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Abstract

Background: Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging
technique that recently has been developed to measure the changes of cerebral
blood oxygenation associated with brain activities. To date, for functional brain
mapping applications, there is no standard on-line method for analysing NIRS data.

Methods: In this paper, a novel on-line NIRS data analysis framework taking
advantages of both the general linear model (GLM) and the Kalman estimator is
devised. The Kalman estimator is used to update the GLM coefficients recursively,
and one critical coefficient regarding brain activities is then passed to a t-statistical
test. The t-statistical test result is used to update a topographic brain activation map.
Meanwhile, a set of high-pass filters is plugged into the GLM to prevent very low-
frequency noises, and an autoregressive (AR) model is used to prevent the temporal
correlation caused by physiological noises in NIRS time series. A set of data recorded
in finger tapping experiments is studied using the proposed framework.

Results: The obtained results suggest that the method can effectively track the task
related brain activation areas, and prevent the noise distortion in the estimation
while the experiment is running. Thereby, the potential of the proposed method for
real-time NIRS-based brain imaging was demonstrated.

Conclusions: This paper presents a novel on-line approach for analysing NIRS data
for functional brain mapping applications. This approach demonstrates the potential
of a real-time-updating topographic brain activation map.

Background
Near-infrared spectroscopy (NIRS), an emerging brain imaging technique, measures the

hemodynamic changes that effectively reflect the brain activity occurring while people

perform a wide range of mental tasks [1-5]. It can provide both topographic [2,4,6] and

tomographic [1,7] brain images. Specifically, NIRS monitors the regional cerebral blood

flow (rCBF) variation by measuring, through the skull, the absorption changes of near-

infrared light at wavelengths between 650 nm and 950 nm [3]. These changes are caused

by the concentration variations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR),

two primary absorbing chromophores in brain capillary blood.

NIRS, compared with other prevalent brain imaging and activity measurement tech-

niques such as electroencephalography (EEG) and functional magnetic resonance ima-

ging (fMRI), offers itself as a trade-off between spatial and temporal resolutions. The
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usability and drawbacks of NIRS methods, as discussed in a detailed review and com-

parison with other neuroimaging methods, was provided by Perrey [6]. fMRI has been

used over the past decade in a growing number of applications. The critical drawbacks

of the fMRI-based approaches, however, are the cost and the non-portability of the

fMRI scanner. In fact, another comprehensive review [8], in comparing the respective

features of NIRS and fMRI, concluded that NIRS has great potentials for neurological

and psychiatric applications, due to its simplicity, portability, and insensitivity to

motion artifacts. Meanwhile, the EEG technique is limited, due to its poor spatial reso-

lution and low signal-to-noise ratios in many applications; NIRS can provide compara-

tively better quality in these aspects [9]. Indeed NIRS, in its wide applicability, might

help to bring functional imaging to the patient’s bedside [3].

Methods
There is currently no standard method of topographic NIRS data analysis for brain

mapping. In NIRS detection of hemodynamic responses, the light attenuation mea-

sured by the equipment needs to be converted to HbO and HbR concentration

changes via the modified Beer-Lambert law (MBLL) [10]. Hence, a differential path

length factor (DPF, intra- and inter-subject varying) in the MBLL has to be assumed to

account for the increase of the path length between a source and a detector [11].

The classical approach in topographic NIRS data analysis is a paired t-test to deter-

mine if a concentration change between two states (for instance, “rest” vs. “task”) is

statistically significant. Many researchers nowadays use this approach [12-14], because

it is simple and, thus, can provide a quick assessment to the task. One of the most

popular tools in this regard is a Matlab-based program known as HomER ([15] http://

www.nmr.mgh.harvard.edu/PMI/).

However, there are limitations to the classical t-test. First, a maximum activation

period needs to be predefined. The remaining temporal information not included in

the defined activation period therefore is ignored, leading to underestimation of brain

activation. Another problem is the DPF assumption. Since the DPF is intra- and inter-

subject variant and impossible to be measured for every measurement location with

commonly obtainable continuous wave NIRS equipment, use of a constant DPF leads

to biased estimation of concentration changes [16].

To overcome such problems of the classical t-test, a number of research groups have

used various general linear model (GLM)-based methods for analysis of NIRS data

[16-20]. The GLM-based methods were initially developed for fMRI-based functional

brain mapping [21]. The GLM is a statistical linear concept that explains measured data

in the form of a linear combination of several explanatory variables plus an error term.

