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SUMMARY 

 

Focal segmental glomerulosclerosis (FSGS) is the most common cause of therapy-resistant 

nephrotic syndrome in children worldwide. Transient Receptor Potential Cation Channel, 

subfamily C, member 6 (TRPC6) is a calcium channel which interacts with nephrin (NPHS1) 

and podocin (NPHS2) in podocytes. Mutations in TRPC6 cause familial FSGS. The primary 

aim of this thesis is to investigate the function of a novel TRPC6 mutation identified in an 

index family with hereditary FSGS, as well as the interactions between this TRPC6 mutation 

and polymorphisms identified in other podocyte genes, namely NPHS1 and NPHS2. Chapter 

1 is a comprehensive literature review on our current understanding of nephrotic syndrome, 

FSGS and their pathogenesis, as well as the structure, function and regulation of TRPC6. 

Chapter 2 is the “Materials & Methods” section which outlines the principles of all the 

experimental procedures used in this study. The complete protocols of some experimental 

procedures are described in detail in the “Appendix” section. In chapter 3, we screened for 

podocyte gene variants in the index family, as well as in patients with sporadic steroid-

resistant or steroid-dependent nephrotic syndrome or FSGS, and validated these in healthy 

controls. We identified a novel mutation p.R68W and a polymorphism c.-254C>G in TRPC6 

gene in the Singapore Chinese index family. Meanwhile, we found two NPHS1 

polymorphisms, c.294C>T and c.2289C>T, and one NPHS2 polymorphism c.954T>C which 

segregated with renal disease. In chapter 4, we examined the function of the novel TRPC6 

mutation p.R68W through whole-cell patch clamp method. We confirmed it is a gain-of-

function mutation. In addition, we showed that this mutation enhanced its surface expression 

by biotinylation assay. In chapter 5, we explored the effects of NPHS1 and NPHS2 

polymorphisms on TRPC6 activity by co-transfection of the variants into cells and 

measurement of the TRPC6 currents. We showed that wild-type NPHS1 and NPHS2 down-
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regulate TRPC6 activity; whereas the presence of NPHS1 polymorphism c.294C>T resulted 

in the loss of this down-regulation activity. The other polymorphisms did not alter TRPC6 

currents. We showed that the polymorphisms, including NPHS1 c.294C>T, did not alter 

physical binding between TRPC6 and NPHS1 as shown by our co-IP studies. Chapter 6 is a 

follow-up study focusing on the mechanism of action of the NPHS1 polymorphism c.294C>T. 

Our results showed this synonymous polymorphism decreased nephrin protein expression. 

We further proved via real-time PCR that this decreased protein expression was caused by 

decreased mRNA stability. Chapter 7 is an overall summary and conclusion of this study.  
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1.1 Nephrotic Syndrome 

1.1.1 Definition of Nephrotic Syndrome 

 

Nephrotic syndrome is characterized by generalised edema, nephrotic-range proteinuria, 

hypoalbuminemia (serum albumin <25g/L), and hyperlipidemia. Nephrotic-range proteinuria 

has been defined as urinary protein excretion ≥3 g/day/1.73m2 or a spot urinary protein: 

creatinine ratio ≥0.2 g/mmol (Yap and Lau 2008).  

 

The unifying pathomechanism of nephrotic syndrome involves structural and functional 

defects in the glomerular filtration barrier, resulting in its inability to restrict urinary loss of 

protein.  

 

1.1.2 Classification and Etiologies of Nephrotic Syndrome 

 
Nephrotic syndrome may be primary or secondary. Primary nephrotic syndrome can be 

classified based on histology (Table 1-1). The commonest cause of primary nephrotic 

syndrome in children is minimal change nephrotic syndrome (MCNS). MCNS frequently 

occurs between 18 months and 4 years of age (Zhu et al. 2009). By definition, there are no 

abnormalities of kidney biopsy specimens on light microscopy, but effacement of the 

podocyte foot processes can be seen on electron microscopy (van den Berg et al. 2004).  

 

Other causes of primary nephrotic syndrome include focal segmental glomerulosclerosis, 

mesangial proliferative glomerolonephritis (GN) and membranoproliferative GN. Secondary 

nephrotic syndrome may be due to systemic diseases (eg. lupus), drugs, viruses and physical 

agents (Table 1-1). 
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Table 1-1 Common Causes of Primary and Secondary Nephrotic Syndrome 

Primary Nephrotic Syndrome (75%) 

• Minimal change nephrotic syndrome- the most common cause in children 
(Filler et al. 2003) 

• Focal segmental glomerulosclerosis- the most common cause of idiopathic 
nephrotic syndrome in adults (Kitiyakara et al. 2003) 

• Membranous GN 
• Membranoproliferative GN 
• Mesangioproliferative GN  
• Immunotactoid and fibrillary GN 

Secondary /Systemic Nephrotic Syndrome (25%) 

• Diabetes mellitus, systemic lupus erythematosus, amyloidosis, HIV-
associated nephropathy 

• Drugs: gold, penicillamine, probenecid, street heroin, captopril, NSAIDs 
• Infections: bacterial endocarditis, hepatitis B, shunt infections, syphilis, 

malaria, hepatic schistosomiasis 
• Malignancy: multiple myeloma, light chain deposition disease, Hodgkin’s 

and other lymphomas, leukemia, carcinoma of breast or gastrointestinal 
tract 

 

 
Children with primary nephrotic syndrome are often empirically treated with a course of 

steroids. Nephrotic syndrome can also be classified based on their responses to steroid 

treatment as steroid-sensitive nephrotic syndrome (SSNS) or steroid-resistent nephrotic 

syndrome (SRNS). Within the steroid-sensitive group, some patients are dependent on 

chronic steroids to prevent recurrent relapses, and therefore have steroid-dependent nephrotic 

syndrome (SDNS). A proportion of these have frequent relapses, and are classified as 

frequent-relapsing nephrotic syndrome (FRNS) (Denis F. Geary and Schaefer. 2008). Up to 

70% of children with MCNS have multiple relapses. Half of these patients will require long-

term steroid therapy or cytotoxic drugs, and they may suffer from their adverse effects such 

as short stature, cataracts and malignancy. 
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1.1.3 Epidemiology of Nephrotic Syndrome 

 
Primary nephrotic syndrome accounts for 75% of all cases in children (Table 1-1). Among 

them, the three most common diseases, minimal change nephrotic syndrome (MCNS), focal 

segmental glomerulosclerosis (FSGS) and membranous glomerulonephritis (GN), account for 

58.4% of all cases (Nasir. et al. 2012). FSGS consistently accounts for 36-39% of all cases in 

children, adults, and the elderly (Nair et al. 2004).  

 
The reported incidence of nephrotic syndrome in children is estimated at 2 to 7 cases per 

100,000 per year, and this is about 15 times higher than adults (Hogg et al. 2000). There is a 

male preponderance among young children at a male : female ratio of 2:1, whereas in older 

people, both sexes are equally affected (Denis F. Geary and Schaefer. 2008). In addition, 

epidemiology appears to differ according to geographic and racial differences. For example, 

the prevalence of MCNS, mesangioproliferative GN, and membranous glomerulonephritis 

are distinctly different in Thailand, China and Italy (Kirdpon et al. 1989; Huang et al. 2001; 

Gesualdo et al. 2004). Even within a country, the epidemiology among various races or 

ethnicity differs. For example, the prevalence of the different histological types of nephrotic 

symdrome differs among the blacks, Indians, and mixed race children in South Africa 

(Bhimma et al. 1997). 

 

1.2 Focal Segmental Glomerulosclerosis (FSGS) 

FSGS is a histological diagnosis in which sclerosis occurs in some, but not all, glomeruli 

(focal), and the sclerosis affects a portion of, but not the entire glomerular tuft (segmental) 

(Figure 1-1). The unscarred glomeruli may appear normal, but glomerular enlargement is 

characteristic of primary FSGS in both adults and children (Nyberg et al. 1994; Suzuki et al. 

1994).  FSGS affects initially the glomerulus, followed by the tubulointerstitium and renal 
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vessels (Meyrier 2005).   FSGS is characterized clinically by nephrotic syndrome and is often 

steroid-resistant. In addition, a significant proportion of these patients go on to develop renal 

failure (Thomas et al. 2006).   

  

 

Figure 1-1 Focal Segmental Glomerulosclerosis. 
Light microscopy of a human kidney showing a glomerulus with a dense segmental scar adherent to 
the Bowman's capsule.  

 

1.2.1 Classification of FSGS 

 

FSGS, like nephrotic syndrome, can be divided into primary (idiopathic) FSGS and 

secondary FSGS. Primary FSGS is a clinicopathologic diagnosis. The pathologic diagnosis 

requires a glomerular lesion that falls within the morphologic spectrum of FSGS, and there 

must be no evidence of an antecedent glomerulonephritis (Jennette et al. 2007).   Secondary 

FSGS may be caused by drugs, viruses, immunologic diseases and physical agents. This 

etiologic diversity emphasizes that FSGS is a nonspecific pattern of glomerular injury. The 

secondary forms of FSGS may be divided into those in which podocyte injury is the main 

inciting factor and those caused by other mechanisms (Rennke and Klein 1989).  
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Five histological variants of FSGS have been described: collapsing, cellular, tip lesion, 

perihilar and not-otherwise-specified (NOS) (D'Agati 2003; Thomas et al. 2006) (Table 1-2). 

Some of these histological subtypes are more commonly associated with specific etiologies. 

For example, perihilar forms of FSGS are more common in adaptive FSGS associated with 

obesity, reflux nephropathy or hypertensive nephrosclerosis (D'Agati et al. 2011). 

  

 
Table 1-2 Histologic Variants of FSGS 

Type Defining features 

FSGS, not otherwise specified(NOS) Discrete segmental sclerosis 

FSGS, perihilar variant Perihilar sclerosis and hyalinosis 

FSGS, cellular variant Endocapillary hypercellularity 

 

FSGS, tip variant Sclerosis at tubular pole with adhesion at 

tubular lumen/neck 

 

FSGS, collapsing variant  

(Collapsing glomerulopathy) 

Segmental or global collapse and podocyte 

hypertrophy 

 

1.2.2 Epidemiology of FSGS 

 
FSGS is the most common glomerular disease in adults worldwide. In children, it is the 

second most common glomerular disease after MCNS. The proportion of nephrotic patients 

with FSGS varies from 10% to 78% in different countries and geographic regions. The 

prevalence of FSGS in African American adults with nephrotic syndrome is among the 

highest in the world (56% to 78%) (Eddy and Symons 2003; Mollet et al. 2009). In contrast, 
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about 20% of Caucasian adult patients in the United States and Europe with nephrotic 

syndrome have FSGS (Haas et al. 1995; Korbet et al. 1996; Haas et al. 1997). 

 

FSGS is the most common cause of therapy-resistant nephrotic syndrome in children 

worldwide. In children, FSGS accounts for 63–73% of patients with SRNS (Ruf et al. 2004; 

Gbadegesin et al. 2007). In adults, approximately 30–50% patients with FSGS do not respond 

to steroid therapy. About 30-40% of patients with FSGS progress to end-stage renal disease 

(ESRD) within ten years of diagnosis (Cattran and Rao 1998; Mekahli et al. 2009). The 

proportion of ESRD attributed by FSGS has increased more than 10-fold over the past two 

decades (Srivastava et al. 1999; Kitiyakara et al. 2004), especially in African Americans. 

FSGS now accounts for 12.2% of incident pediatric patients with ESRD in the United States 

(Kitiyakara et al. 2003; Kitiyakara et al. 2004; 2012).  

 

1.2.3 Clinical Course and Prognosis of FSGS 

 

FSGS is distinguished clinically from MCNS by significantly poorer responses to steroid  

therapy, hematuria, hypertension and renal insufficiency (Habib 1973). FSGS is the most 

common cause of therapy-resistant nephrotic syndrome in children worldwide. The initial 

empirical treatment of primary nephrotic syndrome in children consists of prednisolone 60 

mg/day per 1.73m2 (up to 80 mg/day) given for 4 weeks, followed by 40 mg/day per 1.73m2 

(up to 60 mg/day) given every other day for 4 weeks, and then tapered off over the next 4 

weeks. A multicentre International Study of Kidney Diseases in Children (ISKDC) study 

performed on more than 521 children with idiopathic NS revealed that approximately 80% of 

children with idiopathic nephrotic syndrome respond to steroid therapy. Interestingly, 93% of 

these steroid-responsive children had MCNS and only 30% of them had FSGS (Orsini and 
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Boscherini 1961; ISKDC 1981). The complete remission rate for children with primary FSGS 

using this treatment protocol is between 20 and 25% (Korbet et al. 1994)(24,26). Indeed, the 

initial response to steroid therapy is an important FSGS prognostic indicator. Those with 

steroid-resistant FSGS are more likely to progress to ESRD.  

The severity of proteinuria at presentation is most often used to predict the clinical course in 

FSGS. The presence of nephrotic-range proteinuria (>3 to 3.5 g/24 h) has consistently been 

associated with a poor outcome in primary FSGS, with 50% of patients reaching (ESRD) 

within 6 to 8 years (Beaufils et al. 1978; Cameron et al. 1978; Korbet et al. 1994; Rydel et al. 

1995). An additional clinical feature with prognostic significance is the serum creatinine level 

at presentation. A serum creatinine of >1.3 mg/dL is associated with significantly poorer 

renal survival regardless of the severity of proteinuria (Korbet 1998). 

 

1.2.4 Pathogenesis of FSGS 

 
The precise pathogenesis of FSGS remains incompletely understood. Generally speaking, 

FSGS stems from relative or absolute podocyte depletion or changes to its functional 

integrity. Broadly speaking, this podocyte damage in primary FSGS may be divided into two 

causes: genetic mutations involving podocyte-related genes (genetic FSGS) and circulating 

immune factors (immune FSGS). For secondary FSGS, humoral factors or hemodynamic 

injury from hyperfiltration of the glomeruli, or immune-mediated injury from systemic 

immunologic diseases are some of the factors that can cause damage to the podocytes. 

Podocyte injury 

FSGS is now widely accepted as a disease caused by podocyte damage (D'Agati 2008). The 

clinical signatures of podocyte injury include proteinuria and glomerular scarring, leading to 

reduced kidney function (Shankland and Pollak 2011). Podocytes in FSGS undergo cell 
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injury and loss of functional integrity and structural stability. This has been shown in renal 

biopsy studies in patients with primary FSGS (Schwartz and Korbet 1993), recurrent FSGS in 

transplants (Verani and Hawkins 1986; Korbet et al. 1988), and HIV-associated FSGS 

(Cohen and Nast 1988). For example, in collapsing glomerulopathy and HIV-associated 

nephropathy, loss of mature podocyte differentiation markers (WT-1, CALLA, C3b receptor, 

GLEPP-1, podocalyxin, and synaptopodin) and increased podocyte proliferation have been 

demonstrated (Barisoni et al. 1999).  

 

The decrease in the number of podocytes, as the initiating factor in FSGS, results in the 

inability of podocytes to completely cover the glomerular capillaries. This then leads to the 

formation of synechiae or adhesions between the glomerular capillaries and the Bowman’s 

capsule. The filtrate from the capillaries in the tuft adhesion then enters the interstitium 

instead of into Bowman’s space. This misdirected filtration finally leads to progression of 

segmental injury, tubular degeneration, and interstitial fibrosis (Gbadegesin et al. 2011).  

 

Genetics 

Studies of familial FSGS have demonstrated mutations in podocyte proteins that are critical 

in forming and maintaining the glomerular filtration barrier. Mutations in podocyte genes, 

like NPHS1 (nephrin), NPHS2 (podocin), CD2AP, ACTN4 (α-actinin 4) (Pollak 2003), and 

TRPC6 (Reiser et al. 2005; Winn et al. 2005) have been implicated in glomerular disease in 

human beings. The fact that mutations in these genes are disease-causing suggests that these 

molecules are necessary for glomerular function, and the integrity of the podocyte and its slit 

diaphragm complex (Jennette et al. 2007).  
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Humoral factors 

The response to immunosuppressive drugs in FSGS patients is powerful circumstantial 

evidence in favor of a pathogenetic role of the immune system. Humoral factors are discussed 

below in three categories: immunoglobulins, non-immunoglobulin lymphocyte products, and 

the circulating factors identified in patients with recurrent FSGS. 

 

Immunoglobulins The lesions of FSGS may contain immunoglobulins (principally IgM), 

complement components, and other serum proteins. It was found that the distribution of 

immunopathology in FSGS is also focal and segmental (Tejani et al. 1983; Faubert and 

Porush 1997; Conlon et al. 1999). The deposits, usually IgM in combination with C3, 

conform to the sclerotic segment without an obvious granular or linear pattern (Faubert and 

Porush 1997). Similar deposits in glomerular scars in non–immune-mediated diseases such as 

hypertension, diabetes, and secondary FSGS of diverse causes suggest that the 

immunoglobulins are nonspecifically trapped in glomerular scars (Jennette et al. 2007). In 

experimental animals, antibodies against podocyte antigens cause accelerated glomerular 

sclerosis and FSGS (Gubler 2003), but these proteins have not been identified as antigenic 

targets in primary FSGS, and there is no clinical or experimental evidence to support a direct 

role for antibodies in the pathogenesis of primary FSGS in human beings. 

 

Cytokines and Growth Factors Studies in biopsies from patients with FSGS have shown 

impairment of cell-mediated immunity (Matsumoto et al. 1983; Matsumoto et al. 1988), 

activation of the fibrogenic TGF-β/Smad signal transduction pathway in podocytes 

(Schachter et al. 2000; Schiffer et al. 2002; Kim et al. 2003), and up-regulation of fibrogenic 

PDGFR-β and βFGF in a segmental glomerular distribution and in the interstitium (Stein-
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Oakley et al. 1997). Experimental studies in the remnant kidney and other models of 

glomerulosclerosis have implicated a number of cytokines and growth factors in the 

pathogenesis of glomerular scarring and progression of renal disease (Schiffer et al. 2001; 

Choi et al. 2003; Fogo 2003). These studies along with the presence of elevated levels of 

cytokines in the peripheral blood of patients with FSGS support a mechanism by which 

injured glomeruli progress to fibrous scars. However, there is no evidence that cytokines or 

growth factors initiate glomerular injury in primary FSGS in human beings. 

 

Circulating Factor The pathogenicity of circulating factors was demonstrated in experimental 

animals: serum or plasma from patients with recurrent FSGS could increase glomerular 

permeability (Palb) of glomeruli isolated from normal rats and that plasmapheresis decreased 

the serum activity of Palb (Savin et al. 1996). Injection of whole serum from patients with 

collapsing glomerulopathy into mice led to the mice developing glomerular enlargement, 

focal segmental and global collapse, podocyte hypertrophy and diffuse foot process 

effacement (Avila-Casado Mdel et al. 2004). Coward et al showed that plasma from 

nephrotic FSGS patients caused redistribution of slit diaphragm proteins, such as nephrin, 

podocin, CD2AP and actin, from the cell membranes of cultured human podocytes to a 

diffuse cytoplasmic distribution (Coward et al. 2005).  

Recent research identified soluble urokinase plasminogen activator receptor (suPAR) as a 

possible circulating factor. Serum suPAR was elevated in patients with primary FSGS and it 

can activate podocyte β3 integrin, leading to FSGS pathology (Shankland and Pollak 2011; 

Wei et al. 2011). The rapid recovery of allograft function after retransplantation also supports 

the theory (Gallon et al. 2012). However, suPAR is not a specific marker for idiopathic FSGS 
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and it does not reliably predict response to treatment (Maas et al. 2012). Therefore, it is 

believed that there are other FSGS circulating factors that are yet to be identified. 

 

Hemodynamic injury  

Glomerular hemodynamic changes are implicated in the pathogenesis of FSGS through 

studies in both animal models and humans. The increase in glomerular capillary pressure is 

important in generating pathologic changes. For example, animals who have undergone 

subtotal nephrectomy (remnant kidney model) develop segmental glomerular scars, 

proteinuria, and progressive renal disease. This is accomplished in part by elevation of the 

transcapillary pressure gradient resulting in compensatory hyperfiltration (Hostetter et al. 

1981), supporting the primary role for glomerular capillary hypertension in the pathogenesis 

of progressive glomerular disease (Hostetter 2003). Angiotensin-converting enzyme 

inhibitors and aldosterone receptor blockers that lower intraglomerular capillary pressure 

therefore have been shown to prevent the progression of FSGS as they reduce glomerular 

hypertension (Korbet 2003).  

 

Glomerular hypertrophy 

Shea et al first suggested that glomerular hypertrophy preceded the development of sclerosis 

in the model of renal ablation (Shea et al. 1978). Several studies that were designed to 

separate the effects of hypertrophy from hemodynamic injury in the remnant kidney model 

concluded that glomerular hypertrophy was necessary for glomerular sclerosis to occur (Fries 

et al. 1989; Yoshida et al. 1989). Furthermore, patients with minimal change disease and 

enlarged glomeruli were more likely to develop FSGS on a second biopsy, suggesting that 

hypertrophy is a factor in the pathogenesis of FSGS (Fogo et al. 1990). However, when 
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glomerular hypertrophy in the remnant kidney model is separated from the effects of 

hypertension in rats genetically resistant to the development of hypertension, the animals do 

not develop progressive glomerular injury or nephron loss (Bidani et al. 1990; Schwartz and 

Bidani 1993). 

 

1.3 Pathophysiology of the Glomerular Podocyte 

1.3.1 The Glomerular Filtration Barrier 

The glomerulus located within the Bowman's capsule at the kidney cortex is the main filter of 

the nephron. Blood flows through the glomerular capillaries where it is filtered by pressure. 

The glomerulus is a twisted mass of capillaries consisting of four cell types: endothelial cells, 

mesangial cells, parietal epithelial cells and visceral epithelial cells which are known as 

podocytes (Figure 1.2). The glycocalyx-coated fenestrated endothelial cells form a porous 

layer and are in direct contact with blood, restricting cell passage across the capillary wall 

and play a minor role in  restriction of macromolecular transport (Jennette et al. 2007). The 

mesangial cells reside within the central axial supporting mesangial matrix and together with 

matrix constitute the mesangium. The parietal epithelial cells line the epithelium of the 

Bowman’s capsule facing the urinary space while the podocytes line the visceral epithelium 

of the urinary space. The fenestrated endothelium, the glomerular basement membrane (GBM) 

and the podocytes together form the filtration barrier in the glomerulus. This limits the 

outflow of large molecules, including albumin, from the blood capillaries to the urinary space. 
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Figure 1-2 The Glomerular Filtration Barrier.   

Two podocyte foot processes, the glomerular basement membrane (GBM) and the porous 
capillary endothelium. The slit diaphragm connects the podocyte foot processes. The slit 
diaphragm-associated molecules include nephrin, podocin, CD2AP, TRPC6 and NEPH.  The 
GBM is composed of the collagen type IV, laminin and heparan sulphate proteoglycan agrin. 
Integrins are heterodimeric transmembrance receptors which specifically connect the TVP 
complex (talin, vinculin and paxillin) to laminin. The α and β dystroglycans connect utrophin 
to agrin. (Adapted from: Kriz, W. 2005. TRPC6 - a new podocyte gene involved in focal 
segmental glomerulosclerosis. Trends Mol Med, 11, 527-30 (Kriz 2005)) 

 

1.3.2 Structure and Function of the Podocyte 

Podocytes are highly specialized and terminally differentiated epithelial cells that line the 

outer surface of the GBM. They serve to maintain the glomerular architecture and bar the 

egress of plasma-derived proteins through the slit diaphragm (Haraldsson et al. 2008; 

Meyrier 2011). Podocytes are made up of three morphological and functionally different 

segments, the cell body (CB), the major processes (MP), and the foot processes (FP). The cell 

body containing nucleus and other major organelles such as rough endoplasmic reticulum is 

usually located within a valley created by the reflection of adjacent capillary loops. The 



 
 

15 
 

major processes extend from the cell bodies and participate in cell trafficking. The foot 

processes are derived from the splitting of the major processes and consist of an actin 

cytoskeleton which is linked to the GBM in focal contacts. They form a tight interdigitating 

network with their neighbouring podocyte foot processes through a continuous membrane-

like structure known as the slit diaphragm (SD) (Mundel and Kriz 1995). The foot processes 

are dynamic structures that can respond to changing hydrostatic pressures and other 

environmental factors by continuous reorganization of their cytoskeletons (Kim et al. 2003; 

Reiser et al. 2005; Winn et al. 2005).  

 

1.3.3 The Slit Diaphragm  

The slit diaphragm (SD) is a modified adherens junction that connects adjacent podocyte foot 

processes to form a tight interdigitating network. The role of the SD is to maintain the 

structure of the foot processes and regulate the selectivity of the glomerular filtration barrier 

(Figure 1-2). It shares some typical morphological features with an adherens junction, such as 

wide intercellular gap and presence of a central dense line in grazing sections (Reiser et al. 

2000). The three-dimensional molecular architecture of the SD observed under electron 

microscopy revealed that it is made up of a convoluted network of irregularly shaped pores 

emanating from a central dense region (Wartiovaara et al. 2004).  

 

Several molecules associated with the SD have been identified. The first reported molecule 

was ZO-1, which is located at the point of insertion of the SD (Schnabel et al. 1990).  

Nephrin and P-cadherin are the main protein components of the SD (Patrakka et al. 2000; 

Reiser et al. 2000). Other SD molecules include podocin, Neph 1, FAT, TRPC6 (will be 

discussed in section 1.4) and CD2-associated proteins (CD2AP) linked to the actin 

cytoskeleton (Reiser et al. 2000; Schwarz et al. 2001).   
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Table 1-3 Common genes implicated in inherited nephrotic syndrome/FSGS 

Name  Associated 
disorder 

Chromosomal 
location 

Pattern of 
inheritance 

Clinical features Structure/function References 

Nephrin Congenital 
nephrotic 
syndrome of the 
Finnish type 

19q13 AR Massive proteinuria in 
utero with high 
mortality rate 

Transmembrane adhesion protein 
localizes to lipid rafts within the slit 
diaphragm of the podocyte 

(Kestila et al. 1994; 
Kestila et al. 1998; 
Lenkkeri et al. 1999) 

Podocin Steroid 
resistant 
nephrotic 
syndrome 
 

1q25–31  
 

AR  
 

Proteinuria between 3 
months and 5 years of 
age with rapid 
progression to ESRD 

Structural protein that recruits 
nephrin and CD2AP to lipid rafts in 
the slit diaphragm 

(Fuchshuber et al. 
1995) 

Alpha-actinin 4  
 

Hereditary 
FSGS  
 

19q13  
 

AD  
 

Adult onset FSGS with 
variable age of onset, 
severity, 
and progression to 
ESRD 

Actin-binding protein that binds 
actin to the cell membrane of the 
podocyte 

(Kim et al. 2003) 

Transient 
Receptor 
Potential Cation 
channel 6  
 

Hereditary 
FSGS  
 

11q21–22  
 

AD  
 

High grade proteinuria 
in 3rd to 4th decade with 
ESRD in 60% within 10 
years of diagnosis 

Relatively non-selective cation 
channel that associates with 
nephrin, podocin, and CD2AP at 
the slit diaphragm 

(Winn et al. 2005) 

CD2-associated 
protein 

FSGS  
 

6p12  
 

Haplo-
insufficiency  
 

FSGS Scaffold protein that interacts with 
the cytoplasmic domain of nephrin 

(Kim et al. 2003) 

APOL1 
 

FSGS 22q13.1 AD strong association with 
FSGS and HIVAN 
among African 
Americans. 

 (Papeta et al. 2011) 

INF2  FSGS 14q32-33 AD FSGS a member of the formin family of 
actin regulating proteins 

(Brown et al. 2010) 

http://www.ncbi.nlm.nih.gov/gene/8542
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1.3.4 Genes Implicated in FSGS 

Recent studies in hereditary forms of nephrotic syndrome had led to the identification of 

several podocyte genes and this has increased our understanding of podocyte biology. To date, 

all causative genes found in hereditary FSGS are located to the podocyte and many of them 

are found in the SD. This further confirms the importance of the SD in the function of 

podocytes. The podocyte-related genes involved in inherited nephrotic syndrome or FSGS are 

listed below (Table 1-3).  

 

Nephrin 

Human nephrin is encoded by the NPHS1 gene which consists of 1241 amino acids and is 

located on chromosome 19 (location: 19q13.1). It is a transmembrane protein with 29 exons 

(Gene Bank Accession Number: NM_004646). Nephrin is detected in the kidney, different 

regions of the brain and in the pancreatic β-cells. Within the kidney, nephrin is exclusively 

expressed in podocytes and predominantly localized to the SD (Kestila et al. 1998; Putaala et 

al. 2001). It has an N-terminal signal peptide, followed by an extracellular domain containing 

eight immunoglobulin motifs, a fibronectin type III-like domain, a single transmembrane 

domain and a cytosolic C-terminal domain (Kestila et al. 1998).  

 

Nephrin plays a crucial role in the glomerular filtration barrier by acting as a signalling hub. 

The nephrin cytoplasmic domain can be phosphorylated by the Src family kinase Fyn (Verma 

et al. 2003), and signals from the phosphorylated nephrin go on to initiate a cascade of 

effectors that activate different intracellular pathways (Huber and Benzing 2005). For 

example, phosphorylated nephrin inactivates pro-apoptotic factor Bad (Huber et al. 2003) and 

leads to anti-apoptotic signals (Asanuma et al. 2007). Nephrin maintains homophilic and 

http://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000161270;r=19%3A41008706-41034579
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heterophilic cis and trans interactions with neph family proteins (Neph1, Neph2 and Neph3) 

(Gerke et al. 2003) and therefore also provides stability to the SD. 

 

Mutations in human nephrin gene cause congenital nephrotic syndrome of the Finnish type 

(CNF). This autosomal recessive disease is the most severe form of nephrotic syndrome 

characterized by massive proteinuria in utero and nephrosis at birth (Kestila et al. 1998).  To 

date, over 50 nephrin mutations have been reported including deletions, insertions, splice-site, 

nonsense and missense mutations (Lenkkeri et al. 1999; Beltcheva et al. 2001). On the other 

hand, reduced nephrin expression was shown in patients with primary or acquired nephrotic 

syndrome, independent from the initial pathogenic mechanism (Huh et al. 2002; Doublier et 

al. 2003). Animal experiments showed that nephrin knockout mice had no slit diaphragms 

and died at birth with massive proteinuria (Putaala et al. 2001). 

