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SUMMARY 

 

 

The overall objective of this work is to devise a tissue engineering strategy to 

enhance the therapeutic potential of human adipose derived stem cells (ADSCs) 

using three dimensional microsphere (3D) scaffolds and to fabricate such cell-

scaffold constructs into a suitable delivery system for clinical applications. To 

achieve this objective, we initially employed 3D gelatin microspheres (GMs) to 

form compact cell-microsphere constructs (ADSC-GMs) with ADSCs and 

investigated the tissue regenerative properties of those constructs. We 

hypothesized that ADSC-GMs with their strong cell-cell and cell-matrix 

interactions will aid in improving the biological functional abilities of ADSCs.  

Later, to make these constructs feasible for in vivo delivery, we encapsulated them 

into in situ gelling collagen hydrogels to form hydrogel-microsphere composite 

scaffolds (Col-GMs). 

To begin with, ADSC-GM constructs were formed by culturing ADSCs on the 3D 

surfaces of the microspheres and the role of GMs in controlling various properties 

of ADSCs was studied. We studied their proliferation, maintenance of stemness, 

differentiation into various lineages and finally their pro-angiogenic properties. 

All these properties play a key role in tissue regeneration and enhancing such 

properties will be beneficial for tissue regeneration. Firstly, we studied the 

stemness properties of ADSC-GMs by conducting gene expression studies for the 

four well known pluripotent markers genes Oct4, Sox2, Nanog and Rex1. We 

found that all these genes were significantly upregulated in ADSC-GMs while in 

the ADSCs cultured on two dimensional (2D) tissue culture dishes, except Rex1 

all other genes were found to be down regulated. Then we studied the 

differentiation abilities of ADSC-GMs into three different lineages, namely – 

adipogenic, osteogenic and hepatic lineages. Our results show that ADSCs 

cultured on GMs were able to successfully differentiate into all the three lineages 

showing enhanced expression of respective marker genes compared to 2D 
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cultures. Finally, using the in vitro HUVEC-matrigel assay, we demonstrated that 

ADSC-GMs have enhanced pro-angiogenic properties compared to ADSCs 

cultured on 2D. This would lead to better vascularisation of the regenerating 

tissue. In conclusion, this part of our work shows that ADSC-GM constructs have 

enhanced regenerative properties compared to conventional 2D cultures. 

Employing these constructs for treating damaged tissues would accelerate tissue 

regeneration and hence, enhances the therapeutic potential of ADSCs for tissue 

regenerative applications. 

The second part of this thesis focuses on making these constructs with enhanced 

regenerative properties feasible for in vivo delivery, for an easier transition of 

these systems into a clinical setting. To this end, we formed composite hydrogel 

scaffolds (Col-GMs) by encapsulating the ADSC-GMs into injectable, in situ 

gelling collagen hydrogels. Incorporation of GMs into collagen hydrogels varies 

the mechanical properties of the hydrogels and hence allows for tuning the 

rigidity of the hydrogels to provide appropriate mechanical cues for the 

encapsulated cells. In addition, the encapsulated GMs can be used as depots for 

growth factors and can in turn provide with the required biomolecular cues. Thus, 

in this system of Col-GMs, we further studied the effect of mechanical and 

biomolecular cues provided by the scaffolds on the osteogenic differentiation of 

the ADSCs. We found that incorporation of GMs into the collagen hydrogels 

enhances the storage modulus of the hydrogels and further favours osteogenic 

differentiation of the encapsulated ADSCs. Presentation of biomolecular cues 

such as controlled release of basic fibroblast growth factor (bFGF) from the GMs 

also seems to have a promoting effect on the osteogenic differentiation of ADSCs 

compared to bFGF supplementation in the medium. Overall, this part of our study 

shows that Col-GM composite scaffolds can regulate the osteogenic 

differentiation ability of ADSCs and can potentially be used as effective 

injectable delivery vehicles for ADSC-GMs with the ability to control release 

growth factors. 

In conclusion, the work presented in this thesis shows that, 3D GMs can aid in 

enhancing the regenerative properties of the ADSCs along with having the 

potential to take part in the vascularisation of regenerating tissues. Further, we 
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also showed that, osteogenic induction of ADSCs can be enhanced through 

presentation of appropriate mechanical and biomolecular cues in the Col-GM 

composite scaffolds which can in turn be used as delivery vehicles for ADSC-

GMs. Overall, both ADSC-GMs and Col-GM strategies presented in this thesis, 

can be promising approaches for stem cell culture and delivery and can be 

employed for stem cell based regenerative therapies. 
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CHAPTER 1 

INTRODUCTION 

A brief background, motivation, hypothesis and objectives of this 

thesis work will be presented in this chapter. 
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1.1. Background and motivation 

Stem cell therapies are gaining increased popularity over the last decade or so, 

because of the advent of a variety of adult stem cells and the kind of impact that 

such therapies can create on the status quo medical treatments. Adult stem cells, 

unlike embryonic stem cells, are not embroiled with ethical issues and can be 

used in autologous fashion. They can also be easily differentiated to various 

specific cell types and do not form teratomas in vivo. With all these advantages, 

adult stem cells seems to be a potential alternative to embryonic stem cells and 

also opens up a new avenue with immense therapeutic value for treating organ 

failures. 

Adipose derived stem cells (ADSCs) which are present in adipose tissue are one 

such kind of adult stem cells. They are categorized as mesenchymal stem cells 

(MSCs) and have very similar characteristics to that of bone marrow derived 

mesenchymal stem cells (BMSCs) (Kern et al. 2006). ADSCs have a lot of 

advantages compared to other types of adult stem cells, such as availability in 

large numbers, ease of harvesting the fat tissue and their multi-lineage 

differentiation ability (Parker et al. 2006). Typically 5x107 – 6x108 ADSCs can be 

obtained by processing 300 mL of lipoaspirate with very high cell viabilities of 

greater than 90% (Zuk et al. 2001, Aust et al. 2004). All these advantages make 

them an ideal choice of cell source for stem cell regenerative therapies. 

Although stem cell therapies seem to be very attractive, their feasibility of 

becoming a viable medical treatment strategy hinges on being able to overcome a 

few challenges. Firstly, there is a need to develop suitable platforms which can 

support stem cell propagation with proper maintenance of their stemness 

properties and also support their multi-lineage differentiation ability. Secondly, to 

design strategies that makes such in vitro culture platforms suitable for in vivo 

delivery applications by minimally invasive means.  
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In this thesis, we aim to address mainly these two challenges. We have employed 

three-dimensional (3D) gelatin microspheres (GMs) as cell culture platforms and 

investigated their viability for tissue engineering with ADSCs. To this end, we 

formed cell-microsphere constructs (ADSC-GMs), by culturing ADSCs on GMs 

and further studied some of their properties that play crucial role in tissue 

regeneration – proliferation, stemness maintenance, multi-lineage differentiation 

and pro-angiogenic properties. 

Subsequently, to make the ADSC-GMs more suitable for in vivo delivery, we 

encapsulated them into collagen hydrogels which can gel in situ and can be 

delivered by injectable means. The hydrogel-microsphere composite scaffolds 

(Col-GMs) thus formed have the capability to provide both mechanical and 

biomolecular cues to the encapsulated ADSCs. Appropriate mechanical cues can 

be provided by varying the amount of encapsulated GMs which changes the 

rigidity of the scaffold. On the other hand, the GMs can also be used to control 

release required growth factors and in turn can help in providing the appropriate 

biomolecular cues. Thus in Col-GMs, we also investigated the effect of such 

mechanical and biomolecular cues on the osteogenic differentiation of ADSCs.  

Overall, we believe that the hydrogel-microsphere composite system that we 

developed in this work can be effectively used as an injectable stem cell delivery 

strategy for adipose derived stem cell therapy. 

1.2. Hypothesis 

The three dimensional cell-microsphere (ADSC-GMs) constructs formed using 

ADSCs and GMs with strong cell-cell and cell-matrix interactions can enhance 

the tissue regenerative properties of human ADSCs compared to traditional two 

dimensional tissue culture plates. Also, it is hypothesized that the behaviour of 

such ADSC-GM constructs can be modulated by encapsulating them in collagen 

hydrogels and providing with appropriate mechanical and biomolecular cues. 
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1.3. Objectives  

To investigate the above given hypothesis, following objectives were laid down.  

1) To fabricate ADSC-GM constructs and study the effect of GMs on the 

tissue regenerative properties such as proliferation, stemness maintenance, 

multi-lineage differentiation and pro-angiogenic properties of human 

ADSCs (Chapter 4) 

2) To fabricate and characterize hydrogel-microsphere (Col-GMs) composite 

scaffolds by incorporating GMs in collagen hydrogels with varying 

mechanical and biomolecular cues (Chapter 5). 

a) Fabricate Col-GMs by encapsulating different amounts of GMs in 

collagen hydrogels and study their mechanical properties by 

performing rheological studies. 

b) Encapsulate basic fibroblast growth factor (bFGF) into Col-GM 

scaffolds and study the release profiles in vitro using ELISA. 

3) To study the effect of mechanical and biomolecular cues provided by the 

Col-GM scaffolds on ADSC behaviour (Chapter 5). 

a) Investigate the effect of Col-GMs mechanical properties on ADSCs by 

differentiating them towards osteogenic lineage 

b) Investigate the effect of bFGF controlled release on the osteogenic 

differentiation of ADSCs. 
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CHAPTER 2 

LITERATURE REVIEW 

A description of stem cell based tissue regenerative approaches with a 

focus on biomaterials/injectable scaffolds employed for stem cell 

therapies will be provided in this chapter. 
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2.1. Tissue engineering and regenerative medicine 

Human organs can get damaged due to various reasons such as diseases or 

accidents. But the only medical treatment approach that is currently under practise 

is organ transplantation. Although surgeons world over have been employing this 

method for a few decades, it is still associated with some severe drawbacks, 

mainly donor organ shortage and immune rejections. To overcome these 

problems, a completely new approach to treat organ failures was put forward by a 

group of clinicians and material scientists which was popularly termed as tissue 

engineering (Langer et al. 1993). The overall objective of tissue engineering as 

coined at the emergence of this field is to fabricate fully functional off the shelf 

tissues which can act as biological substitutes for damaged tissues. Although this 

goal seems to be a few decades away, few significant milestones have already 

been reached, such as generation of induced pluripotent stem cells (iPSCs) 

(Takahashi et al. 2006), isolation of stem cells from adipose (Zuk et al. 2001) and 

other adult organs (Korbling et al. 2003), direct reprogramming of fibroblasts to 

heart (Ieda et al. 2010) and neural cells (Vierbuchen et al. 2010), implantation of a 

tissue engineered airway into a human patient (Macchiarini et al.) and controlled 

design of various scaffolds using biomaterials (Hollister 2005). In slight contrast 

to tissue engineering, regenerative medicine approaches mainly focus on cell 

therapies using suitable delivery vehicles which can support in vivo tissue 

regeneration upon implantation. Various kinds of stem cells are being studied for 

their suitability to such cell therapies which will be discussed in the following 

sections. Over the last decade, tissue regenerative approaches are gaining more 

popularity compared to the highly ambitious tissue engineering motto of “selling 

artificial organs”. Another major area of focus in regenerative medicine has been 

the development of biomaterials which can act as injectable delivery vehicles for 

such cell therapies as well as controlled release biomolecules in a spatio-temporal 

manner, which will also be discussed in the subsequent sections of this chapter. 

The growing interest in the potential of this field is also evident from the increase 

in the number of registered clinical trials in the US which are underway. The 

clinical trials in the field of tissue engineering and regenerative medicine have 
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risen from 38 in 2007 to 83 in 2011 (Fisher et al. 2013). The outcomes of these 

trials will further aid us in assessing the true potential of various approaches that 

are being employed and helps us in taking corrective actions to further improve 

those approaches for clinical applications. 

 

 

Figure 2.1 Schematic showing a general sequence of steps involved in tissue 
engineering and regenerative medicine strategies. Cells are isolated from the 
donor tissue sections obtained through biopsies which are expanded in vitro and 
seeded on 3D cell culture matrices made of biomaterials to form cell-scaffold 
constructs. In regenerative medicine approach, either aqueous cell suspensions or 
cell-scaffold constructs are directly injected back into the patient to assist the 
natural process of tissue regeneration. On the other hand, in tissue engineering, 
such cell-scaffold constructs are then used to fabricate fully functional organoid 
grafts which will be implanted into the patients to regain the tissue functions.  
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2.2. Stem cells in tissue regeneration 

Cell therapies are fundamental to most of the tissue regenerative approaches and 

finding a reliable source for the supply of cells has been a major area of focus. 

Cells can be harvested from autologous tissues which are partly injured but such 

procedures are associated with intense morbidity. Also, in many instances when 

the tissue is severely damaged, not many good quality cells can be harvested from 

those tissues. Advancements in the field of stem cell biology have opened up new 

options of stem cell based tissue regenerative therapies. As stem cells can be 

induced to differentiate into multiple cell types, the differentiated cells obtained 

can then be used as replacements for the damaged cells within a specific tissue. 

This led to further investigations about the suitability of various types of stem 

cells for such stem cell based therapies, few of which are discussed in the 

following sections. Stem cells are broadly classified into embryonic and adult 

stem cells based on their origin. 

2.2.1. Embryonic stem cells 

Cells with pluripotent nature were isolated from the inner cell mass of the mouse 

embryos and thus were termed as embryonic stem cells (Martin 1981). Later, 

these cells were also isolated from inner cell mass of human blastocysts 

(Thomson et al. 1998) which started all the controversy surrounding ESCs that is 

existent even today. These cells are an ideal source for tissue engineering 

applications as they can self-renew indefinitely and can differentiate into cell 

types of all the three germ layers. However, there are major drawbacks associated 

with these cells such as the ethical issues, teratoma formation upon in vivo 

implantation and their allogenic source which invokes immune response. These 

drawbacks limit their wider usage for clinical applications. 

2.2.2. Adult stem cells 
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Stem cells that regularly take part in the replenishment of dead cells and in the 

regeneration of damaged tissues have been found to be present in many tissues of 

the adult body. Depending on the type of stem cell, their differentiating capacity 

and their potency will vary. Some cells can differentiate into only one specific 

lineage and are termed as progenitor cells. Other stem cells from some tissues are 

multipotent and can give rise to cells that are not related to their source tissue. For 

example, bone marrow (Pittenger et al. 1999) and adipose (Zuk et al. 2002) 

tissues are two widely popular sources for mesenchymal stem cells which can 

give rise to a wide variety of cell types. Many adult stem cells are proving to be 

promising alternatives for ESCs because of their similar differentiation abilities, 

ease of availability and being able to be used in autologous fashion. However, 

harvesting cells from adult tissues obtained through biopsies involves some 

problems such as morbidity and low cell numbers. Thus for clinical applications, 

it will be advantageous to find ways to harvest tissues by minimally invasive 

means which contain large numbers of stem cells. 

2.2.3. Adipose derived stem cells 

ADSCs are adult stem cells found in adipose tissues with very similar 

characteristics to BMSCs. They were first isolated in 2001 (Zuk et al. 2001) and 

since then they were gaining increased popularity over other adult stem cells 

because of many advantages. Adipose tissues can be harvested by minimally 

invasive means such as liposuction with local anaesthesia. This makes ADSCs to 

be easily available compared to other stem cells and can be used in autologous 

fashion. They are also available in very high densities in fat tissues with typical 

cell numbers of around 5x107 – 6x108 from 300 ml of lipoaspirate (Zuk et al. 

2001, Aust et al. 2004) which is approximately 40 times higher compared to 

BMSCs (Strem et al. 2005). In addition, ADSCs also seem to have higher 

immunomodulatory capacity compared to BMSCs (Melief et al. 2013). They also 

exhibit high proliferation rates along with multi-lineage differentiation ability 

(Zuk et al. 2002). With all these advantages, ADSCs are proving to be a 

promising cell source for tissue regenerative applications and are being widely 

investigated both at lab scale and also at clinical scale (Gir et al. 2012). 
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ADSCs have been shown to be able to differentiate into various lineages 

including adipogenic, osteogenic, chondrogenic, myogenic, neural and hepatic 

cells (Talens-Visconti et al. 2007, Bunnell et al. 2008a, Cardozo et al. 2012, Sung 

et al. 2013). While the differentiation into former three lineages has been widely 

known and has well established protocols, differentiation into the later three 

lineages is more challenging and is currently under study by various research 

groups. In this thesis, we attempted differentiating ADSCs into hepatic lineage 

along with adipogenic and osteogenic lineages on 3D gelatin microspheres with 

an objective of making use of such differentiated cell-microsphere constructs for 

liver, fat and bone tissue reconstruction.  

2.2.4. Hepatic differentiation of ADSCs 

Liver tissues have a unique ability to regenerate after an injury. Hepatocytes and 

liver progenitor cells are the main cells responsible for the regenerative feature of 

liver. In case of an acute injury, hepatocytes will first respond with high 

proliferating rates (Fausto et al. 2005). Liver progenitor cells will form a reserve 

pool of cells which will start to proliferate and differentiate in case of a failure in 

hepatocyte proliferation (Roskams et al. 2003). However, in case of end stage 

liver disease, most of liver cells gets damaged and the liver looses the ability to 

regenerate. In such cases, stem cell transplantation is being looked into as a 

potential treatment strategy. ADSCs are being studied for their ability to 

differentiate into hepatocytes because of their advantages over other stem cells as 

mentioned in previous section. In 2005, Seo et al. has first shown that, human 

ADSCs can be induced towards hepatic lineage using hepatocyte growth factor 

and oncostatin M as media supplements (Seo et al. 2005). Since then, there has 

been increased interest in the hepatic potential of ADSCs and different 

combinations of growth factors have been tried (Talens-Visconti et al. 2007, 

Yamamoto et al. 2008, Aurich et al. 2009, Coradeghini et al. 2010, Banas 2012). 

However, most of the studies were performed on 2D tissue culture dishes with 

very few in 3D scaffolds. For instance, Wang et al. has studied hepatogenesis of 

ADSCs in 3D PLGA scaffolds (Wang et al. 2010). From tissue engineering 

perspective, it is important to understand the hepatic potential of ADSCs in 3D 
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scaffolds and thus more such studies need to be performed in scaffolds made of 

various biomaterials. Such differentiated hepatocyte-scaffold constructs can in 

turn be used as implants for treating liver damages and also for conducting drug 

screening studies.  

2.2.5 Characterization methods for adipogenic, osteogenic and hepatic 

differentiation of ADSCs 

Characterization of stem cell differentiation is usually done by histochemical 

staining methods or by studying the expression of specific lineage marker genes 

or proteins. Various methods that are most commonly employed for 

characterizing adipogenic, osteogenic and hepatic differentiation of ADSCs is 

discussed below.  

Adipogenic differentiation of ADSCs can be very easily identified under an 

optical microscope by the deposition of lipid bodies inside the differentiated 

ADSCs. Such lipid bodies can further be stained using Oil red O stain to have a 

distinct appearance. For further in depth characterization, gene expression of 

adipogenic marker genes such as peroxisome proliferative activated receptor γ 

(PPAR-γ), fatty acid-binding protein 4 (FABP4) and lipoprotein lipase  can be 

studied using qPCR (Hu et al. 2011b). In addition, as glycerol-3-phosphate 

dehydrogenase (GPDH) activity is increased upon adipogenic differentiation, 

GPDH assay can also be employed for characterizing the extent of differentiation.  

For characterizing osteogenic differentiation of ADSCs histochemical staining 

methods using alizarin red S and von kossa are usually employed to visualize the 

mineralized matrix deposition of differentiated ADSCs. Both alizarin red and von 

kossa can bind to the mineral depositions produced by the differentiated 

osteoblasts. Von Kossa method is based on binding of the silver ions to the anions 

such as phosphates of calcium salts and the reduction of silver salts to form dark 

brown or black metallic silver staining. On the other hand, alizarin red S reacts 

directly with calcium cation to form a chelate. Further characterization can be 

done by studying the genetic or protein level expression of osteogenic markers 

such as runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), 
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bone morphogenetic protein 2 (BMP2), osteopontin (OPN) and osteocalcin 

(OCN) (Hu et al. 2011b).  

Hepatic differentiation of ADSCs can be characterized using Periodic acid-schiff 

(PAS) staining to identify the glycogen storage ability of the hepatic differentiated 

ADSCs. In addition, gene or protein level expression of various hepatic markers 

such as albumin (ALB), alpha-fetoprotein (AFP), cytokeratin 18 (Cyt18), 

transthyretin (TTR) (Banas et al. 2007), can also be studied for characterizing 

hepatic differentiation.  

2.3. Biomaterial scaffolds for Stem cell therapies 

Traditionally, many of the studies involving stem cells have been performed on 

2D tissue culture plates. Although such studies have provided us with most of the 

existing knowledge of stem cell biology, they have certain limitations. Firstly, 

these culture systems cannot fully replicate the in vivo milieu which mainly 

consists of extra cellular matrix (ECM) that provides a unique biological niche for 

the cells to adhere and differentiate. Secondly, such stem cells cultured on 2D, 

have also proven to be in efficient for tissue regeneration (Lee et al. 2008, 

Mooney et al. 2008). Further, direct injection of such cell suspensions has lead to 

the death of the transplanted cells in many instances (Guerette et al. 1997, Emgard 

et al. 2003). Shortage of cell-matrix interactions leading to anoikis was found to 

be the reason for such cell death (Terrovitis et al. 2010). On the contrary, stem 

cell delivery using 3D delivery vehicles which can support cell adhesion were 

able to improve the survival rate and their tissue regenerative ability (Zakharova 

et al. 2010, Parisi-Amon et al. 2013). This highlights the need for developing 3D 

delivery platforms which can mimic the ECM. The materials for developing such 

3D platforms also have to be biocompatible as well as biodegradable which are in 

turn termed as biomaterials. Such biomaterials play an important role in the 

development of 3D platforms which along with being able to deliver the stem 

cells, they can also control stem cell behaviour by presenting appropriate 

biochemical cues. Biomaterial scaffolds can provide a 3D framework for the stem 

cells to propagate, differentiate and allows for remodelling of the surrounding 
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matrix upon action by the cells to form an implantable functional organoid. 

Numerous biomaterial scaffolds have been designed to drive the stem cells toward 

a particular lineage. For example, 3D systems were able to enhance the osteogenic 

(Sun et al. 2014), myogenic (Liu et al. 2012), neural (Cheng et al. 2013) and 

chondrogenic (Dvorakova et al. 2013) differentiation of various stem cells. In 

addition, these 3D platforms can also aid in forming stronger cell-cell and cell-

matrix interactions. Further, the interactions of biomaterials with biomolecules 

have also been exploited to encapsulate various growth factors for presenting 

appropriate biomolecular cues to control stem cells (Fan et al. 2008). Because of 

all these advantages, 3D biomaterial scaffolds have become the basis for most of 

the stem cell therapy strategies of late. Often, such scaffolds are designed to allow 

for stem cell delivery through less invasive methods such as by injectable means.  

Biomaterials used to fabricate the 3D culture platforms can be broadly classified 

into two types – natural and synthetic. Materials will have to be chosen according 

to the existing requirements of a specific application at hand. Properties of the 

biomaterials such as fluid transport, material degradation, surface chemistries for 

cell adhesion, mechanical strength, interaction ability with cells to induce signals, 

interactions with biomolecules for their controlled delivery need to be taken into 

consideration while choosing a biomaterial for any application (Dawson et al. 

2008). Overall success of a stem cell therapy associated with biomaterial 

scaffolds would hinge upon the above mentioned material properties as they can 

determine the fate of many key processes such as nutrient diffusion, matrix 

remodelling, cell adhesion and differentiation. A large variety of biomaterials 

both natural and synthetic have been employed for stem cell cultures which are 

discussed in the following sections.  

2.3.1. Synthetic biomaterials 

Polymers and ceramics are two of the widely used synthetic matrices for stem cell 

therapies. While various types of polymers have been employed for many 

different types of tissue regenerative applications, ceramics such as calcium 
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phosphates are mainly employed for bone regeneration. Ceramics can provide 

higher mechanical strength and also have shown to enhance mineralization and 

matrix formation along with integrating well with the bone (Yuan et al. 2001, 

Arinzeh et al. 2005). On the other hand polymeric materials have been employed 

both for soft and hard tissue regeneration using stem cells. Polymers such as 

polyethylene glycol (PEG), polyglycolic acid (PGA), polylactic acid (PLA), 

polylactide-co-glycolide (PLGA), polycaprolactone (PCL) are some of the widely 

used ones for stem cell therapies. All these polymers are usually degradable in 

nature by hydrolysis and their degradation products formed are able to be 

physiologically removed. In addition, the main advantage of using synthetic 

polymers is that their degradation rates can be precisely controlled by 

manipulating the polymer chemistry and molecular weights (Lyu et al. 2009). 

