Age, years [median, (IQR)]  63 (57, 70) 62 (55, 68) 64 (57, 73) 
Body weight*, kg [median, 
(IQR)] 59 (49, 66) 50 (44, 61) 60 (50, 70) 

Male gender 42 (56) 9 (56) 33 (56) 
Ethnicity 

Chinese 
Indian 
Malay 
Others 

 
63 (84) 
0 (0) 
5 (7) 
7 (9) 

 
14 (88) 
0 (0) 
2 (2) 
0 (0) 

 
48 (81) 

0 (0) 
3 (5) 

7 (12) 
Cancer type 

NSCLC 
Pancreatic 
Others 

 
66 (88) 
6 (8) 
3 (4) 

 
14 (88) 
2 (13) 
0 (0) 

 
52 (88) 

4 (7) 
3 (5) 

Metastasis 
Liver 
Bone 
Brain 
Others 

73 (97) 
24 (32) 
40 (53) 
23 (31) 
25 (33) 

16 (100) 
6 (38) 
7 (44) 
5 (31) 
6 (38) 

57 (97) 
18 (31) 
33 (56) 
18 (31) 
19 (33) 

Underlying hepatitis 3 (4) 0 (0) 3 (5) 
Previous chemotherapy* 

Platinum-based drugs 
Others 

53 (71) 
13 (17) 
40 (53) 

15 (94) 
3 (19) 

12 (75) 

38 (64) 
10 (17) 
28 (47) 

Erlotinib therapy 
Monotherapy* 
With gemcitabine* 
With other chemotherapy drugsa 

 
54 (72) 
6 (8) 

15 (20) 

 
7 (44) 
2 (13) 
7 (44) 

 
47 (80) 

4 (7) 
8 (14) 

Erlotinib dose  
100 mg 
150 mg 

[median, (IQR)] 

 
26 (35) 
49 (65) 

150 (100, 150) 

 
4 (25) 

12 (75) 
150 (113, 15) 

 
22 (37) 
37 (63) 

150 (100, 150) 
Duration of erlotinib therapy, 
days 90 (43, 188) 153 (52, 255) 64 (43, 176) 

Abbreviations: E+D, coadministration of erlotinib and dexamethasone; E, use of erlotinib 
only; IQR, interquartile range; NSCLC, non-small cell lung cancer; TB, total bilirubin; AST, 
aspartate aminotransferase;  ALT, alanine transaminase; ALP, alkaline phosphatase; µmol/L, 
micromole/liter; U/L units/liter 
*p<0.05 between in the presence of dexamethasone and the absence of dexamethasone  
a Other chemotherapy drugs include bevacizumab, carboplatin, pemetrexed, cisplatin, and 
docetaxel. 
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6.5.3.3.2 Dose modification and concomitant use of erlotinib and dexamethasone 

Among all patients, 31 patients (41%) developed all grade hepatotoxicity. Incidence 

of hepatotoxicity was similar between E+D and E patients (44% vs. 41%). Sixteen 

(21%), 14 (19%) and 13 (17%) patients showed hepatotoxicity associated with TB, 

AST and ALT grade increase, respectively. The median onset was 26 days (IQR – 11, 

41). Among those patients who demonstrated hepatotoxicity, 10 patients (32%) fully 

recovered from hepatotoxicity, and the median time for the patients to recover was 43 

days (IQR – 33, 65). (Table 29) 
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Table 29. Evaluation of hepatotoxicity 

 Total (%) 
n = 75 

E + D (%) 
n = 16 

E (%) 
n = 59 

Hepatotoxicity  
Elevated TBa 
Elevated ASTa 
Elevated ALTa 

31 (41) 
16 (21) 
14 (19) 
13 (17) 

7 (44) 
5 (31) 
3 (19) 
1 (6) 

24 (41) 
11 (19) 
11 (19) 
12 (20) 

Onset, days [median (IQR)] 26 (11, 41) 20 (7, 119) 27 (13, 41) 
Outcome of hepatotoxicity 

Full recovery 
Time to recovery, days [median, (IQR)] 

 
10 (13) 

43 (33, 65) 

 
3  (19) 

69 (33, 69) 

 
7  (12) 

38 (33, 48) 
Hepatic enzymes level, [median (IQR)] 
TB 

Baseline level (µmol/L) 
Hepatotoxicity level (µmol/L) 

  
16 (10, 17) 
29 (28, 32) 

 
14 (12, 20) 
28 (25, 36) 

AST 
Baseline level (U/L) 
Hepatotoxicity level (U/L) 

 
32 (27, 32) 
38 (37, 32) 

 
26 (24, 30) 
42 (38, 51) 

ALT 
Baseline level (U/L) 
Hepatotoxicity level (U/L) 

 
23 
49 

 
20 (17, 26) 
42 (38, 85) 

Abbreviations: E+D, coadministration of erlotinib with dexamethasone; E, use of erlotinib 
only; IQR, interquartile range; TB, total bilirubin; AST, aspartate aminotransferase; ALT, 
alanine transaminase; µmol/L, micromole/liter; U/L, units/liter 
*p<0.05 between in the presence of dexamethasone and the absence of dexamethasone  
a Due to the different mechanisms of liver injury, patients may exhibit different patterns of 
elevations of liver biochemistries 
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Among those 31 patients who had developed hepatotoxicity, 17 (55%) received a 

modified dose of erlotinib. None of the patients in the E+D group and 17 (30%) 

patients in the E group received dose adjustments (p < 0.01). (Table 30) 
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Table 30. Dose modification and concomitant use of erlotinib with 
dexamethasone 

 E + D (%) 
n = 16 

E (%) 
n = 59 

Dose modification due to hepatotoxicity* a 0 (0) 17 (30) 
Management of adverse events 

Continue with previous dose 
Continue with dose reduction (150mg to 100mg) due to: 

Hepatotoxicity 
Hold and re-challenge due to: 

Hepatotoxicity 
Skin rash 

Discontinue 
Hepatotoxicity 
Skin rash 
Disease progression  

 
5 (31) 
0 (0) 
0 (0) 
1 (6) 
0 (0) 
1 (6) 
1 (6) 
0 (0) 
0 (0) 
1 (6) 

 
6 (10) 
2 (3) 
2 (3) 
2 (3) 
2 (3) 
0 (0) 

14 (24) 
13 (22) 
1 (2) 
0 (0) 

Abbreviations: E+D, coadministration of erlotinib with dexamethasone; E, use of erlotinib 
only 
*p<0.05 between in the presence of dexamethasone and the absence of dexamethasone  
a Dose modification is defined as discontinue or continue with dose reduction or hold and 
rechallenge of erlotinib 
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6.5.3.4 Discussion 

This study has documented the concurrent use of erlotinib and dexamethasone and the 

reduced likelihood of developing hepatotoxicity. While there is no reduction in 

frequency of hepatotoxicity, there were more patients who received erlotinib having 

experienced dose adjustments due to hepatotoxicity than patients who received 

dexamethasone concomitantly with erlotinib. This is further supported by the 

observation that the incidence of recovery from erlotinib-induced hepatotoxicity was 

higher in patients receiving the combined regimen, compared to those receiving 

erlotinib without dexamethasone. 

