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Summary

A Web service is a self-describing, self-contained autonomous software system available

via a network, such as the Internet. A Web service is dedicated for a business task, such as

the booking of air ticket. Web service composition is to make use of existing heterogeneous

services on the Web as components to achieve a business goal. By reusing the existing Web

services, one can reduce the development time, and at the same time, increase the reliability

of the service after composition. Our work is focused on verification and analysis of Web

service composition.

In recent years, many Web service composition languages have been proposed. There

are two different viewpoints of these Web service composition languages, namely Web

service choreography and Web service orchestration. Web service choreography describes

collaboration protocols of cooperating Web service participants from a global view. Web

service orchestration describes collaboration of the web services in predefined partners. In

order to link these two different views, we present model-based methods for automatic

analysis of Web service compositions. We verify whether designs from two different views

are consistent or not, by refinement checking with specialized optimizations. If these two

views do not match, we also propose repair mechanism to address the problem.

Subsequently, we focus on the verification of Web service composition from the perspective

of Web service orchestration. A challenge to verify Web service composition is that, the

highly concurrent nature of Web service orchestration has introduced the state-explosion

problem to search-based verification methods like model checking. To address the state-

explosion problem, we present a new method, called Compositional Partial Order Reduc-
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tion (CPOR) for verification of Web service orchestration. CPOR aims to provide greater

state-space reduction than classic partial order reduction methods in the context of hierar-

chical concurrent processes.

Non-functional requirement, such as response time requirement, are important to Web

service composition. To integrate non-functional requirements as part of the verification

process, we further propose an automated approach to verify combined functional and non-

functional requirements directly based on the semantics of web service composition. Model

checking algorithms are developed to verify safety properties and liveness properties, in

the forms of state reachability checking and Linear Temporal Logic (LTL) checking.

Response time requirement is often provided as part of the service level agreement (SLA)

by service provider. It is important for service provider to find a feasible set of component

services to fulfill the response time requirement for composite service as promised. To

address this problem, we propose a fully automated approach to synthesize the response

time requirement for component services, given the response time requirement of com-

posite service. Our approach is based on parameter synthesis techniques for real-time

systems.

The proposed methods have been implemented in a series of software tools, to provide

verification and analysis support for Web service composition.

Key words: Web Service, Web Service Composition, Service Orchestration, Service

Choreography, Model Checking, Partial Order Reduction, Formal Verification
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Chapter 1

Introduction

Service Oriented Architecture (SOA) represents an important design architecture nowa-

days. Web service technologies, as an SOA based on World Wide Web, have emerged as

a de-facto standard for integrating disparate applications and systems using open, XML-

based standards. Services perform functions ranging from answering simple requests to

dealing with complex business processes. Services are self-describing, self-contained au-

tonomous software system available via a network, such as the Internet. They are built in a

way that is independent from the context, which means that service providers and service

consumers are loosely coupled.

Web service composition makes use of existing service-based applications as components to

achieve a business goal. The service that is composed by service composition is a composite

service and services that the composite service makes use of are called component services.

To guarantee the user satisfaction, there is often a contract, called service-level agreements

(SLAs), which specifies the non-functional requirements that the service providers must

obey. Testing approach can only mitigate this problem to a certain level. One of the

prominent quotes from Dijkstra has reflected this fact: "Program testing can be used to

1
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show the presence of bugs, but never to show their absence!" [38].

In business where services play a crucial role, a bug might cost millions dollars and service

failures might cause loss of life. And service composition is inevitably rich in concurrency

and it is not a simple task for programmers to utilize concurrency as they have to deal with

multi-threads and critical regions. It is reported that among the common bug types concur-

rency bugs are the most difficult to fix correctly, the statistic shows that 39% of concurrency

bugs are fixed incorrectly [95]. Since the complexity of service composition continues to

escalate, an automated approach for verifying the functional and non-functional properties

is desired.

1.1 Summary of this thesis

Although there have been a number of approaches for verifying and analyzing Web service

composition. There are still some research gaps summarized as follows:

• Web service composition languages have been proposed in recent years, which can

be categorized into two viewpoints – Web service choreography and Web service

orchestration. Given a choreography and an orchestration of Web service compo-

sition that is not consistent to each other, there is no existing approach that could

provide repair mechanism for repairing the orchestration to make it conform with

the choreography.

• Service composition languages, such as Orc, possesses hierarchical concurrent struc-

ture. Existing verification of languages that have hierarchical concurrent structure

does not take advantage of such structure for state-space reduction purpose.

• There is no existing work supports verification of combined functional and non-

functional requirements of Web service composition, they only focus on verification
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of one aspect, therefore, it cannot ensure two aspects of requirements at the same.

• Given the response time requirement of a composite service, there is no existing

approach that could allow to synthesize the response time requirement of component

services that are made use by the composite service.

In summary, existing works on verification and analysis of Web service composition are

not complete and still have room to improve. Thus, the main goal of my research is to

improve and refine the existing work to make it more complete and efficient. However, it

is highly non-trivial to achieve this goal due to the reasons as follows:

• Choreography and orchestration are generally modeled in different languages/for-

malisms, and choreography models are even not executable, which increases the

complexity to conformance checking.

• As the complexity and size of Web services continue to escalate, concurrency for Web

service composition could lead to state-explosion, which poses a restriction on the

sizes of the process to be analyzed.

• Given a Web service composition, there are many kinds of non-functional proper-

ties, eg., response time, availability, cost, different non-functional properties might

have different aggregation functions for different compositional structures, and this

poses a major challenge to integrate the non-functional properties into the functional

verification framework.

• It is non-trivial to decompose the response time requirement of the composite service

to component services since there are infinite number of ways for the decomposition

to be done.

In this thesis, we address the above problems and challenges on verification and analysis

of Web service composition. We summarize the contribution of this thesis as follows:
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• We develop an algorithm based on refinement checking [79] to verify the confor-

mance of Web service choreography and Web service orchestration. If these two

views do not match, we further propose an algorithm to repair the Web service or-

chestration, such that after the repairing, Web service orchestration could conform

to the Web service choreography. Abstract languages have been developed for this

work to represent the service orchestration and choreography respectively, such that

other orchestration or choreography languages could be translated to into abstract

languages for conformance checking.

• We provide functional verification for the Web service composition language that is

of the hierarchical concurrent nature. We propose a state-space reduction technique,

called compositional partial order reduction (CPOR), to address the state explosion

problem. CPOR has been shown to provide greater state-space reduction than classic

partial order reduction methods in the context of hierarchical concurrent processes.

Evaluation shows that CPOR is more effective in reducing the state space than classic

partial order reduction methods. As a starting step, this work has been demonstrated

and evaluated using Orc language [60]. The reason is that Orc language has simple

and well-defined formal semantics, therefore the soundness could be easily shown.

• We provide integrated verification of functional and non-functional properties for

Web service composition. To the best of our knowledge, we are the first work on

such integration. We capture the semantics of Web service composition using labeled

transition systems (LTSs) and verify the Web service composition directly without

building intermediate or abstract models before applying verification approaches.

We have evaluated this work using WS-BPEL language [56], which is the de-facto

standard that is widely used for the description for Web service compositions.

• Given the response time of Web service composition, we develop a sound method to

synthesize the local response time requirements for component services in the form
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Figure 1.1: Overall Picture

of a set of constraints. The approach is implementation independent, therefore can

be applied at the design stage of service composition. We have evaluated this work

using WS-BPEL language.

The proposed approaches have been implemented in a series of software components such

as WS module in PAT [84], and have been evaluated in several real-world case studies.

1.2 Overall Picture

Figure 1.1 describes the overall picture of this thesis. This thesis is focused on Web service

composition. There are two important kinds of requirements of Web service composition,

i.e., functional and non-functional requirements. For functional requirements, we check

the conformance between orchestration and choreography and synthesize a prototype or-

chestration from the given choreography. For non-functional requirements, we synthesize

the response time requirement for each component service by given the composite service’s

response time requirement. However, the two kinds of requirements are crucial to Web

service composition, in order to guarantee both aspects, we check the combined functional

and non-functional requirements.
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1.3 Thesis Outline

In this section, we briefly present the outline of the thesis and the overview of each chapter.

Chapter 2 provides the background knowledge of this work. First, we introduce important

features and concepts of Web service composition including service languages and func-

tional and non-functional requirements. Second, model checking techniques are briefly

introduced, and we also introduce properties specification which can be written in the

form of linear temporal logic (LTL).

Chapter 3 presents model-based methods for automatic analysis of Web service compo-

sitions, in particular, linking two different views of Web services. We propose a method

to mechanically synthesize a prototype Web service orchestration from choreography, by

repairing the choreography if necessary and projecting relevant behaviors to each service

provider.

Chapter 4 presents our approach in verifying a Web service composition language that is

of hte hierarchical concurrent nature. We propose a new method, called Compositional

Partial Order Reduction (CPOR), which aims to provide greater state-space reduction than

classic partial order reduction methods in the context of hierarchical concurrent processes.

Evaluation shows that CPOR is more effective in reducing the state space than classic partial

order reduction methods.

Chapter 5 presents integrated functional and non-functional requirements verification of

Web service composition, which makes use of the labeled transition systems (LTSs) directly

from the semantics for functional verification. For non-functional properties, different

strategies are used to integrate different non-functional properties into the functional veri-

fication framework.

Chapter 6 discusses a fully automatic approach to synthesize the response time require-
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ment of component services, in the form of a constraint on the local response times, that

guarantees the global response time requirement. Our approach is based on parameter

synthesis techniques for real-time systems. It has been implemented and evaluated with

real-world case studies.

Chapter 7 summarizes the thesis and discusses future research directions.
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Chapter 2

Background

2.1 SOA and Web Service Composition

2.1.1 SOA and Web Service

The reality in enterprise applications is that the infrastructure is heterogeneous across

operating systems, application infrastructures, and system software. It is a challenging

task to integrate the heterogenous system to work as a whole. In addition, some old

applications are tightly integrated with the existing business processes, and to build a new

application from scratch is not a feasible option. Service Oriented Architecture (SOA) is

proposed to address this problem.

Service Oriented Architecture (SOA) is a set of design principles for system development

and integration. A service is a piece of application’s business logic or individual functions

that are modularized and presented to consumer applications. The major advantage of

9
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Composition WS-CDL, WE-BPEL, Orc

Description WSDL

Message SOAP

Transmission HTTP, FTP, SMTP

Table 2.1: Standards used by Web Services

services is their loosely coupled nature — the interface is independent of the implemen-

tation. SOA with its loose coupling nature allows an enterprise to integrate their existing

applications, and furthermore, to extend with new functionalities easily in response to

business changes with agility. Web services technologies are a realization of SOA based

on internet protocols such as HTTP. It is formally defined as a software system designed to

support interoperable machine-to-machine interaction over a network [3].

The goal of Web service technology is to offer a communication bridge between the het-

erogeneous computational environments. This allows many business operations to be

automated. Furthermore, since the communication is done through the World Wide Web,

Web services could leverage on the ubiquitous internet connectivity for universal reach.

To achieve this goal, a stack of protocols based on open and accepted standards (as shown

in Table 2.1) are used. For example, at the transmission level Web services take advan-

tage of HTTP, which is supported by most Web browsers and servers. Another enabling

technology is XML (Extensible Markup Language) [4]. XML is a widely accepted standard

for storing, carrying, and exchanging data. The core Web service standards comprise of

SOAP, and WSDL, and both are specified in XML format. SOAP (Simple Object Access

Protocol) [5] is a lightweight platform and language neutral communication protocol for

Web services to communicate via standard internet protocols such as HTTP. WSDL (Web

Services Description Language) [6] is used to define the interface of Web services, therefore

the consumer applications know how to access them. Web services are a relatively new

standards. To make it truly based on open and accepted standards, there are many aspects
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of it (such as security) need to be standardized. Therefore, there are a number of WS-*

specifications [1] (e.g. WS-BPEL, WS-Addressing, WS-Security, WS-Resource and so on)

dealing for other aspects of Web service usage: composition, addressing, security, resource

states, and so on. We will focus on Web service composition in this paper, and it is discussed

in the next section 2.1.2.

2.1.2 Web Service Composition

While the technology for creating services and interconnecting them with a point-to-point

basis has achieved a certain degree of maturity, it remains a challenge to integrate multiple

services for complex interactions. Service composition makes use of existing servics based

applications as components to achieve a business goal. The service that is composed by

service composition is called a composite service, and services that the composite service

makes use of are called component services.

2.1.2.1 Service Orchestration and Service Choreography

Web service composition standards are proposed in order to address this challenge. Web

service composition could be categorized into two categories, which are Web service or-

chestration and Web service choreography. Their differences are mainly in their viewpoints

of the composition. Web service orchestration refers to Web service descriptions which take

a local point of view. That is, an orchestration describes collaborations of the Web services

in predefined patterns based on the local decision about their interactions with one another

at the execution level.

A representative is WS-BPEL (short for Web Service Business Process Execution Lan-

guage [56]), which models business processes by specifying the workflows of carrying
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out business transactions. It provides basic activities such as service invocation, and com-

positional activities such as sequential and parallel composition to describe the composition

of Web services.

Another example is Orc [60], which is designed to specify orchestrations and wide-area

computations in a concise and structured manner. It has four concurrency combinators,

which can be used to manage timeouts, priorities, and failures effectively. The stan-

dard operational semantics [93] of Orc support highly concurrent executions of Orc sub-

expressions.

Web service choreography is referred to Web service specification which describes collabo-

ration protocols of cooperating Web service participants from a global point of view. An

example is WS-CDL (short for Web Service Choreography Description Language [27]).

2.1.2.2 Functional and Non-Functional Requirement

There are two kinds of requirements of Web service composition, i.e., functional and non-

functional requirements. Functional requirements focus on the functionalities of the Web

service composition, which detail the operational characteristics that define the overall

behavior of the service. Given a booking service, an example of functional requirements is

that a flight ticket with price higher than $2000 will never be purchased. The non-functional

requirements are concerned with the Quality of Service (QoS).

QoS refers to the ability of the Web service to respond to expected invocations and to

perform them at the level commensurate the mutual expectation of both services’ providers

and consumers. QoS has become an important criterion which determines the usability

and of utility of service.

Non-functional requirements are often recorded in service-level agreements (SLAs), which

is the contractual basis between service consumers and service providers on the expected



2.2. BASICS OF MODEL CHECKING 13

quality of service (QoS) level. Given a booking service, an example of non-functional

requirements is that the service will respond to the user within 4 seconds. Typical non-

functional requirements include response time, availability, cost and so on.

