FORMULACION LINEAL ENTERA MIXTA PARA EL PROBLEMA DE PLANEACIÓN DINÁMICA DE SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA CONSIDERANDO GENERACIÓN DISTRIBUIDA

YOV STEVEN RESTREPO GRISALES

18515813

UNIVERSIDAD TECNOLÓGICA DE PEREIRA

FACULTAD DE INGENIERÍAS

PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA

PEREIRA

2015

FORMULACION LINEAL ENTERA MIXTA PARA EL PROBLEMA DE PLANEACIÓN DINÁMICA DE SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA CONSIDERANDO GENERACIÓN DISTRIBUIDA

YOV STEVEN RESTREPO GRISALES

18515813

Tesis presentada al programa de Maestría en Ingeniería Eléctrica de la UNIVERSIDAD TECNOLÓGIA DE PEREIRA, para optar al título de:

MAGISTER EN INGENIERÍA ELÉCTRICA

DIRECTOR

RAMÓN ALFONSO GALLEGO RENDÓN

UNIVERSIDAD TECNOLÓGICA DE PEREIRA

FACULTAD DE INGENIERÍAS

PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA

PEREIRA

2015

A Dios por guiarme y mostrarme el camino para alcanzar la felicidad. A mi Esposa Juliana, por ser una movilizadora permanente y hacer mis sueños como suyos. A mi Madre por su infinito amor.

AGRADECIMIENTOS

Al doctor Ramón Gallego por su constante apoyo, confianza y acertadas sugerencias. Al doctor John Fredy Franco por su amistad, por compartir sus conocimientos y brindar claridad en las diferentes temáticas de la Maestría. A Alejandra Tabares por el apoyo en la comprensión del problema de planeamiento de sistemas de distribución. A los compañeros del Grupo de Planeamiento en Sistemas Eléctricos por su colaboración.

CONTENIDO

1		INTRODUCCIÓN16		
2		REVI	SIÓN BIBLIOGRÁFICA	19
	2.1	I PL	ANEAMIENTO DE SUBESTACIONES	19
	2.2	2 PL	ANEAMIENTO DE LÍNEAS	20
	2.3	3 мс	DELOS LINEALES Y NO LINEALES	21
	2.4	4 мс	DELO PARA EL DISEÑO ÓPTIMO MULTI ETAPA	22
3		MOD	ELAMIENTO LINEAL ENTERO MIXTO PARA EL PROBLEMA DE FLUJO DE CARGA	
D	ΕU	N SIS	STEMA DE DISTRIBUCIÓN RADIAL	24
	3.1	I INT		24
	3.2	2 Hi	PÓTESIS PARA EL PLANTEAMIENTO DEL PROBLEMA DEL FLUJO DE CARGA	25
	3.3	B Fc	RMULACIÓN NO LINEAL PARA EL PROBLEMA DE FC	27
	3.4	1 Lir	IEALIZACIÓN	28
		3.4.1	Linealización del producto Vj, d, usqrIij, d, usqr	28
		3.4.2	Linealización de Pij, $d, u2 + Qij, d, u2$	28
	3.5	5 Fc	RMULACIÓN LINEAL ENTERA MIXTA PARA EL PROBLEMA DE FLUJO DE CARGA	31
4		RES	JLTADOS FLUJO DE CARGA	33
	4.1	I Si	STEMA DE 34 NODOS	33
	4.2	2 Si	STEMA DE 70 NODOS	38
	4.3	B Si	STEMA DE 202 NODOS	42
	4.4	4 Si	STEMA DE 400 NODOS	47
5		FOR	MULACIÓN PARA LA PLANEACIÓN DINÁMICA DE SISTEMAS DE DISTRIBUCIÓN D	Е
Ε	NEF	RGÍA	ELÉCTRICA	51
	5.1	I Fo	RMULACIÓN NO LINEAL ENTERA MIXTA PARA EL PROBLEMA DE PDSDEE.	51
		5.1.1	Restricciones	53
		5.1.2	Componentes de la función objetivo	53
	5.2	2 Mo	DDELO LINEAL ENTERO MIXTO PARA EL PROBLEMA DE PDSDEE	58
		5.2.1	Linealización del producto Vj, d, usqrIij, d, usqr	58
		5.2.2	Linealización de $Pij, d, u2 + Qij, d, u2$	58
		5.2.3	Linealización de $Pi, d, uS2 + Qi, d, uS2$	59

	5.2.4	Linealización de $h = 1uc \epsilon \Omega CSgi, c'\sigma i, c, h + h = 1uc \epsilon \Omega CRgi, c'ri, c, h 2$	60
!	5.3 Mode	LO LINEAL ENTERO MIXTO	60
6	RESUL	TADOS PROBLEMA DE PLANEACIÓN DE LA EXPANSIÓN	62
(6.1 TEST	PARA LA PLANEACIÓN ESTÁTICA	62
	6.1.1	Sistema de 23 nodos	62
	6.1.2	Sistema de 54 nodos	67
(6.2 TEST	PARA EL PLANEAMIENTO DINÁMICO	72
	6.2.1	Sistema de 18 nodos	72
	6.2.2	Sistema de 24 nodos	77
7	CONCL	USIONES Y RECOMENDACIONES	82
8	REFERI	ENCIAS	84
AP	ÉNDICE		89
]	DATOS SIS	STEMA 33 NODOS	
	Datos de	los circuitos	
	Datos de	las cargas	90
]	DATOS SIST	EMA 70 NODOS	91
	Datos de	los circuitos	91
	Datos de	las cargas	93
]	DATOS SIS	STEMA 200 NODOS	95
	Datos de	los circuitos	95
	Datos de	las cargas	101
]	DATOS SIS	STEMA 400 NODOS	106
	Datos de	los circuitos	106
	Datos de	los circuitos	115
]	DATOS SIS	STEMA 23 NODOS	126
	Datos de	las cargas	126
	Datos de	los circuitos	126
	Datos Co	nductores	127
]	DATOS SIS	STEMA 54 NODOS	127
	Datos de	las cargas	127
	Datos de	los circuitos	128
	Datos Co	nductores	128
]	DATOS SIS	STEMA 18 NODOS	129
	Datos de	las cargas por etapa y nivel de demanda	129
	Datos de	los circuitos	130
	Datos Su	bestaciones y Conductores	130
	Datos de	las cargas por etapa	131

Datos de los circuitos	131
Datos Subestaciones, Conductores y generadores distribuidos	132

LISTA DE FIGURAS

Figura 1 Diagrama modelo de flujo por las ramas
Figura 2 Linealización por partes
Figura 3Diagrama unifilar sistema test de 34 nodos
Figura 4 Comportamiento de la tensión por cada nivel de demanda para el sistema test de 34
nodos
Figura 5 Comportamiento de la magnitud de la corriente por cada nivel de demanda para el
sistema test de 34 nodos
Figura 6 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los
modelos propuestos
Figura 7Diagrama unifilar sistema test de 70 nodos
Figura 8 Comportamiento de la tensión para cada nivel de demanda para el sistema test de 70
nodos
Figura 9 Comportamiento de la magnitud de corriente para cada nivel de demanda para el
sistema test de 70 nodos
Figura 10 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los
modelos propuestos
Figura 11 Diagrama unifilar sistema test de 202 nodos
Figura 12 Comportamiento de la tensión para cada nivel de demanda para el sistema test de
202 nodos
Figura 13 Comportamiento de la magnitud de corriente para cada nivel de demanda para el
sistema test de 202 nodos
Figura 14 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los
modelos propuestos
Figura 15 Comportamiento de la tensión para cada nivel de demanda para el sistema test de
202 nodos
Figura 16 Comportamiento de la magnitud de corriente para cada nivel de demanda para el
sistema test de 202 nodos
Figura 17 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los
modelos propuestos
Figura 18 Procedimiento para obtener la estimación de la magnitud de la tensión58

Figura 19 Rutas candidatas para el sistema de 23 nodos	63
Figura 20 Solución test 1	64
Figura 21 Solución test 2	66
Figura 22 Solución Test 3	67
Figura 23 Sistema inicial para o test de 54 nodos	68
Figura 24 Plan de expansión para el sistema de 54 nodos para el test 1	69
Figura 25 Plan de expansión para el sistema de 54 nodos para el test 2	71
Figura 26 Plan de expansión para el sistema de 54 nodos del test 3	72
Figura 28 Topología inicial sistema 18 nodos	73
Figura 29 Topología etapa 1 para el sistema de18 nodos	76
Figura 30 Topología etapa 2 para el sistema 18 nodos	76
Figura 31 Topología etapa 3 para el sistema de 18 nodos	77
Figura 32 Estado inicial para el sistema de distribución de 24 nodos	78
Figura 33 Topología por etapa para el test dinámico sin GD	79
Figura 34 Topología por etapa para el test dinámico con GD	80

LISTA DE TABLAS

Tabla I Principales resultados para el sistema de 34 nodos	
Tabla II Perdidas en kW para cada modelo y por cada nivel de demanda para el s	istema test
de 34 nodos	
Tabla III Principales resultados para el sistema de 70 nodos	
Tabla IV Perdidas en kW para cada modelo y por cada nivel de demanda para el s	istema test
de 34 nodos	
Tabla V Principales resultados para el sistema de 202 nodos	
Tabla VI Perdidas en kW para cada modelo y por cada nivel de demanda para el s	istema test
de 202 nodos	
Tabla VII Principales resultados para el sistema de 202 nodos	47
Tabla VIII Perdidas en kW para cada modelo y por cada nivel de demanda para el s	istema test
de 202 nodos	
Tabla IX Resumen de resultados para el test 1 (US\$)	64
Tabla X Resumen resultados para el Test 2 (US\$)	65
Tabla XI Tipos de generadores distribuidos	66
Tabla XII Resumen de resultados para el Test 3 (US\$)	67
Tabla XIII Resumen de resultados para el sistema de 54 barras (US\$)	70
Tabla XIV Resumen de resultados para el sistema de 54 nodos (US\$) sin costos de	operación
	70
Tabla XV Tipos de generadores distribuidos	71
Tabla XVI Resumen resultados para el sistema de 54 barras (US\$) con g	eneradores
distribuidos	72
Tabla XVII Costos totales (10^3US) y por etapa para el sistema de 18 nodos	74
Tabla XVIII Datos relevantes para los niveles de demanda por etapa	75
Tabla XIX Resumen de resultados	82
Tabla XX Error de aproximación de las pérdidas de potencia activa	82

ABREVIATURAS Y SIGLAS

AMPL	A Modeling Language for Mathematical Programming
CPLEX	Solver comercial
FC	Flujo de carga
FCRP	Flujo de carga en régimen permanente
GD	Generación distribuida.
IS	Inversión en subestaciones
IC	Inversión en circuitos
IGD	Inversión en generadores distribuidos
IEEE	Institute of Electrical and Electronics Engineers
ККТ	Karush-Kuhn-Tucker
MPL	Modelo de programación lineal
MPLEM	Modelo de programación lineal entero mixto
MPNL	Modelo de programación no lineal
NC	Nivel de carga
PC	Costo de Perdidas de potencia activa en circuitos
PDSDEE	Planeación dinámica de sistemas de distribución de energía eléctrica
PL	Programación lineal
PLEM	Programación lineal entera mixta
PNL	Programación no lineal
PNL	Programación no lineal entera mixta
PPA	Perdidas de potencia activa
PPR	perdidas de potencia reactiva
OS	Costo de operación de las subestaciones
SB	Solución base
SDEE	Sistemas de distribución de energía eléctrica
SGD	Solución con generadores distribuidos
ТМ	Tensión mínima

LISTA DE SÍMBOLOS

Conjuntos:

Ω_a	Conjunto de tipos de conductores
Ω_b	Conjunto de nodos
Ω_{bp}	Conjunto de nodos de transferencia
Ω_d	Conjunto de niveles de carga
Ω_s	Conjunto de subestaciones
Ω_l	Conjunto de circuitos
Ω_u	Conjunto de etapas
Ω_c	Conjunto de alternativas para construcción o reforzamiento de subestaciones.
Ω_g	Conjunto de alternativas para construcción de generadores distribuidos.
-	

Parámetros:

$\bar{\Delta}_i^S$	Límite para cada bloque $\Delta_{ij,d,y,u}^{P^S} \in \Delta_{ij,d,y,u}^{q^S}$
$\bar{\Delta}^G$	Límite para cada bloque $\Delta^{Pg}_{ij,d,y}$ e $\Delta^{Qg}_{ij,d,y}$
Y	Número de bloques para o segmento de discretización
ϕ_l	Factor de perdida para los circuitos
ϕ_s	Factor de perdida para las subestaciones
t _j	Tasa de interés
Κ	Número de años del periodo de planeación
\overline{b}	Límite para la variable $b_{ij,d}$
c ^{cb}	Costo de instalación de las subestaciones
c_g^{gd}	Costo de instalación de los generadores distribuidos

c_i^s	Costo fijo de la subestación en el nodo i
$c^f_{ij,a}$	Costo de construcción de circuito ij usando conductor tipo a
c_d^{ls}	Costo de energía para el nivel de carga d
c_i^r	Costo de repotenciar la subestación en el nodo <i>i</i>
c_i^v	Costo de operación de la subestación en el nodo <i>i</i>
Fc_g^{gd}	Factor de potencia para el generador distribuido tipo g
$\overline{I_a}$	Máxima magnitud de corriente para el tipo de conductor tipo a
$\overline{I_{\iota J}}$	Máxima magnitud de corriente en los circuitos
l_{ij}	Longitud del circuito ij
m_y^G	Inclinación del bloque yth debido a la linealización en partes para el flujo de potencia
$P_{i,u}^D$	Demanda de potencia activa en el nodo <i>i</i> en el etapa <i>u</i>
$Q_{i,u}^D$	Demanda de potencia activa en el nodo <i>i</i> en la etapa <i>u</i>
R_a	Resistencia por unidad de longitud del alimentador tipo a
$Rg'_{i,c}$	Capacidad de potencia aparente para la repotenciación de una subestación considerando la alternativa <i>c</i> en el nodo <i>i</i>
R _{ij}	Resistencia del circuito ij
Sg' _{i,c}	Capacidad de potencia aparente para la instalación de la subestación considerando la alternativa <i>c</i> en el nodo <i>i</i>
S_g^{gd}	Capacidad de potencia aparente para la instalación del generador distribuido considerando la alternativa g
<u>V</u>	Magnitud mínima de tensión
\overline{V}	Magnitud mínima de tensión
X _a	Reactancia por unidad de longitud del conductor tipo a
Z_a	Impedancia por unidad de longitud del conductor tipo a

Variables:

$\Delta^{Pg}_{ij,d,y,u}$	Variable de discretización del bloque <i>y</i> th para $ \hat{P}_{ij,d,u} $
$\Delta^{Qg}_{ij,d,y,u}$	Variable de discretización del bloque yth para $\left \hat{Q}_{ij,d,u} \right $
E _{i,u}	Variable binaria asociada con el uso de un nodo de transferencia i, en la etapa u
$\delta_{ij,a,u}$	Variable binaria para construcción/reconductoramiento del circuito ij usando o tipo de conductor a , para el nivel de carga d , en la etapa u
$\sigma_{i,c,u}$	Variable binaria para la construcción de una subestación en el nodo i , usando la alternativa c , en la etapa u
r _{i,c,u}	Variable binaria para la repotenciación de una subestación en el nodo <i>i</i> , usando la alternativa <i>c</i> , en la etapa <i>u</i>
$\beta_{ij,a,u}$	Variable binaria para la construcción o reconductoramiento del circuito ij , usando el conductor tipo a , en la etapa u .
I ^{sqr} ij,a,d,u	Cuadrado de la magnitud del flujo de corriente en el circuito ij asociada al tipo de conductor a , para el nivel de demanda d , en la etapa u
$\hat{I}^{sqr}_{ij,d,u}$	Cuadrado da magnitud del flujo de corriente en el circuito <i>ij</i> , para el nivel de demanda <i>d</i> , en la etapa <i>u</i>
$P_{i,g,d,u}^{gd}$	Potencia activa generada por el generador distribuido g localizado en el nodo i , para el nivel de demanda d , en la etapa u
$P_{i,d,u}^S$	Potencia activa generada por subestación en el nodo i , para el nivel de demanda d , en la etapa u
P _{ij,a,d,u}	Potencia activa en el circuito ij asociada como el tipo de conductor a para el nivel de
	demanda <i>d,</i> en la etapa <i>u</i>
$\widehat{P}_{ij,d,u}$	Potencia activa en el circuito ij, para el nivel de demanda d, en la etapa u
$Q_{i,g,d,u}^{gd}$	Potencia reactiva generada por el generador distribuido g localizado en el nodo i , para el nivel de demanda d , en la etapa u
$Q_{i,d,u}^S$	Potencia reactiva generada por subestación en el nodo <i>i</i> , para el nivel de demanda d , en la etapa u
$Q_{ij,a,d,u}$	Potencia reactiva en el circuito ij asociada como el tipo de conductor a, para el nivel de
	demanda <i>d</i> , en la etapa <i>u</i>
$\widehat{Q}_{ij,d,u}$	Potencia reactiva no circuito <i>ij</i> , para el nivel de demanda <i>d</i> , en la etapa <i>u</i> ;
$Sg_{i,d,u}^{sqr}$	Cuadrado de la magnitud de potencia aparente provista por la subestación i, para el nivel
-,,00	de demanda <i>d</i> , en la etapa <i>u</i>

$V_{i,d,u}^{sqr}$ +	Cuadrado de la magnitud da tensión en el nodo <i>i</i> , para el nivel de demanda <i>d</i> , en la etapa
	U
$q_{i,a,u}^{gd}$	Variable binaria para la localización de un generador distribuido en el nodo i, usando la
- 1,y,u	alternativa g, en la etapa u
$y_{ij,u}^+$	Variable binaria que controla la dirección del flujo en el sentido positivo del circuito ij, en
	la etapa u
$y_{ij,u}^{-}$	Variable binaria que controla la dirección del flujo en el sentido negativo del circuito ij, en
	la etapa u
Υi,u	Variable binaria que define el uso de un nodo de transferencia en la barra <i>i</i> en la etapa <i>u</i>
W _{i.u.c}	Variable binaria para la operación de una subestación en el nodo <i>i</i> , usando la alternativa
-))-	<i>c</i> , en la etapa <i>u</i>
Z _{ij,a,u}	Variable binaria para operación del circuito <i>ij</i> usando el tipo de conductor <i>a</i> , para el nivel
-	de carga <i>d</i> , en la etapa <i>u</i>

1 INTRODUCCIÓN

La misión de los sistemas de distribución de energía eléctrica (SDEE) es suplir los requerimientos de consumo de energía de los usuarios finales con los niveles de tensión adecuados, ya que éstos son el enlace entre los sistemas de transmisión que se encargan de trasladar la energía eléctrica desde los grandes centros de generación hasta los usuarios finales.

El aumento en las necesidades de los usuarios finales, motivados en gran medida por el desarrollo de la industria y del comercio, sumado al crecimiento natural de la población, causan el aumento continuo de la demanda de energía eléctrica, lo cual obliga a las empresas de distribución de energía a adaptar sus sistemas, para que se pueda cumplir con los distintos requerimientos bajo los mejores estándares de calidad y confiabilidad del servicio que generalmente son objeto de regulación gubernamental.

Dentro de la etapa de decisión para adaptar los sistemas de distribución al constante crecimiento de la demanda de energía eléctrica, se aborda el problema del planeamiento de la expansión de los sistemas de distribución de energía eléctrica (PESDEE), cuyo objetivo es disminuir el riesgo de interrupción del servicio sin dejar de lado la factibilidad económica de las empresas y procurando garantizar un mínimo costo para los usuarios. Un mal planeamiento de los sistemas de distribución, hecho en la mayoría de las ocasiones de forma heurística, acarrea graves problemas económicos por los sobrecostos representados en inversiones innecesarias además de los inconvenientes técnicos que generan los deficientes niveles de tensión y posibles aumentos en las pérdidas de potencia de la red de distribución, que se ven reflejados en el aumento de los costos de operación del sistema.

El problema de la expansión de los sistemas de distribución puede ser planteado partiendo de la concepción de que un sistema de distribución de energía eléctrica suple a un número determinado de usuarios, la carga de este sistema no es estática y aumentará con el tiempo lo cual impone necesidades de expansión de la red, por ejemplo, construcción de nuevos alimentadores o repotenciación de los ya existentes, construcción de nuevas subestaciones o repotenciación de las ya existentes o modificación de la topología existente de la red (reconfiguración) o ubicación de generación distribuida. El problema se establece entonces

como la minimización de los costos de la inversión en la red y los costos asociados a las pérdidas del sistema a lo largo de un horizonte de planeamiento, satisfaciendo un conjunto de restricciones técnicas y operativas.

Se establece entonces el horizonte de planeamiento como el tiempo considerado para ejecutar el plan de expansión del sistema, dentro de este tiempo se considera el crecimiento de la demanda existente y la aparición de nuevos centros de consumo. De acuerdo con el horizonte de planeamiento, el problema PESDEE puede ser clasificado como de corto plazo (entre 1 a 4 años) o de largo plazo (entre 5 a 20 años) (Willis, 2004). De acuerdo con el modelo, el PESDEE se clasifica como un problema estático o mono etapa, en el cual la planeación de la expansión de la red se realiza proyectando la demanda hasta el final del horizonte de planeación y las inversiones se realizan al inicio del período, o como un problema dinámico (multi etapa) en el que el horizonte de planeamiento es dividido en varias etapas, en donde para cada una de ellas se efectúan las inversiones sobre la red que satisfagan la demanda del sistema al inicio de cada etapa. Esta última metodología resulta ser más eficiente que la mono etapa.

La planificación de la expansión en los sistemas de distribución es un problema de programación matemática que puede ser representado por modelos lineales o no lineales en donde participan variables enteras y continuas. Debido al gran número de posibilidades que resultan en el proceso de búsqueda de una solución, el problema se convierte en uno de gran complejidad matemática. Para encontrar la solución al problema planteado se proponen diversas técnicas de optimización que la literatura generalmente clasifica: en exactas y aproximadas. Dentro de las técnicas se encuentran branch-and-bound, branch and cut, branch and Price, programación entera binarias (balas) y programación dinámica. Cuando se pretende abordar el problema con técnicas heurísticas y metaheurísticas, existe una gran cantidad de técnicas, siendo las más utilizadas, las heurísticas basadas en factores de sensibilidad y de las metaheurísticas los algoritmos genéticos, búsqueda tabú, recocido simulado, grasp, colonia de hormigas, entre otros (Gallego Rendon, et al., 2008).

En este trabajo se desarrolla una metodología para la solución del problema planeamiento dinámico de la expansión de los sistemas de distribución de energía eléctrica considerando solo las redes primarias (PDESDEE), la comparación de la metodología se efectúa teniendo en cuenta dos formulaciones, en la primera se plantea un modelo no lineal entero mixto, con el fin de representar el sistema con las características de la vida real. La segunda es una

relajación lineal de la formulación no lineal anterior, lo cual permite el uso de técnicas de optimización lineal clásica garantizando la obtención de soluciones óptimas para este modelo.

El desarrollo de la metodología de solución se presentará a lo largo del texto de la siguiente forma:

Capítulo dos: se realiza una revisión de la literatura de los principales trabajos publicados haciendo énfasis en la formulación del problema de la expansión de los sistemas de distribución, así como las técnicas empleadas para la solución del mismo.

Capítulo tres: se desarrolla el modelo de matemático para establecer el estado o punto de operación de un sistema de distribución radial.

Capítulo cuatro: se presentan los resultados obtenidos con el modelo matemático para establecer el estado de operación en SDEE de 34, 70, 202 y 400 nodos.

Capítulo cinco: se describen dos formulaciones para el problema de planeación dinámica de sistemas de distribución de energía eléctrica (PDESDEE). La primera es una formulación no lineal entera mixta que representa de forma más fiel las características del problema. La segunda es una relajación lineal de la formulación no lineal, esta última formulación permite el uso de técnicas de optimización clásica que garantizan la obtención de soluciones óptimas.

Capítulo seis: se presentan los resultados obtenidos de la aplicación de la Metodología al PDESDEE.

Capítulo siete: corresponde a las conclusiones conseguidas en el desarrollo del trabajo y las recomendaciones para investigaciones futuras en el tema.

Por último, en el apéndice puede encontrarse datos relevantes de los sistemas de distribución utilizados en el capítulo 6 (capítulo que recoge en detalle los resultados computacionales).

2 REVISIÓN BIBLIOGRÁFICA

El planeamiento de la distribución es considerado un problema de alta complejidad matemática, siendo del tipo NP completo. Este problema puede ser resuelto a través de metodologías estáticas o multi etapas, considerando en su modelamiento las alternativas topológicas para el sistema, el refuerzo de las líneas existentes, el aumento de la capacidad de las subestaciones existentes y el estudio de la localización y capacidad de nuevas líneas y subestaciones, entre otros.

Existen diferentes formas de tratar el problema, desde el punto de vista de los costos que se consideran, el modelo matemático y el tipo de análisis, estático o dinámico, para el horizonte de planeamiento planteado. Cuando el planeamiento trata sistemas de la vida real, de gran tamaño y complejidad matemática, se requiere la aplicación de métodos matemáticos potentes para su solución. La planeación de la expansión de los sistemas de distribución ha sido resuelta mediante algoritmos heurísticos, técnicas de optimización exacta, programación lineal y entera y en los últimos años también han sido utilizadas metaheurísticas. El desempeño de estas técnicas de solución depende de la naturaleza del modelo y el tamaño del sistema a resolver. En este capítulo se presenta una breve revisión de la literatura separada de acuerdo al enfoque del problema PESDEE y una revisión detallada de algunos trabajos que se emplearon en el desarrollo de la tesis.

2.1 PLANEAMIENTO DE SUBESTACIONES

(Adams & Laughton, 1974) desarrollaron el que se puede considerar como primer modelo para la planificación de redes. Propusieron la utilización de programación entera-mixta lineal. No consideraron a las subestaciones como elementos involucrados en el proceso de diseño, siendo conocidas sus localizaciones y capacidades de suministro. El modelo permite la obtención de las localizaciones de las líneas y tamaños óptimos de los conductores, existiendo unas restricciones relativas a la máxima potencia que transportan cada uno de los posibles tamaños de conductor. Para la búsqueda de soluciones se utilizó un algoritmo de ramificación y acotamiento (branch and bound), con el que se asegura alcanzar el óptimo global del problema propuesto.

(Kaplan & Braunstein, 1981) plantearon un modelo que permite obtener la localización y tamaño óptimos de nuevas subestaciones en una red existente, minimizando el costo de construcción y de operación. Se considera conocidas las demandas en cada uno de los nodos de la red y los tamaños de los conductores que se deben utilizar para la construcción de las líneas necesarias para conectar las subestaciones con los centros de consumo. La solución se alcanzó resolviendo las ecuaciones diferenciales obtenidas al derivar la función objetivo respecto de las dos variables que determina la posición de las subestaciones en un sistema de coordenadas cartesiano.

