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Summary

The mechanical properties of the cellular environment influence cell be-

haviour in processes such as differentiation, proliferation, and apoptosis.

Researchers have mainly sought to understand the scientific principles and

mechanisms underlying the effect of the stiffness of the extracellular matrix

(ECM) on cell-environment interaction. Reported in this thesis is a novel

approach to directly manipulate the ECM in order to produce the desired

changes in its stiffness.

This approach involves embedding super paramagnetic beads into the ECM

and applying an external magnetic field to induce forces on these individual

magnetic beads. These forces collectively oppose or aid the ECM deforma-

tion caused by cellular organisms. The results from this thesis quantify the

changes in the stiffness of the modified ECM at the macro- and micro-scale

and demonstrate the possibility of using this technique for cell manipula-

tion.

There are six key contributions reported in this thesis. First, a new method

was developed to alter the stiffness of modified ECM samples, in which the

embedded superparamagnetic beads were coated with streptavidin to form

strong covalent bonds with the ECM fibers.

Second, the macro-scale uniaxial stiffness of a modified ECM with a mag-

netic field perpendicular to the direction of a tensile force was characterised

and a mechanical model was used to validate the experimental stretch tests.

The results showed that the macro-scale stiffness of the ECM could be in-

creased by up to 59%.

Third, a novel and customised AFM setup was used to verify experimentally

the changes in the micro-scale stiffness of the modified ECM. The results

showed that the micro-scale stiffness could be increased by up to 25%.

Fourth, an in vitro method was developed to study HMVEC sprouting dur-

vii



ing angiogenesis by using a microfluidic device containing modified ECM

and under the influence of an external magnetic field. Experimental results

showed that the change in stiffness of the ECM led to an increase in sprout

height and the number of focal adhesions of sprouting HMVECs.

Fifth, a new method was developed to generate stronger and more localized

magnetic fields. This was achieved by utilising a novel combination of elec-

tromagnetic needles (EMN) and collectors. An in-depth simulation study

with preliminary experimental results, has demonstrated the effectiveness

of this method for more precise manipulation of magnetic beads.

Sixth, a technique for using the EMN to exert point forces on magnetic

beads embedded in a 3D ECM was developed. Observations of the reaction

of HMVECs to these point forces in the 3D ECM point to the feasibility

of this technique for practical application.

These six contributions provide a set of fundamentally significant results

that can serve as a point of departure for further study in active manipu-

lation of ECM stiffness. By controlling the stiffness of the ECM, it may be

possible to influence many biological processes such as cell migration, angio-

genesis, stem cell differentiation, lymphangiogenesis and metastasis.
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Chapter 1

Introduction

This chapter provides detailed background information about the macro

and micro scale components in the extracellular matrix (ECM) which com-

prise mainly of collagen. The importance of ECM stiffness in influencing

cellular behaviour is also discussed in this chapter. A novel approach used

to change ECM stiffness is introduced and the key contributions made from

utilising this approach are presented in this chapter.

1.1 Extracellular matrix

The development of modern analytical methods and tools is crucial in pro-

viding a deep understanding of diseases at the molecular, cellular and organ

levels and such an understanding will essentially drive progress in medicine,

as they offer novel solutions for the healthcare industry. A current chal-

lenge is to achieve an understanding of the behaviour of a cell population

and develop new technologies to control it. It is well known that cell be-

haviour, such as differentiation, proliferation, apoptosis and locomotion,

is influenced by the properties of the extracellular matrix (ECM) [12–14].

The stiffness of the ECM particularly influences cell locomotion [15, 16].

One possible means of controlling cell locomotion is to manipulate stiffness

gradients in the ECM [17,18].

The extracellular matrix comprises mainly of collagen, which is a protein

found in vertebrates and which adds up to 66% of all proteins in the human

body [19]. It has been documented that there are a total of 25 types of

collagen [20]. Collagen type I is the main type of collagen present in the

body and it is responsible for bearing the tensile stress in the body. For
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this type of collagen, the collagen triple helices, (i.e. collagen molecules),

are assembled in fibrils and cross-linked via the amino acids lysine and

hydroxyl lysine present in their telopeptide regions [1, 21]. These fibrils

are then bundled into fibres and, depending on the tissues, they are then

assembled into fascicles like in tendon.

1.2 Hierarchical structure of collagen

Collagen can be found in both fibril and non-fibril forming structures. The

fibril-forming collagen including type I, II, III, V and XI are the ones that

provide the structural framework and the mechanical strength of tissues [1].

Collagen type I is the main focus of this thesis. Hence, the hierarchical

structure of fibril-forming collagen will be described in this chapter. Col-

lagen has a highly organised structure starting from the collagen molecule,

fibril, fibre, and higher levels such as fascicles in a tendon [21,22] as shown

in Figure 1.1 below.

Figure 1.1: Structure of Collagen. Adapted from [1].
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1.2.1 Collagen molecule

The smallest structure of collagen is the polypeptide chain, a linear col-

lection of α-amino acids, comprising mainly the repeating tripeptide unit

Gly-X-Y (Gly = glycine). The nature of the X and Y amino acid residues

can vary but X is mostly proline (Pro) and Y is mostly hydroxyl-proline

(Hyp) [23]. Three of these polypeptide chains are wrapped around each

other forming a triple helix which is named the collagen molecule. Colla-

gen molecules have a long, rod-like structure with a diameter of 1.5 nm, a

length of 300 nm and a molecular weight of 285 kDa [21]. The triple helices

of collagen type I are composed of two α1-chains and one α2-chain which

differ only slightly in amino acid composition [24].

Collagen molecules are stable because of the hydrogen bonds between the

backbones of the three α-chains and also because of the water-mediated

hydrogen bonds. The hydrogen bonds are formed between the N-H group

of Gly residues in one chain and the C=O group of a residue at the X-

position in an adjacent chain [25].

1.2.2 Collagen fibril

The collagen fibril consists of self assembled collagen molecules. These

fibrils are cylindrical in shape and have diameters ranging from 10 to 500

nm [26]. The distinct and regular pattern of the collagen fibrils can be

observed by electron microscopy or atomic force microscopy. A D-period

was highlighted in the model by Hodge and Petruska which occurs after

every 67nm [27]. In this model, there are five collagen molecules arranged

in a staggered formation.

There has been much debate over the conversion of the 2D Hodge and

Petruska model to a 3D model. Several models have been proposed and

they are all separated into two main categories. The first category is a

model that describes five collagen molecules forming a microfibrillar struc-

ture with connections in the telopeptide region [21]. For the second cate-

gory the collagen molecules form a crystalline 3D array [26]. For the first

model the collagen molecular segments are tightly packed in the overlap
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region and have more flexibility in the gap region [28]. This D-periodic five

stranded microfibril model for molecular packing of collagen by Smith has

been widely accepted [29]. The second category consists of quasi-crystalline

3D array models which are based on X-ray diffraction data. Hulmes and

Miller developed this which was based on quasi-hexagonal molecular pack-

ing without microfibrillar sub-structure that showed a much better agree-

ment with their X-ray diffraction data [30].

1.2.3 Collagen fibres

Collagen fibres are formed by arranging many collagen fibrils into bundles.

The fibrils are arranged at angles to each other which results in a macro-

scopic crimped structure visible with an optical microscope [31]. These fi-

bres form the structural frame of all biological fibril-forming collagen.

1.3 Mechanical properties of collagen, colla-

gen fibers and tendons

Mechanical properties collected from tendons and collagen fibres have been

the most comprehensive and exhaustive so far. The stress strain rela-

tionship of collagen fibres have been evaluated for many years. A typical

stress strain plot of collagen in the hydrated state is shown in the Figure

1.2 [2].

The initial section of the graph is called the “toe region”. This region lies

between 0 - 2% of the strain where there is high strain and low stress. The

“toe region” is followed by the “heel region” where the stress increases as

a result of the reduction in the disorder of the fibres in the collagen. At

about 3% strain, the graph will reach the linear region, which defines the

stress strain behaviour of the collagen fibres. The slope of the linear region

is taken as the Young’s modulus of the collagen fibres.

The fibres in collagen usually have visco-elastic properties whereby their

mechanical properties are strain rate dependent. This visco-elastic property
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Figure 1.2: Stress Strain plot of hydrated collagen. Adapted from [2].

is considered to be important for collagen to behave as a substrate for cell

growth [32]. Extensive tensile testing and synchrotron X-ray diffraction

research into the visco-elastic behaviour of rat-tail tendon, has found that

the overall strain of the collagen is larger than the strain of the individual

fibrils which indicates that some deformation is taking place in the matrix

between fibrils [33]. As a result of these findings, many authors have come

up with a model that combines both collagen and collagen fibrils as a

coupled visco-elastic system [34] [22]. There have also been suggestions that

the tensile force is transmitted through the collagen directly to the fibrils

and the sliding of collagen fibres with respect to each other is the main

mechanism underlying the visco-elastic behaviour of collagen [35].

1.4 Motivation and proposed research work

The micro-environment surrounding cells plays an important role in influ-

encing their behaviour (e.g. migration, proliferation and differentiation).

Two groups of factors exert such an influence: the soluble cues and the

insoluble cues. The first group involves biochemical components, such as
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growth factors, metabolites and dissolved gases, while the second group

involves structural and mechanical components, such as composition, ar-

chitecture and elasticity of the ECM and cell-cell interactions. All these

components can be found in the micro-environment.

To develop a comprehensive knowledge about cell behaviour in culture re-

mains a challenge in fields such as life science, basic biological research [36],

drug discovery [37], and tissue engineering/regenerative medicine [38]. In-

corporating all these cues in the micro-environment for in vitro cultivation

of cells is a crucial step towards gaining such knowledge. Significant work

has been carried out to find the appropriate mixture of soluble cues in liq-

uid media for culturing stem cells while the effect of insoluble cues has yet

to be extensively investigated [39–42]. It is interesting to note that the im-

pact of insoluble cues could in fact be far more important than previously

thought, as in the case of mammalian cell and human mesenchymal stem

cell differentiation [43].

The creation of new healthcare technologies and the quick diagnosis of

disease require a deep understanding of chemistry, biology, medicine, and

engineering, since the various biochemical pathways involving homeosta-

sis are linked to tissue structure and function. Both mechanical and bio-

chemical feedback loops exist in order to combine mechanical and chemical

events that will provide a method for development and homeostasis. These

mechanical and chemical feedback loops are altered during ageing and mat-

uration of cells. Combined with cell death, these alterations will lead to

the onset of diseases. For example, a stretch-dependent increase in tyro-

sine phosphorylation of Crk associated substrate protein (Cas) was shown

to be involved in various cellular events such as migration, survival, trans-

formation, and invasion [44]. Mechanical forces are responsible for ongoing

changes that occur in diseased blood vessels. Mechanical forces also play

an important role in the tissue homeostasis of musculoskeletal tissues as

evidenced by the bone resorption and muscle atrophy experienced by as-

tronauts, as well as in disease processes such as the deposition of lipids

and the progression of atherosclerosis. Therefore, it is important not only

to be able to measure the structure and normal function of tissues, but

also to be able to understand the relationship between external mechanical
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loading on tissues and the resultant changes in gene expression and protein

synthesis.

Epithelial, endothelial, and a variety of other cell types respond to external

mechanical loading by changing the expression of certain genes and regu-

lating the synthesis of several types of macromolecules. There are many

biological products that are affected by mechanical loading for example the

cell cytoplasmic structure and surronding changes in the ECM is generally

influenced by mechanical loading [45–47]. Therefore it is essential to un-

derstand the interaction between cells and mechanical forces present in the

ECM.

1.5 Approach

In our proposed approach, superparamagnetic particles or beads were em-

bedded in the ECM and manipulated with an external magnetic field to

actively manipulate its stiffness. Embedding individual (or small numbers

of) superparamagnetic particles in the ECM in order to probe cells or to ma-

nipulate cell-ECM interaction is a well-known practice [48] [49] [50].

The novelty of the proposed approach is that an ensemble of such magnetic

particles will be directly manipulated to generate a desired stiffness for the

extracellular matrix. Specifically, magnetic beads were embedded in the

ECM via bio-conjugation between the beads and the ECM fibers. Applying

an (external) magnetic field on the ECM produced a restoring force on

the beads to resist the dislocation of the ECM fibers from their nominal

positions due to forces generated by cell motility. This alters the apparent

stiffness of the ECM as sensed by the cells. Figure 1.3 illustrates this

approach.

Human microvascular endothelial cells (HMVECs) were cultured in the

magnetic bead embedded ECM (modified ECM) and exposed to an exter-

nal magnetic field to observe the effect of HMVEC sprouting under the

modified ECM stiffness changes. A novel electromagnetic needle (EMN)

design was also used to exert strong and localised point forces on the mag-

netic beads in the modified ECM. EMNs have been used in many biological
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(a) Beads embedded in ECM via bio-
conjugation and manipulated by an ex-
ternal magnetic field.

Bio-conjugation

Collagen
fibril

(b) Magnetic field produces a restoring
force on the bead to resist its motion.

Figure 1.3: Schematic illustration of the proposed approach.

applications [10, 11, 49–55]. Most EMNs have single or double pole tips to

generate a magnetic field gradient that induces a force on the magnetic

beads. By creating more localised magnetic fields, these micro beads can

be trapped and moved to arbitrary positions. If strong localised fields at

the micro scale can be generated, vascularisation can be influenced through

the application of forces to the micro beads in the vicinity of the leading

cell (tip cell).

So far there have been a few attempts to generate localised magnetic fields

with strong forces. Most EMNs that are able achieve such strong forces are

due to the needle tip geometry and high input current [11] [51]. Such EMNs

induce magnetic forces on micro magnetic beads that point directly towards

the needle tip. The forces induced on these beads directly depends on the

distance they are away from the needle tip as shown in Figure 1.4.

1.6 Significance of research work

The stiffness of the extracellular matrix (an insoluble cue) has been shown

to influence cell behaviour [12] [15]. Studies from the literature concerning

the stiffness of the extracellular matrix mainly sought to understand the sci-
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(a) Force vectors point towards the nee-
dle tip. Force magnitude only depends
on the bead-tip distance for all beads
within a cone of about 120 around the
tip. Adapted from [11].

(b) The lines in the graph indicate the
force distance relationship for respec-
tive pole tip geometries measured us-
ing 4.5 µm magnetic beads in glycerol.
Adapted from [51].

Figure 1.4: Electromagnetic needles (EMNs) characteristic force distance
curves and behaviour of magnetic particles to needle tip geometry.

entific principles and mechanisms underlying its effect on cell-environment

interaction [16]. For biosystems/bioengineering research, an immediate

challenge is to develop engineering approaches to directly manipulate the

extracellular matrix in order to produce the desired change in its stiffness.

The work reported in this thesis explores the possibility of such manipula-

tion of ECM stiffness.

This thesis describes an approach that achieves such manipulation, and

reports experimental results that demonstrate the effectiveness of this pro-

posed approach. The results show the possibility of altering the stiffness of

the ECM to affect various biological processes such as proliferation, differ-

entiation and apoptosis. This new platform for creating different stiffness

gradients in the ECM will allow researchers and clinicians to analyse the

reaction of cells for certain malignant conditions where the stiffness of the

extracellular environment changes dynamically.

The work reported in this thesis will provide a new avenue to explore the
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protein expressions and morphological changes that occur in different types

of cells when the stiffness of its environment is manipulated. Furthermore

this thesis will introduce a novel method of altering the stiffness in a lo-

calised area to provide single cell analysis of their reaction to these changes

in stiffness.

There were six contributions made from the research work presented in

this thesis. First, a new method was developed to alter the stiffness of

modified ECM samples, in which the embedded superparamagnetic beads

were coated with streptavidin to form strong covalent bonds with the ECM

fibers. Second, the macro-scale uniaxial stiffness of a modified ECM with a

magnetic field perpendicular to the direction of a tensile force was charac-

terised. Third, an innovative method to quantify the micro-scale change in

stiffness of a modified ECM in the presence of a magnetic field was devel-

oped. Fourth, an in vitro method was developed to study HMVEC sprout-

ing during angiogenesis by using a microfluidic device containing modified

ECM and under the influence of an external magnetic field. Fifth, in order

to exert controlled point forces on individual or a smaller group of magnetic

beads in a microscopic region of interest, a new method was developed to

generate stronger and more localized magnetic fields. Sixth, a technique

for using the EMN to exert point forces on magnetic beads embedded in a

3D ECM was developed.

1.7 Objectives and scope of work

The extracellular matrix (ECM) comprises the microscale collagen molecule

which combined to form the macroscopic bundle of collagen fibrils known

as collagen fibers. Therefore it is essential to verify our approach of manip-

ulating the stiffness of the ECM in the macro and micro scale by carrying

out individual mechanical tests at different scales.

The micro force tensile tester has been widely used to characterize the

stiffness of several types of collagen [56–59]. Therefore the change in the

modified ECM stiffness at macro scale was first tested with a microforce

tester.
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Once the change in the macroscale stiffness of the ECM has been veri-

fied, the change in microscale stiffness of the ECM was verified using an

AFM indentation technique [60–63]. This provided a close investigation

into the change in stiffness sensed by a cell migrating within such an envi-

ronment.

Human microvascular endothelial cells (HMVECs) were introduced into

the modified ECM. Their sprouting and vascularisation behaviour were

observed in order to study the change in the modified ECM stiffness. This

would help to quantify the effect of the change in stiffness of the mod-

ified ECM on HMVEC’s sprout morphology and recruitment of certain

proteins.

To locally influence the sprouting and migration of HMVECs in the mod-

ified ECM, magnetic forces were generated with a specialised electromag-

netic needle (EMN). The EMN is capable of focusing the magnetic field

to a microscopic region at its tip. By doing this it is possible to observe

individual cells’ reactions (eg tip cell) to external forces in the cells’ vicin-

ity.

Inorder to manipulate magnetic fields and forces on micro superparam-

agnetic beads in the microscopic scale, it requires the characterisation of

the magnetic forces on such beads and the resultant magnetic fields gen-

erated by the EMN. To further localise the magnetic field, a collector was

introduced to collect the stray field produced by the EMN. It has been

observed that certain configurations of EMN and collectors have produced

different levels of localised magnetic fields in the ECM. The localisation of

magnetic fields will allow magnetic forces to be induced on individual or

smaller groups of magnetic beads for precise manipulation of micro mag-

netic beads embedded in the ECM.

1.8 Outline of the thesis

The remaining chapters of this thesis are organised as follows:

Chapter 2 reviews different approaches that emphasize on angiogenesis,
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the mechanics of visco-elastic deformation, and existing electromagnetic

needles.

Chapter 3 and chapter 4 show the work done on the characterization of

micro/macro-level stiffness of ECM embedded with magnetic beads via

bioconjugation. These chapters show the changes in stiffness of the ECM

due to the magnetic forces from magnetic beads embedded in the ECM.

This study is essential to verify the possibility of changing the stiffness of

the ECM by embedding magnetic beads in the ECM and applying external

magnetic fields.

Chapter 5 presents the effect of in vitro 3D HMVEC sprouting during

angiogensis in the modified ECM exposed to a static external magnetic

field. The sprouting length and number of focal adhesions formed by the

endothelial cells are discussed and quantified in this chapter.

Chapter 6 discusses the design of an electro magnetic needle for localized

manipulation of beads. Electro magnetic needles were designed and fab-

ricated together with a specialised holder to use in an existing confocal

microscope. The simulation and verification of experimental setups capa-

ble of generating highly localised magnetic fields and forces are demon-

strated.

Chapter 7 summarises the work performed in this thesis and outlines some

future research directions.
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Chapter 2

Literature review

2.1 Introduction

The mechanical properties of the extracellular matrix have been an area of

increasing interest in cell biological studies. Various bioengineering tools

have been developed for quantitative investigation of how cells sense and

respond to an external environment. These techniques are capable of quan-

tifying the forces exerted on the extracellular matrix during cellular migra-

tion. The stiffness of the extracellular matrix plays a crucial role in the

behaviour of cells particularly during agiogenesis. In this section, a re-

view on angiogenesis is presented and an existing force sensing method for

detecting cell migration forces will be described. Cell traction forces and

focal adhesion protein expressions in different extracellular matrix stiffness

will be reviewed. Existing magnetic bead trapping systems will also be

discussed in detail for trapping and exerting forces on individual micro

magnetic beads.

2.2 Angiogenesis

Blood vessels can be considered as a complex network of passages that

delivers blood and nutrients to the body. Angiogenesis is described as the

process of growing new blood vessels. Angiogenesis is one of the first events

that occurs during organ development. It also occurs in wound healing

by providing blood flow to injured tissues. Angiogenesis is controlled by

an intricate balance of growth factors and inhibitors. If any imbalance
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occurs this will lead to disease. The following sections will describe the

development and characteristics of angiogenesis [64].

2.2.1 Angiogenesis for life, disease and medicine

In the embryo, blood vessels provide the growing organs the necessary

nutrients and oxygen to develop. All blood vessels start from endothe-

lial cells (ECs) which undergo different reactions to many different growth

factors. Vascular Endothelial Growth Factor (VEGF) and its homologue

VEGF-C are the key regulators of vascular and lymphatic EC sprouting

respectively. The formation of blood vessels is a complex balance between

various signals arising from integrins, angiopoetins, chemokines, junctional

molecules, oxygen sensors, endogenous inhibitors, etc [65]. Endothelial cells

have the ability to react to physilogical stimulus such as hypoxia for blood

vessels [65]. Therefore angiogenesis is reactivated for wound healing and

repair. So far the best known cases where angiogenesis is activated are

malignant, ocular and inflammatory disorders.

There have been intensive efforts in the past to inhibit angiogenesis in can-

cer, ocular, joint or skin disorders. Unfortunately, clinical trials testing the

pro-angiogenic potential of VEGF as fibroblast growth factors (FGF) did

not yield the expected results [66]. Angiogenesis does not initiate malig-

nacy but promotes tumor progression and metastasis. Unlike tumour cells,

ECs are stable and are considered the ideal entity for anti-angiogenic ther-

apy. However, recent clinical experience with VEGF inhibitors provides

an unclear conclusion. The anti-VEGF antibody Avastin only provides an

effect in colorectal, breast and lung cancer patients when combined with

conventional chemotherapy. It is still not clear why VEGF inhibitors alone

do not prove effective in humans [67].

2.2.2 Mechanism of angiogenesis and arteriogenesis

Angiogenesis initiates with vasodilation, a process involving nitric oxide.

Vascular permeability increases in response to VEGF and provides a plat-

form for migrating endothelial cells. This increase in permeability is me-
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diated by the formation of fenestrations, vesiculo-vacuolar organelles and

the redistribution of platelet endothelial cell adhesion molecule (PECAM)-

1 and vascular endothelial (VE)-cadherin, and involves Src kinases [68].

Although permeability promotes angiogenesis, excessive vascular leakage

can be bad and lead to circulatory collapse, intracranial hypertension, for-

mation of adhesion, metastasis, premenstrual discomfort or blindness. An-

giopoietin (Ang) 1, a ligand of the endothelial Tie2 receptor, is a natural

inhibitor of vascular permeability, tightening pre-existing vessels. When

acutely administered to adult vessels, Ang1 protects against plasma leak-

age without profoundly affecting vascular morphology [69]. For endothelial

cells to emigrate from their resident site, they need to loosen interendothe-

lial cell contacts and to relieve periendothelial cell support; that is, mature

vessels need to become destabilized. Ang2, an inhibitor of Tie2 signalling,

may be involved in detaching smooth muscle cells and loosening the ma-

trix [70] [71]. Proteinases of the plasminogen activator, matrix metallopro-

teinase (MMP), chymase or heparanase families influence angiogenesis by

degrading matrix molecules and by activating or liberating growth factors

(bFGF, VEGF and IGF-1), throughout the extracellular matrix [72].