2.2 Basics of Model Checking

Nowadays, testing and debugging have been widely used in programmers. However,

there are often some bugs that are difficult to find, not mention to fix. It is limited for

the ability of most diligent and faithful testing techniques to explore all scenarios and to

find all possible bugs. Testing techniques only can help to find bugs, but not to show

the correctness of the program. One of most prominent quotes from Dijkstra mentioned

that "Program testing can be used to show the presence of bugs, but never to show their

absence!". Software verification [18] is one of the techniques for checking the correctness

of software (i.e., source code), because it automatically traverses all scenarios of the target

system.

Model checking [34] is one approach of software verification. It is an automatic technique

for verifying finite state concurrent systems. Since it is a verification technique that ex-

haustively explores all possible system states, it is feasible for systems with finite states.

The performance of model checking approach is related to the size of the system’s state

space. The process of model checking consists of several tasks. First of all, the system

design is required to be converted into a formalism that can be accepted by model checking

tools. Requirements of the systems are abstracted as logic specifications so that it can be

better understood and verified by model checking tools. One common example of logic

specifications is temporal logic, which can assert how the behavior of the system evolves

over time. If the verification result is negative, users are often provided with a witness

trace (or counterexample). The analysis of the error trace may require modifications to the
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model and repeat the model checking process. Each process of the model checking, namely

modeling, specification and verification, will be explained in the following sections.

2.3 System Modeling

The first step of the model checking is to convert the system design into a formalism that

can be accepted by model checking tools, it is crucial and key to the model checking.

However, sometimes it is not simple due to the limitation of memory and time. We might

need the higher level abstraction and at the same time the important issues should be kept,

unnecessary details are required to be eliminated. Therefore, it is not a simple task to model

the system. For Web services, we may focus on the communication between services, while

ignore the actual contents. In different models, system states may be different in order to

capture the special features of the model.

A system state is a snapshot of the system to capture features of the system at a particular

instant of time, sometimes, we also call it con f iguration. Changes in system state may be

triggered by some action, which we call state transition. A state transition is described by

giving the state before the action, the state after the action and the action. A computation of

the system can be defined by a sequence of finite or infinite sates. We use a state transition

graph called a Kripke structure [28] to model a system formally.

Definition 2.3.1 (Kripke structure). Let AP be a non-empty set of atomic propositions. A Kripke

structure M over a set of atomic propositions AP is a four-tuple M= (S, S0,R, L), where

• S is a finite set of states;

• S0 ⊆ Sis the set of initial states;

• R ⊆ S × S is a transition relation;
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• L : S � 2AP is a function that labels each state with the set of atomic propositions hold in this

state.

2.4 Specification and Verification

Specification is the properties that the system must satisfy. There are many different ways

to describe properties. In the state-based model, one common way to express properties

is temporal logics which can capture the behavior of the system evolve over time. In

our work, we support the linear temporal logic (LTL) formulas. There are two kinds of

properties: safety properties and liveness properties. In this section, we will introduce

these two properties and the algorithms for checking them.

2.4.1 Safety Property

A safety property is a property stating that "something bad does never happen". In other

words, safety properties are used for verifying whether undesirable behaviors will happen

or not. For example, "The temperature of reactor will never exceed 100°C". Intuitively,

a property ϕ is a safety property if each violation of ϕ occurs after a finite execution

of the system. In general, safety specifications include the absence of deadlocks and

unreachability of states that are not supposed to be reached. Deadlock of a state means that

there is no outgoing transitions for the state in a model, which means that terminal state has

been reached. For example, in a mutual exclusion algorithm, there are two processes and

both are waiting for the resource, then the deadlock occurs. Deadlock is common problem

in multiprocessing systems and concurrent systems, where shared resources are usually

restricted to only one process in order to avoid conflict.

To verify safety properties, it is usually to conduct a depth first search (or breadth first
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Operator Name Explanation

ϕ1 ∧ ϕ2 Union Satisfy ϕ1 and ϕ2 at the same time.

Xϕ Next Next state satisfies ϕ.

�ϕ Globally Always satisfy ϕ.

♦ϕ Finally Eventually reach a state satisfy ϕ.

ϕ1
⋃
ϕ2 Until ϕ should hold the subsequent path at least until ϕ2 starts to hold.

Table 2.2: Semantics of LTL

search) in the state space. During the search, if the reached state is undesirable, a coun-

terexample will be given.

2.4.2 Liveness Property

Different from the safety property, a liveness property is a property stating that "something

good eventually happens", and liveness properties are violated in infinite time by infinite

runs, while safety properties are in finite time. In a mutual exclusion algorithm, a liveness

property example is that "each process will eventually access the critical section".

Temporal Logics could be used to express liveness properties. Examples of temporal

logics include Computation Tree Logic (CTL) [31], Linear Temporal Logic (LTL) [82] and

CTL* [32]. In this thesis, we use LTL to model liveness properties.

Definition 2.4.1 (Syntax of LTL). Let P be a set of atomic propositions. A LTL formula is:

ϕ ::= true | false | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | �ϕ | ♦ϕ | ϕ1
⋃
ϕ2, where a∈ P.

As described in Table 2.2, ϕ1∧ϕ2 means properties ϕ1 and ϕ2 are satisfied at the same time.

Xϕ means that ϕ holds on the next state. �ϕ means that ϕ holds on at the all state in the

execution. ♦ϕ means that ϕ is satisfies in some state of the execution. ϕ1
⋃
ϕ2 means that

that ϕ1 has to hold at least until ϕ2 starts to hold.
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By combining the operators, new temporal operators are obtained. For example, �♦ϕ

describes "always eventually ϕ", which stating that at any moment j there is a moment

i ≥ j where ϕ is satisfied. ♦�ϕ describes "eventually always ϕ", which stating that from a

moment j, ϕ is always satisfied in the later execution.

Explicit state model checking converts the system into a automatonM, which represents

a Kripke structure with nodes for states and edges for transitions. In addition, the nega-

tion of LTL specification ϕ is also translated into a corresponding Büchi automaton A¬ϕ.

Subsequently, the emptiness of the product of M and A¬ϕ is checked. If the product is

not empty, then systemM does not satisfy property ϕ, a counterexample will be reported.

Otherwise, property ϕ holds in the system.

On-the-fly model checking [35, 54] is adopted in this thesis to reduce the state space to be

explored. Instead of constructing the automaton forM and A¬ϕ separately, we construct

the property automatonA¬ϕ first, and use that to guide the construction of system automa-

tonM. An advantage of the on-the-fly approach to model checking is that, some states in

system automatonM may never be generated at all. In addition, once a counterexample

is found, there is no need to complete the construction of the product, which could vastly

reduce the time for finding a counterexample.
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Chapter 3

Conformance Checking of Service

Composition

The Web services paradigm promises to enable rich, dynamic, and flexible interoperability

of highly heterogeneous and distributed Web-based platforms. In recent years, many Web

service composition languages have been proposed. There are two different viewpoints,

and correspondingly two terms, in the area of Web service composition. Web service

choreography is usually referred to Web service specification which describes collaboration

protocols of cooperating Web service participants from a global point of view. An example

is WS-CDL (short for Web Service Choreography Description Language [27]). Web service

orchestration refers to Web service descriptions which take a local point of view. That

is, an orchestration describes collaborations of the Web services in predefined patterns

based on local decision about their interactions with one another at the message/execution

level. A representative is WS-BPEL (short for Web Service Business Process Execution

Language [56]), which models business processes by specifying the work flows of carrying

out business transactions.

19
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Informally, a choreography may be viewed as a contract among multiple corporations,

i.e., a specification of requirements (which may not be executable). An orchestration is

the composition of concrete services provided by each corporation who realizes the con-

tract. The distinction between choreography and orchestration resembles the well studied

distinction between sequence diagrams (which describes inter-object system interactions,

taking a global view) and state machines (which may be used to describe intra-object

state transitions, taking a local view). Likewise, there are two important problems to be

addressed.

One is the verification problem, i.e., to verify whether a choreography or an orchestration

is correct with respect to critical system properties or whether they are consistent with

each other. The latter means that the orchestration faithfully implements all and only

what the contract states. The other one is the synthesis problem, i.e., to decide whether

a choreography can be realized by any orchestration (refereed as implementable) and

synthesize a prototype orchestration if possible.

The solutions to both problems are important in the development of Web services. Solving

either problem is however highly non-trivial. Firstly and most importantly, choreography

and orchestration are generally modeled in different languages/formalisms, and choreogra-

phy models are even not executable, Hence, there is natural gap between the two views. To

perform effective analysis on the two views, we need to bridge the gap. Secondly, ideally it

is sufficient to verify a single Web service invocation which is independent of other service

invocations. In reality, this is often not true because of physical constraints (see [43], like

the number of Web service instances are bounded by the thread pool size of the underlying

operating system). As a result, multiple service invocations must be verified as a whole.

Because Web services are designed for potentially large number of users (who may invoke

the services simultaneously), verifying Web services based on model checking techniques

must cope with state space explosion due to concurrent service invocations. Lastly, synthe-
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sizing orchestration from choreography resembles the distributed synthesis problem (e.g.,

in the setting of sequence diagrams), which has been shown to be undecidable in general

and in many restrictive settings [75]. Worse, synthesizing a distributed object system with

the exact behaviors is impossible if there are implied scenarios [13]. Both results apply to

Web service choreography (see examples later).

In this work, we offer practical solutions to both problems using a model based approach.

First of all, we propose formal languages for modeling choreography and orchestration

respectively with formal operational semantics. This creates a unified semantics model for

the two views, which allows communications between choreography and orchestration

models. To make them practical, these languages cover many language constructs for Web

service compositions (i.e., behavioral aspects of WS-CDL and WS-BPEL).

In order to verify Web services under physical constraints, on-the-fly model checking

techniques are adopted and extended specially to handle multiple concurrent service in-

vocations. Consistency between choreography and orchestration is verified by showing

conformance relationship (i.e., trace inclusion) between the choreography and the orches-

tration. Based on the refinement checking [79], we develop a verification algorithm to

support data communications between choreography and orchestration, which allows or-

chestration to drive the execution of (non-executable) choreography. It is further optimized

for Web services.

In order to deal with undecidability of the synthesis problem, we adopt a scalable lightweight

approach. We do not claim to solve the problem completely, instead, we present a practical

way to avoid undecidability. That is, instead of semantically checking whether a chore-

ography is distributively implementable or not, we apply static analysis (based on the

syntax) to check whether the choreography satisfies certain sufficient condition for being

implementable. If positive, a synthesis procedure is invoked to automatically generate an

orchestration prototype. Otherwise, we go further by using a repairing process to generate
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an implementable choreography by inserting communications between service providers.

The repaired choreography may provide hints on how to correct the original one. Lastly,

our engineering efforts have realized the methods in a toolkit named WS@PAT (avail-

able at http://pat.comp.nus.edu.sg), which is a self-contained framework for Web service

modeling, simulation, verification and synthesis.

Chapter Outline. Section 3.1 presents the modeling language. Given a choreography and

an orchestration, Section 3.2 shows an approach of checking their consistency. Given the or-

chestration is not consistent with the choreography, Section 6 introduces our methodology

in synthesizing a new orchestration that is consistent with the choreography, provided that

the choreography satisfies certain conditions. Section 3.4 demonstrates the implementation

of our methods. Section 3.5 surveys the related work.

3.1 Modeling

In this section, we present modeling languages which are expressive enough to capture all

core features of Web service choreography and orchestration. There are two reasons for

introducing intermediate modeling languages for Web services.First, heavy languages like

WS-CDL or WS-BPEL are designed for machine consumption and therefore are lengthy

and complicated in structure. Moreover, there are mismatches between WS-CDL and WS-

BPEL. For instance, WS-CDL allows channel passing whereas WS-BPEL does not. The

intermediate languages focus on the interactive behavioral aspect. The languages are

developed based on previous works of formal models for WS-CDL and WS-BPEL [27, 78,

76]. Second, based on the intermediate languages and their semantic models (namely,

labeled transition systems), our verification and synthesis approaches is not bound to one

particular Web service language. For instance, newly proposed orchestration languages

like Orc [60] is also supported in our tool. This is important because Web service languages
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evolve rapidly. Being based on intermediate languages allows us to quickly cope with new

syntaxes or features (e.g., by tuning the preprocessing component).

3.1.1 Choreography: Syntax and Semantics

The following is the core syntax for modeling interactive behaviors of Web service chore-

ography, e.g., in WS-CDL.

I ::= Stop | Skip inaction and termination
| svr(A, B, c̃h)→I service invocation
| svr(A, B, exp)→I channel commmunication
| x := exp; I assignment
| if b I else J conditional
| I � J choice
| I ||| J service interleaving
| I; J sequential

Table 3.1: Syntax of Choreography

In WS@PAT, we support user-defined data types and dynamic invocation of C# library and

hence modeling data components of Web services are feasible. For simplicity, we skip de-

tails on data variables in this paper. LetI (short of interaction),J be terms of choreography.

Let A,B range over Web service roles; ch range over communication channels; svr range

over a set of pre-setup service invocation channels (refer to discussion later); c̃h denote a

sequence of channels; x range over variables; exp be an expression and b be a predicate over

only the variables.

We assume that each role is associated with a set of local variables and there are no globally

shared variables among roles. This is a reasonable assumption as each role (which is a

service) may be realized in a remote computing device. Informally, svr(A,B, c̃h), where svr

is pre-defined service invocation channel, states that role A invokes a service provided by

role B through channel svr. A service invocation channel is the one that is registered with
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1. BuySell() = B2S(Buyer, Seller, {Bch})→ Session();
2. Session() = Bch(Buyer, Seller, QuoteRequest)→ Bch(Seller, Buyer, QuoteResponse.x)→
3. if (x ≤ 1000) {
4. Bch(Buyer, Seller, QuoteAccept)→ Bch(Seller, Buyer, OrderConfirmation)→
5. S2H(Seller, Shipper, {Bch, Sch})→
6. (Sch(Shipper, Seller, DeliveryDetails.y)→ Stop ||| Bch(Shipper, Buyer, DeliveryDetails.y)→ Stop)
7. } else { Bch(Buyer, Seller, QuoteReject)→ Session() � Bch(Buyer, Seller, Terminate)→ Stop };

Figure 3.1: A sample choreography

a service repository so that the service is subject for invocation. c̃h is a sequence of session

channels which are created for this service invocation only. Notice that because the same

service shall be available all the time, service channel svr is reserved for service invocation

only. ch(A,B, exp) where ch is a session channel states that role A sends the message exp to

role B through channel ch.

x := exp assigns the value of exp to variable x. Without loss of generality, we always

require that the variables constituting exp and x must be associated with the same role. If b

evaluates to true, i f b I else J behaves as I, otherwise J . Given a variable x (a condition

b), we write role(x) (role(b)) to denote the associated role. I � J is an unconditional choice

(i.e., choice of two unguarded working units in WS-CDL) between I andJ , depending on

whichever executes first. I|||J denotes two interactions running in parallel. Notice that

there are no message communications between I andJ . Two choreographies executing in

a sequential order is written as I;J . We remark that recursion is supported by referencing

a choreography name.

