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Abstract 

It is often argued that the true benefits of water resource development in international river 
basins are undermined by a lack of consideration of interdependence in water resource 
planning. Yet it has not been adequately recognized in the water resources planning literature 
that overestimation of interdependence may also contribute to lack of progress in cooperation 
in many systems. This paper examines the nature and degree of economic interdependence in 
new and existing water storage projects in the Ganges River basin based on analysis conducted 
using the Ganges Economic Optimization Model. We find that constructing large dams on the 
upstream tributaries of the Ganges would have much more limited effects on controlling 
downstream floods than is thought and that the benefits of low-flow augmentation delivered by 
storage infrastructures are currently low. A better understanding of actual and prospective 
effects of interdependence not only changes the calculus of the benefits and costs of different 
scenarios of infrastructure development, but might also allow riparian countries to move closer 
to benefit sharing positions that are mutually acceptable. 
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Introduction 
 

It is now widely accepted that water resource development in international river basins is a 

highly interdependent process (Biswas, 2004; Serageldin, 1995). For example, large 

infrastructure projects upstream in a river basin may have significant impacts on both the 

quantity and the quality of water reaching downstream riparian countries and thus may affect 

economic benefits derived from water resource development throughout the river basin. 

Similarly, large infrastructure projects downstream risk foreclosing future opportunities for 

development upstream (Salman, 2010). This interdependence may evolve in complex ways over 

time due to effects of climate change,  population increase, and economic growth, all of which 

may increase competition for water resources (Jeuland, 2010; Pahl-Wostl, 2007). Lack of 

attention to interdependence in water resource planning and development has resulted in 

project designs that deliver smaller net economic benefits to riparian countries than expected. 

Failure to account for interdependencies and externalities can create daunting challenges to 

cooperation regarding natural resources in many arenas, not only water in international river 

basins (Barrett, 1994; Ostrom et al., 1999). 

Although the economic issues associated with water resource development in international river 

basins are often misspecified due to underestimation of the complexities of interdependence, it 

may not be true that the impacts of such interdependencies will always be large. In fact, 

overestimation of the impacts of interdependence among riparian countries in international 

river basins may also be damaging, for several reasons. First, overestimating the effects of 

interdependence among countries sharing water resources can fuel unrealistic expectations 

regarding equitable distribution of the benefits from cooperation. In the Ganges basin, for 

instance, there is a widely held perception that India would benefit substantially, in terms of 

flood reduction, from the construction of large dams in the Himalayas in Nepal (Sadoff et al., 

2012; World Bank, 2012). These anticipated benefits, if overestimated, could in turn create 

unrealistic expectations regarding appropriate compensation or cost-sharing arrangements 

among riparian neighbors along the Ganges. 

Second, overestimation of interdependence may generate unfounded concerns among 

downstream riparians. For example, Bangladesh has generally been wary of upstream 

development because of potential impacts on the availability of water downstream. These 

impacts might prove to be smaller than expected if interdependence were not in fact as high as 

is often assumed.  

Third, overestimation of the effects of interdependence may adversely affect the timing and 

prioritization of water resource development projects across sectors. For example, 

misperception of potentially high levels of interdependency could lead to decisions to hold back 

development in certain sectors due to the perceived trade-offs. In this way, opportunities for 

benefiting from such developments may be lost or delayed.  
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Importantly, most prefatory analyses of new infrastructure in river basins continue to focus 

primarily on hydrological and geographical considerations and their physical effects, with 

insufficient economic valuation to assess their net effects on integrated water resource systems 

(Harou et al., 2009; Jeuland, 2010). Lacking accurate, reliable economic analysis, a riparian 

country may decide to play down or overstate its position in interdependent water resource 

development projects according to its own geographical position. It may also act strategically 

according to such projects’ perceived or actual impacts on current conditions, which are by 

definition poor, incomplete indicators of future project performance. Thus the results of an 

information deficit can lead to unrealistic perceptions of the extent of interdependence present 

in such projects, perceptions that may become significant, unnecessary obstacles to realizing 

opportunities for cooperation. In this context, early and accurate economic analysis of water 

resource development options may contribute to the establishment of a shared understanding 

of the degree of interdependence that will be involved, as well as a more realistic forecast of the 

net economic effects of cooperation.  

This paper examines the nature and degree of economic interdependence in water resource 

projects along the Ganges, using the Ganges Economic Optimization Model (GEOM). The 

objective of this nonlinear, constrained optimization model is to maximize the total annual 

system-wide economic benefits generated by releases of water from a set of assumed 

infrastructure facilities. Although there is a general sense that the development of multipurpose 

infrastructure in the Himalayan region would yield significant economic benefits to riparian 

countries throughout the basin, there is also some expectation that trade-offs among potential 

uses for stored water could be very large. There is also no common understanding among the 

riparians about the relative values of hydropower, flood control, and dry season flow 

augmentation in the various regions that comprise the basin. Thus the determination and 

equitable distribution of benefits from such projects is a matter of significant concern and 

contention among policy makers.  

The research summarized in this paper focused on three questions: (1) What are the relative 

magnitudes of the economic values of hydropower, flood control, and low-flow augmentation 

from water resource development in the Ganges? (2) Are there significant trade-offs among 

hydropower, flood control, and low-flow augmentation resulting from water resource 

development in the Ganges, in economic terms?  (3) How sensitive to varying assumptions of 

economic value are the relative sizes and trade-offs from hydropower, flood control, and low-

flow augmentation delivered by Ganges water resource development options?  

To address these questions, we conducted a careful review of existing information on the 

development of Ganges water resources, and developed the GEOM mathematical model to 

explore the impacts of potential new hydropower infrastructures. Using the GEOM, we find that 

the potential economic benefits of new hydropower generation from developing the full suite of 

new investments described could reach US$7-8 billion annually. This is significantly greater than 

the current hydropower benefits produced in the Ganges basin (about $2.5 billion). We also find 

that the economic trade-offs among hydropower, low-flow augmentation, and flood control 
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objectives are very modest. Moreover, our findings show that although flood damages in the 

Ganges basin are presently substantial, the construction of upstream multipurpose water 

storage would not have a large effect on peak flows in the Ganges (particularly in wet years); 

that is, the economic value of reduced flood losses associated with these infrastructure 

development scenarios would be small. As for the trade-off between the two main downstream 

uses – irrigation in the Ganges plain and low-flow augmentation passing through to Bangladesh 

– we show that the optimal allocation between these two uses is highly sensitive to their 

relative economic values:  if the economic value of low flows in Bangladesh is high, the GEOM 

allocates less water upstream for irrigation, and vice versa. 

Our findings have several significant implications for improving the prospects of cooperation 

among riparian countries in the Ganges basin. First, our finding that construction of large dams 

upstream in Nepal would have limited effects on flood control downstream may prompt 

renewed consideration of options to develop smaller dams that focus primarily on hydropower 

benefits instead of seeking complex deals on large and potentially controversial dams that had 

been expected to deliver significant flood or irrigation benefits.  Second, the fact that there is 

little trade-off between hydropower production and downstream water uses means that 

increases in irrigation in Nepal and India or low-flow augmentation in Bangladesh do not come 

at the expense of significant amounts of hydropower, i.e., hydropower production is relatively 

insensitive to changes in the economic value of water to downstream users.  In this sense, 

downstream riparian countries (India and Bangladesh) need not fear that the operating rules of 

new hydropower projects developed upstream in Nepal will adversely affect or even foreclose 

their own development options. Third, the riparians can utilize economic analysis to better 

understand the nature of inter-dependency in this system, and to develop a common and 

shared understanding of the net benefits from Ganges basin cooperation. 