Further, properties of these polymeric 3D scaffolds such as porosity, mechanical 

properties etc. can also be effectively tuned to fulfil the requirements of a specific 

application (Saha et al. 2007). However, although culture matrices made of 

synthetic materials provide good control over their physico-chemical properties, 

they are not bioactive by nature. Most of these matrices need to undergo 

biological or chemical modification to support cell culture and elicit a favourable 

cellular response. On the contrary, natural materials extracted from ECM are 

supportive of cell culture and are biologically active without the need for any 

modifications.  

2.3.2. Natural biomaterials 

ECM present in human bodies mainly consists of components such as collagen, 

fibrinogen, hyaluronic acid, heparin sulphate, chondroitin sulphate, 

glycosaminoglycans etc. Hence, most of these materials extracted from the ECM 

of different animal sources have been tried as culture platforms for culturing stem 

cells under in vitro conditions in order to mimic and create an in vivo like 

environment. Some other materials such as cellulose, chitosan and silk fibroin 

which are extracted from plants, other animals or insects have also been employed 

to fabricate 3D scaffolds for stem cell culture and differentiation. Although 

natural materials are very good at providing an in vivo mimicking culture 
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platform, they are also associated with some disadvantages. As most of these 

materials are extracted from animal sources there is chance for transmission of 

pathogens from animals to humans. Other drawbacks of natural materials include 

the difficulty in their purification and lack of complete control over their physico-

chemical properties. However, lately many of these concerns have been addressed 

because of their commercial availability by many chemical companies which have 

set up standard protocols for the production of these materials with reproducible 

properties and with no carryover of pathogens.  

Most typical of the commercially available natural materials are collagen and its 

derivatives. Collagen is the most abundant protein in the ECM of our body and 

thus 3D scaffolds made of collagen or its derivatives were believed to closely 

simulate the body conditions. In total, twenty seven collagen types have been 

identified till now (Koide 2007) among which type I collagen is the most 

abundant and widely employed one for biomedical applications. It was also found 

that very few people possess humoral immunity against type I collagen and 

vulnerability of a patient to it can be easily found out by a serological test before 

implantation (Parenteau-Bareil et al. 2010). Along with mimicking the native 

ECM, the chemical nature of collagen has also made it suitable for crosslinking 

using various chemical agents (Drury et al. 2003). This property of collagen 

permits for tailoring the mechanical and degradation properties of collagen based 

scaffolds as per specific requirements, and thus has attracted much attention for 

various biomedical applications including stem cell therapies. 

Collagen has been widely used to fabricate different types of scaffolds such as 

hydrogels (Egawa et al. 2011), microspheres (Hui et al. 2008), nanofibers (Shih et 

al. 2006) etc. which were used extensively for various stem cell associated 

applications. In addition, over last decade or so, many collagen based tissue 

engineering products have been developed and commercialized by various 

companies (Malafaya et al. 2007). For example, a product named Apligraf®, 

which is a bilayered collagen gel seeded with fibroblasts and keratinocytes has 

been commercialized by Organogenesis in USA as artificial skin and got its FDA 

approval in 1998. Similarly, inFUSE® Bone Graft has been commercialized by 
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Medtronic Sofamor Danek which is a collagen sponge that acts as carrier for 

BMP-2 for spinal fusion. Angiotech Pharmaceuticals, Inc. in Canada has 

commercialized a composite made of porous hydroxylapatite, tricalcium 

phosphate and type I collagen under the name of Collagraft®. Many other 

collagen based products have also been commercialized or are under development 

by various companies for a wide range of applications including cosmetic 

products, skin replacements, bone and periodontal tissue grafts (Malafaya et al. 

2007). All these examples which have been approved for clinical usage highlights 

the immense potential of collagen based scaffolds, firstly as promising 

biomaterials for several tissue regenerative applications and secondly for its 

translational ability to clinical stage. 

Another prime derivative of collagen that has been widely used in tissue 

engineering is gelatin. Gelatin is a natural polymer obtained from collagen upon 

acid or alkaline processing. Gelatin is biodegradable, biocompatible and has been 

in regular usage for pharmaceutical and medical applications since long time. Its 

biosafety has been well proved from its usage as a plasma expander, as a 

component in drug formulations and also as a sealant in vascular prosthesis 

(Young et al. 2005).  Gelatin also carries the key cell adhesion moieties, present 

in collagen and thus supports cell attachment and proliferation. Depending on the 

fabrication method employed two types of gelatin can be obtained (Figure 2.2), 

both of which are commercially available. Alkaline processing of collagen would 

yield a negatively charged acidic gelatin and an acidic treatment of collagen 

would give positively charged basic gelatin. Both types of gelatin are suitable for 

cell culture and basically differ in the electrostatic and physical properties. 

Depending on the application the type of gelatin need to be chosen appropriately. 

The different varieties of gelatin scaffolds used for stem cell applications and the 

parameters that determine the choice of acidic or basic gelatin is elaborated 

below.  
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Figure 2.2 Collagen processing for acidic and basic gelatin preparation. Alkaline 
processing of collagen would yield a negatively charged acidic gelatin and an 
acidic treatment of collagen would give positively charged basic gelatin. 
Depending on the requirements of a specific application either type of gelatin can 
be chosen. For example, negatively charged acidic gelatin can be used to 
encapsulate positively charged basic biomolecules and vice-versa. Reproduced 
from (Ikada et al. 1998) by permission of Elsevier. Copyright © 1998, Elsevier. 

Different types of scaffolds such as hydrogels, nanofibres and microspheres have 

been fabricated using gelatin alone or in combination with other biopolymers for 

tissue engineering applications (Kimura et al. 2003, Li et al. 2006, Liu et al. 2009, 

Hirai et al. 2013). Gelatin has a sol-gel transition of around 20 oC, and hence for 

gelatin scaffolds to keep their structure intact at body temperatures they need to 

be crosslinked. A variety of crosslinking agents have been tried such as 

glutaraldehyde, diisocyanates, carbodiimides, genipin etc. Alternatively, gelatin 

can be modified with methacrylate and can be crosslinked using UV in the 

presence of a photoinitiater (Lin et al. 2013). Many gelatin scaffolds have been 

previously employed for stem cell culture, differentiation and delivery. For 

example, gelatin/poly(ethylene glycol) biomatrices have been developed to 

deliver MSCs for wound healing (Xu et al. 2013). Scaffolds formed with gelatin 

and β-tricalcium phosphate or hydroxyapatite have been used for bone 
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regeneration using stem cells (Takahashi et al. 2005, Eslaminejad et al. 2007, 

Bernhardt et al. 2009). Electrostatic interactions of gelatin with the biomolecules 

can be used for encapsulation of various growth factors in gelatin scaffolds. Due 

to such electrostatic interactions gelatin can form strong poly-ion complexes with 

the oppositely charged biomolecules (Young et al. 2005). Negatively charged 

acidic gelatin can be used to encapsulate positively charged basic biomolecules 

and vice-versa. Thus depending on the kind of biomolecular cues that need to be 

presented for regulating stem cell behaviour, appropriate type of gelatin can be 

chosen. Gelatin microspheres have been well known as the most suitable of 

gelatin based scaffolds for control release of biomolecules. 

2.3.3. Gelatin Microspheres 

Microsphere scaffolds in general have certain unique features and advantages 

compared to other scaffold types. They tend to get their 3D nature through the 

curvature of the spheres which seem to have an enhanced effect on various 

cellular processes such as proliferation and differentiation (Schmidt et al. 2011). 

They can also be used as effective drug delivery vehicles and can control release 

various biomolecules. Thus microsphere scaffolds can usually be employed as 

delivery vehicles for both cells and growth factors simultaneously (Chen et al. 

2010). This kind of an approach can be very beneficial for tissue regeneration as it 

can aid in three different ways. The microspheres can be packed together to form 

organoid constructs of required shape and size and depending on the material 

used for microsphere fabrication, they can aid as temporary replacements for the 

lost ECM of the damaged tissue. The cells and growth factors that are delivered 

using microsphere scaffolds can aid in regeneration by replenishing the lost 

functional cells and biomolecular signals within the tissue. Certain growth factors 

such as hepatocyte growth factor can even aid in recruiting the endogenous stem 

cells from the adjoining tissues (van de Kamp et al. 2013). Control release of 

growth factors such as vascular endothelial growth factor (VEGF) and basic 

fibroblast growth factor (bFGF) can take part in the vascularization of the tissue 

which is crucial for proper supply of nutrients all over the tissue (Lovett et al. 

2009).  
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Microsphere scaffolds made of gelatin termed as gelatin microspheres (GMs) are 

well known for their drug delivery abilities for various disease conditions (Jian 

Wang 2000, Vandelli et al. 2001, Nakase et al. 2002). GMs have also been 

successfully employed previously in various clinical trials (Nitta et al. 2009, 

Toyama et al. 2012) and thus regenerative systems made from them can have a 

better chance to succeed at clinical level compared to many other commercially 

available microcarriers. Recently they have also been employed for various tissue 

engineering applications and proven successful for delivering growth factors to 

enhance chondrogenic differentiation of MSCs (Fan et al. 2008). In this thesis, we 

employed GMs for enhancing the regenerative properties of ADSCs by forming 

cell-microsphere constructs. Microsphere scaffolds are also known to form strong 

cell-microsphere constructs which enhances the cell-cell and cell-matrix 

interactions (Zhu et al. 2007a, Zhu et al. 2007b, Zhu et al. 2008). Such 

interactions play a key role in tissue regeneration (Chen et al. 2012) and further 

shown to have improved the biological functions of stem cells (Hayashi et al. 

2011). In a similar effort, in this thesis we studied if such strong cell-cell and cell-

matrix interactions in the cell-microsphere constructs formed by ADSCs and GMs 

will enhance the biological functions of ADSCs which can further lead to 

accelerate the tissue regeneration process.  

 

Figure 2.3. A schematic representation of gelatin microsphere fabrication and cell 

seeding. 
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2.4. Injectable delivery systems for stem cell therapy 

Two kinds of approaches are primarily under consideration for stem cell therapies 

– (i) injection of stem cells with aqueous media to the wound site and (ii) 

injection of stem cells using 3D delivery systems. Direct injection of stem cells 

alone has previously caused cell death in certain instances (Guerette et al. 1997, 

Emgard et al. 2003) and proven ineffective for tissue regeneration (Lee et al. 

2008). Injection of stem cells using 3D delivery vehicles which can provide cell 

adhesive sites were able to avoid cell death and also able to localise high densities 

of stem cells at the site of injury (Zakharova et al. 2010, Parisi-Amon et al. 2013). 

Such delivery vehicles can also provide a unique stem cell niche which can 

modulate stem cell response. Along with inducing stem cells to differentiate into a 

certain lineage of the damaged tissue, the micro-architecture of 3D systems can 

also regulate the growth factor secretion profiles of the stem cells (Guilak et al. 

2009) which can aid in the tissue regeneration through paracrine signalling 

(Ratajczak et al. 2012).  

Other advantages of such injectable delivery systems from a clinical perspective 

include ease of administration with significant reduction in treatment time, cost 

and patient morbidity along with smaller scar sizes and faster recovery (Fuchs 

2002). Other than cell delivery, such injectable scaffolds can also be utilized as 

fillers for scar corrections, embolization agents, and also as in house biosensors 

(Munarin et al. 2012). Due to all these reasons, injectable delivery systems which 

can be employed with minimally invasive surgeries are becoming more attractive 

in the medical field for cell and drug delivery applications.  

The effect of micro-architectural niche which include mechanical and 

biomolecular cues provided by these injectable delivery systems on the stem cell 

behaviour will be discussed in the following sections. 
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2.4.1. Effect of mechanical cues on stem cells 

Stem cells can sense and respond to the physical micro-environment surrounding 

them. MSCs were found to be the most receptive stem cells which regularly 

encounter various kinds of physical forces inside the body, such as hydrostatic 

pressure, diffusive mass transport, shear stress etc. which drive them towards 

proliferation or differentiation and play a crucial role in the development of 

various tissues (Higuera et al. 2012). MSCs have the ability to differentiate into a 

wide variety of cell types ranging from neurons to osteocytes depending on the 

matrix stiffness (Engler et al. 2006). Matrices which are soft tends to induce 

neural lineage while stiffer and rigid matrices induces myogenic and osteogenic 

lineages respectively (Engler et al. 2006). This kind of a signalling from the 

matrix to the cells happens through large macromolecular assemblies of integrins 

called focal adhesions. Focal adhesions act as mechanical links between the 

surrounding matrix and the cytoskeleton of the cells and aid in transforming 

mechanical signals into biochemical signals by triggering various mechano-

transduction pathways (Sun et al. 2012). Such biochemical signals then gets 

propagated to the cell nucleus which further regulates the stem cell behaviour by 

effecting the gene expression (Wang et al. 2009b). 

The role of mechanical cues in determining stem cell fate has been exploited in 

various stem cell based tissue regenerative strategies. For example, mechanical 

properties of collagen-hyaluronic acid composite hydrogel scaffolds were tailored 

to direct the differentiation towards neuronal cells or glial cells for neural tissue 

regeneration (Her et al. 2013). Polyacrylamide gels conjugated with 

decellularized human lipoaspirates have been employed to stimulate adipogenesis 

of human ADSCs in the absence of any adipogenic growth factors by mimicking 

the native stiffness of adipose tissue (Young et al. 2013).  Many other studies 

have also successfully demonstrated the induction of a specific cell type by 

providing with appropriate mechanical cues through injectable scaffolds (Ghosh 

et al. 2007).   
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Figure 2.4 A schematic figure showing the effect of various biomechanical cues 
on stem cell behaviour. Various mechanical cues such as mechanical strain, shear 
stress, stiffness and topography seem to act in a synergistic fashion to regulate 
stem cell behaviour. Reproduced from (Kshitiz et al. 2012) by permission of The 
Royal Society of Chemistry. Copyright © 2012, The Royal Society of Chemistry. 

2.4.2. Effect of biomolecular cues on stem cells 

Along with mechanical cues, biomolecular cues also play an important role in 

determining the fate of the stem cells. During the initial weeks stem cells respond 

to the soluble induction factors and later on, the matrix elasticity drives the 

induction towards a certain lineage (Engler et al. 2006). Various types of 

biomolecules are being employed for different applications ranging from 

vascularisation to recruiting endogenous stem cells. VEGF is a well known 

angiogenic growth factor which can also induce endothelial differentiation in 

MSCs (Wang et al. 2013b). Chemokines such as stromal cell derived factor 1, can 
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recruit endogenous stem cells at the injury site and aid in the wound healing 

process (Imitola et al. 2004, Otsuru et al. 2008). At present, growth 

factors/cytokines are the most widely used biomolecular cues in tissue 

engineering strategies to induce different types of stem cells into all most all cell 

types of human body. In addition, cell adhesive motifs are also being employed 

by conjugating them with synthetic matrices to make them suitable for stem cell 

attachment and further to regulate the stem cell properties such as cell shape, 

migration and differentiation (Bacakova et al. 2004). 

 

Figure 2.5 A schematic showing various biomolecular cues that are present in a 
stem cell niche that determines stem cell fate.  

Hydrogels and microspheres are the two widely used 3D scaffolds which are well 

known for providing mechanical as well as biomolecular cues and can also be 

employed as injectable stem cell delivery systems are discussed in the following 

sections. 

2.4.3. Hydrogels for stem cell therapy 

Hydrogels are 3D scaffold materials which are made of hydrophilic polymers and 

are known to absorb high amounts of water. These matrices can closely resemble 
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physiological conditions with a proper selection of a biomimetic material which 

have tunable mechanical properties as well as high water content. They can be 

fabricated in different forms such as micro/nanoparticles or in the form of soft 

gels which can be injected in a liquid form and can gel in situ at the wound site 

(Hoare et al. 2008). This property of in situ gelling makes them an ideal choice to 

be used as fillers as they can take the appropriate shape of the defect site. They 

can also encapsulate stem cells and growth factors (Hwang et al. 2013a) and thus 

be effectively employed for stem cell therapies. A solution of gel precursors, stem 

cells and biomolecules can be injected into the body using a syringe and allowed 

to gel at the injury site. Once gelled, the 3D construct can provide appropriate 

chemical, mechanical, and biomolecular cues to enhance the regenerative 

potential of the encapsulated stem cells. The growth factors either encapsulated or 

secreted by the stem cells can also take part in the tissue regeneration either by 

recruiting endogenous stem cells or by improving vasculature through paracrine 

means. 

Suitable materials need to be selected for fabrication of hydrogels for stem cell 

therapy based on the following criteria (Li et al. 2012). Firstly, the material 

should be biocompatible and biodegradable without release of any toxic by 

products upon degradation. Secondly, the viscosity of the materials should be 

reasonably low for them to be smoothly injectable and should be able to make a 

sol-gel transition under physiological conditions at appropriate gelation rates. 

Thirdly, the mechanical properties and degradation rates of the material should be 

tunable to fabricate them in compliance with the requirements of a specific 

application. Fourthly, it will also be advantageous if they can support controlled 

release of growth factors over desirable periods. Fifthly, the gel construct formed 

should have an appropriate porous structure for cell migration and also to support 

the exchange of nutrients as well as removal of waste. 

Polymeric materials of both natural and synthetic origin have been employed 

previously for developing such injectable stem cell delivery systems. Natural 

polymers including chitosan, hyaluronic acid, alginate, collagen, gelatin, heparin 

and fibrin have been employed (Lee et al. 2001). Among the synthetic polymers, 
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peptides which can self assemble to form hydrogels have been employed but they 

are often expensive. Derivatives and co-polymers of poly(acrylic acid), poly(vinyl 

alcohol) (PVA), PEG and PCL have also been employed for making hydrogels for 

stem cell applications (Lee et al. 2001). 

2.4.4. Microspheres for stem cell therapy 

Microspheres have been used for the stem cell delivery in two ways – 

microencapsulation and microcarriers. In microencapsulation, cells are 

encapsulated inside the microspheres and in microcarrier cultures, cells are 

cultured on the surface of the microspheres. Both the approaches are discussed 

below. 

Microencapsulation is a strategy which is usually employed when it is necessary 

to strictly separate the cells from the outside environment. For example, it can be 

used for cell delivery across immunological barriers (Jeon et al. 2006). 

Microencapsulation aids in avoiding the cells to come into contact with the host’s 

immune system and thus can subside immunological issues. This approach also 

avoids the use of immunosuppressive drugs and also allows choosing the cells 

from a large variety of sources including allogenic and xenogenic sources (Zhang 

et al. 2008). However, escape of allogenic or xenogenic cells from the 

microcapsules due to excessive cell proliferation or degradation of the capsule 

might expose them to the host’s immune system which might then attack those 

cells. Microencapsulation has also been employed for stem cell delivery using 

microcapsules termed as “artificial cells” which are capsules encapsulated with 

stem cells surrounded by strong and thin multilayer membrane components for 

nutrient transport (Paul et al. 2009). Materials employed for fabricating 

microspheres for this approach are usually hydrophilic polymers that form 

hydrogels. This permits the cells to be encapsulated in a hydrated environment 

which supports cell proliferation and migration. However, the main challenge in 

this strategy is the seeding of the cells into microspheres. If the cells are added to 

the precursor solution before fabricating microspheres, the cells have to bear the 
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harsh processing steps which might severely reduce the cell viability.  Another 

approach is to seed the cells on the surface and allow the cells to migrate into the 

microspheres through the pores, which limits the uniform distribution of cells 

throughout the scaffold and will not permit optimal cell seeding densities.  

In addition to microencapsulation, microsphere scaffolds can also be used as 

microcarriers for cell delivery by culturing the cells on the surface of 

microspheres. Such an approach will also allow to simultaneously encapsulate 

growth factors in the microspheres and controlled release them to present 

appropriate biomolecular cues to the cells cultured on the microsphere surface. 

For example, heparin crosslinked chitosan microspheres have been employed to 

deliver neural stem cells along with bFGF for central nervous system repair (Skop 

et al. 2013). This approach also forms cell-microsphere aggregates with strong 

cell-cell and cell-matrix interactions which proves to be crucial for tissue 

regeneration (Bratt-Leal et al. 2011). However, disadvantage of this kind of an 

approach is as the cells are exposed directly to outside environment, the shear 

forces during injection might effect the cells and might also detach the cells from 

microspheres which limits their usage as injectable delivery systems. In addition, 

maintaining the cell-microsphere constructs at the site of injury has also been 

found to be challenging (Pannek et al. 2001, Lemperle et al. 2004).  
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Figure 2.6 A schematic showing microcapsule and microcarrier technologies 
using microspheres. Microencapsulation is employed when it is necessary to 
separate cells from outside environment. For example, it is used to prevent the 
cells from getting exposed to immune system of the recipient. Microcarriers, on 
the other hand, allow cell culture on their surfaces and forms cell-microsphere 
constructs with strong cell-cell and cell-material interactions which are crucial for 
tissue regeneration.  Reproduced from (Hernandez et al. 2010) by permission of 
Elsevier. Copyright © 2010, Elsevier. 

2.4.5. Hydrogel-Microsphere composite scaffolds 

Although both hydrogels and microspheres have been independently employed 

for stem cell delivery applications on many occasions as indicated in the above 

sections, they are also associated with some drawbacks which need to be 

overcome. For example, the mechanical strength of the traditional hydrogels is 

poor. Traditional approaches of crosslinking have improved their mechanical 
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strength but the crosslinking methods employed are often toxic to cells and thus 

effects the cell viability for in situ cell encapsulation. On the other hand, although 

microspheres have been proved effective as drug and cell delivery vehicles, 

maintaining them at the injury site seems challenging. In some instances, they 

were found in distant organs from where they were injected (Pannek et al. 2001). 

This kind of migration of cell-microspheres might lead to deleterious effects in 

other tissues.  

To overcome the issues associated with both these systems, integrated delivery 

systems can be developed by a combination of these two techniques. Cells can be 

cultured on the surface of the microspheres and can be encapsulated in a hydrogel 

environment. The hydrogel network provides a 3D microenvironment for cells to 

proliferate and migrate and microspheres can be used as depots for growth factor 

delivery. The soft hydrogel surrounding the cell-microsphere constructs will also 

facilitates a minimally invasive means of delivery along with permitting for in 

situ gelation and cell encapsulation. Once gelled, the hydrogel can aid in 

maintaining the cell-microsphere constructs at the wound site and can also 

regulate the stem cell behaviour by providing with suitable mechanical and 

biomolecular cues. For example, PLGA microparticles encapsulated in collagen 

hydrogels (DeVolder et al. 2012) and TGF-β3 loaded alginate microspheres 

encapsulated in hyaluronic acid hydrogels (Bian et al. 2011) have been previously 

employed for bone and cartilage regeneration respectively using MSCs. 

Sequential delivery of growth factors can also be attained by loading different 

growth factors in hydrogel matrix and in microspheres (Kim et al. 2012). 

However, such an approach of hydrogel-microsphere composite systems for stem 

cell delivery has been relatively less studied. As discussed in the above sections 

2.3.2 and 2.3.3, collagen hydrogels and GMs have been widely used for stem cell 

based tissue engineering applications and have high degree of potential to get 

translated to clinical level. Hence, in this thesis we examined the effect of such a 

composite scaffold fabricated by incorporating GMs in collagen hydrogels on the 

behaviour of ADSCs.  
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CHAPTER 3 

MATERIALS AND METHODS 

A detailed description of all the materials and methods employed for 

conducting the work presented in this thesis will be provided in this 

chapter 
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3.1. Materials 

Gelatin, acetone, glycine, hoechst 33258, ethylene di-amine tetra-acetic acid 

(EDTA), sodium chloride (NaCl), phosphate buffer saline (PBS), sodium 

hydrogen carbonate (NaHCO3), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES), sodium hydroxide (NaOH), dexamethasone, indomethacin, 

isobutyl methyl xanthine (IBMX), Oil Red O, isopropyl alcohol, 

paraformaldehyde, ascorbic acid, β-glycerol phosphate, Alizarin red S, 

ammonium hydroxide (NH4OH), nicotinamide, hoechst, phalloidin-

tetramethylrhodamine B isothiocyanate (TRITC), ammonium chloride (NH4Cl), 

bovine serum albumin (BSA), saponin, all qPCR primers, growth factor reduced 

matrigel, 24 well transwell culture plates, heparin and endothelial cell growth 

supplement were obtained from Sigma (USA). Olive oil was purchased from 

Wako chemicals (Japan). Glutaraldehyde was purchased from Merck (USA). 

Dulbecco’s modified eagle’s medium (DMEM), fetal bovine serum (FBS), trypsin 

and antibiotics for cell culture were obtained from Hyclone (USA). Epidermal 

growth factor (EGF), basic fibroblast growth factor (bFGF), hepatocyte growth 

factor (HGF) and bFGF ELISA kit were purchased from Peprotech (USA). 

RNeasy mini kit for RNA extraction bought from Qiagen. Maxima first strand 

cDNA synthesis kit obtained from Fermentas, Thermo fisher (USA). SYBR 

FAST Biorad qPCR master mix was purchased from Kapa Biosystems (USA). 