 

Podocin 

Podocin, encoded by NPHS2 gene, is a member of the stomatin protein family with a short 

amino terminal domain, a transmembrane region, and a cytosolic carboxy terminal domain 

forming a hairpin like structure (Boute et al. 2000). It has 383 amino acids mapped to human 

chromosome 1q25-31 (Gene Bank Accession Number: BC029141). Podocin is exclusively 

expressed in podocytes of the developing and mature glomeruli. It is predicted to form a 

membrane-associated hairpin-like structure with the N- and C-terminal domains facing the 

cytosolic side of the SD (Roselli et al. 2002). Mutations of the podocin gene were first 

identified in patients with autosomal recessive steroid-resistant nephrotic syndrome (Boute et 

al. 2000). NPHS2-/- knockout mice developed proteinuria during the antenatal period and 

died a few days after birth from renal failure caused by massive proteinuria. Electron 
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microscopy revealed extensive effacement of podocyte foot processes and the lack of a slit 

diaphragm in the remaining foot process junctions (Roselli et al, 2004). On the other hand, 

the inactivation of podocin in the mature kidney of mice led to a different phenotype. These 

mice had progressive renal disease and showed the features of NS, such as hyperlipidemia, 

hypertension and renal insufficiency (Mollet et al. 2009).  

 

In patients with FSGS not related to podocin mutations, the expression of podocin was 

decreased or absent in 74% of the cases. Those with sufficient podocin expression tended to 

have a better prognosis that those without podocin expression (Horinouchi et al. 2003). 

  

Podocin forms homo-oligomers and associates with the lipid rafts (Schwarz et al. 2001). It 

binds to the cytoplasmic tail of nephrin. This interaction is mediated by the C-terminal 

domain of podocin (Huber et al. 2001) and is increased with the phosphorylation of nephrin 

(Li et al. 2004). Podocin acts as a scaffolding protein that mediates nephrin recruitment into 

the specialized microdomains of the plasma membranes. It provides nephrin with a 

specialized lipid environment which is necessary for nephrin signal transduction (Huber et al. 

2003). Podocin has been found to increase the efficiency of nephrin signalling without the 

recruitment of other signalling molecules (Huber et al. 2001). 

 

NEPH1  

Neph1, structurally related to nephrin, is a type I transmembrane protein of the 

immunoglobulin superfamily. It interacts in a cis-fashion in the plane of the membrane via 

the cytoplasmic domain (Gerke et al. 2003; Liu et al. 2003). NEPH1 is widely expressed in 
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numerous cell types, including podocytes, where it localizes to the insertion site of the SD. 

The extracellular region of Neph1 contains five immunoglobulin-like repeats, followed by a 

transmembrane domain and a cytoplasmic domain consisting of 198 to 235 amino acids 

(Sellin et al. 2003). Nephrin, podocin, and Neph1 form a protein complex that functions as a 

transmembrane receptor to mediate signal transduction. Loss of any one of these receptor 

components, either in patients carrying an inherited genetic mutation or in experimental gene-

targeted mice, causes proteinuria and effacement of podocyte foot processes (Kestila et al. 

1998; Boute et al. 2000; Donoviel et al. 2001; Garg et al. 2007).  Further studies showed that 

its phosphorylation and interaction with nephrin play a functional role in maintaining 

podocyte structure and function (Garg et al. 2007). Knockout studies in mice suggested that, 

similar to nephrin, the genetic deletion of Neph1 results in a podocyte effacement phenotype 

with proteinuria and early postnatal death (Donoviel et al. 2001).  

 

CD2AP 

CD2-associated protein (CD2AP) (MIM *607832) is an adapter molecule which interacts 

with filamentous actin and a variety of cell membrane proteins through multiple actin binding 

sites. It is an 80kDa cytoplasmic protein mapped to chromosome 6p12.3. CD2AP contains 

three Src homology 3 (SH3) domains in its NH2-terminal region, a proline-rich region in the 

midregion, and a coiled-coil domain and actin-binding sites in the COOH terminus (Dustin et 

al. 1998; Kirsch et al. 1999; Lehtonen et al. 2000).  

 

CD2AP plays a critical role in maintaining the integrity of the glomerular filtration barrier. It 

is originally identified as a ligand for the T-cell-adhesion protein CD2. In the kidney, it is 

expressed primarily in glomerular podocytes at the cytoplasmic face of the SD domain. It 
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directly interacts with podocin and nephrin at its C-terminal region (Schwarz et al. 2001; 

Shih et al. 2001) and participates in their signalling pathways (Mao et al. 2006). Both nephrin 

and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K), 

recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent 

AKT signalling in podocytes (Huber et al. 2003). Animal experiments showed that lack of 

the glomerular expression of CD2AP in animals produces mesangial cell proliferation with 

extracellular matrix deposition, glomerulosclerosis and extensive foot-process effacements. 

CD2AP−/ − mice developed severe nephrotic syndrome and died of massive proteinuria 

shortly after birth (Shih et al. 1999). Recent study from 80 Italian patients with idiopathic 

nephrotic syndrome showed that CD2AP mutations may alter the composition of the SD by 

modifying the interaction with CD2 in lymphocytes (Gigante et al. 2009).  

 

PLCε1 

Phospholipase C epsilon 1 (PLCɛ1), a family member of phosphoinositide-specific 

phospholipase C (PLC), is expressed predominantly in the cell bodies of podocytes (Hinkes 

et al. 2006). PLC proteins are typically characterised by the two phospholipase catalytic 

domains (PLC_X and PLC_Y) and Ca2+ lipid binding domain (C2 domain) (Boyer et al. 

2010). They play essential roles in the coupling of G-protein coupled receptors by catalysing 

the hydrolysis of polyphosphoinositides such as phosphatidylinositol-4,5-bisphosphate to 

generate the second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) 

(Wing et al. 2003). IP3 releases calcium from intracellular storage and the elevated calcium 

level leads to a series of signalling cascades. DAG activates protein kinase C, which in turn 

modulates the activity of many proteins by phosphorylation.  
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In addition to conserved PLC domains, PLCɛ1 contains one RasGEF domain and two C-

terminal Ras-binding (RA) domains, RA1 and RA2 (Boyer et al. 2010), which may serve as 

an activator and an effector of small GTPases (Zhou and Hildebrandt 2009). PLCε1 

knockdown zebrafish has been shown to have pathological features of nephrotic syndrome, 

namely foot process effacement and severe disorganization of SD. The absence of PLCε1 has 

been found to be associated with a significant reduction in nephrin expression and arrest the 

development of glomerulus at the capillary loop stage (Hinkes et al. 2006). In humans, 

PLCε1 mutations are frequently found in familial and sporadic diffuse mesangial sclerosis 

(DMS) cases. They were also detected in a non-negligible proportion of familial FSGS cases, 

but no clear genotype–phenotype correlation was present (Boyer et al. 2010). 

 

α-Actinin-4 

α-actinin-4 (ACTN4) is an actin-binding protein which is widely expressed in a number of 

human tissues, most notably glomerular podocytes (Kaplan et al. 2000). ACTN4 binds actin 

in the cell cytoskeleton, contributes to cell structure, regulates cell motility and interacts with 

GBM molecules (Honda et al. 1998; Shao et al. 2010).  

 

ACTN4-deficient mice have severely damaged podocytes and progressive kidney disease. 

Their podocytes have increased fluidity and altered cell motility and adhesion (Kos et al. 

2003). Transgenic mice with an ACTN4 mutation expressed in a podocyte-specific manner 

also developed significant albuminuria, as well as down-regulation of nephrin gene and 

protein expression in the kidney (Michaud et al, 2003). These studies confirmed that ACTN4 

is important for podocyte function. In humans, mutations of ACTN4 gene were associated 

with an autosomal dominant form of FSGS. (Kaplan et al. 2000; Aucella et al. 2005; Weins 
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et al. 2005). Most mutations led to increased actin binding by ACTN4 with subsequent 

abnormal formation of actin aggregates (Komatsuda et al. 2003; Yao et al. 2004; Michaud et 

al. 2006). However, this form of familial FSGS is rare in the general population (Bostrom et 

al. 2012).  

 

INF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Besides ACTN4 and TRPC6, INF2 gene is the third gene that is found to cause autosomal 

dominant FSGS recently (Brown et al. 2010). INF2 encodes inverted formin-2, which is a 

member of actin-regulating proteins that accelerate actin filament assembly (Faix and Grosse 

2006). Formins govern several dynamic events that require remodeling of the actin 

cytoskeleton such as cell polarity, cell and tissue morphogenesis and cytokinesis (Goode and 

Eck 2007). INF2 is an actin-binding protein widely expressed in actin-rich area, like 

podocyte. It has the unique ability to accelerate both polymerization and depolymerization of 

actin (Brown et al. 2010).  

INF2 is currently shown to be a major cause of autosomal dominant FSGS, explaining almost 

one fifth of the cases (Boyer et al. 2011), whereas ACTN4 and TRPC6 account for 

approximately 4% and 6% of familial FSGS respectively (Weins et al. 2005; Heeringa et al. 

2009; Santin et al. 2009). All of the FSGS-associated INF2 mutations identified to date are 

localized to the N-terminal diaphanous inhibitory domain (DID) of the protein, a region that 

interacts with the C-terminal diaphanous autoregulatory domain (DAD), thereby competing 

for actin monomer binding and inhibiting depolymerisation (Boyer et al. 2011). Interestingly, 

no mutation in DAD has been identified, suggesting DID, and not DAD, has a critical role for 

INF2 function. Disease-causing INF2 mutations therefore may have a defect in actin-

mediated podocyte structural maintenance and repair (Boyer et al. 2011). 
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Synaptopodin 

Synaptopodin belongs to a class of proline-rich actin-associated proteins and has a key role in 

regulating the actin-based shape and motility of podocyte foot processes. Synaptopodin binds 

to α-actinin-4, regulating its actin-bundling activity, and to CD2AP (Huber et al. 2006). 

Synaptopodin inhibits filopodia formation downstream of the small GTPase Cdc42 while 

promoting formation of contractile actin stress fibers by blocking the degradation of RhoA 

(Asanuma et al. 2006; Yanagida-Asanuma et al. 2007). Interest in the role of synaptopodin in 

podocytes has increased since it was found that the anti-proteinuric effects of cyclosporin (a 

calcineurin inhibitor) were due to inhibitions of the calcineurin-mediated dephosphorylation 

and subsequent degradation of synaptopodin, resulting in stabilization of the podocyte actin 

cytoskeleton and thereby protection from proteinuria (Faul et al. 2008). 

 

The latest identified genes involved in FSGS in the past two years include Arhgap24 and  

MYO1E. In addition, mammalian target of rapamycin (mTOR) and soluble urokinase receptor 

(suPAR) have been shown to play important roles in the pathogenesis of FSGS. 

 

Arhgap24  

Podocytes under physiological conditions might exhibit a rather stationary phenotype, and 

this is mainly due to upregulated RhoA and downregulated Cdc42/Rac1 activity (Zhu et al. 

2011). Under stress and in pathophysiological situations, the podocytes may shift to a more 

migratory phenotype, characterized by an increase in Cdc42/Rac1 activity (Zhu et al. 2011). 

Using a combined approach of podocyte cell culture and genetic studies, Shaw et al. 

identified Arhgap24, which is a reported Rac1-inactivating GAP, as a highly podocyte-

specific protein. Loss-of-function mutations of the Arhgap24 gene was found in FSGS 
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patients. Furthermore, the expression of its transcript significantly increases with podocyte 

differentiation, suggesting that podocytes shift to a more stationary phenotype when they 

become highly differentiated (Akilesh et al. 2011).  

 

MYO1E  

MYO1E encodes Myosin-1e protein, and is recently identified to be linked to childhood-onset 

steroid-resistant form of FSGS (Mele et al. 2011). MYO1E is highly enriched in human 

podocytes, and the two identified mutations (A159P and Y695X) were linked with decreased 

motility of human podocytes and mislocalized expression of the MYO1E protein in vitro 

(Mele et al. 2011). This underlines how sensitive podocytes react to unbalanced cytoskeletal 

homeostasis leading to FSGS development and also implicates Myo1e as a novel human gene 

causing FSGS and regulating podocyte motility. 

 

mTOR 

Mammalian target of rapamycin (mTOR) is an evolutionarily conserved protein kinase 

regulating many essential cellular processes including translation, transcription and 

autophagy (Schell and Huber 2012). mTOR is a central regulator of podocyte function. In 

glomerular diseases such as diabetic nephropathy, mTOR is persistently hyper-activated and 

this ultimately causes podocyte loss, glomerulosclerosis and disease progression (Godel et al. 

2011; Inoki et al. 2011). mTORC1, one of the two mTOR complexes, is sensitive to 

rapamycin and consists of multiple components including Raptor. It centrally regulates the 

podocyte growth, hypertrophy and de-differentiation.  
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suPAR  

A soluble and circulating factor has been assumed for a long time since it has been observed 

that close to 30% of transplanted FSGS cases reoccur in the transplanted graft (Ponticelli and 

Glassock 2010). The identification of this soluble factor had remained elusive. Reiser et al. 

suggested soluble form of urokinase receptor (suPAR) might be the circulating factor (Wei et 

al. 2008). This was based on the finding that suPAR was not only elevated in the serum of 

two thirds of FSGS patients, but also correlated with the risk of FSGS recurrence after 

transplantation. Mechanistically, the authors showed that increased levels of suPAR resulted 

in beta-3 integrin activation in human podocytes (Wei et al. 2011).   
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1.4 TRPC6 Channels 

Transient Receptor Potential Cation Channel 6 (TRPC6) is a member of the transient receptor 

potential (TRP) superfamily of cation-selective ion channels, which are involved in numerous 

fundamental cell functions and are considered to play important roles in the pathophysiology 

of many diseases. The discovery in 2005 that mutations in TRPC6 channels cause familial 

FSGS underscored the potential importance of Ca2+ dynamics for podocyte function and 

opened an entirely new line of investigation (Reiser et al. 2005; Winn et al. 2005). An 

overview of the TRP channels, specifically the TRPC6 channels, is given below.. 

 

1.4.1 TRP Channels 

Channel proteins are important for the survival and function of every cell, and Ca2+ 

permeable channels are particularly important since Ca2+ is not only a charge carrier but is 

also one of the most important second messengers (Minke 2010). TRP cation channels 

mediate the flux of Na+ and Ca2+ across the plasma membrane and into the cytoplasm 

(Berridge et al. 2003). TRP channels were first discovered  in 1969 due to a mutation in the 

Drosophila photoreceptor, which resulted in inhibited Ca2+ permeability and sensitivity to 

light (Cosens and Manning 1969; Putney 1977). Two decades later, this TRP gene was cloned 

(Montell and Rubin 1989) and was shown to encode a Ca2+-permeable cation channel (Hardie 

and Minke 1992). To date, more than 50 TRP channels are found in many organisms 

including yeast, worms, insects, fish, and mammals (Petersen et al. 1995; Wes et al. 1995). 

These have diverse functions and share structural similarities with Drosophila TRP channels. 

 

 

1.4.1.1 TRP Classification 

Unlike most ion channels, TRP channels are identified by their homology rather than by 
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ligand function or selectivity. This is because their functions are disparate and often unknown. 

Based on sequence homology, TRP channels are commonly subdivided into 7 subfamilies: 

TRPC (Canonical, TRPC1-TRPC7), TRPV (Vanilloid, TRPV1-TRPV6), TRPM (Melastatin, 

TRPM1-TRPM8), TRPP (Polycystin, TRPP1-TRPP3), TRPML (Mucolipin, TRPML1-

TRPML3), TRPA (Ankyrin, TRPA1), and TRPN (no mechanoreceptor potential C, NOMPC) 

(Montell 2005; Voets et al. 2005) (Table 1-4). Except for TRPN, all of the subfamilies can be 

found in mammals.  

Table 1-4 The Seven Subfamilies of TRP Channels 

 Fly Worm Fish Mouse Human 
TRPC 3 3  8 7  6 
TRPV 2  5 4 6 6 
TRPM 1 4 6 8 8 
TRPA 4 2 1 1 1 
TRPP 4 1 2 3 3 
TRPML 1 1 4 3 3 
TRPN 1 1 - - - 
Total 16 17 25 28 27 

Adapted from (Flockerzi 2007). 
 

 

1.4.1.2 TRP Structure and Permeability 

 
TRP channel proteins are evolutionally conserved. All TRP proteins have four identical or 

similar subunits with six putative transmembrane domains (S1-S6) and cytosolic N- and C-

terminal tails tetramerize to form a functional channel (Figure 1-3) (Hoenderop et al. 2003). 

S5, S6 and the connecting pore loop form the central cation-conducting pore (Voets et al. 

2004), whereas S1–S4 and the extremely long cytoplasmic N- and C-terminal parts are 

thought to contain the regulatory domains that control channel gating (Voets et al. 2005). 
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Figure 1-3 Predicted structure of TRP and topology of TRP channels. 

Panel A shows the putative structure of a TRP channel. It has 6 transmembrane helices (S1-
S6) with a putative pore region between S5 and S6. Panel B shows the proposed tetrameric 
channel structure. A TRP channel is composed of hetero or homo tetrameric TRP molecules. 
Adapted from (Watanabe et al. 2009). 

 
The degree of similarity in amino acid sequences among members within one subfamily is up 

to more than 90%. Within the cytoplasmic domains, some structural motifs have been 

identified by sequence comparisons. These include ankyrin repeat domains, a coiled-coil 

domain (Schindl and Romanin, 2007), and the so-called ‘TRP domain’, which is a highly 

conserved stretch of ~25 amino acids in the C-terminal region close to S6. The TRP domain 

is found in all mammalian TRP subfamilies except TRPA and TRPP (Montell 2005; Ramsey 

et al. 2006). In addition, amino acid sequences forming the pore are strongly conserved 

across different TRP subfamilies (Montell, 2005). S5, S6 and the TRP domain are similar 

even in distinct TRP channels (Ramsey et al., 2006).  

 

TRP channels represent a new class of Ca2+ permeable channels, not belonging to traditional 

voltage gated and ligand gated channels. Although they have six transmembrane segments, 

and the pore region loop, which is typical of voltage gated channels, the positively charge 

residues in S4 are replaced with uncharged amino acid residues (Phillips et al. 1992). In 

A                                                                                                               B 
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addition, mammalian TRPs, like TRPV1, bind specific “ligands” such as capsaicin (Caterina 

et al. 1997), but this channel is not considered as a typical ligand gated channel (Bohlen et al. 

2010).    

 

 All TRP channels are permeable to cations except TRPM4 and TRPM5 channels, which are 

impermeable to Ca2+. The permeability ratios PCa/PNa for these channels vary considerably, 

ranging from 0.1 to >100, and TRPV5 and TRPV6 are two highly Ca2+ permeable channels 

(Owsianik et al., 2006a). 

 

1.4.1.3 TRP Channel Regulation and Activation 

TRP channels participate in a diversity of functions in all excitable and nonexcitable cells. 

Many TRPs have been found to participate in sensory transduction pathways, including 

thermosensation, mechanosensation, taste perception, perception of pungent compounds, 

pheromone sensing and osmolarity regulation (Montell 2001; Minke and Cook 2002; 

Clapham 2003; Julius 2005; Nilius and Mahieu 2006; Nishida et al. 2006). Regulation of 

TRP channels includes: (1) posttranslational modifications such as phosphorylation, 

glycosylation and nitrosylation; (2) protein-protein interactions implying actors like 

calmodulin (CaM), IP3R, stromal interacting molecule (STIM) and Orai proteins; (3) lipid 

interactions such as PIP2 and cholesterol; and (4) trafficking (TU 2009; Zhu 2011). 

. 

Several activation mechanisms have been established for TRP channels, including receptor 

activation, ligand activation, direct activation as well as indirect activity, or activation by 

calcium store depletion.  

1) Receptor activation. This is the most likely mechanism for TRPC channels and the 

Drosophila photoreceptor TRP. All mammalian TRPC channels can be activated by G 
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protein–coupled receptors (GPCRs). GPCRs and receptor tyrosine kinases can modulate 

TRP channel activity through activation of phospholipases C (PLCs). PLCs catalyze the 

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and 

inositol 1,4,5-triphosphate (IP3). IP3 in turn activates the IP3 receptor (IP3R), causing 

release of Ca2+ from an intracellular Ca2+-containing compartment which is part of the 

endoplasmic reticulum (ER). Downstream of receptor activation, TRP channels are 

activated by one of the following mechanisms: (1) the decreased level of PIP2; (2) the 

production of DAG; or (3) the release of Ca2+ from internal stores of the ER induced by 

IP3 binding to IP3R.  

 

2) Ligands activation. Various ligands can activate TRP Channels．Ligands that activate 

TRP channels may be broadly classified as: (a) exogenous small organic molecules such as 2-

aminoethyoxydiphenyl borane (2-APB), capsaicin, menthol and hyperforin; (b) endogenous 

lipid and lipid metabolites, such as phosphoinositides, DAG, eicosanoids and anandamide; (c) 

purine nucleotides and their metabolites such as ADP-ribose and βNAD+; (d) inorganic 

molecules and ions such as Ca2+, La3+, Zn2+ and H2O2 (Zhang et al. 2002; Venkatachalam et 

al. 2003; Zhu 2005). 

 

3) Direct activation. The putative direct activators include temperature, mechanical stimuli, 

conformational coupling with other proteins such as STIM1 (stromal interacting molecule 1 

or IP3R, channel phosphorylation, osmolarity and pH (Clapham 2003; Maroto et al. 2005). 

4) Activation by calcium store depletion. For a long time, there has been a debate concerning 

the molecular identity of the store operated channels (SOC). Store-operated Ca2+ entry 

(SOCE), also called capacitative Ca2+ entry (CCE), refers to a phenomenon in which the 

depletion of intracellular Ca2+ stores (primarily the ER) leads to the activation of plasma 
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membrane Ca2+-permeable channels. Ca2+ entering through SOC can be pumped into the 

stores and thus permit their replenishment (Putney, 1986; Parekh and Putney, 2005). 

Although some TRPC (see Section 1.1.5) may participate in SOCE, they exhibit biophysical 

properties distinct from SOC. For example, TRPC channels underline non-selective cation 

currents which stand in contrast with the highly Ca2+-selective SOC currents like ICRAC 

(calcium release-activated current), (Putney, 2007a). The exact contribution of TRPC in 

SOCE remains currently debated.  

 

It is worth mentioning that some TRP channels may have several modes of activation and 

function as polymodal sensors, integrating many of the signals mentioned above. 

 

1.4.1.4 TRPC Subfamily 

TRPC channels comprise a family of nonselective Ca2+-permeable cation channels that are 

ubiquitously expressed, forming homomeric and heteromeric cation channels (Tai et al. 

2009). Based on sequence and functional characteristics, the seven TRPC channels, TRPC1-7, 

can be subdivided into three groups: TRPC1/4/5, TRPC2, and TRPC3/6/7.  

 

TRPC1, the first mammalian TRP protein reported, is widely expressed in many tissues and 

thought to from heteromeric channels with TRPC4 and/or TRPC5 (Wes et al. 1995). TRPC4 

and TRPC5 are believed to form homomeric channels. When expressed together, TRPC1, 4, 

and 5 form nonselective cation channels that are activated by Gq signaling through a 

phospholipase Cβ1 (PLCβ1) pathway (Plant and Schaefer 2005). Mice lacking TRPC4 have 

defects in agonist-induced vasoregulation and lung microvascular permeability (Freichel et al. 

2001; Tiruppathi et al. 2002). Growth factor stimulates rapid translocation of TRPC5 into the 

plasma membrane from vesicles located near the plasma membrane (Jung et al. 2003). 
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TRPC3, TRPC6 and TRPC7 proteins share 75% identity, and are highly expressed in smooth 

and cardiac muscle cells. They have relatively low selectivity for Ca2+ over Na+, and are 

sensitive to the intracellular concentration of Ca2+ ([Ca2+]i). These channels are activated by a 

receptor-mediated pathway involving DAG and are important in vascular and airway smooth 

muscle (Hofmann et al. 1999). Channels formed by TRPC3 or TRPC6 are also regulated by 

N-linked glycosylation and Ca/CaM (Dietrich et al. 2003). TRPC3 is activated by 

phosphorylation by PKG (Kwan et al. 2004). TRPC6 is phosphorylated by the Src family of 

tyrosine kinases (Vazquez et al. 2004). 

 

TRPC2 shares roughly 30% sequence homology with TRPC3/6/7. TRPC2 full-length 

messenger RNA (mRNA) is expressed in mouse and rat tissues. Its rat orthologue encodes an 

important sensor localized to neuronal microvilli in the vomeronasal organ (Liman et al. 

1999). TRPC2-deficient mice display abnormal mating behaviour, consistent with a role for 

this channelin pheromone signalling (Stowers et al. 2002). However, TRPC2 is a pseudogene 

in humans (Ramsey et al. 2006). 
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Figure 1-4 Structure of TRPC6 Channels. 

The structural elements of TRPC6 channels include cytoplasmic N- and C-termini, six 
transmembrane helices (S1-S6), a putative pore region located between S5 and S6, four N-
terminal ankyrin-like repeats (ANK1-4), caveolin-1 binding site, and the C-terminal TRP 
domain CIRB domain. 

 

1.4.2 TRPC6 Structure and Expression 

TRPC6 displays common structural features of the TRP superfamily （ Figure 1-4): 

cytoplasmic N- and C-termini, six transmembrane helices (S1-S6) and a putative pore region 

located between S5 and S6. TRPC6 also possesses features of the TRPC subfamily. For 

example, It contains four N-terminal ankyrin-like repeats (ANK1-4) (Venkatachalam and 

Montell 2007), a N-terminal caveolin-1 binding site (Vazquez et al., 2004), C-terminal highly 

conserved regions of TRP domain including TRP box 1 (Glu-Trp-Lys-Phe-Ala-Arg or 

EWKFAR) and TRP box 2 (a proline-rich motif) (Montell 2005; Venkatachalam and Montell 

2007) and the Calmodulin and IP3R-binding (CIRB) site (Zhu 2005). The ankyrin repeats 

consist of 30-34 amino acid residues. They are common protein-protein interaction motifs 

thought to be important in protein function, perhaps signifying association with the 

cytoskeleton (Montell 2005). There are two coiled-coil (CC) domains in each of the cytosolic 
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N- and C-termini, which are ubiquitous protein motifs that are commonly used to control 

oligomerisation (Vazquez et al. 2004).  

 

TRPC6 is expressed in numerous tissues enriched with smooth muscle cells including brain, 

lung, stomach, colon, kidney, as well as in immune and blood cells (Dietrich and Gudermann 

2007). Specifically, in the kidney, TRPC6 is expressed in the podocyte cell body, major 

processes, and foot processes in the vicinity of the SD (Reiser et al. 2005). Despite its 

abundance, the exact physiological role of TRPC6 has not been fully elucidated.  

.  

1.4.3 TRPC6 Biophysical Properties 

 
TRPC6 channels mediate the flux of Na+ and Ca2+ across the plasma membrane and into the 

cytoplasm, showing a dual inward and outward rectification at negative potentials and 

positive potentials receptively. The current-voltage relationship displays an S-shaped curve. 

The relative ion permeability PCa/PNa of TRPC6 channels is around 5 (Hofmann et al. 1999; 

Inoue et al. 2001). The Na+ entry via TRPC6 induces a depolarization which in turn activates 

other channels, like voltage-gated Ca2+ channels (VGCC) (Soboloff et al. 2005). 

 

In human embryonic kidney (HEK)-293 cells stably expressing TRPC6, Ca2+, in the presence 

of extracellular Na+, contributes poorly (~4%) to the whole-cell currents (Estacion et al., 

2004). It is concluded that in cells with a high input resistance, the primary effect of TRPC6 

activation is to depolarize (due to the entry of Na+), limiting Ca2+ entry via TRPC6 but 

facilitating Ca2+ entry via VGCC. In cells with a large inward-rectifier current or expressing 

Ca2+-activated K+ channels to hold the membrane potential negative, receptor-mediated 

activation of TRPC6 permits a sustained Ca2+ influx pathway (Estacion et al., 2004). TRPC6 
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channels assemble into homo- and heterotetramers with other TRPC subfamily members 

(Hofmann et al. 2002; Strubing et al. 2003; Bandyopadhyay et al. 2005). 

 

1.4.4 Activation of TRPC6 Channels 

TRPC6, like other TRP channels, can be activated by receptor stimulation, store depletion 

(Liao et al. 2008; Jardin et al. 2009), mechanosensation (Spassova et al. 2006; Inoue et al. 

2009), and diacylglycerol (DAG) and related lipids.  

 

 

 

 

Figure 1-5 TRPC6 activation and signal transduction. 

A G protein–coupled receptor (for example, muscarinic M1 acetylcholine receptor) catalyses 
G protein nucleotide exchange to form active Gα and Gβγ subunits, in turn activating PLCβ. 
Alternatively, tyrosine kinase (TK) receptors can also activate PLCγ. PLC hydrolyses an 
abundant membrane component, PIP2, into DAG and IP3. The soluble IP3 activates the IP3R 
on the endoplasmic reticulum to release intracellular Ca2+, which is inherently a localized 
second messenger and TRPC6 channels are activated. The TRPC6 channels can also be 
activated by decreased level of PIP2 or the production of DAG. Adapted from (Clapham 
2003).   
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The activation of TRPC6 channels through receptor stimulation is well studied (Abramowitz 

and Birnbaumer 2009). Among them, the most well-studied receptor is the G protein–coupled 

receptor (GPCR). Stimulated GPCRs or tyrosine kinase (TK) receptors will activate 

phospholipases C (PLC) signaling pathway as shown in figure 1-5. The activated PLC 

catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into DAG and 

inositol 1,4,5-triphosphate (IP3). DAG can be metabolized by the DAG lipase to yield poly-

unsaturated fatty acids (PUFA) such as arachidonic acid (AA) and linolenic acid, which can 

then activate or modulate a wide range of ion channels, including Drosophila TRP and TRPL 

(Chyb et al. 1999), TRPV4 (Watanabe et al. 2003), TRPM5 (Oike et al. 2006) and TRPC6  

(Basora et al., 2003). Another PIP2 product, IP3, in turn activates the IP3 receptor on the 

endoplasmic reticulum to release intracellular Ca2+, which is inherently a localized second 

messenger, and TRPC6 channels are then activated.  