The syntax above is expressive enough to capture the core Web service choreography

features. For instance, channel passing is supported as we are allowed to transfer a

sequence of channels on service invocation. Fig. 3.1 presents a choreography of an online

store. The choreography coordinates three roles (i.e., Buyer, Seller and Shipper) to complete

a business transaction among two pre-defined services channel B2S and S2H. At line 1,

the Buyer communicates with the Seller through service channel B2S to invoke its service.
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1. BuySell() = B2S(Buyer, Seller, {Bch}) → Session();

2. Session() = Bch(Buyer, Seller, QuoteRequest) → Bch(Seller, Buyer, QuoteResponse.x) →
3. if (x <= 1000) {
4. Bch(Buyer, Seller, QuoteAccept) → Bch(Seller, Buyer, OrderConfirmation) →
5. S2H(Seller, Shipper, {Bch, Sch}) →
6. (Sch(Shipper, Seller, DeliveryDetails.y) → Stop ||| Bch(Shipper, Buyer, DeliveryDetails.y) → Stop)

7. } else { Bch(Buyer, Seller, QuoteReject) → Session() 2 Bch(Buyer, Seller, Terminate) → Stop };

Figure 1. A sample choreography

[ inv1 ]

(svr(A, B, c̃h) → I, V)
svr!c̃h→ (svr?(B, c̃h) → I ||| svr(A, B, c̃h) → I, V)

[ inv2 ]

(svr?(B, c̃h) → I, V)
svr?c̃h→ (I, V)

[ ch1 ]

(ch(A, B, exp) → I, V)
ch!v→ (ch?(B, v) → I, V)

[ ch2 ]

(ch?(B, v) → I, V)
ch?v→ (I, V)

eval(exp, V) = v
[ assign ]

(x := exp; I, V)
τ→ (I, V ′ ⊕ x 7→ v)

(I, V)
e→ (I′, V ′), eval(b, V) = true

[ b1 ]
(if b I else J , V)

e→ (I, V ′)

(J , V)
e→ (J ′, V ′), eval(b, V) = false

[ b2 ]
(if b I else J , V)

e→ (J , V ′)

(I, V)
e→ (I′, V ′)

[ choice1 ]
(I 2 J , V)

e→ (I′, V ′)

(J , V)
e→ (J ′, V ′)

[ choice2 ]
(I 2 J , V)

e→ (J ′, V ′)

(I, V)
e→ (I′, V ′)

[ inter1 ]
(I ||| J , V)

e→ (I′ ||| J , V ′)

(I, V)
e→ (I′, V ′)

[ inter2 ]
(I ||| J , V)

e→ (I′ ||| J , V ′)

(I, V)
e→ (I′, V ′), e 6= X

[ seq1 ]
(I; J , V)

e→ (I′; J , V ′)

(J , V)
X→ (J ′, V ′)

[ seq2 ]
(I; J , V)

τ→ (J , V ′)

Figure 2. Choreography structural operational semantics: where X is the special event of termination

request is ready to be received. At the same time, a copy of
the choreography is forked. This is because a service may be
invoked multiple times, possibly simultaneously, by different
service users and all service invocations must conform to
the choreography. In fact, in the standard practice of Web
services, a service is embodied by a shared channel in the
form of URLs or URIs through which many users can throw
their requests at any time. For instance, different processes
acting as Buyers may invoke the service provided by the
Seller. All Buyers must follow the communication sequence.
Furthermore, in order to match the reality, we assume that
both service invocation and channel communication are
asynchronous in this work. As a result, service invocation
(or channel communication) is divided into two events, i.e,
the event of issuing a service invocation (or channel output)
and the event of receiving a service invocation (or channel
input). This is captured by rules inv1, inv2, ch1 and ch2.
For simplicity, we assume that a function eval returns the
value of an expression exp given the valuation of variables
V . Rule assign updates variable valuations. The rest of the

rules resembles those for the classic CSP [15]. Notice that
an assignment results in a invisible transition (written as τ ).
Only communication are visible.

Given a choreography I, we build a Labeled Transition
System (LTS) (S, init, T) where S is the set of reachable
configurations, init is the initial state (i.e., the initial chore-
ography and the initial valuation of the variables) and T
is a labeled transition relation defined by the semantics
rules. A run of the LTS is a finite sequence of alternating
configurations/events 〈s0, e0, s1, e1, · · · , en−1, sn〉 such that
s0 is init and (si, ei, si+1) ∈ T for all i : 0. .n. A trace of I is a
finite sequence of events 〈e0, e1, · · · , ek〉 if and only if there
is a run of the LTS 〈s0, x0, s1, x1, · · · , xn−1, sn〉 such that
〈x0, · · · , xn−1〉 ¹ {τ} = 〈e0, · · · , ek〉 where ¹ is the filtering
operation to remove all τ transitions (i.e., invisible events).
The set of all finite traces of I is denoted as traces(I).

In order to verify properties about the choreography, we
use model checking techniques to explore all traces of the
transition system. One complication is that the choreogra-
phy’s behavior may depend on environmental input which

Figure 3.2: Choreography structural operational semantics: whereX is the special event of
termination

Channel Bch which is sent along the service invocation is to be used as a session channel for

the session only. In the Session, the Buyer firstly sends a message QuoteRequest to the Seller

through channel Bch. At line 2, the Seller responds with some quotation value x, which

is a variable. Notice that in choreography, the value of x may be left unspecified at this

point. At line 5, the Seller sends a message through the service channel S2H to invoke a

shipping service. Notice that the channel Bch is passed onto the Shipper so that the shipper

may contact the Buyer directly. At line 6, the Shipper sends delivery details to the Buyer and

Seller through the respective channels. The rest is self-explanatory.

In this work, we focus on the operational semantics. Given a choreography model, a system

configuration is a 2-tuple (I,V), where I is a choreography and V is a mapping from the

variables to their values, i.e., from data variables to their valuations or from channel

variables to channel instances. A transition is expressed in the form of (I,V) e
→ (I′,V′).

The transition rules are presented in Fig. 3.2. Rule inv1 captures service invocation, where

event svr!c̃h occurs. Afterwards, rule inv2 becomes applicable so that the service invoking
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request is ready to be received. At the same time, a copy of the choreography is forked. This

is because a service may be invoked multiple times, possibly simultaneously, by different

service users and all service invocations must conform to the choreography. In fact, in

the standard practice of Web services, a service is embodied by a shared channel in the

form of URLs or URIs through which many users can throw their requests at any time.

For instance, different processes acting as Buyers may invoke the service provided by the

Seller. All Buyers must follow the communication sequence. Furthermore, in order to

match the reality, we assume that both service invocation and channel communication are

asynchronous in this work. As a result, service invocation (or channel communication) is

divided into two events, i.e, the event of issuing a service invocation (or channel output)

and the event of receiving a service invocation (or channel input). This is captured by rules

inv1, inv2, ch1 and ch2. For simplicity, we assume that a function eval returns the value of an

expression exp given the valuation of variables V. Rule assign updates variable valuations.

The rest of the rules resembles those for the classic CSP [52]. Notice that an assignment

results in a invisible transition (written as τ). Only communication are visible.

Given a choreography I, we build a Labeled Transition System (LTS) (S, init,T) where S is

the set of reachable configurations, init is the initial state (i.e., the initial choreography and

the initial valuation of the variables) and T is a labeled transition relation defined by the

semantics rules. A run of the LTS is a finite sequence of alternating configurations/events

〈s0, e0, s1, e1, · · · , en−1, sn〉 such that s0 is init and (si, ei, si+1) ∈ T for all i : 0..n. A trace

of I is a finite sequence of events 〈e0, e1, · · · , ek〉 if and only if there is a run of the LTS

〈s0, x0, s1, x1, · · · , xn−1, sn〉 such that 〈x0, · · · , xn−1〉 � {τ} = 〈e0, · · · , ek〉 where � is the filtering

operation to remove all τ transitions (i.e., invisible events). The set of all finite traces of I

is denoted as traces(I).

In order to verify properties about the choreography, we use model checking techniques

to explore all traces of the transition system. One complication is that the choreography’s
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behavior may depend on environmental input which is only known during runtime with

the execution of an orchestration. For instance, the price quote provided by the Seller is

unknown given only the choreography in Fig. 3.1. We discuss this issue in Section 3.2.

3.1.2 Orchestration: Syntax and Semantics

P ::= Stop | Skip primitives
| inv!c̃h→ P service invoking
| inv?x̃→ P service being invoked
| ch!exp→ P channel output
| ch?x→ P channel input
| x := exp; P conditional branching
| if b P else Q service interleaving
| P � Q orchestration choice
| P 4 Q interrupt
| P ||| Q interleaving
| P; Q sequential

Table 3.2: Syntax of Orchestration

A Web service orchestration O is composed of multiple roles, each of which is specified

as an individual process defined using the syntax above. A slightly different syntax is

used to build orchestration models. The reason is that orchestration takes a local view

and therefore all primitive actions are associated with a single role. Let P and Q be the

processes, which describe behaviors of a role.

Process inv!c̃h→ P invokes a service (e.g., <invoke> in BPEL) through service channel inv

and then behaves as specified by P. Or a service can be invoked by inv?x̃ → P where x̃ is

a sequence of channel variables which store the received channels. A process may send

(receive) a message through a channel ch by ch!exp → P (ch?x → P). Further, choice �

and interrupt 4 can be used to model event/exception handler in languages like BPEL, e.g.

LoginProgram 4 LoginExceptionHandler. To match the reality, we always assume that the

communication channels between different processes are asynchronous (and with a fixed
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buffer size) in this work. The rest are similar to those of choreography.

Similarly, we define the operational semantics. Let VA be the valuation of the variables

associated with the role A. Let C be a valuation function of the channels, which maps a

channel to the sequence of items in the buffer. C is a set of tuples of the form c 7→ ˜msg. A

configuration of the process is a 3-tuple (P,VA,C). The firing rules are skipped for the sake

of space. We remark that as in choreography, service invocation in orchestration forks a

new copy of the service and thus allows potentially many concurrent service invocations.

In reality, however, the number of overlapping service invocations is bounded by the

maximum number of threads the underlying operating system allows [43]. In next section,

we discuss how to capture this constraint and at the same time perform efficient verification.

Because an orchestration is the cooperation of multiple roles or processes, behaviors of the

processes must be composed in order to obtain the global behavior. Assume that P plays

the role A in the orchestration is written as P@A. Given two processes, e.g., P and Q, playing

different roles, e.g., A and B, the composition is P@A ||Q@B. The semantic rules for process

composition is straightforward, i.e., a global step is constituted of a local step by either P or

Q. Following the rules, given an orchestration with multiple roles, each of which is specified

as a process defined above, we may build a LTS. The executions of the orchestration equal

to the executions the LTS. Similarly, we define traces of an orchestration as τ-filtered traces

of the LTS. Given an orchestration O, let traces(O) be the set of finite executions.

Fig. 3.3 presents an orchestration which implements the choreography in Fig. 3.1. Each role

is implemented as a separate component. Each component contains variable declarations

(optional) and process definitions. We assume that the process Main defines the compu-

tational logic of the role after initialization. We remark that the orchestration generally

contains more details than the choreography, e.g., the variable counter in Buyer constraints

the number of attempts the buyer would try before giving up.



3.2. VERIFICATION 29

Role Buyer {var counter = 0;

Main() = B2S!{bch} → Session();

Session() = bch!QuoteRequest → counter++; bch?QuoteResonse.x →
if (x <= 1000){ bch!QuoteAccept → bch?OrderConfirmation → bch?DeliveryDetails.y → Stop }
elseif (counter > 3) {bch!QuoteReject → Session()} else {Stop}; }

Role Seller {var x = 1200;

Main() = B2S?{ch} → Session();

Session() = ch?QuoteRequest → ch!QuoteResonse.x → (ch?QuoteAccept → ch!OrderConfirmation →
S2H!{ch, Sch} → Sch?DeliveryDetails.y → Stop 2 ch?QuoteReject → Session()); }

Role Shipper {var detail = “20/10/2009”;

Main() = S2H?{ch1, ch2} → (ch1!DelieryDetails.detail → Stop ||| ch2!DelieryDetails.detail → Stop); }

Figure 3. A simple orchestration

Firstly, the algorithm is improved with partial order reduc-
tion, to reduce the number of possible interleaving (particu-
larly for orchestration). Events performed by single service
role (e.g., local variable updates in service choreography
or orchestration) are often independent with the rest of the
system and hence are subject to reduction. During model
checking, if a local action which results in a τ -transition is
enabled (together with actions performed by other roles), we
only expand the system graph using this action and postpone
the rest. By this way, we build a smaller LTS and therefore
checks deadlock-freeness or LTL more efficiently. For refine-
ment checking, we apply this reduction in two ways. One is
to apply partial order reduction separately to invisible events
of either the choreography or the orchestration. Notice that
this reduction is trace preserving and therefore is sound for
refinement checking.

Secondly, by a simple argument, it can be shown that |||
is symmetric and associative. Naturally, different invocations
of the same Web service are similar or even identical. By
the above laws, the interleaving of multiple choreographes
can be sorted (in certain fixed ordering) without changing
the system behaviors. Therefore, if the choreography is in
the form of I ||| · · · ||| I ||| · · ·, it is equivalent whether the
first I makes a transition or the second does. For verification
of deadlock-freeness, safety or liveness properties, it is thus
sound to pick one of the transitions and ignore the others.
In general, this reduction could reduce the number of states
up to the factor of N! where N is the number of identical
components. This reduction is inspired by research on model
checking parameterized systems [17] and [10].

There are a number of other algebraic laws which may
help to reduce the number of states (e.g., I 2 J = J 2 I).
Nonetheless, it is a balance between the computational
overhead (for the additional checking) and gain in state
reduction. In our implementation (refer to Section V), a
set of specially chosen algebraic laws are used to detect
equivalence of system configurations.