Human umbilical vein endothelial cells (HUVEC) and F-12k medium were 

obtained from the American type culture collection (ATCC) (USA). Collagen 

type I obtained from Advanced biomatrix (USA). Collagenase type I and insulin 

were purchased from Gibco, Life technologies (USA). Antibodies for albumin, 

alpha-fetoprotein and cytokeratin 18 along with alkaline phosphatase assay kit 

were obtained from Abcam (USA). Pierce BCA protein assay kit for protein 

estimation was purchased from Thermo scientific, (USA). 
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3.2. Fabrication and Characterization of cell-microsphere (ADSC-GM) 

constructs 

3.2.1. Gelatin microsphere fabrication and characterization 

Gelatin microspheres (GMs) were fabricated using a water-in-oil emulsion 

method (Zhu et al. 2008). Briefly, 4 g of gelatin was dissolved in 20 mL of water 

and heated up to 60 oC. 200 mL of olive oil was heated up to 40 oC. Gelatin was 

then added drop-wise into the olive oil, while stirring at 420 rpm with a 

mechanical stirrer (RW20; Ika Labortechnik, Staufen, Germany). The water-in-oil 

(w/o) emulsion was stirred for 10 min before being immersed into an ice bath to 

maintain the temperature at 10 oC and stirred for a further 30 min. 60 mL of 

chilled acetone was then added and the mixture was stirred for another 1 h. The 

GMs were extracted from the olive oil by a series of centrifuging and washing 

with chilled acetone. Crosslinking was carried out by immersing the microspheres 

in 150 mL of 10 mM glutaraldehyde solution and stirred at 420 rpm for 12 h at 4 
oC. Crosslinked microspheres were washed with deionized (DI) water and then 

suspended in 50 mM glycine solution to block the unreacted aldehyde groups for 

2 h at room temperature. The microspheres were then washed with acetone and air 

dried. Thus obtained GMs were stored at -20 oC for future use. 

The GMs were characterized for their sizes using an optical microscope and their 

surface morphology using a scanning electron microscope (SEM) (JSM-5600VL; 

JEOL, Tokyo, Japan). As GMs tend to swell by absorbing water, the sizes of 

microspheres were measured both in dry and in wet state, after saturation with 

sterile DI water for 3 h. Images were taken using a digital camera attached to the 

optical microscope and the sizes were analyzed by measuring the diameters of the 

microspheres using image pro software. For imaging under SEM, dry 

microspheres were mounted onto brass stubs using a two-sided adhesive tape and 

platinum coated for 40 s using Auto Fine Coater (JFC-1300; JEOL). 

3.2.2. ADSCs isolation and culture 
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ADSCs were isolated from adipose tissues obtained from patients undergoing 

liposuction with informed consent and approval from the Institutional Review 

Board, National University Hospital, Singapore. The obtained adipose tissues 

were processed for ADSCs isolation using an established protocol (Leong et al. 

2005). Briefly, the tissues were washed with phosphate buffer saline (PBS) on a 

separating sieve and treated with 0.075% collagenase type I for 1 h at 37 oC under 

shaking. Cells were pelleted out by centrifugation at 1200 x g, 4 oC for 10 min 

and plated in tissue culture flasks along with growth medium (DMEM containing 

10% fetal bovine serum and 1% antibiotics). After the cells were attached, the 

medium was removed, washed with PBS and replaced with fresh medium. The 

cells were cultured to 80% confluency and then passaged for cell expansion. 

ADSCs of passages 2 to 4 have been used for the experiments in this study. 

3.2.3. Cell seeding on gelatin microspheres 

GMs crosslinked with 10 mM glutaraldehyde were sterilized with 70% ethanol 

followed by complete washing with sterilized PBS. For differentiation 

experiments, the microspheres were then transferred to 12 well plates at 10 mg 

per well and 5x104 cells were then seeded onto the microspheres per well (i.e. 

5x103 cells per mg of microspheres).  For cell proliferation experiments, the 

microspheres were transferred to 24 well plates at 2 mg per well and 1x104 cells 

per well were subsequently seeded onto the microspheres. 

3.2.4. Total DNA quantification assay 

Total DNA quantification method was used to study the proliferation of ADSCs 

on GMs and on traditional 2D tissue culture dishes. ADSCs were cultured on the 

microspheres and on 2D over a period of 10 d and samples were collected on 

different time points for performing the assay. The culture samples were washed 

twice with PBS and the cells were lysed by incubating with ultrapure water 

followed by three freeze-thaw cycles. A solution of 1 μg/mL Hoechst 33258 in 10 

mM Tris-HCl (pH 7.4), 1 mM EDTA and 0.2 M NaCl was prepared and mixed 
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with the cell lysates to incubate in dark for 30 min. Subsequently fluorescent 

readings were measured using a microplate reader (Infinite M200, Tecan) at an 

excitation wavelength of 360 nm and an emission wavelength of 465 nm. 

3.2.5. Differentiation of ADSCs and characterization 

Following differentiation media were used to differentiate ADSCs both in 

monolayer and on GMs into adipogenic, osteogenic and hepatic lineages.  

For adipogenic differentiation, ADSCs were maintained in the adipogenic 

induction medium (Wall et al. 2007) comprising of growth medium supplemented 

with 1 µM dexamethasone, 5 µg/mL insulin, 100 µM indomethacin and 500 µM 

isobutyl methyl xanthine. Adipogenic differentiation was characterized by Oil 

Red O staining after three weeks of induction. To further confirm the 

differentiation, expression of adipogenic marker gene PPAR-γ was also analyzed 

using real time PCR. 

For osteogenic differentiation, ADSCs were maintained in the osteogenic 

induction medium (Wall et al. 2007) comprising of growth medium supplemented 

with 50 µM ascorbic acid, 0.1 µM dexamethasone and 10 mM β-glycerol 

phosphate. After three weeks of induction the cells were fixed with 4% 

paraformaldehyde and stained with Alizarin red S to observe the presence of 

mineralized matrix deposition. Real time PCR was also performed to analyze the 

gene expression of a key osteogenic transcription factor gene, RunX2. 

Hepatic differentiation was performed by culturing the ADSCs in serum free 

medium containing DMEM supplemented with 20 ng/mL epidermal growth 

factor (EGF) and 10 ng/mL basic fibroblast growth factor (bFGF) for 48 h. For 

the next two weeks, ADSCs were cultured in DMEM supplemented with 20 

ng/mL hepatocyte growth factor (HGF), 10 ng/mL bFGF and 4.9 mM 

nicotinamide (Talens-Visconti et al. 2007). After two weeks, the hepatic 

differentiation was characterized by studying the gene expression of albumin. 
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Presence of hepatic markers albumin, alpha-fetoprotein and cytokeratin18 was 

confirmed by performing immunofluorescence staining. 

3.2.6. Oil Red O Staining  

ADSCs differentiated towards adipogenic lineage both on 2D and on GMs were 

stained with Oil Red O for characterizing the differentiation. Prior to performing 

the staining, appropriate amount of Oil Red O solution was prepared. Firstly, a 

stock solution of 0.5% Oil Red O solution in isopropyl alcohol is prepared, which 

can be stored up to 3 months at room temperature upon protection from light. 

Working solution of Oil Red O was then freshly prepared by mixing 3 parts of 

stock solution to 2 parts of PBS. The working solution was then thoroughly mixed 

and left for 10 min. This solution was finally filter sterilized and used within 2 

hours of preparation.  

Once the Oil Red O working solution was prepared, the differentiation media was 

removed from all the wells and the samples were washed twice with PBS. ADSCs 

were then fixed using 4% paraformaldehyde for 1 h at room temperature and the 

samples were rinsed with PBS twice. 2 mL of Oil Red O working solution was 

then added to each well and incubated for 20 min at room temperature. The stain 

solution was removed and the samples were washed again with PBS twice. All 

the samples were finally examined under an optical microscope for visualization 

of lipid droplets inside differentiated ADSCs and their images were taken using a 

digital camera attached to the microscope.   

3.2.7. Alizarin red staining  

ADSCs differentiated towards osteogenic lineage both on 2D and on GMs were 

stained with Alizarin red S for characterizing the differentiation. Prior to 

performing the staining, appropriate amount of stain solution was prepared. 1 g of 

Alizarin red S was dissolved in 100 mL of DI water and pH of the solution was 

adjusted to be between 4.1 and 4.3 using 0.1% ammonium hydroxide. This 
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solution was then filter sterilized and used for staining, which can be stored up to 

3 months at room temperature upon protection from light.  

Once the Alizarin red stain solution was prepared, the differentiation media was 

removed from all the wells and the samples were washed twice with PBS. ADSCs 

were then fixed using 4% paraformaldehyde for 1 h at room temperature and the 

samples were rinsed with DI water twice. 2 mL of Alizarin red stain solution was 

then added to each well and incubated for 20 min at room temperature. The stain 

solution was removed and the samples were washed again with DI water twice. 

All the samples were finally examined under an optical microscope for 

visualization of mineralized matrix depositions by the differentiated ADSCs and 

their images were taken using a digital camera attached to the microscope.  

3.2.8. Real-time quantitative polymerase chain reaction (qPCR) 

Total RNA was extracted from ADSCs cultured both on tissue culture plates and 

on GMs using Qiagen RNeasy mini kit. Concentrations of the extracted total 

RNA was determined using Nanodrop 2000 spectrophotometer (Thermo 

Scientific). Complementary DNA (cDNA) was synthesized from the extracted 

RNA using Maxima first strand cDNA synthesis kit (Thermo Scientific). The 

obtained cDNA was used for qPCR which was performed in triplicates by using 

SYBR FAST Biorad qPCR master mix (Kapa Biosystems). The primers used in 

the qPCR are given in Table 3.1. Relative gene expression was found out using 

double delta Ct method (Livak et al. 2001) using β-actin as housekeeping gene.  
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Table 3.1 Primer sequences used for qPCR experiments 

Gene name  Primer sequence 

Oct4 Forward 

Reverse 

5’-GCAGCGACTATGCACAACGA-3’ 

5’-CCAGAGTGGTGACGGAGACA-3’ 

Sox2 Forward 

Reverse 

5’-CATCACCCACAGCAAATGACA-3’ 

5’-GCTCCTACCGTACCACTAGAACTT-3’ 

Nanog Forward 

Reverse 

5’-CCTGTGATTTGTGGGCCTG-3’ 

5’-GACAGTCTCCGTGTGAGGCAT-3’ 

Rex1 Forward 

Reverse 

5’-TGAAAGCCCACATCCTAACG-3’ 

5’-TATAACCGCTTTTGGGGTTG-3’ 

PPAR-γ Forward 

Reverse 

5’-TCAGGTTTGGGCGGATGC-3’ 

5’-TCAGCGGGAAGGACTTTATGTATG-3’ 

Runx2 Forward 

Reverse 

5’-TTCATCCCTCACTGAGAG-3’ 

5’-TCAGCGTCAACACCATCA-3’ 

Albumin Forward 

Reverse 

5’-TGTTGCATGAGAAAACGCCA-3’ 

5’-GTCGCCTGTTCACCAAGGA-3’ 

β-actin Forward 

Reverse 

5’-CATGTACGTTGCTATCCAGGC-3’ 

5’-CTCCTTAATGTCACGCACGAT-3’ 

3.2.9.  Immunofluorescence staining 

The ADSCs differentiated both in monolayer and on GMs were fixed with 4% 

paraformaldehyde for 20 min. The samples were then washed with PBS, 100 mM 

NH4Cl and again with PBS. Following this, cells were permeabilized in 0.1% 

W/V saponin for 15 min. Primary antibodies were diluted in blocking buffer 

consisting of 5% fetal bovine serum and 2% bovine serum albumin in PBS and 

were added to the culture samples for 1 h. The samples were subsequently washed 

thrice with PBS and incubated for 1 h with a solution containing secondary 

antibody, Hoechst and phalloidin diluted in blocking buffer. Finally, the samples 

were washed for six times with PBS and visualized under a confocal laser 

scanning microscope (CLSM) (C1 system, Nikon, Singapore). 
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3.2.10.   In vitro HUVEC-matrigel assay 

To test the in vitro pro-angiogenic activity of the ADSCs cultured on 2D and on 

GMs, HUVEC-matrigel assay was performed. HUVECs were co-cultured with 

ADSCs either cultured on 2D or on GMs and tube formation ability of HUVECs 

on matrigel was quantified. HUVECs alone without any co-culture with ADSCs 

were used as control.  24-well transwell culture plates were used for the co-culture 

experiments. HUVECs purchased from ATCC were maintained in growth 

medium consisting of F-12K medium supplemented with 0.1 mg/mL heparin, 

0.05 mg/mL endothelial cell growth supplement and 10% fetal bovine serum. 

For matrigel assay, ADSCs were initially cultured in the culture inserts either on 

2D or on GMs for two days and conditioned media were collected. On day 3 the 

bottom wells of the transwell plates were coated with growth factor reduced 

matrigel and incubated for 30 min at 37 oC for gelation. HUVECs were 

trypsinized and seeded onto matrigel coated wells at a density of 5x104 cells per 

well. The co-culture was performed for 24 h in medium containing both ADSC 

conditioned medium and HUVEC growth medium in 1:1 ratio. After 24 h, optical 

images were taken and quantitative measurements were made for tube lengths and 

number of branch points of the HUVEC tubules formed on matrigel using ImageJ 

software. 

3.3. Osteogenic induction of ADSCs in Col-GM composite scaffolds 

3.3.1. Fabrication of Col-GM scaffolds 

GMs were fabricated using a water-in-oil emulsion method and crosslinked with 

10 mM glutaraldehyde as described the section 3.2.1. Pure collagen gels were also 

synthesized using a previously described method (Liang et al. 2011). Briefly, pre-

chilled bovine collagen type I solution (3 mg/mL, PureCol, Advanced Biomatrix), 

growth medium containing ADSCs (50,000 cells per 1 mL volume of gel) and 

reconstitution solution were mixed in a ratio of 8:4:1. The reconstitution solution 
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was a mixture of 0.26 M of sodium hydrogen carbonate, 0.2 M 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 0.04 N of sodium 

hydroxide. The mixture was subsequently incubated at 37 oC for 4 h to form 3D 

collagen hydrogels (Col). To form Col-GM scaffolds, ADSCs were first seeded 

onto GMs as described in section 3.2.3 at a concentration of 50,000 cells per 10 

mg of GMs. This cell-microsphere mixture was first incubated in 200 µL of 

growth medium at 37 oC for 4 h for the cells to attach to the GMs. Then cell-

microsphere constructs were mixed with the pre-chilled collagen type I solution 

and reconstitution solution as described above to form the Col-GM scaffolds. 

ADSCs seeded only on GMs were used as control groups in the experiments as 

required.  

3.3.2. Rheological measurement of Col-GM scaffolds 

Rheological properties of the scaffolds were measured using an AR-G2 rheometer 

(TA instruments, New castle, USA) using parallel plates of diameter 40 mm at 37 
oC. Firstly, the scaffolds were formed by mixing respective pre-gel solutions and 

then added onto the rheometer. After a brief equilibration of the gels on the 

rheometer plates at 37 oC, rheological measurements were carried out. Dynamic 

strain sweeps were first carried out from 0.1% to 100% at an angular frequency of 

1 rad/s to find out the linear visco-elastic region. Following that, the strain was 

fixed at 1% and frequency sweeps were performed over the frequency range of 

0.1 – 10 rad/s.  

3.3.3. Immunofluorescence staining 

On various time points during a 10 d culture in growth medium, ADSCs cultured 

in Col-GM scaffolds were fixed with 4% paraformaldehyde for 20 min. The 

samples were then washed once with PBS, twice with 100 mM NH4Cl and again 

with PBS. Following this, cells were permeabilized in 0.1% W/V saponin for 15 

min. Hoechst and phalloidin-TRITC were diluted in blocking buffer consisting of 

5% fetal bovine serum and 2% bovine serum albumin in PBS and were added to 

the culture samples for 1 h. Finally, the samples were washed for six times with 
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PBS and visualized under a confocal laser scanning microscope (CLSM) (C1 

system, Nikon, Singapore). 

3.3.4. Real-time quantitative polymerase chain reaction (qPCR) 

Col-GM scaffolds on appropriate time points during the differentiation of ADSCs 

were first treated with collagenase type I solution (1,000 units/mL in PBS) at 37 
oC for 1 h to break the collagen matrix. Total RNA was subsequently extracted 

from all the samples and qPCR was performed according to the protocol 

described in the section 3.2.8. The primer sequences used for the qPCR are given 

in Table 3.2. 

Table 3.2 Primer sequences used for qPCR experiments 

Gene name  Primer sequence 

BMP2 Forward 

Reverse 

5’-GGAATGACTGGATTGTGGCT-3’ 

5’-TGAGTTCTGTCGGGACACAG-3’ 

OCN Forward 

Reverse 

5’-CAAAGGTGCAGCCTTTGTGTC-3’ 

5’-TCACAGTCCGGATTGAGCTCA-3’ 

Runx2 Forward 

Reverse 

5’-GTCTTACCCCTCCTACCTGA-3’ 

5’-TGCCTGGCTCTTCTTACTGA-3’ 

β-actin Forward 

Reverse 

5’-ATCATGTTTGAGACCTTCAA-3’ 

5’-CATCTCTTGCTCGAAGTCCA-3’ 

 

3.3.5. Encapsulation of bFGF in Col-GM scaffolds and in vitro release study 
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GMs were sterilized with 70% ethanol followed by complete washing with 

sterilized PBS and then were air dried for 5 h under sterile conditions. 100 µL of 

bFGF solution (1 ng/µL) was then added to 20 mg of such air dried GMs and 

were left for 5 h for the GMs to absorb the bFGF solution completely while 

swelling. These bFGF loaded GMs were then incorporated into collagen 

hydrogels fabricated as described above. For incorporating bFGF into collagen 

hydrogels, 100 ng of bFGF solution was prepared at appropriate concentration 

and mixed with collagen type I solution and reconstitution solution to form the 

hydrogel.  

To study the release profile, bFGF loaded scaffolds were suspended in 2 mL of 

DMEM and incubated at 37 oC for 14 days. At set time points, the supernatant 

was collected and replaced with fresh DMEM. The concentrations of bFGF in the 

collected supernatants were analyzed using an ELISA kit (Peprotech) according 

to manufacturer’s instructions. 

3.3.6. Alkaline phosphatase (ALP) activity  

ALP activity of all the Col-GM scaffolds was quantified on predetermined time 

points for assessing the osteogenic differentiation of ADSCs. A calorimetric assay 

kit (Abcam, Cambridge, UK) was used to evaluate the ALP activities. The kit 

uses p-nitrophenyl phosphate as substrate for ALP and its conversion to p-

nitrophenol can be analyzed by measuring the absorbance at 405 nm. Osteogenic 

medium from all the samples was aspirated and washed with PBS. 300 μL of lysis 

buffer provided with the kit was then added directly to all the samples and were 

incubated for 15 min. After confirming the cell lysis by checking under 

microscope, the samples were centrifuged at 13,000 x g for 3 min at 4 oC to 

remove the cell and scaffold debris. The supernatants were subsequently collected 

and ALP activities were measured according to manufacturer’s instructions. Total 

protein from all the samples was also quantified using Pierce BCA protein assay 

kit (Thermo scientific, Illinois, USA). ALP activities from different samples were 

further normalized with their respective total protein values.  
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3.4. Statistical analysis 

All the data presented in this study represents mean ± standard deviation values of 

three experiments, unless otherwise stated. Statistical differences between groups 

were found using Student’s t-test or One-way ANOVA. Differences with P<0.05 

were considered as statistically significant and were represented with appropriate 

symbols. 
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CHAPTER 4 

FABRICATION AND CHARACTERIZATION OF CELL-

MICROSPHERE CONSTRUCTS FORMED WITH HUMAN 

ADIPOSE DERIVED STEM CELLS AND GELATIN 

MICROSPHERES 

 

This chapter describes the strategy of cell-microsphere constructs 

(ADSC-GMs) as an in vitro 3D culture platform for human ADSCs 

and their properties such as proliferation, stemness, multi-lineage 

differentiation and pro-angiogenic potential. The work in this chapter 

addresses objective 1 described in chapter 1.This work has been 

published in Macromolecular Bioscience. 
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4.1. Introduction 

Adipose derived stem cells (ADSCs) which have very similar characteristics to 

that of bone marrow mesenchymal stem cells (BMSCs) (Kern et al. 2006) are 

gaining increased interest because of their immense therapeutic potential evident 

from recent studies (Leong et al. 2006, Li et al. 2011, Lin et al. 2011, Tay et al. 

2011, Choi et al. 2012, Hwang et al. 2013a). However, many of the studies 

involving ADSCs have been performed on two dimensional (2D) tissue culture 

dishes which do not resemble the in vivo microenvironment. In addition, direct 

injection of such cell suspensions cultured on 2D have proven to be inefficient for 

regenerating tissues due to poor engraftment and lack of control over cell 

distribution inside body (Lee et al. 2008, Mooney et al. 2008). In many instances, 

most of the transplanted cells die shortly after implantation (Guerette et al. 1997, 

Emgard et al. 2003). Dearth of cell attachment sites and existence of ischemic 

environment due to poor vascularization might be the reasons for such cell death. 

Microcarriers designed as injectable cell delivery vehicles which can provide cell 

attachment sites and also aid in vascularizing regenerative tissue can overcome 

this problem. Such microcarriers can be used to deliver both cells as well as 

biomolecules simultaneously (Chen et al. 2010). Zhu et al. have previously 

employed basic fibroblast growth factor loaded gelatin microspheres (GMs) for 

culturing human umbilical vein endothelial cells (HUVECs) in a similar effort to 

promote vascularization for tissue implants (Zhu et al. 2008). GMs are well 

established drug delivery vehicles (Young et al. 2005) which have also been 

studied for their suitability in various tissue engineering applications (Zhu et al. 

2008, Baraniak et al. 2012, Leong et al. 2013).   In this chapter, we report 3D 

GMs as viable platforms for tissue engineering with human ADSCs. To this end, 

we studied the role of GMs in controlling stemness, angiogenic and 

differentiation properties of ADSCs, all of which are important factors for tissue 

regeneration. 

The regenerative capacity of ADSCs for clinical applications can be enhanced by 

promoting their stemness and angiogenic properties. Maintaining stemness 

improves the multi-lineage differentiation ability of ADSCs while pro-angiogenic 
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properties can be useful for vascularization of regenerating tissues. Recent studies 

have employed 3D spheroids for enhancing stemness, angiogenic and other 

functional properties of ADSCs as well as other cell types (Lin et al. 2008, Cheng 

et al. 2012, Laschke et al. 2013). Presence of stronger cell-cell interactions in 

spheroidal morphology was found to be the reason for such enhanced functional 

abilities. However, spheroids are associated with diffusional limitations and also 

lack cell-matrix interactions. Some other studies using microsphere scaffolds have 

shown that such strong cell-cell and cell-matrix interactions can also be generated 

by forming compact cell-microsphere constructs with superior control over cell 

behaviour (Khew et al. 2007, Zhu et al. 2007a, Zhu et al. 2007b, Zhu et al. 2008, 

Chen et al. 2012).  

Thus the objective of this study is to investigate whether the ADSCs can similarly 

form such cell-microsphere constructs (ADSC-GMs) with enhanced tissue 

regenerative abilities suitable for direct clinical use. To achieve this objective, we 

conducted experiments to test the ability of ADSC-GM constructs for three 

different aspects of tissue regeneration. Firstly, maintenance of stemness 

properties in the ADSC-GM constructs was studied. Recent studies have shown 

that well known pluripotent marker genes such as Oct4, Sox2, Nanog and Rex1 

play an important role in self-renewal and preserving differentiation abilities of 

ADSCs and BMSCs (Greco et al. 2007, Riekstina et al. 2009, Baer et al. 2010). 

Therefore, these four genes were selected to test the stemness properties and their 

gene expression was studied using quantitative polymerase chain reaction (qPCR) 

during the proliferation of ADSCs. Secondly, the multipotent differentiation 

abilities of ADSC-GMs were studied by inducing them towards adipogenic, 

osteogenic and hepatic lineages. Thirdly, pro-angiogenic ability of the constructs 

was also studied using an in vitro HUVEC-matrigel assay. HUVECs were co-

cultured with either ADSC-GMs or ADSCs on 2D and the tube formation ability 

of HUVECs on the matrigel was quantified. This ADSC-GM construct strategy 

for stem cell culture and delivery can be a promising approach for the use of adult 

stem cells in regenerative medicine. 
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4.2. Results  

4.2.1. Fabrication of Gelatin microspheres 

All the GMs fabricated were found to be spherical with smooth surfaces as shown 

under SEM (Figure 4.1c). The optical microscope images of the GMs in dry 

(Figure 4.1a) and wet (Figure 4.1b) conditions show the swelling nature of these 

hydrogel microspheres. Sizes of the microspheres sampled from a single batch of 

microspheres were measured and found to be 103.8 ± 27.5 µm when dry and 

145.7 ± 46.4 µm when swollen with a mean swelling ratio of 2.77.  