 

In addition, TRPC6 channels can also be activated by cytokine receptor, like interleukin-1. 

The activation of interleukin-1 receptor also generates DAG, followed by TRPC6 activation 

(Beskina et al. 2007). In summary, downstream from receptor activation, TRPC6 channels 

are activated by one of the following mechanisms: (1) the decreased level of PIP2; (2) the 

production of DAG; or (3) the release of Ca2+ from internal stores of the endoplasmic 

reticulum (ER). It is worth to mention that DAG alone may not fully account for the 

activation of TRPC6, and other receptor-mediated events may act synergistically with DAG 

to stimulate channel activity (Estacion et al. 2004). 
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1.4.5 Regulation of TRPC6 Channels 

TRPC6 channels are mainly regulated by phosphorylation. Src family protein-tyrosine 

kinases (PTKs), like Fyn, can modulate TRPC6 channel activity via tyrosine phosphorylation, 

causing an increase in DAG-evoked TRPC6 activation in excised patches (Hisatsune et al. 

2004). This in turn causes alterations in the dynamics of the cytoskeleton. 

 

Protein kinase C (PKC) has controversial effects on TRPC6 channel regulation. DAG is the 

physiological activator of PKC while DAG kinase (DAGK) phosphorylates DAG to form 

phosphatidic acid. Previous studies show that TRPC6 channel activities are not affected by 

upregulation or downregulation of PKC (Hofmann et al. 1999; Inoue et al. 2001). However, 

some studies show the involvement of PKC in TRPC6 inactivation. By activating PKC, 

phorbol-12-myristoyl-13-acetate (PMA), one PKC activator, blocks the activation of TRPC6 

by DAG and carbachol (Zhang and Saffen 2001). Interestingly, a later study shows a 

differential effect of PKC activation on DAG- and carbachol-induced TRPC6 currents: PMA 

has no significant effect on DAG-activated currents whereas it essentially eliminates the 

regulation by receptor stimulation (Estacion et al. 2004). Currently, it is well accepted that 

TRPC6 can be regulated by the formation of a multiprotein complex centered on TRPC6 

containing PKC and M1 muscarinic acetylcholine receptors (M1 mAChRs), and this can be 

initiated by carbachol (Kim and Saffen 2005).  

 

In addition, calcium is also known to influence the activity of TRPC6 channels through the 

action of calmodulin (CaM), a small soluble Ca2+-binding protein that is involved in the 

regulation of many cellular functions including channel activity (Saimi and Kung 2002). 

CaM binds to the highly conserved CIRB site of TRPC6 (Tang et al. 2001), at where it 

competes with IP3R in a Ca2+-dependent manner since CaM only binds to the CIRB site in 

the presence of Ca2+. In some cases, CaM binding to the CIRB site can prevent TRPC 



 
 

39 
 

channels from being activated, whereas the displacement of CaM by activated IP3R or the 

inhibition by CaM antagonists activate the channels (Kwon et al. 2007). On the contrary, 

several studies show that CaM binding to TRPC6 is necessary for its activation. CaM 

inhibitors like calmidazolium and trifluoperazine, which dissociate CaM from TRPC6, inhibit 

TRPC6 activity in HEK-293 cells (Boulay 2002; Shi et al. 2004). 

 

1.4.6 TRPC6 and its Podocyte Binding Partners 

TRPC6 interacts with a number of different podocyte proteins, including scaffolding 

molecules, signaling proteins, cytoskeletal elements, and other types of ion channels (Dryer 

and Reiser 2010). Recent research has implicated as many as 24 podocyte genes in primary 

nephrotic syndrome or FSGS (McCarthy et al. 2013). It is well-known that TRPC6 interacts 

with nephrin and podocin and these interactions may be central to the physiological function 

of these channels at the SD.  

 

Podocin was shown to regulate the activity of TRPC6 in a cholesterol-dependent manner, and 

Huber and coworkers have proposed that podocin binds sterols and alters the local lipid 

environment surrounding the channel molecule, thereby facilitating the ability of TRPC6 to 

respond directly to deformation of the plasma membrane (Huber et al. 2006).  

 

TRPC6 interactions with nephrin near the SD may underlie regulation of gating and 

trafficking of these channels (Huber and Benzing 2005; Verma et al. 2006). Functional 

interactions between these proteins may serve to monitor the integrity of the filtration 

apparatus in podocytes to sense mechanical stimuli and to trigger Ca2 signaling cascades that 

could alter cytoskeletal dynamics (Kriz et al. 1994; Kriz et al. 1995; Kriz et al. 1996). For 

example, engagement of the ectodomains of nephrin results in localized activation of Src 



 
 

40 
 

family tyrosine kinases (Verma et al. 2006). Moreover, the absence of nephrin as shown in 

neonatal nephrin-/- mice led to increased expression of TRPC6 in podocytes compared with 

podocytes of wild-type littermates (Reiser et al. 2005). 

 

Besides TRPC6, there are other TRPC family members expressed in podocytes. TRPC1, 

TRPC2, and TRPC5 were observed in mouse glomeruli in a pattern consistent with 

expression in podocytes (Reiser et al. 2005). TRPC3 was also detected in immortalized 

mouse podocyte cell lines (Kim et al. 2009). It is possible that some of the TRPC6 channels 

in podocytes interact with other types of ion channels and form heteromeric complexes.  

 

1.4.7 TRPC6 and FSGS 

The link between TRPC6 and FSGS was first described in 2005 when two independent 

research groups discovered that mutations in TRPC6 channels cause familial FSGS (Reiser et 

al. 2005; Winn et al. 2005). This finding underscored the potential importance of Ca2+ 

dynamics for podocyte function. Since then, an increasing number of TRPC6 mutations are 

identified from patient families with FSGS. To date, all reported TRPC6 mutations occur 

either in the cytoplasmic NH2 or coiled-coil domain in the COOH terminals of the protein 

(Reiser et al. 2005; Winn et al. 2005; Heeringa et al. 2009; Santin et al. 2009; Zhu et al. 2009; 

Buscher et al. 2010; Gigante et al. 2011; Mir et al. 2012). Among them, some are gain-of-

function mutations resulting in increased calcium current amplitudes and/or increased 

intracellular calcium influx. However, there are also some TRPC6 mutations that did not 

modify the calcium influx in heterologous expression systems. TRPC6 mutations in the four 

ANK repeats and the CC domains play important roles since ANK repeats are common 

protein-protein interaction motifs thought to be important in protein function, perhaps 

signifying association with the cytoskeleton (Montell 2005), whereas the two CC domains are 
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ubiquitous protein motifs commonly used to control oligomerisation (Vazquez et al. 2004). 

However, the precise mechanism of how TRPC6 mutations cause FSGS is still unclear. 

 

1.5 Research Hypothesis and Scope of Thesis 

FSGS is a clinicopathological entity characterized frequently by steroid-resistant nephrotic 

syndrome and rapid progression to end-stage kidney disease. It accounts for up to 20% of 

patients on dialysis. In Singapore, 65% of children biopsied for steroid-dependent or steroid-

resistant nephrotic syndrome showed FSGS as the underlying histopathology. The treatment 

for FSGS is currently largely empirical, and response rates are, at best, only moderate. Only a 

small percentage of affected individuals achieve complete remission. The reason for this lack 

of effective treatment is that the pathogenesis of FSGS has not been fully elucidated. The 

molecular studies of familial cases in the last two decades suggest that FSGS is a defect of 

the podocyte. Several genes encoding for structural proteins of the podocyte, such as NPHS1, 

NPHS2, ACTN4 and TRPC6 gene have been identified.  

 

Almost 20 TRPC6 mutations have been reported in adults and children with glomerular 

disease. Some of these mutations cause disease with variable penetrance, including non-

penetrance. The mechanism of this variable penetrance is unknown. We describe a Singapore 

Chinese index family where 6 members had a novel TRPC6 p.R68W (c.202C>T) mutation, 

two of whom had renal failure from FSGS and 1 had proteinuria. Amongst the 3 healthy non-

penetrant members, one successfully donated a kidney to her sister with FSGS, and both 

donor and recipient had remained well after 19 years.  

We have found a novel TRPC6 missense mutation p.R68W in the index family. We also 

detected single nucleotide polymorphisms (SNPs) in podocin and nephrin genes which 

seemed to segregate with renal disease in the family. We therefore hypothesized that the 
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TRPC6 p.R68W mutation interacted with podocin and/or nephrin polymorphisms and 

therefore resulted in variable phenotypes.  

 

In this thesis, we screened the TRPC6, podocin and nephrin genes in the index family and 

validated the sequence variants in 224 Singapore Chinese controls. The interactions between 

TRPC6, podocin and nephrin variants were studied by co-transfecting these variants into 

human embryonic kidney cells and measuring TRPC6 currents using whole-cell patch-clamp 

method. Immunoblotting, surface biotinylation and mRNA stability assays were also 

performed to elucidate the mechanisms of the interactions.  
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CHAPTER 2 MATERIALS & METHODS  
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2.1 Study Participants 

Our study is centred on an index family comprising of 9 members, of which 2 had ESRD 

from FSGS and one had proteinuria. The other 6 members do not have renal disease. For 

podocyte gene variations screening, we recruited 97 unrelated Singapore Chinese patients 

with sporadic steroid-resistant or steroid-dependent NS (SDNS) and/or FSGS (mean age of 

disease onset 5.7 years, range 0.9 to 19.0 years) (Appendix I-1). Diagnostic criteria for NS 

and definitions for steroid resistance and dependence were according to standard guidelines 

(1981). Additionally, we included 128 unrelated Singapore Chinese cord blood controls with 

no known family history of renal diseases. Moreover, control data from the Singapore 

Genome Variation Project (Teo et al. 2009) (96 Chinese) and local exome sequencing data 

(200 Chinese) were used. Blood samples were obtained from study participants after 

informed consent was obtained in accordance with a protocol approved by the National 

University Hospital. The stored cord blood samples were legacy samples obtained 

anonymously without consent, and approval has been obtained from the Ethics Committee 

for this study. 

 

2.2 Mutation Screening of Podocyte Genes 

2.2.1 Human Genomic DNA (gDNA) Extraction 

Genomic DNA was isolated from peripheral blood leukocytes. Three millilitres (mL) of 

blood were collected in ethylenediaminetetraacetic acid (EDTA) from the participants. One 

mL of blood was used for the extraction of gDNA. The red cells were lysed by repeatedly 

washing the cells with TE10/10 buffer. The white cell pellet was then obtained and incubated 

in 1 to 3mL of TE10/10 buffer supplemented with 0.5% SDS (1st Base, Singapore) and 

300µg of Proteinase K (Promega, USA) overnight at 37°C. Equal volume of phenol (Merck, 

Germany) was added to the sample and mixed for 7 to 10 minutes before centrifuging at 
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3000rpm for 10 minutes. The lower organic phase was removed and equal volume of 24:1 

(v/v) chloroform-isoamyl alcohol (Merck, Germany) was added. The sample was mixed for 7 

to 10 minutes before centrifuging at 3000rpm for 10 minutes. The lower organic phase was 

removed and gDNA was precipitated using 100% ethanol with 5M of NaCl. The gDNA was 

washed once with 70% ethanol and once with 100% ethanol. It was air-dried and suspended 

in nuclease free water. The concentration of the gDNA was measured using the NanoDrop 

1000 spectrophotometer (Thermo Scientific, USA). All gDNA were diluted to a working 

concentration of 100ng/3µL.  

 

2.2.2 Human Total RNA Isolation from Leukocytes 

For RNA isolation, 5mL whole blood was diluted and gently mixed with pre-warmed HBSS 

at a ratio of 1:1, followed by gentle layering of the mixed blood to 4mL Ficoll-paque in 15mL 

Falcon tube, and centrifugation at 2000rpm for 30 minutes. The ring of PBMC was harvested 

using a Pasteur Pipette, and transferred to a new 15mL tube followed by topping up with cold 

HBSS to the brim. This was inverted gently to wash cells and then centrifuged at 1500rpm 

for 5 minutes. The supernatant was decanted and the cell pellet was washed with cold HBSS. 

The suspension was again centrifuged cells at 1500rpm for 5 minutes and the supernatant 

decanted. Subsequently, 8mL of HBSS was added. The number of cells was counted by 

loading 8uL of the cell suspension into the neubauer chamber. The cell suspension was 

centrifuged again at 1500rpm for 5 minutes, the supernatant decanted, and 1ml of TRIzol 

(Invitrogen, USA) added per 107 cells. Standard RNA isolation procedures were then 

performed.  
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2.2.3 Primers for Podocyte Genes 

Primers for mutational screening of all the 13 exons and the flanking intronic sequences of 

TRPC6 gene were adopted from published literature (Winn et al. 2005).  Five additional pairs 

of primers were designed for the TRPC6 promoter region and 5’ UTR, which is about 1000 

bp upstream of the transcriptional start site. Table 2-1 depicts the primer sequences and 

polymerase chain reaction (PCR) conditions for direct sequencing of TRPC6. Similarly, 

primers for mutation screening of other podocyte genes, namely NPHS1 (nephrin), NPHS2 

(podocin) and ACTN4 (alpha-actin 4) were from the literature (Lenkkeri et al. 1999; Boute et 

al. 2000; Kaplan et al. 2000; Karle et al. 2002).   

Table 2-1 Primer Sequences and PCR Conditions for Direct Sequencing of TRPC6 

Promoter 

/Exons 

Forward Primer 

(5’ to 3’) 

Reverse Primer 

(5’ to 3’) 

Tann 

(0C) 

Pdt Size 
(bp) 

Promoter 

 

gcattttcccacacttccaac 

cctcatctgcttctttgcct 

tctttatcggtatcattggaa 

cctagttcaggctcataccgcctcctg 

taagtggtgacttttccccgggccagt 

gacctttaagcagtagtagccaa 

atgttccaaacgccagatgt 

agccaaagcctgtcctgtag 

acgacggtgaagcagggggtgcaga 

cctaggaggtacacacgcgggttcagg 

57 

58 

52 

69 

69 

453 

386 

387 

391 

490 

5’ UTR 
and 1  

cctcctagttcaggctcataccgcctcctg* 

taagtggtgacttttccccgggccagt*# 

acgacggtgaagcagggggtgcaga* 

cctaggaggtacacacgcgggttcagg*# 

50 

53 

391 

490 

2 gcaaagtgcttggctttctt 

cgtgagaaggggagaaggtt 

agaatgccactcactcaacg 

gttcggattgtggaagcaat 

ctcccatgatgtgactccaa 

tgactcgtttagccactcca 

cattctggcccatgtaatcc 

attgcttccacaatccgaac 

tggagtcacatcatgggaga 

tggagtggctaaacgagtca 

gcttgtggagggtgaagtct 

ctgagcacatgggggaag 

60 

58 

58 

60 

60 

60 

439 

323 

310 

292 

336 

233 

3 tctgaagcatagtaaaacgtggt ccctttatccttatttagcaccaa 58 313 

4 gccatttgtttgttgcctgt acccaactgtgattccctga 58 427 
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Promoter 

/Exons 

Forward Primer 

(5’ to 3’) 

Reverse Primer 

(5’ to 3’) 

Tann 

(0C) 

Pdt Size 
(bp) 

5 ggagatcattggaatgtgcag aatgaacccaaggcaactgt 58 490 

6 caggctgagacctttcaaaca tgcagtaaccgaactactactgac 58 406 

7 cgcagaaaaagaagttacc* catggacttacataaacgctg* 55 418 

8 ccatccttgcagcaatccta gaatgaacaaagggcgaaga 55 490 

9 cgatcactggg gtctgagag aaagggatgtggcatagtgg 55 400 

10 agggaagaaccccgtaagaa gcttctgaacatctgtcccttt 56 290 

11  ctcagacaacctctaacaaacagc caaaatgcctggtacatggt 55 457 

12 ggctcactacagggaggaag gctctccaggcactctgc 55 250 

13 and 
3’UTR 

ctgatttcctcctgtccca* 

tttgtccacttgaagccat* 

gtgtctgcctgaaaatgggt* 

gtttttcctccactgaaccctg* 

tgttctatccttctacccaaa* 

actagggctccagatgatagg* 

atccacagagcaggcaagaa* 

cgcacacacacaaaactgga* 

gtaagtaacaacaacaacctctt* 

caactgctgattcaaatactg* 

57 

55 

59 

54 

53 

381 

371 

376 

436 

448 

* Primers framing the regions of 5’ UTR, exon 1, 7 and 13, and 3’UTR on the TRPC6 gene were re-
designed.  
# , Q solution was added to reaction mixture 
Tann, annealing temperature; Pdt, Product;; bp, base pairs; UTR, untranslated region. 
 
 

2.2.4 PCR Amplification for Sequencing 

PCR amplification was performed using the GeneAmp 9700 PCR system (Applied 

Biosystems, USA). For direct sequencing, a reaction mixture (15μL) contained 30 to 100μg 

of gDNA, 1x PCR buffer, 1.5-2mM of MgCl2, 0.2μM of dNTP (Applied Biosystems, USA), 

0.2μM to 0.5μM of each primer (Sigma-Aldrich, USA),  1U of Taq polymerase (QIAGEN, 

Germany) and nuclease free water. Betaine (Sigma-Aldrich, USA) was added for the 

amplification of certain regions. The reactions were performed for 30 cycles, with 

denaturation at 95°C for 1 minute, annealing at 50-600C for 1 minute according to annealing 

temperature list in the table 2-1, and extension at 72°C for 1 min. In the first cycle, 
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denaturation was performed at 95°C for 5 minutes. In the last cycle, the extension lasted for 9 

min. Subsequently, 5μL of amplicons were run on a 1.5% gel and visualized under ultraviolet 

illumination on ChemiDoc XRS (Bio-rad Laboratories, USA) to confirm their specificity.  

        

2.2.5 DNA Sequencing 

DNA sequencing is the process of determining the precise order of nucleotides within 

a DNA molecule.  It is the most direct and reliable approach to show whether a gene is 

mutated or, in gene cloning, to detect whether the correct sequence and direction of interested 

gene has been cloned into the plasmid DNA. 

 

To detect gene mutations, 2.5μL amplicons obtained from Section 2.2.4 were treated with 5U 

of Exonuclease I (USB Corporation, USA) and 1 U Shrimp Alkaline Phosphatase (USB 

Corporation, USA) for 15 minutes at 37°C, followed by inactivation at 80°C for 15 minutes. 

This step is to remove any leftover primers and dNTPs from the PCR template. The 

sequencing reaction mix contained 1.5μL of treated PCR template, 0.2μL of either forward or 

reverse primer (10μM), 5μL of diluted BigDye® Terminator v3.1 Ready Reaction Mix 

(Applied Biosystems, USA) and 3.3μL of nuclease free water. The reactions were run on the 

GeneAmp 9700 PCR system (Applied Biosystems, USA) for 25 cycles consisting of 

denaturation at 96°C for 10 seconds, primer annealing at 50°C for 5 seconds and primer 

extension at 60°C for 4 minutes.  This was followed by sodium acetate-ethanol precipitation 

(Appendix II-1). The DNA pellet was air-dried and resuspended in 12μL of HiDi-formamide 

(Applied Biosystems, USA). The dissolved DNA templates were loaded into a 

MicroAmpTM Optical 96 well reaction plate (Applied Biosystems, USA) and run on the 

3100 Genetic analyzer (Applied Biosystems, USA). The sequencing data was analyzed using 

SequencherTM v4.7. 
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Similarly, to validate gene of interest in plasmid vector, the sequencing reaction mix 

contained 0.3 μL plasmid DNA, 0.2 μL primer (forward or reverse, 10 μM), 5μL of diluted 

BigDye® Terminator v3.1 Ready Reaction Mix and 4.5μL of nuclease free water. The 

sequencing reaction was denatured at 96°C for 2 minutes followed by the same 25 

sequencing cycles as mentioned before. 

 

2.3 Vector Constructions 

2.3.1 pEGFP-TRPC6 

After total RNA was isolated from human peripheral blood using Trizol reagent (Invitrogen, 

USA), cDNA were synthesized using SuperScript III Reverse Transcriptase (Invitrogen, USA) 

and Oligo (dT) 12-18 according to manufacturer’s instruction (AppendixII-2). Using human 

control cDNA as templates, 1uL of cDNA was used to amplify the full length human TRPC6 

cDNA (Genebank Accession Number: AJ006276). The forward and reverse primers were 

designed and sequences are shown below. Restriction enzyme EcoRI (underlined) was added 

on 5’ of both primers to create fusion gene, EGFP-TRPC6.  

TRPC6_F: AAAGAATTCCATGAGCCAGAGCCCGGCGT;  

TRPC6_R: AAAGAATTCTTATCTATTGGTTTCCTCTTGATTTGG. 

The amplification reaction was performed using Elongase enzyme (Invitrogen, USA) 

according to standard protocols. Denaturation was performed at 94°C  for 2 min, followed by 

30 cycles of denaturation at 94°C  for 30 seconds, annealing at temperatures ranging from 60-

55°C for 30 seconds using touchdown PCR technology (Don et al. 1991), and extension at 

68°C for 4min. The last extension was 72°C for 10 min.  
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The desired band was excised under UV light and extracted and purified using QIAquick gel 

extraction kit (QIAGEN, Germany) according to the manufacturer’s protocol (Appendix II-3). 

The purified PCR products were digested by EcoRI. Meanwhile, the mammalian expression 

vector pEGFP-C1 (Clontech, USA) was digested by EcoRI followed by the treatment of 

Alkaline Phosphatase (NEB, UK) to remove the 5´ phosphate groups from DNA. Ligation 

was performed using T4 DNA ligase (NEB, UK) followed by heat-shock transformation 

using One Shot® TOP10 Chemically Competent E. coli cells (Appendix II-4). Single colonies 

were picked and plasmid DNA was extracted by Minipre kit (QIAGEN, Germany) 

(Appendix II-5). The presence of insert of the plasmid DNA was validated by EcoRI 

digestion. The direction of TRPC6 cDNA insert and its sequence were then confirmed via 

direct DNA sequencing using primers listed in Table 2-2. 

Table 2-2 Primer Sequences for Validation of TRPC6, NPHS1and NPHS2 cDNA  
Genes TRPC6 (2,796 bp) NPHS1 (3,723 bp) NPHS2 (1,149 bp) 
Forward 
Primers 
(5’-3’) 

atgagccagagcccggcgttc 
tgatcgctccacaagcctat 
ctgcaagtgcaatgactgca 
agacaatggcggtcaagttc 
ctgcccttcctggctctcat 
ttcattgcgagattcatggc 
ggacccctctgatcctcaaa 
ctactttgaggagggcagaac 
aggcccagatagataaggaga 
 

agctgctcctgctgacccca 
agagcttggagctgccgtgc 
acctgacattcctggcgcgg 
aaggctggacagctcagcgc 
ttgctgcccgtgtccgtgtc 
tgccaaactggcccaggctg 
acgtgtctgccgcccaggat 
accagctgcccacagagcca 
gcagggtcggaagaggaccg 
gcagggtcggaagaggaccg 
 

atggagaggagggcgcgg 
tgctcttcatcatcatgacc 
ttgccttggattcagtgacc 
 

Reverse 
Primers 
(5’-3’) 

cattctggcccatgtaatcc 
ttggagtcacatcatgggaga 
ggagtccaacaacaaagtct 
gttttgcattatctgtgctgg 
ttgactgttcttccaagtga 
ctggaacagctcagaaatcc 
gctaggtcttctgtattctg 

cttccgaccctgcctctgtc 
agttgaccacgtactcctgc 
atggtgcctgcctctggggt 
aggagctcacggtttcgcgg 
cttccgaccctgcctctgtc 
 

agaccagggcctttggctct 
gctggcaacctcacatcttt 
 

 

2.3.2 pIRES-nephrin and pIRES-podocin 

Human cDNA was synthesized from human kidney total RNA (Clontech, USA). The full 

length human NPHS1 (Genebank Accession Number: AF035835) was amplified by the 
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following two primers ： Nephrin_F (ATGGCCCTGGGGACGAC) and Nephrin_R 

(TTACACCAGAT GTCCCCTCAGC).  The purified PCR product (NPHS1gene) was first 

cloned into pGEM®-T-easy vector (Promega, USA) according to the manufacturer’s protocol. 

After chosen the correct construct, the plasmid DNA containing NPHS1 gene was cut by 

SphI followed by T4 DNA polymerase (NEB, UK) to generate blunt ends, and then it was 

digested by SalI. Similarly, the empty vector pIRES2 DsRed-express2 vector (Clontech, USA) 

was cut by XhoI followed by T4 DNA polymerase (NEB, UK) to generate the blunt ends, and 

then it was cut by SalI. NPHS1 was then cloned into pIRES2 vector. The correct construct 

was confirmed by sequencing primers listed in Table 2-2. Since pIRES2 vector contains red 

fluorescent protein DsRed-Express coding region for transfection visualization, the co-

transfected HEK cells containing both EGFP-TRPC6 and IRES-nephrin constructs would 

then be yellow or orange in color.  

 

Similarly, full length human NPHS2 gene (Genebank Accession Number: BC029141) was 

amplified using two primers: podocin_F (ATGGAGAGGAGGGCGCGG); and podocin_R 

(CCTATAACATGGGAGAGTCTTT), and then cloned it into pGEM®-T-easy vector. The 

generated pGEM-podocin vector and pIRES2 vector were digested by EcoRI, and then the 

podocin gene was cloned into pIRES2 vector. 

 

2.3.3 p3XFLAG-nephrin 

To add the FLAG tag to the N-terminal of nephrin for co-immunoprecipitation study of 

TRPC6 and NPHS1, NPHS1 cDNA was amplified from pIRES-nephrin plasmid using the 

following pair of primers which included the sequence specific for the restriction enzyme 

Hind III (underlined): 
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Nephrin_H3F: GCGAAGCTTATGGCCCTGGGGACGACGCTCA 

Nephrin_H3R: GCGAAGCTTACACCAGATGTCCCCTCAGCTCGA 

The PCR product was then purified and cloned into p3XFLAG vector (Sigma, USA). The 

sequence of the construct was validated using designed primers listed in Table 2.2. 

 

2.3.4 Large-scale Production of Cloned Plasmid 

To obtain highly purified and large amounts of plasmid DNA for transfection, cloned plasmid 

DNA was transformed again, and single colonies were selected and incubated in a starter 

culture of 2 mL LB medium containing the appropriate selective antibiotics. The starter 

culture was diluted 1/500 into 120 mL selective LB medium and cultured overnight at 370C 

with agitation. The bacteria culture was harvested using an ultra-centrifuge (Sorvall RC-6 

Plus) at 6,000 x g for 15 minutes at 40C. After discarding the supernatant, the plasmid DNA 

was extracted from the bacterial pellet using Plasmid Midi Kit (QIAGEN, Germany) 

according to the manufacturer’s protocol (Appendix II-6). The concentration and purity of the 

plasmid DNA was determined by NanoDrop 1000 spectrophotometer (Thermo Scientific, 

USA). The insert sequence of the plasmid DNA was confirmed by sequencing again. 

 

2.4 Site-directed Mutagenesis 

Site-directed mutagenesis was performed for TRPC6, NPHS1 or NPHS2 sequence variants. 

Pairs of mutagenic oligonucleotide primers containing the desired sequence variants and 

flanked by unmodified nucleotide sequences were designed for all three genes. Table 2-3 

shows the nucleotide positions for the variants (bases in bold).  Published TRPC6 mutations 

known to have gain of function in vitro, namely P112Q and R895C, were included as well. 

Mutagenesis was carried out with amplification reactions using TRPC6, nephrin or podocin 
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cDNA templates, mutagenic primers and Pfu DNA polymerase (Stratagene, USA) according 

to the manufacturer’s instructions (Appendix II-7). The clones were then selected and 

sequenced to identify and verify the sequence variants.  

Table 2-3 Primers for Site-directed Mutagenesis of Podocyte Genes 

Gene and variant position Primer sequences (5’-3’) 

TRPC6 c.202C>T Forward: CAGACTGGCTCACCGGTG GCAGACAGTTCTCCG   

Reverse: CGGAGAACTGTCTGCCACCGGTGAGCCA GTCTG 

TRPC6 c.334C>A Forward: GCTGAATATGGTAACATCCAAGTGGTGCGGAAG 

Reverse: CTAACATCTTCCGCACCACTTGGATGTTACCATA 

TRPC6c.2683C>T Forward: GACATCTCAAGTCTCTGCTATGAACTCCTTG 

Reverse: CAAGGAGTTCATAGCAGAGACTTGAGATGTC 

NPHS1c.294C>T Forward: GAATTCCACCTGCACATTGAGGCCTGTGACCTCAG 

Reverse: CTGAGGTCACAGGCCTCAATGTGCAGGTGGAATTC 

NPHS1c.2289C>T Forward: CATAGTCTGCACTGTTGATGCCAATCCCATC 

Reverse: GATGGGATTGGCATCAACAGTGCAGACTATG 

NPHS2c.954T>C Forward: CAGGCACCCCTGCTGCTGTTCAGCTTCGATACC 

Reverse: GGTATCGAAGCTGAACAGCAGCAGGGGTGCCTG 

 

2.5 Cell Cultures and Transfection Experiments 

Human embryonic kidney cells stably transfected with M1 muscarinic receptor  (HEK293-

M1) were kindly provided by Dr. David E Clapham from Harvard University (Reiser et al. 

2005). The cells were grown at 370C in monolayer culture in a humidified air atmosphere 

with 5% CO2. The culture medium contained Dulbecco’s modified Eagle medium (DMEM), 

(Gibco, USA), and Ham’s F-12 medium (1:1) with 10% heat-inactivated fetal bovine serum 

(FBS), 100U/ml penicillin, 100μg/ml streptomycin and100μg/ml G418. Similarly, HEK293 

cells were cultured in DMEM (Gibco, USA) supplemented with 10% FBS, 100 U/mL 

penicillin and 100 μg /ml streptomycin (Gibco, USA).  

