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SUMMARY 

This thesis consists of two parts. In the Part I, I focus on discovery of novel anti-

aging factors from nutrients and natural products by using a high throughput assay 

based on yeast chronological aging model. Ageing population is one of the greatest 

challenges in the 21th century, and causes great economical burdens to individuals, 

family, and a country. Thus, looking for the elixir of youth is an emergency task for 

scientists. Taking advantage of the yeast chronological aging model, I developed a 

high throughput screening assay for determination of yeast chronological lifespan 

with a rapid and simple protocol, uncomplicated data analysis, and high sensitivity 

(Chapter 3).  

I next studied the relationship between nutrients and yeast lifespan. I found that 

lifespan extension by a typical glucose restriction regime was dependent on the 

nutrients in media. My findings support the notion that nutrient composition might be 

a more effective way than simple dietary restriction to optimize lifespan and biomass 

production of yeast (Chapter 4). Furthermore, restriction of methionine and/or 

increase of glutamic acid caused longevity that was not the cause of low acetic acid 

production and acidification in aging medium. Remarkably, low methionine, high 

glutamic acid and glucose restriction extended lifespan additively. Preliminary 

findings demonstrate that glutamic acid, methionine and glucose restriction prompt 

yeast longevity through distinct mechanisms (Chapter 5). 

In the discovery of anti-aging natural products, I found that cryptotanshinone can 

greatly extend yeast lifespan in a dose and the-time-of-addition dependent manner at 

nanomolar concentrations without disruption of cell growth. Cryptotanshinone 

prolongs lifespan via a nutrient-dependent regime, especially essential in amino acid 

sensing, and might be involved in the regulation of Tor1, Sch9, Gcn2 and Sod2. These 
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are highly conserved nutrient dependent longevity proteins found from yeast to 

humans (Chapter 6). In addition, glyceollin I has hormesis effect to extend yeast 

lifespan at low dose in a CR-dependent manner, while reduce lifespan and inhibit 

yeast cell proliferation at higher doses. The result indicates that glyceollin I might be 

a unique candidate of CRM (Chapter 7).  

In the Part II, I focus on discovery of enriching anti-oxidant compounds from 

legume seeds by germination or fungus-stressed germination. I firstly investigated the 

phytochemical changes in food legume seeds under germination with or without 

fungal (Rhizopus oligoporus) stress. The results indicated that legume seeds can be 

divided into four groups: rich phytoalexins and enhanced phytochemicals; low 

phytoalexins but enhanced phytochemicals; less phytochemicals under germination 

with fungus-stress; less phytochemicals under germination (Chapter 10). 

Germination increased TPC and antioxidant capacity of most seeds. Particularly in 

chickpea seeds, germination could significantly increase isoflavonoids diversity. 

Twenty-five isoflavonoids were detected and identified tentatively. Total isoflavonoid 

content of germinated chickpea was approximately 5-fold of that of germinated 

soybean (Chapter 11).  

Remarkably, the small peanuts synthesized the most number of phytoalexins 

when the sprouts are stressed by the fungus. From the LC-MSn spectral data, 45 

compounds were identified tentatively in the peanut sprouts, including 19 stilbenoids 

phytoalexins derivatives (Chapter 12). 
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Chapter 1  

INTRODUCTION 

 

1.1 Background 

Aging is a slow and very complex process, usually defined as the gradual, 

insidious, and progressive decline in structure and function of many different systems 

and tissues after the achievement of sexual maturity. Since ancient times, people have 

been interested in looking for the elixir of youth, and yet studies on genetic 

mechanisms of aging at molecular levels are relatively new and are far from being 

understood. Importantly, studies on yeast aging have had a significant impact on 

discovering the fountain of youth (Steinkraus et al. 2008; Kaeberlein 2010a; Longo et 

al. 2012). Some of the most promising longevity factors and potential anti-aging 

drugs (e.g. rapamycin and resveratrol) were first identified and characterized using 

yeast as a model organism (Howitz et al. 2003; Powers et al. 2006).  

The major challenge for aging studies is extensive time consumption in 

measuring lifespans of organisms (Mair & Dillin 2008). By comparison with other 

organisms, the single-cell budding yeast Saccharomyces cerevisiae has a much 

shorter lifespan, well-established genetics and high throughput screening assays for 

measuring lifespan, which allows researchers to conveniently study genetic 

mechanisms of aging and to discover potential genetic and environmental factors that 

influence lifespan (Kaeberlein 2010a). However, it is important to understand which 

mechanisms of aging are conserved between yeast and mammals and which are 

specific to yeast (Bishop & Guarente 2007), because the evolutionarily conserved 

progress of aging in multispecies could be considered as intrinsic biological aging. 
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Advances in aging studies have shown that the yeast aging model can enable 

discovery of the evolutionarily conserved signaling pathways on regulation of 

longevity in various organisms and mammals (Fontana et al. 2010). In addition, 

recent work has shown that nutrients, small molecules, genetic modifications and 

other factors can substantially extend lifespan of multispecies, ranging from yeast to 

mammals. 

Among these longevity factors, nutrient balance has been emerging as an 

important factor in extending lifespan. Yet, the effect of many nutrient factors on 

longevity is not well investigated. Most anti-aging studies focus on dietary restriction 

(DR) or calorie restriction (CR), the mere reduction of food intake without 

malnutrition, which has become a gold standard in aging studies. Dietary restriction 

was found to extend the average and maximum lifespan from yeast to rodents, and it 

also protects against age-related pathologies, such as diabetes, cancer, and 

cardiovascular disease in rhesus monkeys and humans (Mair & Dillin 2008; Fontana 

et al. 2010). However, studies have shown that changing the dietary components 

could eliminate lifespan extension by dietary restriction, suggesting that nutrient 

balance other than dietary restriction plays a pivotal role in regulation of longevity 

(Piper et al. 2011; Mattison et al. 2012).  

Besides the nutrient factors, small molecule natural products also show their 

potential activity in prevention of age-related diseases and promotion of healthy aging 

in humans. So far the most extensively studied natural products are resveratrol and 

rapamycin (Kaeberlein 2010b). Resveratrol is an induced phytoalexin found in red 

wine and grapes. Rapamycin, isolated from a bacterium, is a prescription medicine as 

an immunosuppressant. Both compounds target conserved longevity pathways and 
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have been proposed to act as dietary restriction mimetics to delay aging in multiple 

model organisms. 

Currently, it is commonly believed that a relatively effective and simple way to 

uncover the secrets of human longevity is focusing on studies of the genetic 

mechanism of longevity that is evolutionarily conserved in multiple organisms, from 

yeast to human, such as the sirtuin, the IGF (insulin-like growth factor)/insulin and 

the TOR (target of rapamycin) pathways. These pathways are considered as nutrient-

sensing signaling pathways in modulating the beneficial effects of nutrients. 

The biggest limitation for aging study is the large amount of time needed to 

measure lifespan of an organism. Using yeast chronological aging model could reduce 

experimental period significantly since yeast has a shorter chronological lifespan 

(CLS) relative to other model organisms. Herein, some major gaps for current aging 

studies are summarised: 

• Several assays have been developed to measure yeast CLS. Most methods are 

based on the traditional CFU (colony forming unit) plating method that 

requires a relatively large investment of time and resources, and are not 

suitable for high throughput studies.  

• Yeast is a preeminent model organism in studies of the fundamental biology of 

aging. However, nutrient composition as an important aging factor is little 

studied in yeast model, because recent studies suggested that dietary 

composition but not dietary restriction plays a key role for longevity in higher 

organisms.  

• Resveratrol and rapamycin have been proposed as relatively promising anti-

aging products. However, resveratrol cannot extend lifespan in mice and 
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rapamycin has strong side effects (see Chapter 2.4). Therefore, further 

exploration of better anti-aging candidates is needed.  

 

1.2 Objectives 

The main aim of Part I of this thesis is to explore the genetic mechanism of 

lifespan extension by nutrients and compounds using a high throughput assay in yeast 

chronological aging model. The specific objectives of Part I research were to: 

 Develop a high throughput screening assay for determination of yeast CLS 

that could be convenient and easy to set up in a typical biology research lab 

(Chapter 3).  

 Evaluate the role of pH, organic acids, and nutrients on influencing yeast CLS 

(Chapter 4, 5). 

 Study the mechanism that a specific nutrient could extend lifespan (Chapter 4, 

5). 

 Carry out large-scale screening of botanical extracts and natural products for 

their anti-aging activity and explore the conserved longevity mechanism of a 

targeted compound (Chapter 6, 7). 

 

The results of this study may have a significant impact on yeast chronological 

aging studies and aging related studies via two major contributions:  

 Provide a comprehensive result for understanding the relationship between 

nutrients and lifespan, which suggest that yeast aging model could serve as an 

excellent model for studying nutrition and aging in future.  

 Discover firstly a few novel longevity factors (nutrients and compounds) that 

could significantly extend yeast lifespan in addition to their potential longevity 
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mechanism, which may prompt further study on longevity effect in other 

higher organism models and develop anti-aging intervention based on these 

factors.  

 

Although other factors could change yeast CLS, such as genes, proteins, and 

reactive oxygen species (ROS), this research concentrates on nutrients and 

compounds that can extend lifespan by using a high throughput assay. Furthermore, 

the studies on longevity mechanism focus only on those conserved pathways from 

different species, and other than the mechanism that is specific in budding yeast. 
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Chapter 2  

LITERATURE REVIEW 

 

2.1 Aging models in budding yeast 

Studies of aging in mammals are time consuming due to their long lifespans. 

Mice and rats live 3–5 years and primates up to 40 years (Steinkraus et al. 2008). The 

use of invertebrate organisms as models is more rapid and straightforward for genetic 

and environmental manipulation. Although longevity has been studied in a number of 

organisms, most studies have employed fruit fly (Drosophila melanogaster), worm 

(Caenorhabditis elegans), or yeast (S. cerevisiae). Worms live approximately 2–3 

weeks and flies 2–3 months (Steinkraus et al. 2008). Budding yeast has a much 

shorter lifespan (chronological mean lifespan is 6–15 days), well-established genetics, 

and is suitable for high-throughput screening (Mortimer & Johnston 1959; Kennedy et 

al. 1995; Sinclair et al. 1998; Steinkraus et al. 2008).  

In the yeast model, two common aging assays have been established (Laun et al. 

2006). Replicative lifespan (RLS) of yeast aging refers to the number of cell division 

occurring in a mother cell (Sinclair 2002). Yeast replicative aging may serve as a 

suitable model for the aging of mitotic cells in multicellular eukaryotes, such as 

human stem cell populations (Zimmermann & Martens 2008). Replicative aging is 

thought to occur through the asymmetric segregation of damage to mother cells 

during yeast budding (Kaeberlein 2010a).  

CLS refers to the capability of cells to maintain viability in a growth-arrested 

state, such as stationary phase (Fabrizio & Longo 2003). Viability is calculated by the 

fraction of yeast able to re-enter the cell cycle after an extended state of quiescence 
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(Kaeberlein et al. 2007). Chronological aging has been used to model age-associated 

changes in post mitotic tissues (like neurons or skeletal muscle) of higher organisms.  

Recent studies indicated that the two distinct aging models are regulated by partly 

overlapping mechanisms. For example, decreasing glucose of the media (CR), 

affecting Ras-cAMP-PKA or TOR/Sch9 signaling and reducing oxidative damage to 

mitochondrial and cytoplasmic proteins can increase both RLS and CLS. The two 

models thus provide a unique opportunity to study and compare cellular aging 

processes of dividing and non-dividing cells. However, it is important to focus on the 

common denominators that are responsible for regulation of aging in the both models. 

In this chapter, I focus on chronological aging and review the main methods for 

determination of CLS and their advantages and key remaining issues. 

 

2.2 Methods for measuring yeast CLS 

2.2.1 Traditional colony count plating method 

The method for measuring CLS in budding yeast was first developed by Longo 

(Longo et al. 1996a, Longo 1999). In this protocol, the inoculation time point is day 0. 

Every 2-4 days, aliquots from aging culture are diluted and plated onto YPD plates. 

The cell survival is then calculated based on the number of colonies arising (CFU) on 

YPD plates within 3 days. The number of CFUs of aging culture at day 2 or 3 is 

usually considered to be the initial age-point or time point survival (defined as 100% 

survival) and CLS is based on measuring the estimated fraction of cells retaining 

viability as a function of time. CFUs are normally monitored until at least 99.9% of 

the population dies (Fabrizio & Longo 2003). There are at least three traditional 

methods to measure CLS according to the medium used. 
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Aging culture in synthetic defined medium. This is the most common method 

for monitoring survival of yeast grown and maintained in liquid synthetic defined (SD) 

medium during the entire chronological aging period (stationary phase) (Fabrizio et al. 

2001). It is a widely accepted method for studies in yeast chronological aging. The 

method is relatively time-saving due to yeast has a short lifespan in SD medium, 

usually 4-15 days depending on their genetic background. The exhausted medium 

contains many highly stressing metabolites during the stationary phase, such as 

ethanol, acetic acid, and other organic acids (Burtner et al. 2009b). A study reported 

by the Kaeberlein lab showed that nutritional metabolites in the medium contribute to 

aging. In particular, acetic acid was proposed as a key toxic factor inducing cell death 

(Burtner et al. 2009b; Kaeberlein 2010a). However, a potential artefact that could be 

observed in this model is regrowth, which might confound the explanation of survival 

data (Fabrizio & Longo 2003). The regrowth is important for adaptation to starvation 

conditions, and many wild type (WT) laboratory microorganisms have adaptive 

regrowth when usually 90-99% of the population dies. A good way to prevent any 

occurrence of regrowth is transferring aging cultures to water during stationary phase. 

Aging culture in water. The method which was firstly developed in the Longo 

lab is that yeast is first grown to the stationary phase in liquid SD medium at high 

metabolic rates for 1 to 5 days and then switched to water (Longo et al. 1996a). 

Chronological aging in water mimics the environment in the wild since yeast survive 

in a low-metabolising stationary phase under nutrient-depleted conditions, which have 

low nutritional metabolites interference and no regrowth phenomenon. However, 

yeast can survive much longer in water than yeast maintained in the SD medium, 

usually by more than 15 days, hence significantly prolonging the period of experiment 

needed for measuring the CLS (Fabrizio & Longo 2003). On the other hand, the water 
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condition is distinct to the cells of higher organisms grown in a nutrient-rich 

environment. 

Aging culture in YPD medium. The nutrient-rich YPD (1% yeast extract, 2% 

peptone and 2% glucose) medium is also chosen for chronological aging studies. The 

shape of mortality curves for yeast grown in the YPD was similar to mortality patterns 

observed in multicellular eukaryotes (Minois et al. 2009). On the other hand, pH 

values of yeast cultures grown in YPD medium are much closer to that of body fluids 

(7.1 to 8.6), which are higher than the pH of yeast cultures maintained in the SD 

medium (2 to 4). The acidification of aging cultures was reported to accelerate 

chronological and replicative aging in yeast (Murakami et al. 2012). However, yeast 

cultivated in the YPD medium was similar to that cultivated in water, in terms of 

lifespan, which result in extensive time-consumption for the lifespan determining 

experiment. Moreover, individual components in the YPD medium are undefined and 

it thus is not suitable for studies on the roles of individual nutrients (i.e. amino acids, 

nitrogen sources, vitamins, minerals, and other nutrients) in yeast lifespan regulation. 

 

2.2.2 Flow cytometry method 

Recently, an alternative approach to the CFU counts, based on propidium iodide 

(PI) staining combined with flow cytometry (PI-FCM), was proposed for the 

assessment of yeast chronological aging (Ocampo & Barrientos 2011). The PI 

staining method is commonly used for assessment of microbial viability and is based 

on the fact that PI will not diffuse into viable cells due to its plasma membrane 

impermeability. Dead cells will lose the PI membrane impermeability and therefore 

become strained. Combined with FCM, this method provides a quick, less labor-

intensive, reproducible and high-throughput quantification of yeast populations. 



11 
 

However, a later study showed that this method is highly influenced by the aging 

media. A correlation between CFU counts and PI-FCM measured cells is only 

achieved for yeast maintained in the exhausted media and not for yeast 

chronologically age in water (Pereira & Saraiva 2013). 

 

2.2.3 High throughput method based on outgrowth of aging cells  

A high throughput based method for measuring yeast CLS was firstly developed 

by the Kaeberlein group (Murakami et al. 2008). The assay applies a Bioscreen C 

MBR machine to monitor outgrowth of aging cells at each age-point, aging culture (5 

µL) is inoculated into YPD medium (145 µL) in an individual well of 100-well 

Bioscreen Honeycomb plate. It shows that this assay is faster, less labor-intensive and 

less costly than the traditional CFU plating method. The Bioscreen instrument can 

incubate a maximum of 200 wells/samples per assay at 30 °C under constant agitation, 

and the optical density (OD) at approximately 420-580 nm of each well is recorded in 

intervals of 30 minutes for 24 hours. It means a maximum throughput of 1400 

samples per week can be measured by the instrument. Outgrowth curves for each 

well/sample can be plotted from the OD measurements as a function of time, and the 

viability is then determined by outgrowth curve. This method provides reduced 

variance comparing to the CFU platting method. In addition, more information on the 

aging cells, such as doubling time, growth curve/rate, and cell optical density can be 

measured. Overall, this high throughput method offer several advantages as 

summarized in Table 2.1. 
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Table 2.1 Comparison of traditional CFU plating method and high throughput method for 
measuring yeast CLS (Fabrizio & Longo 2003; Murakami et al. 2008)  

 
CFU plating method  

(100 samples) 

High throughput method 

 (100 samples) 

Advantages/disadvantages 

of HT method 

Culture dishes used >100 culture dishes one 100-well plate Cost saving 

Medium amount 
>2000 mL YPD 

medium 
15 mL YPD medium Cost saving 

Time consumption 

for medium and 

sample plating 

> 5 h 0.5 h Time saving 

Incubation time > 48 h 24 h Time saving 

Recording way manual count plate reader Reduced error 

Quantitative data CFU 

lag-time, growth rate, 

doubling time, survival, 

OD 

More information 

Limitation of 

detection 
Until all cell died 99.9% Low LOD 

 

2.3 Nutrients and longevity  

2.3.1 Carbohydrates 

Granot and coworkers were the first to report D-glucose, not L-glucose, as an 

important nutrient affecting yeast CLS (Granot & Snyder 1991). They demonstrated 

that stationary phase yeast cells lose viability more rapidly when cells were incubated 

in the presence of glucose than in the absence of glucose in a medium. Glucose 

restriction, typically referred to as CR or DR in yeast aging model, was found to 

extend both yeast RLS and CLS significantly. In yeast aging studies, the most 

common protocol for CR is based on the decrease of the glucose concentration in the 

medium from the standard 2% to 0.5. However, a number of studies reported that the 

further restriction (to 0.05% glucose) is considered as extreme CR to enhance the 

longevity of CR, as well as the one achieved by transferring cells grown in 2% 

glucose to water, even though the extreme CR  is considered to cause malnutrition in 
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higher organisms. Currently, although the mechanism of CR induced longevity is still 

not fully understood, recent studies have revealed that the major nutrient-signaling 

pathways TOR, Sch9, and Ras/AC/PKA are all involved in longevity regulation by 

glucose. 

In addition to glucose, glycerol as a non-fermentable carbon source was also 

reported to prolong both RLS and CLS (Kaeberlein et al. 2002; Burtner et al. 2009b; 

Wei et al. 2009). Burtner et al. suggested that glycerol induced longevity in 

chronological aging is due largely to the reduction in acetic acid accumulation 

(Burtner et al. 2009b). Acetic acid toxicity was proposed as the predominant cause of 

chronological aging under the standard conditions used in the majority of previous 

studies. On the other hand, another study showed that glycerol did not adversely 

affect CLS extension induced by CR, suggesting that glycerol affects chronological 

aging through the regulation of stress resistance systems, such as enhancing resistance 

to osmotic stress and modulating the redox balance of the cell (Wei et al. 2009). A 

recent study showed that WT cells accumulate ethanol and rapidly deplete glycerol, 

while long-lived mutants tor1Δ, sch9Δ and ras2Δ accumulate glycerol whereas 

ethanol was depleted first. These observations indicated that inhibition of Tor1/Sch9 

mediated a metabolic switch from biosynthesis and release of ethanol to activation of 

glycerol biosynthesis and its consequent release (Wei et al. 2009). 

 

2.3.2 Amino acids 

Amino acids are important nutrients that can be recycled by autophagy in yeast. 

In nature, yeast are prototroph capable of synthesizing most of amino acids from 

simple carbon and nitrogen sources, while laboratory strains usually are auxotrophic 

to confer a nutrient-limiting growth phenotype useful for genetic manipulation. They 
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commonly defect a few genes involved in the biosynthesis of specific amino acids or 

nucleotides.  

Limiting levels of auxotrophy-complementing amino acids (essential amino acids, 

EAA) in the growth medium caused a reduced final biomass, a decreased resistance to 

oxidative stress, an early arrest in G2/M phase together, and finally resulted in a 

shorter CLS (Gomes et al. 2007). In accordance, a reduction of total amino acid 

concentration, including essential ones, of the growth medium also decreases CLS 

(Murakami et al. 2008). Deprivation of leucine or uracil in nondividing leucine or 

uracil auxotrophic yeast cells induces an exponential loss of viability with a half-life 

of less than 2 days (Boer et al. 2008). Nevertheless, the survival rates of nongrowing 

auxotrophs deprived of leucine or uracil is partially dependent on the carbon source 

present in the starvation medium but not in that used in the growth medium. However, 

not all EAA have the same effect on CLS. In fact, methionine restriction of 

methionine auxotrophic yeast strain has no effect on viability (Unger & Hartwell 

1976).  

Nonessential amino acids (NEAA) were also reported to modulate yeast lifespan. 

Alvers et al. reported that the NEAA isoleucine and valine, and the essential amino 

acid leucine, extended CLS in autophagy-deficient (atg1Δ, atg7Δand atg11Δ) as well 

as autophagy-competent (WT strain S. cerevisiae BY4742 (MATα his3Δ1 leu2Δ0 

lys2Δ0 ura3Δ0)) yeast in SD minimal media (Alvers et al. 2009a). The authors 

demonstrated that CLS was extended by the branched side chain amino acids (BCAA) 

leucine, isoleucine and valine, via the general amino acid control (GAAC) pathway. A 

reduced concentration of BCAA activates GAAC and shortens CLS, while an 

increased level of BCAA suppresses GAAC and lengthens CLS in minimal medium 

(Alvers et al. 2009a). In addition, lowering the total amino acids concentration of the 
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growth medium was reported to extend the mean and maximal RLS (Jiang et al. 

2000). Removal of preferred amino acids asparagine (a high nitrogen quality amino 

acid) or glutamate (an intermediate nitrogen quality amino acid) conferred CLS 

extension in synthetic complete media (Powers et al. 2006). 

 

2.3.3 Other nutrients 

In yeast culture, NH4
+ is commonly used as a major nitrogen source for growth 

and has a central role in nitrogen metabolism both in degradative and biosynthetic 

pathways (ter Schure et al. 2000). Inorganic nitrogen sources need to be converted 

into glutamate and glutamine before they are transferred to other biomolecules 

through transaminase. Yeast can select the nitrogen sources through nitrogen 

catabolite repression mechanism. Recently, a study reported that ammonium was 

toxic for aging cells and acted as an extrinsic factor affecting CLS (Santos et al. 2012). 

Decreasing the concentration of NH4
+ increases yeast CLS in amino acid restricted 

media. In contrast, increasing (NH4)2SO4 concentration (from 0.5% to 1%), either 

with or without restriction of amino acids, decreases cell survival. Moreover, after 

transferring aging cells to water, NH4
+ addition decreases the CLS considerably, 

indicating that ammonium alone could also induce loss of cell viability (Santos et al. 

2012). The cell death induced by ammonium was thought to be mediated via the 

regulation of the evolutionarily conserved pathways PKA, and TOR/Sch9 (Santos et 

al. 2012). 

 

2.4 Natural products for lifespan extension 

Perhaps the most effective anti-aging intervention is CR. Recent research 

suggested that the beneficial health effects of CR might be attained by a compound 



16 
 

that alters the activity of some evolutionarily conserved longevity proteins in response 

to nutrient availability (Kaeberlein 2010b). The compound could act as a “CR 

mimetic” by delaying age-associated diseases and extending lifespan without 

requiring reduced food intake (Ingram et al. 2006). There are a number of natural 

products that have been reported to have lifespan extending capacity or anti-aging 

benefit, including vitamin E, metformin, spermidine, curcumin, royal jelly, astragalan 

et al (Lebel et al. 2012; Pan et al. 2012; Spindler 2012; Lucanic et al. 2013) (Table 

2.2). However, most of these compounds were found to suffer from serious 

confounding variables and only a few compounds could have potential effects of CR 

in mammals, such as resveratrol and rapamycin (Spindler 2012). The low 

reproducibility of these anti-aging compounds in different studies might be due to 

variation in animal model and food components involved (Spindler 2012). 
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Table 2.2 Comparison of the effect of other natural products on lifespan extension in different organisms 

Compound Strain/animal model Culture condition Dose / treatment time Lifespan  extension effect Reference 

Caffeine S. cerevisiae BY4741 SD medium 
0.4, 0.8, 1 mM, exponential 

growth phase 
CLS: significant increase Wanke et al. 2008 

Spermidine S. cerevisiae BY4741 SC medium 4 mM, stationary cultures (day 1) CLS: significant increase Eisenberg et al. 2009 

Spermidine S. cerevisiae BY4741 SC medium 1 mM, added at day 0 RLS (old cell): significant increase Eisenberg et al. 2009 

Spermidine C. elegans N2  NGM with E. coli OP50 
A range of concentrations, L4 

larval stage 
15% increase at 0.2 mM Eisenberg et al. 2009 

Spermidine D. melanogaster isogenized w1118 Liquid food medium 
10 μM to 10 mM, newly eclosed 

flies 
30% increase at 1 mM Eisenberg et al. 2009 

Curcumin C. elegans N2 NGM with E. coli OP50 20 or 200 μM, L1 larvae 39% increase at 20 μM Liao et al. 2011 

Curcumin D. melanogaster Canton-S and Ives CSY medium 
10 to 1000 μM, Newly eclosed 

adult 

19% Canton-S female at 100 μM, 16%  

Ives male at 250 μM 
Lee et al. 2010 

Curcumin D. melanogaster Ra  AL food 100 mM, different life stages stage-specific extension Soh et al. 2013 

Metformin C. elegans N2 NGM with E. coli OP50 1, 10, 50, or 100 mM, L4 stage 40% increase at 50 mM Onken & Driscoll 2010 

Metformin C. elegans N2 NGM with E. coli OP50 25, 50, or 100 mM, L4 stage 36% increase at 50 mM Cabreiro et al. 2013 

Metformin 
M. musculus Female transgenic HER-

2/neu 
standard laboratory chow 100 mg/kg, age of 2 months 8% increase 

Anisimov et al. 2005; 

Anisimov et al. 2010a 

Metformin 
M. musculus Outbred Swiss-derived 

female SHR mice 
standard laboratory chow 100 mg/kg, age of 3 months 37.8% increase  Anisimov et al. 2008 

Metformin M. musculus inbred 129/Sv standard laboratory chow 100 mg/kg, age of 2 months 
13.4% decrease in male,  

4.4% increase in female 
 Anisimov et al. 2010b 

Metformin Rattus norvegicus Male F344, rats standard chow diet 300 mg/kg, age of 6 months no significant increase Smith et al. 2010 
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Table 2.2 Continued 

Metformin 
M. musculus Outbred Swiss-derived 

female SHR mice 
standard laboratory chow 100 mg/kg, 3, 9, 15 months old 14% (3), 6% (9), no increase (15) Anisimov et al. 2011a 

Tyrosol C. elegans N2 NGM with E. coli OP50 250 μM, the egg stage 21% increase Canuelo et al. 2012 

Quercetin C. elegans N2 NGM with E. coli OP50-1 100 μM, days after hatching 15% increase Kampkotter et al. 2008 

Quercetin C. elegans N2 NGM with E. coli OP50 100, 200 μM, days after hatching 15% increase Pietsch et al. 2009 

Lithocholic 

acid 
S. cerevisiae BY4742 YPD medium 5 μM to 100 μM, added at day 0 CLS: significant increase 

Goldberg et al. 2010; 

Burstein et al. 2012 

Baicalein C. elegans N2 NGM with E. coli OP50 100 μM, day 3 after egg laying 45% increase Havermann et al. 2013 

D-chiro-

inositol 
D. melanogaster Canton-S  CSY medium 

20 to 200 μM, Newly eclosed 

adult 

16.7% male and 13% female increase 

at 20 μM  
Hada et al. 2013 

Pinitol D. melanogaster Canton-S CSY medium 
20 to 200 μM, Newly eclosed 

adult 

13% male and 12.5% female increase 

at 20 μM 
Hada et al. 2013 
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2.4.1 Resveratrol 

Resveratrol and its analogues are polyphenolic phytoalexins that occur naturally in many 

plant species, including Japanese knotweed, grapes, berries and peanuts. A number of reports 

highlighted resveratrol benefits in vitro and in vivo in many physiological models of human 

diseases, such as cancer, heart disease, inflammation, diabetes, ischaemic, and especially 

aging. Resveratrol extends RLS in the yeast S. cerevisiae (Howitz et al. 2003) and prolongs 

the lifespan in different organisms (Table 2.3). However, resveratrol extends only yeast RLS 

by up to 100% (>10 µM) (Jarolim et al. 2004), and does not extend CLS even at 100 µM in 

the short lived PSY316AT strain (Howitz et al. 2003). Although many studies reported the 

longevity extending activity of resveratrol, there is still no strong evidence to show that 

resveratrol prolongs lifespan in mammals. 

Resveratrol is still a promising anti-aging compound because it was proposed to be the 

activator of histone deacetylase or sirtuins. Sirtuins (silent mating type information regulation 

2 homolog) belong to a family of nicotinamide adenine dinucleotide (NAD)-dependent 

histone deacetylases (HDACs). In mammals, seven SIRTs are found with different 

biochemical activities, and are differentially located within the cellular compartments: the 

nucleus (SIRT1, SIRT2, SIRT6,) and nucleolus (SIRT7), the cytoplasm (SIRT1 and SIRT2), 

and the mitochondria (SIRT3, SIRT4, and SIRT5). SIRT1 plays important roles in various 

metabolic pathways, cell survival, DNA repair and apoptosis (Haigis & Sinclair 2010; 

Chalkiadaki & Guarente 2012). 
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Table 2.3 Comparison of the effect of resveratrol on lifespan in different organisms investigated by different laboratories 

Strain/animal model Culture condition Dose / treatment time Lifespan  effect Reference 

S. cerevisiae PSY316AT YPD medium 10 to 100 µM, added at day 0 
RLS: 70% increase at 10µM 

CLS: no increase 
Howitz et al. 2003 

S. cerevisiae K6001 SC medium 10 to 100 µM, added at day 0 RLS: significant increase at 10µM Jarolim et al. 2004 

S. cerevisiae W303R, BY4742, 

PSY316 
YPD medium 10 to 100 µM, added at day 0 RLS: no significant increase Kaeberlein et al. 2005a 

S. cerevisiae PSY316AT YPD medium 10 µM, added at day 0 RLS: 68% increase for derivative 5 Yang et al. 2007 

S. cerevisiae EMY74.7 SC medium 10 to 200 mM, added at day 0 CLS: no significant increase Yu et al. 2013 

C. elegans N2 
NGM media with E. coli 

OP50 
10 to 100 µM, 2 days after hatching 10% increase at 100µM Wood et al. 2004 

C. elegans N2 
NGM media with E. coli 

OP50 
100 to 1000 µM, L4 to young adult 18% increase at 1000µM Viswanathan et al. 2005 

C. elegans N2 
NGM media with E. coli 

OP50 
100 µM, 2 days after hatching Slight increase in some trials but not others Bass et al. 2007 

C. elegans N2 
NGM media with E. coli 

OP50 
50 µM, 2 days after hatching mean LS 64%, maximum LS 30%  Gruber et al. 2007 

C. elegans N2 
NGM with E. coli OP50–

1 
100 µM, the days after hatching a modest, but statistically significant increase Greer & Brunet 2009 

C. elegans N2 NGM with E. coli OP50 0.5, 5 µM, the days after hatching mean LS3.6 %, maximum LS3.4 % at 5 µM Zarse et al. 2010 

C. elegans N2 NGM with E. coli OP50 65 μg/mL, 3 days after hatching significant increase Sunagawa et al. 2011 

D. melanogaster Canton-S CSY media 10 to 100 µM, newly eclosed adults 20% in females and 16% in males at 100µM Wood et al. 2004 

D. melanogaster Canton-S CSY media without yeast 200 µM, newly eclosed adults 16% in females and 10% in males at 200µM Bauer et al. 2004 
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Table 2.3 Continued 

Strain/animal model Culture condition Dose / treatment time Lifespan  effect Reference 

D. melanogaster Dahomey and 

Canton S  
SY or MSY medium 1 to 1000 µM, Once-mated Females and males: no significant increase Bass et al. 2007 

Anastrepha ludens, Fly  Sugar:yeast medium 100 µM, newly eclosed adults no or little significant increase Zou et al. 2009 

D. melanogaster Oregon Standard corn meal 
0.43 mM, 15 days after emerging from the 

pupa 
maximum LS: 34% increase Bonilla et al. 2012 

D. melanogaster Canton-S  CSY media 100, 200, 400 µM, 2 days after eclosion Increase depends on gender and diet Wang et al. 2013 

Apis mellifera, Honey bees  
1.5 g pollen in 30 mL of 

30% sucrose solution 
30, or 130 µM, four-day-old honey bees 38% increase at 30µM , 33% increase at 130µM Rascon et al. 2012 

Nothobranchius furzeri, Gonarezhou, 

Fish  

Bloodworm larvae 

(Chironomus sp.) 
24 to 600 µg/g(food), after sexual maturity 

Median LS 56%, maximum LS 59% at 600 

µg/g(food) 
Valenzano et al. 2006 

Nothobranchius furzeri TZ 97-2, 

Fish  

brine shrimp and 

bloodworm larvae 
200 μg/g food, 16 weeks of age median LS 19%, maximum LS 28% Yu & Li 2012 

Nothobranchius furzeri, Fish  not stated 12 μg resveratrol/fish/day, 12 weeks of age median LS 42.9%, maximum LS 17% Genade & Lang 2013 

M. musculus C57BL/6NIA 

Standard or high-calorie 

(hydrogenated coconut 

oil) AIN-93G diet  

0.01%, or 0.04%(food), 1 year male 
High-calorie diet: 26% for 0.01%, 25% for 0.04%; 

Standard diet: No significant increase 
Pearson et al. 2008 

M. musculus UM-HET3 TestDiet, free water 
300 or 1200 ppm, age of 10 or 12 months 

male and female 
no significant increase 

Miller et al. 2011; 

Strong et al. 2013 

Rattus norvegicus Wistar, Rats Standard food 0.0015, 4 mg/kg, 12 months old male no significant increase da Luz et al. 2012 

M. musculus SAMP8 and SAMR1 Standard diet 1g/kg, 2 months of age male mean LS: 33% SAMP8, 22% SAMR1 Porquet et al. 2012 
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Naturally occurring (resveratrol, butein, fisetin, quercetin) and chemically 

synthetic (SRT1460, SRT1720, SRT2183) sirtuin-activating compounds (STACs) 

activate SIRT1 in vitro by lowering its peptide Michaelis constant for both the 

acetylated substrate and NAD+, and increase cell survival by stimulating SIRT1-

dependent deacetylation of p53 (Howitz et al. 2003). In yeast, resveratrol mimics CR 

by stimulating Sir2 (the yeast homologue of human SIRT1), increasing DNA stability 

and extending lifespan. Although the legitimacy of STACs as direct SIRT1 activators 

has been widely debated (Kaeberlein et al. 2005a; Couzin-Frankel 2011), Sinclair 

group reported recently that SIRT1 can be directly activated through an allosteric 

mechanism common to resveratrol and other STACs in vitro, but only under certain 

conditions (Hubbard et al. 2013). 

 

2.4.2 Rapamycin 

Rapamycin, also known as sirolimus, was first discovered by Brazilian 

researchers as a new antibiotic with strong antifungal activity, secreted by the 

bacterium Streptomyces hygroscopicus that was isolated from a soil sample in Easter 

Island, an island also known as Rapa Nui (Sehgal et al. 1975; Vezina et al. 1975). 

Since then, rapamycin was widely studied as an immunosuppressant before its 

mechanism of action was known, and in 1999 it was approved by US Food and Drug 

Administration (FDA) for use in post-transplantation therapy (Johnson et al. 2013).  

The mode of action of rapamycin is to bind the cytosolic protein FK-binding 

protein 12 (FKBP12), and then the rapamycin-FKBP12 complex inhibits the 

mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) 

pathway by directly binding the mTOR Complex1 (mTORC1). mTOR has also been 

called FRAP (FKBP-rapamycin associated protein), RAFT (rapamycin and FKBP 



23 
 

target), RAPT1, or SEP. However, mTOR is now the widely accepted name, since a 

study in the yeast S. cerevisiae first identified the target of rapamycin genes TOR1 

and TOR2 as genetic mediators of rapamycin’s growth inhibitory effects (Powers et al. 

2006). The mTOR signaling pathway senses and integrates a variety of environmental 

cues to regulate organismal growth and metabolism (Wullschleger et al. 2006). The 

pathway regulates many major cellular processes, including protein synthesis, 

lipogenesis, energy metabolism, autophagy, lysosome biogenesis and cytoskeletal 

organization. Thus, mTOR is implicated in an increasing number of pathological 

conditions, including cancer, obesity, type 2 diabetes, neurodegeneration and aging 

(Laplante & Sabatini 2012). 

The role of rapamycin in longevity extension has been clearly demonstrated in 

both simple model organisms and mammals. Rapamycin at relatively low 

concentration is sufficient to increase lifespan in yeast, nematode, flies and mice 

(Table 2.4). To date, rapamycin is proposed as the only molecule that appears to 

influence the intrinsic rate of aging in mammals, as evidenced by a robust extension 

of maximum lifespan. The multicentric aging Interventions Testing Program (ITP) 

from the National Institute on Aging reported that inhibition of mTOR by rapamycin 

expands median and maximal lifespan of genetically heterogeneous mice (Miller et al. 

2007; Harrison et al. 2009; Miller et al. 2011). Remarkably, the lifespan extension 

was observed even in male and female mice when fed beginning at 600 days old, at a 

stage roughly equivalent to 60-year-old human. Although these results cannot be 

directly extrapolated to humans, they suggest that these findings have implications for 

further development of interventions targeting mTOR for the treatment and 

prevention age-related diseases even when the treatment is initiated at mid-age 

(Harrison et al. 2009). 



24 
 

Table 2.4 Comparison of effect of rapamycin on lifespan in different organisms investigated by different laboratories 

Strain/animal model Culture condition Dose / treatment time Lifespan  effect Reference 

S. cerevisiae BY4743 diploid  YPD medium 100 to 1000 pg/mL, added at day 0 CLS: significant increase at 1ng/mL Powers et al. 2006 

S. cerevisiae W303AR  YPD medium 1 nM, added at day 0 RLS: 15% increase Medvedik et al. 2007 

S. cerevisiae BY4742  SC minimal medium 0.1 to 40 nM, added at day 0 CLS: significant increase at 20 and 40 nM Alvers et al. 2009b 

S. cerevisiae DBY2006  SD medium 200 nM, added at day 0 CLS: significant increase Pan et al. 2011 

C. elegans N2 
NGM with E. coli OP50–

1 
100 µM, late L4 stage 19% increase 

Robida-Stubbs et al. 

2012 

D. melanogaster white Dahomey 

(wDah) 

Standard SYA media 
1 to 400 µM, newly eclosed adults 17% for females at 200 µM Bjedov et al. 2010 

M. musculus CB6F1 females × 

C3D2F1 males  

Test Diet 
14mg/kg food, at 600 days of age 14% for females, 9% for males Harrison et al. 2009 

M. musculus FVB/N HER-2/neu 
not stated 

1.5 mg/kg food, age of 2 months 
maximal LS 12.4%; transgenic cancer-prone 

female 

Anisimov et al. 

2010c 

M. musculus UM-HET3 Test Diet, free water 14 mg/kg food, age of 9 months 10% increase in males, 18% increase in females Miller et al. 2011 

M. musculus 129/Sv 
not stated 

1.5 mg/kg food, age of 2 months 7.8% increase for females 
Anisimov et al. 

2011b 

M. musculus C57B1/6 not stated 1.5 mg/kg food, the age < 5 months 28% increase, p53+/- male  Komarova et al. 2012 

M. musculus C57B1/6 
not stated 0.5 mg (nanoformulated micelles of 

rapamycin)/kg food, age of 2 months 
30% increase, p53-/- male Comas et al. 2012 
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Earlier human trials have shown that rapamycin can have serious side effects, 

including hyperlipidaemia and hyperglycaemia, anaemia and stomatitis (Johnson et al. 

2013). Because it is an immunosuppressant, it can make users susceptible to 

opportunistic infections (Shiffman et al. 2004). Recent evidence suggests that chronic 

treatment with rapamycin impairs glucose homeostasis and induce diabetes-like 

symptoms such as decreased glucose tolerance and insensitivity to insulin (Lamming 

et al. 2012). However, optimal dosage and duration of treatment are still not 

established, the lower bioavailability and the different pharmacokinetic of rapamycin 

have probably limited the exposure of the tissues to the drug, thus reducing its adverse 

effects.  