Once the path has been cleared, proliferating endothelial cells migrate

to distant sites. VEGF [73], placental growth factor (PLGF), VEGF-

B, VEGF-C, VEGF-D and their receptors VEGFR2, VEGFR3 [74] and

neuropilin-1 (a co-receptor of VEGFR2; [75]) have specific functions: VEGF

and its receptor VEGFR2 affect embryonic, neonatal and pathological an-

giogenesis and are therapeutic targets, although much remains to be learned

about the involvement of the distinct VEGF isoforms or of the heterodimers

of VEGF family members.

Molecules involved in cell-cell or cell-matrix interactions, such as the αvβ3

integrin, which localizes MMP-2 at the endothelial cell surface, mediate

endothelial spreading, explaining why αvβ3 antagonists inhibit angiogene-

sis [75]. Nitric oxide, a downstream effector of VEGF, TGF-1 and other

angiogenic factors, is not essential for embryonic vascular development, but

affects pathological angiogenesis and improves the reendothelialization of

denuded vessels [76]. A growing list of molecules is being discovered that

are angiogenic after exogenous administration, but whose endogenous an-
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giogenic function remains undetermined.

Many stimulators and inhibitors affect adult blood vessel formation. An-

other difference between physiological or pathological angiogenesis, is that

the latter is often induced by inflammation. Monocytes/macrophages,

platelets, mast cells and other leukocytes are chemoattracted to sites of

inflammation or wound healing, in part by angiogenic factors such as

VEGF. These blood-borne cells produce angiogenic and arteriogenic factors

(VEGF, bFGF, TGF-1, interleukin-8, PDGF, IGF-1, monocyte chemotac-

tic protein 1, TNF- and proteinases) that, in turn, attract endothelial and

smooth muscle cells, fibroblasts, leukocytes or platelets [72] [77] [78].

2.2.3 Significance of the mechanical properties of the

extracellular matrix for angiogenesis

From the earlier section, it can be seen that Vascular Endothelial Growth

Factors is an essential soluble cue for the proliferation, differentiation and

apoptosis. However unlike normal vascular pathways, tumour vessels are

irregularly shaped and do not have uniform pericyte and base membrane

covering [79] [80]. Limiting tumour vascular growth can improve cancer

therapy. There had been attempts to control one of the growth factors,

VEGF-A in particular, which is one of the frequent growth factors that

promote tumour angiogenesis [81] [82]. However the anti-VEGF only pro-

vided short term effects. Hence a deeper understanding of the mechanisms

required for the formation of tumour vascular structure is required.

Although soluble cues such as VEGF promote endothelial sprouting, en-

dothelial cells also respond to external mechanical forces when the cells

exert traction forces to the extracellular matrix through their focal adhe-

sion complexes [83]. Contractile forces generated in the cytoskeleton keep

the ECM in a tensile state [84]. These changes to the forces in the en-

vironment and the cells distortion will feedback to the cell and exert the

right amount of cell tension [85] [86]. There has been work done to prove

this mechanosensing effect of endothelial cells by exposing them to uniaxial

cyclic strain during angiogenesis [87]. The results show that tumour en-
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dothelial cells exhibit abnormal mechanosensitivity to uniaxial cyclic strain

transmitted through the ECM, as seen by their failure to reorient perpen-

dicularly to the strain direction. This abnormal mechanosensitivity arises

from higher Rho-mediated tension, which suppresses the ability of tumour

endothelial cells to reorient in response to applied mechanical strain. It en-

ables these tumor endothelial cells to spread and form capillary networks

over ECM material with a wide range of properties (stiffness), as compared

with their normal counterparts. These differences in mechanosensitivity

may explain why tumour microvessels exhibit much greater variability in

shape and structural configuration than normal vessels, as well as why these

vessels are dysfunctional. Further understanding of the role of the Rho sig-

nalling pathway and mechanotransduction in tumour vessel malformations

may potentially lead to the development of novel vascular normalization

and anti-cancer therapies in the future.

2.3 Mechanical factors affecting cellular re-

actions to matrix stiffening

2.3.1 ECM strain and integrin spacing

Research have reported that living cells and nuclei are programmed such

that a mechanical tug on cell surface receptors can immediately change

the organization of molecular assemblies in the cytoplasm and nucleus.

When integrins were pulled by micromanipulating bound microbeads or

micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nu-

cleoli redistributed along the axis of the applied tension field. These effects

were specific for integrins, independent of cortical membrane distortion,

and were mediated by direct linkages between the cytoskeleton and nu-

cleus. Actin microfilaments mediated force transfer to the nucleus at low

strain; however, tearing of the actin gel resulted with greater distortion. In

contrast, intermediate filaments effectively mediated force transfer to the

nucleus under both conditions as shown in Figure 2.1.

These filament systems also acted as molecular tension cables to mechani-
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cally stiffen the nucleus and anchor it in place, whereas microtubules acted

to hold open the intermediate filament lattice and to stabilize the nucleus

against lateral compression. Molecular connections between integrins, cy-

toskeletal filaments, and nuclear scaffolds may therefore provide a discrete

path for mechanical signal transfer through cells as well as a mechanism

for producing integrated changes in cell and nuclear structure in response

to changes in extracellular matrix adhesivity or mechanics [3].

Figure 2.1: Phase-contrast (A H) and polarization optics (I and J) views
of endothelial cells before (A, C, E, G, and I) and after (B, D, F, H,
and J) mechanical stresses were applied to cell surface receptors. (A and
B) Pulling on a single RGD-coated microbead (4.5-mm diameter) 15 min
after binding to integrins using an uncoated glass micropipette; only 2 sec
passed between A and B. (C and D) Similar displacement of a surface-
bound AcLDL coated microbead. (E and F) Mechanical displacement of
RGD-coated beads bound to the surface of a cell permeabilized with 0.5%
Triton X-100 prior to force application. (G and H) A spread cell before (G)
and after (H) a fibronectin-coated micropipette was bound to cell surface
integrins for 5 min and pulled laterally (downward in this view). (I and
J) The same cell shown in G and H viewed under polarization optics;
arrowheads indicate white birefringent spots in the region of nucleoli. The
movement of the pipette is downward, and vertical black arrows indicate
the extent of pipette displacement in all views. Adapted from [3].

2.3.2 Stress fiber interactions with ECM

Cytoskeletal tension is primarily associated with linear bundles of actin

filaments known as stress fibers. Stress fibers in living cells terminate at

discrete focal adhesions connecting the cytoskeleton to the extracellular

matrix. Therefore, on a stiff substrate that cannot be deformed by the cell,

stress fiber contraction leads to development of tension within the stress

fiber. Since actin and myosin filaments are extensible structures a stress

fiber under such tension should be elongated beyond its unloaded slack

length.
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To show the effect of stress fiber formation and disassembly, researchers

have cultured human aortic endothelial cells on a pre-stretched silicone

substrate coated with a fibronectin- like polymer. Release of the substrate

caused stress fibers aligned in the shortening direction in adhered cells

to buckle when compressed rapidly. Subsequently, the actin cytoskeleton

completely disassembled in 5 sec and reassembled within 60 sec [88].

2.3.3 Bell model

The resistance of molecular bonds to rupture is of key importance to un-

derstanding cell-substrate adhesion. For many adhesion molecules, a key

function of the adhesive bond is to resist forces in the body that would

otherwise break cell-substrate contact. The ”strength” of a receptor-ligand

bond or multiple bonds is not a simple function of affinity, because bonds

have ”mechanical properties” that affect their ability to resist applied force.

Whereas affinity is related only to the net energy change of a bond, me-

chanical properties are a function of the shape of the energy landscape in

the transition states of bond formation and dissociation. Specific physical

models have been proposed to describe the effect of force on receptor-ligand

association and dissociation [89].

Bell proposed a model that uses an exponential relationship that had been

demonstrated experimentally for the rupture of materials. In the Bell

model, koff = k0
offexp(σF/kT ) where k

0
off is the koff in absence of force, σ

is the distance range of the bond potential-energy minimum. F is the force

on the bond, k is Boltzmann’s constant, and T is absolute temperature.

Therefore the Bell model predicts that the dissociation rate, koff , increases

exponentially with force on the bond.
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2.4 Methods on changing substrate stiffness

2.4.1 Changing collagen concentration

Changing the concentration of collagen has shown to vary the modulus of

the ECM [90]. A stock solution of type I collagen at 5 mg/ml in 0.1%

acetic acid was either diluted to make a 2 mg/ml solution or concentrated

to make 10 or 15 mg/ml solutions. The concentration process was carried

out by controlled evaporation of the solvent in sterile conditions. The col-

lagen concentration was then estimated by hydroxyproline titration. Each

collagen solution (at 2, 5, 10 or 15 mg/ml) and the culture medium were

placed at 25 oC for 1 h before processing the hydrogels.

Mechanical properties of collagen hydrogels were then investigated by rhe-

ological measurements at day 0. Storage, G’ and loss, G” moduli were

measured versus frequency. In each case, G’ was around one decade supe-

rior to G” which was to be related to a mainly elastic behavior and both G’

and G” were almost independent of frequency. Both features were typical

of three-dimensional gels. Both moduli G’ and G” increased with colla-

gen concentration from 0.66 mg/ml to 3 mg/ml which shows that collagen

concentration plays a role in material rigidity. The elastic modulus (G’)

measured in 3 mg/ml was about twenty two times higher than 0.66 mg/ml.

As this modulus is related to hydrogel stiffness, 3 mg/ml was drastically

stiffer than 0.66 mg/ml.

2.4.2 Changing polymerization temperature

Fiber structure and fluorescent cross-link content of collagen hydrogels was

systematically altered by changing polymerization temperature [4]. Col-

lagen hydrogels were polymerized by mixing the following components in

order on ice: 100 ml 10x phosphate buffered saline (PBS), consisting of

0.1 M phosphate buffer, 1.38 M NaCl, and 0.027 M KCl, pH 7.4), 0.41 ml

ddH2O with 0.025 M sodium hydroxide added (to reach a pH of 12.38),

and 0.49 ml 8.16 mg/ml acid-soluble rat tail tendon collagen. After vortex-

20



ing, the collagen concentration was 4 mg/ml and pH 7.4. For multiphoton

microscopy imaging, the collagen mixture was immediately pipetted into

eight-chambered cover glasses at 0.1 ml/chamber and incubated for 48 h at

four temperatures: 4, 14, 24, and 37oC. Typical values of the storage (G’)

and elastic (G”) modulus for the four polymerization conditions, measured

for dynamic strain frequencies from 0.1 to 100 rad/s. Mean G’ increases

with polymerization temperature, roughly two orders of magnitude, from

0.3 0.2 Pa for 4oC-polymerized gels to 22.7 2.3 Pa for 37oC-polymerized

gels and G” increases in parallel with G’ which can be seen from Figure

2.2

Figure 2.2: Mean G (solid symbols) and G (open symbols) from multiple
frequency sweeps (n = 3 gels/polymerization temperature, 31 frequencies
per sweep) steadily increase between 4 and 37oC. Polynomial trendlines
have been added as a visual aid. Adapted from [4].

2.4.3 Changing pH of collagen

Results of collagen fibril diameter distribution measurements show that the

largest fibril diameters were approximately 40 nm and were obtained in the

presence of glycine at pH 5.5 while the smallest diameters were seen at pH

8.5 and were approximately 20 nm. The presence of glycine increased the

fibril diameter while the presence of

NaCl did not change the fibril diameter at pH 6.0. In general, fibers formed
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at acidic pH tended to have larger fibril diameters than those formed at

the neutral and basic pH values. Comparison of fiber types shows that

for fibers formed at acidic pH values, the low strain modulus was greater

than the high strain modulus indicating a greater resistance to deformation

at low strains than at high strains. At higher pH the low strain moduli

became smaller and the high strain moduli became greater, thus indicating

that as incubation pH increased the resistance to deformation at low strain

became less and increased at high strain as shown in Figure 2.3 [5].

Figure 2.3: Typical stress]strain curves as a function of pH for self as-
sembled type I collagen fibers. Curves shown are measured at 25oC as a
function of pH. Adapted from [5].

2.5 Stiffness of substrate and traction forces

of filopodia

Cells sense the mechanical stiffness of their environment to control their

own shape, migration and fate. A study conducted on embryonic chick

forebrain neurons (ECFNs) by Chan et al [91], showed that retrograde

flow was significantly slower on soft substrates (P <0.0001). A stochas-

tic model was constructed of the motor-clutch force transmission system,

where molecular clutches link F-actin to the substrate and mechanically re-

sist myosin-driven F-actin retrograde flow. The model predicts two distinct
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regimes: (i) frictional slippage, with fast retrograde flow and low traction

forces on stiff substrates and (ii) oscillatory load-and-fail dynamics, with

slower retrograde flow and higher traction forces on soft substrates. Un-

transfected ECFNs also exhibited a similar response to substrate stiffness,

suggesting that this effect is independent of GFP-actin. Filopodia on sub-

strates with stiffness ranging from 730 to 1300 Pa showed high sensitivity to

stiffness, abruptly increasing their retrograde flow rates as substrate stiff-

ness increased (Figure 3D, blue region). Once substrate stiffness exceeded

a critical value of 1300 Pa, retrograde flow rates became insensitive to stiff-

ness, having a mean velocity of 110 nm/s. On extremely soft substrates (≤
84 Pa), ECFNs appeared unhealthy, often dying within 1 to 2 days.

Another study done by Fisher et al developed an in vitro 3D Endothelial

Cell (EC) model system in which migrating ECs display branched pseu-

dopodia morphodynamics similar to those in living zebrafish [6]. Using

this system, it was found that ECM stiffness and ROCK-mediated myosin

II activity inhibit EC pseudopodial branch initiation. Figure 2.4 shows the

reliance of stiffness in accordance with filopodia movement and branch-

ing.
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Figure 2.4: ECM Stiffness Is Synergistic with ROCK-Mediated Myosin II
Activity in Inhibiting EC Branching: (A)Mouse aortic ECs grown in colla-
gen/PA/glass sandwich gels (B, C, E, and F) Maximum intensity projec-
tions of confocal image z series. ECs in soft ([B] and [C], 0.45 kPa) or stiff
([E] and [F], 14 kPa) collagen/ PA/glass sandwich gels. D) shows quantifi-
cation of branches per cell for ECs in collagen/PA/glass sandwich gels of
the stiffness shown, with or without 30 mMblebbistatin. (G) Quantifica-
tion of branch tips per cell on 2D collagen/PA substrates versus in colla-
gen/PA/glass sandwich gels. (H and I) Mouse ECs stained with BODIPY-
phallacidin on soft ([H], 0.45 kPa) or stiff ([I], 14 kPa) PA gels covalently
coupled with a 2D layer of collagen treatment. Adapted from [6].

2.6 Stiffness of substrate and focal adhesions

The size and number of focal adhesions (FA) have shown to be good indi-

cators of cell migration dynamics. It has been observed that the mean size

of focal adhesions robustly and precisely predicts cell speed independently

of focal adhesion surface density [92]. There has also been evidence that

cell motility and FAs are regulated by substrate flexibility. Pelham et al
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have shown that the stiffer substrates produce an increased expression in

FAKs such as vinculin, paxillin and phosphotyrosine [12]. This dependance

on substrate stiffness for cell motility and ECs vascular formations shows

the possibility of controlling angiogenesis through the variation of substrate

stiffness.

Focal adhesions (FAs) are areas on a cell membrane that transmit force

and regulate signals. They mediate Cell-ECM adhesions and interactions

such as anchorage. FAs function as mechanical linkages to the ECM and

serve as a biological signalling complex that concentrates and directs many

signaling proteins through integrin binding and clustering [93]. Vinculin

is known to be one of the primary protein that exists in FAs [94]. The

adaptor protein vinculin is a key regulator of FAs and cells depleted of

vinculin have fewer and smaller adhesions compared with wild-type cells

[95]. Due to their dynamic nature, FAs may increase or decrease in size

depending on the constituent proteins of the FAs. These proteins act in

response to the external microenvironment. FAs are able to sense the

stiffness of the extracellular matrix and act according to it [96]. A stiffer

matrix contributes to more FAs. Furthermore focal adhesions on stiffer

substrates are static, stronger, larger and more stable [12].

2.7 Cellular force sensing techniques

The mechanics of cell migration is shown in Figure 2.5. This shows that

due to the propulsive forces that the cell exerts, the substrate will experi-

ence an equal and opposite force. Depending on either a stiffer or a more

compliant substrate, the deformation of the substrate will reduce or in-

crease respectively. Hence the stiffness of the extracellular matrix is very

important for the purpose of mechanotransduction.

2.7.1 Micro pillar traction force analysis

A novel cell force sensor has been developed recently for the quantification

of traction during cell spreading and contact guidance. This sensor provides
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Figure 2.5: Mechanics of Cell Migration. Adapted from [7].

evidence that the cell does exert forces on its substrate during migration.

The force sensor was fabricated by N. Tymchenko et al, which consists

of tiny micro-scale Poly dimethyl siloxane (PDMS) pillars as shown in

Figure 2.6. These pillars form a substrate for two types of cells to grow

on, namely endothelial cells and fibroblast cells. Once the cells start to

spread, the PDMS pillars will deform due to the traction forces exerted

on them. These forces can then be quantified since the stiffness, deflection

and dimensions of the PDMS pillars are all known. The forces detected by

these micro pillar arrays indicate a force of 138nN for fibroblast cells and

57nN for endothelial cells [8].

Figure 2.6: Micro pillar array for sensing cell migration force. Adapted
from [8].
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2.7.2 Cell traction force microscopy

The current cell traction force microscopy methods, which use elastic poly-

acrylamide gel substrate in measuring cell traction forces, follow a decou-

pled approach and involve three major steps. The first step is to fabricate

elastic polyacrylamide gel substrate with a flat surface. The next step is to

obtain a pair of ”null force” and ”force loaded” microscopy images, from

which the displacement field is determined based on the movement of mark-

ers on the surface of the polyacrylamide gel substrate. In the final step,

the substrate deformation is used to compute cell traction forces [9].

Figure 2.7: A typical example of applying a matching algorithm to deter-
mine the substrate displacement field and a 3D FEM analysis to determine
cell traction forces (CTFs). (A) Human patellar tendon fibroblast on a
polyacrylamide gel with embedded fluorescent beads (not shown). (B)
Substrate displacement field. (C) Recovered CTF field. Adapted from [9].

2.7.3 Thin silicone membrane

The use of thin silicone membrane introduces another method to measure

cell traction forces. Applying this technique, demonstrated that individual

fibroblasts generate traction forces [97, 98], as evidenced by the fact that

cells create wrinkles on thin silicone membrane. Force applied to the thin

silicone membrane by an adherent cell is estimated by applying a flexible
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microneedle to reverse the wrinkles. The needle stiffness is measured by

hanging weights fabricated with small glass beads.

However, as wrinkling presents an inherently non-linear problem, there

is currently no suitable computational method to accurately predict the

wrinkles caused by a complex, non-isotropic traction force field generated

by a single cell.

2.8 Existing magnetic beads traps

To be able to manipulate the beads and fix them in their specific locations,

a suitable magnetic trap is required. This trap should be able to sense

changes in the position of the magnetic beads and restore the beads back

to their specific location. The basic principle behind this trap is to use

machine vision to detect the deviation of the position of the beads and to

produce a suitable force (by either changing the position of the electro-

magnet or the current in it) to bring the bead back to its original position.

This section will discuss the available methods of trapping magnetic beads

of the size of 1-4 microns in diameter.

2.8.1 Six solenoids magnetic tweezers

This is a setup produced by Gosse et al [10] involving six solenoids and a

microscope based particle tracking system through a digital feedback loop

as shown in Figure 2.8.

This setup is capable of creating a potential well of stiffness 10−7 N/m. By

stretching a DNA molecule between a magnetic particle and a glass surface,

vertical forces ranging from 50 fN to 20 pN were obtained. Similarly, nearly

horizontal forces of up to 5 pN were obtained. The magnetic field was pro-

duced by six vertical coils made of copper. Different current configurations

were used to move the magnetic beads along the x,y and z axes. Images

of the sample were collected through the 100x oil immersion objective of

an inverted microscope. A CCD camera operating in 50-Hz field mode

sent the data to a video acquisition card installed in a computer. The 3D
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Figure 2.8: Magnetic tweezers Setup. Adapted from [10].

tracking of the bead was done in real time by a computer program. The x,

y positions were first obtained by real-time correlation of the bead images

(Gelles et al., 1988). Then the z position was obtained by the bead image

which is surrounded with diffraction rings the diameter of which increases

with the distance of the particle from the focal plane.

Digital proportional-integral feedback loops are used to lock a particle in

a given position. In the horizontal plane, Ix and Iy are considered propor-

tional to the main current Iz and are calculated as

Iu = −IzCu with Cu =
[

Pu • u+Ku

∑

(u)
]

(2.1)

In this equation, u corresponds to the error signal between the present

position of the particle and the desired one; Pu and Ku are, respectively,

the proportional and integral coefficients,
∑

(u) is the sum over the previous

error signals; and Cu is the normalized correction signal.

Using only a proportional correction is equivalent to generating a force

proportional to u, i.e., attaching the bead to a virtual spring whose stiffness

ku is directly determined by Pu. Let Au be the proportionality factor

between the force and the driving current associated with direction u, i.e.

Fu = AuIu. Then

29



Fu = −AuIzPu • u and ku = AuIzPu (2.2)

Adding an integral term (Ku

∑

(u)) is important to stabilize the bead to

its exact reference position in the presence of a constant and continuously

applied force (e.g., gravity). In this case, Equation 2 becomes

Fu = −AuIzCu (2.3)

The feedback in the z direction is done by monitoring Iz. However, the

force applied on the bead is not a linear function of this current. To en-

sure a correct feedback, a square-root function was applied to the error

signal,

Iz = I0

√

−
(

Pu • u+Ku

∑

(u)
)

(2.4)

with I0 being the current just required to equilibrate the bead weight.

When the forces applied to the bead are small, the previous relations can

be linearized around their means values,

Iz = I0

(

1− (Pz • z)
2

)

and Fz = mg − AzI
2
0Pz • z (2.5)

Thus, the tweezer’s vertical stiffness is given by

kz = AzI
2
0Pz (2.6)

The Figure 2.9 below shows how the camera detects the height of the

bead using the bead image which is surrounded with diffraction rings the

diameter of which increases with the distance of the particle from the focal

plane.
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Figure 2.9: Images of a magnetic bead showin gits diameter observed at
various positions of the microscope focus plane. Adapted from [10].

2.8.2 High force magnetic needle trap

This setup is inexpensive and capable of generating a large force of about

100 nN on 5 µm magnetic beads. The application of such large forces can

be used to characterize the local viscoelasticity of soft materials in the non-

linear regime, or to study force-regulated processes and mechanochemical

signal transduction in living cells and their environment [11]. The set up

is shown in Figure 2.10.

Figure 2.10: Schematic view of the setup. Adapted from [11].