 

TRPC6 cDNA was transfected into HEK293-M1 cells alone, or in combination with NPHS1 

or NPHS2 cDNA, using calcium phosphate precipitation method (Liao et al. 2007) 
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(Appendix II-8). One day before transfection, HEK293-M1 cells were plated at low density 

onto poly-D-lysine coated cover slips in 35-mm Petri dishes. Subsequently, the culture 

medium was replaced with new medium with antibiotics free, and 1μg of WT or mutant 

TRPC6 cDNA was transiently transfected into HEK293-M1 cells with or without 1µg of 

NPHS1/NPHS2 variant cDNA. Six hours later, culture medium was replaced without 

antibiotics. The cells were grown for 24–48h after transfection before whole-cell patch clamp 

recordings. 

 

2.6 Patch-clamp Electrophysiology 

HEK293-M1 cells with EGFP-TRPC6 alone, or in combination with NPHS1 or NPHS2, were 

visualized under fluorescence microscope (Olympus, Japan) and currents were recorded 

using Axopatch 200B amplifier. The pClamp9 software (Axon Instruments, USA) was used 

to analyze the currents. The borosilicate glass pipettes were pulled using Micropipette 

horizontal Puller (Sutter Instrument, USA) and polished with fire polisher (Digitimer, UK) to 

obtain pipette resistances of 1.3–2.5 MΩ. Cells with leak currents lower than 50 pA were 

selected for recording. In this study, a patch of the membrane was isolated electrically from 

extracellular solution with a glass electrode. After the glass electrode touches the cell surface, 

a light suction force was applied to achieve gigaseal. A stronger suction force was then 

applied to rupture the patch membrane within the glass electrode (Figure 2-1). Whole cell 

patch clamp technique was then performed to measure the current though TRPC6 channels. 

For cells transfected with TRPC6 alone, we used the voltage-ramp protocol in which voltage 

ramps from -100 mV to 100 mV over 150 milliseconds were applied to the cells every 3.45 s 

(Reiser et al. 2005). Current traces were recorded from a holding potential of 0 mV. All 

currents were determined by recording the capacitative current by a voltage clamp, and they 

were normalized to cell size (Appendix I-2). For cells cotransfected with TRPC6 and nephrin 

or podocin, we applied gap-free protocol in which the cells were held at holding potential of 

0 mV for the duration of the experiment (Inoue et al. 2009). Similarly, the normalized 
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currents were in Appendix I-3 to I-6. 

 

The bath solution contained 135 mM NaCl, 5 mM CsCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM 

HEPES and 10 mM glucose (pH 7.4). The pipette solution contained 135 mM CsMES, 10 

mM CsCl, 3 mM MgATP, 0.2 mM NaGTP, 0.2 mM EGTA, 0.13 mM CaCl2 and 10 mM 

HEPES buffer (pH 7.3). Pipette offset function was used to minimize junction potential 

affection. Whole-cell currents were sampled at 10 kHz and filtered at 1 kHz. All recordings 

were carried out at room temperature (250C).  

 

 

Figure 2-1 Diagram Illustrating Steps to Achieve Whole-cell Patch Clamp. 

In this study, whole cell patch clamp method was used to study the overall currents through 
TRPC6.   

 

 2.7 Western Blotting and Co-immunoprecipitation 

Wild-type nephrin, or variants (c.294C>T, c2289C>T), together with pEGFP-C1 vector were 

transiently transfected into HEK293-M1 cells. At 24 hours, the total protein was extracted by 

CelLytic M reagent (Sigma, USA). Western blotting methods were performed using anti-

nephrin antibody (Abcam, UK) according to standard procedures (Appendix II-9). The 

protein bands were quantified using the Image J software (available at 

http://rsb.info.nih.gov/ij) and normalized to GFP band densities (Appendix I-7).  

 

Glass electrode 

Cell Glass electrode touches cell 

Apply suction to attain 
gigaseal 

Apply suction to 
rupture patch 
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Interactions between TRPC6 and nephrin variants were studied by co-immunoprecipitation. 

This was performed using immunoprecipitation kit (Roche, Switzerland) according to the 

standard protocols. HEK-M1 cells that were seeded in 10cm petri dish were transiently 

transfected with 5 μg of each plasmid DNA encoding EGFP-TRPC6 and FLAG-nephrin 

using Lipofectamine2000 reagent according to the manufacturer’s protocol. After 24 h 

incubation, the cells were lysed with 1mL of ice-cold lysis buffer for 30 minutes. They were 

then scraped form the surface of the petri dish and centrifuges at 12,000 g for 15 minutes. To 

precipitate FLAG-nephrin construct, the supernatant was collected and immunoprecipitated 

with 50 μL of protein G-agarose beads and anti-EGFP (Roche, Switzerland) primary antibody 

for 4 h. Samples were then centrifuged for 1 min at 800 g and washed twice with ice-cold 

lysis buffer. Similarly, to precipitate EGFP-TRPC6 construct, anti-FLAG primary antibody 

(Santa Cruz, USA) was used. Immunoprocipitated protein were dissolved in 40 μL of 2 × 

Laemmli buffer and boiled for 5 min before western blot analysis of nephrin or TRPC6.  

  

2.8 Surface Expression of TRPC6 

HEK293 cells were co-transfected with Fyn and wild-type or mutant TRPC6 cDNA, as well 

as the nephrin homozygous variants c.294C>T and c.2289C>T. These cells were surface 

biotinylated with biotin-SS reagent according to the manufacturer's instructions (Pierce, 

USA), and pulled down with streptavidin agarose beads. Immunoblotting with anti-EGFP 

was performed on both biotinylated and whole-cell total lysates (Winn et al. 2005). The 

control samples were from cells transfected with EGFP-TRPC6WT and harvested without 

adding biotin-SS reagent. The reported TRPC6 mutation p.P112Q was used as a positive 

control. The surface protein was normalized to total protein extracted (Appendix I-7). 
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2.9 RNA Stability Assay  

Transfected cells treatment and RNA extraction. In this experiment, 106 HEK293 cells per 

well were transfected with 1μg wild-type nephrin or its variants (c.294C>T singly, c2289C>T 

singly, and double SNPs) in 6-well multiple well microplate (Corning®, USA) using calcium 

phosphate precipitation method. Six hours after transfection, the cell medium was replaced 

with growth medium containing 5 μg/ml actinomycin D (Sigma, USA) in the absence of 

antibiotics. The cells were cultured for another 24 hours before being harvested. Total RNA 

from transfected cells was isolated before and after incubation with actinomycin D using 

TRIzol reagenet (Invitrogen, USA) following the manufacturer's instructions (Appendix II-

10). All transfection experiments were carried out in triplicates. 

 

Quantification of transcripts. Reverse transcription of 1 µg RNA was performed using 

Maxima First Strand cDNA Synthesis Kit (Thermo Scientific, USA) with a total volume of 

20µL according to the manufacturer's instructions. Real-time PCR was carried on 

LightCycler® 480 (Roche Diagnostic, Switzerland). To amplify nephrin cDNA, 2ul of cDNA 

was used and the primers were Nephrin-8F (ACCAGCTGCCCACAGAGCCA) and 

Nephrin9R (CTTCCGACCCTGCCT CTGTC). The housekeeping gene GAPDH was 

amplified using GAPDH-F (CTGGCATGGCCTTCCGTGTC) and GAPDH-R 

(GGAGGAGTGGGTGTCGCTGT) primers. PCR reactions were pre-incubated for 10min at 

95°C followed by 42 cycles of 5 sec at 95°C, 10 sec at 60°C, and 12 sec at 72°C (Appendix 

II-11). All PCR assays were performed in duplicates. The fluorescent melting curves acquired 

were analysed using the LC480 Gene Scanning software v1.5 (Roche Diagnostics, 

Switzerland). Normalization was performed to adjust the florescent signals of all the samples 

prior to melting to all the same level. The transfection efficiency of each group is equal 

confirmed by co-transfected pEGFP-C1 plasmid DNA.  
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2.10 Statistics Analysis 

Data analysis was performed using SPSS 20.0 for Windows (Chicago, IL). Allele frequencies 

were compared by chi-square test. All variants in the controls were analyzed for Hardy–

Weinberg equilibrium using the Pearson Chi-square test. Haplotype analysis using SNPstat 

software (http://bioinfo.iconcologia.net/SNPStats_web) was performed for variants that 

fulfilled Hardy–Weinberg equilibrium (Sole et al. 2006). Electrophysiological currents in 

whole-cell patch-clamp were expressed as mean ± SEM and compared using two-tailed 

unpaired Student’s t tests. For multiple comparisons, one-way ANOVA was performed with 

Bonferroni correction. A p value of less than 0.05 was considered statistically significant.  
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CHAPTER 3 MUTATIONAL SCREENING OF PODOCYTE GENES 

IN PATIENTS WITH NEPHROTIC SYNDROME/FSGS 
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3.1 Introduction 

Focal segmental glomerulosclerosis (FSGS) is the most common cause of therapy-resistant 

nephrotic syndrome in children worldwide. About 10% of children with nephrotic syndrome 

are steroid-resistant and of these, 70% have FSGS (Cattran and Rao 1998; Mekahli et al. 

2009). In Singapore, 65% of children biopsied for steroid-dependent or steroid-resistant 

nephrotic syndrome showed FSGS as the underlying histopathology (unpublished data, 

Children's Kidney Center, Singapore). In adults, approximately 30–50% of them with FSGS 

do not respond to steroid therapy (Haas et al. 1997). 

 

Typical clinical manifestations of FSGS include proteinuria, hypertension and nephrotic 

syndrome. FSGS generally has a poor outlook. About 30-40% of children with FSGS 

progress to end-stage renal disease (ESRD) within ten years (Cattran and Rao 1998; Mekahli 

et al. 2009). In North America, FSGS accounts for 5–20% of all ESRD cases and it is the 

second leading cause of ESRD in children (Kitiyakara et al. 2003; Kitiyakara et al. 2004; 

2007). FSGS is also an important cause of chronic kidney disease in adults (Schlondorff and 

Pollak 2006). The global incidence of FSGS has been increasing and the current annual 

incidence is estimated at 0.8 per 100,000 (Woo et al. 2010; McGrogan et al. 2011). The 

proportion of ESRD attributed to FSGS has also increased more than 10-fold between 1980 

and 2000, and FSGS now accounts for 12.2% of incident pediatric patients with ESRD in the 

United States (Kitiyakara et al. 2003; Kitiyakara et al. 2004; Collins et al. 2013).Primary 

FSGS occurs due to podocyte injury, which can be immune-mediated or as a result of 

mutations in the podocyte genes (Reiser et al. 2005; Winn et al. 2005). Recent research has 

implicated as many as 24 podocyte genes in primary nephrotic syndrome/FSGS (McCarthy et 

al. 2013).  Examples of genes implicated in childhood SRNS and FSGS are podocin (NPHS2), 

nephrin (NPHS1) and wilms tumor 1 (WT1)(McCarthy and Saleem 2011), while examples in 
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adult-onset nephrotic syndrome include podocin (NPHS2), alpha-actinin 4 (ACTN4) and 

TRPC6 (McCarthy and Saleem 2011). Among these, mutations in nephrin and podocin are 

most common. They cause two types of severe nephrotic syndrome presenting in early life, 

Finnish type congenital nephrotic syndrome (CNF) and a form of autosomal recessive 

familial FSGS, respectively. 

 

Nephrin is the first podocyte structural protein that is linked to CNF (Kestila et al. 1998). Its 

deficiency was also detected in other forms of NS. Additionally, an overlap in 

NPHS1/NPHS2 mutation spectrum was documented in patients with congenital FSGS 

(Koziell et al. 2002). They together cause almost 60% of the cases of nephrotic syndrome 

(Mucha et al. 2006). Table 3-1 provides a summary of the prevalence of NPHS1, NPHS2 and 

TRPC6 mutations in childhood and adult-onset SRNS/FSGS. Of note, the prevalence of these 

mutations is dependent on many factors, such as the family history, age of onset, ethnicity, 

and histologic lesion. As shown in this table, almost 100% of patients with CNS have a 

mutation. Podocin mutations have an ethnicity bias. They are most frequently reported in 

Western European countries, and R138Q mutation is considered a European founder 

mutation (McKenzie et al. 2007; Rood et al. 2012). 
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Table 3-1 Prevalence of NPHS1, NPHS2, and TRPC6 Mutations in SRNS/FSGS 

 

Genes 

Age of onset 

CNS Infantile NS Childhood NS Adult FSGS  
(familial) 

Adult FSGS 
(sporadic) 

Remarks 

NPHS1 

34–90%  

(Kestila et al. 1998; 
Hinkes et al. 2007; 
Buscher et al. 2010; 
Santin et al. 2011) 

0–2%  

(Hinkes et al. 
2007; Buscher 
et al. 2010). 

14%  

(Santin et al. 2009) 

n.a. 2%  

(Santin et al. 2009) 

 

NPHS2 

0–51%  

(Kestila et al. 1998; 
Hinkes et al. 2007; 
Buscher et al. 2010; 
Santin et al. 2011) 

19–41%  

(Hinkes et al. 
2007; Buscher 
et al. 2010) 

0–18%  

(Gbadegesin et al. 
2007; He et al. 
2007; Cho et al. 
2008; Hinkes et al. 
2008; Lowik et al. 
2008) 

4–24%  

(Tonna et al. 
2008; Machuca 
et al. 2009) 

0–11% 

(Aucella et al. 2005; 
He et al. 2007; 
McKenzie et al. 
2007; Tonna et al. 
2008; Machuca et al. 
2009) 

In Western European 
adults, adult-onset FSGS is 
caused by combination of 

R229Q and one pathogenic 
NPHS2 mutation. NPHS2 

mutation. 

TRPC6 

n.a. 5%  

(Buscher et al. 
2010) 

0–6%  

(Lowik et al. 2008; 
Heeringa et al. 

2009; Santin et al. 
2009; Gigante et al. 

2011) 

0–12% 

(Reiser et al. 
2005; Heeringa 

et al. 2009) 

0–2% 

(Lowik et al. 2008; 
Santin et al. 2009) 

Study from Heeringa et al. 
included patients with age 
of  onset 9–30 years 
(Heeringa et al. 2009) 

*: This table is adapted from Rood et al., (Rood et al. 2012)
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TRPC6 belongs to the transient receptor potential superfamily of cation-selective ion 

channels. It is a calcium-permeable cation channel important for the increase of intracellular 

calcium concentration after the engagement of G protein-coupled receptors and receptor 

tyrosine kinases (Montell 2005). TRPC6 mutations were first reported to cause FSGS in 2005 

by two independent research groups (Reiser et al. 2005; Winn et al. 2005), and since then, 

more than 10 TRPC6 mutations have been identified as a cause of autosomal dominant 

inherited FSGS in late adolescence and adulthood. However, whether TRPC6 is mutated in 

Singapore patients with nephrotic syndrome and/or FSGS is unknown. 

 

Most current treatment strategies for FSGS involve empirical and non-directed use of 

immunosuppressants including high-dose steroids, calcineurin inhibitors such as cyclosporine 

A (CSA), mycophenolate mofetil, and even biologicals such as Rituximab. These 

medications are not only expensive, but also have many side effects including susceptibility 

to infections and malignancy. More importantly, not all patients will respond to these 

treatments. Overall, only about 50% of FSGS patients given empirical treatment respond to 

steroids and/or calcineurin inhibitors(D'Agati et al. 2011). In general, patients with immune 

FSGS are much more likely to respond to immunosuppressants while those with genetic 

FSGS are less likely to do so, except for those with mutations in certain specific genes such 

as WT1. This is clearly shown in Table 3-2 which summarizes findings in the literature on the 

response of genetic FSGS patients to CSA. Of the patients in whom genetic mutations have 

been found, 32% responded to CSA, while 68% did not. This is in contrast to patients in 

whom no genetic mutation was found, 67% responded to CSA while 32% were resistant. 

Buscher et al showed that this disparity in CSA response between the two groups was 

statistically significant.(Buscher et al. 2010) It is thought that genetic FSGS patients respond 

to calcineurin inhibitors due to their direct modulating effects on the podocytes (Faul et al. 
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2008; Schonenberger et al. 2011). Interestingly, the response to immunosuppression appears 

to be gene-dependent. Those with WT1 or heterozygous NPHS2 mutations are more likely to 

respond to CSA compared to those with mutations in other genes (Table 3-2). The exact 

mechanism of this is unknown.  

Table 3-2 Response of Genetic and Non-genetic Primary FSGS Patients to Cyclosporine A 

Gene  CSA-resistant 
(No. of 

patients) 

CSA-esponsive  
(No. of 

patients) 

Response to 
CSA 

References 

NPHS1  3 0 NA (Buscher et al. 
   0 1* Unknown (Caridi et al. 2003) 

 Total 3 (75%) 1 (25%)   
NPHS2 
(homozygous or 
compound 
heterozygous) 

 8 0 NA (Caridi et al. 2003) 
 4 0 NA (Buscher et al. 

  5 0 NA (Ehrich et al. 2007) 
 5 0 NA (Buscher et al. 

  14 5 Partial (Ruf et al. 2004) 
 2 1 Partial (Megremis et al. 

  0 1 Partial (Malina et al. 2009) 
  Total 38 (84%) 7 ((16%)   

NPHS2 
(Heterozygous) 

 2 1 Unknown (Caridi et al. 2003) 
 2 3 Complete (2), 

  
(Ruf et al. 2004) 

 1 4 Complete (3), 
  

(Buscher et al. 
   2 0 NA # 

 Total 7 (47%) 8 (53%)   
WT1  4 0 NA (Ehrich et al. 2007) 
  0 3 Complete (1), 

Partial (2)  
(Gellermann et al. 
2010) (CR) 

  0 2 Partial (Sinha et al. 2010) 
   0 2 Partial (Buscher et al. 
   0 1 Complete (Wasilewska et al. 
  Total 4 (33%) 8 ((66%)   

TRPC6  2 0 NA (Buscher et al. 
   2 0 NA # 

 Total 4 (100%) 0   
PLCE1  0 2  (Hinkes et al. 2006) 
Overall 

 
Total 56 (68%) 26 (32%)   

Non-genetic  10 (32%`) 21 (67%) Complete 
  

 

(Buscher et al. 
 Note: All patients are steroid-resistant.CSA: cyclosporine A; NA: not applicable; CR: case report. * 

concurrent podocin R229Q; # data from preliminary study in our center; † Data collated from the 
genetic studies listed in this table. 
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Given the general poor response to immunosuppression in genetic FSGS, it is recommended 

that all steroid-resistant patients should undergo genetic testing, and if mutations are found, 

intensified immunosuppression should not be given (Buscher et al. 2010; McCarthy and 

Saleem 2011; Santin et al. 2011). This not only avoids the adverse effects, but also the high 

costs of these drugs. Additionally, genetic screening has implications on donor selection as 

potential donors with mutations are generally not accepted due to theoretical increased 

susceptibilities of both donor and recipient towards later development of FSGS (Santin et al. 

2009).  

 

In this chapter, we attempted to screen podocyte gene mutations, including NPHS1, NPHS2, 

TRPC6 from Singapore patients with NS and/or FSGS, and tried to compare the allele and 

genotype frequencies of the sequence variants found in patients and healthy controls. 

 

3.2 Results 

We recruited 97 unrelated Singapore Chinese patients with idiopathic sporadic NS (mean age 

at disease onset 5.7 years, range 0.9-19.0 years) with steroid-resistant nephrotic syndrome 

and/or FSGS and 128 unrelated Singapore Chinese cord blood controls with no known family 

history of renal diseases. Control data from the Singapore Genome Variation Project (96 

Singaporean Chinese) (Teo et al. 2009) and local exome sequencing data (200 Singaporean 

Chinese) were also used for comparison. All variants in the controls were analyzed for 

Hardy–Weinberg equilibrium using the Pearson Chi-square test. Haplotype analysis using 

SNPstat software (http://bioinfo.iconcologia.net/SNPStats_web) was performed for variants 

that fulfilled Hardy–Weinberg equilibrium (Sole et al. 2006). 
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3.2.1 Phenotypes in Family 

The proband (III.2) (Figure 3-1) presented with non-nephrotic proteinuria, microscopic 

hematuria and normal renal function at seven years old. Renal biopsy yielded 22 glomeruli, 

of which one had global sclerosis and another had segmental sclerosis. The remaining 

glomeruli had mild increase in mesangial matrix with no increase in mesangial cells. 

Occasional tubules were atrophied. The interstitium had focal lymphocyte collections around 

the sclerosed glomeruli. Immunofluorescence examination was negative. Electron 

microscopy was not performed. This histological finding was compatible with FSGS, not 

otherwise specified. He was initially treated with an angiotensin-converting-enzyme inhibitor, 

but his proteinuria worsened to nephrotic range three years later. He was started on 

prednisolone, cyclosporine A and mycophenolate mofetil, which he did not respond. He 

eventually reached ESRD by 16 years old. He received a deceased-donor renal transplant at 

25 years old but died from a bleeding duodenal ulcer one month later. There was no FSGS 

recurrence post-transplant.  

 

The proband’s mother (II.4) developed proteinuria and microscopic hematuria, with normal 

renal function, at the age of 17 years. Renal biopsy yielded 11 glomeruli, of which two had 

segmental sclerosis. A few tubules were atrophied within the focally fibrotic interstitium. 

Immunofluorescence was negative. Electron microscopy was not performed. She did not 

receive any treatment and was lost to follow-up. She subsequently had two pregnancies at 29 

and 31 years old, during which she had pre-eclampsia in the third trimesters. After her second 

pregnancy, her serum creatinine was 119 μmol/L and urine total protein 0.18 g/day. Two 

years later, her serum creatinine rose to 146 μmol/L (creatinine clearance 55 ml/min) and 

urine total protein was 4.7 g/day. She reached ESRD by 35 years of age and received a renal 
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transplant from II.2. To date at 19 years post-transplant, both donor and recipient had normal 

renal function and no proteinuria.   

 

The proband’s sister (III.3) developed hematuria and proteinuria of 0.74 g/day/1.73m2 at the 

age of 12 years. Her proteinuria normalized following treatment with aldosterone receptor 

blockers. Her renal function had remained normal. No renal biopsy was performed. The 

youngest brother (III.4) had remained healthy to date. 

 

3.2.2 Genotypes in Family 

The human TRPC6 gene has 13 exons and is 132.37 kb long. Using primers designed (table 

2-1), we screened for TRPC6 sequence variants in its promoter region (1000bp upstream of 

5’-UTR), both UTRs, 13 exons and the intron-exon boundaries in this family. Human 

genomic TRPC6 sequence was obtained from NCBI database (NG_011476). We found a 

variant c.−254C>G in 5’ UTR which is listed in NCBI SNP database (rs3824934). We also 

found a heterozygous novel TRPC6 mutation c.202C>T in exon 2, resulting in the 

substitution of arginine-68 (positively charged) to tryptophan (hydrophobic), in six members 

of the family (Figure 3-1). Of these, three (II.4, III.2 and III.3) were penetrant, while the other 

three (I.1, II.2, III.4) have remained non-penetrant (Figure 3-1). Notably, II.2, who donated a 

kidney to II.4, has the TRPC6 mutation. This TRPC6 p.R68W mutation occurs at an 

evolutionary highly conserved residue of the protein which is also present in TRPC3 and 

TRPC7 (Figure 3-3). It is just proximal to the first ankyrin repeat which starts from amino 

acid residue 97 (Figure 3-4). There are no sequence conflicts or putative alternative splicing 

sites near this mutation. It is found in one out of 256 chromosomes of cord blood controls, 
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but is not present in the dbSNP (NCBI), 1000genomes and NHLBI exome sequencing (6500 

exomes) databases. It is also not present in the exomes of 200 Singapore Chinese controls. 

No mutations in ACTN4, NPHS2 or CD2AP were found in this family. 

 

Meanwhile, two synonymous NPHS1 polymorphisms, rs2285450 (c.294C>T) and rs437168 

(c.2289C>T) and one NPHS2 polymorphism rs1410592 (c.954T>C) (Figure 3.2), which 

segregated with renal disease, were identified in this family. These three SNPs were also 

found in our 97 Singapore Chinese paediatrics patients. The family members with FSGS (II.4 

and III.2) were homozygous for both NPHS1 polymorphisms, while the donor (II.2) did not 

have any NPHS1 polymorphisms at the two positions. Interestingly, the proteinuric patient 

(III.3), together with the two other non-penetrant members (I.1 and III.4), had heterozygous 

c.294C>T and heterozygous c.2289C>T NPHS1 polymorphisms. 

 

All three penetrant family members (II.4, III.2 and III.3) and one non-penetrant member III.4 

were homozygous for the NPHS2 c.954T>C polymorphism. One other non-penetrant 

member I.1 had heterozygous NPHS2 c.954T>C polymorphism while the donor II.2 did not 

have the polymorphism. 

 

It appeared that the NPHS1 c.294C>T and c.2289C>T and NPHS2 c.954T>C polymorphisms 

segregated with renal disease in this family, and that the donor II.2 did not have all of these 

three polymorphisms.  
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Figure 3-1 Pedigree of the Family with Novel TRPC6 Mutation and Histological 

Changes in the Glomeruli. 

The proband (III.2) is indicated by the arrow. Squares indicate male family members, circles 
indicate female family members, black symbols indicate  individuals with FSGS and ESRD, 
grey symbol indicate individual with proteinuria and slashes deceased persons. The plus signs 
indicate TRPC6 heterozygous c.202C>T mutation, while the minus signs indicate WT 
TRPC6 alleles. Ages (in years) at last observation or at death are shown in brackets. The 
alleles at coding nucleotide positions 294 and 2289 of the NPHS1 gene (Nep), 954 of the 
NPHS2 gene (Pod), and TRPC6 promoter polymorphism at -254, are shown below the 
squares or circles. Alleles in black indicate WT alleles while those in red indicate variant 
(minor) alleles. 
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Figure 3-2  Sequencing Electropherograms of Selected Members in the Family. 

Five variants were detected in three podocyte genes, TRPC6, NPHS1 and NPHS2: TRPC6 
c.202C>T and c.-254C>G; NPHS1 c.294C>T and c.2289C>T; NPHS2 c.954T>C. The 
individuals with renal disease (II.4, III.2, III.3) and the kidney donor (II.2) have the 
heterozygous TRPC6 c.202C>T mutation. All of the selected members have either 
heterozygous or homozygous TRPC6 c.-254C>G polymorphism. Both II.4 and III.2 have 
homozygous NPHS1 c.294C>T and c.2289C>T while III.3 carries heterozygous c.294C>T 
and heterozygous c.2289C>T polymorphisms. In contrast, kidney donor II.2 has no NPHS1 
and NPHS2 polymorphisms at the three positions. Patient II.4 and her three children had 
homozygous NPHS2 c.954T>C. The uppermost electropherogram is from a healthy control. 
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Figure 3-3 Sequence Alignment of TRPC3, TRPC6 and TRPC7 in Homo Sapiens and 

TRPC6 Homologues among Various Species.  

Highly conserved amino acid residues are highlighted black. The red box indicates the 
location of the highly conserved arginine-68 that is changed to tryptophan. 

 
Figure 3-4 Functional Domains of the TRPC6 Protein. 

TRPC6 channels comprise of a membrane domain with six transmembrane segments and the 
NH2 and COOH termini are within the cytoplasm. Four ankyrin repeats and a coiled-coil 
domain are present near the NH2 terminal. Ankyrin repeats and coiled-coil domains play a 
role in protein-protein interactions. The p.R68W mutation occurs just proximal to the first 
ankyrin repeat which starts at amino acid 97. 
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3.2.3 Genetic Analysis of SRNS/FSGS Patients 

3.2.3.1 TRPC6 c.-254C>G polymorphism 

It has been reported that the TRPC6 c.−254C>G polymorphism in idiopathic pulmonary 

arterial hypertension patients was significantly more common than normal subjects (Yu et al. 

2009). Hence we tried to compare the allele frequency of this polymorphism in NS/FSGS 

patients versus healthy subjects. We recruited 88 SRNS/FSGS patients and 91 controls in the 

Singapore Chinese population.  

 

Our results showed that TRPC6 c.−254C>G is a common polymorphism. Among the healthy 

subjects, the G allele frequency (59.1%) was higher than wild-type C allele frequency 

(40.9%), as shown in Table 3-3. Similarly, among the patients, the G allele frequency (54%) 

was higher than wild-type C allele frequency (46.0%). There was no statistical difference in 

the allele frequencies between patients and controls. Genotype analysis showed that for both 

patients and controls, about one quarter had two wild-type alleles, one quarter had 

homozygous polymorphism while the rest were heterozygous (Table 3-4). When the 

genotypes were analyzed using four different models (dominant, co-dominant, over-dominant 

and recessive models), there was no significant difference among patients and normal 

subjects, indicating that this TRPC6 c.954T>C is most likely not a disease-causing 

polymorphism. 