 

Figure 4.1 Optical microscope images of GMs in (a) dry and (b) wet condition. 
(c) SEM image of GMs showing the sphericity of the GMs and SEM image in the 
inset showing the smooth surface of the GMs. 

4.2.2. ADSC culture and proliferation on gelatin microspheres 

Figure 4.2a and b, show the optical microscope images of ADSC-GM constructs 

on day 3 and day 7 respectively. ADSCs seem to attach and spread well on the 

microspheres by day 3. Some of the elongated ADSCs tend to extend over 

individual microspheres bridging adjacent microspheres. By day 7, ADSCs 

became confluent over the microspheres, strengthening the bridges between 

microspheres to form large cell-microsphere clusters. To study the morphology of 

ADSC-GMs in detail, SEM (Figure 4.2c) and CLSM (Figure 4.2d) imaging of 

ADSC-GMs was performed after one week of culture. SEM images of ADSC-

GMs show differences in surface morphology from the plain GMs shown in 
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Figure 4.1c which has a smooth surface. That could be due to the GMs being 

covered with cells and extracellular matrix secreted by the cells. The presence of 

cells and the extracellular matrix helps in holding the ADSC-GM construct as an 

integral organoid graft. Such a coordinated bridging at the cellular level will 

further lead to higher hierarchical integrity.  From the CLSM images, actin 

filaments of ADSCs were seem to be stained with phalloidin-TRITC (red) and 

nucleus stained with Hoechst (blue). The image in Figure 2d clearly confirms the 

presence of ADSCs on microspheres and their spreading. 

To further study the proliferation of ADSCs on GMs, total DNA quantification 

assay was performed for microsphere cultures (Zhu et al. 2007b). A calibration 

curve was used to obtain the cell numbers on different days of culture as 

presented in Figure 4.3a. The results show that cell numbers increase from day 1 

to day 10 both on 2D and on GMs. ADSCs tend to proliferate faster on GMs as 

compared to 2D cultures as seen by their mean doubling times of around 2 days 

and 2.5 days respectively measured between day 3 and day 7 of the log phase. 

ADSCs can adhere better to GMs compared to the tissue culture plates because of 

the presence of cell adhesive moieties on gelatin and the GMs also provide a 

larger surface area compared to 2D cultures. These might be the reasons for the 

faster growth rate of ADSCs that is observed on GMs. The cell proliferation 

results obtained are in agreement with previous studies on microsphere scaffolds 

(Zhu et al. 2007a, Zhu et al. 2007b). 



47 
 

 

Figure 4.2 ADSCs cultured on GMs. Optical microscope images of ADSC-GMs 
on (a) day 3 and (b) day 7 of culture period. Black arrows showing the bridging of 
adjacent GMs by elongated ADSCs. (c) SEM and (d) CLSM images of ADSC-
GMs on day 7. For CLSM image cell actin was stained with phalloidin-TRITC 
and nucleus with Hoechst. 
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Figure 4.3 (a) Proliferation of ADSCs on 2D (      ) and on GMs (      ) studied 
using total DNA quantification assay. Differences in cell numbers on 2D and 
GMs were not found to be statistically significant. (b) qPCR fold change values 
measured relative to day 0 control for stemness marker genes Oct4, Sox2, Nanog 
and Rex1 of ADSCs cultured on 2D and GMs after day 3 and day 7. Error bars 
represent SD (n=3); *P<0.05 (student’s t-test) compared to 2D group on day 3 
and †P<0.05 (student’s t-test) compared to 2D group on day 7.  

 

 

(       2D day 3;       GMs day 3;       2D day 7;       GMs day 7)     
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4.2.3. Expression of stemness marker genes on gelatin microspheres 

We studied the expression of well-known stemness marker genes Oct4, Sox2, 

Nanog and Rex1 using qPCR for ADSCs cultured both in monolayer and on 

GMs. It was found that ADSCs cultured on GMs expressed significantly higher 

amounts of Oct4, Sox2, Nanog and Rex1 as compared to the monolayer cultures 

shown in Figure 4.3b. Gene expression of all four genes studied seems to be 

upregulated on day 3 compared to day 0 controls in ADSC-GMs with mean fold 

changes of 2.4, 2.9, 2.3 and 13.1 for Oct4, Sox2, Nanog and Rex1 respectively. In 

contrast on 2D culture plates, there was a down regulation of all genes except for 

Rex-1 which was upregulated by 3.2 fold. The expression levels of Oct4 and 

Rex1 on ADSC-GMs were maintained even after one week of culture with 

average fold changes of 2.6 and 13 compared to day 0 controls. However, there 

was a decline in the expression levels of Sox2 and Nanog on day 7 as compared 

to day 3, possibly due to culturing in serum containing medium. Optimizing the 

media conditions might further enhance the gene expression of these stemness 

genes (Baer et al. 2010). Our results demonstrate that ADSCs cultured on 

traditional 2D tissue culture dishes tend to lose their stemness marker gene 

expression which are in agreement with other studies (Park et al. 2010a). On the 

contrary, ADSC-GMs can overcome that problem by providing an artificial stem 

cell niche which preserves the expression of stemness genes.  

4.2.4. Adipogenic and osteogenic differentiation of ADSCs 

ADSCs cultured both in monolayer and on GMs were able to differentiate into 

adipogenic and osteogenic lineages when maintained in the appropriate 

differentiation media. The differentiation was characterized by Oil red O and 

Alizarin red staining as shown in Figure 4.4. Enhanced mineralization was 

observed in ADSC-GMs as compared to 2D cultures on staining with Alizarin red 

(Figure 4.4c and d). ADSCs tend to mineralize the GMs during the process of 

osteogenic differentiation which will be advantageous when ADSC-GMs are used 

as in vivo delivery vehicles for bone regeneration. To further confirm and quantify 
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the differentiation, qPCR was performed to test the gene expression of respective 

differentiation markers, PPAR-γ for adipogenic and Runx2 for osteogenic 

differentiation. Markers for both lineages have shown significantly higher gene 

expression in ADSC-GMs as compared to ADSCs cultured in 2D by around 1.7 

times and 1.8 times for adipogenic and osteogenic markers respectively (Figure 

4.4e and f). Several studies have previously reported that microsphere scaffolds 

can enhance adipogenic and osteogenic differentiation of various kinds of stem 

cells (Park et al. 2010b, Moshaverinia et al. 2012, Yao et al. 2012). In agreement 

with those studies, our results also show that GMs also seem to be better 

platforms than 2D cultures for in vitro differentiation of ADSCs into adipogenic 

and osteogenic lineages. 

 

Figure 4.4 Optical microscope images of Oil Red O staining of ADSCs on (a) 2D 
and on (b) GMs showing adipogenic differentiation. Microscope images showing 
Alizarin red staining of ADSCs on (c) 2D and on (d) GMs for detection of 
osteogenic differentiation. qPCR fold change values measured relative to day 0 
control for adipogenic and osteogenic marker genes (e) PPAR-γ and (f) Runx2 
respectively on 2D and GMs. Error bars represent SD (n=3); *P<0.05 (student’s t-
test).  
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4.2.5. Hepatic differentiation of ADSCs 

ADSCs were also differentiated towards the hepatic lineage and characterized 

using immunofluorescence staining and qPCR. Figure 4.5a and b show the images 

taken using CLSM after the differentiated ADSCs on 2D and on GMs were 

stained with fluorescent hepatic marker antibodies for albumin, alpha-fetoprotein 

and cytokeratin18. Phalloidin-TRITC and Hoechst were used to stain actin 

filaments and nucleus respectively to show the cell morphology. ADSCs showed 

positive immuno-staining for all three key hepatic markers both on 2D and on 

GMs. qPCR results (Figure 4.5c) show that albumin expression in ADSC-GMs is 

almost two times to that of in 2D cultures although it is not statistically 

significant. Most of the previous studies that show hepatic differentiation of 

ADSCs were all performed on conventional 2D cultures (Banas et al. 2007, 

Talens-Visconti et al. 2007, Coradeghini et al. 2010). Consistent with those 

studies, we were also able to differentiate ADSCs into hepatic lineage on 2D. 

However, such hepatocytes generated on 2D cannot be used directly for in vivo 

applications. On the other hand, our results show that GMs can also support the 

hepatogenesis of ADSCs. Such hepatic constructs derived from ADSC-GMs can 

be used in developing organoid grafts for liver tissue engineering. 
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Figure 4.5 CLSM images of ADSCs differentiated towards hepatic lineage on (a) 
2D and on (b) GMs after 2 weeks. For all CLSM images cell actin was stained 
with phalloidin-TRITC and nucleus with Hoechst. Hepatic markers were stained 
with respective antibodies tagged with FITC (albumin (ALB), alpha-fetoprotein 
(AFP) and cytokeratin 18 (Cyt18)). The dotted circles show the microspheres. (c) 
qPCR fold change values of ADSCs differentiated on 2D and GMs measured 
relative to day 0 control for hepatic marker gene albumin. The differences in 
expression levels were not found to be statistically significant. Error bars 
represent SD (n=3). 
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Figure 4.6 (a) HUVEC tube formation in two dimensional matrigel assay. 
Representative images of HUVECs seeded on matrigel in co-culture with or 
without ADSC-2D or ADSC-GMs. (b) Quantification of tube like formations. 
Tube lengths and number of branch points were estimated from images taken 
from three experiments. Error bars represent SD. *P<0.05. ANOVA followed by 
Tukey-Kramer test was performed to find out statistical significance.    

4.2.6. Pro-angiogenic activity of ADSC-GMs 

Angiogenic activity of ADSCs cultured on 2D and on GMs was studied using two 

dimensional in vitro matrigel assay which is a highly specific assay for 

angiogenesis and is widely used as an in vitro method to evaluate pro-angiogenic 

factors (Auerbach et al. 2003, Ucuzian et al. 2007). HUVECs on matrigel were 

co-cultured either with ADSCs on 2D or with ADSC-GMs for 24 h and optical 

microscope images of HUVEC tubules formed were taken. Figure 4.6a shows the 

representative images of HUVEC tubules formed on matrigel in different culture 

samples. Angiogenic activity was further quantified by measuring the tube lengths 

and the number of branch points of HUVEC tubular networks. As shown in 

Figure 4.6b, ADSC-GMs were able to induce 1.6 times longer tubules with 2 

times more number of branch points as compared to ADSCs cultured on 2D. This 

shows the enhanced pro-angiogenic ability of ADSC-GMs compared to 2D 
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cultures. HUVECs alone without any co-culture with ADSCs were used as 

control for this study. Tubular formation of HUVECs in case of both the co-

culture samples i.e., either with ADSC-GMs or with ADSCs on 2D were 

significantly higher compared to the control, inducing 2 times and 1.2 times 

longer tubules with 3 times and 1.5 times more number of branch points 

respectively. This highlights the inherent pro-angiogenic properties of the 

ADSCs. Similar enhancement in the tubular formation ability of HUVECs on 

matrigel was also reported earlier when co-cultured with human MSCs 

immobilized within RGD-grafted alginate microspheres (Bidarra et al. 2010). 

4.3. Discussion 

In this study we demonstrated a strategy to assemble the ADSCs and GMs into 

cell-microsphere constructs which seem to have enhanced regenerative properties 

compared to ADSCs cultured on 2D. Stem cell properties such as proliferation, 

maintenance of stemness, differentiation and pro-angiogenic abilities play crucial 

role in different stages of tissue regenerative process and platforms that can 

enhance such properties will aid in accelerating the wound healing. Designing 

such regenerative systems using injectable delivery vehicles such as GMs will 

make them a favourable option for clinical practice than the implant systems that 

need more invasive surgical means. Injectability of similar cell-microsphere 

construct systems into animal models using a syringe has been demonstrated in 

previous studies (Chung et al. 2009, Woo et al. 2014). For example, Chung et al. 

have used 18G needles to inject their 3T3 L1 mouse preadipocyte cellular 

aggregates made using microsphere scaffolds for adipose tissue regeneration in 

mice (Chung et al. 2009). 

GMs have been employed in several previous studies for different tissue 

engineering applications such as cartilage tissue engineering (Garcia Cruz et al. 

2013), muscle regeneration (Hagiwara et al. 2013), bone tissue engineering 

(Tzouanas et al. 2014) and also for culturing HUVEC cells (Zhu et al. 2008) both 

under in vitro and in vivo conditions and were found to be very advantageous 
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scaffolds in terms of eliciting biological response as well as in regeneration of 

tissues. GMs are also being employed to provide biomolecular cues by releasing 

appropriate growth factors at desirable rates in a controlled fashion (Park et al. 

2005, Patel et al. 2008) and also as cell delivery vehicles (Lau et al. 2010). In 

addition, GMs are incorporated into cell aggregates (Bratt-Leal et al. 2011, 

Hayashi et al. 2011, Baraniak et al. 2012, Bratt-Leal et al. 2013) and cell sheets 

(Solorio et al. 2012b) to enhance the biological functions of respective systems. 

GMs are also widely studied by Prof Tabata’s group for several drug delivery and 

tissue engineering applications (Kimura et al. 2003, Ogawa et al. 2010, 

Nakaguchi et al. 2012, Ikeda et al. 2014) including clinical trials (Nitta et al. 

2009, Toyama et al. 2012) and thus regenerative systems made from them can 

have a better chance to succeed at clinical level compared to many other 

commercially available microcarriers. 

In addition to the advantages discussed above, GMs fabricated using the water-in-

oil emulsion technique also seem to be hydrogel in nature and have a tendency to 

swell by absorbing the liquid in which they are immersed. This swelling nature of 

GMs is very advantageous for encapsulating growth factors. Growth factors 

having opposite charge to that of the gelatin can be easily encapsulated using the 

principle of poly-ion complexation, just by dropping a small amount of growth 

factor solution onto the GMs (Young et al. 2005). The GMs will absorb the liquid 

completely during swelling and thus can have an almost quantitative 

encapsulation of the growth factor (Ikada et al. 1998). This permits GMs to be 

also used for spatio-temporal presentation of appropriate biomolecular signals in a 

controlled manner to influence stem cell fate (Solorio et al. 2012a). 

Previous studies indicate the low survival rate of stem cells upon direct injection 

of cell suspensions to the injured tissue, possibly due to lack of cell-matrix 

interactions leading to anoikis (Terrovitis et al. 2010). On the other hand, 

delivering stem cells with three dimensional platforms have been able to improve 

the survival rate of the stem cells and thus further improved their tissue 

regeneration ability (Zakharova et al. 2010, Parisi-Amon et al. 2013). In a similar 

effort, here we developed the 3D ADSC-GM constructs which can deliver 
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ADSCs with enhanced regenerative properties. In addition to the differentiation 

studies which are most commonly performed, we also studied the effect of such 

3D GM delivery vehicles on the stemness and angiogenic properties of ADSCs 

which are not well studied for such stem cell delivery constructs.  

Maintaining the stemness properties of ADSCs during their propagation is crucial 

for keeping their multi-lineage differentiation properties intact, especially when 

the final goal is to utilize them for tissue regenerative applications. Although, the 

factors associated with stemness maintenance in embryonic stem cells are 

relatively well studied, those that influence stemness in adult stem cells such as 

ADSCs are still unclear (Leong et al. 2012). In the case of embryonic stem cells, 

it is well known that transcription factors such as Oct4, Sox2 and Nanog play a 

key role in maintaining their pluripotency. However, recent studies also indicate 

the expression of these pluripotent marker genes in ADSCs (Baer et al. 2010, 

Cheng et al. 2012). Very recently, Heneidi et al. have isolated a new set of multi-

lineage differentiating cell population from adipose tissue which expresses many 

pluripotent marker genes (Heneidi et al. 2013). These studies highlight the 

growing interest towards identifying adult stem cells with pluripotent capabilities 

and for platforms which can enhance such properties. However, previous studies 

indicated the loss of stemness properties of MSCs when cultured in traditional 2D 

cultures (Park et al. 2010a) as also indicated by the downregulation of stemness 

marker gene expression of Oct4, Sox2 and Nanog in this work. This might lead to 

spontaneous differentiation of ADSCs into unwanted lineages (Tsai et al. 2010) 

and thus might significantly reduce the number of undifferentiated multipotent 

stem cells available for tissue regeneration. ADSC-GMs can overcome that 

problem by providing an artificial stem cell niche which preserves the expression 

of stemness genes.  

ADSCs ability to differentiate into adipogenic and osteogenic lineages has been 

well-established both on 2D (Bunnell et al. 2008b) and on 3D scaffolds (Li et al. 

2005). Utilizing such differentiated cells combined with various 3D scaffolds both 

for fat and bone tissue regeneration have also shown promising results (Chung et 

al. 2011, Hwang et al. 2013b, Zuk 2013). Previous studies have also employed 
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various kinds of microsphere scaffolds for MSC differentiation into adipogenic 

and osteogenic lineages. For example, PLGA microspheres coated with RGD 

peptide and loaded with BMP2 were used for osteogenic differentiation of human 

bone marrow MSCs (Park et al. 2010b). PLGA microspheres need to be coated 

with cell adhesive peptides to support cell adhesion and the growth factors need to 

be usually added during the fabrication of the microspheres which can 

significantly affect their biological activity. In another study, alginate 

microspheres were employed to encapsulate different kinds of stem cells and 

studied their adipogenic and osteogenic differentiation abilities (Moshaverinia et 

al. 2012). However, the alginate microspheres in this study were not modified 

with cell adhesion ligands, which affected the cell viabilities. Yao et al. has 

developed another method using a non-contact high voltage dispersion 

microsphere generating device to fabricate alginate-collagen microspheres, which 

showed enhanced adipogenic differentiation compared to 2D (Yao et al. 2012). 

Compared to other microsphere systems, GMs can support cell adhesion without 

any additional coating, easy to fabricate and even the growth factor encapsulation 

can be done much easily after the fabrication of microspheres without effecting 

their biological activity. 

Hepatic differentiation of ADSCs especially in 3D scaffolds has been relatively 

less studied. Although there are many studies which show hepatic differentiation 

of ADSCs using different inducing agents (Banas et al. 2007, Talens-Visconti et 

al. 2007, Coradeghini et al. 2010), almost all of these studies were performed on 

2D with very few focusing on 3D scaffolds (Wang et al. 2010). In this study, 

along with adipogenic and osteogenic differentiation of ADSCs, we have also 

shown differentiation of ADSCs to hepatic lineage both on 2D and on GMs. This 

allows ADSC-GM constructs to be used in forming organoid grafts for liver tissue 

engineering applications also along with being suitable for fat and bone 

regeneration.   

Along with replenishing the lost cells during tissue repair, stem cells can also play 

a significant role in vascularisation of the regenerating tissues through paracrine 

signalling (Hoch et al. 2012). Previous studies have shown that ADSCs can 
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influence angiogenesis in vivo (Matsuda et al. 2013) and can also enhance tube 

formation ability of endothelial cells in vitro (Merfeld-Clauss et al. 2010). ADSCs 

are known to secrete several growth factors at bioactive levels such as epidermal 

growth factor (EGF), vascular endothelial growth factor (VEGF), basic fibroblast 

growth factor (bFGF), platelet-derived growth factor (PDGF) and cytokines such 

as granulocyte colony stimulating factor (G-CSF), granulocyte/macrophage 

colony stimulating factor (GM-CSF), interleukin-6 (IL-6) and interleukin-8 (IL-8) 

(Salgado et al. 2010, Casadei et al. 2012) which have pro-angiogenic properties 

and have been reported to enhance HUVEC tubule formation under in vitro 

conditions (Lee et al. 2005, Chung et al. 2010, Botto et al. 2011). It has also been 

previously reported that the secretion profiles of such pro-angiogenic agents from 

ADSCs can be modulated by external conditions such as hypoxia (Rubina et al. 

2009) or by culturing the ADSCs in 3D culture systems (Liu et al. 2011). The 

enhanced formation of HUVEC tubular networks observed in our study when co-

cultured with ADSC-GMs compared to ADSC 2D cultures could be probably due 

to enhanced secretion of any of the above mentioned pro-angiogenic growth 

factors or cytokines under 3D conditions. Hence, the results obtained in our study 

suggest that angiogenic response of ADSCs can also be modulated through 3D 

culture conditions such as ADSC-GM constructs. 

Overall, this kind of a biomaterials approach of ADSC-GMs for treating damaged 

tissues can be an effective approach which can aid the ADSCs to differentiate into 

a specific lineage that helps in regaining the functional properties of the tissue as 

well as in improving the vascularisation which further helps in the proper supply 

of nutrients all over the tissue. In addition, future studies can focus on 

modifications in chemical and mechanical properties along with encapsulation of 

growth factors into GMs which might be able to further modulate the ADSCs 

response and can aid in designing ADSC-GMs for various specific tissue 

engineering applications. 
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4.4. Conclusions 

This study demonstrates a simple strategy to form cell-microsphere (ADSC-GMs) 

constructs with strong cell-cell and cell-matrix interactions. Our findings show 

that this assembly of ADSC-GMs can preserve the stemness properties and 

enhance the differentiation abilities of ADSCs into adipogenic, osteogenic and 

hepatic lineages when compared to the traditional 2D cultures. Moreover, the 

ADSC-GMs also enhance the tubular network formation of HUVECs on matrigel 

and thus seem to augment the pro-angiogenic properties of ADSCs. This would 

lead to better vascularization of the regenerating tissue. We believe that 

employing these ADSC-GMs with such enhanced regenerative abilities can 

accelerate tissue regeneration and thus enhances the therapeutic potential of 

ADSCs.  
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CHAPTER 5 

OSTEOGENIC INDUCTION OF HUMAN ADIPOSE DERIVED 

STEM CELLS IN A COLLAGEN HYDROGEL – GELATIN 

MICROSPHERE COMPOSITE SCAFFOLD 

 

This chapter describes the strategy of hydrogel-microsphere (Col-

GMs) composite scaffold for ADSC delivery. In addition, regulation of 

ADSC behaviour using mechanical and biomolecular cues provided 

by the Col-GM scaffolds with osteogenic model as a focus will also be 

presented in this chapter. The work in this chapter addresses 

objectives 2 and 3 described in chapter 1. 
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5.1. Introduction 

Three dimensional (3D) scaffolds made of biomaterials have been an integral part 

of the tissue engineering strategies. They act as temporary replacements for 

natural extra-cellular matrices (ECM) found in vivo and also play a key role in 

providing the appropriate biochemical and biomechanical cues for cells in vitro. 

Controlling cell behaviour using these 3D scaffolds has become a major area of 

focus in tissue engineering, for which a wide variety of scaffolds have emerged. 

Among them include, two widely used scaffolds that are microspheres and 

hydrogels. In chapter 4, the study of cell-microsphere constructs (ADSC-GMs) 

has shown the influence that gelatin microsphere (GM) scaffolds can have on the 

tissue regenerative properties of ADSCs by enhancing their stemness, 

differentiation and angiogenic properties. However, maintaining such 

microsphere scaffolds at the injury site has been found to be challenging (Pannek 

et al. 2001, Lemperle et al. 2004) and in turn cell-cell and cell-matrix interactions 

present in the cell-microsphere constructs that are crucial for tissue integration 

can also get destroyed during the delivery process (Chen et al. 2011). To 

overcome such challenges associated with ADSC-GM constructs, we aimed to 

fabricate a hydrogel-microsphere composite scaffold system (Col-GMs) by 

encapsulating the ADSC-GM constructs into collagen hydrogels (Col). The 

encapsulating collagen hydrogel of the Col-GM system will enable gelling of the 

GMs together thereby restricting the ADSC-GMs to the injury site and also 

keeping the cell-cell interactions intact. Such a composite scaffold can therefore 

aid in making the ADSC-GMs suitable for injectable delivery as well as in the 

regulation of ADSC behaviour. In this work, we have chosen osteogenic 

induction of ADSCs as a model study, to establish the capability of Col-GM 

scaffolds in regulating the ADSC behaviour through presentation of various 

mechanical and biomolecular cues.  

As Col-GM scaffolds contain both the microspheres and hydrogel, the behaviour 

of encapsulated ADSCs will be governed by the properties of both the individual 

scaffolds. While microspheres are widely popular as carriers which can deliver 

both cells and growth factors simultaneously (Chen et al. 2010), hydrogels are 
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more known for providing a 3D in vivo mimicking environment (Slaughter et al. 

2009). In addition, the stiffness of a hydrogel environment also tends to play a 

role in determining stem cell fate with stiffer matrices enhancing the osteogenic 

differentiation (Engler et al. 2006). The Col-GM composite scaffolds that we 

intend to develop will be able to present hydrogel stiffness effect as mechanical 

cues to drive the ADSCs towards osteogenic lineage. In addition, to further 

accentuate the osteogenic induction, we also provided biomolecular cues to the 

ADSCs encapsulated in Col-GM scaffolds through basic fibroblast growth factor 

(bFGF) controlled release from GMs. bFGF is an important growth factor which 

regulates multiple regenerative processes simultaneously, such as cell 

proliferation, migration, angiogenesis and wound healing (Lee et al. 2002, 

Miyoshi et al. 2005, Hosseinkhani et al. 2006, Schmidt et al. 2006). In addition, 

many studies have also highlighted the potential of bFGF to enhance the 

osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) 

(Pitaru et al. 1993, Hanada et al. 1997, Oh et al. 2012) and in turn for bone 

regeneration (Jiang et al. 2010, Omata et al. 2012). 