 

Our findings alluded to the possibility that the effect of dexamethasone in suppressing 

immune response evoked by the reactive metabolite may be more prominent than the 

CYP3A4 inducing effect in hepatotoxicity events. The dose of dexamethasone 

recommended for anti-inflammatory indications ranges from 0.75 – 9 mg/day. [281] 

Hence, at the median dose of 4 mg/day used in the E+D patients, an anti-

inflammatory effect will also be observed in addition to its original purpose of 

antiemesis and cerebral edema. Moreover, dexamethasone exhibits a biphasic 

induction of CYP3A4 mRNA. At low dexamethasone concentrations (nmol 

concentrations), CYP3A4 may be transactivated at a low amplitude in a xenobiotic-

independent manner. However, at higher levels (> 10 µM), dexamethasone binds to 

and activates the PXR and producing a high amplitude of induction. [282] In addition, 

there have been reports in the literature where erlotinib-induced hepatitis and acute 

interstitial pneumonitis was successfully treated with high-dose corticosteroids. [276] 

Although RM adduction results in hapten formation, this usually leads to tolerance. 

However, in the presence of a danger signal, such as underlying inflammation, an 
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immune response would be prompted, and this may explain the beneficial effects of 

corticosteroids. Henceforth, suggesting that glucocorticoids, such as dexamethasone, 

are potentially effective in preventing and treating erlotinib-induced hepatotoxicity. 

Reproducibility of this clinical finding with a different concomitantly taken steroid 

would be beneficial to support the findings. 

 

6.5.3.5 Limitations of study 

There were a few limitations in this study. Several confounding factors were 

identified, which include body weight, concurrent use of other chemotherapy agents 

and baseline LFTs. Additionally, dose reductions of erlotinib may have been 

influenced by other factors such as physicians’ and patients’ preference, which were 

unable to  be considered in the analysis due to the lack of data. This study is further 

challenged by a small sample size (75 patients). After application of several exclusion 

criteria, more than half of our patients were excluded from the study. In this process, 

we might have eliminated patients who manifested erlotinib-induced hepatotoxicity 

but did not have baseline LFT and/or subsequent LFT follow-ups in the database. 

Consequently, the incidence of hepatotoxicity may be underestimated. However, it is 

crucial to utilize strict exclusion criteria to ensure the scientific rigor of our results. 

 

6.5.4 Summary of important findings 

While the data on formation of RM suggest a possible role in the mechanism of 

idiosyncratic hepatotoxicity, it is important to note that the role of RM in causality of 

TKI-induced hepatotoxicity has not been demonstrated and its influence may differ on 

a case-by-case basis. Numerous events need to occur in an individual patient prior to 
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the occurrence of an IDR, of which the formation of a reactive intermediate appears to 

be the prerequisite. The usages of TKIs are associated with a risk of developing 

hepatotoxicity. Although the mechanism of TKI-induced hepatotoxicity has yet to be 

clearly established, several strategies have been adopted successfully to overcome 

TKI-induced hepatotoxicity. However, it should be noted that the effect of these 

strategies on disease response and survival benefits have not been formally evaluated, 

and hence they should be adopted with caution. Positive results from our 

observational study is hypothesis generating; it suggests that future studies can be 

conducted to examine the role of glucocorticoids such as prednisolone and 

dexamethasone, in the curative treatment of TKI-induced hepatotoxicity, which may 

also include the evaluation of the mediators involved in the immune response, such as 

the level of cytokines and auto-antibodies. 

 

Several strategies are adopted to prevent and treat TKI-induced hepatotoxicity, with 

the use of corticosteroids being most promising in the treatment and prevention of 

these toxicities – as there may be a role for the immune system in the development of 

these IDR. We have observed that there were more cases of dose reductions in 

patients who received erlotinib only than compared to those who received 

concomitant erlotinib and dexamethasone, possibly due to the immune suppression 

effect of dexamethasone. Taken together with our findings from the literature search, 

the use of glucocorticoids may prevent or even treat hepatotoxicity during the course 

of TKI therapy. However, further evidence would be required before they can be 

recommended to the larger populations. Furthermore, the possible risk of increased 

RM formation through enzyme induction would have to be carefully considered. Drug 

manufacturers should also look into developing strategies to treat and prevent TKI-



Chapter 6 
_____________________________________________________________________  

183 
 

induced hepatotoxicity during drug development, especially when high incidences of 

elevated liver enzymes are associated with the drug. This could ensure that patient 

continue to receive treatment, without increasing the risk of serious DILI. 



Chapter 7 
_____________________________________________________________________  

184 
 

7 Effect of metabolism-related pharmacokinetic drug-drug interaction on risk 

for TKI-associated hepatotoxicity – a case study of lapatinib and 

dexamethasone 

 

The use of dexamethasone, a CYP3A4 inducer, together with lapatinib is not 

uncommon in clinical practice. About one-third of all HER2-positive breast cancer 

patients would develop brain metastasis [283, 284], and its management involves 

relieving symptoms of peritumor edema, such as headache, nausea, vomiting, and 

mental state alterations, which are seen commonly in patients with increased 

intracranial pressure. These symptoms can be effectively managed with 

corticosteroids such as dexamethasone [285], with up to 75% of patients 

demonstrating marked neurological improvement within 24–72 h of dexamethasone 

initiation [279]. Therefore, both dexamethasone and lapatinib are indicated in 

metastatic HER2-positive breast cancer patients, which may lead to their concomitant 

usage. Additionally, the scientific basis of this study is based on the idea that since 

dexamethasone is a CYP3A4 inducer and lapatinib a CYP3A4 substrate, concomitant 

use may cause an increase in metabolizing capacity, which in turn increases the 

formation of lapatinib-derived RM and thereby, elevating the risk of toxicity. 

