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SUMMARY

Summary

Focusing and directing lights have numerous applications in most of scientific and tech-

nological areas. The first part of this thesis reviews and develops an efficient method

based on multipole expansions for studying the focused field of polarized light, including

radially-polarized and other important cases. We compare and highlight the differences

between our method with the well-known Debye-Wolf diffraction integrals for calculating

the field in the focal region. We also decompose a focused beam into a converging beam

and a diverging beam and discuss their implications in focusing beyond diffraction limit.

In the second part of this thesis, we give a novel interpretation of the scattering

mechanism for particles in a focused beam. Light scattering by a spherical particle

represents a classical topic. The generalized Lorenz-Mie theory (GLMT) has been well

developed for analyzing the scattering effects. However, the GLMT is not able to account

for the multiple reflections inside the scatterer. Through our interpretation, we derive

a series for taking into account the multiple reflections in a simple and straightforward

way. Our series not only explains the scattering mechanism well but also helps to solve

the boundary conditions at a spherical interface rigorously.

Solid immersion microscopy (SIM) provides a high spatial resolution and optical col-

lection efficiency, which are the most desirable properties of nearly all optical systems.

The SIM has been developed and improved both theoretically and experimentally for

the last 3 decades. Recently, it is becoming more and more important in identifying

faulty locations in integrated circuits that, as predicted by the well-known Moore’s law,

are getting smaller and denser. In the third part of this thesis, we study the SIM both

theoretically and experimentally. Theoretically, we form a rigorous analytical model for

studying the focal field of the SIM and correct errors of the existing models. Experimen-

tally, we manipulate binary masks and polarization of light to resolve gratings consisting

of 120-nm-wide lines, spaced 120 nm apart, using 1342nm wavelength laser.

v
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Chapter 1

Introduction

Diffraction phenomena have been known since the time of Leonardo da Vinci [1]. And

since the time of Abbe, diffraction has been believed to be the fundamental physical

phenomenon which limits the resolution of a conventional microscope [1]. However, in

the last several decades we have witnessed the invention of some methods to push the

capacity of imaging of a microscope beyond the diffraction limit [2]. In this thesis, we

will discuss the diffraction phenomena and their implications for sub-wavelength focusing

and imaging capacity of an optical system.

1.1 Perfect Imaging and Time Reversal Symmetry

According to the definition in [1], for an ideal optical instrument, a source point P0 in

the object space gives rise to a stigmatic image P1 in the image space. And if every curve

C0, produced by P0 in the object space, is geometrically similar to its conjugate curve in

the image space, produced by its image, then the imaging between the two space is said

to be perfect.

Feynman pointed out that both inward and outward spherical waves traveling to and

from the origin are solutions of Maxwell’s equations in free space [3]. In his lectures, he

also briefly mentioned that only the outgoing (diverging) wave solution makes “physical

sense” when describing the electromagnetic field radiated by a source. After the invention

of laser, the concept of a converging wave has been mentioned more frequently, especially

1
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Figure 1.1: SIL Configurations.

in light focusing systems. Many lasers produce Gaussian beams that exhibit a Gaussian

variation in the waist [4]. To describe the propagation of the Gaussian beam in free space,

the complex-source-point theory has been developed. The central idea of this theory is

to move the source an imaginary distance z0 from the origin so that there is no source

in real space and the propagation of the beam still satisfies the Maxwell’s equations.

However, this complex-source-point theory results in a singularity in free space. Due to

this singularity, a theory based on a source-sink pair has been proposed to avoid it ([4],

and references therein). In the context of describing the propagation of the Gaussian

beam, the source and the sink are purely-mathematical concepts. But the source and the

sink in the context of time reversal symmetry have represented an active research topic for

the last two decades and have been accepted widely as physical concepts. The sinks can

be categorized into two types, i.e., passive sinks and active sinks, respectively. A passive

sink absorbs energy and its physical mechanism has been explained in different contexts

[5–7]. The physical mechanism of an active sink is to radiate a wave that destructively

interferes completely with the resultant diverging wave of the converging wave. The

active sink has been demonstrated in acoustic wave experiments, and has been exploited

commercially in noise cancellation [8, 9].

The source shown in Fig. 1.1(a) radiates a wave propagating towards infinity. If

the propagation direction of the radiated wave is reversed in all degrees of freedom - for

example, by a process of phase conjugating the radiated field using a nonlinear material

2



1. Introduction

[10], metamaterial, or graphene [11]- we will have a converging wave approaching back to

the position of the source. Now, we consider the case in which the source is removed and

hence the region around the origin is a source-free region. Due to energy flux conservation,

there must be a diverging wave following the converging wave. And the total field in the

source-free region is due to the interference of these two beams. It has been shown that

the interference results in a focal spot which is subject to the diffraction limit [5, 12]. As a

quantum mechanism, the nature of photons is the reason behind the diffraction limit that

can be explained in terms of the Heisenberg uncertainty principle. The principle says that

the spatial confinement of a photon, i.e. the focal spot, is inversely proportional to its

momentum spread [11]. However, if the source is replaced by the time reversed source as

shown in Fig. 1.1(b), which, in a more general context, is a sink, the converging wave will

be absorbed completely. The energy of the converging wave is converted into two parts

when approaching the sink: the energy of non-propagating field and the absorbed energy.

The non-propagating field, or equivalently evanescent field, is associated with large or

complex k-vectors [13], which are believed to be necessary for producing a sub-diffraction

limit spot at the focus. In the particle-like manifestations of the electromagnetic field, the

evanescent field is associated with a photon cloud around the sink in which corpuscular

photons are imagined as being continually emitted and reabsorbed [13]. This evanescent

field is also referred to as a localized field.

Due to the simplicity in explaining various phenomena relating to the light focusing,

the time reversal symmetry has gained much attention from many researchers in recent

years [14]. Under the guidance of time reversal symmetry, Quabis and colleagues predicted

that using a radially polarized beam produces a tighter focal spot in comparison with

a linearly polarized beam [15]. This prediction was later confirmed by Dorn et. al.

[16]. Similarly, under the guidance, Mudry et. al. improved the performance of confocal

microscopy to obtain a 4π microscope with a combination of a spatial light modulator,

a single microscope objective, and a mirror [17]. Light-matter interaction between a

focused beam and a quantum target is also usually studied and explained in the context

of time reversal symmetry [18, 19].

3
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1.2 Light-matter Interactions in an Aplanatic Sys-

tem

Lens GRS 

2 2
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m 

Figure 1.2: An aplanatic focusing system.

Figure 1.2 shows the model of an aplanatic lens, which is represented by the Gaussian

reference sphere (GRS). The lens converts an incident collimated beam into a focused

beam. The interaction between a focused beam and an atom, molecule, nano-particle,

or a cluster of nano-particles is gaining much attention due to its potential in many

applications in quantum mechanics and nanophotonics. The “atom” represents various

kinds of quantum emitters and quantum targets [18]. In theory, under the guidance of

time reversal symmetry Sondermann et. al. argued that a single atom will absorb a single

photon with 100% efficiency if the radiation incident onto the atom resembles a dipole

wave [19]. Zumofen et. al. showed that a focused dipole wave can be perfectly reflected

by a single point-like oscillating dipole [20]. By matching the cross-section of plasmonic

nanowires to the field structure of tightly focused beams, Normatov et. al. showed

that the nanowires could absorb up to 65% of the total power of the incident beam

[21]. Chen et. al. theoretically demonstrated that focused radially-polarized beams can
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excite surface-plasmon-polaritons in metal nanowires and nanocones with efficiencies of

the order of 90% [22]. Experimentally, some groups have investigated and demonstrated

promising couplings though with low efficiencies [23–25]. These low efficiencies may be

because of using a limited numerical aperture (NA), which consequently involve higher

order multipoles [26]. To improve the performance of the setup, a mode converter was

proposed [19]. The mode converter will convert an incident wave into a focused wave that

resembles a dipole wave. More recently, with the fast development of nano-technology

and many successful researches in plasmonics, a single atom integrated with an optical

antenna was shown to radiate both dipole and higher order multipoles [27, 28]. By the

time reversal symmetry, a focused field by a limited NA lens can be completely absorbed

by a quantum target placing near the optical antenna. This opens the possibility of

perfectly converting the incident focused beam into surface plasmon polaritons, which

in turns can be manipulated using plasmonic devices [29, 30]. Moreover, using a spatial

light modulator can control many thousands of spatial degrees of freedom of light and

hence control the content of the multipole terms in the focused beam, i.e., the conversion

efficiencies can be improved by using the spatial light modulator and the combination of

an atom and an optical antenna. Hence, understanding the focusing using the aplanatic

system is crucial, especially in the multipole theory. This thesis aims to provide a more

complete understanding into the focused beam.

1.3 Angular Spectrum Representations and Multi-

pole Theory for Optical Fields

The focal field of the aplanatic lens in Fig. (1.2) can be evaluated using different methods

based on different bases of the solutions of Maxwell’s equations. The two most common

bases in use are the plane waves and spherical harmonics. The two equivalent methods

for evaluating the focal field are plane wave and multipole expansions, respectively. Many

researchers have devoted time to develop and study the light diffraction phenomena based

on the plane wave expansions, especially the angular spectrum representation of the elec-
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tromagnetic field. In 1909, Debye derived an elegant formula for treating the diffraction

caused by a small aperture, i.e., a scalar case. In 1959, Wolf generalized the formula by

including the effect of vectorial nature of the field, and hence the diffraction integrals are

sometimes referred to as Debye-Wolf diffraction integrals ([31], and references therein).

Later, Richard and Wolf used the formula for estimating the focal field of an aplanatic

lens [32]. Now, the diffraction integrals have been widely used for describing different

focusing systems. Alternative to the angular spectrum representation of the electromag-

netic field, the multipole theory for describing the focal field was recently developed [26].

In the paper, though we showed that the Debye-Wolf diffraction integrals and the multi-

pole theory give a perfect agreement on the electric intensity around the focus, the two

methods are in fact not equivalent due to the different approximations at the Gaussion

reference sphere. This thesis will give more details about the difference between the two

methods.

In his derivation, Debye showed that there is the peculiar behavior of the integrals on

the optical axis at the far-region [33]. Later, Sommerfeld, in his lectures, argued that the

behavior is similar to the Poisson spot occurring in the diffraction pattern of a circular

disk [33]. In an asymptotic treatment of the diffraction problem, Van Kampen showed

that there are three kinds of the critical points [34], which contribute to the diffraction

field. The first kind consists of all points of diffraction aperture but not at the periphery of

the aperture. The second kind consists all the points on the periphery but not at a corner,

and the third kind consists of all the corners of the aperture. If we consider a circular

aperture, there are only the first and second kinds of the critical points. The leading

term of the first and second kinds of the critical points contributing to the asymptotic

expansion are (kr)−1 and (kr)−3/2, respectively [1, 34]. In the derivation of Debye-Wolf

integrals, the authors used the method of stationary phase, i.e. they took into account

only the first kind of critical points. Hence, the error introduced in using the asymptotic

approximation is of the order (kr)−3/2 [31]. The second kind of the critical point was

known to significantly contribute to the diffraction field around the optical axis and the

boundary of the shadow region behind the aperture [33]. It is also well-known that in
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general one can not separate the inhomogeneous and homogeneous plane waves in the

angular-spectrum representations of waves due to a local source, even far from the source

[35]. For a scalar dipole field, Carter showed that, a few wavelengths away from the

source, the evanescent plane waves don’t play any significant role in the total field [36].

However, for a more general case of a spherical scalar wave field, the contribution of the

evanescent plane waves can be significant due to the interference among them, especially

along the Z axis and Z = 0 plane [37]. The Debye-Wolf diffraction integrals in fact

describe the interference of the converging and diverging beams. Recently, we developed

the multipole theory in which we decomposed the total field into the converging and

diverging fields [26]. Then we explained the scattering mechanism using the converging

beam as the incident beam [38]. Using our definition for the incident field, we later formed

a rigorous model for focusing light through a spherical interface [39]. In fact, using the

definition, in which the incident field is the interference field between the converging field

and diverging field, will lead to some problems relating to the shadow region behind a

scatterer [40, 41]. Brillouin investigated the scattering problem of a sphere illuminated

by a plane wave and pointed out an error made by Stratton and Houghton due to the

misinterpretation about some field components relating to the definition of the incident

field [40, 42]. Brillouin then corrected the misinterpretation by taking into account a

secondary field that compensated for the incident field in the shadow of the sphere. Later,

Lock used similar idea to interpret the extinction in Gaussian-beam scattering in which

the key point was that he decomposed the total field into the incoming and outgoing

fields. And then he computed the interaction cross section in terms of the outgoing

field only. However, Brillouin and Lock interpreted the scattering phenomenon based

on the so-called compensating field accounting for the shadow of the sphere. Recently,

we defined the incident field containing only the incoming field and hence presented a

novel interpretation for the scattering mechanism [38]. We also derived the two infinite

series of scattering coefficients that help us to avoid the ambiguity caused by using the

compensating field in the shadow of a scatter. Using our definition also help to avoid the

artifact caused by separating the inhomogeneous and homogenous waves. In this thesis,

7
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we will discuss more about the scattering mechanism by considering a more general

configuration for the scatterers, say off-axis scatterers.

1.4 Light Scattering by Particles in a Focused Beam

The scattering of light by a sphere in a focused laser beam has recently gained much

attention due to its various applications in medicine, biology, and nanotechnology. Many

researchers have analyzed scattering both theoretically [20, 43–47] and experimentally

[24, 48–52]. The theoretical scattering study involves expressing the electric field of

the focused beam in terms of the angular spectrum representation [31] or electric and

magnetic multipole fields[26, 53]. The scattering effects are then taken into account using

the generalized Lorenz-Mie theory (GLMT) in which the external (agl , b
g
l ) and internal

(cgl , d
g
l ) scattering coefficients play a central role. The GLMT was developed from Lorenz-

Mie theory (LMT) [54–56]. LMT was proposed for studying the scattering of a linearly

polarized plane wave by a homogenous sphere by several researchers, especially Lorenz [57]

and Mie[58]. After the invention of the laser during the 1960s, much attention was paid

to light scattering by a sphere in a shaped laser beam. Since the laser beam is usually

treated as polarized, the study of light scattering eventually led to the establishment

of GLMT. Both LMT and GLMT are convenient for scattering calculations. However,

neither of them can explicitly explain the effect of multiple reflections inside the sphere

on the scattering field distribution.

To understand and improve light-matter interaction for industrial and other appli-

cations, it is essential to analyze the physical mechanism responsible for the scattering.

The Debye series (DSs) gives a deeper insight into the physical mechanism, in which

the propagation of each partial wave can be traced and explained in terms of multiple

reflections [59]. Since Debye constructed the series for a cylinder in 1908, a number of

researchers studied the DSs for a number of different scatters, such as a homogeneous

cylinder [59, 60], a multilayered cylinder [61–63], a homogeneous sphere [64–66], a mul-

tilayered sphere [67–70], a spheroid [71], and an non-spherical particle [72]. Through its

8
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long history of development, the DSs not only help to match the LMT and GLMT but also

to evaluate the validity of an approximate solution (such as geometrical optics) compared

to the rigorous solution (GLMT) [65, 69, 73]. The DSs are also convenient to analyze

various physical phenomena, such as rainbows [60, 61, 74, 75], glories [75–77], and coro-

nas [75]. In derivation of the DSs, most authors used three steps as follows: Steps 1 and

2 are to derive the reflection and transmission coefficients for incoming (al2, bl2, cl2, dl2)

and outgoing (al1, bl1, cl1, dl1) waves. Step 3 is to use some algebraic manipulations to

express the Mie coefficients (agl , b
g
l , c

g
l , d

g
l ) in terms of the scattering coefficients of the

incoming and outgoing waves [62, 65, 66, 71, 78]. The DSs are then used for investigation

of the scattering mechanism and phenomena. This means that the authors firstly formed

mathematical expressions and then explained the expressions by multiple reflections and

transmissions. All the authors concluded that each term in the infinite summation of the

expressions represents an interaction between the ray beam with the surface of the scat-

terers. In addition, they have derived the DSs in cases of a plane wave [59, 61, 62, 65, 67–

70, 72, 75, 77, 78] and a shaped laser beam [63, 66, 71]. For a homogeneous sphere,

Gouesbet used the above three steps to express the DSs in a GLMT framework which

is now valid for an arbitrary shaped beam [66]. This thesis derives and explains a series

accounting for the multiple scattering without using the above three steps.

As mentioned, the scattering of light by a sphere in a focused beam has been gaining

much attention in both theory and experiment, and hence it is important to understand

the physical mechanism of the scattering. This thesis aims to provide an insightful un-

derstanding to the scattering mechanisms by considering the two scattering systems as

illustrated in Figs. 1.3 and 1.4. The first scattering system includes an aplanatic optical

lens, which is represented by the Gaussian reference sphere (GRS) with a radius f much

larger than the wavelengths λ of the focused beam, and the solid immersion lens (SIL)

as shown in Fig. 1.3. The second system is a modification of the first system in which

we replace the SIL with a complete sphere as shown in Fig. 1.4. Since the SIL has only

one boundary on the left side, there is only one light-matter interaction at the boundary

of the SIL. On the other hand, the sphere has a closed boundary, and hence there are
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Figure 1.3: SIL Configurations.

an infinite number of light-matter interactions corresponding to internal reflections inside

the sphere. For a scattering problem, the GLMT usually defines the incident focused

beam as if it could propagate without any perturbation or without the presence of the

scattering system [44–47]. This means the incident focused beam includes both incoming

and outgoing waves, with reference to the focal point. However, this definition is not

applicable to the calculation of the field inside the hemispherical solid immersion lens

(HSIL) [79]. In other words, the GLMT should not be used for calculating the scattering

of the HSIL. In fact, to calculate the field inside the SIL correctly, we must define the

incident focused beam as containing only the incoming wave. In this thesis, we derive

scattering coefficients for both of the scattering systems using our definition and give a

clear explanation about the different series accounting for the multiple scattering. We
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Figure 1.4: Spherical Scatterer.
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also show that for the spherical scatterer, our definition results in the same total internal

and external fields as the definition by the GLMT. Through our derivation of the total

internal and external fields of the sphere, we demonstrate how to derive the DSs in a

simple and straightforward way.

1.5 Solid Immersion Microscopy

High spatial resolution and optical collection efficiency are the most desirable proper-

ties of nearly all optical systems. The solid immersion technique is one of the optimal

techniques that provide both of these important properties. Consequently, the technique

has been extensively employed in microscopy [80–88], optical data storage [89–91], and

photolithography [92]. The central component of the technique is a solid immersion

lens (SIL). Optical systems using SILs normally involve focusing a high-aperture beam

through a spherical interface. The performance of such systems has been analyzed in the-

ory [86–89, 91, 93–100] and investigated by experiment [81, 82, 86, 89, 90, 92]. Figures

1.3(a) and 1.3(b) illustrate the main part of the systems. Most theoretical researchers

analyzed the focusing systems using the angular spectrum representation of optical field

developed by Richards and Wolf [32].

Ichimura et al. derived and analyzed the focal field of a SIL-based system, which is

simplified and shown in Fig. 1.3(a). He applied electromagnetic boundary conditions at

the spherical interface for the strength factors of the geometrical rays: in other words

he matched the strength factors at the boundary. This application is not rigorous since

the true boundary condition is that the tangential electric fields must be matched at the

boundary, whereas the strength factors are not equivalent to the tangent electric fields.

Consequently, Ichimura missed a phase change in the final expression of the focal field

[89]. Some other researchers used similar approaches to Ichimura [88, 91, 95–97]. Re-

cently, Ippolito et al. extended the Ichimura model by integrating a ray optics spherical

aberration into Ichimura’s result [87]. Ippolito used the ray reference concept for calculat-

ing the spherical aberration. This ray reference concept was criticized by Sheppard and
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Goh [101]. In their comment, Sheppard and Goh used a point reference concept. They

took the Gaussian image point of the focusing system as the reference point. Sheppard

and Goh’s idea is in fact similar to Wolf’s idea [31]. Nevertheless, there still exist some

controversies on this fundamental concept [102]. This thesis will provide a clearer view

on what happens at the SIL’s boundary and solve the controversies.

Later, Vamivakas et al. proposed a model that directly solves the boundary conditions

in the scope of the angular spectrum representation [103]. Vamivakas’ idea is to express

the electric field just outside the SIL as a superposition of an infinite number of individual

plane waves. Then for each individual plane wave, he applied the boundary conditions

as he had applied for a planar interface and derived the focal field by summing up an

infinite number of the transmitted individual plane waves. Their idea is in fact similar to

a rigorous analytical model proposed by Török et al. [104]. There are at least two similar

models to the Vamivakas model [93, 94]. However, there exists doubt in the accuracy

of extending the model of focusing light through a planar interface to form a model of

focusing light through a spherical interface [86]. In fact, the treatment of the boundary

conditions is not rigorously correct. This thesis will show how to solve the boundary

conditions rigorously.

The angular spectrum representation developed from the angular spectrum method

(ASM) expands the focal field into the superposition of an infinite number of individual

plane waves. The angular spectrum representation is now widely used to study both the

forward and inverse problems of focusing light using an aplanatic lens [105, 106]. However,

the expansion presents a difficulty for solving the boundary conditions at the spherical

interface. Recently, we expanded the focal field into vectorial spherical harmonics [26]

that allows to solve the boundary conditions rigorously [38]. Using our expansion, we

can also solve the inverse problem. This thesis uses the vectorial spherical harmonics for

calculating the focal field rigorously.
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1.6 Polarized Beams and Annular Filter

The study of electromagnetic fields around a focus of a high numerical aperture optical

system is very topical in many areas of science such as microscopy [15, 107–110], particle

trapping [111, 112], quantum electrodynamics [43], nonlinear optics [113], and near-field

optics [90, 92]. Thus, it is of practical and scientific interest to derive and understand the

nature of the fields in the focal region. It had been pointed out by Richards and Wolf [32]

that the polarization of a focused beam has a decisive role on the size and shape of the focal

point of a high numerical aperture (NA) aplanatic lens. Using theoretical analysis, they

predicted that the focal-plane electric intensity produced by focusing a linearly-polarized

beam with a high NA lens should be highly asymmetric. The theoretical prediction was

later experimentally confirmed by Dorn et al. [114]. Serrels et al. exploited the asym-

metric property of the focal spot to improve the resolution of solid immersion microscope

[85]. However, it is also well-known that the radially-polarized beam (transversal mag-

netic beam) produces a tighter focal spot compared to the linearly-polarized beam [16].

Recently, the azimuthally-polarized beam combined with a phase plate has been theoret-

ically proved to produce an even tighter spot compared to the radially-polarized beam

[115]. In fact, the azimuthally-polarized beam after passing the phase plate becomes the

azimuthally-polarized beam with a vortex. Manipulating phase and amplitude of the

polarized beam to achieve a certain distribution of the focal field has always been active

topics since long time ago. For example, the use of an annular filter to block the center

part of incoming beam and produce the Bessel beam was shown by Rayleigh ([116], and

references therein). Recently, using of many annuli to manipulate both the phase and the

amplitude of a beam for sub-wavelength imaging has been studied extensively [117, 118].

The ability to obtain the sub-wavelength spot using an array of the annuli is related to

a phenomenon known as super-oscillation which describes the fact that a band-limited

function is able locally to oscillate arbitrarily quickly, faster than its highest Fourier com-

ponent [118]. In terms of multipole expansions, this phenomenon is equivalent to the fact

that by manipulating the phase and the amplitude of the incident beam, we can obtain a

set of the multipole strengths which produce a sub-wavelength focal spot. In this thesis,
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we study different polarizations and their impact on the focal field. We also show that

an annular filter can improve the resolution of solid immersion microscope significantly.
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Chapter 2

Multipole and Plane Wave

Expansions of Diverging and

Converging Fields

The nature of light has drawn attention of most of the greatest scientists like Christian

Huyghen, James Clerk Maxwell, Max Planck, Einstein, just to name some. After a long

history of debating on the nature of light, today light is known to exhibit both particle-

like and wave-like properties. Among many great contributors to the development of

the emission (or curpuscular) theory, Isaac Newton is considered to be the best known

scientist, who devoted himself to the theory and made a major contribution to the theory.

At the same time of the fast development of the emission theory, the wave theory of light

also got developed and a firm foundation of the wave theory was formed during this time.

Robert Hooke and Christian Huyghen can be considered as the first contributors to the

development of the wave theory of light [1]. From the very beginning of the development,

the researches in electricity and magnetism had developed almost independently of the

light researches. After James Clerk Maxwell summed up and wrote the results in a system

of equations to describe the behavior of electromagnetic field, he conjectured that the light

waves were electromagnetic waves. The conjecture was later confirmed by Heinrich Hertz

[1]. Now, almost of the optical researches are based on the Maxwell’s equations. In
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his famous series of lectures on physics [3], Feynman describe the Maxwell’s equations

as the center of the universe of electromagnetism-the complete theory of electricity and

magnetism, and of light. It is probably one of the greatest accomplishments of physics.

For a convenient reference, we write down the Maxwell’s equations and their solutions

due to a charge-current distribution (ρ, J̄) as follows [3]:

1. Maxwell’s equations:

∇ · Ē =
ρ

ε
∇ · B̄ = 0

∇× Ē = −∂B̄

∂t
c2∇× B̄ =

J̄

ε
+

∂Ē

∂t
.

2. Their solutions:

Ē = −∇φ− ∂Ā

∂t
,

B̄ = ∇× Ā,

φ(r̄1, t) =

∫

V2

ρ(r̄2, t− r12
c
)

4πεr12
d3r̄2,

Ā(r̄1, t) =

∫

V2

J̄(r̄2, t− r12
c
)

4πεc2r12
d3r̄2,

where the electromagnetic field is observed at (r̄1, t) due to the source at r̄2 ∈ V2,

r12 = |r̄1 − r̄2|, and c is the velocity of light.

For a particular case, the Maxwell’s equations and their solutions can be simplified much

further. Throughout this thesis, we study a monochromatic field only and in our special

case, the solutions of the Maxwell’s equations are simplified to be summations of plane

waves or multipole fields.
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2.1 Scalar Multipole Fields

Erdélyi showed that [119]

∧

lm
(r̄) = jl(kr)Y

m
l (θ, φ) = Cm

l

{[

1

ik

(

∂

∂x
+ i

∂

∂y

)]m

P
(m)
l

(

1

ik

∂

∂z

)}

sin(kr)

kr
, (2.1)

∏(1)

lm
(r̄) = h

(1)
l (kr)Y m

l (θ, φ) = Cm
l

{[

1

ik

(

∂

∂x
+ i

∂

∂y

)]m

P
(m)
l

(

1

ik

∂

∂z

)}

eikr

ikr
, (2.2)

∏(2)

lm
(r̄) = h

(2)
l (kr)Y m

l (θ, φ) = Cm
l

{[

1

ik

(

∂

∂x
+ i

∂

∂y

)]m

P
(m)
l

(

1

ik

∂

∂z

)}

e−ikr

−ikr
, (2.3)

we can easily realize the following relationship

∏(1)

lm
(r̄) +

∏(2)

lm
(r̄) = 2

∧

lm
(r̄). (2.4)

It can be verified that the scalar multipole fields
∏(1)

lm(r̄) and
∏(2)

lm(r̄) satisfy the Maxwell’s

equations in a free-source region except the origin of the coordinate system and the

scalar multipole field
∧

lm(r̄) satisfies the equations in the free-source region including

the origin. The scalar multipole field
∧

lm(r̄) is appropriate for a description of a source-

free monochromatic scalar wave field [120]. On the other hand,
∏(1)

lm(r̄) and
∏(2)

lm(r̄) are

appropriate for descriptions of a monochromatic scalar wave field in presence of a localized

source distribution or a localized sink distribution, respectively. Whittaker expanded the

multipole field
∧

lm(r̄) in terms of homogeneous plane waves as follows [120]:

∧

lm
(r̄) = jl(kr)Y

m
l (θ, φ) = (−i)l

1

4π

∫ 2π

0

dβ

∫ π

0

dα sinαY m
l (α, β)eik̄.r̄. (2.5)

Devaney and Wolf cited the article of Erdélyi and used the following definition for the

scalar multipole field in Appendix A of their paper [53]:

∏(1)

lm
(r̄) = Cm

l

{[

1

ik

(

∂

∂x
+ i

∂

∂y

)]m

P
(m)
l

(

1

ik

∂

∂z

)}

eikr

kr
, (2.6)

Comparing Eqs. (2.2) and (2.6), we observe that Devaney and Wolf ignored a complex
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Figure 2.1: Integration contours.

unit i in the denominator of the outgoing spherical wave eikr

ikr
. Consequently, they derived

the following expression

∏(1)

lm
(r̄) = (−i)l

i

2π

∫ 2π

0

dβ

∫

C±
dα sinαY m

l (α, β)eik̄.r̄, (2.7)

where the integral contours C± are shown in Fig. 2.1.