In order to provide the mechanical cues through collagen hydrogels, we employed 

an unconventional approach i.e., variation in the matrix rigidity has been brought 

in by incorporating different amounts of GMs. Traditional crosslinking methods 

of enhancing hydrogel strength are usually cytotoxic and do not support in situ 

cell encapsulation. Alternatively, incorporating a harder phase such as 

microparticles into a hydrogel has been shown to enhance the overall rigidity of 

the composite scaffold acting as reinforcements for softer matrices (Jha et al. 

2009, Hu et al. 2011a).  

Thus, in this study, we investigated the effect of varying GMs concentration in 

reinforcing the collagen hydrogels and performed rheological studies on the bulk 

rigidity of the hydrogel. In addition, we also studied the effects of the mechanical 

cues on the osteogenic differentiation ability of the ADSCs. Differentiation was 

characterized by studying the gene expression of osteogenic marker genes bone 

morphogenetic protein 2 (BMP2), osteocalcin (OCN) and Runx2 and also by 

quantifying the alkaline phosphatase (ALP) activity. Further, we encapsulated 
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bFGF in the Col-GM scaffolds and also studied the effect of bFGF controlled 

release on the osteogenic differentiation of ADSCs and characterized as above. 

Overall, this study shows that Col-GMs can be used as an efficient delivery 

system for ADSCs as well as necessary growth factors simultaneously, with the 

capability to drive ADSCs towards osteogenic lineage through the means of 

mechanical and biomolecular cues. 

5.2. Results  

5.2.1. Characterization of mechanical properties of Col-GMs 

Dynamic mechanical analysis was performed using an AR-G2 rheometer to study 

the effect of incorporation of GMs on the mechanical properties of the collagen 

hydrogels. Two varieties of Col-GM scaffolds were prepared by incorporating 

varying amounts of GMs into the hydrogel – Col-10-GMs (10 mg of GMs per 1 

ml of collagen gel) and Col-20-GMs (20 mg of GMs per 1 ml of collagen gel). 

Strain sweep tests were conducted to find out the linear visco-elastic region 

(Figure 5.1). Later, frequency sweep studies (Figure 5.2a, b and c) of different 

scaffolds were performed by fixing the strain amplitude at 1%. Dynamic storage 

moduli (G’) of all the three scaffolds was found to be greater than their respective 

loss moduli (G”) over the entire frequency range studied (0.1 – 10 rad/s). This 

indicates all the three scaffolds are showing an elastic solid like behaviour (Liu et 

al. 2013). In addition, G’ of all the scaffolds kept increasing with the increase in 

frequency which is indicative of the reduced network structures relaxation at 

higher frequencies (Zhou et al. 2011). Also, the G’ values of all three scaffolds at 

a frequency of 1 rad/s were compared to assess their relative gel strengths as 

shown in Figure 5.2d. G’ of Col-20-GMs was found to be significantly higher 

compared to that of Col and Col-10-GMs by about 32 times and 5 times 

respectively. Another way to assess the gel strengths is by comparing their tan δ 

values which is the ratio of G” to that of G’ (Celli et al. 2007). A value of tan δ 

≤1, is indicative of a gel like material and lower the value of tan δ more elastic is 

the material, while tan δ ≥1 indicates a sol state. Figure 5.2e shows that tan δ of 
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all scaffolds is less than 1, confirming the gelation and also the values are 

significantly different from each other for all the scaffolds with Col-20-GMs 

being the stronger gel of all.  

 

Figure 5.1 Strain sweep study to identify the linear visco-elastic region showing 
G’ (storage modulus) values of collagen hydrogel (     ), Col-10-GMs (      ) and 
Col-20-GMs (     ). 

 

Figure 5.2 Rheological properties of Col-GM scaffolds. G’ (    ) – storage 
modulus and G” (    ) – loss modulus of (a) collagen hydrogel (b) Col-10-GMs 
(collagen hydrogel containing 10 mg of GMs) and (c) Col-20-GMs (collagen 
hydrogel containing 20 mg of GMs). (d) G’ (      ) and G” (      ) of replicate 
samples measured at a strain amplitude of 1% and an angular frequency of 1 
rad/s. (e) Tan δ values of different scaffolds. G’ and tan δ values indicating Col-
20-GMs having higher gel strength compared to Col-10-GMs and Col. Error bars 
represent SD (n=3); *P<0.05 (student’s t-test). 
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5.2.2. ADSC culture in Col-GM scaffolds 

ADSCs were cultured in Col-GM scaffolds over a period of 10 days. Optical 

microscope (Figure 5.3a) and CLSM images (Figure 5.3b) were taken on various 

time points during the culture to study the morphology and migratory behaviour 

of ADSCs. ADSCs were stained with Hoechst for nucleus (blue) and Phalloidin-

TRITC (red) for actin filaments before CLSM imaging. GMs being hydrogel in 

nature seem to absorb both the stains and could not be completely washed off, but 

clear distinction can still be made of the stained ADSCs from the GMs in the 

images shown in Figure 5.3b. As the ADSCs were initially seeded on the GMs 

and then loaded into the collagen hydrogels, on day 1 most of ADSCs seem to be 

adherent to the GMs. Cells started migrating into the surrounding gel space during 

day 4 to day 7 and found to completely populate the scaffold by day 10, covering 

both the GMs and the surrounding gel space. Previous work done by Chen et al. 

with a similar microsphere-hydrogel hybrid scaffold for neural tissue engineering 

has shown that this type of a composite scaffold can also aid in maintaining the 

cell-cell and cell-matrix interactions (Chen et al. 2011). Such interactions are 

prominent in the cell-microsphere scaffolds which were found to be crucial for 

maintaining the enhanced biological functions of the cells (Zhu et al. 2007a, Zhu 

et al. 2007b, Chen et al. 2012) and need to be preserved during cell delivery 

applications. With this motivation, in this study, we devised Col-GM scaffolds for 

ADSC culture. However, in slight contrast to the previous work with neuronal 

cells in the microsphere-hydrogel hybrid scaffolds, ADSCs have shown much 

more of a migratory behaviour into the surrounding gel space and populated the 

whole scaffold. As collagen is one of the most abundant proteins in the ECM of 

many of the human tissues, this phenomenon of ADSC migration into the 

surrounding collagen gel matrix seems to mimic the stem cell integration with the 

host tissue. This scaffold system can thus be effectively used to propagate the 

ADSCs for expanding their cell numbers and then to deliver those stem cells in an 

appropriate matrix for repairing damaged tissues. 
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Figure 5.3 (a) Optical microscope and (b) Confocal laser scanning microscope 
(CLSM) images of human ADSCs cultured in Col-20-GM scaffolds over 10 days 
of culture showing cell adhesion and migratory behaviour. For CLSM images cell 
actin was stained with phalloidin-TRITC and nucleus with hoechst. 
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5.2.3. Osteogenic differentiation of ADSCs in Col-GM scaffolds 

ADSCs cultured in the Col-GM scaffolds were tested for their osteogenic 

differentiation ability upon maintaining in the differentiation media. The 

differentiation was characterized by studying the gene expression of osteogenic 

marker genes – BMP2, OCN and Runx2 (Figure 5.4) and ALP activity (Figure 

5.5). Gene expression of OCN and Runx2 was studied on day 7 and day 14. 

While for BMP2, as our preliminary experiments showed higher amounts of it 

being expressed in the initial stages of differentiation rather than later stages, we 

also studied their expression on day 4 along with on day 7 and day 14. BMP2 

expression seems to be highest on day 4 and tend to reduce by day 7. By day 14, 

BMP2 expression levels tend to reduce further or remain similar to day 7 in 

different scaffolds. For Runx2 the expression levels remained almost similar on 

day 7 and day 14 for all scaffolds and in case of OCN, which is a late marker 

gene, the expression levels have increased from day 7 to day 14 varying from 1.2 

to 1.9 times in different scaffolds. For all three genes that we studied, on all the 

time points, mostly both Col-10-GMs and Col-20-GMs seem to have similar 

expression pattern but have shown significantly increased expression compared to 

pure collagen hydrogels. Also, ADSCs in Col-10-GMs and Col-20-GMs have 

shown significantly higher expression of BMP2 and OCN on all the time points as 

compared to ADSCs cultured on GMs. In addition to the gene expression studies, 

ALP activity was also measured of the Col-GM scaffolds on day 7 and day 14 

(Figure 5.5). ALP activities in all the scaffolds found to be increasing from day 7 

to day 14. On both the time points, ALP activities were significantly higher in the 

Col-10-GM and Col-20-GM scaffolds compared to the Col gel by about 3.1 and 

6.4 times respectively. Further ADSCs differentiated in Col-20-GMs have shown 

twice the amount of ALP activity compared to the Col-10-GM samples. Overall, 

these results show that ADSCs have better osteogenic differentiation abilities in 

Col-GM composite scaffolds compared to either pure collagen hydrogels or GMs 

alone. 
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Figure 5.4 qPCR fold change values of osteogenic marker genes BMP2, OCN and 
Runx2 upon differentiating with osteogenic induction media in various scaffolds, 
measured relative to day 0 controls. β-actin used as housekeeping gene. Error bars 
represent SD (n=3); % and $ represents P<0.05 (student’s t-test) analyzed with 
respect to Col-10-GMs and Col-20-GMs respectively. 

 

 

 

 

Figure 5.5 ALP activity values of ADSCs upon differentiating with osteogenic 
induction media in various scaffolds. Glycine unit can be defined as the amount 
of enzyme causing the hydrolysis of 1 µmol of p-nitrophenyl phosphate per 
minute at pH 9.8 and 25 oC (glycine buffer). Error bars represent SD (n=3); % and 
$ represents P<0.05 (student’s t-test) analyzed with respect to Col-10-GMs and 
Col-20-GMs. 
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5.2.4. bFGF encapsulation and in vitro release from Col-GM scaffolds 

GMs are well established drug delivery vehicles and have been used on numerous 

occasions to controlled release biomolecules for enhancing cellular activity 

(Kawai et al. 2000, Zhu et al. 2008, Jin et al. 2011, Hagiwara et al. 2013). In this 

study, we aim to use GMs as growth factor depots in Col-GM scaffolds to provide 

the ADSCs with necessary biomolecular cues in a controlled fashion. To achieve 

this objective, we first encapsulated bFGF into three scaffolds – Col, Col-20-GMs 

and GMs and studied its release profile (Figure 5.6) under in vitro conditions over 

a period of 14 days. The burst release which is an undesirable trait usually 

associated with controlled release of encapsulated growth factors from delivery 

systems (Joung et al. 2008) was found to be very minimal in all the three 

scaffolds that we studied releasing only 5.3%, 4.7% and 3.7% of the encapsulated 

bFGF in the first two days from Col, GMs and Col-20-GM scaffolds respectively. 

After 14 days of incubation, the scaffolds have released around 22.3%, 16.9% and 

12.8% of the encapsulated 100 ng of bFGF from Col, GMs and Col-20-GM 

scaffolds respectively. The amount of bFGF released by GMs over 14 days seems 

to be consistent with another study conducted previously (Zhu et al. 2008).  
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Figure 5.6 In vitro release profiles of bFGF from different scaffolds over a period 
of 14 days.                                                                                         
Error bars represent SD (n=3). Differences between the total bFGF released from 
all three scaffolds at each time point were found to be statistically significant, 
P<0.05 (one-way ANOVA). 
                 

 
5.2.5. Effect of bFGF controlled release on osteogenic differentiation of 
ADSCs in Col-GM scaffolds 

bFGF is a very well studied growth factor and known for its role in cell 

proliferation, angiogenesis and osteogenesis (Pitaru et al. 1993, Hosseinkhani et 

al. 2006, Schmidt et al. 2006). As there is no significant difference in the 

osteogenic marker gene expressions upon differentiation between Col-10-GMs 

and Col-20-GMs (Figure 5.4) and Col-20-GMs having shown higher ALP activity 

(Figure 5.5), we have chosen only the later scaffold for studying the effect of 

bFGF controlled release on osteogenic differentiation of ADSCs. In order to study 

this, bFGF was first encapsulated in Col, Col-20-GMs and GM scaffolds and 

ADSCs cultured in those scaffolds were induced towards osteogenic lineage. The 

differentiation was characterized by studying the gene expression of osteogenic 

marker genes OCN, Runx2 on day 7 and day 14 and that of BMP2 on day 4 along 

               Col,                GMs and                 Col-20-GMs. 
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with day 7 and day 14 (Figure 5.7). A set of samples with free bFGF provided in 

the medium were used as control group. 

Our results show that there is high amount of BMP2 gene expression during the 

early phase of differentiation. For example, on day 4, average fold change values 

of BMP2 gene expression in both Col-20-GMs and GMs with encapsulated bFGF 

were found to be 62.3 and 27.3 with both of them being about 2.3 times higher 

than their respective control groups. By day 7, there was a reduction of expression 

varying from 2 to 6 times in different scaffolds which was further decreased by 

day 14. For OCN, as it is a late marker, there was no significant difference in the 

expression levels among the different scaffolds on day 7. By day 14, OCN 

expression was found to be higher in Col, Col-20-GMs and GMs encapsulated 

with bFGF by about 1.4, 3.6 and 1.7 times compared to their respective control 

groups. bFGF loaded Col-20-GMs were found to be showing highest OCN 

expression of all the scaffolds. In the case of Runx2 expression, by day 14, all the 

three scaffold types have similar expression levels with bFGF loaded scaffolds 

inducing higher expression levels compared to their respective control groups. 

The gene expression fold change values obtained in our study were found to be 

comparable to several previous studies (Gaharwar et al. 2012, Oh et al. 2012, 

Wang et al. 2014, Zhang et al. 2014). ALP activity values on both time points day 

7 and day 14, also show a similar trend to that of gene expression, with bFGF 

loaded scaffolds showing higher activity compared to their control groups (Figure 

5.8). ALP activities in all scaffolds found to be increased from day 7 to day 14. In 

addition, bFGF loaded Col-20-GMs have shown highest ALP activity compared 

to all other scaffolds. Overall, our gene expression studies for the three osteogenic 

marker genes along with the ALP quantification assay results show that, Col-20-

GMs encapsulated with bFGF tend to induce higher levels of osteogenic 

differentiation compared to all other scaffold types.  
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Figure 5.7 qPCR fold change values of osteogenic marker genes BMP2, OCN and 
Runx2 upon differentiating with osteogenic induction media in Col, Col-20-GM 
and GM scaffolds, measured relative to day 0 controls. β-actin used as 
housekeeping gene.     bFGF encapsulated in the scaffolds and        bFGF 
provided as a supplimentation in the media. Error bars represent SD (n=3); 
*P<0.05 (student’s t-test) analysed between bFGF encapsulated samples with 
respect to bFGF as media supplementation samples.  

 

Figure 5.8 ALP activity values of ADSCs upon differentiating with osteogenic 
induction media in Col, Col-20-GM and GM scaffolds. Glycine unit can be 
defined as the amount of enzyme causing the hydrolysis of 1 µmol of p-
nitrophenyl phosphate per minute at pH 9.8 and 25 oC (glycine buffer).                            
D    bFGF encapsulated in the scaffolds and    bFGF provided as a 
supplimentation in the media. Error bars represent SD (n=3); *P<0.05 (student’s 
t-test) analysed between bFGF encapsulated samples with respect to bFGF as 
media supplementation samples. 
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5.2.6. Adipogenic differentiation in Col-GM scaffolds 

In addition to osteogenic differentiation, we also wanted to study if the Col-GM 

scaffolds are also suitable for adipogenic differentiation of ADSCs. To this end, 

we induced the ADSCs encapsulated in pure collagen, Col-10-GMs, Col-20-GMs 

and GM scaffolds towards adipogenic lineage by culturing in adipogenic 

induction medium. We further characterized the differentiation by studying the 

gene expression of well known adipogenic marker gene, PPAR-γ using qPCR. In 

general, softer gels are known to promote adipogenic induction in stem cells as 

indicated by previous studies (Engler et al. 2006). In agreement with such studies, 

our qPCR results (Figure 5.9) also show that, higher levels of PPAR-γ was 

expressed in softer gels such as pure collagen hydrogels or Col-10-GMs 

compared to the relatively stiffer substrate like Col-20-GMs. Thus for fat specific 

applications, it is better to employ Col or Col-10-GM scaffolds rather than Col-

20-GMs. Further studies involving appropriate growth factor controlled release, 

will be able to give more insights into tuning the Col-GM scaffold properties for 

adipose tissue based applications.  

 

 

Figure 5.9 qPCR fold change values of adipogenic marker gene PPAR-γ upon 
differentiating with adipogenic induction media in various scaffolds, measured 
relative to day 0 controls. β-actin used as housekeeping gene. Error bars represent 
SD (n=3); % and $ represents P<0.05 (student’s t-test) analyzed with respect to 
Col-10-GMs and Col-20-GMs respectively. 
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5.3. Discussion 

This study describes a strategy to induce osteogenesis in human ADSCs using 

mechanical and biomolecular cues in a Col-GM composite scaffold. Col-GMs 

with varying hydrogel stiffness have been generated by varying the amount of 

GMs encapsulated which is employed as a mechanical cue. Further, the 

incorporated GMs were also used to controlled release bFGF. Along with 

providing a unique biomechanical microenvironment, such a composite scaffold 

can also overcome many disadvantages associated with the individual scaffolds as 

discussed in the introduction. However, most of the studies involving osteogenic 

induction of various stem cells have only been done either on microsphere or 

hydrogel scaffolds but very few studies (Wang et al. 2009a, DeVolder et al. 2012) 

focused on a microsphere-hydrogel composite scaffold system. Microsphere-

hydrogel scaffolds have also been employed previously for other applications 

such as cartilage repair (Sukarto et al. 2012) and drug delivery through blood-

brain barrier (Caicco et al. 2013). In this study, ADSCs encapsulated in the Col-

GM scaffolds were able to show enhanced osteogenic differentiation with 

increase in scaffold rigidity and have shown much more induction upon bFGF 

controlled release. 

GMs are well established drug delivery vehicles (Young et al. 2005) and also 

have been studied for many tissue engineering applications (Zhu et al. 2008, 

Baraniak et al. 2012, Leong et al. 2013). They have also been employed for 

various clinical trials successfully (Nitta et al. 2009, Toyama et al. 2012). 

Similarly, collagen hydrogels are also widely studied for tissue engineering 

applications and also many collagen based tissue engineering products have been 

commercialized by various companies for clinical applications ranging from 

cosmetics to bone regeneration (Malafaya et al. 2007). We believe, fabricating 

regenerative systems using such clinically successful materials would help in 

faster translation of those systems to the clinical stage. Further the Col-GMs 

developed here can also be delivered by injectable means which will be appealing 

to the medical field. 
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The scaffold design of Col-GMs allowed us to try and vary the matrix rigidity by 

varying the amount of GMs incorporated. The G’ values for all the three Col-GM 

scaffolds (Figure 5.2d) obtained through rheological studies, shows that 

incorporating GMs into collagen hydrogels enhances the strength of the 

hydrogels. Also, increasing the amount of GMs in the collagen hydrogel will 

further enhance the mechanical strength of the composite scaffold. These results 

were also supported by the tan δ data (Figure 5.2e). During deformation, GMs 

with proper homogenous dispersion in the hydrogel will aid in effective transfer 

of the load from polymer chains and thus might be responsible for enhancing the 

mechanical strength of the hydrogel. These results, in accordance with other 

studies (Jha et al. 2009, Hu et al. 2011a), confirm the strategy of enhancing matrix 

rigidity by incorporating a relatively harder phase into the hydrogel. Moreover, 

GMs incorporated into collagen hydrogels also had a similar reinforcing effect to 

that of nanofillers such as silicate nanoparticles (Gaharwar et al. 2012), clay 

nanotubes (Liu et al. 2013) or chitosan nanofibers (Zhou et al. 2011) in other 

hydrogel systems. The G’ values obtained for the Col-GMs were also similar to 

that obtained for a collagen hydrogel – PLGA microsphere composite system 

which was also employed for the osteogenic differentiation of mouse MSCs 

(DeVolder et al. 2012). The shear modulus (G) obtained in our study can also be 

mathematically converted into elastic modulus (E) in order to compare with the 

available literature of scaffolds employed for osteogenic differentiation. The 

mathematical relation between shear modulus and elastic modulus is given by E = 

2G(1+γ), where γ is the poisson’s ratio. For the collagen hydrogel used in this 

study manufacturer (Advanced biomatrix) has suggested a poisson’s ratio of 0.5 

and the relation between E and G as E = 3G. As per this relation, the average 

elastic moduli of the Col-GMs scaffolds were found to be 15.9 Pa, 75.6 Pa and 

513.8 Pa respectively for the collagen hydrogel, Col-10-GMs and Col-20-GMs. 

The typical scaffolds used for treating skeletal defects have the elastic modulus in 

the range of kilo to mega pascals (Hu et al. 2011b, Frohbergh et al. 2012, Tan et 

al. 2014). However, softer gels such as uncrosslinked collagen hydrogels have 

also been employed and were reported previously to be supportive of osteogenic 

differentiation (DeVolder et al. 2012, Oh et al. 2012). Such matrices can mimic 

the initial mesenchymal tissue conditions which initiate the osteogenic 
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differentiation of MSCs. In addition, although the initial rigidity of such softer 

gels is low, upon differentiation of MSCs for one week and further implantation 

in chicken chorioallantoic membranes (used as in vivo models for examining bone 

formation) the shear modulus values of the collagen hydrogel-PLGA microsphere 

composite scaffold constructs seem to significantly increase upto 35 kPa 

(DeVolder et al. 2012).   

For characterizing the osteogenic differentiation of ADSCs in various scaffolds 

we have studied gene expression of well known osteogenic marker genes BMP2, 

OCN and Runx2 using qPCR and also ALP assay. All the three markers chosen 

were important for bone development and osteogenic differentiation during 

different stages. BMP2 is a widely studied cytokine in the context of bone 

development and is known to enhance the osteogenic differentiation by regulating 

the expression of alkaline phosphatase, type I collagen and Runx2 (Kaur et al. 

2010). Runx2 is a transcription factor which plays a key role in the commitment 

of multipotent stem cells towards osteogenic lineage. It also acts as a positive 

regulator for the expression of bone matrix genes such as type I collagen, 

osteopontin, bone sialoprotein and Osteocalcin (Komori 2003). Previous studies 

employing Runx2 deficient mice have shown complete lack of bone and absence 

of osteoblasts in those mice, highlighting the important role Runx2 in osteogenic 

differentiation (Komori et al. 1997). Both BMP2 and Runx2 are early markers of 

differentiation and are expressed during the initial stages of differentiation. On the 

other hand, OCN is a late stage marker and expresses during the maturation stage 

of differentiation. Osteocalcin is a major noncollagenous protein present in the 

extracellular matrix of bone secreted by osteoblasts. It binds to hydroxyapatite 

and plays a key role in the matrix mineralization process. Other markers which 

are commonly employed to study osteogenic differentiation include osteopontin, 

type I collagen and bone sialoprotein. In addition, mineralization assays such as 

histochemical staining using alizarin red or von kossa stains are also used to 

assess the osteogenic differentiation of stem cells. 

Along with gene expression studies we have also performed ALP assay to study 

the osteogenic differentiation. ALP plays a key role in the process of 
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mineralization during osteogenesis. ALP increases the local concentration of 

inorganic phosphate which is needed for hydroxyapatite formation and 

mineralization and decreases the concentration of extracellular pyrophosphate, 

which acts as an inhibitor of mineralization. Several tissue engineering based 

studies involving osteogenesis have employed ALP enzyme activity measurement 

or histochemical staining of ALP as a standard assay for assessing the success of 

differentiation as increased ALP activity is considered as a good predictor of 

mineralization (Golub et al. 2007, Anderson et al. 2011, Vines et al. 2012, Simoes 

et al. 2013, Choi et al. 2014, Maia et al. 2014). 

The increase in the matrix rigidity of Col-GMs by GMs incorporation seems to 

favour the osteogenic differentiation of ADSCs. Previous studies have indicated 

the role of matrix elasticity in driving the stem cell differentiation towards 

osteogenic lineage (Engler et al. 2006). In this study, our gene expression and 

ALP assay results show that Col-20-GMs were able to induce more differentiation 

followed by Col-10-GMs and Col gels. This can be attributed to the mechanical 

properties of the scaffolds with stiffer ones inducing more differentiation. Our 

experiments of ADSCs cultured on GMs alone, presented in chapter 4, have 

shown that the differentiating ADSCs seem to mineralize the GMs (Figure 4.4d). 