The explanatory variables, modelled according to the time course, separately account for

the brain-activity-evoked signals and noises. Therefore, the estimation of brain activity is

reduced to the problem of estimating the relevant coefficients with proper statistics.

The GLM-based methods negate the need for user-defined rest and task periods,

because the response is modelled according to the entire time course. The temporal

information over the entire time course, thus, is examined. On the other hand, the

GLM-based methods investigate the temporal variation pattern of the signal, and esti-

mate the coefficients with statistics at different measurement locations, separately.

Therefore, these methods are robust in cases where an assumed constant DPF is used.
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GLM-based methods, however, cannot offer on-line analysis. This constrains their

use in applications where real-time information or feedback is required. Real-time

brain imaging data analysis in comparison with off-line methods, significantly,

improves the information acquisition rate and the feedback speed. Furthermore, it

may potentially benefit the development of brain-computer interfaces (BCI).

The critical task in modifying a GLM-based method on-line is the recursive estima-

tion of GLM coefficients. Previous researchers have used different methods to achieve

recursive estimation, including recursive least square [22], Cholesky-decomposition-

based recursive least square [23], and Kalman filtering [24,25]. All these approaches

can effectively and recursively estimate GLM coefficients.

It is not sufficient to draw an updated brain activation map only by estimating GLM

coefficients on-line. It is known that NIRS time series contain noises from different

sources. Very-low-frequency noises caused by optodes shifts or slow cardiac/vascular

artifacts [26], for example, might lead to biased estimation. The temporal correlation

caused by physiological (cardiac, respiratory, blood pressure) noises might lead to an

inflated t-value and, thereby, overestimation of brain activation. Furthermore, for func-

tional brain mapping applications, a statistical test is very important, since it will pro-

vide significance verification of the derived estimation. All these issues with regard to

on-line versions of GLM-based methods need to be addressed.

On-line estimation of GLM coefficients is generally discussed in [24]. In [25], the

whole framework provided on-line estimation of GLM coefficients, and a relevant sta-

tistical test analysed the fMRI data. However, this work did not consider temporal cor-

relation in fMRI data, which might also exist in NIRS data. In [26], a framework for

NIRS-based BCI applications was developed that can estimate GLM coefficients with-

out statistical information in classifying different hand tasks in real-time. In [27], the

feasibility of estimating GLM coefficients on-line using a Kalman filter by studying a

set of fMRI data was examined.

In the present study, we develop an on-line Kalman-estimator- and GLM-based

NIRS data processing framework for brain activation mapping. We aim to answer

two questions. (i) Is it possible to covert the off-line GLM-based method to an on-

line version for NIRS-based brain activation mapping? The proposed method can

provide updated brain activation maps on-line as well as track task-related brain-

active areas from an early stage while the experiment is running. (ii) Can the pro-

posed method prevent noises that distort the estimation while data is sequentially

incorporated?

NIRS measurement system and experimental procedure

Five right-handed healthy volunteers (all male, aged 24 to 34 years) participated in the

experiment. None of the participants had a history of any neurological disorder. All of

the participants provided written informed consent. The experiment was conducted in

accordance with the latest Declaration of Helsinki. The data were acquired with a con-

tinuous-wave NIRS imaging system (DYNOT: DYnamic Near-infrared Optical Tomo-

graphy) obtained from NIRx Medical Technologies, Brooklyn, NY, at a sampling rate

of 1.81 Hz. The system emits laser lights of different wavelengths (760 nm and

830 nm) from each source. Figure 1 shows the channel distribution and measurement

location. The distance between different optodes is 2 mm.
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In the experiment, the subjects were asked to perform a finger-tapping task. The

experiment consisted of a 42 sec preparation period and 10 sessions. Each session

included a 21 sec finger-tapping period and a 30 sec rest period. Accordingly, the total

duration of the experiment was 552 sec.

Analysis framework of NIRS data

A schematic summarization of our method is as follows. (i) The relative concentration

changes of two blood chromospheres, HbO and HbR, are calculated via MBLL [10,27];

(ii) A linear model is built according to the experimental procedure to fit the relative

HbO concentration change. The model describes both the signals corresponding to the

brain activity and the noise; (iii) The model coefficients are recursively estimated using

the Kalman estimator; (iv) At every time step, the brain-activity-related coefficient is

selected, and then passed to the t-statistical test to determine if its value is statistically

greater than zero (a value greater than zero indicates brain activity): In this way, a

probability brain activation map is drawn. Figure 2 is a schematic flow chart of the

framework.