The paper begins with a summary of  relevant background information on the Ganges, after 

which we present themathematical description of the GEOM. We then report detailed results 

and conclusions.  

 

Background  

Previous studies relevant to the economic analysis presented here can be broadly classified into 

two categories. The first pertains to optimization and game-theoretic analyses of various 

potential water resource development pathways in the Ganges basin and of the distribution of 

the benefits they deliver to the affected riparian countries (Bhaduri & Barbier, 2003; Rogers, 

1969, 1993). The second concerns the value of water in its various uses, as well as the value of 

hydropower.  Some studies in the latter group attempt to estimate the marginal productivity of 

water in crop production in the expansive irrigation schemes located in the Ganges plain (e.g., 

Molden et al., 2001). Surprisingly little economic valuation has been done of floods in India and 

Bangladesh (see Somanathan, this issue, for an exception), of ecosystem services in the Ganges–
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Brahmaputra–Meghna delta in Bangladesh, or of the marginal productivity of water for uses 

other than agriculture. 

The Ganges was one of the first river systems investigated using systems analysis and basin-wide 

assessments tools.  Rogers (1969) used a linear programming model to analyze the benefits to 

India and Bangladesh (at that time, East Pakistan) of water resources development in the lower 

Ganges and Brahmaputra rivers, in terms of flood control, power production, and irrigation. 

Though constrained by severe data limitations and the omission of upstream riparians such as 

Nepal or Bhutan, the analysis suggested the possibility of significant net benefits to both India 

and East Pakistan from infrastructure development, even though the gains to be had from joint 

operation and budgeting for new projects appeared limited. In subsequent work, Rogers (Rogers, 

1993) expanded the analysis into a three-person game that included Nepal and added the 

option (favored by India) of water transfer from the Brahmaputra to the Ganges. The new 

analysis showed that the collective gains from cooperation could reach 24%, and that four-fifths 

of these gains would result from coordination of infrastructure investments. An important 

finding was that most of the cooperative benefits would accrue downstream, to India and 

Bangladesh, as a result of those two countries’ joint projects. (The investments considered for 

Nepal, however, were rather limited from the outset.) 

The other game-theoretic analyses of the benefits of alternative development strategies in this 

region have come from a more recent series of analyses by Bhaduri and Barbier (2007; 2008a, b). 

These largely focus on long-standing conceptions regarding the value of water transfers from 

Nepal to downstream riparians during low-flow periods, or from the Brahmaputra to the Ganges 

(Crow et al., 1995; Iyer, 2003; Verghese, 1999). This collective work suggests, first, that India 

would be capable of consuming any additional water transferred from Nepal to the downstream 

system. Second, the authors argue that altruism, that is, concerns other than simple welfare 

maximization within India, is the primary explanation for why India has allowed flow-through of 

water to Bangladesh during the dry season in the form of the Ganges Water Sharing Agreement, 

without requiring compensation (Bennett et al., 1998).1 The implication is that further altruism 

would be required in order for Bangladesh to benefit from additional dry season flow 

augmentation (Bhaduri & Barbier, 2008b). Third, transfer of water from the Brahmaputra could 

deliver net benefits in Bangladesh if India is altruistic, because flood protection gains would 

outweigh decreases in water availability. But if India’s altruism were low or nonexistent, and 

India unilaterally diverted flow to the Ganges, welfare in Bangladesh would sharply decrease 

(Bhaduri & Barbier, 2007). Fourth, Bangladesh could attempt to purchase water directly from 

Nepal to augment its Ganges inflows, but India might still choose to consume that water if the 

marginal value of the water exceeded what Bangladesh was willing to pay. In the latter case, a 

                                                           
1 In their model, Bhaduri and Barbier use a formulation with interdependent utility functions to allow for 
altruism. Note that this formulation accommodates pure altruism, or caring about the welfare of the 
other for its own sake, as well as altruism for political, economic, and/or other perhaps self-interested 
reasons. 
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grand coalition of Nepal, India, and Bangladesh could make every riparian better off, but only if 

India and Bangladesh had altruistic concerns (Bhaduri & Barbier, 2008a). 

Also relevant to our analysis are several studies of the marginal value of water and hydropower 

in the Ganges basin and wider region. For example, Rogers et al. (1998) obtained values of 

US$0.02 in Haryana (some of which lies at the northwest end of the Ganges basin), and Dhawan 

(1988) estimates the net income from water to be US$0.03 in the basin itself. In the wider 

region, a range of estimates obtained from various studies that employed a variety of 

methodologies – marginal water productivity estimation, average net benefits associated with a 

unit of water, and stated willingness to pay – span from US$0.02 to $0.05, (Abbie et al., 1982; 

Chandrasekaran et al., 2009; Gasser, 1981; Molden et al., 2001). Higher estimates, reaching 

$0.12 per unit, were obtained for water delivered at the canal level (Molden et al. 2001). 

Several topics relating to water use in the region are noteworthy but only indirectly relevant to 

the analysis presented here. The economic literature contains estimates related to the value of 

water quality and flood protection in the Ganges basin. Markandya and Murty (2004) used 

contingent valuation and revealed preference data to show that the nonuse benefits of cleaning 

up the Ganges in India dominate use benefits. For present purposes these estimates of the value 

of improved water quality have only limited relevance, as GEOM does not model wastewater 

treatment and pollution control investments. In addition, shifting the flow of water seasonally 

would likely have very minor effects on water quality in the most polluted reaches in India 

(World Bank, 2012). We are aware of no work estimating the value of enhanced low flows for 

ecosystem service provision in Bangladesh. Similarly, a few studies consider the value of, or 

willingness to pay for, flood protection in the Ganges delta (Brouwer et al., 2009; Islam & 

Braden, 2006; Thompson & Sultana, 1996), but the GEOM indicates that the reduction of flood 

peaks in the Ganges would be very modest even with the largest-scale development of 

upstream storage in Nepal considered (World Bank, 2012).  

Energy values for non-peak power based on the long-run marginal cost of alternative power 

sources in the region (coal and natural gas) vary between US$0.05 and $0.08/kW-h (Banerjee, 

2006; Gautam & Karki, 2004; Limbu & Shrestha, 2004; Tongia & Banerjee, 1998). Our 

calculations of the benefits from hydropower production are informed by these estimates. 

 

Methods 

The Ganges Economic Optimization Model (GEOM) 

The objective of GEOM is to maximize the total annual economic benefits generated by the 

system through releases of water from a set of assumed infrastructure facilities. The total 

annual economic benefits are the sum of four components: (1) the economic value of 

hydropower production from new and existing dams; (2) the economic value of irrigation water 

for the cultivation of agricultural crops; (3) the economic value of reduced flood losses; and (4) 
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the economic value of incremental low flows to Bangladesh, above the minimum release at the 

Farakka Barrage in India as specified in the Farakka Treaty of 1996. 

This model is similar to the Nile Economic Optimization Model (NEOM) that was previously 

developed and used to explore different combinations of infrastructure developments in the 

Nile basin (Guariso & Whittington, 1987; Thomas & Revelle, 1966; Whittington et al., 2005). As 

with NEOM, users of GEOM can explore the consequences of building various new dam projects 

and test the sensitivity of results to hydrological flows (using low-flow, average, and high-flow 

years). Users can also impose minimum flow restrictions in critical stretches of the river to 

ensure environmental flows, or can require certain urban or agricultural demands to be 

prioritized (for example, flows to Calcutta or crops in Bangladesh). Finally, users can alter river 

channel capacities to reflect changes in river geomorphology or the effects of enhanced 

embankment protection (assuming there are no breaches).  