This might probably aid in much better mineralization of the Col-GM scaffolds 

and in turn can enhance the osteogenic differentiation. Further, the stiffness effect 

of Col-GMs is also clearly evident as Col-20-GM scaffolds have shown higher 

amount of BMP2 and OCN gene expression along with higher ALP activity 

compared to GMs alone.  

To further enhance the osteogenic differentiation of ADSCs in Col-GMs we then 

employed the biomolecular cues. It has been shown previously that encapsulating 

growth factors into GMs is much easier compared to other microsphere scaffolds 

(Young et al. 2005). It can be done by simply adding a very little amount of 

concentrated growth factor solution onto the dry microspheres. GMs during the 

process of swelling tend to absorb the liquid completely along with all the growth 

factor without any loss (Zhu et al. 2008). In our controlled release experiments, 

the burst release of bFGF was found to be minimal during the first two days. 
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Previous studies indicate that bFGF tends to form strong complexes with both 

collagen and gelatin which might inhibit the burst release significantly during the 

early phases (Kanematsu et al. 2004, Young et al. 2005). As GMs are crosslinked 

with glutaraldehyde, they seem to release the encapsulated bFGF at a slower rate 

compared to pure collagen gel which is uncrosslinked. In addition, GMs tend to 

encapsulate growth factors by forming strong ionic complexes (Young et al. 

2005) allowing for the release to be more sustained. On the other hand, collagen 

used in this study has an isoelectric point in the zone of pH 7-8 (as informed by 

Advanced Biomatrix), which makes it neutral in charge at physiological pH and 

thus may not be able to form as strong ionic complexes with bFGF (isoelectric 

point of 9.6) as acidic gelatin (isoelectric point of 5.2) does in the case of GMs. 

This also leads to a relatively faster release of bFGF from collagen gels compared 

to GMs. However, the interactions of bFGF with collagen are not purely 

electrostatic alone and there might be other interactions which play a role but are 

not fully understood (Kanematsu et al. 2004). Such interactions might be 

responsible for having a sustained release from the Col hydrogels also, although 

the release is faster than the GMs. In the case of Col-20-GMs, the presence of a 

collagen gel layer surrounding the GMs as an additional barrier might be the 

cause for much slower release of encapsulated bFGF compared to either Col or 

GMs alone. However, none of the release profiles from any of the scaffolds have 

reached a plateau by the end of day 14 which suggests that these scaffolds can be 

used for long term controlled release applications. 

Such a controlled release of bFGF from the Col-GMs was also found to induce 

higher osteogenic differentiation in the encapsulated ADSCs compared to the 

samples where in bFGF was supplemented in the media. This clearly highlights 

the importance of bFGF presentation through delivery vehicles in a controlled 

manner, compared to merely adding in the medium. Even among the controlled 

releasing samples, Col-20-GMs which have shown the slowest bFGF release rate 

have induced higher differentiation. Col-20-GMs because of their slower release 

rate were able to keep more bFGF within the scaffold for a longer time, nearer to 

the cell membranes of ADSCs. Such encapsulated bFGF might thus have a better 

chance to interact with the corresponding receptors on cell membranes and induce 
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higher levels of osteogenic signals. On the other hand, the bFGF released out 

from the scaffolds will be of use during the in vivo applications, to elicit 

favourable responses such as vascularization in the surrounding injured tissue. 

Also, ALP activities of encapsulated ADSCs presented with bFGF either by 

controlled release or by supplementation in the medium (Figure 5.8) were found 

to be higher than the samples without bFGF (Figure 5.5) ranging from 1.4 times 

to almost 4 times in different scaffolds. This signifies the pro-osteogenic ability of 

bFGF which is supported by many studies in the literature (Pitaru et al. 1993, 

Hanada et al. 1997, Rider et al. 2008, Oh et al. 2012). 

Another interesting result obtained in this study is that bFGF controlled release 

was also able to induce high levels of BMP2 gene expression during initial stages 

of differentiation. Earlier studies using ectopic bone forming assays have 

indicated the importance of exposure to higher levels of BMP2 during initial 

stages for optimal bone formation (Bhakta et al. 2012). Such high levels of BMP2 

expressed by ADSCs can thus act in autocrine manner and further help to enhance 

bone regeneration. In addition, many studies have also highlighted the importance 

of supplying both bFGF and BMP2 for enhancing bone regeneration (Hanada et 

al. 1997, Su et al. 2013, Wang et al. 2013a). On the contrary, our study shows 

that, releasing bFGF from Col-20-GMs in a controlled fashion will actually 

induce the ADSCs to express BMP2 by themselves, in higher amounts, which 

might avoid or reduce the need to supply exogenous BMP2. However, more 

studies need to be conducted to confirm the effect of such increased BMP2 

expression on bone regeneration. 

Overall, this study shows that within Col-GM scaffolds, behaviour of ADSCs can 

be modulated using a combination of biomechanical and biomolecular cues to 

drive them towards osteogenic lineage. In addition, as many studies have 

indicated previously, collagen of the Col-GM scaffolds can also be conjugated 

with hydroxyapatite or β-tricalcium phosphate to further enhance the osteogenic 

differentiation of ADSCs (Komaki et al. 2006, Zhou et al. 2011). Although here 

we focused mainly on osteogenesis, the Col-GM scaffolds can also be fine tuned 
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for various other tissue engineering applications by incorporating the necessary 

cues, which can be of interest in future. 

5.4. Conclusions 

In this study we have shown that, mechanical properties of collagen hydrogels can 

be modulated by incorporation of GMs which can also act as growth factor 

depots. Further, thus formed Col-GM scaffolds can provide a unique 

biomechanical and biomolecular environment to drive the encapsulated ADSCs 

towards osteogenic lineage. Moreover, increase in hydrogel rigidity seem to have 

an enchancing effect on the osteogenic differentiation of ADSCs as Col-20-GMs 

induce more differentiation compared to either Col or GM scaffolds alone. Such 

enhanced osteogenic induction was further increased by the incorporation of 

bFGF into the scaffolds as evident from the ALP activity results. Interestingly, we 

also observed high levels of BMP2 gene expression by ADSCs upon bFGF 

presentation within Col-GM scaffolds. BMP2 is known to play crucial role in 

bone regeneration and inducing the ADSCs to express it by themselves might 

reduce the need to supply BMP2 exogenously. Overall, we believe that, this kind 

of an injectable, in situ gelling, composite stem cell delivery system loaded with 

appropriate growth factors has the potential to facilitate the much needed 

transition of the ADSCs therapy to a clinical setting.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

This chapter provides an overview of the key findings from the studies 

presented in this thesis. In addition, a few recommendations which 

can take forward this work will also be discussed. 
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Stem cell therapies are creating exciting news time and again especially in the 

recent past with the outcomes of some of the clinical or experimental trials which 

were underway. Very recently, cure of HIV in two ‘Boston patients’ using stem 

cell transplantation has excited the whole world (Hayden 2013b). However, in 

five months time the HIV was found to be re-appeared again in those patients 

(Hayden 2013a). Similarly there are many other cases of clinical trials which have 

shown promising preliminary results but were still not been able to make it to 

next level (Chien 2004). There are also many instances where stem cell based 

clinical trials are failing or being terminated due to severe side effects (Kang et al. 

2004). The reasons for such failures need to be fully addressed for these therapies 

to go ahead and attain their true potential. The work presented in this thesis is an 

effort made towards addressing few such issues with a focus of using human 

ADSCs for stem cell based tissue regenerative applications.  

One of the main reasons for failure of cell therapies in general was found to be 

due to lack of cell adhesion sites once they were injected into the body as cell 

suspensions. Also the ischemic environment at the site of injury made the survival 

of injected cells difficult due to shortage of nutrient supplies. We tried to address 

this problem by developing cell-microsphere (ADSC-GMs) constructs that can 

provide cell adhesion sites for ADSCs and further investigated the tissue 

regenerative properties of these constructs including their pro-angiogenic 

potential. Further, to make these constructs feasible for a less invasive means of 

delivery, we encapsulated the cell-microsphere constructs in an injectable, in situ 

gelling collagen hydrogel to form hydrogel-microsphere composite scaffolds 

(Col-GMs). We also studied the effect of various mechanical as well as 

biomolecular cues provided by such a composite scaffold on the behaviour of 

ADSC-GMs. 

Major findings obtained in both the above mentioned studies are summarized in 

the following sections.  

6.1. Cell-microsphere constructs for tissue regenerative applications 

In this study, we have fabricated cell-microsphere constructs with strong cell-cell 

and cell-matrix interactions by combining ADSCs and GMs. We then investigated 
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the suitability of ADSC-GM constructs for tissue engineering applications by 

studying certain key properties which play crucial role in tissue regeneration, 

namely – stemness maintenance, multi-lineage differentiation and pro-angiogenic 

potential. 

Maintenance of stemness properties is crucial for stem cells to keep their multi-

lineage differentiation abilities intact. Loss of stemness might lead to spontaneous 

differentiation of stem cells and thus can significantly reduce the number of 

undifferentiated stem cells available for tissue regeneration. To test stemness 

properties of ADSC-GMs and ADSCs on 2D, we studied the gene expression of 

well known pluripotent marker genes Oct4, Sox2, Nanog and Rex1. We found 

that all these genes except Rex1 were consistently down-regulated in ADSCs 

cultured on tissue culture plates both on day 3 and day 7. On the contrary, ADSCs 

cultured on GMs have up-regulated the expression of all the genes that were 

studied on both time points. This shows that, ADSC-GMs provide a unique stem 

cell niche which helps in preserving the pluripotent gene expression of ADSCs. 

We then studied the multi-lineage differentiation abilities of ADSC-GMs by 

differentiating them into adipogenic, osteogenic and hepatic lineages and 

characterized using histo-chemical or immuno-fluorescent staining methods along 

with qPCR. Our staining results show that, ADSCs have successfully been able to 

differentiate into all the three lineages both on 2D and GMs. Further, qPCR 

studies for gene expression of lineage specific marker genes of all three lineages 

have shown that, ADSC-GMs express significantly higher amounts of the marker 

genes compared to ADSCs cultured on 2D. Differentiation of ADSCs towards 

adipogenic and osteogenic lineages has already been well established in various 

3D scaffolds. However, hepatic differentiation of ADSCs has been relatively less 

studied especially in 3D scaffolds. Thus, the results obtained in this study show 

that 3D ADSC-GMs can also be used for liver tissue engineering applications 

along with fat and bone regeneration. 

Finally, we also intended to study the pro-angiogenic potential of ADSC-GMs as 

vascularisation is also a key part of tissue regeneration. We have co-cultured the 

HUVECs (cultured on matrigel) either with ADSC-GMs or with ADSCs on 2D 

and studied the difference in the tube formation ability of the HUVECs among the 
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two groups. We found that, ADSC-GMs were able to induce significantly longer 

HUVEC tubules with more number of branch points compared to ADSCs on 2D 

indicating the superior pro-angiogenic activity of ADSC-GMs.  

Overall, this part of our work shows that ADSC-GMs can maintain the stemness 

properties and enhance the differentiation and angiogenic properties. Thus, 

compared to traditional cell suspensions of ADSCs that are cultured on 2D culture 

plates, employing the ADSC-GM constructs for tissue regeneration can accelerate 

the wound healing process and also aid in the vascularization of the injured tissue.  

6.2. Osteogenic induction of ADSCs in a hydrogel-microsphere composite 

scaffold 

To make the ADSC-GM constructs suitable for injectable delivery and to 

maintain their location at the wound site, we encapsulated these constructs in a 

collagen hydrogel to form Col-GM composite scaffolds. Further, by controlling 

the mechanical and biomolecular cues in such Col-GM scaffolds we also tried to 

drive the ADSCs towards osteogenic lineage. Hydrogel rigidity was the 

mechanical cue and bFGF controlled release was the biomolecular cue that were 

employed to enhance the osteogenic induction. We found that incorporating GMs 

can reinforce the mechanical strength of the collagen hydrogels. Hence, we also 

tried to vary the matrix rigidity by varying the amount of GMs incorporated into 

collagen hydrogels. 

Increase in matrix rigidity was found to enhance the osteogenic differentiation of 

ADSCs. Col-20-GMs which was found to have higher storage modulus compared 

to Col-10-GMs and Col gels, has also shown higher osteogenic induction in the 

encapsulated ADSCs.  

To further accentuate the differentiation, we have encapsulated bFGF into the 

Col-GM scaffolds. bFGF controlled release experiments have shown a sustained 

release profile from all the three scaffolds with Col-20-GMs releasing at a much 

slower rate compared to GMs and Col gel. In addition, Col-20-GMs loaded with 

bFGF have also shown higher osteogenic differentiation. With slower release 

rates, Col-20-GMs were able to maintain higher amounts of bFGF within the 

scaffold for a longer time which thus might have better chance to interact with the 
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corresponding receptors on cell membranes and induce higher levels of 

osteogenic signals.  

We also observed that, controlled release of bFGF was able to induce high levels 

of BMP2 gene expression in the encapsulated ADSCs during initial stages of 

differentiation. BMP2 is a growth factor well known for its pro-osteogenic 

activity (Bhakta et al. 2012). Many previous studies also indicated the synergistic 

effect of bFGF and BMP2 on bone regeneration (Hanada et al. 1997, Su et al. 

2013). By inducing ADSCs to express BMP2 through bFGF controlled release, 

our scaffold system seems to be similar to dual delivery of bFGF and BMP2 

which can have a positive impact on bone regeneration.    

Overall, this study shows that by appropriately controlling the mechanical and 

biomolecular cues in the Col-GM composite scaffolds the differentiation of 

ADSCs towards a particular lineage can be enhanced, as we have shown here for 

osteogenic lineage. Thus, we believe, with the advantages of injectable delivery 

and regulating ADSC behaviour, the Col-GM scaffolds can aid in the transition of 

ADSC therapies to clinical stage.  

6.3. Recommendations for future work 

6.3.1. Modulating Col-GM scaffolds for other tissue engineering applications  

The study presented in chapter 5 of this thesis mainly focused on osteogenic 

induction of ADSCs in Col-GM scaffolds. However, these scaffolds can also be 

fine-tuned for other tissue engineering applications by incorporating the necessary 

cues for a particular lineage. Appropriate mechanical cues can be provided by 

varying the amount of incorporated GMs accordingly. In addition, biocompatible 

crosslinkers which support in situ cell encapsulation (Liang et al. 2011) can also 

be employed if further increase in the matrix rigidity is required. Similarly, 

appropriate growth factors which promote differentiation towards a particular 

lineage can also be loaded into GMs and released at desirable rates.  

As a preliminary study, we attempted to differentiate ADSCs in Col-GM 

scaffolds towards adipogenic lineage and characterized the differentiation by 

studying the gene expression of well-known adipogenic marker gene, PPAR-γ 
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using qPCR. As shown in Figure 5.9, we observed that, higher levels of PPAR-γ 

was expressed in softer gels such as pure collagen hydrogels or Col-10-GMs 

compared to the stiffer substrates like Col-20-GMs and GMs which is in 

agreement with the previous studies that have shown that softer gels can promote 

adipogenic induction in stem cells (Engler et al. 2006).  

These studies involving osteogenic and adipogenic differentiation of ADSCs  

highlights the adaptability of the Col-GM scaffolds which further allows for 

designing the scaffolds, specific to different kinds of tissue engineering 

applications.   

6.3.2. In vivo studies 

All the tissue engineering approaches need to be tested in animal models to 

validate the results obtained under in vitro conditions and to confirm whether 

similar behaviour will be seen when injected in vivo. Many significant results 

were presented in this thesis which can contribute to the advancement of ADSC 

therapies and will be of interest to study if similar results can be obtained under in 

vivo conditions. For example, it will be interesting to study if the enhanced pro-

angiogenic properties of ADSC-GMs (chapter 4) will also hold good under in 

vivo conditions. Further, it will also be of interest to study if the higher BMP2 

expression observed in bFGF loaded Col-GM scaffolds (chapter 5) can have a 

positive effect on the bone regeneration in vivo. 

 

 

 

 

 

 

 

 



87 
 

Bibliography 

Anderson, J. M., J. B. Vines, J. L. Patterson, H. Chen, A. Javed and H. W. Jun 

(2011). "Osteogenic differentiation of human mesenchymal stem cells 

synergistically enhanced by biomimetic peptide amphiphiles combined with 

conditioned medium." Acta Biomater 7(2): 675-682. 

Arinzeh, T. L., T. Tran, J. McAlary and G. Daculsi (2005). "A comparative study 

of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-

induced bone formation." Biomaterials 26(17): 3631-3638. 

Auerbach, R., R. Lewis, B. Shinners, L. Kubai and N. Akhtar (2003). 

"Angiogenesis assays: a critical overview." Clinical Chemistry 49(1): 32-40. 

Aurich, H., M. Sgodda, P. Kaltwasser, M. Vetter, A. Weise, T. Liehr, M. 

Brulport, J. G. Hengstler, M. M. Dollinger, W. E. Fleig and B. Christ (2009). 

"Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue 

in vitro promotes hepatic integration in vivo." Gut 58(4): 570-581. 

Aust, L., B. Devlin, S. J. Foster, Y. D. Halvorsen, K. Hicok, T. du Laney, A. Sen, 

G. D. Willingmyre and J. M. Gimble (2004). "Yield of human adipose-derived 

adult stem cells from liposuction aspirates." Cytotherapy 6(1): 7-14. 

Bacakova, L., E. Filova, F. Rypacek, V. Svorcik and V. Stary (2004). "Cell 

adhesion on artificial materials for tissue engineering." Physiol Res 53 Suppl 1: 

S35-45. 

Baer, P. C., N. Griesche, W. Luttmann, R. Schubert, A. Luttmann and H. Geiger 

(2010). "Human adipose-derived mesenchymal stem cells in vitro: evaluation of 

an optimal expansion medium preserving stemness." Cytotherapy 12(1): 96-106. 

Banas, A. (2012). "Purification of adipose tissue mesenchymal stem cells and 

differentiation toward hepatic-like cells." Methods Mol Biol 826: 61-72. 

Banas, A., T. Teratani, Y. Yamamoto, M. Tokuhara, F. Takeshita, G. Quinn, H. 

Okochi and T. Ochiya (2007). "Adipose tissue-derived mesenchymal stem cells as 

a source of human hepatocytes." Hepatology 46(1): 219-228. 



88 
 

Baraniak, P. R., M. T. Cooke, R. Saeed, M. A. Kinney, K. M. Fridley and T. C. 

McDevitt (2012). "Stiffening of human mesenchymal stem cell spheroid 

microenvironments induced by incorporation of gelatin microparticles." J Mech 

Behav Biomed Mater 11: 63-71. 

Bernhardt, A., F. Despang, A. Lode, A. Demmler, T. Hanke and M. Gelinsky 

(2009). "Proliferation and osteogenic differentiation of human bone marrow 

stromal cells on alginate–gelatine–hydroxyapatite scaffolds with anisotropic pore 

structure." Journal of Tissue Engineering and Regenerative Medicine 3(1): 54-62. 

Bhakta, G., B. Rai, Z. X. Lim, J. H. Hui, G. S. Stein, A. J. van Wijnen, V. 

Nurcombe, G. D. Prestwich and S. M. Cool (2012). "Hyaluronic acid-based 

hydrogels functionalized with heparin that support controlled release of bioactive 

BMP-2." Biomaterials 33(26): 6113-6122. 

Bian, L., D. Y. Zhai, E. Tous, R. Rai, R. L. Mauck and J. A. Burdick (2011). 

"Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate 

microspheres within hyaluronic acid hydrogels in vitro and in vivo." Biomaterials 

32(27): 6425-6434. 

Bidarra, S. J., C. C. Barrias, M. A. Barbosa, R. Soares and P. L. Granja (2010). 

"Immobilization of human mesenchymal stem cells within RGD-grafted alginate 

microspheres and assessment of their angiogenic potential." Biomacromolecules 

11(8): 1956-1964. 

Botto, S., D. N. Streblow, V. DeFilippis, L. White, C. N. Kreklywich, P. P. Smith 

and P. Caposio (2011). "IL-6 in human cytomegalovirus secretome promotes 

angiogenesis and survival of endothelial cells through the stimulation of 

survivin." Blood 117(1): 352-361. 

Bratt-Leal, A. M., R. L. Carpenedo, M. D. Ungrin, P. W. Zandstra and T. C. 

McDevitt (2011). "Incorporation of biomaterials in multicellular aggregates 

modulates pluripotent stem cell differentiation." Biomaterials 32(1): 48-56. 



89 
 

Bratt-Leal, A. M., A. H. Nguyen, K. A. Hammersmith, A. Singh and T. C. 

McDevitt (2013). "A microparticle approach to morphogen delivery within 

pluripotent stem cell aggregates." Biomaterials 34(30): 7227-7235. 

Bunnell, B. A., B. T. Estes, F. Guilak and J. M. Gimble (2008a). "Differentiation 

of adipose stem cells." Methods Mol Biol 456: 155-171. 

Bunnell, B. A., M. Flaat, C. Gagliardi, B. Patel and C. Ripoll (2008b). "Adipose-

derived stem cells: Isolation, expansion and differentiation." Methods 45(2): 115-

120. 

Caicco, M. J., M. J. Cooke, Y. Wang, A. Tuladhar, C. M. Morshead and M. S. 

Shoichet (2013). "A hydrogel composite system for sustained epi-cortical delivery 

of Cyclosporin A to the brain for treatment of stroke." J Control Release 166(3): 

197-202. 

Cardozo, A. J., D. E. Gomez and P. F. Argibay (2012). "Neurogenic 

differentiation of human adipose-derived stem cells: relevance of different 

signaling molecules, transcription factors, and key marker genes." Gene 511(2): 

427-436. 

Casadei, A., R. Epis, L. Ferroni, I. Tocco, C. Gardin, E. Bressan, S. Sivolella, V. 

Vindigni, P. Pinton, G. Mucci and B. Zavan (2012). "Adipose tissue regeneration: 

a state of the art." J Biomed Biotechnol 2012: 462543. 

Celli, J. P., B. S. Turner, N. H. Afdhal, R. H. Ewoldt, G. H. McKinley, R. Bansil 

and S. Erramilli (2007). "Rheology of gastric mucin exhibits a pH-dependent sol-

gel transition." Biomacromolecules 8(5): 1580-1586. 

Chen, W., Y. Tabata and Y. W. Tong (2010). "Fabricating tissue engineering 

scaffolds for simultaneous cell growth and drug delivery." Curr Pharm Des 

16(21): 2388-2394. 

Chen, W. and Y. W. Tong (2011). "Mechanisms and promotion of 3D neurite 

bridging between PHBV microspheres in a microsphere-hydrogel hybrid 

scaffold." Soft Matter 7(24): 11372-11379. 



90 
 

Chen, W. and Y. W. Tong (2012). "PHBV microspheres as neural tissue 

engineering scaffold support neuronal cell growth and axon–dendrite 

polarization." Acta Biomaterialia 8(2): 540-548. 

Cheng, N. C., S. Wang and T. H. Young (2012). "The influence of spheroid 

formation of human adipose-derived stem cells on chitosan films on stemness and 

differentiation capabilities." Biomaterials 33(6): 1748-1758. 

Cheng, T. Y., M. H. Chen, W. H. Chang, M. Y. Huang and T. W. Wang (2013). 

"Neural stem cells encapsulated in a functionalized self-assembling peptide 

hydrogel for brain tissue engineering." Biomaterials 34(8): 2005-2016. 

Chien, K. R. (2004). "Stem cells: lost in translation." Nature 428(6983): 607-608. 

Choi, G. H., H. J. Lee and S. C. Lee (2014). "Titanium-adhesive polymer 

nanoparticles as a surface-releasing system of dual osteogenic growth factors." 

Macromol Biosci 14(4): 496-507. 

Choi, S. A., J. Y. Lee, K.-C. Wang, J. H. Phi, S. H. Song, J. Song and S.-K. Kim 

(2012). "Human adipose tissue-derived mesenchymal stem cells: Characteristics 

and therapeutic potential as cellular vehicles for prodrug gene therapy against 

brainstem gliomas." European Journal of Cancer 48(1): 129-137. 

Chung, A. S., J. Lee and N. Ferrara (2010). "Targeting the tumour vasculature: 

insights from physiological angiogenesis." Nat Rev Cancer 10(7): 505-514. 

Chung, E. J., P. Kodali, W. Laskin, J. L. Koh and G. A. Ameer (2011). "Long-

term in vivo response to citric acid-based nanocomposites for orthopaedic tissue 

engineering." J Mater Sci Mater Med 22(9): 2131-2138. 

Chung, H. J. and T. G. Park (2009). "Injectable cellular aggregates prepared from 

biodegradable porous microspheres for adipose tissue engineering." Tissue Eng 

Part A 15(6): 1391-1400. 

Coradeghini, R., C. Guida, C. Scanarotti, R. Sanguineti, A. M. Bassi, A. Parodi, 

P. L. Santi and E. Raposio (2010). "A comparative study of proliferation and 



91 
 

hepatic differentiation of human adipose-derived stem cells." Cells Tissues 

Organs 191(6): 466-477. 