 

2.5 The evolutionarily conserved signaling pathways 

Change in both nutrient compositions and nutrient-sensing pathway activity can 

extend lifespan, protect against age-related diseases or lower the incidence of age-

related loss of functions and diseases from yeast to human. Thus, evolutionarily 

conserved nutrient-sensing signaling pathways are highlighted as the primary targets 

for development of anti-aging interventions (Fontana et al. 2010). Herein, I focus on 

the main nutrient-sensing pathways in yeast and discuss their functions in regulation 

of lifespan. 

 

2.5.1 TOR/Sch9 pathway 

TOR kinases and the ribosomal S6 kinase Sch9 are highly conserved in 

organisms ranging from yeast to humans and function to control growth, metabolism, 

stress resistance, and aging in response to nutrient and growth factor cues (Fontana et 

al. 2010).  
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Yeast possesses two TOR genes (TOR1 and TOR2), while higher eukaryotes have 

only a single TOR gene (Crespo & Hall 2002). TOR exists in two complexes with 

different functions in all eukaryotes. The budding yeast TORC1, which is sensitive to 

rapamycin, contains Tor1 or Tor2, Kog1, Lst8 and Tco89, and controls cell size, 

proliferation and lifespan via a variety of downstream pathways (Wullschleger et al. 

2006; Kapahi et al. 2010; McCormick et al. 2011). On the other hand, TORC2 (which 

is insensitive to rapamycin) contains Tor2, Lst8, Avo1, Avo2, Avo3 and Bit61. Its 

function is involved in regulation of actin organization, cell wall integrity, and 

sphingolipid metabolism (Wullschleger et al. 2006; Kapahi et al. 2010; McCormick et 

al. 2011). Rapamycin binds peptidylprolyl isomerase FKBP12,  the formed complex 

then binds to the amino-terminal of Tor1 or Tor2, and consequently inhibits TORC1 

activity, but fails to bind TORC2 from yeast to mammal (Loewith et al. 2002). In 

budding yeast, Tor1 is not essential for cell viability, since it can be substituted by 

Tor2 in TORC1 when the cell is short of Tor1. In contrast, Tor2 is essential for 

viability, because Tor2 processes an essential function as core component of TORC2, 

and Tor1 cannot replace Tor2 in TORC2 (Kunz et al. 1993; Helliwell et al. 1994; 

Stan et al. 1994; Schmidt et al. 1996). Overall, the two TOR complexes as well as 

their rapamycin sensitivity are all conserved from yeast to man. 

The AGC kinase Sch9 is a substrate of TORC1, and its function may be similar to 

the mammalian TORC1 substrate S6K1 (S6 kinase 1) rather than the mTORC2 

substrate PKB/Akt. In yeast, sch9Δ mutant cells show a small-sized phenotype (60% 

of WT in volume) and slow growth rate, while possessing strong stress resistance and 

prolonged lifespan (Wei et al. 2008). Deletion or inhibition of either SCH9 or TOR1 

causes substantial lifespan extension in both chronological and replicative aging 

model. However, the effects on both CLS and RLS caused by deficiency in Sch9 
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activity are more robust than those observed in the strain lacking Tor1, and the mean 

CLS of tor1Δsch9Δ and sch9Δ have no significant difference (Kaeberlein et al. 2005b; 

Wei et al. 2009). These observations suggest that the lack of TOR1 contributes to the 

further reduction of the Sch9 activity and also supports the notion that Sch9 is a major 

substrate of yeast TORC1 (Urban et al. 2007; Wei et al. 2009). 

It was reported that reduced Tor1 or Sch9 activity acts downstream of dietary 

restriction to increase CLS and RLS. During chronological aging, the TOR/Sch9 and 

Ras/AC/PKA pathways appear to be mediated by the down regulation of the protein 

kinase Rim15 and consequent control of Gis1 and Msn2/4 stress-responsive 

transcription factors. Inhibition of TOR/Sch9 pathway also decreases ROS production 

and enhances cellular stress responses, culminating in lifespan extension (Fontana et 

al. 2010). 

 

2.5.2 Ras/AC/PKA pathway 

In the presence of glucose, the budding yeast Ras/AC/PKA pathway is activated. 

The major components of this pathway include guanosine triphosphate/guanosine 

diphosphate (GTP/GDP)-binding proteins (Ras1 and Ras2), a GTP-GDP exchange 

factor (Cdc25), GTP hydrolysis factors (Iral and Ira2), the adenylate cyclase (AC, 

Cdc35/Cyr1), phosphodiesterases (Pde1 and Pde2) that catalyse the hydrolysis of 

cyclic adenosine monophosphate (cAMP), a protein kinase A (PKA) regulatory 

subunit (Bcy1), and a PKA catalytic subunit (Tpk1, Tpk2, and Tpk3) (Thevelein & de 

Winde 1999; Lin et al. 2000b).  

Yeast RAS1 and RAS2 are highly homologous to mammalian RAS genes (Sun et 

al. 1994). The G proteins Ras1 and Ras2 function upstream of Cyr1 (AC) and play 

overlapping roles in functions including growth, pseudohyphal development, stress 
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resistance, and aging (Fabrizio et al. 2003). Ras proteins cycle between inactive GDP-

bound (Ras-GDP) and active GTP-bound (Ras-GTP) states. In the presence of glucose, 

Ras proteins become activated, and the resulting Ras-GTP binds to Cyr1 and 

stimulates the production of cAMP. Ras proteins activity is regulated positively by the 

guanine nucleotide exchange factors (RasGEF) (Cdc25 and Sdc25 in yeast) and 

negatively by the GTPase-activating proteins (RasGAP) (Ira1 and Ira2 in yeast). 

Deletion of RAS1 gene increases RLS and slightly decreases CLS, while deletion of 

RAS2 gene decreases RLS and doubles CLS (Sun et al. 1994; Fabrizio et al. 2003). 

Deletion of RAS2 promotes an increase of heat and oxidative stress resistance 

(Fabrizio et al. 2003).  

Ras proteins directly activate AC and a mutation causing loss of AC activity was 

shown to extend CLS (Fabrizio et al. 2001). The CYR1 gene encodes AC, which is a 

key enzyme that catalyses the synthesis of cAMP from ATP and plays important roles 

in pathways that are involved in glucose-dependent signaling and stress resistance. In 

fact, deletion of one of the mammalian adenylate cyclase isoforms AC5, increased 

mice’s median lifespan by approximately 30%, protected against oxidative stress, 

apoptosis, and osteoporosis (Yan et al. 2007). 

In the budding yeast, cAMP-PKA is composed of three catalytic subunits 

encoded by the genes TPK1, TPK2 and TPK3, and one regulatory subunits encoded 

by the gene BCY1 (Toda et al. 1987a; Toda et al. 1987b). The intracellular level of 

cAMP is controlled by two routes involving either the Ras proteins Ras1/Ras2, or the 

Gα protein Gpa2. The GTP-bound form of Ras proteins (active) directly interacts with 

the Cyr1, and stimulates the production of cAMP. An increased intracellular cAMP 

binds to the regulatory subunit of PKA (Bcy1), causing PKA (inhibitive) to dissociate 

from the catalytic subunits (Tpk1, 2 and 3). These catalytic subunits (active) are then 
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free to phosphorylate their respective targets and thereby exert their influence on cell 

physiology (Ramachandran & Herman 2011). Deletion of CYR1, CDC25, or the PKA 

catalytic subunits (Tpk1, Tpk2 and Tpk3) reduces the activity of PKA and lengthens 

yeast RLS, whereas deletion of gene (PDE2) dampens PKA signaling and shortens 

yeast RLS (Lin et al. 2000b). In the chronological aging, CR reduces Ras/AC/PKA 

signaling activity, and then inactivates stress-resistance transcription factors 

Msn2/Msn4 and Gis1 and consequently down-regulates the expression of many 

stress-resistance genes, including SOD2 (Fabrizio et al. 2003). 

 

2.5.3 Sirtuins 

The sirtuins are a highly conserved family of NAD+-dependent proteins that 

regulate aging in different organisms. In the budding yeast, four SIR (silent 

information regulator) genes (SIR1, SIR2, SIR3, and SIR4) were identified as 

important components for silencing at the mating type locus (HML and HMR) as well 

as telomeric DNA. Yeast RLS depended on the presence of SIR2, SIR3, and SIR4, but 

not on SIR1. Again, deletion or overexpression of SIR2 was shown to have the largest 

effect on RLS reduction or extension, respectively, among the three genes (SIR2, SIR3, 

and SIR4) (Kaeberlein et al. 1999). Likewise, overexpression of Sir-2.1, the homolog 

of yeast Sir2, increases lifespan in C. elegans (Tissenbaum & Guarente 2001) and D. 

melanogaster (Rogina & Helfand 2004). In contrast, deletion of SIR2 is reported to 

extend yeast CLS (Fabrizio et al. 2005; Smith et al. 2007; Murakami et al. 2008).  

In yeast replicative aging, a proposed mechanism for Sir2 induced longevity is 

that Sir2 inhibits ribosomal DNA (rDNA) recombination and extrachromosomal 

rDNA circles (ERC) formation. Accumulation of ERCs in old cell cause fast aging 

(Sinclair & Guarente 1997). In the absence of SIR2, the rate of ERC formation is 
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enhanced and cells are short lived (Kaeberlein et al. 1999). Reduced rDNA 

recombination mediated by SIR2 overexpression or deletion of the FOB1 leads to 

lower ERC levels and results in extended RLS (Defossez et al. 1999).  

In addition, asymmetric segregation and CR are closely interrelated with Sir2. 

Asymmetric segregation in the yeast replicative aging was observed in that 

oxidatively damaged proteins (carbonylated proteins) are retained in mother cells and 

are not inherited by daughter cells. However, sir2Δ mother cells fail to retain 

oxidatively damaged proteins during cytokinesis (Aguilaniu et al. 2003). The 

increased yeast RLS under CR conditions was proposed by activating Sir2, which was 

supported by the observation that deletion of SIR2 prevents RLS extension under CR. 

Several studies found that CR might enhance Sir2 activity via elevated NAD+ (a 

substrate of Sir2), decreased nicotinamide (an inhibitor of Sir2), or decreased NADH 

(an inhibitor of Sir2) (Lin et al. 2002; Anderson et al. 2003; Lin et al. 2004). However, 

the link between Sir2 and CR is still an open question (Kaeberlein 2010a). 
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Chapter 3 

DEVELOPMENT OF HTS ASSAY FOR 

DETERMINATION OF CHRONOLOGICAL 

LIFESPAN OF YEAST 

 

3.1 Introduction 

The budding yeast S. cerevisiae serves as a leading model organism for studying 

evolutionarily conserved mechanism relevant to human aging and age-related diseases 

(Fontana et al. 2010; Kaeberlein 2010a; Longo et al. 2012). In the traditional CLS 

assay, viability is calculated based on the number of CFUs on the nutrient agar 

(Fabrizio & Longo 2003; Murakami et al. 2008). Recently, Kaeberlein and co-

workers have developed a high-throughput method to measure CLS, which involves 

quantifying survival based on measuring outgrowth of aging cells in nutrient-rich 

liquid medium by monitoring optical density at 420-580 nm using a combined 

shaker/incubator/plate reader, called the Bioscreen C MBR instrument (Burtner et al. 

2009a; Murakami & Kaeberlein 2009). Furthermore, yeast outgrowth data analyzer 

(YODA), a software specifically for quantification of CLS and growth rate of yeast 

cells, has been developed (Olsen et al. 2010).  

Inspired by the success of these researchers, I focus on the establishment of 

experimental systems and assay conditions suitable for development of a rapid and 

simple assay for screening of CRMs by determination of yeast CLS. The high 

throughput method is based on previous reports with some modifications (Toussaint 

& Conconi 2006; Murakami & Kaeberlein 2009). The results indicate that the high 
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throughput screening (HTS) assay can quantitatively measure CLS for several 

hundred independently aging cultures with high sensitivity and uncomplicated data 

analysis. It also provides reliable and reproducible measures of yeast growth including 

lag-time, growth rate, doubling time, survival percentage, and death rates for future 

screening of CRM activity of natural products. 

 

3.2 Materials and methods 

3.2.1. Materials 

The WT strain S. cerevisiae W303 (MATα ura3-52 trp1Δ2 leu2-3_112 his3-11 

ade2-1 can1-11), BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) and single gene 

deletion mutant strains in the BY4742 genetic background, were all obtained from 

Thermo Scientific Open Biosystems (Huntsville, AL, USA). S. cerevisiae Lalvin 

EC1118 and AH109 (MATa trp1-901 leu2-3_112 ura3-52 his3-200 gal4Δ gal80Δ 

LYS2::GAL1UAS-GAL1TATA-HIS3 GAL2UAS-GAL2TATA-ADE2 URA3::MEL1UAS-

MEL1TATA-lacZ MEL1) were provided by Professor Hao Yu of the National 

University of Singapore, Singapore. The culture of each yeast reference strain was 

aliquoted into 10 μL and stored at –80°C. All L-amino acids were from GL Biochem 

(Shanghai, China), yeast nitrogen base w/o amino acids (YNB) and ammonium 

sulfate, peptone, agar, yeast extract were from Amresco (Solon, OH, USA). YPD 

Broth and other chemicals were from Sigma-Aldrich Chemical Company (St. Louis, 

MO, USA). 
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Table 3.1 Final composition of synthetic defined (SD) medium used for yeast CLS analysis 
Component Concentration  (1×) 
Glucose  20 g/L  
Yeast Nitrogen Base (-AA/-AS) 1.7 g/L 
Potassium phosphate  1 g/L  
Magnesium sulfate  500 mg/L  
Sodium chloride  100 mg/L  
Calcium chloride  100 mg/L  
Biotin  0.002 mg/L  
Pantothenate  0.4 mg/L  
Folate  0.002 mg/L  
Inositol   2 mg/L  
Niacin  0.4 mg/L  
PABA  0.2 mg/L  
Pyridoxine, HCl  0.4 mg/L  
Riboflavin  0.2 mg/L  
Thiamine, HCl  0.4 mg/L  
Riboflavin  0.2 mg/L  
Thiamine, HCl  0.4 mg/L  
Boric acid  0.5 mg/L  
Copper sulfate  0.04 mg/L  
Potassium iodide  0.1 mg/L  
Ferric chloride  0.2 mg/L  
Manganese sulfate  0.4 mg/L  
Sodium molybdate  0.2 mg/L  
Zinc sulfate  0.4 mg/L  

Ammonium sulfate 5 g/L  
Amino acids (1×)  
Essential  
Uracil 100 mg/L  
L-histidine 100 mg/L  
L-leucine 300 mg/L  
L-lysine-HC1 150 mg/L  
Non-Essential  
Adenine 80 mg/L  
L-arginine 40 mg/L  
L-aspartic acid 100 mg/L  
L-glutamic acid 100 mg/L  
L-methionine 80 mg/L  
L-phenylalanine 50 mg/L  
L-serine 400 mg/L  
L-threonine 200 mg/L  
L-tryptophan 200 mg/L  
L-tyrosine 40 mg/L  
L-valine 150 mg/L  
L-isoleucine 60 mg/L 
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3.2.2 Modification of a shaker incubator for aging culture 

A flat shaker incubator was modified in order to increase the capacity of yeast 

aging culture for high throughput screening assay. Firstly, flask clamps, nuts and bolts 

on flat platform of a shaking incubator with precise temperature control were removed. 

Twenty five of 24-well polystyrene, bottom flat microplates (Nunc, Rochester, NY, 

USA) were then adhered to the flat platform of the incubator using double-faced 

adhesive tape. Thus, 5-mL glass sample vial with screw cap can be placed in the wells 

of 24-well microplates. This modified incubator can accommodate up to 600 sample 

tubes (5 mL) containing 1.0 mL culture media in each tube. 

 

3.2.3 High-throughput assay procedure 

The aging yeast culture is prepared by streaking a strain from frozen stocks onto 

YPD (1% yeast extract/2% peptone/2% dextrose) agar plates. After incubating the 

cells at 30˚C for 2 days or until colonies appear, a single colony is picked and 

inoculated into a 1.0 mL YPD liquid medium (Sigma YPD Broth, St. Louis, MO, 

USA) in a 5 mL tube and cultured at 30˚C for 2 days in the flat incubator  with shake 

at 200 rpm. The 2-day culture (≈ 2×107 cells/mL) was diluted with autoclaved 18 MΩ 

Milli-Q grade water (1:10) and stored in refrigerator at 4˚C for at least 24 h. This 

diluted culture could be stored at 4˚C for one week. After one day incubation at 4˚C, 5 

µL (≈ 1×104 cells) of the diluted culture was transferred to a 1.0 mL of synthetic 

defined (SD) medium (Table 3.1) and maintained at 30˚C with constant agitation 

(200 rpm) for the entire experiment (generally 2 or more weeks). After 2 days of 

culture (≈ 1×107 cells/mL) in SD media, the cells reached stationary phase and the 

first age-point is ready to be taken. Subsequent age-points were taken every 2–4 days. 

For each age point, 5.0 µL of the mixed culture was pipetted into each well of 96-well 
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microplate. One hundred µL YPD medium was then added to each well. The cell 

population was monitored with a Synergy HT microplate reader (BioTek, Winooski, 

VT, USA) by recording the optical density (OD) every 5 or10 min during 12–24 h at 

the wavelength of 660 nm. The outline of this assay was shown in Figure 3.1. 

 

3.2.4 Data analysis 

The raw data was exported to Excel (Microsoft, San Leandro, CA, USA) and the 

OD curves were plotted as shown in Figure 3.2A. From the growth curve, the 

viability of the yeast can be obtained through the following doubling time: 
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where OD1 and OD2 represent successive OD measurements, and t1 and t2 are the time 

between measurements. The average doubling times ( nDt ), defined as the average of 

the five lowest (except the first one) doubling times only between OD values of 0.2 to 

0.5, is the doubling time for that well. The lag time was calculated as follows: 
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where OD>0.3 and OD<0.3 represent the OD value first measured to be greater than 

0.3001 or less than 0.3001 (0.3001 is to avoid the case that OD is 0.300), and tOD>0.3 

and tOD<0.3 are the time corresponding to the intersection of the maximal slope of the 

ln curve with the x-axis (Toussaint & Conconi 2006). An easy way to determine 

3.0OD<  and 3.0OD>  is to use the Excel function “SMALL” and “LARGER”. Next, the 

function “MATCH” was used to determine the relative position (order) of 3.0OD<  and 

3.0OD>  in the running time range of the column.  
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Figure 3.1 A roadmap of a high-throughput assay for determination of yeast CLS 
The key components of the high throughput screening protocol include (a) a modified high capacity shaker incubator that can fit 600 culture tubes, (b) well-studied and 
commercially available WT strain S. cerevisiae BY4742, a relatively short outgrowth measuring time (12–24 h), (c) a commonly used 96-well microplate reader with shaking 
and temperature control, and (d) a comprehensive evaluation of yeast relative viability through analysis of doubling time, lag time, survival percentage and integral using 
uncomplicated software Excel.
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Finally, the function “INDEX” was used to return tOD>0.3 and tOD<0.3 values of the 

cell at the intersection of the row of order and the column of time, in the running time 

range (0–24 h). It took different length of time for each well to reach an OD of 0.3 

between the initial age-point and each subsequent age-point. For each age-point, the 

time shift was calculated as follows: 
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where day2,3.0ODt =  is the time that OD value of day 2 age-point reaches 0.3 in the 

outgrowth curves. The initial age-point (day 2) is defined to be 100% viability and the 

relative survival percent of each successive age-point can be calculated as follows:  
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t   n = days, nDt  represent the average doubling time 

The survival integral (SI) for each well is defined as the area under the survival 

curve (AUC) and can be estimated by the formula:  
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where dayn is the age point, such as day 2, 4, 6, 8, 10, 12, 14 (Murakami & 

Kaeberlein 2009). The analysis of variance for each set of biological replicates was 

carried out with the SAS statistical program (version 9.00, SAS Institute Inc, Cary, 

NC, USA), and differences between the means of SI for treatments were determined 

by Duncan’s multiple range test (more than two treatments) or TTEST procedure (two 

treatments) at P < 0.05 and 0.01. 
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3.3 Results 

3.3.1 Evaluation of reproducibility, precision and accuracy of HTS assay 

A comprehensive flow diagram of this HTS protocol for modifiers of CLS is 

shown in Figure 3.1. To validate this method, the CLS of different strains of S. 

cerevisiae was investigated. Based on prior studies, the cell viability (maximal cell 

density) is defined to be 100% after 2 days of culture in YPD medium (1% yeast 

extract, 2% peptone, 2% dextrose). At this time, 5 µL yeast culture (defined as 100% 

viability) with a range of dilution ratio (1 to 1024) were inoculated into individual 

wells of a 96-well plate along with 100 µL of fresh YPD medium in each well. The 

cell growth kinetics were monitored by recording the OD value every 10 min for 24 h 

at 660 nm. Based on the relative position of the outgrowth curves, I calculated the 

relative number of viable cells in each dilution. As shown in Figure 3.2, the 

correlation between the known dilution ratio of inoculum concentration and the 

relative viability determined by our HTS microplate reader assay was quite high in 

four different budding yeast strains: BY4742 (r = 0.996), W303 (r = 0.999), Lalvin 

EC1118 (r = 0.989) and AH109 (r = 0.997). From this, I can conclude that the HTS 

protocol provides accurate measures of relative viability over a 1000-fold range of 

cell viability for four different S. cerevisiae strains.  
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Figure 3.2 Outgrowth curves of budding yeast with several inoculum concentrations 
(A) Strain S. cerevisiae BY4742, a commonly used strain in aging research or cellular and molecular 
biology study, derived from S288C. There is a distinct shift in the curves with different living cell 
number (different dilutions or inoculum concentrations). (B) Correlations exist between the measured 
value of relative viability (means ± SD, n = 4) and diluted ratio in strain BY4742 (correlation 
coefficient, r = 0.996). (C) S. cerevisiae W303, a common WT strain in aging research and molecular 
biology study (r = 0.999). (D) S. cerevisiae Lalvin EC1118 (r = 0.989), an excellent wine strain used in 
a wide range of applications (such as sparkling wines, fruit wines and ciders). (E) S. cerevisiae AH109 
(r = 0.997), designed for detecting protein-protein interactions using the two-hybrid system for 
molecular biology study. 
 

 

3.3.2 Initial population size modulates CLS independent of CR 

An aspect of chronological aging that has not been previously explored is the 

effect, if any, that the size of the initial cell population might have on chronological 

aging of the stationary phase culture.  I studied the influence of population size on 

CLS in BY4742 by inoculating three different cell concentrations into SD media for 

subsequent aging studies. The three inoculum concentrations were prepared through 

20-fold dilution of an overnight YPD culture: 1 (52,000 ± 8600 cells/5 µL), 1:20 

(2,800 ± 240 cells/5 µL) and 1:400 (130 ± 10 cells/5 µL) (Figure 3.3); the viable cell 

number was determined by colony forming units (CFU) on solid YPD plates. Five µL 

of cultures were individually inoculated into 1 mL SD medium with 2% glucose 

(SD2D, control) and 0.5% glucose (SD0.5D, CR) medium for aging culture. Since the 

aging cultures inoculated with fewer cells were still showing growth after day 2, I 
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defined day 3, 4, and 5 as the initial age point (100% viability) for dilution 1, 1:20 and 

1:400 in the control condition, respectively. As shown in Figure 3.3E, the maximal 

cell density based on OD660 of the aging culture did not change significantly in 

response to the dilution of the initial inoculum. For cells aged in SD2D, reducing the 

size of the inoculum significantly (P < 0.05) extended the lifespan (Figure 3.3A, C). 

The survival integral (SI) of 3 inoculum sizes (1, 1:20, 1:400) were 275, 305, and 376 

correspondingly. Similarly, under CR (SD0.5D), yeast CLS was increased when 

inoculation was decreased (dilution 1:20, 1:400) (Figure 3.3B, D), while CR greatly 

reduce the saturation density of the culture (Figure 3.3F). Overall, reducing inoculum 

concentration could increase CLS under both normal and CR conditions, which acts 

as a CR-independent regime. 
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Figure 3.3 Effects of initial population size on CLS 
(A) Survival curves of three inoculum concentrations cultured in SD2D (SD medium contains 2% 
dextrose, control) for 15 days. (B) Survival curves of three inoculum concentrations in SD0.5D 
medium (0.5% dextrose, CR). Error bars represent SEM within 12 replicates. (C) AUC of the three 
treatments under control and (D) CR condition; AUC represents the survival integral, the variance of 
AUC (mean + SEM, n = 12) between the three treatments is compared using the Duncan’s multiple 
range test at P < 0.01, different letters (a–c) show significant differences. (E) The OD value has little 
change after yeast enter into stationary phase. 20 µL cultures and 80 µL water were added into each 
well of microplate, and OD value was measured at 660 nm. (F) CR reduces the saturation density of 
culture. The OD value of control culture at day 5 is defined to be 100 relative OD value. Error bars 
represent SEM within 12 replicates. 
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3.3.3 Effect of cellular state in YPD medium on Yeast CLS 

In prior studies, CLS assays have been typically begun by culturing cells in YPD 

medium overnight prior to inoculation in SD2D (or other media compositions) for 

aging. During culturing in YPD, yeast cells begin with the logarithmic phase (day 1) 

and progress through diauxic (day 2–3), and post-diauxic (day 4–6) phases to the true 

stationary (after day 7) phase. During this process, cells entirely consume glucose 

during the logarithmic phase, and then establish a diet-specific pattern of metabolism 

and organelle dynamics during diauxic and post-diauxic phases (Goldberg et al. 2009; 

Goldberg et al. 2010). To determine how growth phase of yeast cells at the beginning 

of a chronological aging experiment might influence subsequent CLS, I initiated 

aging cultures in SD2D with cells obtained from YPD medium after 1 (log phase), 2 

(diauxic), 4 (post-diauxic), or 8 (stationary phase) days. As can be seen in Figure 

3.4A, length of time cultured in YPD medium had little effect on the CLS of yeast in 

SD2D medium. 
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Figure 3.4 The effects of calorie level on yeast CLS 
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(A) Culture days of yeast have little effect on the CLS. Strain BY4742 cultured in YPD medium (2% 
glucose) for 1, 2, 4 and 8 days and then transferred into the SD medium (2% glucose) for 15 days. 
Error bars represent SEM within 12 replicates. (B) Calorie levels affect yeast lifespan. Strain BY4742 
was incubated in YPD medium for 2 days and then inoculated in SD medium containing 2%, 1%, 0.5% 
and 0.25% glucose for 14 days (mean + SEM, n = 12). (C) AUC of the four glucose levels, AUC 
represents the survival integral, the variance of AUC (mean + SEM, n = 12) between the four 
treatments is compared using the Duncan’s multiple range test at P < 0.01, different letters (a–d) show 
significant differences. (D) Effect of CR on CLS and biomass production. CLS increases as glucose 
concentration is reduced from 2% until 0.5% (CR) that the maximum CLS extension is reached, while 
further restriction results in reduced lifespan due to starvation (0.25%). Conversely, biomass 
production shows a constant decline. 
 
 
3.3.4 Calorie level optimizes yeast CLS but not biomass production  

Prior studies have shown that CR through reduction of the glucose concentration 

of the medium can increase both RLS and CLS. In this study, I re-examined the CLS 

of yeast cells in SD medium containing different levels of glucose. As shown in 

Figure 3.4B, I confirmed that CR at 0.5% glucose (SI = 690) could greatly extend 

CLS. CR at 0.25% glucose (SI = 415) or 1% glucose (SI = 502) also resulted in 

moderate lifespan extension, compared with the control conditions (2% glucose, SI 

351). In addition, the effect of glucose level on yeast CLS and biomass production 

was shown in Figure 3.4C. CLS was calculated via SI value and biomass was based 

on OD660 value of aging culture at day 2. CLS increased as glucose level was 

reduced from 2% to 0.5% (CR) whereby optimization of longevity was reached, while 

further restriction reduced lifespan due to starvation (0.25%). However, biomass 

gradually decreased over five-fold from 2% to 0.25% glucose (Figure 3.4D). 

 

3.3.5 Identification of calorie restriction mimetic gene 

Several studies have indicated that TOR signaling may play a conserved role in 

mediating beneficial health and longevity effects associated with CR (Fontana et al. 

2010; Kaeberlein 2010a). Inhibition of the TOR signaling pathway by genetic or 

pharmacological intervention extends lifespan in invertebrates, including yeast 

(Kaeberlein et al. 2005b; Powers et al. 2006), nematodes (Jia et al. 2004), fruit flies 
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(Kapahi et al. 2004) and mice (Harrison et al. 2009). TOR1 deletion increases RLS 

but fails to further increase RLS under CR conditions, being consistent with the model 

that Tor1 mediates CR-dependent RLS extension (Kaeberlein et al. 2005b). Reduction 

of TOR complex 1 (TORC1) activity with rapamycin and deletion of TOR1 increases 

lifespan significantly (Kaeberlein et al. 2005b; Powers et al. 2006). However, it is not 

clear if deletion of TOR1 could further extend yeast CLS subjected to CR. Therefore, 

I studied effect of deletion of the gene TOR1 on CLS. As illustrated in Figure 3.5A, 

deletion of TOR1 increased CLS under the control conditions, but did not further 

extend CLS under CR conditions. 

The AGC kinase Sch9 (homologous to protein kinases A, G, and C) was 

proposed as a substrate of yeast TORC1 (Urban et al. 2007). The observation that 

deletion of SCH9 significantly increased CLS under normal condition and decreased 

CLS in CR (Figure 3.5B) is consistent with previous reports that Sch9 increases 

resistance to oxidants and extends CLS and RLS (Fabrizio et al. 2001; Longo 2003; 

Kaeberlein et al. 2005b). These results suggest that TOR1 and SCH9 act as CRM 

genes in the CLS model. 

In yeast, the Ras-adenylate cyclase-protein kinase A (Ras-AC-PKA) pathway is 

also proposed to be an important nutrient-sensing pathway that can extend CLS and 

RLS (Fontana et al. 2010). Yeast RAS1 and RAS2 are highly homologous to 

mammalian RAS genes. Deletion of RAS1 increases RLS and slightly decreases CLS, 

while deletion of RAS2 decreases RLS and dramatically extends CLS (Sun et al. 1994; 

Fabrizio et al. 2003; Burtner et al. 2009b). As presented in Figure 3.5D, under 

normal condition, deletion of RAS2 increases CLS, but not further extends CLS under 

CR conditions. The results imply that RAS2 acts at downstream of CR. 
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Figure 3.5 Effect of single gene deletion on CLS 
WT strain BY4742 (A) and single gene knockout strain tor1Δ (B), sch9Δ (C), sir2Δ (D), and ras2Δ (E) 
were cultured in SD2D (2% glucose, control) and SD0.5D (0.5% glucose, CR). Error bars represent 
SEM within 16 replicates. AUC represents the survival integral, the variance of AUC (mean + SEM, n 
= 16) among the five strains under control (F) and CR (G) were compared using the Duncan’s multiple 
range test at P < 0.01, different letters (a–d) show significant differences. 
 

I also investigated the effect of SIR2 deletion on CLS (Figure 3.5C, D). Sir2 has 

been proposed to mediate lifespan extension (Lin et al. 2000b; Lamming et al. 2005). 

Deletion of SIR2 decreases RLS, whereas over-expression of SIR2 increases RLS 

(Kaeberlein et al. 1999). Deletion of SIR2 also prevents RLS extension by CR (Lin et 

al. 2000b); however, this is thought to be due to indirect effects caused by hyper-

accumulation of ERCs (Kaeberlein et al. 2004). In contrast, deletion of SIR2 is 

reported to have little effect on CLS under control conditions, but may enhance 

lifespan extension from deletion of SCH9 (Fabrizio et al. 2005). Consistent with prior 

reports (Smith et al. 2007; Murakami et al. 2008), I found that deletion of SIR2 

mediated CLS extension and could not prevent lifespan extension through CR, but 

through CR-independent regime (Figure 3.5C).  



45 
 

 

3.4 Discussion 

I have established a simple and rapid HTS assay to measure the CLS of budding 

yeast under normal and CR conditions. The advantages of this assay include a high 

capacity for simultaneous culture growth and quantification of CLS, well-studied and 

commercially available WT strain, short running time, common equipment, 

quantifiable data, and uncomplicated data processing. This method is modified from 

that developed by the Kaeberlein lab using a Bioscreen C MBR machine (Murakami 

et al. 2008), and provides the advantage that a standard plate reader can be used. This 

difference is important, as the Bioscreen C MBR machine uses non-standard 100-well 

plates, while a standard plate can accommodate chemical or genetic libraries that are 

contained in 96- or 384-well plates (Table 3.2). 

 

Table 3. 2 Comparison of high throughput methods for measuring yeast CLS developed by 
Kaeberlein group and our group 

 
Kaeberlein group Our group 

Advantages/disadvanta

ges of our method 

Equipment of aging culture 

incubation 
Roller incubator Flat  incubator  Commonly used 

Quantity of incubator 180 samples 600 samples High throughput 

Culture tube 25 mL 4 mL Reduce medium 

Plate reader 
Bioscreen C MBR 

machine  

Synergy HT 

Microplate reader  
Advanced 

Multi-well plate 100-well 96-well Commonly used 

Monitoring time 24 h 10-20 h Time saving 

Sample and YPD medium in 

each well 

5 µL sample + 145 µL 

medium 

5 µL sample + 

100 µL medium 
Reduce medium  

Absorption spectrum 420-580 nm 660 nm  Small OD value 

Recording Interval 30 min 5 min Accurate doubling time 

Data analysis 
A self-developed 

software YODA 

Microsoft Office 

Excel 
simpler data analysis 
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In this assay, initial inoculum size is regularly limited to approximately 1×104 

cells in each aging culture tube, and yeast cells proliferate to about 1×107 cells after 

two days incubation in SD2D medium, which means this aging culture contains 0.1% 

original cells. For the CLS assay, the viability is usually followed until it has declined 

to 0.1–1% of its original value, which allows a simple comparison of yeast CLS 

results with other lifespan assays. Previous reports have identified that low viability 

could be a problem because cell lysis and regrowth may be observed in some CLS 

assays (as see in Figure 3.5A) (Fabrizio & Longo 2003; Fabrizio & Longo 2008). On 

the other hand, my unpublished data showed that this microplate reader assay could 

detect a very low cell number (< 10) in the 5 µL aging sample during 48 hours in 

YPD medium, which means I could measure the relative viability when the number of 

viable cells in 1.0 mL aging culture is less than 102–103. 

Initial population size could affect cellular/microbial metabolism, growth, 

division, and communication with each other (Ding et al. 2009). Herein, I examined 

the effect of inoculum size on the yeast lifespan. Three inoculum sizes were used to 

determine its effect on yeast lifespan. The cells in the medium containing the lower 

inoculum size underwent a higher number of divisions. As shown in Figure 3.3, 

different initial inoculum concentrations had a similar number of cells when they 

reached the stationary phase (Figure 3.3F).The lower inoculum size groups took 

more time than the higher inoculum size groups before they entered the stationary 

phase (longer lag phase) (Figure 3.3E). Previous studies suggested that the ages of 

individual cells follow geometrical distribution and virgin daughter cells represent 

half of the population at each division, and the fraction of original mother cell could 

be negligible (< 1%) (Shcheprova et al. 2008; Steinkraus et al. 2008). During the 
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chronological aging, yeast cells usually undergo several divisions (< 10) before they 

enter the stationary phase. In this assay, the three inoculum sizes were approximately 

140, 2,800 and 52,000 cells per tube, thus, they had undergone approximately 16, 12 

and 8 divisions as they entered the stationary phase with 1 × 107 cells. Accordingly, 

there were different fractions of original mother cells, younger mothers and daughters 

in the stationary phase population among the three inoculums sizes. They had 

significantly different CLS (Figure 3.3A, C) and the smaller inoculum size can 

increase biomass production period and CLS of the three groups were shown by the 

100% survival at day 3, 4, and 5, respectively. Cells of the higher inoculum size 

firstly entered stationary phase and age, which is possible to affect the results of 

measured CLS. However, the absolute survival also shows that the low inoculum 

concentration had much higher viability than the high inoculum size at day 7–15 (data 

not shown). Furthermore, the effect of inoculum size on CLS under CR also shows 

lower inoculum number can extend CLS. The detailed mechanism of this 

phenomenon requires further examination.  

CR in mammals commonly defined as reduction in calorie intake without 

malnutrition by 10% to 50% of ad libitum (Mair & Dillin 2008; Fontana et al. 2010). 

However, CR in yeast is modeled by glucose reduction/restriction, reducing glucose 

level in the SD medium from 2% (normal condition) to 0.5% (moderate CR) and 

0.05% (severe DR) could extend RSL and CLS in different stains (Bishop & Guarente 

2007). In addition, strains and conditions that are involved during the experiments 

vary between laboratories and might lead to different lifespan (Minois et al. 2009). 

The variation of culture media, SD of limited amount of nutrients, YPD of rich 

nutrients and even the distilled water, also have profound impact on the lifespan of 

yeasts. The most widely used laboratory wild-type yeast strains are BY4742, PSY316, 
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W303AR5 and DBY746 (Fabrizio et al. 2001; Kaeberlein et al. 2002; Lamming et al. 

2005; Shcheprova et al. 2008). I selected the well-studied and relatively short CLS 

strain BY4742 and cultured it in SD medium with 2% to 0.25% glucose to better 

compare these CLS results obtained with that in other labs. As shown in Figure 3.4D, 

CR (0.5%) optimizes median lifespan, and further restriction results in reduced 

lifespan due to starvation (0.25%), whereas CLS but not biomass is optimized by CR.  

Those observations differ somewhat from prior studies, which indicated that 

0.05% glucose can increase CLS to an extent even greater than 0.5% glucose 

(Murakami et al. 2008; Burtner et al. 2009b). These observations are likely 

attributable to differences in the culture conditions and medium composition. It has 

been demonstrated that medium components, including carbon source and amino acid 

composition, are critical to yeast lifespan. Recent evidences have demonstrated that 

diets of amino acids modulate lifespan of model organisms in the laboratory, 

including yeast (Alvers et al. 2009a), flies (Grandison et al. 2009), and mice (Miller et 

al. 2005). It is now generally accepted that amino acids can control autophagy 

through changes in the activity of signal transduction pathways. Therefore, I modified 

the composition of SD medium with ingredients listed in Table 3.1. Additionally, I 

applied a shaker incubator with a high capacity of 600 aging culture tubes with a 

relatively small volume of 1 mL. Growth kinetic curve is employed for data analysis 

in this assay. The most important advantage of the kinetic assay is that it is highly 

sensitive, provides quantifiable data and is flexible to variable assay conditions. 

Compared with the CFU on solid media, the growth curve assay was able to uncover 

the subtle phenotypes when cells were treated with low doses of compounds (Smith et 

al. 2007).   

 



49 
 

3.5 Conclusion 

In this Chapter, I have reported a highly sensitive high throughput assay for 

evaluation of the CLS of yeasts. The assay is not labour-intensive and can be used to 

rapidly screen a large number of potential anti-aging compounds and yeast strains. 

The method provides quantifiable data including lag-time, growth rate, doubling time, 

percentage survival, and allows us to discover next generation anti-aging activity of 

CRMs from plant secondary metabolites. 
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Chapter 4 

DIETARY RESTRICTION DEPENDS ON 

NUTRIENT COMPOSITION TO EXTEND 

CHRONOLOGICAL LIFESPAN IN BUDDING 

YEAST  

 

4.1 Introduction 

The traditional opinion on DR has been challenged in four model organisms, 

namely yeast (Jiang et al. 2000; Powers et al. 2006), worms (Greer & Brunet 2009), 

flies (Lee et al. 2008; Fanson et al. 2009; Grandison et al. 2009; Ja et al. 2009), and 

mice (Zimmerman et al. 2003; Miller et al. 2005), because studies in these organisms 

have shown that changing the dietary components can increase their lifespans. 

Moreover, different DR regimes extend lifespan via distinct genetic pathways (Greer 

& Brunet 2009), which suggests that nutrient balance, in addition to dietary reduction, 

also plays a pivotal role in regulation of longevity (Piper et al. 2011). Although 

studies of yeast aging have had a significant impact on aging-related research, the new 

findings that nutrient composition can alter lifespan have not been systematically 

explored in a yeast model.  

In yeast aging studies, glucose plays an important role in yeast lifespan. DR can 

be accomplished by only reducing the glucose concentration of growth medium to 

extend CLS and RLS significantly, the glucose level in standard SD medium could be 

from 2% (normal condition) to 0.5% (moderate DR) or 0.05% (severe DR) (Bishop & 
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Guarente 2007). Recently, acidification of culture medium was proposed to accelerate 

chronological and replicative aging in yeast (Burtner et al. 2009b; Murakami et al. 

2011; Murakami et al. 2012). Thus, it is suggested that lifespan extension by reducing 

the glucose level of the culture medium from 2% to 0.5% or 0.05% is likely due to 

decreased production of organic acids and reduced medium acidification (Burtner et 

al. 2009b) . 