IV. PROTOTYPE SYNTHESIS

Given a choreography as a contract among multiple
organizations, it is vital to guarantee that not only the
contract is implementable but also it can be implemented
in a non-ambiguous way. The synthesis problem of the
classic sequence diagrams has been studied extensively [2],
[6]. The negative results apply to the synthesis problem
of Web service choreography. For instance, the following
demonstrates the problem of implied scenarios in the setting
of choreography. Assume that ch is an asynchronous session
channel (with buffer size more than 2), A and B are two
participating roles and M1, M2 are two messages.

Iexa = (ch(A, B, M1) → ch(B, A, M2) → Stop)

2 (ch(B, A, M1) → ch(A, B, M2) → Stop)

The specification states that either A sends M1 to B first and
then B responds by M2, or the system works the other way
around. Exactly as in the setting of sequence diagram [2],
the above choreography I is not implementable because any
distributed implementation would allow the following trace,

〈ch!M1, ch!M2, ch?M2, ch?M1〉

where ch!M1 is the event of (A) sending message M1.
Exactly telling whether a choreography is implementable

or synthesizing a minimally restrictive prototype is expen-
sive. Therefore, we follow and extend the work presented
in [8], to check whether the choreography satisfies a suffi-
cient condition for implementability, by syntactic analysis.
We check whether the choreography is strongly connected
(or well threaded [8]), which intuitively means whether
there is sufficient communication between the service roles
so that the choreography is implementable. In general,
there are choreographies which are not strongly connected
but implementable. Nevertheless, strongly-connectedness re-
mains a desirable property. If a choreography is strongly
connected, a sound prototype orchestration may be generated
by projecting the relevant behaviors to the respective role.
If the choreography is not strongly connected, we then offer
to repair the choreography to make it strongly connected.

Figure 3.3: A simple orchestration

3.2 Verification

An orchestration can be verified against critical system properties like temporal properties

or a choreography. We remark that service verification is performed under the physical

constraints (e.g., a service may be blocked after the thread pool is full) in this work. In

WS@PAT, we support full LTL formulae composed of propositions on data variables or

events (e.g., a channel input/output, a local action, etc.). We adapt the automata-based

on-the-fly approach to verify LTL formulae, i.e., by firstly translating a formula to a Büchi

automaton and then check emptiness of the product of the system and the automaton. The

details can be found in [84].

In the following, we define conformance between a choreography and an orchestration

based on trace refinement and present an approach to verify it by showing refinement

relationships. An orchestration O is valid w.r.t. a choreography I if and only if O refines I

i.e., traces(I) ⊆ traces(I). As discussed above, both choreography and orchestration can be

translated into LTSs. By the assumption that both the ranges of the variables and sizes of

channels are finite and the number of concurrent service invocations are bounded, the LTSs

have finite number of states. As a result, we can extend the refinement checking algorithm

proposed in [79] to do the conformance checking.
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A main challenge for verifying practical Web services by model checking is state space

explosion. There are multiple causes of state space explosion. Two of them are 1) the nu-

merous different interleaving of processes executing concurrently in service orchestration

and 2) the large number of concurrent service invocations. In the following, we discuss

two optimization techniques which have been adopted to cope with the above issues.

Firstly, the algorithm is improved with partial order reduction, to reduce the number of

possible interleaving (particularly for orchestration). Events performed by single service

role (e.g., local variable updates in service choreography or orchestration) are often in-

dependent with the rest of the system and hence are subject to reduction.During model

checking, if a local action which results in a τ-transition is enabled (together with actions

performed by other roles), we only expand the system graph using this action and postpone

the rest. By this way, we build a smaller LTS and therefore checks deadlock-freeness or

LTL more efficiently. For refinement checking, we apply this reduction in two ways. One

is to apply partial order reduction separately to invisible events of either the choreography

or the orchestration. Notice that this reduction is trace preserving and therefore is sound

for refinement checking.

Secondly, by a simple argument, it can be shown that ||| is symmetric and associative.

Naturally, different invocations of the same Web service are similar or even identical. By

the above laws, the interleaving of multiple choreographes can be sorted (in certain fixed

ordering) without changing the system behaviors. Therefore, if the choreography is in the

form of I||| · · · |||I||| · · · , it is equivalent whether the first Imakes a transition or the second

does. For verification of deadlock-freeness, safety or liveness properties, it is thus sound to

pick one of the transitions and ignore the others. In general, this reduction could reduce the

number of states up to the factor of N! where N is the number of identical components. This

reduction is inspired by research on model checking parameterized systems [55] and [40].

There are a number of other algebraic laws which may help to reduce the number of states
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(e.g., I�J = J�I). Nonetheless, it is a balance between the computational overhead

(for the additional checking) and gain in state reduction. In our implementation (refer

to Section 3.4), a set of specially chosen algebraic laws are used to detect equivalence of

system configurations.

3.3 Prototype Synthesis

Given a choreography as a contract among multiple organizations, it is vital to guarantee

that not only the contract is implementable but also it can be implemented in a non-

ambiguous way. The synthesis problem of the classic sequence diagrams has been studied

extensively [13, 25]. The negative results apply to the synthesis problem of Web service

choreography. For instance, the following demonstrates the problem of implied scenarios

in the setting of choreography. Assume that ch is an asynchronous session channel (with

buffer size more than 2), A and B are two participating roles and M1,M2 are two messages.

Iexa = (ch(A, B, M1) → ch(B,A,M2) → Stop)

� (ch(B, A, M1) → ch(A, B, M2) → Stop)

The specification states that either A sends M1 to B first and then B responds by M2, or the

system works the other way around. Exactly as in the setting of sequence diagram [13],

the above choreography I is not implementable because any distributed implementation

would allow the following trace,

〈ch!M1, ch!M2, ch?M2, ch?M1〉

where ch!M1 is the event of (A) sending message M1.

Exactly telling whether a choreography is implementable or synthesizing a minimally

restrictive prototype is expensive. Therefore, we follow and extend the work presented
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Stop . X = Skip . X = Stop
(svr(A, B, c̃h)→I) . A = svr!(A, c̃h)→ (I . A)
(svr(A, B, c̃h)→I) . B = svr?(B, c̃h)→ (I . B)
(svr(A, B, c̃h)→I) . X = I . X - if X < {A,B}
(ch(A, B, exp)→I) . A = ch!(A, exp)→ (I . A)
(ch(A, B, exp)→I) . B = ch?(B, exp)→ (I . B)
(ch(A, B, exp)→I) . X = I . X - if X < {A,B}
(x := exp; I) . X = x := exp; (I . X) - if X = role(x)
(x := exp; I) . X = I . X - if X , role(x)
(if b I else J) . X = if b (I . X) else (J . X) - if X = role(b)
(if b I else J) . X = (I . X) � (J . X) - if X , role(b)
(I � J) . X = (I . X) � (J . X)
(I ||| I) . X = (I . X) ||| (J . X)
(I; J) . X = (I . X) ; (J . X)

Figure 3.4: Choreography to orchestration projection function

in [27], to check whether the choreography satisfies a sufficient condition for implementabil-

ity, by syntactic analysis. We check whether the choreography is strongly connected (or well

threaded [27]), which intuitively means whether there is sufficient communication between

the service roles so that the choreography is implementable. In general, there are chore-

ographies which are not strongly connected but implementable. Nevertheless, strongly-

connectedness remains a desirable property. If a choreography is strongly connected, a

sound prototype orchestration may be generated by projecting the relevant behaviors to

the respective role. If the choreography is not strongly connected, we then offer to repair

the choreography to make it strongly connected.

In the following, we present our approach in details. Firstly, we define a projection function

which extracts relevant behaviors of a role from a choreography. Let I be a choreography.

The projection of I onto role X is written as I . X, which is defined by the rules presented

in Fig. 3.4. We highlight that a conditional choice is projected to an unconditional choice if

the condition is independent of variables associated with the role.

Ideally, given A,B, · · · ,X as the roles I, I . A||I . B|| · · · ||I . X shall be trace-equivalent to
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init(Stop) = init(Skip) = ∅
(init(svr(A, B, c̃h)→I) = {A}
init(ch(A, B, exp)→I) = {A}
init(x := exp; I) = {role(x)}
init(if b I else J) = {role(b)}
init(I � J) = init(I) ∪ init(J)
init(I ||| J) = init(I) ∪ init(J)
init(I; J) = init(I)

Figure 3.5: Definition of Initiating Roles

I.This is not true for many reasons. For instance, assume thatI is as follows, svr(A, B, c̃h1) →

svr(C,D, c̃h2) → Stop It is easy to show that I . A||I . B||I . C||I .D allows more behaviors

that I does. The reason is that the two interactions involve different roles and therefore

it is impossible to ensure the global ordering without introducing extra communication.

Another example is Iexa, as shown above. In order to handle all choreographes and keep

the synthesis algorithm simple, we take an alternative approach. We firstly define the

sufficient conditions which guarantee the soundness of the projection and then discuss

how to solve the problem if the conditions are not met.

Definition 3.3.1 (Initiating roles). Let I be a choreography. The set of initiating roles of I,

written as init(I), is defined in Figure 3.5. Similarly, we define the terminating roles of I, written

as term(I), i.e., the roles participating in the last event of I.

Definition 3.3.2 (Strongly-connectedness). Let I be a choreography. I is strongly connected if

and only if it can be inductively deduced from the following rules,

• Stop and Skip are strongly connected.

• svr(A,B, c̃h) → I is strongly connected if and only if init(I) = {B}, and I is strongly

connected.

• ch(A,B, exp) → I is strongly connected if and only if init(I) = {B}, and I is strongly

connected.
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• x := exp;I is strongly connected if and only if {role(x)} = init(I), andI is strongly connected.

• i f b I else J is strongly connected if and only if both I and J are strongly connected, and

{role(b)} = init(I) = init(J).

• I�J is strongly connected if and only if init(I) = init(J), and both I and J are strongly

connected.

• I|||J is strongly connected if and only if both I and J are strongly connected.

• I;J is strongly connected if and only if both I andJ are strongly connected and there exists

role A such that {A} = term(I) = init(J).

Intuitively, a choreography is strongly connected if there is no “gap” between two consec-

utive statements. By definition, strongly connectedness can be checked syntactically and

the complexity is linear in the size of the choreography. For instance, it is straightforward

to verify that the choreography Iexa (presented above) is not strongly connected because

the two choices have different initiating roles. The choreography presented in Fig. 3.1 is

not strongly connected because of the “gap” between the first two messages.

B2S(Buyer,Seller, {Bch})Bch(Buyer,Seller,QuoteRequest)

The last role participated in the first message is Seller, whereas the initiating role of the

second message is Buyer. We remark that if message sending/receiving is synchronous,

then this choreography becomes “strongly connected”. This can be repaired by adding an

acknowledge message from Seller to Buyer in between.

Theorem 3.3.3. Let I be a choreography. Let A,B, · · · ,X be the roles participating in I. Let

O be an orchestration such that O = I . A||I . B|| · · · ||I . X. If I is strongly connected, then

traces(O) = traces(I). �
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R(Stop, S, E) = Stop -if I is Stop;
R(Skip, S, E) = Skip -if S = E;
R(Skip, S, E) = ch1(S,E, ∗)→ Skip -if S , E;
R(svr(A, B, c̃h)→I, S, E) = svr(A, B, c̃h)→R(I, B, E) -if S = A;
R(svr(A, B, c̃h)→ I, S, E) = ch1(S, A, *)→ svr(A, B, c̃h)→R(I, B, E) -if S , A;
R(ch(A, B, exp)→I, S, E) = ch(A, B, exp)→R(I, B, E) -if S = A;
R(ch(A, B, exp)→I, S, E) = ch1(S, A, *)→ ch(A, B, exp)→R (I, B, E) -if S , A;
R(x:=exp; I, S, E) = x:=exp; R(I, S, E) -if S = role(x);
R(x:=exp; I, S, E) = ch1(S, role(x), *)→ x:=exp; R(I, S, E) -if S , role(x);
R(if b I else J , S, E) = if b R(I, S, E) else R(J , S, E) -if S = role(b);
R(if b I else J , S, E) = ch1(S, role(b), *)→ if b R(I, S, E) else R(J , S, E) -if S , role(b);
R(I � J , S, E) = R(I, S, E) � R(J , S, E) -if S ∈ init(I�J)
R(I � J, S, E) = ch1(S, X, *)→ (R(I, S, E) � R(J , S, E)) -if S < init(I�J)

and X ∈ init(I�J)
R(I 9 J , S, E) = R(I, S, E) 9 R(J , S, E) -if S ∈ init(I 9J)
R(I 9 J, S, E) = ch1(S, X, *)→ (R(I, S, E) 9 R(J , S, E)) -if S < init(I 9J)

and X ∈ init(I 9J)
R(I; J , S, E) = R(I, S, X); R(J , X, E) -X ∈ init(J).

Figure 3.6: Choreography repair function

The theorem states that strongly-connectedness serves as a sufficient condition for the

correctness of the projection function presented in Fig. 3.4. It can be proved by structural

induction. We skip the proof in this paper.

Strongly-connectedness allows to apply fully automated synthesis in a straightforward

way. Nonetheless, because it requires all messages must be connected, e.g., a message

output must be followed by an acknowledgement. Choreography drafts may not often

be strongly connected. It is not very helpful if we simply claim a choreography is bad.

Hence, we provide a method to automatically repair choreographies which are not strongly

connected. The idea is to insert extra communications in order to fill the “gaps”.

Let S (for starting role), E (for ending role) be two roles. Let R be the repairing function.

Fig. 3.6 shows how R calculates a refined choreography in a compositional way. Notice

that we assume ch1 is a channel between the sending role and receiving role and * is any

message.
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Theorem 3.3.4. Let I be an arbitrary choreography. Let start be a role in init(I). Let end be a role

in term(I). R(I, start, end) is strongly connected. �

The proof of the theorem is straightforward. By theorem 3.3.4, we may then apply the

projection and generate a prototype orchestration. For instance, choreography Iexa will be

modified as follows,

(ch(B,A, ∗)→ ch(A,B,M1)→ ch(B,A,M2)→ Stop)

�(ch(B,A,M1)→ ch(A,B,M2)→ Stop)

The following orchestration can then be generated

((ch!∗ → ch?M1 → ch!M2 → Stop)

�(ch!M1 → ch?M2 → Stop))@B

‖ ((ch?∗ → ch!M1→ ch?M2 → Stop)

�(ch?M1 → ch!M2 → Stop))@A

It can be shown that the generated orchestration above is equivalent to the repaired chore-

ography. We remark it is wasteful to simply tell that a choreography is not implementable

without telling how to correct it. Our method gives the best effort to help users. By comparing

the repaired choreography and the original one, users are essentially presented why the

original one is not implementable, and better, an easy way to correct it. In our toolkit,

we offer other syntactic analysis as well, e.g., all kinds of well-formness. For instance,

depending whether a channel is to be used once or multiple times (which can be specified

in WS-CDL document), we can check whether a violation is possible during runtime.