NIRS measurement model

In NIRS measurement, the optical density variation (ΔOD) can be expressed as a linear

combination of hemoglobin concentration changes (ΔCHbO and ΔCHbR) multiplied by

proper coefficients. Their relationship is described in MBLL terms as

Δ ΔOD C L DPFi i   , ,=  (1)

where a a al l lΔ Δ ΔC C CHbO HbO HbR HbR= + , l is the wavelength of the laser source,

i indicates channel number, aHbO [μM-1mm-1] and aHbR [μM-1mm-1] are the extinction

Figure 1 Channel distribution and measurement location on head. The detected area covers the
primary motor cortex, dorsolateral prefrontal cortex, and Broca’s area of the left hemisphere of the
subjects. The C3 location, in the international 10-20 system, is used as a reference.
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coefficients of the HbO and HbR, L is the distance between the source and the detec-

tor, and DPF is the differential path length factor. In the present study, the optical den-

sity variation was derived by dividing the light intensity measured at each time step by

the light intensity measured at the first time step.

General linear model (GLM)

In NIRS-based studies, both HbO and HbR concentration changes can reflect changes

in the rCBF. However, it has been suggested that HbO is a more sensitive indicator of

such changes [28]. Therefore, only the HbO concentration change data was considered

in the present study.

The GLM design process is described in detail in [29]; we provide only a brief

description here. A design matrix H including a set of explanatory variables is prede-

fined in order to model the observed NIRS time series. Five explanatory variables are

considered. The first variable models the HbO concentration changes (the brain activ-

ity signals) using a stimulus vector convolved with the basis function (BF, a double-

gamma model; [30]). The second one models the baseline level, and the remaining

General Linear Model
(Updating Version)

y(k) = H(k) (k) + (k)

Design Matrix H

Kalman estimator

Aquired data
 at time k

Modified Beer-
Lambert law

Model weight 1

at time k

t-Statistics map
at time k

HbO concentration 
change data y

Figure 2 Schematic flow chart of the framework.
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variables represent a set of high-pass filters (discrete cosine transform, DCT) [30] with

a cut-off frequency of 0.0006 Hz.

At time k, yi(k), the measured NIRS data of channel i, is predicted by H(k), specifi-

cally by multiplying a coefficient vector plus an error term εi(k). The model can then

be expressed as

y k H k k ki i i( ) ( ) ( ) ( )= +  (2)

where bi(k) is the coefficient vector quantifying the magnitude of the explanatory

variables. In vector bi(k), we are interested in the component bi1(k), which reflects the

magnitude of the task-evoked brain response: By statistically determining if it is greater

than zero, the existence of brain activity at the area covered by channel i can be con-

firmed (it is greater than zero) or ruled out (it is less than zero).

Several physiological processes are known to produce temporal correlation in NIRS

data, which might lead to inflated t-values, and thus underestimation of brain activity.

One way to deal with this problem is to make the model fit an AR (p) model (an auto-

regressive model of the order p). This leads to a decomposition of the error term ε into

a systematic and a model conform error part. After this, the AR transformation coeffi-

cient is applied to both sides of the regression equation

y k y k H k H k k u ki i i i( ) ( ) ( ) ( ) ( ) ( )- - - -  1 1= + (3)

where r is the estimated autocorrelation coefficient in an AR(1) process, and u(k) =

rε(k-1) + ε(k). By redefining each transformed variable, that is, yi*(k) = yi(k) - ryi(k-1),
H*(k) = H(k) - rH(k-1), one can simplify Equation (3) to

y k H k k u ki i i* *( ) ( ) ( ) ( )= + (4)

It is worth noting that we make an assumption, |b(k) - b(k-1)| <ζ, for the AR(1)

model used on-line in the current study, where ζ > 0 is an arbitrary small number.

This assumption compromises the model’s robustness. However, as the result shows,

the temporal correlation can be effectively reduced. In the present study, bi(k) was
updated with a Kalman estimator.