(Leung, et al., 1995) centraron su estudio en el diseño óptimo de la capacidad de las subestaciones considerando las posibles interrupciones de suministro que se pueden presentar en sistemas de distribución de energía eléctrica (SDEE). El objetivo fue minimizar el corte de carga debido a interrupciones causadas por fallas en los transformadores de las subestaciones. Lo anterior se logra maximizando la capacidad utilizable en caso de producirse una contingencia en las subestaciones y minimizando la demanda total que cada subestación puede suministrar a otras subestaciones adyacentes. Para resolver el problema se empleó programación lineal.

2.2 PLANEAMIENTO DE LÍNEAS

(Wall, et al., 1979) desarrollaron un modelo en el que se obtiene la localización y tamaño óptimos de los conductores utilizados en la construcción de las líneas de distribución. Como información se tiene la ubicación de las subestaciones y de los centros de demanda. Se consideraron restricciones correspondientes a las capacidades de los conductores y se resolvió el problema del transporte en redes. El problema fue resuelto en bajo tiempo computacional.

(Fawzi, et al., 1982) plantearon la obtención de las rutas óptimas para la construcción de líneas de distribución. Consideraron la existencia de una subestación fija, siendo las

demandas conocidas y fijas. Se consideraron los costos y variables de las líneas de distribución, definieron restricciones de máximas caídas de tensión y la máxima capacidad de transporte de los conductores de las líneas de distribución. Emplearon técnicas de programación lineal y no lineal, para la obtener los resultados.

(Tram & Wall, 1988) desarrollaron un algoritmo para la obtención de los tamaños óptimos de los conductores, considerando costos fijos y variables. Se consideraron las restricciones correspondientes a la máxima potencia que puede circular por un conductor y a las máximas caídas de tensión permisibles. Para obtener la solución se utilizó una aproximación lineal de los costos variables asociados a las líneas de distribución. El algoritmo puede ser utilizado como una subrutina dentro un modelo más completo que considere a las subestaciones y localización de líneas como objetivos dentro del diseño.

(Goswami, 1997) utilizó una técnica conocida como Branch Exchange al problema de construcción y dimensionamiento de líneas de transmisión, conociendo las subestaciones y las demandas para cada periodo de planeamiento. Fueron considerados los costos fijos y los costos variables linealizados, con restricciones de máximas caídas de tensión, capacidad de potencia de los conductores y transformadores y la restricción de radialidad. Se empleó una técnica heurística para la solución del problema.

2.3 MODELOS LINEALES Y NO LINEALES

El modelo matemático desarrollado puede ser del tipo lineal o no lineal dependiendo de la función objetivo y las restricciones. Los costos variables modelados con detalle en la función objetivo resultan en un modelo no lineal, ya que las pérdidas de potencia en un SDEE son expresadas en función del cuadrado del flujo de potencia por las líneas. Cuando los costos variables son linealizados es posible obtener soluciones al modelo sin demasiado esfuerzo computacional comparadas con los modelos No Lineales. Dentro de los modelos lineales se tiene el trabajo desarrollado por (Hindi & Brameller, 1977), que tiene en cuenta la localización y dimensionamiento tanto de las líneas como de subestaciones. Para la solución utiliza programación lineal entera mixta. Este modelo considera costos fijos y variables linealizados y tiene en cuenta la restricción de radialidad. Otros modelos como los de (Gönen

& Foote, 1981), (Thompson & Wall, 1981), (Gönen & Ramirez-Rosado, 1986) utilizan programación lineal entera mixta, aplicada al diseño óptimo de redes de distribución. Se recurre a la linealización de los costos variables, con el fin de aplicar una técnica de optimización lineal entera.

Un modelo matemático más completo y más realista que los indicados anteriormente es el que considera modelos no lineales en la función objetivo, su solución requiere de tiempos y esfuerzos computacionales altos, lo cual representa una dificultad para efectos prácticos, ya que los SDEE son generalmente de gran tamaño, lo cual aumenta de forma considerable su complejidad matemática las variables que entran en juego. A continuación se mencionan algunos trabajos que emplearon este tipo de modelo:

(Youssef & Hackam, 1985), (Mikic, 1986) y (Youssef & Hackam, 1988) trabajaron con modelos en los que se usó programación entera mixta no lineal.

(Ponnavaikko, et al., 1987) utilizaron programación entera-mixta cuadrática. En una primera etapa aplicaron el método simplex, tratando todas las variables como continuas, y en una segunda etapa usaron un método que permite transformar variables continuas en enteras.

(Partanen, 1990) utilizó programación dinámica, considerando los verdaderos costos no lineales. Este modelo requiere de elevados tiempos de cálculo para la obtención de la solución.

(Franco, et al., 2014) aplicó un modelo de programación entera mixta con restricciones cuadráticas, este modelo es una formulación convexa el cual permite encontrar la solución óptima usando solvers de optimización.

2.4 MODELO PARA EL DISEÑO ÓPTIMO MULTI ETAPA

Una buena parte de los modelos que se han desarrollado para el diseño óptimo de redes de distribución han considerado solamente una etapa (monoetapa). Una posibilidad para la realización de un diseño de la red de distribución es considerarlo en varias etapas en el

tiempo. Estas etapas pueden ser resueltas en forma secuencial (planeamiento pseudodinamico), una después de la otra, o por el contrario pueden ser resueltas al mismo tiempo en el denominado planeamiento coordinado. Algunos trabajos que emplearon estas metodologías se mencionan a continuación:

(BERNAL-AGUSTÍN, 1998) desarrolló una metodología para el planeamiento óptimo de los sistemas de distribución usando algoritmos genéticos con un modelo lineal y resolvió las etapas de manera secuencial.

(Carrano, et al., 2006) desarrollaron una metodología para el problema del planeamiento de la expansión de los sistemas de distribución de energía eléctrica (PESDEE) considerando condiciones de incertidumbre en las cargas y fue solucionado con metaheurística de la familia de los inmunes.

(Haffner, et al., 2008) plantearon una solución al PESDEE considerando una metodología multi etapa que incluía generación distribuida y fue resuelto con un método exacto.

(Franco Baquero, 2012) presentó una estrategia de descomposición para separar el problema en tres subproblemas, selección de subestaciones, reconfiguración y selección de conductores de alimentadores, para su solución aplicó un algoritmo heurísticos combinados con la metaheurística Tabu Search.

Tanto (Haffner, et al., 2008) como (Franco Baquero, 2012) consideraron planeamiento pseudodinamico y planeamiento coordinado.

(Gitizadeh, et al., 2013) plantearon un modelo que considera la ubicación de generación distribuida en un marco de optimización multiobjetivo con planeamiento coordinado.

3 MODELAMIENTO LINEAL ENTERO MIXTO PARA EL PROBLEMA DE FLUJO DE CARGA DE UN SISTEMA DE DISTRIBUCIÓN RADIAL

En este capítulo es presentado el sistema de ecuaciones no lineales utilizado para calcular el punto de operación en régimen permanente de un sistema de distribución radial, también es presentada una relajación para la formulación no lineal que consiste en una linealización de la restricción cuadrática que calcula la magnitud de la corriente en los circuitos. Esta formulación permite el uso de técnicas de optimización clásica para su resolución.

3.1 INTRODUCCIÓN

El objetivo del flujo de carga es determinar el estado de operación en régimen permanente de un sistema eléctrico, obteniendo las magnitudes de las tensiones y los ángulos de fase en todas las barras del sistema, a partir de éstas se pueden obtener los flujos de potencia activa y reactiva, la magnitud del flujo de corriente en los circuitos, la potencia aparente de los generadores, las pérdidas de potencia activa y reactiva, entre otros.

Matemáticamente, el problema de flujo de carga puede ser modelado como un conjunto de ecuaciones no lineales donde varios algoritmos han sido desarrollados para su resolución tales como; los métodos de FC de barrido iterativo (Cespedes, 1990), (Shirmohammadi, et al., 1988); el método iterativo de Newton-Raphson o sus versiones desacopladas (Arrillaga, et al., 1990), (Stott, 1974), empleados para el cálculo de FC en redes de transmisión (Monticelli, 1983) y también utilizados en SDEE (Lopes, 2002); Gauss, Gauss-Seidel, etc. La mayoría de los algoritmos de FC son basados en los métodos de Newton y en sus variantes, que fueron desarrolladas específicamente para sistemas de transmisión.

Un flujo de carga desarrollado para sistemas de distribución debe tener en cuenta las siguientes características:

• Topología radial: es la forma como se opera el sistema de distribución.

• Relación R/X: mientras en el sistema de potencia se sabe que X >> R, en el sistema de distribución esta relación no es tan clara y es dependiente del tipo de conductor.

Debido a estas dos características el análisis en los sistemas de distribución debe plantear metodologías de flujo de carga especialmente diseñadas para este tipo de redes. Un tipo de flujo de carga que tiene en cuenta las características mencionadas es el Barrido Iterativo (Goswami & Basu, 1992), (Segura, et al., 2010) y (Garcés, 2005), el cual es equivalente al método de Newton- Raphson. Este método presenta buen comportamiento en cuanto a convergencia y no precisa de la utilización de matrices dispersas ni de mucha memoria para almacenar los datos requeridos para la solución del problema.

3.2 HIPÓTESIS PARA EL PLANTEAMIENTO DEL PROBLEMA DEL FLUJO DE CARGA

Con el fin de representar el funcionamiento en régimen permanente de un sistema de distribución de energía, se consideran las siguientes hipótesis, comúnmente usadas en los algoritmos de flujos de carga de barrido iterativo:

- Las demandas en las barras del sistema de distribución son representadas como potencia activa y reactiva constante;
- En el circuito *ij* la barra *i* está más próxima de la subestación que la barra *j*;
- Las pérdidas de potencia activa y reactiva en el circuito *ij* están concentradas en la barra *i*;
- El sistema es balanceado y representado por su equivalente monofásico.

Estas consideraciones son mostradas en la Figura 1, donde para cada etapa u, en cada nivel de demanda d, $\vec{V}_{i,d,u} y \vec{I}_{ij,d,u}$ representan los factores de tensión en la barra i y de flujo de corriente en el circuito ij. Las pérdidas de potencia activa y reactiva en el circuito ij son representadas por $R_{ij}\hat{I}_{ij,d,u}^2$ y $X_{ij}\hat{I}_{ij,d,u}^2$, respectivamente.

Figura 1 Diagrama modelo de flujo por los ramas

Fuente 1 Adaptado de (Franco, et al., 2013)

Teniendo en cuenta el circuito representado en la Figura 1, para cada etapa y en cada nivel de demanda, el flujo de corriente en cada circuito ij es calculada por la ecuación (1) y la caída de tensión es definida por la ecuación (2).

$$\vec{I}_{ij,d,u} = \left(\frac{\hat{P}_{ij,d,u} + \widehat{Q}_{ij,d,u}}{\vec{V}_{jd,u}}\right)^* \qquad \qquad \forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u \qquad (1)$$

$$\vec{V}_{i,d,u} - \vec{V}_{j,d,u} = \vec{I}_{ij,d,u} (R_{ij} + jX_{ij}) \qquad \qquad \forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u \qquad (2)$$

Sustituyendo (1) en (2) se obtiene:

$$(\vec{V}_{i,d,u} - \vec{V}_{j,d,u})\vec{V}_{j,d,u}^* = (\hat{P}_{ij,d,u} - j\hat{Q}_{ij,d,u})(R_{ij} + jX_{ij}) \qquad \forall i \in \Omega_b, d \in \Omega_d, u \in \Omega_u$$
(3)
Al considerar que $\vec{V}_{i,d,u} = V_{i,d,u} \not\equiv \theta_{i,d,u}, \quad \vec{V}_{j,d,u} = V_{j,d,u} \not\equiv \theta_{j,d,u} - \theta_{i,d,u}$ la ecuación (3) puede ser reescrita como:

$$V_{i,d,u}V_{j,d,u}(\cos\theta_{ij,d,u} + jsen\theta_{ij,d,u}) - V_{j,d,u}^2 = (\hat{P}_{ij,d,u} - j\hat{Q}_{ij,d,u})(R_{ij} + jX_{ij})$$

$$\forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u$$
(4)

Igualando las partes real e imaginaria de ambos componentes de la ecuación (4), se obtiene:

$$V_{i,d,u}V_{j,d,u}(\cos\theta_{ij,d,u}) - V_{j,d,u}^{2} = \left(R_{ij}\hat{P}_{ij,d,u} + X_{ij}\hat{Q}_{ij,d,u}\right)$$

$$\forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}$$
(5)

$$V_{i,d,u}V_{j,d,u}(sen\theta_{ij,d,u}) = (X_{ij}\hat{P}_{ij,d,u} - R_{ij}\hat{Q}_{ij,d,u}) \qquad \forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u$$
(6)

Sumando los cuadrados de las ecuaciones (5) y (6) y aplicando la identidad fundamental de las funciones trigonométricas, se tiene la siguiente ecuación:

$$V_{i,d,u}^{2} - V_{j,d,u}^{2} = 2 \left(R_{ij} \hat{P}_{ij,d,u} + X_{ij} \hat{Q}_{ij,d,u} \right) + Z_{ij}^{2} \hat{I}_{ij,d,u}^{2}$$

$$\forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}$$
(7)

Donde la magnitud de flujo de corriente al cuadrado es dada por la expresión:

Las ecuaciones de balance de potencia convencionales son mostradas en (9) y (10).

$$\sum_{ij \in \Omega_{l}} \hat{P}_{Kj,d,u} - \sum_{ij \in \Omega_{l}} \left(\hat{P}_{ij,d,u} + R_{ij} \hat{I}_{ij,d,u}^{2} \right) + P_{i,d,u}^{S} = P_{i,u}^{D} F d_{d}$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$\sum_{ij \in \Omega_{l}} \hat{Q}_{Kj,d,u} - \sum_{ij \in \Omega_{l}} \left(\hat{Q}_{ij,d,u} + X_{ij} \hat{I}_{ij,d,u}^{2} \right) + Q_{i,d,u}^{S} = Q_{i,u}^{D} F d_{d}$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$(10)$$

El sistema de ecuaciones no lineales (7) - (10) representa el problema del flujo de carga en régimen permanente (FCRP) de un SDEE radial. En este trabajo, el problema de FC será modelado como un problema de programación no lineal (PNL).

3.3 FORMULACIÓN NO LINEAL PARA EL PROBLEMA DE FC

Usando el conjunto de expresiones (7) - (10), obtenidas en la sección anterior, y cambiando las variables $V_{i,d,u}^2$ e $\hat{I}_{ij,d,u}^2$ de la siguiente forma: $V_{i,d,u}^2 = V_{i,d,u}^{sqr}$ y $\hat{I}_{ij,d,u}^2 = \hat{I}_{ij,d,u}^{sqr}$ es posible escribir un problema de PNL para calcular el FCRP de un SDEE radial como se presenta en el conjunto de ecuaciones (11) - (17):

$$Min: \sum_{u \in \Omega_u} \sum_{d \in \Omega_d} \sum_{ij \in \Omega_l} \left(\alpha \phi_l c^l R_{ij} \hat{l}_{ij,d,u}^{sqr} \right)$$
(11)

Sujeto a:

$$\hat{I}_{ij,d,u}^{sqr} = \frac{\hat{P}_{ij,d,u}^2 + \hat{Q}_{ij,d,u}^2}{V_{j,d,u}^{sqr}} \qquad (12)$$
$$\forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u$$

$$V_{i,d,u}^{2} - V_{j,d,u}^{2} = 2 \left(R_{ij} \hat{P}_{ij,d,u} + X_{ij} \hat{Q}_{ij,d,u} \right) + Z_{ij}^{2} \hat{I}_{ij,d,u}^{2} + b_{ij,d,u}$$

$$\forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}$$
(13)

$$\sum_{ij \in \Omega_l} \hat{P}_{Kj,d,u} - \sum_{ij \in \Omega_l} (\hat{P}_{ij,d,u} + R_{ij} \hat{I}^2_{ij,d,u}) + P^S_{i,d,u} = P^D_{i,u} F d_d$$
(14)

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$\sum_{ij \in \Omega_{l}} \hat{Q}_{Kj,d,u} - \sum_{ij \in \Omega_{l}} \left(\hat{Q}_{ij,d,u} + X_{ij} \hat{I}_{ij,d,u}^{2} \right) + Q_{i,d,u}^{S} = Q_{i,u}^{D} F d_{d}$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$0 \leq I_{ij,a,d,u}^{sqr} \leq \overline{I^{2}}$$

$$\forall i \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$(15)$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$(16)$$

La ecuación (12) establece la relación entre el flujo de potencias activas y reactivas, el cuadrado de la magnitud de la tensión y el cuadrado de la magnitud de la corriente. La ecuación (13) representa el cálculo de la caída de tensión en el circuito ij, para cada nivel de demanda d, en la etapa u. Las ecuaciones (14) y (15) representan el balance de potencia. En el problema (11) - (17) fueron definidos valores holgados para los límites de las ecuaciones (16) y (17); estos límites fueron adicionados en el modelo para ser utilizados en la linealización de la ecuación (12).

3.4 LINEALIZACIÓN

La ecuación (12), la cual establece la relación entre el flujo de potencia activa y reactiva, el cuadrado de magnitud de la tensión y el cuadrado de la magnitud de la corriente en un circuito, es una expresión no lineal. En esta sección, es presentada una relajación lineal con el objetivo de obtener un modelo lineal para calcular el FCRP de un SDEE.

3.4.1 Linealización del producto $V_{j,d,u}^{sqr} \hat{I}_{ij,d,u}^{sqr}$

La linealización del producto $V_{j,d,u}^{sqr} \hat{I}_{ij,d,u}^{sqr}$ puede ser realizada considerando el cuadrado de la tensión constante en el producto, y obtener la siguiente equivalencia lineal:

$$\tilde{V}_{j,d,u}^{sqr} \hat{I}_{ij,d,u}^{sqr} \approx {V'_{i,d,u}}^2 \hat{I}_{ij,d,u}^{sqr}$$
(18)

Durante el proceso $V'_{i,d,u}$ inicialmente toma como valor el promedio entre los límites de la tensión y posteriormente se resuelve un problema de programación lineal entera mixta (PLEM) para resolver el FCRP.

3.4.2 Linealización de $\widehat{P}_{ij,d,u}^{2} + \widehat{Q}_{ij,d,u}^{2}$

El miembro derecho de la ecuación (12) es linealizado como es descrito en (Tabares, et al., 2014) y es definido por el conjunto de ecuaciones (19) - (28):

$$\begin{split} \hat{P}_{ij,d,u}^{2} + \hat{Q}_{ij,d,u}^{2} &= \sum_{y=1}^{Y} m_{ij,y}^{G} \Delta_{ij,d,y,u}^{Pg} + \sum_{y=1}^{Y} m_{ij,y}^{G} \Delta_{ij,d,y,u}^{Qg} \quad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u} \quad (19) \\ \hat{P}_{ij,d,u} &= P_{ij,d,u}^{+} - P_{ij,d,u}^{-} \qquad \forall ij \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} \quad (20) \\ \hat{Q}_{ij,d,u} &= Q_{ij,d,u}^{+} - Q_{ij,d,u}^{-} \qquad \forall ij \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} \quad (21) \\ P_{ij,d,u}^{+} + P_{ij,d,u}^{-} &= \sum_{y=1}^{Y} \Delta_{ij,d,y,u}^{Pg} \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u} \quad (22) \\ Q_{ij,d,u}^{+} + Q_{ij,d,u}^{-} &= \sum_{y=1}^{Y} \Delta_{ij,d,y,u}^{Qg} \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u} \quad (23) \\ 0 \leq \Delta_{ij,d,y,u}^{Pg} \leq \bar{\Delta}_{ij}^{-G} \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}, y = 1, \dots, Y \quad (24) \end{split}$$

$$\forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u, y = 1, \dots, Y \quad (25)$$

Donde

 $0 \le \Delta_{ij,d,y,u}^{Qg} \le \bar{\Delta}_{ij}^{\ G}$

$$m_{ij,y}^{G} = \frac{5}{6} \bar{\Delta}_{ij}^{\ G}$$
 $y = 1$ (26)

$$m_{ij,y}^{G} = (2y-1)\bar{\Delta}_{ij}^{G}$$
 $y = 2,..,Y$ (27)

$$\bar{\Delta}_{ij}{}^{G} = \frac{\overline{VI_{ij}}}{Y} \qquad \forall ij \in \Omega_l \quad (28)$$

Las ecuaciones (20) y (21) obtienen el valor absoluto de $\hat{P}_{ij,d,u}$ y $\hat{Q}_{ij,d,u}$. Las restricciones (22) y (23) muestran que los términos $|\hat{P}_{ij,d,u}|$ y $|\hat{Q}_{ij,d,u}|$ son iguales a la suma de los valores de cada bloque de discretización. Las restricciones (24) e (25) colocan límites para los valores que pueden tomar los bloques de discretización. Las ecuaciones (26) - (28) calculan los valores de los parámetros utilizados en la discretización.

Los valores de los bloques de las linealizaciones por partes de $\hat{P}_{ij,d,u}$ y $\hat{Q}_{ij,d,u}$. denotados por $\Delta^{Pg}_{ij,d,y,u}$ e $\Delta^{Qg}_{ij,d,y,u}$, respectivamente, son obtenidos secuencialmente en orden creciente de y. Esta condición es garantizadas de forma implícita por la minimización de $\hat{P}_{ij,d,u}^2 + \hat{Q}_{ij,d,u}^2$.

Del problema (11) - (17) se observa que $\hat{P}_{ij,d,u}^2 + \hat{Q}_{ij,d,u}^2$ es minimizada de forma implícita en la función objetivo (11) y la ecuación (12), considerando la resistencia R_{IJ} no nula para cada circuito *ij*. Las ideas básicas de la técnica de linealización son ilustradas en la Figura 2

Figura 2 Linealización por partes

Fuente 1 adaptado de (Gonçalves, 2013)

Ejemplo 1: Aplicación de la linealización presentada

Para cierto nivel de demanda $d \in \Omega_d$, en la etapa $u \in \Omega_u$, para el circuito $\forall ij \in \Omega_l$, se consideran los siguientes datos: $\hat{P}_{ij,d,u} = 52$, $\hat{Q}_{ij,d,u} = 30$, $\overline{V}\overline{I}_{ij} = 80$ y Y = 4.

$$\bar{\Delta}_{ij}^{G} = \frac{\overline{V}\bar{I}_{ij}}{Y} = 20$$

Los valores de las variables $\Delta_{ij,d,y,u}^{Pg}$ y $\Delta_{ij,d,y,u}^{Qg}$, son calculados usando el conjunto de ecuaciones (19) - (28).

Por las ecuaciones (22) y (23), teniendo en cuenta el valor de $\overline{\Delta}_{ij}^{G}$ y los intervalos de las ecuaciones (24) y (25), los valores para los $\Delta_{ij,d,y,u}^{Pg}$ y $\Delta_{ij,d,y,u}^{Qg}$ son:

$$\Delta_{ij,d,1,u}^{Pg} = 20 \ \Delta_{ij,d,2,u}^{Pg} = 20 \ \Delta_{ij,d,3,u}^{Pg} = 12 \ \Delta_{ij,d,4,u}^{Pg} = 0$$
$$\Delta_{ij,d,1,u}^{Qg} = 20 \ \Delta_{ij,d,2,u}^{Qg} = 10 \ \Delta_{ij,d,3,u}^{Qg} = 0 \ \Delta_{ij,d,4,u}^{Qg} = 0$$

Por lo tanto,

$$\hat{P}_{ij,d,u}^{2} + \hat{Q}_{ij,d,u}^{2} = \frac{5}{6} \bar{\Delta}_{ij}^{G} \left(\Delta_{ij,d,1,u}^{Pg} + \Delta_{ij,d,1,u}^{Qg} \right) + \sum_{y=2}^{4} (2y-1) \bar{\Delta}_{ij}^{G} \Delta_{ij,d,y,u}^{Pg} + \sum_{y=3}^{4} (2y-1) \bar{\Delta}_{ij}^{G} \Delta_{ij,d,y,u}^{Qg}$$

$$\hat{P}_{ij,d,u}^{2} + \hat{Q}_{ij,d,u}^{2} = \frac{5}{6} (20)(20+20) + 3(20)(20+10) + 5(20)(12+0) + \frac{5}{2} (20)(0+0) = 3666,6$$

El valor exacto de $\hat{P}_{ij,d,u}^2 + \hat{Q}_{ij,d,u}^2$ es igual a 3604, así el error relativo obtenido por la linealización es aproximadamente igual a 1,74%.

3.5 FORMULACIÓN LINEAL ENTERA MIXTA PARA EL PROBLEMA DE FLUJO DE CARGA

Considerando la linealización de la sección 3.4, el problema del cálculo del FCRP de un SDEE puede ser modelado como un problema de programación lineal entero mixto (PLEM) como sigue:

Min (11)

Sujeto a: (13) - (17); (20) - (25)

$$V_{i,d,u}^{\prime} \hat{I}_{ij,d,u}^{sqr} = \sum_{y=1}^{Y} m_{ij,y}^{G} \Delta_{ij,d,y,u}^{Pg} + \sum_{y=1}^{Y} m_{ij,y}^{G} \Delta_{ij,d,y,u}^{Qg} \qquad \forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u \quad (29)$$

Observaciones:

• EL modelo resultante es un problema de programación lineal (PL) que es una aproximación del problema de PNL original.

• Hubo un aumento en el número de restricciones y de variables continuas fruto de la linealización.

• La precisión de los resultados depende de la elección del número de linealizaciones. Para valores altos de Y, los errores son menores (Gonçalves, 2013);

- Aumentando Y, aumenta el número de restricciones lineales y de variables continuas;
- El problema de PL puede ser resuelto utilizando técnicas de optimización existentes.

4 RESULTADOS FLUJO DE CARGA

4.1 SISTEMA DE 34 NODOS

El sistema de 34 nodos, fue utilizado para probar la formulación propuesta. Los datos de este sistema se encuentran en el apéndice, el diagrama unifilar es mostrado en la

Figura 3. Este sistema opera con una tensión nominal de 11 kV, con una potencia activa de 7,882.050 kW y una potencia reactiva de 4,905.35 kVAR en el nivel de demanda máxima, 4,636.5 kW y 2,885.5 kVAR en el nivel de demanda media y 2,781.9 kW y 1,726.5 kVAR en el nivel de demanda mínima.

Figura 3Diagrama unifilar sistema test de 34 nodos

Fuente 2Tomado de (Gonçalves, 2013)

El modelo no lineal encuentra un valor de US\$2,271,235.17 para el costo de las pérdidas de energía anuales y el modelo de PL encuentra un costo de US\$2,116,098.43 que corresponde a

un error relativo de 0.47% utilizando un número de linealizaciones igual a 6. Las principales magnitudes encontradas por el modelo no lineal son presentadas en la Tabla I, la

Figura 4 y la Figura 5 muestran el comportamiento de las magnitudes de la tensión y la corriente para cada uno de los niveles de demanda.

Magnitud	Demanda mínima	Demanda media	Demanda máxima
Ps (kw)	2,858.79	4,858.79	8,573.7
Qs (kVAR)	1,749.09	2,950.78	5,108.18
Perdidas (kw)	76.89	222.29	691.65
Tensión mínima (kV)	10.62322	10.358256	9.863443
nodo	27	27	27

Tabla I Principales resultados para el sistema de 34 nodos

Figura 4 Comportamiento de la tensión (kV) por cada nivel de demanda para el sistema test de 34 nodos

Fuente 3 autor

Figura 5 Comportamiento de la magnitud de la corriente (A) por cada nivel de demanda para el sistema test de 34 nodos

Fuente 4 autor

La Tabla II muestra el valor de las pérdidas de potencia activa para cada uno de los niveles de demanda obtenida por los modelos propuestos, donde es apreciable la diferencia de la aproximación lineal respecto a los valores del modelo no lineal para los niveles de demanda mínima y máxima.