Table 3-3 Allele Frequencies of TRPC6 c.- 254C>G in Chinese patients and controls 

Position 
(nt.) SNP Allele Controls  

(n=91), n (%) 
NS/FSGS 

 (n=88), n (%) 
Odds Ratio 
(95% CI) P 

-254 
 

C to G 
 

C 88 (40.9) 81 (46) 1.10 
(0.72 to 1.66) 

0.67 
 G 94 (59.1) 95 (54) 

P values, odds ratios, and 95% CIs are calculated by X2 analysis for 2X2 contingency tables. 
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Table 3-4 Association Study of TRPC6 c.-254C>G Genotype and its Response Status 

(crude analysis) 

Model Genotype 
Controls 

(n=91), n (%) 

NS/ FSGS  

(88), n (%) 

OR 

(95% CI) P  

Co-
dominant 

C/C 19 (20.9) 22 (25) 1.00 

0.21 C/G 50 (55) 37 (42) 0.64 (0.30-1.35) 

G/G 22 (24.2) 29 (33) 1.14 (0.50-2.60) 

Dominant 
C/C 19 (20.9) 22 (25) 1.00 

0.51 
C/G-G/G 72 (79.1) 66 (75) 0.79 (0.39-1.59) 

Recessive 
C/C-C/G 69 (75.8) 59 (67) 1.00 

0.19 
G/G 22 (24.2) 29 (33) 1.54 (0.80-2.97) 

Over-
dominant 

C/C-G/G 41 (45) 51 (58) 1.00 
0.084 

C/G 50 (55) 37 (42) 0.59 (0.33-1.07) 

Log-
additive 

--- --- --- 1.10 (0.73-1.65) 0.66 

 

3.2.3.2 NPHS1 c.294C>T and c.2289C>T polymorphisms 

As shown in the family tree in Figure 3-1, the two NPHS1 SNPs, c.294C>T and c.2289C>T 

were also detected in the family members. Association analysis of the two SNPs with 

nephrotic syndrome in Chinese population was performed. For the genotype frequencies of 

c.294C>T, we found that 75% of healthy controls had wild-type alleles, 25% had 

heterozygous alleles and none had homozygous T alleles. In contrast, in NS/FSGS patients, 3% 

of them had homozygous T alleles (Table 3-5). Similarly, for c.2289C>T polymorphism, we 

found in the Chinese controls, 69% had wild-type alleles, 28% were heterozygous and 3% 

were homozygous, whereas in patients, 51% had wild-type alleles, 45% were heterozygous, 

and 4% were homozygous (Table 3-5). Genotypes association analysis of the two NPHS1 
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SNPs with NS showed that, in the Chinese patients, c.294C>T and c.2289C>T were both 

significantly associated with NS (Table 3-6). We found that c.294C>T was significantly 

associated with NS under the dominant (OR: 1.74, 95% CI 1.04-2.90, p=0.035), and log-

additive (OR: 1.86, 95%CI 1.15-3.02, p=0.012) models. c.2289C>T was significantly 

associated with NS under the codominant (OR: 2.24, 95%CI 1.47-3.41, p=0.0008), dominant 

(OR: 2.22, 95%CI 1.47-3.34, p=0.0002), overdominant (OR: 2.16, 95%CI 1.43-3.26, 

p=0.0003) and log-additive (OR: 1.83, 95%CI: 1.31-2.55, p=0.0006) models.  

 

Table 3-5 Genotype Frequencies of NPHS1 and NPHS2 SNPs in Chinese 

NPHS1 

c.294C>T 

Controls 

(n=221) 

Patients 

(n=97) 

NPHS1 

c.2289C>T 

Controls 

(n=1903) 

Patients 

(n=97) 

CC 
165 

(75%) 

61 

(63%) 
CC 

1320 

(69%) 

49 

(51%) 

CT 
56 

(25%) 

33 

(34%) 
CT 

529 

(28%) 

44 

(45%) 

TT 
0 

(0%) 

3 

(3%) 
TT 

54 

(3%) 

4 

(4%) 

 

Table 3-6 Association Analysis of NPHS1 Genotypes with NS in Chinese 

 

c.294C>T c.2289C>T 

Patients  
(n=97) 

Controls      
(n=221) 

Patient   
(n=97) Controls (n=1903) 

Patients  

vs Controls 

 

Dominant: 
OR: 1.74 (1.04-2.90), 
p=0.035 
Log-additive: 
OR: 1.86 (1.15-3.02), 
p=0.012 

Codominant (C/T): 

OR: 2.24 (1.47-3.41), 
p=0.0008 

Dominant:  
OR: 2.22 (1.47-3.34), 
p=0.0002 
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c.294C>T c.2289C>T 

Patients  
(n=97) 

Controls      
(n=221) 

Patient   
(n=97) Controls (n=1903) 

Overdominant: 
OR: 2.16 (1.43-3.26), 
p=0.0003 
Log additive: 
OR: 1.83 (1.31-2.55), 
p=0.0006 

 

3.2.3.3 NPHS2 c.954T>C Polymorphism 

We studied the NPHS2 c.954T>C polymorphism in the Singapore Chinese population. Table 

3-7 showed its genotype and allele frequencies. It was shown that NPHS2 c.954T>C was a 

common polymorphism. In both controls and patients, around half of them were 

heterozygous, and about 30% had homozygous polymorphism. A similar trend was seen in its 

allele frequencies (Table 3-7). The association study for NPHS2 c.954T>C polymorphism 

also showed that there was no statistical difference between controls and patients (data were 

not shown).  

 

Table 3-7 Genotype and Allele Frequencies of NPHS2 c.954T>C SNP in Chinese 

NPHS2 c.954T>C 
Controls 

(n=125), n (%) 
NS/FSGS 

(n=97), n (%) p 

Genotype 
frequency 

TT 24 (19%) 21 (22%) 
0.7369* TC 65 (52%) 49 (50%) 

CC 36 (29%) 27 (28%) 
Allele 

frequency 
T 113 (42%) 91 (47%) 0.77 
C 137 (58%) 103 (53%) 

P values are calculated by X2 analysis for comparison of the genotype frequencies between 
patients and controls. 

* P value of genotype frequency is calculated by (954 T/C and 954 C/C) vs 954T/T. 
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3.3 Discussion and Conclusions 

FSGS is a common cause of SRNS in children and adults, with an increasing incidence over 

the past decades. Studies have shown that the incidence of FSGS has increased significantly 

over the last decades (Haas et al. 1997; Barisoni et al. 1999). FSGS is considered a podocyte 

disease with diverse etiology. Hereditary FSGS is associated with poor renal survival and low 

rates of disease recurrence after renal transplantation (Korbet 2002; Kitiyakara et al. 2004). 

Recently substantial progress has been made in defining the molecular basis of these 

inherited forms. Many inheritable genetic forms of FSGS caused by mutations in podocyte 

proteins have been described (shown in table 1.5). These proteins are involved in the 

development, structural architecture and function of the podocytes. Amongst the major genes 

implicated in late-onset FSGS are TRPC6, ACTN4, CD2AP and INF2. Altered calcium 

signalling conferred by TRPC6 mutations are implicated in the disruption of glomerular cell 

function (Hara et al. 2002). Mutations in ACTN4 are associated with dynamic changes of the 

podocyte actin cytoskeleton (Kaplan et al. 2000; Kos et al. 2003). CD2AP has been 

implicated in glomerular function on the basis of mouse studies and appears to have 

important interactions with nephrin and podocin at the slit diaphragm (Schwarz et al. 2001). 

INF2 encodes a member of the formin family of actin-regulating proteins, and mutations in 

INF2 have a defect in actin mediated podocyte structural maintenance and repair (Brown et al. 

2010). The genes NPHS1, NPHS2 and WT1 are generally associated with onset of NS during 

childhood, however, distinct sequence variations have been described in patient with late-

onset NS/FSGS (Pereira et al. 2004; He et al. 2007; Benetti et al. 2010; Schoeb et al. 2010). 

Furthermore, mutations in these genes are inherited in a dominant manner with incomplete 

penetrance and a variable expression (Shih et al. 1999; Kaplan et al. 2000; Kim et al. 2003; 

Reiser et al. 2005; Winn et al. 2005; Brown et al. 2010).  
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In our study several podocyte gene mutations/polymorphisms were detected. In a Singapore 

Chinese family with hereditary FSGS, we identified a novel TRPC6 missense mutation 

c.202C>T, which resulted in the substitution of arginine (positively charged) to tryptophan 

(hydrophobic) at position 68 of the protein (p.R68W), and a polymorphism in its promoter 

region, c.-254C>G.  

 

Mutations in NPHS1 were originally identified in patients with congenital nephrotic 

syndrome of the “Finnish type”. Recent studies showed that its variants were also associated 

with late-childhood and adult onset FSGS in familial as well as sporadic cases (Philippe et al. 

2008; Santin et al. 2009). In this study, two reported synonymous polymorphisms, c.294C>T 

and c.2289C>T were found in NPHS1 in this family. Meanwhile, we detected one NPHS2 

polymorphism c.954C>T. However, as shown in the genotype of the family (Figure 3.1), the 

presentation of variations and diseases in the family was not coincident. The three 

polymorphisms segregated with renal disease.  

 

This novel TRPC6 missense mutation c.202C>T was only detected in this patient family. It is 

not present in any public databases. Furthermore, not all TRPC6 mutation carriers had renal 

diseases. Three carriers were penetrant, while the other three have remained non-penetrant. 

Notably, although both the donor and the recipient had this novel mutation, they had normal 

renal function and no proteinuria at 19 years post-transplant. 

 

Recent study revealed that the allele frequency of the TRPC6 promoter polymorphism 

c.−254C>G in idiopathic pulmonary arterial hypertension (IPAH) patients (12%) was 
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significantly higher than those in normal subjects (6%) analysed from 237 controls and 268 

IPAH patients. Subsequently, this SNP was demonstrated to enhance nuclear factor κB–

mediated promoter activity and stimulated TRPC6 expression in pulmonary artery smooth 

muscle cells (PASMCs) (Yu et al. 2009). However, in our association analysis by recruiting 

133 NS and/or FSGS patients and 91 healthy controls, we found that c.−254C>G is a very 

common SNP. Only one-quarter patients and controls had wild-type alleles while the rest 

(75%) had either homozygous or heterozygous polymorphisms (Table 3-1). We suspect that 

race may be the main contributor of the status of this TRPC6 promoter SNP. In Yu’s study, 

all the controls and IPAH patients were white, whereas in our study, controls and patients 

were all Asian.   
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CHAPTER 4 ELECTROPHYSIOLOGYCAL 

CHARACTERIZATION AND SURFACE BIOTINYLATION 

STUDY OF TRPC6 CHANNELS WITH NOVEL MUTATION  
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4.1 Introduction 

TRPC6 is a member of transient receptor potential (TRP) superfamily of cation-selective ion 

channels, which mediate the flux of Na+ and Ca2+ across the plasma membrane and into the 

cytoplasm, playing important roles in the pathophysiology of many diseases (Nilius et al. 

2007). The TRP channels, which are divided into seven subfamilies (TRPC, TRPM, TRPV, 

TRPA, TRPP, TRPML and TRPN), TRPC (TRPC1-7), are calcium-permeable cation channels 

that are widely expressed (Montell 2005). The closely related subgroup comprising TRPC3, 

TRPC6, and TRPC7 channels are important for the increase in intracellular Ca2+ 

concentration.  

 

TRPC6 is expressed in numerous tissues enriched with smooth muscle cells including brain, 

lung, stomach, colon, kidney, as well as in immune and blood cells (Dietrich and Gudermann 

2007). Despite its abundance, the exact physiological role of TRPC6 has not been fully 

elucidated. In the kidney, TRPC6 is expressed in podocyte foot processes in the vicinity of 

the slit diaphragm (SD) as well as throughout the major foot processes and in the cell body 

(Reiser et al. 2005). Like other TRPC channels, TRPC6 leads to the influx of calcium in 

direct or indirect response to phospholipase C (PLC)-mediated signals (Eder et al. 2005; 

Estacion et al. 2006). It can also be directly activated by diacylglycerol (DAG) (Hofmann et 

al. 1999; Okada et al. 1999). One model of TRPC6 activation is through M1 muscarinic 

acetylcholine receptors (M1 mAChR). This can be achieved by addition of Carbachol (CCH) 

which will cause the M1 mAChR and protein kinase C to form a complex with TRPC6 

channels and activate the channels (Figure 4-1). 
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 Figure 4-1 Model Depicting for M1 mAChR-regulated TRPC6 Ca2+ Influx Pathway.  

Stimulation of M1 mAChRs in HEK cells with carbachol activates PLC, which catalyzes the 
hydrolysis of PIP2 into DAG and IP3. IP3 in turn activates the IP3 receptor (IP3R), causing 
release of Ca2+ from an intracellular Ca2+-containing compartment. Active M1 mAChRs form 
a complex with TRPC6 channels and PKC to activate TRPC6 channels by PKC 
phosphorylation. The carbachol-stimulated complex formation can be blocked by the 
mAChR antagonist atropine.  

 

The discovery in 2005 that mutations in TRPC6 channels cause familial FSGS underscored 

the potential importance of Ca2+ dynamics for podocyte function and opened an entirely new 

line of investigation (Reiser et al. 2005; Winn et al. 2005). Since then, several more TRPC6 

mutations were identified from patient families with FSGS. It has been demonstrated that 

some of these mutations cause gain-of-function resulting in increased calcium current 

amplitudes and/or increased intracellular calcium concentration, and some even cause 

increased surface expression. However, there are also several TRPC6 mutations detected in 

familial FSGS patients that did not modify the calcium influx in heterologous expression 

systems. All reported TRPC6 mutations occur either in the cytoplasmic NH2 or coiled-coil 



 
 

82 
 

domain in the COOH terminals of the protein (Reiser et al. 2005; Winn et al. 2005; Heeringa 

et al. 2009; Santin et al. 2009; Zhu et al. 2009; Buscher et al. 2010; Gigante et al. 2011; Mir 

et al. 2012). The ankyrin repeats consist of 30-34 amino acid residues. They are common 

protein-protein interaction motifs thought to be important in protein function, perhaps 

signifying association with the cytoskeleton (Montell 2005). Some of them are even directly 

involved in the development of human cancer and other diseases (Li et al. 2006). The two CC 

domains in each of the cytosolic N- and C-termini are ubiquitous protein motifs that are 

commonly used to control oligomerisation (Vazquez et al. 2004). However, the precise 

mechanism of how TRPC6 mutations cause FSGS is still unclear. Winn and coworkers found 

that TRPC6 p.P112Q mutation enhanced its surface expression with greater fraction of the 

mutant protein associated with the plasma membrane compared with the WT protein, 

suggesting a mechanism of exaggerated calcium signalling and flux (Winn et al. 2005). 

 

In the previous chapter, we reported a novel TRPC6 mutation p.R68W identified from a 

Singapore Chinese family with autosomal dominant FSGS. This mutation is the most 

proximal to the NH2 terminal among all the reported mutations. Considering the phenotype 

and genotype of the index family, we hypothesized that this novel TRPC6 mutation was 

involved in pathogenesis of FSGS, resulting in gain of function of the mutant TRPC6 

channels. The aim of this chapter is to study the function of p.R68W mutation by whole-cell 

patch clamp technique, and further explore its surface expression by biotinylation assay. 
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4.2 Results 

4.2.1 TRPC6R68W is a Novel Gain-of-function Mutation 

To study the effect of the novel missense mutation p.R68W (c.202C>T) on TRPC6 functions, 

full length TRPC6 gene was fused with EGFP in mammalian expression vector pEGFP-C1 

(Clontech) for visualization of transfected cells under fluorescence microscope. The mutation 

c.202C>T was generated using site-directed mutagenesis. Similarly, the published gain-of-

function TRPC6 mutation c.2683C>T (p.R895C) was generated as positive control. Wild-

type or mutant TRPC6R68W or TRPC6R895C cDNA was transfected in HEK293-M1 cells 

(human embryonic kidney cells stably transfected with the M1 muscarinic receptor) using 

calcium phosphate methods (Liao et al. 2007). At 24-48h after transfection, whole-cell patch 

clamp was applied to record TRPC6 current changes before and after the activation of M1 

receptors by CCH. The voltage ramped from -100 mV to 100 mV over 150 milliseconds were 

applied in every 3.45 seconds. More than 10 cells were recorded in each group (wild-type, 

TRPC6R68W or TRPC6R895C). 

 

We recorded a typical outward rectifying TRPC6 current in cells transfected with TRPC6. We 

found that HEK293-M1 cells expressing TRPC6R68W channels, compared to those expressing 

TRPC6WT channels, exhibited significantly higher mean inward (-540.9 ± 40.5 pA/pF versus -

329.3 ± 30.1 pA/pF, p<0.001) and outward (1063.8 ± 113.9 pA/pF versus 622.9 ± 49.5 pA/pF, 

p = 0.002) currents (Figure 4-2 A-G). As expected, the positive control TRPC6R895C mutation, 

compared to TRPC6WT channels, had statistically higher mean inward (-1188.0 ± 93.9 pA/pF 

vs -338.4 ± 32.2 pA/pF, p <0.0001, student’s t test) and outward (1322.0 ± 142.6 pA/pF vs 

619.5 ± 49.4 pA/pF, p <0.0001, student’s t test) currents. This was consistent with the 

published data (Reiser et al. 2005). The results confirmed that TRPC6R68W is a gain-of-
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function mutation. Meanwhile, we noticed that the TRPC6R895C channels had statistically 

higher mean inward currents compared to TRPC6R68W channels, but there was no statistically 

significant difference for outward currents.   
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Figure 4-2 Electrophysiological Characterizations of TRPC6R68W Mutant Channels. 

HEK293-M1 cells were transiently transfected with cDNA encoding Wild-type (WT) or 
mutant TRPC6. The gain-of-function TRPC6 mutation R895C was used as positive control. 
Representative whole-cell currents of WT TRPC6, R68W and R895C mutant TRPC6 under 
both control bath solution (gray traces) or 100 μM Carbachol (CCH, black traces) were 
shown in (A), (B) and (C), respectively. Voltage ramps from –100 mV to 100 mV over 150 
ms were applied every 3.45 s from a holding potential of 0 mV. Current amplitude was 
normalized for cell capacitance. Similarly, time-dependent normalized current changes of 
WT TRPC6 (D) or R68W (E) or R895C (F) were showed before and after activation of 
TRPC6 by CCH. (G) Average normalized current amplitude measured at –100mV (dark bars) 
and 100 mV (light bars) from cells expressing WT TRPC6 or R68W or R895C mutant 
TRPC6. Current amplitudes from cells expressing R68W and R895C mutant channels were 
significantly higher at both –100mV and 100 mV than those from cells expressing WT 
channels (**P < 0.01). The number of experiments for each clone is shown in parentheses, 
and the error bars show the s.e.m. for each measurement.  

 

4.2.2 Mutation p.R68W Enhanced TRPC6 Surface Expression 

We next evaluated the subcellular localization of mutant TRPC6 protein by surface 

biotinylation experiments. Mutant TRPC6P112Q was used as a positive control. Cell expressing 

EGFP-TRPC6WT or EGFP-TRPC6mutant were incubated with biotin-SS reagent, followed by 

pull-down with streptavidin agarose beads. Immunoblotting with anti-GFP antibody showed 

increased biotinylated protein for p.R68W and p.P112Q compared to WT (Figure 4-3 A). The 

band densities were obtained using ImageJ software, and the ratios of biotinylated cell 

surface TRPC6 to total TRPC6 were normalized with that of TRPC6WT. We found that 

TRPC6R68W was significantly increased on cell surface compared with TRPC6WT protein 

(p=0.041) (Figure 4-3 B). The increased surface expression of TRPC6P112Q is in accordance 

with previous report (Winn et al. 2005). This enhanced cell surface expression of TRPC6R68W 

protein suggests a mechanism of exaggerated calcium signalling and flux, possibly explaining 

the increased current amplitudes of TRPC6R68W channels.  
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Figure 4-3 TRPC6 Surface Expression in HEK 293 Cells Transfected with TRPC6 

Protein. 

(A) Immunoblot using anti-EGFP antibody on biotinylated and whole-cell total proteins of 

cells transfected with EGFP-TRPC6WT, EGFP-TRPC6R68W or EGFP-TRPC6P112Q plasmids. 

(B) Cell surface expression of EGFP-TRPC6R68W and EGFP-TRPC6P112Q (positive control) 

were increased compared with TRPC6WT channels (p=0.041 and p< 0.01, respectively). The 

ratios of cell surface biotinylated TRPC6 to total TRPC6 were normalized to that of 

TRPC6WT. The experiment was replicated 11 times for p.R68W and 4 times for p.P112Q with 

similar results. Densitometry measurement in relative units are depicted in the bar graph next 

to the immunoblot (the results from all four replicants are quantitated). The error bars 

represent the standard error and asterisks denote statistically significant comparisons 

(Student's t-test).  

B 
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Table 4-1 Summary of Genotype-Phenotype Correlations of Published TRPC6 Mutations 

Mutation Exon Location Ethnicity Sporadic/ 
Familial 

Age at 
disease 
presentation 

Change in 
current 
amplitude 

Intracellular 
 calcium 
changes 

Activation 
by Reference 

R68W 2 - Chinese Familial 7-17 Yes nd CCh Current study 
89fsX8 

(truncated 
mutation) 

2 Near 
ANK1 German Sporadic 7 nd nd nd (Buscher et al. 2010) 

G109S 2 ANK1 Spanish Sporadic 21-47 nd nd nd (Santin et al. 2009) 

P112Q 2 ANK1 NZ/British Familial 16-61 Yes Yes UTP (Winn et al. 2005) 

N125S 2 ANK1 Italy/ Spanish Familial 4-14/42 Yes Yes OAG (Santin et al. 2009; 
Gigante et al. 2011) 

M132T 2 ANK2 Turkey Sporadic 9-30 Yes Yes CCh (Heeringa et al. 2009) 

N143S 2 ANK2 African 
American Familial 27-39 No nd CCh (Reiser et al. 2005) 

R175Q 2 ANK3 Dutch Familial 27-53 Yes nd OAG (Hofstra et al. 2013) 
H218L 2 ANK4 Italy Sporadic 8 Yes Yes OAG (Gigante et al. 2011) 
S270T 2 TRPII box Columbian Familial 17-52 No nd CCh (Reiser et al. 2005) 
L395A 4 - Turkish Sporadic 2.4 nd nd nd (Mir et al. 2012) 
G757D 9 - German Sporadic 1 nd nd nd (Buscher et al. 2010) 

L780P 9 Near TRP 
box Spanish Sporadic 7 nd nd nd (Santin et al. 2009) 

K874X 12 CC domain Polish Familial 27-57 No nd CCh (Reiser et al. 2005) 
Q889K 13 CC domain Chinese Familial 35-41 Yes Yes OAG (Zhu et al. 2009) 
R895C 13 CC domain Mexican Sporadic 18-46 Yes nd CCh (Reiser et al. 2005) 
R895L 13 CC domain Italy Sporadic 1 Yes Yes OAG (Gigante et al. 2011) 
E897K 13 CC domain Irish/German Familial 24-35 Yes nd CCh (Reiser et al. 2005) 

nd: not done; ANK: ankyrin repeat; CC: coiled coil; CCh: carbachol; OAG:  1-oleoyl-2-acetyl-sn-glycerol
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Figure 4-4 Locations of Published Gain-of-function TRPC6 Mutations on its Topology. 

Among the 17 reported TRPC6 mutations to date, 10 had gain of function in heterologous 
expression systems. All these 10 mutations were mapped to either one of the four ANK 
domains in the NH2 terminal or the CC domain in the C terminal. 

 

4.3 Discussion and Conclusions 

TRPC6 is a calcium-permeable cation channel expressed in many different tissues and organs 

including the kidneys, where it is specifically expressed in the podocyte cell bodies, major 

processes in the vicinity of the SD in the foot processes (Reiser et al. 2005). The discovery 

that TRPC6 mutations cause FSGS underscored the importance of ion channels for podocyte 

function. Despite its expression in many extra-renal tissues, mutations in TRPC6 are known 

to cause glomerular diseases only (Reiser et al. 2005; Walz 2005; Mukerji et al. 2007). This 

could be due to the unique role of TRPC6 in podocytes or the distinct susceptibility of the slit 

diaphragm to minute changes in calcium dynamics. To date, 17 TRPC6 mutations have been 

reported in sporadic or familial glomerular diseases. We summarized these mutations and 

their genotype-phenotype correlations in Table 4-1. All reported TRPC6 mutations were 

mapped to the intracellular NH2-terminal and COOH-terminal domains of the channel 
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protein. Among these 17 mutations, 10 of them are associated with increase in channel 

activity in heterologous expression systems, and all of these 10 gain-of-function mutations 

are located in the either one of four ankrin repeats (ANKs) or the C-terminal cc domain 

(Figure 4-4).  

 

As shown in Table 4-1, most of the NH2-terminal missense mutations (89fsX8, G109S, 

P112Q, N125S, M132T, N143S, R175Q, H218L, and S270T) are located in or near one of 

the four ankyrin repeats. These mutations may affect the ability of TRPC6 to oligomerize 

with other TRPC subunits (Schindl et al. 2008) or alter the channel expression at the cell 

surface (Wedel et al. 2003). Among these, p.P112Q mutation causes increased surface 

expression, and increased angiotensin II-mediated Ca2+ influx in heterologous expression 

systems (Winn et al. 2005). NH2-terminal mutations can also affect TRPC6 gating properties, 

as p.N143S and p.S270T mutations result in increased mean open-time compared with wild-

type channels (Heeringa et al. 2009). The NH2-terminal mutation with the largest effect on 

channel currents reported to date is p.M132T. In heterologous expression systems, this 

mutation results in currents three to five times larger than those of wild-type channels, as well 

as delayed inactivation in the presence of continuous agonist stimulation (Heeringa et al. 

2009). Interestingly, this M132T mutation is associated with early age of onset of FSGS in 

children, suggesting that the current amplitudes correlate with phenotype severity (Heeringa 

et al. 2009).  

 

Among the TRPC6 mutations at the COOH terminal, the mutation p.L780P is located near 

the TRP box 1 motif that is conserved in all TRPC channels, whereas the other five mutations 

(K874*, Q889K, R895C, R895L, and E897K) map to a predicted coiled-coil motif located 

further downstream. While no study has specifically investigated the importance of the 
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COOH-terminal coiled-coil motif in TRPC channel gating, one study suggests that the 

COOH-terminal tails of TRPC4 and TRPC6 participate in channel oligomerization (Lepage et 

al. 2006). Importantly, most of the mutations (p.Q889K, p.R895C, p.R895L, p.E897K) 

located in the coiled-coil domain result in increased maximal current amplitudes in 

heterologous expression systems, effectively resulting in a net gain in function. It is possible 

that these are caused by increased trafficking to the cell surface (Dryer and Reiser 2010). 

 

We report here a novel gain-of-function TRPC6 missense mutation, p.R68W. This mutation 

is the most proximal to the NH2 terminal among all the reported mutations, and is the first 

reported mutation located outside a known functional domain or motif. By comparing current 

changes between positive control TRPC6R895C and TRPC6R68W, we noted that TRPC6R895C 

channels had significantly higher mean inward currents, but not outward currents. In addition, 

our recording on TRPC6R895C channel showed that it had bigger current changes compared 

with the result published by Reiser and his coworkers (Reiser et al. 2005). This is most likely 

due to the difference in the conditions of the experimental setup between the reported study 

and our study.We have also shown p.R68W increased surface expression of the TRPC6 

channels and this could explain the increased TRPC6 current amplitudes caused by this 

mutation. This concurred with the study by Winn et al., who showed increased TRPC6 

surface expression due to p.112Q mutation (Winn et al. 2005). However, enhanced channel 

surface expression may not be the only mechanism to explain the increased current 

amplitudes. It has been reported that the TRPC6 p.175Q mutation caused increased TRPC6 

current amplitudes but did not result in increased surface expression of the channels (Hofstra 

et al. 2013). Clearly, other mechanisms are involved in causing the increased channel 

amplitudes. 
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Studies have suggested that it is the increased TRPC6 current amplitudes that result in disease, 

rather than the mutant channels per se. Increased TRPC6WT glomerular expression has been 

shown in acquired human proteinuric diseases and mouse models for human FSGS in the 

absence of TRPC6 mutations (Moller et al. 2007; Nijenhuis et al. 2011). These concurred 

with studies in cultured podocytes in which overexpression of TRPC6WT resulted in 

cytoskeleton rearrangement through increase in intracellular calcium and RhoA activation 

(Jiang et al. 2011).  

 

In conclusion, we have shown that p.R68W is a novel gain-of-function mutation that 

increases TRPC6 current amplitudes and its surface expression. This is the first gain-of-

function mutation located outside a known functional domain.  
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CHAPTER 5  THE EFFECTS OF NPHS1 AND NPHS2 

POLYMORPHISMS ON TRPC6 CHANNELS 
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5.1 Introduction 

The podocyte slit diaphragm (SD) is a critical structure in the glomerular filtration apparatus. 

It is a cell-cell junction with features of tight and adherens junctions. The SD has a unique 

multifunctional signaling platform (Wartiovaara et al. 2004) involving many important 

proteins including nephrin (NPHS1), podocin (NPHS2), NEPH1 and CD2AP (Figure 5-1). 

The interactions between TRPC6 and these SD proteins are pivotal in the regulation of cell 

polarity, cell survival and cytoskeletal organization (Benzing 2004). The two most central 

proteins in the SD are nephrin and podocin. There has been some evidence suggesting 

interactions between TRPC6 and nephrin/podocin. 

 

Figure 5-1 Schematic diagram showing cross-sectional views of two adjacent podocyte 

foot processes and the major proteins in the slit diaphragm between them. 

 

Nephrin belongs to the immunoglobulin superfamily (Kestila et al. 1998) and is arguably the 

most pivotal protein in podocytes (Welsh and Saleem 2010). Of all human podocyte 

mutations described so far, patients with nephrin mutations have the earliest and most severe 

clinical phenotype (Kestila et al. 1998), suggesting its critical role as a structural and 
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signalling molecule in the SD. Its cytoplasmic domain has eight tyrosine phosphorylation 

sites which, upon phosphorylation, act as binding sites for proteins containing SH2 domains, 

such as phosphatidylinositol- 3-OH kinase and the Src kinase family member Fyn. Binding of 

these proteins are important for the function of nephrin in the regulation of the podocyte actin 

cytoskeleton. Derangement of the actin cytoskeleton is considered the hallmark in podocyte 

injury. There has been some evidence to suggest that nephrin affects TRPC6 function. Reiser 

et al. have demonstrated enhanced expression and altered cellular localization of TRPC6 in 

podocytes of nephrin-deficient mice (Reiser et al. 2005), suggesting that nephrin regulates 

TRPC6 expression. This is most likely facilitated by Fyn kinase which associates with 

nephrin (Verma et al. 2003) and regulates TRPC6 channel activation by tyrosine 

phosphorylation (Hisatsune et al. 2004). Tyrosine phosphorylation of TRPC6 induced a 

complex formation with PLC-γ1, which is necessary for TRPC6 surface expression. However, 

nephrin could inhibit TRPC6 surface localization activation by binding to phosphorylated 

TRPC6 and competitively inhibiting TRPC6-PLC-γ1 complex formation (Kanda et al. 2011). 

More interestingly, TRPC6 disease-causing mutations could render TRPC6 insensitive to 

nephrin inhibition, thereby promoting TRPC6 surface expression and channel activation 

(Kanda et al. 2011). 