Furthermore, in light of the discussion in the previous chapter that dexamethasone 

possesses enzyme inducing as well as anti-inflammatory effects, it would be 

challenging to predict the resultant effect of this DDI, which would need to be 

investigated objectively, using both clinical as well as in-vitro data.   
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Therefore, this study was conducted with an objective to evaluate the incidence of 

elevated LFTs in the presence or absence of dexamethasone in clinical setting. The 

effect of dexamethasone on lapatinib-induced hepatotoxicity was evaluated in a drug 

utilization review based on patient data obtained from our records. In addition, a 

parallel in-vitro experimental setup was adopted to provide mechanistic information 

on the proposed association. 

 

7.1 Drug utilization review 

 

7.1.1 Methodology 

 

7.1.1.1 Study design 

This was a single-centered, observational, retrospective, nested case-control study 

conducted at NCCS. This study was approved by the Institutional Review Board.  

 

7.1.1.2 Data collection 

All HER2-positive breast cancer patients who received lapatinib from January 2007 to 

September 2011 were screened for eligibility. To be included, patients must have 

baseline LFT monitored and at least one set of LFT follow-up at least 3 days after 

initiation of lapatinib. Patients were excluded if, during the course of lapatinib therapy, 

were concomitantly using any CYP3A4 inhibitors or inducers (with the exception of 

dexamethasone). Two commercially available databases, Micromedex [98] and 

Lexicomp [99] were utilized to verify the status of CYP3A4 inducers or inhibitors. 
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Patient information such as demographics, medical history and laboratory parameters 

were collected through medical records.  

 

7.1.1.3 Endpoints and definitions 

Two groups were defined after verification of medication history: Patients who 

received lapatinib with dexamethasone formed the L+D group, and patients who 

received lapatinib without dexamethasone, formed the L group. The primary endpoint 

was the incidence of hepatotoxicity, which was defined by the first clinically 

significant change (comparing against baseline) of any liver enzyme including TB, 

ALT or AST by at least 1 grade. Grading of liver enzyme was in accordance of the 

CTCAE version 4.0.2. [103] Concomitant usage was defined as the use of 

dexamethasone, during the period of lapatinib therapy. The concomitant usage 

overlap period was defined as from the day patient starts taking the drug to 6 

elimination half-life period after drug discontinuation. Hepatotoxic drugs were 

defined as drugs with a potential to cause liver injury. [286] Recovery from 

hepatotoxicity was defined as the normalization of the affected liver enzymes to 

normal or baseline level at 3 – 4 weeks after the hepatotoxicity event. 

 

7.1.1.4 Statistical analysis 

Categorical variables, such as presence of hepatotoxicity, were analyzed with Chi-

square or Fisher’s exact test. Continuous variables were analyzed using Independent 

sample t-test or Mann-Whitney U test. Paired data, comparing LFTs at baseline and at 

hepatotoxicity event, were analyzed using the Wilcoxon Sign Rank test. Univariate 

analysis was performed to identify variables that are significantly different between 
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the L+D and L group. Multivariate logistic regression was performed to adjust the 

odds ratio based on clinically important (e.g. age, presence of liver metastasis, 

underlying hepatitis, baseline LFT) and statistically significant variables. For 2-tailed 

tests, a p-value of less than 0.05 was considered significant. Data was analyzed with 

PASW 18.0. 

 

7.1.2 Results 

 

7.1.2.1 Patient demographics 

A total of 120 patients were identified based on lapatinib usage. After assessing 

inclusion criteria, 23 patients were excluded (3 due to lack of baseline LFT, 14 due to 

lack of follow up LFT and 6 due to concomitant usage of other CYP3A4 inducer or 

inhibitor). Ninety-seven patients were included in the analysis, of which 24 (25%) 

were concomitantly receiving lapatinib with dexamethasone (Figure 12). Median dose 

of dexamethasone used was 8 mg/day (range 1 – 16), which is within the 

recommended dosage for management of symptoms of brain metastasis. [279] 

Median duration of concomitant usage was 11 days (range 2 – 28). 

 

Mean age of the patients was 54 ± 11 years and majority of them were Chinese (77%). 

Ninety-two patients (95%) had metastatic breast cancer. Only four patients (4%) had 

underlying liver disease (Table 31). Eighty-seven patients (90%) were using lapatinib 

as combination therapy, with capecitabine being the most common combination. 
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Usage of concurrent hepatotoxic drugs was observed in 45 patients (46%). Overall 

baseline LFT was within normal range (Table 32). 

 

 

Figure 12. Distribution of patients 
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Table 31. Patient demographics 

 Total (%) ‘L+D’ (%) ‘L’ (%) 
 n=97 n=24 n=73 
Age, years  
(mean ± SD) * 54 ±  11 50 ± 10 56 ± 10 

Ethnicity    
Chinese 75 (77) 17 (71) 58 (80) 
Malay 8 (8) 3 (13) 5 (7) 
Indian 6 (6) 1 (4) 5 (7) 
Others 8 (8) 3 (13) 5 (7) 

Metastasis 92 (95) 24 (100) 68 (93) 
Liver 54 (56) 13 (54) 41 (56) 
Bone 50 (52) 13 (54) 37 (51) 
Brain * 26 (27) 13 (54) 13 (18) 
Lung 51 (53) 12 (50) 39 (53) 
Others 3 (3) 2 (8) 1 (1) 

Hormonal status    
ER+ PR+ 39 (40) 11 (46) 28 (38) 
ER+ PR- 15 (16) 4 (17) 11 (15) 
ER- PR+ 12 (12) 1 (4) 11 (15) 
ER- PR- 30 (31) 8 (33) 22 (30) 
Unknown 1 (1) 0 (0) 1 (1) 

Underlying hepatitis 4 (4) 1 (4) 3 (4) 
History of chemotherapy 93 (96) 22 (92) 71 (97) 

Anthracycline 49 (51) 11 (46) 38 (52) 
Taxanes 69 (71) 17 (71) 52 (71) 
Vinca alkaloid 36 (37) 6 (25) 30 (41) 

History of hormonal therapy 65 (67) 16 (67) 49 (67) 
Aromatase inhibitor 49 (51) 13 (54) 36 (49) 
Tamoxifen 48 (50) 11 (46) 37 (51) 

Abbreviations: L+D, Lapatinib and dexamethasone combination; L, Lapatinib only; ER, 
Estrogen receptor; PR, Progesterone receptor 
* p<0.05 between with dexamethasone and without dexamethasone group  
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Table 32. Lapatinib therapy in patients 

 Total (%) ‘L+D’ (%) ‘L’ (%) 
 n=97 n=24 n=73 
Lapatinib therapy    

Monotherapy 10 (10) 4 (17) 6 (8) 
Combination therapy 87 (90) 20 (83) 67 (92) 