La Figura 6 muestra el comportamiento para cada nivel de demanda de los dos modelos y sus diferencias en el cálculo de la tensión y la magnitud de la corriente en los circuitos. Para las magnitudes de tensión el error relativo promedio en el nivel de demanda máxima es inferior al 7.966%, para el caso de la magnitud de corriente el error promedio es de 2.24%. Para el nivel de demanda media el error promedio de la magnitud de tensión es inferior al 0.007%, para el caso de la magnitud de corriente el error promedio es de 2.95%. Para el nivel de demanda mínima el error promedio de la magnitud de tensión es inferior al 14.814%, para el caso de la magnitud de corriente el error promedio es de 14.164%.

Modelo	Demanda mínima	Demanda media	Demanda máxima
No lineal	76.89	222.29	691.65
Lineal	57.79	218.39	726.45

Tabla II Perdidas en kW para cada modelo y por cada nivel de demanda para el sistema test de 34 nodos

Figura 6 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los modelos propuestos

Fuente 5 autor

4.2 SISTEMA DE 70 NODOS

El sistema test de 70 nodos (Baran & Wu, 1989) fue utilizado para testar la formulación propuesta. Los datos de este sistema propuesta en el apéndice, cuyo diagrama sistema unifilar es mostrado en la Figura 7. Este sistema opera con una tensión nominal de 12.66 kV con una potencia activa de 3,802.19 kW y 2,694.6 kVAR en el nivel de demanda máxima, 2,281.31kW y 1,616.76 kVAR en el nivel de demanda media y 1,140.67 kW y 808.39 kVAR en el nivel de demanda mínima.

Fuente 6Tomado de (Gonçalves, 2013)

El modelo no lineal encuentra un valor de US\$ 1,215,693.9 para el costo de las pérdidas de energía anuales y el modelo de PL encuentra un costo de US\$ 1,235,762.866 que corresponde a un error relativo de 0.1708% utilizando un número de linealizaciones igual a 10. Las principales magnitudes encontradas por el modelo no lineal son presentadas en la Tabla III, la Figura 8 y Figura 9 muestran el comportamiento de las magnitudes de la tensión y la corriente para cada uno de los niveles de demanda.

Tabla III Principales resultados para el sistema de 70 nodos

Magnitud	Demanda mínima	Demanda media	Demanda máxima	
Ps (kW)	1,952.71	3,180.67	4,027.21	
Qs (kVAR)	1,370.86	2,218.89	2,796.78	
Perdidas (kW)	51.61	138.91	225.02	
Tensión mínima (kV)	12.111533	11.758094	11.510228	
nodo	66	66	66	

Figura 8 Comportamiento de la tensión (kV) para cada nivel de demanda para el sistema test de 70 nodos

Fuente 7 autor

Figura 9 Comportamiento de la magnitud de corriente (A) para cada nivel de demanda para el sistema test de 70 nodos

Fuente 8 autor 39

La Tabla IV muestra el valor de las pérdidas de potencia activa para cada uno de los niveles de demanda obtenidas por cada modelo propuesto, donde es apreciable la diferencia de la aproximación lineal para los niveles de demanda mínima y máxima.

La Figura 10 muestra el comportamiento para cada nivel de demanda de los dos modelos y sus diferencias en el cálculo de la tensión y la magnitud de la corriente en los circuitos. Para las magnitudes de tensión el error relativo promedio en el nivel de demanda máxima es inferior al 7.966%, para el caso de la magnitud de corriente el error promedio es de 2.24%. Para el nivel de demanda media el error promedio de la magnitud de tensión es inferior al 0.007%, para el caso de la magnitud de corriente el error promedio es de 2.95%. Para el nivel de demanda mínima el error promedio de la magnitud de tensión es inferior al 14.814%, para el caso de la magnitud de corriente el error promedio es de 14.164%.

Tabla IV Perdidas en kW para cada modelo y por cada nivel de demanda para el sistema test de 34 nodos

Modelo	Demanda mínima	Demanda media	Demanda máxima
No lineal	18.01	75.54	225.02
Lineal	7.06	74.53	241.46

Figura 10 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los modelos propuestos

Fuente 9 autor 41

4.3 SISTEMA DE 202 NODOS

El sistema test de 202 nodos (Castro, 1985) fue utilizado para testar la formulación propuesta. Los datos de este sistema propuesta en el apéndice, cuyo diagrama sistema unifilar es mostrado en la Figura 11. Este sistema opera con una tensión nominal de 13.8 kV con una potencia activa de 69,087.2 kW y 42,809.45 kVAR en el nivel de demanda máxima, 41,452.32 kW y 25,685.67 kVAR en el nivel de demanda media y 25,685.67 kW y 17,123.78 kVAR en el nivel de demanda mínima.

Figura 11 Diagrama unifilar sistema test de 202 nodos

Fuente 10Tomado de (Gonçalves, 2013)

El modelo no lineal encuentra US\$ 13,211,031.63 para el costo de las pérdidas de energía anuales y el modelo de PL encuentra un costo de US\$ 13,276,292.69 que corresponde a un porcentaje de error de 0.494% entre el modelo lineal respecto al modelo no lineal. Para la obtención de los resultados de modelo lineal fue utilizado un número de linealizaciones igual a 20.

Las principales magnitudes encontradas por el modelo no lineal son presentadas en la Tabla V, la

Figura 12 y la Figura 13 muestran el comportamiento de las magnitudes de la tensión y la corriente para cada uno de los niveles de demanda.

Magnitud	Demanda mínima	Demanda media	Demanda máxima
Ps (kW)	28,186.92	42,744.53	73,010.86
Qs (kVAR)	18,382.53	28,632.12	51,756.26
Perdidas (kW)	552.04	1,292.21	3,923.66
Tensión mínima (kV)	13.20832	12.889786	12.19441
nodo	202	202	202

Tabla V Principales resultados para el sistema de 202 nodos

Figura 12 Comportamiento de la tensión (kV) para cada nivel de demanda para el sistema test de 202 nodos

Fuente 11 autor

Figura 13 Comportamiento de la magnitud de corriente (A) para cada nivel de demanda para el sistema test de 202 nodos

Fuente 12 autor

La Tabla VI muestra el valor de las pérdidas de potencia activa para cada uno de los niveles de demanda, donde para el periodo de demanda mínima es notable la diferencia de la aproximación lineal con un error de 6.4 % con respecto al resultado del modelo No Lineal, sin embargo para el caso del periodo de demanda máxima el error es de 0.3% lo que representa una diferencia muy pequeña entre los dos modelos.

Tabla VI Perdidas en kW	/ para cada modelo y po	r cada nivel de demanda	para el sistema test de	202 nodos

Modelo	Demanda mínima	Demanda media	Demanda máxima
No lineal	552.04	1,292.21	3,923.66
Lineal	516.63	1,308.60	3,913.50

La Figura 14 muestra el comportamiento para cada nivel de demanda de los dos modelos propuestos y sus diferencias en el cálculo de la tensión y la magnitud de la corriente en los circuitos. Al realizar una comparación entre el modelo no lineal y el modelo lineal para cada una de las magnitudes de tensión el error relativo promedio en el nivel de demanda máxima es inferior al 1.482%, para el caso de la magnitud de corriente el error promedio es de 4.445%. Para el nivel de demanda media el error promedio de la magnitud de tensión es inferior al 6.596%, para el caso de la magnitud de corriente el error promedio es de 3.094%. Para el

nivel de demanda mínima el error promedio de la magnitud de tensión es inferior al 8.883%, para el caso de la magnitud de corriente el error promedio es de 6.464%.

Figura 14 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los modelos propuestos

Fuente 13 autor

4.4 SISTEMA DE 400 NODOS

El sistema test de 400 nodos (Cossi, 2008) fue utilizado para testar la formulación propuesta. Los datos de este sistema propuesta en el apéndice. Este sistema opera con una tensión nominal de 11.4 kV con una potencia activa de 3,371.8 kW y 1,429.37 kVAR en el nivel de demanda máxima, 2,023.08 kW y 857.622 kVAR en el nivel de demanda media y 1,011.54 kW y 428,811 kVAR en el nivel de demanda mínima.

El modelo no lineal encuentra US\$ 506,616.61 para el costo de las pérdidas de energía anuales y el modelo de PL encuentra un costo de US\$ 510,756.03, que corresponde a un porcentaje de error de 0.817% entre el modelo lineal respecto a modelo no lineal. Para la obtención de los resultados del modelo lineal fueron usadas 14 linealizaciones.

Las principales magnitudes encontradas por el modelo no lineal son presentadas en la Tabla V, la Figura 15y la Figura 16 muestran el comportamiento de las magnitudes de la tensión y la corriente para cada uno de los niveles de demanda.

Magnitud	Demanda mínima	Demanda media	Demanda máxima
Ps (kW)	28,186.92	42,744.53	73,010.86
Qs (kVAR)	18,382.53	28,632.12	51,756.26
Perdidas (kW)	552.04	1,292.21	3,923.66
Tensión mínima (kV)	13.20832	12.889786	12.19441
nodo	202	202	202

Tabla VII Principales resultados para el sistema de 202 nodos

Figura 15 Comportamiento de la tensión (kV) para cada nivel de demanda para el sistema test de 202 nodos

Fuente 14 autor

Figura 16 Comportamiento de la magnitud de corriente (A) para cada nivel de demanda para el sistema test de 202 nodos

Fuente 15 autor 48

La Tabla VIII muestra el valor de las pérdidas de potencia activa para cada uno de los niveles de demanda, donde es apreciable la diferencia de la aproximación lineal para los niveles de demanda mínima y máxima, que corresponden a un error relativo de 26.8% y 4.3% respectivamente.

Tabla VIII Perdidas en kW para cada modelo y por cada nivel de demanda para el sistema test de 202 nodos

Modelo	Demanda mínima	Demanda media	Demanda máxima
No lineal	12.11	51.21	148.34
Lineal	8.87	51.36	154.67

La Figura 17 muestra el comportamiento para cada nivel de demanda de los dos modelos propuestos y sus diferencias en el cálculo de la tensión y la magnitud de la corriente en los circuitos. Para las magnitudes de tensión el error relativo promedio en el nivel de demanda máxima es inferior al 5.808%, para el caso de la magnitud de corriente el error promedio es de 2.54%. Para el nivel de demanda media el error promedio de la magnitud de tensión es inferior al 8.516%, para el caso de la magnitud de corriente el error promedio es de 3.638%. Para el nivel de demanda mínima el error promedio de la magnitud de tensión es inferior al 0.002%, para el caso de la magnitud de corriente el error promedio es de 16.594%.

Figura 17 Diferencias entre el cálculo de la tensión y la magnitud de la corriente para los modelos propuestos

Fuente 16 autor 50

5 FORMULACIÓN PARA LA PLANEACIÓN DINÁMICA DE SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA

El problema de planeación de sistemas de distribución de energía eléctrica consiste en determinar los cambios necesarios en el sistema con el objetivo de atender las condiciones de demanda futura, respetando los criterios técnicos de operación y seguridad, bajo un mínimo costo, en el caso de la optimización mono objetivo.

En esta sección son presentadas dos formulaciones para el problema de planeación dinámica de sistemas de distribución de energía eléctrica (PDSDEE). El primero es una formulación no lineal entera mixta que representa de forma más fiel las características del problema. La segunda es una relajación lineal de la formulación no lineal, esta última formulación permite el uso de técnicas de optimización clásica que garantizan la obtención de soluciones óptimas.

5.1 FORMULACIÓN NO LINEAL ENTERA MIXTA PARA EL PROBLEMA DE POSDEE.

El objetivo principal del sistema de distribución es ofrecer un servicio fiable, con un bajo costo para los consumidores y asegurar la calidad de la alimentación. Cuando el problema además de incluir los costos de instalación de nuevos equipos, los costos de operación de subestaciones y minimizar las perdidas, considerada los costos de confiabilidad del sistema de distribución se constituye en un problema múlti- objetivo. Todos estos costos deben evaluarse teniendo en cuenta el aumento de las cargas aún existentes en el sistema y la instalación de la nueva carga, con el fin de permitir una operación viable del sistema en un horizonte de planeación predefinido (Gönen & Ramirez-Rosado, 1986). Las limitaciones técnicas de operación de los sistemas de distribución, tales como, los niveles de tensión, la capacidad máxima de las subestaciones y los flujos de potencia en los circuitos, deben ser consideradas en el problema de PDSDEE, adicionalmente y debido a las características particulares de operación de los sistemas de distribución, es fundamental para la formulación del problema de PDSDEE tener en cuenta la topología radial del sistema. Teniendo en cuenta este conjunto de características, los modelos no lineales son más realistas, porque pueden representar de un mejor manera la operación del sistema. Según (Ramirez-Rosado & Bernal Agustin, 2001) este

problema puede ser modelado como un problema de programación no lineal entero mixto (PNLEM).

En este trabajo se consideran que son conocidos los datos de crecimiento de la demanda en el horizonte de planeación, así como datos de subestaciones, líneas propuestas y capacidad de generadores distribuidos para determinar el plan de expansión del sistema. Las opciones de planeación consideradas son:

- Repotenciación de subestaciones existentes.
- La asignación y el dimensionamiento de nuevas subestaciones.
- Reconductoramiento de circuitos existentes.
- La asignación y selección del tipo de conductor para nuevos circuitos.
- La asignación y el dimensionamiento de generadores distribuidos.
- Cambios en la topología del sistema (reconfiguración).

El plan de expansión debe cumplir con las siguientes restricciones técnicas y operativas:

- Primera ley de Kirchhoff (barras de equilibrio actual).
- Segunda ley de Kirchhoff (suma de las tensiones en las barras).
- Capacidad de subestaciones eléctricas y alimentadores.
- Limites mínimo y máximo de tensión en las barras.
- Operación del sistema radial.

La planeación de los sistemas de distribución debe realizarse con un costo mínimo garantizando condiciones técnicas y operativas. En este tipo de planeación incluye dos modelos: estático y dinámico o de múltiples etapas. En el modelo estático se analiza un solo período de planeación, utilizando la demanda prevista al final del período y teniendo en cuenta que todas las inversiones se realizan a la vez. La configuración y la especificación de los componentes del sistema de distribución obtenidos con este modelo son válidas dentro del período en el cual conocen los parámetros que influyen en las variables del problema de optimización. El modelo de múltiples etapas o dinámico es el más cercano a la realidad. El horizonte de planeación se divide en varias etapas y las inversiones en construcción,

sustitución y ampliación de los circuitos, subestaciones y reconfiguración de la red se llevan a cabo en diferentes etapas de planeación, según las previsiones de la demanda. Los costos de cada etapa se traen a valor presente utilizando una tasa de interés, con el fin de tener un costo económico total del plan de expansión establecido en todas las etapas como se muestra en (35).

La función objetivo del modelo incluye costos de inversión y costos operativos. El costo de inversión, también conocido como los costos fijos, está compuesto por:

- Costo de incrementar la capacidad de las subestaciones existentes.
- El costo de inversión en nuevas subestaciones;
- El costo de inversión en generadores distribuidos;
- Costo de reconductoramiento en circuitos existentes.
- El costo de la construcción de nuevos circuitos.

Los costos operativos, son los mismos costos variables que corresponden a los costos de las pérdidas de energía en los circuitos, el costo de operación de la subestaciones, todo bajo el horizonte de planeación.

5.1.1 Restricciones

Las restricciones que deben tenerse en cuenta en el modelo son de tres tipos:

• Las restricciones relacionadas con las leyes de Kirchhoff.

• Los límites técnicos y operativos del sistema (potencia en los circuitos y subestaciones, límites de tensión en barras y topología radial).

• Coordinación de inversiones y operación de las mismas a lo largo del horizonte de planeación.

5.1.2 Componentes de la función objetivo

Inversiones en circuitos (IC):

$$\sum_{ij\in\Omega_l}\sum_{a\in\Omega_a} \left(c_a^f \beta_{ij,a,u} l_{ij}\right) \tag{30}$$

Inversiones en subestaciones (IS)

$$\sum_{i \in \Omega_s} \sum_{c \in \Omega_c} \left(c_{i,c}^s \sigma_{i,c,u} + c_{i,c}^r r_{i,c,u} \right)$$
(31)

Inversiones en generadores distribuidos (IGD)

$$\sum_{i \in \Omega_b} \sum_{g \in \Omega_g} \left(c_g^{gd} q_{i,g,u}^{gd} \right)$$
(32)

Costo de perdidas de potencia activa en circuitos (PC):

$$\sum_{d \in \Omega_d} \sum_{ij \in \Omega_l} \sum_{\alpha \in \Omega_a} \left(\alpha \phi_l c^l R_a I_{ij,a,d,u}^{sqr} l_{ij} \right) f(tj,K)$$
(33)

Costos de operación de las subestaciones (OS):

-

$$\sum_{d \in \Omega_d} \sum_{i \in \Omega_s} (\alpha \phi_s c_i^{\nu} S g_{i,d,u}^{sqr}) f(tj, K)$$
(34)

El modelo matemático del PDSDEE es planteado como sigue:

$$\min \sum_{u \in \Omega_u} [IC + IS + IGD + PL + OS](1 + tj)^{-(u-1)K}$$
(35)

$$\sum_{ij \in \Omega_{l}} \sum_{a \in \Omega_{a}} P_{kj,a,d,u} - \sum_{ij \in \Omega_{l}} \sum_{a \in \Omega_{a}} \left(P_{ij,a,d,u} + R_{a} l_{ij} I_{ij,a,d,u}^{sqr} \right) + P_{i,d,u}^{s} + \sum_{a \in \Omega_{a}} P_{i,g,d,u}^{gd} = P_{i,u}^{D} F d_{d} \quad \forall i \in \Omega_{b}, \forall d \in \Omega_{d}, \forall u \in \Omega_{u}$$

$$(36)$$

$$\sum_{ij \in \Omega_l} \sum_{a \in \Omega_a} Q_{kj,a,d,u} - \sum_{ij \in \Omega_l} \sum_{a \in \Omega_a} \begin{pmatrix} Q_{ij,a,d,u} + X_a l_{ij} I_{ij,a,d,u}^{sqr} \end{pmatrix} + Q_{i,d,u}^{S}$$

$$\sum_{g \in \Omega_g} Q_{i,g,d,u}^{gd} = Q_{i,u}^D F d_d \quad \forall i \in \Omega_b, \forall d \in \Omega_d, \forall u \in \Omega_u$$

$$(37)$$

$$\widetilde{V}_{j,d,u}^{sqr} \widehat{I}_{ij,d,u}^{sqr} = \widehat{P}_{ij,d,u}^{2} + \widehat{Q}_{ij,d,u}^{2} \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u} \qquad (38)$$

$$\widetilde{V}_{j,d,u}^{sqr} - \widetilde{V}_{i}^{sqr} = \sum \left[2(R_{e}P_{ij,d,u} + X_{e}Q_{ij,d,u}) I_{ij} + Z_{e}^{2} I_{e}^{2} I_{e}^{sqr} + 1 + h_{ij,d,u} \right] \qquad (39)$$

$$\tilde{V}_{i,d,u}^{sqr} - \tilde{V}_{j,d,u}^{sqr} = \sum_{a \in \Omega_a} \left[2 \left(R_a P_{ij,a,d,u} + X_a Q_{ij,a,d,u} \right) l_{ij} + Z_a^2 l_{ij}^2 l_{ij,a,d,u}^{sqr} \right] + b_{ij,d,u}$$

$$\forall ii \in \Omega, \forall d \in \Omega, \forall u \in \Omega$$
(39)

$$\forall ij \in \Omega_l, \forall d \in \Omega_d, \forall u \in \Omega_u$$

$$\forall ij \in \Omega_l, \forall d \in \Omega_d, \forall u \in \Omega_u$$
(40)

$$\hat{I}_{ij,d,u}^{sqr} = \sum_{a \in \Omega_a} \left(I_{ij,a,d,u}^{sqr} \right) \qquad \forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u \qquad (40)$$

$$\hat{P}_{ij,d,u} = \sum_{a \in \Omega_a} P_{ij,a,d,u} \qquad \forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u \qquad (41)$$

$$\hat{Q}_{ij,d,u} = \sum_{a \in \Omega_a}^{a \in \Omega_a} Q_{ij,a,d,u} \qquad \forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u$$
(42)

$$\sum_{\substack{a \in \Omega_a \\ y_{ij,u}^+ + y_{ij,u}^- \le 1}} z_{ij,a,u} = y_{ij,u}^+ + y_{ij,u}^- \qquad \forall ij \in \Omega_l, u \in \Omega_u \qquad (43)$$

$$\forall ij \in \Omega_l, u \in \Omega_u \qquad (44)$$

$$\sum_{a \in \Omega_a} \beta_{ij,a,u} \le 1 \qquad \qquad \forall ij \in \Omega_l, u \in \Omega_u$$
⁽⁴⁵⁾

$$z_{ij,a,u} \leq \sum_{h=1}^{u} \beta_{ij,a,h} \qquad \forall ij \in \Omega_l, a \in \Omega_a, u \in \Omega_u$$

$$\sum_{ij\in\Omega_l}^{n=1} (y_{ij,u}^+ + y_{ij,u}^-) = |\Omega_b| - |\Omega_s| - \sum_{i\in\Omega_{bp}} \gamma_{i,u}$$

$$\sum_{j\in\Omega_l} (z_{ij,u}^+ + y_{ij,u}^-) > 2$$

$$\sum_{\substack{ij \in \Omega_l \\ a \in \Omega_a}} (y_{ij,u}) + \sum_{ki \in \Omega_l} (y_{ki,u}) \ge 2\gamma_{i,u}$$

$$\sum_{a \in \Omega_a} \sum_{ij \in \Omega_l} z_{ij,a,u} + \sum_{a \in \Omega_a} \sum_{ij \in \Omega_l} z_{ki,a,u} \ge 2\gamma_{i,u}$$

$$2\gamma_{i,u} \qquad \forall i \in \Omega_{bp}, u \in \Omega_u \qquad (49)$$
$$\forall ij \in \Omega_l, i \in \Omega_{bp}, u \in \Omega_u \qquad (50)$$
$$\forall ii \in \Omega, i \in \Omega, u \in \Omega \qquad (51)$$

 $\forall i\in\Omega_{bp}, u\in\Omega_{u}$

$$\sum_{a \in \Omega_{a}} \sum_{ij \in \Omega_{l}} z_{ij,a,u} + \sum_{a \in \Omega_{a}} \sum_{ij \in \Omega_{l}} z_{ki,a,u} \ge 2\gamma_{i,u} \qquad \forall i \in \Omega_{bp}, u \in \Omega_{u} \qquad (49)$$

$$y_{ij,u}^{+} + y_{ij,u}^{-} \le \gamma_{i,u} \qquad \forall ij \in \Omega_{l}, i \in \Omega_{bp}, u \in \Omega_{u} \qquad (50)$$

$$y_{ji,u}^{+} + y_{ji,u}^{-} \le \gamma_{i,u} \qquad \forall ij \in \Omega_{l}, i \in \Omega_{bp}, u \in \Omega_{u} \qquad (51)$$

$$\sum_{a \in \Omega_{a}} z_{ij,a,u} \le \gamma_{i,u} \qquad \forall ij \in \Omega_{l}, i \in \Omega_{bp}, u \in \Omega_{u} \qquad (52)$$

$$\sum_{a \in \Omega_{a}} z_{ji,a,u} \le \gamma_{i,u} \qquad \forall ji \in \Omega_{l}, i \in \Omega_{bp}, u \in \Omega_{u} \qquad (53)$$

$$\sum_{ij \in \Omega_{l}} (y_{ij,u}^{+}) + \sum_{ki \in \Omega_{l}} (y_{ki,u}^{-}) \ge 1 \qquad \forall i \in \Omega_{b} - \Omega_{s}, u \in \Omega_{u}, P_{i,u}^{D} > 0 \qquad (54)$$

$$\sum_{ij \in \Omega_{l}} s_{ij}^{aqr} \ge P_{s}^{i} + Q_{s}^{i} +$$

$$Z_{ji,a,u} \leq Y_{i,u} \qquad \forall jl \in \Omega_l, l \in \Omega_{bp}, u \in \Omega_u$$

$$(y_{ij,u}^+) + \sum_{ki \in \Omega_l} (y_{ki,u}^-) \geq 1 \qquad \forall i \in \Omega_b - \Omega_s, u \in \Omega_u, P_{i,u}^D > 0 \qquad (54)$$

$$\forall i \in \Omega_s, d \in \Omega_d, u \in \Omega_u \qquad (55)$$

$$\forall i \in \Omega_s, d \in \Omega_d, u \in \Omega_u \qquad (55)$$

$$\forall i \in \Omega_s, d \in \Omega_d, u \in \Omega_u \tag{55}$$

 $\forall u\in\Omega_u$

(46)

(47)