If Devaney and Wolf used the correct form of Erdélyi’s result for the multipole field
∏(1)

lm(r̄), then the following formula should be obtained

∏(1)

lm
(r̄) = (−i)l

1

2π

∫ 2π

0

dβ

∫

C±
dα sinαY m

l (α, β)eik̄.r̄. (2.8)

Devaney and Wolf also compared the constant term outside the integrals in Eqs. (2.5)

and (2.7), they found that the two terms are different by a fraction −i
2
. Then, they

explained the fraction as trivial due to the different integral domains on the right sides

of Eqs. (2.5) and (2.7). In fact, the fraction is 1
2
and the fraction is nontrivial since it

relates to the integral domains.
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In derivation of Eq. (2.8), we have substituted Weyl’s formula [120]

eikr

ikr
=

1

2π

∫ 2π

0

dβ

∫

C±
dα sinαeik̄.r̄ (2.9)

into Eq. (2.2). Similarly, we substitute the following expression for converging spherical

wave [121]:

e−ikr

−ikr
= − 1

2π

∫ 2π

0

dβ

∫

D±
dα sinαeik̄.r̄ (2.10)

into Eq. (2.3), then we can derive

∏(2)

lm
(r̄) = −(−i)l

1

2π

∫ 2π

0

dβ

∫

D±
dα sinαY m

l (α, β)eik̄.r̄. (2.11)

In Eqs. (2.7)-(2.11), we use the integral contour C+ and D+ (C− and D−) for the region

z > 0 (z < 0). It is noteworthy to list down some important observations here

• The expressions in Eqs. (2.5), (2.8), and (2.11) agree with the expression in Eq.

(2.4) as expected.

• The integrations in Eqs. (2.8) and (2.11) over the imaginary parts of α are cor-

respondent to the evanescent parts of multipole fields. Moreover, the evanescent

parts are out of phase and cancel each other completely when being added up.

2.2 Electromagnetic Fields due to a Source and a

Sink

We consider a real, monochromatic, electromagnetic field [53] Ē(r̄, t) = Re{Ē(r̄)e−iωt}

generated by a charge-current distribution

ρ(r̄, t) = Re{ρ(r̄)e−iωt}, J̄(r̄, t) = Re{J̄(r̄)e−iωt}. (2.12)

We assume that ρ(r̄) and J̄(r̄) are continuous and continuously differentiable functions

of position and vanish identically outside a sphere of radius R as shown in Fig. 1.1(a).
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2. Multipole and Plane Wave Expansions of the Electromagnetic Field

From Maxwell’s equations, we can show that Ē(r̄) satisfies the equation

(∆2 + k2)Ē(r̄) = −4π

[

i
k

c
J̄(r̄)−∇ρ(r̄)

]

. (2.13)

Here Ē(r̄) represents a diverging field in the case that ρ(r̄) and J̄(r̄) represent a source as

shown in Fig. 1.1(a). If the charge-current distribution represents a sink, Ē(r̄) represents

a converging field.

To continue, we assume that J̄1(r̄) and ρ1(r̄) play the role of a source which is radiating

the electromagnetic field. And hence, the field Ē1(r̄) behaves at infinity as outgoing

spherical wave. We use the Green function for outgoing wave and obtain the outgoing

field

Ē1(r̄) =
ik

2π

∫ 2π

0

dβ1

∫

C±
dα1 sinα1Ê1(ŝ1)e

ik̄1.r̄, (2.14)

where the spectral amplitude vector Ê1(ŝ) is given by

Ê1(ŝ) =

∫

|r̄′|≤R

[

i
k

c
J̄1(r̄

′)−∇ρ1(r̄
′)

]

e−ik̄1.r̄′ d3r̄′. (2.15)

The outgoing wave is shown in Fig. 1.1(a). Equation (2.14) expands the electric field in

terms of plane waves. Alternatively, we can expand the electric fields in terms of vectorial

multipole fields. It is worth reminding that the vector spherical harmonics is

Ym
l (α, β) = LsY

m
l (α, β)

= −i

(

β̂
∂

∂α
Y m
l (α, β)− α̂

1

sinα

∂

∂β
Y m
l (α, β)

)

= −i

(

β̂
∂

∂α
Y m
l (α, β)− α̂

im

sinα
Y m
l (α, β)

)

.

It is also known that Ym
l (α, β) and ŝ ×Ym

l (α, β) form a complete orthogonal basis for

all vectors perpendicular to ŝ. Hence, we can express Ê1(ŝ1) as follows

Ê1(ŝ1) =

∞
∑

l=1

l
∑

m=−l

(−i)l+1{gmEl[ŝ1 ×Ym
l (α1, β1)] + gmMl[Y

m
l (α1, β1)]}. (2.16)
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2. Multipole and Plane Wave Expansions of the Electromagnetic Field

Applying orthogonality of the vector spherical harmonics to Eq. (2.16), we obtain

gmEl =
il+1

l(l + 1)

∫ 2π

0

∫ π

0

(Ê1(ŝ1)× ŝ1) ·Ym∗
l (α1, β1) sinα1 dα1 dβ1,

gmMl =
il+1

l(l + 1)

∫ 2π

0

∫ π

0

Ê1(ŝ1) ·Ym∗
l (α1, β1) sinα1 dα1 dβ1, (2.17)

Substituting Eq. (2.16) into Eq. (2.14), interchanging the order of the integration and

summation, we obtain

Ē1(r̄) =
∞
∑

l=1

l
∑

m=−l

[gmElN
(1)
lm(r̄) + gmMlM

(1)
lm(r̄)], (2.18)

where

N
(1)
lm(r̄) = (−i)l

k

2π

∫ 2π

0

dβ1

∫

C±
dα1 sinα1[ŝ1 ×Ym

l (α1, β1)]e
ik̄1.r̄, (2.19)

M
(1)
lm(r̄) = (−i)l

k

2π

∫ 2π

0

dβ1

∫

C±
dα1 sinα1Y

m
l (α1, β1)e

ik̄1.r̄. (2.20)

We can prove that Eqs. (2.19) and (2.20) are exactly the electric and magnetic multipole

fields as follows:

N
(1)
lm(r̄) = ∇×∇× [r̄

∏(1)

lm
(r̄)], (2.21)

M
(1)
lm(r̄) = ik∇× [r̄

∏(1)

lm
(r̄)]. (2.22)

We can obtain the time-reversed field Ētr
1 (r̄) of the radiated field Ē1(r̄) by applying the

phase conjugation to the vectorial field in Eq. (2.18):

Ētr
1 (r̄) =

∞
∑

l=1

l
∑

m=−l

[gm∗
El N

(2)
lm(r̄)− gm∗

MlM
(2)
lm(r̄)]. (2.23)

For complete absorption of the time-reversed field, the sink, which is the time-reversed

source, must comprise the charge-current distribution (ρ1(r̄,−t), J̄1(r̄,−t)) [122]. More

details on the sink can be obtained in Refs. [5, 7, 123, 124].

For convenience, we denote the time-reversed field as Ē2(r̄) and the time-reversed
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2. Multipole and Plane Wave Expansions of the Electromagnetic Field

source as J̄2(r̄) and ρ2(r̄). The electric field Ē2(r̄) behaves at infinity as ingoing spherical

wave and we can show that [125]:

Ē2(r̄) = − ik

2π

∫ 2π

0

dβ2

∫

D±
dα2 sinα2Ê2(ŝ2)e

ik̄2.r̄, (2.24)

where the spectral amplitude vector Ê2(ŝ2) is given by

Ê2(ŝ2) =

∫

|r̄′|≤R

[

i
k

c
J̄2(r̄

′)−∇ρ2(r̄
′)

]

e−ik̄2.r̄′ d3r̄′. (2.25)

Figure 1.1(b) shows the ingoing wave, i.e. the wave is traveling from the infinity to the

origin. Of course, in this case, the Sommerfeld’s radiation condition is no longer satisfied.

Alternative to the plane wave expansions in Eq. (2.24), we can expand the converging

field in terms of vectorial multipole fields as follows:

Ē2(r̄) =

∞
∑

l=1

l
∑

m=−l

[qmElN
(2)
lm(r̄) + qmMlM

(2)
lm(r̄)], (2.26)

where

N
(2)
lm(r̄) = ∇×∇× [r̄

∏(2)

lm
(r̄)], (2.27)

M
(2)
lm(r̄) = ik∇× [r̄

∏(2)

lm
(r̄)]. (2.28)

The multipole strengths qmEl and qmMl can be evaluated using Eq. (2.17) in which Ê1, ŝ1,

α1, and β1 are replaced with Ê2, ŝ2, α2, and β2, respectively. Now, we consider the case

in which the time-reversed field approaches the focus without a sink. Due to energy flux

conservation, there must be a diverging wave from the focus following the converging

wave [12]. This case is similar to the case of focusing by an aplanatic system as presented

in Fig. 1.2. In the source-free region, we observe Ê1 = Ê2 = Ê and k̄1 = k̄2 = k̄. As a

result, we have qmEl = gmEl = pmEl and qmMl = gmMl = pmMl. Hence without the sink, the total

field will be the interference between the converging field Ē2 and the diverging field Ē1.
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2. Multipole and Plane Wave Expansions of the Electromagnetic Field

Adding Eq. (2.14) and Eq. (2.24) we obtain

Ē(r̄) =
ik

2π

∫ 2π

0

dβ

∫ π

0

dα sinαÊ(ŝ)eik̄.r̄, (2.29)

Equivalently, we can express the total field in terms of multipole fields by adding Eq.

(2.18) and Eq. (2.26):

Ē(r̄) = Ē1(r̄) + Ē2(r̄)

= 2
∞
∑

l=1

l
∑

m=−l

[pmElNlm(r̄) + pmMlMlm(r̄)], (2.30)

where

Nlm(r̄) = ∇×∇× [r̄
∧

lm
(r̄)], (2.31)

Mlm(r̄) = ik∇× [r̄
∧

lm
(r̄)]. (2.32)

• We note that Eqs. (2.14), (2.24), and (2.29) describe outgoing, ingoing, and stand-

ing waves in terms of an infinite number of different plane waves.

• Whereas Ē(r̄) is a subject to diffraction limit, Ē1(r̄) and Ē2(r̄) are not limited by

the diffraction. We will discuss about these waves and their implication in next

sections.

It is worth noting that Eq. (2.18) is related to Weyl’s expansion and usually used to

describe the field due to a source. Equation (2.30) is related to Whittaker’s expansion

and used to describe the total field in a source-free region. There are some time-space

domains in which both are valid, such as the whole space, except the origin, after the

source ceased to radiate [120].
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2. Multipole and Plane Wave Expansions of the Electromagnetic Field

2.3 Angular SpectrumRepresentation of Electromag-

netic Fields

We can see that both the plane wave expansions (Eqs. (2.14), (2.24), (2.29)) and multipole

expansions (Eqs. (2.18), (2.26), (2.30)) are mode expansions of the electromagnetic fields

in the sense that each of the individual plane waves and multipole fields satisfy the same

wave equation in the same validity domains as their corresponding total fields. However,

only the multipole expansions are true mode expansions of the field outside the source

region. Each expression has its own advantages and disadvantages. On one hand, plane

wave expansions are convenient in solving some problems, such as forward diffraction,

inverse diffraction, and focusing through a planar boundary. On the other hand, multipole

expansions play a crucial role in scattering theory, optical trapping, optical nanomaterial

design [126], and focusing through a spherical boundary [38, 39]. Moreover, the multipole

expansions are particularly useful in calculating the orbital angular momentum and the

spin angular momentum of the field which play an important role in the control of light-

matter interactions [127–129]. It should be noted that the two expansions are equivalent

and the field expressions can be expressed in terms of its angular spectrum by exploiting

the transformation that maps angular variables α and β to spatial frequency variables kx

and ky [130] as follows

kx = k sinα cos β and ky = k sinα sin β. (2.33)

For example, substituting Eq. (2.33) into Eq (2.9), we can obtain the angular spectrum

representation of the spherical wave

eikr

r
=

i

2π

+∞
∫∫

−∞

1

kz
ei(kxx+kyy+kz |z|) dkx dky, (2.34)

where kz =
√

k2 − k2
x − k2

y . Borghi used the transformation in Eq. (2.33) for deriving the

angular spectrum representation of multipole wave fields [130]. Alternative to Borghi’s
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2. Multipole and Plane Wave Expansions of the Electromagnetic Field

method, Arnoldus derived another angular spectrum representation for the electromag-

netic multipole fields and then he used the expression for solving the reflection problem

due to the multipole fields approaching a perfect conductor [131]. Similarly, we can

express the ingoing and outgoing beams in terms of its angular spectrum.

The angular spectrum representation of an optical field has been extensively developed

and used in optical society, especially for topics related to a focusing system [31, 32,

132]. In next chapter, we will discuss the angular spectrum representation and multipole

expansions of the focal field of an aplanatic lens.
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Chapter 3

Angular Spectrum Representation

and Multipole Theory for the Focal

Fields

In chapter 2, we have derived both plane wave and multipole expansions for both incoming

and outgoing electromagnetic fields. In this chapter, we will employ the expansions to

study the focal field when a collimated polarized beam is focused by an aplanatic lens. We

first review how an incident collimated beam approaching the aplanatic lens propagates

through the lens. Then we study the propagation of the focused beam in the image space

using the two expansions.

3.1 Aplanatic Lens Modeling

We consider a case of focusing a paraxial monochromatic polarized beam from medium 1

with the refractive index n1 into medium 2 with the refractive index n2 using an aplanatic

lens as shown in Fig 3.1. Throughout this thesis, we consider the lens with a very large

focal length f compared to the wavelength λ of the polarized beam and we also consider

the polarized beam with very large wave-number only. The modeling of this lens was well

explained and derived by Richards and Wolf [32]. The central idea is that we can replace

the lens by a Gaussian reference sphere (GRS) as shown in Fig. 3.1. In other words,
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Figure 3.1: Aplanatic Lens Modeling.

the effects of the lens on the beam propagation can be described by the sine condition

and the intensity law. Throughout this thesis, we use (r, θ, φ) and (k, α, β) to represent

an observation field point r̄ and a wave vector k̄, respectively. All parameters with a

hat above them are unit vectors representing their directions - for example- k̂2 is an unit

vector representing vector k̄2. The sine condition and the intensity law are described as

follows [32, 103]:

• The sine condition states that each ray approaching the lens intersect its conjugate

ray, which propagates toward the focus, at the surface of the GRS. In other words,

we have h = f sinα with the notations shown in Fig. 3.1.

• The intensity law is in fact the fundamental law of energy conservation. We know

that the power carried by a bundle of rays with an infinitesimal cross-section per-

pendicular to the ray propagation dA is P = 1
2
|Ē|2
Zµε

dA where Zµε is the wave

impedance. For the beam passing through the lens, we assume the bundle of

rays passing the lens without loss due to absorption and reflection, the power

should be conserved at the interface between the two mediums. Hence, at the

GRS, we have P1 = P2 ⇔ |Ē1|2
Z1

dA1 = |Ē2|2
Z2

dA2, where dA1 = dA2 cosα and
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Z2

Z1
=
√

µ2ε1
µ1ε2

=
(
√

n1

n2

√

µ2

µ1

)2

. Consequently, we obtain

|Ē2| = |Ē1|
√

n1

n2

√

µ2

µ1

√
cosα. (3.1)

For most mediums, µ ≃ 1 ⇒ µ2

µ1
≃ 1, Eq. (3.1) is simplified to be

|Ē2| = |Ē1|
√

n1

n2

√
cosα. (3.2)

In our case study, we also have n1 = n2 = 1. But in some special cases like liquid

immersion microscope, we have n1 6= n2.

Hence, given the amplitude of the electric field Ē1 of the incident collimated beam,

the amplitude of the electric field Ē2 of the focused beam on the GRS can be evaluated

using Eq. (3.2). Another property of the focused beam is that the polarization has not

been known. To derive the polarization of the focused beam, we consider a meridional

plane which is formed by the optical axis (z-axis) and the wave vector k̄2. It has been

explained that the angle between the electric vector and the meridional plane can be con-

sidered to be unchanged during the propagation of a ray through the lens [32]. To derive

the polarization of the focused field, we decompose the incident field into p-polarization

and s-polarization components in which p-polarization and s-polarization are parallel

and perpendicular to the meridional plane, respectively. For a convenient purpose, the

incident electric field is expressed in the cylindrical coordinates (ρ̂, φ̂) as shown in Fig.

3.1. Similarly, the focused electric field is expressed in terms of α̂ (p-polarization) and β̂

(s-polarization), where α and β specify the direction of the propagation of the focused

electric field. At the interface, we can approximate the interface to be locally-flat. More-

over, both media are isotropic, hence the s-polarization and p-polarization of the incident

electric field are mapped into the s-polarization and p-polarization of the focused electric

28



3.Multipole Theory and Angular Spectrum Representation for the Focal
Fields

field, respectively. Mathematically, we can express the fields as follows

Ē1 = Ē
(s)
1 + Ē

(p)
1 = E1φφ̂+ E1ρρ̂, (3.3)

Ē2 = Ē
(s)
2 + Ē

(p)
2 = E2β β̂ + E2αα̂. (3.4)

Equation (3.2) applies for both s-polarization and p-polarization components, hence we

have

E2β = −E1φ

√

n1

n2

√
cosα, (3.5)

E2α = −E1ρ

√

n1

n2

√
cosα. (3.6)

The minus sign in Eqs. (3.5) and (3.6) accounts for the fact that β̂ and φ̂ are of opposite

signs and so are α̂ and ρ̂. Substituting Eqs. (3.5) and (3.6) into Eq. (3.4), we obtain the

focused electric field Ē2

Ē2 = −[E1φβ̂ + E1ρα̂]

√

n1

n2

√
cosα. (3.7)

We can express the focused electric field in the Cartesian coordinates by introducing the

transformations β̂ = −x̂ sin β + ŷ cos β, α̂ = x̂ cos β cosα+ ŷ sin β cosα− ẑ sinα into Eq.

(3.7) to obtain

Ē2 = −













E1φ













− sin β

cos β

0













+ E1ρ













cos β cosα

sin β cosα

− sinα

























√

n1

n2

√
cosα. (3.8)

In this section, we have derived the focused electric field on the GRS, given the incident

electric field approaching the aplanatic lens. Using this focused field on the GRS as a

far-field, we will derive the electromagnetic field in the whole image space using the plane

wave expansions in next section.
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3.2 Angular SpectrumRepresentation of Optical Fields

The previous section has derived the focused electric field on the GRS. However, how

the focused field propagates in the image space is of interest. This section will model the

propagation of the focused field based on the plane wave expansions. More accurately we

use the angular spectrum representation of optical field for describing the propagation

of the field, given the far-field on the GRS. For an example purpose, we consider the

focusing of a linearly-polarized Gaussian beam using the aplanatic lens.

Bracewell [133, 134] has pointed out that physical possibility is a valid sufficient con-

dition for the existence of a Fourier transform of a physical quantity. Hence, the electric

field Ē(x, y, z) at position (x, y, z) can be expressed in terms of an integral representation

with respect to the variables kx, ky, and kz. In other words, Ē(x, y, z) can be represented

as follows

Ē(x, y, z) =

+∞
∫∫∫

−∞

Ê(kx, ky, kz)e
i(kxx+kyy+kzz) dkx dky dkz

=

+∞
∫∫

−∞

[
∫ +∞

−∞
Ê(kx, ky, kz)e

ikzz dkz

]

ei(kxx+kyy) dkx dky, (3.9)

where Ê(kx, ky, kz) is the Fourier transform of the electric field Ē(x, y, z). Let’s define

Ê(kx, ky; z) =
∫ +∞
−∞ Ê(kx, ky, kz)e

ikzz dkz, then Ē(x, y, z) in Eq. (3.9) can be expressed in

the following form

Ē(x, y, z) =

+∞
∫∫

−∞

Ê(kx, ky; z)e
i(kxx+kyy) dkx dky. (3.10)

In Eq. (3.10), Ê(kx, ky; z) is the angular spectrum of the field on a z = const plane.

Now, we assume that the wave is traveling inside a homogeneous, isotropic, linear, and

source-free medium, Ē(x, y, z) satisfies the Helmholtz equation [134]:

(▽2 + k2)Ē(x, y, z) = 0, (3.11)
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where k = nω
c
with n =

√
µε is the refractive index of the medium.

Substituting Eq. (3.10) into Eq. (3.11), we obtain

d2Ê(kx, ky; z)

dz2
+ (k2 − k2

x − k2
y)Ê(kx, ky; z) = 0 (3.12)

Letting ν2 = k2 − k2
x − k2

y, the general solution of Eq. (3.12) is

Ê(kx, ky; z) = F(kx, ky)e
iνz +G(kx, ky)e

−iνz. (3.13)

To evaluate the electromagnetic field Ē(x, y, z) in a specific case, we must correspondingly

derive the functions F(kx, ky) and G(kx, ky) for the specific case. Now, we consider the

case of focusing beam using the aplanatic lens. It is obvious that the focused wave,

after passing through the focus of the lens, becomes a diverging beam and approaches

the infinity in the half-space z > 0. We continue by assuming that our system obeys

Sommerfeld’s radiation condition in the half-space z > 0. In other words, at the infinity

z = +∞, there exists only the outgoing beam. This directly leads to G(kx, ky) = 0

and F(kx, ky) = Ê(kx, ky; 0). For a monochromatic field (constant k) and for each set of

(kx, ky), there exists a unique value of k2
z = ν2 = k2 − k2

x − k2
y . Hence, Eq. (3.10) can be

expressed as follows

Ē(x, y, z) =

+∞
∫∫

−∞

Ê(kx, ky; 0)e
i(kxx+kyy+kzz) dkx dky. (3.14)

If k2
x + k2

y > k2, kz is pure imaginary, i.e., the corresponding wave is an evanescent wave

which decays toward z = +∞. On contrary, if k2
x + k2

y < k2, kz is real. The associated

wave is a homogeneous wave propagating toward z = +∞. The case of k2
x + k2

y = k2

is associated with the transversal wave which travels in xy-plane. In our case, the focal

field is of interest and the focus is far away from the aplanatic lens, hence we can ignore

the wave associated with k2
x + k2

y > k2. The focal field can be simplified from Eq. (3.14)
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as follows

Ē(x, y, z) =

∫∫

k2x+k2y≤k2

Ê(kx, ky; 0)e
i(kxx+kyy+kzz) dkx dky. (3.15)

For a diffraction problem, we usually know the incident field onto the scatterer. In our

case, we know the incident field on the GRS. Since, the focal length of the aplanatic

lens is much larger than the wavelength, we can approximate the incident field on the

GRS to be the far-field. Our purpose is to evaluate the focal field in terms of the far-

field. Appendix A derives the relation between the angular spectrum Ê(kx, ky; 0) and the

far-field Ē(kx, ky) and the result is

Ê(kx, ky; 0) = −ir∞eikr∞

2πkz
Ē(kx, ky). (3.16)

Substituting Eq. (3.16) into Eq. (3.14), we obtain the electric field in terms of its far

field as follows

Ē(x, y, z) = − i

2π

+∞
∫∫

−∞

r∞eikr∞Ē(kx, ky)e
i(kxx+kyy+kzz)

1

kz
dkx dky (3.17)

The focal field in Fig. (3.1) is evaluated by ignoring the evanescent field in Eq. (3.17) as

follows

Ē(x, y, z) = − i

2π

∫∫

k2x+k2y≤k2

r∞eikr∞Ē(kx, ky)e
i(kxx+kyy+kzz)

1

kz
dkx dky (3.18)

One should note that r∞ is a function of kx and ky since it depends on the shape of the

surface on which we apply the principle of stationary phase. One example is the case

of light converging from the surface of an aplanatic solid immersion lens to its focus as

presented in chapter 5. And hence it should be included in the double integrals. Equation

(3.18) is extensively employed by many researchers. Here, we present an example of how

to apply Eq. (3.18) to evaluate the focal field of focusing a linearly-polarized Gaussian

beam using the aplanatic lens.

Since f ≫ λ, r∞ = f , and the field Ē2 in Eq. (3.8) is considered as the far field
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in Eq. (3.18). We denote the wave-vector in the focal region by k̄, it is obvious that

kx = k sinα cos β, ky = k sinα sin β, kz = k cosα, and dkxdky = (k2 sinαdαdβ) cosα. For

a convenient purpose, we express the Cartesian coordinates (x, y, z) in terms of cylindrical

coordinates (ρ, φ, z): x = ρ cosφ, y = ρ sinφ ⇒ ρ =
√

x2 + y2 and φ = arctan y
x
. Hence,

we have

kxx+ kyy + kzz = (k sinα cos β)ρ cosφ+ (k sinα sin β)ρ sinφ+ (k cosα)z

= kρ sinα cos(β − φ) + kz cosα. (3.19)

We assume that the incident beam is linear polarized in x-direction, and hence the incident

electric field approaching the aplanatic lens is

Ē1 = E1(α, β)x̂ ⇒ E1φ = −E1(α, β) sinβ and E1ρ = E1(α, β) cosβ. (3.20)

From Eqs. (3.8) and (3.20), we have

Ē2 = E1(α, β)













− sin2 β − cos2 β cosα

sinα cos β(1− cosα)

sinα cos β













√

n1

n2

√
cosα. (3.21)

Substituting Eqs. (3.19), (3.21), and r∞ = f into Eq. (3.18), we obtain

Ē(ρ, φ, z) = −ikfeikf

2π

∫ αm

0

sinαdα

∫ 2π

0

dβE1(α, β)













− sin2 β − cos2 β cosα

sinα cos β(1− cosα)

sinα cos β













×
√

n1

n2

√
cosα eik[ρ sinα cos(β−φ)+z cosα], (3.22)

where αm is the maximum angular semi-aperture of the aplanatic lens.
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For the electric field whose intensity is Gaussian distribution in the lateral plane, we have

E1(α, β) = E0e
−(x2+y2)/w2

0 = E0e
−f2 sin2 α/w2

0

= E0e
− sin2 α/(f0 sinαm)2 = E0fw0

(α), (3.23)

where w0 is the half-width of the Gaussian beam, f0 = w0/(f sin θm) is the filling factor,

and fw0
(α) is the apodization function which describes the beam profile approaching

the lens. The reason for investigating the Gaussian beam is that the Gaussian beam is

produced by nearly all laser sources and it has been widely used in science and technology.

In fact, we will use it for our experiment presented in chapter 5.