Capecitabine 76 (78) 19 (79) 57 (78) 
Hormonal therapy 16 (17) 7 (29) 9 (12) 
Vinorelbine 4 (4) 1 (4) 3 (4) 
Herceptin 4 (4) 1 (4) 3 (4) 

Lapatinib dose, mg 
(median, (range)) 

1250 
(500, 1500) 

 
Mean = 1199 

1250 
(1000, 1500) 

 
Mean = 1229 

1250 
(500, 1500) 

 
Mean = 1188 

Concurrent use of 
hepatotoxic drugs * 45 (46) 20 (80) 25 (34) 

Baseline liver function tests (median, (IQR))  

TB (U/L) 14 
(10, 18) 

15 
(11, 17) 

13 
(10, 18) 

AST (U/L) 31 
(24, 56) 

29 
(23, 48) 

32 
(25, 57) 

ALT (U/L) 27 
(18, 41) 

24 
(17, 58) 

27 
(19, 39) 

ALP (U/L) 70 
(53, 146) 

71 
(43, 161) 

70 
(54, 146) 

Abbreviations: L+D, Lapatinib and dexamethasone combination; L, Lapatinib only; TB, Total 
bilirubin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline 
phosphatase; U/L, Units/liter 
* p<0.05 between with dexamethasone and without dexamethasone group 
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7.1.2.2 Observed differences between L+D and L groups 

Patients in the L+D group were younger than those in the L group (50 ± 10 vs. 56 ± 

10 years, p=0.03). Brain metastasis was more common in the L+D group (54% vs. 

18%, p<0.005). (Table 31) Although more patients in the L+D group were using 

concurrent hepatotoxic medication (80% vs. 34%, p<0.005), the doses and 

frequencies of these medications were within normal range. Presence of liver 

metastasis, underlying hepatitis and baseline LFT were not significantly different 

between the two groups of patients (p>0.05). (Table 32) 

 

7.1.2.3 Hepatotoxicity evaluation 

Sixty-five patients (67%) manifested hepatotoxicity after lapatinib treatment and the 

median onset was 50 days (range 4 – 528). Generally, hepatotoxicity was associated 

with a change in AST grading. When compared, the LFT at baseline and at 

hepatotoxicity event were also significantly different (p<0.005). Twenty-one patients 

(32%) recovered from the elevated liver enzymes. Among those patients who 

manifested hepatotoxicity, 46 patients (71%) continued lapatinib use at the same 

dosage and only 3 (5%) discontinued lapatinib use due to hepatotoxicity. (Table 33) 

 

7.1.2.4 Hepatotoxicity and concomitant use of lapatinib and dexamethasone 

Twenty-one patients (88%) in the L+D group developed hepatotoxicity, while it 

occurred in 44 patients (60%) in the L group (p=0.01). The onset of hepatotoxicity 

between the groups was also different, with a trend to appear earlier in the L+D group 

(44 vs. 55 days, p=0.63). Elevation of ALT was observed to be more frequent in the 
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L+D group compared to the other (42% vs. 19%); and this was significantly different 

(p=0.03). (Table 33) 
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Table 33. Evaluation and management of hepatotoxicity 

 Total L+D L 
 n=97 n=24 n=73 
n (%) 
Hepatotoxicity * 65 (67) 21 (88) 44 (60) 

Elevated TB † 29 (30) 8 (33) 21 (29) 
Elevated AST † 39 (40) 12 (50) 27 (37) 
Elevated ALT †* 24 (25) 10 (42) 14 (19) 

Onset (days), median (IQR) 50 
(22, 110) 

44 
(22, 107) 

55 
(20, 110) 

Recovery from 
hepatotoxicity 21 (32) 8 (38) 13 (30) 

 
TB, median (IQR) 

Baseline level (U/L)  15 (11, 27)  
Hepatotoxic event level (U/L) 35 (27, 46)  

AST, median (IQR)    
Baseline level (U/L) ‡  29 (23, 35)  
Hepatotoxic event level (U/L) 50 (38, 107)  

ALT, median (IQR)    
Baseline level (U/L) ‡  24 (16, 32)  
Hepatotoxic event level (U/L) 51 (39, 87)  

   
Management of hepatotoxicity, n (%)   

Continuation of lapatinib therapy  
With the same dose 46 (71)  
With dose reduction 0 (0)  

Discontinuation of lapatinib therapy due to  
Adverse drug reactions 

Hepatotoxicity 3 (5)  
Diarrhea 2 (3)  

Disease progression 14 (22)  
Abbreviations: L+D, Lapatinib and dexamethasone combination; L, Lapatinib only; TB, Total 
bilirubin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; U/L, Units/liter 
* p<0.05 between with dexamethasone and without dexamethasone group 
† Patients may manifest more than one type of hepatotoxicity 
‡ p<0.05 between baseline and hepatotoxic event level 
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7.1.2.5 Risk for developing hepatotoxicity 

Patients in the L+D group were 4.61 times (95% CI 1.26 – 16.88, p=0.01) more likely 

to develop hepatotoxicity, than those in the L group. After adjusting with confounding 

factors such as age, baseline LFT (TB, AST, ALT, ALP), liver and brain metastasis, 

underlying hepatitis and concurrent usage of hepatotoxic drugs, the odds ratio was 

4.57 (95% CI 1.23 – 17.00, p=0.02). (Table 34) 

 

Those in the L+D group were also 3.01 times (95% CI 1.11 – 8.18, p=0.03) more 

likely to develop a clinically important change in ALT compared to the other group. 

After adjustment with age, baseline ALT, liver and brain metastasis, underlying 

hepatitis and concurrent usage of hepatotoxic drugs, the adjusted odds ratio was 3.48 

(95% CI 1.24 – 9.80, p=0.02). (Table 34) 
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Table 34. Risk for developing hepatotoxicity in concomitant usage of 
dexamethasone 

N=97 OR (95% CI) Adjusted OR (95% CI) 

Hepatotoxicity * 4.61 
(1.26 – 16.88) 

4.57 ¶ 
(1.23 – 17.00) 

Elevated TB 1.24 
(0.46 – 3.33) - 

Elevated AST 1.70 
(0.67 – 4.32) - 

Elevated ALT * 3.01 
(1.11 – 8.18) 

3.48 ¶¶ 
(1.24 – 9.80) 