Recent evidences have demonstrated that dietary amino acid compositions 

modulate lifespan of laboratory model organisms such as yeast (Alvers et al. 2009a), 

flies (Grandison et al. 2009), and mice (Miller et al. 2005). A report showed that 

reducing the amino acid concentration in the medium could promote an increase in 

the mean and maximum RLS of yeast (Jiang et al. 2000). Another study showed that 

removing preferred amino acids such as asparagine or glutamate while keeping the 

total amino acid concentration constant could significantly increase CLS of yeast 

(Powers et al. 2006). It is postulated that amino acids and glucose balance extends 

yeast lifespan and that individually reducing amino acids or glucose is a major factor 

in regulation of yeast longevity. It is expected that other nutrients such as minerals 

and vitamins may also be important in regulating yeast CLS. It would be important to 

know how critical these nutrients are in extending or reducing lifespan. In most aging 

studies, single-factorial design was employed in experiments with nutrients as the 

variant, resulting in an exclusive elucidation of effects of other nutrients on lifespan. 

By using multifactorial design, a few studies on flies have found that the nutrient 

balance, not DR, extends lifespan (Lee et al. 2008; Skorupa et al. 2008; Fanson et al. 

2009). Multifactorial design in relation to nutrient change has not been applied in 

yeast aging studies.  
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To uncover the relationship between nutrients and CLS, I chose a three-factor 

(glucose, yeast nitrogen base (YNB), amino acids)/three-level experimental design 

with 15 media using the SAS program (version 9.2) to arrange experiments on yeast 

CLS measurement (totally 240 treatments, 15 media × 16 repeats). The design was 

based on a classical response surface methodology (RSM) by Box–Behnken design to 

explore the relationships between nutrients and lifespan as well as biomass production 

in a WT yeast strain (Baş & Boyacı 2007). I applied this design in three single gene 

deletion mutants (sch9Δ, tor1Δ and sir2Δ) to determine their changes of lifespan and 

biomass in response to the different nutrient compositions. Reported herein is the 

discovery. 

 

4.2 Materials and methods 

4.2.1 Materials 

The materials were as described in Chapter 3 (3.2.1). 

 

4.2.2 Experimental design and statistical analysis 

The three experimental factors under study were glucose, amino acids, and YNB 

in SD medium (Table 3.1). Values for these parameters were chosen to test 

conditions known to produce significant effects on lifespan from previous study (Baş 

& Boyacı 2007). To test for the curvature of the responses, three levels of each 

nutritional parameter were required (Table 4.1). A Box-Behnken design based on 

response surface methodology (RSM) was chosen to estimate the responses of both 

the linear and the quadratic behavior over the design region to minimize the number 

of experiments (Baş & Boyacı 2007). This design was generated from the SAS 
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program (version 9.2, SAS Institute Inc, Cary, NC, USA), and required a total of 15 

runs, including three center points (run 13, 14 and 15).  

 

4.2.3 Lifespan, biomass and yeast cell growth assay 

The lifespan, biomass and yeast cell growth assays have been described in the 

Chapter 3 (3.2.3).  

 

4.2.4 Data analysis 

The data analysis on lifespan has been described in Chapter 3 (3.2.4). For 

surface-response data analysis, the SAS program automatically provides tools that are 

appropriate for examining the linear and the quadratic effects, for estimating model 

parameters, for carrying out an analysis of variance (Table 4.4), for fitting models 

that can be used to find optimal factor settings, and for generating the surface-

response plots (Figure 4.3 and 4.4). Correlations among lifespan, biomass production 

and viability of day 2 were computed by using the SAS CORR procedure, which can 

provide Pearson correlation coefficients and associated probabilities (Table 4.2). 
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Table 4.1 The three-factor/three-level response surface methodology of Box–Behnken design and pH, biomass and lifespan values of different cultures in the WT 
and sch9Δ strains 

Run 

Factors & levels (coded) pH 
Biomass 

(OD660 %) 

Lifespan 

(AUC) 

AAs (1×) YNB (g/L) Glucose (%) Day 0 
WT 

day 2 

WT 

day 4 

sch9Δ 

day 2 

sch9Δ 

day 4 
WT sch9Δ WT sch9Δ 

1 0.5  (-1) 0.85  (-1) 3.0  (0) 4.73 3.00 3.09 3.00 3.12 11.7 36.5 594.0 413.8 

2 0.5  (-1) 9.35  (1) 3.0  (0) 4.60 3.21 3.27 3.26 3.34 52.1 59.7 559.7 303.9 

3 3.5  (1) 0.85  (-1) 3.0  (0) 4.75 3.65 3.60 3.88 4.04 50.9 47.6 344.4 2455.8 

4 3.5  (1) 9.35  (1) 3.0  (0) 4.72 4.80 4.42 4.67 4.24 226.8 263.1 762.0 678.1 

5 2.0  (0) 0.85  (-1) 0.5  (-1) 4.77 5.46 6.61 4.90 6.55 29.2 48.6 408.6 285.6 

6 2.0  (0) 0.85  (-1) 5.5  (1) 4.72 3.17 3.36 3.25 3.37 45.2 55.9 898.2 2701.4 

7 2.0  (0) 9.35  (1) 0.5  (-1) 4.71 5.88 5.93 5.88 5.93 53.1 69.5 688.9 770.2 

8 2.0  (0) 9.35  (1) 5.5  (1) 4.71 3.54 3.56 3.67 3.49 105.9 191.3 443.5 780.0 

9 0.5  (-1) 5.10  (0) 0.5  (-1) 4.71 3.82 3.94 3.63 3.78 30.9 45.3 894.6 318.2 

10 3.5  (1) 5.10  (0) 0.5  (-1) 4.76 6.67 6.83 6.25 6.66 40.8 65.7 426.4 319.9 

11 0.5  (-1) 5.10  (0) 5.5  (1) 4.68 2.73 2.81 2.79 2.82 55.6 57.0 308.6 504.1 

12 3.5  (1) 5.10  (0) 5.5  (1) 4.73 3.89 3.84 4.16 4.58 245.3 284.9 831.0 2397.2 

13 2.0  (0) 5.10  (0) 3.0  (0) 4.73 4.11 3.55 4.11 3.33 112.2 171.0 760.1 497.4 

14 2.0  (0) 5.10  (0) 3.0  (0) 4.73 4.10 3.57 4.13 3.35 126.5 185.0 778.0 496.3 

15 2.0  (0) 5.10  (0) 3.0  (0) 4.73 4.11 3.53 4.14 3.36 121.8 176.8 775.1 502.3 

SD 1.0   1.7   2.0   4.72 3.45 3.52   108.4  356.4  

CBS 1.0   1.7   2.0   6.00 5.92 5.89   225.1  1395.6  

The pH, biomass and lifespan data are presented as mean pH of several biological replicates. 
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Table 4.2 Correlation among lifespan, biomass and viability at day 2 for the 15 media in the four S. cerevisiae strains 
   WT    sch9Δ    tor1Δ     sir2Δ   

  Lifespan Biomass Viability  Lifespan Biomass Viability  Lifespan Biomass Viability  Lifespan Biomass Viability 

 Lifespan  0.40 0.38  0.18 0.40 0.37  0.30 0.39 0.37  0.52 0.37 0.37 

WT Biomass 0.14  0.94  0.13 0.97 0.79  0.31 0.99 0.95  0.31 0.99 0.96 

 Viability 0.16 <.0001   -0.11 0.88 0.92  0.42 0.92 0.98  0.34 0.89 0.98 

                 

 Lifespan 0.52 0.64 0.71   0.24 -0.26  -0.12 0.20 0.00  0.20 0.28 -0.01 

sch9Δ Biomass 0.14 <.0001 <.0001  0.39  0.75  0.33 0.96 0.87  0.37 0.97 0.88 

 Viability 0.17 0.00 <.0001  0.35 0.00   0.47 0.77 0.90  0.42 0.72 0.86 

                 

 Lifespan 0.28 0.26 0.12  0.67 0.23 0.08   0.23 0.37  0.87 0.27 0.37 

tor1Δ Biomass 0.15 <.0001 <.0001  0.47 <.0001 0.00  0.40  0.94  0.26 0.99 0.95 

 Viability 0.18 <.0001 <.0001  0.99 <.0001 <.0001  0.18 <.0001   0.33 0.92 0.99 

                 

 Lifespan 0.04 0.27 0.22  0.48 0.17 0.12  <.0001 0.35 0.23   0.30 0.31 

sir2Δ Biomass 0.17 <.0001 <.0001  0.32 <.0001 0.00  0.32 <.0001 <.0001  0.28  0.93 

 Viability 0.17 <.0001 <.0001  0.98 <.0001 <.0001  0.17 <.0001 <.0001  0.27 <.0001  

Pearson coefficient (r) is shown in top right of the table and corresponding P-value is shown in bottom left of the table. 
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Table 4.3 Correlations among amino acid, YNB, glucose, pH, lifespan and biomass for the 15 media in the WT and sch9Δ strains 
  nutrient WT sch9Δ  

  AA YNB Glucose pH day 2 pH day 4 Lifespan Biomass pH day 2 pH day 4 Lifespan Biomass 

 AA  0.00 0.00 0.53 0.42 0.00 0.54 0.60 0.50 0.48 0.57 

nutrient YNB 1.00  0.00 0.18 0.04 0.10 0.46 0.24 -0.01 -0.37 0.41 

 Glucose 1.00 1.00  -0.72 -0.74 0.03 0.42 -0.65 -0.67 0.53 0.41 

             

 pH day 2 0.06 0.55 0.01  0.96 -0.07 0.04 0.99 0.93 -0.27 0.03 

WT pH day 4 0.15 0.90 0.0056 <.0001  -0.16 -0.11 0.92 0.98 -0.28 -0.12 

 Lifespan 0.99 0.74 0.92 0.83 0.60  0.35 -0.04 -0.17 0.25 0.36 

 Biomass 0.06 0.12 0.16 0.90 0.73 0.25  0.12 -0.06 0.20 0.97 

             

 pH day 2 0.03 0.44 0.02 <.0001 <.0001 0.90 0.70  0.91 -0.17 0.11 

sch9Δ pH day 4 0.08 0.98 0.01 <.0001 <.0001 0.59 0.85 <.0001  -0.14 -0.05 

 Lifespan 0.09 0.21 0.06 0.37 0.35 0.41 0.51 0.57 0.64  0.29 

 Biomass 0.04 0.16 0.16 0.93 0.70 0.22 <.0001 0.73 0.88 0.33  

Pearson coefficient (r) is shown in top right of the table and corresponding P-value is shown in bottom left of the table. 
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Table 4.4 The linear and the quadratic parameter estimates for lifespan and biomass production 

Term 
WT sch9Δ tor1Δ sir2Δ 

Lifespan   Biomass Lifespan   Biomass Lifespan   Biomass Lifespan   Biomass 

AA Estimate a  0.63    57.85  538.88    51.69  262.63    61.98  294.50    67.28  

  P > |t| 0.9880    0.0007  <.0001   0.0070  0.0233    0.0002  0.0276    0.0002  

YNB Estimate  26.13    49.38  -415.63    37.61  75.75    47.84  -18.75    44.61  

  P > |t| 0.5394    0.0014  0.0001    0.0239  0.3947    0.0007  0.8525    0.0014  

GLU Estimate  7.75    45.00  586.00    37.25  -309.88    57.29  -207.00    54.21  

  P > |t| 0.8529    0.0021  <.0001   0.0248  0.0125    0.0003  0.0830    0.0006  

AA x AA Estimate -100.25    -26.99  107.58    0.00  -194.88    -30.65  -94.29    -23.00  

  P > |t| 0.1468    0.0636  0.1241    0.9998  0.1647    0.0224  0.5332    0.0773  

AA x YNB Estimate  113.00    48.08  -417.00    33.88  119.00    44.13  142.25    36.33  

  P > |t| 0.1002    0.0070  0.0007    0.0969  0.3486    0.0045  0.3416    0.0148  

AA x GLU Estimate  247.75    51.88  472.75    44.95  192.25    55.78  255.75    61.73  

  P > |t| 0.0069    0.0051  0.0004    0.0424  0.1557    0.0016  0.1176    0.0016  

YNB x YNB Estimate  -105.75    -48.89  357.08    -34.80  -187.63    -45.33  -120.29    -39.63  

  P > |t| 0.1300    0.0077  0.0017    0.1003  0.1781    0.0048  0.4324    0.0123  

YNB x GLU Estimate  -183.75    28.63  -601.25    9.20  10.50    29.40  -152.75    26.35  

  P > |t| 0.0221    0.0471  0.0001    0.6035  0.9309    0.0225  0.3106    0.0457  

GLU x GLU Estimate    -55.50    -37.39  278.83    -27.02  162.13    -49.93  138.21    -36.23  

  P > |t| 0.3857    0.0217  0.0049    0.1788  0.2339    0.0032  0.3719    0.0174  
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4.3 Results 

4.3.1 DR regime is dependent on nutrients in media 

Recent studies on flies suggested that the traditional observation on DR-induced 

longevity was mainly due to nutrient balance (Skorupa et al. 2008; Fanson et al. 2009; 

Piper et al. 2011). This indicates that the imbalance between nutrients resulted in 

lifespan reduction. To test this new insight in yeast CLS model, I chose four media 

with different glucose levels to examine CLS in a commonly used WT yeast strain 

BY4742. As shown in Figure 4.1, the four media are standard SD, YPD (1% yeast 

extract/2% peptone/2% dextrose), SD with four-fold excess of amino acids and SD 

with four-fold excess of YNB. Consistent with results in Chapter 3, I found that DR 

(0.5% glucose) increased CLS and severe DR (0.05% glucose) reduced CLS possibly 

due to glucose deficiency (Figure 4.1A, B). Moreover, DR optimized CLS but not 

biomass as shown in Figure 4.1C. The biomass production in the medium containing 

2% glucose was higher than that with 0.5% glucose. These results are similar to those 

observed in most higher eukaryotes, in which starvation does not extend lifespan, and 

high food intake results in high reproduction but shorter lifespan (Fontana et al. 2010). 

The difference between my results and those observations that severe DR (0.05%) 

extended lifespan could arise from different culture conditions (Kaeberlein et al. 2006; 

Lamming et al. 2006; Smith et al. 2007).  
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Figure 4.1 DR regime is dependent on nutrients in medium 
(A, B and C) Influence of glucose levels in SD medium on yeast CLS. Survival curve (A) of WT strain 
BY4742 was inoculated in SD medium containing 2%, 0.5% and 0.05% glucose for 15 days (mean + 
SEM, n = 8). (B) AUC represents the survival integral. DR (0.5% glu) greatly extended yeast lifespan, 
but further DR (0.05%) did not extend lifespan due to glucose deficiency. (C) Effect of glucose 
concentration in SD medium on yeast biomass production. Yeast grown in higher glucose medium 
produced higher biomass, and DR optimized CLS but not biomass.  
    (D, E and F) Influence of glucose levels in YPD medium on yeast CLS. (D) Survival curve of yeast 
was cultured in YPD (1% yeast extract and 2% peptone) medium with different glucose levels (mean + 
SEM, n = 8). (E) Moderate DR (0.5%) and severe DR (0.05%) did not extend lifespan compared to 
normal condition (2% glu). (F) DR did not optimize CLS and biomass. 
    (G, H and I) Influence of glucose concentrations in SD medium containing four fold amino acids on 
yeast CLS. (G) Survival curve (mean + SEM, n = 8) and AUC comparison (H) shown that different 
glucose levels had little effect on lifespan. (I) Yeast cultured in normal condition produced higher 
biomass than DR condition, but further addition of glucose did not increase biomass. 
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    (J, K and L) Influence of glucose levels in SD medium with 4-fold YNB (6.8 g/L) on yeast CLS. (J 
and K) DR extend lifespan, but the difference was less than that in SD medium as show in A and B, 
which, due to addition of YNB, increased lifespan in 2% glucose (mean + SEM, n = 8). (L) The 
biomass results were similar with the observation in SD medium with four fold amino acids. Yeast 
grown in 8% glucose medium did not produce higher biomass than that in 2% glucose medium. 
    (M, N and O) High osmolarity and buffered media extend CLS. Yeast were inoculated into SD, SD 
medium supplemented with 0.3 M NaCl (high osmolarity), and SD medium prepared with phosphate 
buffer solution at (PBS, Na2HPO4 and NaH2PO4, pH 6.0) or citrate phosphate buffer solution (CBS, 
Na2HPO4 and citric acid, pH 6.0). (M) Survival curve (mean + SEM, n = 6) and AUC comparison (N) 
shown that the three media significantly prolonged CLS, as well produced higher biomass than SD 
medium (O). 
    Biomass of each aging vial at one age-point was measured as the average reading of OD values at 
660 nm from 10 to 30 min in outgrowth curve. The OD value of SD medium at day 2 was defined to be 
100 relative OD value. The variance of AUC (mean + SEM, n = 8) and relative OD600 values (mean + 
SD, n = 8) between the treatments was compared using the Duncan’s multiple range test at P < 0.05, 
different letters (a–d) showing significant differences. 
 

YPD medium was also chosen for DR studies in yeast chronological aging model 

(Aragon et al. 2008; Goldberg et al. 2009). To my surprise, the yeast cultured in YPD 

medium containing 0.5% glucose had a shorter lifespan than that grown in YPD with 

2% glucose, and those grown in YPD with 0.05% glucose had lifespan further 

reduced, similar to the results in SD medium (Figure 4.1A, D, E). For biomass, the 

observation was also similar to the results in SD medium that higher glucose 

concentrations produced higher biomass; however, the biomass at the same glucose 

level was significantly higher than that of SD medium (Figure 4.1C, F). YPD 

medium is rich in nutrients; I propose that 2% glucose in YPD medium could mimic 

DR condition of the 0.5% glucose in SD medium and hence induce longevity of yeast. 

The lifespan reduction in 0.5% and 0.05% glucose YPD would be due to glucose 

deficiency.   

For preliminary study of effect of amino acids and YNB in yeast CLS, four-fold 

of total amino acids were added into the SD medium containing different glucose 

levels. As shown in Figure 4.1G-I, the addition of total amino acids did not extend 

CLS, but increased biomass production, and the DR condition (0.5% glucose) did not 

produce longer lifespan than the normal condition (2% glucose). Interestingly, the 

results showed that the addition of four-fold YNB (6.8 g/L) significantly extended 
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CLS and increased biomass production more than that of the SD medium with 2% 

glucose (Figure 4.1J-L). Yeasts in the high YNB medium with 0.5% glucose had 

longer CLS than that in the high YNB medium with 2% glucose. Therefore, the 

results from high amino acids and YNB media suggested that the concentrations of 

both components played important roles in regulation of yeast CLS. Furthermore, it 

was observed that yeast grown in glucose levels from 0.05% to 2% produced more 

biomass but not longer CLS. In contrast, 8% glucose could not further increase 

biomass in either high amino acids or YNB media. This may be due to shortages of 

YNB and amino acids relative to high glucose content (Figure 4.1I, L). 

Previous studies proposed that acetic acid induced cell death was the key 

mechanism of chronological aging in yeast in standard medium and that 

environmental and genetic interventions via increasing cellular resistance to acetic 

acid could extend CLS (Fabrizio et al. 2004; Burtner et al. 2009b; Murakami et al. 

2011). In this study, the results are consistent with these reports. I have showed that 

high osmolarity medium (0.3 M NaCl) and buffered media (pH 6.0) can significantly 

extend CLS of yeast (Figure 4.1M, N). Interestingly, the high osmolarity and 

buffered media produced more biomass than the standard SD medium even though 

they had the same amounts of glucose and other nutrients (Figure 4.1O). In 

accordance to this study, buffered media induced biomass increase was also observed 

in a previous study (Burtner et al. 2009b).  

 

4.3.2 Development of statistical design of experiments for evaluation of nutrition, 

biomass and lifespan 

To determine the relationships between nutrients and lifespan as well as biomass 

production of yeast, a 15-media experimental protocol with three-factors (glucose, 



62 
 

YNB, amino acids)/three-levels (-1, 0, 1) was selected according to the classical RSM 

Box–Behnken design. This design can generate the relationships between several 

explanatory variables (nutrients) and response variables (lifespan, biomass) with the 

minimal number of experimental runs. Concentrations of three factors, i.e. glucose 

(0.5 to 5.5 %), amino acids (0.5 to 3.5 ×) and YNB (0.85 to 9.35 g/L), were chosen to 

test conditions known to alter lifespan in a typical SD medium. The WT strain 

BY4742 and three single gene deletion strains (sch9Δ, tor1Δ, and sir2Δ) were chosen 

because the three genes are highly conserved and play critical functions in regulating 

aging from yeast to mammals (Fontana et al. 2010; Haigis & Sinclair 2010; 

Kaeberlein 2010a; Guarente 2011). Thus, this experimental design contains a total of 

1024 runs that include the standard SD medium (4 strains × 16 media × 16 

repetitions). Relative lifespan of the four strains (WT, sch9Δ, tor1Δ, and sir2Δ) are 

shown in Figure 4.2, and response surfaces for lifespan and biomass of the four 

strains cultured at various concentrations of amino acids, glucose, and YNB are 

plotted in Figure 4.3 and Figure 4.3, respectively. 

 

4.3.3 Nutrient composition is a key factor for longevity of yeast 

To elucidate whether nutrient balance is a core factor for longevity in different 

yeast strains, I did an analysis based on the strains of yeast respectively.  

 WT Strain. Under three fixed GLU concentrations of 0.5, 3, and 5%, the trends 

of response surface were greatly different in regards to YNB and AA concentrations 

(Figure 4.3 top row). It is clearly that the typical DR (0.5% GLU) does not always 

produce longer CLS than normal (3%) or high (5.5%) GLU level when yeast cultured 

in media containing diverse concentrations of YNB and AA. The higher YNB and 

lower AA caused longer lifespan under 0.5% GLU. The response surface of 3% GLU 
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showed an optimal lifespan within the testing concentration ranges of amino acids and 

YNB. The trends in lifespan changes at 5.5% GLU were almost opposite as that of 

0.5% GLU. Lower YNB and higher AA induced longer lifespan under 5.5% GLU. 

Analysis in linear and quadratic effects of AA, GLU and YNB on lifespan (Table 4.4) 

suggested that changes in AA × GLU (P = 0.0069) and YNB × GLU (P = 0.0221) had 

significant effect on WT yeast CLS. AA × GLU positively altered CLS while YNB × 

GLU negatively affect CLS. However, changes in other terms (AA, GLU, YNB, AA 

× AA, YNB × YNB, GLU × GLU, YNB × AA) had less influence on yeast CLS. 

Altogether, these data indicate that nutrients in medium greatly impact CLS in WT 

yeast.  

sch9Δ Strain. The response surface plots of sch9Δ also showed that nutrients 

changed lifespan significantly, and the trends were greatly different from those of the 

WT at the three GLU levels (Figure 4.3 second row). Only the term of AA × AA had 

no significant effect on yeast CLS (Table 4.4). The sch9Δ had longer CLS when 

grown in media with higher AA and lower YNB under 3% and 5.5% GLU, but had 

longer CLS in either media containing lower AA and higher YNB or higher AA and 

lower YNB under 0.5%.  

tor1Δ and sir2Δ Strains. The trends of response surfaces bore some similarities 

(Figure 4.3 3rd and 4th row), and this was consistent with the result that tor1Δ and 

sir2Δ had a good correlation (P < 0.0001) in lifespan change (Table 4.2). However, 

the trends of the two strains differed to that of WT and sch9Δ. Under 0.5% GLU, 

longer lifespan was observed than that 3% and 5.5% GLU. Both AA and GLU had 

more significant effect than other terms on lifespan change in tor1Δ and sir2Δ (Table 

4.4).  
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Figure 4.2 Comparison of relative lifespan, biomass and viability in the four yeast strains (WT, 
sch9Δ, tor1Δ, and sir2Δ) 
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AUC represents the survival integral for lifespan comparison, the AUC of yeast aging in SD medium is 
defined as 100%, and error bars represent SEM within 12 replicates. Biomass production was measured 
as the average values at OD660 of each medium from day 10 to day 22 (see Figure 4.6), the biomass 
of SD medium was defined as 100%, (mean + SEM, n = 12). Viability was the survival at day 2, and 
the survival of SD at day 2 was defined as 100%, (mean + SEM, n = 12). 
 
 

WT Glu = 0.5 WT Glu = 3 WT Glu = 5.5

sch9Δ Glu = 0.5 sch9Δ Glu = 3 sch9Δ Glu = 5.5

tor1Δ Glu = 0.5 tor1Δ Glu = 3 tor1Δ Glu = 5.5

sir2Δ Glu = 0.5 sir2Δ Glu = 3 sir2Δ Glu = 5.5

 
Figure 4.3 Response surfaces for lifespan of the four yeast strains (WT, sch9Δ, tor1Δ, and sir2Δ) 
cultured at various concentrations of amino acids (AAs), glucose (Glu), and yeast nitrogen base 
(YNB) 
For each strain, three AA/YNB-lifespan plots are shown at specific GLU levels 0.5% (low), 3% 
(medium) and 5.5 % (high) respectively. The AAs concentration ranged from 0.5× to 3.5× and YNB 
from 0.85 to 9.35 g/L. The surface-response in sch9Δ was clearly different from that in WT, tor1Δ and 
sir2Δ, while these plots displayed similar trends in sir2Δ and tor1Δ. All these surface-response plots 
were generated automatically by SAS program, and those surface plots for biomass production are seen 
in Figure 4.4. 
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WT Glu = 0.5 WT Glu = 3 WT Glu = 5.5

sch9Δ Glu = 0.5 sch9Δ Glu = 3 sch9Δ Glu = 5.5

tor1Δ Glu = 0.5 tor1Δ Glu = 3 tor1Δ Glu = 5.5

sir2Δ Glu = 0.5 sir2Δ Glu = 3 sir2Δ Glu = 5.5

 
Figure 4.4 Response surfaces for biomass production of yeast cultured at various concentrations 
of amino acids (AAs), glucose (Glu), and yeast nitrogen base (YNB). 
For each strain, three AA/YNB-lifespan plots are shown at specific GLU levels 0.5% (low), 3% 
(medium) and 5.5 % (high) respectively. The AAs concentration ranged from 0.5× to 3.5× and YNB 
from 0.85 to 9.35 g/L. These surface-response plots displayed similar trends in the four strains. All 
these surface-response plots were generated automatically by SAS program, and those surface plots for 
lifespan are seen in Figure 4.3. 
 

Estimation of lifespan from linear and quadratic parameters showed that the same 

term had marked differences among the four strains (Table 4.4), which was totally 

different from the biomass results (vide infra). It also suggests that nutrient 

composition is an important factor for longevity of budding yeast and the three 

nutrients and their interactions play different roles in lifespan of different strains. 
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Overall, the diverse change of lifespan of the four strains in these media 

suggested that nutrient composition, instead of glucose alone, played a more 

important role in regulation of lifespan. 
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Figure 4.5 Survival curves of four yeast strains 
Four yeast strains (WT, sch9Δ, tor1Δ, and sir2Δ) were cultured in 13 media for 22 days. The relative 
survival of each age-point was shown as the mean within 12 replicates. 

 

4.3.4 Biomass production of the four strains has similar changes in response to 

nutrient composition  

During chronological aging, the total cell number in the medium (defined as 

biomass production) had little change (Figure 4.6), but the number of living cells 

(survival %) had been reducing stage by stage. As listed in Table 4.2, the biomass and 

viability had a good positive correlation among the four strains, which indicates that 

viability at day 2 represent the biomass production of the medium. This suggests that 
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there might be no need to measure the OD660 values of medium at each age-point as 

the biomass.  
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Figure 4.6 Effect of medium nutrient composition on yeast biomass production 
Biomass of each aging vial at one age-point was measured as the average reading of OD values at 660 
nm from 10 to 30 min in outgrowth curves. The OD value of SD medium at day 2 was defined as 100%. 
Data is shown as the mean within 12 replicates (RSD < 10%). 
 

It is known that the four strains had significant lifespan changes in various media 

(Figure 4.3); however, these results were not observed in biomass production. On the 

contrary, the biomass production of the four strains had similar change trends among 

the 15 media (Figure 4.4). Firstly, the Pearson coefficient (r) of WT with sch9Δ, 

tor1Δ and sir2Δ were very high at 0.97 (P < 0.0001), 0.99 (P < 0.0001), and 0.99 (P < 

0.0001) (Table 4.2) respectively. However, for lifespan, the corresponding r values 

were poor at 0.18 (P = 0.52), 0.30 (P = 0.28) and 0.52 (P = 0.04). Secondly, all linear 

terms (AA, YNB and GLU) and all cross terms (AA × YNB, AA × GLU and YNB × 

GLU) had positive effects, and all quadratic terms (AA × AA, YNB × YNB, GLU × 
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GLU) had negative effects on biomass production in the four strains. However, these 

results were different from the data on lifespan (Table 4.4).  

For the optimal medium for biomass production, as can be seen in, the response 

surface plots indicated that only the low level of GLU (0.5%) medium had a maximal 

biomass from the coded concentration range of amino acids (0.5–3.5 ×) and YNB 

(0.85–9.35 g/L), while the media with middle or high levels of GLU had not (Figure 

4.4). This means that higher nutrient amounts in media produced higher biomass for 

all stains. 

 

4.3.5 Strain sch9Δ is more sensitive to nutrients than the other three strains 

For the changes in lifespan of sch9Δ strain in response to various nutrient 

compositions, the response surface plots showed that nutrients changed lifespan 

significantly, as the trends were greatly different from those of the other strains 

(Figure 4.3) and almost all term had significant effect on yeast CLS (Table 4.4). 

These data suggest that the lifespan of sch9Δ is more sensitive to nutrients than the 

other three strains. 

For cell growth in the different media, the yeast cells of WT, tor1Δ, and sir2Δ 

grew well as indicated by the biomass production that was dependent on the available 

nutrients in the media (Figure 4.7). In contrast, growth of sch9Δ cell was greatly 

disturbed in some media, the cells cultured in medium 1, 3, 5, 6, and SD did not grow 

better than the yeast in other media. Nevertheless, sch9Δ strain grew well in a few 

media such as 7, 11 and YPD and the growth curves were similar to those of the other 

strains. Thus, this result could indicate that the growth of sch9Δ is more sensitive to 

nutrients. 
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Figure 4.7 Different media have little effect on cell growth during lag phase in most yeast strains 
The growth curves show that yeast cells of WT (A), sir2Δ (B) and tor1Δ (D) proliferated well with 
nutrients available in different media since the lag time (≈ 8 h) of each curve had no significant 
changes. Yeast cultured in media containing high and balanced AAs, GLU and YNB content produced 
a higher number of cells. However, sch9Δ did not grow well in several media, even in the SD (C). Five 
µL of diluted and nutrient free yeast culture (≈ 1×104 cells) was pipetted into each well of 96-well 
microplate. One hundred µL of different media was then added to each well. The cell population was 
monitored with a microplate reader by recording the OD every 5 min at 660 nm. 
 

I also observed that sch9Δ cells would cluster together in several media (Figure 

4.8). Moreover, these aggregative cells formed macroscopic agglomerates and settled 

to the bottom of sample vials. In addition, this aggregation phenomenon can be seen 

from the growth curve (Figure 4.7), which had a clear descending trend after the 

maximal OD660 value, such as 1, 2, 3, 6, 8, 12, 13, 14, 15 and SD. However, this 

phenomenon was not found in other strains (Figure 4.7, 4.8), and the aggregation did 

not relate to biomass production and lifespan (Figure 4.2). Overall, these results 

suggest that Sch9 regulates cell aging, growth and size and that sch9Δ strain is highly 

sensitive to nutrients change. 
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Figure 4.8 Representative cell images of the four yeast strains in different media at day 22 
Yeast cells at different aging-points were collected and observed using an optical microscope 
(Olympus CX31, Tokyo, Japan) with 1000× magnification. sch9Δ cells gathered together in response 
to nutrient imbalance in the medium. 
 

4.3.6 Aging media pH is dependent on glucose concentration and has no 

correlation with lifespan 

In the yeast CLS model, acidification of the culture medium accelerates 

chronological aging when cells are cultured in a SD liquid medium (Burtner et al. 

2009b; Murakami et al. 2011; Murakami et al. 2012). The pH of a yeast aging culture 

is dependent on the medium composition, especially glucose concentration. Yeast 

cells metabolize glucose and other substrates such as amino acids to produce organic 

acids via glycolysis and citric acid cycle including acetic, pyruvic and succinic acids. 

In this study, I examined pH changes in different media in WT and sch9Δ (Table 4.1) 

and analysed the correlations among pH, amino acid, YNB, GLU, lifespan and 
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biomass (Table 4.3). The pH of aging cultures ranged from 2.7 to 6.8 and pH at day 2 

and day 4 had no significant difference, which was consistent with a previous study 

(Burtner et al. 2009b). In addition, the pH of WT cultures had a similar trend except 

sch9Δ strain, which might indicate that pH changes of different media were 

independent of deletion of SCH9. Furthermore, the pH of the two strains at two age-

points had a strong correlation with the GLU content in the media, but had no 

correlation with lifespan or biomass. This result suggested that nutrient composition 

could offset the effect of extracellular pH decrease to influence yeast CLS under the 

current experimental conditions, possibly due to intracellular buffering capacity 

(Thomas et al. 2002). The pH as one determinant of CLS was observed only in a few 

cases in this study (media 7 versus media 8). It should be noted that buffering the pH 

of standard SD medium (CBS) could result in longer CLS than any of the 15 media 

compositions (Table 4.1) in WT strain. For un-buffered conditions, previous studies 

focused on glucose percentage in media and did not consider amino acids and YNB 

composition. Thus it was concluded that low pH accelerates chronological aging and 

pH buffering increases CLS under standard SD medium (Murakami et al. 2011; 

Murakami et al. 2012). In this study, I compared the lifespan of yeast in various 

media with changes in YNB and amino acids, which likely affected the chronological 

viability by alleviating the negative impact of media acidification and acetic acid 

toxicity.  

 

4.3.7 The optimal SD medium for yeast 

Based on the four strains used in this study, the media 12 would be the best one 

for yeast since it produced the maximal biomass and lifespan (Table 4.5). However, 

media 12 resulted in a shorter lifespan of WT yeast than that in the YPD and pH 
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buffered media (Figure 4.2, Table 4.1). In contrast, media 12 has only a slight 

influence on cell growth in sch9Δ (Figure 4.7, 4.8). In addition, our results showed 

the WT cultured in YPD (2% GLU) had a remarkable longevity (Figure 4.1). The 

other three strains (data not shown) also showed lifespan extension. All four strains 

grew well in YPD and there was no aggregation in sch9Δ (Figure 4.7). However, not 

all the chemicals included in YPD are known, thus YPD was not an ideal medium for 

investigating the effects of components on aging.  

 

Table 4.5 Membership function value f(x) and ranking for the 15 media according the two 
criteria of lifespan and biomass in the four yeast strains 

 WT sch9Δ tor1Δ sir2Δ   

Run lifespan Biomass lifespan Biomass lifespan Biomass lifespan Biomass Mean Ranking 

1 0.48 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.07 15 

2 0.43 0.09 0.01 0.17 0.10 0.10 0.05 0.09 0.13 13 

3 0.06 0.04 0.90 0.17 0.38 0.16 0.45 0.21 0.30 10 

4 0.77 0.91 0.16 0.92 0.86 0.94 1.00 0.82 0.80 2 

5 0.17 0.05 0.00 0.07 1.00 0.01 0.80 0.05 0.27 11 

6 1.00 0.08 1.00 0.14 0.29 0.14 0.72 0.14 0.44 6 

7 0.64 0.13 0.20 0.18 0.94 0.08 0.71 0.14 0.38 8 

8 0.23 0.62 0.20 0.40 0.26 0.67 0.09 0.61 0.39 7 

9 0.99 0.04 0.01 0.08 0.78 0.00 0.85 0.03 0.35 9 

10 0.20 0.12 0.01 0.12 0.75 0.03 0.74 0.07 0.26 12 

11 0.00 0.08 0.09 0.19 0.17 0.10 0.02 0.08 0.09 14 

12 0.89 1.00 0.87 1.00 0.76 1.00 0.81 1.00 0.92 1 

13 0.77 0.54 0.09 0.43 0.65 0.59 0.54 0.51 0.51 5 

14 0.80 0.60 0.09 0.49 0.64 0.60 0.61 0.51 0.54 3 

15 0.79 0.56 0.09 0.47 0.64 0.60 0.55 0.49 0.52 4 

f(x) = (x – xmin)/(xmax – xmin), x is the lifespan and biomass among 15 runs respectively, ranking based 
on means of f(x) values of lifespan and biomass in three strains, the number of ranking is smaller, 
indicating the medium for yeast culture is better for longevity and biomass production. 
 

The standard SD medium is better suited for yeast aging study, and the amino 

acid compositions can be conveniently modified to identify optimal amino acid 

requirements of specific mutants. For yeast aging study, development of an ideal SD 
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medium mimicking YPD that can meet cell growth requirements and achieve 

longevity for most strains would be interesting but challenging to achieve. In this 

study, I found that not only glucose and amino acids but also YNB played a 

significant role in regulating lifespan and biomass production of yeast strains, 

especially of sch9Δ. Thus, modification of amino acids and YNB composition was 

important for development of a better SD medium for yeast aging study.  

 

4.4 Discussion 

In this Chapter, I used a high throughput screening assay to comprehensively 

evaluate the relationships between nutrients (GLU, AA and YNB) and lifespan as 

well as biomass production in four yeast strains (WT BY4742, sch9Δ, tor1Δ, and 

sir2Δ). Experimental design based on the classical RSM with a total of 1024 

treatments (4 strains × 16 media × 16 repeats) was applied to show that different 

strains cultured in various media had similar response surface trends in biomass 

production and viability at day 2, but very different trends in lifespan. All the three 

groups of nutrients and their interactions seemed to play different roles in regulation 

of lifespan of different strains. In addition, I propose that viability at day 2 might 

represent the biomass production of the medium since it had a good correlation with 

measured biomass based on the OD660 values of the medium. Furthermore, these 

findings indicate that lifespan extension by DR regime was dependent on nutrients in 

medium and that nutrient composition was a key factor for longevity of yeast.  

Recent studies have revealed that nutrition influences the biological aging 

process in different model organisms, especially the macronutrients including 

carbohydrates, fats, proteins, and water (Meydani 2001; Lee et al. 2008; Fanson et al. 

2009; Ja et al. 2009). This information is particularly important because of its 
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potential for developing interventions to prevent age-related diseases and promote 

healthy aging.  

The common medium for yeast aging study is the SD medium containing a 

limited amount of nutrients, which mimics yeast survival in the wild (Fabrizio & 

Longo 2003). The SD medium contains glucose, YNB, ammonium sulphate, and 

amino acid mixture. YNB contains salts, vitamins and trace elements (Table 3.1). For 

the standard SD medium, it has been shown that DR (0.5% glucose) can extend yeast 

RLS and CLS in various strains, as compared to the normal condition (2% glucose). 

Recent studies on flies also suggest that the traditional observation on DR-induced 

longevity was mainly due to nutrient balance. This indicates that the imbalance 

between dietary and other nutrients resulted in lifespan reduction under normal 

conditions (Skorupa et al. 2008; Fanson et al. 2009; Piper et al. 2011). In addition, 

DR in mammals is commonly defined as reduction in dietary intake without 

malnutrition by 10% to 50% of ad libitum (Mair & Dillin 2008; Fontana et al. 2010). 

However, DR in yeast is modeled by glucose restriction and reducing the glucose 

level in the SD medium from 2% (normal condition) to 0.5% (moderate DR) or to 

0.05% (severe DR) can extend lifespan of different yeast stains (Bishop & Guarente 

2007).  

Recent studies suggested that the low glucose induced longevity in yeast was 

partially due to decreased production of acetic acid and reduced medium acidification 

for two possible reasons. First, acetic acid was identified as an extracellular mediator 

of cell death during yeast chronological aging. It was demonstrated that 

environmental interventions by reducing or eliminating acetic acid increased CLS, 

such as via DR, using non-fermentable carbon source, or transferring cells to water 

(Burtner et al. 2009b). Second, pH neutralization was demonstrated to protect against 
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reduction in RLS and CLS in yeast (Fabrizio et al. 2004; Murakami et al. 2011; 

Murakami et al. 2012). Extracellular acidification of the culture medium could cause 

intracellular damage, which subsequently limited the cell replicative potential. The 

reduced RLS and CLS could be extended by buffering the pH of medium to 6.0 

(Murakami et al. 2012). In this study, I also examined impact of DR, growth on a 

non-fermentable carbon source, transferring yeast to water (unpublished data), 

deletion of SCH9 and RAS2, and growth in high osmolarity or buffered media. 

Consistent with previous observations, I found that these factors could also extend 

yeast CLS. However, the results also showed that low glucose level media (low acetic 

acid content and high pH) resulted in CLS reduction (Figure 4.1, 4.2, 4.3), and that 

the relatively high glucose medium (high acetic acid content and low pH) extended 

CLS (media 6 versus media 5 or media 12 versus media 10). In addition, I measured 

the acetic acid contents of different cultures of WT and sch9Δ at day 2 and found the 

acetic acid concentration was relatively low (< 10 mM) and could only be detected in 

a few high glucose media (unpublished data). This indicates that acetic acid might not 

always be the key determinant of CLS, which is supported by others (Longo et al. 

2012). It is likely that the effect of acetic acid on yeast survival is condition-

dependent, such as media composition, nutrient composition, and buffering capacity 

of both extracellular and intracellular media (Thomas et al. 2002). 

 Due to the complexity of the factors impacting yeast ageing, at present, it is still 

not clear why the observations differ from prior studies (low glucose, GLU < 0.5%). 