(48)

$$Sg_{i,d,u}^{sqr} \leq \left(\sum_{h=1}^{u} \sum_{c \in \Omega_{C}} Sg_{i,c}' \sigma_{i,c,h} + \sum_{h=1}^{u} \sum_{c \in \Omega_{C}} Rg_{i,c}' r_{i,c,h}\right)^{2} \quad \forall i \in \Omega_{s}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$(56)$$

$$V_{i,d,u} \leq \sum_{h=1}^{u} \sum_{c \in \Omega_{C}} Sg_{i,c}' \sigma_{i,c,h} + \sum_{h=1}^{u} \sum_{c \in \Omega_{C}} Rg_{i,c}' r_{i,c,h} \leq 1$$

$$w_{i,c,u} \leq \sum_{\substack{h=1 \\ u}} \sum_{c \in \Omega_C} \sigma_{i,c,h} \qquad \forall i \in \Omega_s, c \in \Omega_c, u \in \Omega_u$$

$$r_{i,c,u} \leq \sum_{\substack{h=1 \\ u}} \sum_{c \in \Omega_C} \sigma_{i,c,h} \qquad \forall i \in \Omega_s, c \in \Omega_c, u \in \Omega_u$$

$$\sum_{\substack{c \in \Omega_C \\ c \in \Omega_c}} \sigma_{i,c,u} \leq 1 \qquad \forall i \in \Omega_s, u \in \Omega_u \qquad (59)$$

$$\forall i \in \Omega_s, u \in \Omega_u \qquad (60)$$

$$\sum_{u\in\Omega_{u}}^{c\in\Omega_{c}}\sum_{c\in\Omega_{c}}\sigma_{i,c,u} \leq 1 \qquad \forall i\in\Omega_{s}, u\in\Omega_{u} \qquad (61)$$
$$\sum_{u\in\Omega_{u}}\sum_{c\in\Omega_{c}}r_{i,c,h} \leq 1 \qquad \forall i\in\Omega_{s}, u\in\Omega_{u} \qquad (62)$$

$$0 \le P_{i,g,d,u}^{gd} \le S_g^{gd} F c_g^{gd} q_{i,g,u} \qquad \forall i \in \Omega_b, g \in \Omega_G, d \in \Omega_d, u \in \Omega_u \qquad (63)$$
$$-S_g^{gd} \sin(\cos^{-1} F c_g^{gd}) a_g^{gd} \le O_g^{gd} \le S_g^{gd} \sin(\cos^{-1} F c_g^{gd}) a_g^{gd} \qquad (64)$$

$$S_{g}^{su} \sin(\cos^{-1}Fc_{g}^{su}) q_{i,g,u}^{su} \le Q_{i,d,u}^{su} \le S_{g}^{su} \sin(\cos^{-1}Fc_{g}^{su}) q_{i,g,u}^{su}$$

$$\forall i \in \Omega_{b}, g \in \Omega_{G}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$(65)$$

$$\sum_{g \in \Omega_G} q_{i,g,u}^{ga} \le 1 \qquad \forall i \in \Omega_b, , u \in \Omega_u \qquad (65)$$

$$\sum_{g \in \Omega_G} \sum_{i \in \Omega_b} q_{i,g,u}^{gd} \le 1 \qquad \forall i \in \Omega_i \qquad (66)$$

$$\sum_{u \in \Omega_u} \sum_{g \in \Omega_G} q_{i,g,u} \ge 1 \qquad \qquad \forall t \in \Omega_b$$

$$\begin{split} &\sum_{u \in \Omega_{u}} \sum_{i \in \Omega_{b}} \sum_{g \in \Omega_{d}} q_{i,g,u}^{gd} \leq \bar{n}^{gds} & (67) \\ & \underline{V}^{2} \leq V_{i,d,u}^{sqr} \leq \overline{V^{2}} & \forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u} & (68) \\ & 0 \leq I_{ij,a,d,u}^{sqr} \leq \overline{I^{2}} z_{ij,a,u} & \forall i \in \Omega_{b}, d \in \Omega_{d}, u \in \Omega_{u} & (69) \\ & 0 \leq I_{ij,a,d,u}^{sqr} \leq \overline{I^{2}} (y_{i,u}^{+} + y_{i,u}^{-}) & \forall i \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u} & (70) \\ & |b_{ij,d,u}| \leq \bar{b} (1 - y_{i,u}^{+} - y_{i,u}^{-}) & \forall i j \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u} & (71) \\ & 0 \leq P_{ij,a,d,u} \leq \overline{VI}_{a} y_{i,u}^{+} & \forall i_{j,u}^{-} & \forall i j \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} & (72) \\ & 0 \leq P_{ij,a,d,u} \leq \overline{VI}_{a} (y_{i,u}^{+} + y_{i,u}^{-}) & \forall i j \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} & (73) \\ & 0 \leq Q_{ij,a,d,u} \leq \overline{VI}_{a} (y_{i,u}^{+} + y_{i,u}^{-}) & \forall i j \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} & (74) \\ & 0 \leq Q_{ij,a,d,u} \leq \overline{VI}_{a} (y_{i,u}^{+} + y_{i,u}^{-}) & \forall i j \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} & (75) \\ & |P_{ij,a,d,u}| \leq \overline{VI}_{a} z_{i,a,u} & \forall \overline{VI}_{a} (y_{i,u}^{+} + y_{i,u}^{-}) & \forall i j \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} & (76) \\ & |Q_{ij,a,d,u}| \leq \overline{VI}_{a} z_{i,a,u} & \forall i f \in \Omega_{l}, a \in \Omega_{a}, d \in \Omega_{d}, u \in \Omega_{u} & (76) \\ & \psi_{ij,u} \in \{0,1\} & \forall \overline{VI}_{a} z_{i,a,u} & \forall i \in \Omega_{s}, c \in \Omega_{c}, u \in \Omega_{u} & (78) \\ & \forall_{ij,u} \in Q_{l}, u \in \{0,1\} & \forall i \in \Omega_{s}, c \in \Omega_{c}, u \in \Omega_{u} & (78) \\ & z_{i,a,u} \in \{0,1\} & \forall i \in \Omega_{s}, c \in \Omega_{c}, u \in \Omega_{u} & (81) \\ & y_{i,j,u}^{d} \in Q_{l}, u \in \{0,1\} & \forall i \in \Omega_{s}, c \in \Omega_{c}, u \in \Omega_{u} & (81) \\ & y_{i,j,u}^{d} \in \{0,1\} & \forall i \in \Omega_{l}, u \in \Omega_{u} & (82) \\ & q_{i,d}^{d} \in \{0,1\} & \forall i \in \Omega_{l}, g \in \Omega_{d}, u \in \Omega_{u} & (82) \\ & q_{i,d}^{d} \in \{0,1\} & \forall i \in \Omega_{l}, g \in \Omega_{d}, u \in \Omega_{u} & (82) \\ & \forall i \in \Omega_{b}, g \in \Omega_{d}, u \in \Omega_{u} & (83) \\ & \forall i \in \Omega_{b}, g \in \Omega_{d}, u \in \Omega_{u} & (83) \\ & \forall i \in \Omega_{b}, g \in \Omega_{d}, u \in \Omega_{u} & (83) \\ & \forall i \in \Omega_{b}, g \in \Omega_{d}, u \in \Omega_{u} & (83) \\ & \forall i \in \Omega_{b}, g \in \Omega_{d}, u \in \Omega_{u} & (83) \\ & \forall i \in \Omega_{b}, g \in \Omega_{d}, u \in \Omega_{u} & (83) \\ & \forall i \in \Omega_{d}, g \in \Omega_{d}, g \in \Omega_{d}, g \in \Omega_{d}, g \in \Omega_{d} & (83) \\ & \forall i \in \Omega_{d}, g \in \Omega_{d}, g \in \Omega_{d$$

Las ecuaciones (36) - (42) representan el punto de operación en estado estacionario de un sistema de distribución. Estas ecuaciones son frecuentemente usadas en el método de barrido iterativo de flujo de carga en sistemas de distribución radiales (Baran & Wu, 1989), (Cespedes, 1990). Las ecuaciones (36) y (37) representan las ecuaciones de potencia activa y reactiva. La ecuación (38) establece la relación entre el flujo de potencia activa y reactiva del circuito ij, la magnitud del cuadrado de la tensión al final del circuito y la magnitud del cuadrado de la corriente en el circuito ij. La restricción (39) calcula la caída de tensión. Como el flujo de potencia activa y reactiva y la magnitud del flujo de corriente están asociados con la selección de cada tipo de conductor a, estas ecuaciones están escritas en términos del total del cuadrado de la magnitud de flujo de corriente, del total del cuadrado del flujo de potencia activa y reactiva y reactiva y reactiva para el circuito ij, los cuales son calculados usando (40) - (42).

Dos variables binarias se utilizan para representar el estado de operación del circuito ij, con el objetivo de mejorar el rendimiento de la solución para el problema PDSDEE, como fue propuesto para el problema de reconfiguración del sistema de distribución en (Franco, et al., 2013) La ecuación (43) permite la selección de uno y sólo un tipo de conductor para circuito *ij* si está conectado, al mismo tiempo (44) permite solamente una dirección de flujo de potencia en un circuito *ij*. La restricción (45) establece que solo un tipo de conductor puede ser seleccionado a la hora de construir o redimensionar un circuito. La restricción (46) establece la antecedencia que debe haber entre la inversión y la operación de los circuitos.

La restricción (47), combinada con (36) y (37), son utilizadas para garantizar la operación radial para el problema PDSDEE, como se muestra en (Lavorato, et al., 2012). En este modelo es considerado el uso de barras de paso (barras que no tienen ni generación y tampoco demanda) y las restricciones (48) - (53) garantizan que estas barras jamás sean barras terminales. La restricción (54) representa la condición que cada nodo con demanda debe ser conectado y alimentado por al menos un circuito. Esta restricción no es necesaria, pero está incluida en el modelo con el fin de disminuir el esfuerzo computacional requerido para su solución de acuerdo con (Franco, et al., 2013).

El cuadrado de la potencia aparente suministrada por cada subestación es calculado usando (55) y está limitado por (56). La restricción (55) es una limitante cuadrática, que reduce al mínimo el costo de operación de las subestaciones en (35), donde el cuadrado de la potencia aparente (en la solución óptima) debe ser igual a la suma del cuadrado de la potencia real y reactiva suministrada por la subestación. Las restricciones (57) y (58) impiden la operación de las subestaciones o sus repotenciaciones solo para utilizarse después de haberse realizado las inversiones. Las restricciones (59) y (60) garantizan elegir solo un tipo de subestación o de repotenciación puede ser seleccionada en caso de ser necesario realizar inversiones en las subestaciones. Las restricciones (61) y (62) limitan el número de instalaciones y repotenciaciones en cada barra candidata.

Las restricciones (63) y (64) limitan la potencia activa y reactiva respectivamente, que puede ser generada por los generadores distribuidos, siempre y cuando estos hayan sido localizados y de acuerdo al tipo de equipo que sea elegido. La restricción (65) limita al modelo al elegir un solo tipo de equipo a ser localizado; mientras la restricción (66) limita a uno el número de GD localizados por nodo. La restricción (67) limita el número total de GDs que pueden ser localizados en todo el sistema a lo largo del horizonte.

En la restricción (68) se establecen los límites de la magnitud de la tensión. La restricción (69) establece los límites de la magnitud del flujo de corriente del circuito *ij* relacionada con cada tipo de conductor *a*, a su vez la restricción (70) limita el flujo de la magnitud de corriente respecto de su estado de operación (conectado o desconectado). La restricción (71) limita la variable $b_{ij,d,u}$ en el estado de funcionamiento del circuito *ij*. Es decir, si el circuito está conectado, entonces $b_{ij,d,u}$ es 0, de lo contrario $b_{ij,d,u}$ está limitado por el \overline{b} , que es elegido de acuerdo a la caída de tensión máxima. Las restricciones (72) – (75) fijan límites para los flujos

de potencia real y reactiva en el circuito *ij*, dependiendo de su estado de funcionamiento. Las limitaciones (76)–(77) establecer los límites de la magnitud de flujo de potencia activa y reactiva del circuito *ij* relacionada con cada tipo de conductor *a*. Las restricciones (78) - (83) establecen la naturaleza binaria de las variables de decisión.

5.2 MODELO LINEAL ENTERO MIXTO PARA EL PROBLEMA DE PDSDEE

Se puede observar que las restricciones (38), (55) e (56) contienen expresiones no lineales que pueden ser sustituidas por aproximaciones lineales. De esta forma el modelo de programación no lineal presentado para el problema de PDSDEE de la sección 5.1 puede ser transformado en un modelo de programación lineal entero mixto (MPLEM):

5.2.1 Linealización del producto $V_{i,d,u}^{sqr} \hat{I}_{ij,d,u}^{sqr}$

La linealización del producto $V_{j,d,u}^{sqr} \hat{I}_{ij,d,u}^{sqr}$ puede ser realizada considerando el cuadrado de la tensión constante en el producto, y obtener la siguiente equivalencia lineal como es presentado en (Tabares, et al., 2014) :

$$\tilde{V}_{j,d,u}^{sqr} \hat{I}_{ij,d,u}^{sqr} \approx V_{i,d,u}^{\prime} \hat{I}_{ij,d,u}^{sqr}$$
(84)

Esta simplificación es una aproximación con un mínimo error, debido al rango limitado para la variación de la magnitud de tensión $[\underline{V}, \overline{V}]$. Para realizar la aproximación de $V'_{i,d,u}$ es realizado el procedimiento descrito en la Figura 18 y propuesto en (Tabares, et al., 2014):

Figura 18 Procedimiento para obtener la estimación de la magnitud de la tensión.

Fuente 17 Autor

5.2.2 Linealización de $\widehat{P}_{ij,d,u}^{2} + \widehat{Q}_{ij,d,u}^{2}$

El conjunto de restricciones (85) - (91) son una adaptación de las restricciones (20) - (25) utilizadas para linealizar la parte derecha de la ecuación (38). Donde los parámetros $m_y^G y \bar{\Delta}^G$ son calculados de una forma diferente al punto de operación y han sido adaptados a las características del problema PDSDEE.

$$\hat{P}_{ij,d,u}^{2} + \hat{Q}_{ij,d,u}^{2} = \sum_{y=1}^{Y} m_{y}^{G} \Delta_{ij,d,y,u}^{Pg} + \sum_{y=1}^{Y} m_{y}^{G} \Delta_{ij,d,y,u}^{Qg} \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$(85)$$

$$\hat{P}_{ij,d,u} = P^+_{ij,d,u} - P^-_{ij,d,u} \qquad \forall ij \in \Omega_l, a \in \Omega_a, d \in \Omega_d, u \in \Omega_u$$

$$\forall ij \in \Omega_l, a \in \Omega_a, d \in \Omega_d, u \in \Omega_u \quad (87)$$

$$\forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u \quad (88)$$

(86)

$$\forall ij \in \Omega_l, d \in \Omega_d, u \in \Omega_u \quad (89)$$

$$\Delta^{Pg}_{ij,d,y,u} \leq \bar{\Delta}^{G} \qquad \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}, y = 1, \dots, Y \quad (90)$$

$$\Delta^{Qg}_{ij,d,y,u} \leq \bar{\Delta}^{G} \qquad \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}, y = 1, \dots, Y \quad (91)$$

Donde,

 $\hat{Q}_{ij,d,u} = Q_{ij,d,u}^+ - Q_{ij,d,u}^-$

 $P_{ij,d,u}^{+} + P_{ij,d,u}^{-} = \sum_{y=1}^{Y} \Delta_{ij,d,y,u}^{Pg}$

 $Q_{ij,d,u}^+ + Q_{ij,d,u}^- = \sum_{y=1}^{Y} \Delta_{ij,d,y,u}^{Qg}$

$$m_y^G = (2y - 1)\overline{\Delta}^G$$
 (93)

$$\bar{\Delta}^{G} = \frac{\overline{V}}{Y} \max\{I_{a}, a \in \Omega_{a}\}$$
(94)

5.2.3 Linealización de $P_{i,d,u}^{S^{2}} + Q_{i,d,u}^{S^{2}}$

El lado derecho de la restricción (55) es linealizado utilizando la misma técnica con la que se linealizó el lado derecho de la ecuación (36). Esta linealización es mostrada en (95), donde los términos del lado derecho representan las aproximaciones lineales para $P_{i,d,u}^{S}{}^{2}$ y $Q_{i,d,u}^{S}{}^{2}$. Las restricciones (96) e (97) muestran que $P_{i,d,u}^{S}{}^{2}$ e $Q_{i,d,u}^{S}{}^{2}$ son la suma de las variables de discretización $\Delta_{i,d,y,u}^{PS}$ y $\Delta_{i,d,y,u}^{Q^{S}}$ respectivamente. Las restricciones (98) y (99) definen los límites de los valores para las variables de discretización y las ecuaciones (101) y (102) calculan los parámetros usados.

$$P_{i,d,u}^{S} \stackrel{2}{=} P_{i,d,u}^{S} \stackrel{2}{=} \sum_{y=1}^{Y} m_{i,y}^{S} \Delta_{i,d,y,u}^{pS} + \sum_{y=1}^{Y} m_{i,y}^{S} \qquad \forall i \in \Omega_{s}, d \in \Omega_{d}, u \in \Omega_{u} \qquad (95)$$

$$P_{i,d,u}^{S} = \sum_{y=1}^{Y} \Delta_{i,d,y,u}^{pS} \qquad \forall i \in \Omega_{s}, d \in \Omega_{d}, u \in \Omega_{u} \qquad (96)$$

$$Q_{i,d,u}^{S} = -\sum_{y=1}^{Y} \Delta_{i,d,y,u}^{QS} \qquad \forall i \in \Omega, d \in \Omega, u \in \Omega \qquad (97)$$

$$Q_{i,d,u} = \sum_{y=1}^{M} \Delta_{ijd,y,u} \qquad \qquad \forall i \in \Omega_s, u \in \Omega_d, u \in \Omega_u \qquad (97)$$
$$\Delta_{i,d,y}^{P^S} \leq \bar{\Delta}_i^S \qquad \qquad \forall i \in \Omega_s, d \in \Omega_d, u \in \Omega_u, y = 1, ..., Y \qquad (98)$$

$$\Delta_{i,d,y}^{Q^S} \leq \bar{\Delta}_i^S \qquad \forall i \in \Omega_s, d \in \Omega_d, u \in \Omega_u, y = 1, \dots, Y \qquad (99)$$

$$m_{i,y}^{S} = \frac{5}{6}\bar{\Delta}_{i}^{S} \qquad \qquad \forall i \in \Omega_{s}, y = 1 \qquad (100)$$

$$m_{i,y}^{S} = (2y - 1)\overline{\Delta}_{i}^{S} \qquad \forall i \in \Omega_{s}, y = 2, \dots, Y$$
(101)

$$\bar{\Delta}_{i}^{S} = \frac{\max\{Sg_{i,c}' + Rg_{i,c}', \ c \in \Omega_{C}\}}{Y} \qquad \forall i \in \Omega_{s}$$
⁽¹⁰²⁾

5.2.4 Linealización de $\left(\sum_{h=1}^{u}\sum_{c\in\Omega_{c}}Sg'_{i,c}\sigma_{i,c,h}+\sum_{h=1}^{u}\sum_{c\in\Omega_{c}}Rg'_{i,c}r_{i,c,h}\right)^{2}$

Por último, la restricción (56) es sustituida por la ecuación (103) al resolver la diferencia de cuadrados y tener en cuenta que las variables de decisión son de naturaleza binaria.

$$Sg_{i,d,u}^{sqr} \leq \sum_{h=1}^{u} \sum_{c \in \Omega_{C}} Sg_{i,c}^{\prime 2} \sigma_{i,c,h} + \sum_{h=1}^{u} \sum_{c \in \Omega_{C}} Rg_{i,c}^{\prime 2} r_{i,c,h} + 2 \sum_{h=1}^{u} \sum_{c \in \Omega_{C}} Sg_{i,c}^{\prime} Rg_{i,c}^{\prime} r_{i,c,h}$$

$$\forall i \in \Omega_{s}, d \in \Omega_{d}, u \in \Omega_{u}$$

$$(103)$$

5.3 MODELO LINEAL ENTERO MIXTO

Teniendo en cuenta las linealizaciones propuestas, el MPLEM propuesto es el siguiente:

Min (35)

Sujeto a:

$$\left(V_{i,d,u}'\right)^{2} \hat{I}_{ij,d,u}^{sqr} = \sum_{y=1}^{Y} m_{y}^{G} \Delta_{ij,d,y,u}^{Pg} + \sum_{y=1}^{Y} m_{y}^{G} \Delta_{ij,d,y,u}^{Qg} \qquad \forall ij \in \Omega_{l}, d \in \Omega_{d}, u \in \Omega_{u}$$
(104)

$$Sg_{i,d,u}^{sqr} = \sum_{y=1}^{Y} m_{i,y}^{S} \Delta_{i,d,y,u}^{P^{S}} + \sum_{y=1}^{Y} m_{i,y}^{S}$$

 $\forall i\in\Omega_{s}, d\in\Omega_{d}, u\in\Omega_{u}$

(105)

6 RESULTADOS PROBLEMA DE PLANEACIÓN DE LA EXPANSIÓN

Son realizados test computacionales utilizando el lenguaje de programación AMPL (Fourer, et al., 2003) con el objetivo de testar los modelos propuestos para resolver el PDPESD. Es utilizado el lenguaje de programación CPLEX (CPLEX Division, ILOG Inc, 2008) para resolver el MPLEM en los sistemas de 23 y 54 nodos para el caso de la planeación estática y dos test uno de 18 y 24 nodos adaptados de la literatura especializada para el caso de la planeación dinámica. Todas las simulaciones fueron efectuadas utilizando un computador con procesador i3 2328M CPU@2.20GHz.

6.1 TEST PARA LA PLANEACIÓN ESTÁTICA

6.1.1 Sistema de 23 nodos

El sistema de distribución de 23 nodos es una red de 34.5 kV, alimentada por una subestación de 10 MVA, que alimenta un área de producción de aceite con 21 nodos y un total de 7.04 MVA de carga, las rutas propuestas son mostradas en la Figura 19. Todos los conductores son de aluminio 1/0 y 4/0 y son utilizados los mismos parámetros encontrados en (Franco, et al., 2014). Para estos test, la desviación máxima de la tensión permitida es del 3%, el factor de potencia medio es igual a 0.9, el costo de pérdidas de energía es de 0.05 US\$/kWh, el factor de perdidas es de 0.35, la tasa de interés es de 10 % y el periodo de planeación es de 20 años.

Tres tipos de test fueron realizados: Test 1 - planeación considerando solamente la construcción de circuitos; Test 2 – planeación considerando la construcción de circuitos y subestaciones. Test 3- planeación considerando la construcción de circuitos, subestaciones y la localización de generadores distribuidos.

Figura 19 Rutas candidatas para el sistema de 23 nodos

Fuente 18 Autor

6.1.1.1 Test 1 – planeación considerando solamente la construcción de circuitos

El proceso de optimización encontró una solución de US\$ 170,237 en un tiempo de 3.56 s. Esta solución encuentra un costo menor del presentado en (Franco, et al., 2014) y otros trabajos de la literatura como se muestra en la Tabla IX, donde la única diferencia con dicha solución es la no construcción del circuito 2-8, fruto de la formulación considerando barras de paso, al considerar al nodo 2 como un nodo de carga.

El plan de expansión encontrado con el modelo lineal se resume en la Figura 20, allí se propone la construcción de todos los circuitos usando el conductor tipo 1/0, excepto el circuito 1-10, que es construido con el conductor que posee mayor capacidad de corriente. Además, los circuitos 3-8, 3-16, 4-6, 4-8, 4-9, 5-14, 6-16, 11-22, 12-15, 13-15, 15-21, 16-22 y 19 -20 no fueron construidos.

Fuente 19 autor

Tabla IX Resumen de resultados para el test 1 (US\$)

Soluciones	IC	PC	Costo Total
(Lavorato, et al., 2010)	151,892	20,227	172,119
(Franco, et al., 2014)	153,913	17,056	170,969
Modelo lineal	153,157	17,080	170,237

El uso de una representación de las restricciones de radialidad teniendo en cuenta barras de paso, permite que la solución encontrada para este test sea mejor comparada con resultados presentados en estudios previos. El modelo lineal presenta errores que son inherentes a la

aproximación equivalentes al 0.14% con respecto al cálculo obtenido a través de un flujo de carga no lineal.

6.1.1.2 Test 2 – planeación considerando la construcción de circuitos y subestaciones

En este test la capacidad máxima de la subestación 1 ha sido cambiada a 4 MVA y en el nodo 2 hay una subestación candidata con una capacidad máxima de 4 MVA, con un costo de construcción de \$ US 1000 x 10³ y el costo de operación de la subestación de \$ 0.01/VAh.

Para esta prueba la solución encontrada es ligeramente mayor a la presentada por (Lavorato, et al., 2010) como se observa en la Tabla X, la solución con el modelo lineal presenta un error en el cálculo del costo de las pérdidas de potencia activa de 0.11% y un error en el cálculo de los costos de operación del 0.002% comparados con los resultados obtenidos por el flujo de carga no lineal.

Tabla X Resumen resultados para el Test 2 (US\$)

Soluciones	IC	PC	IS	OS	Costo total
(Lavorato, et al., 2010)	149,712	14,259	1,000,000	6,492,761	7,656,733
Modelo lineal	149,712	14,275	1,000,000	6,492,885	7,656,872

El plan de expansión construye la subestación candidato 2, los circuitos 3-8, 3-16, 4-6, 4-8, 4-9, 5-14, 6-10, 16-14, 11-21, 12-15, 13-15, 14-17, 16-22 y 19-20 no fueron construidos y está representado en la Figura 21.

Figura 21 Solución test 2

Fuente 20 Autor

6.1.1.3 Test 3- planeación considerando la construcción de circuitos, subestaciones y la localización de generadores distribuidos.

En este test, son llevadas en cuenta las consideraciones generales del test 1, adicionalmente se consideran las condiciones de la Tabla XI para la localización de generadores distribuidos:

Tipo	Costo instalación	Potencia Máxima	Factor de potencia
	(US \$)	(kVA)	
1	6,000	1,000	0.95
2	10,000	2,000	0.85

Tabla XI Tipos de generadores distribuidos

De acuerdo con la Tabla XII, se observa que el valor de la función objetivo es inferior a la obtenida en la solución para el test 1, donde en ambos casos tienen la misma topología final pero adicionalmente en la solución del test 3 es localizado un generador distribuido tipo 1 en el nodo de carga 9. El plan de expansión para el sistema de distribución de 23-nodos modificado es mostrado en la Figura 22.

Fuente 21 autor

El error de la aproximación que el modelo lineal representa con respecto costo de las pérdidas de potencia activa de 0.007%.

Tabla XII Resumen	de resultados para	a el Test 3 (US\$)
-------------------	--------------------	--------------------

Soluciones	IC	PC	Otros activos	Costo Total
(Franco, et al., 2014)	153,913.0	16,511.00	400	170,824.00
Modelo lineal	153,157.3	10,026.86	6,000	169,184.16

6.1.2 Sistema de 54 nodos

El sistema de distribución de 54 nodos tiene una tensión nominal de 13.5 kV, 50 nodos de carga y nos alimenta y genera una 107. 8 MVA. El sistema tiene 2 subestaciones que pueden ser repotenciadas y existe la posibilidad de construir dos subestaciones más. Para la construcción/reconductoramiento de circuitos se consideran dos tipos de conductores. La

magnitud de la tensión mínima es igual a 0.95 p.u, el costo de la pérdida de energía es \$US0.1/ kWh, el factor de pérdida es igual a 0.35, la tasa de interés es 0.1, el horizonte de planeación es de 20 años y los costos de operación de subestación \$ US 0.1 / kVAh. En la Figura 23 muestra la configuración inicial del sistema

Fuente 22 (Lavorato, 2010)

Se llevan a cabo tres tipos de pruebas: Test 1 prueba-planeación teniendo en cuenta los costos de las subestaciones; Test 2 planeación sin considerar los costos de operación las subestaciones; Test 3 planeación sin considerar los costos de operación las subestaciones y permitiendo la localización de generadores distribuidos.

6.1.2.1 Test 1 – planeación considerando costos de operación de las subestaciones

El proceso de optimización encontró una solución de US \$ 3,331,562. Esta solución es mejor que la encontrada en (Lavorato, et al., 2010) e igual a la solución presentada por (Franco, et

al., 2014) en términos de la inversión, solo que se presenta una diferencia en el costo total derivada de la aproximación del modelo lineal en el costo del valor de las pérdidas de potencia activa. El plan de expansión consiste en la construcción de subestaciones 2, y todos los circuitos se construyen utilizando el conductor tipo 1. Además, el circuito 8-7 fue desconectado y se construyeron los circuitos 18-17, 22-9, 8-25, 27-8, 28-6, 10-31, 43-13, 33-39, 16-40 y 47-42. Este plan es mostrado en la Figura 24.

Figura 24 Plan de expansión para el sistema de 54 nodos para el test 1

La Tabla XIII muestra que la solución obtenida por el modelo lineal es la misma que la encontrada en el trabajo de (Franco, et al., 2014) pero presenta una diferencia en el cálculo de las pérdidas de potencia activa y el cálculo de la potencia aparente generada por las subestaciones. El error en el cálculo de las pérdidas en modelo lineal es 23.12% y el error en el cálculo de la potencia aparente generada por las subestaciones es 0.0021%.