 

While GEOM focuses exclusively on these economic values, it is not intended to suggest that 

these are the only values to be considered in the development of multipurpose infrastructure in 

the basin.  The Ganges is a river of enormous cultural, religious, and social significance, and 

these values also must be a central consideration.  Ecosystem sustainability; economic loss due 

to resettlement; recreation and tourism; navigation; municipal and industrial water supplies; 

and equity concerns within and across borders should all be factors in development decisions.  

The economic dimensions we do include are just one important part of the decision calculus 

surrounding infrastructure development and water allocations in the basin.  

GEOM is formulated as an annual, nonlinear, constrained optimization problem with a monthly 

time step. It determines the annual pattern of water allocations that maximize the system-wide 

economic benefits from hydropower, agriculture, flood reduction, and downstream low flows. It 

calculates the economic benefits by type of water use and by country. Minimum flows in specific 

upstream reaches of the river and at the Farakka Barrage are imposed in GEOM as constraints 

on river flow.  In the analyses presented here, for example, upstream minimum flows must be 

sufficient for all municipal demands to be satisfied, and downstream flows must be at least in 

accordance with the flow minima specified in the Farakka treaty between India and Bangladesh.  

The Ganges system is characterized in GEOM as a network of nodes and links (Figure 1). There 

are five basic types of nodes: reservoirs, irrigation withdrawals, flood outflows, flood returns, 

and intermediate nodes. The model includes 29 existing storage reservoirs (all but one of which 

are in India), plus 23 potential new dams.  All of these hypothetical new dams and the reservoirs 

behind them are in Nepal, with the exception of the proposed Pancheshwar Dam site on the 

Mahakali River, which is a border river shared by India and Nepal.2 Most of these reservoir 

nodes allow storage of inflows up to reservoir capacity, beyond which flows spill downstream. 

                                                           
2 The Mahakali River runs north to south, with the right (western) bank in Indian territory and the left 
(eastern) bank in Nepal.  The border runs down the center of the river, such that approximately half of the 
main dam and reservoir would lie in each country.  
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However, three of the new dams are run-of-the-river hydropower projects without water 

storage. Reservoir releases determine hydropower production and the amount of water 

available for downstream uses, and influence the peak flows in their tributaries and in the main 

stem of the Ganges. 

[FIGURE 1 ABOUT HERE] 

There are 34 irrigation nodes in GEOM, some of which in reality correspond to very large 

command areas served by irrigation canals. Some of these command areas currently are only 

partially irrigated with surface water due to constraints on water delivery. In GEOM at these 

nodes water is removed from the river system and partitioned into four components. The first 

portion of this water is used to satisfy irrigation water demands for crops grown in the 

command areas (this amount of water is estimated based on crop-water requirements for 

different areas obtained from the FAO CROPWAT model). The second component is for losses to 

nonproductive evapotranspiration from canals and fields; our analysis assumes this portion to 

be equal to 60% of the water actually used by crops (the first component), or 30% of the water 

diverted to irrigation areas. The third portion of diversions – 20% overall, or 40% of the crop-

water requirement – is assumed to flow back into the Ganges system via return flows. Finally, 

GEOM allows additional diversion of water into groundwater recharge when the canal capacity 

is not fully utilized. This recharge water is not lost to the system; GEOM adds it to storage in 

groundwater reservoirs beneath each irrigation node. This stored groundwater can then be 

pumped (at a cost) and used throughout the year to help meet irrigation water demands when 

surface flows are insufficient. The water balance for groundwater reservoirs only incorporates 

flows out of the GEOM surface water system and does not include “green water” recharge, that 

is, recharge from local precipitation and infiltration. 

GEOM also includes eight flood outflow nodes. Seven are located on the northern Ganges 

tributaries (Yamuna, Upper Ganga, Ghagara, Rapti, Gandak, Bagmati, and Kosi), one is on the 

main Ganges. At these flood outflow nodes, monthly flows in excess of natural river channel 

capacities leave the river network and cause flood damages.  A fraction of these river spills are 

then assumed to return to the river at flood return nodes, which are located just downstream of 

the flood outflow nodes.  The other intermediate nodes in GEOM account for inflow (that is, 

where runoff enters the system), confluence (where multiple rivers meet), and distribution 

(where a river splits). In total, 77 of the model nodes receive inflows from local catchments. 

[FIGURE 2 ABOUT HERE] 

Figure 2 illustrates the water balance to irrigation nodes, including nonproductive evaporation 

losses, seepage to local groundwater, delivery of surface water to irrigated fields, and return 

flows to the river system. The various flow variables Q are all decision variables in the model. 

GEOM’s mathematical objective function is expressed as 
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 (1) 

where 

Z  = total economic benefits (in millions of US$); 

ph
  = economic value of hydropower (US$/kW-h);   

  = Annual hydropower generated in project at node k (in GW-h/yr);  

pirr
  = economic value of irrigation water (US$/m3);  

  = volume of irrigation water delivered to area j, in state/country m (in millions of m3); 

pl
  = economic value of low flows (US$/m3);  

  = volume of low flows to Bangladesh during the lean season (January–May),  

      above the Farakka Treaty minimum (in millions of m3);  

  = economic cost of exceeding channel capacity at node k, in state/country m 

     (in millions   of US$); 

cg
  = cost of pumping recharged groundwater (US$/m3); and 

  = volume of recharged groundwater pumped to area j, in state/country m  

     (in millions of m3). 

 

The model uses a monthly time step t and determines the value of the decision variables that 

yield the highest outcome of the objective function Z. This model-determined pattern of water 

releases and allocations to water users is subject to constraints on flow continuity in the river, 

water balance and partitioning at irrigation nodes, river channel capacity, low-flow and 

municipal/ industrial water requirements, groundwater and surface water storage capacity, 

installed hydropower capacity, irrigation water requirements, and land availability. There is also 

a requirement that all “reservoirs” (including those for groundwater) end the year at the same 

level as where they began, though the optimal initial levels are determined by the model. A 

detailed presentation of the mathematical form of these constraints is included in Appendix A.  

GEOM also incorporates several other important features. First, technological and demand 

management interventions (lining of canals, investments in drip irrigation, incentives for 

enhanced recharge, etc.) can be assessed by altering the irrigation and municipal water delivery 

parameters that influence efficiency:  ρj, rj, and λk, which specify how releases to water delivery 

canals are partitioned between productive ET, non-productive ET, and return flows. Similarly, 

the effects of changes in cropping and intensity can be simulated by altering assumptions about 
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crop-water requirements in different areas using the CROPWAT and CLIMWAT tools applied to 

new cropping patterns, or other procedures for estimating water demands (FAO, 1998). 

 

Second, the economic value associated with irrigation using Ganges water is obtained by 

multiplying the quantity of irrigation water by the marginal product of water pirr. We adopt this 

formulation recognizing that  the current marginal productivity of water in the Gangetic plain is 

low (Abbie et al., 1982; Dhawan, 1988; Gasser, 1981; Molden et al., 2001; Rogers et al., 1998). 

Pumping costs from use of groundwater (parameter , which can be varied based on the depth 

to groundwater in area j) are subtracted from these benefits as well; thus the model only uses 

groundwater if the value of water outweighs these extra pumping costs. By systematically 

varying the marginal product of water in sensitivity analysis (that is, giving more or less value to 

the agricultural component of the model), we can see whether water allocations are sensitive to 

assumptions about the value of water.  

 

Third, GEOM seeks to minimize flood damages. Unfortunately, the damages μk associated with 

overbank spills at different locations are unknown at this time. Thus, much as with, agriculture, 

where we varied the weighting parameter pirr
 
 in the objective function, here we study the effect 

of this value of μk on the optimal water allocations determined by the model. This allows us to 

examine whether trade-offs exist between the flood control and hydropower or agriculture 

objectives.  