One possibility might be that this study focused on the effects of nutrients (not only 

glucose, but also YNB and amino acids) on CLS of yeast in the SD medium. YNB 

and the initial amino acid composition could alter the intracellular pH of the aging 

culture, affect the yeast cell survival, and negate acetic acid toxicity. Another 
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possibility might be that the conditions were not optimized for CLS extension by low 

glucose (< 0.5%). It should be noted that the different results were also likely 

attributable to differences in the medium composition and culture conditions. For 

example, I modified the amino acid composition of SD medium (Table 3.1), which is 

different from prior studies, Although I followed similar composition of some amino 

acids  such as adenine, L-arginine, L-methionine, L-serine, L-tryptophan, and L-

tyrosine (Murakami et al. 2008), I used a shaker incubator with a high capacity of 600 

aging culture vials (4 mL, 15 x 45 mm, with plastic caps) with a relatively small 

medium volume of 1 mL, which is greatly different from other laboratories, where 

bigger culture containers with more liquid medium, are used. This could result in 

different cell population, culture aeration and oxidative metabolism (Longo et al. 

2012). Furthermore, yeast CLS is influenced by additional factors, including strain 

auxotrophies, the way the cultures are aerated, the use of 96-well microplates, the use 

of spectrophotometric vs. CFU-based methods for quantifying viability. All these 

factors may have contributed to the different observations. The current work did not 

necessarily disprove previous findings of acetic acid/pH as one important factor for 

yeast aging, although cautions should be exercised in interpretation of data (e.g. 

experimental conditions applied). The findings from this study need to be validated by 

different laboratories and further work is needed to understand the reasons for these 

different observations about the effect of pH on lifespan, for example, using buffered 

media with different nutrient compositions.  

YPD would be a good medium for cell growth and longevity study since it 

contains yeast extract and peptone, which are rich in many types of nutrients. It has 

applications in diverse yeast strains (Aragon et al. 2008; Goldberg et al. 2009). YPD 

medium was chosen for the DR study in yeast chronological aging model mainly due 
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to two factors. Firstly, it allows isolation of quiescent and non-quiescent cells from 

stationary phase cultures grown in YPD medium (Allen et al. 2006; Aragon et al. 

2008). Secondly, the shape of mortality curves for yeast grown in the nutrient-rich 

YPD medium was similar to the mortality patterns observed in multicellular 

eukaryotes (Minois et al. 2009). Thirdly, yeast grown in YPD medium containing 

0.2% or 0.5% glucose lived significantly longer than that grown at 0.05%, 1% or 2% 

glucose (Goldberg et al. 2009), which suggests that the glucose level affects lifespan 

of yeast as observed in many higher eukaryotes.  

It has been reported that amino acid balance plays a critical role in regulation of 

lifespan in rat, fly and yeast, independent of DR (Koc et al. 2004; Miller et al. 2005; 

Malloy et al. 2006; Alvers et al. 2009a; Grandison et al. 2009; Elshorbagy et al. 

2010). Methionine restriction can decrease visceral fat mass, preserve insulin action, 

and prolong lifespan in rats independent of DR (Malloy et al. 2006). In Drosophila, 

adding methionine alone to DR condition increased fecundity as much as that under 

regular feeding and without reducing lifespan (Grandison et al. 2009). In S. cerevisiae, 

a few studies have shown that reduction in methionine increased the RLS (Koc et al. 

2004) and removal of either asparagine or glutamate can significantly increase CLS 

(Powers et al. 2006). Furthermore, addition of isoleucine, threonine, valine, and 

leucine can extend CLS (Alvers et al. 2009a). However, these studies focused only on 

amino acids and did not consider other nutrients present in the medium. Thus, the 

relationship between glucose and amino acids in regulation of lifespan was still not 

established. In this study, I found that not only glucose and amino acids, but also 

YNB, played a significant role in regulation of yeast lifespan and biomass production. 

The three groups of nutrients and their interactions played different roles in regulation 

of lifespan of different strains. The objective of this study was not to produce an 
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optimal medium for yeast aging studies, but to demonstrate the fact that optimizing 

culture media by single nutrient variation is not sufficient to maximize the lifespan or 

biomass of yeast. Some previous studies have confirmed that glucose or a few amino 

acids are important for longevity of yeast and simple modification of one of these 

nutrients can greatly extend lifespan (Powers et al. 2006; Alvers et al. 2009a). With a 

suitable experimental design, an optimal SD medium to maximize the lifespan for a 

specific yeast strain can be obtained. 

For lifespan, sch9Δ strain seemed to be more sensitive to nutrients, since more 

terms had significant (P < 0.001) effects on lifespan in sch9Δ than in the other strains 

(Table 4.2). The AGC kinase Sch9 is a substrate of multiprotein complex TORC1. Its 

function may be similar to the mammalian TORC1 substrate S6K1 (Urban et al. 

2007). In yeast, Sch9 regulates cell growth and cell size, the absence of Sch9 activity 

causes a small size phenotype and distinct growth defect, while increasing lifespan by 

seven-fold (Fabrizio et al. 2001; Jorgensen et al. 2002; Kaeberlein et al. 2005b). The 

Tor-Sch9 pathway was thought previously to be a nutrient-sensing pathway (Mieulet 

et al. 2009; Fontana et al. 2010). In this study, I have confirmed and extended 

previous works by showing that deletion of TOR1 regulate yeast CLS subjected to 

amino acids and glucose (Table 4.2). While sch9Δ strain is more sensitive to nutrients 

than the other three strains, Sch9 protein kinase was proposed previously as a central 

coordinator of protein synthesis (Huber et al. 2009) in promoting ribosome biogenesis 

and ribosomal protein gene expression (Huber et al. 2011). Thus, it is possible that 

Sch9 as a major nutrient-sensing factor to regulate cell growth, cell size, and stress 

resistance through control of protein synthesis. However, further experiments on 

quantifying Sch9 activity in different media are warranted to delineate the role of 

SCH9 plays in this system. 
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4.5 Conclusion 

These findings indicate that lifespan extension by DR may be partially dependent 

on nutrient composition and may be abolished by providing yeast with different 

nutrient compositions. Furthermore, the results show that sch9Δ is more nutrient-

sensitive than the other three strains tested. Modification of amino acids and YNB 

compositions is an important factor to consider if one were to develop an optimal SD 

medium that can meet the cell growth requirements and enable longevity of most 

yeast strains for aging studies and evaluation of anti-aging activity of small molecules. 

My results also document that nutrient composition is an important factor for yeast 

CLS. Different yeast strains cultured in various media exhibited similar response 

surface trends in biomass production, but showed greatly different trends in lifespan. 

The three nutrients (glucose, amino acids and YNB) and their interactions played 

different roles in affecting lifespans of different strains. Taken together, these findings 

suggest that nutrient composition is an effective way to optimize lifespan and biomass 

production in yeast. 
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Chapter 5 

INDEPENDENT AND ADDITIVE EFFECTS OF 

GLUTAMIC ACID AND METHIONINE ON 

YEAST LONGEVITY 

 

5.1 Introduction 

Reduction of 10-40% in food intake extends lifespan in diverse animals, including 

spiders, beetles, fish, and dogs, as well as the commonly used laboratory-model 

organisms: yeast, worms, fruit flies, and mice. CR is frequently reported as the most 

robust non-genetic intervention to extend lifespan and health span. In 2009, the results 

of a 20-year caloric restriction study in rhesus monkeys at the Wisconsin National 

Primate Research Center (WNPRC) published and suggested that CR might 

ameliorate human aging, because the monkeys with 70% of ad libitum food supply 

had fewer age-related deaths and lower incidence of diabetes, cancer, cardiovascular 

disease, and brain atrophy (Colman et al. 2009). However, a recent publication 

reported that diet composition may significantly affect the longevity of calorie 

restricted rhesus monkeys at the National Institute on Aging (NIA). In later study, CR 

reduced the incidence of diabetes and cancer but did not lower rates of cardiovascular 

disease and age-related death (Mattison et al. 2012). The differences in results and 

experimental design of the two CR-monkey studies were discussed adequately. A 

notable difference between the two studies is diet composition, the NIA study diet had 

relatively diverse and balanced nutrients, unlike the WNPRC study which used 

purified components and high sucrose (Mattison et al. 2012).  
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In addition to the two studies in primates, the idea that balance of nutrients in the 

diet might be a better way than simple dietary restriction for healthy lifespan was 

reported in other organisms (Lee et al. 2008; Fanson et al. 2009; Grandison et al. 

2009; Greer & Brunet 2009; Ja et al. 2009). However, this emerging idea is not well 

substantiated in yeast. The benefits of dietary restriction have been generally 

suggested to arise from intake of fewer calories (termed caloric restriction). Thus, 

influences of nutrients on the biological aging process might be more dependent on 

the macronutrients including carbohydrates, fats and proteins (Simpson & 

Raubenheimer 2009). In addition to carbohydrates and fats, proteins (amino acids) in 

the diet as another energy contributor was shown to mediate lifespan significantly in 

commonly used aging model organisms, namely yeast (Jiang et al. 2000; Alvers et al. 

2009a), fruit flies (Fanson et al. 2009; Grandison et al. 2009), and mice (Zimmerman 

et al. 2003; Miller et al. 2005). Notably, methionine may be a special one among 

various amino acids to regulate lifespan, since restriction of methionine by 80% was 

reported to increase medium and maximal lifespan by 30% and 40% in rats 

(Orentreich et al. 1993).  

The budding yeast (S. cerevisiae) serves as a leading model organism for studying 

evolutionarily conserved mechanisms relevant to human aging and age-related 

diseases (Bishop & Guarente 2007; Steinkraus et al. 2008; Fontana et al. 2010; 

Kaeberlein 2010a; Longo et al. 2012). There are two aging models in the budding 

yeast: replicative aging and chronological aging (Longo et al. 2012). Although both 

types of yeast aging are influenced by nutrient composition of media, the relationship 

between nutrition and lifespan is unclear. It is widely known that moderate glucose 

restriction slows yeast chronological and replicative aging significantly, but my 

previous study suggested that the CLS extension by a typical glucose restriction 
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regime was dependent on the nutrients in media and that medium composition was a 

key determinant for yeast longevity (Chapter 4). The three nutrients (glucose, amino 

acids and YNB) and their interactions played important roles in affecting lifespans of 

different strain. In Chapter 4, I just investigated the effect of total amino acid on CLS. 

Modification of the composition of amino acids in a medium has been also reported to 

change yeast lifespan (Powers et al. 2006; Gomes et al. 2007; Boer et al. 2008; Alvers 

et al. 2009a). Yet, comprehensive studies are still lacking with regard to evaluate the 

influence of individual amino acids on yeast CLS in standard SD medium condition. 

Reported herein is my finding. 

  

5.2 Materials and methods 

5.2.1 Materials  

The materials were as described in Chapter 3 (3.2.1). 

 

5.2.2 Lifespan, biomass and yeast cell growth assay  

The lifespan, biomass and yeast cell growth assays have been described in 

Chapter 3 (3.2.3). 

 

5.2.3 Acetic acid analysis 

The aging culture (2 day) was centrifuged at 4,000 g for 10 min at room 

temperature. The supernatant was collected and stored at –20 °C before analysis of 

acetic acid and pH. The pH of supernatant was measured using a Eutech Ion 6+ pH 

meter with a micro-tip pH electrode (Eutech Instruments, Singapore). The supernatant 

was filtered through a Sartorius Minisart polytetrafluoroethylene (PTFE) membrane 

(0.2 µm) before HPLC analysis. The acetic acid analysis was performed on a Waters 
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HPLC system (Milford, MA, USA) with an Alliance 2659 separation module, a 2996 

photodiode array (PDA) detector. The detection wavelength was set at 210 nm. The 

column used was a Supelcogel C-610H column (300 × 7.8 mm, Supelco) with 0.1% 

sulphuric acid as mobile phase. Each sample was run 60 min at a flow rate of 0.4 

ml/min at room temperature. 

 

5.2.4 Data analysis  

The data analysis on lifespan has been described in Chapter 3 (3.2.4). 

 

5.3 Results 

5.3.1 Amino acids regulate lifespan and biomass changes in yeast 

The EAA and NEAA contents from 0.2-fold to 5-fold of normal conditions were 

tested. There are usually 14 amino acids and two bases, adenine and uracil, in a 

standard SD medium (Table 3.1), only histidine, leucine, lysine and uracil are 

essential for WT yeast strain BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) 

(Sherman 1991). I first examined whether ratio of EAA to NEAA caused CLS 

alteration. The EAA and NEAA contents from 0.2-fold to 5-fold of normal conditions 

were tested. 

The ratio of EAA and NEAA changed lifespan significantly. The composition of 

1-fold EAA and 5-fold NEAA had an optimal lifespan under normal glucose 

condition (2%, Figure 5.1A, C). However, this composition produced significantly 

shorter CLS under CR condition (0.5% glucose), and the standard composition (1E1N, 

1-fold EAA and 1-fold NEAA) had an optimal lifespan (Figure 5.1B, C).  
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Figure 5.1 Ratio of essential and non-essential amino acids regulates lifespan and biomass 
changes 
Survival curves of WT yeast (BY4742) were cultured in SD media with different ratios of EAA and 
NEAA in normal (2% glucose, A) and glucose restriction (0.5% glucose, B) conditions. For the 
lifespan and biomass comparison were presented in C and D, respectively. The EAA and NEAA 
compositions were listed in Table 3.1, and their concentrations were tested from 0.2-fold to 5-fold of 
normal conditions. AUC% represents the survival integral for lifespan comparison. The control (1E1N 
with 2% glucose) was defined as 100%. Biomass production was measured as the average values at 
OD660 of each medium from day 6 to day 10 and the biomass of SD (1E1N with 2% glucose) medium 
was defined as 100%. Lifespan and biomass: mean, n = 4 ± s.e.m; compared using Duncan’s multiple 
range test at P < 0.01 and different lowercase letters in columns indicate significant difference.  
 
 

These results suggest that the EAA and NEAA mediated lifespan alteration is 

influenced by glucose content in the medium (Figure 5.1C), and this is consistent 
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with the previous finding that total amino acids content has close interaction with 

glucose to regulate yeast CLS (Chapter 4). Similarly, the ratio of protein and 

carbohydrate was able to significantly change lifespan in D. melanogaster (Lee et al. 

2008; Simpson & Raubenheimer 2009). Furthermore, it looks like high NEAA could 

suppress the CR effect on CLS, since I observed that CR extended CLS under 

conditions of 0.2 and 1 fold NEAA with 0.2 to 5 fold EAA, while CR did not appear 

to extend CLS in the presence of 5-fold NEAA (Figure 5.1C). Moreover, the cell 

biomass was not optimized by the ratios under 2% or 0.5% glucose conditions, 

because high EAA and NEAA (5E5N) promoted high cell biomass production 

(Figure 5.1D), which is similar to the observation that lifespan but not 

biomass/reproduction is optimized by CR in yeast and other high organisms (Mair & 

Dillin 2008; Fontana et al. 2010). 

In addition, 0.2-fold EAA and 5-fold NEAA totally inhibited cell growth (Figure 

5.2A), and the other ratios produced different amounts of cell biomass but did not 

interrupt cell proliferation. Although the mechanism is unknown, this result might 

indicate that amino acid composition was significant for cell growth. For example, 

removal of non-essential serine could even inhibit proliferation of p53-deficient 

cancer cells (Maddocks et al. 2012).  
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Figure 5.2 Growth curves of WT yeast were cultured in media with diverse amino acids 
compositions 
(A) Ratio of EAA and NEAA was able to prevent yeast proliferation. (B) Reduction of EAAs (leucine, 
lysine, uracil, histidine) inhibit cells growth and biomass production. (C) Increase of individual amino 
acids slightly affected yeast growth. All tests were based on SD media with 2% glucose and 1E5N 
represents SD medium containing 1-fold EAA and 5-fold NEAA. 
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Figure 5.3 EAA and NEAA change pH value and acetic acid production of aging media 
(A) EAA and NEAA composition slightly altered the pH of media. (B) The pH of aging media at 
stationary phase (day 2) was dependent on glucose, EAA and NEAA in media. Differences in means of 
the pH values of different media under normal and CR conditions were determined by Duncan’s 
multiple range test at P < 0.01. (C) Acetic acid accumulation in aging medium (day 2) was changed by 
modifications of glucose, EAA and NEAA in media. Data 0.0 means not detectable or not applicable. 
The pH values of the different fresh media (day 0) were measured only once. Acetic acid and pH (day 
2): mean ± s.d., n = 3. 
 
 

The pH and acetic acid in aging medium were reported to mediate yeast 

chronological aging (Burtner et al. 2009b; Murakami et al. 2012). I measured the pH 

(Figure 5.3A, B) and acetic acid (Figure 5.3C) of the stationary phase culture (day 2). 
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The pH was slightly affected by the ratio of EAA and NEAA. High EAA increased 

pH value of medium; in contrast, high NEAA reduced the pH value (Figure 5.3A). 

After 2 day of culture, the pH of medium changed obviously (Figure 5.3B). For 

example, 1E5N had the highest pH value under CR conditions, but it did not produce 

longer CLS (Figure 5.1C). In most case, CR induced higher pH value, longer CLS, 

lower biomass production and acetic acid accumulation than the normal conditions. 

However, acidification and acetic acid of aging medium had a low correlation with 

lifespan and biomass, and the medium with lower acidification did not always 

produce longer lifespan, which could be due to the influence of amino acid 

composition in the SD medium. 

 
 
5.3.2 Methionine and glutamic acid cause lifespan and biomass alterations in 

yeast 

I next tested whether reduction or supplementation of individual amino acids was 

able to change yeast CLS. To my surprise, methionine restriction (reduced to 10% or 

8 mg/L) was sufficient and more powerful to extend lifespan than the other amino 

acids (Figure 5.4A). The reduction of essential leucine and lysine could cause low 

biomass production and fast loss of cell viability (Figure 5.4A, C). Conversely, an 

increase of non-essential glutamic acid (6-fold, 600 mg/L) prolonged lifespan and 

improved biomass production, whereas the other EAA or NEAA had no much 

significant effects on lifespan and biomass (Figure 5.4B, D). Although restriction of 

the four individual EAA impaired biomass production and inhibited cell growth 

(Figure 5.2B), an increase of individual AA or decrease of individual NEAA could 

not alter biomass (Figure 5.4) and cell proliferation (Figure 5.2B, C). Overall, 
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methionine and glutamic acid were showed to be more efficient than the other amino 

acid to extend yeast CLS. 
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Figure 5.4 Effect of individual amino acids on yeast lifespan and biomass production 
Lifespan of WT yeast was grown in SD media with individual amino acid reduction (A) or increase (B), 
and their biomass productions were shown in C and D, respectively. To reduce (0.1-fold) or increase 
(6-fold) single amino acids in SD medium, the other amino acids concentrations were held constant. 
SD is standard medium with 2% glucose as the normal conditions in this study (Table 3.1); CR is SD 
medium with 0.5% glucose as the CR conditions; YPD is a commonly used nutrient-rich medium with 
1% yeast extract, 2% peptone and 2% dextrose. AUC% represents the survival integral for lifespan 
comparison. The control (1E1N with 2% glucose) was defined as 100%. Biomass production was 
measured as the average values at OD660 of each medium from day 6 to day 10 and the biomass of SD 
(1E1N with 2% glucose) medium was defined as 100%. Lifespan and biomass: mean ± s.e.m., n = 6; 
compared using Duncan’s multiple range test at P < 0.05 and different lowercase letters in columns 
indicate significant difference. 
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I subsequently determined the dose-response relationship of methionine and 

glutamic acid in lifespan extension capacity. Depletion (0) or restriction (0.1× or 0.2×) 

of methionine extended CLS, whereas high doses shortened CLS under normal (2% 

glucose) or CR (0.5% glucose) conditions (Figure 5.5A-C). It indicates that 

methionine extended lifespan independent of CR. Methionine restriction had little 

effect on yeast biomass (Figure 5.5D), cell growth (Figure 5.6), pH, and acetic acid 

of aging media (Figure 5.7). However, high doses of methionine lessened biomass 

and enhanced slightly acetic acid production of aging culture under normal conditions.  
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Figure 5.5 Methionine and glutamic acid cause lifespan and biomass alterations in yeast 
(A and B) Survival curves of WT yeast (BY4742) were cultured in normal conditions (A) and glucose 
restriction (B) containing different methionine levels. (C) Restriction of methionine extended yeast 
CLS independent of CR and high levels of methionine shortened CLS. (D) Methionine restriction had 
little effect on biomass production, while high dose of methionine reduced cell biomass in normal 
conditions. (E and F) Survival curves of WT yeast grown in normal conditions (E) and glucose 
restriction (F) containing different glutamic acid levels. (G) Glutamic acid extended CLS in a dose-
response manner independent of CR. (H) Low glutamic acid did not change cell biomass and high 
glutamic acid increased biomass. AUC% represents the survival integral for lifespan comparison. The 
control (1E1N with 2% glucose) was defined as 100%. Biomass of SD (1E1N with 2% glucose) 
medium was defined as 100%. Lifespan and biomass: mean ± s.e.m., n = 4 (C and D), n = 6 (G and H); 
compared using Duncan’s multiple range test at P < 0.05 and different lowercase letters in columns 
indicate significant difference. 
 
 

In contrast, addition of glutamic acid elevated CLS extension and biomass 

production in a dose-response manner independently of CR (Figure 5.5E-H). 
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Importantly, depletion of glutamic acid did not shorten CLS and high concentrations 

did not interrupt cell growth (Figure 5.6 and unpublished data). Although glutamic 

acid addition impaired acetic acid production, the pH of aging media only changed 

slightly (Figure 5.7). High doses of acetic acid is toxic to yeast cells and shorten 

lifespan (Burtner et al. 2009b). It seems that glutamic acid addition and methionine 

restriction had low acetic acid production (Figure 5.7), while the higher acetic acid 

level in glutamic acid restricted media did not result in shorter lifespan. The low 

correlation between acetic acid, pH and lifespan was observed (Figure 5.5, 5.7), 

suggesting acetic acid and acidification might be not the key factor to mediate yeast 

longevity caused by methionine and glutamic acid. 
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Figure 5.6 Glutamic acid addition, methionine and glucose restriction not inhibit yeast growth 
WT yeast (BY4742) (≈ 1×104 cells) cells were grown in each well of 96-well microplate containing 
100 µL of different media. The cell population was monitored with a microplate reader by recording 
the OD every 5 min at 660 nm. The pH neutralization was prepared by buffering the pH of medium 
using citrate phosphate buffer solution (64.2 mM Na2HPO4 and 17.9 mM citric acid, pH 6.0). All tests 
were based on SD media with 2% glucose. 1E5N represents SD medium containing 1-fold EAA and 5-
fold NEAA. 
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Figure 5.7 Comparison of pH and acetic acid in media containing various levels of methionine 
and glutamic acid 
The pH of aging media (day 2) had only little change among various media. Acetic acid was increased 
by adding methionine and reducing glutamic acid in media. Acetic acid and pH: mean ± s.d., n = 3. 
 
 
5.3.3 Independent and additive effects of glutamic acid, methionine and glucose 

on lifespan extension 

I have shown the longevity effects of methionine restriction and glutamic acid 

addition. Therefore, it is possible that the two interventions have additive effects on 

yeast lifespan. I first tested yeast grown in normal and CR conditions with 0.1-fold 

methionine, 20-fold glutamic acid or a combination of both. As shown in Figure 5.8, 

yeast CLS was greatly extended by the combination in normal condition and could be 

further enhanced by CR (Figure 5.8A, B), indicating there is an additive effect of 

glutamic acid, methionine and CR on yeast longevity extension.  

 



95 
 

100

239

349
381

227

300

376 354

224

352

232

356
390

512

400

550

0

100

200

300

400

500

600

2%glucose 0.5%glucose pH6.0 2%glucose pH6.0 0.5%glucose

Li
fe

sp
an

 (A
U

C
 %

)

Normal 0.1 × Met 20 × Glu 0.1 × Met + 20 × Glu

0

20

40

60

80

100

0 10 20 30

Su
rv

iv
al

 %

Days

2% glucose Normal
0.1 × Met
20 × Glu
0.1 × Met + 20 × Glu

A

0

20

40

60

80

100

0 10 20 30

Su
rv

iv
al

 %

Days

0.5% glucose Normal
0.1 × Met
20 × Glu
0.1 × Met + 20 × Glu

B

E

0

20

40

60

80

100

0 10 20 30

Su
rv

iv
al

 %

Days

2% glucose
pH 6.0

Normal
0.1 × Met
20 × Glu
0.1 × Met + 20 × Glu

C

0

20

40

60

80

100

0 10 20 30

Su
rv

iv
al

 %

Days

0.5% glucose
pH 6.0

Normal
0.1 × Met
20 × Glu
0.1 × Met + 20 × Glu

D

95

57

109

62

100

60

117

59

131

79

124

70

111

72

108

65

0

50

100

150

2%glucose 0.5%glucose pH6.0 2%glucose pH6.0 0.5%glucose

B
io

m
sa

a 
(O

D
66

0 
%

)

Normal 0.1 × Met 20 × Glu 0.1 × Met + 20 × GluF

abbc abcd abaa abbb
bacc bacc caabbc bacbc

 
Figure 5.8 Independent and additive effects of glutamic acid, methionine and glucose on lifespan 
extension 
(A) Methionine restriction and glutamic acid addition extended lifespan and the combination of both 
could extend the longevity under normal conditions. (B) CR further increased the longevity induced by 
low methionine, high glutamic acid or the combination. The pH neutralization could not extend the 
combined longevity and glutamic acid induced longevity in normal conditions (C) and CR conditions 
(D). CLS (E) and biomass (F) comparison of WT yeast were incubated in different media. The pH 
neutralization was prepared by buffering the pH of medium using citrate phosphate buffer solution 
(64.2 mM Na2HPO4 and 17.9 mM citric acid, pH 6.0). AUC% represents the survival integral for 
lifespan comparison. The control (1E1N with 2% glucose) was defined as 100%. Biomass of SD 
medium (1E1N with 2% glucose) was defined as 100%. Lifespan and biomass: mean ± s.e.m., n = 6; 
compared using Duncan’s multiple range test at P < 0.05 and different lowercase letters in columns 
indicate significant difference. 
 
 

It was known that buffering the pH of the aging medium or neutralizing the pH 

with NaOH to 6.0 could greatly protect against yeast lifespan reduction (Burtner et al. 

2009b). Thus, acidification of aging medium was proposed as a major factor to 

accelerate yeast aging (Burtner et al. 2009b; Murakami et al. 2011; Longo et al. 2012; 

Mirisola & Longo 2012; Murakami et al. 2012). I examined whether pH 

neutralization could further elevate yeast longevity induced by methionine and 

glutamic acid, found that the pH buffered medium (pH 6.0) prevented CLS reduction 

significantly in the 2% glucose medium, but the extended longevity effects of the 

combination were not observed in buffered media. The additive effects of both low 

methionine plus high glutamic acid in buffered media were only observed in low 

glucose (CR) not in normal glucose (Figure 5.8C, D, E). Furthermore, the pH 

buffered medium caused shorter lifespan in glutamic acid addition. It should be also 

noted that the lifespan extending capacity of CR was diminished by the buffered 
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conditions (Figure 5.8C, D), because buffering was more powerful to increase yeast 

longevity in the normal condition than in CR condition.  

I also examined CLS of yeast cultured in media with 1-fold EAA and 5-fold 

NEAA (1E5N), since this composition increases CLS and thus possibly has additive 

effects with glutamic acid, methionine and CR on yeast longevity. The results 

revealed that under this composition, methionine and glutamic acid still extended CLS 

in normal and CR conditions, but the combination of both could not promote the 

longevity in normal (2% glucose), CR (0.5% glucose) and pH buffered conditions 

(Figure 5.9A-D). In addition, the 1E5N composition caused significant lifespan 

reduction in CR conditions (Figure 5.9B) and the combination has longer CLS 

extension in 1E1N than in 1E5N (Figure 5.10). Altogether, methionine and glutamic 

acid had no additive effect on longevity extension under 1E5N composition. However, 

it was still sufficient to significantly extend lifespan independently of CR, 1E5N and 

pH neutralization (Figure 5.10).  
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Figure 5.9 Lifespan extending capacity of the combination of glutamic acid and methionine was 
impaired by the medium supplying with 5-fold NEAA 
(A - C) The combination of methionine and glutamic acid could not enhance substantially the longevity 
under normal (A), CR (B) and pH buffered (C) conditions. CLS (D) and biomass (E) comparison of 
WT yeast were cultured in different media. AUC% represents the survival integral for lifespan 
comparison. The control (1E5N with 2% glucose) was defined as 100%. All tests are based on SD 
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media with 2% glucose. 1E5N represents SD medium containing 1-fold EAA and 5-fold NEAA. 
Biomass of SD medium was defined as 100%. Lifespan and biomass: mean ± s.e.m., n = 6. 
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Figure 5.10 The combination is sufficient to extend lifespan in glucose restriction, 1E1N 
(standard), 1E5N and pH buffered conditions 
All tests were based on SD media with 2% glucose and 1E5N represents SD medium containing 1-fold 
EAA and 5-fold NEAA. 
 
 

I then evaluated biomass production (Figure 5.8F, 5.9E), cell growth (Figure 

5.6), pH (Figure 5.11, 12) and acetic acid of aging media (Figure 5.7, 11). The 

combination of methionine and glutamic acid produced less biomass than glutamic 

acid addition, which had the highest biomass among the four interventions with or 

without pH buffering under 1E1N condition (Figure 5.8F) as well 1E5N condition 

(Figure 5.9E). I found that the combination not inhibited cell growth, while 1E5N or 

1E5N with low methionine slight delayed cell growth (Figure 5.6). Interestingly, 

addition of glutamic acid could eliminate this phenomenon, suggesting high glutamic 

acid, not low methionine, might repair the amino acids imbalance induced by 1E5N.  

For the pH buffered media, the four interventions did not cause apparent pH 

change under normal or CR conditions (Figure 5.10A), but their lifespans were 

different (Figure 5.8E), indicating that nutrient composition is still an important 

factor to influence yeast CLS in the pH buffered media. In the unbuffered media, the 

combination caused lower pH than that of high glutamic acid intervention in 1E1N 

and 1E5N media under normal condition (Figure 5.12). However, this not means the 
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longevity additive of glutamic acid and methionine is mainly due to the prevention of 

acidification of aging medium, because the longevity additive was observed in 1E1N 

media under CR condition without pH change (Figure 5.8, 12). Moreover, higher pH 

did not result in longer CLS among the four interventions in 1E5N media under 

normal and CR condition (Figure 5.9, 12). Acetic acid production in aging media of 

the four interventions was showed to depend on nutrient composition and increased 

by the pH neutralization (Figure 5.11B, C). The combination intervention not caused 

substantial more acetic acid production than high glutamic acid intervention, while 

significant difference in CLS of both was observed. Overall, these results further 

confirmed that pH and acetic acid were not the major determinants of methionine and 

glutamic acid induced longevity. 
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Figure 5.11 Acetic acid may be not the cause of lifespan shortening in buffered media (pH 6.0) 
(A) The pH of the four buffered media (day 2) under normal and CR conditions have little change. 
Acetic acid accumulation in the four aging media under normal and CR conditions with (B) or without 
pH buffering (C). Data 0.0 means not detectable. Acetic acid and pH: mean ± s.d., n = 3. 
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Figure 5.12 Comparative evaluation of the pH of aging media in WT, sch9Δ and gcn2Δ 
All tests are based on SD media with 2% glucose. 1E5N represents SD medium containing 1-fold EAA 
and 5-fold NEAA. pH: mean ± s.d., n = 3, compared using Duncan’s multiple range test at P < 0.01 
and different lowercase letters in columns indicate significant difference. 
 
 
5.3.4 Conserved protein kinase Gcn2 mediates amino acids induced lifespan 

extension 

To explore the possible genetic mechanisms on how methionine, glutamic and 

glucose prompt longevity independently. I screened a number of genes that are 

evolutionarily conserved from yeast to human, and their lifespan comparison and 
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survival curves in different media are presented in Figure 5.13 and Figure 5.14, 

respectively. Mitochondrial manganese superoxide dismutase (SOD2) was proposed 

as a downstream target of Tor/Sch9 nutrient signaling pathway for longevity 

extension by decreasing in part ROS levels in yeast, and deletion of SOD2 has a 

shorter lifespan (Fabrizio et al. 2003; Fontana et al. 2010; Pan et al. 2011). In 

accordance with previous studies, sod2Δ showed shorter lifespan than WT yeast in 

standard SD medium, I also observed that high NEAA (1E5N), low methionine, and 

high glutamic acid were able to extend lifespan of sod2Δ significantly (Figure 5.13A, 

13B, 14A, 14B), which indicate the amino acid composition in SD medium plays an 

important role in regulation of lifespan in sod2Δ mutant.  
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Figure 5.13 Conserved protein kinase Gcn2 mediates amino acids induced lifespan extension 
(A) Deletion of GCN2 rather than other genes prevented 1E5N induced lifespan extension. Lifespan of 
1E5N showed in AUC% and 1E1N was defined as 100%. Differences of the means of AUC% between 
1E1N and 1E5N were determined by t-test. (B) Methionine and glutamic acid had distinct effects on 
lifespan regulation in gcn2Δ and sch9Δ. Lifespan of high glutamic acid and low methionine showed in 
AUC% and the normal (1E1N) was defined as 100%. Differences of the means of AUC% among 
normal, high glutamic acid or low methionine were determined by Duncan’s multiple range test at P < 
0.01. (C) Deletion of GCN2 was more effective than that of SCH9 to impaired lifespan extension by 
the combination. Lifespan of high glutamic acid plus low methionine showed in AUC% and the four 
basic conditions (1E1N or 1E5N with 0.5 or 2 % glucose) were defined as 100%, respectively. In most 
cases, significant difference was achieved between the combination and the control. 1E5N represents 
SD medium containing 1-fold EAA and 5-fold NEAA and 1E1N is the normal conditions. CLS: mean 
± s.e.m., n = 6. The survival curves are presented in Figure 5.14. 
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Figure 5.14 Comparative evaluation of the amino acids induced longevity in different single gene 
deletion strains. 
(A) Survival curves of gcn2Δ, sir2Δ, sod2Δ, and tor1Δ were cultured in 1E1N or 1E5N with 2% 
glucose medium. (B) Survival curves of gcn2Δ, sch9Δ, sod2Δ, and tor1Δ were grown in different 
media with high glutamic acid or low methionine. (C) Survival curves of gcn2Δ, and sch9Δ were 
grown in different media with the combination of glutamic acid and methionine. 1E5N represents SD 
medium containing 1-fold EAA and 5-fold NEAA and 1E1N is the normal condition. Survival curves: 
mean, n = 6. The statistical analysis of significant difference for the CLS comparison is presented in 
Figure 5.13. 
 
 

Silent Information Regulator 2 (Sir2) has been proposed to mediate lifespan 

extension (Lin et al. 2000b; Lamming et al. 2005). Deletion of SIR2 decreases RLS, 

whereas over-expression of SIR2 increases RLS (Kaeberlein et al. 1999). In contrast, 

deletion of SIR2 was reported to extend CLS under control conditions (Smith et al. 
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2007; Murakami et al. 2008). Consistent with prior reports, I found that CLS of sir2Δ 

was extended in standard SD medium and could be enhanced by supplying with high 

NEAA (Figure 5.13A, 14A), suggesting that Sir2 is not sensitive to NEAA increase.  

Several studies have indicated that TOR signalling may play a conserved role in 

mediating beneficial health and longevity effects associated with CR (Fontana et al. 

2010; Kaeberlein 2010a; Johnson et al. 2013). Deletion of TOR1 increased lifespan 

significantly under normal condition but not CR condition (Kaeberlein et al. 2005b; 

Powers et al. 2006). Herein I showed that tor1Δ extend lifespan in SD medium, and 

the longevity could be further prolonged by the NEAA, methionine, and glutamic acid 

(Figure 5.13A, 13B, 14A, 14B). Altogether, lifespan extension induced by high 

NEAA, methionine restriction, and glutamic acid addition could be independent of 

deletion of SIR2, SOD2 and TOR1 (Figure 5.13, 14).  

Remarkably, Gcn2 was shown to impair lifespan extension induced by these 

amino acids interventions (Figure 5.13, 14). Gcn2 is one of major evolutionarily 

conserved protein kinases. It regulates amino acid homeostasis and protein synthesis 

through modulating amino acid biosynthesis in response to different amino acid 

deprivation in yeast (Wilson & Roach 2002). Therefore, deletion of GCN2 could 

result in cell function deficiency in modulating amino acids imbalance caused by 

methionine restriction, glutamic acid addition, and 1E5N. The lifespan extending 

capacity of these interventions was impaired by the absence of GCN2 (Figure 5.13A, 

13B, 14A, 14B). The combination of methionine and glutamic acid produced 

significant longevity, whereas the data presented that deletion of GCN2 was more 

effective than that of SCH9 to impair the longevity capacity by the combination in 

different media (Figure 5.13C). This indicated that Gcn2 might be a major target to 

regulate amino acid metabolism and then influence yeast chronological aging. 
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It is well known that the longevity of sch9Δ strain is CR-dependent. For example, 

deletion of SCH9 extended lifespan in normal condition but not CR condition (Figure 

5.13B). Sch9 was proposed as a highly conserved nutrient-sensing factor to regulate 

aging, cell growth, cell size, and stress resistance through controlling protein synthesis 

(Fabrizio et al. 2001; Kaeberlein et al. 2005b; Huber et al. 2009). Interestingly, 

methionine restriction could not extend CLS of sch9Δ strain under normal and CR 

conditions, which means methionine induced longevity required Sch9 activity. 

However, glutamic acid extended CLS in sch9Δ mutant but not in gcn2Δ mutant 

(Figure 5.13B, 5.14B). Altogether, the longevity via modification of amino acids 

required, in part, Gcn2 activity, while Sch9 was necessary for methionine and glucose 

restriction induced longevity. Thus, the distinct mechanisms could somewhat explain 

the additive longevity effect of methionine restriction, glutamic acid addition and CR.  

In some cases, methionine, glutamic acid or a combination of both caused 

significant changes in the pH of aging media in WT, sch9Δ and gcn2Δ that cultured in 

normal (1E1N) and high NEAA (1E5N) conditions with 2% or 0.5% glucose, but the 

pH had no good correlation with CLS (Figure 5.12), which was also consistent with 

results in Chapter 4. I also found that acetic acid was not key determinants of CLS in 

sch9Δ and gcn2Δ, since higher acetic acid had longer lifespan was observed in some 

cases (Figure 5.14). It is well known that CR shortens lifespan of sch9Δ, which was 

also observed in this study (Figure 5.13B). However, CR resulted in less acetic acid 

production (Figure 5.15). Thus these data might imply that deletion of SCH9 and 

GCN2 mediate CLS independently of acetic acid and acidification of aging medium, 

(Longo et al. 2012). 
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Figure 5.15 The acetic acid production of aging media in sch9Δ and gcn2Δ 
All tests were based on SD media with 2% glucose and 1E5N represents SD medium containing 1-fold 
EAA and 5-fold NEAA. Acetic acid: mean, n = 3. 
 
 

5.4 Discussion 

In this Chapter, the high throughput screening assay was used to comprehensively 

evaluate the CLS-extending capacity of amino acids. The ratio of NEAA and EAA 

caused greatly changes in CLS, biomass production, cell growth, pH and acetic acid 

of aging medium. Increase or decrease of individual amino acids had little effect on 

CLS change in most cases. Interestingly, methionine restriction and glutamic acid 

addition resulted in CLS extension more substantially. Furthermore, current data 

showed that the two NEAAs could CR-independently extended yeast CLS through 

distinct mechanisms that in part required evolutionarily conserved protein kinase, 

such as Sch9 and Gcn2. 
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Methionine has been reported to play a critical role in regulation of lifespan in rat, 

fly and yeast (Koc et al. 2004; Miller et al. 2005; Malloy et al. 2006; Alvers et al. 

2009a; Grandison et al. 2009; Elshorbagy et al. 2010). Methionine restriction (by 

80%) was shown to increase medium and maximum lifespan of rats by 30% and 40%, 

respectively (Orentreich et al. 1993). Later studies indicated that methionine 

restriction delayed the onset of age-dependent pathologies and extended lifespan 

through control of adiposity and insulin resistance in rats and mice independently of 

CR (Miller et al. 2005; Malloy et al. 2006). Although the mechanisms of methionine 

restriction induced lifespan extension was not fully understood, a few studies 

suggested that it was different to CR at the molecular level in mammals. For example, 

CR increased the phosphorylation of ERK, JNK2, p38, mTOR and 4EBP1, while no 

such effect was observed from methionine restriction (Sun et al. 2009).  

In Drosophila, methionine restriction (by 67%) extended maximum and mean 

lifespan by 2.4% and 10.5%, respectively. Severe restriction (by 88%) did not further 

extend maximum and mean lifespan (Troen et al. 2007). In S. cerevisiae, a study 

reported that reduction in methionine (0.1 ×) increased average RLS, and high 

methionine (10 ×) slightly shortened RLS (Koc et al. 2004). Altogether, these results 

were partly similar to current observation that methionine restriction caused CLS 

extension and high level of methionine shortened CLS (Figure 5.5A-D).  