Kalman estimator

The Kalman filtering method is a recursive tracking scheme that estimates the state of

a process using an updated regularized linear inversion routine [31]. After decades of

development, the Kalman filtering is very mature. Due to its remarkable estimation

performance, the Kalman filtering is widely used in many areas [32-34] including neu-

roscience [24,25,35,36]. In the present study, the Kalman filter was used as a model

coefficients estimator. The model coefficients from all of the 24 channels were updated

in parallel. For a given channel, the state vector, transition equation and observation

equation can be described in the form

X k k k kL
T( ) [ ( ) ( ) ... ( )]=   1 2 (5)

X k AX k w k( ) ( ) ( )= − + 1 (6)
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y k H k X k v k( ) ( ) ( ) ( )= + (7)

where L is the number of explanatory variables. The state is assumed to follow a ran-

dom walk with zero drift over time: Thus, A equals the identity matrix, and the pro-

cess noise w(k) ~ N(0, Q), y(k) is the measured data, H(k) is the vector of explanatory

variables, and the observation noise v(k) ~ N(0, R). The filter performs state estimation

by the iterative process

ˆ ( ) ˆ ( )X k AX k− = − 1 (8)

P k AP k A QT− = − +( ) ( )1 (9)

K k P k H k E kT( ) ( ) ( ) ( )= − −1 (10)

ˆ ( ) ˆ ( ) ( ) ( )X k X k K k y k= +− Δ (11)

P k I K k H k P k( ) ( ( ) ( )) ( ),= − − (12)

where E(k) = H(k)P-(k)HT+R, Δy k y k H k X k( ) ( ) ( ) ( )= − − , K(k) is the Kalman gain,

and P(k) is the updated error covariance matrix. In this notation, the superscript (-)

refers to the intermediate state and covariance predictions provided by the state update

model, which are then modified by the measured data to produce the next state value.

In the present study, the state vector was initialized to zero. The a priori estimates of

the process and observation noise covariances (Q and R respectively) were (1%/sec)2

and (0.5 μM/sec)2, according to a restricted maximum likelihood (ReML) estimation

and an empirical-experimental performance check based on a set of training data. We

collected the training data during 3 sessions of finger tapping for each subject. We

estimated the Q and R values in two steps: They were estimated separately from each

of the subjects by ReML, averaged, and then adjusted according to the performance in

practically estimation based on the training data.

t-Statistics

The estimated model coefficient vector b was used to calculate a relevant t-value for a

one-tailed t-test to test the null hypothesis cT b = 0 [29]. In the present study, the

t-statistics of channel i at time step k were obtained using

t k
c k

k c H H c

i
T i

i T
k
T

k

k
( )

( )

( ) [ ]

,=

∑ −



 2

1

1 (13)

where c is a vector of contrast for selecting the coefficient of interest [29], and  i2 is the

residual sum-of-squares divided by the appropriate degrees of freedom, and is given by

  i
k
i

k k
i

k

k
k L

y H
2 2

1

1
( ) [ ] ,=

−
−∑ (14)
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where L is the number of regressors. Therefore, the null hypothesis cT bi(k) = 0 was

assessed by comparing ti(k) with a t-distribution with k-L degrees of freedom. By set-

ting proper p-values with Bonferroni correction, a statistical activation map of the

detected area could be displayed.

Results
To simulate a real-time process, each measured data was incorporated sequentially in

the analysis and updated at each time step. The entire procedure was simulated with

Matlab at this stage. The computation time for one processing step was approximately

0.015 ± 0.0025 sec (mean ± standard deviation, 4 subjects averaged).

Figure 3 depicts the raw data, and the estimated and t-statistics values of two repre-

sentative channels from subject 1: the activated area (channel 6) and an inactivated

area (channel 22). The raw NIRS time series are plotted in the top panels. The time

evolutions of the estimated b1 are plotted in the middle panels. The corresponding

t-statistics are plotted in the bottom panels. These values were estimated after the 6th

sampling.

The motor cortex brain activity related to the finger-tapping task was found in 4 out of

the 5 subjects. In the case of the fifth subject, there was no brain activation identified by

the proposed framework. Figure 4 shows representative snapshots of the probability acti-

vation map (t-statistics map) at the different times T = 120, 200, 300, 400, 500, and 552

sec, from the top row (a) to the bottom row (f) of the detected area, for subjects 1 to 4.