We can simplify Eq. (3.22) even more for the Gaussian beam by employing the

following identities

∫ 2π

0

cosnβeiu cos(β−φ) dβ = 2πinJn(u) cos(nφ), (3.24)

∫ 2π

0

sinnβeiu cos(β−φ) dβ = 2πinJn(u) sin(nφ), (3.25)

sin2 β =
1− cos 2β

2
, (3.26)

cos2 β =
1 + cos 2β

2
, (3.27)

sin β cos β =
sin 2β

2
. (3.28)

Here, we show how to simplify for Ex(ρ, φ, z) only. For Ey(ρ, φ, z) and Ez(ρ, φ, z), a

similar procedure can be used. From Eqs. (3.22) and (3.23), we have

Ex(ρ, φ, z) =
ikfeikf

2π

√

n1

n2

E0

∫ αm

0

dαfw0
(α)

√
cosα sinα

∫ 2π

0

dβ[sin2 β + cos2 β cosα]

×eik[ρ sinα cos(β−φ)+z cosα]

=
ikfeikf

2π

√

n1

n2
E0

∫ αm

0

dαfw0
(α)

√
cosα sinαeikz cosα

[
∫ 2π

0

dβ sin2 βeikρ sinα cos(β−φ) + cosα

∫ 2π

0

dβ cos2 βeikρ sinα cos(β−φ)

]

(3.29)
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Using Eqs. (3.24) and (3.26), we have:

∫ 2π

0

dβ[sin2 βeikρ sinα cos(β−φ)] = π[J0(kρ sinα) + J2(kρ sinα) cos 2φ] (3.30)

Using Eqs. (3.24) and (3.27), we have:

∫ 2π

0

dβ[cos2 βeikρ sinα cos(β−φ)] = π[J0(kρ sinα)− J2(kρ sinα) cos 2φ] (3.31)

Substituting Eqs. (3.30) and (3.31) into Eq. (3.29), we obtain:

Ex(ρ, φ, z) =
ikfeikf

2π

√

n1

n2
E0

∫ αm

0

dαfw0
(α)

√
cosα sinαeikz cosα [π{J0(kρ sinα)

+ J2(kρ sinα) cos 2φ}+ π cosα{J0(kρ sinα)− J2(kρ sinα) cos 2φ}]

=
ikfeikf

2

√

n1

n2
E0

∫ αm

0

dαfw0
(α)

√
cosα sinαeikz cosα ×

[(1 + cosα)J0(kρ sinα) + (1− cosα)J2(kρ sinα) cos 2φ] (3.32)

Let I0 and I2 be

I0 =

∫ αm

0

dαE0fw0
(α)

√
cosα sinαJ0(kρ sinα)e

ikz cosα(1 + cosα) (3.33)

I2 =

∫ αm

0

dαE0fw0
(α)

√
cosα sinαJ2(kρ sinα)e

ikz cosα(1− cosα) (3.34)

Substituting Eqs. (3.33) and (5.48) into Eq. (3.32), we obtain

Ex(ρ, φ, z) =
ikfeikf

2

√

n1

n2

[I0 + I2 cos 2φ] . (3.35)

Similarly, Ey(ρ, φ, z) and Ez(ρ, φ, z) can be obtained as follows:

Ey(ρ, φ, z) =
ikfeikf

2

√

n1

n2

I2 sin 2φ, (3.36)

Ez(ρ, φ, z) =
ikfeikf

2

√

n1

n2
[−2iI1 cosφ] , (3.37)

where I1 =
∫ αm

0
dαE0fw0

(α)
√
cosα sinαJ1(kρ sinα)e

ikz cosα sinα. In a compact form, the
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focal field is written as follows

Ē(ρ, φ, z) =
ikfeikf

2

√

n1

n2













I0 + I2 cos 2φ

I2 sin 2φ

−2iI1 cos φ













. (3.38)

This section has derived the angular spectrum representation of the optical field for

evaluating the focal field of the aplanatic lens. In the next section, we are going to form

another representation based on multipole theory.

3.3 Multipole Theory

The pivotal step in using the multipole expansion of the electromagnetic field is the

evaluation of the multipole strengths. In general, we have derived the strengths in terms

of the spectral amplitude vectors Ê(ŝ) and Ĥ(ŝ). In this section, we apply the formulas

derived in the previous chapter for formulating the focal field of an aplanatic lens.

3.3.1 Multipole Strengths for the Focused Waves

At the far region, we have the following relationship between the far field and the spectral

amplitude [53]:

Ê(ŝ) = r∞eikr∞Ē(r̄∞). (3.39)

It should be noted that the spectral amplitude is in fact equivalent to the concept of

strength factor of a ray in Ref. [31]. For the aplanatic lens in Fig. 3.1, we can write

Ē(r̄∞) = Eαα̂+Eββ̂ and hence the spectral amplitude of the focused beam can be written

as follows

Ê(ŝ) = feikf [Eαα̂ + Eβ β̂]. (3.40)

36



3.Multipole Theory and Angular Spectrum Representation for the Focal
Fields

Substituting Eq. (3.40) into Eq. (2.17), we obtain the multipole strengths of the focused

beam as follows

pmEl = − ilfeikf

l(l + 1)
clm

∫ 2π

0

∫ π

0

(

dPm
l (cosα)

dα
Eα − im

Pm
l (cosα)

sinα
Eβ

)

e−imβ sinα dα dβ,

pmMl =
ilfeikf

l(l + 1)
clm

∫ 2π

0

∫ π

0

(

dPm
l (cosα)

dα
Eβ + im

Pm
l (cosα)

sinα
Eα

)

e−imβ sinα dα dβ. (3.41)

It should be noted that the only approximation, which we made to derive the multipole

strengths in Eq. (3.41), is that the electromagnetic field on the GRS can be approximated

as the far field, i.e., the radial component of the field can be ignored. We will see the

accuracy of the approximation in simulation section below.

3.3.2 Direct Derivation for the Multipole Strengths

Multipole theory expresses the electromagnetic fields in terms of the vector electricNlm(r̄)

and magnetic Mlm(r̄) multipole fields as follows

Ē(r̄) =

∞
∑

l=1

l
∑

m=−l

[pmElNlm(r̄) + pmMlMlm(r̄)], (3.42)

where, for a converging beam, the multipole fields are

N
(2)
lm(r̄) = ∇×∇× [r̄h

(2)
l (kr)Y m

l (θ, φ)]

= r̂
l(l + 1)

r
h
(2)
l (kr)Y m

l (θ, φ) + θ̂

[

1

r

d

dr
(rh

(2)
l (kr))

∂

∂θ
Y m
l (θ, φ)

]

+ φ̂
im

sin θ

1

r

d

dr
(rh

(2)
l (kr))Y m

l (θ, φ), (3.43)

M
(2)
lm(r̄) = ik∇× [r̄h

(2)
l (kr)Y m

l (θ, φ)]

= −kh
(2)
l (kr)

[

θ̂
m

sin θ
Y m
l (θ, φ) + iφ̂

∂

∂θ
Y m
l (θ, φ)

]

. (3.44)

To evaluate the multipole strengths, there exists several approaches like point-matching,

focal plane matching, and far-field matching approaches [135]. In this section, we use the

far-field matching approach to derive analytical expressions for the strengths. To avoid a

possible confusion, we would like to remind that ŝ = k̄
k
is the unit vector of the propagation
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direction. r̂ is the unit vector in the radial direction. The spherical angles (α, β) and

(θ, φ) specify the unit vector ŝ and r̂, respectively. On the GRS shown in Fig. 3.1, we

have ŝ = −r̂, θ = π − α, φ = β − π, θ̂ = α̂, φ̂ = −β̂, and Ē = Eθθ̂ + Eφφ̂ = Eαα̂ + Eββ̂.

Hence, we can easily observe that Eθ = Eα and Eφ = −Eβ . Using the following identities

Pm
l (cos θ) = Pm

l (− cosα) = (−1)l+mPm
l (cosα),

eimφ = e−imπeimβ = (−1)meimβ ,

we can show that

Y m
l (θ, φ) = clmP

m
l (cos θ)eimφ = (−1)lclmP

m
l (cosα)eimβ = (−1)lY m

l (α, β), (3.45)

where clm = (−1)m
[

2l+1
4π

(l−m)!
(l+m)!

]
1

2

.

Using Eq. (3.45), we express Eq. (3.42) in terms of α and β as follows

Er =
∞
∑

l=1

l
∑

m=−l

(−1)l
pmEll(l + 1)

r
h
(2)
l (kr)Y m

l (α, β), (3.46)

Eα =

∞
∑

l=1

l
∑

m=−l

(−1)l+1

[

pmEl

1

r

d

dr
[rh

(2)
l (kr)]

∂

∂α
Y m
l (α, β) + kmpmMlh

(2)
l (kr)

Y m
l (α, β)

sinα

]

,

(3.47)

Eβ =
∞
∑

l=1

l
∑

m=−l

(−1)l+1

[

impmEl

1

r

d

dr
[rh

(2)
l (kr)]

Y m
l (α, β)

sinα
+ ikpmMlh

(2)
l (kr)

∂

∂α
Y m
l (α, β)

]

.

(3.48)

In limitation of kr∞ ≫ l(l+1)
2

, we can approximate:

h
(2)
l (kr∞) ≈ il+1 e

−ikr∞

kr∞
, (3.49)

1

r∞

d

dr∞
[r∞h

(2)
l (kr∞)] ≈ il

e−ikr∞

r∞
. (3.50)
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Substituting Eqs. (3.49) and (3.50) into Eqs. (3.46), (3.47) and (3.48), we obtain

Er ≈ 0,

Eα ≈ −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

pmEl

dPm
l (cosα)

dα
+ impmMl

Pm
l (cosα)

sinα

]

eimβ , (3.51)

Eβ ≈ −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

impmEl

Pm
l (cosα)

sinα
− pmMl

dPm
l (cosα)

dα

]

eimβ . (3.52)

Adding and subtracting Eq. (3.51) from Eq. (3.52), we have

Eα + Eβ = −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

pmEl

(

dPm
l (cosα)

dα
+ im

Pm
l (cosα)

sinα

)

−pmMl

(

dPm
l (cosα)

dα
− im

Pm
l (cosα)

sinα

)]

eimβ, (3.53)

Eα − Eβ = −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

pmEl

(

dPm
l (cosα)

dα
− im

Pm
l (cosα)

sinα

)

+pmMl

(

dPm
l (cosα)

dα
+ im

Pm
l (cosα)

sinα

)]

eimβ . (3.54)

From Eq. (3.53):

∫ 2π

0

∫ π

0

(Eα + Eβ)

(

dPm′
l′ (cosα)

dα
− im′P

m′
l′ (cosα)

sinα

)

e−im′β sinα dα dβ

= −e−ikr∞

r∞

∫ 2π

0

∫ π

0

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

pmEl

(

dPm
l (cosα)

dα
+ im

Pm
l (cosα)

sinα

)

−pmMl

(

dPm
l (cosα)

dα
− im

Pm
l (cosα)

sinα

)](

dPm′
l′ (cosα)

dα
− im′P

m′
l′ (cosα)

sinα

)

× ei(m−m′)β sinα dα dβ. (3.55)

Noting that
∫ 2π

0
ei(m−m′)β dβ = 2πδ0m−m′ where δ0m−m′ is a Kronecker tensor (also called
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Kronecker delta) and using the following orthogonalizations

alm =

∫ π

0

(

dPm
l (cosα)

dα
± im

Pm
l (cosα)

sinα

)(

dPm
l′ (cosα)

dα
∓ im

Pm
l′ (cosα)

sinα

)

sinα dα

=

∫ π

0

(

dPm
l (cosα)

dα

dPm
l′ (cosα)

dα
+m2P

m
l (cosα)

sinα

Pm
l′ (cosα)

sinα

)

sinα dα

=
2l(l + 1)

2l + 1

(l +m)!

(l −m)!
δ0l−l′, (3.56)

blm =

∫ π

0

(

dPm
l (cosα)

dα
± im

Pm
l (cosα)

sinα

)(

dPm
l′ (cosα)

dα
± im

Pm
l′ (cosα)

sinα

)

sinα dα

=

∫ π

0

(

dPm
l (cosα)

dα

dPm
l′ (cosα)

dα
−m2P

m
l (cosα)

sinα

Pm
l′ (cosα)

sinα

)

sinα dα

=
2l(l + 1)− 2m(2l + 1)

2l + 1

(l +m)!

(l −m)!
δ0l−l′, (3.57)

we can reduce Eq. (3.55) as follows

∫ 2π

0

∫ π

0

(Eα + Eβ)

(

dPm′
l′ (cosα)

dα
− im′P

m′
l′ (cosα)

sinα

)

e−im′β sinα dα dβ

= −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

2π(−i)lclm[p
m
Elalm − pmMlblm]δ

0
m−m′ . (3.58)

Similarly, we obtain from Eq. (3.54)

∫ 2π

0

∫ π

0

(Eα − Eβ)

(

dPm′
l′ (cosα)

dα
+ im′P

m′
l′ (cosα)

sinα

)

e−im′β sinα dα dβ

= −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

2π(−i)lclm[p
m
Elalm + pmMlblm]δ

0
m−m′ . (3.59)
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Adding Eqs. (3.58) and (3.59) together, we have:

∫ 2π

0

∫ π

0

(

dPm′
l′ (cosα)

dα
Eα − im′P

m′
l′ (cosα)

sinα
Eβ

)

e−im′β sinα dα dβ

= −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

2π(−i)lclmp
m
Elalmδ

0
m−m′

= −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

2π(−i)lclmp
m
El

2l(l + 1)

2l + 1

(l +m)!

(l −m)!
δ0l−l′δ

0
m−m′

= −e−ikr∞

r∞

l′(l′ + 1)

il′cl′m′
pm

′
El′. (3.60)

Without loss of generalization, we can change (l′, m′) by (l, m) in Eq. (3.60), and obtain

the electric multipole strength of the (l, m) multipole term in terms of the electric field

on the GRS (r∞ = f) as follows

pmEl = − ilfeikf

l(l + 1)
clm

∫ 2π

0

∫ π

0

(

dPm
l (cosα)

dα
Eα − im

Pm
l (cosα)

sinα
Eβ

)

e−imβ sinα dα dβ.

(3.61)

The magnetic multipole strength of the (l, m) multipole term is

pmMl =
ilfeikf

l(l + 1)
clm

∫ 2π

0

∫ π

0

(

dPm
l (cosα)

dα
Eβ + im

Pm
l (cosα)

sinα
Eα

)

e−imβ sinα dα dβ. (3.62)

We can see that the Eqs. (3.61) and (3.62) are exactly the same as Eq. (3.41). Now,

given the incident field approaching the aplanatic lens, we can evaluate the multipole

strengths and equivalently the converging field using Eq. (3.42). If there is no source

around the focus, there must be a beam diverging to the infinity as a consequence of

the converging beam. The diverging field can be obtained from Eqs. (3.46), (3.47), and

(3.48) by replacing h
(2)
l with h

(1)
l . Then, by summing up these two beams and using the

following recurrence relationships for the spherical Bessel functions

jl(kr) =
kr

2l + 1
(jl−1(kr) + jl+1(kr)),

1

r

d

dr
[rjl(kr)] =

k

2l + 1
[(l + 1)jl−1(kr)− ljl+1(kr)],
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we can derive the focal field as follows

Er = 2k
∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm (pmEl[jl−1(kr) + jl+1(kr)]P

m
l (cos θ)) exp(imφ),

Eθ = 2k
∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

pmEl

[

jl−1(kr)

l
− jl+1(kr)

l + 1

]

dPm
l (cos θ)

dθ

−m
2l + 1

l(l + 1)
pmMljl(kr)

Pm
l (cos θ)

sin θ

)

exp(imφ),

Eφ = 2ik

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

mpmEl

[

jl−1(kr)

l
− jl+1(kr)

l + 1

]

Pm
l (cos θ)

sin θ

− 2l + 1

l(l + 1)
pmMljl(kr)

dPm
l (cos θ)

dθ

)

exp(imφ). (3.63)

Alternative to the formula based on the angular spectrum representation, this section

formed the formula based on multipole theory for evaluating the focal field of the aplanatic

lens. In the next section, we use the formulas for various polarized beam including

cylindrical beam and generalized linear polarized beam.

3.4 Polarized Beams and Focal Fields

Studying the focal field of the aplanatic lens has a long history since many years ago [31].

For a low NA beam, the focal field is well described by the scalar diffraction integrals

and the vectorial nature of the beam can be ignored. However, for a high NA beam the

polarization properties of the electromagnetic field play a dominant role. For example, for

a linearly polarized beam, the energy density distribution of a longitudinally polarized

component in the direction of propagation of the beam is not rotational symmetric.

This primarily causes an asymmetric deformation of the focal spot. Using a circularly

polarized beam produces a rotational symmetric energy density distribution around the

longitudinal direction. Using a radially polarized beam with a high NA produces a strong

symmetrical longitudinal electric field component in the vicinity of the focus [16]. The

strong longitudinal component is sharply centered around the optical axis and leads to

a smaller lateral focal spot size in comparison with the linear polarization. In contrast,
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focusing an azimuthally polarized beam using a high NA lens generates a strong magnetic

field on the optical axis, while the electric field is purely transverse and zero at the center

due to a completely destructive interference between different parts of the electric field at

the focus. To avoid the doughnut focal spot, one can encode the phase of the azimuthally

polarized beam with a vortex 0 − 2π phase plate which modifies the phase of the beam

and hence leads to a constructive interference at the focus [115]. In this section, using

Eqs. (3.18) and (3.63), we form different expressions to study the properties of different

polarized beams.

3.4.1 Radial or Azimuthal Polarization with a Vortex

Radially and azimuthally polarized beams are usually called cylindrical beam. Radially

polarized beam has been the continuing topic of interest due to the strong longitudinal

field which is produced at the focus of the aplanatic lens. Using the radially-polarized

beam also produces a tighter focal spot on the transverse plane compared to linearly

polarized beam [16]. Recently, cylindrical beam with a vortex has gained much attention

due to its unique properties of angular momentum which find applications in optical

trapping, spintronics, and quantum information. Focusing azimuthally-polarized beam

produces a broader focal spot compared with the linearly and radially polarized beams,

however azimuthally polarized beam with a vortex can give a tighter spot with a high

numerical aperture lens [115]. One of the purposes of this thesis is to study and use

different polarizations for improving performance of microscope. Hence, we formulate

and study the focal fields using different polarizations in this section.

3.4.1.1 Radially-polarized Beam with a Vortex of Charge n

The field on the GRS has the form of

Ē(ŝ) = a(α)exp(inβ)α̂. (3.64)
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By substituting Eq. (3.64) into Eq. (3.18), we obtain the focal field based on the angular

spectrum representation as follows

Ē(ρ, φ, z) = −ikfeikf

2













In+1 + In−1

−i(In+1 − In−1)

−2In













, (3.65)

where

In−1 = in−1ei(n−1)φ

∫ αm

0

a(α) cosαJn−1(kρ sinα)e
ikz cosα sinα dα,

In+1 = in+1ei(n+1)φ

∫ αm

0

a(α) cosαJn+1(kρ sinα)e
ikz cosα sinα dα,

In = ineinφ
∫ αm

0

a(α)Jn(kρ sinα)e
ikz cosα sin2 α dα.

By substituting Eq. (3.64) into Eqs. (3.61) and (3.62), we obtain

pmEl = −2πilfeikf

l(l + 1)
clnδ

0
m−n

∫ π

0

a(α)
d

dα
P n
l (cosα) sinα dα,

pmMl =
2πil+1feikf

l(l + 1)
nclnδ

0
m−n

∫ π

0

a(α)P n
l (cosα) dα. (3.66)

By substituting Eq. (3.66) into Eq. (3.63), we obtain the focal field based on the multipole

theory as follows

Er = 2k
∞
∑

l=|n|

l(l + 1)

2l + 1
cln (p

n
El[jl−1(kr) + jl+1(kr)]P

n
l (cos θ)) exp(inφ),

Eθ = 2k
∞
∑

l=|n|

l(l + 1)

2l + 1
cln

(

pnEl

[

jl−1(kr)

l
− jl+1(kr)

l + 1

]

dP n
l (cos θ)

dθ

−n
2l + 1

l(l + 1)
pnMljl(kr)

P n
l (cos θ)

sin θ

)

exp(inφ),

Eφ = 2ik

∞
∑

l=|n|

l(l + 1)

2l + 1
cln

(

npnEl

[

jl−1(kr)

l
− jl+1(kr)

l + 1

]

P n
l (cos θ)

sin θ

− 2l + 1

l(l + 1)
pnMljl(kr)

dP n
l (cos θ)

dθ

)

exp(inφ). (3.67)

If n = 0, the summations start with 1 instead of 0.
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3.4.1.2 Azimuthally-polarized Beam with a Vortex of Charge n

The field on the GRS has the form of

Ē(ŝ) = a(α)exp(inβ)β̂. (3.68)

Substituting Eq. (3.68) into Eq. (3.18), we obtain the focal field based on the angular

spectrum representation as follows

Ē(ρ, φ, z) = −ikfeikf

2













i(Fn+1 − Fn−1)

Fn+1 + Fn−1

0













, (3.69)

where

Fn−1 = in−1ei(n−1)φ

∫ αm

0

a(α)Jn−1(kρ sinα)e
ikz cosα sinα dα,

Fn+1 = in+1ei(n+1)φ

∫ αm

0

a(α)Jn+1(kρ sinα)e
ikz cosα sinα dα.

Substituting Eq. (3.68) into Eqs. (3.61) and (3.62), we obtain

pmEl =
2πil+1feikf

l(l + 1)
nclnδ

0
m−n

∫ π

0

a(α)P n
l (cosα) dα,

pmMl =
2πilfeikf

l(l + 1)
clnδ

0
m−n

∫ π

0

a(α)
d

dα
P n
l (cosα) sinα dα. (3.70)

Substituting Eq. (3.70) into Eq. (3.63), we obtain exactly the same form as Eq. (3.67).

For a notice, we can write the multipole strengths of a cylindrical beam with a vortex in

the following format

pmEl = pnElδ
n
m, pmMl = pnMlδ

n
m. (3.71)
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3.4.2 Generalized Linear Polarization

The field on the GRS has the form of [26]

Ē(ŝ) = a(α) cos2
α

2
{(1− S(α)) cosβα̂− (1 + S(α)) sinββ̂}, (3.72)

where S(α) is a parameter that can be chosen to generate different polarizations and

apodization distributions [136]. By substituting Eq. (3.72) into Eq. (3.18), we obtain

the focal field based on the angular spectrum representation as follows

Ē(ρ, φ, z) = −ikfeikf

2













H0 +H2 cos 2φ

H2 sin 2φ

−2iH1 cos φ













, (3.73)

where

H0 =

∫ αm

0

a(α) cos2(
α

2
) [(1 + S(α)) + (1− S(α)) cosα]J0(kρ sinα)e

ikz cosα sinα dα,

H1 =

∫ αm

0

a(α) cos2(
α

2
) [1− S(α)]J1(kρ sinα)e

ikz cosα sin2 α dα,

H2 =

∫ αm

0

a(α) cos2(
α

2
) [(1 + S(α))− (1− S(α)) cosα]J2(kρ sinα)e

ikz cosα sinα dα.

By substituting Eq. (3.72) into Eqs. (3.61) and (3.62), we get the multipole strengths

for the beam

pmEl = p1El(δ
1
m − δ−1

m ),

pmMl = p1Ml(δ
1
m + δ−1

m ), (3.74)

46



3.Multipole Theory and Angular Spectrum Representation for the Focal
Fields

where

p1El =
ilfeikf

2l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2
∫ αm

0

a(α) cos2
α

2

(

[1− S(α)]
d

dα
P 1
l (cosα)

+[1 + S(α)]
1

sinα
P 1
l (cosα)

)

sinα dα,

p1Ml =
il−1feikf

2l(l + 1)

[

π(2l + 1)

l(l + 1)

] 1

2

∫ αm

0

a(α) cos2
α

2

(

[1 + S(α)]
d

dα
P 1
l (cosα)

+[1− S(α)]
1

sinα
P 1
l (cosα)

)

sinα dα. (3.75)

By substituting Eq. (3.75) into Eq. (3.63), we obtain the focal field based on the multipole

theory as follows

Er = − k√
π

∞
∑

l=1

√

l(l + 1)

2l + 1
p1El[jl−1(kr) + jl+1(kr)]P

1
l (cos θ) cosφ,

Eθ = − k√
π

∞
∑

l=1

√

l(l + 1)

2l + 1

[

p1El

(

jl−1(kr)

l
− jl+1(kr)

l + 1

)

d

dθ
P 1
l (cos θ)

− 2l + 1

l(l + 1)
p1Mljl(kr)

P 1
l (cos θ)

sin θ

]

cosφ,

Eφ =
k√
π

∞
∑

l=1

√

l(l + 1)

2l + 1

[

p1El

(

jl−1(kr)

l
− jl+1(kr)

l + 1

)

P 1
l (cos θ)

sin θ

− 2l + 1

l(l + 1)
p1Mljl(kr)

d

dθ
P 1
l (cos θ)

]

sinφ. (3.76)

3.5 Simulations

Here, we present simulation results for some interesting polarized beams with specific

polarizations and apodization distributions using both plane wave and multipole expan-

sions.

3.5.1 Radial Polarization, n = 0

The far field of an electric multipole of strength p0El, order l (l ≥ 1), oriented along the

axis, consists of a meridional electric field component only, and because it is circularly

symmetrical, the variation on a sphere is obtained by putting the azimuthal mode number

47



3.Multipole Theory and Angular Spectrum Representation for the Focal
Fields

m = 0 [137]. For the special case of radial polarization without a vortex n = 0, Eq. (3.66)

reduces to

p0El = −ilfeikf
[π(2l + 1)]

1

2

l(l + 1)

∫ π

0

a(α)
dPl(cosα)

dα
sinα dα, (3.77)

and Eq. (3.67), after being normalized so that |Er|2 + |Eθ|2 + |Eφ|2 = |p0E1|
2
, gives

Er =

∞
∑

l=1

[

3

2l + 1

]
1

2 p0Ell(l + 1)

2
[jl−1(kr) + jl+1(kr)]Pl(cos θ), (3.78)

Eθ =

∞
∑

l=1

[

3

2l + 1

]
1

2 p0Ell(l + 1)

2

[

jl−1(kr)

l
− jl+1(kr)

l + 1

]

d

dθ
Pl(cos θ). (3.79)

It is observed that at the focal point, the only contribution is from the electric dipole

component.

3.5.1.1 Axial Dipole Wave (ADW)

This approach can be used to investigate the behaviour of different illumination condi-

tions. For radial polarization with no vortex, and for Eq. (3.64) with partial aperture

a(α) = sinα for α < αm; a(α) = 0 for α > αm

where αm is the angular semi-aperture of the lens, it results in a so-called axial dipole

wave (ADW) [138]. This maximizes the electric energy density at the focal point for a

given input power for a particular NA. For a complete spherical illumination, αm = π,

the electric dipole term p0E1 = ifeikf
√

4π
3
, and all higher order terms vanish. Since the

term feikf is constant, we can ignore it when plotting the multipole strengths. For a
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(b) Radial Polarization with a(α) = 1

Figure 3.2: Multipole strengths for ADW and RU (ignoring the constant term feikf).
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Figure 3.3: Multipole strengths |kp0El| = |k × p0El| with f = 100cm and λ = 1.34µm.

system of limited aperture αm, the absolute strengths of the different orders is illustrated

in Fig. 3.2(a). The first two terms are given by

p0E1 = i

√

4π

3
sin4

(αm

2

)

(2 + cosαm), p0E2 = −
√
5π

8
sin4 αm.

Elsewhere the performance parameters to describe the focusing behavior of different sys-

tems have been introduced [109, 138, 139]. In particular, the parameter F is the electric

energy density at the focus divided by the total input power, normalized to unity for a

complete dipole wave. Then for this particular case,

F =
2√
3π

|p0E1|2
∫ αm

0
|a(α)|2 sinα dα

= |p0E1|.

Figure 3.3 plots the multipole strengths (k × p0El) in a unit of k for the two numerical

apertures αm = 16o and αm = 60o. We can observe that with low NA lens αm = 16o, the

number of multipole terms with high relative strengths is larger compared to the high
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Figure 3.4: Electric intensity modelings on GRS for ADW with f = 10cm and L = 400.

NA lens αm = 60o. It has been well-known that we need an infinite number of multipole

terms to describe a plane wave αm = 0o.

Figure 3.4 shows the electric intensity plots on the GRS. The ideal intensity is the as-

sumption of the incident intensity. The Diffraction Integrals plot is plotted using Eq.

(3.65). The Multipole Theory plot is plotted using Eq. (3.67) with jl replaced by h
(2)
l .

We observe the interesting phenomena that the diffraction integrals gives a strong os-

cillation around the hard-edge of the beam and also on the axial axis. This is due to

the fact that the diffraction integrals ignore the contribution of the second kind of the

critical points [34]. For the plot using the multipole theory, the oscillation around the

hard-edge of the beam is due to the truncation of the multipole series which is similar

to the phenomenon of modeling a hard-edge function using a finite Fourier series. An-

other interesting observation is that there is no anomalous behavior around the axial-axis

(αm = 180o) when using the multipole theory for the model. This property is due to the

fact that we have included the contribution of the second kind of the critical points in

the modeling based on the multipole theory.