 

Finally, GEOM includes an additional parameter pl that allows us to explore the implications of 

different economic values of water during the low-flow period in Bangladesh for optimal water 

allocations. This parameter is used to value incremental flows above the Farakka Treaty 

minimum, which is the status quo for minimum low flows to Bangladesh. 

 

Scenario analysis 

 

GEOM was used to explore the potential impacts of four scenarios, each with different 

combinations of new infrastructure projects. The hydrological year used in the base case is the 

year 2000, for which the overall runoff into the Ganges was 502 BCM, compared to an average 

of 508 BCM over the ten-year period 1999–2008 (range 460–545 BCM). None of the major river 

tributaries had exceptional hydrology in 2000.  

The consequences of constructing different sets of upstream storage infrastructures are 

measured relative to a baseline “state of the world” that closely resembles current conditions. It 

is not possible to characterize precisely the present situation of Ganges water management, 

because the amount and pattern of surface water withdrawals for different basin irrigation 

schemes in India are unknown. Instead, we estimate overall crop-water requirements in 

different irrigation schemes from state-level data for the major crops in the existing mix, 

accounting for local climatic conditions and the differing cropping intensities in irrigated areas 
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within Bangladesh, India, and Nepal.3 Thus instead of constraining irrigation water withdrawals 

according to existing surface water demands in the basin, the model solves for the theoretical 

area of land that should be irrigable given existing cropping patterns, yields, market prices, and 

water use at the field-level according to the irrigation water partitioning parameters.  

The four illustrative scenarios examined are as follows: 

1. Existing storage and flow regulation projects (status quo, baseline case) 

2. The three proposed Himalayan mega-dams: Pancheshwar Dam on the Mahakali/Sarda 

River bordering India and Nepal, Chisapani Dam on the Karnali River in Nepal, and the 

Kosi High Dam on the Kosi River in Nepal 

3. Only building smaller dams and run-of-the-river projects in the Himalaya in Nepal, of 

which we include 20 (only the largest among a long list of possible projects) 

4. All major proposed dams included in 2 and 3 above.  

 

Sensitivity analysis was conducted to explore the effects of several modeling assumptions on the 

results`: (1) varying the relative economic value of low flows to Bangladesh; (2) varying the 

economic value of irrigation water; and (3) testing the effects of low-, average, and high-flow 

years on both physical and economic outcomes in different portions of the basin. To assess the 

effects of differing assumptions in terms of the first two points, we constructed nine cases 

representing all low, medium, and high combinations of the economic value of water to 

irrigation and downstream low-flow augmentation (Table 1).  

[TABLE 1 ABOUT HERE] 

The basic parameter assumptions used in our analysis are presented in Table 2. A discussion of 

the sources of data used to parameterize the model is presented in Appendix B. 

 

[TABLE 2 ABOUT HERE] 

 

Results 

The economic benefits of hydropower from the 23 new dam projects considered in this study 

are estimated to range from US$3-8 billion per year, depending on the infrastructure scenario 

(Table 3). The upper end of this range includes the full suite of hydropower investments, which 

produce $7 billion to $8 billion annually above the current hydropower benefits produced in the 

basin (about $2.5 billion). These values are gross (they do not include the $1-2 billion/yr 

annualized costs shown in Table 3) and correspond to the assumption that 25% of power 

produced could be sold as peaking power in India to yield an average power value of $0.1/kW-h. 

If the energy from these dams were not used for peaking purposes, anticipated benefits would 

                                                           
3 Japan International Cooperation Agency 1985; Bangladesh Bureau of Statistics (BBS) 2004; Indiastat 
2005. 
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be reduced by about 25%. On the other hand, if the dams could be operated to supply greater 

than 25% peaking power, the benefits would be proportionally higher.   

 [TABLE 3 ABOUT HERE] 

The magnitude of irrigation and low-flow augmentation benefits downstream of the 

infrastructure projects are more difficult to assess because they depend directly on the assumed 

valuation parameters. In the medium value case (marginal productivity of water equal to 

US$0.05/m3), these reach $2.8 billion; but they range from $0.3 billion (lowest value case) to 

$5.5 billion (highest value). On the one hand, the estimates of the marginal value of increased 

surface water irrigation presented in the baseline medium case ($0.05) would appear to be 

much higher than the current very low value derived from irrigation water in India and Nepal.  

On the other hand, in the future agricultural modernization and increased returns to water 

could change this picture dramatically. 

Also, although flood losses in the Ganges basin are significant, our findings suggest that the 

construction of upstream multipurpose water storage would have a limited effect on peak flows 

in the Ganges (particularly in wet years); thus the economic value of reduced flood losses 

associated with these infrastructure development scenarios will be small (Table 4). On the 

tributaries, and particularly in the Gandak River, the reduction in peak flows is somewhat larger. 

Nonetheless, because of the extensive embankments now existing along the Gandak and other 

tributaries, flood losses are unlikely to be significantly reduced through the development of new, 

large-scale upstream infrastructure investments.  Improved flood management will require a 

sharpened focus on forecasting and warning systems, as well as localized hard and soft 

responses  (World Bank, 2012). 

[TABLE 4 ABOUT HERE] 

 

Analysis of trade-offs 

We find that for the most part, the economic trade-offs among hydropower, irrigation, and 

flood control objectives are small.  This is because there is little difference in the optimal water 

release pattern for hydropower production and downstream water supply needs; the storage in 

the upstream dams considered is relatively small compared to annual flows. Both these 

objectives are best served by storing peak flows to achieve steadier, increased dry-season 

releases, and flood control is limited regardless of how operating rules are designed, because 

water quickly fills even the largest dams that could be built in the system once the monsoon 

season begins. There is a trade-off in the quantity of water used for irrigation in the Ganges 

plain versus low-flow augmentation in delta [Sundarbans], but it is unclear whether this trade-

off is economically significant given the current low marginal benefit associated with surface 

water irrigation in the plains and the unknown economic value of low-flow augmentation in 

Bangladesh. 
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Not surprisingly, the optimal water allocations --and economic benefits of irrigation in the 

Ganges plain and of dry season flow augmentation in Bangladesh-- are sensitive to varying 

assumptions about their relative economic value (Table 5). Given the difficulty in predicting the 

economic value of incremental changes for these uses, the precise nature of these trade-offs is 

difficult to assess at this time.   

[TABLE 5 ABOUT HERE] 

When low economic values are specified for both irrigation water and low flows (which is 

consistent with the limited economic information available on these use categories at this time), 

the economic benefits from the Himalayan dams are limited to hydropower and some modest 

expansion of surface water irrigation in Nepal and India. In this case, the downstream economic 

consequences of hydropower development for India and Bangladesh are very limited.  One 

implication of this low economic value case is that the benefit-sharing calculus between Nepal 

and India for hydropower development is in fact much simpler than previously assumed. The 

economic benefits from Himalayan dams are almost solely due to hydropower generation (95%).  

If this is the case, India and Nepal should be able to negotiate fairly straightforward power 

development and trade agreements that also recognize any modest co-benefits in agriculture 

and flood management. 

When low economic value is assigned to irrigation water but high value to environmental flows, 

Bangladesh, India, and Nepal all gain from the construction of the Himalayan dams. Nepal and 

India primarily share the benefits of hydropower generation (assuming the excess power 

produced in Nepal is exported to India), and Bangladesh benefits from low-flow augmentation 

(increased environmental flows). Therefore, theoretically Bangladesh and India should be willing 

to share in the costs of building the Himalayan dams. Bangladesh could invest a modest amount 

to ensure valuable low-flow augmentation, and India could invest primarily as part of a power 

trade agreement. Alternatively India could pay Nepal more for hydropower received, and 

Bangladesh could compensate Nepal annually for what would effectively be a “payment for 

environmental services” agreement.  