In our formalism and Web-service composition languages such as WS-CDL, we may request

the service channel principle. That is, service channels are intended to be repeatedly invocable

and be always available to those who know the port names. Syntactically, this requires

that inv?x̃ shall not be preceded in every processes. The synthesized service, however,

may not satisfy this principle. We perform a simple checking and give a warming message

if the generated orchestration violates the principle. It is our future work to identify the
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ways of generating orchestration which does satisfy the principle from a maximum set of

choreographes.

3.4 Implementation and Evaluation

The methods discussed in previous sections have been realized in a toolkit named WS@PAT.

WS@PAT is developed as a self-contained module in the PAT (Process Analysis Toolkit)

framework, which is designed for supporting multiple domain specific modeling lan-

guages. WS@PAT has four main components, i.e., an editor with advanced editing features,

a simulator which can be used to simulate the Web service models in different ways (e.g., in-

teractive simulation, automated random simulation, generation of state graph, etc.), a veri-

fier which integrates different model checking algorithms for different properties and a syn-

thesizer which performs choreography repairing and orchestration generation. WS@PAT

has been applied to multiple case studies, including ones from http://www.oracle.com/ and

from [27, 78]. We are currently applying WS@PAT to several large WS-CDL and WS-BPEL

models. Notice that our approach for synthesis is based on syntactic analysis and therefore

scales up for large Web service models. We thus demonstrate the scalability of our verifi-

cation approach, using two models. One is the online store example presented in Fig. 3.1

and Fig. 3.3. Instead of one buyer and one service invocation, we amend the model so that

multiple users are allowed to use the services multiple times. The other is the service for

travel arrangement. Its WS-BPEL model is available at http://www.comp.nus.edu.sg/~pat/cdl/.

A WS-CDL specification is created manually. A number of clients invoke the business

process, specifying the name of the employee, the destination, the departure date, and the

return date. The BPEL process checks the employee travel status (through a Web service).

Then it checks the prices for the flight ticket with multiple airlines (through Web services).

Finally, the BPEL process selects the lowest price and returns the travel plan to each client.
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Figure 6. WS@PAT verification performance

scales up for large Web service models. We thus demon-
strate the scalability of our verification approach, using
two models. One is the online store example presented in
Fig. 1 and Fig. 3. Instead of one buyer and one service
invocation, we amend the model so that multiple users are
allowed to use the services multiple times. The other is
the service for travel arrangement. Its WS-BPEL model
is available at http://www.comp.nus.edu.sg/˜pat/cdl/. A WS-
CDL specification is created manually. A number of clients
invoke the business process, specifying the name of the
employee, the destination, the departure date, and the return
date. The BPEL process checks the employee travel status
(through a Web service). Then it checks the prices for the
flight ticket with multiple airlines (through Web services).
Finally, the BPEL process selects the lowest price and
returns the travel plan to each client.

Fig. 6 shows WS@PAT’s efficiency using the two exam-
ples, obtained on a PC with Intel Q9500 CPU at 2.83GHz
and 4GB RAM. Notice that in the experiments, we model the
physical constraints as in [11] and verify the whole system
instead of one service invocation. For both examples, we
verify whether the orchestration is deadlock-free or not, by
a reachability analysis searching for a deadlock state. In the
online store example, we allow buyers to invoke the service
repeatedly. As a result, the orchestration is deadlock-free.
In the travel arrangement example, one client invokes the
service only once. Because the number of concurrent service
invocations is bound by the maximum number of threads

allowed, the system reaches a deadlock state after exhausting
all threads. This is consistent with the finding in [11]. In such
case, WS@PAT is able to find a counterexample execution
reasonably quickly with 80 clients using the service at the
same time. We also verify that the orchestration conforms to
the choreography using the refinement checking algorithm,
as shown in Fig. 6. In both cases, the number of states and
the time increase rapidly. Yet, WS@PAT is able to confirm
that the orchestration conforms to the choreography with a
few buyers/clients using the service concurrently.

In a nutshell, WS@PAT explores 108 states in a few hours,
which suggests that WS@PAT is comparable to FDR [25]
and SPIN [16] in terms of efficiency. WS@PAT shares many
idea with WS-Engineer. To compare with WS-Engineer,
we use Police Enquiry Obligations case study inside WS-
Engineer. In the original example, the police officer will send
request to a officer device, and following that, the officer
device will enquire some items in sequence, e.g., nominal
record, vehicle record, insurance record, ANPR record, DNA
record, and then reply to the officer for the information.
In order to make the example more challenging, we let
the officer device enquire items in parallel. The size in the
table above denotes the number of items to be retrieved in
parallel. For each size, we provide two orchestrations, one
conforms to the choreography (Correct Police), while the
other one replies to the police officer before retrieving the
items (Wrong Police).

The experiments data in the table below show that

Figure 3.7: WS@PAT verification performance

Fig. 3.7 shows WS@PAT’s efficiency using the two examples, obtained on a PC with Intel

Q9500 CPU at 2.83GHz and 4GB RAM. Notice that in the experiments, we model the

physical constraints as in [43] and verify the whole system instead of one service invocation.

For both examples, we verify whether the orchestration is deadlock-free or not, by a

reachability analysis searching for a deadlock state. In the online store example, we allow

buyers to invoke the service repeatedly. As a result, the orchestration is deadlock-free.

In the travel arrangement example, one client invokes the service only once. Because the

number of concurrent service invocations is bound by the maximum number of threads

allowed, the system reaches a deadlock state after exhausting all threads. This is consistent

with the finding in [43]. In such case, WS@PAT is able to find a counterexample execution

reasonably quickly with 80 clients using the service at the same time. We also verify that
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the orchestration conforms to the choreography using the refinement checking algorithm,

as shown in Fig. 3.7. In both cases, the number of states and the time increase rapidly. Yet,

WS@PAT is able to confirm that the orchestration conforms to the choreography with a few

buyers/clients using the service concurrently.

In a nutshell, WS@PAT explores 108 states in a few hours, which suggests that WS@PAT is

comparable to FDR [79] and SPIN [54] in terms of efficiency. WS@PAT shares many idea

with WS-Engineer. To compare with WS-Engineer, we use Police Enquiry Obligations case

study inside WS-Engineer. In the original example, the police officer will send request to a

officer device, and following that, the officer device will enquire some items in sequence,

e.g., nominal record, vehicle record, insurance record, ANPR record, DNA record, and then

reply to the officer for the information. In order to make the example more challenging,

we let the officer device enquire items in parallel. The size in the table above denotes the

number of items to be retrieved in parallel. For each size, we provide two orchestrations,

one conforms to the choreography (Correct Police), while the other one replies to the police

officer before retrieving the items (Wrong Police).

The experiments data in the Table 3.3 below show that WS@PAT is faster than WS-Engineer

for Correct Police cases. When the conformance does not hold, WS@PAT stops immediately

after the counterexample is detected, but not for WS-Engineer. We conclude that WS@PAT

complements WS-Engineer for the orchestration synthesis, and still has competitive per-

formance. The result, however, should be taken with a grain of salt, since both the input

languages and verification algorithms are different.

3.5 Related Work

The work is related to research on verifying or synthesizing Web services [48, 23, 22],

particularly, the line of work by Foster et al presented in [44, 45, 43]. They proposed to
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Example WS@PAT WS-Engineer
Name Size Time #States Time #States

Correct Police 6 0.25 734 0.3 731
Wrong Police 6 0.02 3 0.4 731
Correct Police 7 0.93 2192 1.1 2189
Wrong Police 7 0.02 3 1 2189
Correct Police 8 3.96 6566 6.2 6563
Wrong Police 8 0.02 3 6.2 6563
Correct Police 9 15.57 19688 51.3 19685
Wrong Police 9 0.02 3 50.7 19685

Table 3.3: WS@PAT vs WS-Engineer

apply model-based verification for Web services. Their approach is to build Finite State

Processes (FSP) model from Web services and then apply verification techniques based

on FSP to verify Web services. For instance, conformance between choreography and

orchestration is verified by showing a bi-simulation relationship between the respective

FSP models. In particular, they identified the model of resource constraint in Web service

verification [43] and proposed to perform verification under resource constraints. In ad-

dition, they developed a tool named LTSA-WS [45] (and later WS-Engineer). Our work

can also be categorized as model-based verification, and is similar to theirs. Our approach

complements their works in a number of aspects. Firstly, our model is based on a model-

ing language which is specially designed for Web service composition with features like

channel passing, shared variables/arrays, service invocation with service replication, etc.

Secondly, our verification algorithms employ specialized optimizations for Web services

verification, e.g., model reduction based on algebraic properties of the models, partial order

reduction for orchestration with multiple local computational steps, etc. These optimiza-

tions allow us to handle large state space and potentially large Web services. Lastly, we

study the synthesis problem and offer a lightweight and practical solution, which is related

to the work presented in [26]. The synthesis approach in [22] generates high level behavior

patterns from WSDL description, while our approach synthesizes implementation from
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WS-CDL design.

The conformance checking is also discussed in [58, 19, 7]. In [58], formalizations are

provided for the two views and symbolic model checking is used for the conformance

checking. In [19] the notion of conformance is defined by means of automata and is

restricted only to compositions of two services.The work of [7] concentrates on checking

that the choreography specification is respected by the implementing services at run time.

The formalization is given in terms of Petri Nets. Compared with these approaches, we

provide a unified semantic model for Web service composition with efficient verification

algorithm.

This work is related to works on verifying WS-BPEL [39, 57] and WS-CDL [76] by translat-

ing to other formalisms and verifying using existing model checkers like Uppaal [39], Java

Path Finder [76] or NuSMV [57]. Compared to them, we provide direct verification and

dedicated optimizations for the Web services specification languages. Our approach fol-

lows the formalization of Web service and the discussion on Web service generation in [27]

and [78]. Our modeling languages are inspired from the simple Web service languages

used in [27, 78] (which are sufficient for theoretical discussion). However, in order to de-

velop a useful tool, we extend the we extend them to cover larger subset of the language

constructs for Web service compositions. For example, variables and channel messages are

supported in our languages but abstracted out in [78], which makes the modeling of real-

world systems much easier. One could argue that it is possible to model Web services using

other process algebra like modeling language, like Promela, or MSC for choreography and

FSM for orchestration. These proposals suffer from the disadvantages of the translation

approach. For example, the translation from Web service model to target process algebra

may not be optimal, and the reflection of the counterexample is also non-trivial. Addi-

tionally, specific verification may not supported is the existing tool. For instance, the SPIN

model checker for Promela does not support refinement checking, hence it is not possible
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to check the Web service conformance. WS@PAT as a verifier is related to tools on equiv-

alence/refinement checking (or language containment checking), e.g., FDR. Motivated by

the features of Web services, we extend the algorithms to check conformance relations with

specialized optimizations.



Chapter 4

Verification with Compositional

Partial Order Reduction

Web services have emerged as an important technology nowadays, and Web services sup-

port much concurrency. With the advent of multi-core and multi-CPU systems, concurrent

systems are widely used nowadays. Nevertheless, it is not a simple task for programmers

to maximize the benefit of concurrency, as programmers are often burdened with the task

of handling threads and locks explicitly. In addition, it is favorable that processes can be

composed at different granularity level, from simple processes to complete workflows. Orc

calculus [60] is designed to specify orchestrations and wide-area computations in a concise

and structured manner. Albeit it only has a few concurrency combinators, it can man-

age timeouts, priorities, and failures effectively [60]. To fully utilize the multi-processor

systems, operational semantics [93, 59] of Orc allows the executions to run in parallel

whenever it is possible. Since concurrency bugs are difficult to discover solely by testing,

therefore it is desirable to verify the language formally. Nevertheless, semantics of Orc

that is highly concurrent has made states grow exponentially and posed a challenge for its

formal verification.

43
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In the literature, various state reduction techniques have been proposed to tackle the

problem, successful ones including on-the-fly verification [53], symmetry reduction [33,

41], partial order reduction (POR) [60, 73, 50, 92, 18, 74], etc. POR works by exploiting

the independency of concurrently executed transitions in order to reduce the number of

possible interleaving. For example, consider the transition system in Figure 4.1, t1 and t2

are independent transitions, which means that executing either t1t2 or t2t1 from a state s1

will always lead to the same state s2. POR will detect such independency, and choose only

t1t2 for execution, thus reduce the state-space of exploration. Common POR algorithms,

such as [92, 50, 60, 73, 18], works by identifying a subset of outgoing transitions of a state

that is sufficient for verification.
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exploiting the independency of concurrently executing transitions in order to reduce the
number of possible interleavings. For example, consider the transition system in Fig-
ure 1 where t1 and t2 are independent transitions. This means that executing either t1t2
or t2t1 from state s1 will always lead to state s2. POR will detect such independency, and
choose only t1t2 for execution, thus reducing the explored state space. Classic POR al-
gorithms, such as [28, 12, 8, 22, 5], work by identifying a subset of outgoing transitions
of a state which are sufficient for verification. In this paper, we denote such subsets as
ample sets – see [8, 5].

Many concurrent systems are designed using a top-down architecture, and concur-
rent processes are structured in a hierarchical way. In Figure 2, process P contains
subprocesses Pi (i = 1, 2, etc.) that are running concurrently. Moreover, each process
Pi also contains subprocesses Pij (j = 1, 2, etc.) that are running concurrently. We refer
to concurrent processes of this kind as hierarchical concurrent processes (HCP). There
are many real-life examples of HCP. Consider a browser that supports tabbed brows-
ing. Multiple browser windows could be opened at the same time, each browser window
could contain multiple opened tabs, and each opened tab could download several HTML
elements in parallel. Orc processes provide another example of HCP.