Figure 3.5 shows the plots of the electric intensity on different spheres whose centers

are the focus. The plots using the ray optics is produced under the assumption that

we can model the propagation of the beam using the geometrical optics. We will discuss

further about the use of geometrical optics in this thesis in Chapter 5. It is observed that,

while the wave approaches to the focus, there is a deviation between ray optics and other

two approaches as shown in Figs. 3.5(a) and 3.5(b). When the wave travels away the

aperture, the contribution of the second kind of the critical points reduces and hence the

diffraction integrals and the multipole theory give better agreements in Figs. 3.5(a) and
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Figure 3.5: Electric intensity on spheres with different radius for ADW with f = 10cm
and αm = 16o.

3.5(b) and perfect agreements on Figs. 3.5(c) and 3.5(d). Since the outgoing wave, which

is the consequence of the incoming wave after passing the focus, also contributes to the

field around the focus, we also plot the electric intensity due to the interference between

the incoming wave and the outgoing wave, i.e. the standing wave which is expressed in

Eq. (3.67). Figure 3.5(d) shows that the outgoing wave does not contribute to the total

field on the back surface (z < 0) of the sphere with R = 50µm. However, when the wave

approaches closer to the focus, the outgoing wave contribute more to the back surface.

Hence, the incoming wave is different from the total field as shown in Fig. 3.6.

Figure 3.7 shows the contour plots of the electric energy density for the ADW. We can
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Figure 3.6: Electric intensity on spheres with different radius for ADW with f = 10cm
and αm = 16o.
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Figure 3.7: Contour plots of the electric energy density for the radial polarization (ADW)
for αm = 60o.

see that the summation in Eq. (3.67) can be terminated at L = 30 to achieve the perfect

agreement with the integral diffractions.

We have studied the ADW with a hard-edge aperture, i.e., we studied the cases αm = 16o

and αm = 60o. To appreciate the effect of the hard-edge, we study an aperture without

any hard-edge. We can choose a(α) = sin(3α) and am = 60o. It can be seen that

a(0o) = 0 and a(60o) = 0, hence we can call the focused beam, a soft-edge beam. We

plot the electric intensity of the assumed electric intensity and its modelings using the

two approaches in Fig. 3.8. We observe that both modelings are perfect in this case

due to the fact that there is no contribution of the second kind of the critical points

[33, 34]. Figure 3.8 plots the electric intensity on the complete GRS, i.e., from θ = 0o

to θ = 180o. We can see that the diffraction integrals in fact describe the total field, in

other words, the diffraction integrals describe the summation of the incoming and the

outgoing beams. On contrary, the multipole theory for the incoming beam describe, as its

name means, the incoming beam only. Figure 3.9 plots the electric intensity distribution

on different spheres. With the apodization function a(α) = sin(3α) and αm = 60o, we

can observe that there is no difference between the results using Eqs. (3.65) and (3.67).
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Figure 3.8: Electric intensity modelings on the GRS for a(α) = sin(3α), f = 10cm,
αm = 60o.

These equations describe the summation of the incoming and outgoing fields. We can

observe that the outgoing field does not contribute to the total field at the back surface

of the spheres with R > 10µm as shown in Fig. 3.9(c). The incoming field is different

from the total field as shown in Fig. 3.9(d), which means the outgoing field contribute

to everywhere on the sphere with R = 5µm.
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Figure 3.9: Electric intensity modelings on different spheres for a(α) = sin(3α) with
f = 10cm and αm = 60o.

53



3.Multipole Theory and Angular Spectrum Representation for the Focal
Fields

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10

α
m

R
at

io

 

 
ADW p

E1
/p

E2

RU  p
E1

/p
E2

ED  p
E1

/p
E2

MD  p
E1

/p
E2

UTE1  p
E1

/p
E2

ED  p
E1

/p
M1

MD  p
E1

/p
M1

UTE1  p
E1

/p
M1

Figure 3.10: The ratio pE1

pE2

and pE1

pM1

for different polarizations.

3.5.1.2 Radial Polarization with Uniform Illumination (RU)

Now, we consider a uniform illumination (RU), which means a(α) = 1. For 4π illumina-

tion, ignoring the constant term feikf , we obtain p0E1 = iπ
√
3π
4

, p0E1 = 0, p0E3 = −iπ
√
7π

64
,

p0E4 = 0, p0E5 = iπ
√
11π

256
. For a partial aperture, the first two terms are

p0E1 = i

√
3π

4
(αm − sinαm cosαm), p0E2 = −

√
5π

6
sin3 αm,

and again the multipole strengths are plotted in Fig. 3.2(b). Note that although |p0E1|

can be greater than the axial dipole wave case, F is lower as the input power is larger.

The uniform illumination exhibits a singularity in amplitude at α = 0: such a singularity

can be generated experimentally (approximately) by using a polarization rotator (e.g.

using a liquid crystal device) on a plane polarized beam. Quabis et al. reported that the

focal spot was improved by using a high numerical aperture, and also by using an annular

pupil [15]. Both these strategies increase the strength of the longitudinal field component

related to the transverse field component, which is produced by higher order multipole

terms. In the vicinity of the focus, the quadrupole term p0E2 dominates the transverse

field. The ratio
|p0E1

|
|p0E2

| is thus an indication of the relative strength of the longitudinal field.

The multipole approach thus benefits in providing a simple measure of the purity of the

longitudinal field mode. The ratio
|p0E1

|
|p0E2

| is illustrated in Fig. 3.10. We see that it increases

with NA, and is higher for ADW than RU.
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The focal spot is also improved by using an annular pupil. In Fig. 3.11, the ratio
|p0E1

|
|p0E2

|

is shown for lenses of different NA, for annular pupils with different obscuration angles,

α0. While the value of |p0E1| (and also F ) drops for an annular pupil, we see that
|p0E1

|
|p0E2

|

increases as the central obscuration increases. The annulus has a greater effect for higher

NA and for the uniform illumination case.

3.5.2 Azimuthal Polarization, n = 1

Azimuthal polarization with n = 0 gives, by symmetry, a focused field distribution with

a zero in electric field at the focus, a type of doughnut beam [140]. For n = 1, Eq. (3.70)

reduces to

p1El =
il−1feikf

l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2

∫ π

0

a(α)P 1
l (cosα) dα,

p1Ml = − ilfeikf

l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2
∫ π

0

a(α)
d

dα
P 1
l (cosα) sinα dα. (3.80)

This corresponds to the vortex form of TE1, considered in Section 4. The resulting field

distribution is rotating in time, and the electric field at the focal point is non-zero and

circularly polarized [141]. The special case when a(α) = 1 for α < αm; a(α) = 0 for α >

αm is the vortex form of UTE1, which maximizes F for TE1.
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3.5.3 Generalized Linear Polarization

3.5.3.1 Mixed Dipole, S(α) = 0

For S(α) = 0, the polarization corresponds to the focusing of plane polarized light, and

a(α) = 1 results in the mixed dipole field (MD), where the amplitude variation is chosen

so that the energy density at focus for focusing of plane polarized light is maximized

[110, 139]. Equation (3.72) becomes

Ē(ŝ) = cos2
α

2
(cos βα̂− sin ββ̂). (3.81)

When S(α) = 0, the components appear in electric and magnetic multipole pairs of equal

strength:

p1El = ip1Ml =
ilfeikf

2l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2
∫ αm

0

cos2
α

2

(

d

dα
P 1
l (cosα) +

P 1
l (cosα)

sinα

)

sinα dα.

(3.82)

The four lowest order terms are, ignoring the constant term feikf , as follows

p1E1 = ip1M1 =
i

12

√

3π

2
sin2 αm

2
(7 + 4 cosαm + cos2 αm),

p1E2 = ip1M2 = −1

4

√

5π

6
sin2 αm cos4

αm

2
.

These are plotted in Fig. 3.12(a), and the ratio
|p1E1

|
|p1E2

| is shown in Fig. 3.10.
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Figure 3.12: Multipole strengths of MD, ED, and UTE1.
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3.5.3.2 Electric Dipole

It has been shown that modifying linear polarization so that it matches the polarization

of a transverse-oriented electric dipole improves the focusing properties as compared with

the linear polarized case [109, 136, 142, 143]. This can be useful for some applications, as

the electric field at the focus is transverse, unlike when focusing radially-polarized light.

The far-field is

Ē(ŝ) = a(α)(cosα cos βα̂− sin ββ̂). (3.83)

For the electric dipole polarization, S(α) = tan2(α
2
), the multipole components are

p1El =
ilfeikf

2l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2
∫ αm

0

a(α)

(

cosα
d

dα
P 1
l (cosα) +

1

sinα
P 1
l (cosα)

)

sinα dα,

p1Ml =
il−1feikf

2l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2

∫ αm

0

a(α)

(

d

dα
P 1
l (cosα) + cotαP 1

l (cosα)

)

sinα dα.

(3.84)

The four lowest order terms are, ignoring the term feikf , as follows

p1E1 =
i

2

√

π

6
sin2 αm

2
(4 + cosαm + cos2 αm),

p1M1 =
1

4

√

3π

2
sin2 αm,

p1E2 = −1

8

√

5π

6
sin2 αm(1 + cos2 αm),

p1M2 =
i

4

√

5π

6
sin2 αm cosαm. (3.85)

Again these are plotted in Fig. 3.12(b), and the ratio
|p1E1

|
|p1E2

| is shown in Fig. 3.10.

3.5.3.3 Transverse Electric TE1

Another interesting case is for S(α) = 1, which corresponds to the TE1 mode, which

produces the smallest focal spot for any case where S(α) is a constant. The value of F is

then maximized when a(α) cos2(α
2
) = 1, which we call uniform TE1 (UTE1) [136]. The
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Eq. (3.72) becomes

Ē(ŝ) = −2 sin ββ̂. (3.86)

The multipole strengths are, ignoring the term feikf , as follows

p1El =
ilfeikf

l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2

∫ αm

0

P 1
l (cosα) dα,

p1Ml =
il−1feikf

l(l + 1)

[

π(2l + 1)

l(l + 1)

]
1

2
∫ αm

0

d

dα
P 1
l (cosα) sinα dα. (3.87)

The lowest order components are,

p1E1 = i

√

3π

2
sin2 αm

2
,

p1M1 =
1

4

√

3π

2
sin2 αm,

p1E2 = −1

4

√

5π

6
sin2 αm,

p1M2 =
i

6

√

5π

6
sin2 αm

2
(2 cos2 αm + 2 cosαm − 1). (3.88)

The strengths of the lowest order terms are shown in Fig. 3.12(c), and the ratios
|p1E1

|
|p1E2

| ,

|p1E1
|

|p1M1
| are shown in Fig. 3.10. For the generalized linear polarization cases, the ratio

|p1E1
|

|p1M1
|

of UTE1 has a higher value than that of ED and the ratio of MD has a lower value than

that of ED. The ratio
|p1E1

|
|p1E2

| is actually highest for MD, which suggests that for MD the

focal spot is deteriorated mainly by the p1M1 component.

3.5.4 Focal Field Distributions

We have studied a variety of polarized beams, and here we show the best cases in terms

of the smallest focal spots. The azimuthal polarization with a vortex n = 1 is denoted by

AV1. For the cylindrical beams ADW, RU, and AV1, we have the circular distribution

on the transversal plane, i.e. x- distribution and y-distribution are the same. For the

generalized linear polarized beams ED and UTE1, as expected, the distributions on the

transversal plane are asymmetrical. It is obvious from Figs. 3.13(a) and 3.13(b) that the

AV1 beams can produce the focal spots on the transversal plane with smaller full widths
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at half maximum (FWHM) compared to the radially polarized beams, ADW and RU.

However, the side lobes produced by the AV1 beams are stronger than that of the radially

polarized beams. A strong side lobe will deteriorates the performance of microscope by

reducing the contrast and sometime the strong side lobe even causes artifacts in imaging

applications. By employing pinholes, the side lobe can be reduced as shown in confocal

scanning microscopy.
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Figure 3.13: Electric focal intensity for ADW with αm = 60o.
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Chapter 4

Interpretation of the Scattering

Mechanism

Light scattering occurs in nearly all aspects in our daily life and science. Probably, it is

one of the most classical research topics which has been studied from the very beginning

of our history. It may be excited by the curiousness about the nature phenomena like why

we see a blue sky or how the rainbow appears after a rain. Understanding the scattering

mechanism is hence always a topic of interest. This chapter is planned to present an

interpretation of the scattering mechanism based on a novel definition of incident beams.

The main objectives of this chapter are as follows: Firstly, we define the incident focused

beam such that it contains only the incoming wave and hence is expressed in terms of

the second kind of spherical Hankel function h
(2)
l (kr). This definition is different from

the definition by the GLMT which defines the incident focused beam such that it could

propagate without any perturbation, and hence is expressed in terms of the spherical

Bessel functions jl(kr). Using our definition, we show that we can calculate the internal

and external electromagnetic fields of both the scatterers shown in Figs. 1.3 and 1.4. On

contrary, the definition made by the GLMT is not applicable to the calculation of the

total internal and external fields of the SIL. Secondly, for the spherical scatterer, though

the two definitions are different, we show that both lead to the same results for the total

internal and external fields of the sphere. We also derive the DSs in a straightforward
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manner. We use the concepts of incoming and outgoing waves to explain the scattering

mechanism and accordingly form the mathematical formula. By doing these, we avoid

a number of algebraic manipulations caused by other derivation approaches and give an

insightful understanding of the scattering mechanism. The explanation of the scattering

mechanism in this chapter will help us to solve the boundary conditions at a spherical

interface rigorously as presented in chapter 5.

4.1 Incident Focused Field

Alternative to Eq. (3.42), the electromagnetic field can be expressed in terms of the

Debye potentials (DPs) Πe and Πm [144]:

Er =
i

ωε

(

∂2

∂r2
rΠe + k2rΠe

)

,

Eθ =
i

ωε

1

r

∂2

∂r∂θ
rΠe +

1

sin θ

∂

∂φ
Πm,

Eφ =
i

ωε

1

r sin θ

∂2

∂r∂φ
rΠe −

∂

∂θ
Πm. (4.1)

For a converging beam, the incident focused field can be expressed in terms of the con-

verging electric Πinc
e and magnetic Πinc

m DPs [79]:

Πinc
e = −iωε

∞
∑

l=1

l
∑

m=−l

pmElh
(2)
l (kr)Y m

l (θ, φ),

Πinc
m = ik

∞
∑

l=1

l
∑

m=−l

pmMlh
(2)
l (kr)Y m

l (θ, φ). (4.2)

The electric pmEl and magnetic pmMl multipole strengths (EMMSs), which are sometimes

called the beam shape coefficients for a laser focused beam [66], are evaluated as shown

in Eq. (3.41). We note that there exist other methods [55, 145–149], which are based

on the radial components of the electric Einc
r and magnetic H inc

r fields, for evaluating

the multipole strengths. In a paper about high-aperture beams, Sheppard categorized

the beams into three types [4]. Whereas, our formula in Eq. (3.41) is suitable for type

1 beam in which the radial components of the field is ignorable, the other methods are
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Figure 4.1: Hemispherical SIL-based scatterer.

suitable for the types 2 and 3 beams.

As we can observe, the DPs and the electromagnetic field are closely related and can

be easily derived from each other. Hence, for a convenient purpose, we explain and derive

results using the scalar DPs with the implication that our explanations and derivations

are applied directly for the electromagnetic field. Since any result for the magnetic DP

can be obtained from the result for the electric DP by applying the principle of duality,

and vice versa, we derive the results only for the electric DP below.

4.2 Scattering by a Hemispherical Solid Immersion

Lens

Firstly, we consider the case of the HSIL in Fig. 4.1. The incident DP Πinc
e in Eq. (4.2)

is partially reflected ΠA1r
e and partially transmitted ΠA1t

e and can be expressed as follows:

ΠA1r
e = −iωε

∞
∑

l=1

l
∑

m=−l

a2lp
m
Elh

(1)
l (kr)Y m

l (θ, φ), (4.3)

ΠA1t
e = −iωε

∞
∑

l=1

l
∑

m=−l

c2lp
m
Elh

(2)
l (ksr)Y

m
l (θ, φ), (4.4)
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where a2l and c2l are the scattering coefficients. To derive the scattering coefficients, we

apply the boundary conditions at the interface which require that the tangent electric

(Eθ, Eφ) and magnetic (Hθ, Hφ) field components are continuous across the interface. By

inspecting the expressions in Eq(4.1) and equivalent expressions for the magnetic field

(Hθ, Hφ is obtained from Eq. (4.1) by exchanging the roles of Πe with Πm and ε with

−µ) carefully, we see that the boundary conditions mean Πe, Πm,
1
ε

∂
∂r
(rΠe),

1
µ

∂
∂r
(rΠm)

are continuous across the interface. Applying the boundary conditions, we obtain the

scattering coefficients as follows

al2 =
ε
εs

ks
k
Ĥ

(2)
l (kR)Ĥ

(2)′

l (ksR)− Ĥ
(2)
l (ksR)Ĥ

(2)′

l (kR)

Ĥ
(1)′

l (kR)Ĥ
(2)
l (ksR)− ε

εs
ks
k
Ĥ

(1)
l (kR)Ĥ

(2)′

l (ksR)
,

cl2 =
2iks

k

Ĥ
(1)′

l (kR)Ĥ
(2)
l (ksR)− ε

εs
ks
k
Ĥ

(1)
l (kR)Ĥ

(2)′

l (ksR)
, (4.5)

where Ĥ
(1)
l (kr) = krh

(1)
l (kr) and Ĥ

(2)
l (kr) = krh

(2)
l (kr) are Riccati-Bessel functions.

Similarly, for the magnetic DP Πinc
m , we can derive the reflection bl2 and transmission dl2

coefficients as follows

bl2 =

µ
µs

ks
k
Ĥ

(2)
l (kR)Ĥ

(2)′

l (ksR)− Ĥ
(2)
l (ksR)Ĥ

(2)′

l (kR)

Ĥ
(1)′

l (kR)Ĥ
(2)
l (ksR)− µ

µs

ks
k
Ĥ

(1)
l (kR)Ĥ

(2)′

l (ksR)
,

dl2 =
2i
√

µsεs
µε

Ĥ
(1)′

l (kR)Ĥ
(2)
l (ksR)−

√

µεs
µsε

Ĥ
(1)
l (kR)Ĥ

(2)′

l (ksR)
. (4.6)

Figure 4.2 plots the scattering coefficients for a silicon HSIL with R = 500µm and the

reflective index ns = 3.5. We can observe that, for l > kR ≃ 2345, all coefficients cl2 and

dl2 are almost zero.

The electric DP represented by Eq. (4.4) is the incident field approaching the focal

region. Since there is no source in the focal region, there must be an outgoing field to

remove the singularity caused by the incoming wave as visualized in Fig. 4.1. The DP

representing this outgoing field can be obtained from Eq. (4.4) by replacing h
(2)
l (ksr) by
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h
(1)
l (ksr):

Πout
e = −iωε

∞
∑

l=1

l
∑

m=−l

cl2p
m
Elh

(1)
l (ksr)Y

m
l (θ, φ). (4.7)

The total DP in the focal region are then the summation of ΠA1t
e in Eq. (4.4) and Πout

e

in Eq. (4.7):

Πtot1
e = −2iωε

∞
∑

l=1

l
∑

m=−l

cl2p
m
Eljl(ksr)Y

m
l (θ, φ). (4.8)

The scattering coefficients and the DPs derived in this section will be used to evaluate

the focal field of a HSIL in chapter 5.

4.3 Scattering by a General Solid Immersion Lens

In this section, we will derive the scattering coefficients for the scatterer shown in Fig.

1.3(b). As we can realize by comparing Figs. 1.3(a) and 1.3(b), there is a fundamental

difference between the two configurations that is the distance between the center of the

GRS and the center of the SIL. For the scatterer shown in Fig. 1.3(b), before we derive

the scattering coefficients using the DPs, we have to represent the incident focusing field

in the coordinates whose origin is the center of the SIL. This can be done by using the

translational addition theorems.

4.3.1 Translational Addition Theorems

Addition theorems translate electromagnetic field from one to another coordinate system.

The theorems play a pivotal role in fast algorithms for solving integral equation used in a

variety of applications [150–154]. There are two types of addition theorems involved with

rotation and translation of a coordinate system, respectively. In this thesis, we discuss and

use the translational addition theorem only. As we observed in Fig. 1.3(b), a translation

of the electric field from O coordinate system to O′ coordinate system is necessary for

solving the boundary conditions. The translational addition theorem was derived firstly

by Friedman and Russsek for spherical scalar multipole fields [155]. Later, Stein [156]

and Cruzan [157] derived the translational addition theorem for vector multipole fields.
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After that, due to the usefulness of the addition theorem in solving problems relating to

electromagnetic fields, the addition theorems have been active topics [158–162]. Basically,

using the addition theorems involves calculating a translation matrix. The calculation

of the translation matrix at first use Gaunt coefficients which are related to Wigner

3j symbol. However, the evaluation of Wigner 3j symbol involves a large number of

factorials which makes the evaluation of the translation matrix extremely inefficient.

Hence, better approaches naturally arise. For a translation along z-axis, Bruning and

Lo derived recurrence relations for the Gaunt coefficients [158] and hence significantly

reduced the computational cost. However, the computational complexity remains in

the approach of Bruning and Lo. Chew derived recurrence relations for the translation

coefficients for the scalar fields [163]. Chew and Wang presented two approaches for

deriving the recurrence relations for the vector fields [164]. The first approach is to relate

the elements of the vector case with that of scalar case. The second approach is to use

a direct derivation of the recurrence relations. Alternative to Chew’s approach, Kim

used angular-momentum operator for deriving his own recurrence relations and claimed

that his approach could be more efficient [165]. The advantage of Kim’s approach is

obtained by avoiding the calculation of extra elements in Chew’s approach. However,

Kim formed the relations for more translation coefficients (5 and 6 compared to 4 of

Chew’s relations). Hence, Kim’s approach is less efficient in some particular cases such

as our case with a small number of the extra translation coefficients. Kim also discussed

symmetrical properties of the translation coefficients for both scalar and vector fields

[166]. Recently, Chew expressed the theorems in a more compact notation and derived

a new expression which can be used to diagonalize the vector addition theorem [167]. In

this thesis, we derive and use the addition theorems based on the results presented in

Refs. [163, 164] to translate the electromagnetic field from the O-coordinate system to

the O′-coordinate system. In fact, we use different definitions for the vector multipole

fields, hence we derive the translational addition theorems for our definitions as presented

in appendix B. Using the addition theorems, we can express the electromagnetic field in
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Eq. (4.2) in O′-coordinate system as follows

E(r̄′) =

∞
∑

l′=1

l′
∑

m′=−l′

[pm
′

El′N
m′
l′ (r̄

′) + pm
′

Ml′M
m′
l′ (r̄

′)], (4.9)

where

pm
′

El′ =
∞
∑

l=1

l
∑

m=−l

[Alm
l′m′pmEl + iBlm

l′m′pmMl],

pm
′

Ml′ =
∞
∑

l=1

l
∑

m=−l

[Alm
l′m′pmMl − iBlm

l′m′pmEl]. (4.10)

In Eq. (4.10), the translational coefficients Alm
l′m′ and Blm

l′m′ depend on the condition

whether r′ > d or r′ < d as shown in appendix B. Figure 4.3 plots the multipole strengths

of the axial dipole wave in the O′ coordinate system with f = 100cm, λ = 1.34µm, and

d = 1.75mm. We observe the interesting result that is, for a higher NA beam in the O

coordinate system, we need more multipole terms to describe it in the new coordinate

system though we need a smaller number of the multipole terms to describe the higher

NA beam in the original coordinate O. This seems to be contradictory but in fact it

is not, due to the fact that in the new coordinate system the higher NA beam becomes

lower NA beam since we consider the beam waist at the origin.

Figure 4.3 plots the electric multipole strengths for the case of r′ > d. Figure 4.4 plots

the multipole strength for the case of r′ < d. Comparing Figs. 4.3(a) and 4.4, we see

that the distributions of the multipole strengths are similar. The absolute values of the

strengths in Fig. 4.4 are twice of those in Fig. 4.3(a) due to the initial values of the

recurrence relations.

4.3.2 Scattering Coefficients for the GSIL

We have expressed the electric field in the O′ coordinate system, and now it is straightfor-

ward to derive the scattering coefficients for the GSIL. We consider two cases depending

on the translation distance and the radius of the SIL.
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Figure 4.2: Scattering Coefficients for Hemispherical SIL.
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Figure 4.3: Multipole strengths in O′-coordinate system for r′ > d with f = 100cm and
d = 1.75mm.
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Figure 4.4: Multipole strengths in O′-coordinate system for r′ < d with f = 100cm,
d = 1.75mm, and L = 600.

4.3.2.1 Translational Distance is less than the Radius: d < R

From the translation theorems, we know that the spherical scalar multipole field Ψm′
l′ (r̄

′)

for describing the incident beam is

Ψm′
l′ (r̄

′) = h
(2)
l′ (kr′)Y m′

l′ (θ′, φ′),

hence, the incident DPs approaching the SIL are

Πinc
e = −iωε

∞
∑

l′=1

l′
∑

m′=−l′

pm
′

El′h
(2)
l′ (kr′)Y m′

l′ (θ′, φ′),

Πinc
m = ik

∞
∑

l′=1

l′
∑

m′=−l′

pm
′

Ml′h
(2)
l′ (kr′)Y m′

l′ (θ′, φ′). (4.11)

We see that Eq. (4.11) is the same as Eq. (4.2) except being expressed in the different

coordinate systems. Hence, applying the boundary conditions for the fields in the O′ coor-

dinate system, we get the same expressions for the scattering coefficients (al′2, bl′2, cl′2, dl′2)

as we obtained in Eqs. (4.5) and (4.6) for the incident field in Eq. (4.2).
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4. Interpretation of the Scattering Mechanism

4.3.2.2 Translational Distance is greater than the Radius: d > R

We know from the use of the addition theorems that the spherical scalar multipole field

Ψm′
l′ (r̄

′) used for describing the incident field onto the GSIL is

Ψm′
l′ (r̄

′) = jl′(kr
′)Y m′

l′ (θ′, φ′),

hence, the incident DPs approaching the SIL are

Πinc
e = −iωε

∞
∑

l′=1

l′
∑

m′=−l′

pm
′

El′jl′(kr
′)Y m′

l′ (θ′, φ′),

Πinc
m = ik

∞
∑

l′=1

l′
∑

m′=−l′

pm
′

Ml′jl′(kr
′)Y m′

l′ (θ′, φ′). (4.12)

We can observe from Eqs. (4.11) and (4.12) that Eq. (4.11) describes the incident beam

as a converging beam but Eq. (4.12) describes the incident beam as a standing beam.

This difference is due to the fact that the latter case describes the field, which is translated

from the field due to the sink at the origin O, in the region excluding the sink.

The scattered field travels away from the origin and hence is expressed in terms of the
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Figure 4.5: Scattering Coefficients for an ASIL with R = 500µm, λ = 1.34µm, and
d = 1.75mm.
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first kind of spherical Hankel functions

ΠA1r
e = −iωε

∞
∑

l′=1

l′
∑

m′=−l′

al′p
m′
El′h

(1)
l′ (kr′)Y m′

l′ (θ′, φ′),

ΠA1r
m = ik

∞
∑

l′=1

l′
∑

m′=−l′

bl′p
m′
Ml′h

(1)
l′ (kr′)Y m′

l′ (θ′, φ′). (4.13)

The transmitted field travels toward the origin and hence is expressed in terms of the

second kind of the spherical Handel functions

ΠA1t
e = −iωε

∞
∑

l′=1

l′
∑

m′=−l′

cl′p
m′
El′h

(2)
l′ (kr′)Y m′

l′ (θ′, φ′),

ΠA1t
m = ik

∞
∑

l′=1

l′
∑

m′=−l′

dl′p
m′
Ml′h

(2)
l′ (kr′)Y m′

l′ (θ′, φ′). (4.14)

Applying the boundary conditions, we can derive the scattering coefficients as follows

al′ =
ε
εs

ks
k
Ĵl′(kR)Ĥ

(2)′

l′ (ksR)− Ĥ
(2)
l′ (ksR)Ĵ ′

l′(kR)

Ĥ
(1)′

l′ (kR)Ĥ
(2)
l′ (ksR)− ε

εs
ks
k
Ĥ

(1)
l′ (kR)Ĥ

(2)′

l′ (ksR)
,

bl′ =

µ
µs

ks
k
Ĵl′(kR)Ĥ

(2)′

l′ (ksR)− Ĥ
(2)
l′ (ksR)Ĵ ′

l′(kR)

Ĥ
(1)′

l′ (kR)Ĥ
(2)
l′ (ksR)− µ

µs

ks
k
Ĥ

(1)
l′ (kR)Ĥ

(2)′

l′ (ksR)
,

cl′ =
i
√

µsεs
µε

Ĥ
(1)′

l′ (kR)Ĥ
(2)
l′ (ksR)−

√

µsε
µεs

Ĥ
(1)
l′ (kR)Ĥ

(2)′

l′ (ksR)
,

dl′ =
i
√

µsεs
µε

Ĥ
(1)′

l′ (kR)Ĥ
(2)
l′ (ksR)−

√

µεs
µsε

Ĥ
(1)
l′ (kR)Ĥ

(2)′

l′ (ksR)
. (4.15)

where Ĵl′(kr
′) = kr′jl′(kr

′) is also a Riccati-Hankel function.