Abbreviations: TB, Total bilirubin; AST, Aspartate aminotransferase; ALT, Alanine 
aminotransferase 
* p<0.05 between with dexamethasone and without dexamethasone group 
¶ Adjusted for age, liver metastasis, brain metastasis, baseline LFT (TB, AST, ALT, ALP), 
underlying liver disease, concurrent use of hepatotoxic medications 
¶¶ Adjusted for age, liver metastasis, brain metastasis, baseline ALT, underlying liver disease, 
concurrent use of hepatotoxic medications 
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7.2 Cell culture model 

 

7.2.1 Methodology 

 

7.2.1.1 Cell culture conditions 

As previously mentioned under 3.2.1.1 Cell culture conditions 

 

7.2.1.2 CYP3A4 induction and RT-PCR 

Induction of cyp3a11, the mouse homologue of CYP3A4 was evaluated. TAMH cells 

(approximately 10,000 – 15,000/well) were seeded in a 6-well plate and were treated 

with solvent (control) or dexamethasone and incubated for 72 hours. After incubation, 

cells were harvested using the cell scraper. RNA was extracted and purified using the 

RNeasy Mini Kit (Qiagen, Venlo, The Netherlands). Subsequently, cDNA synthesis 

was performed using the SuperScript III First-Strand Synthesis System for RT-PCR 

(Invitrogen, Carlsbad, CA). PCR primer for cyp3a11, the CYP3A4 mouse homologue, 

was used. The primer pair sequences were obtained from literature [287], forward 

primer TCA CAC ACA CAG TTG TAG GGA GAA and reverse primer GTC CAT 

CCC TGC TTG TTT GTC. Real-time quantitative PCR (RT-PCR) was performed 

with the CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Data 

obtained were normalized to reference gene and solvent control to obtain the ΔΔCT 

value, which was converted to fold change in mRNA expression levels. 
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7.2.1.3 Treatment and cell viability assay 

TAMH cells (approximately 2000/well) were seeded in a 96-well plate. At 24 hours, 

cells were treated with vehicle-only or dexamethasone (10 and 20 µM) and allowed to 

incubate for an additional 72 hours. After incubation, various concentration of 

lapatinib (2.5 to 15 µM) was added and incubated for 24 hours. Thereafter, media was 

aspirated and replaced with 50 µl of 2 mg/ml of MTT dye (in PBS) and 200 µl of 

HEPES-buffered DMEM/F12 media, as previously established. [124, 125] The plate 

was incubated in the dark for 2 hours at 37 °C. Medium was then aspirated and the 

residual dye re-dissolved in 20 µl of Sorensen’s buffer (0.1 M glycine and 0.1 M 

NaCl equilibrated to pH 10.5 with 0.1 M NaOH) and 200 µl of DMSO. Plates were 

read at 570 nm using the Infinite® 200 (Tecan, Männedorf, Switzerland). Cell 

viability is expressed as a ratio normalized to the vehicle-treated control. 

 

7.2.2 Results 

 

7.2.2.1 Evidence of dexamethasone induction 

TAMH cells were pre-treated with dexamethasone and RT-PCR was used to quantify 

the mRNA expression, which was compared against treatment with solvent control. 

Treatment with 10 µM and 20 µM dexamethasone resulted in a 2-fold and 2.5-fold 

increase in cyp3a11 mRNA levels respectively. (Figure 13) 
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Figure 13. Evidence of dexamethasone induction on TAMH cells 
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7.2.2.2 Cell viability 

The presence of lapatinib (more than 5 µM) as compared to treatment with solvent 

control, reduced viability in a concentration-dependent manner. The average viability 

was 91% and 29% for 5 µM and 10 µM lapatinib respectively. There was a further 

reduction in viability, with the introduction of dexamethasone and this decrease was 

even more evident with a higher concentration of dexamethasone. At 5 µM lapatinib, 

the introduction of 10 µM and 20 µM dexamethasone resulted in a 19% and 59% 

decrease in viability respectively. This result offers complementary in-vitro evidence 

that the combination of lapatinib and dexamethasone affects the cell viability (Figure 

14). 
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Figure 14. Change in cell viability with treatment of lapatinib and 
dexamethasone (DEX) (top) 10µM and (bottom) 20µM 
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7.3 Discussion 

This is the first study to document a clinically important interaction between lapatinib 

and dexamethasone, which associates with an increased occurrence of hepatotoxicity. 

Patients who were using this combination exhibited about 5-fold higher risk of 

developing hepatotoxicity than those who were not using the combination. 

 

With the intent to investigate the in-vitro role of dexamethasone in lapatinib-induced 

hepatotoxicity, a parallel experimental setup was included and the findings have 

provided substantiating evidence to verify our hypothesis. Treatment of the 

metabolically-competent TAMH cells with both compounds resulted in a further 

reduction in viability as compared to treatment with lapatinib alone. In this interaction, 

dexamethasone induces the enzyme, which increases lapatinib metabolism and RM 

formation. In addition, this result also provides in-vitro evidence on our first aim, 

which is to determine the association between TKI plasma levels and toxicities. 

Treatment of TAMH cells with lapatinib alone resulted in a concentration-dependent 

reduction in viability, suggesting a possible relationship between exposure and 

toxicity. Moreover, since this work was published, further corroboration was observed 

with a similar study in HepaRG using rifampicin as an inducer. [288] 

 

Our study alluded to the possibility that this increase in risk of toxicity could similarly 

be observed in other CYP3A4 inducers [71]. The usage of CYP3A4 inducers in 

cancer patients is not uncommon, where they can be part of anticancer therapy, 

supportive care or management of co-morbidities. The impact of this interaction has 

also led us to contemplate if other co-administered drugs could be accountable for the 
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onset of idiosyncratic toxicities with lapatinib. Lapatinib, together with letrozole, is 

indicated for use in HER2-positive metastatic breast cancer in postmenopausal 

women. Lapatinib is an inhibitor of CYP3A4, while letrozole is a CYP3A4 substrate, 

thus leading to the possibility for an interaction where lapatinib could inhibit letrozole 

metabolism. Interestingly, the expected interaction was not observed, but instead 

serum levels of both drugs decreased. [289] With that in mind, strong CYP3A4 

inducers and inhibitors should be used cautiously with lapatinib. The effect of altering 

metabolism and toxicity by dexamethasone suggests that genetic differences among 

individuals may also impact the occurrence of lapatinib-induced hepatotoxicity.  

 

In the previous chapter, it was demonstrated that there was a decrease in risk of 

hepatotoxicity with the concomitant use of erlotinib and dexamethasone, which is 

contrasting with the observations in this study. One possible reason may be due to the 

doses of the drugs. The median dose of lapatinib in the study was 1250 mg, compared 

to the median dose of 150 mg of erlotinib in that study. Although a dose-toxicity 

association has yet to be established, a higher dose is usually associated with a higher 

risk of IDR due to the increase exposure of both drug and RM. The remarkably large 

load of RM formed may generate a danger signal which may then trigger off a 

response. Secondly, it could also be due to the innate toxicity of the RM, where RM 

of lapatinib could be highly toxic compared to the RM of erlotinib. It may also be 

attributed to the two agents being metabolized by a different panel of P450 enzymes. 