 

Podocin is a member of the stomatin protein family exclusively expressed in podocytes of the 

developing and mature glomeruli (Roselli et al. 2002).  It is localised at the insertion site of 

SD between podocyte foot processes (Schwarz et al. 2001) and functions as a scaffold protein 

that links the plasma membrane to the actin cytoskeleton (Machuca et al. 2009). Mutations in 

NPHS2 gene coding for podocin cause steroid-resistant nephrotic syndrome and FSGS in 

humans (Boute et al. 2000). It was proposed that podocin regulates TRPC6 by binding to 

cholesterol, which changes the local lipid environment surrounding the TRPC6 channel, 
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thereby altering the ability of TRPC6 to respond directly to deformation of the plasma 

membrane (Huber et al. 2006).  In another study (Fan et al. 2009), podocyte injury caused by 

podocin mutation p.V165X was inhibited by the knockdown of TRPC6. In the same study, 

another podocin mutation p.R168H resulted in abnormal podocin retention in the 

endoplasmic reticulum and mis-localizations of nephrin and TRPC6. These studies suggested 

that podocin interacts with TRPC6. Podocin polymorphisms could therefore possibly play a 

part in the pathogenesis of FSGS through the interaction with TRPC6.  

   

While there have been suggestion for interactions between TRPC6 and nephrin / podocin, the 

exact mechanism and how these may affect phenotype is not entirely clear. Considering the 

novel segregation of TRPC6, NPHS1 and NPHS2 genotypes to renal disease in the index 

family, we hypothesized that the NPHS1 and NPHS2 polymorphisms identified in the index 

family alter TRPC6 channel activity, thereby influencing the phenotype and accounting for 

the variable penetrance and successful renal transplantation in the index family. We therefore 

aimed to 

 

1) study how the presence of wild-type (WT) nephrin or podocin may influence the current 

amplitudes of WT or mutant TRPC6.  

2) study the effects of NPHS1 polymorphisms (c.294C>T and c.2289C>T) and NPHS2 

polymorphism (c.954T>C) on TRPC6 channel activity, and how the unique combination of 

the NPHS1 polymorphisms, according the genotypes in the index family, may influence 

TRPC6 currents.  
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5.2 Results 

In this study, EGFP-TRPC6 fusion gene was cloned into pEGFP-C1 vector (Clontech) (green 

fluorescence). In addition, NPHS1 and NPHS2 gene was cloned separately into pIRES-

DsRed (Clontech) vector (red fluorescence). With the differently coloured fluorescence, co-

transfected HEK293-M1 cells with both TRPC6 and NPHS1 or NPHS2 plasmids would be 

yellow (overlapping green and red fluorescence). This allowed us to select the cells for patch 

clamp recording which measured the TRPC6 current changes before and after activation by 

CCH. We used the gap free protocol in which the cells were held at holding potential of 0 

mV for the duration of the patch clamp recording (Inoue et al. 2009). 

 

5.2.1 Both Wild-type Nephrin and Podocin Downregulate TRPC6 Channel Activity 

To study the effects of WT NPHS1 or NPHS2 on TRPC6 channels, WT NPHS1 or NPHS2 or 

the empty pIRES2 vector (as negative control) was co-transfected with TRPC6WT or 

TRPC6R68W into HEK293-M1 cells. CCH-induced currents were recorded using gap-free 

protocol at the holding potential of 0mV (Inoue et al. 2009). As shown in Figure 5-2 A, after 

exposure to CCH, the TRPC6 current amplitudes reached the peak in a couple of seconds, 

and they decreased rapidly even at the presence of CCH. Cells with TRPC6WT and NPHS1WT 

had significantly lower TRPC6 currents (21.8 ± 3.8pA/pF) compared to cells with TRPC6WT 

and empty pIRES2 vector (35.3 ± 4.9pA/pF) (p=0.039) (Figure 5-2 B). Similarly, cells with 

TRPC6R68W and NPHS1WT had significantly lower TRPC6 currents (30.2 ± 2.7pA/pF) 

compared to cells with TRPC6 R68W and empty pIRES2 vector (48.5 ± 4.6pA/pF) (p=0.002) 

(Figure 5-2 B). As a parallel experiment, NPHS2WT or the empty pIRES2 vector was co-

transfected with TRPC6WT into HEK293-M1 cells.  The results showed that cells with 

TRPC6WT and NPHS2WT had significantly lower TRPC6 currents (15.1 ± 1.8pA/pF) 
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compared to cells with TRPC6WT and empty pIRES2 vector (21.6 ± 1.8pA/pF) (p=0.04) 

(Figure 5-2C). These findings suggested that wild-type NPHS1 and NPHS2 downregulate 

TRPC6 channel activity. 

 

Figure 5-2 Wild-type NPHS1 and NPHS2 Downregulate TRPC6 Channel Activity. 

(A) Representative normalized whole-cell currents measured from cells co-transfected 
TRPC6WT with empty vector (grey) or NPHS1WT (black). TRPC6 currents were recorded 
before and after channel activation by CCH using gap-free protocol with a holding potential 
of 0mV. (B) NPHS1WT downregulated TRPC6 channel activity. Both TRPC6WT and 
TRPC6R68W currents were significantly suppressed by the presence of NPHS1. (C) NPHS2WT 
downregulated TRPC6WT channel activity. The error bars show the standard errors of the 
means and asterisks denote statistically significant comparisons (student's t-test). Numbers in 
parentheses denote the number of cells measured per group. 
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Figure 5-3 Functional Effects of Polymorphisms of NPHS1 and NPHS2 on TRPC6 

Channel Activity. 

Normalized TRPC6 current amplitudes of HEK293-M1 cells with TRPC6WT (white bars) or 
TRPC6R68W (grey bars) in combination with homozygous NPHS1 or NPHS2 polymorphisms. 
(A) Cells with NPHS1294C>T or NPHS1294C>T+2289C>T, and not those with NPHS12289C>T, had 
significantly higher mean TRPC6WT or TRPC6R68W currents compared to those with 
NPHS1WT. (B)  Cells with NPHS2954T>C did not alter the currents of TRPC6WT or TRPC6R68W 
compared to those with NPHS2WT. The error bars show the standard errors of the means and 
asterisks denote statistically significant comparisons (student's t-test). Numbers in 
parentheses denote the number of cells measured per group.  

 

5.2.2 The Effects of NPHS1 and NPHS2 Polymorphisms on TRPC6 Activity 

The effects of NPHS1 and NPHS2 polymorphisms on TRPC6 activity were subsequently 

studied using gap-free protocol in patch clamp recording.  

 

HEK293-M1 cells were co-transfected with wild-type NPHS1 (NPHS1WT), homozygous 

c.294C>T (NPHS1294C>T), c.2289C>T (NPHS12289C>T) or both polymorphisms 

(NPHS1294C>T+2289C>T), together with TRPC6WT or TRPC6R68W. We found that cells with 

NPHS1294C>T had significantly higher TRPC6WT currents (36.5 ± 5.4pA/pF) compared to 

those with NPHS1WT (22.7 ± 2.2pA/pF) (p=0.035) (Figure 5-3A). When repeated with 

TRPC6R68W, cells with NPHS1294C>T (46.8 ± 3.7pA/pF) (p=0.047) as well as cells with 

NPHS1294C>T+2289C>T (50.7 ± 5.2pA/pF) (p=0.029) had higher TRPC6R68W currents than those 
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with NPHS1WT (35.5 ± 4.0pA/pF) (Figure 5-3A). However, there was no significant 

difference in TRPC6WT or TRPC6R68W currents when cells were transfected with 

NPHS12289C>T (Figure 5-3B). These findings suggested that NPHS1294C>T, but not 

NPHS12289C>T, has decreased ability to inhibit both TRPC6WT and TRPC6R68W.  

Similarly, to study the effects NPHS2 polymorphism c.954T>C (NPHS2954T>C) on TRPC6 

activity, HEK293-M1 cells were co-transfected with NPHS2WT or homozygous NPHS2954T>C, 

together with TRPC6WT or TRPC6R68W (Figure 5-3B). Cells with TRPC6WT and NPHS2954T>C 

(17.7 ± 0.8pA/pF) had slightly increased, but not statistically different, TRPC6 currents 

compared with cells with TRPC6WT and NPHS2WT (15.1 ± 1.8pA/pF) (p=0.27). Cells 

transfected with TRPC6R68W and NPHS2954T>C (21.8 ± 2.1pA/pF) had slightly decreased, but 

not significantly different, TRPC6 currents compared to cells with TRPC6R68W and NPHS2WT 

(23.7 ± 2.6pA/pF) (p=0.50). These findings indicated that NPHS2954T>C did not affect TRPC6 

channel activity.  

 

 

Figure 5-4 The interaction between TRPC6 and Nephrin was not affected by NPHS1 

SNPs. Co-immunoprecipitation was performed to study the effect of nephrin SNPs on the 

physical binding between TRPC6 and NPHS1. Anti-FLAG was used to assay the co-

precipitated nephrin (Panel A). Anti-EGFP (Roche) was used to precipitate EGFP-TRPC6 

(Panel B). * 2SNP implies the construct had two homozygous nephrin SNPs, c.294C>T and 

c.2289C>T. 

Nephrin 
 
 

eGFP-TRPC6 

NPHS1    WT              WT           2SNP*           2SNP*     
TRPC6     WT           R68W           WT            R68W 

A 
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5.2.3 NPHS1 Polymorphisms, c.294C>T and c.2289C>T Did Not Affect the Interaction 

between TRPC6 and NPHS1 

We next performed co-immunoprecipitation to study the effect of nephrin SNPs on physical 

binding between TRPC6 and NPHS1. We co-transfected the HEK293 cells with EGFP-

TRPC6 and FLAG-NPHS1. The FLAG-NPHS1 construct consists of either wild-type nephrin 

or the two homozygous nephrin SNPs, c.294C>T and c.2289C>T. We precipitated EGFP-

TRPC6 using anti-EGFP (Roche) and the co-precipitated nephrin was assayed using anti-

FLAG (Santa Cruz) (Figure 5-4). Our results demonstrated that the two NPHS1 SNPs did not 

affect nephrin binding with WT or p.R68W mutant TRPC6 channels. 

 

5.2.4 The Variable Penetrance of TRPC6 p.R68W Mutation in the Index Family was 

Explained by NPHS1 Polymorphisms  

In order to explain the clinical phenotypes, we studied the effects of NPHS1 variants, 

c.294C>T and c.2289C>T, on TRPC6 function based on specific combinations of genotypes 

in selected members of the index family. TRPC6WT or TRPC6R68W were co-transfected in 

various combinations with the NPHS1 polymorphisms into HEK293-M1 cells, such that each 

combination represented the combined genotype of a relevant family member (Figure 5-5).  

Cells representing individuals with TRPC6WT (control, III.3 and II.3/II.5) were analyzed as 

one group in the one-way ANOVA (with Bonferroni correction). As shown in Figure 5-3, 

there was a trend of increasing current amplitudes with worsening phenotype severity. In 

particular, cells representing the kidney donor II.2, who had TRPC6R68W mutation but no 

NPHS1 c.294C>T and c.2289C>T polymorphisms, had currents (35.5 ± 4.0pA/pF) which 

were not significantly different from cells representing individuals with TRPC6WT (24.7 ± 

1.4pA/pF), but they were significantly lower than cells representing the individuals with 

FSGS (II.4 and III.2) who were homozygous for both NPHS1 polymorphisms (50.7 ± 
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5.2pA/pF) (p=0.048). These results suggested that the TRPC6 current increases with the 

severity of renal phenotypes and proved for the first time, genetic epistasis between TRPC6 

and NPHS1. 

Figure 5-5  Associations between Phenotypes and TRPC6 Mean Current Amplitudes of 

Cells Representing Selected Family Members. 

HEK293-M1 cells were co-transfected with TRPC6WT or TRPC6R68W in combination with 
NPHS1 polymorphisms according to the genotypes of selected family members. The mean 
normalized current amplitudes are shown in the bar chart and the corresponding phenotypes 
and genotypes in the table. Cells representing individuals with TRPC6WT (control, III.3 and 
II.3 / II.5) were analyzed as one group. The p values of the one-way ANOVA (with 
Bonferroni correction) between the various groups are presented in the table. Cells 
representing the kidney donor II.2 had significantly lower currents than cells representing II.4 
and III.2 with FSGS (p=0.048), but had similar currents compared to cells representing those 
with TRPC6WT (p=0.160). The error bars show the standard errors of the means, numbers in 
parentheses denote the number of cells measured per group and asterisks denote statistically 
significant comparisons.  
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5.3 Discussion and Conclusions 

Our study is the first to demonstrate via functional studies the existence of genetic epistasis 

between NPHS1 polymorphisms and TRPC6, accounting for the variable and non-penetrant 

expression of a novel mutant TRPC6 mutation, and the successful kidney transplantation 

between two individuals with the same mutant TRPC6 gene. 

 

TRPC6-associated glomerular disease is classically an adult-onset disease occurring as late as 

the fifth decade of life.(Reiser et al. 2005) However, recent reports described early disease 

onset in children less than ten years old, with the youngest being six months. Moreover, there 

is a wide spectrum of phenotypes ranging from no renal disease to isolated proteinuria to 

ESRD.(Heeringa et al. 2009; Santin et al. 2009; Buscher et al. 2010; Gigante et al. 2011; 

Liakopoulos et al. 2011; Mir et al. 2012; Hofstra et al. 2013) Similarly, we observed non-

penetrance of the novel TRPC6R68W mutation in three family members in the index family 

and one control. One explanation for the variable penetrance is the multi-hit hypothesis in 

which other insults and/or genetic variants contribute to disease pathomechanism (Dryer and 

Reiser 2010). Our findings suggest that the relatively early disease onset in this family could 

be a result of genetic epistasis between NPHS1 polymorphisms and TRPC6. Interactions 

between podocyte genes have been thought to be important because concurrent sequence 

variants have been identified in different podocyte genes, and patients with heterozygous 

podocin or nephrin mutations are symptomatic even though these are autosomal recessive 

diseases.(Caridi et al. 2003; McCarthy et al. 2013) In the kidney, TRPC6 normally localizes 

to the slit diaphragm of podocytes, and co-immunoprecipitates with other slit diaphragm 

proteins like NPHS1 and NPHS2. Other than physical co-localisation, there have been few 

functional studies confirming the presence of genetic epistasis between different podocyte 
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genes. Using patch clamp methods, we have shown that NPHS1294C>T resulted in the loss of 

ability of nephrin to suppress TRPC6 channels. This was not shown for the other 

polymorphisms NPHS1 c.2289C>T and NPHS2 c.954T>C.  

 

By representing the combined TRPC6 and NPHS1 genotypes of selected family members in 

HEK-M1 cells, we found that there was a trend of increasing current amplitudes with 

worsening phenotype severity. This concurred with the study by Heeringa et al who found 

that the TRPC6 mutation p.M132T, associated with early age of onset of FSGS in children, 

caused the largest current amplitude changes compared to other mutations which caused later 

disease onset in adults (Heeringa et al. 2009). Studies have suggested that it is the increased 

TRPC6 current amplitudes that result in disease, rather than the mutant channels per se. 

Increased TRPC6WT glomerular expression has been shown in acquired human proteinuric 

diseases and mouse models for human FSGS in the absence of TRPC6 mutations (Moller et 

al. 2007; Nijenhuis et al. 2011). These were in accordance with studies in cultured podocytes 

in which overexpression of TRPC6WT resulted in cytoskeleton rearrangement through 

increase in intracellular calcium and RhoA activation (Jiang et al. 2011). 

It is noteworthy to mention that although podocin polymorphism c.954T>C did not affect 

TRPC6 current amplitudes, whereas wild-type podocin did suppress TRPC6 activity, similar 

to wild type nephrin. While it has been shown that wild-type nephrin suppresses TRPC6 by 

binding to phosphorylated TRPC6 and competitively inhibiting TRPC6-PLC-γ1 complex 

formation and therefore inhibiting TRPC6 surface localization activation (Kanda et al. 2011), 

the exact mechanism of how wild-type podocin may inhibit TRPC6 is unclear. There have 

been some suggestion that podocin changes the local lipid environment of the plasma 
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membrane surrounding TRPC6, thus altering the ability of TRPC6 to respond to deformation 

of the plasma membrane (Huber et al. 2006).  Further studies are required to confirm this.  

 

To conclude, this is the first study to demonstrate via functional work the existence of genetic 

epistasis between NPHS1 polymorphisms and TRPC6, accounting for the variable and non-

penetrant expression of a novel mutant TRPC6 mutation.  
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CHAPTER 6 THE EXPRESSION AND RNA STABILITY OF 

NEPHRIN VARIANTS   
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6.1 Introduction 

Podocytes play a central role in the control of glomerular filtration by collectively 

maintaining the glomerular architecture and contributing largely to bar the egress of plasma-

derived proteins through the slit diaphragm (Haraldsson et al. 2008; Meyrier 2011). The slit 

diaphragm (SD) is a modified adherens junction (Reiser et al. 2000) that connects adjacent 

podocyte foot processes forming a tight interdigitating network to maintain foot processes 

structure in the glomeruli. Nephrin, being part of the SD, is an essential component of the 

glomerular filtration barrier. It consists of a large extracellular portion made up of eight IgG-

like domains, a fibronectin type-3 motif, a single transmembrane domain and a cytoplasmic 

domain (Kestila et al. 1998). 

 

Mutations of nephrin induce congenital nephrotic syndrome of Finnish type, which is a 

prototype of congenital nephrotic syndrome. Of all the human podocyte gene mutations, 

patients with NPHS1 mutations display the earliest and most severe clinical phenotype with 

onset of life-threatening proteinuria in utero or within the first 3 months of life (Patrakka et al. 

2000; Welsh and Saleem 2010). As a key structural and signalling molecule within the SD, 

nephrin acts as an intracellular signalling scaffold as it recruits other proteins, such as 

phosphatidylinositol-3-OH kinase, the Src family kinase Fyn and phospholipase Cγ1(PLC-γ1) 

to its C-terminal domain. It regulates a number of cell signalling pathways including 

stimulation of members of the MAP kinase family and activation of the phosphoinositide 3-

OH kinase–PKB pathway (Huber et al. 2003). These effects require interactions with podocin, 

which targets nephrin to lipid rafts at the plasma membrane and facilitates nephrin signalling 

(Huber et al. 2001; Schwarz et al. 2001). In addition, phosphorylation of nephrin at amino 

acid 1193 leads to the recruitment, phosphorylation and activation of PLC-γ1, which is 
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known to be involved in a diverse range of cellular functions, including regulation of calcium 

signalling (Harita et al. 2009). Calcium signalling is integral to podocyte homeostasis, 

supported by the evidence that disease-causing TRPC6 mutations increase calcium flux 

(Reiser et al. 2005; Winn et al. 2005). 

  

Proper localization of nephrin within the specialized lipid micro-domains at the plasma 

membrane is essential for slit diaphragm signalling (Schermer and Benzing 2009). Studies 

have demonstrated that plasma from FSGS patients relocalizes nephrin, podocin and CD2AP 

from the cell surface to the cytoplasm (Coward et al. 2005). Nephrin and podocin are 

localized away from the slit diaphragm in nephrotic syndromes (Luimula et al. 2000; 

Doublier et al. 2001). These evidence support the notion that nephrin mislocalization is a key 

feature of podocyte dysfunction in nephrotic diseases.  

 

In the previous chapter, we concluded that the binding of nephrin and podocin to TRPC6 

downregulates the latter, whereas the presence of nephrin polymorphisms, especially 

c.294C>T, results in the loss of TRPC6 downregulation. More importantly, the variable 

penetrance found in the index family could be explained by interactions between TRPC6 and 

NPHS1 variants. Since single nucleotide polymorphisms (SNPs) represent the most frequent 

type of sequence variations playing a key role in human phenotypic variability (Johnson et al. 

2005), we hypothesized that the nephrin polymorphisms c.294C>T and c.2289C>T is 

functional due to their effects on gene expression, as a consequence to decreased mRNA 

stability. Therefore, we first aimed to study the effects of nephrin polymorphisms c.294C>T 

and c.2289C>T on nephrin protein expression by immunoblotting. WT or variant nephrin 

(NPHS1294C>T, NPHS12289C>T, or the double SNPs, NPHS1294C>T+2289C>T) was transfected into 
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HEK293-M1 cells. The same amount of cDNA was used in each group. Total protein was 

isolated from each group and western blot was performed using appropriate antibodies. The 

second aim of this chapter is study the effects of these nephrin polymorphisms on mRNA 

stability, via the use of actinomycin D which is a commonly used transcription inhibitor, 

followed by real-time polymerase chain reaction to quantify the mRNA. These experiments 

will help us to understand how these nephrin polymorphisms exert their function.   

 

6.2 Results 

6.2.1 NPHS1294C>T Decreased Nephrin Protein Expression in HEK293 Cells 

We first investigated the effects of NPHS1 variants on nephrin protein expression by 

immunoblotting. HEK293 cells were transfected with WT or variant NPHS1 together with 

pEGFP-C1 vector. This pEGFP-C1 vector allowed us to compare the transfection efficiency 

across groups so as to ensure they were identical. 24 h after transfection, total protein was 

extracted and western blot was performed according to standard protocol using anti-Nephrin 

antibody (abcam®). We found that cells with NPHS1294C>T had significantly lower nephrin 

expression (densitometry measurements 0.57±0.09) than cells with NPHS1WT (1.06±0.10) 

(p=0.017) (about 2-fold reduction) (Figure 6-1). Similarly, cells with NPHS1294C>T+2289C>T 

had lower expression (0.48±0.09) than cells with NPHS1WT (p=0.005).  This decrease in 

nephrin expression was not seen in cells with NPHS12289C>T.  These findings suggested the 

decreased ability of NPHS1294C>T to inhibit TRPC6 function could be due to decreased 

nephrin protein expression.   
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6.2.2 NPHS1294C>T Decreases Nephrin mRNA Stability in HEK Cells 

The mRNA stability of the NPHS1 polymorphisms was then studied. The total RNA of the 

transfected HEK293 cells was extracted before and after actinomycin D treatment followed 

by first strand cDNA synthesis.  Real-time PCR was performed to record the threshold cycle 

(CT) changes of each NPHS1 variants before and after actinomycin D treatment. The 

transfection efficiency was identical for the different groups. The data were normalized using 

housekeeping gene GAPDH and the fold changes were analysed by 2-∆∆C
T method (Livak and 

Schmittgen 2001). We found that the mean mRNA fold change of post-treatment transcripts 

relative to pre-treatment amounts were significantly lower for NPHS1294C>T (0.015±0.011, 

p=0.002) compared to NPHS1WT (0.179±0.030). This showed that the RNA stability of 

NPHS1294C>T decreased more than 10-fold compared with NPHS1WT. Similarly, the mRNA 

stability of NPHS1294C>T+2289C>T (0.051±0.027) also significantly decreased by 2.8-fold 

compared with NPHS1WT (0.179±0.030, p=0.019). There was no significant difference for the 

NPHS12289C>T transcript (0.064±0.048). These finding indicated that nephrin polymorphism 

c.294C>T altered the rate of mRNA decay resulting in decreased protein expression. The 

attenuated nephrin expression then resulted in decreased ability of nephrin to inhibit TRPC6, 

hence leading to increased current amplitudes.   
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Figure 6-1 Western Blot Analysis for Nephrin Expression in HEK293-M1 Cells 

Transfected with Nephrin Variants. 

(A) Representative western blot analysis. EGFP expression was identical across groups 

implying equal transfection efficiency. The nephrin band densities were normalized to those 

of EGFP bands for each group. (B) Bar chart comparing mean ratios of nephrin to EGFP 

band densities in the different groups. Statistical analysis showed that cells with NPHS1294C>T 

or NPHS1294C>T+2289C>T had significantly lower nephrin expression than cells with NPHS1WT. 

This experiment was performed four times with similar results. The error bars show the 

standard errors of the means and asterisks denote statistically significant comparisons 

(student's t-test). 
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Figure 6-2 Relative mRNA Stability of Nephrin Variants, as Determined by Real-time 

RT–PCR. 

GAPDH was used as the housekeeping gene. The amount of mRNA after actinomycin D 

treatment (gray bars) in each group were relative to the pre-treatment amount, which were set 

as 1 (white bars). This experiment was performed four times with similar results. The mean 

mRNA fold change was significantly lower for NPHS1294C>T and NPHS1294C>T+2289C>T compared to 

NPHS1WT (p=0.002 and 0.019 respectively). The error bars show the standard errors of the 

means and asterisks denote statistically significant comparisons (student's t-test).  

 

6.3 Discussion and Conclusions 

Genetic factors play an important role in variability of human phenotypes, such as 

susceptibility to disease and response to therapies. These phenotypic differences may be 

caused by gene sequence variants via different mechanisms. The most dramatic effects of 

sequence variants are those involving changes to the encoded protein sequences. However 

polymorphisms which do not change amino acid sequence can also affect phenotype. There 

have been several proposed mechanisms (Albert 2011). For example, polymorphisms may 

occur in non-coding regions, such as the untranslated regions or introns, and affect gene 

regulation. On the other hand, polymorphisms in coding regions may exert their effects on 
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mRNA processing (splicing, mRNA modification and turnover), mRNA stability or 

translation (Johnson et al. 2005).  

 

Nephrin is a major component of the glomerular filtration barrier, which was initially 

identified as the main genetic causes of congenital NS. To date, more than 60 different 

nephrin mutations, including deletions, insertions, nonsense and missense mutations, and 

mutations at splice sites and promoters, have been identified (Liu et al. 2004). Because these 

involve changes to the amino acid sequence, they almost invariably result in severe 

phenotypes, mainly congenital nephrotic syndrome. However, NPHS1 synonymous 

polymorphisms have also been associated with renal diseases. For example, from a study of 

267 Japanese patients with Ig A nephropathy (IgAN) and 197 healthy controls, NPHS1 

G349A polymorphism was suggested to be associated with heavy proteinuria and a decline in 

renal function in IgAN (Narita et al. 2003). 6 years later this polymorphism was confirmed to 

be functional by showing that the G allele and AG/GG genotype was associated with the 

severity of renal function at the time of diagnosis and the GG genotype was an independent 

risk  of the prognosis of IgAN patients (Yu et al. 2009). As shown in Chapter 3, our study on 

97 unrelated Singapore Chinese patients with idiopathic sporadic NS also indicates that the 

two NPHS1 SNPs, c.294C>T and c.2289C>T, are significantly associated with NS.  In 

addition, the study of nephrin expression in non-renal tissues, like human pancreatic islet 

cells, showed that both synonymous nephrin SNPs c.294C>T and c.2289C>T were associated 

with type 2 diabetes (Daimon et al. 2006).  

 

While there have been reported studies on the association of nephrin polymorphisms with 

renal disease, there have been none depicting the mechanisms by which these polymorphisms 
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exert their effects. To our knowledge, we are the first to report the mechanisms by which 

nephrin polymorphisms interact with TRPC6 to affect the clinical phenotype. In the current 

study, we found that c.294C>T nephrin polymorphism decreased mRNA stability which in 

turn decreased nephrin protein expression. This then led to the loss of ability of nephrin to 

inhibit TRPC6 function and therefore increased TRPC6 current amplitudes.  

 

Decreased nephrin expression has been reported in patients with glomerular diseases and 

animal models. Huh et al., reported that in patients with membranous glomerulonephritis 

(GN), the expression of nephrin was lower in regions of effacement of the podoctyte foot 

processes (Huh et al. 2002). Rats with streptozotocin-induced diabetes mellitus showed 45% 

reduction of nephrin expression in the late proteinuric phase (Kelly et al. 2002). More than 60% 

reduction of nephrin expression was also demonstrated in 17 patients with diabetes and NS 

(Doublier et al. 2003).  

 

Tyrosine phosphorylated TRPC6 induces a complex formation with PLC-γ1, which is 

prerequisite for TRPC6 surface expression. However, this process could be inhibited by WT 

nephrin, which competitively binds to the phosphorylated TRPC6, resulting in decreased 

surface expression (Kanda et al. 2011). Therefore, the decreased nephrin expression in 

podocytes, or some FSGS-associated TRPC6 mutations that render the mutant TRPC6’s 

insensitive to nephrin suppression can lead to increased TRPC6 currents. In addition, it has 

been shown that increased TRPC6 currents alone, even in the absence of TRPC6 mutations, 

can lead to proteinuric disease. Moller et al., demonstrated that the overexpressed TRPC6 in 

cultured differentiated podocytes directly affects cytoskeletal organization. And in mice the 

transient overexpressed TRPC6 protein at the slit diaphragm causes proteinuria (Moller et al. 

2007). 
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According to data from HapMap and 1000 genomes (references), the TT genotype frequency 

of c.294C>T nephrin polymorphism ranges from 0% to 6.5% in the different populations in 

the world. This implies that there are healthy individuals with c.294C>T nephrin 

polymorphism. Clearly, the presence of c.294C>T polymorphism alone does not result in 

disease. However, it can act as a “hit” to the development of glomerular disease which has 

recently been envisaged a disease with “multi-hit” pathomechanism. The c.294C>T nephrin 

polymorphism therefore increases the genetic predisposition towards renal disease. 

 

In conclusion, we are the first to prove via in-vitro studies that the nephrin polymorphism 

c.294C>T exerts its functions by decreasing mRNA stability, thereby decreasing nephrin 

expression, reducing its ability to inhibit TRPC6 and resulting in increased TRPC6 current 

amplitudes. Increased TRPC6 currents have been shown in glomerular disease. The 

c.294C>T nephrin polymorphism probably increases the genetic predisposition towards renal 

disease and is likely not the only factor leading to the development of glomerular disease. We 

have also shown that c.2289C>T nephrin polymorphism and c.954T>C podocin 

polymorphism had no effects on mRNA stability or protein expression. These are consistent 

with our electrophysiological findings. Animal models will be necessary to further elucidate 

the role of nephrin polymorphisms in the pathomechanism of glomerular diseases. 
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7.1 DISCUSSION 

Our study is the first to demonstrate via functional studies the existence of genetic epistasis 

between NPHS1 polymorphisms and TRPC6, accounting for the variable and non-penetrant 

expression of a novel mutant TRPC6 mutation, and the successful kidney transplantation 

between two individuals with the same mutant TRPC6 gene. Both donor and recipient have 

remained well with normal renal function and no proteinuria 19 years after transplant. 