We can observe c2l′ = 2cl′ and d2l′ = 2dl′, and hence the plots for cl′ and cl′ can be

appreciated from Fig. 4.2. Figure 4.5 plots the absolute values of al′ and bl′ . We can see

the values of al′ and bl′ are different from those of a2l′ and b2l′ . Compared to Eqs. (4.5)

and (4.6), the scattering coefficients shown in Eq. (4.15) are different in the nominators

in which the Riccati-Hankel function Ĥ
(2)
l (kr) is replaced by Ĵl′(kr

′). This difference is

due to the different incident beams. We will discuss more about this difference and its
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Figure 4.6: Effective multipole strengths cl′P
0
El′ inside the ASIL with R = 500µm, λ =

1.34µm, d = 1.75mm, and L = 600.

implication in explaining the scattering mechanism next section.

4.4 Scattering by a Sphere

We have considered and explained the scattering by the spherical interfaces shown in

Fig. 1.3 which has an open boundary. Hence the scattering is one-time interaction only.

The scattering mechanism is obviously different for a sphere in Fig. 1.4 due to the fact

that the sphere has a closed boundary and consequently there is an infinite number of

light-matter interactions at the boundary. In this section, we explain and derive the

internal and external fields of the sphere. We consider the two cases of the incident

beams approaching the scatterer which are represented by Eqs. (4.11) and (4.12). It

should be noted that the expression in Eq. (4.2) is in fact the special case of Eq. (4.11)

with d = 0.
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Figure 4.7: Spherical scatterer.

4.4.1 The Distance between the Center of the Sphere and the

Center of the GRS is less than the Radius d < R

Since Eqs. (4.2) and (4.11) have the same form, the following derivations are applicable

to both cases. For convenience, we consider the case in Fig. 4.7 with the incident field

expressed by Eq. (4.2). The outgoing DP in Eq. (4.4) now plays the role of incident DP

ΠB1i
e on to the sphere’s back surface. Equivalently, the geometrical ray, after penetrating

into the sphere through point A, approaches point B in Fig. 4.7 and ΠB1i
e represents this

ray:

ΠB1i
e = −iωε

∞
∑

l=1

l
∑

m=−l

cl2p
m
Elh

(1)
l (ksr)Y

m
l (θ, φ). (4.16)

Then ΠB1i
e is partially reflected ΠB1r

e back to the interior region and partially transmitted

ΠB1t
e into the external region:

ΠB1r
e = −iωε

∞
∑

l=1

l
∑

m=−l

al1cl2p
m
Elh

(2)
l (ksr)Y

m
l (θ, φ), (4.17)

ΠB1t
e = −iωε

∞
∑

l=1

l
∑

m=−l

cl1cl2p
m
Elh

(1)
l (kr)Y m

l (θ, φ), (4.18)
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where the scattering coefficients al1 and cl1 of the outgoing wave can be derived as follows:

al1 =
ε
εs

ks
k
Ĥ

(1)
l (kR)Ĥ

(1)′

l (ksR)− Ĥ
(1)
l (ksR)Ĥ

(1)′

l (kR)

Ĥ
(1)′

l (kR)Ĥ
(2)
l (ksR)− ε

εs
ks
k
Ĥ

(1)
l (kR)Ĥ

(2)′

l (ksR)
,

cl1 =
2i ε

εs

Ĥ
(1)′

l (kR)Ĥ
(2)
l (ksR)− ε

εs
ks
k
Ĥ

(1)
l (kR)Ĥ

(2)′

l (ksR)
.

The reflected part ΠB1r
e travels back through the origin and becomes an outgoing wave

ΠA2i
e which is obtained from ΠB1r

e by replacing h
(2)
l (ksr) by h

(1)
l (ksr):

ΠA2i
e = −iωε

∞
∑

l=1

l
∑

m=−l

al1cl2p
m
Elh

(1)
l (ksr)Y

m
l (θ, φ). (4.19)

Again ΠA2i
e will be partially reflected ΠA2r

e back to the interior region and partially trans-

mitted ΠA2t
e into the external region:

ΠA2r
e = −iωε

∞
∑

l=1

l
∑

m=−l

a2l1cl2p
m
Elh

(2)
l (ksr)Y

m
l (θ, φ), (4.20)

ΠA2t
e = −iωε

∞
∑

l=1

l
∑

m=−l

cl1al1cl2p
m
Elh

(1)
l (kr)Y m

l (θ, φ). (4.21)

The reflected part ΠA2r
e travels back through the origin and becomes an outgoing DP

ΠB2i
e which is obtained from ΠA2r

e by replacing h
(2)
l (ksr) by h

(1)
l (ksr):

ΠB2i
e = −iωε

∞
∑

l=1

l
∑

m=−l

a2l1cl2p
m
Elh

(1)
l (ksr)Y

m
l (θ, φ), (4.22)

Again the reflected ΠB2r
e and transmitted ΠB2t

e parts due to ΠB2i
e can be expressed as

follows:

ΠB2r
e = −iωε

∞
∑

l=1

l
∑

m=−l

a3l1cl2p
m
Elh

(2)
l (ksr)Y

m
l (θ, φ), (4.23)

ΠB2t
e = −iωε

∞
∑

l=1

l
∑

m=−l

cl1a
2
l1cl2p

m
Elh

(1)
l (kr)Y m

l (θ, φ). (4.24)
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Repeatedly, at the N th time of reflection inside the sphere, the incident ΠNi
e , reflected

ΠNr
e , and transmitted ΠNt

e DPs are expressed as follows:

ΠNi
e = −iωε

∞
∑

l=1

l
∑

m=−l

an−1
l1 cl2p

m
Elh

(1)
l (ksr)Y

m
l (θ, φ), (4.25)

ΠNr
e = −iωε

∞
∑

l=1

l
∑

m=−l

anl1cl2p
m
Elh

(2)
l (ksr)Y

m
l (θ, φ), (4.26)

ΠNt
e = −iωε

∞
∑

l=1

l
∑

m=−l

cl1a
n−1
l1 cl2p

m
Elh

(1)
l (kr)Y m

l (θ, φ), (4.27)

where odd N is responsible for the ray approaching the point B and even N is responsible

for the ray approaching the point A. From Eqs. (4.3), (4.18), (4.21), (4.24), and (4.27),

we can express the total scattered Debye potential as follows:

Πs
e = −iωε

∞
∑

l=1

l
∑

m=−l

[

al2 + cl1cl2 + cl1al1cl2 + ... + cl1a
n−1
l1 cl2 + ...

]

pmElh
(1)
l (kr)Y m

l (θ, φ)

= −iωε

∞
∑

l=1

l
∑

m=−l

[

al2 +
cl1cl2
1− al1

]

pmElh
(1)
l (kr)Y m

l (θ, φ)

= −iωε
∞
∑

l=1

l
∑

m=−l

ael2p
m
Elh

(1)
l (kr)Y m

l (θ, φ), (4.28)

where the effective scattering coefficient ael2 is

ael2 = al2 +
cl1cl2
1− al1

= 2
ε
εs

ks
k
Ĵl(kR)Ĵ ′

l (ksR)− Ĵ ′
l(kR)Ĵl(ksR)

Ĥ
(1)′

l (kR)Ĵl(ksR)− ε
εs

ks
k
Ĥ

(1)
l (kR)Ĵ ′

l(ksR)
+ 1

= 2agl + 1, (4.29)

and agl is the scattering coefficient used in the GLMT method.

After some mathematical manipulations, we express the total Debye potential inside the
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sphere as follows:

Πin
e = −iωε

∞
∑

l=1

l
∑

m=−l

pmEl

[

cl2[h
(2)
l (ksr) + h

(1)
l (ksr)] + al1cl2[h

(2)
l (ksr) + h

(1)
l (ksr)]

+a2l1cl2[h
(2)
l (ksr) + h

(1)
l (ksr)] + an−1

l1 cl2[h
(2)
l (ksr) + h

(1)
l (ksr)] + ...

]

Y m
l (θ, φ)

= −2iωε
∞
∑

l=1

l
∑

m=−l

cl2
1− al1

pmEljl(ksr)Y
m
l (θ, φ)

= −2iωε
∞
∑

l=1

l
∑

m=−l

cel2p
m
Eljl(ksr)Y

m
l (θ, φ), (4.30)

where the effective scattering coefficient cel2 is

cel2 =
cl2

1− al1

=
iks
k

Ĥ
(1)′

l (kR)Ĵl(ksR)− ε
εs

ks
k
Ĥ

(1)
l (kR)Ĵ ′

l (ksR)

= cgl , (4.31)

and cgl is the scattering coefficient used in the GLMT method.

Using the principle of duality, the expression for the scattering coefficients bl and dl due

to Πinc
m can be obtained from the expressions in Eqs. (4.29) and (4.31), respectively, by

replacing ε
εs

with µ
µs
. Equations (4.2), (4.28), and (4.29) give us the total Debye potential

outside the sphere:

Πtot2
e = Πinc

e +Πs
e

= −iωε
∞
∑

l=1

l
∑

m=−l

pmElh
(2)
l (kr)Y m

l (θ, φ)− iωε
∞
∑

l=1

l
∑

m=−l

(2agl + 1)pmElh
(1)
l (kr)Y m

l (θ, φ)

= −2iωε

∞
∑

l=1

l
∑

m=−l

pmEljl(kr)Y
m
l (θ, φ)− 2iωε

∞
∑

l=1

l
∑

m=−l

agl p
m
Elh

(1)
l (kr)Y m

l (θ, φ).(4.32)

Most researchers have used the GLMT to analyze light scattering by a sphere in a focused

polarized beam. The GLMT expresses the incident ΠGinc
e , scattered ΠGs

e , and internal
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990 1000 1010
0

2

4

6

8

10

Orders l

A
bs

ol
ut

e 
va

lu
es

Mie Scattering Coefficients

 

 
|a

l
g|

|c
l
g|

|b
l
g|

|d
l
g|

(b) Mie coefficients around l = 1000

Figure 4.8: Mie Scattering Coefficients for a silicon sphere in air with R = 500µm and
λ = 1.34µm

ΠGin
e DPs as follows [44–47]:

ΠGinc
e = −2iωε

∞
∑

l=1

l
∑

m=−l

pmEljl(kr)Y
m
l (θ, φ), (4.33)

ΠGs
e = −2iωε

∞
∑

l=1

l
∑

m=−l

agl p
m
Elh

(1)
l (kr)Y m

l (θ, φ), (4.34)

ΠGin
e = −2iωε

∞
∑

l=1

l
∑

m=−l

cgl p
m
Eljl(ksr)Y

m
l (θ, φ), (4.35)

where the Mie scattering coefficients agl , b
g
l , c

g
l , and dgl are plotted in Fig. 4.8.

We now compare the results obtained by the two approaches. Firstly, Eqs. (4.30), (4.31),

and (4.35) show that the internal fields are the same for both our derivation and the

GLMT. Secondly, we compare the total external fields. We see that the incident and

scattered DPs in Eqs. (4.33) and (4.34) are exactly the first and second terms on the

right side of Eq. (4.32), respectively. This means our derivation and the GLMT give the

same total external fields regardless of the different definitions. This fact is due to the

fact that the outgoing part of ΠGinc
e is a part of the scattered field Πs

e. This part of the

scattered field

−iωε
∞
∑

l=1

l
∑

m=−l

pmElh
(1)
l (kr)Y m

l (θ, φ)

is independent of the composition of the sphere and hence can be considered as the

diffraction part of the scattered field [168].
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4.4.2 The Distance between the Center of the Sphere and the

Center of the GRS is greater than the Radius d > R

In section 4.3.2.2, we have derived the scattering for the first interaction between the

incident beam and the front spherical interface. In the case of a sphere, the transmitted

DPs ΠA1t
e and ΠA1t

m in Eq. (4.14), after passing the focus, become the incident DPs

approaching the back spherical interface between the sphere and the outside space. The

scattering mechanism is exactly the same as the case explained in section 4.4.1. We ignore

the prime of the parameters for convenience. We can derive and express the incident field,

scattered field, and internal field as follows:

Πinc
e = −iωε

∞
∑

l=1

l
∑

m=−l

pmEljl(kr)Y
m
l (θ, φ), (4.36)

Πs
e = −iωε

∞
∑

l=1

l
∑

m=−l

[

al + cl1cl + cl1al1cl + ...+ cl1a
n−1
l1 cl + ...

]

pmElh
(1)
l (kr)Y m

l (θ, φ)

= −iωε
∞
∑

l=1

l
∑

m=−l

[

al +
cl1cl

1− al1

]

pmElh
(1)
l (kr)Y m

l (θ, φ)

= −iωε
∞
∑

l=1

l
∑

m=−l

ael p
m
Elh

(1)
l (kr)Y m

l (θ, φ), (4.37)

Πin
e = −iωε

∞
∑

l=1

l
∑

m=−l

pmEl

[

cl[h
(2)
l (ksr) + h

(1)
l (ksr)] + al1cl[h

(2)
l (ksr) + h

(1)
l (ksr)]

+a2l1cl[h
(2)
l (ksr) + h

(1)
l (ksr)] + an−1

l1 cl[h
(2)
l (ksr) + h

(1)
l (ksr)] + ...

]

Y m
l (θ, φ)

= −iωε
∞
∑

l=1

l
∑

m=−l

2cl
1− al1

pmEljl(ksr)Y
m
l (θ, φ)

= −iωε
∞
∑

l=1

l
∑

m=−l

cel p
m
Eljl(ksr)Y

m
l (θ, φ), (4.38)
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where the effective scattering coefficients ael and cel are as follows:

ael = al +
cl1cl

1− al1

=
ε
εs

ks
k
Ĵl(kR)Ĵ ′

l(ksR)− Ĵ ′
l (kR)Ĵl(ksR)

Ĥ
(1)′

l (kR)Ĵl(ksR)− ε
εs

ks
k
Ĥ

(1)
l (kR)Ĵ ′

l (ksR)

= agl , (4.39)

cel =
2cl

1− al1

=
iks
k

Ĥ
(1)′

l (kR)Ĵl(ksR)− ε
εs

ks
k
Ĥ

(1)
l (kR)Ĵ ′

l (ksR)

= cgl . (4.40)

Equations (4.39) and (4.40) prove that the scattered field and the internal field of the

sphere are exactly the same as the results derived using the GLMT, and of course, the

total internal and external fields are also the same for the two approaches.

4.5 Debye Series

In this section, we will discuss how the series representing the multiple interaction between

the polarized beams and the scatterers are explained using our derivations and the Debye

series formed by many researchers.

4.5.1 Translation Distance is less than the Radius of the Scat-

terer d < R

Eqs. (4.28) and (4.30) not only present the scattered and internal fields of the sphere in

terms of the summations of the multiple scattering fields but also present the DSs for the
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scattering coefficients ael2 and cel2 without the need for any algebraic manipulation:

ael2 = al2 + cl1cl2 + cl1al1cl2 + ... + cl1a
n−1
l1 cl2 + ...

= al2 + cl1cl2

∞
∑

n=0

anl1, (4.41)

cel2 = cl2 + al1cl2 + a2l1cl2 + ...+ an−1
l1 cl2 + ...

= cl2

∞
∑

n=0

anl1. (4.42)

The first coefficients al2 and cl2 in Eqs. (4.41) and (4.42) are responsible for the first

time scattering at the left boundary of the sphere from the incident DP Πinc
e , and hence

are the scattering coefficients for the case of HSIL due to the fact that there is no longer

any scattering inside the HSIL. In the case of a sphere, the field directly transmitted into

the sphere from the incident field is scattered an infinite number of times at the internal

boundaries of the sphere, and each internal scattering will partially contribute to both the

total scattered and internal fields. The effects of the multiple scatterings are represented

by the DSs in Eqs. (4.41) and (4.42).

In fact, the scattered field is usually used in the GLMT and is expressed in Eq. (4.34)

with the DS for agl as follows [66, 78]:

agl =
1

2

[

al2 + cl1cl2

∞
∑

n=0

anl1

]

− 1

2
. (4.43)

4.5.2 Translation Distance is greater than the Radius of the

Scatterer d > R

In section 4.4.2, we have showed that the incident field, the total scattered field, and the

total internal field are the same for the approaches using our derivation and the GLMT.

However, the meanings of the DSs for the effective scattering coefficients agl and ael are

different. Whereas the DS of agl is expressed in Eq. (4.43), we can obtain the DS for ael

from Eq. (4.37) as follows:

ael = al + cl1cl

∞
∑

n=0

anl1. (4.44)
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We know cl =
1
2
cl2 and al =

1
2
(al2 − 1), hence Eqs. (4.43) and (4.44) are mathematically

equivalent. However, the term −1
2
in Eq. (4.43) is usually explained as a diffraction term

but in Eq. (4.44), the term is included in the direct scattering coefficient al. In other

words, the physical meanings of Eqs. (4.43) and (4.44) are different.
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Chapter 5

Solid Immersion Microscopy

In previous chapter 3, we established the analytical expressions for the focusing of the

polarized beams using an aplanatic lens. In chapter 4, we rigorously solved the boundary

conditions for the polarized beams approaching the spherical interface. In this chapter,

we use the results in the previous chapters for modeling wave propagation in the focal

region and evaluating the focal field of a solid immersion microscope. Firstly, we form an

approximate model using the angular spectrum method. Then we form a rigorous model

using multipole theory.

The following notations are used in this chapter: R is the radius of the SIL; d is

the distance between the centers of the SIL and the GRS; k and ks are, respectively,

the wave-numbers outside and inside the SIL. SIL-based systems can be categorized into

two types, the hemispherical SIL-based system (HSS) and the general SIL-based system

(GSS). Figure 5.1 represents an HSS for which d = 0. Figure 5.1 represents a GSS for

which we have d 6= 0. When the condition d = ks
k
R is satisfied, the GSS is referred to

an aplanatic SIL-based system (ASS). An ASS has both advantages and disadvantages

compared to an HSS. An ASS has a lateral magnification of n2 = k2s
k2
, and it increases the

numerical aperture (NA) of an incident beam by a factor of n2, compared to n of an HSS.

However, the maximum achievable NA of the two systems is the same and is equal to n.

This is because the maximum achievable illumination angle αm of an ASS (sinαm ≤ 1
n
)

is smaller than that of an HSS (sinαm ≤ 1). Because of this property, an ASS is superior

81



5. Solid Immersion Microscopy

GRS 

, ,k  !" " , ,s s sk  !

k

k

m 

r

F 

r
 

, 

 

s

o, o z

 ,  

1o

1 

d

l

A

m 
, 

rA

Figure 5.1: General SIL-based system.

for a low NA incident beam. The disadvantage of an ASS is that it suffers a serious

chromatic aberration, whereas an HSS is almost free of chromatic aberration [82]. In

addition, an HSS is better in term of degree of tolerance when the depth of the image

point is changed. These properties make an HSS superior for a high NA incident beam.

For the sake of a better visualization, we divide the wave propagation in Fig. 5.1 into

four stages as follows: First stage: an incident collimated beam approaching the GRS is

refracted and becomes a focused beam. This stage can be modeled using the intensity

law, the sine condition, and transmission coefficients [32, 89, 103]. Second stage: the

focused beam propagates a distance between the GRS and the SIL. Third stage: the

focused beam is scattered at the surface of the SIL and produces a partially transmitted

beam and a partially reflected beam. Fourth stage: the transmitted beam converges to

the focal region before diverging to the infinity.

Before we discuss how different models take the four stages into account, we summarize

the angular spectrum representation (ASR) of an image field in a linear, homogeneous,

and isotropic medium [31] and show how to combine geometrical optics and Fourier

optics for approximating the image field inside a SIL. For the development of the ASR,
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we recommend the paper of Wolf [31] and the book of Born and Wolf [1]. In this thesis, we

discuss the representation based on Wolf’s paper [31] and Richards and Wolf’s paper [32].

For an aplanatic lens represented by the GRS in Fig. 3.1, Wolf derived the representation

for the image field as follows [31]:

Ē(x, y, z) = − i

2π

∫∫

Ω

a(kx, ky)

kz
ei(kxx+kyy+kzz) dkx dky, (5.1)

where a(kx, ky) is the strength factor of the ray that is related to the electric field at far

region Ē(kx, ky) = Ē(r̄∞) as follows:

a(kx, ky) = r∞eikr∞Ē(kx, ky). (5.2)

A comparison between Eq. (3.39) and Eq. (5.2), we can conclude that the strength factor

is equivalent to the spectral amplitude vector of the field. Substituting Eq. (5.2) into Eq.

(5.1), we obtain an equivalent expression as follows:

Ē(x, y, z) = − i

2π

∫∫

Ω

reikrĒ(kx, ky)

kz
ei(kxx+kyy+kzz) dkx dky, (5.3)

To derive Eq. (5.1), Wolf used the principle of stationary phase that requires at the far

region the condition

k̂ = −r̂ (5.4)

must be satisfied. Physically, this condition means that all the rays must ideally converge

to a point or a small region around a point. Mathematically, this condition is only satisfied

when the origin of the coordinate system is chosen at the Gaussian image point and at

the same time all the rays must converge to the origin.

5.1 Hemispherical Solid Immersion Lens

This section first forms an approximate model based on angular spectrum representation

of the optical field for evaluating the focal field of the HSIL and discusses different models
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existing in the literature. Then we form a rigorous model based on the multipole theory.

5.1.1 Approximate Analytical Model for Evaluating the Focal

Field of the HSIL

Now, we combine geometrical optics and Fourier optics for approximating the image field,

i.e. we first apply Eq. (5.2) for deriving the strength factor of the ray transmitting through

the spherical interface, and then we apply Eq. (5.1) for evaluating the image field. For

simplicity, we consider an HSS first and then the case of a GSS can be straightforwardly

generalized. It is reasonable to assume that the electric field on the GRS is Ē(kx, ky) =

Eαα̂ + Eββ̂, and then applying Eq. (5.2) we obtain the strength factor of a ray outside

the SIL

a(kx, ky) = feikf [Eαα̂ + Eββ̂].

Since the strength factor of the ray is independent of the position along the ray, we apply

Eq. (5.2) to derive the electric field just outside the SIL:

Ēout(kx, ky) =
feikf [Eαα̂ + Eβ β̂]

eikRR

=
f

R
eik(f−R)[Eαα̂ + Eββ̂]. (5.5)

Next, we apply the local plane-wave approximation and obtain the electric field just inside

the SIL:

Ēin(ksx, ksy) =
f

R
eik(f−R)[tpEαα̂ + tsEββ̂].

We apply Eq. (5.2) again, noting that now the ray is traveling inside the SIL with

a different wave-number ks. We obtain the strength factor of the transmitted ray as

follows:

ain(kx, ky) = ReiksRĒin(ksx, ksy),

= feikfei(ks−k)R[tpEαα̂ + tsEββ̂]. (5.6)
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With the notice that the wave is now traveling inside the SIL, we approximate the focal

field by substituting Eq (5.6) into Eq. (5.1). The focal field is expressed in terms of

cylindrical coordinates (ρ, φ, z) as follows:

Ēs(x, y, z) = −iksfe
ikf

2π

∫ αm

0

sinαdα

∫ 2π

0

dβ













tpEα













cos β cosα

sin β cosα

− sinα













+tsEβ













− sin β

cos β

0

























ei(ks−k)Reiks[ρ sinα cos(β−φ)+z cosα].(5.7)

We will call the model, based on geometrical optics and Fourier optics, i.e. using Eq.

(5.7), the approximate model.

Now, we discuss how the different models, which are also based on the ASR, differ

from our derivation. The Ichimura model applied Eq. (5.1) [89]. In fact, Ichimura and

many other researchers used Eq. (5.1) but they never mentioned the validity of using

it, i.e. the validity of the condition k̂ = −r̂ was never mentioned. For an HSS, the

condition is satisfied and hence Eq. (5.1) is applicable. Ichimura’s approach is that he

first approximates the strength factors of the rays inside the SIL. And then Eq. (5.1) is

applied for evaluating the focal field. Ichimura applied the boundary conditions for the

strength factor: in other words he matched the strength factors at the boundary. This

application is not rigorous, since the boundary condition is that the tangential electric

fields must be matched at the boundary, whereas the strength factors are not equivalent

to the tangential electric fields, as observed in Eq. (5.2). Ichimura applied the boundary

conditions for the strength factor a(sx, sy) = feikf [Eαα̂ + Eββ̂], and hence he obtained

ain(sx, sy) = feikf [tpEαα̂ + tsEββ̂]. (5.8)

A comparison between Eqs. (5.6) and (5.8) shows that Ichimura ignored the constant

phase term ei(ks−k)R, and subsequently Ichimura model misses the phase term compared
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Figure 5.2: An individual plane wave incident onto the spherical surface.

to our approximate model. Since Ichimura also combined geometrical optics and Fourier

optics as we did, we can consider the approximate model as a corrected version of the

Ichimura model. Vamivakas also ignored this constant term but for a different reason that

is discussed later. The Ichimura model and its corrected version described the 2nd and

3rd stages of the wave propagation by geometrical optics, and the 4th stage by Fourier

optics.

Next, we discuss the Vamivakas model, which attempted to solve the 2nd, 3rd, and 4th

stages within the scope of Fourier optics. Vamivakas began with Eq. (5.3) by expressing

the electric field outside the SIL as follows:

Ē(x, y, z) = −ifeikf

2π

∫∫

Ω

ĒGRS(kx, ky)e
i(kxx+kyy+kzz)

1

kz
dkx dky. (5.9)

Equation (5.9) expresses the electric field as a superimposition of an infinite number of

individual plane wanes. Each individual plane wave with a wave-number (kx, ky, kz) is
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expressed as follows:

Ē(kx, ky) = −ifeikfdkxdky
2πkz

ĒGRS(kx, ky)e
i(kxx+kyy+kzz)

= −ifeikfdkxdky
2πkz

[Eαα̂ + Eββ̂]e
ik̄·r̄. (5.10)

This individual plane wave approaches the SIL as shown in Fig. 5.2. Vamivakas consid-

ered two effects caused by the spherical interface, the transmission amplitude coefficient

and the phase change. Vamivakas explained that the convergent rays are normally inci-

dent on the hemispherical surface of the SIL, and the hemispherical surface is an equiphase

surface. Hence, he used only one transmission amplitude coefficient t⊥ = ts = tp and the

wave-number k̄ can be changed to k̄s. Consequently, the transmitted plane wave is

Ēin(kx, ky) = −ifeikfdkxdky
2πkz

t⊥[Eαα̂ + Eββ̂]e
ik̄s·r̄. (5.11)

The focal field is then estimated by summing up all individual transmitted plane waves.

For a planar surface, the method of solving the boundary conditions in the scope of

the angular spectrum method is correct but for a spherical surface the concept poses a

difficulty. As we observe in Fig. 5.2, the plane wave approaching the surface comprises

an infinite number of geometrical rays that make varying angles with the normal of

the surface. Hence, the rays 1 and 2 in Fig. 5.2 approaching points A and B are

refracted at angles as predicted by Snell’s law. Because of the different incident angles,

the electric fields associated with these transmitted rays are different, as predicted by

the Fresnel equations. Vamivakas used only t⊥ for all the incident rays though it is

only correct for the ray approaching point A in Fig. 5.2, and hence he obtained the

electric field of the individual plane wave presented in Eq.(5.11). Because of this improper

treatment, Vamivakas formed an incorrect expression shown in Eq. (5.11). Consequently,

the Vamivakas model leads to an incorrect constant term outside the integration of Eq.