Erlotinib is also metabolized by CYP1A2 to a large extent, as compared to lapatinib. 

Hence, the effect of dexamethasone on the expression of these enzymes may be 

slightly different. As such, the difference in toxicity may not be due to the effects of 
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dexamethasone alone, but rather a combination of that with the inherent toxicity of the 

drug. 

 

7.4 Limitations of study 

There were several limitations in this study. Several confounding factors were 

identified, which include age, liver metastasis status, baseline LFT, underlying liver 

disease and concurrent usage of hepatotoxic medications. These were either clinically 

important and/or statistically significant variables between the groups and were all 

included in the multivariate model for adjustment of the odds ratio. These variables 

had minimal impact on the risks, where the odds of developing hepatotoxicity in 

patients receiving dexamethasone were 4.61 (95% CI 1.26 – 16.88) and 4.57 (95% CI 

1.23 – 17.00), before and after adjustment respectively. Due to the retrospective 

nature of this study, HLA allele type (DQA1*02:01 and DRB1*07:01 are identified as 

risk factors for lapatinib-associated hepatotoxicity [290]), alcohol usage and 

nutritional status were lacking, which undermined the contribution of additional risk 

factors for developing hepatotoxicity. [291] Patients may also be using medications or 

CAM such as St John’s Wort obtained elsewhere such as community pharmacies, and 

these were not captured in this study due to the retrospective nature. Next, it is 

challenging to define and diagnose drug-induced hepatotoxicity, due to the absence of 

definitive signs and symptoms, biomarkers and findings such as liver biopsy. [292] 

This is further complicated by the highly variable onset of injury. Since this was a 

retrospective study, the schedule for laboratory tests was not standardized and hence 

highly variable. The robust hepatic responses of repair and regeneration may allow 

seemingly life-threatening liver injury to subside without clinical consequences, 

despite continuation of drug therapy [293], making it even more challenging to detect 
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the onset and recovery of drug-induced liver injury. This study also used a definition 

of hepatotoxicity which is more lenient than the standard DILI working group criteria, 

and hence the number of hepatotoxicity events observed could have been inflated. To 

identify patients who experience full frank DILI, the definition of hepatotoxicity from 

the DILI Expert Working Group Criteria is defined as any one of the following: more 

than or equal to five-fold elevation above the ULN for ALT, or more than or equal to 

two-fold elevation above the ULN for ALP (particularly with accompanying 

elevations in concentrations of 5’-nucleotidase or γ-glutamyl transpeptidase in the 

absence of known bone pathology driving the rise in ALP level) or more than or equal 

to three-fold elevation in ALT concentration and simultaneous elevation of bilirubin 

concentration exceeding two-fold above the ULN. [294] To capture patients who 

experience clinically significant changes in hepatic function, we defined 

hepatotoxicity as patients who have experienced at least one grade of elevation of any 

liver enzymes compared against baseline, based on the CTCAE criteria. However, the 

‘milder form’ of hepatotoxicity serves as an excellent proxy for the more severe DILI 

events as they do not frequently occur in clinical practice. This is suggested in 

literature as the ‘adaptive’ characteristic of idiosyncratic hepatic injury, where 

patients who develop full blown hepatotoxicity belongs to a subset of a larger group 

of patients who develop elevated liver enzymes, and as a consequence of failure to 

‘adapt’ to the initial injury. [251]  

 

7.5 Summary of important findings 

This chapter has provided clinical evidence that concomitant usage of lapatinib and 

dexamethasone increases the risk for hepatotoxicity by five-fold, possibly through the 

induction of metabolism. The in-vitro findings have also provided substantiating 
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evidence and insights on the role of dexamethasone in lapatinib-induced 

hepatotoxicity. Since it is not uncommon for them to be prescribed concomitantly, 

clinicians should be aware of this risk when considering the use of this combination 

and follow through with close monitoring where necessary. In addition, as supported 

by the parallel effects of both dexamethasone and rifampicin, caution should be 

exercised when lapatinib is used with other P450 enzyme inducers. On the other hand, 

the effect of each DDI may be TKI-specific, as contrasting outcomes of the potential 

DDI was observed for the combination of lapatinib-dexamethasone and erlotinib-

dexamethasone. The difference in outcomes and toxicity may not be due to the effects 

of the enzyme inducer dexamethasone alone, but rather a combination of that with the 

inherent toxicity of the drug. 
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8 Concluding remarks and recommendations for future studies 

This thesis aimed to investigate whether pharmacokinetic alterations in TKIs can 

affect the occurrence of toxicities. Looking at the different aspects of pharmacokinetic 

alterations such as drug exposure, genetic polymorphisms and drug-drug interactions, 

this thesis has demonstrated that these factors may play a role in the manifestation of 

TKI-associated toxicities. Table 35 provides a summary of the important findings in 

this thesis.  

 

The first aim of this thesis was to explore the association between the manifestation of 

TKI-associated toxicities and plasma drug levels and consequently, to determine the 

role of TDM as a possible management strategy for TKI-induced toxicity. In this 

thesis, a trend of higher drug exposures in patients who experienced toxicities such as 

mucositis and altered taste was observed. More importantly, several of these toxicities 

have a significant impact on patient’s quality of life. As a drug, sunitinib engenders 

considerable and unpredictable inter-patient variability; hence therapeutic drug 

monitoring could be a mean to improve its safety and efficacy. A practical suggestion 

would be to measure blood concentrations when sunitinib is initiated for the first 

cycle, to observe whether therapeutic levels are achieved in relation to efficacy and 

toxicity. This is particularly important in groups such as Asians, women and those 

with a low body weight, because these factors may affect the accumulation of 

sunitinib and thereby the risk of toxicity. Total plasma concentration of sunitinib 

could be used as a marker for therapeutic efficacy, whereas sunitinib levels could be 

used as a marker for toxicity. If necessary, doses could also be decreased further to 

meet the minimum effective plasma concentration without affecting the efficacy, 
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which could potentially lead to cost savings for the patient. Further studies with an 

active therapeutic drug monitoring component should be conducted to study the 

feasibility of such a strategy. Furthermore, the parent drug, sunitinib, was found in the 

in-vitro study to be more toxic to the skin cells than its active equipotent metabolite 

SU12662. Therefore, in-vitro experiments could also be conducted with other cell 

types to compare the effect of sunitinib and SU12662 on various toxicities.  