The magnetic microneedle consists of a cylindrical rod made of high per-

meability nickel alloy. The core has a diameter of 4.5 mm and a length of

100 mm. One end is tapered and has a sharp tip with radius of < 10µm. If

a magnetic bead with volume V and magnetic susceptibility χ is exposed

to an external magnetic field H = Bµ, the field induces in the bead a

magnetic moment

m = χ× V ×H (2.7)

and the force is given by
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F =

(

m • ∂

∂r

)

B (2.8)

The force calibration is done by immersing the needle into a solution, and

bead movements are tracked during repeated current on-off cycles, with

each on or off phase lasting 1 s. Settling of the viscous fluid causes a bead

drift, which was determined during the current-off phases. The force acting

on a bead during the current-on phase was then computed from the drift-

corrected velocities v according to Stokes formula for viscous drag,

F = 6π × ηr × v (2.9)

Force distance curves for multiple beads and currents are recorded, and a

simple mathematical expression is fitted to the data of all beads, distances,

forces, and currents.

F = F0 ×
(

d

d0

)c(I)

(2.10)

where the function c (I) is given by

c (I) =
c1

1 + c2 × exp (c3 × I)
(2.11)

The magnitude of the magnetic field gradient, and hence the force magni-

tude, depends crucially on the shape of the needle tip. The stongest forces

and steepest gradients are obtained using the smallest possible tip radius.

The direction of forces was found to point always to the surface normal of

the tip. That means, for beads within an angle of about 120o around the

tip and at a distance not larger than 100µ m from the tip, the force vector

points towards the center of the circle describing the tip as shown in Figure

2.11.
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Figure 2.11: 120 degrees cone of magnetic influence. Adapted from [11].
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Chapter 3

Evaluating the change in

macro scale stiffness of

modified ECM

3.1 Introduction

The extracellular matrix (ECM) ranges from the microscale collagen molecule

to the macroscopic bundle of collagen fibrils known as collagen fibers.

Therefore it is essential to verify the approach to manipulate the stiffness

of the ECM in the macro(1cm-5cm) and micro scale (1-10µm) by carrying

out individual mechanical tests at different scales. In this chapter, this

approach is applied to investigate changes in the macroscale stiffness of the

ECM.

The microenvironment surrounding cells plays an important role in in-

fluencing their behavior, e.g., migration, proliferation and differentiation.

Two groups of factors exert such influence: the soluble cues and the insol-

uble cues. The first group concerns biochemical means, including growth

factors (such as the vascular endothelial growth factor, VEGF), metabo-

lites and dissolved gases, while the second group involves structural and

mechanical properties, such as composition, architecture and elasticity of

the extracellular matrix and cell-cell interactions.

Developing comprehensive knowledge about cell behavior in culture re-

mains a challenge in basic biological research [36], drug discovery [37], tis-

sue engineering, and regenerative medicine [38]. Incorporating all these
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cues in the microenvironment for in vitro cultivation of cells is a crucial

step in gaining such knowledge. Significant advances have been made on

finding the appropriate mixture of soluble cues in liquid media for cultur-

ing various types of cells, while the effect of insoluble cues remains a fertile

area to be explored [39] [40] [41] [42]. It is interesting to note that the

impact of insoluble cues in fact could be far more important than previ-

ously thought, as is illustrated in the case of mammalian cell and human

mesenchymal stem cell differentiation [43].

The stiffness of the ECM (an insoluble cue) is known to influence many

types of cellular behavior [12] [15]. Cells within tissues can sense the me-

chanical stiffness of both the ECM and other cells. ECM stiffness regulates

the degree of cell-matrix adhesion, the size of the focal adhesion, as well

as the stiffness and tension developed by the cell itself [17] [99]. Motility

and cell alignment are also associated with ECM stiffness, manifested in

the tendency of cells to migrate from softer to stiffer environment [100].

At the basic level, ECM stiffness can regulate cell growth and viability, as

well as resistance to apoptosis. Although the mechanisms of many of these

effects are still unknown, it is generally accepted that the mechanical prop-

erties of the ECM influence cell biology at various levels, including protein

expression [101].

A number of methods have been proposed in the literature for changing the

stiffness of collagen for the purpose of observing in vitro cell behavior in an

ECM sample [102] [103]. One involves changing collagen concentration, as

demonstrated in the work by Helary et al [90]. Another method involves

varying the pH value in a sample, since solution acidity during fibrillogen-

esis affects collagen stiffness. Silver et al showed that the Young’s modulus

of an ECM sample changed from 0.5 MPa to 5.5 MPa when the pH value

was reduced from 8.5 to 6 at 37oC [5]. Changing the temperature of an

ECM sample can also lead to change in its stiffness. The Young’s modulus

of ECM samples has also been shown to increase with polymerization tem-

perature, e.g., from 0.3 Pa at 4oC to 22.7 Pa at 37oC [4]. These currently

known methods mainly rely on manipulating soluble cues.

Manipulating the stiffness of ECM by mechanical means offers an alterna-

tive to approaches that rely on soluble cues. Recent results have demon-
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strated the possibility of changing mechanical and rheological properties of

composites with highly elastic polymer matrices that are filled with mag-

netic particles [104] [105]. It had been reported that these materials show

significant change in their mechanical properties under the influence of

magnetic fields.

An approach to alter the stiffness of ECM samples by mechanically ma-

nipulating the deformability of the collagen fibers in the ECM was pro-

posed recently. A very brief description of the concept underlying this

approach was initially presented (with limited preliminary experimental

data) in [106]. This approach involves embedding micron-size magnetic

beads in an ECM sample (hereafter referred to as an modified ECM sam-

ple) through bio-conjugation between the streptavidin-coated beads and

the collagen fibers, then applying an external a magnetic field on the sam-

ple to exert a magnetic force on the beads. Embedding a single or very few

superparamagnetic particles in the ECM in order to probe cells or to ma-

nipulate cell-ECM interaction is a well-known practice [48] [49] [50]. The

novelty of our proposed approach manifests in the ability to directly manip-

ulate an ensemble of such magnetic particles to alter the apparent stiffness

of the macrostructure. While the basic concept and some very preliminary

results have been briefly reported in [106], to develop this approach into a

practical technique for in vitro manipulation of cellular behavior requires a

substantive quantitative characterization of the effect of an external mag-

netic field on the stiffness of the modified ECM. The work reported in this

chapter focuses on establishing such a characterization by means of both de-

tailed analytical modeling and extensive experimental investigation.

Specifically, in this chapter investigation was done on the effect of an ex-

ternal magnetic field on the uniaxial stiffness of modified ECM samples

by (i) developing an analytical model (described by a set of constitutive

equations) of the behavior of the modified ECM under the influence of an

external magnetic field, (ii) designing and implementing a stretch test to

quantify such changes based on statistically meaningful data collected from

a set of carefully designed experiments, and (iii) evaluating the effective-

ness of this approach by comparing the analytical and the experimental

results.
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The remainder of this chapter is organized as follows. Section 2 presents

an overview of the approach and the general principles in the design of

the experiments. Section 3 develops an analytical model describing the

viscoelastic behavior of the modified ECM samples under the influence of

an external magnetic field. Section 4 describes the design and the imple-

mentation of the experiments and presents the results. Section 5 evaluates

the results from the analysis and the experiments, and discusses the im-

plication of the results and directions for further research to improve the

practicality of the proposed approach.

3.2 Approach

Superparamagnetic beads are embedded in the ECM via bio-conjugation

between the beads and the ECM fibers. The beads are coated with strep-

tavidin that enables the formation of strong covalent bonds between the

beads and the collagen fibers in the ECM, as is illustrated in Figure 3.1a.

Applying an external magnetic field on the beads produces a pre-tension

(along in the direction of the magnetic field) in a region in the ECM due

to the magnetic forces experienced by the beads. This externally created

pre-tension can be configured to generate resistance to the deformation of

the collagen fibers in that region, which in turn affects the deformation of

the ECM. This resistance to deformation manifests in the change in the

apparent stiffness of the ECM.

This change in the apparent stiffness was characterised in one dimension in

the setting of a stretching test, as is illustrated in Figure 3.1c. A modified

ECM strip is fixed at one end while the other end is stretched. During the

stretching, two magnets (one on each side of the ECM strip) produce two

magnetic forces on the individual beads. Each of these two forces can be

resolved into two components: one along the axis of stretching and point

towards the center line between the two magnets, while the other pointing

towards a magnet. Figure 3.1c illustrates this situation for the case where

the bead is initially located near the center line of the two magnets. The

distribution of deformation in the collagen can be observed from Figure
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3.1b, which shows a greater deformation in the region of the ECM closer to

the free moving end than in the fixed end. Since the deformation is greater

at the point where the stretching force is applied and reduces linearly to

zero at the fixed end, the beads located above the magnets are displaced

more significantly than the beads located below the magnets.

Collagen fiber

Bead

Bioconjugation

ECM

(a) (b)

ECM

Displaced 
bead location

Original bead 
location

MagnetMagnet

Magnetic force 
acting on bead

Restoring force

Applied force

Bead

Extension of 
ECM due to 
applied force

(c)

Figure 3.1: Illustration of the proopsed approach.

The beads above the magnet experiences a downwards force that opposes

the deformation of the collagen. Therefore a larger force is required to

overcome these forces while stretching. The magnetic field also induces

forces on the beads perpendicular to the direction of stretching. This force

will also reduce the tensile deformation caused by the stretching force.

3.3 Modelling of ECM deformation

In a modified ECM sample, the beads (with a diameter of approximately 1.5

µm) are thoroughly mixed with the collagen solution to ensure a uniform

distribution. At a typical bead concentration of 0.1 to 0.5 mg/ml, the

number of beads is in the order of 108. Such a large number of beads

poses a problem in constructing a model for describing the viscoelastic

behaviour of the modified ECM using existing FEM techniques, since in

these techniques the beads need to be accounted for individually. A model

is thus developed to analyze the structural mechanics of the modified ECM

in which the ECM is treated as viscoelastic and subjected to numerous

distributed point loads generated by the magnetic beads when under the

influence of a magnetic field.
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3.3.1 Model of ECM deformation under internal point

loads

The viscoelasticity of the ECM (prepared from Rat Tail Collagen Type

I) is modelled by using the Standard Linear Solid Model (SLSM), which

consists of two springs and a dashpot, as is illustrated in Figure 3.2. Com-

pared to the Maxwell model and the Kelvin-Voigt model, the SLSM de-

scribes the deformation behaviour of viscoelastic material more accurately.

An instantaneous elastic deformation is observed when a viscoelastic mate-

rial experiences an instantaneous stress. The existence of E2 in the SLSM

contributes to the improved accuracy in the model for describing such an

instantaneous deformation [107].From this conceptual model shown in Fig-

ure 3.2, various constitutive equations that link stress with strain have been

developed [108] [109] [110] [111].

Figure 3.2: The Standard Linear Solid Model (SLSM) consists of two
springs (represented by the spring constants E1 and E2, and a dash-pot
with a damping coefficient η).

The method employed in the derivation of viscoelastic deformation (due

to an external force) of an ECM sample follows the principle of minimum

potential energy. This method seeks to determine a deformation state of

the ECM corresponding to a minimum potential energy over all possible

deformation states [112] (The notations of some parameters in [112] are

used in this chapter). The potential energy πp is defined as

πp = πs −Wp ,

where πs is the strain energy involving the strain −→ε and the stress −→σ , and

is given by

πs =
1

2

∫∫∫

V

−→ε T−→σ dV ,
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while Wp is the work done on the ECM by the external force, i.e.,

Wp =

∫∫∫

V

−→
Q

T−→
f dV +

∫∫

S

−→
Q

T−→
ΦdS +

∑

i

−→
Qi

T−→
Pi ,

with
−→
Q being the displacement vector,

−→
f ,

−→
Φ and

−→
Pi the body force vector,

the surface force vector, and the point force vector, respectively, V the

volume of the ECM, and S the surface of the ECM that experiences the

surface force.

The stress −→σ is derived based on the viscoelastic constitutive model devel-

oped in [108]. The total stress −→σ is given as

−→σ = −→σ1 +
−→σ2 ,

with −→σ1 and −→σ2 being the elastic stress generated in the springs E1 and

spring E2, respectively. From −→ε = Ḃ
−→
Q (with Ḃ being the derivative of

the shape function with respect to the physical coordinates), −→σ1 is expressed

as D1Ḃ
−→
Q , where D1 represents the relationship between the stress and the

strain in three dimensions for the spring E1. The stress −→σ2 for the spring

E2 can be estimated recursively as

−→σ2
n+1 ≈ e−

∆t

τ
−→σ2

n
+ α

1− e−∆t/τ

∆t/τ

(−→σ1
n+1 −−→σ1

n
)

,

where τ = E2/η is the time constant, and α is the relative stiffness E2/E1.

Hence, the total stress −→σ is

−→σ n+1 ≈ −→σ1
n+1

+ e−
∆t

τ
−→σ2

n
+ α

1− e−
∆t

τ

∆t/τ

(−→σ1
n+1 −−→σ1

n
)

. (3.1)

The numerical approach based on the finite element method is applied

for analyzing the structural mechanics of the modified ECM. The ECM

is meshed into a total of m four-node linear tetrahedron elements. The

generated nodal displacements can be converted to the displacement at

any point in the ECM. The potential energy at time step (n+ 1) is
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πn+1
p =

1

2

−→
Q

n+1T
m
∑

e=1

∫∫∫

Ve

ḂT−→σ n+1
dV −

−→
Q

n+1T
m
∑

e=1

(

∫∫∫

Ve

NT−→f
n+1

dV +

∫∫

S

NT−→Φ
n+1

dS

)

−−→
Qi

n+1T−→
Pi . (3.2)

The deformation state corresponding to a minimum potential energy is

obtained by solving ∂πn+1
p /∂

−→
Q

n+1
= 0, leading to the formula to generate

the nodal displacements at time step (n+ 1), i.e.,

−→
Q

n+1
=

1

2

[

Kn+1
inst

]−1

[

Kc

−→
Q

n

(

α(1− e−
n∆t

τ )

n∆t/τ

)

− (B′)T−→σ2
n
e−

n∆t

τ +
−→
F nodes

]

, (3.3)

where Kc is the assembly of element stiffness matrix Kce = VeB
T
e DBe for

the spring E1, with D (which is the same as D1) describing the relationship

between the stress and the strain in three dimensions relevant to E1 and

the Poisson’s ratio, B′ is the assembly of BT
e Ve, with Be and Ve being

the matrix of the derivative of the shape function and the volume of the

element, respectively, Kn+1
inst is the assembly of the instantaneous element

stiffness matrix, i.e.,

Kn+1
inste

=

(

1 +
α(1− e−

n∆t

τ )

n∆t/τ

)

Kc ,

and
−→
F nodes is the nodal force, i.e.,

−→
F nodes =

m
∑

e=1





∫∫∫

Ve

NT−→f
n+1

dV +

∫∫

S

NT−→Φ
n+1

dS +
−→
Pi




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Since the streptavidin-coated beads are bound to the collagen fibers and

experience magnetic forces, their impact on the ECM can be considered

as point forces
−→
Pi , as is illustrated in Figure 3.3, where the arrangement

of the beads and magnetic forces
−→
P mimics the conditions in the stretch-

test experiment. In the experiment, the ECM is subjected to two groups of

point forces pointing outwards (and perpendicular to its length) in opposite

directions. Figure 3.4a shows the von Mises stress while Figure 3.4b shows

the deformation of the ECM sample in the z direction. From these figures,

it can be observed that larger stress is generated around the beads. The

combined influence of the beads results in the contraction of the ECM in

the negative z -direction.

Figure 3.3: Model of the ECM sample with point loads due to the virtual
beads.

(a) (b)

Figure 3.4: (a) von Mises stress generated in the ECM, and (b) the z -
directional deformation of the top surface (S1) of the ECM.
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3.3.2 Determination of apparent stiffness of modified

ECM under the influence of an external mag-

netic field

Let Epure, Ebead, and Emod denote the Young’s modulus of the pure ECM,

the modified ECM in the absence of the magnetic field, and the modified

ECM in the presence of the magnetic field, respectively. the analytical

model developed in Section 3.3.1 is now applied to determine Emod based

on Epure, Ebead, and the magnetic force acting on the beads due to the

magnetic field. This magnetic force is generated by a pair of magnets

(described later in Section 3.4.3), and its magnitude is computed based

on the approach presented in [113]. In the analytical model, the effect of

the external magnetic field on the ECM is accounted for in terms of the

point forces generated by the (virtual) beads in the ECM. In this context,

the stiffness of a modified ECM sample under the influence of an external

magnetic field can be expressed as the sum of the following two terms:

(i) the apparent stiffness of the pure ECM subjected to the pre-tension

induced by the point forces representing the magnetic forces acting

on the beads (denoted by Epoint), and

(ii) the increase in the Young’s modulus of the ECM solely (i.e., with-

out the magnetic field) due to the presence of the magnetic beads

(denoted by ∆Ebead); that is, ∆Ebead = Ebead − Epure.

therefore,

Emod = Epoint +∆Ebead (3.4)

The term Epoint (due to the pre-tension in the pure ECM) can be deter-

mined as follows. Firstly the pre-tension was calculated using Equation

(3.3), based on the magnetic forces exerted in the ECM through the beads

and the stiffness of the pure ECM. Specifically, Kc and Kinst in Equation

(3.3) are obtained, using Equation (3.4), from the stiffness of the pure

ECM, which is determined by experiment as described later in Section

3.5.1, while
−→
F nodes takes on the values of the magnetic forces. In this case,

the beads are considered “virtual” in the sense that the modified ECM is
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constitutively the same as the pure ECM — other than the existence of

the “virtual” point loads when the magnetic field is present. The portion

of force required to overcome this pre-tension is then calculated and added

to the force that is needed to deform the pure ECM for a given deforma-

tion, leading to the total force required to produce that deformation in the

modified ECM in the presence of a magnetic field.

Figure 3.5 shows the total forces required to deform the ECM at a con-

stant rate of 10 mm/min in the presence of the magnetic field for different

concentrations of beads. For the pure ECM, this force increases linearly

under a constant rate of elongation. By contrast, for the ECM with beads

exposed to the magnetic field, this force increases exponentially under the

same rate of elongation. It can be also seen that a greater force is required

to deform the ECM with beads exposed to the magnetic field as compared

to the case of pure ECM. Moreover, the increase in bead concentration is

associated with the growth of the force. The reason is that the increase in

bead concentration causes a larger pre-tension that resists ECM deforma-

tion.

Now the term Epoint in Equation (3.4) can be calculated by linearizing the

force-deformation curves after the transition point as shown in Figure 3.5.

The region before this transition point is the creep region commonly found

in viscoelastic deformation. The slope of the curve after the transition

point is used to determine Epoint [114] [2]. To obtain Emod, ∆Ebead is then

calculated based on Ebead and Epure, which are obtained from the exper-

iments (discussed in Section 5). Table 3.1 shows the values of Emod thus

obtained for two types of ECM samples with different bead concentrations.

It can be seen that increasing the concentration of beads from 0.1 mg/ml

to 0.5 mg/ml leads to a significant increase in the apparent stiffness of

the modified ECM. Comparison between results from numerical simulation

(using the analytical model) and that obtained experimentally is presented

in Section 3.5.5.

44



Figure 3.5: Force-deformation relationships for three types of ECM, i.e.,
pure ECM, ECM with beads at a concentration of 0.1 mg/ml and 0.5
mg/ml. The ECM with beads are exposed to an external magnetic field
created by a pair of permanent magnets.

Table 3.1: Apparent stiffness of modified ECM exposed to an external
magnetic field, obtained from numerical simulation.

Bead concentration (mg/ml) Apparent stiffness (N/mm)

0.1 0.0053

0.5 0.0103

3.4 Experiment

Magnetic beads were embedded in the ECM and evaluated its apparent

stiffness empirically. The stiffness evaluation involved three types of ECM

samples: (i) pure ECM without any beads, (ii) ECM embedded with beads

that were bio-conjugated with the collagen fibers, and (iii) ECM embedded

with beads that were not bound to the collagen fibers.

3.4.1 Embedding beads in ECM

To embed beads in the ECM with bio-conjugation, magnetic beads were

prepared with a coating having a good affinity with the collagen fibers to

form a strong attachment. Beads coated with streptavidin were used since
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streptavidin will affix to areas dense with collagen. Streptavidin contains

an Arg-Tyr-Asp (RYD) amino acid sequence that mimics the Arg-Gly-Asp

(RGD) receptor domain of fibronectin [115]. This form of bio-conjugation

involves four types of bonding, namely, hydrophobic, van der Waals, hy-

drogen bonding network, and covalent bonds. The complementary shapes,

charges, polarity, and hydrophobicity of the streptavidin and the collagen

fibers permit multiple weak interactions which in combination produce a

tight binding [116] [117].

To embed beads in the ECM such that there is no binding between the

beads and the collagen fibers, Polyethylene glycol (PEG) coated beads were

used. Due to its hydrophilicity, this coating prevents bio-conjugation from

occurring between the collagen fibres and the beads. PEG coating is done

on the amine coated beads so that it creates an inert coating around the

beads. The PEG structure contains hydrogen bonded to water molecules

that results in a hydration layer, which makes bonds between the PEG

coated beads and the collagen fibres difficult to form since this layer must be

disrupted for any form of bio-conjugation to occur. The detailed procedure

is described in Appendix 1.

3.4.2 Preparation of samples

The collagen was prepared according to the recipes listed in Table 5.1. All

of the samples contain 2.0 mg/ml of Rat Tail Collagen Type 1, obtained

from BD Biosciences. The streptavidin-coated magnetic beads, BM551,

were procured from Bangs Laboratory. To enable conjugation of Polyethy-

lene glycol (PEG) to the magnetic beads requires beads with an amine

functional end group. The amine-coated magnetic beads, BM546, were

procured from Bangs Laboratory and the PEG (at 3400 g/mol) was pro-

cured from Sigma Aldrich. Two groups of samples were prepared: one with

magnetic beads and one without. For samples with magnetic beads, two

different concentrations, i.e., 0.1 mg/ml and 0.5 mg/ml, of the beads were

added (as indicated in Table 5.1). A PTFE mold with a through hole and

a base was fabricated and used to contain the liquid collagen until gellation

occurred. The dimensions of this mold are shown in Figure 3.6.
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The collagen (or the collagen with beads mixture) was thoroughly vortexed

for two minutes until a homogeneous solution was formed and all the com-

ponents of the mixture were spread throughout the entire volume. The

mixture was then pipetted into the mold carefully so that no visible air

cavities were formed. Fibrillogenesis was usually done in an external incu-

bator at 37◦C and 5% CO2. To achieve self-assembly of collagen molecules

into fibers and binding of beads to the collagen fibers, the samples were

placed in an incubator for at least 22 hours to ensure that gellation occurred

throughout the entire collagen strip.

Table 3.2: Recipes for collagen preparation.

Components Without
magnetic
beads

With magnetic
beads
(0.1 mg/ml)
(Streptavidin
coated)

With magnetic
prbeads
(0.5 mg/ml)
(Streptavidin
coated)

With magnetic
beads
(0.5 mg/ml)
(PEG-coated)

Collagen
(4.62
mg/ml)

1.593 ml 0.1.593 ml 1.593 ml 1.593 ml

Water 1.089 ml 1.024 ml 0.764 ml 0.764 ml

PBS (10x) 0.325 ml 0.325 ml 0.325 ml 0.325 ml

NAOH
(0.5 N)

0.244 ml 0.244 ml 0.244 ml 0.244 ml

Beads
(5 mg/ml)

0 ml 0.065 ml 0.325 ml 0.325 ml

Total 3.250 ml 3.250 ml 3.250 ml 3.250 ml

Figure 3.6: Teflon mold for collagen formation.
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3.4.3 Experimental setup and procedure

The stiffness of the ECM was evaluated by a stretch test using an Instron

8848 micro-force tester. The micro-force tester has a load cell rated at 10

N with a 0.001 N resolution.