Row (g) shows the activation map estimated by the conventional method (the off-line

GLM-based method, ordinary least squares followed by t-statistics). The p-value set for

an individual test was pin < 0.05. At an early stage, around 120 sec, the proposed method

could track the finger-tapping-related brain-active area, as indicated in Table 1 column
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Figure 3 Representative plots of different quantities estimated on-line. Panels (a) and (b) show the
NIRS time series measured from the representative channels. Panels (c) and (d) show separately the
estimated critical model coefficient b1. Panels (e) and (f) show separately the calculated t-statistics.
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3. With Bonferroni correction, the time for the method to track the brain-active area

was delayed by around 60 sec, as shown in Table 1 column 4. The estimated anatomical

location of channel 6 was Broadmann area 4 (primary motor cortex), and of channel 4,

Broadmann area 8. The result estimated by our framework was compared with the result

estimated by the classical method. We found that at the final stage of the experiment,

our results were almost consistent with those estimated by the conventional method. It

(a)

(b)

(c)

(d)

(e)

(f)

(g)

t-valueSubject #1 Subject #2 Subject #3 Subject #4

Figure 4 Representative snapshots of the activation map at different times, for different subjects.
Rows (a) to (f) show t-images of the four subjects at different times (T = 120, 200, 300, 400, 500, and 552
sec). Row (f) shows t-images of four subjects estimated by the conventional GLM-based method. The
results are presented by means of NFRI tools [47].
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is noteworthy that our method was able to locate and track the brain-active areas while

the experiment was running and, thereby, to provide feedback on-line.

Discussion
Changes in cerebral oxygenation reflect cerebral functional activity. In the present

work, an updated version of the GLM was devised and used for on-line brain activa-

tion mapping. To demonstrate this framework, a finger-tapping task activation map-

ping study was carried out. This study allowed us to highlight several important

features of our framework.

An obvious advantage of our method is its real-time applicability. The Kalman esti-

mator has an acceptable computational overload, which allowed us to implement this

method using Matlab in real-time (1.81 Hz in this study). The proposed method dis-

plays an updated brain activation map while the experiment is running. The finger-

tapping-related brain-active area can be identified and tracked at the early stage of an

experiment. The data analysis stage in the classical GLM framework can be conducted

only after an experiment, and thus needs extra time. By contrast, with the proposed

method, the model coefficients are recursively estimated, and the brain activation map

can be updated at each time step. Accordingly, the method is able to track the brain-

active area in an ongoing experiment, and provide an early warning to the experimen-

ter when the subject is not responding appropriately or the system is not working

properly or well. Thus, both the subject/patient and researcher can receive feedback in

real-time.

There are several physiological noises in NIRS data, including noises caused by car-

diac and respiratory activity and blood pressure (Mayer wave) fluctuations, which

might cause temporal correlation in the form of inflated t-values [27]. Ignoring these

noises can lead to overestimation of brain activity. In [24,37], sine functions at different

frequencies were used to model these noises; resultantly, some nonlinear terms were

added to the classical GLM, and an extended Kalman filter was used to update the

magnitude and phase shift of the noise terms. In the proposed framework, we used an

AR(1) model to reduce the temporal correlation. We compared the effect of temporal

correlation reduction using the two methods. Figure 5 indicates that both methods

were able to reduce the temporal correlation in the NIRS time series and, moreover,

that the AR(1) model performed better.

Finally, the GLM combined with the Kalman filtering allowed for avoidance of very-

low-frequency noises in the process of real-time estimation. In NIRS time series,

very-low-frequency noises caused by optodes shifts or possible slow cardiac/respiratory

artifacts sometimes exist. The upper plot in Figure 6 provides a sample data series con-

taining very-low-frequency noise. The data in this plot was recorded at channel 19,

Table 1 Time and location of the brain activities tracked

Subject Channel
(location)

Time [sec]
(pin < 0.05)

Time [sec]
(pb, with Bonferroni correction)

1 6 118 177

2 6 115 170

3 6 129 186

4 4 335 402

6 125 184
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subject 3. This channel covered the area of Bordemann area 9, where no brain activity

was expected to be found in the current experiment. A clear slow shift of the baseline

level can be identified by the human eye. In this study, a set of high-pass filters (dis-

crete cosine transform, DCT) was modelled as regressors in the design matrix to

remove the very-low-frequency noises on-line. The lower plot in Figure 6 shows esti-

mation results using the DCT filter in comparison with those without using the DCT

filter. This makes clear that without using the DCT filter, the estimation results were

severely distorted by the low-frequency noise, which therefore would lead to a biased

statistical analysis result.