Dawson, E., G. Mapili, K. Erickson, S. Taqvi and K. Roy (2008). "Biomaterials 

for stem cell differentiation." Adv Drug Deliv Rev 60(2): 215-228. 

DeVolder, R. J., I. W. Kim, E. S. Kim and H. Kong (2012). "Modulating the 

rigidity and mineralization of collagen gels using poly(lactic-co-glycolic acid) 

microparticles." Tissue Eng Part A 18(15-16): 1642-1651. 

Drury, J. L. and D. J. Mooney (2003). "Hydrogels for tissue engineering: scaffold 

design variables and applications." Biomaterials 24(24): 4337-4351. 

Dvorakova, J., L. Kucera, J. Kucera, K. Svik, M. Foglarova, T. Muthny, M. 

Pravda, M. Nemcova, V. Velebny and L. Kubala (2014). "Chondrogenic 

differentiation of mesenchymal stem cells in a hydrogel system based on an 

enzymatically crosslinked tyramine derivative of hyaluronan." J Biomed Mater 

Res A. 102(10): 3523-30. 

Egawa, E. Y., K. Kato, M. Hiraoka, T. Nakaji-Hirabayashi and H. Iwata (2011). 

"Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating 

engineered epidermal growth factor." Biomaterials 32(21): 4737-4743. 

Emgard, M., U. Hallin, J. Karlsson, B. A. Bahr, P. Brundin and K. Blomgren 

(2003). "Both apoptosis and necrosis occur early after intracerebral grafting of 

ventral mesencephalic tissue: a role for protease activation." J Neurochem 86(5): 

1223-1232. 

Engler, A. J., S. Sen, H. L. Sweeney and D. E. Discher (2006). "Matrix elasticity 

directs stem cell lineage specification." Cell 126(4): 677-689. 

Eslaminejad, M. B., H. Mirzadeh, Y. Mohamadi and A. Nickmahzar (2007). 

"Bone differentiation of marrow-derived mesenchymal stem cells using β-

tricalcium phosphate–alginate–gelatin hybrid scaffolds." Journal of Tissue 

Engineering and Regenerative Medicine 1(6): 417-424. 



92 
 

Fan, H., C. Zhang, J. Li, L. Bi, L. Qin, H. Wu and Y. Hu (2008). "Gelatin 

Microspheres Containing TGF-β3 Enhance the Chondrogenesis of Mesenchymal 

Stem Cells in Modified Pellet Culture." Biomacromolecules 9(3): 927-934. 

Fausto, N. and K. J. Riehle (2005). "Mechanisms of liver regeneration and their 

clinical implications." J Hepatobiliary Pancreat Surg 12(3): 181-189. 

Fisher, M. B. and R. L. Mauck (2013). "Tissue engineering and regenerative 

medicine: recent innovations and the transition to translation." Tissue Eng Part B 

Rev 19(1): 1-13. 

Frohbergh, M. E., A. Katsman, G. P. Botta, P. Lazarovici, C. L. Schauer, U. G. 

Wegst and P. I. Lelkes (2012). "Electrospun hydroxyapatite-containing chitosan 

nanofibers crosslinked with genipin for bone tissue engineering." Biomaterials 

33(36): 9167-9178. 

Fuchs, K. H. (2002). "Minimally invasive surgery." Endoscopy 34(2): 154-159. 

Gaharwar, A. K., V. Kishore, C. Rivera, W. Bullock, C.-J. Wu, O. Akkus and G. 

Schmidt (2012). "Physically Crosslinked Nanocomposites from Silicate-

Crosslinked PEO: Mechanical Properties and Osteogenic Differentiation of 

Human Mesenchymal Stem Cells." Macromolecular Bioscience 12(6): 779-793. 

Garcia Cruz, D. M., V. Sardinha, J. L. Escobar Ivirico, J. F. Mano and J. L. 

Gomez Ribelles (2013). "Gelatin microparticles aggregates as three-dimensional 

scaffolding system in cartilage engineering." J Mater Sci Mater Med 24(2): 503-

513. 

Ghosh, K. and D. E. Ingber (2007). "Micromechanical control of cell and tissue 

development: Implications for tissue engineering." Advanced Drug Delivery 

Reviews 59(13): 1306-1318. 

Gir, P., G. Oni, S. A. Brown, A. Mojallal and R. J. Rohrich (2012). "Human 

adipose stem cells: current clinical applications." Plast Reconstr Surg 129(6): 

1277-1290. 



93 
 

Golub, E. E. and K. Boesze-Battaglia (2007). "The role of alkaline phosphatase in 

mineralization." Current Opinion in Orthopaedics 18(5): 444-448. 

Greco, S. J., K. Liu and P. Rameshwar (2007). "Functional similarities among 

genes regulated by OCT4 in human mesenchymal and embryonic stem cells." 

Stem Cells 25(12): 3143-3154. 

Guerette, B., D. Skuk, F. Celestin, C. Huard, F. Tardif, I. Asselin, B. Roy, M. 

Goulet, R. Roy, M. Entman and J. P. Tremblay (1997). "Prevention by anti-LFA-

1 of acute myoblast death following transplantation." J Immunol 159(5): 2522-

2531. 

Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke and C. S. Chen 

(2009). "Control of stem cell fate by physical interactions with the extracellular 

matrix." Cell Stem Cell 5(1): 17-26. 

Hagiwara, K., G. Chen, N. Kawazoe, Y. Tabata and H. Komuro (2013). 

"Promotion of muscle regeneration by myoblast transplantation combined with 

the controlled and sustained release of bFGFcpr." J Tissue Eng Regen Med. 

Hanada, K., J. E. Dennis and A. I. Caplan (1997). "Stimulatory effects of basic 

fibroblast growth factor and bone morphogenetic protein-2 on osteogenic 

differentiation of rat bone marrow-derived mesenchymal stem cells." J Bone 

Miner Res 12(10): 1606-1614. 

Hayashi, K. and Y. Tabata (2011). "Preparation of stem cell aggregates with 

gelatin microspheres to enhance biological functions." Acta Biomaterialia 7(7): 

2797-2803. 

Hayden, E. C. (2013a). "Hopes of HIV cure in 'Boston patients' dashed." Nature. 

Hayden, E. C. (2013b). "Stem-cell transplants may purge HIV." Nature. 

Heneidi, S., A. A. Simerman, E. Keller, P. Singh, X. Li, D. A. Dumesic and G. 

Chazenbalk (2013). "Awakened by Cellular Stress: Isolation and Characterization 

of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose 

Tissue." PLoS ONE 8(6): e64752. 



94 
 

Her, G. J., H.-C. Wu, M.-H. Chen, M.-Y. Chen, S.-C. Chang and T.-W. Wang 

(2013). "Control of three-dimensional substrate stiffness to manipulate 

mesenchymal stem cell fate toward neuronal or glial lineages." Acta Biomaterialia 

9(2): 5170-5180. 

Hernandez, R. M., G. Orive, A. Murua and J. L. Pedraz (2010). "Microcapsules 

and microcarriers for in situ cell delivery." Adv Drug Deliv Rev 62(7-8): 711-

730. 

Higuera, G. A., A. van Boxtel, C. A. van Blitterswijk and L. Moroni (2012). "The 

physics of tissue formation with mesenchymal stem cells." Trends in 

Biotechnology 30(11): 583-590. 

Hirai, K., Y. Tabata, S. Hasegawa and Y. Sakai (2013). "Enhanced intestinal 

anastomotic healing with gelatin hydrogel incorporating basic fibroblast growth 

factor." J Tissue Eng Regen Med. doi: 10.1002/term.1835. 

Hoare, T. R. and D. S. Kohane (2008). "Hydrogels in drug delivery: Progress and 

challenges." Polymer 49(8): 1993-2007. 

Hoch, A. I., B. Y. Binder, D. C. Genetos and J. K. Leach (2012). "Differentiation-

dependent secretion of proangiogenic factors by mesenchymal stem cells." PLoS 

One 7(4): e35579. 

Hollister, S. J. (2005). "Porous scaffold design for tissue engineering." Nat Mater 

4(7): 518-524. 

Hosseinkhani, H., M. Hosseinkhani, A. Khademhosseini, H. Kobayashi and Y. 

Tabata (2006). "Enhanced angiogenesis through controlled release of basic 

fibroblast growth factor from peptide amphiphile for tissue regeneration." 

Biomaterials 27(34): 5836-5844. 

Hu, J., K. Hiwatashi, T. Kurokawa, S. M. Liang, Z. L. Wu and J. P. Gong 

(2011a). "Microgel-Reinforced Hydrogel Films with High Mechanical Strength 

and Their Visible Mesoscale Fracture Structure." Macromolecules 44(19): 7775-

7781. 



95 
 

Hu, X., S. H. Park, E. S. Gil, X. X. Xia, A. S. Weiss and D. L. Kaplan (2011b). 

"The influence of elasticity and surface roughness on myogenic and osteogenic-

differentiation of cells on silk-elastin biomaterials." Biomaterials 32(34): 8979-

8989. 

Hui, T. Y., K. M. C. Cheung, W. L. Cheung, D. Chan and B. P. Chan (2008). "In 

vitro chondrogenic differentiation of human mesenchymal stem cells in collagen 

microspheres: Influence of cell seeding density and collagen concentration." 

Biomaterials 29(22): 3201-3212. 

Hwang, J. H., I. G. Kim, S. Piao, A. R. Jung, J. Y. Lee, K. D. Park and J. Y. Lee 

(2013a). "Combination therapy of human adipose-derived stem cells and basic 

fibroblast growth factor hydrogel in muscle regeneration." Biomaterials 34(25): 

6037-6045. 

Hwang, N. S., S. Varghese, H. J. Lee, Z. Zhang and J. Elisseeff (2013b). 

"Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells 

derived from human embryonic stem cells." Tissue Eng Part A 19(15-16): 1723-

1732. 

Ieda, M., J.-D. Fu, P. Delgado-Olguin, V. Vedantham, Y. Hayashi, B. G. Bruneau 

and D. Srivastava (2010). "Direct Reprogramming of Fibroblasts into Functional 

Cardiomyocytes by Defined Factors." Cell 142(3): 375-386. 

Ikada, Y. and Y. Tabata (1998). "Protein release from gelatin matrices." Adv 

Drug Deliv Rev 31(3): 287-301. 

Ikeda, M., T. Uemura, K. Takamatsu, M. Okada, K. Kazuki, Y. Tabata, Y. Ikada 

and H. Nakamura (2014). "Acceleration of peripheral nerve regeneration using 

nerve conduits in combination with induced pluripotent stem cell technology and 

a basic fibroblast growth factor drug delivery system." J Biomed Mater Res A 

102(5): 1370-1378. 

Imitola, J., K. Raddassi, K. I. Park, F. J. Mueller, M. Nieto, Y. D. Teng, D. 

Frenkel, J. Li, R. L. Sidman, C. A. Walsh, E. Y. Snyder and S. J. Khoury (2004). 

"Directed migration of neural stem cells to sites of CNS injury by the stromal 



96 
 

cell-derived factor 1alpha/CXC chemokine receptor 4 pathway." Proc Natl Acad 

Sci U S A 101(52): 18117-18122. 

Jeon, Y., K. Kwak, S. Kim, Y. Kim, J. Lim and W. Baek (2006). "Intrathecal 

Implants of Microencapsulated Xenogenic Chromaffin Cells Provide a Long-

Term Source of Analgesic Substances." Transplantation Proceedings 38(9): 3061-

3065. 

Jha, A. K., R. A. Hule, T. Jiao, S. S. Teller, R. J. Clifton, R. L. Duncan, D. J. 

Pochan and X. Jia (2009). "Structural Analysis and Mechanical Characterization 

of Hyaluronic Acid-Based Doubly Cross-Linked Networks." Macromolecules 

42(2): 537-546. 

Jian Wang, Y. T., Yoshiharu Deguchi, Kazuhiro Morimoto, Yasuhiko Tabata, 

Yashito Ikada (2000). "Positively Charged Gelatin Microspheres as Gastric 

Mucoadhesive Drug Delivery System for Eradication of H. pylori." Drug 

Delivery 7(4): 237-243. 

Jiang, X., S. Zou, B. Ye, S. Zhu, Y. Liu and J. Hu (2010). "bFGF-Modified 

BMMSCs enhance bone regeneration following distraction osteogenesis in 

rabbits." Bone 46(4): 1156-1161. 

Jin, Y.-C., S.-W. Kim, F. Cheng, J.-H. Shin, J.-K. Park, S. Lee, J.-E. Lee, P.-L. 

Han, M. Lee, K. Kim, H. Choi and J.-K. Lee (2011). "The effect of biodegradable 

gelatin microspheres on the neuroprotective effects of high mobility group box 1 

A box in the postischemic brain." Biomaterials 32(3): 899-908. 

Joung, Y. K., J. W. Bae and K. D. Park (2008). "Controlled release of heparin-

binding growth factors using heparin-containing particulate systems for tissue 

regeneration." Expert Opin Drug Deliv 5(11): 1173-1184. 

Kanematsu, A., A. Marui, S. Yamamoto, M. Ozeki, Y. Hirano, M. Yamamoto, O. 

Ogawa, M. Komeda and Y. Tabata (2004). "Type I collagen can function as a 

reservoir of basic fibroblast growth factor." J Control Release 99(2): 281-292. 

Kang, H. J., H. S. Kim, S. Y. Zhang, K. W. Park, H. J. Cho, B. K. Koo, Y. J. Kim, 

D. Soo Lee, D. W. Sohn, K. S. Han, B. H. Oh, M. M. Lee and Y. B. Park (2004). 



97 
 

"Effects of intracoronary infusion of peripheral blood stem-cells mobilised with 

granulocyte-colony stimulating factor on left ventricular systolic function and 

restenosis after coronary stenting in myocardial infarction: the MAGIC cell 

randomised clinical trial." Lancet 363(9411): 751-756. 

Kaur, G., M. T. Valarmathi, J. D. Potts, E. Jabbari, T. Sabo-Attwood and Q. 

Wang (2010). "Regulation of osteogenic differentiation of rat bone marrow 

stromal cells on 2D nanorod substrates." Biomaterials 31(7): 1732-1741. 

Kawai, K., S. Suzuki, Y. Tabata, Y. Ikada and Y. Nishimura (2000). "Accelerated 

tissue regeneration through incorporation of basic fibroblast growth factor-

impregnated gelatin microspheres into artificial dermis." Biomaterials 21(5): 489-

499. 

Kern, S., H. Eichler, J. Stoeve, H. Kluter and K. Bieback (2006). "Comparative 

analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or 

adipose tissue." Stem Cells 24(5): 1294-1301. 

Khew, S. T., X. H. Zhu and Y. W. Tong (2007). "An integrin-specific collagen-

mimetic peptide approach for optimizing Hep3B liver cell adhesion, proliferation, 

and cellular functions." Tissue engineering 13(10): 2451-2463. 

Kim, S., Y. Kang, C. A. Krueger, M. Sen, J. B. Holcomb, D. Chen, J. C. Wenke 

and Y. Yang (2012). "Sequential delivery of BMP-2 and IGF-1 using a chitosan 

gel with gelatin microspheres enhances early osteoblastic differentiation." Acta 

Biomaterialia 8(5): 1768-1777. 

Kimura, Y., M. Ozeki, T. Inamoto and Y. Tabata (2003). "Adipose tissue 

engineering based on human preadipocytes combined with gelatin microspheres 

containing basic fibroblast growth factor." Biomaterials 24(14): 2513-2521. 

Koide, T. (2007). "Designed triple-helical peptides as tools for collagen 

biochemistry and matrix engineering." Philos Trans R Soc Lond B Biol Sci 

362(1484): 1281-1291. 



98 
 

Komaki, H., T. Tanaka, M. Chazono and T. Kikuchi (2006). "Repair of segmental 

bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I 

collagen, and fibroblast growth factor-2." Biomaterials 27(29): 5118-5126. 

Komori, T. (2003). "Requisite roles of Runx2 and Cbfb in skeletal development." 

J Bone Miner Metab 21(4): 193-197. 

Komori, T., H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. 

Shimizu, R. T. Bronson, Y. H. Gao, M. Inada, M. Sato, R. Okamoto, Y. 

Kitamura, S. Yoshiki and T. Kishimoto (1997). "Targeted disruption of Cbfa1 

results in a complete lack of bone formation owing to maturational arrest of 

osteoblasts." Cell 89(5): 755-764. 

Korbling, M. and Z. Estrov (2003). "Adult stem cells for tissue repair - a new 

therapeutic concept?" N Engl J Med 349(6): 570-582. 

Kshitiz, J. Park, P. Kim, W. Helen, A. J. Engler, A. Levchenko and D.-H. Kim 

(2012). "Control of stem cell fate and function by engineering physical 

microenvironments." Integrative Biology 4(9): 1008-1018. 

Langer, R. and J. P. Vacanti (1993). "Tissue engineering." Science 260(5110): 

920-926. 

Laschke, M. W., T. E. Schank, C. Scheuer, S. Kleer, S. Schuler, W. Metzger, D. 

Eglin, M. Alini and M. D. Menger (2013). "Three-dimensional spheroids of 

adipose-derived mesenchymal stem cells are potent initiators of blood vessel 

formation in porous polyurethane scaffolds." Acta Biomater 9(6): 6876-6884. 

Lau, T. T., C. Wang and D.-A. Wang (2010). "Cell delivery with genipin 

crosslinked gelatin microspheres in hydrogel/microcarrier composite." 

Composites Science and Technology 70(13): 1909-1914. 

Lee, H., R. A. Cusick, F. Browne, T. Ho Kim, P. X. Ma, H. Utsunomiya, R. 

Langer and J. P. Vacanti (2002). "Local delivery of basic fibroblast growth factor 

increases both angiogenesis and engraftment of hepatocytes in tissue-engineered 

polymer devices." Transplantation 73(10): 1589-1593. 



99 
 

Lee, J., M. J. Cuddihy and N. A. Kotov (2008). "Three-dimensional cell culture 

matrices: state of the art." Tissue Eng Part B Rev 14(1): 61-86. 

Lee, K. Y. and D. J. Mooney (2001). "Hydrogels for Tissue Engineering." 

Chemical Reviews 101(7): 1869-1880. 

Lee, M., M. Aoki, T. Kondo, K. Kobayashi, K. Okumura, K. Komori and T. 

Murohara (2005). "Therapeutic angiogenesis with intramuscular injection of low-

dose recombinant granulocyte-colony stimulating factor." Arterioscler Thromb 

Vasc Biol 25(12): 2535-2541. 

Lemperle, G., V. B. Morhenn, V. Pestonjamasp and R. L. Gallo (2004). 

"Migration studies and histology of injectable microspheres of different sizes in 

mice." Plast Reconstr Surg 113(5): 1380-1390. 

Leong, D. T., M. C. Abraham, A. Gupta, T. C. Lim, F. T. Chew and D. W. 

Hutmacher (2012). "ATF5, a possible regulator of osteogenic differentiation in 

human adipose-derived stem cells." J Cell Biochem 113(8): 2744-2753. 

Leong, D. T., M. C. Abraham, S. N. Rath, T. C. Lim, F. T. Chew and D. W. 

Hutmacher (2006). "Investigating the effects of preinduction on human adipose-

derived precursor cells in an athymic rat model." Differentiation 74(9-10): 519-

529. 

Leong, D. T., D. W. Hutmacher, F. T. Chew and T. C. Lim (2005). "Viability and 

adipogenic potential of human adipose tissue processed cell population obtained 

from pump-assisted and syringe-assisted liposuction." J Dermatol Sci 37(3): 169-

176. 

Leong, W., T. T. Lau and D. A. Wang (2013). "A temperature-cured dissolvable 

gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel 

scaffolding system." Acta Biomater 9(5): 6459-6467. 

Li, H., B. Zhang, Y. Lu, M. Jorgensen, B. Petersen and S. Song (2011). "Adipose 

tissue-derived mesenchymal stem cell-based liver gene delivery." Journal of 

Hepatology 54(5): 930-938. 



100 
 

Li, M., Y. Guo, Y. Wei, A. G. MacDiarmid and P. I. Lelkes (2006). 

"Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering 

applications." Biomaterials 27(13): 2705-2715. 

Li, W.-J., R. Tuli, X. Huang, P. Laquerriere and R. S. Tuan (2005). "Multilineage 

differentiation of human mesenchymal stem cells in a three-dimensional 

nanofibrous scaffold." Biomaterials 26(25): 5158-5166. 

Li, Y., J. Rodrigues and H. Tomas (2012). "Injectable and biodegradable 

hydrogels: gelation, biodegradation and biomedical applications." Chem Soc Rev 

41(6): 2193-2221. 

Liang, Y., J. Jeong, R. J. DeVolder, C. Cha, F. Wang, Y. W. Tong and H. Kong 

(2011). "A cell-instructive hydrogel to regulate malignancy of 3D tumor 

spheroids with matrix rigidity." Biomaterials 32(35): 9308-9315. 

Lin, C.-Y., K.-J. Lin, C.-Y. Kao, M.-C. Chen, W.-H. Lo, T.-C. Yen, Y.-H. Chang 

and Y.-C. Hu (2011). "The role of adipose-derived stem cells engineered with the 

persistently expressing hybrid baculovirus in the healing of massive bone 

defects." Biomaterials 32(27): 6505-6514. 

Lin, R. Z. and H. Y. Chang (2008). "Recent advances in three-dimensional 

multicellular spheroid culture for biomedical research." Biotechnol J 3(9-10): 

1172-1184. 

Lin, R. Z., Y. C. Chen, R. Moreno-Luna, A. Khademhosseini and J. M. Melero-

Martin (2013). "Transdermal regulation of vascular network bioengineering using 

a photopolymerizable methacrylated gelatin hydrogel." Biomaterials 34(28): 

6785-6796. 

Liu, J., H. Zhou, M. D. Weir, H. H. Xu, Q. Chen and C. A. Trotman (2012). 

"Fast-degradable microbeads encapsulating human umbilical cord stem cells in 

alginate for muscle tissue engineering." Tissue Eng Part A 18(21-22): 2303-2314. 

Liu, M., Y. Zhang, J. Li and C. Zhou (2013). "Chitin-natural clay nanotubes 

hybrid hydrogel." Int J Biol Macromol 58: 23-30. 



101 
 

Liu, S., H. Zhang, X. Zhang, W. Lu, X. Huang, H. Xie, J. Zhou, W. Wang, Y. 

Zhang, Y. Liu, Z. Deng and Y. Jin (2011). "Synergistic angiogenesis promoting 

effects of extracellular matrix scaffolds and adipose-derived stem cells during 

wound repair." Tissue Eng Part A 17(5-6): 725-739. 

Liu, Y. and M. B. Chan-Park (2009). "Hydrogel based on interpenetrating 

polymer networks of dextran and gelatin for vascular tissue engineering." 

Biomaterials 30(2): 196-207. 

Livak, K. J. and T. D. Schmittgen (2001). "Analysis of relative gene expression 

data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method." 

Methods 25(4): 402-408. 

Lovett, M., K. Lee, A. Edwards and D. L. Kaplan (2009). "Vascularization 

strategies for tissue engineering." Tissue Eng Part B Rev 15(3): 353-370. 

Lyu, S. and D. Untereker (2009). "Degradability of polymers for implantable 

biomedical devices." Int J Mol Sci 10(9): 4033-4065. 

Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. 

Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. 

Hollander, S. Mantero, M. T. Conconi and M. A. Birchall "Clinical 

transplantation of a tissue-engineered airway." The Lancet 372(9655): 2023-2030. 

Maia, F. R., A. H. Lourenco, P. L. Granja, R. M. Goncalves and C. C. Barrias 

(2014). "Effect of cell density on mesenchymal stem cells aggregation in RGD-

alginate 3D matrices under osteoinductive conditions." Macromol Biosci 14(6): 

759-771. 

Malafaya, P. B., G. A. Silva and R. L. Reis (2007). "Natural-origin polymers as 

carriers and scaffolds for biomolecules and cell delivery in tissue engineering 

applications." Adv Drug Deliv Rev 59(4-5): 207-233. 

Martin, G. R. (1981). "Isolation of a pluripotent cell line from early mouse 

embryos cultured in medium conditioned by teratocarcinoma stem cells." 

Proceedings of the National Academy of Sciences 78(12): 7634-7638. 



102 
 

Matsuda, K., K. J. Falkenberg, A. A. Woods, Y. S. Choi, W. A. Morrison and R. 

J. Dilley (2013). "Adipose-derived stem cells promote angiogenesis and tissue 

formation for in vivo tissue engineering." Tissue engineering. Part A 19(11-12): 

1327-1335. 

Melief, S. M., J. J. Zwaginga, W. E. Fibbe and H. Roelofs (2013). "Adipose 

tissue-derived multipotent stromal cells have a higher immunomodulatory 

capacity than their bone marrow-derived counterparts." Stem Cells Transl Med 

2(6): 455-463. 