It should be noted that intake of high amount of methionine is very toxic to both 

young and adult mammals, and this toxicity far exceeds that produced by the excess 

intake of any other amino acid (Harper et al. 1970). In addition, this study suggested 

that methionine restriction may share some of the effects with CR, i.e. either 

methionine restriction or CR caused lifespan reduction in sch9Δ strain (Figure 5.13), 

which indicate they induce longevity via diminishing Sch9 activity. Overall, those 
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data partially supported that methionine was able to mediate some of evolutionarily 

conserved longevity signalling pathways to induce lifespan extension among different 

species. For example, methionine restriction induced CLS extension seemed to 

require Sch9 and Gcn2 activity (Figure 5.13B). 

Glutamic acid (physiologically glutamate) is the most abundant free amino acid 

in brain, the key excitatory neurotransmitter of central nervous system, and primarily 

linked to the pathogenesis of many neurological diseases or disorders, such as 

Alzheimer’s disease, amyotrophic lateral sclerosis, autism, cerebral ischemia, 

depression, epilepsy, Huntington disease, multiple sclerosis, Parkinson’s disease, 

schizophrenia and traumatic brain injury (Danbolt 2001; Javitt et al. 2011).  

In the yeast S. cerevisiae, glutamate plays fundamental roles in amino acid 

metabolism, tricarboxylic acid (TCA) cycle, and glutathione synthesis. It can be 

degraded by a NADP+-dependent glutamate dehydrogenase (GLDH) encoded by 

GDH2 to α-ketoglutarate and ammonia, as well be biosynthesized from α-

ketoglutarate and ammonia by two NAD+-dependent GLDH Gdh1 and Gdh3 (Miller 

& Magasanik 1990). Gdh1 was proposed to be more suitable for regulation of 

glutamate production during exponential phase, while Gdh3 might be more important 

to mediate glutathione biosynthesis for resistance to stress-induced apoptosis and 

chronological aging during stationary phase (Lee et al. 2012).  

In both yeast and mammalian cells, glutathione is a crucial metabolite for stress 

resistance and its biosynthesis requires glutamate. It was also shown that glutamate 

could suppress reactive oxygen species (ROS) accumulation to prevent thermal and 

oxidative stress-induced apoptosis in the stationary cells of GDH3 deletion strain (Lee 

et al. 2012). In this study, it is the first to report the lifespan-extending activity of 

glutamic acid. Glutamic acid caused WT yeast CLS extension in a dose-response 
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manner (Figure 5.5E-H), as well protected against the fast loss of viability during 

chronological aging in SOD2-null strain (Figure 5.13B).  

Yeast has two SOD genes, cytoplasmic copper-zinc superoxide dismutase (SOD1) 

and mitochondrial manganese superoxide dismutase (SOD2). The lack of either of the 

two SODs causes attenuation in replicative and chronological aging due to highly 

oxidative damage induced by ROS in the cell (Longo et al. 1996b; Unlu & Koc 2007). 

Hence, glutamic acid extends CLS probably via enhancing the stress resistance of 

yeast cells. In addition, high glutamic acid appears to significantly increase biomass 

under conditions in which it extends CLS (Figure 5.5, 5.8, 5.9). This suggests that 

high glutamic acid plays a role in biosynthesis that may be important during extension 

of CLS. However, either further investigations of lifespan extending activity of 

glutamic acid in other aging models or in-depth studies of the longevity mechanisms 

in yeast were important for us to fully evaluate the anti-aging capacity of glutamic 

acid.  

Recent studies suggested that the low glucose prompted yeast lifespan extension 

was primarily due to decreased production of acetic acid and reduced acidification of 

medium for two possible reasons: (1) acetic acid was identified as an extracellular 

mediator of cell death during chronological aging, and it was demonstrated that 

environmental interventions by reducing or eliminating acetic acid increased CLS, 

such as via DR, using non-fermentable carbon source, or transferring cells to water 

(Burtner et al. 2009b); (2) pH neutralization was demonstrated to protect against 

reduction in RLS and CLS in yeast (Fabrizio et al. 2004; Murakami et al. 2011; 

Murakami et al. 2012), extracellular acidification of the culture medium could cause 

intracellular damage that subsequently limited the cell replicative potential, and the 
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reduced RLS and CLS could be extended by buffering the pH of medium to 6.0 

(Murakami et al. 2012).  

Therefore, the amino acid induced CLS alterations could be due to the changes in 

acetic acid and pH of aging media. In this study, I measured acetic acid production 

and pH of stationary phase media. The data showed that ratio of EAA/NEAA, 

methionine and glutamic acid extended CLS were not always with lower acetic acid 

concentration and higher pH of medium. On the other hand, CLS of WT, sch9Δ and 

gcn2Δ had poor correlation with the acetic acid production and acidification of 

medium. Those results suggested that the amino acid induced longevity not primarily 

benefited from the two factors. Moreover, these amino acid interventions also caused 

significant CLS changes in pH buffered media, which indicate that the pH might be 

not a primary factor to limit CLS under those not only glucose varied media. 

Glutamic acid addition coupled with methionine and glucose restriction resulted 

in an optimal medium for yeast lifespan extension, which could not be further 

enhanced by buffering the pH of the media, modifying EAA and NEAA composition, 

or deleting the longevity gene SCH9. Methionine and glucose restriction were also 

reported to cause lifespan extension in other organisms, including mammals 

(Orentreich et al. 1993; Miller et al. 2005). The three nutrients are also important for 

organism’s physiological activities and human health. Furthermore, current data 

suggested the three interventions individually functioned on highly evolutionarily 

conserved kinases, such as Sch9 and Gcn2, which have been implicated in nutrients 

metabolism, cell development, stress resistance and aging (Wilson & Roach 2002; 

Kaeberlein et al. 2005b). Thus, these results imply that the extraordinary yeast 

lifespan extension capacity of the combination of glutamic acid addition, methionine 

and glucose restriction may also be realized in mammals. 
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5.5 Conclusion 

Glutamic acid addition coupled with methionine and glucose restriction resulted 

in an optimal medium for yeast lifespan extension, which could not be further 

enhanced by buffering the pH of the media, modifying EAA and NEAA composition, 

or deleting the longevity gene SCH9. Methionine and glucose restriction were also 

reported to cause lifespan extension in other organisms, including mammals 

(Orentreich et al. 1993; Miller et al. 2005). The three nutrients are also important for 

organism’s physiological activities and human health. Furthermore, present data 

suggested the three interventions individually functioned on highly evolutionarily 

conserved kinases, such as Sch9 and Gcn2, which have been implicated in nutrients 

metabolism, cell development, stress resistance and aging (Wilson & Roach 2002; 

Kaeberlein et al. 2005b). Thus, present results imply that the extraordinary yeast 

lifespan extension capacity of the combination of glutamic acid addition, methionine 

and glucose restriction may also be realized in mammals. 
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Chapter 6 

CRYPTOTANSHINONE EXTENDS 

CHRONOLOGICAL LIFESPAN IN THE 

BUDDING YEAST 

 

6.1 Introduction 

Natural products with anti-aging capacity have been receiving great attention in 

the academic community. Compare to the compound that targeted at single age-

related diseases, the compound could have more benefit to quality of life if it extends 

health lifespan by delaying or reducing the onset of aging-associated diseases, such as 

cardiovascular disease, cancer, osteoporosis, diabetes, hypertension and Alzheimer's 

disease (Fontana et al. 2010). So far a few natural products such as resveratrol 

(Howitz et al. 2003; Baur & Sinclair 2006) and rapamycin (Harrison et al. 2009) 

target conserved longevity mechanisms and have been proposed to act as dietary 

restriction mimetics to slow aging in multiple model organisms (Steinkraus et al. 

2008; Kaeberlein 2010b). Resveratrol, an induced phytoalexin found in yeast infected 

grape skin, can extend the RLS of budding yeast S. cerevisiae, worms C. elegans and 

fruit flies D. melanogaster but not that of mice (Baur et al. 2006; Strong et al. 2012). 

Rapamycin, isolated from bacterium Streptomyces hygroscopicus, has potent 

immunosuppressive and antiproliferative properties, while can extends median and 

maximal lifespan of mice even when they were fed at 20 months of age (Harrison et 

al. 2009). Remarkably, longevity effect of resveratrol and rapamycin is first identified 

and characterized in yeast aging model as well as the most promising longevity 
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factors (e.g. Sir2, Tor1, Sch9, Ras2) (Fabrizio et al. 2001; Howitz et al. 2003; Powers 

et al. 2006). Irrefutably, the budding yeast is serving as a leading model organism for 

studying evolutionarily conserved mechanism relevant to human aging and age-

related disease (Kaeberlein 2010a; Longo et al. 2012). 

Danshen, the dried roots of Salvia miltiorrhiza Bunge, is a commonly used 

traditional Chinese medicine (TCM) for the treatment of coronary heart disease, 

hyperlipidemia, cerebrovascular diseases, angina pectoris and acute ischemic stroke 

(Zhou et al. 2005). Recently, Compound Danshen dripping pill, a product of Danshen 

from Tasly Pharmaceutical Group Co. Ltd. (Tianjing, China), has passed FDA phase 

II clinical trials for cardiovascular conditions (Xu 2011). Previous investigations have 

shown that cryptotanshinone, a major tanshinones in Danshen, possesses multiple 

biological activities relevant to late-life diseases, such as stroke (Adams et al. 2006; 

Yu et al. 2007; Zhang et al. 2009a; Kaneko et al. 2010), Alzheimer disease (Adams et 

al. 2006; Yu et al. 2007; Mei et al. 2009), atherosclerosis (Zhou et al. 2005; Suh et al. 

2006), cancer (Shin et al. 2009; Chen et al. 2010; Chen et al. 2012), inflammatory 

(Jin et al. 2006; Tang et al. 2011), obesity and type 2 diabetes (Kim et al. 2007). 

Moreover, studies in the mechanism of action indicated that cryptotanshinone 

involves mediation of several signaling pathways that are highly conserved in 

multiple species, such as mTOR pathway (Chen et al. 2010), AMP activated protein 

kinase (AMPK) pathway (Kim et al. 2007; Chen et al. 2012), and 

phosphatidylinositol 3-kinase (PI3K) pathway (Don et al. 2007; Mei et al. 2010). 

Interestingly, recent studies suggested that these pathways are involved in regulation 

of aging among different species (Steelman et al. 2011; Zoncu et al. 2011; Salminen 

& Kaarniranta 2012). Thus, it is presumable that cryptotanshinone could act as an 

anti-aging compound via targeting these conserved longevity pathways. To address 
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whether cryptotanshinone induce longevity, I used a high throughput assay in the 

yeast chronological aging model and demonstrated that cryptotanshinone is the key 

compound from Danshen to extend CLS, I also elucidated a evolutionarily conserved 

longevity mechanism on CLS extension by cryptotanshinone in budding yeast. 

 

6.2 Experimental Procedures 

6.2.1 Materials 

Tanshinone IIA, tanshinone I and cryptotanshinone were from Sigma-Aldrich 

Chemical Company (St. Louis, MO, USA). Other materials were as described in 

Chapter 3 (3.2.1). 

 

6.2.2 Lifespan and yeast cell growth assay 

The lifespan, biomass and yeast cell growth assays have been described in 

Chapter 3 (3.2.3).  

 

6.2.3 HPLC chromatogram analysis of compounds from Danshen  

Dried Danshen root was purchased from Hubei Jingui Chinese Traditional 

Medicine Electuary Co., Ltd. (Hubei, China). Approximately 10 g of the dried root 

was ground and extracted three times using 100 mL acetone/ethanol/water (AEW; 

2:2:1, v/v/v) on a shaking incubator at 200 rpm and room temperature for 2 h at each 

time. The extract was centrifuged at 4000 rpm for 10 min, and the supernatant was 

concentrated in a rotary evaporator at 50 °C. The concentrated residue was transferred 

to a LH-20 column (35 × 6 cm, Sephadex™, GE Healthcare, Piscataway, NJ, USA) 

pre-equilibrated with water. Successive elution with water and water/ methanol/ 

acetone mixture at a flow rate of 5 mL/min gave many fractions (each fraction volume 
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was 100 mL). HPLC analysis of each fraction was carried out on a Waters HPLC 

system (Milford, MA, USA) with an Alliance 2659 separation module and a 2996 

photodiode array (PDA) detector with detection wavelength set at 260 nm. The 

separation was accomplished on a Waters C18 column (3 μm, 4.6 × 150 mm, Atlantis 

T3, Wexford, Ireland) with water (A), acetonitrile (B) and 2% acetic acid in water (C) 

as mobile phase. The column temperature was 30 °C. The injection volume was 5 µL. 

Solvent C composition was maintained at an isocratic 5% for 60 min. Solvent A and 

B gradient was as follows: 0 – 2 min, A 90%; 2 – 10 min, A from 90% to 70%; 10 – 

30 min, A from 70% to 50%; 30 – 50 min, A from 50% to 5%; 50 – 52 min, A 5%; 52 

– 55 min, A from 5% to 90%; 55 – 60 min, A 90%. The flow rate was 0.5 mL/min. 

MS spectra were acquired using a Finnigan/MAT LCQ ion trap mass spectrometer 

(San Jose, CA, USA) equipped with an electrospray ionization (ESI) source. The 

capillary temperature and spray voltage were maintained at 250 °C and 4.5 kV, 

respectively. 

 

6.2.4 Intracellular ROS quantification and fluorescence images of yeast cells 

To quantify intracellular ROS level of yeast cells, 2 µL of H2DCFDA (Invitrogen 

Molecular  Probes, Eugene, OR, USA) from a fresh 5 mM of stock solution in DMSO 

was added into 1 mL of yeast aging culture at 30 °C for 1 hour. The culture was then 

washed twice in sterile distilled water and resuspended in 1 mL of 50 mM Tris/Cl 

buffer (pH 7.5). 20 µL of chloroform and 10 µL of 0.1 % (w/v) SDS were added and 

the cells were incubated at 200 rpm for 30 min to allow the dye to diffuse into the 

buffer. The culture was centrifuged at 5,000 rpm for 5 min and the fluorescence of the 

supernatant was measured using a Synergy HT microplate reader (Bio-tek, Winooski, 

VT, USA) with excitation at 480 nm and emission at 520 nm.  
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6.2.5 Data analysis 

The data analysis on lifespan has been described in Chapter 3 (3.2.4).  

 

6.3 Results 

6.3.1 A high throughput assay identifies cryptotanshinone as the key compound 

from Danshen to extend yeast lifespan in a concentration and the time of 

addition dependent manner 

Taking the advantage of yeast chronological aging model, a high throughput 

assay was developed recently in different labs for quick and easy quantification of 

CLS (Murakami et al. 2008; Burtner et al. 2009b). Subsequently, I applied this assay 

to screen about 150 plant materials for their anti-aging activity (unpublished data). 

From these results, we singled out the root extract of Salvia miltiorrhiza Bunge, a very 

commonly used TCM, which showed the highest activity (Figure 6.1A). I further 

fractionated the crude extract (using solvents) and, using the HTS as a guide, 

pinpointed the active compound such as tanshinones (i.e. cryptotanshinone, 

tanshinone I, and tanshinone IIA), which turned out to be commercially available. 

Therefore, to investigate the mechanisms we purchased these compounds from a 

commercial supplier. We determined the longevity efficacy of tanshinones in a range 

of doses and at different addition times. As shown in Figure 6.1B, there is a dose-

response relationship between yeast survival (day 8) and the extract concentrations, 

optimized concentration for maximum survival is between 128 and 512 mg/L, while 

higher or lower concentrations reduce or cannot enhance cell survival. However, It is 

found as well that delayed addition (day 2) of Danshen extract cannot enhance yeast 

survival (Figure 6.1C).  
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Figure 6.1 A high throughput assay identifies cryptotanshinone as the key compound from 
Danshen to extend yeast lifespan in a concentration and the time of addition dependant manner 
(A) Danshen root raw extract extends yeast survival at day 8. Approximately 1×104 WT yeast strain 
BY4742 are transferred to 1.0 mL of SD medium and maintained at 30˚C with constant agitation (200 
rpm) for the entire experiment. TCM raw extracts are added into the culture at initial incubation, 16 
extract with 3 dilutions (duplicate) are tested survival at day 8 in a 96-well plate using a microplate 
reader. No. 10 is Danshen raw extract.  
(B and C) Survival of yeast cell is tested at day 6. Twelve concentrations (duplicate) of Danshen raw 
extract are added at day 0 (B) and day 2 (C), respectively.  
(D) Danshen extract has little effect on yeast cell growth. Yeast (≈ 1×104 cells) treated with different 
doses of Danshen extract. The extract is dissolved in methanol/acetone/water (2:2:1) and added into 
YPD medium (5 μL compound: 100 μL medium) in a 96-well plate inoculated at 30˚C for 22 h.  
(E, F, G and H) Compounds from Danshen root extract extend yeast CLS is dependent on 
concentration and the time of addition into growth medium. Danshen extract (E), compounds 
tanshinone IIA (F), tanshinone I (G) and cryptotanshinone (H) in methanol or DMSO with several 
concentrations (2 μL) are added into 1 mL SD medium (≈ 1×104 cells) at initial inoculation (0 h), or 12 
h and 24 h after inoculation. Percentage composition (w/w) of tanshinone IIA (IIA) and 
cryptotanshinone (CPT) in Danshen extract are shown as well as their concentrations in 3.1 and 12.5 
mg/L the extract. AUC represents the survival integral for lifespan comparison and error bars represent 
SEM within 4 replicates. 
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Then, I tested whether the extract inhibit yeast cell growth, the results shows that 

Danshen extract has relatively low toxicity to suppress yeast cells growth even at a 

high concentration of 2,048 mg/L (Figure 6.1D). According to above data, I propose 

that there are some highly activity compounds in the extract could be served as a 

novel candidates to extend yeast CLS. 

Next, I separated the compounds using a LH-20 column chromatography. 

Fractions containing from hydrophilic to lipophilic compounds were collected and 

tested their capacity on enhancing yeast survival. I found that the 13th fraction has the 

highest activity, and HPLC chromatogram (260 nm) of this fraction indicates the 

major compounds are cryptotanshinone, methylenetanshinone and tanshinone IIA 

(Figure 6.2). This result suggests that the main functional compounds may be 

cryptotanshinone and tanshinone IIA since previous studies suggested the major 

bioactive components are lipophilic (tanshinone IIA, cryptotanshinone) and 

hydrophilic (danshensu, protocatechuic aldehyde, Salvianolic acid B) compounds 

(Zhou et al. 2005). Then I determined the longevity efficacy of cryptotanshinone, 

tanshinone I and tanshinone IIA from Sigma Company, as well as Danshen extract at 

a range of dose and different addition time (Figure 6.1E-H). I also quantified the 

concentration of cryptotanshinone (45 nM and 182 nM) and tanshinone IIA (36 nM 

and 146 nM) in the 3.1 mg/L and 12.5 mg/L extract (Figure 6.1E). Comparing the 

lifespan extension capacity of the two doses of Danshen extract with cryptotanshinone, 

tanshinone I and tanshinone IIA at 78 nM, cryptotanshinone and tanshinone IIA are 

proved to be major contributors in Danshen extract for longevity, and 

cryptotanshinone shows stronger capacity on CLS extension than tanshinone IIA 

(Figure 6.1F, H). 
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Cell growth phase seems to be a critical factor for modulating nutrient signaling 

influenced CLS. Consistent with this hypothesis, current data showed that tanshinones 

extend CLS only when it is applied to cells that are entering stationary phase, not 

when applied to cells that are already in stationary phase (Figure 6.1). It is similar to 

the effect reported for caffeine (Wanke et al. 2008), rapamycin (Powers et al. 2006; 

Pan et al. 2011), spermidine (Eisenberg et al. 2009) and lithocholic acid (Goldberg et 

al. 2010; Burstein et al. 2012) in promotion of longevity of yeast chronological aging. 

All these compounds, as well as CR and other nutrients with anti-aging property are 

added before yeast cell entering stationary phase (day 2). In laboratory mice and rats, 

CR and other nutrients can achieve maximal benefit for longevity only if they are 

applied during the rapid growth period (Weindruch & Walford 1982; Yu et al. 1985). 

Previous studies indicated that they prolonged lifespan via nutrient signaling 

pathways (Fontana et al. 2010). In fact, compounds targeting nutrient signaling 

pathways are an effective mechanism in regulating longevity of an organism, since 

cells require nutrients in response to the compound induced physiological change in 

the organism (Howitz & Sinclair 2008; Fontana et al. 2010). Overall, these results 

may implicate that these tanshinones prolong CLS via a nutrient-dependent regime. 
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Figure 6.2 HPLC chromatogram analysis compounds from Danshen 
(A) HPLC chromatogram (260 nm) of 10 g/L Danshen root extract. Danshen root is extracted by 
acetone/methanol/water (2:2:1). Peak 1, 2 and 3 are cryptotanshinone, methylenetanshinone and 
tanshinone IIA, respectively.  
(B) HPLC chromatogram (260 nm) of the 13th fraction from a LH-20 column chromatography for 
isolation of the Danshen extract. The extract was transferred to a LH-20 column (35 × 6 cm, Sephadex 
LH-20) pre-equilibrated with water. Successive elution with water, methanol and acetone mixture at a 
flow rate of 5 mL/min gave many fractions (each fraction volume was 100 mL).  
(C, D, E) HPLC chromatogram (260 nm) and structures of tanshinone IIA, cryptotanshinone and 
tanshinone I standard compounds from Sigma-Aldrich company. 
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6.3.2 Cryptotanshinone induced CLS extension is prevented by amino acid 

restriction 

To determine which nutrient factors alter tanshinones induced longevity, I tested 

CLS extension capacity of cryptotanshinone at 78 nM in different media (Figure 6.3). 

The concentration was chosen because at the low concentrations the compounds are 

able to extend CLS but unable to inhibit cell growth and reduce biomass production. 

To my surprise, the data showed that cryptotanshinone extended CLS in several 

media (Figure 6.3A-G), especially in the low glucose (0.5%, CR condition, Figure 

6.3B), high glucose (8%, Figure 6.3D), and buffered media (pH 6.0) (Figure 6.3E, F). 

However, it could not extend lifespan in a medium in which the total amino acid 

amount was reduced (Figure 6.3H). This finding suggests that cryptotanshinone 

might extend lifespan in a wide range of environmental conditions. Overall, these 

results indicate that cryptotanshinone induced longevity greatly depends on media 

composition, and amino acids are an important factor to affect the lifespan extension 

capacity of cryptotanshinone. It is already established that CLS is severely 

compromised if cells are grown on SD medium that causes starvation for EAA 

(Gomes et al. 2007; Boer et al. 2008). In the measurements presented here this effect 

appears to be overriding any CLS-extending effect of cryptotanshinone. 
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Figure 6.3 Cryptotanshinone (CPT) induced CLS extension is prevented by amino acids 
restriction 
(A-H) Survival curve (mean + SEM, n = 8) of WT strain BY4742 cultured in 8 SD based media with 
or without cryptotanshinone (78 nM, 0.2% methanol). They are SD medium with 2% glucose (A), 
0.5% glucose as CR condition (B), 0.25-fold ammonium sulphate (C), 8% glucose (D), SD medium 
prepared with citrate phosphate buffer solution (CBS, Na2HPO4 and citric acid, pH 6.0; E) or 
phosphate buffer solution (PBS, Na2HPO4 and NaH2PO4, pH 6.0; F), 4-fold total amino acids (G) and 
0.25-fold total amino acids (H). (I) Relative AUC comparison (AUC of compound / AUC of untreated 
× 100%) in the 8 media. Cryptotanshinone dissolved in methanol, 2 µL of 39 µM compounds was 
added in 1 mL growth medium at the time of cell inoculation. 
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6.3.3 Essential amino acid sufficiency is required for cryptotanshinone induced 

longevity 

In order to examine how the amino acid composition affects cryptotanshinone 

lifespan extending activity, seven media with different proportions of EAA and 

NEAA were designed and tested (Figure 6.4, 6.5A, B). A standard SD medium 

normally contains 14 amino acids and two bases, adenine and uracil (Sherman 1991; 

Murakami et al. 2008). Among these compounds, only histidine, leucine, lysine and 

uracil are essential as auxotrophy-complementing amino acid for the WT yeast strain 

S. cerevisiae BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) (Table 3.1). The 

medium with 1-fold EAA and 5-fold NEAA (1E5N) produced longer CLS than the 

other media in WT strain and 5E5N has the shortest CLS (Figure 6.4, 6.5A, B). 

However, this observation changed greatly when cryptotanshinone was added to these 

media. These results clearly showed that EAA sufficiency was required for 

cryptotanshinone induced CLS extension in WT based on the following observations: 

(1) Cryptotanshinone could not extend CLS in low EAA media (0.2E0.2N or 0.2E1N); 

(2) Increasing NEAA did not improve the efficacy of cryptotanshinone when the EAA 

was maintained at the same level (e.g. 1E0.2N, 1E1N, 1E5N); (3) Although CLS 

changed slightly when EAA increased, the efficacy of cryptotanshinone improved 

significantly (e.g. 0.2E1N, 1E1N, 5E1N); (4) The ratio of EAA and NEAA 

concentrations could alter CLS, but the addition of cryptotanshinone changed this 

consequence and led to longer CLS in higher EAA media (e.g. 0.2E, 1E, 5E) (Figure 

6.4A). Moreover, cryptotanshinone did not suppress cell growth and biomass 

production in different media (Figure 6.4B). 
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Figure 6.4 EAA sufficiency was required for cryptotanshinone induced CLS extension 
Yeast was grown in the 7 media with or without cryptotanshinone (78 nM) and error bars represent 
SEM within 6 replicates. The growth curve of yeast cultured in 4 SD based media with different 
amount of EAA and NEAA. The growth curves showed that yeast cells could proliferate well with 
cryptotanshinone (CPT, 78 nM) in different media since the lag time (≈ 12 h) of each curve had no 
significant changes. 0.2E0.2N represents SD medium containing 0.2-fold EAA and 0.2-fold NEAA. 
 



124 
 

 
Figure 6.5 Survival curves (mean, n = 6) of the WT, sch9Δ and gcn2Δ yeast cultured in 7 SD 
based media with different amount of EAA and NEAA with or without cryptotanshinone (78 nM) 
0.2E0.2N represents SD medium containing 0.2-fold EAA and 0.2-fold NEAA. 
 

Next, I examined the effect of individual amino acids on the efficacy of 

cryptotanshinone (Figure 6.6). Consistent with the analysis above that restriction of 

EAA prevents cryptotanshinone induced longevity, the addition of cryptotanshinone 

in the media with 0.1-fold histidine (Figure 6.6E) and uracil (Figure 6.6M) showed 

little CLS extension, which was not observed in NEAA (Figure 6.6O). It should be 

highlighted that leucine and lysine were not shown here as the low concentration of 

these two amino acids led to low biomass production and an accelerated loss of 

viability.  
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Figure 6.6 Effect of individual amino acid restriction on cryptotanshinone induced CLS extension 
(A - N) Survival curve (mean, n = 6) of WT strains cultured in SD based media containing 0.1-fold 
individual amino acid with/without cryptotanshinone. (O) Relative AUC comparison (AUC of 
compound / AUC of untreated × 100%) in different media. 
 

6.3.4 Cryptotanshinone requires Tor1 and Sch9 for CLS extension 

To elucidate the genetic mechanism of cryptotanshinone induced CLS extension, 

I focused on those evolutionarily conserved and nutrient-sensing longevity pathways 

from yeast to humans. In yeast, the Tor/Sch9 pathway was thought previously to be a 

highly conserved nutrient-sensing pathway that regulates longevity among different 

species (Fontana et al. 2010). Sch9 is proposed as a major nutrient-sensing factor to 

regulate cell growth, cell size, and stress resistance through controlling protein 

synthesis. Absence of Sch9 activity causes a small-sized phenotype and distinct 

growth defect, while increasing the lifespan (Fabrizio et al. 2001; Kaeberlein et al. 

2005b; Urban et al. 2007; Huber et al. 2009). I previously demonstrated that sch9Δ is 
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more responsive to nutrients than WT, tor1Δ, and sir2Δ (Chapter 5). Thus, I first 

examined the effect of cryptotanshinone on sch9Δ lifespan in SD media with different 

ratios of EAA and NEAA. Similar to the observation in WT, the amino acid 

composition changed CLS of sch9Δ, but cryptotanshinone did not increase the 

lifespan significantly even in the media containing a high content of EAA (Figure 

6.7A, 6.5C, D). It implicates that cryptotanshinone induced longevity requires Sch9 

activity. 

 



127 
 

0

200

400

600

800

1000

1200

1400

1600

0.10% 0.50% 2% 5%

Li
fe

sp
an

 (A
U

C
)

tor1Δ

Control
Cryptotanshinone 78nM

0

200

400

600

800

1000

1200

0.10% 0.50% 2% 5%

Li
fe

sp
an

 (A
U

C
)

WT

Control
Cryptotanshinone 78nM

C D

0

200

400

600

800

1000

1200

0.2E0.2N 0.2E1N 1E0.2N 1E1N 1E5N 5E1N 5E5N

Li
fe

sp
an

 (A
U

C
)

sch9Δ

sch9Δ+CPT

A

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20 24 28 32 36 40 44 48

O
D

 6
60

nm

Time (hours)

sch9Δ0.2E/0.2NE CPT
0.2E/1.0NE CPT
1.0E/0.2NE CPT
1.0E/1.0NE CPT

sch9Δ

sch9Δ+CPT

 
Figure 6.7 Cryptotanshinone induced lifespan extension depends on Sch9 and Tor1 activity 
(A) Deletion of SCH9 prevented cryptotanshinone induced CLS extension in different media. The yeast 
was grown in the 7 media with or without cryptotanshinone (78 nM; mean ± SEM, n = 6). (B) 
Cryptotanshinone did not inhibit cell growth in sch9Δ strain. (C and D) Cryptotanshinone induced 
longevity was independent of glucose levels and was prevented by deletion of TOR1. WT and tor1Δ 
cultured in SD medium containing 0.1%, 0.5%, 2% and 5% glucose with or without cryptotanshinone 
(78 nM; mean ± SEM, n = 6). 0.2E0.2N represents SD medium containing 0.2-fold EAA and 0.2-fold 
NEAA. 
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Next, I tested the effect of cryptotanshinone on tor1Δ strain cultured in SD 

medium containing 0.1%, 0.5%, 2%, and 5% glucose. The data showed that 

cryptotanshinone prolonged lifespan in media with different levels of glucose (Figure 

6.7C, 6.8A), indicating further that cryptotanshinone induced lifespan extension was 

not dependent on glucose concentration. Although this result suggests that the action 

of cryptotanshinone is independent of CR (0.5% glucose), it is possible that 

cryptotanshinone could enhance the resistance of yeast against the toxicity of 

metabolites (e.g. ROS, and organic acids) at high glucose levels. In contrast, 

cryptotanshinone could not prolong lifespan of tor1Δ strain (Figure 6.7D, 6.8B). 

Overall, these results suggest that the CLS-extending effect of cryptotanshinone is 

overridden by loss of either Sch9 or Tor1. 
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Figure 6. 8 Survival curves of WT yeast (A) and tor1Δ (B) cultured in SD medium containing 
0.1%, 0.5%, 2% and 5% glucose with (red line) or without (blue line) cryptotanshinone (78 nM; 
mean ± SEM, n = 6) 
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6.3.5 Tanshinones extend yeast lifespan via similar mechanisms 

To determine whether the tanshinones induce longevity via other mechanisms, 

tanshinone IIA (1.25 µM), cryptotanshinone (78 nM) and a mixture containing 

tanshinone I (1.7 µM), tanshinone IIA (0.42 µM), cryptotanshinone (26 nM) were 

chosen, and their effects on CLS of WT BY4742, sch9Δ, and sir2Δ cultured in the 

standard SD medium were evaluated (Figure 6.9). Tanshinone IIA (1.25 µM) and 

cryptotanshinone (78 nM) extended lifespan by equal amounts (Figure 6.9A), but the 

mixture did not show a longer lifespan compared with that of individual compounds, 

which means that tanshinones have no additive or synergistic effect on yeast longevity. 

In addition, the three selected compounds could not extend CLS in sch9Δ, while they 

prolonged the sir2Δ lifespan significantly (Figure 6.9B, C). Altogether, these 

observations indicate that tanshinones require Sch9 for CLS extension and they may 

act on similar mechanisms. 
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Figure 6.9 Tanshinones have no synergetic effect on yeast longevity via similar mechanisms 
(A) Tanshinones had no synergetic effect on CLS extension. Tanshinone IIA (1.25 µM), 
cryptotanshinone (78 nM) and a mixture containing tanshinone I (1.7 µM), tanshinone IIA (0.42 µM), 
cryptotanshinone (26 nM) were tested in WT BY4742 grown in standard SD medium. (B) Deletion of 
SCH9 prevented CLS extension by the Danshen compounds. (C) Tanshinones extended CLS in 
dependent of deletion of SIR2. (D) Comparison of CLS of WT, sch9Δ, and sir2Δ treated with 
tanshinones. AUC represents the survival integral for lifespan comparison (mean ± SEM, n = 6). 
 

6.3.6 Gcn2 regulates essential amino acids and cryptotanshinone induced CLS 

extension 

In addition to the Tor-Sch9 nutrient-sensing pathway, general amino acid control 

(GAAC) is an important nutrient-sensing pathway in the regulation of yeast growth 

and metabolism. It is also noteworthy that GAAC could be a major factor of the 
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Tor/Sch9 pathway, and Gcn2 may play a central role in the integration of GAAC and 

Tor/Sch9 pathways (Staschke et al. 2010). Gcn2 is one of the major evolutionarily 

conserved protein kinases in response to nutritional cues, especially amino acid 

starvation (Wilson & Roach 2002). The starvation causes activation of Gcn2, which 

subsequently phosphorylates eukaryotic initiation factor-2 (eIF2). As a result, 

initiation of general protein synthesis is repressed. This change enables cells to 

conserve resources and have time to reconfigure the transcriptome to alleviate nutrient 

stress (Staschke et al. 2010). Concomitantly, Gcn2 phosphorylation also elevates 

Gcn4 activity, a transcription activator of a large number of genes subject to the 

GAAC, many of which are involved in amino acid biosynthesis (Hinnebusch 2005).  

Based on the above reasoning, it is possible that Gcn2 could be involved in 

regulation of cryptotanshinone induced CLS extension. I measured CLS of gcn2Δ in 

the seven media, and found that a higher EAA concentration had longer CLS and 

NEAA had less contribution to CLS extension than EAA (Figure 6.10A, 6.5E, F), 

which means Gcn2 mainly regulated EAA and may partly prevent CLS extension in 

WT and sch9Δ strains grown in the media with a high level of EAA (Figure 6.4A, 

6.7A). I also found that cryptotanshinone are more effective to extend lifespan of WT 

in 5E1N than that in 1E5N (Figure 6.4A), while cryptotanshinone cannot extend 

lifespan of gcn2Δ in 1E5N and slight increase in 5E1N. Obviously, 1E5N and 5E1N 

are greatly different in amino acids composition. Cryptotanshinone extends CLS in 

WT and the efficacy is mainly dependent on EAA concentration (Figure 6.4A). Thus, 

this observation is consistent with the conclusion that EAA is a key determinant for 

cryptotanshinone activity. Furthermore, current data showed that deletion of GCN2 

could impair the efficacy of cryptotanshinone relative to WT in normal and high EAA 
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media (Figure 6.4A, 6.10A). Thus, I conclude that the CLS-extending effect of 

cryptotanshinone is partly overridden by loss of Gcn2 in EAA sufficient media. 
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Figure 6.10 Gcn2 regulated amino acids homeostasis to extend lifespan and impaired 
cryptotanshinone induced longevity in different media 
(A) The yeast were grown in the 7 media with or without cryptotanshinone (78 nM; mean ± SEM, n = 
6). (B) Cryptotanshinone did not inhibit cell growth in gcn2Δ strain. 0.2E0.2N represents SD medium 
containing 0.2-fold EAA and 0.2-fold NEAA.  
 

6.3.7 Cryptotanshinone extend lifespan without reduce in ROS level in sod2Δ 

Reactive oxygen species (ROS)-initiated irreversible cellular damage is the 

cornerstone of free radical theories of aging and enzymatic antioxidants, particularly 

superoxide dismutase (SOD), are critical in protection from ROS damage to cells 

(Harman 1956; Finkel & Holbrook 2000). Yeast has two SOD genes, cytoplasmic 
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copper-zinc superoxide dismutase (SOD1) and mitochondrial manganese superoxide 

dismutase (SOD2). The lack of either of the two SODs resulted in decreased lifespan 

enormously, and deletion of SOD2 has a shorter lifespan than deletion of SOD1 (Unlu 

& Koc 2007). SOD2 was proposed as a downstream target of Tor/Sch9 nutrient 

signaling pathway for longevity extension by decreasing in part ROS levels in yeast 

(Fabrizio et al. 2003; Fontana et al. 2010; Pan et al. 2011). Thus, it is interesting to 

ascertain whether cryptotanshinone reduces ROS stress to extend CLS. Surprisingly, 

although cryptotanshinone could not reduce the intracellular ROS level in sod2Δ 

mutant at early stationary phase day 2, it extended CLS in the sod2Δ strain that has 

shortened lifespan significantly in the standard SD medium due to impaired 

superoxide detoxification in the cell (Figure 6.11A, B) (Pan et al. 2011). Additionally, 

this was not due to the SOD mimicking activity of cryptotanshinone in cells because 

in vitro assays showed that cryptotanshinone had no superoxide anion scavenging 

activity (unpublished data). The observation that cryptotanshinone had no effect on 

ROS production in sch9Δ, might further indicated that SCH9 deletion eliminated the 

cryptotanshinone effect.  

 

6.4 Discussion 

In this study, I used a high throughput assay in yeast chronological aging 

model to screen anti-aging compounds from diverse natural sources, and discovered 

that a novel compound cryptotanshinone from Danshen, a notable traditional Chinese 

medicine because of its widespread medicinal use in treatment of cardiovascular 
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Figure 6.11 Cryptotanshinone mediates reactive oxygen species (ROS) production 
(A) Cryptotanshinone extends CLS of sod2Δ strain (mean ± SEM, n = 6). (B) Intracellular ROS levels 
of WT, sch9Δ and sod2Δ strains grown in standard SD medium with/without cryptotanshinone were 
quantified by a Bio-Tek plate reader. The ROS probe H2DCFDA (2',7'-dichlorodihydrofluorescein 
diacetate) was used. DCF (dichlorofluorescein) fluorescence was measured at 520 nm with excitation 
at 480 nm. Relative fluorescence intensity (fluorescence intensity of compound / fluorescence intensity 
of untreated × 100%) at day 2 was presented. Error bars are mean ± SD, n = 4.  
 

diseases has strong lifespan extending activity in relatively low concentrations (e.g. 

78 nM). I found that cryptotanshinone has a stronger efficacy than tanshinone IIA and 

tanshinone I. Compared to other reported anti-aging compounds, such as resveratrol, 

rapamycin, lithocholic acid and spermidine (Howitz et al. 2003; Powers et al. 2006; 

Eisenberg et al. 2009; Pan et al. 2011; Burstein et al. 2012), cryptotanshinone is a 

novel candidate for anti-aging medicine based on four reasons: 

(1) Ideal pharmaceutical properties. Cryptotanshinone meets Lipinski's rule of 

five including molecular weight 296 g/mol, molecular formula C19H20O3, octanol-

water partition coefficients (XLogP3-AA) 3.8, H-bond donor 0 and H-bond acceptor 

3. As shown in Fig. 1, the three tanshinones have little structural differences, but have 

significant activity difference, indicating a strong structure-activity relationship for 

this compound that warrants further chemical structure modification for drug 

development. 

(2) High activity. Cryptotanshinone can extend yeast CLS more than three times 

in a standard SD medium at only 78 nM, in which concentration it does not inhibit 
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cell growth nor supress biomass production (Figure 6.4B, 6.7B, 6.10B). In contrast, 

resveratrol extends yeast RLS at least 10 µM but does not extend CLS even at 100 

µM (Howitz et al. 2003); rapamycin prolongs yeast CLS at 200 nM whereas it greatly 

inhibits cell growth (Pan et al. 2011).  

(3) Multifunctionality. Cryptotanshinone not only exerts longevity extension in 

diverse media and strains as shown in this study, but also processes numerous other 

bioactivities assessed in different models including human cells (Don et al. 2007; 

Chen et al. 2010; Mei et al. 2010; Chen et al. 2012; Park et al. 2012a). Aging is a 

very complex and dynamic process involving multiple factors and their interactions, 

thus a compound that is multi-targeting of these factors or pathways might be desired 

as an anti-aging candidate. Resveratrol is such an example but it has low efficacy 

(Park et al. 2012b). 

(4) Action on evolutionarily conserved genetic pathway. Present data 

documented that EAA, rather than other nutrients, is the key nutrient factor that is 

required for cryptotanshinone to induce lifespan extension. This result is of 

considerable interesting since almost all living cells require EAA for protein synthesis 

and survival. Therefore it is reasonable that cryptotanshinone could be applied in 

diverse cell lines for lifespan extension via targeting the highly conserved nutrient-

sensing Tor/Sch9 pathway, which is a control point of lifespan of in higher organisms 

(Fontana et al. 2010). Moreover, cryptotanshinone was reported to inhibit mTORC1 

mediated phosphorylation of ribosomal p70 S6K1 (having similar functionality to 

Sch9) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) in a concentration 

and time dependent manner (Chen et al. 2010). 