Stretch tests were carried out on ECM samples at the fixed rate of 10

mm/min. While performing the stretch tests, a certain portion of the

sample was exposed to a static magnetic field produced by a permanent

magnet, as is depicted in Figure 3.7. This permanent magnet is made of an

alloy of neodymium, iron and boron (NdFeB) and it is capable of producing

a magnetic field of 0.2T. Two magnets form an aligned configuration such

that the ECM sample is located between the magnets with a gap of 1.5

cm from each magnet. This leads to the creation of restoring forces on

the beads when they are dislocated from their original positions (when the

ECM sample is in its un-stretched state) by the stretching action.

The introduction of the magnetic field thus creates a region of higher stiff-

ness in the ECM such that a larger force is required to produce a given

deformation (i.e., elongation, in this case) compared to the amount of force

required to produce the same deformation in the absence of the magnetic

field. The stretch tests were carried out until the ECM ruptures. The force

applied on, and the extension of, the ECM were recorded during the the

test.

Eight sets of tests (involving four ECM samples in each set) were con-

ducted under the conditions summarized in Table 3.3. The first two sets

involve ECM samples without any beads embedded (i.e., pure ECM sam-

ples). These two sets of tests were designed to demonstrate that the mag-

netic field alone does not affect the stiffness of a pure ECM, and to establish

a basis on the stiffness of the pure ECM for comparison with the results

from the other four sets of tests. The next four sets (i.e., Sets 3–6) investi-

gate the effect of the external magnetic field on the stiffness of the modified

ECM. Finally, Sets 7 and 8 examine the effect of the presence of the beads

(in the ECM but without any bio-conjugation between the beads and the

collagen fibers) on the ECM stiffness.
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Figure 3.7: Experiment Setup.The stiffness of the ECM was evaluated by
a stretch test using an Instron 8848 micro-force tester. The micro-force
tester has a load cell rated at 10 N with a 0.001 N resolution.

Table 3.3: Test scenarios. Each set involves four ECM samples.

Set No. Bead concentration Magnetic field

1 0 off

2 0 on

3 0.1 mg/ml off

4 0.1 mg/ml on

5 0.5 mg/ml off

6 0.5 mg/ml on

7 0.5 mg/ml PEG Coated off

8 0.5 mg/ml PEG Coated on

3.4.4 Data processing

The full stretch graph from one sample is shown in Figure 3.8a. Figure

3.8b shows the linear section of the curve that is used to determine the

stiffness of the pure collagen sample. There is a clear distinction of the two

set of curves in the elastic region before sample rupture occurs as shown
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in Figure 3.8. It can be observed from Figure 3.8b that the sample under

the influence of the magnetic field exhibits a steeper slope than the sample

without a magnetic field. The graphs of each of the stretch tests were

plotted and the gradient of the linear section of each graph was extracted.

The mean was obtained from the four samples in each set, as shown in

Figure 3.10.

(a)

(b)

Figure 3.8: (a) Stretch test result of a sample embedded with beads at a
concentration of 0.5 mg/ml and in the presence (solid curve) and absence
(dotted curve) of a magnetic field. (b) Linear sections of the graphs taken
to estimate the stiffness of two samples.
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3.5 Results and discussion

3.5.1 Determination of pure ECM stiffness

The stiffness of pure ECM is obtained from linear-fitting of the force-

deformation curve of pure ECM generated from experimental data. The

parameter E1 in the SLSM model (shown in Figure 3.2) determines the

steady-state deformation of the ECM under external forces, while E2 is

only relevant to the rate of approaching the steady deformation. Here E2

is randomly chosen to be 500 Pa in the simulation as it has negligible impact

on the result concerning the change in ECM stiffness. The parameters E1

and η were obtained by linear-fitting of the force-deformation curves shown

in Figure 3.9, which were obtained experimentally. The thick straight line

in the figure is the result of the linear-fitting, whose slope is the stiffness

of the pure ECM, while the initial offset is related to the viscosity of the

pure ECM. Based on this stiffness, the Young’s modulus of the pure ECM

Epure ≡ E1 is calculated from Epure = kL/A, with the stiffness k = 0.003

N/mm, the cross-sectional area of the ECM A = 48 mm2, and the length

of the ECM L = 28 mm. (In the experiment the original length of the

ECM samples was 33 mm. With the two ends of the sample clamped by

the micro-force tester, the effective length of the ECM was thus reduced

by 5 mm.) The Young’s modulus Epure is calculated to be 1750 Pa. The

offset z in Figure 3.9 is used to calculate the viscosity η of the ECM based

on the equation η = zL/(Aε̇), with z = 0.0023 N and the deforming rate

ε̇ = 10 mm/min (which is the rate used in the experiment). The viscosity

of the ECM is calculated to be 134 Pa·min.
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Figure 3.9: Force-deformation relationship of pure ECM samples.

3.5.2 Change in stiffness of modified ECM induced

by the external magnetic field

Figures 3.10 shows the results of the eight sets of tests done on a total of

32 ECM samples. Cross-test comparison provides direct quantification of

the effect of (i) the bio-conjugated beads, (ii) the bio-conjugation, and (iii)

the external magnetic field, on the uniaxial stiffness of the ECM samples,

as summarized in Table 3.4.

Comparison of results from Set 1 and Set 2 reveals that the pure ECM sam-

ples exhibit similar stiffness, regardless of whether the magnetic field was

on or off. As is shown in Table 3.4, the average stiffness of pure collagen

with and without the magnetic field differs by 5× 10−4 in magnitude. The

unpaired t-test shows that the two-tailed P value equals 0.5718; this differ-

ence is considered to be not statistically significant. It can therefore be con-

cluded that the magnetic field had no significant effect on the stiffness of the

pure ECM samples, and that the differences among the force-displacement

relationships of the eight samples (in this set) were due to sample variations

attributed to the repeatability of the ECM preparation process. The aver-

age slope of the linear approximation of the force-displacement relationship

(calculated from data of Set 1 and Set 2) is 3× 10−3 N/mm.

The effect of the mere presence of bio-conjugated beads in a ECM sam-

52



ple can be studied by comparing the results of Set 1 and Set 3. It can

be seen, from both Figure 3.10 and Table 3.4, that embedding beads in a

pure ECM sample (in the absence of an external magnetic field) slightly

increases its uniaxial stiffness. The moving average line (dotted line) shown

in Figure 3.10 shows the increase in stiffness of the ECM when the concen-

tration of streptavidin beads was increased and when a magnetic field was

present.
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Figure 3.10: Summary of results from experiments.

To examine how an external magnetic field may affect the uniaxial stiffness

of modified ECM samples, the results were compared from Set 5 and Set

6. It can be observed that there is a significant increase in the stiffness

when the magnetic field is in effect. Similar conclusion can be drawn for

the case involving Set 3 and Set 4, where the beads are at a lower concen-

tration.

The case where the embedded beads are not bound to the ECM fibers was

investigated next. To see the effect (if any) of such no-binding beads on

the stiffness of the ECM, stretch test results are obtained from experiments

Set 7 and Set 8. From Figure 3.10 and Table 3.4, it can be seen that the
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Table 3.4: Summary of two-tailed P values from unpaired t tests and differ-
ence in magnitude of the mean values of stiffness. The numbers in brackets
have the same meanings as those labeled on the bars in Figure 3.10; the
top number in each entry indicates the P value while the bottom number
indicates the difference in the mean value of stiffness.

(1) (3) (5) (7)

(2) 0.5718

5× 10−4

(3) 0.8084

2× 10−4

(4) 0.0085

2.2× 10−3

(5) 0.0234

3.3× 10−3

(6) 0.0605

4.3× 10−3

(8) 0.7259

4× 10−4

stiffness of the ECM samples embedded with non-binding beads (i.e., beads

coated with PEG) is significantly lower than that of the samples with beads

coated with streptavidin (and thus bio-conjugated to the ECM fibers). This

is expected since the beads not bound to the ECM fibers offer, when under

the influence of the external magnetic field, much weaker resistance against

the dislocation of the fibers during ECM deformation.

3.5.3 Stiffness of ECM with streptavidin-coated mag-

netic beads

Figure 3.10 and Table 3.4 indicate that the external magnetic field produced

significant changes in the stiffness of the modified ECM. Specifically, the
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increase is 63% in the case of Set 6 (i.e., from 0.0068 N/mm to 0.0111

N/mm). A similar observation can be made for Set 4, which shows an

increase in stiffness of 59% (i.e., from 0.0037 N/mm to 0.0059 N/mm).

Furthermore the stiffness of the modified ECM with a lower concentration

of beads is very close to that of the pure collagen when the magnetic field

is off (i.e., Set 3 and Set 1). This clearly indicates that embedding beads

at a low concentration alone will not significantly alter the mechanical

properties of the modified ECM; the change in stiffness becomes significant

only when an external magnetic field is applied.

3.5.4 Stiffness of ECM with PEG coated magnetic

beads

For Set 7 and Set 8, the change in stiffness of 7% (i.e., from 0.0056 N/mm to

0.0060 N/mm) is not as significant compared to an increase of 63% for the

case of Set 5 and Set 6. This indicates that the binding between the beads

and collagen fibers indeed plays a significant role in altering the overall

stiffness of the ECM when a magnetic field is applied. Such binding enables

the collagen fibrils to attach to the beads strongly, resulting in a greater

resistance to deformation in the fibers when an external magnetic field

generates magnetic forces that oppose the movement of the beads.

3.5.5 Comparison of ECM apparent stiffness obtained

from simulation and experiment

Table 3.5 shows the values of the Young’s modulus of the modified ECM

obtained from the model presented in Section 3.3 and from the experiments.

It can be seen that the analytical results are in close agreement with that

obtained from the experiments.
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Table 3.5: Comparison of Young’s modulus of modified ECM.

Bead concentration
(mg/ml)

Simulation Experimental
(Streptavidin-coated)

0.1 0.0053 0.0059

0.5 0.0103 0.0111

3.6 Concluding remarks

By analytical modeling and experiment it was demonstrated that the uni-

axial stiffness of the ECM can be altered actively to a significant degree by

embedding (in the ECM) magnetic beads that are bio-conjugated with the

collagen fibers and applying an external magnetic field. The experimental

results point to the possibility of creating desired stiffness gradients in an

in vitro extracellular matrix to influence various cell behavior, such as pro-

liferation, differentiation and apoptosis. The exertion of such influence can

be interpreted in the context of the force-bearing interaction between cells

and the collagen fibers.

3.6.1 Utility of the proposed ECM deformation model

In Section 3.3, a new model was proposed for describing the viscoelastic

behavior of the modified ECM. Specifically, it was shown that the Young’s

modulus of the modified ECM under the influence of an external magnetic

field can be determined analytically based on Epure, Ebead, and the mag-

netic force acting on the beads due to the magnetic field. The advantage

of having this model is that it enables the determination of the stiffness of

a modified ECM sample corresponding to a given external magnetic field

without having to conduct a stretch test on the sample involving the instru-

mentation for the generation of that specific external magnetic field. This

is particularly useful in an application where the stiffness of the modified

ECM is being actively manipulated by dynamically varying the strength

of the external magnetic field. In such a case, the model offers an efficient

way to determine the instantaneous value of the Young’s modulus of the
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modified ECM.

3.6.2 Implication of the proposed method for active

manipulation of ECM stiffness

Application of an external magnetic field on a modified ECM sample creates

a pre-tension in the collagen fibers. When a traction force acting in the

direction opposite to the magnetic force is exerted on the fibers by a cell,

the fibers exhibit a greater resistance to deformation, as is illustrated in

Figure 3.11 .

Figure 3.11: Schematic illustration of bead-embedded ECM and interaction
between collagen fibers and cells via focus adhesion under the influence of
an external magnetic field.

Due to this increased resistance to deformation in the fibers, cells will ex-

perience a greater stiffness in regions of the ECM where beads are present,

which in turn may affect the cell behavior, such as cell migration. This

stiffness sensed by the cells is known as the apparent local stiffness of the

ECM at those sites, since this externally and mechanically induced change

in the local deformability of the collagen fibers is only apparent to a cell

near the site of an embedded bead and is localized at that site, while the

global intrinsic material properties of the ECM remain unchanged. The

advantage of this approach is that the stiffness of the ECM can be ma-

nipulated directly in real-time without significantly changing the in vitro
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environmental conditions (such as temperature or pH value) for a cell.

A number of attempts have been reported in an effort to make practical

this approach for active manipulation of ECM stiffness. A pure computa-

tional and simulation-based study on the stiffness of the modified ECM was

reported in [118]; it uses a conceptual model constructed by calculating the

total stress directly from the strain, which is less efficient than the method

used in this chapter. Another work focuses on the microscopic stiffness of

the ECM in the vicinity of a magnetic bead [119]. Although there is gen-

erally a similarity between micro-scale and macro-scale stiffness for stiffer

materials, such a similarity does not apply to soft biological materials. The

stiffness of soft materials vary significantly when measured in micro- and

macro-scale, due to their heterogeneous structures. (The work presented

in this chapter concerns only macro-scale measurements.) Lastly, the effect

of the induced change in stiffness of the modified ECM on the behaviour

of angiogenic sprouting was reported in [120].

While all these works mentioned above yielded useful insight on the me-

chanical behavior of the modified ECM and how that behavior may influ-

ence certain biological behavior of endothelial cells, they remain prelimi-

nary and various issues remain to be investigated. First, the effect of a

number of variables on the stiffness of the modified ECM remains to be

explored; these variables include bead concentration, size and placement of

the magnets and their distance to the ECM sample, and strength of the

magnetic field, etc. Second, the experiments described in this chapter only

concern manipulation of ECM stiffness along a single axis. To study how

ECM stiffness affects cell behavior in vitro requires the ability to manip-

ulate the stiffness gradient in 3D. Third, although magnetic beads have

been used in many applications (both in vivo and in vitro), their effect on

the actual biological behaviour of cells are not yet fully understood. This

is particularly true when an ensemble of beads are embedded in the ECM

via bio-conjugation. It may be argued (based on available experimental re-

sults, e.g., [121] [122] [123]) that the bio-compatibility and toxicity of these

magnetic beads with respect to its biological environment solely depends

on the surface coating that is adhered to the magnetic particle, it is essen-

tial to verify that such an ensemble of beads do not directly interfere with
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the natural behaviour of cells.
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Chapter 4

Evaluating the change in micro

scale stiffness of modified

ECM

4.1 Introduction

The previous chapter showed the possibility of changing the macroscale

uniaxial stiffness of magnetic bead embedded ECM by applying magnetic

fields orthogonal to the stretching direction. In this chapter the approach to

change the stifffness of ECM is verified by investigating the local microscale

stiffness changes in the ECM.

Significant changes in cell behaviours due to variation in the physical prop-

erties of local areas of ECM where cell-ECM interactions occur have been

observed [12] [15]. Although the exact mechanism involved in the interac-

tions between a cell and the stiffness of its pericellular environment is not

yet fully understood, it is generally accepted that the mechanical proper-

ties of the ECM influence cellular interactions at various levels, including

protein expression [101]. One such mechanical property is the stiffness of

the ECM, which has been observed to regulate the degree of cell-matrix

adhesion, the size of focal adhesion, as well as the stiffness and tension

developed by the cell itself [17] [99]. Cell motility and polarity are also as-

sociated with ECM stiffness, manifested in the tendency of cells to migrate

from softer to stiffer environment [100].

There are methods for altering the stiffness of the ECM in order to observe
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(in vitro) cell behaviour under various stiffness conditions. These methods

rely on manipulating soluble cues, such as by changing the collagen con-

centration [90], varying the pH value in the ECM sample [5], or changing

the polymerisation temperature of the ECM [4]. One factor that limits the

applicability of these methods is that the change in stiffness realized by

these methods is permanent and irreversible. Furthermore, some of these

methods (such as that involving changing collagen concentration) alter the

chemical composition of the ECM, leading to inconsistencies when compar-

ing the observed cell behaviour under different stiffness conditions.

Manipulating the stiffness of ECM by mechanical means offers an alter-

native to those methods that rely on soluble cues. A novel approach was

proposed where the stiffness of the ECM is altered by mechanically ma-

nipulating the deformability of the collagen fibers in the ECM [124]. The

approach works by embedding magnetic beads in the ECM through bio-

conjugation between the streptavidin-coated beads and the collagen fibers,

then applying an external magnetic field on the ECM to exert a magnetic

force on the beads. This magnetic force, when applied statically, creates

a pre-tension in the collagen fibers. When a traction force opposing the

magnetic force is exerted on the fibers by a cell, the fibers exhibit a greater

resistance to deformation, as is illustrated in Figure 4.1.

Due to this increased resistance to deformation in the fibers, cells will ex-

perience a greater stiffness in regions of ECM where magnetic beads are

present, which in turn may affect the cell behavior, such as cell migra-

tion [87]. This stiffness sensed by the cells is refered as the apparent local

stiffness of the ECM at those sites, since this externally and mechanically

induced change in the local deformability of the collagen fibers is only ap-

parent to a cell at the pericellular level near the site of an embedded bead

and is localized at that site, while the global intrinsic material properties of

the ECM remain unchanged [125]. The advantage of this approach is that

the stiffness of the ECM can be manipulated directly in real-time with-

out significantly changing the in vitro environmental conditions (such as

temperature or pH value) for a cell.

In this chapter, investigation was done on the effect of the presence of

magnetic beads (when under the influence of an external magnetic field)
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Figure 4.1: Schematic illustration of bead-embedded ECM and interaction
between collagen fibers and cells via focus adhesions under the influence
of an external magnetic field. This scenario provides the motivation for
the work reported in this chapter on the determination of the change in
the apparent local stiffness of the ECM under the influence of an external
magnetic field.

on the local micro-scale stiffness of the ECM. This investigation focuses

on determining the change in the apparent Young’s modulus of the bead-

embedded ECM when the external magnetic field is present (in comparison

to the case when it is absent).

Since cellular behaviour is known to be influenced by the stiffness of the

immediate surroundings of a cell, the ECM with which the cells interact

must be characterized in order to develop a deeper understanding of the ob-

served in vivo cell functions in a laboratory setting. An effective approach

to obtain such a characterization is to study the mechanical deformation be-

havior of the ECM by indentation, using micro/nano-manipulation devices

such as the atomic force microscope (AFM). Indenting a bio-material using

an AFM in order to determine its Young’s modulus is a well-known tech-

nique (e.g., [60] [61] [62] [63]). For soft hydrogels, indentation techniques

are highly suitable for determining the mechanical properties of materials

that may vary at micro- and nano-scale [126] [125]. In the work described

in this chapter, this technique was adapted by using an AFM to indent

ECM samples at locations in the vicinity of the magnetic beads.

The novelty in the adaptation of this technique manifests in the specific
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arrangement of the magnetic field, the indentation direction, and the ECM

sample in such a configuration that the indentation is resisted by the mag-

netic force. The indentation force exerted by the AFM on the ECM is thus

transmitted to the beads to simulate the action of cell traction forces act-

ing on the beads, while the presence of the external magnetic field induces

a localized change in the resistance to deformation in the ECM. By ap-

plying the same prescribed force on a set of indentation sites individually,

quantitative data was obtained reflecting the change in the local apparent

stiffness of the ECM in the vicinity of beads solely due to the presence of

the external magnetic field. Moreover, an analytical model was developed

for predicting such changes, and verify that the prediction obtained by the

model generally agrees with the experimental results.

The remainder of this chapter is organized as follows. Section 2 describes

the method and materials used in the experiment. Section 3 describes

the analytical model for predicting the change in ECM stiffness. Section

4 discusses the results obtained from the AFM indentation experiment,

and compares the experimental results with the corresponding analytical

prediction. Section 5 presents the conclusions.

4.2 Experimental design and implementation

4.2.1 Experimental design

An AFM is used to indent ECM samples to generate force and displacement

data for estimating the value of the Young’s modulus of the ECM. The tip

of the cantilever probe of the AFM has a microsphere to generate three

dimensional contact with the ECM embedded with magnetic beads. An

external magnetic field is applied on the ECM during the indentation. This

magnetic field is oriented such that the magnetic force acting on a bead is

orthogonal to the direction of the indentation, as is illustrated in Figure

4.2.

The presence of an external magnetic field induces a pre-tension (i.e., a pre-

tensile stress) in the ECM. When the indentation site is selected in such
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a way that the pre-tension acts against the indentation, the deformation

of ECM is reduced in the presence of a magnetic field compared to the

case where the magnetic field is absent when an identical indentation force

is applied. This reduction in deformation is localized at the indentation

site, and corresponds to an increase in the stiffness of ECM therein. The

force and displacement data thus collected by the AFM are then used to

determine the change (due to the presence and absence of the magnetic

field) in the Young’s modulus of the ECM at the indentation site.

(a) (b)

Figure 4.2: Schematic illustration of the proposed approach.

4.2.2 Embedding beads in ECM

To quantify the change in local ECM stiffness, four scenarios were inves-

tigated as listed in Table 4.1. The first two scenarios are for studying the

effect of the magnetic field on the apparent stiffness of the ECM embedded

with bioconjugated beads, while the last two are for studying the effect of

the mere presence of non-bioconjugated beads on the ECM stiffness.

Table 4.1: Scenarios in experiment.

Scenario 1 2 3 4

Bioconjugation yes yes no no

Magnetic field off on off on

To embed beads in the ECM with bioconjugation, magnetic beads were

prepared with a coating having a good affinity with the collagen fibers to

form a strong attachment. Streptavidin contains an Arg-Tyr-Asp (RYD)

64



amino acid sequence that mimics the Arg-Gly-Asp (RGD) receptor domain

of fibronectin, which enables streptavidin to affix to collagen-rich areas.

The complementary shapes, charges, polarity, and hydrophobicity of the

streptavidin and the collagen fibers permit multiple weak interactions which

in combination produce a tight binding [115] [116] [117].

For Scenarios 3 and 4 (as listed in Table 4.1), non-bioconjugated beads

were embedded into ECM such that there is no binding between beads

and collagen fibers. For this purpose, Polyethylene glycol (PEG) coated

beads were used because of its hydrophilicity. PEG coating was done on

amine coated beads to create an inert coating around the beads. The PEG

structure contains hydrogen bonded to water molecules that results in a

hydration layer, which makes bonds between the PEG coated beads and

the collagen fibres difficult to form since this layer must be disrupted for

any form of bio-conjugation to occur. The detailed procedure for obtaining

PEG coated beads is described in 2.

4.2.3 Preparation of samples

The collagen was prepared according to the recipes listed in Table 5.1.

All samples contain 2.5 mg/ml of Rat Tail Collagen Type 1 from BD

Biosciences. The streptavidin-coated magnetic beads, BM551, and amine

coated beads, BM546, both with a diameter of 1.5 µm, were procured

from Bangs Laboratory, Inc. For all cases, the samples have identical bead

concentrations of 0.075 mg/ml.

The collagen-bead mixture was thoroughly vortexed for two minutes until a

homogeneous solution was formed and the components of the mixture were

spread throughout the entire volume. The mixture was then pipetted into

a holder (discussed in Section 4.2.4 below) so that no visible air cavities

were formed. Fibrillogenesis was done in an external incubator at 37◦C

and 5% CO2. To achieve self-assembly of collagen molecules into fibers

and binding of beads to the collagen fibers, the samples were placed in an

incubator for at least 22 hours to ensure that gelation occurred throughout

the entire collagen strip.
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Table 4.2: Protocol for collagen preparation.