Currently, there is no clear consensus on the suitability of potential kidney donors with 

podocyte gene mutations and generally, such donors are precluded from donation (Santin et 

al. 2009). Our data, however, have shown that such transplants are possible if there are 

modifying genes resulting in non-penetrance. 

 

While pathogenic mutations are considered clinically significant, single-nucleotide 

polymorphisms are rarely regarded as important. In this study, NPHS1 polymorphisms 

c.294C>T and c.2289C>T segregated incrementally with severity of renal disease in our 

index family, and were notably absent in the kidney donor. Using the conservative method of 

Bonferroni correction for multiple-comparison analysis, cells transfected with mutant TRPC6 

and NPHS1 variants representing the patients with FSGS had higher TRPC6 currents 

compared to cells with TRPC6WT.  On the other hand, cells with the donor's genotype had 

lower TRPC6 currents compared to cells representing those with FSGS, accounting for the 

lack of FSGS phenotype in the donor kidney. It is interesting that these NPHS1 

polymorphisms had higher allele frequencies in Singapore Chinese patients with SRNS, 

SDNS and/or FSGS compared to controls, although our experiments on the individual 

homozygous polymorphsims demonstrated that only NPHS1294C>T and not NPHS12289C>T, 
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resulted in decreased mRNA stability and nephrin protein expression, with resultant 

decreased ability to inhibit TRPC6R68W compared to NPHS1WT.   

 

TRPC6-associated glomerular disease is classically an adult-onset disease occurring as late as 

the fifth decade of life (Reiser et al. 2005). However, recent reports described early disease 

onset in children less than ten years old, with the youngest being six months. Moreover,there 

is a wide spectrum of phenotypes ranging from no renal disease to isolated proteinuria to 

ESRD (Heeringa et al. 2009; Santin et al. 2009; Buscher et al. 2010; Gigante et al. 2011; 

Liakopoulos et al. 2011; Mir et al. 2012).  Similarly, we observed non-penetrance of the 

novel TRPC6R68W mutation in three family members and one control. One explanation for the 

variable penetrance is the multi-hit hypothesis in which other insults and/or genetic variants 

contribute to disease pathomechanism (Dryer and Reiser 2010).  Our findings suggest that the 

relatively early disease onset in this family could be a result of genetic epistasis between 

NPHS1 polymorphisms and TRPC6. Indeed, genetic epistasis has been suggested between a 

WT1 polymorphism and a NPHS1 mutation in patients with SRNS, but no functional 

validation studies have been performed in previous studies (McCarthy et al. 2013). 

 

All 17 TRPC6 mutations reported to date occur in the cytoplasmic NH2 or COOH terminals 

of the protein (Reiser et al. 2005; Winn et al. 2005; Heeringa et al. 2009; Santin et al. 2009; 

Zhu et al. 2009; Buscher et al. 2010; Gigante et al. 2011; Mir et al. 2012). Specifically, gain-

of-function mutations which increase TRPC6 currents and/or increase intracellular calcium 

influx map to either ankyrin repeats in the NH2 terminal or coiled-coil domain in the COOH 

terminal (Reiser et al. 2005; Winn et al. 2005; Heeringa et al. 2009; Zhu et al. 2009; Gigante 

et al. 2011; Hofstra et al. 2013). Ankyrin repeats are common protein-protein interaction 
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motifs thought to be important in protein function (Montell 2005). The p.R68W mutation 

occurs proximal to the NH2 terminal, and is therefore proximal to all the previously reported 

mutations. It is the first reported mutation located outside a known functional domain or 

motif that increases TRPC6 current amplitudes in heterologous expression systems. The gain 

of function seen with the p.R68W mutation could still be explained by its proximity to the 

first ankyrin repeat. 

 

We have demonstrated that TRPC6 current amplitudes increased with worsening phenotype 

severity in our index family.  This concurred with the study by Heeringa et al who found that 

the TRPC6 mutation p.M132T, associated with early age of onset of FSGS in children, 

caused the largest current amplitude changes compared to other mutations which caused later 

disease onset in adults (Heeringa et al. 2009). Studies have suggested that it is the increased 

TRPC6 current amplitudes that result in disease, rather than the mutant channels per se. 

Increased TRPC6WT glomerular expression has been shown in acquired human proteinuric 

diseases and mouse models for human FSGS in the absence of TRPC6 mutations (Moller et 

al. 2007; Nijenhuis et al. 2011). These concurred with studies in cultured podocytes in which 

overexpression of TRPC6WT resulted in cytoskeleton rearrangement through increase in 

intracellular calcium and RhoA activation (Jiang et al. 2011).    

 

Nephrin is a cell-adhesion protein that interacts with TRPC6 at the podocyte slit diaphragm 

(Reiser et al. 2005). Mutations in NPHS1 cause congenital nephrotic syndrome of the Finnish 

type and other forms of nephrotic syndrome (Kestila et al. 1998; Lenkkeri et al. 1999). We 

have shown via patch clamp electrophysiology that NPHS1WT decreases TRPC6 currents. 

This explains the finding of enhanced TRPC6 expression in podocytes of nephrin-deficient 
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mice (Reiser et al. 2005). The mechanism of this interaction was proposed by Kanda et al 

who demonstrated that phosphorylation of TRPC6 induced complex formation with 

phospholipase C-γ1 which in turn led to its surface expression and activation (Kanda et al. 

2011). This process was inhibited by NPHS1WT which bound to phosphorylated TRPC6 and 

competitively inhibited TRPC6- phospholipase C-γ1 complex formation. Mutated TRPC6 

channels are insensitive to nephrin suppression, and therefore have enhanced surface ex-

pression and increased channel activity (Kanda et al. 2011). We have shown that while 

NPHS1WT can inhibit TRPC6 p.R68W currents, this ability was lost in the presence of 

NPHS1c.294C>T, the mechanism through which may be decreased nephrin protein expression. 

Our work clearly points to the clinical importance of epistasis between genes within the 

podocyte, and this is probably underestimated in clinical practice. This work provides 

evidence to the clinician that it may not be sufficient to attribute the disease to one potential 

disease-causing mutation. This is particularly important in late-onset disease in which 

variable penetrance has been described, suggesting the importance of other "hits"; as well as 

in recessive diseases in which only one mutation has been found in the gene of interest. Such 

consideration is crucial when genetic counselling is offered or when a potential related 

kidney donor is being considered. As there are so many other genes that may potentially 

interact with each other and it is often near-impossible to screen every one of them by 

conventional sequencing, newer techniques such as exome sequencing can definitely play an 

important role in this disease. 
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7.2 CONCLUSIONS 

We described in a Singapore Chinese index family with hereditary FSGS a successful renal 

transplant that occurred between a donor and recipient sibling-pair, both of whom carried the 

same novel TRPC6 p.R68W missense mutation. To our knowledge, there has been no 

successful renal transplant described from a donor with a TRPC6 mutation. This mutation is 

the most proximal to the NH2 terminal among all reported TRPC6 mutations. Unlike 

previously published gain-of-function TRPC6 mutations which were all mapped to either 

ankyrin repeats in the NH2 terminal or coiled-coil domain in the COOH terminal, the p.R68W 

mutation is the first gain-of-function mutation which occurs outside of a known functional 

domain or motif. This mutation increases TRPC6 current amplitudes and enhanced TRPC6 

surface expression. 

 

We have also found nephrin and podocin polymorphisms which appeared to segregate with 

renal disease. Among these, we have shown, via electrophysiological methods, how the 

interactions between the TRPC6 p.R68W mutation and the nephrin polymorphism c.294C>T 

could explain the variable penetrance of the TRPC6 mutation. We showed that this c.294C>T 

polymorphism decreases mRNA stability and therefore decreases nephrin protein expression. 

This in turn results in the loss of ability of nephrin to inhibit TRPC6, leading to increased 

TRPC6 current amplitudes. Increased TRPC6 current amplitudes per se have been associated 

with glomerular diseases. 

 

In addition, we represented the genotypes of specific family members in HEK cells and 

further proved that the simultaneous presence of homozygous nephrin c.294C>T and 

c.2289C>T polymorphisms could explain the differences in phenotype between the donor 
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and the recipient and therefore the successful renal transplantation that occurred 19 years ago. 

This work carries important implications in the selection of live related donors in renal 

transplantation.   

 

7.3 FUTURE DIRECTIONS 

The work in this thesis was conducted mainly in HEK293 cells which do not inherently 

express TRPC6, nephrin or podocin. Further studies may involve replication of our work in 

podocytes as these are the cellular sites of pathology and they natively express these proteins. 

However, because the TRPC6 mutations are gain-of-function, we ideally will need to perform 

these experiments in TRPC6-deficient podocytes. Conditionally immortalised podocytes will 

be required as primary podocyte cultures are notoriously difficult to obtain and maintain. 

Additionally, in vivo studies will be necessary to further confirm the interactions of the 

polymorphisms with TRPC6. A TRPC6 knockout mouse model is available and this has no 

renal phenotype (Dietrich et al. 2005; Quick et al. 2012). The TRPC6 mutation can be 

introduced by creation of a transgenic mouse and then breeding with the TRPC6 knockout 

mouse to remove the effects of the native TRPC6. Alternatively, the recently published 

method of transcription activator-like effector nucleases (TALENS) (Cade et al. 2012) may 

be used. Separate mice models with the nephrin polymorphisms will be created and then 

crossed with the mutated TRPC6 mice so as to study the effects of genetic epistasis in vivo. 
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APPENDICES 

Appendix I-1 Clinical characteristics and genotypes of selected SNPs of the recruited Chinese patients  

 
  
Patient 

no. 
  

  
Age At 

Diagnosis 
  

  
Gender 

  

  
Renal Biopsy 

Finding 
  

  
Poor 

Prognosis 
  

  
Steroid 

Resistant 
  

TRPC6 NPHS1 NPHS2 

c.-254C>G 
c.294C>T c.2289C>T c.954T>C 

(I98I) (T763T) (A318A) 

10 9.24 M MCNS No No G/G C/C C/T T/C 
11 5.74 M MCNS No Yes G/G C/C C/C T/C 
13 4.58 F FSGS Yes Yes C/G C/C C/C T/T 
14 3.91 F Not performed No No G/G C/C C/C T/C 
16 2.18 F FGS Yes No G/G C/C C/C T/C 
18 5.44 M MCNS No No G/G C/T C/T T/C 

19 2.7 F MCNS; IgM 
nephropathy No No C/C C/T C/T T/C 

20 16 F Not performed No No C/G C/T C/T T/C 
21 1.67 M FMPGN No No G/G C/C C/T T/T 
22 6.35 M Minor abnormalities No No C/G C/T C/T T/C 
24 1.7 M Not performed No No G/G C/C C/C T/T 
25 2 F Not performed No No C/G C/T C/T T/C 
26 2 M Not performed No No G/G C/T C/T C/C 
27 14.19 F FMPGN No Yes G/G C/C C/T T/C 
28 4 F Not performed No No G/G C/C C/T T/C 
32 1.83 F FMPGN No No C/C C/T C/T T/C 
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Patient 

no. 
  

  
Age At 

Diagnosis 
  

  
Gender 

  

  
Renal Biopsy 

Finding 
  

  
Poor 

Prognosis 
  

  
Steroid 

Resistant 
  

TRPC6 NPHS1 NPHS2 

c.-254C>G 
c.294C>T c.2289C>T c.954T>C 

(I98I) (T763T) (A318A) 

33 2 F Minor glomerular 
abnormalities No No C/G T/T T/T T/C 

34 4.78 M MCNS No No C/C C/C C/C C/C 
35 16 F Minor abnormalities No No C/G C/C C/C C/C 
36 6.5 M Not performed No No C/G C/C C/C C/C 
37 6 M Not performed No No G/G C/C C/C T/C 
38 4.41 M Not performed No No C/G C/C C/C T/T 
41 1.11 M Minor abnormalities No Yes C/G C/C C/C T/T 
43 1.88 M Not performed No No G/G C/C C/C T/C 
45 3 M Not performed No No C/C C/C C/C T/C 

46 1.41 F Minor abnormalities, 
IgM nephropathy Yes No C/G C/T C/T T/C 

50 4 M Not performed No No C/G C/C C/C T/C 
51 3 M Not performed No No C/C C/C C/C C/C 
53 2 F Not performed No No G/G C/C C/C C/C 
54 3 M Not performed No No C/G C/T C/T T/C 

58 11 F 

Diffuse mesangial 
proliferative 

glomerulonephritis 
with global and 

segmental sclerosis 

Yes* Yes G/G C/T C/T T/C 

60 3.5 M Not performed No No C/C C/T C/T C/C 
62 0.9 F FMPGN No Yes C/C C/C C/C T/T 
63 3.53 F Not performed No No C/C C/C C/T C/C 
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Patient 

no. 
  

  
Age At 

Diagnosis 
  

  
Gender 

  

  
Renal Biopsy 

Finding 
  

  
Poor 

Prognosis 
  

  
Steroid 

Resistant 
  

TRPC6 NPHS1 NPHS2 

c.-254C>G 
c.294C>T c.2289C>T c.954T>C 

(I98I) (T763T) (A318A) 

64 5.77 F Not performed No No C/G C/C C/C T/C 
65 8.99 M Not performed No No C/C C/C C/T C/C 
66 5.01 F Not performed No No G/G C/C C/C C/C 
67 1.9 M FSGS Yes* Yes C/C C/C C/C C/C 
68 1.76 M FGS Yes No C/C C/C C/C T/C 
74 1 F Not performed No No G/G C/C C/C C/C 
75 1.08 F FSGS No Yes G/G C/T C/T T/T 
77   F Not performed No No C/G C/C C/C T/T 
79 6 F Not performed No No G/G C/T C/T T/C 

80 3 F 
Mesangial injury, GN 
w IgM deposits and 

global sclerosis 
No No C/G C/T C/T C/C 

81 5 M Not performed No No C/G C/C C/C T/C 
82 9.53 M FSGS No No C/C C/C C/C T/T 
83 5.47 M FGS Yes No C/G C/T C/T T/C 

84 4 F 
Glomerular minor 
abnormalities with 
mesangial IgM IF 

No No C/G C/C C/C C/C 

89 10.85 F FSGS No Yes G/G C/C C/C T/C 
90 10.81 F MCNS No No C/G C/C C/C T/T 
91 7 F FSGS Yes Yes C/G C/C C/C T/T 
93 2.61 M Not performed No No G/G C/C C/C T/C 
94 11.01 M FSGS Yes* Yes G/G C/C C/T T/C 
105 4.79 M Not performed No No C/G C/T C/T C/C 
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Patient 

no. 
  

  
Age At 

Diagnosis 
  

  
Gender 

  

  
Renal Biopsy 

Finding 
  

  
Poor 

Prognosis 
  

  
Steroid 

Resistant 
  

TRPC6 NPHS1 NPHS2 

c.-254C>G 
c.294C>T c.2289C>T c.954T>C 

(I98I) (T763T) (A318A) 

110 5 F FSGS with a cellular 
crescent Yes* Yes C/G C/T C/T C/C 

114 0 F MCNS No No G/G C/T C/T T/C 
115 2 M FGS No No C/C C/T T/T T/C 
118 12.33 F FGS  No No G/G C/T C/T T/C 
119 4.01 M Not performed No No C/C C/C C/C C/C 

121 10.8 M Glomerular minor 
abnormalities No No C/C C/C C/T T/C 

127 2 M MCNS No No C/G C/C C/C C/C 

130 7 M IgM nephropathy, 
MCNS No Yes C/C C/T C/T T/C 

132 1.02 F 
Minimal change. 

Findings compatible 
with IgM nephropathy 

No No C/G C/C C/C T/T 

137 1.96 M  FSGS Yes Yes C/G C/T C/T T/C 
139 19.01 M FSGS Yes* Yes C/G C/C C/C C/C 
140 7 M FMPGN No No G/G C/T C/T T/T 
141 2 F FGS No No C/C C/C C/C C/C 
143 4 M Not performed No No G/G C/T C/T T/T 
144 5 F Not performed No No C/G C/T C/T T/C 
148 3.27 M FSGS No No C/G C/C C/C T/T 
151 10 F FSGS Yes* Yes C/G C/C C/C T/C 
153 11.91 F Minor abnormalities No Yes G/G T/T T/T C/C 
156 2.66 M FGS No No G/G C/T C/T T/T 
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Patient 

no. 
  

  
Age At 

Diagnosis 
  

  
Gender 

  

  
Renal Biopsy 

Finding 
  

  
Poor 

Prognosis 
  

  
Steroid 

Resistant 
  

TRPC6 NPHS1 NPHS2 

c.-254C>G 
c.294C>T c.2289C>T c.954T>C 

(I98I) (T763T) (A318A) 

159 2 M Not performed No No C/G C/T C/T C/C 
160 1.61 M FMPGN No Yes C/C C/C C/C C/C 
161 2.84 F FSGS No No C/C C/C C/T T/C 
162 5.58 M Not performed No No C/G C/T C/T T/T 
164 3.59 M FSGS No Yes C/G C/T C/T T/C 

169 1.58 M 
Mesangial injury GN 
w IgM deposits and 

global sclerosis 
No Yes C/C C/C C/C C/C 

170 12.19 M FSGS Yes Yes C/G C/C C/C T/T 
172 4 M Not performed No No C/G C/C C/T T/T 
173 15.25 M MCNS No No G/G C/C C/C T/C 
174 12 F FSGS Yes* Yes G/G C/C C/C T/C 

210 11 F Diffuse Mesengial 
Hypercellularity No No C/C C/C C/C T/C 

216 8 M Not performed No No C/G C/T C/T T/T 
220 4 M Not performed No No C/C C/C C/C T/C 
223 5 F Not performed No No C/G C/T C/T C/C 
231 9 M Not performed No No C/G C/C C/C T/C 
232 3 M FSGS Yes Yes  C/T C/T T/C 
235 9 M FSGS No No  C/C C/T C/C 
236 7 M FSGS Yes No  C/C C/C T/C 
239 3 M Not performed No No  C/C C/C C/C 
244 2 M FSGS Yes* Yes  C/C C/C T/C 
252 17 M MCNS No Yes  C/C C/T T/T 
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Patient 

no. 
  

  
Age At 

Diagnosis 
  

  
Gender 

  

  
Renal Biopsy 

Finding 
  

  
Poor 

Prognosis 
  

  
Steroid 

Resistant 
  

TRPC6 NPHS1 NPHS2 

c.-254C>G 
c.294C>T c.2289C>T c.954T>C 

(I98I) (T763T) (A318A) 

253 4 M MCNS No Yes  C/T C/T T/C 
254 11 M MCNS No Yes  T/T T/T T/C 
255 11 M FMPGN No No  C/C C/C T/C 

FGS: Focal global glomerulosclerosis. FMPGN: Focal mesangial proliferative glomerulonephritis.  
FSGS: Focal segmental glomerulonephritis.GN: Glomerulonephritis. MCNS: Minimal change nephrotic syndrome.  
*Patient progressed to end-stage renal disease. **Patient is resistant to calcineurin inhibitor. 
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Appendix I-2 Normalized inward and outward currents of cells transfected with 

WT or mutant TRPC6*  

 
TRPC6 WT 

(19) 
R68W 

(18) 
R895C 

(14) 
Iinward Ioutward Iinward Ioutward Iinward Ioutward 
-245.51 397.69 -588.47 714.12 -1384.07 1534.27 
-149.19 430.54 -490.07 2417.63 -953.14 1496 
-275.65 395.16 -629.14 992.09 -1004.02 970.63 
-310.67 692.31 -697.43 1157.27 -1225.96 2073.64 
-202.4 396.77 -663.02 1226.33 -963.04 1880.83 

-403.99 790.41 -387.36 725.1 -781.13 581.84 
-636.28 742.27 -342.49 633.75 -693.17 955.53 
-293.01 651.95 -569.3 1097.83 -1165.58 1140.07 
-240.89 1074.06 -262.63 586.3 -1454.78 2202.89 
-349.4 396.41 -548.18 1430.52 -1091.93 951.35 

-298.53 681.1 -771.4 1699.52 -1583.02 960.03 
-268.69 974.36 -246.75 497.14 -817.76 2003.48 
-544.19 536.5 -687.6 726.2 -501.62 913.99 
-594.38 732.81 -576.56 1255.17 -1726.88 838.43 
-315.25 435.83 -812.69 545.3 

  -251.99 539.69 -323.4 1348.24 
  -226.82 361.83 -678.16 844.81 
  -277.09 911.87 -460.67 1251.92 
  -373.08 693.74         

*: The recording protocol used was voltage-ramp 
The numbers in the brackets are the cell numbers recorded. 
 Iinward:  the peak of inward current; Ioutward: the peak of outward current. 
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Appendix I-3 Normalized current changes of cells transfected with TRPC6 and/or 

NPHS1* 

 
TRPC6 WT WT R68W R68W 

NPHS1 - WT - WT 

 
31.53 8.94 32.77 15.49 

 
21.68 15.01 47.45 36.98 

 
55.49 17.05 64.3 12.15 

 
50.54 27.51 29.23 16.55 

 
19.77 16.81 52.93 32.7 

 
35.97 15.48 65.4 25.72 

 
28.13 11.07 50.02 45.8 

 
20.75 22.55 45.51 32.29 

 
54.19 31.69 

 
22.81 

  
54.13 

 
32.54 

  
19.32 

 
35.58 

    
47.94 

    
29.83 

    
30.9 

    
20.28 

    
46.4 

*: Current changes are the differences before and after activation of TRPC6 channels by 
CCH. The protocol used for this cotransfection and the following cotransfections was 
gap-free. 
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Appendix I-4 Normalized current changes for the measurement of the effects of 

NPHS1 SNPs on TRPC6 

  
TRPC6 WT WT WT R68W R68W R68W R68W 

NPHS1 WT 294C>T 2289C>T WT 294C>T 2289C>T 

294C>T 
+ 

2289C>T 

 
8.94 15.07 29.83 22.35 51.93 50.44 107.39 

 
15.01 17.41 25.26 52.28 53.58 53.9 44.82 

 
17.05 29.65 35.51 28.74 53.28 25.85 42.9 

 
27.51 37.5 31.77 24.9 68.48 50.53 41.36 

 
16.81 68.67 34.98 41.66 55.28 77.35 47.08 

 
15.48 34.61 48.68 21.67 38.74 22.7 26.4 

 
11.07 49.09 32.39 40.55 84.55 55.13 57.03 

 
22.55 64.52 31.54 27.17 43 55.35 33.31 

 
31.69 24.31 24.21 29.71 31.99 29.44 80.59 

 
54.13 38.86 14.87 24.92 30.17 22.66 43.25 

 
19.32 21.59 23.94 26.87 33.5 57.72 40.4 

 
23.73 

 
15.45 71.39 47.81 46.25 51.93 

 
26.59 

 
30.96 29.42 42.07 21.03 43.68 

 
32.8 

 
29.99 55.12 35.28 

 
38.9 

 
22.46 

   
28.07 

 
61.72 

 
21.89 

   
51.28 

  
 

22.66 
      

 
14.83 

      
 

23.73 
        26.59             
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Appendix I-5 Normalized current changes for the measurement of the effects of 

NPHS2 SNPs on TRPC6 

 
TRPC6 WT WT WT R68W R68W 
NPHS2 - WT 954T>C WT 954T>C 

 
31.53  18.30  13.77  18.53  39.53  

 
21.68  24.57  23.14  17.49  23.12  

 
19.77  21.59  16.04  13.48  16.35  

 
35.97  25.43  16.65  20.88  14.01  

 
28.13  21.51  15.30  39.15  22.89  

 
20.75  13.88  17.53  29.42  15.94  

 
15.78  16.04  16.73  21.17  15.14  

 
15.82  11.64  18.35  27.13  17.48  

 
16.96  9.72  21.78  25.77  19.78  

 
17.13  8.16  19.19  

 
19.23  

 
14.90  10.16  15.94  

 
20.73  

 
18.49  8.76  

  
27.52  

  23.53  6.72      32.15  
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Appendix I-6 Normalized current changes of selected index family members* 

 
Control III.3 II.3/5 II.2 I.1/III.4 III.3 II.4/III.2 

8.94 28.52 26.79 22.35 30.28 36.32 107.39 
15.01 11.95 19.96 52.28 65.5 49.79 44.82 
17.05 35.77 25.36 28.74 23.94 66.19 42.9 
27.51 27.07 16.31 24.9 28.9 62.85 41.36 
16.81 22.38 46.2 41.66 54.51 33.93 47.08 
15.48 40.53 25.3 21.67 73.49 23.68 26.4 
11.07 22.47 24.7 40.55 61.67 78.28 57.03 
22.55 17.19 22.65 27.17 60.94 44.01 33.31 
31.69 33.3 25.71 29.71 38.71 31.08 80.59 
54.13 29.17 30.87 24.92 23.74 62.57 43.25 
19.32 

  
26.87 32.66 43.06 40.4 

23.73 
  

71.39 41.61 68.74 51.93 
26.59 

  
29.42 29.02 42.53 43.68 

32.8 
  

55.12 45.97 31.47 38.9 
22.46 

   
42.59 55.53 61.72 

21.89 
   

45.61 38 
 22.66 

    
28.46 

 14.83 
    

34.68 
 23.73 

      26.59             
*:The genotypes of TRPC6 and NPHS1 in the selected index patient family members 
were represented in HEK-M1 cells by combining equal amount of NPHS1 cDNA with 
different NPHS1 variations. For example, to achieve the genotype of patient III.3, who 
had proteinuria and had homozygous NPHS2 c.294TT and heterozygous c.2289CT, one 
set of NPHS1 cDNA with single homozygous c.294TT and another set with double 
homozygous c.294TT and c.2289TT were combined. Currents were then recorded by 
cotransfection of WT or mutant TRPC6 and this combined NPHS1 cDNA. 
 
 
  



 
 

151 
 

Appendix I-7 Normalized band densities of nephrin expression and TRPC6 surface 

expression 

 
 
 

 
Gene variations Band densities 

Nephrin 
expression* 

WT 0.86 1.22 1.25 0.93 
c.294C>T - 0.61 0.40 0.70 
c.2289C>T 0.72 0.95 0.70 0.95 

double SNPs# 0.45 0.32 0.41 0.74 

TRPC6 
surface 

expression^ 

negative ctrl 0.01 0.04 0.10 
 WT 1.00 1.00 1.00 
 R68W 2.96 1.83 3.14 
 P112Q 2.99 3.81 - 
  

*: The band densities were normalized to GFP 
^: TRPC6 surface band densities were normalized to total protein extracted. 
#: double SNPs means that the nephrin cDNA contains two homozygous c.294C>T and 
c.2289C>T SNPs. 
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Appendix I-8 Sample trace of real-time PCR of nephrin before and after 

stimulation with actinomycin D 

 

  
 
 

Negative control 

Before stimulation 

After stimulation 

c.294C>T 
WT 

Double SNPs c.2289C>T 
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Appendix I-9 Raw data of real-time PCR of nephrin and analysis 

 
 
Batches Stimulations Nephrin  

variations 
GAPDH Nephrin ΔCt ΔΔCt  

(after-before) 
2^(-ΔΔCt) 

1 

Before stimulation WT 14.65 10.87 -3.78 0 1.0000 
294 14.84 10.56 -4.28 0 1.0000 
2289 14.89 9.99 -4.9 0 1.0000 
double SNPs 15.05 9.11 -5.94 0 1.0000 

after stimulation WT 15.23 13.94 -1.29 2.49 0.1780 
294 15.38 15.49 0.11 4.39 0.0477 
2289 15.26 12.63 -2.63 2.27 0.2073 
double SNP 15.2 13.16 -2.04 3.9 0.0670 

2 

Before stimulation WT 14.76 9.87 -4.89 0 1.0000 
294 14.76 9.97 -4.79 0 1.0000 
2289 14.63 9.71 -4.92 0 1.0000 
double SNP 14.74 9.69 -5.05 0 1.0000 

after stimulation WT 15.08 12.86 -2.22 2.67 0.1571 
294 16.49 21.00 4.51 9.30 0.0016 
2289 16.41 19.89 3.48 8.40 0.0030 
double SNP 15.73 19.37 3.64 8.69 0.0024 

3 

Before stimulation WT 15.03 11.32 -3.71 0 1.0000 
294 14.88 9.22 -5.66 0 1.0000 
2289 14.94 9.12 -5.82 0 1.0000 
double SNP 14.96 9.09 -5.87 0 1.0000 

after stimulation WT 15.06 13.28 -1.78 1.93 0.2624 
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Batches Stimulations Nephrin  
variations 

GAPDH Nephrin ΔCt ΔΔCt  
(after-before) 

2^(-ΔΔCt) 

  294 15.49 17.48 1.99 7.65 0.0050 
2289 14.93 13.61 -1.32 4.50 0.0442 
double SNP 15.52 12.73 -2.79 3.08 0.1183 

4 

Before stimulation WT 15.03 10.47 -4.56 0 1.0000 
294 14.95 10.2 -4.75 0 1.0000 
2289 14.91 10.26 -4.65 0 1.0000 
double SNP 14.83 10.05 -4.78 0 1.0000 

after stimulation 
  

WT 14.92 13.44 -1.48 3.08 0.1183 
294 15.81 19.17 3.36 8.11 0.0036 
2289 15.48 18.70 3.22 7.87 0.0043 
double SNP 15.55 16.85 1.30 6.08 0.0148 
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Appendix II-1 Sodium acetate-ethanol precipitation of DNA after cycle sequencing  

 

Description: 

The extension products were precipitated and purified by an ethanol/sodium acetate 

precipitation procedure. 

 

Procedures: 

1. For each sequencing reaction, prepare a 1.5 mL microcentrifuge tube containing 

2 μl of 3 M sodium acetate (NaOAc), pH 4.6 and 50 μl of 95% ethanol. 

2. Pipette the entire contents of each extension reaction into a tube of sodium 

acetate/ethanol mixture. Mix thoroughly. 

3. Vortex the tubes and place on ice for 10 minutes to precipitate the extension 

products. 