 

As the disposition of TKIs could play a role in explaining the differences in response 

and in toxicities observed, this thesis aimed to explore the role of genetic 

polymorphism in TKI-associated toxicities, by investigating the association between 

genetic polymorphisms of key drug metabolizing enzyme and drug transporters and 

their risk for toxicities. The thesis demonstrated that ABCB1 may be associated with 

manifestation of toxicities and drug exposure, but corresponding effect with the 

polymorphism of CYP3A5 is not apparent. Future studies involving a larger sample 

should be conducted to confirm these findings. If the role of the ABCB1 

polymorphism on exposure and toxicities is confirmed in larger studies, genotyping 

for ABCB1 and therapeutic drug monitoring should be considered in clinical practice 

to aid in the personalization of drug therapy. By ensuring that the optimal dose is 

prescribed to the right patient according to the genotype, we can achieve maximum 

efficacy with minimal toxicity.  

 

Finally, the last aim of this thesis was to assess the effect of metabolism-related 

pharmacokinetic drug-drug interactions on risk for TKI-associated toxicity. Due to the 

substantial potential for interaction between TKIs and other drugs that modulate the 
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activity of metabolic pathways, unwanted clinical consequences may occur from 

small changes in drug metabolism and pharmacokinetics in cancer patients. In 

addition, TKIs possess several risk factors for developing DILI. It is imperative that 

comprehensive and accurate information be collected on use of medications by 

patients, to increase awareness and familiarity with potential DDIs to ensure patient 

safety and to aid the development of optimal therapy. [295, 296] To reduce the 

potential for unexpected drug interactions during therapy, the patient’s medical 

history should be taken thoroughly and interactively, and updated periodically. [297] 

Patients who have risk factors for potential DDIs should also be monitored more 

closely. Risk factors for potential DDIs include liver function status, age, tumor type 

[298], number and type of medications received [299] and using drugs that are 

metabolized exclusively by only one CYP isoform. [300] When drugs with potential 

DDIs are considered with TKIs use, clinicians should also consider alternative agents 

that have no or less interaction potential. However, it is also important to note that in 

some cases, switching to an alternative agent may not have any significant difference 

on the pharmacokinetic profile. For instance, azithromycin exhibits a low potential for 

interaction. Likewise, there was no significant effect of oral clarithromycin or 

azithromycin on the pharmacokinetic profile of sunitinib after single administration. 

[301] As the clinical effects of these potential interactions are unknown, when drug 

pairs with potential DDIs need to be used (e.g. in cases where there is a compelling 

indication for the potential interacting drug to be used), more intense patient 

monitoring for interactions is needed. Scripture et al has provided a valuable summary 

of the conditions where drug interactions are likely to be clinically significant, such as 

when drug elimination occurs primarily through a single metabolic pathway or when 

one or both of the interacting drugs has a steep dose-response curve or a narrow 
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therapeutic range etc. [173] Furthermore, the effect of each DDI may be TKI-specific, 

as contrasting outcomes of the potential DDI was observed for the combination of 

lapatinib-dexamethasone and erlotinib-dexamethasone. The difference in outcomes 

and toxicity may not be due to the effects of the enzyme inducer dexamethasone alone, 

but rather a combination of that with the inherent toxicity of the drug. 

 

This thesis has also evaluated how a TKI-associated DDI may affect the risk of 

hepatotoxicity. The findings demonstrated that patients receiving TKIs were 4-times 

more likely to develop hepatotoxicity compared to patients receiving placebo. Future 

studies should be conducted to investigate the mechanism of TKI-associated 

hepatotoxicity, which is largely idiosyncratic, to determine which RM is culpable for 

the toxicity and how it causes toxicity. It is also evident that formation of RM alone 

may not be sufficient for the manifestation of toxicity, for instance, genetic 

polymorphism in HLA genes may be studied as they could play an important role in 

the development of immune response to trigger an overt toxicity. In addition, this 

thesis has also demonstrated both clinical and in-vitro evidence suggests that 

concomitant usage of lapatinib and dexamethasone increases the risk for 

hepatotoxicity. Future studies will aim to examine the effects on efficacy and toxicity 

from drug interaction with other agents. Although explicit cases of TKI-induced 

hepatotoxicity may be rare, they often occur in a background of higher rate of mild, 

asymptomatic and usually transient liver injury. Patients who do not adapt to this mild 

injury will then move on to develop progressive liver injury. Notwithstanding patient 

risk factors such as age, gender, concurrent diseases, other drug exposures and 

immunological dispositions, the TKI itself with its unique physicochemical properties 

and propensity for metabolism, is associated with several risk factors for developing 
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DILI. Hence, periodic and continual monitoring of LFTs are vital for early detection 

of injury. Although the product information leaflets of these TKIs do provide some 

recommendations on the monitoring of LFTs, the quality of the information is 

inconsistent and more extensive details should be provided. For example, information 

can be provided on what is the recommended threshold of LFTs elevation to 

discontinue the TKI, when can TKI be restarted in cases of elevated LFTs, or should 

they be permanently discontinued. A more comprehensive guidance can aid the 

clinicians in management of their patients and improved confidence in managing the 

hepatotoxicity cases. Ultimately, by understanding the different hepatic mechanisms 

underlying the interaction between the drugs involved in a pharmacotherapy may 

improve the management strategies for co-administration of drugs.  

 

In conclusion, TKIs have successfully transformed many cancers from a death 

sentence to a chronic disease. Furthermore, with the unceasing discovery of new 

anticancer drugs, the outlook is promising. However, these new drugs are also a 

harbinger of more challenges such treatment tolerability and health outcomes. While 

we cannot have the best of both worlds at the moment, with continual research in the 

understanding and management of toxicities as well as the development of improved 

drugs, perhaps someday in the future we can.  
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Table 35. Summary of important findings 

Aims Research questions Important findings 

1. To explore the 
association between 
the manifestation of 
TKI-associated 
toxicities and 
plasma drug levels 

What is the association between 
plasma level of sunitinib and/or 
active metabolite and the 
manifestation of toxicity? 

Trend of higher exposures in 
patients who experienced 
toxicities 

What is the difference in the in-
vitro toxic potential of sunitinib 
vs. its active metabolite? 

Sunitinib more toxic towards 
keratinocytes while both 
sunitinib and metabolite were 
equally toxic to hepatocytes 

2. To explore the 
role of genetic 
polymorphism in 
TKI-associated 
toxicities 

What is the association between 
CYP3A5 and ABCB1 SNPs with 
the manifestation of toxicity? 