When high economic value is assigned to irrigation water but low value to environmental flows, 

about 10-12 billion cubic meters (BCM) would be allocated for new irrigated schemes in Nepal. 

Given the poor availability of spatially specific data on agricultural productivity in the basin, 

GEOM assumes that the value of water in agriculture to India and Nepal is the same. If irrigation 

values are high and differentiated between countries, the economically optimal distribution of 

these flows to different schemes and riparian countries will change. 

Importantly, the scenario in which high values are assigned to both irrigation water and low-

flow augmentation reflects the current mindset of most stakeholders in the basin. It is widely 

assumed that irrigation water and low-flow augmentation are extremely valuable to both 

Bangladesh and India (Sadoff et al., 2012). Furthermore, many believe that flood control from 

upstream dams in the Himalaya would be extremely valuable for the whole system (Salman and 
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Uprety 2002; Huda and Shamsul 2001; Onta 2001). Our background research on the economics 

of water use in the basin (reviewed above) suggests the opposite. In other words, water has 

very low productivity in the irrigation schemes in the Ganges plain, such that the benefits from 

additional supply to Indian agriculture would currently be quite small (though this could change 

over time).     

Our sensitivity analyses also provide new information on the trade-offs between managing 

water for hydropower, irrigation, flood control and downstream low-flow augmentation in the 

Ganges basin. There appears to be little trade-off between hydropower production on the one 

hand, and downstream irrigation and/or low-flow augmentation on the other: hydropower 

producers and all of the downstream users would like monsoon flows to be smoothed and to 

see dry season flows increase.  In fact, hydropower benefits decrease very little (by about 5%) 

even when the economic value of water in irrigation and in downstream Bangladesh is assumed 

to be $0.1/m3 (Figure 3). This is because flood waters are stored behind hydropower dams 

during the flood season, and released gradually over the course of the year, which enhances dry 

season flows and thus meets the objectives of both water uses. 

 [FIGURE 3 ABOUT HERE] 

That there is little trade-off between hydropower production and downstream water uses 

simply means that increases in irrigation in India or low-flow augmentation in Bangladesh do not 

come at the expense of significant amounts of hydropower.  Figure 4 illustrates the small trade-

off between hydropower production and water uses in irrigation and in Bangladesh for the nine 

combinations of downstream economic values, and across infrastructure combinations.  

[FIGURE 4 ABOUT HERE] 

There is clearly a trade-off, however, between the two downstream uses examined, irrigation 

water usage and low-flow augmentation in Bangladesh, because consumption of water in 

irrigation in India precludes low-flow augmentation downstream in Bangladesh (Figure 5). If the 

economic value of low flows in Bangladesh is high, GEOM allocates less water to irrigation, and 

vice versa. This is consistent with the results presented in Table 5, which shows that increasing 

infrastructure development can allow both surface water irrigation and low-flow augmentation 

to increase relative to the status quo. With full infrastructure development (all Nepal dams, 

existing & proposed), about 35 BCM/yr of additional dry season water would become available, 

and this amount could be shared among these two competing uses.  In reality, of course, actual 

usage will be determined not only by the relative economic values of water to different users, 

but also by political, cultural, and social considerations. 

[FIGURE 5 ABOUT HERE] 

GEOM was also used to test the sensitivity of the results to low- and high-flow years.  Running 

GEOM with the hydrology for wet and dry years revealed, as expected, that the incremental 

value of hydropower produced by our infrastructures increases with flows in the basin.  A 
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“typical” dry year in the Ganges basin corresponds to a reduction in hydropower generation 

from the three proposed mega dams in Nepal of about 16%, and a reduction of 11% for full 

infrastructure development. The reduction is lower if all dams are assumed to be built, because 

the new, smaller dams are spread over a larger spatial area, and the driest years in particular 

tributaries rarely coincide. On the other hand, the incremental value of dams to irrigation and 

low flows in Bangladesh increases somewhat (by about 2%) in a dry year, because extra storage 

provides higher incremental dry season flows when water stress increases. Overall incremental 

annual benefits thus decrease by 8% to 10% in a typical low-flow year. 

In a wet year, hydropower production does not change appreciably compared to an average 

year (increases by just over 1% with full development), because of the limited storage capacity 

in the Himalayan dams. The economic benefits of the dams for providing irrigation and low-flow 

augmentation in such years also decrease compared to an average year (by 8% and 17% for full 

and 3-dam development scenarios, respectively), because there is less demand for this 

additional water.  

 

Concluding Remarks 

It is often argued that the true benefits from water resource development in international river 

basins are undermined by a lack of consideration of interdependence in water resource planning. 

Yet it has not been adequately recognized in the water resources planning literature that 

overestimation of interdependence may also contribute to lack of progress in cooperation in 

many systems. Among riparians in the Ganges basin, a widely held belief that dams in Nepal 

would produce large downstream benefits for India creates expectations of commensurate 

compensation.  This study finds that constructing large dams on the upstream tributaries of the 

Ganges may in fact have much more limited effects on controlling downstream floods than is 

thought, and that the benefits of low-flow augmentation delivered by storage infrastructures is 

currently low (though modernization of irrigation systems in India and Nepal could alter this). A 

better understanding of actual and prospective effects of interdependence not only changes the 

calculus of the benefits and costs of different scenarios of infrastructure development, but 

might also allow riparian countries to move closer to benefit-sharing positions that are mutually 

acceptable.  

Overestimation of the effects of interdependence may also present obstacles for cooperation in 

international river basins more generally, because overestimation may needlessly aggravate 

concerns of downstream riparian countries regarding the effects of proposed large upstream 

infrastructures. In the Ganges basin, for example, Bangladesh has been wary of development 

initiatives taken by India and Nepal because of their potential impacts on the availability of 

water during the dry seasons.  

On the one hand, our study finds that there is little trade-off between hydropower production 

and downstream water uses, because increases in irrigation in India or low-flow augmentation 



 

17 

in Bangladesh do not come at the expense of significant amounts of hydropower. This suggests 

that the level of interdependence among different water uses is not as high as is commonly 

assumed.  On the other hand, there is a clear trade-off between irrigation uses in Nepal and 

India and low flow reaching Bangladesh. A better understanding of the true effects of 

interdependence between these alternative uses, and of their relative values to participating 

riparians might help the participating countries to reach more mutually acceptable water-

sharing deals and might allay some of the concerns that arise from misperceptions of a high 

degree of interdependence.  

The marginal economic value of water in different uses plays a significant role in determining 

the nature and degree of interdependence in water resource development in international river 

basins. A potential obstacle for cooperation in international river basins therefore might be that 

interdependence is often conceptualized in hydrological and geographical terms. As a result, a 

riparian country may decide to either downplay or inflate the notion of the interdependence in 

water resource development projects depending on its own geographical location and position 

relative to large water resource development projects.   