Components Without magnetic
beads

With streptavidin-
coated magnetic beads

With PEG-coated
magnetic beads

Collagen
(4.62 mg/ml)

0.216 ml 0.216 ml 0.216 ml

Water 0.137 ml 0.131 ml 0.131 ml

PBS (10x) 0.040 ml 0.040 ml 0.040 ml

NAOH
(0.5 N)

0.007 ml 0.007 ml 0.007 ml

Beads
(5 mg/ml)

0 ml 0.006 ml 0.006 ml

Total 0.400 ml 0.400 ml 0.400 ml

4.2.4 Fabrication of magnet-collagen holder

For applying a magnetic field on the beads embedded in the ECM, a holder

was designed to house the magnet and the collagen in close proximity to

each other. The specifications of this holder are constrained by the physical

configuration of the AFM and the operation of the magnet. These specifi-

cations are: (i) there should be a separate chamber to house the magnet,

(ii) the wall between the magnet chamber and the cavity containing the

collagen should be as thin as possible in order to maximize the magnetic

force on the beads, and (iii) the sides of the holder should be filleted to

achieve a height of 2 mm so that the clips on the alloy base of the AFM

can be used to keep the holder in place.

A 4 mm cubic permanent magnet, made of N50 Grade Neodymium Iron

Boron and procured from Liftonmagnet, was housed in this holder. This

magnet is capable of generating approximately 6400G surface Gauss and

14500G residual induction (Br). Figure 4.3 shows a solid-model draw-

ing of the holder and the actual item fabricated using an Eden 350 3D

printer.
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Figure 4.3: Solid model and actual holder.

4.2.5 Determining the Young’s modulus of ECM sam-

ples by atomic force microscopy

The geometry of the AFM indenter influences how the Young’s modulus

can be calculated. A microsphere at the tip of the probe (i.e., the indenter)

exerts minimal stress-strain concentration. It is assumed that the indenter

is non-deformable and that there is no additional interactions between the

indenter and the sample. With the approximation that the sample behaves

as an isotropic and linear elastic solid occupying an infinitely extending

half space, the Young’s modulus of the sample can be calculated using the

Hertz contact mechanics model [127]:

F = λ δ3/2

(

1−
4
∑

n=1

(−1)nγn − 32β0

15π
χ3 +

8α0β0

5π2
χ4

)

, (4.1)

where

λ =
4E

√
R

3(1− ν2)
, γ =

2α0

π
χ , χ =

√
Rδ

h
,

α0 = (−1.2876 + 1.4678ν − 1.3442ν2)/(1− ν) ,

β0 = (0.6387− 1.0277ν + 1.5164ν2)/(1− ν) ,

with E being the Young’s modulus of the sample, δ the indentation, h the

sample height, R the radius of the microsphere, and ν the Poisson’s ratio.

For soft biological samples, it is common practice to use 0.5 for the value

of ν [127].

The Hertz model may lead to significant error when applied to thin sam-

ples (i.e., small h) due to possible error in the estimation of the actual

sample height [127]. There is an appropriate range of sample thickness and
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indentation for any given tip radius for which the above formula is valid.

As the parameter χ is increased with smaller sample thickness, the series

expansion shown in equation 4.1 may lose accuracy. Howeversuch an error

can be ignored in this experiment for the following reason. The height of

the collagen gel used in this experiment is about 800 µm. When compared

to the depth of the indentation that is limited (by design) to a maximum

of 5 µm, the sample height h can be considered as infinitely large. Thus,

with χ → 0, the force-indentation relationship, as shown in Equation (4.1),

reduces to

F = λ δ3/2 . (4.2)

Consequently, by measuring F and δ experimentally, E for a given ECM

sample can be estimated.

A JPK NanoWizard II AFM module, incorporated with a tip-scanning

concept for long-time position stability, was used in conjunction with a

microsphere (with a radius of 2.25-µm) as the probe. The AFM is capable

of exerting a force of 0.5 nN at an indenting speed of 1 µm/s and at a

sampling rate of 2048 Hz. The force exerted and the resultant extension

were used to determine the Young’s modulus using Equation (4.2). Optical

microscopy was also integrated with the AFM for image acquisition during

the experiment. Figure 4.4a shows the AFM setup, while Figure 4.4b shows

a close-up view of a typical indentation area.

(a) (b)

Figure 4.4: (a) AFM setup for experiment. (b) Close-up view of an inden-
tation site.
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To provide a basis for comparison, the Young’s modulus of a pure ECM

sample was determined based on measurements taken at random points on

the sample. The Young’s modulus thus obtained was 22.27 Pa.

4.2.6 Experimental procedure

The experiment was conducted for the four scenarios specified in Table 4.1

at selected indentation sites as illustrated in Figure 4.5. A set of force

and indentation depth measurements were obtained along Line 1 in the

y-direction, as shown in Figure 4.5. Another set of measurements were

taken along Line 2, which was separated from Line 1 in the x-direction

by about 50 µm. Two reference points were chosen along each line and

fifteen to twenty measurements were made. Each measurement was taken

at a point located a few microns away from a nearest bead (and between

that bead and the magnet) to ensure that there was a bead that generated

the dominant resistance to the indentation. For each sample, two sets of

measurements for each scenario were obtained at selected points located 4

mm away from the two lines.

Figure 4.5: Detailed illustration of indentation areas and bead locations.

The results of the experiments are discussed later in Section 4, in conjunc-

tion with the analytical prediction obtained from the model presented in

the next section.
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4.3 Theoretical analysis of change in ECM

stiffness

In this section the change in the Young’s modulus of a ECM sample due

to the effect of the external magnetic field acting on the beads embedded

in the sample was analysed.

When exposed to a magnetic field, the magnetic beads bound to the colla-

gen fibrils generate a pre-tension in the ECM. Since the ECM is confined on

all sides except the top surface where indentation occurs, one consequence

of this pre-tension manifests in a change in the height of the ECM (i.e., a

deformation in the z-direction). This change in height is positive (i.e., an

increase, with respect to the original height) for region closer to the magnet

and negative for region further away from the magnet, as is illustrated in

Figure 4.6(a).

Let δ̂p denote the total z-direction deformation of the ECM at a point p

on that surface due to the pre-tension in the x-direction. Suppose that

for a pure ECM sample that contains no beads a force F0 is required to

achieve a z-direction indentation of δ from the point p, and that for a ECM

sample embedded with beads and under the influence of a magnetic field an

indenting force F ∗ is required to achieve the same δ. In general F ∗ differs

from F0 due to the effect of the pre-tension. For instance, F ∗ > F0 for the

same δ when the deformation is positive (i.e., δ̂p > 0), since an extra force

of ∆F = F ∗ − F0 is required to overcome the effect of the pre-tension due

to the magnetic forces. Figure 4.6(b) illustrates this situation.

∆F (for all δ) is refered as the change in the indentation force due to the

effect of the pre-tension. It reflects the change in the apparent stiffness

of the ECM with respect to the point p. This change in the apparent

stiffness is represented in terms of the change in the Young’s modulus of

the ECM as ∆E = E∗−E0, where E
∗ is the Young’s modulus of the ECM

embedded with beads and in the presence of the magnetic field, while E0

is the Young’s modulus of the pure ECM. An estimate E∗ is required to

predict ∆E.
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Figure 4.6: (a) ECM is deformed in the z-direction due to the pre-tension
in the x-direction. (b) Deformation δ̂p of ECM region near the magnet in
the z-direction due to pre-tension in the x-direction, and deformation δ due
to indentation.

Section 4.3.1 presents an analytical method for determining δ̂p, while Sec-

tion 4.3.2 describes this approach for analytically estimating the new ap-

parent Young’s modulus E∗ based on δ̂p and E0.

4.3.1 Deformation of ECM due to pre-tension

Consider an ECM sample embedded with N beads uniformly distributed

therein. Let S denote the set of all points on the top surface of the ECM in

the absence of any pre-tension. Let δ̂p,j denote the z-direction deformation

at a point p = (xp, yp, zp) ∈ S due to the pre-tension generated by the

magnetic force Fj acting on a single bead j located at a distance of dx

from the magnet and at a distance of rj,p = |rj,p| from p, as is illustrated

in Figure 4.7. Summing up such deformations at p due to all N beads

yields the total z-direction deformation at p due to the pre-tension in the

x-direction, that is,

δ̂p =
N
∑

j=1

δ̂p,j . (4.3)

The approach proposed by Landau and Lifshitz [127] [128] was adopted

to calculate δ̂p,j. Consider a spherical bead j with radius ρ subjected to

a force Fj that acts in the positive x-direction and is distributed over a

contact circle of radius aj. (The detailed steps for calculating Fj for the

experiment setup described in Section 4.2 is presented in 3.) Assume that
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Figure 4.7: Schematic illustration of setting for calculating the deformation
of ECM due to pre-tension in x-direction.

Fj is applied at the center of a semi-infinite solid, which coincides with the

center of the bead at (xb, yb, zb), as shown in Figure 4.7. Then for a point

p ∈ S, δ̂p,j can be expressed as

δ̂p,j =

∫ ∫

Px(aj)Gxz(rj,p) dA , (4.4)

where Px(aj) is the Hertz pressure field, Gxz(rj,p) is the Green’s function,

and A is the contact region, i.e., A = πa2j . The Hertz pressure field gener-

ated by the bead j (due to Fj) is

Px(aj) =
2E0 aj

πρ(1− ν2)
, (4.5)

where ν is the Poisson’s ratio, and the contact radius aj can be expressed

as

aj =

(

3Fj ρ (1− ν2)

4E0

)1/3

. (4.6)

The Green’s function describes the displacement created in the z-direction

by a force acting in the x-direction, and can be written as [129]

Gxz(rj,p) =
dj(1 + ν)(1− 2ν)

2πE0 r2j,p
, (4.7)

where dj is the length and direction of the x-axis component of the vector

rj,p, i.e., dj = xp − xb.
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Using Equations (4.3)-(4.7), a numerical simulation in MATLAB R© was

conducted to determine δ̂p for an ECM sample (with a dimension of 25 ×
15 × 0.8 mm) used in the experiment as described in Section 4.2. The

simulation involved a total of N = 1.5 × 106 beads, distributed uniformly

in 14 layers covering a physical depth of 0.8 mm in the z-direction, with

each layer containing a 429×258 grid of beads over a physical dimension of

25 mm × 15 mm. The distance between any two adjacent beads in x, y, or

z direction is approximately 60 µm. A total of 429× 258 = 110, 682 points

on the top layer were chosen in the calculation of δ̂p. To ensure that the

simulation was consistent with the actual indentation process (as described

in Section 4.2.6), these points were purposely selected to be 5 µm away in

the x-direction from a bead in the top layer located just beneath the top

surface of the ECM, and in between that bead and the magnet.

Figure 4.8 shows the deformation δ̂p of the top surface of the ECM obtained

from the numerical simulation. In this simulation, the magnet is located

at x = 0.015 m. The value of δ̂p ranges from −3 µm (at locations furthest

from the magnet) to 2 µm (at locations near the magnet).

Figure 4.8: ECM deformation (due to magnetic forces acting on all embed-
ded beads) obtained by numerical simulation.
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4.3.2 Determination of change in Young’s modulus

by curve-fitting

Figure 4.8 shows that the deformation of the top surface of the ECM due

to the x-direction pre-tension can be positive or negative. The case where

deformation is positive will be focused in the subsequent analysis, i.e.,

δ̂p > 0. The same approach, however, can be readily applied to the case

where δ̂p < 0, as is highlighted in the remark at the end of this section.

For a pure ECM sample, the force-deformation relationship as shown in

Equation (4.2) is described by F = λ0 δ
3/2, where λ0 = 4E0

√
R

3(1−ν2)
. Conse-

quently, for an ECM sample embedded with magnetic beads and under

the influence of a magnetic field, the force-deformation relation can be

expressed as

F = λ0 δ
3/2 +∆F , (4.8)

where ∆F is the extra force required to overcome δ̂p in order to achieve

the same δ as in the case of pure ECM. Now imagine that the top surface

is confined in the same way as all the other surfaces of the ECM, and

hence is not allowed to deform upwards when under the x-direction pre-

tension generated by the magnetic forces acting on the beads. This in

effect leads to the pre-tension in the x-direction being transduced into a

upward tension in the z-direction. This upward tension then acts against

the indentation, leading to an increase in the indentation force F for the

same indentation depth (as compared to the case of pure ECM). This force-

deformation relationship can be defined by the new value of the Young’s

modulus E∗, and can be expressed as

F = λ∗δ3/2 , with λ∗ =
4E∗

√
R

3(1− ν2)
. (4.9)

The extra force ∆F can be calculated based on Equation (4.2) by replacing

δ with δ̂p, i.e, ∆F = λ0 δ̂
3/2
p . Since δ̂p depends on the configuration involv-

ing the ECM and the magnet and is independent of δ, for the experiment

setup as described in Section 4.2 δ̂p, and thus ∆F are considered to be fixed

quantities with respect to a given point p in an indentation process where
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δ 6= 0.

For a given ECM-magnet configuration, the plot of Equation (4.8) can be

obtained by shifting the plot of F = λ0 δ
3/2 upwards by a constant ∆F .

This up-shifted plot can be readily generated for any given point p ∈ S,

since λ0 contains only known parameters, and δ̂p can be calculated by

numerical simulation (as was presented in Section 4.3.1). By a curve-fitting

process that yields a value for λ∗ that minimizes the difference between the

plots of Equation (4.8) and Equation (4.9) over a range of δ values (as is

illustrated in Figure 4.9), the value of E∗ can be estimated.

Figure 4.9: Determination of λ∗ by curve-fitting.

The curve-fitting process is as follows. A set of δ values are chosen for which

the corresponding values of F are determined by using Equation (4.8). The

equation F = λ∗ δ3/2 is then used to fit these F -δ value pairs using the

Trust-Region-Reflective Least Square algorithm provided in MATLABR© to

yield the optimal value for λ∗. The value of E∗ is then calculated from the

expression for λ∗ in Equation (4.9).

Figure 4.10 shows the plots of Equation (4.9) with the optimal λ∗ for the

cases where the indenting points are 4 mm, 5 mm and 7 mm away from

the magnet in the ECM-magnet configuration described in Section 4.2.

The Young’s modulus E∗for these three cases were calculated as 27.64 Pa,

25.51 Pa, and 23.91 Pa, respectively. Compared to E0 = 22 Pa (which was

experimentally determined as described in Section 4.2.5), the stiffness of

the region of the ECM 4 mm away from the magnet is increased by 26%.
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As the distance increases to 5 mm and 7 mm, the change in stiffness are

15.9% and 8%, respectively.

Figure 4.10: Plots of force F versus indentation depth δ at points 4 mm, 5
mm, and 7 mm away from the magnet for ECM embedded with magnetic
beads, and for pure ECM.

Remark: The above curve-fitting approach was formulated based on the

case where δ̂p > 0. For the case where δ̂p < 0, the same approach ap-

plies. The difference is that for this case the counterpart of Equation (4.8)

becomes

F =











0 for δ < |δ̂p|

λ0 δ
3/2 for δ ≥ |δ̂p| .

4.4 Results and discussion

4.4.1 Experimental results

Figure 4.11 shows experimental results obtained at an indentation site of

a sample embedded with streptavidin-coated beads. Two graphs show the

relationship between the indentation force and the separation between the

AFM cantilever tip and the ECM in the absence (Figure 4a) and the pres-

ence (Figure 4b) of the magnetic field. In each graph, the vertical axis
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indicates the force registered by the AFM (due to cantilever deflection),

while the horizontal axis represents the separation. The dark vertical dot-

ted line separates the graph into a contact region (i.e., to the left of this

line) and a non-contact region (to the right). A negative separation value

in the contact region indicates the depth of the indentation.

During an indentation experiment, the motion of the AFM cantilever tip

consists of a downward motion pressing onto the sample, followed by a

retracting motion away from the sample. The bright red curve (on the

top) corresponds to the downward motion while the dark red curve (at the

bottom) corresponds to the retraction. The Young’s modulus was then

determined by fitting the force and separation values collected during the

downward motion using the Hertz model described by Equation (4.2). The

green curve in both figures represents the result of the curve-fitting pro-

cess, with a residual error RMS of 9.118 pN for the case in Figure 4a and

8.994 pN for Figure 4b. It can be seen from the graphs that (i) the in-

dentation reached the common maximum force of 450 pN before the AFM

tip retracted, and (ii) at this maximum force, the indentation depth of

2.1 µm for the case when the magnetic field was present was significantly

smaller than the depth of 3.2 µm achieved when the magnetic field was

absent.

The hysteresis reflected by the indentation and the retraction curves in the

contact region of the graph is due to the viscous and plastic behaviour of the

collagen. In the non-contact region, the noisy signal in the retraction curve

reflects the movement of the cantilever as it retracts from the sample.

The average values of Young’s modulus for Line 1 and Line 2 (as illustrated

in Figure 4.5) were calculated for each sample using the force and separation

data collected only during the indentation motion, and the average value

associated with the line that gave the least standard deviation was chosen

as the Young’s modulus for that sample. A minimum of 15 stiffness values

were taken for each sample. The same process was repeated for the sample

embedded with PEG-coated beads.
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(a) AFM result without magnetic field

(b) AFM result with magnetic field

Figure 4.11: Force vs tip-sample separation graphs (plotted using the JPK
software) for the cases where the magnetic field is (a) absent and (b)
present. Trace (red) and retrace (dark red) curve clearly show hystere-
sis due to the viscous and plastic behaviour of the collagen.

4.4.2 Data analysis

Variability was observed in the data obtained from the AFM indentation

experiments. It can be attributed to microscopic gel inhomogneities. The
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ECM is highly porous, with gaps roughly 150 nm in size [127]. During an

indentation, the spherical indenter of the AFM may indent over gaps on

the ECM surface that consist mainly of water, or at the edges of the gaps

(which are formed by collagen fibers), resulting in uncharacteristically high

or low stiffness readings.

The data was analyzed, using the modified Thompson-τ test [130] [131], to

remove the outliers as shown in Figure 4 in 4. The results are summarized

in Figure 4.12 and Table 4.3, which show the average Young’s modulus

associated with the four scenarios listed earlier in Table 4.1.

Figure 4.12: Stiffness values of samples embedded with streptavidin-coated
beads and with PEG-coated beads.

Table 4.3: Summary of results.

Sample Magnetic field E (Pa) Change in E

With streptavidin off 33.59

coated beads on 42.06 25.21%

With PEG off 14.32

coated beads on 13.13 -8.27%
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4.4.3 Change in the stiffness of sample embedded

with streptavidin-coated beads

From Table 4.3, it can be seen that there is an increase in the Young’s mod-

ulus of 25.21% (in the ECM samples embedded with streptavidin-coated

beads) around the region indented by the AFM when the magnetic field

is applied. An unpaired-t test was conducted on the data for Scenario 1

and Scenario 2 to compare their respective average values of Young’s mod-

ulus. The P value from this test is 0.0207, indicating that the difference

by 25.21% in the average Young’s modulus between these two sets of data

is statistically significant. This provides direct evidence that the magnetic

field affects the local stiffness of a sample embedded with streptavidin-

coated beads.

4.4.4 Comparison of analytical and experimental re-

sults

According to the experimental results, the stiffness of the ECM at a lo-

cation 4 mm away from the magnet is increased by 25.21% due to the

magnetic field. This experimental result is comparable to the 26% increase

predicted by the analysis (as presented in Section 4.3). This discrepancy

reflects the difference between the indentation force calculated by the anal-

ysis and that determined by the AFM. There are three main causes for this

difference.

The first is that the actual magnetic forces experienced by the beads in

the ECM may differ significantly from those calculated using Equation (1)

shown in Appendix 3, due to the fact that the percentage of magnetiz-

able material (i.e., Fe2O3) in each bead varies because of manufacturing

irregularities, whereas the analysis does not consider such variations.

The second cause is that the value of the Poisson’s ratio used in the analysis

may not reflect the actual value of that of the ECM used in the experi-

ment. The value of ν = 0.5 was used for the ECM samples in the analysis,

under the common assumption of incompressibility due to their high water
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content [127]. However it has been reported that the Poisson’s ratio for

collagen type I matrices may range from 0.15 to 0.48 [132].

The third cause concerns the structural characteristics of the ECM sam-

ples. The analysis considers the ECM samples to be uniform and non-

porous, while the physical ECM samples are highly heterogenous (leading

to variations in the readings from the AFM over the selected indentation

sites).

4.4.5 Change in the stiffness of sample embedded

with PEG-coated beads

From Table 4.3, it can be seen that the Young’s modulus of the sample

embedded with PEG-coated beads decreased by 8% upon the application

of the magnetic field. This decrease can be explained by the fact that the

PEG-coated beads had no strong attachment to the ECM fibers. When the

magnetic force was applied, the individual beads were pulled and dislocated

slightly from their original surrounding. This created space around a bead,

making it less constricted so that, when the sample was indented by the

AFM there was less resistance from the beads against the movement of the

AFM tip, resulting in the observed reduction in the value of the Young’s

modulus.

It is also noted, from the experimental results, that the Young’s modulus of

samples embedded with PEG-coated beads in the absence of the magnetic

field is less than that of pure collagen with no beads embedded (which was

measured to be 22.27 Pa as reported at the start of this section). This can

be explained by considering the fact that the PEG coated beads do not

form any cross-linking sites with the collagen fibers, and so the number of

cross links in such a sample would be lower than that in a pure collagen

sample. Structural variation due to sample preparation may also play a

role.
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4.4.6 Relatively small changes in apparent stiffness

at micro-scale level may amplify significantly

at macro-scale level

Comparing the changes in stiffness obtained in these experiments conducted

in micro-scale to results in the literature where ECM stiffness is measured

in macro-scale [133] [134] [135], the results of 25% change (induced by the

external magnetic field) in the local apparent stiffness of the ECM samples

may seem less substantial. However, for highly structured heterogeneous

materials such as ECM, it is important to note the differences when mea-

suring the mechanical response of such materials at different length scales.

It has been observed that, for soft biological material, the difference in stiff-

ness at the micro-scale level may amplify with a factor as large 1000 at the

macro-scale level [136]. Since the ECM (made of 2.5 mg/ml Rat Tail Colla-

gen Type 1 from BD Biosciences) used in the work reported in this chapter

has been shown to be very soft [137], it is therefore reasonable to expect

that a change of 25% in the local apparent stiffness of such a material at

the micro-scale level will in fact translate to a much larger change in the

stiffness of the overall sample (i.e., at the macro-scale level). Furthermore,

individual longer ranged protein polymers like collagen with water trapped

within them will contribute to macroscopic tensile resistance. However,

these effects will not be observed in indentation measurements since the

indenter produces local microscopic sample deformations according to the

indenter geometry and the depth of penetration. The local volume of wa-

ter around the indenter therefore contributes very little to the resistance

to deformation, as the tissue surrounding the indenter is under very little

stress and is therefore capable of accommodating these small fluctuations

in water content. A tensile measurement, on the other hand, stresses all

the constituents of the tissue. Trapped water, which is incompressible,

will significantly increase the tissues resistance to deformation during an

applied tensile stress.
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4.5 Concluding remarks

The design of an experiment to investigate the uniaxial local apparent

stiffness of ECM samples using an AFM was presented, and developed an

analytical model to predict the change in the stiffness of such samples due

to the influence of an external magnetic field. Experimental results were

reported demonstrating (i) the effectiveness of this approach for active ma-

nipulation of ECM stiffness and (ii) validity of the analytical model.