(5.7), that is ikfeikf

2π
instead of iksfeikf

2π
. Vamivakas also reasoned that the surface of

a hemispherical SIL is equiphase, and hence the constant phase term ei(ks−k)R is also

missed in his model.
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In summary, although the reasons making the models based on the ASR invalid or

inaccurate differ in detail from each other, the main cause is the improper treatment of the

boundary conditions. We corrected the Ichimura model to obtain the approximate model.

Compared to the approximate model, both the Ichimura model and the Vamivakas model

ignored the exponential term ei(ks−k)R. The Vamivakas model also leads to an incorrect

constant term outside the integration of Eq. (5.7). On the other hand, we should note

that the approximate model is limited only to an HSS or an ASS based on a large-radius

SIL. For a wavelength-scaled SIL [169–171] geometrical optics is invalid for describing the

field near the surface, and consequently the combination between geometrical optics and

Fourier optics is invalid. In addition, Eq. (5.1) is not strictly applicable to a GSS except

for a ASS because the condition k̂ = −r̂ is not strictly satisfied for the GSS.

In this thesis, we propose a rigorous model based on multipole theory method (MTM)

that is applicable to both large-radius SILs and wavelength-scaled SILs. In fact, MTM

has been extensively used for computing diffracted fields, especially in the scattering

by a full sphere. However, when the scattering surface is only a portion of a spherical

surface, it is rather complicated and delicate. The light-matter interaction at the spherical

interface is no longer trivial, and consequently the standard MTM cannot be applied to

this case. We recently presented an approach, based on MTM, for solving the interaction

rigorously [39]. Our proposed model in this section employs the rigorous approach for

solving the boundary conditions, and hence a rigorous model for evaluating the focal

field of optical SIL-based systems is formed. We also show that the approximate model

is an approximation to our rigorous model. Through a detail analysis in this section, an

insightful understanding of the wave propagation through the systems should be gained.

5.1.2 Rigorous Analytical Model for Evaluating the Focal Field

of the HSIL

For the configuration of a HSIL, the center of GRS coincides with the center of the SIL.

Hence, the scattering coefficients in section 4.2 are used for evaluating the focal field of

the HSIL. This section will first form a rigorous model based on the scattering coefficients

88



5. Solid Immersion Microscopy

in section 4.2, and then shows that, the approximate model presented in section 5.1.1 is

an approximation of the rigorous model.

5.1.2.1 The Rigorous Model

We showed in section 4.2 that the total electric Debye potential is as follows:

Πe = −2iωε

∞
∑

l=1

l
∑

m=−l

cl2p
m
Eljl(ksr)Y

m
l (θ, φ). (5.12)

Similarly, we can show that the total magnetic Debye potential is

Πm = 2ik

∞
∑

l=1

l
∑

m=−l

dl2p
m
Eljl(ksr)Y

m
l (θ, φ). (5.13)

By substituting Eqs. (5.12) and (5.13) into Eq. (4.1), we can evaluate rigorously the

focal field inside the HSIL as follows:

Er = 2ks

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

ε

εs
cl2p

m
El[jl−1(ksr) + jl+1(ksr)]P

m
l (cos θ)

)

exp(imφ),

Eθ = 2ks

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

ε

εs
cl2p

m
El

[

jl−1(ksr)

l
− jl+1(ksr)

l + 1

]

dPm
l (cos θ)

dθ

−m
2l + 1

l(l + 1)

k

ks
dl2p

m
Mljl(ksr)

Pm
l (cos θ)

sin θ

)

exp(imφ),

Eφ = 2iks

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

m
ε

εs
cl2p

m
El

[

jl−1(ksr)

l
− jl+1(ksr)

l + 1

]

Pm
l (cos θ)

sin θ

− 2l + 1

l(l + 1)

k

ks
dl2p

m
Mljl(ksr)

dPm
l (cos θ)

dθ

)

exp(imφ).

(5.14)
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5.1.2.2 Approximate Model Reduced from the Rigorous Model

Equations (4.1) and (4.2) describe a converging beam outside the SIL. For the convenience

of making approximations, we express the converging field as follows:

Er = k
∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

pmEl[h
(2)
l−1(kr) + h

(2)
l+1(kr)]P

m
l (cos θ)

)

exp(imφ),

Eθ = k
∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

pmEl

[

h
(2)
l−1(kr)

l
− h

(2)
l+1(kr)

l + 1

]

dPm
l (cos θ)

dθ

−m
2l + 1

l(l + 1)
pmMlh

(2)
l (kr)

Pm
l (cos θ)

sin θ

)

exp(imφ),

Eφ = ik

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

mpmEl

[

h
(2)
l−1(kr)

l
− h

(1)
l+1(kr)

l + 1

]

Pm
l (cos θ)

sin θ

− 2l + 1

l(l + 1)
pmMlh

(2)
l (kr)

dPm
l (cos θ)

dθ

)

exp(imφ). (5.15)

For kr∞ ≫ l(l+1)
2

, we have

h
(2)
l (kr∞) ≈ il+1 e

−ikr∞

kr∞
. (5.16)

Substituting Eq. (5.16) into Eq. (5.15), and noting that θ = π − α and φ = π + β, the

electric field is approximated as follows:

Er(r∞, α, β) ≈ 0,

Eα(r∞, α, β) ≈ −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

pmEl

dPm
l (cosα)

dα
+ impmMl

Pm
l (cosα)

sinα

]

eimβ ,

Eβ(r∞, α, β) ≈ −e−ikr∞

r∞

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

impmEl

Pm
l (cosα)

sinα
− pmMl

dPm
l (cosα)

dα

]

eimβ.

(5.17)

We see that the double summations in Eq. (5.17) are functions of the direction, or angles

α and β, and are independent of the distance r. Hence in the far region, the electric field

can be considered as a spherical wave. This means we can treat the electric field outside

the SIL as a bundle of geometrical rays converging to the focus. The electric field in Eq.

(5.17) is associated with a ray traveling in the direction (α, β). Using Eq. (5.17), we
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express the electric field just outside the SIL in terms of the field on the GRS:

Ē(R̄) ≈ f

R
eik(f−R)[Eαα̂+ Eβ β̂]. (5.18)

The reflected electric field is derived rigorously to be

Er
r = k

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

al2p
m
El[h

(1)
l−1(kr) + h

(1)
l+1(kr)]P

m
l (cos θ)

)

exp(imφ),

Er
θ = k

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

al2p
m
El

[

h
(1)
l−1(kr)

l
− h

(1)
l+1(kr)

l + 1

]

dPm
l (cos θ)

dθ

−m
2l + 1

l(l + 1)
bl2p

m
Mlh

(1)
l (kr)

Pm
l (cos θ)

sin θ

)

exp(imφ),

Er
φ = ik

∞
∑

l=1

l
∑

m=−l

l(l + 1)

2l + 1
clm

(

mal2p
m
El

[

h
(1)
l−1(kr)

l
− h

(1)
l+1(kr)

l + 1

]

Pm
l (cos θ)

sin θ

− 2l + 1

l(l + 1)
bl2p

m
Mlh

(1)
l (kr)

dPm
l (cos θ)

dθ

)

exp(imφ).

(5.19)

Using the following approximations:

al2 ≈ (−1)le−2ikR
ε
εs

ks
k
− 1

ε
εs

ks
k
+ 1

, bl2 ≈ (−1)le−2ikR

µ
µs

ks
k
− 1

µ
µs

ks
k
+ 1

, h
(1)
l (kR) ≈ (−i)l+1 e

ikR

kR
,

we approximate Eq. (5.19) to be

Er
r ≈ 0,

Er
α ≈ −

ε
εs

ks
k
− 1

ε
εs

ks
k
+ 1

e−ikR

R

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

pmEl

dPm
l (cosα)

dα
+ impmMl

Pm
l (cosα)

sinα

]

eimβ ,

Er
β ≈ −

ε
εs

ks
k
− 1

ε
εs

ks
k
+ 1

e−ikR

R

∞
∑

l=1

l
∑

m=−l

(−i)lclm

[

impmEl

Pm
l (cosα)

sinα
− pmMl

dPm
l (cosα)

dα

]

eimβ .

(5.20)

In terms of the electric field on the GRS:

Ēr(R̄) ≈
ε
εs

ks
k
− 1

ε
εs

ks
k
+ 1

f

R
eik(f−R)[Eαα̂+ Eβ β̂]. (5.21)
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The transmitted electric field inside the SIL is obtained from Eq. (5.19) by replacing

k, al2, bl2, and h(1) with ks,
ε
εs
cl2,

k
ks
dl2, and h(2), respectively. Using the following

approximations,

cl2 ≈
2ks

k + ε
εs
ks
ei(ks−k)R, dl2 ≈

2ks
k + µ

µs
ks
ei(ks−k)R, h

(2)
l (kR) ≈ il+1 e

−ikR

kR
,

we approximate the transmitted electric field just inside the SIL’s surface to be

Ēt(R̄) ≈
2 ε
εs

ks
k

ε
εs

ks
k
+ 1

f

R
eik(f−R)[Eαα̂+ Eβ β̂]. (5.22)

It is obvious from Eqs. (5.18), (5.21), and (5.22) that

Ē(R̄) + Ēr(R̄) = Ēt(R̄). (5.23)

Note that for an electromagnetic wave normally incident onto a planar interface, the

Fresnel reflection (rp, rs) and transmission (tp, ts) coefficients are

rp = rs =
ε
εs

ks
k
− 1

ε
εs

ks
k
+ 1

, tp = ts =
2 ε
εs

ks
k

ε
εs

ks
k
+ 1

.

Hence Eq. (5.23) represents the well-known locally-plane approximation that is valid

only for a large-radius SIL. In fact, the approximation in Eq. (5.17) is equivalent to the

approximation in Eq. (5.2) and this approximated electric field can be considered to be

equivalent to a ray traveling between the GRS and the SIL. In section 5.1.1, we used the

locally-plane approximation to derive the electric field just inside the SIL. In this section,

the locally-plane approximation was proven, and expressed in Eq. (5.23). In other words,

the approximate model is an approximation of our rigorous model.

5.2 General Solid Immersion Lens

In this section, we discuss and form an approximate model and a rigorous model for

evaluating the focal field of a general solid immersion lens.
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5.2.1 Approximate Analytical Model for Evaluating the Focal

Field of the GSIL

Similarly to Eq. (5.18), for a large SIL, the electric field just outside the SIL at point A

in Fig. 5.1 can be approximated:

Ē(r̄A) =
f

rA
eik(f−rA)[Eαα̂ + Eββ̂]. (5.24)

Applying the local plane-wave approximation, the electric field just inside the SIL at

point A is

Ēt(r̄A) =
f

rA
eik(f−rA)[tp(α)Eαα̂′ + ts(α)Eββ̂], (5.25)

where the Fresnel transmission coefficient for P-polarization component tp(α) and S-

polarization component ts(α) are as follows:

tp(α) =
2k
√

1− ( d
R
sinα)2

k
√

1− ( k
ks

d
R
sinα)2 + ks

√

1− ( d
R
sinα)2

,

ts(α) =
2k
√

1− ( d
R
sinα)2

k
√

1− ( d
R
sinα)2 + ks

√

1− ( k
ks

d
R
sinα)2

.

In fact, Eq. (5.25) is the electric field just inside the SIL of a GSS. i.e. the electric

field at the far region. However, for the GSS, rays approaching the spherical surface

with different angles are refracted with different angles predicted by Snell’s law. These

refracted rays do not converge to the same point, except for the ASS, and hence the

condition k̂ = −r̂ is not satisfied in general. Consequently, Eq. (5.3) is not applicable

strictly to the GSS except for the ASS. However, there are some cases that all of the rays

converge into a small region around a Gaussion image point, i.e. the condition k̂ = −r̂

is nearly satisfied. An example is the case of focusing into a point near either of the

aplanatic points. In such a case, we can approximate the focal field by following the

procedure that was presented in section 5.1.1. This procedure leads to exactly the same

expression of the spherical aberration presented in Ref. [101]. For the ASS, the condition
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k̂ = −r̂ is satisfied and hence the focal field can be approximated. For the GSS, we denote

the coordinates (x1, y1, z1) of which the origin O1 is where the optical ray corresponding

to the maximum incident angle αm intersects with the optical axis of the SIL. For the

special case of ASS, the origin O1 is also the aplanatic point. The angular spectrum

corresponding to the far-field in Eq. (5.25) is

Ê(ksx1
, ksy1; 0) = −iAFeiksAF

2π

1

ksz1
Ēt(r̄A),

= −ifeikf

2π

1

ksz1

sinα

sinα′ [tp(α)Eαα̂′ + ts(α)Eββ̂]

where AF = rA
sinα
sinα′ = rA

k
ks

is the distance between points A and F indicated in Fig. 5.1.

It should be noted that rA (and hence AF ) is a function of α and β (and equivalent kx

and ky) in this case of an ASS. Consequently, the electric field inside the ASIL is derived

as follow:

Ēs(x1, y1, z1) =

∫∫

k2sx1+k2sy1≤k2s

Ê(ksx1
, ksy1; 0)e

i(ksx1x1+ksy1y1+ksz1z1) dksx1
dksy1

= −iksfe
ikf

2π

∫ α′
m

0

sinα′dα′
∫ 2π

0

dβ
sinα

sinα′













tp(α)Eα













cos β cosα′

sin β cosα′

− sinα′













+ts(α)Eβ













− sin β

cos β

0

























eiks[ρ1 sinα′ cos(β−φ1)+z1 cosα′].(5.26)
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We know that α′ = arcsin(ks
k
sinα) and dα′ =

ks
k

cosα

cosα′ dα. Then Eq. (5.26) becomes

Ēs(x1, y1, z1) = −iksfe
ikf

2π

∫ αm

0

sinα′
ks
k
cosα

cosα′ dα

∫ 2π

0

dβ
k

ks













tp(α)Eα













cos β cosα′

sin β cosα′

− sinα′













+ts(α)Eβ













− sin β

cos β

0

























eiks[ρ1 sinα′ cos(β−φ1)+z1 cosα′]

= −iksfe
ikf

2π

∫ αm

0

tanα′ cosαdα

∫ 2π

0

dβ













tp(α)Eα













cos β cosα′

sin β cosα′

− sinα′













+ts(α)Eβ













− sin β

cos β

0

























eiks[ρ1 sinα′ cos(β−φ1)+z1 cosα′]. (5.27)

Based on this approximate model for the ASS, the complete theoretical model of

subsurface microscopy system based on aplanatic solid immersion lens has been proposed

in Refs. [100, 172]. Recently, this complete model was experimentally verified in Ref.

[173].

5.2.2 Rigorous Analytical Model for Evaluating the Focal Field

of the GSIL

In section 4.3, we solved the boundary conditions and derived the scattering coefficients

for polarized beams approaching the surface of the GSIL. In this section, we will form a

model for evaluating the focal field of the GSIL using the scattering coefficients. Since

the scattering coefficients depend on the distance between the centers of the GSIL and

the GRS, our model also depends on the distance.
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For d < R, the focal field is evaluated rigorously as follows:

Er′ = 2ks

∞
∑

l′=1

l′
∑

m′=−l′

l′(l′ + 1)

2l′ + 1
cl′m′

(

ε

εs
cl′2p

m′
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]Pm′

l′ (cos θ′)

)

exp(im′φ′),

Eθ′ = 2ks

∞
∑

l′=1

l′
∑

m′=−l′

l′(l′ + 1)

2l′ + 1
cl′m′

(

ε

εs
cl′2p

m′
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

dPm′
l′ (cos θ′)

dθ′

−m′ 2l′ + 1

l′(l′ + 1)

k

ks
dl′2p

m′
Ml′jl′(ksr

′)
Pm′
l′ (cos θ′)

sin θ′

)

exp(im′φ′),

Eφ′ = 2iks

∞
∑

l′=1

l′
∑

m′=−l′

l′(l′ + 1)

2l′ + 1
cl′m′

(

m′ ε

εs
cl′2p

m′
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

Pm′
l′ (cos θ′)

sin θ′

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′2p

m′
Ml′jl′(ksr

′)
dPm′

l′ (cos θ′)

dθ′

)

exp(im′φ′).

(5.28)

For d > R, the focal field is evaluated rigorously as follows:

Er′ = 2ks

∞
∑

l′=1

l′
∑

m′=−l′

l′(l′ + 1)

2l′ + 1
cl′m′

(

ε

εs
cl′p

m′
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]Pm′

l′ (cos θ′)

)

exp(im′φ′),

Eθ′ = 2ks

∞
∑

l′=1

l′
∑

m′=−l′

l′(l′ + 1)

2l′ + 1
cl′m′

(

ε

εs
cl′p

m′
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

dPm′
l′ (cos θ′)

dθ′

−m′ 2l′ + 1

l′(l′ + 1)

k

ks
dl′p

m′
Ml′jl′(ksr

′)
Pm′
l′ (cos θ′)

sin θ′

)

exp(im′φ′),

Eφ′ = 2iks

∞
∑

l′=1

l′
∑

m′=−l′

l′(l′ + 1)

2l′ + 1
cl′m′

(

m′ ε

εs
cl′p

m′
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

Pm′
l′ (cos θ′)

sin θ′

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′p

m′
Ml′jl′(ksr

′)
dPm′

l′ (cos θ′)

dθ′

)

exp(im′φ′).

(5.29)

It should be noted that the differences between Eqs. (5.28) and (5.29) are the scat-

tering coefficients and the multipole strengths which have been derived in chapter 4.

5.3 Polarized Beams and Focal Fields of SIL

In this section, we apply the general results presented in sections 5.1 and 5.2 for specific

polarized beams, including cylindrical and linearly-polarized beams.
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5.3.1 Cylindrical Vector Beams

We study the radially-polarized beam with a vortex and the azimuthally-polarized beam

with a vortex presented in chapter 3.

5.3.1.1 Radially-polarized Beam with a Vortex of Charge n

The incident focusing field on the GRS is shown in Eq. (3.64).

1. Hemispherical Solid Immersion Lens

Substituting Eq. (3.64) into Eq. (5.7), after some trivial mathematical manipula-

tions, we obtain the focal field using the approximate model as follows:

Ē(ρ, φ, z) = −iksfe
ikf

2
ei(ks−k)R













Isn+1 + Isn−1

−i(Isn+1 − Isn−1)

−2Isn













, (5.30)

where

Isn−1 = in−1ei(n−1)φ

∫ αm

0

tpa(α) cosαJn−1(ksρ sinα)e
iksz cosα sinα dα,

Isn+1 = in+1ei(n+1)φ

∫ αm

0

tpa(α) cosαJn+1(ksρ sinα)e
iksz cosα sinα dα,

Isn = ineinφ
∫ αm

0

tpa(α) sinαJn(ksρ sinα)e
ksz cosα′

sinα dα.

Equation (5.30) is used to evaluate the focal field approximately. We can evaluate

the focal field rigorously using the rigorous model presented in section 5.1.2.1. Sub-

stituting Eq. (3.66) into Eq. (5.14), we obtain the formula for evaluating the focal
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field of the HSIL using the multipole theory:

Er = 2ks

∞
∑

l=|n|

l(l + 1)

2l + 1
cln

(

ε

εs
clp

n
El[jl−1(ksr) + jl+1(ksr)]P

n
l (cos θ)

)

exp(inφ),

Eθ = 2ks

∞
∑

l=|n|

l(l + 1)

2l + 1
cln

(

ε

εs
clp

n
El

[

jl−1(ksr)

l
− jl+1(ksr)

l + 1

]

dPm
l (cos θ)

dθ

−n
2l + 1

l(l + 1)

k

ks
dlp

n
Mljl(kr)

P n
l (cos θ)

sin θ

)

exp(inφ),

Eφ = 2iks

∞
∑

l=|n|

l(l + 1)

2l + 1
cln

(

n
ε

εs
clp

n
El

[

jl−1(ksr)

l
− jl+1(ksr)

l + 1

]

P n
l (cos θ)

sin θ

− 2l + 1

l(l + 1)

k

ks
pnMljl(ksr)

dP n
l (cos θ)

dθ

)

exp(inφ). (5.31)

If n = 0, the summations in Eq. (5.31) start with l = 1, instead of l = 0.

2. General Solid Immersion Lens

We have shown in section 5.2.1 that the approximate model represented by Eq.

(5.27) is not valid strictly for the GSIL except ASIL configuration. Hence, we

consider here only the ASIL configuration. Substituting Eq. (3.64) into Eq. (5.27),

after some trivial mathematical manipulations, we obtain the focal field for the

ASIL as follows:

Ē(ρ1, φ1, z1) = −iksfe
ikf

2













Isn+1 + Isn−1

−i(Isn+1 − Isn−1)

−2Isn













, (5.32)

where

Isn−1 = in−1ei(n−1)φ1

∫ αm

0

tp(α)a(α) cosα
′Jn−1(ksρ1 sinα

′)eiksz1 cosα
′
tanα′ cosα dα,

Isn+1 = in+1ei(n+1)φ1

∫ αm

0

tp(α)a(α) cosα
′Jn+1(ksρ1 sinα

′)eiksz1 cosα
′
tanα′ cosα dα,

Isn = ineinφ1

∫ αm

0

tp(α)a(α) sinα
′Jn(ksρ1 sinα

′)eiksz1 cosα
′
tanα′ cosα dα.

Equation (5.32) is derived from the approximate model and it is valid strictly for
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the ASIL only. We can use the rigorous model to evaluate not only the focal field

of the ASIL but also the focal field of a GSIL as follows:

• Translational distance is less than the radius d < R

Substituting Eq. (3.66) into Eq. (4.10), we obtain the multipole strengths of

the focal field of the GSIL as follows:

pm
′

El′ = δnm′

∞
∑

l=|n|
[Aln

l′np
n
El + iBln

l′np
n
Ml],

pm
′

Ml′ = δnm′

∞
∑

l=|n|
[Aln

l′np
n
Ml − iBln

l′np
n
El]. (5.33)

Substituting Eq. (5.33) into Eq. (5.28), we can evaluate the focal field using

the rigorous model as follows:

Er′ = 2ks

∞
∑

l′=|n|

l′(l′ + 1)

2l′ + 1
cl′n

(

ε

εs
cl′2p

n
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]P n

l′ (cos θ
′)

)

einφ
′
,

Eθ′ = 2ks

∞
∑

l′=|n|

l′(l′ + 1)

2l′ + 1
cl′n

(

ε

εs
cl′2p

n
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

dP n
l (cos θ

′)

dθ′

−n
2l′ + 1

l′(l′ + 1)

k

ks
dl′2p

n
Ml′jl′(ksr

′)
P n
l′ (cos θ

′)

sin θ′

)

einφ
′
,

Eφ′ = 2iks

∞
∑

l′=|n|

l′(l′ + 1)

2l′ + 1
cl′n

(

n
ε

εs
cl′2p

n
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

P n
l′ (cos θ

′)

sin θ′

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′2p

n
Ml′jl′(ksr

′)
dP n

l′ (cos θ
′)

dθ′

)

einφ
′
. (5.34)

• Translational distance is less than the radius d > R

The multipole strengths can be evaluated by a formula similar to the formula

shown in Eq. (5.33) but with different translation coefficients presented in

section 4.3.1. Then using Eq. (5.29), we can evaluate the focal field of the
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GSIL as follows:

Er′ = 2ks

∞
∑

l′=|n|

l′(l′ + 1)

2l′ + 1
cl′n

(

ε

εs
cl′p

n
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]P n

l′ (cos θ
′)

)

einφ
′
,

Eθ′ = 2ks

∞
∑

l′=|n|

l′(l′ + 1)

2l′ + 1
cl′n

(

ε

εs
cl′p

n
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

dP n
l (cos θ

′)

dθ′

−n
2l′ + 1

l′(l′ + 1)

k

ks
dl′p

n
Ml′jl′(ksr

′)
P n
l′ (cos θ

′)

sin θ′

)

einφ
′
,

Eφ′ = 2iks

∞
∑

l′=|n|

l′(l′ + 1)

2l′ + 1
cl′n

(

n
ε

εs
cl′p

n
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

P n
l′ (cos θ

′)

sin θ′

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′p

n
Ml′jl′(ksr

′)
dP n

l′ (cos θ
′)

dθ′

)

einφ
′
. (5.35)

It is worth highlighting that the difference between Eqs. (5.34) and (5.35) is the values

of the translation coefficients and the scattering coefficients as shown in Chapter 4.

5.3.1.2 Azimuthally-polarized Beam with a Vortex of Charge n

The incident focusing field on the GRS is shown in Eq. (3.68).

1. Hemispherical Solid Immersion Lens

Substituting Eq. (3.68) into Eq. (5.7), we obtain the focal field:

Ē(ρ, φ, z) = −iksfe
ikf

2
ei(ks−k)R













i(F s
n+1 − F s

n−1)

F s
n+1 + F s

n−1

0













, (5.36)

where

F s
n−1 = in−1ei(n−1)φ

∫ αm

0

tsa(α)Jn−1(ksρ sinα)e
iksz cosα sinα dα,

F s
n+1 = in+1ei(n+1)φ

∫ αm

0

tsa(α)Jn+1(ksρ sinα)e
iksz cosα sinα dα.

We can also use the rigorous model based on the multipole theory for an HSIL to

evaluate the focal field for the focused azimuthally-polarized beam. The formula is

exactly the same as Eq. (5.31) except that the multipole strengths are evaluated
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using Eq. (3.70).

2. General Solid Immersion Lens

Substituting Eq. (3.68) into Eq. (5.27), we obtain the focal field of the ASIL as

follows:

Ē(ρ1, φ1, z1) = −iksfe
ikf

2













i(F s
n+1 − F s

n−1)

F s
n+1 + F s

n−1

0













, (5.37)

where

F s
n−1 = in−1ei(n−1)φ1

∫ αm

0

ts(α)a(α)Jn−1(ksρ1 sinα
′)eiksz1 cosα

′
tanα′ cosα dα,

F s
n+1 = in+1ei(n+1)φ1

∫ αm

0

ts(α)a(α)Jn+1(ksρ1 sinα
′)eiksz1 cosα

′
tanα′ cosα dα.

Equation (5.37) is derived using the approximate model based on the angular spec-

trum method. We can also evaluate the focal field using the rigorous model pre-

sented in section 5.2.2 for the GSIL. The formulas using the rigorous model for the

incident azimuthally-polarized beam are exactly the same as Eqs. (5.34) and (5.35)

except the values of the multipole strengths.

5.3.2 Generalized Linear Polarization

The incident focusing field on the GRS is shown in Eq. (3.72).

1. Hemispherical Solid Immersion Lens

Substituting Eq. (3.72) into Eq. (5.7), we obtain the focal field of the HSIL as

follows:

Ē(ρ, φ, z) = −iksfe
ikf

2
ei(ks−k)R













Hs
0 +Hs

2 cos 2φ

Hs
2 sin 2φ

−2iHs
1 cos φ













, (5.38)

101



5. Solid Immersion Microscopy

where

Hs
0 =

∫ αm

0

a(α) cos2(
α

2
){ts[1 + S(α)] + tp[1− S(α)] cosα}J0(ksρ sinα)e

iksz cosα sinα dα,

Hs
1 =

∫ αm

0

tpa(α) cos
2(
α

2
){1− S(α)} sinαJ1(ksρ sinα)e

iksz cosα sinα dα,

Hs
2 =

∫ αm

0

a(α) cos2(
α

2
){ts[1 + S(α)]− tp[1− S(α)] cosα}J2(ksρ sinα)e

iksz cosα sinα dα.