Whatever their origin, misperceptions of the manner and degree of interdependence in 

transboundary water resources development projects may become serious obstacles to realizing 

opportunities for cooperation. Our results show that the economic value of different water uses 

plays an instrumental role not only in shaping the nature of interdependence but also in 

determining optimal allocations of water resources.   
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Tables and Figures 

 

Table 1. Assumptions of irrigation and low-flow values in GEOM 

Economic value Low Medium High 

Value of low flows to Bangladesh above 

the Farakka minimum for Jan-May 

(US$/m3) 

US$0.00/m3 US$0.05/m3 US$0.10/m3 

Value of water in irrigation (US$/m3) US$0.01/m3 US$0.05/m3 US$0.10/m3 
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Table  2. Base case parameter assumptions and/or sources for the infrastructure development 

scenarios 

Parameter description Symbol Units 
Status quo scenario 
(current conditions) 

Hydropower    

Value of hydropower ph US$/kW-h 0.1 

Installed power generation capacity of reservoir  𝐻𝑘𝑐𝑎𝑝 MW 

Data from  
various sources  
(see data source 
documentation  

for details) 

Minimum operating head in hydropower reservoirs  𝜖𝑘, 𝑡𝑚𝑖𝑛 m 

Tailwater level for reservoirs twk m 

Storage-to-head conversion factor for reservoirs θk m/mcm 

Storage capacity of reservoirs 
Dead storage of reservoirs 

 𝑆𝑘𝑐𝑎𝑝 
dsk 

mcm 
mcm 

Agriculture    

Return flow from node k  λk None 0.2 

Marginal product of water in irrigation  pirr US$/m3 0.01 

Total irrigable land in area j landj ‘000 hA 
Existing data  

(see documentation  
for details) 

Crop-water requirements CWRj,t mcm/1000 hA CROPWAT values 

Cost of pumping groundwater  𝑐𝑗𝑔 US$/m3 0.02 

Floods    

Channel capacities for flood nodes  𝑄𝑘𝑚𝑎𝑥 mcm/month See notes  

Cost of excess flow at node k μk US$/mcm 500 

Return fraction of flood spills z None 0.2 

Low flows    

Value of lean season flows in excess of Farakka treaty 
minimum to Bangladesh 

pl US$/m3 0 

Other    

Municipal and industrial demand WSk,t mcm/month Existing data 

Minimum flow to Calcutta  𝑄𝐶𝑎𝑙𝑐𝑢𝑡𝑡𝑎, 𝑡𝑚𝑖𝑛 mcm/month 
1285 (Feb-May) 

2935 (otherwise) 

Minimum flow to Bangladesh  𝑄𝐵𝑎𝑛𝑔, 𝑡𝑚𝑖𝑛 mcm/month 
1285 (Feb-May) 

2570 (otherwise) 

 



 

23 

 

Table 3. Range of GEOM outcomes for the infrastructure scenarios  

 Status Quo 3 proposed 
large dams 

20 proposed 
smaller dams 

All dams 
(existing & 
proposed) 

1. Additional hydropower   

 a. Production (TW-h/yr) 

 b. Value  (billions of US$/yr) 

 

25.3 

2.5 

 

45.5 

4.6 

 

26.4 

2.7 

 

101 

10.1 

2. Low-flow augmentation in irrigation 

  

 a. Volume of water (BCM/yr) 

 b. Incremental value above status quo
   (billions of US$/yr) 

 

83 

N/A 

 

28 

1.4 

 

34 

1.7 

 

121 

2.0 

3. Low-flow augmentation in Bangladesh 

 a. Volume of water (BCM/yr) 

 b. Incremental value above status quo
   (billions of US$/yr)  

 

N/A 

N/A 

 

4.8 

0.24 

 

9.0 

0.45 

 

15.4 

0.77 

4. Reduction in monsoon season flows (%) 

 a. Ganges at Farakka 

 b. Kosi at Chatra 

 c. Ghagara d/s Rapti inflow 

 d. Gandak at India/Nepal border 

 

- 

- 

- 

- 

 

7 

7 

11 

1 

 

8 

7 

6 

22 

 

12 

14 

17 

20 

5. Infrastructure costs   

 a. Capital cost (billions of $US) 

 b. Annualized capital cost (billions of 

$US/yr) 

  

15.3 

0.8 

 

19.1 

1.0 

 

34.4 

1.9 

Note: Assumes that the marginal value of additional water in irrigation and that the marginal value of additional low 

flows in Bangladesh are both US$0.05/m3.  Annualized capital costs are calculated by assuming a 5% discount rate and 

50-year time horizon. 
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Table 4. Percent reductions in peak flow in the Ganges main stem and major tributaries resulting  

  from the infrastructure scenarios 

  Infrastructure scenario  

Hydrology River +3 dams + Small Dams + All dams 

Dry year Kosi 
Ghagara 
Gandak 
Ganges main stem 

11 
18 
1 
6 

11 
6 

27 
8 

22 
22 
27 
11 

Average year Kosi 
Ghagara 
Gandak 
Ganges main stem 

7 
11 
1 
7 

7 
6 

22 
8 

14 
17 
20 
12 

Wet year Kosi 
Ghagara 
Gandak 
Ganges main stem 

6 
11 
1 
4 

6 
8 

24 
6 

9 
15 
24 
9 
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Table 5. Nine cases of rrrigation and low-flow outcomes for different water values 

   with full infrastructure development 

Value of irrigation water 
($/m3) 

Outcome Value of low-flow augmentation ($/m3) 

0.01 0.05 0.10 

0.01 Additional surface water irrigation (BCM/yr) 
Additional low flow to Bangladesh (BCM/yr) 

38 
6 

0 
35 

0 
37 

0.05 Additional surface water irrigation (BCM/yr) 
Additional low flow to Bangladesh (BCM/yr) 

38 
5 

38 
16 

25 
25 

0.10 Additional surface water irrigation (BCM/yr) 
Additional low flow to Bangladesh (BCM/yr) 

38 
5 

38 
16 

38 
19 
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Figure 1. “Simplified” Schematic of the Ganges Basin Models (Water Systems and Economic 

Optimization Models) 
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Intermediate

Node

Qin

Groundwater Irrigation

Q’

[Qin – Q’ - Q’’]

Downstream

Channel Capacity ≥ Q’ + Q’’

Q’’’

Return flow

0.5*(Q’ + Q’’’) consumed by crops

Key Assumptions: 1) Return flows (20% overall)

2) Crop-water requirement (50%)

3) Losses to non-productive evaporation (30%)

4) Zero net change in groundwater storage over year

Q’’

Return flow
Non productive ET

 

 

Figure 2. Water Balance to Irrigation Nodes 
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$7,841 

$378 

Case 1: 
Value of new irrigation is low ($0.01/m3)

Value of low flow in Bangladesh is $0/m3

Hydropower

Irrigation

Low flow
 

$7,409

$3,646

Case 3: 
Value of new irrigation is low (0.01/m3)

Value of low flow in Bangladesh is high ($0.1/m3)

Hydropower

Irrigation

Low flow
 

$7,839

$3,833

Case 7: 
Value of new irrigation is low ($0.1/m3)

Value of low flow in Bangladesh is $0/m3

Hydropower

Irrigation

Low flow
 

$7,388$3,833

$1,875

Case 9: 
Value of new irrigation is high ($0.1/m3)

Value of low flow in Bangladesh is high ($0.1/m3)

Hydropower

Irrigation

Low flow
 

Economic benefits above the status quo by type, for four different low-low, low-high, high-low, and high-

high combinations of economic values of additional irrigation in Nepal/India and low flows in Bangladesh 

 

Figure 3. Economic Benefits for Four Scenarios of Irrigation and Low-flow Values 
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Figure 4: Trade-offs between Water Uses  
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C 

Trade-offs between Hydropower Production and Irrigation Water Usage (Panel A), Low-flow 

Augmentation in Bangladesh (Panel B), and Overbank Flows during the Flood Season (Panel C) 
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Figure 5. Trade-off between Irrigation Water Usage and Low-flow Augmentation 
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Appendix A. Ganges Economic Optimization Model (GEOM): Detailed Formulation 

 

The mathematical model is expressed as:  

 (1) 

subject to the following constraints: 

River flow continuity constraints 

 

a. Regular intermediate nodes:  

    (2) 

Storage reservoirs:  

   (3) 

b. Intermediate nodes with flood constraint 

    (4) 

c. Intermediate nodes downstream of flood nodes: 

   (5) 

d. Farakka: 

      (6) 
 