Soluciones	IC	PC	IS	OS	Costo total
(Lavorato, et al., 2010)	39,576	2,777	540,000	2,933,618	3,515,970
(Franco, et al., 2014)	40,544	2,372	440,000	2,845,946	3,328,862
Modelo lineal	40,544	2,925	440,000	2,848,094	3,331,562

Tabla XIII Resumen de resultados para el sistema de 54 barras (US\$)

6.1.2.2 Test 2 – planeación sin considerar costos de operación de las subestaciones.

La solución del problema para el sistema de distribución de 54 nodos modificado, el cual no tiene en cuenta los costos de operación en las subestaciones, tiene una función objetivo de US\$ 327,727, que repotencia a las subestación S2 y construye a la subestación S3. En este test, el circuito 3-4 ha sido desconectado y los circuitos 21-S4, S4-22, 22-9, 27-8, 28-6, 30-S4, 10-31, 33-39, 40-41 y 42-41 no son construidos. Todo el plan es ilustrado en la Figura 25.

La solución obtenida por el modelo lineal para las inversiones en circuitos y subestaciones es la misma que la obtenida en el trabajo de (Franco, et al., 2014), sin embargo se tiene un error en el cálculo de las pérdidas de 6.5 %, en la tabla Tabla XIV se comparar los resultados.

Tabla XIV Resumen de resultados para el sistema de 54 nodos (US\$) sin costos de operación

Soluciones	IC	PC	IS	Costo total
(Franco, et al., 2014)	40,416	6,861	280,000	327,277
Modelo lineal	40,416	7,311	280,000	327,727

Figura 25 Plan de expansión para el sistema de 54 nodos para el test 2

Fuente 24 autor

6.1.2.3 Test 3- planeación considerando costos de operación de las subestaciones y permitiendo la localización de generadores distribuidos

En este test, son llevadas en cuenta las consideraciones generales del test 1, adicionalmente se consideran las condiciones de la Tabla XI para la localización de generadores distribuidos:

Tipo	Costo instalación (US \$)	Potencia Máxima (kVA)	Factor de potencia
1	9,000	1,000	0.95
2	18,000	2,000	0.85

Tabla XV Tipos de generadores distribuidos

El plan de expansión obtenido se encuentra en la Figura 26, y allí se representan los generadores distribuidos instalados todos del tipo 2 (nodos 8, 10, 33, 37 y 39).

Figura 26 Plan de expansión para el sistema de 54 nodos del test 3

Fuente 25 autor

Este test muestra que considerando la localización de generadores distribuidos lleva a soluciones de menores costos comparado con la solución básica del test 1, donde no se considera la localización de generadores distribuidos, reduciendo las pérdidas de potencia activa y los costos de inversión en circuitos. El error total es de 0.027%.

Tabla XVI Resumen resultados para el sistema de 54 barras (US\$) con generadores distribuidos

Soluciones	IC	PC	OS	IS	IGD	Costo total
Modelo lineal	39,700	1,725.60	2,051,900.81	440,000	90,000	2,623,326.41

6.2 TEST PARA EL PLANEAMIENTO DINÁMICO

6.2.1 Sistema de 18 nodos

Para evaluar los modelos propuestos en este trabajo se ha utilizado una red ficticia adaptada de (Haffner, et al., 2008) compuesta de 18 nodos (2 subestaciones y 16 nodos de carga) y 24 circuitos, operando a 13.8 kV. La topología inicial de la red se muestra en la Figura 27, los
rectángulos representan las subestaciones, los circuitos como líneas continuas indican la red inicialmente construida y los circuitos con líneas discontinuas son candidatos a ser adicionados.

Figura 27 Topología inicial sistema 18 nodos

Fuente 26 (Haffner, et al., 2008)

Este trabajo considera un horizonte de planeación de 15 años subdividido en períodos de 5 años cada uno. La tasa de recuperación es del 10%. Los límites de tensión máxima y mínima son 1.05 y 0.9. p.u respectivamente. El precio de la energía para cada nivel de carga es de 10, 6 y 4 centavos/kWh. El costo total de inversión y operación a lo largo del horizonte de planeación es US\$ 13,101.32 $\times 10^3$, la Tabla XVII contiene una descripción de los costos principales que conforman el total de inversiones.

IS	IC	PC	Co	Costo total	
10,453.81	1,559.60	1,087.91	1	13,101.32	
Etapa		1	2	3	
Inversiones en las sube	estaciones	5,150	7,300	2,000	
Construcción		3,650	7,300	0	
Repotenciación		1,500	0	2,000	
Inversión en circuitos		1,015.33	623	408.33	
Costo perdidas en los c	circuitos	366.6	341.97	379.35	
Perdidas en los circuito	08	0.265	0.398	0.7111	

Tabla XVII Costos totales (10³US \$) y por etapa para el sistema de 18 nodos

La Figura 28, la Figura 29 y la Figura 30 muestran las topologías encontradas para cada etapa. Donde los circuitos de color azul oscuro representan el uso del conductor tipo 3, los circuitos de color azul claro usan el conductor tipo 2 y finalmente los circuitos grises utilizan el conductor tipo 1. El cuadro rojo en la subestaciones representa la acción de una repotenciación en la etapa. Algunos datos relevantes de la mejor solución encontrada son presentados en la Tabla XVIII.

Etana NC		PPA	A PPR TM		Potencia Subestaciones(kVA)		
F	ne	(kW)	(kVAr)	(p.u)	17	18	
1	1	456.86	728.17	0950	0.00	12,881.61	
	2	155.63	247.55	0.950	0.00	7,468.340	
	3	20.32	30.000	1.032	0.00	2,440.650	
2	1	498.27	863.15	0.955	9,957.80	12,015.89	
	2	307.98	569.99	0.994	11,277.85	9,545.010	
	3	26.02	44.310	1.032	3,167.760	2,764.720	
3	1	892.08	1,713.17	0.955	15,655.44	14,026.04	
	2	543.40	1,063.91	0.961	12,391.18	10,796.55	
	3	61.380	119.32	1.022	4,152,820	3,654.160	

Tabla XVIII Datos relevantes para los niveles de demanda por etapa

PPA: Perdidas de potencia activa, PPR: perdidas de potencia reactiva, TM: Tensión mínima, NC: Nivel de Carga.

En la etapa 1 se construye y repotencia la subestación 18 con la opción tipo 2. En este mismo escenario son reconductorizados los circuitos 4, 5 y 8; los circuitos 15, 18, 19, 21 y 23 se construyen utilizando el tipo de conductor de menor capacidad, el circuito 9 se construye con el conductor de mediana capacidad y los circuitos 11, 12, 13 y 20 se construyen con el conductor de mayor capacidad.

Figura 28 Topología etapa 1 para el sistema de18 nodos

Fuente 27 autor

En la etapa 2 se construye la subestación 17 y los nodos de carga 1, 5, 9 y 13 que previamente fueron servidos por subestación 18, ahora son servidos por nueva subestación. En esta etapa son instalados los circuitos 1, 3,6, 17 y 22. Además, los circuitos de 11 y 15 fueron reconductorizados, los dos trabajando con el conductor de mayor capacidad.

Figura 29 Topología etapa 2 para el sistema 18 nodos

Fuente 28 autor

Durante la última etapa la subestación 17 es repotenciada y los circuitos 1, 19, 21 son reconductorizados. Para resolver este problema, el parámetro Y fue igual a 20, con un error en el cálculo de aproximación de las pérdidas de 0.43%.

Figura 30 Topología etapa 3 para el sistema de 18 nodos

Fuente 29 autor

6.2.2 Sistema de 24 nodos

Para este este fue utilizado un sistema test inspirado en el presentado en (Gönen & Ramirez-Rosado, 1986) pero que presenta variaciones en la topología inicial, las cuales fueron realizadas para mostrar la eficacia de la formulación.

Este sistema cuenta con 24 nodos (4 de ellos son subestaciones y los 20 restantes son nodos de carga) operando a una tensión nominal de 13.8 kV. La topología inicial de SDEE es mostrada en la Figura 31, donde los rectángulos representan las subestaciones, los círculos negros representan los nodos de carga, los circuitos en líneas continuas representan la red inicial del sistema y los circuitos en línea discontinuas son candidatos para ser adicionados. En el estado inicial, las subestaciones A y B están construidas con el tipo de subestación 1 y 2 respectivamente, las subestaciones C y D pueden ser construidas usando solo el tipo de subestación tipo 3. Finalmente, para todos los casos de prueba se considera al parámetro Y igual a 20.

Figura 31 Estado inicial para el sistema de distribución de 24 nodos

En este trabajo se adoptó un horizonte de planeación de 15 años dividido en tres periodos iguales de 5 años, así como una tasa de interés del 10%, los límites de tensión fueron de 0.97 y 1 p.u, el factor de potencia usado fue de 0.9 y el precio de la energía fue de US\$ 0.10/kWh. Con los anteriores datos fueron desarrollados dos test diferentes 1) dinámico, teste 2) dinámico con GDs.

6.2.2.1 Planeamiento Dinámico

Las opciones de planeación consideradas para este test son:

- La repotenciación de subestaciones existentes;
- La construcción de nuevas subestaciones;
- El reconductorización de circuitos existentes;
- La construcción de nuevos circuitos;
- Cambios en la topología del sistema.

Este caso fue resuelto en 71,532.14 s y la solución encontrada tiene una función objetivo igual a US\$ 3,717,910. En la etapa 1, los circuitos 12, 13, 14, 25 y 30 fueron construidos con el tipo de conductor 1, mientras el circuito 32 fue construido con el tipo de conductor tipo 2.

En la etapa 2 la subestación C es construida y utilizada para generar la energía en pro del atendimiento de algunas cargas que fueron transferidas de la subestación A (carga del nodo 3) y de la subestación B (carga de los nodos 4, 7, 9, 10,16), además, fueron construidos los

circuitos 6, 10,17 y 23 este último con el conductor de mayor capacidad y los conductores 4 y 24 fueron reconductorizados pasando al tipo de conductor de mayor capacidad.

En la etapa 3 la subestación D es construida junto con los circuitos 33 y 34 con el tipo de conductor 1 para atender las nuevas cargas que aparecen al final del horizonte de planeación. El resumen de las topologías encontradas para cada uno de las etapas es presentado en la Figura 32, donde los circuitos de color negro representan los conductores tipo 2 de mayor capacidad, mientras que los circuitos grises están operando con el conductor tipo 1 de menor capacidad.

6.2.2.2 Planeamiento Dinámico incluyendo GD

Las opciones de planeación consideradas para este test son:

- La repotenciación de subestaciones existentes;
- La construcción de nuevas subestaciones;
- El reconductoramiento de circuitos existentes;
- La construcción de nuevos circuitos;
- La localización de generadores distribuidos;
- Cambios en la topología del sistema.

Este caso fue resuelto en 26,296.16 s y la solución encontrada tiene una función objetivo igual a US\$ 1,759,550.

En la etapa 1, los circuitos 2 y 12 fueron construidos con el tipo de conductor 1, mientras el circuito 8 fue construido con el tipo de conductor tipo 2. Adicionalmente, los circuitos 7 y 24 fueron reconductorizados pasando a operar con el conductor de mayor capacidad.

En la etapa 2 la subestación A es repotenciada, además, fueron construidos los circuitos 3,17, 30, 21 y 32 los dos últimos con el conductor tipo 2 de mayor capacidad. Los circuitos 4, 5, 15, 19 y 20 fueron repotenciados.

En la etapa 3 son localizados generadores distribuidos del tipo 1 en los nodos 11, 14 y 18, del tipo 2 en el nodo 10 y tipo 3 en el nodo 13. Se construyeron los circuitos 25, 28, 29 y 31 todos con el tipo de conductor 1. El resumen de las topologías encontradas para cada uno de las etapas es presentado en la Figura 32, donde los circuitos de color negro representan los conductores tipo 2 de mayor capacidad, mientras que los circuitos grises están operando con el conductor tipo 1 de menor capacidad, los círculos de colores representan la localización de un GD en ese nodo, donde el color naranja es tipo 1, azul para el tipo 2 y el verde para el tipo 3.

Los resultados obtenidos a través del MPLEM, están resumidos en la Tabla XIX y muestran la influencia en la planeación de los SDEE al tener en cuenta la generación distribuida que incluso puede llevar a la obtención de soluciones con un menor grado de inversión, para el caso de prueba se observa una diferencia entre las dos funciones objetivo de 52.67%.

Las pérdidas de potencia activa fueron comparadas con el punto de operación para la solución del problema de PDSDEE usando el método de barrido iterativo para el problema de FC y que

se encuentran resumidos en la Tabla XX, donde se observa que los errores de la aproximación lineal donde se observa que los errores de aproximación son pequeños lo que muestra la exactitud del modelo propuesto.

Tabla XIX Resumer	n de resultados
-------------------	-----------------

Casos	IS	IC	PC	IGD	Costo total
SB	3,019.39	453.88	244.63	0	3,717.91
SGD	620.92	536.54	320.64	281.45	1,759.55

SB: Solución base, SGD: Solución con GDs, costos en 10³US\$.

Tabla XX	Error de	aproximación	de las	pérdidas	de potencia	activa

Casos	Perdidas dadas por el flujo de carga (kW)	Perdidas dadas por el modelo (kW)	Error
SB	2,877.66	2,877.85	-0.007%
SGD	3,753.62	3,652,39	-2.770%

En este trabajo se desarrolló una metodología para el planeamiento óptimo de sistemas de distribución, en la que inicialmente se usó un modelo matemático no lineal. Considerando metodologías propuestas en otros trabajos, se realizó una relajación para la formulación no lineal que consistió en una linealización de las restricciones no lineales. Dicha relajación también se aplicó para calcular el flujo de carga del sistema evaluado. La anterior formulación permitió el uso de técnicas de optimización lineales para obtener la respuesta. Para verificar el modelo planteado se usaron diversos sistemas de prueba obteniendo buenos resultados.

El modelo matemático presentado asegura una topología radial y conectada con el cumplimiento de las restricciones técnicas y garantiza que todos los nodos de carga o de generación estén conectados al sistema, también disminuye la probabilidad de conectar nodos sin carga o sin generación.

Para cualquier tamaño de sistema de distribución el Modelo matemático presentado se comporta bien y entrega resultados razonablemente buenos.

Se empleó el lenguaje AMPL (Fourer, et al., 2003) con el fin de probar los modelos propuestos para resolver el PDPESD, el cual proporcionó excelentes ventajas por su robustez, facilidad y flexibilidad de programación, y permitió obtener respuestas en tiempos computacionales no muy elevados.

Tres tipos de test fueron realizados: Test 1 - planeación considerando solamente la construcción de circuitos; Test 2 – planeación considerando la construcción de circuitos y subestaciones. Test 3- planeación considerando la construcción de circuitos, subestaciones y la localización de generadores distribuidos, con lo cual fue posible comprobar la influencia en la planeación de los SDEE al tener en cuenta la generación distribuida que incluso puede llevar a la obtención de soluciones con un menor grado de inversión.

Se realizaron test empleando tanto planeamiento estático como dinámico, y aunque no es posible comparar los resultados, en el segundo caso refleja una mejor estrategia de inversión, ya que define el momento propicio durante el horizonte de planeamiento para hacer las inversiones sobre el sistema.

Al emplear la linealización en algunas restricciones del modelo matemático resultaron nuevas restricciones y variables, que aumentaron el tamaño del modelo matemático inicial, sin embargo resulta más sencillo para encontrar la solución. La precisión de los resultados dependió del número de linealizaciones, entre más sean éstas los errores serán más pequeños, sin embargo los tiempos computacionales se aumentan.

8 REFERENCIAS

Adams, R. & Laughton, M., 1974. Optimal Planning of Power Networks using Mixed Integer Programming. *Proceedings IEEE*, 121(2), pp. 139-147.

Arrillaga, J., Arnold, C. P. & Harker, B. J., 1990. *Computer Analysis of Power Systems*. New York: Jhon Wiley & Sons.

Baran, M. & Wu, F., 1989. Optimal capacitor placement on radial distribution systems. *IEEE Trans. Power Del.*, Jan, Volumen 4, pp. 725-734.

BERNAL-AGUSTÍN, J., 1998. Application of genetic algorithms to the optimal design of power distribution systems. Thesis (Doctoral) ed. Zaragoza: University of Zaragoza.

Carrano, E. G. y otros, 2006. Electric distribution network multiobjective design using a problem-specific genetic algorithm. *IEEE Transactions on Power Delivery*, 21(2), pp. 95-1005.

Castro, C. A., 1985. *Reconfiguração Automática de Redes de Distribuição de Energia Elétrica*. Campinas: Tesis Maestria Universidad Estatal de Campinas.

Cespedes, R., 1990. New method for the analysis of distribution networks. *IEEE Trans. Power Del.*, Jan., 5(1), pp. 391-396.

Cossi, A., 2008. *Planejamento de redes de distribuição de energia elétrica de média e baixa tensão*, Ilha Solteira: Universidade Estadual Paulista.

CPLEX Division, ILOG Inc, 2008. CPLEX Optimization subroutine library guide and reference, version 11.0. In:: Incline Village, NV USA: Springer-Verlag.

Fawzi, T., Ali, K. & El-Sobki, S., 1982. Routing Optimization of Primary Rural Distribution Feeders. *IEEE Trans. on Power Apparatus and Systems*, PAS-101(5), pp. 1129-1133.

Fourer, R., Gay, D. M. & Kernighan, B. W., 2003. *AMPL: A modeling language for mathematical programming.* 2nd ed. Pacific Grove: CA: Cole-Thomson Learning.

Franco Baquero, J., 2012. Estratégia de Decomposição aplicada ao Problema de Planejamento da Expansão de Sistemas de Distribuição. Sao Paulo: Tesis Doctoral Universidade Estadual Paulista.

Franco, J. F., Rider, M. J., Lavorato, M. & Romero, R., 2013. A mixed-interger LP model for the reconfiguration of radial electric distribution systems considering distributed generation. *Elect. Power Syst. Res.*, Apr, Volumen 97, pp. 51-60.

Franco, J. F., Rider, M. J., Lavorato, M. & Romero, R. A., 2013. A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems. *Elec. Power Ener. Syst.*, Jun, Volume 48, p. 123–130.

Franco, J., Rider, M. & Romero, R., 2014. A mixed-integer quadratically constrained programming model for the distribution system expansion planning. *Elec. Power Ener. Syst.*, Apr, Volumen 62, pp. 265-272.

Gallego Rendon, R. A., Escobar Zuluaga, A. & Toro Ocampo, E. M., 2008. *Técnicas Metaheurísticas de Optimización*. Segunda ed. Pereira: Taller de publicaciones Universidad Tecnológica de Pereira.

Garcés, A., 2005. *Reconfiguración de alimentadores primarios usando una metodología combinatorial bajo un modelamiento trifásico*. Pereira: Tesis Maestría, Universidad Tecnológica de Pereira .

Gitizadeh, M., Vahed, A. & Aghaei, J., 2013. Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms. *Applied Energy*, Issue 101, p. 655–666.

Gonçalves, R. R., 2013. *Modelos de programação linear inteira mista para resolver problemas de otimização de sistemas de distribuição de enérgia elétrica*, Ilha Solteira: Universidade Estadual Paulista.

Gonçalves, R. R., Alves, R. P., Franco, J. F. & Rider, M. J., 2013. Operation Planning of Electrical Distribution Systems Using a Mixed Integer Linear Model. *J Control Autom. Electr. Syst.*, Jun, Volumen 24, p. 668–679.

Gönen, I. & Ramirez-Rosado, I., 1986. Review of distribution system planning models: a model for optimal multi-stage planning. *IEE Proceeding Part-C 133*, Nov, 133(7), p. 397–408.

Gönen, T. & Foote, B., 1981. Distribution-System Planning using Mixed-Integer Programming. *Proceedings IEE*, 128(2), pp. 70-79.

Goswami, S., 1997. Distribution system planning using branch exchange technique. *IEEE Transactions on Power Systems*, 12(2), pp. 718-723.

Goswami, S. & Basu, S. K., 1992. A new algorithm for the reconfiguration of distribution feeders for loss minimization. *IEEE Trans. Power Delivery*, 7(3), pp. 1484-1491.

Haffner, S., Pereira, L., Pereira, L. & Barreto, L., 2008. Multistage model for distribution expansion planning with distributed generation –part II: numerical results. *IEEE Trans. Power Del.*, Apr, 23(2), pp. 915-923.

Hindi, K. & Brameller, A., 1977. Design of Low-Voltage Distribution Networks:A Mathematical Programming Method. *Proceedings IEE*, 124(1), pp. 54-58.

Kaplan, M. & Braunstein, A., 1981. Contribution to the Determination of the Optimum Site for Substation. *IEEE Trans. on Power Apparatus and Systems*, 5(PAS-100), pp. 2263-2270.

Lavorato, M., 2010. *Planejamento Integrado da Expansão de Sistemas de Distribuição de Energia Elétrica*, Campinas: Universidade Estadual de Campinas.

Lavorato, M., Franco, J. F., Rider, M. J. & Romero, R., 2012. Imposing radiality constraints in distribution system optimization problem. *IEEE Trans. Power Syst*, Fev, 27(1), pp. 172-180.

Lavorato, M., Rider, M., Garcia, A. V. & Romero, R., 2010. A construtive heuristic algorithm for distribution system planning. *IEEE Trans. Power Syst.*, Ago, 25(3), pp. 1734-1742.

Leung, L., Khator, S. & Schnepp, J., 1995. Planning Substation Capacity Under the Single-Contingency Scenario. *IEEE Trans. on Power Systems*, PWRS-10(3), pp. 1442-1447.

Lopes, P. J. A., 2002. Integration of dispersed generation on distribution networks-impact studies. Piscataway, IEEE, pp. 323-328.

Mikic, O., 1986. Mathematical Dynamic Model for Long-Term Distribution System Planning. *IEEE Trans. on Power Systems*, PWRS-1(1), pp. 34-40.

Monticelli, A. J., 1983. *Fluxos de carga em redes de energia elétrica*. New York: Edgard Blcher.

Partanen, J., 1990. A Practical Approach for Estimating Future Outage Costs in Power Distribution Networks. *IEEE Trans. on Power Delivery*, 1(5), pp. 311-316.

Ponnavaikko, M., Rao, K. & Venkata, S., 1987. Distribution System Planning trough a Quadratic Mixed Integer Programming Approach. *IEEE Trans. on Power Delivery*, PWRD-2(4), pp. 1157-1163..

Ramirez-Rosado, I. J. & Bernal Agustin, J. L., 2001. Reliability and costs optimization for distribution networks expansion using and evolutionary algorithm. *IEEE Trans. Power Syst.*, Fev, 16(1), pp. 111-118.

Segura, S., Romero, R. A. & Rider, M. J., 2010. Efficient heuristic algorithm used for optimal capacitor placement in distribution systems. *International Journal of Electrical Power and Energy Systems*, Jan, 32(1), pp. 71-78.

Shirmohammadi, D., Hong, H. W., Semlyen, A. & Luo, G. X., 1988. A compensation-based power flow method for weakly meshed distribution and transmission networks. *IEEE Trans. Power Syst.*, Mai, 32(1), pp. 753-762.

Stott, B., 1974. Review of lod-flow calculation methods. *IEEE Proc. Generation*, *Transmission & Distribution*, Jul, 62(7), pp. 916-929.

Tabares, A., Lavorato, M., Rider, M. J. & Franco, J. F., 2014. *A mixed - Binary Linear Formulation for the Distribution System Expansion Planning Problem.* Medellín, IEEE.

Thompson, G. & Wall, D., 1981. A Branch and Bound Model for Choosing Optimal Substation Locations. *IEEE Trans. on Power Apparatus ans Systems*, PAS-100(5), pp. 2683-2688.

Tram, H. & Wall, D., 1988. Optimal Conductor Selection in Planning Radial Distribution Systems. *IEEE Trans. on Power Systems*, PWRS-3(1), pp. 200-206.

Wall, D., Thompson, G. & Northocote-Green, J., 1979. An optimization Model for Planning Radial Distribution Networks. *IEEE Trans. on Power Apparatus and Systems*, PAS-98(3), pp. 1061-1068.

Willis, H. L., 2004. *Power Distribution Planning Reference Book*. Segunda ed. New York: Marcel Dekker, Inc..

Youssef, H. & Hackam, R., 1985. Novel Optimization Model for Long Range Distribution Planning. *IEEE Trans.*, PAS-104(11), pp. 3195-3202.

Youssef, H. & Hackam, R., 1988. Dynamic Solution of Distribution Planning in Intermediate Time Range. *IEEE Trans. on Power Delivery*, PWRD-2(4), pp. 341-348.