Merfeld-Clauss, S., N. Gollahalli, K. L. March and D. O. Traktuev (2010). 

"Adipose tissue progenitor cells directly interact with endothelial cells to induce 

vascular network formation." Tissue engineering. Part A 16(9): 2953-2966. 

Miyoshi, M., T. Kawazoe, H. H. Igawa, Y. Tabata, Y. Ikada and S. Suzuki 

(2005). "Effects of bFGF incorporated into a gelatin sheet on wound healing." J 

Biomater Sci Polym Ed 16(7): 893-907. 

Mooney, D. J. and H. Vandenburgh (2008). "Cell delivery mechanisms for tissue 

repair." Cell Stem Cell 2(3): 205-213. 

Moshaverinia, A., C. Chen, K. Akiyama, S. Ansari, X. Xu, W. W. Chee, S. R. 

Schricker and S. Shi (2012). "Alginate hydrogel as a promising scaffold for 

dental-derived stem cells: an in vitro study." Journal of Materials Science 

Materials in Medicine 23(12): 3041-3051. 

Munarin, F., P. Petrini, S. Bozzini and M. C. Tanzi (2012). "New perspectives in 

cell delivery systems for tissue regeneration: natural-derived injectable 

hydrogels." J Appl Biomater Funct Mater 10(2): 67-81. 

Nakaguchi, K., H. Jinnou, N. Kaneko, M. Sawada, T. Hikita, S. Saitoh, Y. Tabata 

and K. Sawamoto (2012). "Growth factors released from gelatin hydrogel 

microspheres increase new neurons in the adult mouse brain." Stem Cells Int 

2012: 915160. 

Nakase, H., K. Okazaki, Y. Tabata, M. Ozeki, N. Watanabe, M. Ohana, S. Uose, 

K. Uchida, T. Nishi, M. Mastuura, H. Tamaki, T. Itoh, C. Kawanami and T. 



103 
 

Chiba (2002). "New Cytokine Delivery System Using Gelatin Microspheres 

Containing Interleukin-10 for Experimental Inflammatory Bowel Disease." 

Journal of Pharmacology and Experimental Therapeutics 301(1): 59-65. 

Nitta, N., S. Ohta, T. Tanaka, R. Takazakura, T. Toyama, A. Sonoda, A. Seko, A. 

Furukawa, M. Takahashi, K. Murata, Y. Kurumi, T. Tani, T. Sakamoto and Y. 

Tabata (2009). "An initial clinical study on the efficacy of cisplatin-releasing 

gelatin microspheres for metastatic liver tumors." Eur J Radiol 71(3): 519-526. 

Ogawa, T., T. Akazawa and Y. Tabata (2010). "In vitro proliferation and 

chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin 

hydrogel microspheres for TGF-beta1 release." J Biomater Sci Polym Ed 21(5): 

609-621. 

Oh, S. A., H. Y. Lee, J. H. Lee, T. H. Kim, J. H. Jang, H. W. Kim and I. Wall 

(2012). "Collagen three-dimensional hydrogel matrix carrying basic fibroblast 

growth factor for the cultivation of mesenchymal stem cells and osteogenic 

differentiation." Tissue Eng Part A 18(9-10): 1087-1100. 

Omata, K., T. Matsuno, K. Asano, Y. Hashimoto, Y. Tabata and T. Satoh (2014). 

"Enhanced bone regeneration by gelatin–β-tricalcium phosphate composites 

enabling controlled release of bFGF." Journal of Tissue Engineering and 

Regenerative Medicine 8(8): 604-11. 

Otsuru, S., K. Tamai, T. Yamazaki, H. Yoshikawa and Y. Kaneda (2008). 

"Circulating bone marrow-derived osteoblast progenitor cells are recruited to the 

bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway." Stem 

Cells 26(1): 223-234. 

Pannek, J., F. H. Brands and T. Senge (2001). "Particle migration after 

transurethral injection of carbon coated beads for stress urinary incontinence." J 

Urol 166(4): 1350-1353. 

Parenteau-Bareil, R., R. Gauvin and F. Berthod (2010). "Collagen-Based 

Biomaterials for Tissue Engineering Applications." Materials 3(3): 1863-1887. 



104 
 

Parisi-Amon, A., W. Mulyasasmita, C. Chung and S. C. Heilshorn (2013). 

"Protein-engineered injectable hydrogel to improve retention of transplanted 

adipose-derived stem cells." Adv Healthc Mater 2(3): 428-432. 

Park, E. and A. N. Patel (2010a). "Changes in the expression pattern of 

mesenchymal and pluripotent markers in human adipose-derived stem cells." cell 

biology international 34(10): 979-984. 

Park, H., J. S. Temenoff, T. A. Holland, Y. Tabata and A. G. Mikos (2005). 

"Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels 

for cartilage tissue engineering applications." Biomaterials 26(34): 7095-7103. 

Park, J. S., H. N. Yang, S. Y. Jeon, D. G. Woo, K. Na and K.-H. Park (2010b). 

"Osteogenic differentiation of human mesenchymal stem cells using RGD-

modified BMP-2 coated microspheres." Biomaterials 31(24): 6239-6248. 

Parker, A. M. and A. J. Katz (2006). "Adipose-derived stem cells for the 

regeneration of damaged tissues." Expert Opin Biol Ther 6(6): 567-578. 

Patel, Z. S., M. Yamamoto, H. Ueda, Y. Tabata and A. G. Mikos (2008). 

"Biodegradable gelatin microparticles as delivery systems for the controlled 

release of bone morphogenetic protein-2." Acta Biomater 4(5): 1126-1138. 

Paul, A., Y. Ge, S. Prakash and D. Shum-Tim (2009). "Microencapsulated stem 

cells for tissue repairing: implications in cell-based myocardial therapy." Regen 

Med 4(5): 733-745. 

Pitaru, S., S. Kotev-Emeth, D. Noff, S. Kaffuler and N. Savion (1993). "Effect of 

basic fibroblast growth factor on the growth and differentiation of adult stromal 

bone marrow cells: enhanced development of mineralized bone-like tissue in 

culture." J Bone Miner Res 8(8): 919-929. 

Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. 

Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak (1999). 

"Multilineage Potential of Adult Human Mesenchymal Stem Cells." Science 

284(5411): 143-147. 



105 
 

Ratajczak, M. Z., M. Kucia, T. Jadczyk, N. J. Greco, W. Wojakowski, M. 

Tendera and J. Ratajczak (2012). "Pivotal role of paracrine effects in stem cell 

therapies in regenerative medicine: can we translate stem cell-secreted paracrine 

factors and microvesicles into better therapeutic strategies?" Leukemia 26(6): 

1166-1173. 

Rider, D. A., C. Dombrowski, A. A. Sawyer, G. H. Ng, D. Leong, D. W. 

Hutmacher, V. Nurcombe and S. M. Cool (2008). "Autocrine fibroblast growth 

factor 2 increases the multipotentiality of human adipose-derived mesenchymal 

stem cells." Stem Cells 26(6): 1598-1608. 

Riekstina, U., I. Cakstina, V. Parfejevs, M. Hoogduijn, G. Jankovskis, I. 

Muiznieks, R. Muceniece and J. Ancans (2009). "Embryonic stem cell marker 

expression pattern in human mesenchymal stem cells derived from bone marrow, 

adipose tissue, heart and dermis." Stem Cell Rev 5(4): 378-386. 

Roskams, T., S. Q. Yang, A. Koteish, A. Durnez, R. DeVos, X. Huang, R. 

Achten, C. Verslype and A. M. Diehl (2003). "Oxidative stress and oval cell 

accumulation in mice and humans with alcoholic and nonalcoholic fatty liver 

disease." Am J Pathol 163(4): 1301-1311. 

Rubina, K., N. Kalinina, A. Efimenko, T. Lopatina, V. Melikhova, Z. Tsokolaeva, 

V. Sysoeva, V. Tkachuk and Y. Parfyonova (2009). "Adipose stromal cells 

stimulate angiogenesis via promoting progenitor cell differentiation, secretion of 

angiogenic factors, and enhancing vessel maturation." Tissue engineering. Part A 

15(8): 2039-2050. 

Saha, K., J. F. Pollock, D. V. Schaffer and K. E. Healy (2007). "Designing 

synthetic materials to control stem cell phenotype." Current Opinion in Chemical 

Biology 11(4): 381-387. 

Salgado, A. J., R. L. Reis, N. J. Sousa and J. M. Gimble (2010). "Adipose tissue 

derived stem cells secretome: soluble factors and their roles in regenerative 

medicine." Curr Stem Cell Res Ther 5(2): 103-110. 



106 
 

Schmidt, A., D. Ladage, T. Schinkothe, U. Klausmann, C. Ulrichs, F. J. Klinz, K. 

Brixius, S. Arnhold, B. Desai, U. Mehlhorn, R. H. Schwinger, P. Staib, K. 

Addicks and W. Bloch (2006). "Basic fibroblast growth factor controls migration 

in human mesenchymal stem cells." Stem Cells 24(7): 1750-1758. 

Schmidt, J. J., J. Jeong and H. Kong (2011). "The interplay between cell adhesion 

cues and curvature of cell adherent alginate microgels in multipotent stem cell 

culture." Tissue Eng Part A 17(21-22): 2687-2694. 

Seo, M. J., S. Y. Suh, Y. C. Bae and J. S. Jung (2005). "Differentiation of human 

adipose stromal cells into hepatic lineage in vitro and in vivo." Biochemical and 

Biophysical Research Communications 328(1): 258-264. 

Shih, Y.-R. V., C.-N. Chen, S.-W. Tsai, Y. J. Wang and O. K. Lee (2006). 

"Growth of Mesenchymal Stem Cells on Electrospun Type I Collagen 

Nanofibers." Stem Cells 24(11): 2391-2397. 

Simoes, S. M., F. Veiga, J. J. Torres-Labandeira, A. C. Ribeiro, A. Concheiro and 

C. Alvarez-Lorenzo (2013). "Poloxamine-cyclodextrin-simvastatin 

supramolecular systems promote osteoblast differentiation of mesenchymal stem 

cells." Macromol Biosci 13(6): 723-734. 

Skop, N. B., F. Calderon, S. W. Levison, C. D. Gandhi and C. H. Cho (2013). 

"Heparin crosslinked chitosan microspheres for the delivery of neural stem cells 

and growth factors for central nervous system repair." Acta Biomaterialia 9(6): 

6834-6843. 

Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini and N. A. 

Peppas (2009). "Hydrogels in regenerative medicine." Adv Mater 21(32-33): 

3307-3329. 

Solorio, L. D., C. D. Dhami, P. N. Dang, E. L. Vieregge and E. Alsberg (2012a). 

"Spatiotemporal regulation of chondrogenic differentiation with controlled 

delivery of transforming growth factor-beta1 from gelatin microspheres in 

mesenchymal stem cell aggregates." Stem Cells Transl Med 1(8): 632-639. 



107 
 

Solorio, L. D., E. L. Vieregge, C. D. Dhami, P. N. Dang and E. Alsberg (2012b). 

"Engineered cartilage via self-assembled hMSC sheets with incorporated 

biodegradable gelatin microspheres releasing transforming growth factor-β1." 

Journal of Controlled Release 158(2): 224-232. 

Strem, B. M., K. C. Hicok, M. Zhu, I. Wulur, Z. Alfonso, R. E. Schreiber, J. K. 

Fraser and M. H. Hedrick (2005). "Multipotential differentiation of adipose 

tissue-derived stem cells." Keio J Med 54(3): 132-141. 

Su, J., H. Xu, J. Sun, X. Gong and H. Zhao (2013). "Dual Delivery of BMP-2 and 

bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for 

Large-Size Mandibular Defect Regeneration." Int J Mol Sci 14(6): 12714-12728. 

Sukarto, A., C. Yu, L. E. Flynn and B. G. Amsden (2012). "Co-delivery of 

adipose-derived stem cells and growth factor-loaded microspheres in RGD-

grafted N-methacrylate glycol chitosan gels for focal chondral repair." 

Biomacromolecules 13(8): 2490-2502. 

Sun, H., F. Zhu, Q. Hu and P. H. Krebsbach (2014). "Controlling stem cell-

mediated bone regeneration through tailored mechanical properties of collagen 

scaffolds." Biomaterials 35(4): 1176-1184. 

Sun, Y., C. S. Chen and J. Fu (2012). "Forcing stem cells to behave: a biophysical 

perspective of the cellular microenvironment." Annu Rev Biophys 41: 519-542. 

Sung, M. S., J. Y. Mun, O. Kwon, K. S. Kwon and D. B. Oh (2013). "Efficient 

myogenic differentiation of human adipose-derived stem cells by the transduction 

of engineered MyoD protein." Biochem Biophys Res Commun 437(1): 156-161. 

Takahashi, K. and S. Yamanaka (2006). "Induction of Pluripotent Stem Cells 

from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors." Cell 

126(4): 663-676. 

Takahashi, Y., M. Yamamoto and Y. Tabata (2005). "Osteogenic differentiation 

of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-

tricalcium phosphate." Biomaterials 26(17): 3587-3596. 



108 
 

Talens-Visconti, R., A. Bonora, R. Jover, V. Mirabet, F. Carbonell, J. V. Castell 

and M. J. Gomez-Lechon (2007). "Human mesenchymal stem cells from adipose 

tissue: Differentiation into hepatic lineage." Toxicol In Vitro 21(2): 324-329. 

Tan, S., J. Y. Fang, Z. Yang, M. E. Nimni and B. Han (2014). "The synergetic 

effect of hydrogel stiffness and growth factor on osteogenic differentiation." 

Biomaterials 35(20): 5294-5306. 

Tay, C. Y., M. Pal, H. Yu, W. S. Leong, N. S. Tan, K. W. Ng, S. Venkatraman, F. 

Boey, D. T. Leong and L. P. Tan (2011). "Bio-inspired micropatterned platform 

to steer stem cell differentiation." Small 7(10): 1416-1421. 

Terrovitis, J. V., R. R. Smith and E. Marban (2010). "Assessment and 

optimization of cell engraftment after transplantation into the heart." Circ Res 

106(3): 479-494. 

Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, 

V. S. Marshall and J. M. Jones (1998). "Embryonic Stem Cell Lines Derived from 

Human Blastocysts." Science 282(5391): 1145-1147. 

Toyama, T., N. Nitta, S. Ohta, T. Tanaka, Y. Nagatani, M. Takahashi, K. Murata, 

H. Shiomi, S. Naka, Y. Kurumi, T. Tani and Y. Tabata (2012). "Clinical trial of 

cisplatin-conjugated gelatin microspheres for patients with hepatocellular 

carcinoma." Jpn J Radiol 30(1): 62-68. 

Tsai, C. C., C. L. Chen, H. C. Liu, Y. T. Lee, H. W. Wang, L. T. Hou and S. C. 

Hung (2010). "Overexpression of hTERT increases stem-like properties and 

decreases spontaneous differentiation in human mesenchymal stem cell lines." J 

Biomed Sci 17: 64. 

Tzouanas, S. N., A. K. Ekenseair, F. K. Kasper and A. G. Mikos (2014). 

"Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and 

chemically gelling injectable hydrogels for tissue engineering." J Biomed Mater 

Res A 102(5): 1222-1230. 

Ucuzian, A. A. and H. P. Greisler (2007). "In vitro models of angiogenesis." 

World journal of surgery 31(4): 654-663. 



109 
 

van de Kamp, J., W. Jahnen-Dechent, B. Rath, R. Knuechel and S. Neuss (2013). 

"Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell 

recruitment." Stem Cells Int 2013: 892065. 

Vandelli, M. A., F. Rivasi, P. Guerra, F. Forni and R. Arletti (2001). "Gelatin 

microspheres crosslinked with d,l-glyceraldehyde as a potential drug delivery 

system: preparation, characterisation, in vitro and in vivo studies." International 

Journal of Pharmaceutics 215(1–2): 175-184. 

Vierbuchen, T., A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Sudhof and M. 

Wernig (2010). "Direct conversion of fibroblasts to functional neurons by defined 

factors." Nature 463(7284): 1035-1041. 

Vines, J. B., D. J. Lim, J. M. Anderson and H. W. Jun (2012). "Hydroxyapatite 

nanoparticle reinforced peptide amphiphile nanomatrix enhances the osteogenic 

differentiation of mesenchymal stem cells by compositional ratios." Acta 

Biomater 8(11): 4053-4063. 

Wall, M. E., S. H. Bernacki and E. G. Loboa (2007). "Effects of serial passaging 

on the adipogenic and osteogenic differentiation potential of adipose-derived 

human mesenchymal stem cells." Tissue Eng 13(6): 1291-1298. 

Wang, C., Y. Gong, Y. Zhong, Y. Yao, K. Su and D. A. Wang (2009a). "The 

control of anchorage-dependent cell behavior within a hydrogel/microcarrier 

system in an osteogenic model." Biomaterials 30(12): 2259-2269. 

Wang, H., Q. Zou, O. C. Boerman, A. W. Nijhuis, J. A. Jansen, Y. Li and S. C. 

Leeuwenburgh (2013a). "Combined delivery of BMP-2 and bFGF from 

nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo." J 

Control Release 166(2): 172-181. 

Wang, J., Y. An, F. Li, D. Li, D. Jing, T. Guo, E. Luo and C. Ma (2014). "The 

effects of pulsed electromagnetic field on the functions of osteoblasts on implant 

surfaces with different topographies." Acta Biomaterialia 10(2): 975-985. 

Wang, M., H. Pei, L. Zhang, L. Guan, R. Zhang, Y. Jia, B. Li, W. Yue, Y. Wang 

and X. Pei (2010). "Hepatogenesis of adipose-derived stem cells on poly-lactide-



110 
 

co-glycolide scaffolds: in vitro and in vivo studies." Tissue Eng Part C Methods 

16(5): 1041-1050. 

Wang, N., J. D. Tytell and D. E. Ingber (2009b). "Mechanotransduction at a 

distance: mechanically coupling the extracellular matrix with the nucleus." Nat 

Rev Mol Cell Biol 10(1): 75-82. 

Wang, N., R. Zhang, S.-J. Wang, C.-L. Zhang, L.-B. Mao, C.-Y. Zhuang, Y.-Y. 

Tang, X.-G. Luo, H. Zhou and T.-C. Zhang (2013b). "Vascular endothelial 

growth factor stimulates endothelial differentiation from mesenchymal stem cells 

via Rho/myocardin-related transcription factor-A signaling pathway." The 

International Journal of Biochemistry & Cell Biology 45(7): 1447-1456. 

Woo, E., H. Park and K. Y. Lee (2014). "Shear reversible cell/microsphere 

aggregate as an injectable for tissue regeneration." Macromol Biosci 14(5): 740-

748. 

Xu, K., D. A. Cantu, Y. Fu, J. Kim, X. Zheng, P. Hematti and W. J. Kao (2013). 

"Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices 

for three-dimensional mesenchymal stromal/stem cell administration to cutaneous 

wounds." Acta Biomaterialia 9(11): 8802-8814. 

Yamamoto, Y., A. Banas, S. Murata, M. Ishikawa, C. R. Lim, T. Teratani, I. 

Hatada, K. Matsubara, T. Kato and T. Ochiya (2008). "A comparative analysis of 

the transcriptome and signal pathways in hepatic differentiation of human adipose 

mesenchymal stem cells." FEBS J 275(6): 1260-1273. 

Yao, R., R. Zhang, F. Lin and J. Luan (2012). "Injectable cell/hydrogel 

microspheres induce the formation of fat lobule-like microtissues and 

vascularized adipose tissue regeneration." Biofabrication 4(4): 045003. 

Young, D. A., Y. S. Choi, A. J. Engler and K. L. Christman (2013). "Stimulation 

of adipogenesis of adult adipose-derived stem cells using substrates that mimic 

the stiffness of adipose tissue." Biomaterials 34(34): 8581-8588. 



111 
 

Young, S., M. Wong, Y. Tabata and A. G. Mikos (2005). "Gelatin as a delivery 

vehicle for the controlled release of bioactive molecules." J Control Release 

109(1-3): 256-274. 

Yuan, H., Z. Yang, J. D. de Bruijn, K. de Groot and X. Zhang (2001). "Material-

dependent bone induction by calcium phosphate ceramics: a 2.5-year study in 

dog." Biomaterials 22(19): 2617-2623. 

Zakharova, L., D. Mastroeni, N. Mutlu, M. Molina, S. Goldman, E. Diethrich and 

M. A. Gaballa (2010). "Transplantation of cardiac progenitor cell sheet onto 

infarcted heart promotes cardiogenesis and improves function." Cardiovasc Res 

87(1): 40-49. 

Zhang, H., S. J. Zhu, W. Wang, Y. J. Wei and S. S. Hu (2008). "Transplantation 

of microencapsulated genetically modified xenogeneic cells augments 

angiogenesis and improves heart function." Gene Ther 15(1): 40-48. 

Zhang, J., X. Luo, D. Barbieri, A. M. C. Barradas, J. D. de Bruijn, C. A. van 

Blitterswijk and H. Yuan (2014). "The size of surface microstructures as an 

osteogenic factor in calcium phosphate ceramics." Acta Biomaterialia 10(7): 

3254-3263. 

Zhou, C. and Q. Wu (2011). "A novel polyacrylamide nanocomposite hydrogel 

reinforced with natural chitosan nanofibers." Colloids Surf B Biointerfaces 84(1): 

155-162. 

Zhou, J., C. Xu, G. Wu, X. Cao, L. Zhang, Z. Zhai, Z. Zheng, X. Chen and Y. 

Wang (2011). "In vitro generation of osteochondral differentiation of human 

marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered 

scaffolds." Acta Biomaterialia 7(11): 3999-4006. 

Zhu, X. H., S. K. Gan, C. H. Wang and Y. W. Tong (2007a). "Proteins 

combination on PHBV microsphere scaffold to regulate Hep3B cells activity and 

functionality: a model of liver tissue engineering system." J Biomed Mater Res A 

83(3): 606-616. 



112 
 

Zhu, X. H., Y. Tabata, C. H. Wang and Y. W. Tong (2008). "Delivery of basic 

fibroblast growth factor from gelatin microsphere scaffold for the growth of 

human umbilical vein endothelial cells." Tissue Eng Part A 14(12): 1939-1947. 

Zhu, X. H., C. H. Wang and Y. W. Tong (2007b). "Growing tissue-like constructs 

with Hep3B/HepG2 liver cells on PHBV microspheres of different sizes." J 

Biomed Mater Res B Appl Biomater 82(1): 7-16. 

Zuk, P. (2013). "Adipose-Derived Stem Cells in Tissue Regeneration: A Review." 

ISRN Stem Cells 2013: 35. 

Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. 

Alfonso, J. K. Fraser, P. Benhaim and M. H. Hedrick (2002). "Human adipose 

tissue is a source of multipotent stem cells." Mol Biol Cell 13(12): 4279-4295. 

Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, 

H. P. Lorenz and M. H. Hedrick (2001). "Multilineage cells from human adipose 

tissue: implications for cell-based therapies." Tissue Eng 7(2): 211-228. 

 

 

 

 

 

 

 



113 
 

APPENDIX A 

LIST OF PUBLICATIONS AND CONFERENCE 

PRESENTATIONS 

 

 

Journal publications 

1. Anjaneyulu Kodali, Thiam Chye Lim, David Tai Leong, Yen Wah Tong. 

Cell-microsphere constructs formed with human adipose derived stem 

cells and gelatin microspheres promotes stemness, differentiation and 

controlled pro-angiogenic potential. Macromolecular Bioscience. 14 (10), 

1458-68; 2014. 

2.  Anjaneyulu Kodali, Thiam Chye Lim, David Tai Leong, Yen Wah 

Tong. Inducing osteogenesis in human adipose derived stem cells using 

mechanical and biomolecular cues in a gelatin microsphere – collagen 

hydrogel composite scaffold. (under communication). 

 

Conference presentations 
 

3. Anjaneyulu Kodali, Yen Wah Tong. In Vitro culture of human adipose 

derived stem cells and human hepatoma cells on gelatin microspheres. 

Tissue Engineering & Regenerative Medicine International Society 

(TERMIS) Asia Pacific Meeting. August 2011, Singapore. 

4. Yen Wah Tong, Anjaneyulu Kodali. Gelatin microspheres as scaffolds 

for adipose derived stem cells and liver tissue engineering. American 

Institute of Chemical Engineers (AIChE) Annual Meeting, October 2011, 

Minneapolis, Minnesota, USA. 



114 
 

5. Anjaneyulu Kodali, Yen Wah Tong. Gelatin microspheres as scaffolds 

for culturing human adipose derived stem cells and human hepatoma cells. 

14th Asia pacific Confederation of Chemical Engineering Congress, 

February 2012. Singapore. 

6. Yen Wah Tong, Anjaneyulu Kodali. Microsphere - Collagen hydrogel 

with adipose derived stem cells for soft tissue engineering. American 

Institute of Chemical Engineers (AIChE) Annual Meeting, November 

2013, San Francisco, California, USA. 

 
 

 