Irrigation node water balance 

 

a. Channel capacity constraint: 

        (7) 

b. Partition of surface flow to field and groundwater (net of canal   

 evaporation ρj and canal return flows rj): 

     (8) 

Groundwater storage assumptions 

a. Groundwater storage balance  at time t: 

       (9) 

b. Groundwater end storage requirement: 
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        (10) 

Irrigation water usage 

a. Flow to surface water schemes, including recharge and non-productive  

 evaporation, and net of return flows:  

       (11) 

b. Crop-water requirement for irrigation schemes: 

       (12) 

  
Annual amount of recharge pumped to node j from groundwater (in millions of m3) 

        (13) 

Land constraint 

          (14) 

 
Annual volume of irrigation water consumed at node j (in millions of m3) 

        (15) 

 

Hydropower generation  

a. Annual power generation in project at node k, in state/country m  

 = annual hydropower generated in project at node k (in GW-h/yr) 

 =  and       (16) 

b. Net head in hydropower reservoir at node k in month t (in meters)  

 =      (17) 

c. Installed hydropower capacity constraint 

        (18) 

 

Reservoir storage constraints 

a. Live storage capacity: 

        (19) 

b. End storage constraint: 

        (20) 

 

Flood damage penalty 

Total annual penalty (cost)  of exceeding channel capacities at node k,    

in state/country m (US$) 

     (21) 

 

Flood constraint 
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          (22) 

 

Low-flow constraints 

a. General: 

          (23) 

b. For Bangladesh: 

        (24) 

c. Supplemental lean season flows to Bangladesh above Farakka minimum   

 (in millions of m3): 

       (25) 

 

Satisfy all municipal and industrial water demands 

        (26) 

 

Non-negativity constraints 

   (27) 

 

where the decision variables are: 

 = local runoff into node k in month t (mcm); 

  = flow from all connected upstream nodes k-1 to node k (mcm);  

  = flow to all downstream node(s) k+1 from node k (mcm);  

  = flow to irrigation area j from node k in month t (mcm);  

 = volume of surface water satisfying crop-water requirements in area j at time t 

(mcm); 

 = water pumped from groundwater onto fields in irrigation area j at time t; 

 = volume of recharge into groundwater below irrigation scheme j in month t 

(mcm); 

Rk,t  = release from hydropower project k in month t (mcm);  

  = municipal and industrial water demand from node k in month t (mcm); 

 = storage in groundwater at irrigation scheme j at the beginning of month t 

(mcm); 

Sk,t  = storage in reservoir k at time t (mcm);  

Aj  = land irrigated in area j (in 1000 hA); 

floodk,t  = flood spill at node k (mcm); 
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and the model parameters are: 

ph  = value of hydropower (US$/kW-h);  

pirr
  = economic value of irrigation water (US$/m3);  

pl
  = economic value of low flows (US$/m3);  

 = cost of pumping recharged groundwater in area j (US$/m3);  

  = minimum flow towards Calcutta in month t (mcm); 

  = minimum flow towards Bangladesh in month t (mcm); 

 = irrigation canal capacity for area j; 

  = maximum channel capacity at node k (mcm); 

  = minimum flow required at node k (mcm); 

Δ = initial groundwater storage at irrigation schemes; 

 = storage capacity of reservoir at node k (mcm); 

Sk,t=0  = initial storage in reservoir at node k (mcm); and 

Sk,t=12 = storage in reservoir at node k at the end of the year (mcm); 

z  = fraction of flood spills returning to the river at node k; 

ρj = adjustment for field irrigation efficiency at area j (assumed to be 2, or 50% 

irrigation delivery efficiency at all irrigation nodes); 

rj = irrigation return flow fraction from area j (assumed to be 20% from all areas); 

λk = return flow from municipal and industrial demand at node k (assumed to be 

20% from all nodes); 

CWRj,t  = crop-water requirement for mix in area j in month t (mcm/1000 hA);  

landj  = total irrigable land in area j (thousands of hA); 

  = minimum operating head in hydropower reservoir at node k (m); 

  = unit conversion constant =  (kg /s2-mcm) (assumes turbine efficiency 

is 0.9); 

θk  = storage-to-head conversion factor for reservoir k (m/mcm; assumed to be 

linear);  

dsk  = dead storage in reservoir k (mcm);  

twk  = tailwater level for reservoir k (m); 

 = installed power generation capacity of reservoir at node k (MW); 

μk  = cost of excess flow at node k (US$/mcm); and  

WSk,t  = municipal and industrial demand at node k in time t (mcm). 

 

The model uses a monthly time step t and determines the value of the decision variables Rk,t 

(release from reservoir k), Sk,t=0 (initial storage in reservoir k), Sk,t (storage in reservoir k),  

(storage in groundwater under irrigation area j),  (withdrawal for irrigation from node k), 

 (volume of groundwater pumped out for irrigation in area j), Aj  (land irrigated in area j), 

floodk,t (flood spill from node k), that yield the highest outcome of the objective function Z. The 
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constraints ensure conservation of water (continuity) at the different types of nodes, restrict 

storage and hydropower generation capacity in reservoirs according to dam design features, 

force withdrawals of irrigation water to be consistent with crop-water requirements and land 

constraints, and require satisfaction of low-flow and urban water supply requirements. Return 

flows from irrigation and municipal and industrial water supplies are assumed to be 20% (i.e.,  λk 

= 0.2 for all k); similarly the return flows from all irrigation schemes are assumed to be 0.2. 

There is also a requirement that reservoirs (including those for groundwater) end the year at the 

same level as where they began, though the optimal initial level for each surface water reservoir 

is determined by the model (intial groundwater storage levels are fixed). The model can be 

solved on a personal computer with the General Algebraic Modeling System (GAMS), using the 

Nonlinear Programming MINOS solver. 
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Appendix B. Ganges Economic Optimization Model (GEOM):  Details of Data Sources 

A. Inflow data 

As stated in the Methods section, GEOM includes 77 nodes that receive inflows from local 

catchments. The flows were simulated using a NAM rainfall-runoff model developed at the 

Institute of Water Modeling (IWM) in Bangladesh. The model uses a Digital Elevation Model 

(DEM) that was developed from land-level data from SRTM90 from the Consultative Group for 

International Agriculture Research (CGIAR). The rainfall-runoff model was calibrated using a 

combination of sources: satellite precipitation data (TRMM; data are missing for 2003) and rain 

gauge data (Department of Hydrology and Meteorology, Kathmandu); Indian Meteorological 

Department (online); and daily hydrological flow data for tributaries in Nepal (Department of 

Hydrology and Meteorology, Kathmandu). Snowmelt in the Himalaya was simulated using the 

degree-day method. Hydrological flow data for the Indian tributaries and the Ganges in India are 

not publically available. The rainfall-runoff model could therefore not be fully calibrated for 

India. The data used are for the period 1998-2008.  

IWM already had detailed calibrated NAM rainfall-runoff models for Bangladesh (meteorological 

data from the Bangladesh Water Development Board), which were used without modification.  

Inflows from the IWM model were aggregated to a monthly time step and grouped according to 

GEOM’S inflow nodes. For the Brahmaputra and Meghna basins, over which the rainfall-runoff 

model has not been calibrated carefully, runoff based on historical inflows to the Padma and 

Lower Meghna (where these rivers join with the Ganges in Bangladesh) were used instead of 

simulated runoff. GEOM can be run using any of the available years of inflows, which are stored 

in the spreadsheetIWM_Inflows_Feb_2010.xls. 