APÉNDICE

DATOS SISTEMA 33 NODOS

Datos de los circuitos

Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
1	2	0.1170	0.0480	1166
2	3	0.1073	0.0440	1113
3	4	0.1645	0.0457	1055
4	5	0.1495	0.0415	1002
5	6	0.1495	0.0415	946
6	7	0.3144	0.0540	323
7	8	0.2096	0.0360	267
8	9	0.3144	0.0540	210
9	10	0.2096	0.0360	152
10	11	0.1310	0.0225	93
11	12	0.1048	0.0180	35
3	13	0.1572	0.0270	55
13	14	0.2096	0.0360	38
14	15	0.1048	0.0180	21
15	16	0.0524	0.0090	3
6	17	0.1794	0.0498	625
17	18	0.1645	0.0457	569
18	19	0.2079	0.0473	510
19	20	0.1890	0.0430	453
20	21	0.1890	0.0430	395
21	22	0.2620	0.0450	335
22	23	0.2620	0.0450	276
23	24	0.3144	0.0540	217
24	25	0.2096	0.0360	157
25	26	0.1310	0.0225	97
26	27	0.1048	0.0180	36
7	28	0.1572	0.0270	57
28	29	0.1572	0.0270	38
29	30	0.1572	0.0270	19
10	31	0.1572	0.0270	59
31	32	0.2096	0.0360	44
32	33	0.1572	0.0270	30
33	34	0.1048	0.0180	15

Datos de las cargas

2 391.00 230.00 138.00 242.25 142.50 3 0.00 0.00 0.00 0.00 0.00	85.20 0.00
3 0.00 0.00 0.00 0.00 0.00	0.00
5 0.00 0.00 0.00 0.00	
4 391.00 230.00 138.00 242.25 142.50	85.20
5 391.00 230.00 138.00 242.25 142.50	85.20
6 0.00 0.00 0.00 0.00 0.00	0.00
7 0.00 0.00 0.00 0.00 0.00	0.00
8 391.00 230.00 138.00 242.25 142.50	85.20
9 391.00 230.00 138.00 242.25 142.50	85.20
10 0.00 0.00 0.00 0.00 0.00	0.00
11 391.00 230.00 138.00 242.25 142.50	85.20
12 232.90 137.00 82.20 142.80 84.00	50.40
13 122.40 72.00 43.20 76.50 45.00	27.00
14 122.40 72.00 43.20 76.50 45.00	27.00
15 122.40 72.00 43.20 76.50 45.00	27.00
16 22.95 13.50 8.10 12.75 7.50	4.50
17 391.00 230.00 138.00 242.25 142.50	85.20
18 391.00 230.00 138.00 242.25 142.50	85.20
19 391.00 230.00 138.00 242.25 142.50	85.20
20 391.00 230.00 138.00 242.25 142.50	85.20
21 391.00 230.00 138.00 242.25 142.50	85.20
22 391.00 230.00 138.00 242.25 142.50	85.20
23 391.00 230.00 138.00 242.25 142.50	85.20
24 391.00 230.00 138.00 242.25 142.50	85.20
25 391.00 230.00 138.00 242.25 142.50	85.20
26 391.00 230.00 138.00 242.25 142.50	85.20
27 232.90 137.00 82.20 144.50 85.00	51.00
28 127.50 75.00 45.00 81.60 48.00	28.80
29 127.50 75.00 45.00 81.60 48.00	28.80
30 127.50 75.00 45.00 81.60 48.00	28.80
31 96.90 57.00 34.20 63.75 37.50	22.50
32 96.90 57.00 34.20 63.75 37.50	22.50
3396.9057.0034.2063.7537.50	22.50
34 96.90 57.00 34.20 63.75 37.50	22.50

DATOS SISTEMA 70 NODOS

Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
1	2	0.0005	0.0012	491
2	3	0.0005	0.0012	491
3	4	0.0001	0.0001	480
4	5	0.0015	0.0036	432
5	6	0.0251	0.0294	333
6	7	0.3660	0.1864	330
7	8	0.3811	0.1941	330
8	9	0.0922	0.0470	327
9	10	0.0493	0.0251	313
10	11	0.8190	0.2707	91
11	12	0.1872	0.0619	88
12	13	0.7114	0.2351	66
13	14	1.0300	0.3400	42
14	15	1.0440	0.3450	41
15	16	1.0580	0.3496	40
16	17	0.1966	0.0650	40
17	18	0.3744	0.1238	35
18	19	0.0047	0.0016	28
19	20	0.3276	0.1083	21
20	21	0.2106	0.0696	21
21	22	0.3416	0.1129	21
22	23	0.0140	0.0046	7
23	24	0.1591	0.0526	7
24	25	0.3463	0.1145	7
25	26	0.7488	0.2475	3
26	27	0.3089	0.1021	3
27	28	0.1732	0.0572	2
3	29	0.0044	0.0108	11
29	30	0.0640	0.1565	8

Datos de los circuitos

Continuación Tabla

Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
30	31	0.3978	0.1315	5
31	32	0.0702	0.0232	5
32	33	0.351	0.116	5
33	34	0.839	0.2816	5
34	35	1.708	0.5646	3
35	36	1.474	0.4873	1
4	37	0.0044	0.0108	59
37	38	0.064	0.1565	57
38	39	0.1053	0.123	15
39	40	0.0304	0.0355	15
40	41	0.0018	0.0021	13
41	42	0.7283	0.8509	10
42	43	0.31	0.3623	10
43	44	0.041	0.0478	10
44	45	0.0092	0.0116	9
45	46	0.1089	0.1373	9
46	47	0.0009	0.0012	4
5	48	0.0034	0.0084	99
48	49	0.0851	0.2083	99
49	50	0.2898	0.7091	90
50	51	0.0822	0.2011	45
9	52	0.0928	0.0473	5
52	53	0.3319	0.1114	0
10	54	0.174	0.0886	218
54	55	0.203	0.1034	217
55	56	0.2842	0.1447	214
56	57	0.2813	0.1433	211
57	58	1.59	0.5337	207
58	59	0.7837	0.263	210
59	60	0.3042	0.1006	211
60	61	0.3861	0.1172	198
61	62	0.5075	0.2585	198
62	63	0.0974	0.0496	41
63	64	0.145	0.0738	37
64	65	0.7105	0.3619	37
65	66	1.041	0.5302	8
12	67	0.2012	0.0611	4
67	68	0.0047	0.0014	2
13	69	0.7394	0.2444	7
69	70	0.0047	0.0016	3

Datos de las cargas

J	P1 (kw)	P2 (kw)	P3 (kw)	Q1(kvar)	Q2(kvar)	Q3(kvar)
2	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00
7	2.60	1.56	0.78	2.20	1.32	0.66
8	40.40	24.24	12.12	30.00	18.00	9.00
9	75.00	45.00	22.50	54.00	32.40	16.20
10	30.00	18.00	9.00	22.00	13.20	6.60
11	28.00	16.80	8.40	19.00	11.40	5.70
12	145.00	87.00	43.50	104.00	62.40	31.20
13	145.00	87.00	43.50	104.00	62.40	31.20
14	8.00	4.80	2.40	5.50	3.30	1.65
15	8.00	4.80	2.40	5.50	3.30	1.65
16	0.00	0.00	0.00	0.00	0.00	0.00
17	45.50	27.30	13.65	30.00	18.00	9.00
18	60.00	36.00	18.00	35.00	21.00	10.50
19	60.00	36.00	18.00	35.00	21.00	10.50
20	0.00	0.00	0.00	0.00	0.00	0.00
21	1.00	0.60	0.30	0.60	0.36	0.18
22	114.00	68.40	34.20	81.00	48.60	24.30
23	5.30	3.18	1.59	3.50	2.10	1.05
24	0.00	0.00	0.00	0.00	0.00	0.00
25	28.00	16.80	8.40	20.00	12.00	6.00
26	0.00	0.00	0.00	0.00	0.00	0.00
27	14.00	8.40	4.20	10.00	6.00	3.00
28	14.00	8.40	4.20	10.00	6.00	3.00
29	26.00	15.60	7.80	18.60	11.16	5.58
30	26.00	15.60	7.80	18.60	11.16	5.58

j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
31	0.00	0.00	0.00	0.00	0.00	0.00
32	0.00	0.00	0.00	0.00	0.00	0.00
33	0.00	0.00	0.00	0.00	0.00	0.00
34	14.00	8.40	4.20	10.00	6.00	3.00
35	19.50	11.70	5.85	14.00	8.40	4.20
36	6.00	3.60	1.80	4.00	2.40	1.20
37	26.00	15.60	7.80	18.55	11.13	5.57
38	26.00	15.60	7.80	18.55	11.13	5.57
39	0.00	0.00	0.00	0.00	0.00	0.00
40	24.00	14.40	7.20	17.00	10.20	5.10
41	24.00	14.40	7.20	17.00	10.20	5.10
42	1.20	0.72	0.36	1.00	0.60	0.30
43	0.00	0.00	0.00	0.00	0.00	0.00
44	6.00	3.60	1.80	4.30	2.58	1.29
45	0.00	0.00	0.00	0.00	0.00	0.00
46	39.22	23.53	11.77	26.30	15.78	7.89
47	39.22	23.53	11.77	26.30	15.78	7.89
48	0.00	0.00	0.00	0.00	0.00	0.00
49	79.00	47.40	23.70	56.40	33.84	16.92
50	384.70	230.82	115.41	274.50	164.70	82.35
51	384.70	230.82	115.41	274.50	164.70	82.35
52	40.50	24.30	12.15	28.30	16.98	8.49
53	3.60	2.16	1.08	2.70	1.62	0.81
54	4.35	2.61	1.31	3.50	2.10	1.05
55	26.40	15.84	7.92	19.00	11.40	5.70
56	24.00	14.40	7.20	17.20	10.32	5.16
57	0.00	0.00	0.00	0.00	0.00	0.00
58	0.00	0.00	0.00	0.00	0.00	0.00
59	0.00	0.00	0.00	0.00	0.00	0.00
60	100.00	60.00	30.00	72.00	43.20	21.60
61	0.00	0.00	0.00	0.00	0.00	0.00
62	1244.00	746.40	373.20	888.00	532.80	266.40
63	32.00	19.20	9.60	23.00	13.80	6.90
64	0.00	0.00	0.00	0.00	0.00	0.00
65	227.00	136.20	68.10	162.00	97.20	48.60
66	59.00	35.40	17.70	42.00	25.20	12.60
67	18.00	10.80	5.40	13.00	7.80	3.90
68	18.00	10.80	5.40	13.00	7.80	3.90
69	28.00	16.80	8.40	20.00	12.00	6.00
70	28.00	16.80	8.40	20.00	12.00	6.00

DATOS SISTEMA 200 NODOS

Datos de los circuitos							
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)			
1	2	0.00001	0.00001	2061			
2	3	0.01883	0.04232	2061			
3	4	0.06591	0.14812	2051			
4	5	0.03766	0.08464	2051			
5	6	0.01883	0.04232	2034			
6	7	0.00001	0.00001	2034			
7	8	0.01883	0.04232	2034			
8	9	0.01695	0.03809	2024			
9	10	0.01883	0.04232	1998			
10	11	0.00001	0.00001	137			
11	12	0.05935	0.04654	137			
10	13	0.01883	0.04232	1689			
13	14	0.00001	0.00001	1689			
10	15	0.00001	0.00001	155			
15	16	0.04671	0.02445	155			
16	17	0.09341	0.04890	138			
17	18	0.07473	0.03912	17			
17	19	0.18682	0.09780	86			
19	20	0.07473	0.03912	69			
14	21	0.03766	0.08464	1689			
21	22	0.04143	0.09310	1689			
22	23	0.00001	0.00001	1689			
23	24	0.00659	0.01481	1619			
24	25	0.00659	0.01481	1548			
25	26	0.00001	0.00001	1137			
26	27	0.02448	0.05502	1137			
25	28	0.00000	0.00001	305			
28	29	0.06539	0.03423	305			
29	30	0.04671	0.02445	247			
30	31	0.04671	0.02445	221			
31	32	0.04671	0.02445	194			
32	33	0.05942	0.02026	97			
32	34	0.08912	0.03039	97			
29	35	0.09341	0.04890	44			

I	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
35	36	0.00001	0.00001	18
36	37	0.03736	0.01956	18
35	38	0.00001	0.00001	26
38	39	0.03736	0.01956	26
27	40	0.00942	0.02116	1084
40	41	0.03714	0.01266	71
40	42	0.00942	0.02116	1014
42	43	0.00942	0.02116	828
43	44	0.00942	0.02116	774
42	45	0.05942	0.02026	186
45	46	0.00001	0.00001	18
46	47	0.03714	0.01266	18
45	48	0.00001	0.00001	168
48	49	0.03714	0.01266	168
44	50	0.01412	0.03174	748
50	51	0.01318	0.02962	588
51	52	0.0113	0.02539	535
52	53	0.0113	0.02539	463
53	54	0.0113	0.02539	250
54	55	0.0113	0.02539	178
55	56	0.07427	0.02533	178
56	57	0.00001	0.00001	178
57	58	0.10398	0.03546	89
1	59	0.00001	0.00001	2916
59	60	0.01597	0.04095	2916
60	61	0.09901	0.25389	2909
61	62	0.00001	0.00001	2909
62	63	0.04152	0.10647	2909
63	64	0.00001	0.00001	2845
63	65	0.01916	0.04914	64
65	66	0.00001	0.00001	38
66	67	0.01597	0.04095	38
67	68	0.00001	0.00001	28
68	69	0.13369	0.04559	28
64	70	0.01883	0.04232	2845
70	71	0 11141	0.03799	25
70	72	0.00001	0.00001	11
72	73	0 13369	0.04559	11
73	7 <i>4</i>	0.0817	0.02786	11
70	75	0.02071	0.02700	2810
75	76	0.00001	0.0001	141
	10	0.0001	0.0001	171

75		78	0.0113	0.02539	2668
	Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
	78	79	0.00753	0.01693	2503
	79	80	0.00001	0.00001	98
	79	81	0.00942	0.02116	2058
	81	82	0.0113	0.02539	1952
	80	83	0.12626	0.04305	98
	82	84	0.00001	0.00001	1952
	84	85	0.01318	0.02962	11
	84	86	0.00471	0.01058	1941
	86	87	0.00565	0.0127	1869
	87	88	0.00942	0.02116	1744
	79	89	0.00001	0.00001	347
	89	90	0.17825	0.06078	347
	90	91	0.00001	0.00001	27
	91	92	0.11141	0.03799	27
	90	93	0.00001	0.00001	320
	93	94	0.05605	0.02792	266
	94	95	0.02802	0.01396	206
	95	96	0.02802	0.01396	179
	96	97	0.02802	0.01396	125
	97	98	0.05138	0.0256	107
	88	99	0.02071	0.04655	1636
	99	100	0.00001	0.00001	1636
	100	101	0.01412	0.03174	18
	100	102	0.00565	0.0127	1618
	102	103	0.00001	0.00001	18
	103	104	0.07427	0.02533	18
	102	105	0.00471	0.01058	1534
	105	106	0.00565	0.0127	1498
	102	107	0.00659	0.01481	66
	107	108	0.01036	0.02328	36
	106	109	0.0113	0.02539	1470
	109	110	0.00001	0.00001	1443
	110	111	0.00753	0.01693	1443
	111	112	0.00753	0.01693	1407
	112	113	0.00753	0.01693	1371
	113	114	0.00001	0.00001	18
	113	115	0.00565	0.0127	319
	115	116	0.00753	0.01693	228
	116	117	0.00942	0.02116	128
	114	118	0.05199	0.01773	18

113	119	0.00753	0.01693	1033
119	120	0.00753	0.01693	997
120	121	0.00659	0.01481	978
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
121	122	0.00565	0.0127	869
122	123	0.00001	0.00001	95
122	124	0.00001	0.00001	774
124	125	0.01506	0.03386	700
123	126	0.06539	0.03003	73
125	127	0.00942	0.02116	646
127	128	0.00942	0.02116	165
127	129	0.01506	0.03386	413
129	130	0.01318	0.02962	334
130	131	0.01318	0.02962	260
131	132	0.01695	0.03809	147
1	133	0.00001	0.00001	2806
133	134	0.06967	0.15658	2806
134	135	0.00001	0.00001	2806
135	136	0.01506	0.03386	2806
136	137	0.06026	0.13542	2806
137	138	0.00942	0.02116	0
137	139	0.00001	0.00001	2746
139	140	0.02071	0.04655	2729
140	141	0.00001	0.00001	17
140	142	0.00942	0.02116	2711
142	143	0.00565	0.0127	2701
141	144	0.02802	0.01467	17
137	145	0.00001	0.00001	60
145	146	0.07473	0.03912	60
146	147	0.05605	0.02934	26
147	148	0.00001	0.00001	26
148	149	0.03736	0.01956	26
146	150	0.00001	0.00001	17
150	151	0.04671	0.02445	17
143	152	0.00565	0.0127	2690
152	153	0.00001	0.00001	17
152	154	0.00565	0.0127	2673
154	155	0.00565	0.0127	2656
155	156	0.00565	0.0127	2597
153	157	0.03736	0.01956	17
156	158	0.00565	0.0127	2580
158	159	0.02802	0.01467	28

159	160	0.04671	0.02445	11
158	161	0.00942	0.02116	2551
161	162	0.0113	0.02539	2534
162	163	0.00001	0.00001	2534
163	164	0.00001	0.00001	2534
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
164	165	0.01883	0.04232	2507
165	166	0	0	169
165	167	0.00565	0.0127	2338
167	168	0.00565	0.0127	2213
168	169	0.00753	0.01693	2159
166	170	0.06539	0.03423	169
169	171	0.00001	0.00001	2087
171	172	0.07122	0.05585	36
171	173	0.00942	0.02116	2034
173	174	0.00942	0.02116	2016
174	175	0.00942	0.02116	1962
175	176	0.00001	0.00001	59
176	177	0.07473	0.03912	59
175	178	0.00377	0.00846	1903
178	179	0.00377	0.00846	1848
179	180	0.00565	0.0127	1812
180	181	0.00001	0.00001	1776
181	182	0.00001	0.00001	36
181	183	0.04671	0.02445	73
182	184	0.06072	0.03179	36
181	185	0.00565	0.0127	1667
185	186	0.00565	0.0127	1425
186	187	0.00565	0.0127	1389
187	188	0.00565	0.0127	1243
188	189	0.00001	0.00001	128
188	190	0.00001	0.00001	55
190	191	0.03858	0.03025	55
189	192	0.05045	0.03956	128
188	193	0.0226	0.05078	1060
193	194	0.06539	0.03423	146
193	195	0.04671	0.02445	675
195	196	0.04671	0.02445	565
196	197	0.04671	0.02445	491
193	198	0.00942	0.02116	166
198	199	0.00942	0.02116	38
197	200	0.04671	0.02445	436

200	201	0.11209	0.05868	111
200	202	0.09341	0.0489	298

Datos de las cargas

	j P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
2	2 0.00	0.00	0.00	0.00	0.00	0.00
3	95.63	57.38	38.25	59.25	35.55	23.70
2	4 0.00	0.00	0.00	0.00	0.00	0.00
4	5 159.38	95.63	63.75	98.75	59.25	39.50
6	6 0.00	0.00	0.00	0.00	0.00	0.00
7	7 0.00	0.00	0.00	0.00	0.00	0.00
8	95.63	57.38	38.25	59.25	35.55	23.70
ç	238.00	142.80	95.20	147.48	88.49	58.99
10) 159.38	95.63	63.75	98.75	59.25	39.50
11	0.00	0.00	0.00	0.00	0.00	0.00
12	2 1275.00	765.00	510.00	790.05	474.03	316.02
13	3 0.00	0.00	0.00	0.00	0.00	0.00
14	4 0.00	0.00	0.00	0.00	0.00	0.00
15	5 0.00	0.00	0.00	0.00	0.00	0.00
16	5 159.38	95.63	63.75	98.75	59.25	39.50
17	318.75	191.25	127.50	197.53	118.52	79.01
18	8 159.38	95.63	63.75	98.75	59.25	39.50
19	9 159.38	95.63	63.75	98.75	59.25	39.50
20	637.50	382.50	255.00	395.03	237.02	158.01
21	0.00	0.00	0.00	0.00	0.00	0.00
22	2 0.00	0.00	0.00	0.00	0.00	0.00
23	637.50	382.50	255.00	395.03	237.02	158.01
24	637.50	382.50	255.00	395.03	237.02	158.01
25	5 956.25	573.75	382.50	592.55	355.53	237.02
26	6 0.00	0.00	0.00	0.00	0.00	0.00
27	478.13	286.88	191.25	296.28	177.77	118.51
28	3 0.00	0.00	0.00	0.00	0.00	0.00
29	9 127.50	76.50	51.00	79.00	47.40	31.60
30	239.08	143.45	95.63	148.13	88.88	59.25
31	239.08	143.45	95.63	148.13	88.88	59.25
32	2 0.00	0.00	0.00	0.00	0.00	0.00
33	8 876.58	525.95	350.63	543.15	325.89	217.26
34	4 876.58	525.95	350.63	543.15	325.89	217.26
35	5 0.00	0.00	0.00	0.00	0.00	0.00
36	6 0.00	0.00	0.00	0.00	0.00	0.00
37	7 159.38	95.63	63.75	98.75	59.25	39.50
38	3 0.00	0.00	0.00	0.00	0.00	0.00
39	239.08	143.45	95.63	148.13	88.88	59.25
40	0.00	0.00	0.00	0.00	0.00	0.00
41	637.50	382.50	255.00	395.03	237.02	158.01
42	2 0.00	0.00	0.00	0.00	0.00	0.00

43	478.13	286.88	191.25	296.28	177.77	118.51
j	j P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
44	239.08	143.45	95.63	148.13	88.88	59.25
45	5 0.00	0.00	0.00	0.00	0.00	0.00
46	6 0.00	0.00	0.00	0.00	0.00	0.00
47	159.38	95.63	63.75	98.75	59.25	39.50
48	3 0.00	0.00	0.00	0.00	0.00	0.00
49	0 1514.08	908.45	605.63	938.18	562.91	375.27
50) 1434.38	860.63	573.75	888.80	533.28	355.52
51	478.13	286.88	191.25	296.28	177.77	118.51
52	637.50	382.50	255.00	395.03	237.02	158.01
53	3 1912.50	1147.50	765.00	1185.08	711.05	474.03
54	637.50	382.50	255.00	395.03	237.02	158.01
55	5 0.00	0.00	0.00	0.00	0.00	0.00
56	6 0.00	0.00	0.00	0.00	0.00	0.00
57	796.88	478.13	318.75	493.78	296.27	197.51
58	3 796.88	478.13	318.75	493.78	296.27	197.51
59	0.00	0.00	0.00	0.00	0.00	0.00
60	63.75	38.25	25.50	39.50	23.70	15.80
61	0.00	0.00	0.00	0.00	0.00	0.00
62	2 0.00	0.00	0.00	0.00	0.00	0.00
63	3 0.00	0.00	0.00	0.00	0.00	0.00
64	0.00	0.00	0.00	0.00	0.00	0.00
65	5 239.08	143.45	95.63	148.13	88.88	59.25
66	6 0.00	0.00	0.00	0.00	0.00	0.00
67	95.63	57.38	38.25	59.25	35.55	23.70
68	3 0.00	0.00	0.00	0.00	0.00	0.00
69	255.00	153.00	102.00	158.00	94.80	63.20
70	0.00	0.00	0.00	0.00	0.00	0.00
71	223.13	133.88	89.25	138.25	82.95	55.30
72	2 0.00	0.00	0.00	0.00	0.00	0.00
73	3 0.00	0.00	0.00	0.00	0.00	0.00
74	95.63	57.38	38.25	59.25	35.55	23.70
75	5 0.00	0.00	0.00	0.00	0.00	0.00
76	6 0.00	0.00	0.00	0.00	0.00	0.00
77	1275.00	765.00	510.00	790.05	474.03	316.02
78	3 1487.50	892.50	595.00	921.73	553.04	368.69
79	0.00	0.00	0.00	0.00	0.00	0.00
80	0.00	0.00	0.00	0.00	0.00	0.00
81	956.25	573.75	382.50	592.55	355.53	237.02
82	2 0.00	0.00	0.00	0.00	0.00	0.00
83	8 876.58	525.95	350.63	543.15	325.89	217.26

84	0.00	0.00	0.00	0.00	0.00	0.00
85	95.63	57.38	38.25	59.25	35.55	23.70
86	637.50	382.50	255.00	395.03	237.02	158.01
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
87	1115.63	669.38	446.25	691.30	414.78	276.52
88	956.25	573.75	382.50	592.55	355.53	237.02
89	0.00	0.00	0.00	0.00	0.00	0.00
90	0.00	0.00	0.00	0.00	0.00	0.00
91	0.00	0.00	0.00	0.00	0.00	0.00
92	239.08	143.45	95.63	148.13	88.88	59.25
93	478.13	286.88	191.25	296.28	177.77	118.51
94	541.88	325.13	216.75	335.78	201.47	134.31
95	239.08	143.45	95.63	148.13	88.88	59.25
96	478.13	286.88	191.25	296.28	177.77	118.51
97	159.38	95.63	63.75	98.75	59.25	39.50
98	956.25	573.75	382.50	592.55	355.53	237.02
99	0.00	0.00	0.00	0.00	0.00	0.00
100	0.00	0.00	0.00	0.00	0.00	0.00
101	159.38	95.63	63.75	98.75	59.25	39.50
102	0.00	0.00	0.00	0.00	0.00	0.00
103	0.00	0.00	0.00	0.00	0.00	0.00
104	159.38	95.63	63.75	98.75	59.25	39.50
105	318.75	191.25	127.50	197.53	118.52	79.01
106	239.08	143.45	95.63	148.13	88.88	59.25
107	265.63	159.38	106.25	164.60	98.76	65.84
108	318.75	191.25	127.50	197.53	118.52	79.01
109	239.08	143.45	95.63	148.13	88.88	59.25
110	0.00	0.00	0.00	0.00	0.00	0.00
111	318.75	191.25	127.50	197.53	118.52	79.01
112	318.75	191.25	127.50	197.53	118.52	79.01
113	0.00	0.00	0.00	0.00	0.00	0.00
114	0.00	0.00	0.00	0.00	0.00	0.00
115	796.88	478.13	318.75	493.78	296.27	197.51
116	876.58	525.95	350.63	543.15	325.89	217.26
117	1115.63	669.38	446.25	691.30	414.78	276.52
118	159.38	95.63	63.75	98.75	59.25	39.50
119	318.75	191.25	127.50	197.53	118.52	79.01
120	159.38	95.63	63.75	98.75	59.25	39.50
121	956.25	573.75	382.50	592.55	355.53	237.02
122	0.00	0.00	0.00	0.00	0.00	0.00
123	191.25	114.75	76.50	118.50	71.10	47.40
124	637.50	382.50	255.00	395.03	237.02	158.01

125	478.13	286.88	191.25	296.28	177.77	118.51
126	637.50	382.50	255.00	395.03	237.02	158.01
127	584.38	350.63	233.75	362.10	217.26	144.84
128	1434.38	860.63	573.75	888.80	533.28	355.52
129	690.63	414.38	276.25	427.95	256.77	171.18
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
130	637.50	382.50	255.00	395.03	237.02	158.01
131	982.83	589.70	393.13	609.00	365.40	243.60
132	1275.00	765.00	510.00	790.05	474.03	316.02
133	0.00	0.00	0.00	0.00	0.00	0.00
134	0.00	0.00	0.00	0.00	0.00	0.00
135	0.00	0.00	0.00	0.00	0.00	0.00
136	0.00	0.00	0.00	0.00	0.00	0.00
137	0.00	0.00	0.00	0.00	0.00	0.00
138	0.00	0.00	0.00	0.00	0.00	0.00
139	159.38	95.63	63.75	98.75	59.25	39.50
140	0.00	0.00	0.00	0.00	0.00	0.00
141	0.00	0.00	0.00	0.00	0.00	0.00
142	95.63	57.38	38.25	59.25	35.55	23.70
143	95.63	57.38	38.25	59.25	35.55	23.70
144	159.38	95.63	63.75	98.75	59.25	39.50
145	0.00	0.00	0.00	0.00	0.00	0.00
146	159.38	95.63	63.75	98.75	59.25	39.50
147	0.00	0.00	0.00	0.00	0.00	0.00
148	0.00	0.00	0.00	0.00	0.00	0.00
149	239.08	143.45	95.63	148.13	88.88	59.25
150	0.00	0.00	0.00	0.00	0.00	0.00
151	159.38	95.63	63.75	98.75	59.25	39.50
152	0.00	0.00	0.00	0.00	0.00	0.00
153	0.00	0.00	0.00	0.00	0.00	0.00
154	159.38	95.63	63.75	98.75	59.25	39.50
155	531.25	318.75	212.50	329.20	197.52	131.68
156	159.38	95.63	63.75	98.75	59.25	39.50
157	159.38	95.63	63.75	98.75	59.25	39.50
158	0.00	0.00	0.00	0.00	0.00	0.00
159	159.38	95.63	63.75	98.75	59.25	39.50
160	95.63	57.38	38.25	59.25	35.55	23.70
161	159.38	95.63	63.75	98.75	59.25	39.50
162	0.00	0.00	0.00	0.00	0.00	0.00
163	0.00	0.00	0.00	0.00	0.00	0.00
164	239.08	143.45	95.63	148.13	88.88	59.25
165	0.00	0.00	0.00	0.00	0.00	0.00