I have shown that deleting Tor/Sch9 signaling pathway in yeast eliminates CLS 

extension by cryptotanshinone. Sod2 was proposed as a downstream of Sch9, double 
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deletion of SCH9 and SOD2 abolished CLS extension in sch9Δ (Fabrizio et al. 2003; 

Fontana et al. 2010). In this study, removing of mitochondrial Sod2 cannot prevent 

cryptotanshinone induced lifespan extension, and cryptotanshinone does not diminish 

the intracellular ROS level in sod2Δ mutants based on the fluorescence intensity of 

the redox sensitive probe (Figure 6.11), but significantly reduce the oxidative stress 

status in WT strain. For the WT strain, cryptotanshinone may inhibit the activity of 

Tor/Sch9 signaling, and subsequently reduce total ROS production (Figure 6.12) 

(Fontana et al. 2010). Consistently, there is no change in the ROS level in sch9Δ 

strain with/without cryptotanshinone treatment (Figure 6.11B). The Tor/Sch9 

signalling downregulate many stress response and the antioxidant enzymes Sod1 and 

Sod2 or catalase involving ROS regulation. In yeast, overexpression of these 

antioxidant enzymes results in no significant lifespan extension, indicating that many 

other systems are important in lifespan modulation (Fontana et al. 2010). This might 

be why CPT extended CLS in sod2Δ but not in sch9Δ or tor1Δ. On the other hand, it 

is possible that H2DCFDA (2',7'-dichlorodihydrofluorescein diacetate) detects general 

ROS stress (including superoxide, hydrogen peroxide and hydroxyl radicals) but not 

specifically superoxide radical, which is a major signaling ROS mediated by Sod1 

and Sod2. The change of superoxide stress level in sod2Δ is thus not possible to be 

distinguished by fluorescence intensity for the general ROS status of the cells. The 

other possibility is that cryptotanshinone may extend CLS of sod2Δ via other 

mechanism. Previous studies have revealed that cryptotanshinone mediates the 

AMPK pathway, PI3K pathway and endoplasmic reticulum (ER) stress (Kim et al. 

2007; Mei et al. 2010; Park et al. 2012a), which might contribute to lifespan 

extension. Furthermore, given the similar effective treatment window between 

rapamycin and CPT, it should be interesting to measure superoxide with DHE 
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(dihydroergotamine) and/or Mitosox and peroxide with H2DCFDA in log phase and 

stationary phase. It would be worthwhile to confirm or eliminate mitohormesis as a 

mechanism underlying CPT extension of CLS (Ristow & Zarse 2010; Pan 2011). 

 

 
Figure 6.12 A proposed pathway induced by cryptotanshinone for longevity in yeast 
The left part shows a conserved aging pathway regulated by Tor, Sch9 and Sod2 in yeast under normal 
condition. The right part presents the conserved longevity pathway induced by cryptotanshinone when 
yeast grown in a medium with sufficient EAA. 
 

The EAA concentration in a medium is a key nutrient parameter affecting 

lifespan extending capacity of cryptotanshinone in WT yeast and determining CLS of 

gcn2Δ. I have demonstrated that EAA and NEAA composition changes lifespan of 

WT and sch9Δ significantly (Figure 6.4, 6.7) and EAA is a determining factor for 

biomass production in different strains (Figure 6.4B, 6.7B, 6.10B). On the other hand, 

EAA restriction (0.2-fold EAA of normal) greatly decreases biomass and restriction 

of both EAA and NEAA (0.2EAA/0.2NEAA) do not inhibit cell growth in 

comparison to that under normal conditions, while EAA and NEAA imbalance 

(0.2EAA/1NEAA) delays cell growth in WT, sch9Δ, and gcn2Δ strains (Figure 6.4B, 

6.7B, 6.10B). To our knowledge, only few previous studies reported that a higher 

EAA concentration causes a longer CLS and higher biomass production in yeast 

chronological aging model (Gomes et al. 2007; Boer et al. 2008; Alvers et al. 2009a). 
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Although the individual EAA composition and concentration differ from ours, the 

results are similar to present observation. 

Gcn2 regulates amino acid homeostasis and protein synthesis by modulating 

amino acid biosynthesis in response to different amino acids deprivation in yeast 

(Hinnebusch & Natarajan 2002). So far, there are two known ways to regulate Gcn2 

activity. Firstly, amino acid starvation causes accumulation of uncharged tRNAs that 

bind to Gcn2 protein kinase and subsequently activates Gcn2. Secondly, rapamycin 

activates Gcn2 by inhibiting TORC1 even in amino acid depleted cells (Hinnebusch 

2005). In this study, I document for the first time that Gcn2 regulates EAA and 

NEAA homeostasis to alter lifespan, deletion of GCN2 causes yeast cells to become 

amino acid insensitive, which leads to longer lifespan and prevents cryptotanshinone 

induced lifespan extension in EAA sufficient media (Figure 6.10).  

Although it is not clear whether cryptotanshinone affects Gcn2 directly, current 

data suggest that cryptotanshinone appears to reduce Tor/Sch9 pathway activity, and 

in turn elevate Gcn2 activity (Figure 6.12). It is consistent with previous studies 

shown that Gcn2 is at downstream of TOR and upstream of Gcn4 linking TOR 

pathway and GAAC pathway (Steffen et al. 2008; Staschke et al. 2010). Growth in 

media with amino acid imbalance can elicit the pathway. Activation of GAAC 

decreases CLS while suppression of GAAC prolongs CLS in minimal medium 

(Alvers et al. 2009a). Testing CLS of gcn4Δ strain cultured in the different media I 

used with or without cryptotanshinone would be informative to find out if Gcn4 is 

indeed a potential longevity factor for CLS and RLS and a master regulator of gene 

expression for GAAC in yeast (Steffen et al. 2008; Alvers et al. 2009a). Gcn2 was 

examined herein because my aim was to delineate genes that are conserved aging 

factors. The domain structure of Gcn2 is highly conserved and it functions as both 
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general and gene-specific translational control in fungi, insects and mammals 

(Hinnebusch 2005). Altogether, I demonstrated a novel longevity-regulating function 

of Gcn2. 

 

6.5 Conclusion 

My findings demonstrate that cryptotanshinone-induced lifespan extension is 

dependent on the nutrient composition of media, especially EAA concentration. 

Restriction of total amino acids or EAA, and deletion of TOR1, SCH9 or GCN2 

prevent longevity extension by cryptotanshinone. An increased lifespan of sod2Δ by 

cryptotanshinone and intracellular ROS level analysis suggests that the compound 

might mediate ROS stress resistance. Altogether, I propose that cryptotanshinone 

targets partly Tor1, Sch9, Gcn2 and Sod2, evolutionarily conserved longevity kinases 

mediated by nutrients from yeast to human, to greatly prolong lifespan of yeast at 

nanomolar concentrations. The highly conserved mechanism merits future 

investigation of longevity activity of cryptotanshinone in higher organisms and its 

molecular mechanisms. The structure and activity dependency of the tanshinones is 

noteworthy and warrants more investigation in order to establish a correlation and 

discovery of even more potent anti-aging compounds. 
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Chapter 7 

HORMESIS OF GLYCEOLLIN I, AN INDUCED 

PHYTOALEXIN FROM SOYBEAN, ON BUDDING 

YEAST CHRONOLOGICAL LIFESPAN 

EXTENSION 

 

7.1 Introduction 

Hormesis is an adaptive response of cells and organisms to a moderate stress. It 

describes the dose-response relationships of stressors (e.g., chemical, thermal, or 

radiological) that are noxious at higher levels but can exert a beneficial effect on cells 

at low doses by inducing a response that results in stress resistance (Mattson 2008; 

Marques et al. 2010). Rapamycin and resveratrol are also antifungal natural products 

and can induce defense responses at low doses in fungi, nematodes, flies, fish, and 

mice (Howitz & Sinclair 2008). CR is probably one of the most well recognized 

hormetic phenomenon capable of increasing mammalian lifespan. These stressors, in 

large part via activation of conserved stress-response signal transduction pathways, 

decrease risks of common age-related conditions, such as cancer, cardiovascular 

diseases, type 2 diabetes, and neurological diseases, hence lengthening the lifespan 

(Gems & Partridge 2008).  

Previous work has shown that food grade microbial-stressed (R. oligosporus) 

germination of living soybeans leads to generation of a group of oxooctadecadienoic 

acids and their glyceryl esters in addition to glyceollins, a known phytoalexins present 

in wild and stressed soybeans. In addition, the nutritional values of the soybean foods 
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made from the bean seeds may be particularly beneficial with higher content of total 

isoflavones (Feng et al. 2008). Interestingly, after screening a number of natural 

products, I found that an induced phytoalexin, glyceollin I, could similarly function as 

hormesis in yeast and extend their lifespan through CR-dependent regime at low 

doses. 

 

7.2 Experimental Procedures 

7.2.1 Materials 

Food grade fungus, Rhizopus oligosporus, was bought from PT. Aneka 

Fermentasi Industri (Bandung, Indonesia), and black soybean (Glycine max (L.) Merr., 

China) was bought from a supermarket in Singapore. Other materials were as 

described in Chapter 3 (3.2.1). 

 

7.2.2 Isolation of glyceollins  

The soybean seeds (2.0 kg) were germinated with R. oligosporus stress at 25 °C 

in the dark for 3 days. The resulting germinated beans were homogenized in methanol, 

and then extracted three times on a shaking incubator at 200 rpm and room 

temperature for 6 h each time. The extraction solutions were concentrated in a rotary 

evaporator at 50 °C. The concentrated residue was transferred to a silica gel column 

(35 × 6 cm, silica gel 60 (0.040-0.063 mm)) pre-equilibrated with hexane. Successive 

elution with hexane and hexane/ ethyl acetate (7:3) mixture at a flow rate of 5 mL/min 

gave many fractions (each fraction volume was 100 mL). After HPLC analysis, the 

fractions containing the glyceollins were combined and the three isomers: glyceollin I, 

II, III (Figure 7.1A) were obtained and their identity confirmed by UV/Vis spectrum 

(Figure 7.1B), ESI-MS and 1H NMR spectroscopy. HPLC analysis was carried out on 
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a Waters HPLC system (Milford, MA) with an Alliance 2659 separation module and a 

2996 photodiode array (PDA) detector with detection wavelength set at 285 nm. The 

separation was accomplished on a Waters C18 column (5 μm, 4.6 × 250 mm, Atlantis 

T3, Ireland) with water (A), acetonitrile (B) and 2% acetic acid in water (C) as mobile 

phase. The column temperature was 30 °C. The injection volume was 20 µL. Solvent 

C composition was maintained at an isocratic 5% for 40 min. Solvent A and B 

gradient was as follows: 0 – 1 min, A 95%; 1 – 5 min, A from 95% to 50%; 8 – 36 

min, A from 50% to 50%; 36 – 39 min, A from 50% to 90%; 39 – 40 min, A from 

90% to 95%. The flow rate was 1.0 mL/min. MS spectra were acquired using a 

Finnigan/MAT LCQ ion trap mass spectrometer (San Jose, CA, USA) equipped with 

an electrospray ionization (ESI) source. The capillary temperature and spray voltage 

were maintained at 250 °C and 4.5 kV, respectively. 1H NMR spectra were recorded 

in CDCl3 with a Bruker AC300 spectrometer (Karlsruhe, Germany) operating at 300 

MHz. 

 

7.2.3 Lifespan and yeast cell growth assay 

The lifespan, biomass and yeast cell growth assays have been described in 

Chapter 3 (3.2.3).  

 

7.2.4 Data analysis 

The data analysis on lifespan has been described in Chapter 3 (3.2.4).  

 

7.3 Results and Discussion 

7.3.1 Antiproliferation activity of glyceollins 
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The glyceollin I, II, and III were isolated by Silica gel column chromatography 

(Figure 7.1) and the structures were confirmed by 1H NMR, UV–Vis, and MS spectra. 

Glyceollins, one type of induced phytoalexins from soybean, were released in much 

higher concentrations during plants in response to a number of stress factors such as 

wounding, freezing, ultraviolet light exposure, chemical and exposure to 

microorganisms. Several studies had shown that their biological activities included 

antiproliferation/antitumor, antiestrogenic, antibacterial, and antifungal activities (Ng 

et al. 2011).  
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Figure 7.1 Structure (A), and HPLC chromatogram at 285 nm (B) of glyceollin isomers I, II, and 
III obtained from black soybean sprouts with food grade fungus R. oligosporus stress 
 

To test the antiproliferation activity of glyceollins on budding yeast, 

approximately 2×104 2-day YPD cultured yeast cells in each well of a 96-well plate 

were treated with different concentrations of glyceollins, which were compared with 

methanol-treated controls (defined as 100% viability). The results showed that all 

three glyceollin isomers could inhibit yeast proliferation (Figure 7.2), and 50% 

growth inhibition (GI50) of glyceollin I, II and III were 85, 139 and 150 µM 
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respectively. These GI50 values were consistent with previous reports that glyceollin I 

at 10 µM can reduce cell viability by 86% on MCF-7 breast cancer cells and by 

90.32% on BG-1 ovarian cancer cells based on an assay of 1000 cells per well 

(Zimmermann et al. 2010).  
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Figure 7.2 Influence of glyceollin I, II, and III on proliferation of yeast 
These compounds were dissolved in methanol and added into YPD medium (5 μL compound: 100 μL 
medium) inoculated at 30˚C for 21 h. Growth curves of S. cerevisiae BY4742 at different 
concentrations of glyceollin I (A), II (B) and III (C) were monitored with a microplate reader by 
recording the optical density every 5 min at 660 nm. Relative inhibition of growth of yeast at different 
concentrations of glyceollins was calculated and the GI50 was the concentration that glyceollins 
inhibited 50% yeast cell growth. Error bars represent SEM within four replicates. 
 

Glyceollin I (_) has GI50 in the low to mid μM range for human breast, ovarian, 

and prostate cancer cell lines (< 5000 cells/well) (Khupse et al. 2011). In this assay, 

glyceollin I was more effective to reduce yeast viability than its isomers II and III. 

This result also agrees with a previous finding that glyceollin isomer I had stronger 

bioactivity than isomers II and III on cancer cell line models (Payton-Stewart et al. 

2010; Zimmermann et al. 2010). According to a recent study, mechanism of the 
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inhibitory effects of glyceollins on platelet-derived growth factor (PDGF)-induced 

abnormal proliferation might be due to the influence on signal transduction events in 

the G0/G1-S interphase arrest. Glyceollins significantly reduce DNA synthesis in a 

dose-dependent manner without cytotoxicity and change the expression of cell cycle-

regulatory proteins such as phosphorylated retinoblastoma protein (pRB), cyclin-

dependent kinase (CDK)2 and cyclin D1, CDK inhibitor proteins p21cip1 and p27kip1, 

and tumor suppressors p53 (Payton-Stewart et al. 2009; Kim et al. 2011). Therefore, 

it is possible that the antiproliferation assay on budding yeast could be used as a 

simple and rapid method for screening candidates with antifungal and anticancer 

activities, because the basic cellular processes among eukaryotes have a high degree 

of conservation (Simon & Bedalov 2004).  

 
7.3.2 Glyceollin I extends yeast CLS by CR-dependent regime 

To test the antiaging activity of glyceollins, they were dissolved in methanol and 

added into yeast culture at day 2 of the stationary phase, and the initial age-point (day 

2) was defined to be 100% viability. As can be seen in Figure 7.3, under normal 

condition, glyceollin I in the range of 5 nM to 1.25 µM can extend lifespan (P < 0.05). 

The optimum concentration is at 12.5 nM with the maximum lifespan extension by 

40% relative to the control. However, I found that glyceollin I could not extend CLS 

even at the optimal concentration (12.5 nM) under CR conditions that could 

significantly extend yeast CLS. This suggests that glyceollin I mediates CLS 

extension and does not prevent lifespan extension through CR.  
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Figure 7.3 Glyceollin I as a CRM extends the budding yeast CLS 
Glyceollin I was dissolved in methanol at different concentrations and added into the medium (5 μL 
compound: 1 mL medium) at day 2. (A) Survival curves of WT BY4742 cultured in SD2D (SD 
medium containing 2% dextrose, normal condition) for 10 days, the control was added methanol 
without compound. (B) Survival curves of yeast in SD0.5D medium (0.5% dextrose, CR condition). 
Error bars represent SEM within 8 replicates. (C) AUC of different treatments under control and (D) 
CR condition; AUC represents the survival integral, the variance of AUC (mean + SEM, n = 8) 
between treatments was compared using the Duncan’s multiple range test at P < 0.05, different letters 
(a–b) show significant differences.  
 

Despite the fact that many natural small molecules such as caffeine, rapamycin, 

methionine sulfoximine, spermidine and lithocholic acid have been reported to extend 

yeast CLS, up to now, most of these compounds are not confirmed as candidate CRM 

(Powers et al. 2006; Eisenberg et al. 2009). A desired feature of a CRM should mimic 

the metabolic, hormonal, and physiological effects of CR under the normal calorie 

intake. CRM should activate stress response pathways observed under CR, provide 

protection against a variety of stressors, and produce CR-like effects on longevity 

with reduction of age-related diseases (Ingram et al. 2006). In comparison, glyceollin 

II and III had no effects on CLS (Figure 7.4) over a wide range of concentrations (5 

nM to 150 µM). Glyceollin II reduced CLS at high doses. It is remarkable that the 
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subtle structural variations of glyceollin I and II can result in such a dramatic 

difference in bioactivity. This indicates that structurally specific binding of the 

glyceollin I to yeast target is the critical event to exert bioactivity.   
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Figure 7.4 Glyceollin II (A) and III (B) do not extend yeast CLS 
These compounds were dissolved in methanol at different concentrations and added into the medium (5 
μL compound: 1 mL medium) at day 2. The control was methanol without compounds. Error bars 
represent SEM within 8 replicates. 
 

7.3.3 Hormetic effect of glyceollin I on yeast lifespan 

I measured the CLS extension activity of glyceollin I at a wide range of 

concentrations and found a dose-response curve of glyceollin I on CLS with a 

hormetic effect (Figure 7.5). At low doses (10 to 100 nM), glyceollin I resulted in 

yeast CLS extension. From 100 nM to 1.0 µM, there were negligible effects of 

glyceollin I on yeast CLS. Doses higher than 1.0 µM led to reduced CLS and toxicity 

(100 µM). Hormesis indicates that low concentrations of a toxin might have long-term 

beneficial consequences as a way of conditioning the organism toward enhanced 

stress responses. In this case, glyceollin I had the maximum CLS extension of only 

40% relative to the control (Figure 7.5) In fact, because the positive effects of a toxin 

occur at low doses, it has been reported that the benefits are typically only 30%–60% 

greater than controls (Calabrese & Baldwin 2003). Glyceollins are induced 

phytoalexins from soybean in response to stress factors. Therefore, I propose that 
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glyceollin I would serve as stress-response hormesis to yeast and trigger specific 

physiological response of the fungus to extend their lifespan by a CRM regime. The 

validity of my hypothesis if proven may have a significant impact on aging-related 

research, and provide critical evidence on stress-response hormesis, CRM as well as 

other aging related theories.  
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Figure 7.5 Dose-response curve of glyceollin I on yeast CLS with a hormetic effect 
The testing concentrations were 0.5, 1, 5, 10, 12.5, 25, 50, 100, 1250, 25,000, 100,000 nM, respectively. 
Low doses resulted in lifespan extension, whereas higher doses resulted in lifespan reduction. The 
control with 100% lifespan was defined as adding methanol without glyceollin I, and the relative 
lifespan was based on AUC comparison of different doses relative to the control.  
 

7.4 Conclusion 

I presented the antiproliferation and antiaging activities of induced phytoalexin 

glyceollin I, II and III from soybean on the budding yeast model. The three glyceollin 

isomers showed strong antiproliferation activity at μM levels and glyceollin I had 

lower GI50 than the other isomers. Interestingly, it was found that glyceollin I could 

extend yeast lifespan at nM levels. Furthermore, the longevity effect was a CR-

dependent regime. However, glyceollin II and III did not have hormetic effects on 
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yeast lifespan. Glyceollin I has been reported to have more potent activity on wider 

range of bioactivities including anti-bacterial, anti-nematode, anti-fungal, anti-

estrogenic and anti-cancer, antioxidant, anti-inflammatory, insulin sensitivity 

enhancing, and attenuation of vascular contractions (Ng et al. 2011). This discovery 

adds glyceollin I on to the list as a unique candidate of CRM. The biological 

mechanism of glyceollin I bioactivity awaits to be elucidated so that I can rationally 

alter the structures of glyceollins to improve the CRM effects. 
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Chapter 8 

 CONCLUSIONS AND FUTURE OUTLOOK 

 

In the Part I, I have successfully developed a high throughput screening assay for 

determination of yeast lifespan based on the chronological aging model and applied in 

evaluating several factors that mediate lifespan, including inoculum size, cellular state 

in nutrient-rich medium, and calorie level. Using this assay, I confirmed the 

previously reported genetic mimics of CR, including deletion of TOR1, SCH9 or 

RAS2. In contrast, deletion of SIR2 had longevity effect but seems produced only 

small beneficial effect on the response to CR. Overall, this new high throughput 

screening assay may facilitate identification of CRMs with a rapid and simple 

protocol, uncomplicated data analysis, and high sensitivity. In addition, the assay also 

provides quantifiable data including lag-time, growth rate, doubling time, and survival 

percentage (Chapter 3).  

Furthermore, present results indicate that lifespan extension by a typical dietary 

restriction regime was dependent on the nutrients in media and that nutrient 

composition was a key determinant for yeast longevity. Four different yeast strains 

were cultured in various media, which showed similar response surface trends in 

biomass production and viability at day two but greatly different trends in lifespan. 

The pH of aging media was dependent on glucose concentration and had no apparent 

correlation with lifespan under conditions where amino acids and YNB were varied 

widely, and simply buffering the pH of media could extend lifespan significantly. 

Furthermore, the results showed that strain sch9Δ was more sensitive to nutrients than 

tor1Δ, sir2Δ and WT strains, suggesting that Sch9 (serine-threonine kinase pathway) 
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is a major nutrient-sensing factor that regulates cell growth, cell size, metabolism, 

stress resistance and longevity. Overall, these findings support the notion that nutrient 

composition might be a more effective way than simple dietary restriction to optimize 

lifespan and biomass production from yeast to other organisms (Chapter 4). 

In addition, I showed that amino acid composition greatly altered yeast CLS. 

NEAA methionine and glutamic acid had the most significant impact on yeast CLS 

extension, and restriction of methionine and/or increase of glutamic acid caused 

longevity that was not the cause of low acetic acid production and acidification in 

aging medium. Remarkably, low methionine, high glutamic acid and glucose 

restriction extended lifespan additively and independently, and the longevity could 

not be further extended by buffering the medium (pH 6.0). These preliminary findings 

demonstrate that glutamic acid addition, methionine and glucose restriction prompt 

yeast longevity through distinct mechanisms (Chapter 5). 

On the other hand, I reported a new anti-aging compound, cryptotanshinone. It 

could greatly extend yeast CLS (up to 2.5 times) in a dose and the-time-of-addition 

dependent manner at nanomolar concentrations without disruption of cell growth. I 

demonstrated that cryptotanshinone prolonged CLS via a nutrient-dependent regime, 

especially essential amino acid sensing, and three conserved protein kinases Tor1, 

Sch9 and Gcn2 were required for cryptotanshinone induced lifespan extension. In 

addition, cryptotanshinone significantly increased lifespan of SOD2 deleted mutants. 

Altogether, those data suggest that cryptotanshinone might be involved in the 

regulation of Tor1, Sch9, Gcn2 and Sod2, these highly conserved longevity proteins 

modulated by nutrients from yeast to humans (Chapter 6). 

Interestingly, glyceollin I had hormesis extended yeast lifespan at low dose (nM) 

in a CR-dependent manner, while reduced lifespan and inhibited yeast cell 
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proliferation at higher doses (μM). In contrast, the other two glyceollin isomers II and 

III could not extend yeast lifespan and only showed lifespan reduction and 

antiproliferation at higher doses. The result in anti-aging activity indicates that 

glyceollin I is a unique candidate of CRM (Chapter 7). 

Altogether, current data demonstrate that the high throughput assay is a very 

powerful tool for studying the mechanism of aging and developing anti-aging factors. 

In the future study, there are several research areas that need further study:  

1. As many studies claim that extreme glucose restriction (<0.5% glucose) extend 

yeast lifespan (Lamming et al. 2006; Burtner et al. 2009b; Mesquita et al. 2010; 

Lu et al. 2011; Longo et al. 2012), it is interesting to find out why the low glucose 

shorten yeast lifespan in this assay. Is the mechanism relevant to starvation since 

the similar observation exists in higher organism?  

2. Sch9 seems to be a key nutrients sensor in the budding yeast, however, it is still 

unclear that the complex functions or mechanisms of action of Sch9 in regulation 

of aging (Fabrizio et al. 2001; Kaeberlein et al. 2005b; Urban et al. 2007; Huber 

et al. 2011). Further experiments on quantifying Sch9 activity in different media 

are warranted to delineate the role of Sch9 plays in chronological aging. 

3. Gcn2 plays a key role in controlling amino acid homeostasis and protein synthesis 

by modulating amino acid biosynthesis in response to different amino acids 

deprivation (Dever & Hinnebusch 2005; Staschke et al. 2010; Murguia & Serrano 

2012; Gallinetti et al. 2013; Rousakis et al. 2013). I report Gcn2 function in yeast 

chorological aging. Thus, it is important to elucidate mechanisms of regulating 

network between the highly conserved protein kinase Gcn2 and TOR/Sch9, and 

also GCN2 function in regulation of lifespan in fruit fly model or higher 

organisms. 



153 
 

4. Methionine restriction extends lifespan in mammal, but significantly decreases 

bodyweight gain (Orentreich et al. 1993; Sun et al. 2009; Perrone et al. 2013). 

Current data show that glutamic acid extends yeast lifespan independently of 

methionine, and increases yeast biomass production. Therefore, it is possible to 

apply the combination of methionine restriction and glutamic acid addition in 

higher organisms to induce longevity without reduces body size. 

5. Cryptotanshinone seems as a novel anti-aging compound, further study on the 

anti-aging activity of cryptotanshinone in higher organisms is highly interesting 

and necessary. 
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ANTIOXIDANTS FROM GERMINATED LEGUME 
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Chapter 9 

INTRODUCTION 

 

9.1 Introduction 

9.1.1 Grain legume is important for human diet 

Seeds of well-known grain legumes are used for human and animal consumption 

or for the production of oils for industrial uses. Grain legumes are also known as 

pulses or food legumes include beans, lentils, lupins, peas, and peanuts. Pulses 

contain high concentrations of proteins, complex carbohydrates, dietary fibers, 

essential amino acid, folate and other B-vitamins and contribute greatly to human diet. 

Pulses are 20 to 25% protein by weight, which is twice as much protein as wheat and 

three times as much as rice. In total, they provide about 10% of the total dietary 

protein in the world. In addition, pulses contain several polyphenolic compounds, 

which are considered to be natural antioxidants, representing an important group of 

bioactive compounds in foods, and may reduce the risk of cardiovascular disease and 

cancer (Arts & Hollman 2005).  

Recent studies have suggested that legumes especially soybean and peanuts could 

be good functional foods for health promotion (Francisco & Resurreccion 2008; Boue 

et al. 2009). Furthermore, Germination as an inexpensive and effective technology 

can significantly enhance bioavailability and digestibility of their nutrients (Ghavidel 

& Prakash 2007), improve the nutritional quality of legumes by increasing amino 

acids contents, total dietary fibers, and total soluble sugars, while reducing 

antinutrients levels such as α-galactosides (Khattak et al. 2008; Martín-Cabrejas et al. 

2008). It is also a convenient process to enhance phenolic antioxidants (Cevallos-
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Casals & Cisneros-Zevallos 2009). Germination of legume seed (mainly mung bean 

and yellow soybean) is widely conducted in many regions and countries in which 

legume sprouts have great demand for consumers.  

 

9.1.2 Phytochemical profiling is significant for quality and safety control 

Recent technological advances in chemistry help to investigate structure-activity 

relationships and food quality control, rapid and reliable method for the analysis and 

identification of complex phytochemicals. The instrumentation method include 

reversed-phase high-performance liquid chromatography (RP-HPLC) with photodiode 

array (PDA) detection system, mass spectrometer with electrospray ionization (ESI) 

and tandem mass spectrometry (MS/MS) or time-of-flight mass spectrometry (TOF-

MS), and nuclear magnetic resonance (NMR) spectroscopy. These advances have led 

to phytochemical profiling of common food products.  

In the past few years, characterization and quantification of bioactive metabolites 

by HPLC/PDA/ESI/MS system was used in dry beans (Lin et al. 2008b), peanuts 

(Sales & Resurreccion 2010) and soybeans (Correa et al. 2010). Only a few studies 

have investigated germinated legumes (Paucar-Menacho et al. 2010). Microbe-

infected germination of soybean has been studied from our laboratory and other 

groups, which suggested that the production of glyceollin-enriched soy milk, soy 

yogurt and other traditional soy food were feasible (Feng et al. 2008), while a 

comprehensive phytochemical profile was not investigated. However, no study has 

been reported on microbe-stressed germination of other food legume, including mung 

bean and peanuts, two of the most popular traditional foods. 

 

9.1.3 Antioxidant capacity is a popular criterion of functional food  
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Oxidative stress is an imbalance between oxidants and antioxidants in favor of the 

oxidants, leading to a disruption of redox signaling and control and/or molecular 

damage. Disturbances in the normal redox state of tissues can cause toxic effects 

through the production of free radicals that damage all components of the cell, 

including proteins, lipids, and DNA. In humans, oxidative stress is believed to be the 

causative factor of many diseases. Examples include atherosclerosis, Parkinson's 

disease, heart failure, myocardial infarction, Alzheimer's disease, schizophrenia, 

bipolar disorder, fragile X syndrome and chronic fatigue syndrome, but short-term 

oxidative stress may also be important in prevention of aging by induction of a 

process named mitohormesis (Finkel & Holbrook 2000; Gems & Partridge 2008).  

A large number of studies have shown an inverse correlation between the intake 

of fruits and vegetables and the occurrence of diseases such as inflammation, 

cardiovascular disease, cancer, and aging-related disorders. Phytochemicals possess 

those beneficial properties, are referred to as chemopreventers. One of the 

predominant mechanisms of their protective action is due to their capacity to scavenge 

free radicals. Among the most investigated chemopreventers are some vitamins, plant 

polyphenols, and pigments such as carotenoids, chlorophylls, flavonoids, and 

betalains. Thus, resolution of the potential protective roles of specific antioxidants and 

other constituents of fruits and vegetables deserves major attention.  

Many methods are available for determining food antioxidant capacity, which is 

an important topic in food and nutrition research. In fact, antioxidant activities in 

complex systems cannot be evaluated satisfactorily using a single test, and several test 

procedures may be required. In this project, I planned to measure two antioxidant-

related phytochemical compositions (total phenolic content (TPC) and total 

flavonoids content (TFC)) and other kinds of free radical scavenging capacity 
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(peroxyl radical, hydroxyl radical, superoxide anion, hypochlorite, peroxynitrite and 

2,2-diphenyl-1-picryhydrazyl) in order to provide a comparative information for total 

antioxidant capacity of my samples, for meaningful comparisons of other foods or 

commercial products, as well as for provision of quality standards for regulatory 

issues and health claims (Prior et al. 2005). 

 

9.2 Objectives 

The main objective of Part II of this thesis is to explore the phytochemical 

changes during germination or fungus-stressed germination of legume seeds. The 

specific objectives of Part II study are to: 

 Determine the effect of germination or fungus-stressed germination on the 

antioxidant capacity, phytochemicals and phytoalexins in different legume 

seeds (Chapter 10).  

 Study the isoflavonoids changes during germination in chickpea (Chapter 11). 

 Investigate the effect of food grade fungus-stressed germination on 

phytoalexins production and antioxidant capacity in peanut seeds (Chapter 

12). 

 

In the Part II project, I focus on the development of novel process of legumes and 

study the bioactive metabolites for their bioactivity. Overall, the prospect of success 

of this project will lead to the creation of relatively fundamental knowledge on food 

legumes via two major contributions:  

 Providing a comprehensive data on antioxidant capacity, phytochemicals and 

phytoalexins changes during germination or fungus-stressed germination in 
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diverse legume seeds, which could be useful information for developing food 

products or other applications of the germinated legume seeds. 

 A new discovery that chickpea greatly increases isoflavonoids production and 

food grade fungus-stress induce stilbenoid phytoalexins in peanut, which 

could extend the nutritional values of chickpea and peanut seeds in terms of 

their bioactive constituents.  

 

Although other nutrients or secondary metabolites may be changed during 

germination, which could contribute to the change in antioxidant capacity of legume 

seeds, my study concentrates on polyphenolic antioxidants that have been studied to 

process many health benefits for human.  
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Chapter 10 

POLYPHENOLIC ANTIOXIDANTS AND 

PHYTOALEXINS CHANGES IN GERMINATING 

LEGUME SEEDS WITH FOOD GRADE FUNGAL 

RHIZOPUS OLIGOPORUS STRESS 

 

10.1 Introduction 

Plants possess both constitutive and inducible mechanisms to resist stress from 

wounds, freeze, ultraviolet light, and microorganisms (e.g. oomycetes, fungi, bacteria, 

viruses). In the past few years, a large number of reports have been published on 

identification of phytoalexins, and the effects of stress on gene expressions, 

transcription factors, signaling pathways, metabolic pathways against both compatible 

and incompatible plant-pathogen (van Loon et al. 2006). Nevertheless, there is a 

paucity of literatures on the changes of such treatments in nutritional values, 

antioxidant capacity as well as phenolic composition. Phytoalexin concentration can 

be produced at much higher level when plants responses to the stress (López-Amorós 

et al. 2006). Their functions in plant mainly include antimicrobe and antioxidant 

activities which are some of the beneficial activities to human health and disease 

prevention (Hammerschmidt 1999; Boue et al. 2009). Resveratrol is a well-studied 

polyphenolic phytoalexin and has received tremendous attention because of its broad 

range of health benefits in a variety of human disease models (Pervaiz & Holme 

2009). Logically, it is an emerging field of functional food research by introducing 

phytoalexins through bioprocesses (Boue et al. 2009). 
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Probiotics are food grade microorganisms, some of them used in starters such as 

Rhizopus oligosporus for tempeh fermentation and Bacillus subtilis in natto 

fermentation. They are attractive stresser to induce phytoalexins from legume seeds. 

A previous work has shown that food grade microbial-stressed germination of living 

soybeans leads to generation of a group of oxooctadecadienoic acids and their 

glyceryl esters in addition to glyceollins, a known phytoalexins present in wild and 

stressed soybeans (Feng et al. 2007). Furthermore the nutritional values of the 

soybean foods made from the bean seeds may be particularly beneficial with higher 

content of total isoflavones (Feng et al. 2008). To expand the research into other 

legumes seeds, the present study investigated 13 well known and used legume seeds. 

The aim to evaluate the influence of germination and R. oligosporus stressed 

germination process on phytochemicals, phytoalexins, and antioxidant capacity 

changes. This study will also provide comparative information for further 

identification of phytoalexins in legumes. 

 

10.2 Materials and Methods 

10.2.1 Materials 

Food grade fungus, Rhizopus oligosporous, was bought from PT. Aneka 

Fermentasi Industri (Bandung, Indonesia). Sword bean (Canavalia gladiata (Jacq.) 

DC., Indonesia), kidney bean (Phaseolus vulgaris L., China), Black-eyed pea (Vigna 

unguiculata subsp. unguiculata, Myanmar), yardlong bean/cowpea (Vigna 

unguiculata subsp. sesquipedalis, China), azuki bean (Vigna angularis (Willd.) Ohwi 

& H. Ohashi, China), hyacinth bean (Lablab purpureus (L.) Sweet, India), mung bean 

(Vigna radiata (L.) R. Wilczek, Thailand), broad bean (Vicia faba L., China), yellow 

soybean (Glycine max (L.) Merr., Canada), black soybean (Glycine max (L.) Merr., 
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China), big peanut (Arachis hypogaea L., China), small peanut (Arachis hypogaea L., 

India) and chickpea (Cicer arietinum L., Turkey) from supermarket in and the origins 

of production were obtained from Singapore Trade Statistics. Other materials were the 

same as Chapter 3 (3.2.1). 

 

10.2.2 Germination and fungal inoculations  

Legume seeds were allowed to imbibe distilled water for 24 h at room 

temperature. The skins of the legume seeds were peeled off afterwards without 

destroying radicals. The legumes seeds were divided equally into five kinds, namely 

non-germinated (UG), germinated with/without stress (GS/G), and deactivated seed 

with/without fungal stress (DS/D). The seeds prepared for germination were put into 

petri dishes. The petri dishes were covered with filter papers that were sprayed with 

distilled water or the fungal suspension. Those dishes were placed at room 

temperature under dark condition and germinated for four days. The deactivated seeds 

were prepared by putting them into oven at 150°C for twenty minutes and then 

germinated in the petri dishes for four days. Approximately two to four seeds of each 

legume sample were collected and accurately weighed in a 15 mL screw-cap tube, 

then extracted with 5 mL acetone/ethanol/water (2: 2: 1; v/v) mixture containing 0.1% 

acetic acid on a shaking incubator at 200 rpm and room temperature for 12 h. The 

supernatant was collected and stored at –20°C for analysis. 

 

10.2.3 Quantification of antioxidant capacity and total phenolics  

Three antioxidant capacity related values including total phenolics content (TPC), 

total flavonoid content (TFC) and oxygen radical absorbance capacity (ORAC) values 

were measured. TPC was measured based on Folin-Ciocalteau method according to 
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Wu et al (Wu et al. 2004). Gallic acid (50, 25, 12.5, 6.25, 3.12, 1.56 mg/L, correlation 

coefficient, r = 0.999) was used to establish the standard curve. These results were 

expressed as gallic acid equivalents (mg GAE/100 g fresh weight sample). TFC was 

determined using a colorimetric method described previously (Heimler et al. 2005). 

The results were calculated and expressed as catechin equivalents (mg CAE/100 g 

fresh weight sample). Hydrophilic ORAC procedure based on previous report (Huang 

et al. 2002). The results were expressed as Trolox equivalents (µmol TE/100 g fresh 

weight sample). 

 

10.2.4 Phytochemicals and phytoalexins identification 

HPLC analysis was carried out on a Waters HPLC system (Milford, MA) with a 

Alliance 2659 separation module, a 2996 photodiode array detector (PDA), and a 

Waters C18 column (5 μm, 4.6×250 mm, Atlantis, Ireland). The detection wavelength 

was set from 210 to 800 nm. The separation was accomplished with water (A), 

acetonitrile (B) and 2% acetic acid in water (C) as mobile phase. The column 

temperature was 30°C. The injection volume was 20 µL. Solvent C composition was 

maintained at an isocratic 5% for 60 min. Solvent A and B gradient was as follows: 0 

– 1 min, A 95%; 1 – 8 min, A from 95% to 85%; 8 – 24 min, A from 85% to 70%; 24 

– 34 min, A from 70% to 40%; 34– 50 min, A from 40% to 20%; 50 – 55 min, A 

from 20 % to 5%; 55 – 58 min, A from 5% to 95 %; 58 – 60 min, A 95%. The flow 

rate was 1.0 mL/min. The gradient was identical to those used for HPLC analysis 

above. The injection volume of each sample was 20 µL. 

 

10.2.5 Data analysis 

The data analysis on lifespan has been described in Chapter 3 (3.2.4). 
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10.3 Results and Discussion 

10.3.1 Comprehensive evaluation of antioxidant contents of fungal-stressed 

sprouts 

TPC of ungermination (UG, 0 day), germination (G, 1-4 day) and germination 

with fungal stress (GS, 1-4 day) of 13 selected legume seeds are presented in Table 

10.1. Germination improves TPC in most cases except yellow soybean that has less 

changes during 4-day germination, and this result is similar with the investigations on 

phenolic contents of germinated edible seeds (Cevallos-Casals & Cisneros-Zevallos 

2009) and 9 selected legumes (Lin & Lai 2006). Meanwhile, legume seeds with food 

grade fungi R. oligosporous stress have much higher (P < 0.01) TPC than that of 

without fungal-stressed germination. Overall, these data suggest that fungal-stressed 

germination could greatly increase the TPC in legume seeds.  