B. Reservoir data 

Data on existing and potential dams and associated reservoirs have been collected from a 

variety of sources. Much of the data on existing dams in India comes from the National Register 

of Large Dams (Central Water Commission, 2009). These data have been supplemented with 

information from sources such as Hydrology and Water Resources of India (Jain et al., 2007) and 

various online sources including Departments of Irrigation for individual Indian states (listed 

below, at Agriculture) and, for the Hooghly–Damodar system, from the Damodar Valley 

Corporation website (http://www.dvcindia.org/index.htm); these cover existing and potential 

projects. The sources for different types of information have been identified more clearly in the 

spreadsheet Modeling_Database.xls. 

For Nepal, the data on potential projects are primarily from three sources: the National Water 

Plan for Nepal (Singh, 2003), the National Electricity Authority’s listing of potential large projects 

exceeding 100MW (Nepal Electricity Authority, 2008), and the Nepal Hydropower Database 

(Nepal Hydropower Association, 2009).  

http://www.dvcindia.org/index.htm
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There are no feasible surface water storage projects in Bangladesh. 

C. Agricultural data 

1. Surface water irrigated command areas 

The quality of the data on surface water irrigation schemes is inconsistent, with the 

largest problems having to do with information on India. Due to the insufficiency of 

reliable water supply, there is a large gap between the official developed potential 

published by the Government of India and the actual area irrigated using surface water, 

which varies seasonally and annually. In GEOM we have tried to reflect the developed 

potential area using the land constraint and to allow the model to irrigate as much of 

the land as it can to grow a particular mix of crops (see below). 

 

For India, the developed potential by state was obtained from several sources: Indiastat 

data from the National Irrigation Census of the Ministry of Water Resources and work 

by Narayanmoorthy (2006). An attempt was then made to allocate this potential among 

the different irrigation schemes in the model, taking into account information obtained 

from the existing canal capacities (provided by IWM, spreadsheet 

IWM_Existing_Diversion_Capacity.xls; data from various sources) and cross-checked 

against online information from the following state Water Resources or Irrigation 

departments: 

 Jharkhand: http://www.jharkhand.gov.in/new_depts/water/water_fr.html  

 Madhya Pradesh: http://www.mp.gov.in/wrd/  

 Uttar Pradesh: http://irrigation.up.nic.in/diversion_projects.htm  

 West Bengal: 

http://www.wbgov.com/portal/banglarmukh/Government/Departments/Depar

tmentListPortletWindow?action=e&windowstate=normal&mode=view  

The following state agriculture department web sites did not provide reliable data: 

 Bihar: http://wrd.bih.nic.in/  

 Haryana: http://hid.gov.in/  

 Himalchal Pradesh: http://hpiph.org/  

 Rajasthan: http://waterresources.rajasthan.gov.in/2irrig.htm  

The India data is summarized in the spreadsheet Land Constraints Irrigation.xls. 

For Bangladesh, the relevant irrigation schemes are in the Ganges Dependent Area; data 

were obtained from the Institute for Water Modeling in Dhaka (see 

Irrigation_projects_OGDA.doc). 

For Nepal, the data on potential irrigated area come from a recent district survey of 

agriculture and irrigation potential (Center for Engineering Research and Development, 

2007). The data were roughly aggregated into basin-level irrigation potential, to 

http://www.jharkhand.gov.in/new_depts/water/water_fr.html
http://www.mp.gov.in/wrd/
http://irrigation.up.nic.in/diversion_projects.htm
http://www.wbgov.com/portal/banglarmukh/Government/Departments/DepartmentListPortletWindow?action=e&windowstate=normal&mode=view
http://www.wbgov.com/portal/banglarmukh/Government/Departments/DepartmentListPortletWindow?action=e&windowstate=normal&mode=view
http://wrd.bih.nic.in/
http://hid.gov.in/
http://hpiph.org/
http://waterresources.rajasthan.gov.in/2irrig.htm
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correspond with the schemes in the model. Tthese data and calculations are 

summarized in the spreadsheet Land Constraints Irrigation.xls.  

 

2. Crop mix 

For India, the crop mix data were obtained from Indiastat and are available by district. 

We used the state-level averages (see file India State District irrigated area by crop.xls). 

Data were not available for Jharkhand state; the years selected are 2005-6 for most 

states except Uttar Pradesh (2003-4). Only 3-5 major crops were put into the crop mix 

for each state. 

 

For Bangladesh, the data on irrigated crops by area are for 2002-3 and were obtained 

from the Bangladesh Bureau of Statistics Agriculture Wing (see file BBS 1979_2003 

Irrigated crops area.xls). We also have data for other cropping years going back to 1979-

80. The crops are Aus, Aman, and Boro rice; wheat, potato, vegetable; and other, 

comprised of other cereals, pulses, oil seeds, sugarcane, cotton, and any other minor 

crops.  

 

For Nepal, data on the crop mix were taken from the Kosi Master Plan without 

modification. 

 

3. Cropping schedules 

Cropping schedules for India and Bangladesh were obtained from crop planting 

schedules monitored by the US Department of Agriculture for those countries. See 

http://www.fas.usda.gov/remote/aus_sas/crop_information/calendars/clndr_jan.htm#I

ndia.  These data have been downloaded to the file Cropping_schedules.doc. 

 

Cropping schedules for Nepal have been taken from the Kosi Master Plan without 

modification. 

 

4. Crop-water requirements  

Crop-water requirements were calculated using the FAO’s CROPWAT software. The FAO 

climate data were obtained from CLIMWAT for meteorological stations nearest the 

different irrigation schemes in the model. To be conservative, precipitation data for 

India were then adjusted to reflect the fourth driest of five years of available district-

level data (see India Rainfall_data_statedistrict.xls) monthly rainfall rather than average 

monthly rainfall. For Bangladesh, dependable rainfall was used from an annex to the 

IWM National Water Management Plan report (see NWMP_annexC_Irrigation.doc). 

Crop-water requirements were then calculated for each irrigation scheme using the 

state-level crop mix and schedules obtained above. 

 

D. Channel capacities 

http://www.fas.usda.gov/remote/aus_sas/crop_information/calendars/clndr_jan.htm#India
http://www.fas.usda.gov/remote/aus_sas/crop_information/calendars/clndr_jan.htm#India
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The channel capacities for seven Ganges tributaries and the main Ganges come from a series of 

studies on river geomorphology conducted in India. These results are summarized in Table A1. 

Table A1. Channel capacities presented in the literature (locations used in GEOM are bold) 

River  Location Channel capacity 
(mcm/month) 

Source  
(year) 

Yamuna U/s Agra Canal  8554 Jain and Sinha (2003b) 

Upper Ganga Hardwar 
Fategarh 
Ankinghat (d/s Garra) 

15034  
19912 
25194 

Jain and Sinha (2003b) 
Roy and Sinha (2007) 
Roy and Sinha (2007) 

Ghagara D/s Girija Barrage 18144 Jain and Sinha (2003b) 

Rapti D/s Rapti Barrage 6480 Jain and Sinha (2003b) 

Gandak Dumariaghat 
Triveni 

13608 
32400 

Sinha (1998) 

Bagmati Dhengbridge 
Hayaghat 

2851 
2255 

Jain and Sinha (2003a) 

Kosi Baltara 14904 Sinha (1998) 

Main Ganges Farakka 82944 Jain and Sinha (2003b) 

 

E. Municipal and industrial demands 

The municipal and industrial demands for surface water included in the model are currently 

limited and should be verified (Table A2). There are many large cities along the Ganges, and they 

probably consume surface water supplies. 

Table A2. Municipal and industrial demands in GEOM 

Node  City Monthly demand (mcm) 

WS100_1  Kanpur 5 

WS101_1 Delhi 60 

WS101_2 Agra 5 

WS101_3 Dhaolpur 5 

WS103_1 Lucknow 0.5 

WS104_1 Adhaura 5 

 