The experimental results have demonstrated that the binding between the

embedded beads and the collagen fibres plays a significant role in altering

the local stiffness of ECM. This is due to the fact that beads attached

to the fibers via bioconjugation create substantial additional resistance to

deformation in the fibres when an external magnetic field is applied. These

results suggest the possibility of creating desired 3D stiffness gradients in

in vitro ECM to guide cell migration (i.e., 3D durotaxis).
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Chapter 5

Effect of HMVEC sprouting

behaviour in the modified

ECM

5.1 Introduction

In the previous two chapters, it was shown that applying a magnetic field

through an ECM modified with super paramagnetic beads, can change the

ECM stiffness in the macro and micro scale. In this chapter an investi-

gation was conducted on the sprouting behaviour of human microvascular

endothelial cells (HMVECs) in the proposed modified ECM with a static

constant external magnetic field applied in a certain direction.

Cell migration, proliferation and differentiation rely, to a great extent, on

their microenvironment. Two groups of factors, namely the soluble cues

and the mechanical cues, influence cell behaviour. The soluble cues consist

of chemical growth factors such as the vascular endothelial growth factor

(VEGF), metabolites and dissolved gases, and the mechanical cues involve

composition, architecture and mechanical properties of the extracellular

matrix (ECM).

It has been shown that the stiffness of the extracellular microenvironment,

an insoluble cue, influences many types of cell behaviour. For endothelial

cells (ECs) in particular, which are the primary cells responsible for angio-

genesis, cell migration behaviour is significantly influenced by the stiffness

of the ECM. For angiogenesis, changes in endothelial capillary cell shape
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and function can be produced by changing ECM elasticity, adhesivity or

topography, applying mechanical stresses, or altering cell-generated trac-

tion forces [138] [139] [140] [141] [142] [84]. There has been evidence that

stress-induced distortion of the capillary cell cytoskeleton regulates Rho

activity by controlling its upstream inhibitor, p190RhoGAP which bind to

the transcription factor TFII-I [143] [144]. TFII-I binds to the initiator

(Inr) region of the VEGFR2 gene promoter which is the main receptor for

the growth factor VEGF and essential for angiogenesis. Mammoto et al has

shown that an appropriate level of ECM stiffness may be required for op-

timal VEGFR2 expression and vascular development in vitro and in vivo.

Furthermore, sudden changes in the mechanics of the ECM will cause a

change in the active growth and differentiation of functional vascular net-

works in vivo [145].

Focal adhesion kinase (FAK) is an important signalling mediator between

the cell and its environment (ECM). It has been shown that the deletion

of FAK in isolated primary ECs results in reduced capillary formation and

multiple cellular deficiencies in vitro [146]. The size and number of focal

adhesions (FA) have shown to be good indicators of cell migration dynam-

ics. It has also been observed that the mean size of focal adhesions robustly

and precisely predicts cell motility independently of focal adhesion surface

density [92]. There has also been evidence that cell motility and FAs are

regulated by substrate flexibility. Pelham et al has shown that stiffer sub-

strates produce an increased expression of FAKs such as vinculin, paxillin

and phosphotyrosine [12]. Hence this dependence on substrate stiffness

for cell motility and ECs vascular formations shows that it is possible to

control angiogenesis by varying substrate stiffness.

There are many different ways by which the ECM stiffness can be altered

for the purpose of observing in vitro cell behaviour in an ECM sample

which have been discussed in section 2.4. These reported methods mainly

manipulate soluble cues to vary the initial ECM stiffness. The ECM stiff-

ness after fibrillogenesis is then assumed to constant. However, most in

vivo ECMs have a stiffness that varies with time.

Manipulating the stiffness of ECM by mechanical means offers an alter-

native approach which does not rely on soluble cues. Recent results have

85



demonstrated the possibility of changing mechanical and rheological prop-

erties of composites with highly elastic polymer matrices that are filled

with magnetic particles [104] [105]. The magnetic fields induce a magnetic

moment on each of the micro magnetic particles. This causes a build up

of forces within the polymer matrices. It had been reported that these

materials show significant changes in their mechanical properties under the

influence of magnetic fields. Similarly, the ECM is also a polymer matrix

made up of many carbohydrate polymers attached to glycoproteins to form

proteoglycans [147]. By embedding magnetic beads that bind onto these

polymer chains, the stiffness of the ECM can also be manipulated by an

external magnetic field.

Researchers will be able to study cellular responses to substrate stiffness by

utilising this technique which dynamically alters the mechanical properties

of the ECM. The work done in this chapter adopts this technique of exerting

magnetic forces to magnetic beads embedded in the ECM, to investigate

the reaction of the HMVECs to the induced change in stiffness in their

microenvironment caused by the magnetic beads. This will provide useful

information on the significance of substrate stiffness for HMVEC sprouting

during angiogenesis.

5.2 Material and methods

Magnetic beads were embedded in the ECM and both the ECM and en-

dothelial cells were introduced into a microfludic device described in Section

5.2.2. The magnetic beads are embedded in the ECM via bio-conjugation

between the beads and the ECM fibers as shown in Figure 5.1a. Applying

an external magnetic field on the ECM produces a force gradient (as illus-

trated in Figure 5.1b) on the beads to resist the dislocation of the ECM

fibers due to the migration of ECs. This increases the apparent stiffness in

the vicinity of the ECs. With this approach, it is possible to observe the

changes in sprouting behaviour of ECs when the apparent stiffness of the

extracellular matrix changes.
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(a) Bead Embedded ECM. (b) Force Gradient.

Figure 5.1: Schematic illustration of the proposed approach. (a) The mag-
netic beads are embedded in the ECM via bio-conjugation between the
beads and the ECM fiber. (b) Applying an external magnetic field on the
ECM produces forces on beads.. The magnetic field also collectively pro-
duces a force gradient on the beads to resist the dislocation of the ECM
fibers due to migration of ECs.

5.2.1 Human microvascular endothelial cell culture

Adult human microvascular endothelial cells (HMVEC, Lonza, Walkersville,

MD) were cultured in Endothelial Growth Medium-2MV (EGM-2MV, 2%

serum, Lonza). Media was changed every two days, and cells were kept in

a humidified, 5% CO2 environment at 37oC. HMVECs were passaged once

from passage 6 - 7 using EDTA solution (Gibco, Grand Island, NY). The

HMVECs were delivered into cell seeding channel (a) in the microfluidic

device at 3× 106 cells/ml.

5.2.2 Microfluidic device design

The microfluidic devices (shown in Figure 5.2) were fabricated according

to the design by Farahat et al [148]. Carefully patterned features were

made on the surface of a polydimethylsiloxane (PDMS) substrate by im-

printing with a silicon wafer mold using negative photoresist (SU-8). The

PDMS layer is cut into individual devices and through holes are punched

for the delivery of collagen, HMVECs and media. The PDMS layer was

then plasma bonded onto a glass slide to create the microfluidic device.

This device has 37 slots which allow the HMVECs to respond to a VEGF

gradient and initiate sprouting. The sprouts will appear between the posts

and progress from a region of low VEGF to the opposite channel which has
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high VEGF levels.

(a) (b)

Figure 5.2: Microfluidic device for observation of HMVECs sprouting dur-
ing angiogenesis. (a) The device is constructed from a PDMS layer made
by standard soft lithographic techniques and bonded to a glass slide (b)
The device consists of a central 3D collagen gel matrix (channel b) with
a media channel on either side. The gel channel is bounded by 37 posts
for the growth of endothelial cells. The endothelial cells were seeded in
channel a.

Four permanent magnets, made of an alloy of neodymium, iron and boron

(NdFeB) each sized 5mm by 4mm by 3mm and capable of producing a

magnetic field of 0.65 T at the surface were placed on the cell seeding side

of the microfluidic device. The magnets were located approximately 1.4

mm away from the EC sprouting region as shown in Figure 5.3b.

5.2.3 Embedding beads in ECM

To embed beads in the ECM with bio-conjugation, magnetic beads were

prepared with a coating that has a good affinity with the collagen fibers to

form a strong attachment. Similar approach as described in section 3.4.1

was used with streptavidin coated magentic beads procured from Bangs

Laboratory, IN, USA to enable bio-conjugation with the collagen fibers

[115].

Once fibrillogenesis has occurred the magnetic beads and the collagen fibers
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(a) (b)

Figure 5.3: Experimental Setup (a) Four 5mm by 4mm by 3mm
neodymium, iron and boron (NdFeB) alloyed magnets are placed next to
the HMVEC monolayer with their poles facing the collagen channel. A
VEGF gradient was added with the cell channel having 20ng/ml and the
opposite channel having 40ng/ml. (b) View of the posts and the HMVEC
monolayer with sprouts moving through the gel. The location of the per-
manent magnet is shown relative to the microfluidic device.

were observed by reflectance microscopy. Figures 5.4a and 5.4b show the

reflectance microscopy image of the beads. It can be observed from the

reflectance images that after fibrillogenesis, the ECM consists of a network

of magnetic beads (bright spots) and collagen fibers (bright lines).

5.2.4 Tissue culture in microfuildic device

The collagen was prepared according to the recipes listed in Table 5.1. All of

the samples contain 2.5mg/ml of Rat Tail Collagen Type 1 (obtained from

BD Biosciences, NJ, USA). The streptavidin-coated magnetic beads were

mixed into the collagen mixture. The collagen with a bead concentration

of 0.075 mg/ml, was prepared according to the Table 5.1. Another collagen

mixture without magnetic beads was also prepared as shown in the second

column of Table 5.1 to serve as a control experiment.

The collagen - beads mixture was thoroughly vortexed for two minutes

in an ice bath until a homogeneous solution was formed. 20 µl of the

mixture was then pipetted into the central 3D collagen gel port (channel
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(a) (b)

Figure 5.4: Reflectance image showing the location of superparamagentic
beads embedded in collagen. (a) Collagen - Bead matrix in the microfluidic
device with posts. (b) Image obtained by 60x oil immersion objective lens
in reflectance mode. The bright lines indicate collagen fibers and the bright
spots are magnetic beads.

Table 5.1: Recipes for collagen preparation.

Components Without magnetic beadsWith magnetic beads
(0.075 mg/ml)
(Streptavidin coated)

Collagen
(4.62 mg/ml)

0.216 ml
(Diluted to 2.5 mg/ml)

0.216 ml
(Diluted to 2.5 mg/ml)

Water 0.137 ml 0.131 ml

PBS (10x) 0.325 ml 0.325 ml

NAOH
(0.5 N)

0.244 ml 0.244 ml

Beads
(5 mg/ml)

0 ml 0.006 ml
(Diluted to 0.075 mg/ml)

Total 0.400 ml 0.400 ml

b) carefully so that no visible air cavities were formed. For gelation, the

devices were placed in an external incubator at 37◦C and 5% CO2. To

achieve self-assembly of collagen molecules into fibers and binding of beads

to the collagen fibers, the samples were placed in the incubator for at least

22 hours to ensure that gelation occurred throughout the entire collagen

strip.
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Once gelation had occured, HMVEC cells were delivered into channel (a)

of the microfuildic device and 80 µl of media (EGM-2MV) was added

with 20 ng/ml and 40 ng/ml concentrations of VEGF (VEGF-A isoform

VEGF(165), R&D Systems, Minneapolis, MN) to channel (a) and (b) re-

spectively. The media in both channels were changed every day with the

20-40 ng/ml gradient maintained for a period of 4 days.

5.2.5 Magnetic force gradient

To compute the forces experienced by superparamagnetic particles, it is

necessary to first compute the magnetic field, its magnetic field gradient and

also obtain the magnetic moment of the beads msat. The force experienced

by a single magnetic bead is given by the formula [11]

F = ∇ (msat •B) (5.1)

The magnetic field equation along the x-axis for a cuboid permanent mag-

net is given by [113]

Bx (x) =
Br

π

[

tan−1

(

ab

2x
√
4x2 + a2 + b2

)

−tan−1





ab

2 (c+ x)
√

4 (c+ x)2 + a2 + b2







 (5.2)

where a, b and c are the height, width and thickness of the permanent

magnet respectively.

The magnetic field distribution along the x axis for the permanent magnet

that was used in this experiment is shown in Figure 5.5a, with a = b = c = 5

mm and Br = 1.2 T. The magnetic field experienced by the magnetic beads

in the ECM at 1.4mm away from the magnet is approximately 0.275 T (2750

Gauss).

According to Figure 5.5c, this produces a magnetic moment (msat) of

70emu/g. With this information and by using Equation 5.1 it can be

calculated that each of the superparamagnetic beads experience a force
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(a) (b) (c)

Figure 5.5: Magnet field and force analysis of BioMag superparamagnetic
particles (a) Magnetic field generated, (b) Magnetic force on individual
beads. The length of arrows and the grayscale intensities indicate the
magnitude of force acting on each individual bead. (c) Magnetization of
BioMag particles. Adapted from figure provided by Bangs Laboratory, Inc.,
U.S.A.

of about 0.32 nN towards the permanent magnet at a distance of 1.4 mm.

This force decreases as the distance between the magnetic beads and the

magnet increases. The reduction is shown in the simulated force gradient

in Figure 5.5b. The permanent magnet is attached to the channel with the

cells (channel a) and a VEGF gradient of 20ng/ml to 40ng/ml is added as

shown in the Figure 5.3b.

In order to visualise the stresses exerted on the ECM by such forces, a

simulation using COMSOL was done to investigate the von Mises stress

produced by two layers of magnetic beads in the microfluidic device. The

first layer has 15 beads at 50 µm away from the cells and second layer has

33 beads at 100 µm away from cells as shown in Figure 5.6a.

5.2.6 Quantification of endothelial cell sprouts

All the devices were imaged every 24hrs for 4 days using a phase contrast

microscope and on day four the devices were imaged using fluorescence

microscopy. The images were analysed by manually measuring the number

of sprouts per device and sprout height. For each scenario, 8 devices were

analysed and all 37 slots where the endothelial cells sprouted were imaged,

resulting in a total of 296 slots per scenario. The conditions are summarised

in Table 5.2. The average number of sprouts with heights above 100µm per

device was calculated together with their standard deviations and reported
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(a) (b)

Figure 5.6: Simulation of forces on magnetic beads in the ECM (a)An ex-
ample of magnetic beads embedded in the ECM. The magnetic beads are
arranged in two layers experiencing forces generated by a magnetic field
which are shown by the arrows. The layer further away with 33 beads ex-
periences a lesser force compared to the layer with 15 beads which describes
a gradient of forces exerted on the ECM (b)von Mises stress in the ECM
due to the gradient of magnetic forces produced by the two layers of mag-
netic beads. It can be seen that there are varying stresses exerted in the
ECM gel due to the forces from the magnetic beads. The red areas indicate
regions of higher stress. These regions are situated close to the sprouting
area hence increasing the amount of prestress present in this area.

in the results (Figure 5.8).

Table 5.2: Experiment scenarios Conditions of experiments and the
number of devices used. Each scenario was done twice.

Scenario No. of devices Bead concentration Magnetic field

1 4 0.075 mg/ml off

2 4 0.075 mg/ml on

3 4 0 mg/ml off

4 4 0 mg/ml on

n = 2

5.2.7 Cell immunofluorescence staining

The sprouts were fixed at day 4 with 4% parafomaldehyde into both the

HMVEC channel and the opposite media channel and incubated at room

temperature for 20 minutes. The devices were washed thrice by delivering

1x PBS into both channels. The cells were permeabilized with 0.5% Triton
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X-100 for 10 mins in room temperature. Focal adhesions were stained with

primary antibody anti-vinculin (Sigma V9131) overnight in 4oC, washed

five times with wash buffer (0.5% BSA in PBS) and secondary antibody

goat anti mouse (Invitrogen A21123) for 2 hours. After washing with wash

buffer 3 times, cell nuclei and the actin filament were stained with 405

hoechst (Invitrogen H1399) and 488 phaloidin (Invitrogen A12379) at 4oC

overnight. Images were obtained using a phase contrast microscope, Olym-

pus CKX 41 and a confocal microscope, Olympus IX 81. Fluorescent image

processing was done using IMARIS R© software to extract the different im-

munofluorescence channels from the image data. A two-tailed, non-paired,

Student’s t-test was used to compare the number of focal adhesions in each

scenario.

5.3 Results and discussion

5.3.1 Sprouting number and height of sprouts

Figure 5.7 shows the phase images taken on Day 1 and Day 4 of the experi-

ment. From Figure 5.7b it can be observed that, although a VEGF gradient

of 20ng/ml to 40ng/ml was added to the device, very little sprouting oc-

curred during the first four days. It can be clearly observed that there was

a higher level of angiogenic activity on Day 4 (Figure 5.7d), for the case

where the device was exposed to an external magnetic field. The amount

of cell invasion into the collagen with beads and the magnetic field has

markedly increased in this case.

Lumen formation has been observed to be highly dependent on substrate

stiffness [149]. Endothelial cells increase their spreading and extension

formation with increasing stiffness of the ECM [150]. The chart in Figure

5.8 shows the avergage sprout height and number of sprouts in each of the

scenarios in this study. From this chart it can be seen that the device

with the magnetic field and magnetic beads contains the largest number

of sprouts that are greater than 100µm on Day 4. This indicates that the

forces produced by the magnetic field on the magnetic beads had resulted
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(a) Day 1 (without Magnetic field). (b) Day 4 (without Magnetic field).

(c) Day 1 (with Magnetic field). (d) Day 4 (with Magnetic field).

Figure 5.7: Sprouting behaviour and structure at different magnetic con-
ditions. Images of ECs migration on Day 1 and Day 4 in collagen gel with
beads, without magnetic field (a and b) and with magnetic field (c and
d). More sprouts have occurred in (c) and (d) indicating a preferential
HMVEC sprouting condition where the beads exert magnetic forces within
the ECM.

in an increased stiffening for HMVEC sprouting.

(a) (b)

Figure 5.8: Quantification of the extent of sprouting in microfluidic devices.
(a) Height (h) of each sprout is measured and counted. (b) Average number
of sprouts that have heights above 100µm for each scenario were measured
on Day 4.

The active signals 405 hoechst blue and 488 phaloidin green (produced

from the confocal image in Figure 5.9) indicate no toxicities inflicted by the

magnetic beads on the ECs during their proliferation stage. It can hence

be concluded that the embedding of beads in the ECM did not impact EC

95



proliferation and migration as compared to that in pure collagen.

It can also be verified that the cell density (number of blue dots in Fig-

ure 5.9a and Figure 5.9b) along the monolayer was consistent between the

two sets of samples. The green colour (from the stains for the actin fila-

ment) shows the cell structure of the ECs during angiogenesis. From the

reflectance images shown in Figure 5.9c and Figure 5.9d it can be seen that

the brighter areas, which indicate higher concentrations of collagen density,

corresponded to locations of the tip cells [151].

Figure 5.9 shows two sets of images of the microfluidic channel taken on

Day 4. It can be seen that on Day 4 the ECs in the microfluidic device

under the influence of the magnetic field with magnetic beads had migrated

further into the region of higher VEGF concentration, as compared to the

ECs in the microfluidic device without the magnetic field. Cell spreading is

known to be in direct relation with substrate stiffness. Particularly, there

is a significant reduction in cell spreading on soft substrates compared to

cell spreading on rigid substrates [152]. It can be seen from Figure 5.9a

and 5.9b that the leading tip cell is more spread with increased filopodia

extrusion in the device with magnetic field and magnetic beads which is

indicative of a stiffer substrate in 5.9b than 5.9a.

5.3.2 HMVEC focal adhesion numbers and size are

dependent on amount of prestress in ECM

Vinculin staining was done on Day four to investigate the effect of the mag-

netic field on HMVEC focal adhesions. Focal adhesions (FAs) are areas on

a cell membrane that transmit force and regulate signals. They medi-

ate Cell-ECM adhesions and interactions such as anchorage. FAs function

as mechanical linkages to the ECM and serve as a biological signalling

complexes that concentrate and direct many signalling proteins through

integrin binding and clustering [93]. Vinculin is known to be one of the

primary proteins that exists in FAs [94]. Due to their dynamic nature, FAs

may increase or decrease in size depending on their constituent proteins.

These proteins act in response to the external microenvironment, one of the
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(a) Confocal image of ECs without
magnetic field.

(b) Confocal image of ECs with mag-
netic field.

(c) Reflectance image of collagen gel
without magnetic field.

(d) Reflectance image of collagen gel
with magnetic field.

Figure 5.9: Confocal images of ECs on day 4. The nucleus is stained with
405 hoechst blue and the actin filament is stained with 488 phaloidin green.
Greater expression of actin stress fibers were observed in (b) compared to
(a). The leading cell’s (tip cell) filopodia extensions are more in number
and spread in (b) compared to (a). Brighter areas in the reflectance images
(c) and (d) show higher collagen concentrations where the tip cells and
lumen walls are located.
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stimuli being matrix stiffness. FAs are able to sense the stiffness of the ex-

tracellular matrix and act according to it [96]. A stiffer matrix contributes

to more FAs. Furthermore focal adhesions on stiffer substrates are static,

stronger, larger and more stable [12]. In this work, vinculin was stained on

sprouting HMVEC to observe the effect of FA formation in the different

sets as described in Table 5.2.

The red fluorescent vinculin stained spots shown as in Figure 5.11a were

counted using an Imaris spot counter imaging tool and the results are

shown in Figure 5.11b. An IMARIS measuring tool was used to measure

the largest diameter of FA in each scenario as shown in Figure 5.11c.
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(a) (b)

(c) (d)

Figure 5.10: HMVECs stained with vinculin to observe Focal adhesions
(red) and nucleus stained with Hoechst (blue). (a)Focal adhesion stain-
ing of ECs on Day 4 without a magnetic field and ECM with magnetic
beads, (b)Focal adhesion staining of ECs on Day 4 with a magnetic field
and ECM with magnetic beads, (c)Focal adhesion staining of ECs on Day
4 without a magnetic field and ECM without magnetic beads, (d)Focal
adhesion staining of ECs on Day 4 with magnetic field and ECM without
magnetic beads.
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(a) (b)

(c)

Figure 5.11: Quantifcation of focal adhesions according to numbers and
size. (a)Example image of an Endothelial cell stained with vinculin in
ECM with beads and with magnetic field, (b)An example of FA counting
done with IMARIS spot counter imaging tool, (c)Diameter of the FAs
were measured using IMARIS measuring tool. The largest diameters were
selected and measured.

The results from the number of FAs and largest diameters of FAs in each

scenario are shown in Table 5.3. From Table 5.3 it can be seen that the

device with a magnetic field applied produced more and larger FAs. This

result implies that the magnetic bead embedded ECM with a magnetic field
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provided a stiffer substrate for HMVECs to adhere to. The higher number

and larger size of focal adhesions on the leading cell indicate that they are

more stable and stronger, hence leading to higher migration and angiogenic

activities [92] as shown by the sprout heights in Figure 5.8.

Table 5.3: Focal adhesion analysis

Set No. Total number of FAs Maximum diameter of FAs (µm)

Mean Variance P value

1st
largest
diameter

2nd
largest
diameter

3rd
largest
diameter

1 110 25
0.0009*

2.1 2.0 2.0

2 164 35 3.1 2.9 3.0

3 75 20.9
0.7277

1.3 1.4 1.3

4 78 20.8 1.5 1.2 1.4
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5.4 Concluding remarks

It was shown that the application of a magnetic field on the embedded beads

significantly affected the activities of ECs. Embedding these particles in

the ECM creates a crosslink zone as the beads bind onto the collagen fibers,

resulting in an increase in the stiffness of the collagen. More significantly,

when the magnetic field is present, a bead located approximately 1.4 mm

away from the permanent magnet is estimated to exert a force of 0.12 nN.