TFC ranges from the minimum 3.19 (chickpea) to the maximum 19.68 (yardlong 

bean) mg CAE/100g FW in UG seeds (Table 10.1). Germination significantly 

improves TFC in broad bean by 9.69 times, 2.57 times for yellow soybean and 2.42 

times for chickpea. In sharp contrast, TFC reduce in germinated yardlong, azuki, 

hyacinth and mung beans. Majority of germinated legume seeds with fungal-stress 

have higher (P < 0.05) TFC than that of without fungal-stress.  
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Table 10.1 Comparative evaluation of total phenolic content (TPC), total flavonoid content (TFC) 
and oxygen radical absorbing capacity (ORAC) of 13 legume seeds 

 
TPC 

 
TFC 

 
ORAC 

 
UG G GS 

 
UG G GS 

 
UG G GS 

Sword bean 42.0g  42.3  63.3  
 

10.11d  10.82  12.99  
 

614g  1298  1903  

Kidney bean 33.2h  48.5  77.6  
 

6.20g  8.89  12.07  
 

888e  1855  2145  

Black-eyed pea 28.1i  59.6  68.2  
 

9.17e  10.70  12.63  
 

753f  1708  2195  

Yardlong bean 54.8f  60.0  67.3  
 

19.68a  12.38  12.88  
 

1139d  1863  2601  

Azuki bean 43.1g  54.2  57.2  
 

11.68b  10.33  9.56  
 

858e  1495  1682  

Hyacinth bean 15.0j  34.2  45.0  
 

4.26h  3.61  5.63  
 

682g  1186  2021  

Mung bean 42.0g  70.6  85.7  
 

8.78e  7.70  9.79  
 

456h  1759  2705  

Broad bean 60.6e  129.6  147.0  
 

7.80f  56.73  59.13  
 

679g  2816  2679  

Yellow soybean 107.2b  106.5  110.0  
 

6.10g  12.95  13.85  
 

2805a  4003  5038  

Black soybean 69.2d  76.9  86.4  
 

4.78h  7.65  14.48  
 

1667c  2434  3632  

Big peanut 97.8c  125.4  151.6  
 

8.15f  9.21  9.77  
 

762f  2428  3157  

Small peanut 116.5a  153.9  152.4  
 

10.80c  13.19  30.92  
 

1768b  2249  3484  

Chickpea 54.6f  91.7  98.6  
 

3.19i  6.03  6.54  
 

874e  1997  2352  

Minimum 15.0  34.2  45.0  
 

3.19 3.61  5.63  
 

456 1186  1682  

Maximum 116.5  153.9  152.4  
 

19.68 56.73  59.13  
 

2805 4003  5038  

Mean 58.8C 81.0B  93.1A  
 

8.52C 13.09B  16.17A  
 

1073C  2084B  2738A  

TPC expressed as mg GAE/100g FW; data present as mean, n = 4, RSD < 5%. TPC of 13 legume seeds 
are determined at three different treatments: UG = ungermination at 0 day, G = germination for 1 to 4 
day without fungal stress, GS = germination with stress of food grade fungus R. oligosporous for 1 to 4 
day. Means of UG (lowercase letters in the UG column) or among UG, G and GS (uppercase letters in 
the last row) were compared with Duncan’s multiple range test (P < 0.05), different letters showed 
significant differences. TFC expressed as mg CAE/100g FW; data present as mean, n = 4, RSD < 7%.  
ORAC value expressed as µmol TE/100 g FW, data present as mean, n = 4, RSD < 8%. 
 

ORAC is a method of measuring antioxidant capacities in biological samples in 

vitro. A wide variety of foods has been tested using this assay. Different legume seeds 

have very large differences (P < 0.05) of ORAC values ranging from 456 (mung bean) 

to 2805 (yellow soybean) (Table 10.1). Germination significantly increases ORAC in 

all legumes. Fungal stress results in higher ORAC value than that of without fungal-

stressed germination. The sprouts from mung bean and yellow soybean are the most 

popular traditional food. ORAC of mung bean and yellow soybean sprout from 

supermarket in Singapore are 1606 and 3126 µmol TE/100g FW respectively (Isabelle, 

et al. 2010), while soybean sprout is 962 µmol TE/100g FW from USDA Database for 

the ORAC of Selected Foods (Release 2, 2010). In this study, the ORAC of mung 
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bean sprouts are 1759 µmol TE/100g FW, and yellow soybean sprouts are 4003 µmol 

TE/100g FW. 

In order to rank antioxidant capacity of 13 GS samples based on TPC, TFC and 

ORAC, the three criteria are given same priority and ranking of antioxidant capacity 

based on means of membership function values f(x) of TPC, TFC and ORAC, and the 

order from largest to smallest is listed in Table 10.2. Interestingly, broad bean has the 

highest antioxidant capacity. This might be germination of broad bean significantly 

increase the production of catechin derivatives, since USDA Flavonoid Database 

(2003) shows the concentration of (-)-epicatechin, (-)-epigallocatechin and (+)-

catechin in immature raw broad bean seeds are 22.51, 14.03, 12.83 mg/100 g FW 

respectively. From Table 10.1, the change of broad bean on TFC is much higher than 

TPC and ORAC. Additionally, present results indicate that the antioxidant capacity of 

soybean, peanut and mung bean are ranked top. 

 

Table 10.2 Ranking of antioxidant capacity based on three criteria of TPC, TFC and ORAC 
under GS 

Samples 
Mean a  membership function value f(x) b 

TPC TFC ORAC  TPC TFC ORAC Mean Ranking 

Sword bean 63.3 12.99 1903  0.17 0.14 0.07 0.12 11 

Kidney bean 77.6 12.07 2145  0.30 0.12 0.14 0.19 9 

Black-eyed pea 68.2 12.63 2195  0.22 0.13 0.15 0.17 10 

Yardlong bean 67.3 12.88 2601  0.21 0.14 0.27 0.21 8 

Azuki bean 57.2 9.56 1682  0.11 0.07 0.00 0.06 12 

Hyacinth bean 45.0 5.63 2021  0.00 0.00 0.10 0.03 13 

Mung bean 85.7 9.79 2705  0.38 0.08 0.30 0.25 6 

Broad bean 147.0 59.13 2679  0.95 1.00 0.30 0.75 1 

Yellow soybean 110.0 13.85 5038  0.61 0.15 1.00 0.59 3 

Black soybean 86.4 14.48 3632  0.39 0.17 0.58 0.38 5 

Big peanut 151.6 9.77 3157  0.99 0.08 0.44 0.50 4 

Small peanut 152.4 30.92 3484  1.00 0.47 0.54 0.67 2 

Chickpea 98.6 6.54 2352  0.50 0.02 0.20 0.24 7 
a TPC (mg GAE/100g FW), TFC (mg CAE/100g FW) and ORAC (µmol TE/100g FW) values are 
expressed as mean of GS in four days. b f(x) = (x – xmin)/(xmax – xmin), x is the mean of TPC, TFC and 
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ORAC respectively, ranking based on means of f(x) values in TPC, TFC and ORAC, the number of 
ranking is smaller indicates the antioxidant capacity of sample is stronger. 
 

10.3.2 Phytochemical and phytoalexin changes in germinating legume seeds 

To determine phytochemicals changes in different legume samples, HPLC 

analysis was carried out. HPLC chromatograms of the 13 legumes under different 

conditions were then collected and analyzed. The numbers of peaks at three 

wavelengths 260, 300 and 340 nm were counted respectively. The AU of peaks that 

were counted is above 0.002 AU. After the data of the numbers of peaks were 

collected, the thirteen legume seeds were then divided into four different classes 

(Table 10.3).  

 

Table 10.3 Comparison of the number of peaks in HPLC chromatograms for the thirteen legume 
seeds under non-germination (UG), germination (G) and germination and fungal stress (GS) 

Categories Legumes 

Number of Peaks 

260 nm 
 

300 nm 
 

340 nm 

UG G GS 
 

UG G GS 
 

UG G GS 

Rich phytoalexins &  

enhanced phytochemicals 

Small peanut 30 52 83 
 

28 58 69 
 

19 49 55 

Big peanut 32 69 75  26 64 75  14 54 65 

Sword bean 43 55 65  39 55 72  27 42 52 

Black soybean 35 70 75  30 59 71  16 36 51 

Azuki bean 18 32 37  13 18 36  1 15 33 

 Broad bean 38 52 59  18 43 58  9 30 45 

Low phytoalexins &  

enhanced phytochemicals 

Kidney bean 23 73 75 
 

21 73 77 
 

14 53 55 

Black-eyed bean 17 58 63 
 

20 60 62 
 

12 35 40 

Hyacinth bean 17 50 55  13 37 39  5 22 25 

Chickpea 18 64 67  9 55 60  3 35 40 

Less phytochemicals 

under GS 

Mung bean 9 50 46  5 36 30  3 15 12 

Yardlong bean 26 50 26  37 46 19  20 30 11 

Less phytochemicals 

under G 
Yellow soybean 49 48 60  47 42 47  34 26 32 

 

The difference in the numbers of peaks between the chromatograms under UG 

and those under G indicates the change in the phytochemical contents in the legumes 
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during germination. Whereas, the difference in the numbers of peaks between G and 

GS shows the increase or decrease in the phytoalexins that are released after fungal 

stress germination. The legume seeds were divided into the four classes so that it will 

be very helpful in determining which legume seeds will produce more or less 

phytochemicals when they are germinated and which will synthesize more 

phytoalexins when they are germinated under fungal stress. 

Rich phytoalexins and enhanced phytochemicals are the legume seeds that 

show high difference in the numbers of peaks between the chromatograms under UG 

and G, as well as between the chromatograms under G and GS. High difference 

means that the difference in the numbers of peaks between UG and G or G and GS are 

greater than 10 in average of the three wavelengths. For example, peanut is one of the 

most widely used legumes because of their high nutritional value and good taste. 

After GS, there are 69 compounds observed at 300 nm, more than 11 of which may be 

phytoalexins. As can be seen from Figure 10.1, there are more peaks that observed 

from HPLC chromatogram under GS compared to that of G. This shows that fungal 

stress can induce the production of phytoalexins in peanuts during germination. From 

the LC-MS spectral data, 45 compounds were identified in the peanut sprouts (see 

Chapter 12). Small peanut sprouts produced the highest amount of phytoalexins after 

GS with 55 compounds detected. Forty five of these compounds were stilbenoid 

phytoalexins, 3 flavonoids, 4 oxooctadecadienic acids, 1 pterocarpanoid phytoalexin – 

aracarpene and 2 unknown compouds (see Chapter 12). 
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Figure 10.1 HPLC chromatogram (300 nm) of small peanut after 3 days germination without R. 
oligosporous stress (G3d) and 3 days with the fungal stress (GS3d) 
 

Low phytoalexins but enhanced phytochemicals are the legume seeds that 

show low difference in the numbers of peaks between G and GS, but high difference 

in the numbers of peaks between UG and G. Low difference means that the difference 

between the numbers of peaks concerned are below 10 in average.  From Table 10.3 

and Figure 10.2, after germination, the phytochemicals in kidney beans increase quite 

significantly by 50 at 260 nm, by 52 at 300 nm and by 39 at 340 nm. The large 

difference in the numbers of peaks between UG and G indicates that kidney beans 

synthesize many new compounds during germination. While slight difference in the 

numbers of peaks between chromatograms under G and GS indicates that germinating 

kidney beans with R. oligoporus stress may not be an effective way to induce 

phytoalexins.  
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Figure 10.2 HPLC chromatogram (300 nm) of kidney bean (UG) after 4 days germination 
without R. oligosporous stress (G 4 day) 
 
 

Less phytochemicals under GS means that the legume seeds show lesser peaks 

in GS chromatograms when they are compared with G chromatograms. For example, 

yardlong bean has been reported that contains many anthocyanin derivatives (Ha et al. 

2010). The phytochemicals in yardlong bean decrease significantly by 24 at 260 nm, 

by 27 at 300 nm and by 19 at 340 nm (Figure 10.3). However, mung bean shows less 

decrease in the numbers of peaks between GS and G compared to yardlong bean. 
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Figure 10.3 HPLC chromatogram (300 nm) of yardlong bean after 4 days germination without R. 
oligosporous stress (G 4 day) and 4 days with the fungal stress (GS 4 day) 
 

 

Less phytochemicals under G means that the legume seeds show lesser peaks in 

G chromatograms when they are compared with UG. Yellow soybean is rich in 

isoflavones.  The phytochemicals slightly reduced by 1 at 260 nm, by 5 at 300 nm and 

by 8 at 340 nm after germination (Figure 10.4), which represents that germination 

might not be an effective way to enhance the production of phytochemicals in yellow 

soybeans. 
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Figure 10.4 HPLC chromatogram (300 nm) of yellow soybean bean (UG) after 4 days 
germination without R. oligosporous stress (G 4 day) 
 

Overall, different legume seeds have different responses towards germination and 

fungal-stress germination. Although some legume seeds belong to the same species, 

they still have different responses towards germination and fungal stress germination. 

In this experiment, the two peanuts also show a slight difference in their responses 

towards germination and fungal stress germination. Both peanuts have produced 

many phytochemicals and are rich in phytoalexins after fungal stress germination. 

However, big peanuts produced more phytochemicals upon germination compared to 

small peanuts. Although black soybeans and yellow soybeans are the same species, 

the phytochemicals contents in both soybeans are quite different as well as the 

response towards fungal stress. Black soybeans produce more phytochemicals as well 

as phytoalexins under fungal-stressed germination, while yellow soybeans do not. 
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10.4 Conclusion 

The food grade fungus R. oligosporus infected sprout can greatly improve 

antioxidant capacity, enhance production of phytochemicals and induce phytoalexins 

of 13 selected food legumes. This study proposes that I may develop a new kind of 

functional food using a novel process of germinated legume seed with stress of food 

grade microorganisms such as probiotics. It is possible that these functional foods 

contain significantly higher concentration of phytochemicals (such as flavonoids, 

phenolic acids, saponins and also phytoalexins) that may lead to many health 

enhancing benefits (e.g. antioxidant, anti-inflammation, anti-cancer, anti-obesity, 

cholesterol-lowering and anti-aging). However, I would firstly establish a relatively 

comprehensive metabolite profiling of the stressed sprouts and analyze the safety of 

these food in future study to develop this novel food and validate my hypothesis. 
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Chapter 11 

GERMINATION DRAMATICALLY INCREASES 

ISOFLAVONOID CONTENT AND DIVERSITY IN 

CHICKPEA (CICER ARIETINUM L.) SEEDS 

 

11.1 Introduction 

Chickpea (Cicer arietinum L.) is an important grain legume crop in the world. 

Due to the high protein contents (25.3–28.9% after dehulling), they are consumed as a 

meat substitute particularly by vegetarian in developing countries. Studies of 

germinated chickpea seeds are mostly focused on protein content, amino acid 

composition, polysaccharides and mineral composition. Isoflavonoids have been 

reported as the main bioactive components of chickpea plant. The major compounds 

in chickpea seed are formononetin (4’-O-methyl ether of daidzein), biochanin A (4’-

O-methyl ether of genistein), ononin (formononetin glucoside), and sissotrin 

(biochanin A glucoside) (Figure 11.1) (Lv et al. 2009). In a study on sprouted 

chickpea seeds, seven isoflavonoids were isolated and identified, i.e. biochanin A, 

calycosin, formononetin, genistein, trifolirhizin, ononin and sissotrin (Zhao et al. 

2009).  
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Figure 11.1 Structures, maximum UV absorptions and molecular weights of major isoflavonoids 
aglycones and a few representatives of their glycoside conjugates identified from germinated 
chickpea and soybean in this study 
 

Isoflavonoids are a large group of plant secondary metabolites; they play 

important roles in plant defense as antimicrobial phytoalexins. Over the past decades, 

isoflavonoids have received considerable attention for their diverse biological 

activities, including antiestrogenic, anticancer, antioxidative, antimicrobial, anti-

cardiovascular diseases and anti-osteoporosis properties (McCue & Shetty 2004). Up 

to now, there are more than 1600 known isoflavonoids and the subclass of 

isoflavonoid includes isoflavan, isoflav-3-ene, isoflavone, isoflavanone, 

isoflavanquinone, pterocarpan, pterocarpene, rotenoid, etc (Veitch 2007; Veitch 2009). 

Interestingly, the majority of isoflavonoids are isolated from Faboideae, a subfamily 
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of the flowering plant family Leguminosae, and are synthesized through the central 

phenylpropanoid pathway and the specific isoflavonoid branch pathways in legumes 

(Du et al. 2010; Wang 2011).  

Previous work has shown that germination of chickpea results in increase of TPC 

and phytochemical production (Chapter 10). In this Chapter, the isoflavonoids 

profiles of chickpea were characterized.  

 

11.2 Materials and Methods 

11.2.1 Materials 

All materials were as described in Chapter 3 (3.2.1) and Chapter 10 (10.2.1). 

 

11.2.2 Instruments 

A Synergy HT microplate reader (Bio-tek, Winooski, VT, USA) was used in 

antioxidant capacity assays. HPLC analysis was carried out on a Waters HPLC 

system (Milford, MA, USA) with an Alliance 2659 separation module, a 2996 PDA 

detector, and the column used was a 250 mm x 4.6 mm i.d., 5 µm, Atlantis T3 C18 

with a 4 mm x 4 mm i.d. guard column of the same materials (Waters, Ireland). LC-

MS spectra were acquired using a Finnigan/MAT LCQ ion trap mass spectrometer 

(San Jose, CA, USA) equipped with a TSP 4000 HPLC system and an ESI source, 

which consisted of a P4000 quaternary pump, a UV6000LP PDA detector, and an 

AS3000 autosampler. The capillary temperature and spray voltage were maintained at 

250 °C and 4.5 kV, respectively. 1H NMR spectra were recorded in CD3OD with a 

Bruker AC300 spectrometer (Karlsruhe, Germany) operating at 300 MHz. 

 

11.2.3 Seed germination 
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Germination of the nine legume seeds was carried out according to the method 

described previously (Chapter 10).  In brief, seeds were surface sterilized with 70% 

ethanol for 3 min and then rinsed with water before they were imbibed for 24 h at 

room temperature (25 °C). The inoculated seeds were placed on a sterile plastic petri 

dishes (90 mm × 13 mm) lined with two autoclaved filter papers moistened with 5 mL 

of sterile water. The petri dishes were sealed with parafilm and incubated for 4 days at 

25 °C in the dark. Two mL sterile water was added into the petri dishes each day. 

Four replicates were conducted for each sample. 

 

11.2.4 Sample preparation procedures 

Two to ten germinated seeds of each sample were collected from day one to day 

four and weighed in a 15 mL screw-cap tube, and then extracted with 5.0 mL 

acetone/ethanol/water (2: 2: 1; v/v) containing 0.1% acetic acid on a shaking 

incubator at 200 rpm and at room temperature for 12 h. The mixture was centrifuged 

at 5,000 rpm for 10 min. The supernatant was collected and stored at –20 °C before 

analysis of antioxidant capacity and TPC. The supernatant was filtered through a 

Sartorius Minisart polytetrafluoroethylene (PTFE) membrane (0.45 µm) before 

phytochemical HPLC and LC-ESI-MS analysis. 

 

11.2.5 Quantification of antioxidant capacity and TPC 

Assays for hydrophilic antioxidant capacity was carried out using automated 

oxygen radical absorbing capacity (ORAC) procedure based on previous reports 

(Huang et al. 2002). AAPH was used as the peroxyl generator and Trolox as the 

antioxidant standard with concentration ranging from 100 to 6.25 μM. Fluorescein 

solution (160 μL) (9.57 × 10-5 mM), 20 μL of AAPH (81 mM), and 20 μL of sample 



178 
 

were mixed in each well, fluorescence (excitation at 485 nm and emission at 525 nm) 

readings were taken every 2 min for 2 h, and the area under the curve was calculated. 

The results were expressed as Trolox equivalents (µmol TE/100 g fresh weight 

sample). TPC was measured based on Folin-Ciocalteau method according to previous 

reports (Wu et al. 2004). Gallic acid (50, 25, 12.5, 6.25, 3.125, 1.5625 mg/L, 

correlation coefficient, r = 0.999) was used to establish the standard curve. FCR (100 

µL) was diluted ten times from the original reagent, mixed with 80 µL of Na2CO3 (75 

g/L), and 20 µLof sample in each well. Absorbance was measured at 765 nm after 

standing for 30 min at 37 °C. These results were expressed as gallic acid equivalents 

(mg GAE/100 g fresh weight sample).  

 

11.2.6 Detection of isoflavonoids by PDA and MS 

HPLC analysis was performed on a Waters apparatus equipped with PDA 

detector. The detection wavelength was set from 210 to 800 nm. The column used 

was a 250 mm x 4.6 mm i.d., 5 µm, Atlantis T3 C18 with a 4 mm x 4 mm i.d. guard 

column with water (A), acetonitrile (B) and 2% acetic acid in water (C) as mobile 

phase. The column temperature was 35 °C. The injection volume was 20 µL. Solvent 

C composition was maintained at 5% for the entire run. Solvent A and B gradient was 

as follows: 0 – 1 min, A 95%; 1 – 8 min, A from 95% to 85%; 8 – 24 min, A from 

85% to 70%; 24 – 34 min, A from 70% to 40%; 34– 50 min, A from 40% to 20%; 50 

– 55 min, A from 20 % to 5%; 55 – 58 min, A from 5% to 95 %; 58 – 60 min, A 95%. 

The flow rate was 1.0 mL/min. The LC conditions for LC-MS analysis used solvent A 

(water with 0.05% acetic acid) and B (acetonitrile with 0.05% acetic acid) as mobile 

phase. The gradient was identical to those used for HPLC analysis above. The 

injection volume of each sample was 20 µL. For ESI-MS, both the positive and 
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negative ion modes were used for further characterization of the phytochemicals. The 

capillary temperature and spray voltage were maintained at 250 °C and 4.5 kV, 

respectively. Nitrogen was supplied at 80 psi as sheath gas, and at 20 psi as auxiliary 

gas. Full scan mass spectra from m/z (mass-to-charge ratio) 50 to 2000 were recorded 

with a scan speed of one scan per second. 

 

11.2.7 Isolation and identification of biochanin A and formononetin 

Chickpea seeds (1.0 kg) were germinated at 25 °C in the dark for 3 days. The 

resulting germinated seeds were homogenized in methanol, and then extracted three 

times on a shaking incubator at 200 rpm and at room temperature for 6 h each time. 

The extraction solutions were concentrated in a rotary evaporator at 50 °C. The 

concentrated residue was transferred to a silica gel column (35 × 6 cm, silica gel 60 

(0.040-0.063 mm)) pre-equilibrated with hexane. Successive elution with hexane/ 

ethyl acetate (9:1, 9:2, 8:2, 8:3, 7:3) mixture at a flow rate of 5 mL/min gave many 

fractions (each fraction volume was 50 mL). After HPLC analysis, the fractions 

containing biochanin A and formononetin were combined and the two compounds 

were obtained and their identities confirmed by UV/vis, ESI-MS and 1H NMR spectra. 

1H NMR spectra were recorded in deuterated methanol with a Bruker AC300 

spectrometer operating at 300 MHz. 

 

11.2.8 Identification and quantification of isoflavonoids from chickpea and 

soybean 

Identification of isoflavones was achieved by comparing their retention times, 

UV/vis and MS spectra with those of the standards. For those compounds without 

commercially available standards, the compounds were tentatively identified by using 
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HPLC retention times, UV/vis and MS fragments information, and assigned by 

matching with compounds reported in literatures and existing metabolite databases, 

such as PubChem, Kegg Ligand database, Massbank, Scifinder Scholar. Five 

isoflavone standards including biochanin A, daidzein, formononetin, genistein and 

glycitein were used to obtain the standard curves of major isoflavones. 

Quantifications of individual and total isoflavones in chickpea and soybean were 

performed. The concentrations of those isoflavones without standards were calculated 

by using the standard curve of genistein at 260 nm.  

 

11.2.9 Statistical analysis 

The data analysis on lifespan has been described in Chapter 3 (3.2.4). 

 

11.3 Results and Discussion 

11.3.1 Antioxidant capacity and TPC 

In this study, I examined TPC and antioxidant capacity in nine legume seeds that 

are most commonly consumed and available at Singapore food markets. Data 

presented in Figure 11.2A show that germination could significantly increase TPC in 

the nine legume seeds. Furthermore, ungerminated (0 day) black soybean has the 

highest TPC (69.2 mg GAE/100g FW) among the 9 selected legume seeds, but after 

germination, its value is less than that of chickpea (76.9 vs 91.7 mg GAE/100g FW). 

Meanwhile, chickpea has the highest TPC among the geminated seeds.  
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Figure 11.2 TPC and ORAC values of ungerminated seed (0 day) and germinated seed (1–4 days) 
in nine legumes (also see Table 10.1) 
TPC expressed as milligrams of gallic acid equivalents per 100 gram fresh weight basis (mg GAE/100g 
FW); ORAC value expressed as micromoles of Trolox equivalents per 100 gram fresh weight basis 
(µmol TE/100 g FW), data is presented as mean, n = 4.  
 

Antioxidant capacity was evaluated by ORAC assay and the ORAC values of 

ungerminated and germinated legume seeds are shown in Figure 11.2B. Overall, the 

results are similar with that of TPC in Figure 11.2A. The nine legumes undergo a 

significant increase in antioxidant activity after germination. For ungerminated seeds, 

black soybean possesses the highest ORAC value (1667 µmol TE/100 g FW) than 

other legumes, however, germination process of the soybean only slightly improve 

ORAC value. In contrast, germination lead to an almost three times increase in the 

ORAC of chickpea (874 in 0 day vs 2457 in 3 day, µmol TE/100 g FW). Present 

results are similar to previous investigations on phenolic contents and antioxidant 

capacity of germinated some edible seeds (Cevallos-Casals & Cisneros-Zevallos 2009) 

and selected legumes (Lin & Lai 2006). In addition, current data clearly indicate that 
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chickpea not only produces great change in phenolic contents and antioxidant 

capacity during germination but also processes the highest values among the nine 

germinated legume seeds. 

 

11.3.2 Profiles of isoflavonoids in germinated chickpea seeds 

To elucidate the identities of phytochemicals that produce the significant increase 

in phenolic antioxidants, HPLC analysis was carried out to detect the phytochemicals 

change during the germination of chickpea. HPLC chromatograms (260 nm) of 

acetone/ethanol/water (2:2:1) extracts of chickpea seeds during the germination are 

given in Figure 11.3. The HPLC-PDA detector provided UV/vis spectra in the range 

of 210–800 nm for the peaks. The chromatograms at 260 nm are presented in this 

study since most compounds have absorbance at this wavelength. As shown in Figure 

11.3, there are a number of new peaks produced during germination; in addition, there 

are increased concentrations of several compounds, especially those at retention time 

between 30 to 40 min.  
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Figure 11.3 Effect of germination time on phytochemicals production in chickpea 
The germinated chickpea seeds are extracted by acetone/methanol/water (2:2:1) and the HPLC 
chromatogram are shown at 260 nm. Tentative identifications of compounds are listed in Table 11.1. 
 

Previous studies on chickpea seeds and sprouts suggested that the major 

constituents are isoflavonoids including biochanin A, formononetin, genistein and 

their glycoside conjugates (Figure 11.1) (Lv et al. 2009; Zhao et al. 2009). In 

agreement with this finding, I isolated two major compounds (peak 26 and 32) by 
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silica column chromatography and confirmed their structures by 1H NMR, UV–Vis, 

and MS spectra (Table 11.1, Figure 11.1) to be formononetin (peak 26) and 

biochanin A (peak 32).  

 
Table 11. 1 Peak assignments of isoflavonoids in germinated chickpea and soybean presented 
according to retention time, maximum UV absorption, and molecular ions 
Peak LC-RT (min) Compounds UVmax (nm) ESI+ [M+H]+ ESI- [M+H]- 

1 22.65 Daidzin 250 417 475, 253 

2 23.31 Glycitin 258 285 505, 283 

3 25.72 Glycitein glucoside malonylated 256 447, 285  445 

4 27.00 Daidzein glucoside malonylated 249 503, 417, 255 415, 253 

5 27.22 Genistin 261 433 431, 269 

6 28.27 Genistein glucoside malonylated 262 473, 271 269 

7 28.79 Formononetin glucoside 251 593, 269 591, 447, 267 

8 29.22 Garbanzol  277 273 271 

9 29.94 Glycitein glucoside acetylated 256 285 547, 283 

10 30.25 Genistein glucoside malonylated 261 519 517, 271 

11 30.73 Orobol glucoside malonylated 259 535, 287 533 

12 30.99 Isoformononetin glucoside malonylated 258 553, 431, 269 489, 267 

13 31.55 Lespedezol A1 glucoside malonylated 276 269, 255 267, 253 

14 31.84 Prunetin glucoside 259 285 283 

15 32.45 Formononetin glucoside malonylated 249 269 267 

16 32.49 Daidzein 249 255 253 

17 32.85 Glycitein 258 285 283 

18 32.89 Maackiain glucoside 286 285 445, 283 

19 33.33 Biochanin A glucoside 260 447, 285  283 

20 34.40 Biochanin A glucoside malonylated 261 285 533, 283 

21 34.73 Maackiain/Medicarpin glucoside acetylated 275 475, 285, 271 487, 283, 269  

22 35.06 5-Hydroxypseudobaptigenin glucoside acetylated 261 503, 299 297 

23 35.36 Genistein 262 271 269 

24 36.00 Pratensein 261 301 299 

25 36.98 Pseudobaptigenin 249 283 281 

26 37.31 Formononetin 250 269 267 

27 38.36 2'-Hydroxybiochanin A 275 301 299 

28 38.58 Maackiain 310 285 283 

29 39.10 Medicarpin 287 271 269 

30 39.81 Cicerin/Homoferreirin 291 331/317 329/315 

31 40.10 5-Hydroxypseudobaptigenin 263 299 297 

32 40.69 Biochanin A 261 285 283 
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In order to identify the other compounds, LC-ESI-MSn analysis was carried out to 

obtain the molecular masses or their fragmentation information of those peaks. The 

m/z values of molecular masses or fragments in chickpea were matched with known 

phytochemicals reported in literatures (Lin et al. 2000a; Armero et al. 2001; Klejdus 

et al. 2001; Stevenson & Aslam 2006), and supported by UV absorption maxima, 

HPLC relative retention time, and standards, including biochanin A, formononetin, 

daidzein, genistein and glycitein, as well as online metabolite databases including 

KNApSAcK, PubChem, Kegg Ligand database, Massbank and Scifinder ScholarTM. 

For instance, there are mainly two steps to identify maackiain (peak 28), medicarpin 

(peak 29), cicerin (peak 30), and homoferreirin (peak 30) in this study. Based on 

literature, the elution times for the four compounds were likely to be in between that 

of formononetin and biochanin A in reversed-phase HPLC system (column: 4 × 250 

mm, RP-C18, 5 μm) (Armero et al. 2001). I then checked the MS and UV absorption 

of the four compounds in literatures and matched with those of peaks in between 

formononetin (peak 26) to biochanin A (peak 32). Overall, twenty-five isoflavonoids 

and a flavanonol (garbanzol, peak 8) were identified in the germinated chickpea seeds 

(Figure 11.4). HPLC retention time, maximum UV absorption, fragment ion masses 

in positive-ion ([M+H]+) and negative-ion ([M–H]–) modes of compounds assigned 

are listed in Table 11.1. 
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Figure 11.4 HPLC chromatogram (260 nm) and UV absorption spectra of isoflavonoids in 
germinated chickpea 
The sample are concentrated from the raw acetone/methanol/water (2:2:1) extracts in order to detect 
the lower concentration isoflavonoids. Tentative identifications of compounds are listed in Table 11.1.  
  
 

The UV absorption maximum of individual compound was presented in Figure 

11.1 and Table 11.1, as well as the UV spectra of major isoflavonoids in germinated 

chickpea (Figure 11.4). The UV absorption spectra have been used as a 

complementary method in identifying isoflavonoids, especially daidzein, genistein, 

glycitein and their conjugates (Rice-Evans et al. 1996). Isoflavonoids have a 

characteristic UV absorption band-II with maxima in the 240 to 280 nm range due to 

absorption of the A-ring benzoyl system. The UV absorption maxima of individual 

isoflavonoids mainly depend on the number of present aglycone hydroxyl groups, 

their relative positions, the glycosidic substitution pattern, and aromatic acyl groups 

(Mabry et al. 1970). A recent study suggested that glucuronidation on 5-hydroxyl 

group resulted in a UV absorption maxima blue shift of 5-10 nm. In contrast, 

glucuronidation on 7-hydroxyl group did not cause any change in UV absorption, 
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whereas glucuronidation on 6-hydroxyl group did not cause predictable changes in 

UV maxima values (Singh et al. 2010).  

As shown in Figure 11.3 and 11.4, the major compounds in germinated chickpea 

seed are biochanin A (peak 32), formononetin (peak 26), pseudobaptigenin (peak 25), 

pratensein (peak 24), genistein (peak 23), biochanin A glucoside (peak 19), 

formononetin glucoside malonylate (peak 15), and isoformononetin glucoside 

malonylate (peak 12). Remarkably, these compounds belong to isoflavones, the 

largest subgroup of isoflavonoids. Biochanin A and formononetin were the first 

phytochemicals found in the sprouted germs of Cicer arietinum in 1945 (Stevenson & 

Aslam 2006). Subsequently daidzein, pratensein, sissotrin (biochanin A 7-O-

glucoside), genistein, genistin (genistein-7-O-glucoside), ononin (formononetin-7-O-

glucoside), 2'-hydroxyformononetin, calycosin, pseudobaptigenin, and other 

isoflavones and their glycoside conjugates were identified in seedlings, germinated 

cotyledons, roots or other parts of Cicer spp (Stevenson & Aslam 2006).  

In this Chapter, twenty isoflavones and conjugates were detected and identified in 

germinated chickpea, and the majority of them are 4’-O-methylated isoflavones. In 

addition, two pterocarpans maackiain and medicarpin, as well as two isoflavanones, 

cicerin and homoferreirin, were detected. Maackiain and medicarpin were proposed as 

phytoalexins produced in response to elicitor’s induction and infection in chickpea 

roots, seedlings and cell cultures (Cherif et al. 2007). They may be important 

compounds in chickpea defense of microbial infection, since it was reported that their 

potent antifungal activity could fight against several pathogens causing Ascochyta 

blight in chickpea (Stevenson & Aslam 2006). However, their bioactivity for animal 

and human is less studied than the other pterocarpan phytoalexin glyceollins, 

primarily from soybean.   
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11.3.3 Quantification of isoflavonoids in chickpea and soybean 

I compared the HPLC chromatogram (Figure 11.5) of isoflavonoids between 

black soybean, chickpea, and their germinated seeds at day 4 in 

acetone/methanol/water (2:2:1) extracts. It illustrated clearly that the changes of 

isoflavonoids production after germination was more significant in chickpea than that 

in black soybean. I also examined the two major isoflavones biochanin A and 

formononetin productions during germination in chickpea seed (Figure 11.6A). It was 

remarkable that the content of biochanin A and formononetin changed from 19 and 

1.0 (µg/g FW) of ungerminated seeds (0 day) to 702 and 1484 (µg/g FW) of 

germinated seeds at day 4 (G4d), respectively, an increase of approximately 40 and 

1400 times. Soybean germination has much less impact on the total flavonoids, with 

increase of only 43.6% (1132 µg/g FW in ungerminated seeds to 1626 µg/g FW after 

germination). In comparison, approximately 90 times increase in total flavonoids was 

found in chickpea (83 µg/g FW in ungerminated seeds to 7568 µg/g FW in 

germinated seeds) (Figure 11.6B).  
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Figure 11.5 Comparative HPLC chromatogram (260 nm) of isoflavonoids between black soybean, 
chickpea, and their germinated seeds at day 4 in acetone/methanol/water (2:2:1) extracts 
Tentative identifications of compounds are listed in Table 11.1. 
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Figure 11.6 Quantitative analysis of isoflavonoids in chickpea and black soybean 
(A) Production of the two major isoflavones biochanin A and formononetin during the germination of 
chickpea seed. (B) Total isoflavonoids content in ungerminated (UG) black soybean, chickpea, and 
their germinated seeds at day 4 (G4d). 
  
 

Antioxidant capacity of germinated chickpea (2253 µmol TE/100 g FW) and 

germinated soybean (2142 µmol TE/100 g FW) are comparable, while the total 

isoflavonoids content for germinated chickpea was approximately 4-fold higher than 

for germinated soybean. This may be due to the weaker antioxidant activity of 4’-O-

methylated isoflavones biochanin A and formononetin than that of genistein and 

daidzein (Rufer & Kulling 2006). The health benefits of chickpea seed received much 

less attention. It has been reported that these 4’-O-methylated isoflavones can be 

converted by 4’-O-demethylation to the more potent phytoestrogens daidzein and 

genistein in human (Tolleson et al. 2002), and the resulting daidzein and genistein 

would be further metabolized to other metabolites including equol (Tham et al. 1998). 

Moreover, germination of chickpea could produce 4-fold higher total isoflavonoids 
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content than soybean in addition to a few of pterocarpan phytoalexins, such as 

maackiain and medicarpin. Recent investigation has shown that red clover, another 

leguminous plant not used as a food source, also contains significantly high 

concentrations of biochanin A, formononetin and other isoflavones (Lin et al. 2000a; 

Klejdus et al. 2001; Tsao et al. 2006); total isoflavone content of more than 7500 µg/g 

FW was measured in this study, and this amount could be comparable to that of 10 

red clovers cultivars ranged between 8.92 and 12.75 mg/g of dry matter (Sivesind & 

Seguin 2005). Germination also improves phytic acid, ascorbic acid, folic acid, β-

carotene content, protein solubility and in vitro protein digestibility of chickpea seeds. 

Thus, the germinated chickpea seed would serve as a promising functional food rich 

in isoflavonoids. 

Isoflavonoids are synthesized by the central phenylpropanoid pathway and the 

specific isoflavonoid branch pathways in legumes (Figure 11.7). The central 

phenylpropanoid pathway is common to all plant species and it produces lignin, 

coumarins, benzoic acids, stilbenes, and flavonoids/isoflavonoids (Dixon et al. 2002). 

Chalcone is the first step in the production of flavonoids and isoflavonoids that 

requires the enzyme chalcone synthase (CHS). In the isoflavonoid biosynthetic 

pathway, the branch-point enzyme of isoflavonoid specific branch is introduced by 2-

hydroxyisoflavanone synthase (isoflavone synthase, IFS), and yields an immediate 

product 2-hydroxyisoflavanone. The immediate product is then dehydrated to 

daidzein and genistein through catalysis by 2-hydroxyisoflavanone dehydratase (HID) 

(Wang 2011). In soybean, the daidzein is a precursor to the major phytoalexin 

glyceollins. In chickpea, 2-hydroxyisoflavanone is methylated by 2,7,4’-

trihydroxyisoflavanone 4’-O-methyl transferase (HI4’OMT) to form 

methoxyisoflavanones which are further dehydrated by HID to form biochanin A and 
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formononetin (Wang 2011). Chickpea constitutively accumulates biochanin A and 

formononetin, mainly as 7-0-glucoside-6"-O-malonate esters stored in cell vacuoles 

(Du et al. 2010). Under environmental stress, the two pterocarpan phytoalexins 

medicarpin and maackiain are induced (Daniel et al. 1990). It is known that several 

subgroups of isoflavonoids are represented in chickpea. Generally, aglycones are 

represented more frequently than glycosides and are substituted most frequently by 

glucose, which is consistent with my finding that the major compounds are aglycone 

isoflavones biochanin A (peak 32), 5-hydroxypseudobaptigenin (peak 31), 

formononetin (peak 26), pseudobaptigenin (peak 25), pratensein (peak 24) and 

genistein (peak 23) in germinated chickpea seeds (Figure 11.3, 11.4, 11.5). Many 

isoflavonoids in Cicer occur as glycosides and often in larger quantities than the 

aglycones, which is probably for storage purposes since the glycosides appear to 

occur most abundantly in the roots and stems but only the aglycones occur in other 

parts of the plant tissues (Stevenson & Aslam 2006).  
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Figure 11.7 Proposed isoflavonoids biosynthesis pathway in legumes 
PAL, phenylalanine ammonialyase; C4H, cinnamate-4-hydroxylase, 4CL, 4-coumarate CoA ligase; 
CHS, chalcone synthase; CHR, chalcone reductase; CHI, chalcone isomerase; IFS, isoflavone synthase; 
2HIS, 2-hydroxyisoflavanone synthase; HI4′OMT, 2,7,4′-trihydroxyisoflavanone 4′-O-methyl 
transferase; I7OMT, isoflavone 7-O-methyltransferase; 2HID, 2-hydroxyisoflavanone dehydratase; GS, 
glyceollin synthase; I2′H, isoflavone 2′-hydroxylase; 2’HIR, 2'-hydroxyisoflavone reductase; VR, 
vestitone reductase; DMID, 7,2′-dihydroxy,4′-methoxyisoflavanol dehydratase; PS, pterocarpin 
synthase; I3’H, isoflavone 3'-hydroxylase; BAR, biochanin A reductase; GT, uridine 
diphosphoglucose-isoflavone 7-O-glucosyltransferase; MT, isoflavone-7-O-beta-glucoside 6''-O-
malonyltransferase; AT, isoflavone-7-O-beta-glucoside 6''-O-acetyltransferase. 
 

11.4 Conclusion 

Germinated chickpea seed has higher TPC and antioxidant capacity than the other 

eight germinated seeds. In total, 31 isoflavonoids in chickpea and soybean are 

tentatively identified, based on their chromatographic retention time, UV spectra, 
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positive and negative MS fragments patterns in comparison to known compounds and 

the literature. Remarkably, germination greatly increases isoflavonoid diversity and 

content in germinated chickpea, which has more than 4-fold higher total isoflavonoid 

content than soybean. The findings in this Chapter provide important information for 

further studies on the utilization of germinated chickpea seeds as a source for 

nutraceuticals and functional foods. 
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Chapter 12 

FOOD GRADE FUNGAL STRESS ON 

GERMINATING PEANUT SEEDS INDUCED 

PHYTOALEXINS AND ENHANCED 

POLYPHENOLIC ANTIOXIDANTS 

 

12.1 Introduction 

Phytoalexins are secondary metabolites that plants synthesize for self-defense 

against microbial infections; they have shown great promises in chronic disease 

prevention. The most well-known example is resveratrol, an induced phytoalexin 

found in yeast infected grape skin. Resveratrol may have interesting potential as a 

CRM. Furthermore, it has been shown to be a good antioxidant and anti-inflammatory 

agent (Jang et al. 1997; Pervaiz & Holme 2009). However, foods containing 

significant levels of resveratrol are limited to red grape wine / juice (Baur & Sinclair 

2006). Glyceolin is another induced phytoalexin in soybean, which has many health 

benefits. I have demonstrated that germinating soybeans stressed with tempeh starter 

led to great enrichment of glyceollins among other isoflavones biosynthesized by the 

beans (Chapter 7). I extended this food grade bioprocessing technology to peanut 

seeds and reported herein is my findings. 