Classic POR algorithms, such as [28, 12, 8, 22, 5], assume that local transitions
within the participated processes are dependent. In the context of HCP (Figure 2), if
POR is applied on process P, transitions within processes P1, P2, etc. will be considered
as local transitions, and be assumed to be dependent. Nevertheless, many local transi-
tions may be independent. In this work, we propose a method called Compositional
Partial Order Reduction (CPOR), which extends POR to the context of HCP. CPOR
exploits the independency within local transitions. It applies POR recursively for the
hierarchical concurrent processes, and several possible ample sets are composed in a
bottom-up manner. In order to apply CPOR to Orc, we first define the HCP structure of
an Orc process. Subsequently, based on the HCP structure, we established some local
criteria that could be easily checked by CPOR algorithm. Experimental results show
that CPOR can greatly reduce the explored state space when verifying Orc models.

Paper Outline. Section 2 introduces Orc language. Section 3 elaborates on CPOR
and shows how it can be applied to Orc models. Section 4 gives several experimental
results. Section 5 surveys the related work. Finally, Section 6 discusses the extensibility
of CPOR with possible future work and concludes the paper.

2 Orchestration Language Orc

2.1 Syntax

Orc is a computation orchestration language in which multiple services are invoked to
achieve a goal while managing time-outs, priorities, and failures of services or commu-
nication. Following is the syntax of Orc:
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exploiting the independency of concurrently executing transitions in order to reduce the
number of possible interleavings. For example, consider the transition system in Fig-
ure 1 where t1 and t2 are independent transitions. This means that executing either t1t2
or t2t1 from state s1 will always lead to state s2. POR will detect such independency, and
choose only t1t2 for execution, thus reducing the explored state space. Classic POR al-
gorithms, such as [28, 12, 8, 22, 5], work by identifying a subset of outgoing transitions
of a state which are sufficient for verification. In this paper, we denote such subsets as
ample sets – see [8, 5].

Many concurrent systems are designed using a top-down architecture, and concur-
rent processes are structured in a hierarchical way. In Figure 2, process P contains
subprocesses Pi (i = 1, 2, etc.) that are running concurrently. Moreover, each process
Pi also contains subprocesses Pij (j = 1, 2, etc.) that are running concurrently. We refer
to concurrent processes of this kind as hierarchical concurrent processes (HCP). There
are many real-life examples of HCP. Consider a browser that supports tabbed brows-
ing. Multiple browser windows could be opened at the same time, each browser window
could contain multiple opened tabs, and each opened tab could download several HTML
elements in parallel. Orc processes provide another example of HCP.

Classic POR algorithms, such as [28, 12, 8, 22, 5], assume that local transitions
within the participated processes are dependent. In the context of HCP (Figure 2), if
POR is applied on process P, transitions within processes P1, P2, etc. will be considered
as local transitions, and be assumed to be dependent. Nevertheless, many local transi-
tions may be independent. In this work, we propose a method called Compositional
Partial Order Reduction (CPOR), which extends POR to the context of HCP. CPOR
exploits the independency within local transitions. It applies POR recursively for the
hierarchical concurrent processes, and several possible ample sets are composed in a
bottom-up manner. In order to apply CPOR to Orc, we first define the HCP structure of
an Orc process. Subsequently, based on the HCP structure, we established some local
criteria that could be easily checked by CPOR algorithm. Experimental results show
that CPOR can greatly reduce the explored state space when verifying Orc models.

Paper Outline. Section 2 introduces Orc language. Section 3 elaborates on CPOR
and shows how it can be applied to Orc models. Section 4 gives several experimental
results. Section 5 surveys the related work. Finally, Section 6 discusses the extensibility
of CPOR with possible future work and concludes the paper.

2 Orchestration Language Orc

2.1 Syntax

Orc is a computation orchestration language in which multiple services are invoked to
achieve a goal while managing time-outs, priorities, and failures of services or commu-
nication. Following is the syntax of Orc:

Figure 4.2: Hierarchical Concurrent Processes

Nowadays, many concurrent systems are designed in top-down architecture, and concur-

rent processes are structured in a hierarchical way as shown in Figure 4.2. In figure 4.2,

process P contains sub processes P1, P2, etc that are running in parallel. Process P1 in

turn contains sub processes P11, P12, etc that are running in parallel. We refer concurrent

processes of this kind as hierarchical concurrent processes (HCP). There are many real-life

examples of such. Considering a browser that supports tabbed browsing, multiple in-

stances of browser windows could be opened at the same time, and each browser window

could contain multiple opened tabs, and each opened tab could download several HTML
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elements in parallel. An Orc process could be viewed as a process that is composed by

HCP.

Current POR algorithms have a common assumptions that local transitions within the

participated processes are dependent to each other. In the context of HCP as shown

in Figure 4.2, if POR is applied on process P, transitions within processes P1, P2 will

be considered as local transitions, therefore they are simply assumed to be dependent.

Nevertheless, the fact is that many of the local transitions are indeed independent. In this

work, we propose a method called Compositional Partial Order Reduction (CPOR), which

extends POR to the context of HCP. Different from current POR methods, CPOR further

exploits the independency within the local transitions. CPOR works by applying POR

recursively for the hierarchical concurrent processes, and several possible ample sets are

composed in a bottom-up manner. In order to apply CPOR in Orc language, we first define

the structure of HCP of an Orc process. Subsequently, base on the structure of HCP of

an Orc process, we established some local criteria that could be easily checked by CPOR

algorithm. Experimental results show that CPOR has greatly reduced the state space of

verification of Orc language.

Chapter Outline. Section 4.1 introduces Orc language. Section 4.2 elaborates on CPOR

and shows how it can be applied to Orc models. Section 4.3 gives several experimental

results. Section 4.4 surveys the related work.

4.1 Orchestration Language Orc

4.1.1 Syntax

Orc is a service orchestration language in which multiple services are invoked to achieve

a goal while managing time-outs, priorities, and failures of services or communication.
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Variable x ::= variable name
Value m ::= value
Parameter p ::= x | m
Expression E ::= M(p) site call

| F(p) function call
| E|E parallel
| E >x> E sequential
| E <x< E pruning
| E ; E otherwise

Figure 4.3: Syntax of Orc

Figure 4.3 describes the syntax of Orc:

Site The simplest Orc expression is a site call M(p), where M is the service’s name and p is

a list of parameters. Sites are basic units of Orc language. A site can be an external service

(e.g. Google site) which resides on different machine. For example, Google(“Orc”) is an

external site call that calls the external service provided by Google and its response is the

search results for keyword “Orc” by Google search engine. A site can also be a local service

(e.g. plus site) which resides on the same machine. For example, plus(1, 1) is a local site

call that calls the local plus service and its response is the summation of two arguments.

Since site in Orc is essentially a service, henceforth, we would use the term site and service

interchangeably.

Combinators There are four combinators: parallel, sequential, pruning, and otherwise

combinators. The parallel combinator F|G defines a parallel expression, where expressions

F and G execute independently, and its published value can be the value published either

by F or by G or both of them. The sequential combinator F > x > G defines a sequential

expression, where each value published by F initiates a separate execution of G wherein

x is bound to it. The execution of F is then continued in parallel with all these execu-

tions of G. The values published by the sequential expression are the values published

by the executions of G. For example, (Google(“Orc”)|Yahoo(“Orc”)) > x > Email(addr, x)
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will call Google and Yahoo sites simultaneously. For each returned value, an instance of

x will be bound to it, and an email will be sent to addr for each instance of x. Thus, up

to two emails will be sent. If x is not used in G, F � G can be used as a shorthand for

F > x > G. The pruning combinator F < x < G defines a pruning expression, where initially

F and G execute in parallel. However, when F needs the value of x, it will be blocked

until G publishes a value to bind x and G terminates immediately after that. For example,

Email(addr, x) < x < (Google(“Orc”)|Yahoo(“Orc”)) will get the fastest searching results for

the email sending to addr. In contrast to sequential expressions, it will publish at most

one value. If x is not used in F, F � G can be used as a shorthand for F < x < G. The

otherwise combinator F ; G defines an otherwise expression, where F executes first. The

execution of F is replaced by G if F halts without any published value. F halts if all site calls

are responded or halted, and furthermore, it does not publish any more values or call any

more sites.

Functional Core Language (Cor) Orc is enhanced with functional core language (Cor) to

support various data types, mathematical operators, conditional expressions, function calls,

etc. Cor structures such as conditional expressions and functions are translated into site calls

and four combinators [60]. For example, conditional expression i f E then F else G, where E, F,

G are Orc expressions would be translated into expression (i f (b)� F|i f (∼ b)� G) < b < E

before evaluation.

Example - Metronome

Timer is explicitly supported by Orc by introducing time-related sites that delay a given

amount of time. One of such sites is Rtimer, for example, Rtimer (5000)� “Orc” will publish

“Orc" at 5 seconds. Like most other programming languages, Cor provides the capability to

define functions, which are expressions that have a defined name, and have some number
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of parameters, function are declared using the keyword de f . Following is a function that

defines a metronome [60], which will publish a signal value every t seconds. signal is a

value that carries no information. Note that the function is defined recursively.

de f metronome(t) = (signal | Rtimer(t) � metronome(t))

The following example publishes “tick" once per second, and publishes “tock" once per

second after an initial half-second delay.

(metronome(1000) � “tick”) | (Rtimer(500) � metronome(1000) � “tock”)

Thus the publications are “tick tock tick · · · " where “tick" and “tock" alternate each other.

One of the properties that we are interested is whether the system could publish two con-

secutive “tick"s or two consecutive “tick"s which is an undesirable situation. In order to

easily assert a global property that holds throughout the execution of an Orc program, we

extend Orc with auxiliary variables. The value of an auxiliary variable could be accessed

and updated throughout the Orc program. Henceforth, we will simply refer the extended

auxiliary variables simply as global variables. A global variable is declared with the keyword

globalvar and a special site, $GUpdate, is used to perform update on a global variable. Con-

sider the metronome example with a global variable tickNum and site $GUpdate inserted,

globalvar tickNum = 0

de f metronome(t) = (signal|Rtimer(t)� metronome(t))

(metronome(1000) � $GUpdate({tickNum = tickNum + 1})� “tick”)

| (Rtimer(500) � metronome(1000) � $GUpdate({tickNum = tickNum − 1})

� “tock”)

We can verify whether it is possible to have two consecutive “tick”s or two consecutive

“tock”s by checking whether the system is able to reach a state satisfying the condition

(tickNum < 0 ∨ tickNum > 1).
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4.1.2 Semantics

This section presents the semantic model of Orc based on Label Transition System (LTS).

The timed operational semantics of Orc can be found in [93, 59]. In the following, we

introduce some definitions required in semantic model.

Definition 4.1.1 (System Configuration). A system configuration contains two components

(Proc,Val), where Proc is a process expression of Orc, and Val is a valuation function, which maps

the variables to their values.

A variable in the system could be an Orc’s variable, or the global variable which is intro-

duced for capturing global properties. The value of a variable could be a primitive value, a

reference to a site, or a state object. The three primitive types supported by Orc are boolean,

integer, and string. All variables are assumed to have finite domain. Two configurations

are equivalent iff they have the same process expression Proc and same valuation function

Val. Proc component of system configuration is assumed to have finitely many values.

Definition 4.1.2 (System Model). A system model is a 3-tuple S = (Var, initG,P), where Var is

a finite set of global variables, initG is the initial (partial) variable valuation function and P is the

Orc expression.

Definition 4.1.3 (System Action). A system action contains four components (Event, Time,

EnableSiteType, EnableSiteId). Event is either publication event, written !m or internal event,

written τ . EnableSiteType, EnableSiteId are the type and unique identity of the site that initiates

the system action. Time is the total delay time in system configuration before the system action is

triggered.

Every system action is initiated by a site call, and we extend the system action defined in [93]

with two additional components, EnableSiteType and EnableSiteId, to provide information

for CPOR. A publication event !m communicates with the environment with value m, while

an internal event τ is invisible to the environment. There are three groups of site calls. The
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first two groups are site calls for stateless and stateful services respectively. And the

third are the site calls for $GUpdate which update global variables. These three groups are

denoted as stateless, state f ul, and GUpdate respectively, and those are the possible values for

EnableSiteType. Every site in the system model is assigned a unique identity which ranges

over non-negative integer value. Discrete time semantics [93] is assumed in the system.

Time ranges over non-negative integer value and is assumed to have finite domains.

Definition 4.1.4 (Labeled Transition System (LTS)). Given a model S = (Var, initG,P), let

Σ denote the set of system actions in P. The LTS corresponding to S is a 3-tuple (C, init,→),

where C is the set of all configurations, init ∈ C is the initial system configuration (P, initG), and

→ ⊆ C × Σ × C is a labeled transition relation, and its definition is according to the operational

semantics of Orc [93].

To improve readability, we use c a
→ c′ for (c, a, c′) ∈→. An action a ∈ Σ is enabled in

a configuration c ∈ C, denoted as c a
→, iff there exists a configuration c′ ∈ C, such that

c a
→ c′. An action a ∈ Σ is disabled in a configuration c = (P, V), where c ∈ C, iff the

action a is not enabled in the configuration c, but it is enabled in some configurations (P,

V′), where V′ , V. Act(c) is used to denote the set of enabled actions of configuration

c. Enable(c, a) is used to denote the set of reachable configurations through action a from

configuration c ∈ C, formally, for any c ∈ C, Act(c) = {a ∈ Σ|c a
→}. Enable(c) is used

to denote the set of reachable configurations from configuration c ∈ C, that is, for any

c ∈ C, Enable(c) = {c′ ∈ Enable(c, a)|a ∈ Σ}. Ample(c) is used to denote the ample set

(Section 4.2) of configuration c ∈ C. AmpleAct(c) is defined as the set of actions that caused

a configuration c ∈ C transit into the configurations in Ample(c), that is, for any c ∈ C,

AmpleAct(c) = {a ∈ Σ|c a
→ c′, c′ ∈ Ample(c)}. PAct(c) is used to denote the set of enabled and

disabled actions of configuration c, and Act(c) ⊆ PAct(c). We use TS to represent the original

LTS before POR is applied and T̂S to represent the reduced LTS after POR is applied. TSc

is used to represent the LTS (before any reduction) that starts from configuration c. An
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for any c ∈ C, Enable(c) = {c′ ∈ Enable(c, a) | a ∈ Σ}. Ample(c) is used to denote
the ample set (refer to Section 3) of a configuration c ∈ C. AmpleAct(c) is defined as
the set of actions that caused a configuration c ∈ C transit into the configurations in
Ample(c), that is, for any c ∈ C, AmpleAct(c) = {a ∈ Σ | c a→ c′, c′ ∈ Ample(c)}.
PAct(c) is used to denote the set of enabled and disabled actions of a configuration c,
and Act(c) ⊆ PAct(c). We use TS to represent the original LTS before POR is applied
and T̂S to represent the reduced LTS after POR is applied. TSc is used to represent
the LTS (before any reduction) that starts from c, where c is a configuration in TS. An
execution fragment l = c0

a1→ c1
a2→ . . . of LTS is an alternating sequence of configu-

rations and actions. A finite execution fragment is an execution fragment ending with a
configuration.