Collectively such forces in general oppose the cell traction forces (estimated

to be up to 57 nN for an EC [8]) as ECs move away from the monolayer

and into the collagen gel. This resistance can be considered as an increase

in the apparent stiffness of the ECM in the vicinity of the migrating cells.

This effect has been shown in Figure 5.6b when the forces by two layers

of magnetic beads were simulated and the region of high stress was shown

to be near the area of sprouting HMVECs. Therefore the cells tend to

migrate preferentially in such an environment, since ECs are known to have

increased motility and spreading in areas with higher stiffness [153].

It has been observed in previous literature that a reduction in collagen

density would lead to a significant decrease in the expression of vinculin

[154]. From the immunofluorescent staining results reported in section

5.3.2, vinculin recruitment in focal adhesions was observed to increase by

49% in the device with magnetic field during angiogenesis. This could be

due to the deformation and movement of collagen when the beads were

pulled closer towards the permanent magnet which resulted in an area

of higher collagen density near the HMVEC sprouting region within the

microfluidic device.

The results from this work have demonstrated the possibility of creating

desired stiffness gradients in an ECM in vitro to influence cell behaviour.

In order to practically apply this approach of active ECM stiffness manipu-

lation, further experimentation and analysis to clarify various issues. First,

the effect of a number of variables on the stiffness of the bead-embedded

ECM remains to be explored; these variables include bead concentration,

size and placement of the magnets and their distance to the ECM sample,
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and the strength of the magnetic field, etc.

Second, although magnetic beads have been used in many applications

(both in vivo and in vitro), their effect on the actual biological behaviour

of cells are not yet fully understood. This is particularly true when an

ensemble of beads is embedded in the ECM via bio-conjugation. It may be

argued (based on available experimental results, e.g., [121] [122] [155]) that

the bio-compatibility and toxicity of these magnetic beads with respect to

its biological environment solely depend on the coating on the surface of

the magnetic particles. Hence it is essential to verify that such an ensemble

of beads do not directly interfere with the natural behaviour of cells.

103



Chapter 6

Localisation of magnetic

fields

6.1 Introduction

Results from the previous chapters show the possibility of changing the

stiffness of a modified ECM and affecting endothelial cell sprouting be-

haviour during angiogenesis. In this chapter, a novel approach to generate

a micromagnetic field is introduced. This approach uses a specialized elec-

tromagnetic needle (EMN) and collectors.

Vascularisation by endothelial cells (EC) is a key component in tissue engi-

neering and is essential to the organisation and architecture of new tissues.

Cellular differentiation, proliferation and apoptosis of ECs is dependent

on the bio-chemical and mechanical properties of the extracellular matrix

(ECM). In particular, ECM stiffness has been shown to affect EC growth

rate and vascularisation. Embedding super paramagnetic micro beads in

the ECM and applying magnetic field gradients induces stress in the ECM.

Consequently, as the apparent stiffness sensed by the ECs changes, the

cell growth rate is enhanced or reduced, hence simulating or inhibiting

angiogenesis. However, the growth direction of the angiogenesis is only

determined by biological behaviour and happens in a uncontrolled man-

ner. This chapter aims to address this issue and engineer an approach to

influence the growth of vascular networks. Vascularisation is driven by a

single leading cell (tip cell) which secretes bio-chemical cues to the follow-

ing cells. Manipulating the path and diffusion of the leading cell would

result in a controlled directional growth and thus enable engineering of ar-
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bitrary networks in tissues. In the previous chapters, streptavidin-coated

micro beads have been attached to collagen fibers. By utilising localised

magnetic fields, these micro beads can be trapped and moved to arbitrary

positions. If strong localised fields on a micro scale can be generated, micro

magnetic beads can be trapped in the vicinity of the leading cell. This will

provide a certain degree of control over the local ECM stiffness near the

cell and influence its migration direction.

Directing the beads in the stiff ECM requires strong magnetic forces and

demands novel concepts of micromagnetic field generation. Section 2.6 has

described a few methods used to create high magnetic fields and forces

to trap and move magnetic particles in fluid medium. In this chapter

a system of equivalent magnetic dipoles and COMSOL R© were used to

analyse the magnetic fields produced by conical shaped electromagnetic

needles. This chapter will describe novel electromagnetic needle designs

and implementations that will produce high field gradients and localised

magnetic field concentrations. This chapter also describes the experimental

results performed to obtain the force applied by an electromagnetic needle

on a single magnetic bead.

6.2 Magnetism

Magnetic fields are generally created by two sources; permanent magnets

and moving electric charges. Permanent magnets are made up of particles

containing non-zeros intrinsic magnetic moments. They create a constant

magnetic field.

Magnetic fields can also be generated dynamically by moving electric charges

based on Ampere’s Law, which states:

∮

C

B · dl = µ0

∫

S

J · dS (6.1)

where J is the current density passing through the surface area, S, B is the

magnetic field, µ0 is the magnetic constant and C is the closed curve around

S. Ampere’s Law states that every electric current generates magnetic fields
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and that the strength of the magnetic field is defined by the electric current

density. For electric conductors, this current density is obtainable by J =
I

R2π
where I the current and R is the radius of the conductor cross-section.

Applying Amperes Law to a single conductor yields:

B =
µ0I

2π
· 1
r
for r > RConductor (6.2)

Magnetic fields are vector fields which may be described at any given point

by their direction and magnitude. There are two types of fields referred

to as magnetic fields; the H-field and B-field. Both fields are closely re-

lated but distinguishable from each other. Historically, H-field is known

as ’magnetic field’. However, for many purposes utilising the magnetic B

field is more practical. When any material is exposed to a magnetic field,

its response depends on its intrinsic magnetic properties. This response

results in the magnetisation (M) of the material which is related to the

material’s magnetic permeability, µ, hence obtaining the relation between

H-field and B-field. From here on the term ’magnetic field’ will refer to the

B-field.

B = µ(H +M) (6.3)

If two magnetic fields overlap, their vector fields can simply be added utilis-

ing the principle of superposition. With this powerful relation, it is possible

to render strong concentrated localized magnetic fields by skillfully placing

magnetic fields which cancel each other out or add up.

This has two important implications for magnetic fields. First, the mag-

netic field decrease with ≈ 1
r
, where r is the distance away from the source

of magnetic field. Second, by superposing fields, the field strength can be

increased. Considering a coil, through superposition, a constant magnetic

field is created in the centre axis of the coil.
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(a) Direction of the magnetic field gen-
erated by a coil. The arrows are scaled
linearly.

(b) Absolute magnetic field strength.
High field strengths are coloured red,
low field strengths are coloured blue.

Figure 6.1: Magnetic Field generated by a coil.

Figure 6.1 shows the field generated by a coil in a physics simulation. Figure

6.1(a) shows the direction of the magnetic field plots and Figure 6.1(b) the

absolute value of the magnetic field. As expected, the magnetic field is

strongest where both fields overlap and superpose.

By using the principle of superposition, magnetic fields generated using

different geometries can be plotted by using a method based on a system

of equivalent magnetic dipoles [156]. An elementary magnetic dipole of

volume V ′, has a magnetic moment, dm,

dm = MdV
′

Figure 6.2: Elementary magnetic dipole.
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This magnetic moment produces a field at point P, the elementary magnetic

scalar potential,

dϕm =
1

4π

Rdm

R3
=

1

4π

RM

R3
dV

′

(6.4)

Where R =
∣

∣r− r
′
∣

∣ is the distance from the point where the magnetic field

is being calculated to the elementary source, and R = r− r
′

.

After integration, the magnetic scalar potential is obtained as,

ϕm =
1

4π

∫

V

RM

R3
dV

′

(6.5)

Subsequently the magnetic field vector can be expressed as

B = −∇ϕm (6.6)

6.2.1 Magnetic material properties

When exposed to magnetic fields, all materials interact with the field. This

interaction with the magnetic field depends on an intrinsic material prop-

erty. There are three main types of magnetic materials; ferromagnetism

and paramagnetism and super paramagnetism. Magnetic materials are

typically characterised by their hysteresis curve as shown in Figure 6.3.

The hysteresis loop represents the materials response to an external mag-

netic field, B, in terms of its own magnetisation, M. The magnetisation M,

is the materials response to the applied magnetic field.

The nominal values of saturation field, BS, the remanence, BR and the

coercivity, HC , characterize the mangnetic properties. Figure 6.3 shows

the hysteresis curves for three types of magnetism mentioned earlier. The

curve plots the materials magnetisation, M , that results from an externally

applied B-Field. The highest magnetisation possible is called saturation,

BS. Ferromagnetic materials exhibit a high magnetisation at their sat-

uration. When the B field is removed, the material retains part of the
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magnetisation. This is the remanence, BR. In order to remove the rema-

nence, a negative B field of the strength of the materials coercivity, HC ,

has to be applied. Depending on the strength of the materials’ remanence,

hard magnetic materials typically have high remanences and soft magnetic

magnetic materials have low remanences.

Contrary to ferromagnetism, paramagnetism and super paramagnetism ex-

hibit neither remanence nor coercivity. Their magnetisation directly de-

pends on the magnetic field and differs only in terms of their saturation

magnetisation. Therefore the magnetisation is independent of previously

applied magnetic fields. As an approximation for low field strengths, the

material’s magnetic permeability, µ and the closely related susceptibility

χ = µ − 1 provide a linear relation between the H field and the magneti-

sation M : M = µH . Often µ is described relative to the vacuum perme-

ability µ0: µr =
µ
µ0
. Therefore Equation 6.3 can be simplified to:

B = µrµ0H (6.7)

6.2.2 Magnetic forces

When a material is magnetised, it starts interacting with the magnetic field

in the same way that two magnets interact. Their attraction force depends

on the magnetic field and the magnetisation of the material. This relation

is mathematically described by:

F = −∇(−M ·B) (6.8)

Magnetic fields decrease with 1
r
. The gradient of the field and thus the

acting force will decay with ≈ 1
r3
. This requires the field source to be

either very strong or very close in order to magnetically manipulate ob-

jects, thus a major challenge when designing devices for magnetic micro

manipulation.
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Figure 6.3: The hysteresis curve characterises the behaviour of materials
when exposed to a magnetic field B. The magnetic field B is plotted against
the magnetisation of the material. When a magnetic field is applied fer-
romagnetic materials exhibit a high magnetisation at their saturation. If
the B field is removed the material retains part of the magnetisation. This
is the remanence and if the inner magnetisation is completely removed a
B field of the strength of the materials coercivity has to be applied. Con-
trary to ferromagnetic materials, paramagnetic and super paramagnetic
don’t exhibit any remanence and differ only in terms of their saturation
magnetisation

6.2.3 Magnetic needles

A new approach for micro manipulation has been developed by using sharp-

ened electomagnetic needles to generate microscale magnetic fields. In this

approach, micro magnetic fields are generated and super paramagnetic mi-

cro or nano particles are trapped and arbitrarily manipulated [157]. Mag-

netic needles present many advantages in the field of magnetic micro ma-

nipulation because they are inexpensive, relatively easy to set up, very

versatile and high forces can be applied.

In a magnetic needle, a solenoid is wrapped around a ferromagnetic core.

Since the magnetisation, M , of ferromagnetic materials is high, high mag-

netic field strengths are generated. Figure 6.4 shows the schematic cross

section of a magnetic needle. By using an external electric current, I and

a high relative permeability, µr, a strong magnetic field is generated in the

ferromagnetic core. The generated field at the sample is a result of the

geometry of the core and in particular of the tip. For a single coil, the
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Figure 6.4: Schematic cross section of a magnetic needle. Magnetic nee-
dles consist of two parts: a ferromagnetic core and a electrical conductor
wrapped around the coil. Through the external electric current, a mag-
netic field is induced in the ferromagnetic material. The magnetic field in
the core is very strong due to the magnetisation of the ferromagnetic core.
Thus, the utilised field at the sample is a result of the form of the core and
in particular, of the tip

tip size determines the resulting field [158]. If the position of the needle

relative to the sample is changed, the magnetic sample will follow the field

gradient. Therefore the direction and magnitude of the force acting on the

sample are adjusted and controlled by the position of the needle and the

current through the conductor.

State of the art in electromagnetic needles

Electromagnetic needles (EMNs) were first proposed by B. Matthews et

al. [157]. Matthews proposed a new temperature controlled electromag-

netic device to generate custom magnetic fields. Contrary to previous bulky

micro manipulators they developed an easily portable, cheap device which

could produce high field gradients, high field strengths and thus high forces

(up to 8nN at the tip) in order to micro manipulate micron and sub mi-

cron particles. At the same time they could generate localised fields on

a very small scale and found the generated field to be closely related to

the shape and size of the EMN tip leading to an optimisation challenge.

Utilising a multi physics engine in order to simulate different EMN designs

Xiang et al. [158] found ideal design parameters for the EMNs designed by

Matthews which allowed them to generate maximum field gradients and
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thus maximum forces. In 2010 Zhang et al. [159] addressed the issue of

active control of the micro beads by designing a force-feedback control sys-

tem that controlled the position of the particle. But instead of utilising a

single needle they developed a quadrupole magnetic setup with 4 tips. All

presented EMNs have the inherent disadvantage of proximity. If the needle

is placed too far away from the sample field the gradients decrease quickly

and the application of localised fields and forces becomes impossible.

In order to counter this challenge a different approach was engineered by

T. Fallessen et al. [160] in 2010. They introduced a setup of two electro-

magnets. The setup creates a nearly uniform distribution of magnetic field

below the gap of the two electromagnets. This enables micro manipulation

at a distance of up to 10 µm. However, the forces applied are relatively

low (12 pN), compared to EMNs. Furthermore, the device is unable to

perform manipulations on single magnetic beads due to its high field dis-

tribution. Therefore, this approach is unable to generate sufficiently small

field (or large forces) required to micromanipulate single magnetic beads,

unlike magnetic needles.

6.2.4 Magnetic particles

In order to induce arbitrary strains into the ECM, super paramagnetic

particles are added into the ECM similar to the previous chapters. Super

paramagnetic particles are chosen for their excellent magnetic properties.

If external magnetic fields are applied they exhibit a very strong magneti-

sation (see Figure 6.5) and thus the application of high magnetic forces

becomes possible. In addition they do not retain any magnetisation when

the field is removed. Therefore the induced strain is controlled only by the

magnitude of the magnetic field. When such particles are implemented, two

important challenges need to be addressed: The interaction of the particles

with the biological system and their attachment to the existing structures

in order to transfer the induced forces to the biological system.

These two challenges were resolved by coating the particles with Strepta-

vidin. Streptavidin contains an Arg-Tyr-Asp (RYD) amino-acid sequence

that mimics the Arg-Gly-Asp (RGD) receptor domain of fibronectin. This
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Figure 6.5: Magnetic hysteresis curve of the utilised super paramagnetic
streptavidin-coated magnetic beads, Bangs Laboratories (Fishers, IN).

sequence enables streptavidin to affix to collagen-rich areas. The comple-

mentary shapes, charges, polarity, and hydrophobicity of the streptavidin

and the collagen fibers permit multiple weak interactions which, in combi-

nation, produce a tight binding [115] [116] [117]. Since the super param-

agnetic particles are attached to the ECM fibers, the forces applied to the

magnetic field are transferred to the ECM and thus the apparent stiffness

is changed at the micro and macro scale.

6.3 Simulation of magnetic fields and forces

generated by electromagnetic needle (EMN)

configurations

Electromagnetic needles were chosen for their highly localised magnetic

fields. A simulation was done to determine the magnetic field strength and

the forces acting on a single super-paramagnetic bead. The goal in the

simulations is to design setups, which are able to exert significantly higher

forces than the existing EMNs. Consequently the design of the setup was

revised and new setups were designed in order to exert higher forces on the

particles. These setups are simulated and discussed in section 6.3.3.
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Section 6.2 introduced a method of obtaining the resultant magnetic fields

using different geometries of permanent magnets by using a system of equiv-

alent magnetic dipoles. This method is used to simulate the field generated

by the electromagnetic needle tips. The electromagnetic needle is first mod-

elled as a cone as shown in Figure 6.6. The cone is separated into many

discs. Each disc represents one dipole element and the resultant scalar mag-

netic potential (ϕm) of the cone with a particular magnetization direction

at point P is obtained by integrating each element down the apex.

Figure 6.6: Magnetic field determination from conical geometries

ϕm =
M

4π

∫ x2

x1

∫ y2

y1

∫ z2

z1

(x− x
′

)cos(α)− (y − y
′

)sin(α)

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2
dx

′

dy
′

dz
′

(6.9)

The simulations were conducted with the AC/DC Simulation package of

COMSOL Multiphysics. The magnitude of the force exerted on a single

bead is determined by:

1. Magnitude of the magnetic field

2. Gradient of the magnetic field

The magnetic field magnitude increases the magnetisation of the particles

and results in a stronger interaction between field and magnetic particles.

The magnetic field gradient determines the interaction between particles
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and field: Magnetic particles are pulled towards regions of higher magnetic

fields. High magnetic field strengths and gradients lead to higher forces

acting on individual magnetic beads. Therefore, the area near the tip of

the needle where the magnetic field strength and gradient are strongest,

will induce the highest forces on magnetic beads. Ideally, the tip of the

needle should be in close contact with the magnetic particles. However, in

our microfluidic device, the particles are embedded in collagen gel which

is constrained in a device with a glass lid of 250 µm thick was bonded to

it. Hence, the EMN tip is separated from the magnetic particles by this

distance. To determine the force acting on the magnetic particles in the

device, simulations were performed with consideration of the actual possible

distances in which the needle can be placed away from the particles.

6.3.1 Single EMN

The first prototype electromagnetic needle was designed and sent for fab-

rication in ETH Zurich. Before implementing and operating the needle,

estimations of the forces that it can generate are required. A COMSOL

simulation of the needle was done in order to estimate the resulting field

acting on the super paramagnetic beads. Then the calculation of the force

acting on the beads was done according to Equation 6.8.

For the EMN a 2D axis rotational model was chosen. In the 2D axis

rotational model the entire geometry of the needle is represented while

utilising a 2D simulation. The model was set up in COMSOL as shown

in Figure 6.7 (a) which shows the the location of the tip, above the ECM.

High and low field strengths are coloured red and blue respectively. The

sample position is indicated in the Figure 6.7 (b).

Therefore, it can be seen that the simulated EMN concentrates the mag-

netic flux at its tip. High fields and gradients are simulated around the

tip’s vicinity. At a sufficient distance away, the field is decreased at a rate

of 1
h
, where h is the distance from the needle tip.

The simulation results (Figure 6.7 (b)) show fields of up to 219mT at the

tip of the needle. Note that in practice, there may be a broader distribu-
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tion of the field at the tip as the tip is more rounded. Simulation results

show that at the working distance of 250µm, the maximal field strength is

21.5mT .

(a) COMSOL setup of the simula-
tion.

(b) Result of the simulation.

Figure 6.7: (a) A sketch of the geometry of EMN tip. (b) Magnetic B-
Field generated by the EMN fabricated by the ETH Zurich. Strong fields
are coloured red, weak blue. The maximal field strength is achieved at the
tip of the needle. The sample is indicated at a distance of 250 um from the
tip.

6.3.2 Force calculation single EMN

From the B-field simulated with COMSOL, the forces on the magnetic

beads can be determined through the equation F = ∇(M ·B) (see Equation

6.8). The magnetisation, M, of the particles is dependant on the B-Field

acting on them. M is approximately linear to the field for field strengths

less than 100mT (Figure 6.5). Therefore, M is calculated by:

M = Vparticle × ρFe2O3
×∆mB (6.10)

where ∆m the gradient of the hysteresis curve of the particles.

The relation of the B-Field and the magnetisation per mass is represented

in the hysteresis curve (Figure 6.5). The total force acting on a single

bead is calculated using the above equation. Figure 6.8 shows a plot of the

results of the calculations vs the position of the beads.
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At the working distance below the glass lid of 250µm the maximal total

force is Ftot = 19.6pN . This force is directed towards the tip of the nee-

dle.

Figure 6.8: Total force acting on a single particle in the sample.

6.3.3 Single collector configurations

The results described in the section above showed that the forces exerted

on the beads were relatively low compared to the force at the needle tip.

For this application, it is necessary to design a setup which reduces the

force decay over distance.

A non-field-generating needle tip (collector) is introduced to address this

issue. This second needle tip operates as a field collector, allowing higher

field strengths to be applied at longer distances. In a setup with multiple

needles the field superposition described in section 6.2 is used to create the

desired effect. Simulations were performed to quantify the improvements

that can be achieved in a magnetic setup using a field collector. Figure

6.9 shows this setup. The field generated by the first generating needle tip

(right) is collected by the second needle (left). The only difference between

the EMN and the collector is that the collector is the core of the EMN.

The collector and EMN core geometry are identical. As seen in section

6.3.1 the field generated by the first EMN is highly localised. Therefore,

for significant field interactions between the two needle tips, they need to

be placed at distances in order of microns (10µm - 500µm). The relevant

parameters for the field interaction were identified: First the distance be-
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Length Core Diameter Opening angle Tip radius

20cm 0.5mm 16.7◦ 76.8µm

Table 6.1: Measures of the needle proposed by Xiang

tween the needle tips and second the angle β between the vertical axis and

the centre axis of the EMNs.

Figure 6.9: Magnetic Setup with a single collector. The first needle on
the right side generates a magnetic field which is collected by the second
non-generating needle. The tips of the needles are separated by distance
a. Both needles are tilted at an angle β from the horizontal.

In order to observe the collector’s influence on the magnetic field and forces,

simulations were performed to calculate the magnetic field and magnetic

force generated from the setup in Figure 6.9. In the simulation a numeri-

cally optimised EMN as proposed by Xiang et al [158] is implemented in

COMSOL with the measures shown in Table 6.1. Unlike work performed in

Xiang et al which optimized the needle geometry, this work chose to opti-

mize the position and orientation of the needles relative to each other.
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(a) COMSOL Simulation of the
magnetic B-Field generated by a
single EMN with a collector. The
generating needle is on the right.
High field strength is coloured red,
low field strengths is coloured blue.

(b) COMSOL Simulation of the
magnetic force acting on a single
bead generated by an EMN with
a collector. The generating needle
is on the right. High forces are
coloured red, low forces are coloured
blue.

Figure 6.10: Simulation of the magnetic field and force generated by a
single EMN and collector

The results of the simulation are shown in Figure 6.10a. The figure presents

the absolute field strength. The absolute magnitude of force refers to the

force that would act on a single magnetic bead. The second plot (Figure

6.10b) is a 2D plot of the forces generated by the setup. High and low forces

and field strengths are coloured red and blue respectively. The threshold

is chosen such that all forces above 1 nN are in dark red. These two plots

offer a qualitative analysis of the fields and forces. Contrary to the earlier

simulations using a single EMN, the field and force are not symetrical about

the maximum point. Even though the collector only acts passively, its field

is similar to the field generated by the EMN. The collector is not merely

absorbing the field, but acting like a second EMN. Also, the collector limits

the distribution of the EMN field, as the field distribution on the left of

the collector is significantly lower than the field distribution on the right

of the EMN (shown in Figure 6.10a). Although the distribution area of

the magnetic field becomes limited with a collector, the field strength and

gradient is increased.
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(a) (b)

Figure 6.11: (a) Simulation of the magnetic field strength for 3 different
setups along the sample (b) Simulation of the magnetic forces for 3 different
setups along the sample

Figure 6.11a shows the magnetic field strength experienced by a bead at a

point 250 um away from the needle tip.

The graph contain three plots: The blue line is a reference field. This is

generated by a single EMN with no collector. The green line indicates the

field created by a collector and EMN at a distance 25 µm apart and at an

angle of 60o to the vertical. Last but not least the red line represents a

third setup which is a numerically optimised setup with one collector.