Using the rigorous model that is presented in section 5.2.2, we can evaluate the

focal field more accurate. Substituting Eq. (3.74) into Eq. (5.14), we obtain the

focal field based on the rigorous model:

Er = − ks√
π

∞
∑

l=1

√

l(l + 1)

2l + 1

ε

εs
cl2p

1
El[jl−1(ksr) + jl+1(ksr)]P

1
l (cos θ) cosφ

Eθ = − ks√
π

∞
∑

l=1

√

l(l + 1)

2l + 1

[

ε

εs
cl2p

1
El

(

jl−1(ksr)

l
− jl+1(ksr)

l + 1

)

d

dθ
P 1
l (cos θ)

− 2l + 1

l(l + 1)

k

ks
dl2p

1
Mljl(ksr)

P 1
l (cos θ)

sin θ

]

cosφ,

Eφ =
ks√
π

∞
∑

l=1

√

l(l + 1)

2l + 1

[

ε

εs
cl2p

1
El

(

jl−1(ksr)

l
− jl+1(ksr)

l + 1

)

P 1
l (cos θ)

sin θ

− 2l + 1

l(l + 1)

k

ks
dl2p

1
Mljl(ksr)

d

dθ
P 1
l (cos θ)

]

sinφ. (5.39)

2. General Solid Immersion Lens

Substituting Eq. (3.72) into Eq. (5.27), we obtain the focal field of the ASIL:

Ē(ρ1, φ1, z1) = −iksfe
ikf

2













Hs
0 +Hs

2 cos 2φ1

Hs
2 sin 2φ1

−2iHs
1 cosφ1













, (5.40)
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where

Hs
0 =

∫ αm

0

a(α) cos2(
α

2
){ts(α)[1 + S(α)] + tp(α)[1− S(α)] cosα′}×

× J0(ksρ1 sinα
′)eiksz1 cosα

′
tanα′ cosα dα,

Hs
1 =

∫ αm

0

tp(α)a(α) cos
2(
α

2
) [1− S(α)] sinα′J1(ksρ1 sinα

′)eiksz1 cosα
′
tanα′ cosα dα,

Hs
2 =

∫ αm

0

a(α) cos2(
α

2
){ts(α)[1 + S(α)]− tp(α)[1− S(α)] cosα′}×

× J2(ksρ1 sinα
′)eiksz1 cosα

′
tanα′ cosα dα.

Equation (5.39) is valid only for the ASIL configuration. For a general configuration,

we should use the rigorous model presented in section 5.2.2. Firstly, we must evaluate

the multipole strengths in the O′ coordinate system by substituting Eq. (3.74) into Eq.

(4.10), we obtain the multipole strengths as follows:

pm
′

El′ = p1El′(δ
1
m′ − δ−1

m′ ),

pm
′

Ml′ = p1Ml′(δ
1
m′ + δ−1

m′ ), (5.41)

where

p1El′ =

∞
∑

l=1

[Al1
l′1p

1
El + iBl1

l′1p
1
Ml],

p1Ml′ =

∞
∑

l=1

[Al1
l′1p

1
Ml − iBl1

l′1p
1
El]. (5.42)

It should be noted that the translation coefficients in Eq. (5.42) are dependent on whether

d > R or d < R as presented in section 4.3.1.

• Translational distance is less than the radius d < R
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We substitute Eq. (5.41) into Eq. (5.28), we obtain the focal field for the GSIL:

Er′ = − ks√
π

∞
∑

l′=1

√

l′(l′ + 1)

2l′ + 1

ε

εs
cl′2p

1
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]P 1

l′ (cos θ
′) cosφ′,

Eθ′ = − ks√
π

∞
∑

l′=1

√

l′(l′ + 1)

2l′ + 1

[

ε

εs
cl′2p

1
El′

(

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

)

d

dθ′
P 1
l′ (cos θ

′)

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′2p

1
Ml′jl′(ksr

′)
P 1
l′ (cos θ

′)

sin θ′

]

cos φ′,

Eφ′ =
ks√
π

∞
∑

l′=1

√

l′(l′ + 1)

2l′ + 1

[

ε

εs
cl′2p

1
El′

(

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

)

P 1
l′ (cos θ

′)

sin θ′

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′2p

1
Ml′jl′(ksr

′)
d

dθ′
P 1
l′ (cos θ

′)

]

sinφ′. (5.43)

• Translational distance is greater than the radius d > R

We substitute Eq. (5.41) into Eq. (5.29), we obtain the focal field for the GSIL:

Er′ = − ks√
π

∞
∑

l′=1

√

l′(l′ + 1)

2l′ + 1

ε

εs
cl′p

1
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]P 1

l′ (cos θ
′) cosφ′,

Eθ′ = − ks√
π

∞
∑

l′=1

√

l′(l′ + 1)

2l′ + 1

[

ε

εs
cl′p

1
El′

(

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

)

d

dθ′
P 1
l′ (cos θ

′)

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′p

1
Ml′jl′(ksr

′)
P 1
l′ (cos θ

′)

sin θ′

]

cosφ′,

Eφ′ =
ks√
π

∞
∑

l′=1

√

l′(l′ + 1)

2l′ + 1

[

ε

εs
cl′p

1
El′

(

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

)

P 1
l′ (cos θ

′)

sin θ′

− 2l′ + 1

l′(l′ + 1)

k

ks
dl′p

1
Ml′jl′(ksr

′)
d

dθ′
P 1
l′ (cos θ

′)

]

sinφ′. (5.44)

The difference between Eqs. (5.43) and (5.44) is the values of the multipole strengths

and the scattering coefficients.

5.4 Simulations

We run simulations for the axial dipole wave being presented in Chapter 3 using the

formulas derived in section 5.3.
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5.4.1 Results for the Hemispherical Solid Immersion Lens

As an example, we investigate the axial dipole wave which is mentioned in section 3.5.1.1.

It is important because it is known to produce a smaller focal spot than linearly polarized

light. We remind here for convenience that the electric field on the GRS of the ADW is

Ē(ŝ) = a(α)α̂, (5.45)

where

a(α) = sinα for α ≤ αm; and a(α) = 0 for α > αm,

and the EMMS of the beam are estimated by Eq. (3.77):

pmEl = −ilfeikf [π(2l + 1)]
1

2

l(l + 1)
δ0m

∫ αm

0

a(α)
dPl(cosα)

dα
sinα dα, pmMl = 0. (5.46)

Now, the focal field of the HSS is estimated rigorously using our rigorous model as follows:

Er =
ks√
π

∞
∑

l=1

l(l + 1)√
2l + 1

ε

εs
cl2p

0
El[jl−1(ksr) + jl+1(ksr)]Pl(cos θ),

Eθ =
ks√
π

∞
∑

l=1

l(l + 1)√
2l + 1

ε

εs
cl2p

0
El

[

jl−1(ksr)

l
− jl+1(ksr)

l + 1

]

dPl(cos θ)

dθ
,

Eφ = 0. (5.47)

Equation (5.47) rigorously evaluates the focal field. For comparison, we also present the

result using the approximate model by substituting Eq. (5.45) into Eq. (5.7):

Ē(x, y, z) = ksfe
ikfei(ks−k)R













I1 cosφ

I1 sinφ

iI0













, (5.48)
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where

I0 =

∫ αm

0

tp sinαJ0(ksρ sinα)e
iksz cosα sin2 α dα,

I1 =

∫ αm

0

tp cosαJ1(ksρ sinα)e
iksz cosα sin2 α dα,

are called diffraction integrals. We note that Eq. (5.48) is an approximation of Eq. (5.47)

and is valid only for a large SIL. In contrast, Eq. (5.47) is valid even for a small SIL as

long as the presence of the planar interface in Fig. 1.3(a) is still ignorable. Here we also

present the results of the Ichimura and the Vamivakas models for the sake of comparison.

The Ichimura model gives the following result:

Ē(x, y, z) = ksfe
ikf













I1 cosφ

I1 sinφ

iI0













. (5.49)

The Vamivakas model expresses the focal field as follows:

Ē(x, y, z) = kfeikf













I1 cosφ

I1 sin φ

iI0













. (5.50)

We observe from Eqs. (5.48) and (5.49) that the Ichimura model ignores the constant

phase term ei(ks−k)R, and hence gives the same intensity as the approximate model, but a

different phase. From Eqs. (5.48) and (5.50), we see that the Vamivakas model not only

ignores the constant phase term, but also gives a different electric amplitude. Fortunately,

the three models give the same normalized electric intensities, and the fact is that most

researchers analyzed experimental results using the normalized electric intensities [82, 89].

Hence, the conclusions in the published experimental articles hold for our approximate

model.
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Since it is obvious to appreciate the difference among simulation results using the

Ichimura, the approximate , and the Vamivakas models, we plot the simulation result

using the approximate model only. For the case of f = 103 and αm = 600, we use Eqs.

(5.47) and (5.48) to obtain the simulation results in Fig 5.4, where MT represents our

rigorous model based on the MTM and DI represents the approximate model based on

the diffraction integrals. Figure 5.3(a) plots the transverse variation in electric intensity

for four different radii of HSIL, which shows perfect agreement between the approximate

model and our rigorous model. All of the four plots look similar, i.e. the focal spots are

independent of radius, which can be reduced to several wavelengths. Correspondingly,

Fig. 5.3(b) shows plots of the longitudinal variation in electric intensity. For the small

radius HSIL, R1 = 10, though the two models have perfect agreement for the transverse

distribution, these models exhibit a small difference for the longitudinal distribution. This

small difference is mathematically explained by the fact that higher orders of multipole

are needed for evaluating correctly the longitudinal distribution (30 compared to 6 for

the case of transversal distribution). Hence, the assumption kR ≫ l(l+1)
2

is not well

satisfied for evaluating the longitudinal electric intensity, i.e. equation (5.17) is not an

accurate approximation and thus the approximate model gives the small difference from

the rigorous model. Another important observation is that the maximum longitudinal

electric intensity for the rigorous model is not at the geometrical focus for the small radius.

The difference proves that the models, based on the ASR, are invalid for evaluating the

focal field of a small HSIL.

5.4.2 Results for the General Solid Immersion Lens

We first derive the focal field of a GSS for the incident ADW using our rigorous model.

Substituting Eq. (5.46) into Eq. (5.33), we obtain the EMMS of the ADW in the O′-

coordinates:

pm
′

El′ = δ0m′

∞
∑

l=1

Al0
l′0p

0
El, pm

′
Ml′ = 0. (5.51)
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Figure 5.3: Electric intensity distributions with different radius of HSIL: R1 = 10µm,
R2 = 50µm, R3 = 100µm, R4 = 500µm.
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The focal field is then rigorously evaluated as follows: For d < R, Eq. (5.28) is used:

Er′ =
ks√
π

∞
∑

l′=1

l′(l′ + 1)√
2l′ + 1

ε

εs
cl′2p

0
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]Pl′(cos θ

′),

Eθ′ =
ks√
π

∞
∑

l′=1

l′(l′ + 1)√
2l′ + 1

ε

εs
cl′2p

0
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

dPl′(cos θ
′)

dθ′
,

Eφ′ = 0. (5.52)

For d > R, Eq. (5.29) is used:

Er′ =
ks√
π

∞
∑

l′=1

l′(l′ + 1)√
2l′ + 1

ε

εs
cl′p

0
El′[jl′−1(ksr

′) + jl′+1(ksr
′)]Pl′(cos θ

′),

Eθ′ =
ks√
π

∞
∑

l′=1

l′(l′ + 1)√
2l′ + 1

ε

εs
cl′p

0
El′

[

jl′−1(ksr
′)

l′
− jl′+1(ksr

′)

l′ + 1

]

dPl′(cos θ
′)

dθ′
,

Eφ′ = 0. (5.53)

Equations (5.52) and (5.53) are applicable for any value of d.

For an ASS, the focal field can be approximated by using Eq. (5.27) as follows

Ē(x1, y1, z1) = ksfe
ikf













I1 cosφ1

I1 sin φ1

iI0













, (5.54)

where

I0 =

∫ αm

0

tpEα sinα
′J0(ksρ1 sinα

′)eiksz1 cosα
′
tanα′ cosαdα,

I1 =

∫ αm

0

tpEα cosα
′J1(ksρ1 sinα

′)eiksz1 cosα
′
tanα′ cosαdα.

With f = 105µm, we use Eqs. (5.53) and (5.54) for evaluating the focal field of the ASS

with different radii of the SIL. The simulation plots are shown in Fig. 5.4. We observe

that the agreement between the approximate model (DI) and the rigorous model (MT) are

better for larger radii of SIL. For the longitudinal distributions, the agreement strongly

depends on the radius of the SIL. This is due to the fact that the longitudinal distributions
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Figure 5.4: Electric intensity distributions with different radius of ASIL and αm = 16o.
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need higher multipole terms for convergence, and hence the condition krA ≫ l(l+1)
2

is not

well satisfied for small radii. We compare the simulation plots for the HSS (Fig. 5.3) and

the ASS (Fig. 5.4) and we conclude that the approximate model for the ASS is worse

than that for the HSS. This is because the NA of the incident focused beam approaching

the SIL of the ASS (αm = 16o) is smaller than that of the HSS ( αm = 60o), and hence

more multipole terms or higher orders of the multipole terms are needed for estimating

the focal field. In fact, we need to truncate the summation in Eq. (5.53) at l = 400

for accurately estimating the electric field just outside the SIL. These higher order terms

make the condition krA ≫ l(l+1)
2

not well satisfied, i.e. equation (5.27) is not good

approximation and thus causes a small deviation even for a quite large-radius (R = 500)

SIL as observed in Fig. (5.4(b)). This small deviation is reduced by increasing the radius

of the SIL so that the condition for the approximation in Eq. (5.27) is well satisfied.

Figure 5.5 shows the electric intensity just outside the ASIL and just inside the ASIL.

The plots denoted by GO in Figs. 5.5(a) and 5.5(b) are obtained by using Eqs. (5.25)

and (5.26), respectively. The DI plot and MT plot in Fig. 5.5(a) are obtained by using

Eq. (3.65) and Eq. (3.67) with jl replaced by h
(2)
l , respectively. The plot denoted by

MT is obtained by using Eq. (5.53) with j′l replaced by h
(2)
l′ . The DI plot in Fig. 5.5(b)

is obtained by using Eq. (5.54), i.e., this means the DI plot in Fig 5.5(b) is nothing

else but the approximate modeling of the GO plot in the same Fig. 5.5(b). Intuitively,

we can observe the effect of using the local plane-wave approximation, i.e., using the

Fresnel transmission coefficients and the effect of the scattering coefficients. For the case

of using the scattering coefficients, we observe that the shape of the electric intensity

distribution does not change much across the interface. But the shape is different around

the hard-edge of the beam for the case of using the Fresnel transmission coefficients. This

suggests that the local plane-wave approximation is not accurate for the whole surface

of the ASIL. The difference caused by using the local plane-wave approximation may be

the reason of the deviation as shown in Fig. 5.4 between the approximate model and the

rigorous model.

Figures 5.6 and 5.7 show the transversal electric intensity at the aplanatic point of the
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Figure 5.5: Electric intensity at the spherical interface for ADW with f = 10cm, R =
500µm, and αm = 16o.
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ASIL with annular filters blocking the center part of the incoming beam. The incident

beam is with the NA of αm = 16o and the annular filters are with the blocking NAs of,

α0 = 8o for Fig. 5.6(a), α0 = 10o for Fig. 5.6(b), α0 = 12o for Fig. 5.7(a), and α0 = 15o

for Fig. 5.7(b). In comparison with Fig. 5.4(a), we can observe that, with larger

−10 0 10
0

0.5

1

N
or

m
al

iz
ed

 |E
|2

 

 
MT
DI

−10 0 10
0

0.5

1

 

 
MT
DI

−10 0 10
0

0.5

1

k
s
x

 

 
MT
DI

−10 0 10
0

0.5

1

 

 
MT
DI

R
1
=10µm

FWHM=3.016

R
3
=100µm

FWHM=3.098

R
4
=500µm

FWHM=3.096

FWHM=3.092

R
2
=50µm

(a) α0 = 8o

−10 0 10
0

0.5

1

 

 
MT
DI

−10 0 10
0

0.5

1

 

 
MT
DI

−10 0 10
0

0.5

1

k
s
x

1

N
or

m
al

iz
ed

 |E
|2

 

 
MT
DI

−10 0 10
0

0.5

1

 

 
MT
DI

R
2
=50µmR

1
=10µm

R
3
=100µm R

4
=500µm

FWHM=2.966

FWHM=2.978FWHM=2.926

FWHM=2.964

(b) α0 = 10o

Figure 5.6: Electric intensity for ADW with f = 10cm, αm = 16o, (a) α0 = 8o, and (b)
α0 = 10o.

annular filters, we obtain smaller full widths at half maximum (FWHM). For example,

we have k ∗ FWHM ≃ 3.2 (FWHM ≃ 195nm) without the annular filter compared to

k∗FWHM ≃ 2.5 (FWHM ≃ 152nm) with the annular filter α0 = 15o. Though the side
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Figure 5.7: Electric intensity for ADW with f = 10cm, αm = 16o, (a) α0 = 12o, and (b)
α0 = 15o.
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lobes become stronger with higher percentage of blocking the center part of the incident

beam, they are still relative small compared to the center peak even for α0 = 15o. This

means we can increase the blocking ratio of the beam furthermore. The only restriction

is that we face a tradeoff of the power. We we can observe from Fig. 5.8(a) in which

we plot the electric intensity on the transversal plane at the aplanatic point of the ASIL

for a radially-polarized beam with a(α) =
√
cosα that the maximum intensity with the

annular filter α0 = 15o in use is 4 × 106 compared to 7 × 107 when the annular filter

α0 = 8o in use. This may be a problem in real experiments when a high power laser

is not always available. Although the normalized electric intensity distributions on the

transversal plane in Fig. 5.8(b) are nearly perfect using the two models, there is noticeable

deviation for the absolute values of the intensities as shown in Fig. 5.8(a), especially the

plots with higher blocking ratios. The higher blocking ratios mean that the contribution

of the outer part near the hard edge of the incident beam is more dominant. Since the

local plane-wave approximation is not a good approximation around the hard edge of

the beam as shown in Fig. 5.5, the approximate model deviates more from the rigorous

model with a higher blocking ratio.

For a GSS, simulation results using Eqs. (5.52) and (5.53) are shown in Fig. 5.9. We

conclude that the spherical interface strongly degrades the longitudinal distribution when

the focus is far from the aplanatic points. Figure 5.9(b), where longitudinal electric inten-

sity distributions are plotted, shows that the distribution spreads along a long distance,

characteristic of presence of spherical aberration. The intensity variation is also asym-

metric, indicating higher orders of spherical aberration. This spread accounts for the fact

that the rays converge to a large region inside the SIL, and hence the condition k̂ = −r̂

is not well satisfied for the cases of d = R
2
and d = 2R. Consequently, models based on

the ASR should not be applied for the cases of d = R
2
and d = 2R.
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Figure 5.8: Electric intensity for ADW with f = 10cm, R = 500µm and αm = 16o.
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Figure 5.9: f = 10cm, R = 500µm, d1 = 0 (HSS), d2 =
R
2
, d3 = 2R, d4 = 3.5R (ASS).
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Figure 5.10: Experimental Setup.

5.5 Experiment

Theoretically, we have presented and studied the focusing performances of different po-

larizations using an aplanatic lens and an annular filter. In this section, we present

and analyze experimental results. The experimental setup is shown in Fig. 5.10 which

operates in a reflection mode. The laser produces a linearly-polarized Gaussian beam

with a divergence angle of sin θ = 0.1. This diverging beam is collimated by a lens with

a focal length of f = 15.52mm and the resultant collimated beam has a diameter of

D ≈ 3.1mm. The collimated linearly polarized beam can be manipulated to produce a

circularly-polarized beam, a radically-polarized beam, a azimuthally-polarized beam, or

an azimuthally-polarized beam with a vortex. More details on producing the different

polarizations can be found in appendix C. This section presents the experimental results

using a linearly-polarized beam, a circularly-polarized beam, a radially-polarized beam,

and an azimuthally polarized beam with a vortex n = 1. In Fig. 5.10, the red lines

represent the incident beam approaching the sample. After reaching to the sample, the

focused beam interacts with the sample and produces induced currents in the focal region.

These induced currents radiate the radiation beam indicated by the green lines in Fig.
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5.10. The radiation field will be recorded by the detector. A pin hole is placed before

the detector to eliminate the stray light and hence improve the image quality [174]. In

this section, we use the pin hole with a diameter of 50µm unless otherwise mentioned.

The purpose of using the beam profiler in the setup of Fig. 5.10 is to assist in controlling

the polarization states of the incident beam. More details on using the beam profiler are

provided in appendix C. The black dotted lines in Fig. 5.10 denote the center part of the

incident beam that is blocked by the annular filter. Since the smallest diameter of the

available annular filters is 4mm, we magnify the incident beam twice to obtain an incident

beam with a diameter of D ≈ 6.2mm before inserting the annular filters with diameters

of 4mm, 5mm, or 6mm into the space just behind the first beam expander. The second

beam expander is used to reduce the diameter to the original size of D ≈ 3.1mm. The

technical details of the optical components can be found in appendix C. We have run and

studied a number of experiments using different combinations of the polarizations and

the annular filters. A part of the experimental results is presented here.

Figure 5.11 shows the images of monitor lines of the Metrochip Microscope Calibration

Target using the linearly-polarized beam. The direction of polarization is the horizontal

direction, which we call x-direction. The L pattern comprises of 11 lines in which the

width of each line is 120nm and they are 120nm separated from each other. The letters in

Fig. 5.11(a) indicate the width and the pitch of the feature. To read the values, the letters

should be rotated 180o around the horizontal line (x-axis). After rotating the letters in

Fig. 5.11(a), we get P.24 and L0.12 which mean the pitch of the feature is 240nm and

the width of the lines is 120nm. Figure 5.11(a) shows the whole area of scanning in which

the bright spot marks the field of view of the SIL [81]. Figure 5.11(b) shows the region

of interest without any annular filter in which we are unable to differentiate the lines

of the feature. However, by introducing an annular filter with a diameter of 4mm into

the system to block the center part of the incident beam, we can differentiate the lines

as shown in Fig. 5.11(c). We can observe that the lines along the vertical direction are

easier, compared with the horizontal ones, for resolving due to the well-known fact that

the electric intensity distribution in the focal region of a linear polarization is tighter in
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10 mm

(a) No Filter, Brightness 2023, Contrast 2066, Power 10%

(b) No Filter, Brightness 2023, Contrast 2066,
Power 10%

(c) 4mm Filter, Brightness 2023, Contrast 2729,
Power 80%

Figure 5.11: Imaging with linear polarization and an annular filter.
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(a) Linear, Brightness 2023, Contrast 2066, Power
10%.

(b) Circular, Brightness 1988, Contrast 1992,
Power 4%, Pin Hole 75 micrometer.

(c) Radial, Brightness 2002, Contrast 2255, Power
10%.

(d) AV1, Brightness 1996, Contrast 2047, Power
4%, Pin Hole 75 micrometer.

Figure 5.12: Image of the sample with pitch 240nm and line 120nm using different
polarizations and no filter.

the perpendicular direction to the direction of the polarization as predicted in Fig. 3.13.

Figure 5.12 shows the images of the same feature as in Fig. 5.11 using different polar-

izations without any annular filter. As expected, we are unable to resolve the lines using

the linear polarization shown in Fig. 5.12(a) and the circular polarization shown in Fig.

5.12(b). Using the radial polarization shown in Fig. 5.12(c) and the azimuthal polariza-

tion with a vortex shown in Fig. 5.12(d) can improve the image quality, though it is not

much improved.

Figure 5.13 shows the images of a bigger feature compared with the feature in Fig. 5.12.

The line width of the feature is 140nm and the pitch is 280nm. The images are obtained

by using the linear polarization. We can see that using the annular filters improves the
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(a) No Filter, Brightness 2024, Contrast 2347,
Power 8%

(b) 4mm Filter, Brightness 2020, Contrast 2720,
Power 60%

(c) 5mm Filter, Brightness 2022, Contrast 3090,
Power 100%

(d) 6mm Filter, Brightness 2022, Contrast 3045,
Power 100%

Figure 5.13: Imaging with linear polarization and different filters.
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(a) No Filter, Brightness 2016, Contrast 2599,
Power 4%

(b) 4mm Filter, Brightness 2021, Contrast 2882,
Power 60%

(c) 5mm Filter, Brightness 2023, Contrast 3328,
Power 100%

(d) 6mm Filter, Brightness 2023, Contrast 3328,
Power 100%

Figure 5.14: Imaging with circular polarization.

image quality significantly. The effect of linear polarization is also observed in Fig. 5.13

where the vertical lines are resolved clearer than the horizontal lines.

Figure 5.14 shows the images of the same feature as in Fig. 5.13 but the circular polar-

ization is used to obtain the images. As expected for the circular polarization, both the

vertical and horizontal directions are almost equally resolved. Using the annular filters

improves the image quality significantly, but we need to use the incident beam with more

power due to the loss of using the annular filters. For example, in Fig. 5.14(a) we use 4%

of the maximum power of the beam if no filter is used but for the 5mm and 6mm filters,

we need to use the maximum possible power of the incident beam. In fact, we use a laser

source with a maximum power of 500 mW, however, we need from 10 mW to 20 mW

only for the focused beam to get a stable image. Increasing the delivered power does not
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help to improve the image quality but increases the risk of destroying the sample due to

a high energy density. Without the filters, we need only 4% of the maximum power since

we use a beam splitter for splitting the incident beam into two beams, each beam with

10 mW. For the case of presence of the filters, since we block a large center part of the

incident beam, we usually need to use the maximum power of the laser source. Figure

5.15 shows the images of different features using the radial polarizations. As expected,

we observe that using the annular filter helps to improve the image quality. From Figs.

5.13(a), 5.14(a), and 5.15(a), we can observe that using the radial polarization leads to

the best image for the same sample.

(a) No Filter, Brightness 2012, Contrast 2407,
Power 8%

(b) 4mm Filter, Brightness 2021, Contrast 2747,
Power 100%

(c) No Filter, Brightness 2014, Contrast 2407,
Power 10%

(d) 4mm Filter, Brightness 2023, Contrast 3279,
Power 20%

Figure 5.15: Imaging with radial polarization.

In fact, all of the experimental images in this thesis are obtained by manipulating

different parameters such as pinhole size, focal plane, brightness, and contrast. The best
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images are presented here for each particular setup. One important notice is about the

exact position of the focal plane which is well-known in geometrical optics. The focus

of an ASIL is shifted for the case of using high-blocking-angle annular filters. The focal

shift can be explained as due to the increase percentage of the surface wave’s contribution

[175]. Hence, we usually need to change the position of the focal plane when we introduce

an annular filter for obtaining the best image. Another important notice is that using the

circular polarization and cylindrical polarization produces uniform images which mean

the horizontal lines and vertical lines are resolved with the same quality. However, the

linear polarization gives the best image quality for the lines in perpendicular to the

polarization direction of the incident beam but the worst image quality for the lines in

parallel with the polarization direction of the incident beam. These observations agree

well with the simulation results for the focusing system.
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Chapter 6

Conclusions and Further Directions

In this chapter, the contributions of the thesis are first summarized and then further

directions are suggested for possible extensions. The main objective of this thesis is to

study focal fields of focusing system using polarized monochromatic beams. We have

presented both theoretical and experimental works.

6.1 Summary

The introduction chapter presents literature reviews for different topics relating to the

works presented in this thesis. The author is aware that there are other topics closely

related to the works presented here. However, the topics presented in the introduction

chapter have motivated the author to accomplish the works. In the context of these

topics, I would like to highlight the contributions of this thesis as follows.

Firstly, the two bases, plane and spherical waves, for representing electromagnetic

fields are discussed in details. We derive electric fields of an incoming beam and an

outgoing beam. On one hand, the outgoing beam caused by a source is usually mentioned

in describing emission fields, including fields of a laser beam. On the other hand, the

incoming beam caused by a sink is usually mentioned in describing absorption fields,

including incoming fields of of time-reversed lasing [124] and focused fields in focusing

systems. The results presented in this thesis may be helpful in time reversal analysis. We

also show that for a converging field, if there is no sink at the focus, the inhomogeneous

parts of the converging field and the resultant diverging field cancel each other completely

such that there is no singularity at the focus. This interference is the reason of the well-
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known diffraction limit in an optical system [5].