We are interested in checking the system against two kinds of properties. The first
kind is deadlock-freeness, which is to check whether there does not exist a configura-
tion c ∈ C in TS such that Enable(c) = ∅. The second kind is temporal properties that
are expressible with LTL without Next Operator (LTL-X) [5]. For any LTL-X formula
φ, prop(φ) denotes the set of atomic propositions used in φ. In the metronome example
which augmented with a global variable tickNum, prop(φ)={(tickNum < 0), (tickNum >
1)}. An action a ∈ Σ is φ-invisible iff the action does not change the values of propo-
sitions in prop(φ) for all c ∈ C in TS.

2.3 Hierarchical Concurrent Processes (HCP)

The general structure of a hierarchical concurrent process P is shown graphically using
a tree structure in Figure 3. Henceforth, we denote such a graph as a HCP graph, or
simply HCP if it does not lead to ambiguity.

P0

P2P1
…

…
P12P11

…

…

Pn-1

Pn
…

Level 0

Level 1

Level 2

Level n-1

Level n

……

Fig. 3. The general structure of HCP

Figure 3 shows that process P0 contains subprocesses P1, P2, etc that are run-
ning concurrently. Process P1 in turn contains subprocesses P11, P12, etc that are run-
ning concurrently. This goes repeatedly until reaching a process Pn which has no sub-
processes. Each process P in the hierarchy will have its associated level, starting from
level 0. A process without any subprocess (e.g. process Pn) is denoted as terminal
process, otherwise the process is denoted as non-terminal process. Furthermore, process
P0 at level 0 is denoted as global process, while processes at level i, where i > 0, are
denoted as local processes. The parent process of a local process P′ is a unique process
P such that there is a directed edge from P to P′ in the HCP graph. When P is the parent
process of P′, P′ is called the child process of P. Ancestor processes of a local process
P′ are the processes in the path from global process to P′. Descendant processes of
process P are those local processes that have P as an ancestor process.

Figure 4.4: HCP of a general hierarchical concurrent process

execution f ragment l = c0
a1
→ c1

a2
→ . . . of LTS is an alternating sequence of configurations and

actions. A f inite execution f ragment is an execution fragment ending with a configuration.

We are interested in checking the system against two kinds of properties. The first kind

is deadlock-freeness, which is to check whether there does not exist a configuration c ∈ C

in TS such that Enable(c) = ∅. The second kind is temporal properties that are expressible

with LTL without Next Operator (LTL-X) [34]. For any LTL-X formula ∅, prop(∅) denotes

the set of atomic propositions used in ∅. In the metronome example which augmented

with a global variable tickNum, prop(∅) = {(tickNum < 0); (tickNum > 1)}. An action a ∈ σ

is ∅ − invisible iff the action does not change the values of propositions in prop(∅) for all

c ∈ C in TS.

4.1.3 Hierarchical Concurrent Processes (HCP)

The general structure of a hierarchical concurrent process P is shown graphically using a

tree structure in Figure 4.4. Henceforth, we denote such graph as HCP graph, or simply

HCP if it does not lead to ambiguity.

Figure 4.4 shows that process P0 contains sub processes P1, P2, etc that are running concur-

rently. Process P1 in turn contains sub processes P11, P12, etc that are running concurrently.
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This goes repeatedly until reaching a process Pn which has no subprocesses. Each process

P in the hierarchy will have its associated level, starting from level 0. A process without

any subprocess (e.g. process Pn) is denoted as terminal process, otherwise the process is

denoted as non-terminal process. Furthermore, process P0 at level 0 is denoted as global pro-

cess, while processes at level i, where i > 0, are denoted as local processes. The parent process

of a local process P′ is a unique process P such that there is a directed edge from P to P′

in the HCP graph. When P is the parent process of P′, P′ is called the child process of P.

Ancestor processes of a local process P′ are the processes in the path from global process to P′.

Descendant processes of process P are those local processes that have P as an ancestor process.

An Orc expression P could be viewed as a process that is composed by HCP. This could be

formalized by constructing the HCP according to syntax of P, assigning process identity

to each sub-expression of P, and defining how the defined processes evolve during the

execution of expression P. In the following, we illustrate this in detail. An Orc expression

can be either a site call or one of the four combinators and their corresponding HCPs are

shown in Figure 4.5.A site call is a terminal process node, while each of the combinators

has either one or two child processes according to their semantics (refer to Section 4.2), and

the HCPs of respective child process nodes are defined recursively. We denote expressions

A and B as LHS process and RHS process for each combinators in Figure 4.5.For example,

a pruning combinator (A < x < B) contains two child nodes because its LHS process and

RHS process could be executed concurrently. Each of the process nodes in HCP is identified

by a unique process identity (pid), and node values in HCP are prefixed with their pid (e.g.

p0, p1, etc.). In Figure 4.6, an expression (S1 � S2)|(S3 � S4), where S1, S2, S3, and S4 are

site calls, could be viewed as a process composed by HCP of three levels.

Consider a transition (P,V) a
→ (P′,V′)), where a is some action. We abuse the notation by

using P and P0 to denote the HCPs before and after the transition. In fact, P0 could have

different tree structures from P, and processes could be added or deleted in P0. In order
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An Orc expression P could be viewed as a process that is composed by HCP.
This could be formalized by constructing the HCP according to syntax of P, assigning
process identity to each sub-expression of P, and defining how the defined processes
evolve during the execution of expression P. In the following, we illustrate this in de-
tail. An Orc expression can be either a site call or one of the four combinators and their
corresponding HCPs are shown in Figure 4. A site call is a terminal process node, while
each of the combinators has either one or two child processes according to their seman-
tics (refer to Section 2), and the HCPs of respective child process nodes are defined
recursively. We denote expressions A and B as LHS process and RHS process for each
combinators in Figure 4. For example, a pruning combinator (A < x < B) contains two
child nodes because its LHS process and RHS process could be executed concurrently.
Each of the process nodes in HCP is identified by a unique process identity (pid), and
node values in HCP are prefixed with their pid (e.g. p0, p1, etc.). In Figure 5, an expres-
sion (S1 ¿ S2) | (S3 ¿ S4), where S1, S2, S3, and S4 are site calls, could be viewed as
a process composed by HCP of three levels.

P 0 : S P 0 :A  |  B P 0 :A  <  x  <  B P 0 : A  >  x  >  B

S i t e  C a l l P a r a l le l P r u n in g S e q u e n t i a l

P 0 : A  ;  B

O th e r w is e

P 1 : A P 2 :BP 2 : B P 1 :AP 1 : A P 1 : A

Fig. 4. HCP of general Orc Expressions

P 0 : ( S 1  < <  S 2  )  |  ( S 3  < <  S 4 )

P 1 : S 1  < <  S 2   P 2 : S 3  < <  S 4

( S 1  < <  S 2 )  |  ( S 3  < <  S 4 )

P 3 : S 1  P 4 : S 2 P 5 : S 3  P 6 : S 4

Fig. 5. An example
Consider a transition (P,V)

a→ (P′,V ′), where a is some action. We abuse the
notation by using P and P′ to denote the HCPs before and after the transition. In fact, P′

could have different tree structures from P, and processes could be added or deleted in
P′. In order to have a clear relation of processes between P and P′, we define the relation
of processes between P and P′ over each rule of the operational semantics of Orc [27],
some of which are presented in Figure 6 for illustration purpose. There are two HCPs
under each rule. HCPs on the left and right are the HCPs before and after triggering
the action initiated by respective rules. Two process nodes on different HCPs belong to
the same process if they have the same pid value, and an arrow is used to relate them.
Processes that could only be found in HCP on the right or left are the processes that
are newly added or deleted respectively. In SEQ1V, the transition of f to f ′ produces an
output value m, and notation [m/x].g is used to denote that all the instances of variable
x in g are replaced with value m.

P0:f | g P0:f'|g

P2:gP1:f P2:gP1:f'

SYM1

P0:f > x > g P2:f' > x > g |  [m/x].g

P1:f

SEQ1V

P1:f'

P0:f' > x > g P3:[m/x].g

P0:f < x < g P1: [m/x].f

P1:f

ASYM2V

P2:g

P0:E(p) P1: [p/x].f

DEF

Fig. 6. Relation of Processes between P and P’

A site S is private in P1[P], if the reference of site S could not be accessed by all
processes other than process P1 and its descendant processes under HCP graph of global
process P. Otherwise, site S is shared in process P1[P]. A site S is permanently private
in P1[c], if for any configuration c′ = (P′,V ′) that is reachable by c, if P′ has P1 as its
descendant process, site S must be private in process P1[P′].

The example in Figure 7 shows an Orc process P = A | B. Variables userdb and
flightdb will be initialized to different instances of site Buffer, which provides the ser-

Figure 4.5: HCP of General Orc Expressions

An Orc expression P could be viewed as a process that is composed by HCP.
This could be formalized by constructing the HCP according to syntax of P, assigning
process identity to each sub-expression of P, and defining how the defined processes
evolve during the execution of expression P. In the following, we illustrate this in de-
tail. An Orc expression can be either a site call or one of the four combinators and their
corresponding HCPs are shown in Figure 4. A site call is a terminal process node, while
each of the combinators has either one or two child processes according to their seman-
tics (refer to Section 2), and the HCPs of respective child process nodes are defined
recursively. We denote expressions A and B as LHS process and RHS process for each
combinators in Figure 4. For example, a pruning combinator (A < x < B) contains two
child nodes because its LHS process and RHS process could be executed concurrently.
Each of the process nodes in HCP is identified by a unique process identity (pid), and
node values in HCP are prefixed with their pid (e.g. p0, p1, etc.). In Figure 5, an expres-
sion (S1 ¿ S2) | (S3 ¿ S4), where S1, S2, S3, and S4 are site calls, could be viewed as
a process composed by HCP of three levels.

P 0 : S P 0 :A  |  B P 0 :A  <  x  <  B P 0 : A  >  x  >  B

S i t e  C a l l P a r a l le l P r u n in g S e q u e n t i a l

P 0 : A  ;  B

O th e r w is e

P 1 : A P 2 :BP 2 : B P 1 :AP 1 : A P 1 : A

Fig. 4. HCP of general Orc Expressions

P 0 : ( S 1  < <  S 2  )  |  ( S 3  < <  S 4 )

P 1 : S 1  < <  S 2   P 2 : S 3  < <  S 4

( S 1  < <  S 2 )  |  ( S 3  < <  S 4 )

P 3 : S 1  P 4 : S 2 P 5 : S 3  P 6 : S 4

Fig. 5. An example
Consider a transition (P,V)

a→ (P′,V ′), where a is some action. We abuse the
notation by using P and P′ to denote the HCPs before and after the transition. In fact, P′

could have different tree structures from P, and processes could be added or deleted in
P′. In order to have a clear relation of processes between P and P′, we define the relation
of processes between P and P′ over each rule of the operational semantics of Orc [27],
some of which are presented in Figure 6 for illustration purpose. There are two HCPs
under each rule. HCPs on the left and right are the HCPs before and after triggering
the action initiated by respective rules. Two process nodes on different HCPs belong to
the same process if they have the same pid value, and an arrow is used to relate them.
Processes that could only be found in HCP on the right or left are the processes that
are newly added or deleted respectively. In SEQ1V, the transition of f to f ′ produces an
output value m, and notation [m/x].g is used to denote that all the instances of variable
x in g are replaced with value m.

P0:f | g P0:f'|g

P2:gP1:f P2:gP1:f'

SYM1

P0:f > x > g P2:f' > x > g |  [m/x].g

P1:f

SEQ1V

P1:f'

P0:f' > x > g P3:[m/x].g

P0:f < x < g P1: [m/x].f

P1:f

ASYM2V

P2:g

P0:E(p) P1: [p/x].f

DEF

Fig. 6. Relation of Processes between P and P’

A site S is private in P1[P], if the reference of site S could not be accessed by all
processes other than process P1 and its descendant processes under HCP graph of global
process P. Otherwise, site S is shared in process P1[P]. A site S is permanently private
in P1[c], if for any configuration c′ = (P′,V ′) that is reachable by c, if P′ has P1 as its
descendant process, site S must be private in process P1[P′].

The example in Figure 7 shows an Orc process P = A | B. Variables userdb and
flightdb will be initialized to different instances of site Buffer, which provides the ser-

Figure 4.6: An Orc Example

An Orc expression P could be viewed as a process that is composed by HCP.
This could be formalized by constructing the HCP according to syntax of P, assigning
process identity to each sub-expression of P, and defining how the defined processes
evolve during the execution of expression P. In the following, we illustrate this in de-
tail. An Orc expression can be either a site call or one of the four combinators and their
corresponding HCPs are shown in Figure 4. A site call is a terminal process node, while
each of the combinators has either one or two child processes according to their seman-
tics (refer to Section 2), and the HCPs of respective child process nodes are defined
recursively. We denote expressions A and B as LHS process and RHS process for each
combinators in Figure 4. For example, a pruning combinator (A < x < B) contains two
child nodes because its LHS process and RHS process could be executed concurrently.
Each of the process nodes in HCP is identified by a unique process identity (pid), and
node values in HCP are prefixed with their pid (e.g. p0, p1, etc.). In Figure 5, an expres-
sion (S1 ¿ S2) | (S3 ¿ S4), where S1, S2, S3, and S4 are site calls, could be viewed as
a process composed by HCP of three levels.