166	0.00	0.00	0.00	0.00	0.00	0.00
167	1115.63	669.38	446.25	691.30	414.78	276.52
168	478.13	286.88	191.25	296.28	177.77	118.51
169	637.50	382.50	255.00	395.03	237.02	158.01
170	1514.08	908.45	605.63	938.18	562.91	375.27
171	159.38	95.63	63.75	98.75	59.25	39.50
172	318.75	191.25	127.50	197.53	118.52	79.01
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
173	159.38	95.63	63.75	98.75	59.25	39.50
174	478.13	286.88	191.25	296.28	177.77	118.51
175	0.00	0.00	0.00	0.00	0.00	0.00
176	0.00	0.00	0.00	0.00	0.00	0.00
177	520.63	312.38	208.25	322.60	193.56	129.04
178	478.13	286.88	191.25	296.28	177.77	118.51
179	318.75	191.25	127.50	197.53	118.52	79.01
180	318.75	191.25	127.50	197.53	118.52	79.01
181	0.00	0.00	0.00	0.00	0.00	0.00
182	0.00	0.00	0.00	0.00	0.00	0.00
183	637.50	382.50	255.00	395.03	237.02	158.01
184	318.75	191.25	127.50	197.53	118.52	79.01
185	2125.00	1275.00	850.00	1316.75	790.05	526.70
186	318.75	191.25	127.50	197.53	118.52	79.01
187	1275.00	765.00	510.00	790.05	474.03	316.02
188	0.00	0.00	0.00	0.00	0.00	0.00
189	0.00	0.00	0.00	0.00	0.00	0.00
190	0.00	0.00	0.00	0.00	0.00	0.00
191	478.13	286.88	191.25	296.28	177.77	118.51
192	1120.95	672.57	448.38	694.58	416.75	277.83
193	637.50	382.50	255.00	395.03	237.02	158.01
194	1275.00	765.00	510.00	790.05	474.03	316.02
195	956.25	573.75	382.50	592.55	355.53	237.02
196	637.50	382.50	255.00	395.03	237.02	158.01
197	478.13	286.88	191.25	296.28	177.77	118.51
198	1115.63	669.38	446.25	691.30	414.78	276.52
199	334.70	200.82	133.88	207.40	124.44	82.96
200	239.08	143.45	95.63	148.13	88.88	59.25
201	956.25	573.75	382.50	592.55	355.53	237.02
202	2575.50	1545.30	1030.20	1595.90	957.54	638.36

DATOS SISTEMA 400 NODOS

Datos de los circuitos

Datos de los ci	rcuitos			
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
1	2	0.0378	0.0125	403
2	3	0.0305	0.0101	403
3	4	0.0309	0.0102	403
4	5	0.0331	0.0109	403
5	6	0.0378	0.0125	403
6	7	0.0326	0.0107	398
7	8	0.0378	0.0125	398
8	9	0.0422	0.0139	398
9	10	0.0326	0.0107	17
10	11	0.0331	0.0109	17
11	12	0.0305	0.0101	17
12	13	0.0378	0.0125	9
13	14	0.0378	0.0125	9
14	15	0.0378	0.0125	1
6	16	0.0378	0.0125	6
14	17	0.0422	0.0139	9
17	18	0.0368	0.0121	9
18	19	0.0347	0.0114	9
19	20	0.0431	0.0093	9
20	21	0.0516	0.0111	9
21	22	0.0331	0.0109	9
9	23	0.0378	0.0125	9
23	24	0.0339	0.0112	9
9	25	0.0339	0.0112	374
25	26	0.0378	0.0125	374
26	27	0.0420	0.0139	374
27	28	0.0441	0.0146	374
28	29	0.0378	0.0125	348
29	30	0.0378	0.0125	348
30	31	0.0378	0.0125	348
31	32	0.0368	0.0121	348
32	33	0.0347	0.0114	348
33	34	0.0284	0.0094	348
34	35	0.0326	0.0107	348
35	36	0.0326	0.0107	348
36	37	0.0441	0.0146	9
37	38	0.0422	0.0139	9
38	39	0.0378	0.0125	9
39	40	0.0378	0.0125	9

I	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
40	41	0.0331	0.0109	9
41	42	0.0305	0.0101	9
28	43	0.0339	0.0112	6
43	44	0.0305	0.0101	6
44	45	0.0309	0.0102	6
45	46	0.0309	0.0102	6
46	47	0.0326	0.0107	6
28	48	0.0331	0.0109	22
48	49	0.0294	0.0097	22
49	50	0.0305	0.0101	22
50	51	0.0378	0.0125	14
51	52	0.0378	0.0125	14
52	53	0.0331	0.0109	14
53	54	0.0339	0.0112	14
54	55	0.0339	0.0112	14
55	56	0.0422	0.0139	6
36	57	0.0378	0.0125	340
57	58	0.0339	0.0112	340
58	59	0.0420	0.0139	328
59	60	0.0441	0.0146	328
60	61	0.0284	0.0094	41
61	62	0.0305	0.0101	41
62	63	0.0331	0.0109	41
63	64	0.0326	0.0107	41
64	65	0.0284	0.0094	41
65	66	0.0378	0.0125	6
66	67	0.0305	0.0101	6
67	68	0.0378	0.0125	6
68	69	0.0284	0.0094	6
69	70	0.0326	0.0107	6
70	71	0.0441	0.0146	6
71	72	0.0420	0.0139	6
65	73	0.0339	0.0112	37
73	74	0.0331	0.0109	37
74	75	0.0309	0.0102	33
75	76	0.0294	0.0097	33
76	77	0.0368	0.0121	33
77	78	0.0347	0.0114	33
78	79	0.0305	0.0101	25
79	80	0.0347	0.0114	25
80	81	0.0422	0.0139	25

81	82	0.0326	0.0107	25
82	83	0.0284	0.0094	25
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
83	84	0.0326	0.0107	17
84	85	0.0441	0.0146	17
85	86	0.0420	0.0139	17
86	87	0.0378	0.0125	17
87	88	0.0378	0.0125	9
88	89	0.0284	0.0094	9
89	90	0.0309	0.0102	9
90	91	0.0294	0.0097	9
91	92	0.0368	0.0121	9
60	93	0.0326	0.0107	287
93	94	0.0339	0.0112	287
94	95	0.0331	0.0109	287
95	96	0.0326	0.0107	287
96	97	0.0284	0.0094	287
97	98	0.0368	0.0121	6
98	99	0.0368	0.0121	6
99	100	0.0441	0.0146	6
100	101	0.0294	0.0097	6
101	102	0.0309	0.0102	6
102	103	0.0284	0.0094	6
97	104	0.0326	0.0107	283
104	105	0.0378	0.0125	283
105	106	0.0331	0.0109	283
106	107	0.0331	0.0109	283
107	108	0.0378	0.0125	21
108	109	0.0339	0.0112	21
109	110	0.0331	0.0109	21
110	111	0.0305	0.0101	21
111	112	0.0378	0.0125	21
112	113	0.0378	0.0125	21
113	114	0.0284	0.0094	9
114	115	0.0420	0.0139	9
115	116	0.0441	0.0146	9
116	117	0.0326	0.0107	9
117	118	0.0284	0.0094	9
118	119	0.0347	0.0114	9
107	120	0.0378	0.0125	13
120	121	0.0368	0.0121	13
121	122	0.0347	0.0114	13
107	123	0.0305	0.0101	250
		108		
123	124	0.0305	0.0101	250
-----	-----	--------------------------	----------------	----------
124	125	0.0331	0.0109	250
125	126	0.0339	0.0112	250
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
126	127	0.0347	0.0114	242
127	128	0.0368	0.0121	242
128	129	0.0284	0.0094	242
129	130	0.0326	0.0107	242
130	131	0.0378	0.0125	6
130	132	0.0441	0.0146	237
132	133	0.0326	0.0107	237
133	134	0.0441	0.0146	237
134	135	0.0420	0.0139	237
135	136	0.0378	0.0125	232
136	137	0.0420	0.0139	232
137	138	0.0378	0.0125	232
138	139	0.0347	0.0114	232
139	140	0.0368	0.0121	61
140	141	0.0331	0.0109	61
141	142	0.0422	0.0139	61
142	143	0.0305	0.0101	58
143	144	0.0378	0.0125	58
144	145	0.0441	0.0146	58
145	146	0.0339	0.0112	58
146	147	0.0420	0.0139	58
147	148	0.0305	0.0101	58
148	149	0.0305	0.0101	9
149	150	0.0642	0.0138	9
150	151	0.0463	0.0100	9
151	152	0.0503	0.0108	9
148	153	0.0284	0.0094	49
153	154	0.0368	0.0121	49
154	155	0.0347	0.0114	48
155	156	0.0441	0.0146	48
156	157	0.0495	0.0107	48
157	158	0.0575	0.0124	48
158	159	0.0575	0.0124	48
139	160	0.0294	0.0097	172
160	161	0.0284	0.0094	172
161	162	0.0441	0.0146	172
162	163	0.0326	0.0107	172
163	164	0.0420	0.0139	172
164	165	0.0378	0.0125	167

165	166	0.0331	0.0109	167	
166	167	0.0378	0.0125	19	
167	168	0.0422	0.0139	19	
168	169	0.0378	0.0125	19	
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)	
169	170	0.0441	0.0146	14	_
170	171	0.0305	0.0101	14	
171	172	0.0642	0.0138	9	
171	173	0.0516	0.0111	6	
169	174	0.0378	0.0125	6	
174	175	0.0331	0.0109	6	
175	176	0.0294	0.0097	6	
176	177	0.0326	0.0107	6	
177	178	0.0284	0.0094	6	
166	179	0.0305	0.0101	148	
179	180	0.0378	0.0125	148	
180	181	0.0331	0.0109	148	
181	182	0.0305	0.0101	148	
182	183	0.0339	0.0112	148	
183	184	0.0294	0.0097	6	
183	185	0.0347	0.0114	14	
185	186	0.0378	0.0125	14	
186	187	0.0339	0.0112	14	
187	188	0.0378	0.0125	14	
188	189	0.0294	0.0097	14	
189	190	0.0284	0.0094	14	
190	191	0.0422	0.0139	14	
191	192	0.0378	0.0125	14	
192	193	0.0331	0.0109	14	
193	194	0.0331	0.0109	14	
194	195	0.0284	0.0094	13	
195	196	0.0326	0.0107	13	
196	197	0.0642	0.0138	13	
197	198	0.0431	0.0093	13	
198	199	0.0559	0.0120	4	
199	200	0.0516	0.0111	4	
198	201	0.0516	0.0111	9	
201	202	0.0503	0.0108	9	
202	203	0.0326	0.0107	9	
183	204	0.0326	0.0107	131	
204	205	0.0305	0.0101	131	
205	206	0.0378	0.0125	131	
206	207	0.0378	0.0125	131	
		110			

207	208	0.0326	0.0107	131
208	209	0.0326	0.0107	131
209	210	0.0422	0.0139	131
210	211	0.0331	0.0109	131
211	212	0.0339	0.0112	131
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
212	213	0.0331	0.0109	131
213	214	0.0305	0.0101	130
214	215	0.0378	0.0125	130
215	216	0.0326	0.0107	129
216	217	0.0441	0.0146	129
217	218	0.0305	0.0101	129
218	219	0.0331	0.0109	129
219	220	0.0368	0.0121	129
220	221	0.0339	0.0112	127
221	222	0.0284	0.0094	127
222	223	0.0326	0.0107	127
223	224	0.0503	0.0108	3
224	225	0.0516	0.0111	3
223	226	0.0420	0.0139	126
226	227	0.0441	0.0146	126
227	228	0.0339	0.0112	126
228	229	0.0767	0.0101	17
229	230	0.0990	0.0130	17
230	231	0.0891	0.0117	17
231	232	0.1039	0.0137	17
232	233	0.0767	0.0101	17
233	234	0.0866	0.0114	17
234	235	0.0668	0.0088	17
235	236	0.0816	0.0108	17
236	237	0.0559	0.0120	17
237	238	0.0527	0.0113	17
238	239	0.0668	0.0088	17
239	240	0.0671	0.0144	2
239	241	0.0767	0.0101	16
241	242	0.0717	0.0095	1
241	243	0.0891	0.0117	16
243	244	0.0767	0.0101	16
244	245	0.0995	0.0131	16
245	246	0.0799	0.0105	16
246	247	0.0816	0.0108	16
247	248	0.0668	0.0088	6
248	249	0.1039	0.0137	1

249	250	0.0799	0.0105	1
250	251	0.0779	0.0103	1
248	252	0.0767	0.0101	6
252	253	0.0995	0.0131	6
253	254	0.0891	0.0117	6
254	255	0.0717	0.0095	6
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
255	256	0.0891	0.0117	6
256	257	0.0779	0.0103	6
247	258	0.0891	0.0117	11
258	259	0.0575	0.0124	11
259	260	0.0463	0.0100	6
259	261	0.0575	0.0124	6
261	262	0.0995	0.0131	6
262	263	0.0799	0.0105	6
263	264	0.0767	0.0101	6
263	265	0.0799	0.0105	1
265	266	0.0891	0.0117	1
266	267	0.0866	0.0114	1
267	268	0.0816	0.0108	1
228	269	0.0368	0.0121	110
269	270	0.0339	0.0112	110
270	271	0.0305	0.0101	110
271	272	0.0495	0.0107	2
272	273	0.0671	0.0144	2
273	274	0.0575	0.0124	2
271	275	0.0305	0.0101	108
275	276	0.0378	0.0125	108
276	277	0.0331	0.0109	108
277	278	0.0305	0.0101	108
278	279	0.0378	0.0125	108
279	280	0.0420	0.0139	108
280	281	0.0378	0.0125	100
281	282	0.0378	0.0125	100
282	283	0.0339	0.0112	100
283	284	0.0378	0.0125	100
284	285	0.0378	0.0125	100
285	286	0.0495	0.0107	4
285	287	0.0326	0.0107	97
287	288	0.0378	0.0125	97
288	289	0.0422	0.0139	97
289	290	0.0284	0.0094	97
290	291	0.0309	0.0102	97

291	292	0.0431	0.0093	14
291	293	0.0331	0.0109	84
293	294	0.0559	0.0120	1
294	295	0.0447	0.0096	1
295	296	0.0495	0.0107	1
296	297	0.0431	0.0093	1
293	298	0.0305	0.0101	84
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
298	299	0.0331	0.0109	84
299	300	0.0420	0.0139	84
300	301	0.0441	0.0146	84
301	302	0.0575	0.0124	7
302	303	0.0503	0.0108	7
303	304	0.0463	0.0100	7
301	305	0.0368	0.0121	79
305	306	0.0339	0.0112	79
306	307	0.0347	0.0114	79
307	308	0.0495	0.0107	6
307	309	0.0378	0.0125	74
309	310	0.0420	0.0139	74
310	311	0.0463	0.0100	6
311	312	0.0575	0.0124	6
312	313	0.0642	0.0138	6
313	314	0.0495	0.0107	6
314	315	0.0431	0.0093	6
315	316	0.0503	0.0108	4
315	317	0.0470	0.0101	3
317	318	0.0495	0.0107	3
318	319	0.0642	0.0138	3
319	320	0.0431	0.0093	3
310	321	0.0339	0.0112	68
321	322	0.0516	0.0111	4
321	323	0.0331	0.0109	65
323	324	0.0378	0.0125	65
324	325	0.0378	0.0125	65
325	326	0.0326	0.0107	65
326	327	0.0527	0.0113	8
327	328	0.0495	0.0107	8
328	329	0.0639	0.0137	8
329	330	0.0671	0.0144	8
330	331	0.0575	0.0124	6
330	332	0.0463	0.0100	3
332	333	0.0516	0.0111	3
		113		

326	334	0.0331	0.0109	58
334	335	0.0284	0.0094	58
335	336	0.0527	0.0113	9
336	337	0.0559	0.0120	9
337	338	0.0516	0.0111	9
338	339	0.0503	0.0108	9
339	340	0.0463	0.0100	9
335	341	0.0339	0.0112	50
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
341	342	0.0378	0.0125	50
342	343	0.0378	0.0125	50
343	344	0.0671	0.0144	6
344	345	0.0639	0.0137	6
343	346	0.0326	0.0107	45
346	347	0.0378	0.0125	45
347	348	0.0378	0.0125	45
348	349	0.0305	0.0101	45
349	350	0.0331	0.0109	45
350	351	0.0339	0.0112	14
351	352	0.0331	0.0109	14
352	353	0.0378	0.0125	14
353	354	0.0378	0.0125	14
354	355	0.0642	0.0138	6
354	356	0.0305	0.0101	9
356	357	0.0422	0.0139	1
356	358	0.0422	0.0139	9
358	359	0.0326	0.0107	1
358	360	0.0326	0.0107	9
360	361	0.0339	0.0112	9
361	362	0.0463	0.0100	9
362	363	0.0671	0.0144	9
363	364	0.0575	0.0124	9
364	365	0.0639	0.0137	9
365	366	0.0431	0.0093	9
366	367	0.0527	0.0113	9
350	368	0.0717	0.0095	31
368	369	0.0693	0.0091	31
369	370	0.0891	0.0117	9
370	371	0.0891	0.0117	9
371	372	0.0799	0.0105	9
372	373	0.0779	0.0103	9
373	374	0.0575	0.0124	9
369	375	0.0668	0.0088	23
		114		

375	376	0.0816	0.0108	23
376	377	0.0866	0.0114	23
377	378	0.0799	0.0105	23
378	379	0.0779	0.0103	23
379	380	0.0717	0.0095	23
380	381	0.0799	0.0105	9
381	382	0.0891	0.0117	9
382	383	0.0891	0.0117	9
380	384	0.0503	0.0108	15
Ι	J	Resistencia (Ω)	Reactancia (Ω)	Imax (a)
384	385	0.0516	0.0111	15
385	386	0.0503	0.0108	15
386	387	0.0463	0.0100	15
387	388	0.0575	0.0124	15
388	389	0.0575	0.0124	15
389	390	0.0639	0.0137	15
390	391	0.0671	0.0144	15
391	392	0.0642	0.0138	6
392	393	0.0575	0.0124	6
391	394	0.0503	0.0108	9
394	395	0.0463	0.0100	9
395	396	0.0575	0.0124	9
396	397	0.0575	0.0124	9
397	398	0.0516	0.0111	9
398	399	0.0503	0.0108	9
399	400	0.0559	0.0120	9

Datos de los circuitos

_	j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
	2	0.000	0.000	0.000	0.000	0.000	0.000
	3	0.000	0.000	0.000	0.000	0.000	0.000
	4	0.000	0.000	0.000	0.000	0.000	0.000
	5	0.000	0.000	0.000	0.000	0.000	0.000
	6	0.000	0.000	0.000	0.000	0.000	0.000
	7	0.000	0.000	0.000	0.000	0.000	0.000
	8	0.000	0.000	0.000	0.000	0.000	0.000
	9	0.000	0.000	0.000	0.000	0.000	0.000
	10	0.000	0.000	0.000	0.000	0.000	0.000
	11	0.000	0.000	0.000	0.000	0.000	0.000
	12	69.000	41.400	20.700	29.250	17.550	8.775
	13	0.000	0.000	0.000	0.000	0.000	0.000
	14	0.000	0.000	0.000	0.000	0.000	0.000

15	0.000	0.000	0.000	0.000	0.000	0.000
16	46.000	27.600	13.800	19.500	11.700	5.850
17	0.000	0.000	0.000	0.000	0.000	0.000
18	0.000	0.000	0.000	0.000	0.000	0.000
19	0.000	0.000	0.000	0.000	0.000	0.000
20	0.000	0.000	0.000	0.000	0.000	0.000
21	0.000	0.000	0.000	0.000	0.000	0.000
22	69.000	41.400	20.700	29.250	17.550	8.775
23	0.000	0.000	0.000	0.000	0.000	0.000
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
24	69.000	41.400	20.700	29.250	17.550	8.775
25	0.000	0.000	0.000	0.000	0.000	0.000
26	0.000	0.000	0.000	0.000	0.000	0.000
27	0.000	0.000	0.000	0.000	0.000	0.000
28	0.000	0.000	0.000	0.000	0.000	0.000
29	0.000	0.000	0.000	0.000	0.000	0.000
30	0.000	0.000	0.000	0.000	0.000	0.000
31	0.000	0.000	0.000	0.000	0.000	0.000
32	0.000	0.000	0.000	0.000	0.000	0.000
33	0.000	0.000	0.000	0.000	0.000	0.000
34	0.000	0.000	0.000	0.000	0.000	0.000
35	0.000	0.000	0.000	0.000	0.000	0.000
36	0.000	0.000	0.000	0.000	0.000	0.000
37	0.000	0.000	0.000	0.000	0.000	0.000
38	0.000	0.000	0.000	0.000	0.000	0.000
39	0.000	0.000	0.000	0.000	0.000	0.000
40	0.000	0.000	0.000	0.000	0.000	0.000
41	0.000	0.000	0.000	0.000	0.000	0.000
42	69.000	41.400	20.700	29.250	17.550	8.775
43	0.000	0.000	0.000	0.000	0.000	0.000
44	0.000	0.000	0.000	0.000	0.000	0.000
45	0.000	0.000	0.000	0.000	0.000	0.000
46	0.000	0.000	0.000	0.000	0.000	0.000
47	41.400	24.840	12.400	17.550	10.530	5.265
48	0.000	0.000	0.000	0.000	0.000	0.000
49	0.000	0.000	0.000	0.000	0.000	0.000
50	69.000	41.400	20.700	29.250	17.550	8.775
51	0.000	0.000	0.000	0.000	0.000	0.000
52	0.000	0.000	0.000	0.000	0.000	0.000
53	0.000	0.000	0.000	0.000	0.000	0.000
54	0.000	0.000	0.000	0.000	0.000	0.000
55	69.000	41.400	20.700	29.250	17.550	8.775

56	41.400	24.840	12.420	17.550	10.530	5.265
57	0.000	0.000	0.000	0.000	0.000	0.000
58	103.500	62.100	31.050	43.880	26.320	13.160
59	0.000	0.000	0.000	0.000	0.000	0.000
60	0.000	0.000	0.000	0.000	0.000	0.000
61	0.000	0.000	0.000	0.000	0.000	0.000
62	0.000	0.000	0.000	0.000	0.000	0.000
63	0.000	0.000	0.000	0.000	0.000	0.000
64	0.000	0.000	0.000	0.000	0.000	0.000
65	0.000	0.000	0.000	0.000	0.000	0.000
66	0.000	0.000	0.000	0.000	0.000	0.000
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
67	0.000	0.000	0.000	0.000	0.000	0.000
68	0.000	0.000	0.000	0.000	0.000	0.000
69	0.000	0.000	0.000	0.000	0.000	0.000
70	0.000	0.000	0.000	0.000	0.000	0.000
71	0.000	0.000	0.000	0.000	0.000	0.000
72	41.400	24.840	12.420	17.550	10.530	5.265
73	0.000	0.000	0.000	0.000	0.000	0.000
74	27.600	16.560	8.280	11.700	7.020	3.510
75	0.000	0.000	0.000	0.000	0.000	0.000
76	0.000	0.000	0.000	0.000	0.000	0.000
77	0.000	0.000	0.000	0.000	0.000	0.000
78	69.000	41.400	20.700	29.250	17.550	8.775
79	0.000	0.000	0.000	0.000	0.000	0.000
80	0.000	0.000	0.000	0.000	0.000	0.000
81	0.000	0.000	0.000	0.000	0.000	0.000
82	0.000	0.000	0.000	0.000	0.000	0.000
83	69.000	41.400	20.700	29.250	17.550	8.775
84	0.000	0.000	0.000	0.000	0.000	0.000
85	0.000	0.000	0.000	0.000	0.000	0.000
86	0.000	0.000	0.000	0.000	0.000	0.000
87	69.000	41.400	20.700	29.250	17.550	8.775
88	0.000	0.000	0.000	0.000	0.000	0.000
89	0.000	0.000	0.000	0.000	0.000	0.000
90	0.000	0.000	0.000	0.000	0.000	0.000
91	0.000	0.000	0.000	0.000	0.000	0.000
92	69.000	41.400	20.700	29.250	17.550	8.775
93	0.000	0.000	0.000	0.000	0.000	0.000
94	0.000	0.000	0.000	0.000	0.000	0.000
95	0.000	0.000	0.000	0.000	0.000	0.000
96	0.000	0.000	0.000	0.000	0.000	0.000
97	0.000	0.000	0.000	0.000	0.000	0.000

98	0.000	0.000	0.000	0.000	0.000	0.000
99	0.000	0.000	0.000	0.000	0.000	0.000
100	0.000	0.000	0.000	0.000	0.000	0.000
101	0.000	0.000	0.000	0.000	0.000	0.000
102	0.000	0.000	0.000	0.000	0.000	0.000
103	41.400	24.840	12.420	17.550	10.530	5.265
104	0.000	0.000	0.000	0.000	0.000	0.000
105	0.000	0.000	0.000	0.000	0.000	0.000
106	0.000	0.000	0.000	0.000	0.000	0.000
107	0.000	0.000	0.000	0.000	0.000	0.000
108	0.000	0.000	0.000	0.000	0.000	0.000
109	0.000	0.000	0.000	0.000	0.000	0.000
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
110	0.000	0.000	0.000	0.000	0.000	0.000
111	0.000	0.000	0.000	0.000	0.000	0.000
112	0.000	0.000	0.000	0.000	0.000	0.000
113	103.500	62.100	31.050	43.880	26.320	13.160
114	0.000	0.000	0.000	0.000	0.000	0.000
115	0.000	0.000	0.000	0.000	0.000	0.000
116	0.000	0.000	0.000	0.000	0.000	0.000
117	0.000	0.000	0.000	0.000	0.000	0.000
118	0.000	0.000	0.000	0.000	0.000	0.000
119	69.000	41.400	20.700	29.250	17.550	8.775
120	0.000	0.000	0.000	0.000	0.000	0.000
121	0.000	0.000	0.000	0.000	0.000	0.000
122	103.500	62.100	31.050	43.880	26.320	13.160
123	0.000	0.000	0.000	0.000	0.000	0.000
124	0.000	0.000	0.000	0.000	0.000	0.000
125	0.000	0.000	0.000	0.000	0.000	0.000
126	69.000	41.400	20.700	29.250	17.550	8.775
127	0.000	0.000	0.000	0.000	0.000	0.000
128	0.000	0.000	0.000	0.000	0.000	0.000
129	0.000	0.000	0.000	0.000	0.000	0.000
130	0.000	0.000	0.000	0.000	0.000	0.000
131	41.400	24.840	12.420	17.550	10.530	5.265
132	0.000	0.000	0.000	0.000	0.000	0.000
133	0.000	0.000	0.000	0.000	0.000	0.000
134	0.000	0.000	0.000	0.000	0.000	0.000
135	41.400	24.840	12.420	17.550	10.530	5.265
136	0.000	0.000	0.000	0.000	0.000	0.000
137	0.000	0.000	0.000	0.000	0.000	0.000
138	0.000	0.000	0.000	0.000	0.000	0.000
139	0.000	0.000	0.000	0.000	0.000	0.000