There are some limitations of our method. First, the design matrix in the GLM was

designed before the experiment. Different subjects might have individual hemodynamic

Figure 5 Effect of temporal correlation reduction in NIRS time series. The time course of inflated t-
values caused by temporal correlation is shown in the figure. The effects of two different methods (the
sine function model and the AR model) in reducing the temporal correlation are compared.

Figure 6 Very-low-frequency noises and the DCT filter effect. Panel (a) gives an example of a piece of
NIRS data containing very-low frequency noises. Panel (b) shows the DCT filter preventing very-low
frequency noises from leading to biased results.
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responses. However, we assumed a general hemodynamic response model for different

subjects in our framework. Our method might not work properly if a notable differ-

ence exists between the hemodynamic response of a subject and our modelled one. In

[38], a set of linear combined Gaussian-based temporal functions was used to model

the hemodynamic response. This model can approximate complex hemodynamic

responses among different subjects, by means of multiple overlapping Gaussian func-

tions. However, a recent work [39] suggested that event-evoked hemodynamic

responses were similar among different subjects. In the current study, we also found a

similarity in the hemodynamic responses, among all of our subjects. Therefore, we

consider that it was sufficient to use the general hemodynamic model for estimation in

current study.

The second limitation lies in the fact that we made only a preliminary conclusion

about the feasibility of the proposed on-line framework, based on the results from

5 subjects. In the current study, brain activity at the primary motor cortex was found

in 4 out of the 5 subjects investigated using the proposed framework. There was no

brain activation area identified for subject 5, because the measurement noises (electric

voltage fluctuations) induced by the equipment were very large in the case of this sub-

ject. Thus, no brain-active area could be identified based on the measured data. In

order to produce a complete picture of the feasibility of the proposed framework, data

needs to be measured for a greater number of subjects.

The t-statistics from the current study are based on the estimation of mean square

error (MSE) via Equation (14). Therefore, while the experiment is running, the cumula-

tive type I error increases as the test number grows. Thus, a post-hoc analysis is also

needed to guarantee the statistical significance. We used Bonferroni correction for post-

hoc analysis at each step in the current study. The pin for an individual test was set to

0.05, and the pb after Bonferroni correction was calculated as pb = (1 - (1 - pin)
j]/j, where

j represents the number of tests. As indicated in Table 1 column 4, the post-hoc analysis

reduced the performance of the proposed framework, though it still yields promising

results. Nevertheless, it might not be suitable for long-duration experiments (e.g. 6

hours’ measurement for sleep studies). When the number of tests increases to a large

value, the pb might be difficult to satisfy, resulting in an underestimation of brain activa-

tion. This is one of the limitations of the proposed framework. The problem probably

can be avoided, either by reducing the sampling frequency over a long-duration mea-

surement, thereby reducing the number of tests, or by controlling the experimentation

time.

The time needed for locating different brain-active areas differed in the current

study. Because Kalman filtering is a recursive process, the new information will be

added as it arrives at each sampling time. Therefore, the estimation results from early

stages are less reliable than those from later ones. In another aspect, the brain is a het-

erogeneous and dynamic organ that can process parallel work (in different brain

areas), and so the same estimation process might perform differently for different brain

areas. In our study, channel 4 of subject 4 was identified as a brain-active area during

the finger-tapping task. The area covered by channel 4 is Brodmann area 8, responsible

for voluntary eye movement, which is not expected to be active during finger tapping.

This particular result might be accounted for simply as an indication that subject 4

was moving his eyes frequently while tapping his finger.
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The DYNOT equipment in the present study employs a brush-less DC servomotor

to provide for light source beam positioning [40]. The motor is driven by a controller

containing freely programmable microprocessor. In this experiment, only a simple

open-loop control scheme was designed for controlling the motor moving. Some com-

plex control algorithms can be applied to achieve a more precise motor controlling

[41-46].

One further issue in NIRS topographical applications is the fact that only a small

portion of a detected area is measurable with sparsely distributed channels. Either

tomographical NIRS detection or application of interpolation techniques might help

increase it [20]. Both solutions would require extra processing time. Therefore, the

issue of the development of a proper means of achieving higher spatial resolution in

real-time applications also will have to be resolved in future research.

Conclusions
A new Kalman-estimator- and GLM-based NIRS data analysis framework was demon-

strated for real-time imaging of brain activity. In an experiment, this framework

allowed for updating of the topographic activation map of the detected brain area, and,

additionally, it could locate the activated brain area at an early stage by analyzing the

noise-containing raw data.
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