ABCB1 may be associated with 
manifestation of toxicities, but 
the polymorphism of CYP3A5 is 
not 

What is the association between 
CYP3A5 and ABCB1 SNPs with 
the plasma level of sunitinib 
and/or active metabolite? 

ABCB1 may be associated with 
drug exposure, but the 
polymorphism of CYP3A5 is not 

3. To assess the 
effect of 
metabolism-related 
pharmacokinetic 
drug-drug 
interactions on risk 
for TKI-associated 
toxicity 

What is the role of metabolism-
related DDIs in TKI therapy? 

Due to the substantial potential 
for interaction between TKIs and 
other drugs that modulate the 
activity of metabolic pathways, 
unwanted clinical consequences 
may occur from small changes in 
drug metabolism and 
pharmacokinetics in cancer 
patients 

What is the risk of TKI-induced 
hepatotoxicity in cancer patients? 

Patients receiving TKIs were 4-
times more likely to develop 
hepatotoxicity compared to 
patients receiving placebo  

Why is TKI at risk for 
hepatotoxicity? 

TKIs possess several risk factors 
for developing DILI 

Does the CYP3A4 inducer, 
dexamethasone, affect the 
incidence of hepatotoxicity of 
lapatinib? 

Both clinical and in-vitro 
evidence suggests that 
concomitant usage of lapatinib 
and dexamethasone increases the 
risk for hepatotoxicity 
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9 Publications arising from this work 

 

9.1 Peer-review articles 

1. Teo YL, Wee HL, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, Ho HK, 

Chan A. Effect of the CYP3A5 and ABCB1 genotype on exposure, clinical 

response and manifestation of toxicities from sunitinib in Asian patients. 

Pharmacogenomics. 2015 Mar 17. doi: 10.1038/tpj.2015.13. 

 

2. Teo YL, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, Ho HK, Chan A. 

Association of drug exposure with clinical response and toxicity in metastatic 

renal-cell carcinoma patients receiving an attenuated dosing regimen of sunitinib. 

Target Oncol. 2014 Dec 13. doi: 10.1007/s11523-014-0349-2 

 

3. Teo YL, Ho HK, Chan A. Formation of reactive metabolites and management of 

tyrosine kinase inhibitors-induced hepatotoxicity: A literature review. Expert Opin 

Drug Metab Toxicol. 2014 Nov 15:1-12.  

 

4. Teo YL, Ho HK, Chan A. Metabolism-related pharmacokinetic drug-drug 

interactions in tyrosine kinase inhibitors: current understanding, challenges and 

recommendations. Br J Clin Pharmacol. 2014 Aug 14. doi: 10.1111/bcp.12496. 

 

5. Teo YL, Chong XJ, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, Ho 

HK, Chan A. Role of sunitinib and SU12662 on dermatological toxicities in 
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metastatic renal cell carcinoma patients: in-vitro, in-vivo and outcomes 

investigation. Cancer Chemother Pharmacol. 2014 Feb;73(2):381-8 

 

6. Teo YL, Ho HK, Chan A. Risk of tyrosine kinase inhibitors-induced 

hepatotoxicity in cancer patients: a meta-analysis. Cancer Treatment Review. 

2013; 39(2):199-206.  

 

7. Teo YL, Saetaew M, Chanthawong S, Yap YS, Chan EC, Ho HK, Chan A. Effect 

of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in 

vitro evidence. Breast Cancer Res Treat. 2012; 133(2): 703-11. 

 

8. Teo YL, Tan SY, Chue XP, Chau NM, Tan MH, Kanesvaran R, Ho HK, Wee HL, 

Chan A. Patient-reported outcomes in Asian metastatic renal cell carcinoma 

(mRCC) patients receiving an attenuated dosing of sunitinib. (under review) 

 

9.2 Published abstracts and conference presentations 

1. Teo YL, Chue XP, Chau NM, Tan MH, Wee HL, Ho HK, Kanesvaran R, Chan A. 

Toxicities and patient reported outcomes in elderly Asian patients receiving an 

attenuated dosing of sunitinib for metastatic renal cell carcinoma. J Geriatr Oncol. 

2014 Jul;5 Suppl 1:S19. SIOG Asia Pacific Conference, Singapore, 2014.  

 

2. Kanesvaran R, Teo YL, Chue XP, Chau NM, Tan MH, Wee HL, Ho HK, Chan A. 

Association between clinical response and toxicities with drug exposure in an 

alternative dosing regimen of sunitinib. J Clin Oncol 32, 2014 (suppl 4; abstr 439) 

Genitourinary Cancers Symposium, San Francisco, CA, USA, 2014. 
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3. Teo YL, Wee HL, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, Ho HK, 

Chan A. Association of CYP3A5 polymorphism with toxicities in metastatic renal 

cell carcinoma patients (mRCC) receiving an alternative dosing (AD) regimen of 

sunitinib. Support Care Cancer 21, 2013 (Suppl 1):S220.  MASCC/ISOO 

International Symposium on Supportive Care in Cancer, Berlin, 2013. 

 

4. Teo YL, Chong XJ, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, Ho 

HK, Chan A. Determining the role of sunitinib and its active metabolite (SU12662) 

on hand-foot syndrome (HFS) in metastatic renal cell carcinoma (mRCC) patients. 

Support Care Cancer 21, 2013 (Suppl 1):S169. MASCC/ISOO International 

Symposium on Supportive Care in Cancer, Berlin, 2013. 

 

5. Teo YL, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, Ho HK, Chan A. 

Association of drug exposure with clinical response and toxicities in metastatic 

renal cell carcinoma patients (mRCC) receiving an alternative dosing (AD) 

regimen of sunitinib. J Clin Oncol, 2013 (suppl; abstr e13582). ASCO Annual 

Meeting, USA, 2013 

 

6. Teo YL, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, Ho HK, Chan A. 

Exploration of the association between pharmacokinetics of sunitinib and 

treatment-related toxicities in the metastatic renal cell carcinoma (mRCC) 

treatment of Asian patients. Singhealth Duke-NUS Scientific Congress 2012. 

 

7. Teo YL, Saetaew M, Chanthawong S, Yap YS, Chan EC, Ho HK, Chan A. Liver 

enzymes elevation due to concurrent dexamethasone and lapatinib: Clinical and in 



Chapter 9 
_____________________________________________________________________  

215 
 

vitro evidence. J Clin Oncol 30, 2012 (suppl; abstr e13023). ASCO Annual 

Meeting, USA, 2012 
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