1.40	0.000	0.000	0.000	0.000	0.000	0.000
140	0.000	0.000	0.000	0.000	0.000	0.000
141	0.000	0.000	0.000	0.000	0.000	0.000
142	27.600	16.560	8.280	11.700	7.020	3.510
143	0.000	0.000	0.000	0.000	0.000	0.000
144	0.000	0.000	0.000	0.000	0.000	0.000
145	0.000	0.000	0.000	0.000	0.000	0.000
146	0.000	0.000	0.000	0.000	0.000	0.000
147	0.000	0.000	0.000	0.000	0.000	0.000
148	0.000	0.000	0.000	0.000	0.000	0.000
149	0.000	0.000	0.000	0.000	0.000	0.000
150	0.000	0.000	0.000	0.000	0.000	0.000
151	0.000	0.000	0.000	0.000	0.000	0.000
152	69.000	41.400	20.700	29.250	17.550	8.775
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
153	0.000	0.000	0.000	0.000	0.000	0.000
154	13.800	8.280	4.140	5.850	3.510	1.755
155	0.000	0.000	0.000	0.000	0.000	0.000
156	0.000	0.000	0.000	0.000	0.000	0.000
157	0.000	0.000	0.000	0.000	0.000	0.000
158	0.000	0.000	0.000	0.000	0.000	0.000
159	391.000	234.600	117.300	165.700	99.450	49.720
160	0.000	0.000	0.000	0.000	0.000	0.000
161	0.000	0.000	0.000	0.000	0.000	0.000
162	0.000	0.000	0.000	0.000	0.000	0.000
163	0.000	0.000	0.000	0.000	0.000	0.000
164	46.000	27.600	13.800	19.500	11.700	5.850
165	0.000	0.000	0.000	0.000	0.000	0.000
166	0.000	0.000	0.000	0.000	0.000	0.000
167	0.000	0.000	0.000	0.000	0.000	0.000
168	0.000	0.000	0.000	0.000	0.000	0.000
169	0.000	0.000	0.000	0.000	0.000	0.000
170	0.000	0.000	0.000	0.000	0.000	0.000
171	0.000	0.000	0.000	0.000	0.000	0.000
172	69.000	41.400	20.700	29.250	17.550	8.775
173	41.400	24.840	12.420	17.550	10.530	5.265
174	0.000	0.000	0.000	0.000	0.000	0.000
175	0.000	0.000	0.000	0.000	0.000	0.000
176	0.000	0.000	0.000	0.000	0.000	0.000
177	0.000	0.000	0.000	0.000	0.000	0.000
178	41.400	24.840	12.420	17.550	10.530	5.265
179	0.000	0.000	0.000	0.000	0.000	0.000
180	0.000	0.000	0.000	0.000	0.000	0.000
181	0.000	0.000	0.000	0.000	0.000	0.000

182	0.000	0.000	0.000	0.000	0.000	0.000
183	0.000	0.000	0.000	0.000	0.000	0.000
184	41.400	24.840	12.420	17.550	10.530	5.265
185	0.000	0.000	0.000	0.000	0.000	0.000
186	0.000	0.000	0.000	0.000	0.000	0.000
187	0.000	0.000	0.000	0.000	0.000	0.000
188	0.000	0.000	0.000	0.000	0.000	0.000
189	0.000	0.000	0.000	0.000	0.000	0.000
190	0.000	0.000	0.000	0.000	0.000	0.000
191	0.000	0.000	0.000	0.000	0.000	0.000
192	0.000	0.000	0.000	0.000	0.000	0.000
193	0.000	0.000	0.000	0.000	0.000	0.000
194	9.200	5.520	2.760	3.900	2.340	1.170
195	0.000	0.000	0.000	0.000	0.000	0.000
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
196	0.000	0.000	0.000	0.000	0.000	0.000
197	0.000	0.000	0.000	0.000	0.000	0.000
198	0.000	0.000	0.000	0.000	0.000	0.000
199	0.000	0.000	0.000	0.000	0.000	0.000
200	27.600	16.560	8.280	11.700	7.020	3.510
201	0.000	0.000	0.000	0.000	0.000	0.000
202	0.000	0.000	0.000	0.000	0.000	0.000
203	69.000	41.400	20.700	29.250	17.550	8.775
204	0.000	0.000	0.000	0.000	0.000	0.000
205	0.000	0.000	0.000	0.000	0.000	0.000
206	0.000	0.000	0.000	0.000	0.000	0.000
207	0.000	0.000	0.000	0.000	0.000	0.000
208	0.000	0.000	0.000	0.000	0.000	0.000
209	0.000	0.000	0.000	0.000	0.000	0.000
210	0.000	0.000	0.000	0.000	0.000	0.000
211	0.000	0.000	0.000	0.000	0.000	0.000
212	0.000	0.000	0.000	0.000	0.000	0.000
213	9.200	5.520	2.760	3.900	2.340	1.170
214	0.000	0.000	0.000	0.000	0.000	0.000
215	9.200	5.520	2.760	3.900	2.340	1.170
216	0.000	0.000	0.000	0.000	0.000	0.000
217	0.000	0.000	0.000	0.000	0.000	0.000
218	0.000	0.000	0.000	0.000	0.000	0.000
219	0.000	0.000	0.000	0.000	0.000	0.000
220	9.200	5.520	2.760	3.900	2.340	1.170
221	0.000	0.000	0.000	0.000	0.000	0.000
222	0.000	0.000	0.000	0.000	0.000	0.000
223	0.000	0.000	0.000	0.000	0.000	0.000

224	0.000	0.000	0.000	0.000	0.000	0.000
225	13.800	8.280	4.140	5.850	3.510	1.755
226	0.000	0.000	0.000	0.000	0.000	0.000
227	0.000	0.000	0.000	0.000	0.000	0.000
228	0.000	0.000	0.000	0.000	0.000	0.000
229	0.000	0.000	0.000	0.000	0.000	0.000
230	0.000	0.000	0.000	0.000	0.000	0.000
231	0.000	0.000	0.000	0.000	0.000	0.000
232	0.000	0.000	0.000	0.000	0.000	0.000
233	0.000	0.000	0.000	0.000	0.000	0.000
234	0.000	0.000	0.000	0.000	0.000	0.000
235	0.000	0.000	0.000	0.000	0.000	0.000
236	0.000	0.000	0.000	0.000	0.000	0.000
237	0.000	0.000	0.000	0.000	0.000	0.000
238	0.000	0.000	0.000	0.000	0.000	0.000
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
239	0.000	0.000	0.000	0.000	0.000	0.000
240	9.200	5.520	2.760	3.900	2.340	1.170
241	0.000	0.000	0.000	0.000	0.000	0.000
242	0.000	0.000	0.000	0.000	0.000	0.000
243	0.000	0.000	0.000	0.000	0.000	0.000
244	0.000	0.000	0.000	0.000	0.000	0.000
245	0.000	0.000	0.000	0.000	0.000	0.000
246	0.000	0.000	0.000	0.000	0.000	0.000
247	0.000	0.000	0.000	0.000	0.000	0.000
248	0.000	0.000	0.000	0.000	0.000	0.000
249	0.000	0.000	0.000	0.000	0.000	0.000
250	0.000	0.000	0.000	0.000	0.000	0.000
251	0.000	0.000	0.000	0.000	0.000	0.000
252	0.000	0.000	0.000	0.000	0.000	0.000
253	0.000	0.000	0.000	0.000	0.000	0.000
254	0.000	0.000	0.000	0.000	0.000	0.000
255	0.000	0.000	0.000	0.000	0.000	0.000
256	0.000	0.000	0.000	0.000	0.000	0.000
257	41.400	24.840	12.420	17.550	10.530	5.265
258	0.000	0.000	0.000	0.000	0.000	0.000
259	0.000	0.000	0.000	0.000	0.000	0.000
260	41.400	24.840	12.420	17.550	10.530	5.265
261	0.000	0.000	0.000	0.000	0.000	0.000
262	0.000	0.000	0.000	0.000	0.000	0.000
263	0.000	0.000	0.000	0.000	0.000	0.000
264	41.400	24.840	12.420	17.550	10.530	5.265
265	0.000	0.000	0.000	0.000	0.000	0.000
			12	1		

266	0.000	0.000	0.000	0.000	0.000	0.000
267	0.000	0.000	0.000	0.000	0.000	0.000
268	0.000	0.000	0.000	0.000	0.000	0.000
269	0.000	0.000	0.000	0.000	0.000	0.000
270	0.000	0.000	0.000	0.000	0.000	0.000
271	0.000	0.000	0.000	0.000	0.000	0.000
272	0.000	0.000	0.000	0.000	0.000	0.000
273	0.000	0.000	0.000	0.000	0.000	0.000
274	9.200	5.520	2.760	3.900	2.340	1.170
275	0.000	0.000	0.000	0.000	0.000	0.000
276	0.000	0.000	0.000	0.000	0.000	0.000
277	0.000	0.000	0.000	0.000	0.000	0.000
278	0.000	0.000	0.000	0.000	0.000	0.000
279	0.000	0.000	0.000	0.000	0.000	0.000
280	69.000	41.400	20.700	29.250	17.550	8.775
281	0.000	0.000	0.000	0.000	0.000	0.000
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
282	0.000	0.000	0.000	0.000	0.000	0.000
283	0.000	0.000	0.000	0.000	0.000	0.000
284	0.000	0.000	0.000	0.000	0.000	0.000
285	0.000	0.000	0.000	0.000	0.000	0.000
286	27.600	16.560	8.280	11.700	7.020	3.510
287	0.000	0.000	0.000	0.000	0.000	0.000
288	0.000	0.000	0.000	0.000	0.000	0.000
289	0.000	0.000	0.000	0.000	0.000	0.000
290	0.000	0.000	0.000	0.000	0.000	0.000
291	0.000	0.000	0.000	0.000	0.000	0.000
292	103.500	62.100	31.050	43.880	26.320	13.160
293	0.000	0.000	0.000	0.000	0.000	0.000
294	0.000	0.000	0.000	0.000	0.000	0.000
295	0.000	0.000	0.000	0.000	0.000	0.000
296	0.000	0.000	0.000	0.000	0.000	0.000
297	0.000	0.000	0.000	0.000	0.000	0.000
298	0.000	0.000	0.000	0.000	0.000	0.000
299	0.000	0.000	0.000	0.000	0.000	0.000
300	0.000	0.000	0.000	0.000	0.000	0.000
301	0.000	0.000	0.000	0.000	0.000	0.000
302	0.000	0.000	0.000	0.000	0.000	0.000
303	0.000	0.000	0.000	0.000	0.000	0.000
304	46.000	27.600	13.800	19.500	11.700	5.850
305	0.000	0.000	0.000	0.000	0.000	0.000
306	0.000	0.000	0.000	0.000	0.000	0.000
307	0.000	0.000	0.000	0.000	0.000	0.000

	308	41.400	24.840	2.420	17.550	10.530	5.265
	309	0.000	0.000	0.000	0.000	0.000	0.000
	310	0.000	0.000	0.000	0.000	0.000	0.000
	311	0.000	0.000	0.000	0.000	0.000	0.000
	312	0.000	0.000	0.000	0.000	0.000	0.000
	313	0.000	0.000	0.000	0.000	0.000	0.000
	314	0.000	0.000	0.000	0.000	0.000	0.000
	315	0.000	0.000	0.000	0.000	0.000	0.000
	316	27.600	16.560	8.280	11.700	7.020	3.510
	317	0.000	0.000	0.000	0.000	0.000	0.000
	318	0.000	0.000	0.000	0.000	0.000	0.000
	319	0.000	0.000	0.000	0.000	0.000	0.000
	320	13.800	8.280	4.140	5.850	3.510	1.755
	321	0.000	0.000	0.000	0.000	0.000	0.000
	322	27.600	16.560	8.280	11.700	7.020	3.510
	323	0.000	0.000	0.000	0.000	0.000	0.000
_	324	0.000	0.000	0.000	0.000	0.000	0.000
	j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
	325	0.000	0.000	0.000	0.000	0.000	0.000
	326	0.000	0.000	0.000	0.000	0.000	0.000
	327	0.000	0.000	0.000	0.000	0.000	0.000
	328	0.000	0.000	0.000	0.000	0.000	0.000
	329	0.000	0.000	0.000	0.000	0.000	0.000
	330	0.000	0.000	0.000	0.000	0.000	0.000
	331	41.400	24.840	12.420	17.550	10.530	5.265
	332	0.000	0.000	0.000	0.000	0.000	0.000
	333	13.800	8.280	4.140	5.850	3.510	1.755
	334	0.000	0.000	0.000	0.000	0.000	0.000
	335	0.000	0.000	0.000	0.000	0.000	0.000
	336	0.000	0.000	0.000	0.000	0.000	0.000
	337	0.000	0.000	0.000	0.000	0.000	0.000
	338	0.000	0.000	0.000	0.000	0.000	0.000
	339	0.000	0.000	0.000	0.000	0.000	0.000
	340	69.000	41.400	20.700	29.250	17.550	8.775
	341	0.000	0.000	0.000	0.000	0.000	0.000
	342	0.000	0.000	0.000	0.000	0.000	0.000
	343	0.000	0.000	0.000	0.000	0.000	0.000
	344	0.000	0.000	0.000	0.000	0.000	0.000
	345	41.400	24.840	12.420	17.550	10.530	5.265
	346	0.000	0.000	0.000	0.000	0.000	0.000
	347	0.000	0.000	0.000	0.000	0.000	0.000
	348	0.000	0.000	0.000	0.000	0.000	0.000
	349	0.000	0.000	0.000	0.000	0.000	0.000

350	0.000	0.000	0.000	0.000	0.000	0.000
351	0.000	0.000	0.000	0.000	0.000	0.000
352	0.000	0.000	0.000	0.000	0.000	0.000
353	0.000	0.000	0.000	0.000	0.000	0.000
354	0.000	0.000	0.000	0.000	0.000	0.000
355	41.400	24.840	12.420	17.550	10.530	5.265
356	0.000	0.000	0.000	0.000	0.000	0.000
357	0.000	0.000	0.000	0.000	0.000	0.000
358	0.000	0.000	0.000	0.000	0.000	0.000
359	0.000	0.000	0.000	0.000	0.000	0.000
360	0.000	0.000	0.000	0.000	0.000	0.000
361	0.000	0.000	0.000	0.000	0.000	0.000
362	0.000	0.000	0.000	0.000	0.000	0.000
363	0.000	0.000	0.000	0.000	0.000	0.000
364	0.000	0.000	0.000	0.000	0.000	0.000
365	0.000	0.000	0.000	0.000	0.000	0.000
366	0.000	0.000	0.000	0.000	0.000	0.000
367	69.000	41.400	20.700	29.250	17.550	8.775
j	P1 (kW)	P2 (kW)	P3 (kW)	Q1(kVAr)	Q2(kVAr)	Q3(kVAr)
368	0.000	0.000	0.000	0.000	0.000	0.000
369	0.000	0.000	0.000	0.000	0.000	0.000
370	0.000	0.000	0.000	0.000	0.000	0.000
371	0.000	0.000	0.000	0.000	0.000	0.000
372	0.000	0.000	0.000	0.000	0.000	0.000
373	0.000	0.000	0.000	0.000	0.000	0.000
374	69.000	41.400	20.700	29.250	17.550	8.775
375	0.000	0.000	0.000	0.000	0.000	0.000
376	0.000	0.000	0.000	0.000	0.000	0.000
377	0.000	0.000	0.000	0.000	0.000	0.000
378	0.000	0.000	0.000	0.000	0.000	0.000
379	0.000	0.000	0.000	0.000	0.000	0.000
380	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000
381	0.000	0.000	0.000	0.000	0.000	0.000
381 382	$0.000 \\ 0.000$	0.000 0.000	0.000 0.000 0.000	0.000 0.000	0.000 0.000 0.000	0.000 0.000
381 382 383	0.000 0.000 69.000	0.000 0.000 41.400	0.000 0.000 20.700	0.000 0.000 29.250	0.000 0.000 17.550	0.000 0.000 8.775
381 382 383 384	0.000 0.000 69.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 41.400\\ 0.000\end{array}$	0.000 0.000 20.700 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 29.250\\ 0.000\end{array}$	0.000 0.000 17.550 0.000	0.000 0.000 8.775 0.000
381 382 383 384 385	0.000 0.000 69.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 41.400\\ 0.000\\ 0.000\end{array}$	0.000 0.000 20.700 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 29.250\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 17.550\\ 0.000\\ 0.000\end{array}$	0.000 0.000 8.775 0.000 0.000
381 382 383 384 385 386	0.000 0.000 69.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 41.400\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 20.700\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 29.250\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 17.550\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 8.775 0.000 0.000 0.000
381 382 383 384 385 386 387	0.000 0.000 69.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 41.400\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 20.700\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 29.250\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 17.550\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 8.775 0.000 0.000 0.000 0.000
381 382 383 384 385 386 386 387 388	0.000 0.000 69.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 41.400\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 20.700\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 29.250\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 1.000\\ 17.550\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 8.775\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$
381 382 383 384 385 386 387 388 388 389	0.000 0.000 69.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 41.400\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 20.700\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 29.250\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 17.550\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 8.775\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$
381 382 383 384 385 386 387 388 389 390	0.000 0.000 69.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 41.400\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 20.700\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 29.250\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 1.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 8.775\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

392	0.000	0.000	0.000	0.000	0.000	0.000
393	41.400	24.840	12.420	17.550	10.530	5.265
394	0.000	0.000	0.000	0.000	0.000	0.000
395	0.000	0.000	0.000	0.000	0.000	0.000
396	0.000	0.000	0.000	0.000	0.000	0.000
397	0.000	0.000	0.000	0.000	0.000	0.000
398	0.000	0.000	0.000	0.000	0.000	0.000
399	0.000	0.000	0.000	0.000	0.000	0.000
400	69.000	41.400	20.700	29.250	17.550	8.775

DATOS SISTEMA 23 NODOS

Datos de las cargas

Nodo	SD (kVA)	Nodo	SD (kVA)
1	0	13	320
2	0	14	320
3	640	15	320
4	320	16	320
5	320	17	320
6	320	18	320
7	320	19	320
8	320	20	320
9	320	21	320
10	320	22	320
11	320	23	320
12	320		

Datos de los circuitos

i	j	l (km)	i	j	l (km)
1	10	0.20209	10	20	0.69728
2	8	0.07560	11	13	0.50527
3	8	2.70790	11	21	0.63941
3	9	1.82020	11	22	0.69245
3	16	4.22370	12	15	0.98085
4	5	0.94020	12	23	0.67855
4	6	1.50170	13	15	0.62291
4	8	2.30530	14	17	0.44821
4	9	3.44790	14	23	0.48604
5	14	1.01620	15	18	0.57114
5	23	0.64091	15	21	0.60687
6	7	0.81807	16	20	0.50185
6	14	0.81772	16	22	0.94829
6	16	1.17520	17	18	0.44113
7	8	0.68661	19	20	0.73027
8	9	2.05670	19	21	0.55500
10	14	0.42971	19	22	0.58266
10	19	0.59489			

Datos Conductores				
Tipo	Imax	Resistencia	Reactancia	Costo
	А	Ω/km	Ω/km	US\$/km
1	230	0.6045	0.4290	10000
4	340	0.3017	0.4020	40000

DATOS SISTEMA 54 NODOS

Datos de las cargas			
Nodo	SD (kVA)	Nodo	SD (kVA)
<u>S1</u>	0.0000	24	5.009
S2	0.0000	25	8.990
S 3	0.0000	26	11.987
S4	0.0000	27	15.027
1	42.0405	28	6.978
2	15.0270	29	13.999
3	6.9778	30	26.029
4	11.0023	31	6.978
5	26.0292	32	16.996
6	6.9778	33	29.026
7	10.0180	34	11.987
8	19.0079	35	8.990
9	11.9867	36	2.997
10	29.0259	37	21.020
11	2.9967	38	11.002
12	18.0236	39	10.018
13	11.0023	40	13.999
14	10.0180	41	8.990
15	13.9989	42	11.987
16	19.0079	43	13.015
17	6.9778	44	13.999
18	11.9867	45	8.006
19	13.9989	46	18.024
20	8.0056	47	10.018
21	18.0236	48	8.006
22	11.0023	49	5.009
23	10.018	50	8.0056

<u>i</u>	j	l (km)	i	j	1 (km)	i	j	1 (km)
1	S 1	0.281	21	S4	0.250	39	38	0.343
3	S 1	0.218	22	S4	0.375	32	39	0.406
4	3	0.312	22	9	0.468	33	39	0.281
7	4	0.250	23	22	0.343	8	33	0.468
5	4	0.312	24	23	0.281	34	33	0.187
8	7	0.312	25	24	0.218	35	34	0.218
6	5	0.250	8	25	0.281	36	35	0.218
9	1	0.343	27	8	0.375	36	S 3	0.250
2	1	0.312	26	27	0.343	28	S 3	0.312
10	9	0.718	28	27	0.312	41	S 3	0.312
14	S2	0.375	28	6	0.500	40	41	0.375
15	14	0.375	30	S4	0.281	16	40	0.250
16	15	0.281	29	30	0.312	42	41	0.375
11	S2	0.281	43	30	0.406	48	42	0.250
12	11	0.312	37	43	0.250	49	48	0.375
13	12	0.437	31	37	0.187	50	49	0.218
20	19	0.312	10	31	0.312	47	42	0.312
19	18	0.250	43	13	0.375	46	47	0.312
18	17	0.406	45	12	0.250	14	46	0.343
17	9	0.430	44	45	0.218			
21	18	0.312	38	44	0.312			

Datos	de	los	circuitos

Datos Conductores				
Tipo	Imax	Resistencia	Reactancia	Costo
	А	Ω/km	Ω/km	US\$/km
1	90	6.660673	4.593557	4000
2	110	5.322794	4.49403	7000

DATOS	SISTEMA	18 NODOS

Nodo]	Etapa 1		Etapa 2			Etapa 3			
INOUO	ND1	ND2	ND3	ND1	ND2	ND3	ND1	ND2	ND3	
1	1.2	0.72	0.24	1.2	0.72	0.24	2.6	0.72	0.24	
2	0	0	0	1.2	0.72	0.24	1.2	0.72	0.24	
3	0	0	0	1.2	0.72	0.24	1.2	0.72	0.24	
4	1.2	0.72	0.24	1.2	0.72	0.24	1.2	0.72	0.24	
5	1.2	0.72	0.24	1.2	0.72	0.24	1.2	0.72	0.24	
6	1.2	0.72	0.24	1.2	0.72	0.24	1.2	0.72	0.24	
7	0	0	0	1.2	0.72	0.24	1.2	0.72	0.24	
8	1.2	0.72	0.24	1.2	0.72	0.24	1.2	0.72	0.24	
9	1.2	0.72	0.24	1.2	0.72	0.24	2.4	1.2	0.48	
10	0	0	0	1.2	2.4	0.48	2.4	3.6	1.2	
11	1.2	0.72	0.24	1.2	2.4	0.48	2.4	3.6	1.2	
12	1.2	0.72	0.24	1.2	0.72	0.24	1.2	0.72	0.24	
13	1.2	0.72	0.24	1.2	2.4	0.48	2.4	3.6	1.2	
14	0	0	0	1.2	0.72	0.24	2.4	1.2	0.48	
15	0	0	0	1.2	0.72	0.24	2.4	1.2	0.48	
16	1.2	0.72	0.24	1.2	0.72	0.24	1.2	0.72	0.24	
Н	3	13	8	3	13	8	3	13	8	

Datos de las cargas por etapa y nivel de demanda

Demanda en MVA

Datos de los circuitos									
N°	i	j	l(km)	TC	N°	i	j	l(km)	TC
1	1	2	3.7	1	13	7	18	2.7	0
2	2	3	3.9	1	14	8	12	4	0
3	3	4	3.5	1	15	9	10	5.3	0
4	1	5	3.6	1	16	9	13	3.3	0
5	5	6	4	1	17	9	17	4.3	0
6	5	17	4.7	1	18	10	11	4	0
7	12	16	2.9	1	19	11	15	4	0
8	12	18	3	1	20	11	18	3.6	0
9	4	8	2.8	0	21	13	14	4	0
10	5	10	2.7	0	22	13	17	3.5	0
11	6	7	3.1	0	23	14	15	3.9	0
12	7	8	2.9	0	24	15	16	3.5	0

 N° = número de circuito, l = longitud entre ij en km, TC = tipo inicial de los conductor.

Datos Subestaciones y Conductores

Tipo	Capacidad construcción	Capacidad repotenciación	Costo de construcción	Costo de repotenciación
1	12000	3500	3650	1500
2	15000	5000	7300	2000

Capacidad en MVA

Tipo	Resistencia	Reactancia	Reactancia	Costo
	Ω/km	Ω/km	Ω/km	US\$/km
1	0.5205	0.4428	90	10
2	0.3184	0.4237	150	25
3	0.2006	0.4026	300	35

DATOS SISTEMA 24 NODOS

Nodo	Etapa 1	Etapa 2	Etapa 3	Nodo	Etapa 1	Etapa 2	Etapa 3
1	4050	3450	5420	13	0	1150	1350
2	780	770	1210	14	0	3050	3160
3	2580	3380	3980	15	0	1620	1620
4	320	410	490	16	0	0	1220
5	280	370	470	17	0	2160	2400
6	1170	920	1440	18	0	0	2100
7	4040	3700	4360	19	0	0	1810
8	720	600	940	20	0	0	3790
9	1140	1120	1770	21	0	0	0
10	1560	2040	2400	22	0	0	0
11	0	1910	2800	23	0	0	0
12	0	930	1290	24	0	0	0

Datos de las cargas por etapa

Demanda en MVA

.

Datos	de lo	os circu	iitos											
N°)	i	j	l(k	m)	T	С	N°	i		j	l(kn	ı)	TC
1	1	5	2.22	0	13	4	15	1.6	0	25	10	16	0.8	0
2	1	9	1.2	0	14	4	16	1.3	0	26	10	23	1.3	1
3	1	14	1.2	0	15	5	6	2.4	1	27	11	23	1.6	1
4	1	21	2.2	1	16	5	24	0.7	0	28	13	20	1.2	0
5	2	3	2	1	17	6	13	1.2	0	29	14	18	1	0
6	2	12	1.1	0	18	6	17	2.2	0	30	15	17	1.2	0
7	2	21	1.7	1	19	6	22	2.6	1	31	15	19	1.6	0
8	3	10	1.1	0	20	7	8	2	1	32	17	22	1.5	0
9	3	16	1.2	0	21	7	11	1.1	0	33	18	24	1.5	0
10	3	23	1.2	0	22	7	19	1.6	0	34	20	24	0.9	0
11	4	7	2.6	0	23	7	23	0.9	0					
12	4	9	1.2	0	24	8	22	2	1					

N $^{\circ}$ = número de circuito, l = longitud entre ij en km, TC = tipo inicial de los conductor.

Tipo	Capacidad	Capacidad	Costo de	Costo de
_	construcción	repotenciaciór	n construcción	repotenciación
1	12000	7000	0000	1000
2	15000	0000	0000	0000
3	20000	0000	3000	0000
Capacidad en kV	A, costo US $x10^3$			
Tipo	Resistencia	Reactancia	Reactancia	Costo
	Ω/km	Ω/km	Ω/km	US\$/km
1	0.614	0.399	197	25
2	0.307	0.38	314	35
Tipo	Costo		Capacidad	Factor de Potencia
	US\$x10 ³			
1	100		1500	0.95
2	180		2200 0.9	
3	250		3000 0.85	

Capacidad en kVA