The field collector serve two purposes: First it increases the maximum

field strength and second it increases the field gradient. Both effects lead

to higher applicable magnetic forces.

The first significant difference between the setup with a collector and that

of a single EMN without a collector can be observed between the green

and the blue line. Even though the absolute field strength is only increased

by 77% the force is increased by 460% as shown in Figure 6.11b. This

effect occurs due to the collector which limits the field. Thus the gradient

is much higher, resulting in a stronger force on the beads. As predicted

the maximum force does not exist at the middle of the two tips, but it is

shifted towards the EMN.

The position of the collector and EMN relative to each other (see Figure
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6.9) is optimized to maximize the force and field obtained. While a single

needle could generate 30.9mT in the sample the optimised setup generated

a maximum field of 54.8mT . Running the simulation to this data showed

that the single EMN setup was able to exert forces of up to 14.6pN while

an optimised collector setup was able to exert forces of up to 82.7pN .

6.4 Experimental determination of magnetic

fields and forces generated by electro-

magnetic needle

6.4.1 Electromagnetic needle

The electromagnetic needle (EMN) was designed and built in ETH, Switzer-

land. The EMN consists of a high magnetic permability 12.78mm diameter

Mu-metal core and 450 windings of insulated copper wire as shown in Fig-

ure 6.12a. To incorporate the EMN into the current confocal microscope,

a holder was designed and printed using a 3D SLA printer as shown in

Figure 6.12c. The final EMN together with the holder is shown in Figure

6.12c

(a) (b) (c)

Figure 6.12: (a) Schematic design of the EMN. (b) CAD model of the EMN
holder. (c) Actual image of EMN and holder.
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6.4.2 Force calculation single EMN

An experimental setup was designed and built in order to measure the force

generated by the EMN. The setup consists of a single microfluidic channel

with the dimensions 100 µm by 100 µm. Diluted particles were flowed

through this channel. The particles under the influence of the magnetic

field, reduce their velocity. In total two forces act on any particle: First

the fluidic drag at a low Reynolds regime (Re ≈ 1.6∗10−6) and second the

magnetic forces in direction of the channel. [161]:

1. Fdrag = 6πµrv

2. Fmag

Where r is the particle radius, µ the kinematic viscosity and v the velocity

difference between particle and water.

The equation of motion for the particle is:

dw

dt
=

Fmag − Fdrag

mp

(6.11)

Where mp is the particle mass and w the particles velocity

In order to determine the magnetic forces exerted on the particle a force

equilibrium is considered. If particles are trapped such that the magnetic

forces and the drag forces are in equilibrium, then the particles stop moving

and the above equation is simplified to:

Fmag = 6πµrv (6.12)

where v becomes the current velocity set at the inlet.

In this setup the velocity of the fluid can be controlled by a variable flowrate

pump. A microfluidic channel was fabricated using standard soft lithogra-

phy. The dimensions of the channel crosssection (shown in Figure 6.13a)

were determined by a microscope. In order to use the electromagnetic nee-

dle in an existing microscope that is available in SMART BioSyM, a holder
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was designed and fabricated by a 3D SLA machine from SMART BioSyM.

The final setup can be seen from Figure 6.13b.

The microscopic images shown in Figure 6.14a shows the flow of magnetic

beads when the electromagnetic needle is turned off and Figure 6.14b shows

the attraction of magnetic beads when the electromagetic needle is turned

on.

The velocity of the fluid was recorded when the forces were in equili-

brum. Starting from high velocities the velocity was reduced until the

particles were first trapped. After 5 trials, an average force of Fmag =

15.0 ± 1pN is obtained which is comparable with the simulated value of

Fmag = 19.6pN .
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(a) (A)Cross-section of microfluidic channel (B) Experimental setup

(b) Experimental setup for determing of magnetic forces on super paramagnetic
beads

Figure 6.13: Experimental Setup
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(a) Flow of magnetic beads when
electromagnetic needle is turned off

(b) Attraction of magnetic beads
when electromagnetic needle is
turned on

Figure 6.14: Microscopic images of super paramagnetic beads movement

6.4.3 Magnetic field mapping with microscopic hall

sensor

Microscopic hall sensors, procured from Magcam (Figure 6.15), were used

to characterize the magnetic field generated by the electromagnetic needles.

The hall sensors have a 10 µm x 10 µm sensing area and hence a high

resolution map of the magnetic field can be analysed.

(a) Microscopic hall sen-
sors from Magcam

(b) Hall sensors are wire
bonded from the bond
pads to the PCB

(c) Hall sensor bonded
onto PCB board

Figure 6.15: Micrscopic hall sensors

Inorder to have the collector and EMN at a specific angle and distance, a

holder was fabricated to contain both the collector and EMN as shown in

Figure 6.16
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(a) (b)

Figure 6.16: Electromagnetic needle holder containing both EMN and col-
lector spaced 440µm apart and at angle of 50o

Figure 6.16 shows an EMN and collector held in place by a 3D printed

holder. The angle of both the collector and EMN are 50o to the vertical

and positioned such that their tips are 440µm apart. The resultant field is

plotted by aquiring output data of the microscopic hall sensor across the

needle tips as shown in the Figure 6.17.

(a) (b)

Figure 6.17: Hallsensor fixed onto a micromanipulation stage and moved
in steps of 50µm at a distance of 700 µm from the tip of the EMN and
collector

Figure 6.17 shows the experimental setup for acquiring the hall sensor

output data. The hall sensor is connected to a DAQ and the voltage output

signal (VH) is converted into magnetic field components (B) by the following

conversion formula,

B =
VH − Voff

I × S
(6.13)

Where Voff is the voltage from the sensor in the absence of magnetic field,

I is the supply current and S is the sensitivity of the hall sensor according
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to Figure 6.18.

Figure 6.18: Sensitivity plot of microscopic hall sensor

By converting the hall sensor data into magnetic field magnitude, the sur-

face plot of each configuration is plotted as shown in Figure 6.19

(a) Vertical EMN (b) EMN at 50o (c) EMN and collector at
50o

Figure 6.19: Surface plots of hall sensor data with different EMN and
collector configuratons. The height and colour of the plots correspond to
the magnitude of the magnetic field

From the magnetic field data collected by the hall sensors, thresholding

was done to determine how localised the magnetic field is with different

configurations. The magnetic field threshold was kept at an arbitrary value

of 0.095 tesla. The value for this threshold is considered arbitary since it

is only chosen to show the effect of localisation in different configurations

of the EMN as shown in Figure 6.20.
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(a) (b) (c)

Figure 6.20: (a)Vertical EMN produced and area of 1.54mm2 threshold
at a magnitude of 0.095T , (b) EMN at 50o produced and area of 3.55mm2

threshold at a magnitude of 0.095T , (c) EMN and collector at 50o produced
and area of 0.40mm2 threshold at a magnitude of 0.095T

From Figure 6.20, it can be seen that the EMN and the collector posi-

tioned at 50o to the vertical produced the most localised magnetic field

with a minimal area of 0.40mm2. This shows that due to the presence of

a collector, the field does not stray too far from the tip of the EMN as

shown in Figure 6.20c. The EMN and collector configuration provides a

possibility of localising the magnetic field hence being able to concentrate

magnetic fields onto precise areas. With this approach, the capability of

exerting magnetic forces accurately to trap and manipulate each individual

magnetic beads, is improved. Furthermore the results from the hall sensor

correspond with the COMSOL simulation results done in section 6.3.

6.5 Prelimary results of influencing HMVEC

sprouting by changing local stiffness of

ECM

The growth of microcapillaries which is also known as angiogenesis is in-

volved in any biological processes such as growth and development, repair

of wounds and increasing body mass. Endothelial cells (ECs) plays a key

role in angiogenesis. The start of angiogenesis occurs when ECs detach

from the main vascular wall and invade into the surrounding extracellular
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matrix (ECM) as a vascular sprout as shown in Figure 6.21.

Figure 6.21: Example of endothelial sprouting

The abnormal growth of blood vessels leads to a variety of disorders such as

arthritis and the growth and metastasis of tumors. Hence understanding

the mechanisms of angiogenesis is important to the treatment of these

pathologies. It is well known that many chemical growth factors affect EC

sprouting such as vascular endothelial growth factors and Sphingosine-1-

phosphate. However apart from chemical growth factors, the mechanical

properties and the state of stress of the ECM has also shown to greatly

influence endothelial sprouting and vascular network formation. [162] [163]

[164] [165] [166]

Inorder to explore the effect of such states of stress in ECM for endothelial

sprouting, the electromagnetic needle is used to exert forces on magnetic

beads embedded in the ECM at the vicinity of sprouting endothelial cells

in a microfluidic device as shown in Figure 6.22.
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(a) Microfluidic device (b) Experimental setup with EMN at 50o to the ver-
tical

Figure 6.22: (a) Microfluidic device used for observation of HMVEC sprout-
ing. (b) Experimental setup of endothelial cells and EMN in a confocal
microscope installed together with an incubator

6.5.1 Results and discussion

Prelimary results on a sprouting endothelial cell are shown in Figure 6.23.

Although a VEGF gradient of 20-40 is introduced in the microfluidic device,

results show that the sprouting endothelial cells retracted back into the

monolayer. This shows that the forces exerted by the magnetic beads in

the vicinity of the sprouting endothelial cells have created a less preferential

condition for sprouting.

One reason for such a reaction could be due to the creation of a void in

the collagen where the beads have displaced towards the electromagnetic

needle. Since endothelial cells have been known to migrate prefentially in

collagen rich areas, the reduction of collagen fibers could have triggered an

inhibition to the protrusion and forward motion of the lumen.

The result presented in Figure 6.23 shows an effect in the sprouting be-

haviour of endothelial cells within 5 hours when external forces are exerted

in their microenvironment. Although the results shown here are prelimary,

it reflects the reaction of endothelial cells during angiogenesis. Further

analysis and statistical observations are required to fully characterize the

behaviour of sprouting endothelial cells in different stress states.
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(a) Sprouting condition at the beginning of experiment

(b) Sprouting condition at end of experiment (after 5hrs)

Figure 6.23: Changes in sprouting HMVEC with magnetic forces within
ECM exerted by electromagnetic needle

131



6.6 Concluding remarks

The work presented in this chapter demonstrated novel methods for gen-

erating micro magnetic fields. The functional principle of this method is

based on an electro magnetic needle combined with field collector. The field

collectors serve dual purposes: First they increase maximal field strength

and second they increase the field gradient, both leading to higher appli-

cable magnetic forces.

In the simulations the geometry of the EMN and the field collectors were

optimised and the ideal setup parameters to generate magnetic fields were

established. A setup that includes an EMN and collector was developed

which could outperform a conventional EMN.

In addition an experimental setup which measures the forces exerted on

specific beads by micro magnetic fields was designed, built and tested. In

this setup the forces generated by the EMN from ETH Zurich were verified

and compared to a COMSOL simulation.

After optimising the parameters for the EMN and collector, a final design

was chosen. This had a single EMN combined with a collector, which was

able to exert the highest forces onto magnetic micro particles.

Microscopic hall sensors were used to analyse the actual setups which in-

cluded the EMN with and without the collector. The results were in close

agreement with the COMSOL simulation. Both the simulation results and

the experimental results verfied that a combination of an EMN with a

collector produced a more localised magnetic field to precisely manipulate

single or a small group of magnetic beads.

Prelimary work with the EMN on endothelial sprouting within a modi-

fied ECM during angiogenesis has shown that exerting forces on the ECM

through embedded magnetic beads caused a change in the sprouting be-

haviour. This provides the possibility of using EMNs and magnetic beads

to externally influence the cellular behaviour such as migration, prolifera-

tion, apoptosis and differentiation.
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Chapter 7

Conclusion

This work shows the possibility of altering the stiffness of the extracellular

matrix (ECM) to influence cellular growth. At the macro scale, it has been

shown that the uniaxial stiffness of the ECM can be altered actively to a

significant degree by embedding (in the ECM) magnetic beads that are bio-

conjugated with the collagen fibers and applying an external magnetic field

as shown in Chapter 3. The application of an external magnetic field on

a modified ECM sample creates a pre-tension in the collagen fibers which

resists external deformations.

In Chapter 4 the local stiffness of the ECM was also investigated using an

AFM, and an analytical model was developed to predict the change in the

stiffness of such samples due to the influence of an external magnetic field.

The experimental results have demonstrated that the binding between the

embedded beads and the collagen fibres plays a significant role in altering

the local stiffness of the ECM. This is due to the fact that beads attached

to the fibers via bioconjugation create substantial additional resistance to

deformation in the fibres when an external magnetic field is applied.

Due to these changes in stiffness at the macro and micro scale, the cellular

behaviour of endothelial cells (ECs) have been significantly affected. When

the magnetic field is present in a bead embedded collagen microfluidic

device as described in Chapter 5, a bead located approximately 1.4 mm

away from the permanent magnet is estimated to exert a force of 0.12 nN.

Collectively such forces in general oppose the cell traction forces as ECs

move away from the monolayer and into the collagen gel. This resistance

can be considered as an increase in the apparent stiffness of the ECM in

the vicinity of the migrating cells. The cells tend to migrate preferentially
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in such an environment, since ECs are known to increase motility and

spreading in areas with higher stiffness.

Chapter 6 demonstrated novel methods for generating micro magnetic

fields. The magnetic field is generated by an electromagnetic needle (EMN).

The propagation of the magnetic field is controlled by collectors. The field

collectors serve two purposes: First they increase maximal field strength

and second they increase the field gradient. Both effects lead to higher

applicable magnetic forces.

The EMN was also used to exert point forces in the ECM and subsequent

endothelial sprouting behaviour was observed. Preliminary results have

shown that ECs have retracted from their original position during expo-

sure to magnetic forces for 5 hours. Thus this method has shown the

possibility of influencing angiogenesis by preventing further invasion of EC

tip cells into the extracellular matrix along the direction of a higher VEGF

signal.

7.1 Contribution

The contribution of this thesis is summarized as follows:

1. Development and characterisation of a new platform for changing the

extracellular matrix stiffness

A new method was developed to alter the stiffness of modified ECM

samples, in which the embedded superparamagnetic beads were coated

with streptavidin to form strong covalent bonds with the ECM fibers.

The macro-scale uniaxial stiffness of the modified ECM with a mag-

netic field perpendicular to the direction of a tensile force was char-

acterised. A mechanical model of the ECM behaviour under uniaxial

tension was established and validated with experimental stretch tests.

The results showed that the macro-scale stiffness of the ECM could

be increased by up to 59%. Also an innovative method to quan-

tify the micro-scale change in stiffness of the modified ECM in the

presence of a magnetic field was developed. This was done by using
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a micro-indentation technique based on a Hertzian contact model.

A customised device that could be easily integrated with an exist-

ing atomic force microscope was used to verify experimentally the

changes in the micro-scale stiffness of the modified ECM. The re-

sults showed that the micro-scale stiffness could be increased by up

to 25%. The difference between the changes of stiffness in micro-

scale and macro-scale can be contributed to the highly structured

heterogeneous property of the ECM.

2. Study on the reaction of HMVEC sprouting during angiogenesis in

the modified ECM

An in vitromethod was developed to study HMVEC sprouting during

angiogenesis by using a microfluidic device containing modified ECM

and under the influence of an external magnetic field. The experi-

mental results thus obtained indicated that the change in stiffness of

the ECM led to an increase of 56% in sprout height and 49% in the

number of focal adhesions of sprouting HMVECs within the microflu-

idic device. Another technique for using an electromagnetic needle

to exert point forces on magnetic beads embedded in a 3D ECM was

developed. Observations of the reaction of HMVECs to these point

forces in the 3D ECM point to the feasibility of this technique for

practical application.

3. Localisation of magnetic fields

In order to exert controlled point forces on individual or a smaller

group of magnetic beads in a microscopic region of interest, a new

method was developed to generate stronger and more localized mag-

netic fields. This was achieved by utilising a novel combination of

electromagnetic needles (EMN) and collectors. An in-depth sim-

ulation study, together with preliminary experimental results, has

demonstrated the effectiveness of this method for more precise ma-

nipulation of individual (or a smaller group of) magnetic beads.
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7.2 Future work

Further analysis of endothelial sprouting behaviour can be done and the

underlying mechanisms for such behaviours can be further explored. This

will also lead to the possibility of answering some of the key questions

about the effect of external mechanical forces and the migration behaviour

of different cell types due to mechanical signalling (Durotaxis).

The future prospects for the manipulation of magnetic beads in the extra-

cellular matrix to influence sprouting comprises of:

• Statistically quantifying the amount of sprouting by carrying out sys-

tematic tests with controls and variables

• Tagging ECs with specific GFP biomarkers eg. vincullin, talin, pax-

illin which are all linked to the focal adhesions and good indicators

of any changes occurring within the cell’s microenvironment

• Using different types of microscopy (SEM, Reflectance, AFM etc) to

identify the microscopic changes that occur within the ECM (collagen

fiber orientation, collagen fiber density etc) when magnetic forces are

exerted on the magnetic beads.

• Creating a vision system that is capable of analysing the relative cell

movement and bead movement in the ECM to exert sizable forces on

magnetic beads

• Incorporating the EMN with a collector design into existing micro-

scope to allow a more localised force to be generated on the magnetic

beads.

• Fully characterizing the size of forces that different combinations of

EMN and collectors can exert on magnetic beads of different diame-

ters.

• Establishing a method to observe the mechanism of filopodia exten-

sion and retraction when the local stiffness of the ECM is changed

dynamically by the EMN and collector setup.
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Appendix

1 Preparation of PEG coated magnetic beads

The coating on anime functionalised magnetic beads was applied via the

following steps [167] [168] [169].

1. Activation of PEG — Dehydration of PEG was done by dissolving

6.03 grams of PEG in 150 ml toluene in a 3 neck flask from which

50 ml toluene/water micellar mixture was extracted by azeotropic

distillation. The dehydrated PEG was then mixed with a catalyst,

Triethylamine (TEA), in a 3 neck flask which was placed in salt-ice

bath. 0.2 ml of Tresylchloride in 50 ml of anhydrous CH2Cl2 was

poured into an equalised addition funnel and added dropwise into

the 3 neck flask containing the PEG and TEA mixture. The reaction

was carried out in an argon atmosphere. It was left for 1 hour in ice

bath and for another 2 hours in room temperature. Magnetic stirring

was maintained at 600 rpm throughout the reaction. After which

the product was precipitated with 10-folds excess of ethyl ether. The

powders were vacuum dried at room temperature in the dark.

2. Coupling of PEG with magnetic beads — The amine coated beads

were washed with PBS thrice. Then 0.804 g of PEG was dissolved

in 7.5 ml of 10 mM PBS (PH 7.4) and 0.5 ml of magnetic beads

suspension. The final volume of the mixture was 9 ml. This reaction

was carried out in an ice bath for 12 hrs and for another 12 hours

in room temperature. Magnetic stirring at 600 rpm was maintained

throughout the reaction.
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3. Zeta potential test — The zeta potential measurement was carried

out to ensure that coupling had occurred between the magnetic beads

and PEG. Due to the charge shield effect of PEG, the results of the

zeta potential test should show a lower value for the coupled beads

compared to the amine coated beads. The beads were washed to

change the solution from PBS to Deionised water prior to conducting

the tests. The test results (as shown in Table 1) indicates a lower

potential in the coupled PEG-bead solution compared to that in the

solution of amine bead only. This indicates that PEG coupling had

occurred for the amine coated beads.

Table 1: Zeta potential measurement

No - PEG PEG

Zeta Potential 41.2 ± 0.702 mV 12.8 ± 0.208 mV

2 Polyethylene gylcol (PEG) coating

The amine coated magnetic beads were washed thrice with deionised water

to remove the stock buffer solution. Then 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide (EDC) and N-hydroxysuccinimide (NHS) in the ratio of 5:1

were mixed for 30 minutes to activate the coupling group. Once this was

done, the EDC and NHS mixture, amine coated beads and PEG were

added in the ratio of 1:1:2, respectively. For successful cross-linking be-

tween Polyethylene gylcol (PEG) and Amine-coated beads to occur, this

mixture was left for 24 hours on a vibrating platform. To check whether

the PEG had successfully bound onto the Amine-coated magnetic beads,

FTIR analysis was carried out. Figure 1 shows the results of the FTIR

analysis.

Figure 1 reveals that narrow peaks were formed at wave number of 1100

cm−1, 1600 cm−1 and 1500 cm−1. It can thus be concluded that (i) due to

the peak forming at 1100 cm−1, a c-o-c ether group was present, (ii) due

to the peak at 1600 cm−1, a primary amide group of the bond was present,
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Figure 1: FTIR analysis for PEG coating of magnetic beads.

and (iii) due to the peak at 1500 cm−1, a secondary amide group of the

bond was present.

These results indicate that PEG was present in the sample due to the pres-

ence of a c-o-c ether group. Also the presence of primary amide group

of the bonds between PEG and the amine functionalised beads, and sec-

ondary amide group of the bonds between PEG and the amine function-

alised beads, showed that successful coupling between the magnetic beads

and PEG had occurred.

3 Magnetic force

The magnetic field along the x-axis (as is indicated in Figure 4.6(a)) for a

cuboid permanent magnet is given by [113]

Bx(dx) =
Br

π

[

tan−1

(

ab

2dx
√

4d2x + ϕ1

)

− tan−1

(

ab

2ϕ2

√

4ϕ2
2 + ϕ1

)]

,

(1)

where Br is the residual induction, ϕ1 = a2 + b2, ϕ2 = c + dx, dx is the

distance in the x-direction of a point from the magnet, and a, b and c are the

height, width and thickness of the permanent magnet, respectively.

Figure 2a shows a plot of the magnetic field along the x-axis generated using
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Equation (1). By considering each bead as the point of origin, the magnetic

forces acting on a group of randomly distributed beads are calculated using

the expression F = m (∇Bx(dx)), wherem = ηHV is the magnetic moment

of a bead, with η = 5240 kg/m3 being the density of iron oxide, H the

induced auxiliary magnetic field, and V the volume of a single bead (with

a radius of 1 µm).

Thus for the experiment setup as described in Section 4.2, a bead 4 mm

away from the magnet will experience a magnetic field of B = 0.05 T.

Based on the magnetization curve (shown in Figure 3) for the beads used

in this experiment, it can be concluded that the magnetization of such a

bead is not saturated, and that the bead has an induced auxiliary magnetic

field of H = 40 emu/g. For the magnet used in our experiment, we have

a = b = c = 4 mm and Br = 1.5T. Hence for a single bead located at a

distance of dx = 4 mm away from the magnet the force acting on the bead

is approximately 28 pN.

(a) (b)

Figure 2: (a) Simulated magnetic field (b) Magnetic forces acting on beads.
The length of arrows and the gray level of the points indicate the magnitude
and direction of the force exerted on individual beads.
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Figure 3: Magnetization of BioMag particles. (Adapted from figure pro-
vided by Bangs Laboratory, Inc., U.S.A.)
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4 Modified Thompson-τ test

(a)

(b)

Figure 4: Results of statistical analysis using the modified Thompson- test.
The asterisk indicates the mean and the two horizontal lines above and
below the asterisk indicate the Standard Error of the Mean (SEM). When
the outliers in the data as presented in (a) are excluded, data scattering is
reduced due to the smaller standard deviation (not shown) and the relevant
difference between the means in all cases increases as shown in (b). The
reduced SEM in (b) further indicates that the sample mean thus obtained
is a better estimate of the actual stiffness of the ECM for all cases.
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