Peanuts are widely consumed food. They have recently attracted greater attention 

because of its health promoting properties attributed to the numerous bioactive 

components such as unsaturated fatty acids, vitamin E, folate, phytosterols, phenolic 

acids, procyanidins, and selenium (Francisco & Resurreccion 2008). Peanut seeds, 
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when induced by pathogenic infections, fungal elicitors, and UV light, could produce 

inducible phytoalexins such as stilbenoid derivatives (resveratrol, arachidins, 3'-

isopentadienyl-3,5,4'-trihydroxystilbene, SB-1, chiricanine A, arahypins), and 

pterocarpanoid derivatives (e.g. aracarpene-1 and aracarpene-2) (Sobolev et al. 2006; 

Sobolev et al. 2007; Sobolev et al. 2009; Sobolev et al. 2010a; Sobolev et al. 2010b). 

Stress-induced stilbenoid phytoalexins from peanuts are of considerable interest 

because of their biological activities and possible therapeutic value for chronic 

diseases. Resveratrol derivatives and their oligomers are less studied but have 

demonstrated some potential as disease preventing ingredients (Shen et al. 2009; 

Fulda 2010). There is no report on stressing germinating peanuts by using R. 

oligoporus, a popular food grade microbe for food fermentation in Southeast Asia 

region. 

 

12.2 Materials and Methods 

12.2.1 Reagents 

The reagents were as described in Chapter 3 (3.2.1) and Chapter 10 (10.2.1). 

 

12.2.2 Instruments 

The instruments were as described in Chapter 11 (11.2.2). 

 

12.2.3 Peanut germination and fungal inoculations 

Peanut (Arachis hypogaea L.) seeds with three classes of skin colors (reddish 

brown, red and black) were collected from the supermarket in China (BEYOND 

ORGANIC, Bejing, China). The seeds germination and fungal inoculations have been 

described in Chapter 10 (10.2.2). 
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12.2.4 Sample preparation procedures 

The sample preparation procedures have been described in Chapter 11 (11.2.4). 

 

12.2.5 Quantification of antioxidant capacity and total phenolics 

Six antioxidant capacity related values including total phenolics content (TPC), 

total flavonoid content (TFC), oxygen radical (ROO.) absorbance capacity (ORAC), 

hydroxyl radical (HO.) absorbance capacity (HORAC), superoxide radical (O2
.-) 

absorbance capacity (SORAC), DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical 

scavenging capacity values were measured. TPC was measured based on Folin-

Ciocalteau method according to Wu et al (Wu et al. 2004). Gallic acid (50, 25, 12.5, 

6.25, 3.125, 1.5625 mg/L, correlation coefficient, r = 0.999) was used to establish the 

standard curve. These results were expressed as gallic acid equivalents (mg GAE/100 

g FW). TFC was determined using a colorimetric method described previously 

(Heimler et al. 2005). Twenty μL sample or (+)-catechin standard solution (50, 25, 

12.5, 6.25, 3.125, 1.56, 0.78 mg/L) were mixed with 80 μL distilled water in each 

well of 96-well polypropylene plate, followed by adding 6 μL of 5(w/v)% NaNO2 

solution. After 5 min, 6 μL 10(w/v)% AlCl3 solution were added and allowed to stand 

for another 1 min before adding 40 μL 1 M NaOH. The mixture was toped up to 200 

μL with distilled water. The absorbance was measured immediately against the blank 

(the same mixture without the sample) at 510 nm. The results were calculated and 

expressed as catechin equivalents (mg CAE/100 g FW). Hydrophilic ORAC 

procedure was based on previous report (Huang et al. 2002). The results were 

expressed as Trolox equivalents (µmol TE/100 g FW). HORAC assay was based on 

previous report (Ou et al. 2002). Gallic acid was used to establish the standard curve, 
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and results were expressed as mg GAE/100 g FW. SORAC protocol was based on 

Zhang et al. report (Zhang et al. 2009b), and results were expressed as units SOD 

equivalent/100 g FW. DPPH scavenging capacity determined as previously described 

(Gorinstein et al. 2006). Gallic acid was used to establish the standard curve, and 

results were expressed as mg GAE/100 g FW.  

 

12.2.6 Detection of phytochemical by PDA and MS 

HPLC analysis was performed on a Waters apparatus equipped with PDA 

detector. The detection wavelength was set from 210 to 800 nm. The separation was 

accomplished on a Waters C18 column (5 μm, 4.6×250 mm) with water (A), 

acetonitrile (B) and 2% acetic acid in water (C) as mobile phase. The column 

temperature was 30 °C. The injection volume was 20 µL. Solvent C composition was 

maintained at an isocratic 5% for 60 min. Solvent A and B gradient was as follows: 0 

– 1 min, A 95%; 1 – 8 min, A from 95% to 85%; 8 – 24 min, A from 85% to 70%; 24 

– 34 min, A from 70% to 40%; 34– 50 min, A from 40% to 20%; 50 – 55 min, A 

from 20 % to 5%; 55 – 58 min, A from 5% to 95 %; 58 – 60 min, A 95%. The flow 

rate was 1.0 mL/min. The LC conditions for LC-MS analysis used solvent A (water 

with 0.05% acetic acid) and B (acetonitrile with 0.05% acetic acid) as mobile phase. 

The gradient was identical to those used for HPLC analysis above. The injection 

volume of each sample was 20 µL. For ESI-MS, both the positive and negative ion 

modes were used for further characterization of the phytochemicals. The capillary 

temperature and spray voltage were maintained at 250 °C and 4.5 kV, respectively. 

Nitrogen was supplied at 80 psi as sheath gas, and at 20 psi as auxiliary gas. Full scan 

mass spectra from m/z 50 to 2000 were recorded with a scan speed of one scan per 

second. 
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12.2.7 Phytoalexin extraction and detection by HPLC and LC-MS  

The reddish brown peanut seeds (500 g) were germinated with R. oligosporus 

stress at 25 °C in the dark for 3 day. The peanut samples were homogenized in 

acetone/ethanol/water (2: 2: 1; v/v), then extracted with the same solvent mixture for 

three times on a shaking incubator at 200 rpm and room temperature for 12 h at each 

time. The extraction solutions were concentrated in a rotary evaporator at 50 °C. The 

concentrated residue was transferred to a silica gel column (35 × 6 cm, silica gel 60) 

for fractionation. The column was pre-equilibrated with hexane and then successively 

eluted with hexane and hexane/ ethyl acetate (7:3) mixture at a flow rate of 5 mL/min. 

Each fraction was collected (100 mL). After HPLC detection, the fractions containing 

the phytoalexins are combined and further analyzed by LC-ESI-MS. Ths LC-ESI-MS 

conditions were similar with those used for phytochemical detection above, except the 

LC mobile phase gradient. The gradient was as follows: 0 – 1 min, A 95%; 1 – 8 min, 

A from 95% to 65%; 8 – 15 min, A from 65% to 55%; 15 – 50 min, A from 55% to 

40%; 50 – 55 min, A from 40% to 10%; 55 – 58 min, A from 10 % to 95%; 58 – 60 

min, A 95%. 

 

12.3 Results and Discussion 

Peanut skin color varies usually from light brown to deep red. However, peanuts 

with different skin colors have been cultivated and consumed widely during the past 

decade in China, such as black, purple black, white, red, and multi-colored, although 

most of them are rarely seen in the marketplace worldwide. In order to investigate the 

difference between phytochemicals in peanut seeds with different skin colors, three of 
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the types of peanut were studied; for future comparison purpose, samples of each 

peanut seeds were kept at -80 °C freezer in our lab.  

Stressed peanuts can produce a wide range of phytoalexins. Using R. oligosporus 

as food grade elicitor, the germinating peanuts of three different skin colors were 

processed and their phytoalexin profiles were extracted, fractionated, and 

characterized by HPLC and LC-MS. I applied an analytical method for the 

comprehensive profiling of semi-polar metabolites in the acetone/ethanol/water (2: 2: 

1; v/v) extract of the three cultivars of peanuts. HPLC-PDA and ESI-MS detectors 

were used to tentatively identify the secondary metabolites. The masses or MS 

fragments information were matched with compounds reported in literatures, and 

supplemented by UV, HPLC retention time, and reference compounds, including 

caffeic acid, catechin, p-coumaric acid, ferulic acid, genistein, hydroxybenzoic acid, 

trans-resveratrol and sinapic acid, as well as existing metabolite databases including 

PubChem, Kegg Ligand database, Massbank and Scifinder ScholarTM. 

 

12.3.1 Profiles of phenolic acids in peanut seeds 

For ungerminated peanut seeds, HPLC chromatograms (310 nm) of 

acetone/ethanol/water extracts of three different types of peanut seeds are given in 

Figure 12.1. The HPLC-PDA detector allowed us to record the UV/Vis spectrum in 

the range of 210-800 nm, but only the chromatograms at 310 nm are presented in this 

study since the most number of peaks are observed at this wavelength in all peanut 

samples. LC-MS analysis reveals that phenolic acids are the major group of phenolic 

compounds in ungerminated seeds. LC retention time, maximum UV absorption, 

fragment ion masses in positive-ion ([M+H]+) and negative-ion ([M–H]–) mode of 

compounds identified tentatively are listed in Table 12.1.  
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Figure 12.1 HPLC chromatograms (310 nm) of three types of peanut seeds in 
acetone/ethanol/water (2:2:1) extracts 
Tentative identification of compounds can be seen in Table 12.1. 
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Table 12.1 Peak assignment of compounds in GS peanut sprouts presented according to retention 
time, maximum UV absorption and molecular ions 
Peak LC-RT (min) Tentative identification PDA UV bands (nm) ESI+ [M+H]+ ESI– [M–H]– 

1 9.1 Coumaric acid derivative 1 314 147, 165 163, 295 

2 10.6 Coumaric acid derivative 2 314 147, 297 163, 277 

3 12.6 Coumaric acid derivative 3 314 147 163, 295 

4 13.0 Coumaric acid derivative 4 314 251 163, 295 

5 16.2 Coumaric acid derivative 5 314 309 163 

6 18.9 Coumaric acid derivative 6 314 291 163, 289 

7 21.8 Coumaric acid derivative 7 314 147, 309 163, 277, 441 

8 23.2 Sinapinic acid derivative 1 318 207 223 

9 23.7 Feruloyl malic acid derivative 1 318 177, 291 193, 307 

10 12.0 Hydroxybenzoic acid derivative 1 260, 302  137 

11 14.1 Coumaric acid derivative 8 313  132, 163, 307 

12 14.7 Coumaric acid derivative 9 311 134,  132, 163, 307 

13 16.0 Sinapinic acid derivative 2 305 207 205 

14 10.1 Coumaric acid derivative 10 314 147, 297 163, 277 

15 19.4 Coumaric acid derivative 11 313 133 163 

16 19.5 Catechin 282 291, 245 203, 245, 289 

17 19.8 Feruloyl malic acid derivative 2 318 291 193 

18 20.0 Sinapinic acid derivative 3 305 207 223 

19 20.4 Caffeic acid derivative 1 240, 324 163 179, 135 

20 21.0 Hydroxybenzoic acid derivative 2 260, 302 152 137 

21 26.3 Sinapinic acid derivative 4 318 165,207 223 

22 26.7 Feruloyl malic acid derivative 3 327 177, 291 193 

23 27.4 Piceid derivative 1 307 391 389, 227 

24 29.2 Coumaric acid derivative 12 314  277, 441 

25 29.4 Coumaric acid derivative 13 315 147 163, 295 

26 29.5 cis-Resveratrol 309 229 227 

27 36.4 3'-Isopentadienyl-3,5,4'-trihydroxystilbene derivative 1 297 295 293 

28 36.5 3'-Isopentadienyl-3,5,4'-trihydroxystilbene derivative 2 298 295 293 

29 37.8 Arachidin-3 derivative 1 336 297, 923, 241 921, 239, 295 

30 27.9 trans-Resveratrol 306, 318 229 227, 453 

31 36.5 Arachidin-1 derivative 1 323 313 311 

32 37.1 Arachidin-2 derivative 1 325 297   

33 30.8 Arahypin-3 derivative 2 337 229 227, 329 

34 31.3 Coumaric acid derivative 14 314 147 145, 163 

35 32.5 Genistein 260 271 269 

36 34.2 SB-1 derivative 1 325 345 343 

37 34.7 SB-1 derivative 2 322 343 341 

38 35.1 Arahypin-4 derivative 1 310 229, 313 311, 227 

39 35.6 3'-Isopentadienyl-3,5,4'-trihydroxystilbene derivative 3 295 295  

40 39.3 Arahypin-5 derivative 1 341 295 293 

41 39.5 Arahypin-1 derivative 2 326 281 279 

42 40.6 Chiricanine A derivative 1 317  279 

43 41.6 Chiricanine A derivative 2 316 281 279 

44 42.8 KODE glyceryl esters 282 351, 355, 369 353, 367 

45 47.5 KODEs 280 295 293 
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Majority of the phenolic acids are found to be coumaric acid derivatives (peak 1 

to 7), sinapinic acid (peak 8) and ferulic acid (peak 9). This result is consistent with 

previous reports that p-coumaric acid accounted for 40–68% of the total phenolic 

acids in all peanut protein products, and roasted peanuts contain p-coumaric acid 

greater than 100 mg/kg (Talcott et al. 2005). Coumaric acid derivatives are 

characterized by common maximal UV absorption at 309-314 nm (Abad-Garcia et al. 

2009) and by MS peak at 147 ([M+H–H2O]+ from dehydration of the coumaric acid 

ion ([M–H]–, 163). Meanwhile, sinapinic acid derivatives are identified by main 

product ions at ([M+H–H2O]+, 207), ([M–H–H2O]–, 205) and ([M–H]–, 223); and 

ferulic acid at ([M+H–H2O]+, 177) and ([M–H]–, 193) (Figure 12.2, 12.3). 

 

Sinapinic acid

225.5 317.6

250.00 300.00 350.00

227.8

314.0

369.8373.4

250.00 300.00 350.00

Coumaric acid

216.1
233.7

321.2

250.00 300.00 350.00

Ferulic acid Caffeic acid

217.2

240.7

324.7

250.00 300.00 350.00

Catechin

279.7

250.00 300.00 350.00

Resveratrol

217.2
306.9318.8

250.00 300.00 350.00

Hydroxybenzoic acid

220.8
260.8

302.2

372.2

250.00 300.00 350.00

KODEs

Arachidin-2

218.4
311.7324.7

372.2

250.00 300.00 350.00

Arachidin-3

216.1

337.8

250.00 300.00 350.00

Arahypin-1

220.8 325.9

250.00 300.00 350.00

Arahypin-5

221.9

341.4

250.00 300.00 350.00

282.0

347.4

250.00 300.00 350.00

 
Figure 12.2 UV spectra of major phytochemcials in peanut sprouts under food grade fungus R. 
oligosporus stress 
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Figure 12.3 ESI (negative ion) mass spectra of major phytochemicals in peanut sprouts under 
food grade fungus R. oligosporus stress 
 
 

These phenolic acids are potent scavengers of free radicals that may reduce the 

risk of several chronic diseases such as cancer, cardiovascular disease, and diabetes. 

For higher plants, these phenolic acids are covalently bound to polysaccharides in cell 

walls, acting as crosslinkers between the lignins polymers and the hemicellulose and 

cellulose. Coumaric acid plays a central role in the phenylpropanoid biosynthetic 

pathway (Figure 12.4) which starts from the conversion of phenylalanine to trans-

cinnamic acid, which subsequently hydroxylates to form p-coumaric acid. p-

Coumaric acid is a precursor of 4-coumaroyl-CoA, which serves as a substrate to 

form the basic skeleton of all flavonoid derivatives (Nishiyama et al. 2010). Coumaric 

acid could also be used as a precursor in the production of resveratrol in 

microorganisms (e.g. food-grade yeast S. cerevisiae) genetically modified with genes 

of the phenylpropanoid pathway (Shin et al. 2011). 
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Figure 12.4 Proposed phenylpropanoid biosynthetic pathway in peanut sprouts under food grade 
fungus R. oligosporus stress 
PAL, phenylalanine ammonialyase; C4H, cinnamate 4-hydroxylase; F5H, ferulic acid 5-hydroxylase; 
COMT, caffeic acid O-methyltransferase; COA, coenzyme A; 4CL, 4-coumarate:CoA ligase; SS, 
stilbene synthase; CHS, chalcone synthase; CHR, chalcone reductase; IFS, isoflavone synthase; CHI, 
chalcone isomerase. 
 

As can be seen in Figure 12.1 and Table 12.2, black peanuts have higher content 

of phenolic acids, total phenolic (TPC), total flavonoids (TFC) than reddish brown 

and red peanuts. These translate to its higher ORAC and hydroxyl radical absorbing 

capacity (HORAC). However, the superoxide radical absorbing capacity (SORAC) 

and DPPH radical scavenging capacity do not show proportional increase (Table 

12.2). For ORAC and HORAC values, black peanut (2335 µmol TE/100 g, 651 mg 

GAE/100 g) has much higher value than that of reddish (1384 µmol TE/100 g, 229 

mg GAE/100 g) and red peanuts (690 µmol TE/100 g, 126 mg GAE/100 g). In 

addition, black peanuts is reported to be rich in mineral elements, such as potassium 

(7136 µg/g), iron (58.16 µg/g), selenium (14.24 µg/g), and zinc (38.92 µg/g), which 

are higher than the levels in red peanut (Xin et al. 2009). Therefore, black peanuts 

may have a potential as a new functional food due to its rich mineral contents. The 
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measured values are found to be smaller than USDA database for TPC and ORAC of 

peanut raw (U.S. Department of Agriculture 2010). However, these results may be 

different if the sample is the whole seeds.  

 

Table 12.2 TPC, TFC, ORAC, HORAC, SORAC and DPPH values of ungerminated seed (UG), 
germinated seed (G) and germinated seed with fungal-stress (GS) 

Peanut Treatment 
TPC    TFC    ORAC    HORAC    SORAC    DPPH   

mean SD  mean SD  mean SD  mean SD  mean SD  mean SD 

Black UG0d 144.8  k 3.6   18.54  j 0.40   2335.5  hi 16.3   651.3  b 19.5   54.9  h 2.0   3.54  n 0.10  

 G1d 184.7  f 5.6   24.23  i 0.89   2279.1  i 99.0   594.3  c 14.1   30.0  k 2.1   6.96  hi 0.06  

 G2d 165.6  hi 6.6   24.58  i 1.29   2892.3  f 83.4   663.6  b 33.7   20.4  l 1.1   6.16  ijk 0.21  

 G3d 174.2  gh 7.1   18.93  j 0.91   2984.2  f 123.6   690.5  ab 61.1   12.5  l 1.8   5.09  kl 0.26  

 Mean 174.9     22.64     2718.5     649.5     21.0     6.11    

 GS1d 194.1  e 8.6   14.80  kl 0.55   2439.6  gh 20.3   663.2  b 25.1   33.6  jk 2.8   6.28  ij 0.37  

 GS2d 165.8  hi 6.2   15.22  kl 0.75   3313.3  e 122.0   568.8  c 31.5   13.9  l 0.4   7.69  gh 0.62  

 GS3d 158.5  ij 5.0   15.69  kl 0.80   3288.7  e 125.9   687.4  ab 20.3   14.1  l 0.1   5.55  jkl 0.20  

 Mean 172.8     15.21     3013.9     639.8     20.5     6.52    

Red UG0d 126.9  l 3.4   13.59  l 0.51   690.4  n 0.9   126.8  i 2.3   36.4  ijk 1.3   4.87  lm 0.21  

 G1d 155.8  j 2.7   27.25  h 0.23   1339.4  m 28.9   216.7  h 10.8   55.6  h 1.1   6.46  ij 0.30  

 G2d 174.3  gh 4.4   36.89  f 0.39   1685.2  l 54.9   337.0  g 23.3   66.3  g 3.5   10.36  ef 0.10  

 G3d 194.1  e 8.6   24.77  i 0.91   2084.4  j 84.9   364.2  fg 29.1   37.6  ijk 1.3   10.53  ef 0.71  

 Mean 174.8     29.61     1703.0     306.0     53.1     9.15    

 GS1d 160.1  ij 4.8   33.80  g 1.61   1393.3  m 47.6   235.5  h 12.1   42.1  ij 2.2   8.71  g 0.13  

 GS2d 181.1  gf 5.7   57.34  d 1.16   3580.2  d 86.2   381.1  f 16.4   250.1  b 6.7   18.47  c 0.99  

 GS3d 228.0  b 10.9   75.73  c 2.11   4670.6  b 155.9   520.6  d 41.8   142.0  d 12.8   11.44  e 0.33  

 Mean 189.7     55.67     3214.7     379.1     144.7     12.92    

Reddish brown UG0d 130.1  l 3.0   17.06  jk 0.37   1383.6  m 60.9   229.5  h 5.5   94.3  f 4.7   3.90  mn 0.08  

 G1d 160.6  ij 4.0   34.45  g 0.89   1914.5  k 32.6   357.2  fg 29.3   104.6  e 5.9   9.78  f 0.40  

 G2d 194.7  e 8.2   44.42  e 0.64   2502.4  g 18.2   451.9  e 16.6   45.5  i 2.9   18.79  bc 2.00  

 G3d 208.4  d 5.8   45.98  e 0.67   3384.0  e 97.9   586.1  c 20.2   40.7  ij 4.1   12.50  d 1.23  

 Mean 187.9     41.65     2600.3     465.0     63.6     13.77    

 GS1d 218.5  c 10.1   35.96  fg 0.61   3360.8  e 103.0   369.5  fg 25.5   144.1  d 6.0   10.86  ef 1.03  

 GS2d 220.0  bc 12.2   95.31  b 4.18   3859.2  c 134.5   530.9  d 17.8   318.5  a 18.2   19.70  b 1.33  

 GS3d 253.2  a 5.1   113.35  a 4.73   5031.6  a 155.9   713.2  a 38.8   196.6  c 16.1   23.67  a 1.26  

 Mean 230.5     81.52     4083.9     537.9     219.7     18.13    

The data are expressed as mean ± standard deviation (n = 4), G and GS are measured during the 3 days. 
The means of treatments are compared by Duncan’s multiple range test at P < 0.05, different letters 
show significant differences. TPC values are expressed as gallic acid equivalents (mg GAE/100 g fresh 
weight sample); TFC values are expressed as catechin equivalents (mg CAE/100 g FW); ORAC values 
are expressed as Trolox equivalents (µmol TE/100 g FW); HORAC are expressed as mg GAE/100 g 
FW; SORAC values are expressed as units SOD equivalent/100 g FW; DPPH scavenging capacity 
values are expressed as mg GAE/100 g FW. 
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12.3.2 Polyphenolic profiles in germinated peanuts 

In this study, a total of 45 compounds (Table 12.1) are identified tentatively in 

the raw GS sprouts (germinating seeds with fungal stress); these include 14 coumaric 

acid derivatives, 3 ferulic acids, 4 sinapinic acids, 2 hydroxybenzoic acids, 1 caffeic 

acid, 2 flavonoids and 19 stilbenoids derivatives. Among the metabolites detected, the 

most abundant compounds are phenolic acid compounds (10 to 32 min, Figure 12.5, 

12.6) and stilbenoid phytoalexins (32 to 55 min). Both classes of secondary 

metabolites are receiving considerable attention from producers and consumers due to 

their antioxidant activity and anti-inflammation activity. 

Figure 12.5 presents a comparative HPLC chromatogram between red and black 

peanuts after 3 days of germination with or without fungal inoculation (G or GS). 

There are several compounds proposed as phytoalexins that are generated under GS 

and G such as peak 27 and 28 (isopentadienyl-3,5,4'-trihydroxystilbene), peak 29 

(trans-arachidin-3), and peak 30 (trans-resveratrol). In addition, some new phenolic 

acid derivatives are also produced during G and GS, such as peak 19 (caffeic acid), 

peak 10 and 20 (hydroxybenzoic acids), as well as catechin (peak 16) and genistein 

(peak 35) (UV and MS spectra see Figure 12.2, 12.3).  
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Figure 12.5 Comparative HPLC chromatograms (310 nm) between red and black peanuts after 3 
days germination with or without fungal inoculation (G or GS) 
The peak assignment of corresponding compounds is presented in Table 12.1. 
 



209 
 

0 00 12 00 14 00 16 00 18 00 20 00 22 00 24 00 26 00 28 00 30 00 32 00 34 00 36 00 38 00 40 00 42 00 44 00 46 00 48 00 0 00 2 00 4 00

0 00 12 00 14 00 16 00 18 00 20 00 22 00 24 00 26 00 28 00 30 00 32 00 34 00 36 00 38 00 40 00 42 00 44 00 46 00 48 00 0 00 2 00 4 00

0 00 12 00 14 00 16 00 18 00 20 00 22 00 24 00 26 00 28 00 30 00 32 00 34 00 36 00 38 00 40 00 42 00 44 00 46 00 48 00 0 00 2 00 4 00

0 00 12 00 14 00 16 00 18 00 20 00 22 00 24 00 26 00 28 00 30 00 32 00 34 00 36 00 38 00 40 00 42 00 44 00 46 00 48 00 0 00 2 00 4 00

AU

0.00

0.01

0.02

0.03

0.04

0.05

10

AU

0.00

0.01

0.02

0.03

0.04

0.05

10

AU

0.00

0.01

0.02

0.03

0.04

0.05

10

AU

0.00

0.01

0.02

0.03

0.04

0.05

10
Minutes

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0

Reddish brown
G0.5d

Reddish brown
G3d

Reddish brown
GS3d

Reddish brown
D3d

1

2
3

4

5

6

7

8

9

10 11
12

13

14

15

16

1 2

3

4

5 6
7 8,9

2

17,18,19

24

21

20

22,23

24

25

26

27

28

29

5

6
7 8,9

30

25

29

27,31

32

4
13

15
2

7
6

13

3

5
33

34
35

36,37,38 39 40,41
42

43

44 45

D

DS

 
Figure 12.6 HPLC chromatogram (310 nm) of germinated reddish peanut after 12 hours (G0.5d) 
and 3 days (G3d) without R. oligosporus stress, 3 days with the fungal stress (GS3d), and 
thermal-deactivated seeds inoculated without (D) or with (DS) fungal stress for 3 days. 
The peak assignment is shown in Table 12.1. 
 

Figure 12.6 shows HPLC chromatogram of germinated reddish peanut after 12 

hours (G0.5d) and 3 days (G3d) without R. oligosporus stress, 3 days with the fungal 
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stress (GS3d), and thermal-deactivated seeds inoculated without (D) or with (DS) 

fungal stress for 3 days (D3d). To confirm whether these newly released compounds 

are produced by fungi themselves or by peanuts in response to the fungal action, the 

D3d peanuts are analysed and it is found that these compounds are not present. Thus, 

I conclude that the 19 stilbenoids are phytoalexins produced by the peanuts during the 

germination under fungal stress. In addition, I found that there is a significant 

decrease in phenolic acid compounds in deactivated peanut after 3 days (Figure 12.6) 

in comparison to the ungerminated seeds. However, not much difference is found in 

the phytochemicals between the deactivated peanut with or without fungal inoculation 

(data not shown). This suggests that thermal processing could reduce phenolic acid 

compounds.  

Overall, among the three peanuts, the maximum changes in the production of 

phytochemicals are observed in reddish brown peanuts during G and GS, followed by 

red peanuts, while black peanuts seemed to have little change from the HPLC analysis 

as shown in Figure 12.1, 12.5, 12.6. For red peanuts, G and GS could increase 

polyphenolic compounds and concentrations, which may be responsible for the 

significant increase in TPC, TFC, ORAC, HORAC, SORAC and DPPH values in the 

corresponding seeds (Table 12.2). For TPC in GS reddish peanut, the maximum value 

is 230 mg GAE/100 g FW, which is 1.8 times higher than that of ungerminated seed. 

Similarly, TFC maximum value is 81 mg CAE/100g FW in GS reddish peanut, an 

increase of 4.8 times, ORAC is 4084 µmol TE/100 g FW or 2.9 times, SORAC is 220 

units SOD equivalent/100 g FW or 2.3 times, and DPPH is 18 mg GAE/100 g FW or 

4.6 times. However, for HORAC, the maximum value belongs to ungerminated black 

peanut (651 mg GAE/100 g FW) which is higher than that of GS reddish peanut (538 

mg GAE/100 g FW).  
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The sprouts from mung bean and yellow soybean are the most popular traditional 

food. ORAC of mung bean and yellow soybean sprout obtained from a supermarket in 

Singapore were 1606 and 3126 µmol TE/100g FW respectively (Isabelle et al. 2009), 

and soybean sprout is 962 µmol TE/100g FW (U.S. Department of Agriculture 2010). 

In this study, the ORAC of GS peanut sprouts was 4084 µmol TE/100 g FW. Peanut 

sprouts are not a typical food item in this part of the world although they may have 

some health benefits due to the unique phytoalexin contents. 

 

12.3.3 Phytoalexins in germinated peanuts 

In order to identify the possible phytoalexins generated, the phenolic acids and 

fats are removed by a traditional silica column chromatography with hexane and ethyl 

acetate (see method section). The HPLC chromatogram of phytoalexins is shown in 

Figure 12.7 and their LC retention time, maximum UV absorption, fragment ion 

masses in positive-ion ([M+H]+) and negative-ion ([M–H]–) mode are listed in Table 

12.3.  
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Figure 12.7 HPLC chromatogram (310 nm) of peanut phytoalexins in peanut sprouts under food 
grade fungus R. oligosporus stress 
The tentative identification of corresponding compounds is listed in Table 12.3. 
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Table 12.3 Peak assignment of proposed phytoalexins in GS peanut sprouts presented according 
to retention time, maximum UV absorption and molecular ions 

Peak 
LC-RT 
(min) 

Tentative identification 
PDA UV 
bands (nm) 

ESI+ [M+H]+ ESI– [M–H]– 

1 8.92 trans-Resveratrol 307, 320  227 
2 9.12 Arachidin 2 derivative 1 326 297 295, 457 
3 9.5 Arahypin 2 derivative 1  331 329 
4 10.1 Arachidin 3 derivative 1 338 297 295, 457 
5 10.4 Arahypin 4 derivative 1  311, 313 295, 315, 325 
6 10.8 Cyanidin  280 287 285 
7 12.1 Naringenin  277  271 
8 12.8 Arahypin 2/3 derivatives 1  331 329 
9 13.5 Hesperetin  289  301 
10 14.0 Chiricanine A derivative 1 308 225, 281 223, 227, 279, 453 
11 14.6 Unknown  260  299 
12 15.3 Arahypin 1 derivative 1  281 225, 279 
13 17.4 SB 1 derivative 1 260, 357 345 299, 329, 343, 389 
14 17.8 SB 1 derivative 2 262, 360 465 299, 343, 361 
15 18.2 Arahypin 3 derivative 1 300  329 
16 19.8 Arachidin 2 derivatives 2 322 297 295 
17 19.8 Aracarpene  322 301 299 
18 19.8 Arachidin 1 derivatives 3 322 313 311 
19 20.6 Acacetin  332  283 
20 21.8 Arachidin 1 derivative 4 343 313 311 
21 22.2 3'-Isopentadienyl-3,5,4'-trihydroxystilbene derivative 1 296 295 293 
22 22.6 Arachidin 2 derivatives 3 324 297 295 
23 23.6 Arachidin 1 derivatives 5 346 309, 311, 313 309 
24 24.4 Arachidin 2 derivative 4 326 297 295 
25 25.1 Arahypin 7 derivatives 1  623 621 
26 25.8 Arachidin 2 derivatives 5  297 295 
27 25.8 Arachidin 1 derivatives 6  313 311 
28 26.9 Arachidin 3 derivative 2 337 297, 591 295, 589 
29 27.7 Unknown 345  325 
30 28.1 3'-Isopentadienyl-3,5,4'-trihydroxystilbene derivative 2 296  295, 355 
31 29.5 Arahypin 7 derivative 2 331 311 311, 621 
32 30.4 Arahypin 6 derivative 1 276, 320 607 605 
33 31.1 Arahypin 5 derivative 1 341 238 293 
34 31.1 Arahypin 4 derivative 2 341 238 313 
35 31.6 Arachidin 1 derivatives 7 328 313 311 
36 31.6 SB 1 derivatives 328  343 
37 32.3 Arahypin derivatives 1 340 394, 667 313, 619 
38 33.3 Arahypin 7 derivatives 3 335 623 621 
39 34.4 Dimeric stilbenoids derivatives 1 330 605 311, 603, 621 
40 35.5 Dimeric stilbenoids derivatives 2 333 603, 621, 623 311, 619, 621 
41 37.4 Dimeric stilbenoids derivatives 3 335 311, 621, 623 309, 311, 603, 619, 621 
42 38.5 Arahypin 7 derivative 4 262, 347 623 621 
43 39.6 Arahypin 6 derivatives 2  607 605 
44 40.4 Arahypin derivatives 324 621, 623 295, 327, 619, 621 
45 42.0 Arahypin 6 derivatives 3  607 605 
46 42.6 Arahypin 6 derivative 4 269, 345 607 605 
47 44.0 Arahypin 6 derivatives 5  311 605 
48 46.2 Arachidin 2 derivatives 6 324 589, 591 295, 587, 592 
49 47.0 Dimeric stilbenoids derivatives 4  299 297, 621, 653 
50 48.6 Dimeric stilbenoids derivatives 5 341 623 311, 621, 657 
51 50.1 Arachidin 2 derivatives 7  399, 631 295, 587 
52 54.4 13-Z,E-KODE 279 195, 249, 295 293 
53 55.2 13-E,E-KODE 279 195, 249, 296 293 
54 55.2 9-E,Z-KODE 279 199, 249, 295 293 
55 56 9-E,E-KODE 276 199, 249, 295 293 
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In total, there are 55 compounds detected. 45 of these compounds are suggested 

to be stilbenoid phytoalexin derivatives, 3 flavonoids (cyanidin, peak 6; naringenin, 

peak 7; hesperetin, peak 9), 2 unknown compounds (peak 11 and 29), 4 

oxooctadecadienic acids (KODEs, peak 52–55) and 1 peanut pterocarpanoid 

phytoalexin – aracarpene (peak 17) (Sobolev et al. 2010b). Furthermore, resveratrol 

(peak 1), arachidin 1 (peak 20), isopentadienyl-3,5,4'-trihydroxystilbene (peak 21), 

arachidin 2 (peak 24) and arachidin 3 (peak 28) are at concentrations that are among 

the most abundant in GS peanuts.  

It has been reported that Georgia Green peanut kernel, when challenged by 

Aspergillus flavus produced the highest level of resveratrol (2.91 mg/g) at 48 h, while 

SB-1 concentration (4.51 mg/g) peaked at 72 h (Sobolev et al. 2006), higher 

phytoalexin concentrations are accumulated with longer incubation times (Sobolev et 

al. 2007). Prior reports showed that germination increased amino acids, sucrose and 

glucose contents of peanut kernels. This might improve sprout taste and flavor 

preference (Wang et al. 2005). Peanut sprout are prone to be colonized by A. flavus 

and A. parasiticus since the germinating condition is generally under high temperature 

and moisture. The fungi can generate aflatoxins, thus, rendering the resulting peanut 

toxic, a major concern to consumers. In vivo toxicological and nutraceutical 

assessments of peanut sprouts revealed no obvious growth hazard or health toxicity in 

female Sprague-Dawley rats, which were fed with basal diets supplemented with 

different amounts of peanut sprouts for 18 weeks (Lin et al. 2008a). 

Peanuts are prone to form stilbenoid phytoalexins under stresses. Reported 

phytoalexins include arachidin 1-3, 3'-isopentadienyl-3,5,4'-trihydroxystilbene, SB-1, 

chiricanine A, arahypin 1-7 (Sobolev et al. 2006; Sobolev et al. 2007; Sobolev et al. 
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2009; Sobolev et al. 2010a). However, more than 1000 stilbenoids including 

monomeric stilbenes, bibenzyls, bisbibenzyls, phenanthrenoids, stilbene oligomers 

and other stilbenoids have been found in plants. Over 400 monomeric and oligomeric 

stilbenes have been isolated (Shen et al. 2009). These stilbenoid phytoalexin 

resveratrol and their derivatives have received marvelous attention over the past 

decade because of the tremendous number of reports highlighting their benefits. In 

vitro and in vivo studies of using various human disease models have demonstrated 

diverse bioactivities, including antioxidant, antimicrobial, antimalarial, anti-

inflammatory properties, cardio- and neuroprotection, immune regulation, cancer 

chemoprevention and lifespan extension (Baur et al. 2006; Baur & Sinclair 2006; 

Pervaiz & Holme 2009; Fulda 2010). Furthermore, its potential therapeutic value has 

significantly promoted the study of this class of compounds in various plants around 

the world. 

 

12.4 Conclusion 

The HPLC-PDA and LC-ESI-MS based approach is important in the metabolic 

profiling of peanuts due to the highly diverse phytochemicals present. The objective 

of a ‘non-targeted’ metabolic profiling analysis is to determine the most detectable 

metabolites in the acetone/ethanol/water extracts of the three peanuts. A total of 45 

compounds in raw sprouts (mainly phenolic acids) and approximately 50 phytoalexins 

in re-extracted GS reddish brown peanut are detected on the basis of their 

chromatographic retention, UV absorption, positive and negative MS fragments, and 

data from the literature. In addition, G or GS peanut sprouts produce much higher 

concentrations of phenolic acids, their derivatives and phytoalexins, along with higher 

TPC, TFC, ORAC, HORAC, SORAC and DPPH values than peanut seeds. Present 
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results form a basis for further study to examine the potential of stress germinated 

peanuts as source of complex phytoalexins that are otherwise hard to obtain in large 

quantity. 
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Chapter 13 

 CONCLUSIONS AND FUTURE OUTLOOK 

 

In the Part II, I investigated the phytochemical changes in food legume seeds 

under ungermination, germination, and germination with fungus R. oligoporus stress. 

Thirteen selected legumes are studied, including sword bean, big red bean, black-eyed 

bean, brown bean, small red bean, white bean, green bean, broad bean, yellow bean, 

black bean, big peanut, small peanut and chick pea. The results showed that 

germination could enhance the generation of phytochemicals in most legumes and 

fungus-stressed germination can release some novel phytoalexins in several legume 

sprouts, such as sword bean, soybeans and peanuts (Chapter 10).  

Furthermore, germination increased TPC and antioxidant capacity of most seeds. 

Particularly in chickpea seeds, the isoflavone contents increased by over 100 fold, 

mainly due to increase of formononetin and biochanin A level. Germination could 

significantly increase isoflavonoids diversity. Twenty-five isoflavonoids were 

detected and identified tentatively. These include 20 isoflanones, 2 isoflavanones and 

3 pterocarpan phytoalexins. Total isoflavonoid content of germinated chickpea was 

approximately 5-fold of that of germinated soybean (Chapter 11). 

In addition, the effects of food grade fungus R. oligosporus stress on 

phytochemicals and phytoalexins of germinating peanut seeds were investigated by 

comparing the metabolic profiles of ungerminated (UG), germinated (G) and 

germinated seeds under fungal stress (GS). Current results showed that phenolic acids 

(coumaric, sinapinic and ferulic acids derivatives) were the major group of phenolic 

compounds in ungerminated seeds. G or GS increased the level of phenolic acids, 
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phytoalexins, and antioxidant capacity values in reddish and red peanuts, but not in 

black peanuts. 45 compounds were identified tentatively in the peanut sprouts, 

including 14 coumaric acids, 3 ferulic acids, 4 sinapinic acids, 2 hydroxybenzoic 

acids, 1 caffeic acid, 2 flavonoids and 19 stilbenoids derivatives. Reddish brown 

peanut sprouts produced the highest amount of phytoalexins after GS with 55 

compounds detected. Forty five of these compounds were suggested as stilbenoid 

phytoalexins derivatives (Chapter 12). 

Overall, this study suggested that germination or food grade fungal stressed 

germination of legume seeds might be used as a processing method to induce 

phytoalexins and enhance production of polyphenolic antioxidants, which are proven 

to have many health enhancing benefits (e.g. antioxidant, anti-inflammation, anti-

cancer, anti-obesity, and anti-aging). 

In the future study, more plant seeds, not only the legume seeds can be 

investigated by the novel processing method. Furthermore, food grade probiotics 

including bacteria (Lactobacillus plantarum, Bacillus subtilis var natto, lactobacillus. 

acidophilus) and fungus (S. cerevisiae, R. oligosporus) are promising inducer. The 

probiotic when administered in adequate amounts confer a health benefit for human, 

and also be found as part of a variety of naturally fermented legume foods, such as 

soy yogurt, natto, tempeh and kefir. With potential bioactivities associated with the 

generated phytoalexins in the seeds, it is promising to explore new pathways for 

functional food and nutritional supplement development, as well as for food waste 

utilization. 
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