4. Spin the tubes in a microcentrifuge for 20 minutes at 13000 rpm. 

5. Carefully aspirate the supernatant with a pipette and discard. 

6. Rinse the pellet with 250 μl of 70% ethanol. 

7. Spin for five minutes in a microcentrifuge at 13000 rpm. 

8. Carefully aspirate the supernatant and discard. 

9. Dry the pellet (but not over-dry). 

(Reference: PE Applied Biosystems. ABI PrismTM BigDye® v3.1 cycle sequencing kit 

instruction manual)  
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Appendix II-2 First strand cDNA synthesis using SuperScript™ III Reverse 

Transcriptase 

 
Description: 

SuperScript™ III Reverse Transcriptase is an engineered version of M-MLV RT with 

reduced RNase H activity and increased thermal stability. The enzyme can be used to 

synthesize first-strand cDNA at temperatures up to 55°C, providing increased 

specificity, higher yields of cDNA, and more fulllength product than other reverse 

transcriptases. 

 

Procedures: 

1. Add the following components to a nuclease-free microcentrifuge tube:  

oligo(dT)20 (50 µM)        1 µL 

total RNA                          1µg 

10 mM dNTP Mix             1 µL  

Sterile, distilled water to  13 µL  

2. Heat mixture to 65°C for 5 minutes and incubate on ice for at least 1 minute. 

3. Collect the contents of the tube by brief centrifugation and add:  

5X First-Strand Buffer       4 µL 

0.1 M DTT                         1 µL 

RNaseOUT™ Recombinant RNase Inhibitor 1 µL 

SuperScript™ III RT (200 units/µl)  1 µL 

4. Mix by pipetting gently up and down.  

5. Incubate at 50°C for 30–60 minutes.  

6. Inactivate the reaction by heating at 70°C for 15 minutes. 



 
 

157 
 

7. Add 1 µL (2 units) of E. coli RNase H and incubate at 37°C for 20 minutes to 

remove RNA complementary to the cDNA. The cDNA can thenbe used as a 

template for amplification in PCR. 

(Reference: Invitrogen SuperScript™ III Reverse Transcriptase handbook.)  
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Appendix II-3   Gel extraction and purification of DNA 

 

Description: 

Gel extraction and purification of DNA was carried out using the Qiagen QIAquick gel 

extraction kit. Protocol of this kit is designed to extract and purify DNA of 70 bp to 10 

kb from standard or low-melt agarose gels in TBE buffer. Up to 400 mg agarose can be 

processed per spin column. 

 

Procedures: 

1. Excise the DNA fragment from the agarose gel with a clean, sharp scalpel with 

the aid of a UV illuminator and weigh the gel slice. 

2. Add 3 volumes of buffer QG to 1 volume of gel. 

3. Incubate at 50oC for 10 minutes. Mix by vortexing the tube every 2-3 minutes 

during the incubation until the gel slice has completely dissolved. 

4. Add 1 gel volume of isopropanol to the sample and mix. 

5. Place a QIAquick spin column in a 2 mL collection tube. 

6. To bind DNA, apply the sample to the QIAquick column, and centrifuge for 1 

minute. 

7. Discard flow-through and place QIAquick column back in the same collection 

tube. 

8. Add 0.5 mL of buffer QG to QIAquick column and centrifuge for 1 minute. 

Discard flow-through. 

9. To wash, add 0.75 mL of buffer PE to QIAquick column and centrifuge for 1 

minute. 
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10. Discard flow-through and centrifuge the QIAquick column for an additional 1 

minute at ≥ 10000 x g or 13000 rpm. 

11. Place the QIAquick column into a clean 1.5 mL microcentrifuge tube. 

12. To elute DNA, add 50 μl of buffer EB (10 mM Tris-Cl, pH 8.5) or ddH2O to the 

centre of the QIAquick membrane and centrifuge the column for 1 minute at 

maximum speed.  

(Reference: Qiagen QIAquick® spin handbook.)  
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Appendix II-4 DNA Ligation and Transformation into E. coli 

 

Description: 

T4 DNA ligase (NEB) Catalyzes the formation of a phosphodiester bond between 

juxtaposed 5' phosphate and 3' hydroxyl termini in duplex DNA or RNA. This enzyme 

will join blunt end and cohesive end termini as well as repair single stranded nicks in 

duplex DNA, RNA or DNA/RNA hybrids. One Shot® TOP10 Chemically Competent 

E. coli (Invitrogen) are provided at a high transformation efficiency of 1 x 109 cfu/μg 

supercoiled DNA and are ideal for high-efficiency cloning and plasmid propagation.  

 

Procedures: 

  

1. 10ng of the gel-purified desired PCR fragment (genes of interest) is ligated with 

commercial vector. The insert to vector molar ratio is 1:3 to 1:5. The DNA 

ligase reaction is set up in the following mixture: 

Purified insert 10 ng 

Vector According to their molar ratio 

Ligase 10x buffer 1 μL 

T4 DNA ligase (NEB ) 1 μL 

Nuclease-free water to final volume of  10 μL 

 

2. The ligation mixture is incubated at room temperature for 1-2 hours or 4°C for 

overnight.  

3. Subsequently, 10 μL of the ligation mixture is added to one vial of One Shot® 

Chemically Competent TOP10 E. coli (Invitrogen) and incubated on ice for 30 

minutes.  
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4. The cells were then subjected to heat shock at 42°C for 30 seconds and 

incubated on ice for 5 minutes.  

5. Add 250 μl of SOC medium to the transformed E. coli and incubate for 1 hour 

at 37oC with shaking at 230 rpm.  

6. Spread 100 μl of the incubation mixture onto a LB (Luria-Bertani) plate 

containing the appropriate selective antibiotics.  

7. Incubate the LB plates at 37oC overnight. 

8. Single colonies are selected the next day and incubated overnight in 2mL of LB 

medium with antibiotics at 37oC with agitation at 230 rpm. Plasmid DNA was 

then extracted using QIAprep Spin Miniprep kit (Qiagen).   
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Appendix II-5 Extraction and purification of plasmid DNA using Qiagen QIAprep 

Spin Miniprep kit  

 

Description: 

Small scale extraction and purification of plasmid DNA are carried out using the 

QIAprep Spin Miniprep kit from Qiagen). The QIAprep miniprep procedure is based on 

alkaline lysis of bacterial cells followed by adsorption of DNA onto silica in the 

presence of high salt. The procedures consist of three basic steps: preparation and 

clearing of a bacterial lysate, adsorption of DNA onto the QIAprep membrane, washing 

and elution of plasmid DNA. The last 2 basic steps are performed on a spin column.  

 

Procedures: 

1. Centrifuge overnight bacterial culture at 3500 rpm for 10 minutes. 

2. Resuspend pelleted bacterial cells in 250 μL of Buffer P1 and transfer to a 

microcentrifuge tube. (Ensure that Rnase A has been added to Buffer P1. No 

cell clumps should be visible after resuspension of the pellet.) 

3. Add 250 μL of Buffer P2 and gently invert the tube 4-6 times to mix. (Mix 

gently by inverting the tube. Do not vortex, as this will result in shearing of 

genomic DNA. If necessary, continue inverting the tube until the solution 

becomes viscous and slightly clear. Do not allow the lysis reaction to proceed 

for more than 5 minutes.) 

4. Add 350 μL of Buffer N3 and invert the tube immediately but gently 4-6 times. 

(To avoid localized precipitation, mix the solution gently but thoroughly, 

immediately after addition of Buffer N3. The solution should become cloudy.) 
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5. Centrifuge for 10 minutes. (A compact white pellet will form.) During 

centrifugation, place a QIAprep spin column in a 2 mL collection tube. 

6. Apply the supernatants from step 4 to the QIAprep column by decanting or 

pipetting. 

7. Centrifuge 30-60 seconds. Discard the flow-through. 

8. (Optional): Wash QIAprep spin column by adding 0.5 mL of Buffer PB and 

centrifuging 30-60 seconds. Discard the flow-through. This step is necessary to 

remove trace nuclease activity when using endA+ strains such as the JM series, 

HB101 and its derivatives, or any wild-type strain, which have high levels of 

nuclease activity or high carbohydrate content. Host strains such as XL-1 Blue 

and DH5αTM do not require this additional wash step. 

9. Wash QIAprep spin column by adding 0.75 mL of Buffer PE and centrifuging 

30-60 seconds. 

10. Discard the flow-through, and centrifuge for an additional 1 minute to remove 

residual wash buffer. 

11. Place QIAprep column in a clean 1.5 mL microcentrifuge tube. To elute DNA, 

add 50 μL of Buffer EB (10 mM Tris-Cl, pH 8.5) or H2O to the center of each 

QIAprep column, let stand for 1 minute, and centrifuge for 1 minute. 

(Reference: QIAprep Miniprep Handbook July 1999 page 18-19)  
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Appendix II-6 Extraction and purification of plasmid DNA using QIAGEN 

Plasmid Midi kit  

 

Description: 

QIAGEN plasmid extraction and purification are based on a modified alkaline lysis 

procedure, followed by binding of plasmid DNA to QIAGEN resin under appropriate 

low-salt and pH conditions. RNA, proteins, dyes, and low-molecular–weight impurities 

are removed by a medium-salt wash. Plasmid DNA is eluted in a high-salt buffer and 

then concentrated and desalted by isopropanol precipitation. 

 

Procedures: 

1. Harvest bacteria by centrifugation at 6000 rpm for 15 minutes at 4oC. 

2. Resuspend the bacterial pellet in 8 mL Buffer P1. 

3. Add 8 mL Buffer P2, mix thoroughly by vigorously inverting the sealed tube 4–

6 times, and incubate at room temperature (15–25°C) for 5 minutes. 

4. Add 8 mL of chilled Buffer P3, mix immediately and thoroughly by vigorously 

inverting 4–6 times, and incubate on ice for 20 minutes. 

5. Centrifuge at ≥20,000 x g for 30 minutes at 4°C. Remove supernatant 

containing plasmid DNA promptly. 

6. Centrifuge the supernatant again at ≥20,000 x g for 15 minutes at 4°C. Remove 

supernatant containing plasmid DNA promptly. 

7. Equilibrate a QIAGEN-tip 100 by applying 10 mL Buffer QBT, and allow the 

column to empty by gravity flow. 

8. Apply the supernatant from step 6 to the QIAGEN-tip and allow it to enter the 

resin by gravity flow. 
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9. Wash the QIAGEN-tip with 2 x 10 mL Buffer QC. 

10. Elute DNA with 5 mL Buffer QF. 

11. Precipitate DNA by adding 3.5 mL (0.7 volumes) room-temperature 

isopropanol to the eluted DNA. Mix and centrifuge immediately at ≥15,000 x g 

for 30 minutes at 4°C. Carefully decant the supernatant. 

12. Wash DNA pellet with  2 mL of room-temperature 70% ethanol, and centrifuge 

at ≥15,000 x g for 10 minutes. Carefully decant the supernatant without 

disturbing the pellet. 

13. Air-dry the pellet for 5–10minutes, and redissolve the DNA in a suitable volume 

of buffer (e.g., TE buffer, pH 8.0, or 10 mM Tris·Cl, pH 8.5). 

 (Reference: QIAGEN® Plasmid Purification Handbook April 2012 page 17-21)  
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Appendix II-7 QuikChange Site-Directed Mutagenesis Kit 

 

Description: 

The QuikChange site-directed mutagenesis kit is used to make point mutations, switch 

amino acids, and delete or insert single or multiple amino acids. This rapid four-step 

procedure generates mutants with greater than 80% efficiency.  

 

Procedures: 

1. Design forward and reverse mutagenic primers according to the guidelines. 1) 

Both primers must contain the desired mutation and anneal to the same 

sequence on opposite strands of the plasmid. 2) Primers should be between 25 

and 45 bases in length, with a melting temperature (Tm) of ≥78°C. 3) The 

desired mutation (deletion or insertion) should be in the middle of the primer 

with ~10–15 bases of correct sequence on both sides. 4) The primers optimally 

should have a minimum GC content of 40% and should terminate in one or 

more C or G bases. 

2. Prepare the mutant Strand Synthesis reaction using PfuTurbo DNA polymerase as 

follows: 

5 μL of 10× reaction buffer 

X μL (5–50 ng) of dsDNA template 

X μL (125 ng) of oligonucleotide primer #1 

X μL (125 ng) of oligonucleotide primer #2 

1 μL of dNTP mix 

ddH2O to a final volume of 50 μL 

Then add 

1 μL of PfuTurbo DNA polymerase (2.5 U/μL) 
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And perform amplification using the following Cycling Parameters: 

Segment Cycles Temperature Time 

1 1 950C 30 seconds 

2 16 
950C 30 seconds 
550C 1 minute 
680C 1 minute/kb of plasmid length 

 

3. Take 10 μL of the PCR production to check by electrophoresis.  

4.  Add 1 μL of the Dpn I restriction enzyme (10 U/μl) directly to the 

amplification reaction (40 μL) below the mineral oil overlay using a small, 

pointed pipet tip.  

5. Gently and thoroughly mix each reaction mixture by pipetting the solution up 

and down several times. Spin down the reaction mixtures in a microcentrifuge 

for 1 minute and immediately incubate each reaction at 37°C for 1 hour to 

digest the parental (i.e., the nonmutated) supercoiled dsDNA. 

6. Transfer 1 μL of the Dpn I-treated DNA to separate aliquots of the 

supercompetent cells followed by heat-shock transformation. 

(Reference: QuikChange Site-Directed Mutagenesis Kit Instruction Manual, 

200518-12)  
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Appendix II-8   DNA transfection using calcium phosphate precipitation method 

 

Description: 

The Calcium Phosphate Transfection method for introducing DNA into mammalian 

cells is based on forming a calcium phosphate-DNA precipitate. Calcium phosphate 

facilitates the binding of the DNA to the cell surface. DNA then enters the cell by 

endocytosis. The procedure is routinely used to transfect a wide variety of cell types for 

transient expression or for producing stable transformants.  

 

Procedures: 

(1) One day before transfection (Day 0), split HEK293 cells into 35mm petri dishes 

with 2 mL DMEM growth medium containing 10% FBS and 1% pen-strep. 

(2) The next day (Day 1), aspirate all growth medium from Petri dish with cells, 

replace with new DMEM with 10% FBS. Do not include antibiotics in the 

medium.  

(3) Pipette 75 µl 1M CaCl2 in 1.5mL tube.  

(4) Add 1 ug plasmid DNA. Mix gently. 

(5) Add 75 µL 2× 2X Hepes Buffered Saline (HBS) (Appendix III) drop by 

drop. Mix gently.  

(6) Incubate the transfection complexes 20 minutes. 

(7) Add transfection complexes into the Petri dish drop by drop. Mix gently by 

rocking the dish back and forth. 

(8) 4-6 hours later, remove and discard the medium containing calcium phosphate-

DNA complexes and replace it with 2 mL of growth medium without pen-strep. 
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Incubate the cells for 24-48 hours at 370C in a humidified 5% CO2 until they are 

ready for further analysis (for example, patch clamp recording).   
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Appendix II-9 Western blot 

 

Description: 

Western blot is an extremely useful analytical technique used to detect specific proteins 

in cell lysate, tissue homogenate or extract. It uses gel electrophoresis to separate native 

or denatured proteins. The proteins are then transferred to a membrane (typically 

nitrocellulose or PVDF), where they are detected using antibodies specific to the target 

protein. 

 

Procedures: 

A. Preparation of polyacrylamide gel 

1. Clean the spacer glass plate, short glass plate and combs with 70% ethanol 

and allow them to dry completely. Assemble the gel preparation glass plates 

as instructed (Figure 1). 

2. Prepare the resolving gel mixture according to the table below. 

3. Pipette the resolving gel mixture immediately into the space formed by the 

glass plates. 

4. Add 200 µL of distilled water slowly along the side of the glass plate to 

avoid exposure to air and create a smooth edge. 

5. Allow the gel to polymerize for 30 minutes at room temperature.  

6. Prepare the stacking gel mixture according to the table below. 

7. When the polymerization of the resolving gel is completed, remove the 

water. Use Kim wipes to absorb. Take care not to touch the surface of the 

resolving gel. 

8. Pipette the stacking gel mixture immediately onto the resolving gel. 
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9. Carefully place a comb between the glass plates. Do not allow bubbles 

trapped between the comb and the stacking gel. 

10. Allow the stacking gel to polymerize for at least 15 minutes. 

11. Remove the comb carefully after the stacking gel is set. 
 

 

 
 
 
 
 
 
 
 

 

 

 

Figure 1 Gel cassette preparation and assembly. A. Place a Short Plate on top of the 
Spacer Plate. B. Slide the two plates into the Casting Frame, keeping the Short Plate 
facing front. Insure both plates are flush at the bottom on a level surface. C. Lock the 
pressure cams to secure the glass plates. D. Engage the spring loaded lever and place the 
gel cassette assembly on the gray casting stand gasket. Insure the horizontal ribs on the 
back of the Casting Frame are flush against the face of the Casting Stand and the glass 

              
            

 

1 2 

3 4 
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Table 1 Prepare resolving (10%) and stacking gel (5%). 

 

B. Sample preparation and electrophoresis 

1. Mini Protean 3 Electrophoresis Assembly (Figure 2). 

2. Dilute protein samples (20 μg) 1:1 with Laemmli Sample buffer (add 50 µl 

of β-mercaptoethanol to 950 µl of Laemmli Sample Buffer).  

3. Heat the samples at 95oC for 20 minutes in a pre-heated heating block. Put 

back into ice. 

4. Carefully load the sample into the wells of the polyacrylamide gel. Include 

protein marker if necessary. 

5. Run the gel in 1X SDS/glycine electrophoresis buffer at 100V for 2 hours or 

until the dye front reaches the bottom of the gel. 

Components Resolving gel (10%) Stacking gel (5%) 
30% Acrlymide / Bis  Solution                    1.67 mL 0.42 mL 
1.5M Tris pH 8.8                  1.25 mL  
0.5M Tris pH 6.8                        0.31 mL 
Water                                 1.98 mL 1.70 mL 
10% SDS                             50 μL 25  μL 
10% Ammonium persulfate   50 μL 25  μL 
TEMED                                2  μL 2.5  μL 
Total volume 5 mL 2.4825 mL 
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C. Gel Removal 
1. After electrophoresis is completed, pour out the running buffer and open the 

cams of the clamping frame. Pull out the electrode assembly out of the 

clamping frame and remove the gel cassette sandwiches.  

2. Using the gel releaser, pry the glass plates apart. Run the gel releaser on 

each side of the spacer plate to separate the gel form the spacer plate.  

3. Remove the gel by floating it off the glass plate by inverting the plate and 

gel onto a filter paper that was soaked in transfer buffer. 

D. Assembly of gel/blot transfer  
 

 

 

 

 

Figure 2 Gel cassette preparation and assembly. A. Remove the Gel Cassette 
Sandwich from the Casting Frame. B. Place the Gel Cassette Sandwich into the 
Electrode Assembly with the Short Plate facing inward. C. Slide Gel Cassette 
Sandwiches and Electrode Assembly into the clamping frame. D. Press down the 
Electrode Assembly while closing the two cam levers of the Clamping Frame. E. Lower 
the Inner Chamber into the Mini Tank. (Adapted from MINI-PROTEAN® 3 
Electrophoresis Module Assembly) 

A B C 

D E 
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1. Using forceps overlay a piece of membrane (nitrocellulose / PVDF) onto the 

gel taking care not to trap any bubbles. Ensure the membrane get wet 

completely. 

2. Overlay membrane with a piece of filter paper and using a roller, run it 

gently across the filter paper top to remove any bubbles that are trapped 

inside the sandwich. 

3. Place a cassette with the black side down on a clean surface. 

4. Place a fiber pad (pre-soaked in transfer buffer) onto the black side of the 

cassette. 

5. Place the gel membrane sandwich (from step 7.6.2) onto the fiber pad. 

6. Place another fiber pad onto of the sandwich and close the cassette firmly 

being careful not to move the gel membrane sandwich. 

7. Lock the close cassette with the white latch. Slide the cassette into the 

electrode module with the black side of the cassette facing the red side on 

module. 

8. Place the electrode module into a blotting tank and fill the tank up with 

chilled transfer buffer. 

9. Place a stirrer bar into the tank and placed blotting tank onto a stirrer plate. 

Set the speed at high so as to maintain even buffer temperature and ion 

distribution in the tank. 

10. Put the lid on, plug cables to the power supply and run the blot. Transfer at 

100V for 2 hours or 30V overnight at 4oC with stirring. 

11. Refer to Figure 3 for setup diagram. 
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E. Blot Development 

1. Stain the membrane with Ponceus S solution for 5 minutes to detect 

transferred protein on the membrane. Also mark the individual lanes. 

2. De-stain the membrane in water for 5 minutes.  

3. Wash the membrane in TBS for 5 minutes. 

4. Block the membrane in 5% milk for 1 hour with gentle rocking on the labnet 

rocker. 

5. After blocking, wash the membrane 3X in TBS-T, 10 minutes per wash. 

6. Dilute primary antibodies in TBS with 0.5 % BSA. Refer to table 1 in 

Annex A for working dilutions. 

7. Add primary antibody to membrane and allow to rock for 30 minutes. Then 

Incubate membrane overnight at 4oC. 

8. Wash membrane 2 X in TBS-T, 10 minutes per wash. 
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9. Wash membrane 1X with TBS before adding in secondary antibody. 

10. Dilute the secondary antibody in 2.5% milk and add to the membrane. Refer 

to table 2 in Annex A for working dilutions. 

11. Incubate the membrane with secondary antibody for 1 hour  with gentle 

rocking. 

12. After secondary antibody incubation, wash membrane 6X with TBS-T, 10 

minutes per wash.  

13. Wash membrane 1X in TBS for 10 minutes.  

14. Transfer membrane to 5 ml of Luminata™ Forte Western HRP Substrate 

and incubate for 3-5 minutes in the dark. 

15. Remove membrane from HRP substrate, drain off excess solution. Cover 

membrane in clear plastic sheet protector. 

16. Expose membrane to X-ray film with the required exposure timing.  

 
(Reference:  Bio-Rad Mini Protean 3 Instruction Manual 
 
Mini Trans-Blot Electrophoretic Transfer Cell Instruction Manual)  
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Appendix II-10   Total RNA extraction from HEK cells by TRIzol® reagent 

 

Description: 

Total RNA from transfected or untransfected HEK cells was extracted using TRIzol® 

reagent (Invitrogen). During sample homogenization or lysis, TRIzol® reagent 

maintains the integrity of the RNA, while disrupting cells and dissolving cell 

components. Addition of chloroform followed by centrifugation separates the solution 

into an aqueous phase and an organic phase. RNA remains exclusively in the aqueous 

phase. After transfer of the aqueous phase, the RNA is recovered by precipitation with 

isopropyl alcohol. Specifically, the following steps were carried out for 6-well multiple 

well microplate. 

 

Procedures: 

1. Cells are washed once with cold 1 X PBS. Lyse cells directly in the wells by 

adding 0.5 mL of TRIzol® reagent, and passing the cell lysate several times 

through a pipette. The amount of TRIzol® reagent added is based on the area of 

the culture dish (1 mL per 10 cm2) and not on the number of cells present. An 

insufficient amount of TRIzol® reagent may result in contamination of the 

isolated RNA with DNA. 

2. Transfer cell lysis to DEPC-treated 1.5mL tubes and store in -80oC freezer if not 

immediately isolate total RNA. 

3. Before isolation, take out samples that were suspended in TRIzol reagent from  

-80oC freezer. Allow them to thaw to room temperature. 

4. Add 100 µL of chloroform. Cap and shake vigorously for 15 seconds. Incubate 

tubes for 5 minutes at room temperature. 
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5. Centrifuge samples at a 12,000g (7500 rpm) for 15 minutes at 4oC. 

 

6. After centrifugation, samples should separate into a lower red phase (phenol-

chloroform), a white interphase (DNA), and a clear top phase. RNA will be 

contained in the colorless aqueous phase.  

7. Transfer this aqueous phase to a new DEPC-tube. Add 250µl of isopropyl 

alcohol (to precipitate the RNA). Mix well and incubate at room temp for 10 

minutes. 

8. Centrifuge samples at 12,000g (7500 rpm) for 10 minutes at 4oC, to pellet the 

precipitated RNA. 

9. Carefully remove supernatant and add 0.5 mL of 75% cold ethanol (diluted with 

DEPC water) to wash the RNA. 

10. Centrifuge samples at 7500g (5800 rpm) for 5 minutes at 4oC. 

11. Carefully remove supernatant with a pipette and air dry pellet for 5-10 minutes. 

Do not allow pellet to dry completely or else the RNA will be less soluble. 

12. Re-suspend RNA in 35 µL nuclease free water and store at -80oC.  
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Appendix II-11 Real-time PCR reaction on LightCycler® 480 

 

Description: 

Real-time PCR, also called quantitative real time polymerase chain reaction (qPCR) is 

used to amplify and simultaneously quantify a targeted DNA molecule through 

measuring the Cp (Crossing point) value of the PCR reaction. Cp value is measured 

during the exponential growth phase of a typical PCR reaction and is directly related to 

the amount of target in the sample.  

Roche LightCycler supports two fluorescence-based methods for the detection of 

amplification products: DNA binding dye SYBR Green I and hybridization probes. The 

fluorescent dye SYBR Green I is the simplest and cheapest chemistry. It binds to the 

minor groove of the DNA double helix and fluoresces 1000 times brighter when bound 

than when unbound. The DNA binding results in a dramatic increase of the SYBR 

Green I molecules to emit light upon excitation. Fluorescence measurement was made 

at the end of the elongation step of every PCR cycle to monitor the increasing amount 

of amplified DNA. Therefore, comparing with traditional agarose gel electrophoresis, 

Real-time PCR need shorter time and the results are much more reliable and 

reproducible.  

 

Procedures: 

A. Real-time PCR primer design 

Designing primers is one of the most important steps of a real-time PCR 

experiment.  There are several considerations when designing real-time PCR 

primers.  The product should be short (200 to 300 bp is ideal for SYBR Green), 

https://en.wikipedia.org/wiki/DNA
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the two primers should have similar Tm, and the primers should have low or no 

self complementarity (to avoid primer dimers).  

B. Setup of real-time PCR reaction 

1. Prepare the reaction mixture for real-time PCR reaction on ice as follows: 

Reaction Mixture Stock 
concentration 

Volume for  
1 reaction 

Roche Master  X2 5 μL 
Forward Primer 10 μM 1 μL 
Reverse Primer 10 μM 1 μL 
PCR grade water  1μL 
Template  2 μL 
Total  10 μL 

 

1. Prepare (n+1) numbers of master mix reactions. Pipette 8 µl of the reaction 

mixture into each well of a FrameStar® plate.  

2. Add 2 µl of cDNA template sample.  

3. Seal the plate with a PlateMax Ultra Clear permanent heat sealing film. 

4. Centrifuge at 1000 rpm for 30 seconds. 

5. Put the plate into the LightCycler PCR machine. 

6. Run real-time PCR according to the following table. 

Steps Analysis 
mode Cycles Segment Target 

temperature 
Ramp rate 

(oC/s) 
Hold 
time 

Pre-
incubation None 1  95oC 4.4 10 

min 

Amplificat
ion 

Quantifi
cation 42 

Denaturation 95oC 4.4 5 s 

Annealing 60oC 2.2 10 s 
Extension 72oC 4.4 12s 

Melting 
curve 

analysis 

Melting 
curves 1 

Denaturation 95oC 4.4 10 s 
Annealing 58oC 2.2 15 s 

Melting 95oC  0.11 0 s 

Cooling none 1  40oC 2.2 30 s 

  

http://lifescience.kinesis.co.uk/products-page/life-science/corning-axygen-pcr-products-platemax-ultra-clear-permanent-heat-sealing-film-for-qpcr/
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Appendix III Common reagent and buffers preparation 

 
(1) LB(Luria-Bertani) Medium 

Tryptone    10g 

Yeast extract    5g 

NaCl     10g 

ddH2O     950mL 

Adjust the pH of the solution to 7.0 with NaOH and bring volume to 1 liter.  

Aotuclave at 1210C for 20minutes at 15 psi. 

 

(2) LB agar plates 

LB medium  1L 

Agar     15g 

Autoclave at 1210C for 20minutes at 15 psi. 

After autoclaving, cool to about 560C, add antibiotics (ampicillin or 

Kanamycin)  and pour into sterile petric dishes. 

Let harden, then invert and store at 40C in dark. 

 

(3) 1% agarose gel 

Nusieve 3:1 ® agarose   1g 

TBE buffer     100mL 

Heat in microwave for 2 minutes to dissolve all powder. 

Cool to 570C before casting gel. 

Store at 40C. 
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(4) 10x Phosphate buffered saline (PBS) 

NaCl     80 g 

KCl     2 g 

Na2HPO4    14.4 g 

KH2PO4    2.4 g 

Dissolve in 800 ml of double distilled water (ddH2O), adjust pH to 7.4. 

Adjust volume to 1 liter with ddH2O.  

Autoclave at 1210C for 15 minutes. 

 

(5) 1x PBS 

10x PBS stock solution  100 ml 

ddH2O     900 ml 

Sterile filter with 0.2 µm filter or autoclave if necessary. 

 

(6) 0.1% diethyl pyrocarbonate (DEPC) treated H2O 

DEPC     1mL 

ddH2O     999mL 

Shake vigorously to thoroughly mix the DEPC with solution. 

Incubate overnight, autoclave at 1210C for 15 minutes to destroy residual DEPC 

by causing hydrolysis of DEPC. 

 

(7) 75% ethanol 

Absolute ethanol   75mL 

Make up with DEPC treated water to 100mL. 
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(8) Fetal Calf Serum 

Heat inactivate at 560C for 30 minutes in a water bath. 

Aliquot into 50mL tubes. 

Store at -700C. 

 

(9) TBE buffer (5X) 

Tris base    10.8g 

Boric acid    5.5g 

0.5 M EDTA pH8.0   4mL 

Make up to 1 liter with ddH2O 

Store at room temperature.   

 

(10) Loading Dye 

Bromophenol Blue 0.25g 

Ficoll Type 400   25g 

Reconstitute with 100 mL of sterile water. 

Stir to dissolve. 

Filter with 0.45 µm membrane. 

Store at room temperature.  

 

(11) 1XHanks’ Balanced Salt solution (HBSS) 

10X HBSS(Gibco BRL, cat.#14065-056) 10 mL 

1 M Herpes     1 mL 

Sodium bicarbonate solution (7.5% w/v) 5drops  

Top up with sterile ddH2O to 100 mL. Mix well and store at 40C. 
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