Secondly, the two approaches for evaluating the focal field of an aplanatic system

are reviewed and further developed in details. The first approach based on the plane

wave expansions is usually mentioned as Debye-Wolf diffraction integrals. The second

approach is based on the multipole expansions. On one hand, the Debye-Wolf diffraction

integrals ignore the contribution of the second kind of the critical points to the focused

field and hence is not accurate in describing the focused field near to the GRS and even

cause the well-known anomalous behavior on the axial axis. On the other hand, the

second approach suffers from the truncation errors and hence give the small oscillation

around the hard-edge of the focused beam. Since the second approach takes into account

the second kind of the critical points, there is no anomalous behavior of the electric field

on the axial axis. The two approaches give a perfect agreements on the field distribution

around the focus where the contribution of the second kind of critical points is ignorable.

For the second approach, there are two ways of deriving the multipole strengths. The

two ways are presented in this thesis with detailed derivations.

Thirdly, a novel definition of the focused beam is introduced in which the incident

beam approaching a scatterer includes only the converging beam. This definition gives us

a clear interpretation of the scattering mechanism due to two kinds of scatterers, including

solid immersion lens and sphere. The solid immersion lens has an open boundary and

there is only one light-matter interaction at the spherical surface. On contrary, the sphere

has a closed boundary, hence there is an infinite number of light-matter interactions at the

internal surface of the sphere. To highlight this difference, we derive series of scattering

coefficients to account for the infinite number of the interactions. We also consider the

off-axis configurations of the scatters in which we use the addition theorems to translate

the focused field for solving the boundary conditions rigorously. The interpretation helps

to solve rigorously the boundary conditions at spherical interfaces and hence plays an

important role in understanding the SIL modeling.

The fourth contribution is in fact the main objective of this thesis that is about

studying the solid immersion microscopy in details. We present a model solving the
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boundary conditions rigorously, hence we call this model, a rigorous model. This rigorous

model is based on the multipole theory. We also present an approximate model based on

the Debye-Wolf diffraction integrals. For a large hemispherical solid immersion lens, we

prove that the rigorous model and the approximate model are in good agreements. Based

on the approximate model, we discussed and pointed out some errors committed by other

authors. Hence, in the theoretical aspect, this thesis provides a clear understanding about

the SIL modeling. This solid immersion microscope is also studied experimentally. We

propose an experimental setup for integrating the solid immersion microscope with an

annular filter. We show that the image quality using different polarizations and annular

filters are greatly improved in comparison with the case of no filter. We also demonstrate

that we are able to resolve gratings consisting of 120-nm-wide lines, spaced 120 nm

apart, using 1342 wavelength laser. These results may be important in failure analysis of

integrated circuits.

6.2 Further Directions

The results presented in this thesis suggest some possible extensions that the author could

not finish due to time constraint. These include, but are not limited to, the following

directions

6.2.1 Theory

Regarding to the truncation of the multipole theory, the infinite summations are truncated

using both the localization principle and the numerical convergence. The localization

principle states that a multipole term of order l corresponds to a ray passing the origin

at a distance (l+ 1
2
) λ
2π

from the origin [168, 176]. This means to evaluate the field further

from the origin, we need to include more multipole terms in the summations. However

the localization principle is not rigorous [176] and the numerical convergence is merely

a trial-error process. Hence, an analytical explanation should be derived for guiding the

truncation of the summations.

The inversion of the focusing process is a topic of interest [106], i.e., given a specific
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focal field, we derive the necessary incident beam for producing the focal field as close to

the expected field as possible. As we see through this thesis that multipole strengths relate

to numerical aperture, polarization, and phase of focused beams. Given a specific focal

field distribution, we can use the focal plane matching method to evaluate the strengths

[135] and then the formulas derived in this thesis can be used to obtain the necessary

incident field on the GRS. This inversion may play an important role in designing and

implementing a perfect absorber that absorb an incoming field completely.

In this thesis, we study annular filters which are the simplest filters of a general class of

filters comprising binary phase mask and binary amplitude mask [117, 118]. By changing

the filters, we can obtain different sets of the multipole strengths and may produce a

super-oscillation phenomenon at the focus. Most of the researches on focusing system

use the Debye-Wolf diffraction integrals, which ignore the contribution of the second

kind of critical points. These critical points may contribute to the focused field with the

number of mask layers increase. And in this aspect, the multipole theory may be superior

in describing the focused field. Moreover, the super-oscillation phenomenon is usually

conveniently explained and analyzed in terms of summations of harmonic functions like

spherical harmonics functions [2]. Hence, the multipole theory may have an advantage

on analyzing the super-oscillation phenomenon.

Recently, there are numerous researches on the wavelength-scale solid immersion lenses

[170] and subwavelength-size solid immersion lens [169]. Using our rigorous model pre-

sented in this thesis, we can analyze the performances of the small solid immersion lenses.

Moreover, our model for the scattering mechanism may be useful in studying and explain-

ing the imaging theory using microlens [177, 178].

6.2.2 Experiment

As we show in Fig. 5.10, the annular filter is used to block the center part of the incident

beam only. The filter may have interesting effects if it blocks the center parts of both the

incident beam and the reflected beam, we can do this by moving the beam expanders and

the annular filter to the position in between the beam splitter and the mirror. It would be
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more interesting to fabricate and use the SIL as designed in Fig. 6.1. Putting the arrays of

annular solid immersion lens on sample has been implemented [179]. We have mentioned

that the annular filter is a simple version of the binary masks. Though the annular filter

can improve the image quality significantly, the FWHM of the focal field distribution

produced by using the filter is limited to around 150nm for illuminating wavelength of

1.34µm. Hence, to obtain images with even higher quality, we should implement a binary

mask with more concentric annular layers using a spatial light modulator. This mask

can help to focus the beam into a tighter spot [117] and hence may help to improve the

image quality.

One of the most important applications of solid immersion microscope is to identify

faulty locations in semiconductor failure analysis in which the size and the design of

the integrated circuits are getting smaller and denser. This small scale is now down

to several tens of nanometer which is a big challenge for isolating the faulty locations.

Solving this challenge may need innovative ideas for pushing the imaging capacity of solid

immersion technique. Unfortunately, the reflective indexes of conventional materials are

limited to around 3.5 (silicon), it is thus impossible to improve the performance of the

solid immersion microscopy using the conventional materials beyond some extents. Last

decade, we have witnessed numerous designs and implementations of super-lenses using

metamaterials for achieving super-resolution imaging. Using metamaterials which in

principle have unlimited reflective indexes instead of using the conventional materials may

Figure 6.1: Annular solid immersion lens with radius R, reflective index n, and a blocking
area R1.
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be worth being considered for experiment [180]. Using metamaterial faces the problem

of energy loss due to the intrinsic impedance of metals, this problem makes the super-

lenses less attractive. To reduce the energy loss of the super-lenses, one may consider to

combine the metamaterial and a conventional material to employ the advantages of both

materials [181].
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Appendix A

Let’s define sx = kx
k
, sy =

ky
k
, sz =

kz
k
; ux = x

r
, uy =

y
r
, uz =

z
r
. We have:

kxx+ kyy + kzz = kr(sxux + syuy + szuz) = krf(sx, sy) (1)

where f(sx, sy) = sxux + syuy + szuz is a function of sx and sy only since sz is a function

of sx and sy. As we observe from Eq. (3.15), we need to know Ê(kx, ky; 0) to evaluate

the focal field. To derive Ê(kx, ky; 0) in terms of the incident field, we will consider the

field expressed by Eq. (3.15) at the far region. Substituting Eq. (1) into Eq. (3.15), we

obtain the field at the far region as follows

Ē(x∞, y∞, z∞) =

∫∫

s2x+s2y≤1

Ê(ksx, ksy; 0)e
ikr∞f(sx,sy)k2 dsx dsy. (2)

It is seen that Eq. (2) has the form of

F (k) =

∫∫

D

h(x, y)eikg(x,y) dx dy, (3)

where h(x, y) and g(x, y) are assumed to be real valued, well-behaved functions of two

real variables x and y. D is simply a two dimensional region with a smooth boundary

C. To evaluate the integration in Eq. (3), we can apply the stationary phase method

in which we assume that there is only one critical point in the region D at which the

function g(x, y) is stationary. Then, the principle of the stationary phase states that for

a sufficiently large value of k, the term eikg(x,y) oscillates so rapidly across the domain of

integration D that the negative and positive values of the integrand around each point

cancel each other except in the proximity of the critical point. This means the value of

F (k) can be approximated by taking the double integrations in a small region around the
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critical point only.

To continue, we find the stationary point. We assume that a point of stationary phase

at (s0x, s
0
y, s

0
z) exists, hence we have

∂f(sx, sy)

∂sx

∣

∣

∣

∣

s0x,s
0
y

= 0, (4)

∂f(sx, sy)

∂sy

∣

∣

∣

∣

s0x,s
0
y

= 0. (5)

We know

f(sx, sy) = sxux + syuy + szuz

= sxux + syuy +
√

1− s2x − s2y uz. (6)

Substituting Eq. (6) into Eqs. (4) and (5), we obtain

ux + uz(−
s0x
s0z
) = 0, (7)

uy + uz(−
s0y
s0z
) = 0. (8)

Equations (7) and (8) lead to

s0x
ux

=
s0y
uy

=
s0z
uz

= b (9)

⇒ b2 =

(

s0x
ux

)2

=

(

s0y
uy

)2

=

(

s0z
uz

)2

=
(s0x)

2 + (s0y)
2 + (s0z)

2

u2
x + u2

y + u2
z

= 1. (10)

Equation (10) leads to b = ±1. The correct value of b should be obtained by considering

the signs of s0z and uz. In the region of z → −∞, we have uz < 0 and s0z > 0 since the

wave is traveling toward the origin. Hence, we conclude b = −1. Equation (9) becomes

s0x
ux

=
s0y
uy

=
s0z
uz

= −1. (11)

Equation (11) means that, for each position (x, y, z), there exists only one corresponding

stationary phase point. Moreover, the main contribution to the double integrations in Eq.

(2) is due to the neighborhood of the stable point and the angular spectrum Ê(ksx, ksy; 0)

in the neighborhood of the stable point is approximated to be Ê(ksx, ksy; 0) ≈ Ê(ks0x, ks
0
y; 0).
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Hence, we can rewrite Eq. (2) as follows

Ē(x∞, y∞, z∞) = k2Ê(ks0x, ks
0
y; 0)

+∞
∫∫

−∞

eikr∞f(sx,sy) dsx dsy. (12)

Next, we expand the function f(sx, sy) around the point of stationary phase in accor-

dance to Taylor’s expansion theorem. Since the first order derivation of f(sx, sy) at the

stable point is zero and only the neighborhood of the stationary phase point contributes

to the double integrations, we take into account the second order derivations of f(sx, sy)

only. Taylor expansion of f(sx, sy) around (s0x, s
0
y) is

f(sx, sy) ≈ f(s0x, s
0
y) +

1

2
[fxx(s

0
x, s

0
y)](sx − s0x)

2 + [fxy(s
0
x, s

0
y)](sx − s0x)(sy − s0y)

+
1

2
[fyy(s

0
x, s

0
y)](sy − s0y)

2. (13)

From Eqs. (6) and (11), we have:

fxx(s
0
x, s

0
y) =

(

1 +
(s0x)

2

(s0z)
2

)

, (14)

fyy(s
0
x, s

0
y) =

(

1 +
(s0y)

2

(s0z)
2

)

, (15)

fxy(s
0
x, s

0
y) =

s0xs
0
y

(s0z)
2
. (16)

Substituting Eq. (13) into Eq. (12) we obtain

Ē(x∞, y∞, z∞) ≈ k2Ê(ks0x, ks
0
y; 0)e

ikr∞f(s0x,s
0
y)

+∞
∫∫

−∞

e
ikr∞

2
(fxxα2+2fxyαβ+fyyβ2) dα dβ, (17)

where fxx = fxx(s
0
x, s

0
y), fyy = fyy(s

0
x, s

0
y), fxy = fxy(s

0
x, s

0
y), α = sx − s0x, and β = sy − s0y.

We can see that the integration in Eq. (17) is similar to a Gaussian type function. We

can evaluate the integration as follows:

1. First, we consider the integration of a Gaussian type function: G =
∫ +∞
−∞ e−x2

dx,
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we have:

G2 =

∫ +∞

−∞
e−x2

dx

∫ +∞

−∞
e−y2 dy

=

+∞
∫∫

−∞

e−x2−y2 dx dy

=

∫ 2π

0

∫ +∞

0

e−r2r dr dφ = π.

The calculation of G has been done by substituting Cartesian coordinates (x, y) by

cylindrical coordinates (r, φ).

2. Second, we consider the integration F =
+∞
∫∫

−∞
e−(Ax2+Bxy+Cy2) dx dy.

F =

∫ +∞

−∞

[∫ +∞

−∞
e−A(x+ B

2A
y)2 dx

]

e−(C−B2

4A
)y2 dy

=

∫ +∞

−∞

[

1√
A

∫ +∞

−∞
e
−(

√
Ax+ B

2
√

A
y)2

d(
√
Ax+

B

2
√
A
y)

]

e−(C−B2

4A
)y2 dy

=

∫ +∞

−∞

[
√

π

A

]

1
√

C − B2

4A

e−(C−B2

4A
)y2 d(

√

C − B2

4A
y)

=

√

π

A

√

π

C − B2

4A

.

3. Now, the integration in Eq. (17) is easily evaluated using the result of F integration

with A = − ikr∞
2

(

1 + (s0x)
2

(s0z)
2

)

, B = −ikr∞
s0xs

0
y

(s0z)
2 , C = − ikr∞

2

(

1 +
(s0y)

2

(s0z)
2

)

⇒ F = 2πs0z
−ikr∞

. Or we have

+∞
∫∫

−∞

e
ikr∞

2
(fxxα2+2fxyαβ+fyyβ2) dα dβ =

2πs0z
−ikr∞

. (18)

Substituting Eq. (18) into Eq. (17), we obtain

Ē(x∞, y∞, z∞) ≈ k2Ê(ks0x, ks
0
y; 0)e

ikr∞f(s0x,s
0
y)

2πs0z
−ikr∞

,

≈ 2πiks0z
e−ikr∞

r∞
Ê(ks0x, ks

0
y; 0) (19)

where f(s0x, s
0
y) = s0xux + s0yuy + s0zuz = −u2

x − u2
y − u2

z = −1.
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The relationship in Eq. (19) can be interpreted in terms of plane wave representation

or spherical wave representation [31]. To get an insightful understanding about Eq. (19),

we go back to the starting point which is Eq. (3.14). Equation (3.14) expands the

electric field in terms of an infinite number of plane waves. Each individual plane wave

travels with the direction of (kx, ky, kz) and the amplitude of Ê(kx, ky; 0). The amplitude

Ê(kx, ky; 0) can be obtained from Eq. (19). We rewrite Eq. (19) as follows:

Ê(k0
x, k

0
y; 0) = −ir∞eikr∞

2πk0
z

Ē(x∞, y∞, z∞). (20)

We stop for a while to think about (x∞, y∞, z∞). From Eq. (11), we obtain x∞ = −k0x
k
r∞,

y∞ = −k0y
k
r∞, and z∞ = −k0z

k
r∞. Noting that k0

z is a function of k0
x and k0

y , we rewrite

Eq. (20) as follows:

Ê(k0
x, k

0
y; 0) = −ir∞eikr∞

2πk0
z

Ē(k0
x, k

0
y). (21)

The physical meaning behind Eq. (21) is that, at a given point in the far region, only one

individual plane wave is sufficient to describe the field. Hence, without loss of generality,

Eq. (21) can be rewritten as follows:

Ê(kx, ky; 0) = −ir∞eikr∞

2πkz
Ē(kx, ky). (22)
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This appendix derives the translational coefficients for translating electromagnetic field

among different coordinate systems. We employ the recurrence relations derived by Chew

for both scalar and vector addition theorems [163, 164]. Since we use different definitions

for the multipole fields, we need mathematically manipulate Chew’s results to obtain

the recurrence relations for our definitions. We also derive some useful expressions and

discuss some symmetrical relations of the translation coefficients which help to reduce

computational load in this appendix.

Scalar addition theorem

The scalar addition theorem translates a spherical scalar multipole field Ψm
l (r̄) = h

(2)
l (kr)Y m

l (θ, φ)

from O coordinates to O′ coordinates as shown in Fig. (5.1). Let’s denote r̄′′ = ¯OO′, we

have r̄ = r̄′′ + r̄′. Then the theorem can be described as follows:

Ψm
l (r̄) =

∞
∑

l′=0

l′
∑

m′=−l′

Ψm′
l′ (r̄

′)αlm
l′m′ , (23)

where Ψm′
l′ (r̄

′) and αlm
l′m′ depend on the translational vector r̄′′ = r̄ − r̄′:

Ψm′
l′ (r̄

′) =











h
(2)
l′ (kr′)Y m′

l′ (θ′, φ′), r′′ < r′

jl′(kr
′)Y m′

l′ (θ′, φ′), r′′ > r′
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Applying the following differential operators to Eq. (23)

∂

∂x
= sin θ cos φ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
,

∂

∂y
= sin θ sin φ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

C± =
∂

∂x
± i

∂

∂y

= e±iφ

[

sin θ
∂

∂r
+

cos θ

r

∂

∂θ
± i

r sin θ

∂

∂φ

]

,

we can calculate αlm
l′m′ recursively from α00

l′m′ by the following equations [163]:

α00
l′m′ =











(−1)l
′+m′√

4πjl′(kr
′′)Y −m′

l′ (θ′′, φ′′), r′′ < r′

(−1)l
′+m′√

4πh
(2)
l′ (kr′′)Y −m′

l′ (θ′′, φ′′), r′′ > r′

a+lmα
l+1,m
l′m′ = −a−lmα

l−1,m
l′m′ + a+l′−1,m′α

lm
l′−1,m′ + a−l′+1,m′α

lm
l′+1,m′, (24)

b+lmα
l+1,m+1
l′m′ = −b−lmα

l−1,m+1
l′m′ + b+l′−1,m′−1α

lm
l′−1m′−1 + b−l′+1,m′−1α

lm
l′+1,m′−1, (25)

where a+lm = −
√

(l+m+1)(l−m+1)
(2l+1)(2l+3)

, a−lm =
√

(l+m)(l−m)
(2l+1)(2l−1)

, b−lm =
√

(l−m)(l−m−1)
(2l+1)(2l−1)

, and b+lm =
√

(l+m+2)(l+m+1)
(2l+1)(2l+3)

.

In the case of m = l, Eq. (25) reduces to

b+llα
l+1,l+1
l′m′ = b+l′−1,m′−1α

ll
l′−1,m′−1 + b−l′+1,m′−1α

ll
l′+1,m′−1 (26)

The above equations are valid for an arbitrary translational vector r̄′′. Now, we apply

the above formulas for our case shown in Fig. 5.1 in which the coordinate system is

translated along −z direction a distance of d. We have r′′ = d, θ′′ = π, φ′′ = 0. Noting
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that
√
4πY −m′

l′ (π, 0) = (−1)l
′√

2l′ + 1δ0m′ , it follows that

α00
l′m′ =











√
2l′ + 1jl′(kd)δ

0
m′, d < r′

√
2l′ + 1h

(2)
l′ (kd)δ0m′ , d > r′.

Subsequently, using Eq. (26) and reduction, it can be proven that

αll
l′m′ =

√

(2l + 1)!!

(2l)!!

√

(l′ + l)!

(l′ − l)!

α00
l′0

(kd)l
δlm′ . (27)

The order m is usually fixed for polarized beams. Then Eq. (24) is recursively used to

calculate the translation matrix with initial values of αmm
l′m′ and αm+1,m

l′m′ . Equations (27)

and (24) give us:

αmm
l′m′ =

√

(2m+ 1)!!

(2m)!!

√

(l′ +m)!

(l′ −m)!

α00
l′0

(kd)m
δmm′ ,

αm+1,m
l′m′ =

√

(2m+ 3)!!

(2m)!!

√

(l′ +m)!

(l′ −m)!

α00
l′0

(kd)m

(

j′l′(kd)

jl′(kd)
− m

kd

)

δmm′ . (28)

By reduction, it is proven from Eqs. (24) and (28) that

αlm
l′m′ = αlm

l′mδ
m
m′ . (29)

Another useful property of the translational coefficients is:

αl,−m
l′,−m′ = αlm

l′m′ . (30)

Vector addition theorem

The vector addition theorem translates vector multipole fields between different coor-

dinates. As mentioned above, there is a difference between our definition for vector

multipole fields and the definition used in [164]. Hence, we need some mathematical

manipulations for deriving the translational coefficients for the definition that we used.

Reference [164] defines

Mm
l (r̄) = ∇× [r̄Ψm

l (r̄)], Nm
l (r̄) =

1

k
∇×∇× [r̄Ψm

l (r̄)].

155



Appendix B

Then the following relationships hold:

Mm
l (r̄) = − i

k
Mlm(r̄), Nm

l (r̄) =
1

k
Nlm(r̄) (31)

Reference [164] expresses the vector addition theorem as follows:

Mm
l (r̄) =

∞
∑

l′=1

l′
∑

m′=−l′

[Alm
l′m′Mm′

l′ (r̄
′) +Blm

l′m′Nm′
l′ (r̄

′)]. (32)

By noticing that Nm
l (r̄) =

1
k
∇× Mm

l (r̄), M
m
l (r̄) =

1
k
∇ ×Nm

l (r̄) and that the operator

∇ is invariant under coordinate translation, Eq. (32) leads to

Nm
l (r̄) =

∞
∑

l′=1

l′
∑

m′=−l′

[Alm
l′m′Nm′

l′ (r̄
′) +Blm

l′m′Mm′
l′ (r̄

′)], (33)

where the translation coefficients Alm
l′m′ and Blm

l′m′ are related to αlm
l′m′ as follows:

Alm
l′m′ = αlm

l′m′ + kr′′ sin θ′′
e−iφ′′

2(l′ + 1)

√

(l′ −m′ + 2)(l′ −m′ + 1)

(2l′ + 1)(2l′ + 3)
αlm
l′+1,m′−1

−kr′′ sin θ′′
e−iφ′′

2l′

√

(l′ +m′ − 1)(l′ +m′)

(2l′ − 1)(2l′ + 1)
αlm
l′−1,m′−1

−kr′′ sin θ′′
eiφ

′′

2(l′ + 1)

√

(l′ +m′ + 2)(l′ +m′ + 1)

(2l′ + 1)(2l′ + 3)
αlm
l′+1,m′+1

+kr′′ sin θ′′
eiφ

′′

2l′

√

(l′ −m′)(l′ −m′ − 1)

(2l′ − 1)(2l′ + 1)
αlm
l′−1,m′+1

+kr′′ cos θ′′
1

l′ + 1

√

(l′ +m′ + 1)(l′ −m′ + 1)

(2l′ + 1)(2l′ + 3)
αlm
l′+1,m′

+kr′′ cos θ′′
1

l′

√

(l′ +m′)(l′ −m′)

(2l′ − 1)(2l′ + 1)
αlm
l′−1,m′ ,

Blm
l′m′ = kr′′ cos θ′′

im′

l′(l′ + 1)
αlm
l′m′ +

ir′′ sin θ′′

2l′(l′ + 1)
[
√

(l′ −m′)(l′ +m′ + 1)eiφ
′′
αlm
l′,m′+1

+
√

(l′ +m′)(l′ −m′ + 1)e−iφ′′
αlm
l′,m′−1]. (34)
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Substituting Eq. (31) into Eqs. (32) and (33), the vector addition theorem for our

definition can be described as follows:

Mlm(r̄) =
∞
∑

l′=1

l′
∑

m′=−l′

[Alm
l′m′Ml′m′(r̄′) + iBlm

l′m′Nl′m′(r̄′)], (35)

Nlm(r̄) =

∞
∑

l′=1

l′
∑

m′=−l′

[Alm
l′m′Nl′m′(r̄′)− iBlm

l′m′Ml′m′(r̄′)]. (36)

Now the electric field is easily expressed in the O′-system. Substituting Eqs. (35) and

(36) into Eq. (3.42), we obtain

E(r̄′) =

∞
∑

l′=1

l′
∑

m′=−l′

[pm
′

El′N
m′
l′ (r̄

′) + pm
′

Ml′M
m′
l′ (r̄

′)], (37)

where

pm
′

El′ =

∞
∑

l=1

l
∑

m=−l

[Alm
l′m′pmEl + iBlm

l′m′pmMl],

pm
′

Ml′ =

∞
∑

l=1

l
∑

m=−l

[Alm
l′m′pmMl − iBlm

l′m′pmEl]. (38)

The above equations are valid for an arbitrary translational vector r̄′′. For the trans-

lation in Fig. 5.1, the translational coefficients Alm
l′m′ and Blm

l′m′ in Eq. (34) are reduced

to

Alm
l′m′ = αlm

l′m′ − kd

(

1

l′ + 1

√

(l′ +m′ + 1)(l′ −m′ + 1)

(2l′ + 1)(2l′ + 3)
αlm
l′+1,m′ +

1

l′

√

(l′ +m′)(l′ −m′)

(2l′ − 1)(2l′ + 1)
αlm
l′−1,m′

)

Blm
l′m′ = −kd

im′

l′(l′ + 1)
αlm
l′m′ . (39)

Referring to the properties of βlm
l′m′ , some important properties of the coefficients Alm

l′m′

and Blm
l′m′ are observed:

Alm
l′m′ = Alm

l′mδ
m
m′ , Blm

l′m′ = Blm
l′mδ

m
m′ , Al,−m

l′,−m = Alm
l′m, Bl,−m

l′,−m = −Blm
l′m. (40)

With Eq. (37), we have successful translated the electric field into the coordinate system

of which the origin is the center of the SIL.
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Our purposes are to manipulate the polarization of the incident beams and block the

center part of the incident beams for obtaining tighter focal spots. Figure 5.10 shows the

setup for producing a cylindrical beam. We can obtain a linear polarization by removing

the S-wave plate (SWP). Our laser produces a linearly-polarized beam, however to make

sure the direction of the linear polarization is the horizontal direction, it is necessary to

introduce the half-wave plate (HWP) and the linear polarizer (LP) as shown in Fig. 5.10.

We use the LP to allow the horizontal component of the electric field passing through and

block the vertical component. The HWP is used to rotate the direction of the polarization

to obtain the maximum power passing through the LP, i.e. the axis of the polarization of

the beam approaching the LP is horizontal. We can read and record the maximum power

passing through the LP from the beam profiler (BP). To obtain a circularly-polarized

beam, we replace the SWP in Fig. 5.10 with a quarter-wave plate (QWP). We setup

the QWP so that the horizontal direction makes a 45o with the fast and slow axes of

the QWP. We can also check the accuracy of the circular polarization using the BP

by placing a LP in front of the BP so that we allows only the vertical component or

horizontal components to be recorded by the BP at one time. If the two values recorded

by the BP are the same, we get a perfect circular polarization. Figure 5.10 is the setup

for producing the cylindrical beam in which the SWP converts a linearly-polarized beam

to a radial or azimuthal beam. There is an alignment mark fabricated on the SWP. This

mark should be aligned parallel to incident linear polarization orientation (horizontal

orientation in our setup) to get radial and perpendicular to get azimuth polarization.

We can use the BP for checking the quality of the cylindrical beam by recording the

beam in different directions. An azimuthally-polarized beam with a vortex is produced
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by inserting a vortex phase plate into the space just before the annular filter (AF). The

below table provides details of the main optical components used in our experiment.

Part Number Description Manufacturer Supplier

MIL-III-

1342nm-500mW

Infrared Laser at

1342nm

Changchun New In-

dustries Optoelectron-

ics Technology Co.,

Ltd.

SEMICAPS Pte Ltd.

F260FC-C FC/PC Fiber Colli-

mation Package

Thorlabs LASER 21 Pte Ltd

RPC-1340-06 S-waveplate (Passive

Radial Polarization

Converter)

Altechna Co. Ltd. LASER 21 Pte Ltd.

RPC-VPP-

m1340

Vortex Phase Plate RPC Photonics, Inc. LASER 21 Pte Ltd

BE02-05-C Galilean Beam Ex-

pander

Thorlabs LASER 21 Pte Ltd

WPQ05M-1310 Mounted Zero-Order,

Quarter-Wave Plate

Thorlabs LASER 21 Pte Ltd

WPH05M-1064 Mounted Zero-Order,

Half-Wave Plate

Thorlabs LASER 21 Pte Ltd

632 Metrochip Microscope

Calibration Target

Ted Pella Inc Pelco International

50160911 Pupil Filter Esteemoptics Esteemoptics
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