P 0 : S P 0 :A  |  B P 0 :A  <  x  <  B P 0 : A  >  x  >  B

S i t e  C a l l P a r a l le l P r u n in g S e q u e n t i a l

P 0 : A  ;  B

O th e r w is e

P 1 : A P 2 :BP 2 : B P 1 :AP 1 : A P 1 : A

Fig. 4. HCP of general Orc Expressions

P 0 : ( S 1  < <  S 2  )  |  ( S 3  < <  S 4 )

P 1 : S 1  < <  S 2   P 2 : S 3  < <  S 4

( S 1  < <  S 2 )  |  ( S 3  < <  S 4 )

P 3 : S 1  P 4 : S 2 P 5 : S 3  P 6 : S 4

Fig. 5. An example
Consider a transition (P,V)

a→ (P′,V ′), where a is some action. We abuse the
notation by using P and P′ to denote the HCPs before and after the transition. In fact, P′

could have different tree structures from P, and processes could be added or deleted in
P′. In order to have a clear relation of processes between P and P′, we define the relation
of processes between P and P′ over each rule of the operational semantics of Orc [27],
some of which are presented in Figure 6 for illustration purpose. There are two HCPs
under each rule. HCPs on the left and right are the HCPs before and after triggering
the action initiated by respective rules. Two process nodes on different HCPs belong to
the same process if they have the same pid value, and an arrow is used to relate them.
Processes that could only be found in HCP on the right or left are the processes that
are newly added or deleted respectively. In SEQ1V, the transition of f to f ′ produces an
output value m, and notation [m/x].g is used to denote that all the instances of variable
x in g are replaced with value m.

P0:f | g P0:f'|g

P2:gP1:f P2:gP1:f'

SYM1

P0:f > x > g P2:f' > x > g |  [m/x].g

P1:f

SEQ1V

P1:f'

P0:f' > x > g P3:[m/x].g

P0:f < x < g P1: [m/x].f

P1:f

ASYM2V

P2:g

P0:E(p) P1: [p/x].f

DEF

Fig. 6. Relation of Processes between P and P’

A site S is private in P1[P], if the reference of site S could not be accessed by all
processes other than process P1 and its descendant processes under HCP graph of global
process P. Otherwise, site S is shared in process P1[P]. A site S is permanently private
in P1[c], if for any configuration c′ = (P′,V ′) that is reachable by c, if P′ has P1 as its
descendant process, site S must be private in process P1[P′].

The example in Figure 7 shows an Orc process P = A | B. Variables userdb and
flightdb will be initialized to different instances of site Buffer, which provides the ser-

Figure 4.7: Relation of Processes between P and P’

to have a clear relation of processes between P and P0, we define the relation of processes

between P and P0 over each rule of the operational semantics of Orc [89], some of which

are presented in Figure 4.7 for illustration purpose. There are two HCPs under each rule.

HCPs on the left and right are the HCPs before and after triggering the action initiated by

respective rules. Two process nodes on different HCPs belong to the same process if they

have the same pid value, and an arrow is used to relate them. Processes that could only

be found in HCP on the right or left are the processes that are newly added or deleted

respectively. In SEQ1V, the transition of f to f ′ produces an output value m, and notation

[m|x].g is used to denote that all the instances of variable x in g are replaced with value m.

A site S is private in P1[P], if the reference of site S could not be accessed by all processes

other than process P1 and its descendant processes under HCP graph of global process P.

Otherwise, site s is shared in process P1[P]. A site S is permanently private in P1[c], if for any

configuration c′ = (P′,V′) that is reachable by c, if P′ has P1 as its descendant process, site

S must be private in process P1[P′].

The example in Figure 4.8 shows an Orc process P = A|B. Variables userdb and f lightdb will be

initialized to different instances of site Bu f f er, which provides the service of FIFO queue. In

process A, two string values user1 and user2 are enqueued in the buffer referenced by userdb
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A = (userdb : put(′′user1”) | userdb : put(′′user2”)) < userdb < Bu f f er()
B = ( f lightdb : put(′′CX510”) | f lightdb : put(′′CX511”)) < f lightdb < Bu f f er()

Figure 4.8: Execution of Orc process P = A | B

concurrently. Buffer site that is referenced by userdb is private in A[P], since userdb could

only be accessed by process A. Now consider at some level j of HCP graph of global process

P, where j > 1, we have processes P j1 = userdb.put(”user1”) and P j2 = userdb.put(”user2”).

Bu f f er site that is referenced by userdb is shared in P j1[P], since userdb could be accessed by

P j2 which is not a descendant process of P j1 .

4.2 Compositional Partial Order Reduction (CPOR)

The aim of Partial Order Reduction (POR) is to reduce the number of possible orderings by

fixing the order of independent transitions as shown in Figure 4.1.The notion of indepedency

plays a central role in POR, which is defined below by following [51].

Definition 4.2.1 (Independency). Two actions a1 and a2 in an LTS are independent if for any

configuration c such that a1, a2 ∈ Act(c):

1. a2 ∈ Act(c1) where c1 ∈ Enable(c, a1) and a1 ∈ Act(c2) where c2 ∈ Enable(c, a2),

2. Starting from c, any configuration reachable by executing a1 followed by a2, can also be reached

by executing a2 followed by a1.

Otherwise, two actions are dependent.

Given a configuration, an ample set is a subset of outgoing transitions of the configuration

which are sufficient for verification, and it is formally defined as follow:

Definition 4.2.2 (Ample Set). Given an LTL-X property ∅, and a configuration c ∈ C in TS, an

ample set is a subset of the enable set which must satisfy the following conditions [18]:
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(A1) Nonemptiness condition: Ample(c) = ∅ if and only if Enable(c) = ∅.

(A2) Dependency condition: Let c0
a1
→ c1

a2
→ . . .

an
→ cn

a
→ t be a finite execution fragment in

TS. If a depends on some actions in AmpleAct(c0), then ai ∈ AmpleAct(c0) for some 0 < i ≤ n.

(A3) Stutter condition: If Ample(c) , Enable(c), then any α ∈ AmpleAct(c) is an invisible

action.

(A4) Strong Cycle condition: Any cycle in T̂S contains at least one configuration c with

Ample(c)=Enable(c).

To be specific, reduced LTS generated by the ample set approach needs to satisfy conditions

A1 to A4 in order to preserve the checking of LTL-X properties. However, for the checking of

deadlock-freeness, only conditions A1 and A2 are needed [50]. Henceforth, our discussion

will be focused on the checking of LTL-X property, but the reader could adjust accordingly

for the checking of deadlock-freeness.

Conditions A1, A3, and A4 are relatively easy to check, while condition A2 is the most

challenging condition. It is known that checking condition A2 is equivalent to checking

the reachablity of a condition in the full transition system TS [18]. It is desirable that we

could have an alternative condition A2′ that only imposes requirements on the current

configuration instead of all traces in TS, and satisfaction of condition A2′ would guarantee

the satisfaction of condition A2. Given a configuration cg = (Pg, Vg), and Pd as a descendant

process of Pg, with associated configuration cd = (Pd, Vd), we define a condition A2′ that

based solely on cd, and its soundness will be proved in Section 4.2.3.

(A2′) Local Criteria of A2: For all configurations ca ∈ Ample( cd ) and ca = (pa, va) the

following two conditions must be satisfied:

(1)The enable site for the action a that enable ca must be either stateless site, or stateful site

private in pa[Pg];

(2)pa is not a descendant process of the RHS process of some pruning combinators or the

LHS process of some sequential combinators.
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could have an alternative condition A2’ that only imposes requirements on the current
configuration instead of all traces in TS, and satisfaction of condition A2’ would guar-
antee the satisfaction of condition A2. Given a configuration cg = (Pg,Vg), and Pd as
a descendant process of Pg, with associated configuration cd = (Pd,Vd), we define a
condition A2’ that based solely on cd, and its soundness will be proved in Section 3.3.

(A2’)Local Criteria of A2 For all configurations ca ∈ Ample(cd) and ca = (pa, va)
the following two conditions must be satisfied:
(1)The enable site for the action a that enable ca must be either stateless site, or stateful
site private in pa[Pg];
(2)pa is not a descendant process of the RHS process of some pruning combinators or
the LHS process of some sequential combinators.
Notice that we define an ample set as a set of enabled configurations rather than a set of
enabled actions like [5]. The reason is due to in references like [5], action-deterministic
system is assumed. This entails that for any configuration c ∈ C and any action a ∈ Σ,
c has at most one outgoing transition with action a, formally, c a→ c′ and c a→ c′′ im-
plies c′ = c′′. Therefore, the enabled configurations could be deduced by the enabled
actions. Nonetheless, an Orc system is not action-deterministic, the main reason is be-
cause some events in Orc are internal events that are invisible to the environment. By
defining ample set as a set of configurations, with their associated enabled actions, the
requirement of action-deterministic system is no longer needed.

3.1 Classic POR and CPOR

Classic POR methods assume that local transitions of a process are dependent, and in
the context of HCP, it means that actions within individual processes from level 1 on-
wards are simply assumed to be dependent. In Figure 8, three LTSs of the process P

P1  |  P2

(1 << 3) | P2

P1  |  P2

(1 << 3) | P2 (2 << 3) | P2 (1 | 2) | P2

CPORClassic POR

!2!2 !1

P1  |  P2

(1 << 3) | P2 (2 << 3) | P2 (1 | 2) | P2

!2 !1

P1 | (stop << 6) P1 | 4

!4

No POR

Fig. 8. LTS of Orc Process P = (P1 | P2),P1 = ((1 | 2) ¿ 3),P2 = (4 ¿ 6)

are given. No POR shows the set of all initial transitions of process P; classic POR
shows how the state-space of a parallel composition can be reduced when its compo-
nent processes are independent; and CPOR reduces the initial actions further by ex-
amining internal process structure. For simplicity, system configuration is represented
only by process expression. When no POR is applied, all interleavings of transitions
are considered, and there are five branches after the initial state. When the classic POR
is applied, since P1 and P2 are active processes, assume that it checks process P1 first.
All transitions of P1 are assumed to be dependent by the classic POR. For this reason
the resulting ample set of P is {((1 ¿ 3) | P2), ((2 ¿ 3) | P2), ((1 | 2) | P2)},
which is a valid ample set after checking for conditions A1-A4. Therefore, there are
three branches from initial state when classic POR is applied. Different from clas-
sic POR, when CPOR is applied, POR is again applied to process (1 | 2). We de-
fine Amples(P) as a set of ample sets of process P that satisfy conditions A1 and A2,
but yet to be checked for conditions A3 and A4. Amples((1 | 2)) = {{1}, {2}} and

Figure 4.9: LTS of Orc Process P = (P1 | P2),P1 = ((1 | 2)� 3),P2 = (4� 6)

Notice that we define an ample set as a set of enabled configurations rather than a set of

enabled actions like [18]. The reason is due to in references like [18], action-deterministic

system is assumed. This entails that for any configuration c ∈ C and any action a ∈ Σ,

c has at most one outgoing transition with action a, formally, c a
→ c′ and c a

→ c′′ implies

c′ = c′′. Therefore, the enabled configurations could be deduced by the enabled actions.

Nonetheless, an Orc system is not action-deterministic, the main reason is because some

events in Orc are internal events that are invisible to the environment. By defining ample

set as a set of configurations, with their associated enabled actions, the requirement of

action-deterministic system is no longer needed.

4.2.1 Classic POR and CPOR

Classic POR methods assume that local transitions of a process are dependent, and in the

context of HCP, it means that actions within individual processes from level 1 onwards are

simply assumed to be dependent.

In Figure 4.9, three LTSs of the process P are given. No POR shows the set of all initial

transitions of process P; classic POR shows how the state-space of a parallel composition

can be reduced when its component processes are independent; and CPOR reduces the

initial actions further by examining internal process structure. For simplicity, system

configuration is represented only by process expression. When no POR is applied, all

interleavings of transitions are considered, and there are five branches after the initial state.

When the classic POR is applied, since P1 and P2 are active processes, assume that it checks
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process P1 first. All transitions of P1 are assumed to be dependent by the classic POR. For

this reason the resulting ample set of P is {((1� 3) | P2); ((2� 3) | P2); ((1 | 2) | P2)}, which is

a valid ample set after checking for conditions A1-A4. Therefore, there are three branches

from initial state when classic POR is applied. Different from classic POR, when CPOR is

applied, POR is again applied to process (1 | 2). We define Amples(P) as a set of ample sets

of process P that satisfy conditions A1 and A2, but yet to be checked for conditions A3

and A4. Amples((1 | 2)) = {{1}; {2}} and Amples(P1) is Amples((1 |2)) after restructuring by the

semantics of P1, which is {{1 � 3}; {2 � 3}}. Amples(P) is Amples(P1) after restructuring by

the semantics of P, which is {{1� 3 | P2}, {2� 3 | P2}}. Each ample set in Amples(P) will then

be checked for conditions A3 and A4, and both ample sets turn up to be valid, therefore the

ample set {1 � 3| P2} is chosen nondeterministically to be the returned value. Thus there

is only a single branch after the initial state when CPOR is applied. There are a total of 31,

14 and 5 states for LTS of process P in the situations where no POR, classic POR and CPOR

are applied respectively.

4.2.2 CPOR Algorithm

In this section, we will discuss the procedures for CPOR as given in Algorithm 4.1. CAmple

returns an ample set which is a set of enabled configurations from the configuration c =

(P,V), and Visited is the stack of visited configurations. Each configuration ca in the ample

set, where ca = (Proc,Val), is associated with an action aa = (Event, Time, EnableSiteType,

EnableSiteId), which caused the transition from c to ca, that is c
aa
→ ca. Henceforth, we use

the dot-notation such as ca.Proc, ca.Event, etc to denote the component values of ca as well as

the component values of its associated action aa. P.Amples (line 2) is a set that stores ample

set candidates that satisfy conditions A1 and A2, but yet to check for conditions A3 and A4.

Procedure enableSubProcs(P) (line 3) returns the set of enabled child processes according to

HCP graph of Orc expressions as shown in Figure 4.5, with an exception that for sequential
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Algorithm 4.1: CAmple

the algorithm checks whether all configurations within satisfy conditions A3 and A4
(line 9, 10). If it turns out to be true, a valid ample set is found, and it will be returned
immediately (line 14, 15). If no valid ample set has been found in line 3-15, all the
enabled configurations from current configuration c = (P,V) will be returned (line 16).
Regarding checking of condition A3 (line 9), there are two kind of actions that might

1 procedure CAmple(P,V,Visited)
2 P.Amples := ∅;
3 foreach sP ∈ enableSubProcs(P) do // A2’(2)
4 fillAmpleRec(sP,V);
5 composeAmples(P, sP,V);
6 foreach ample ∈ P.Amples do
7 validAmple := true;
8 foreach config ∈ ample do
9 if ¬ config satisfies A3 // A3

10 ∨ config ∈ Visited // A4
11 then
12 validAmple := false;
13 break;

14 if validAmple then
15 return ample;

16 return Enable((P,V));

17 procedure fillAmpleRec(P,V)
18 P.Amples := {{config : Enable((P,V))
19 | checkA2Local(config)}}; // A2’(1)

20 if P is terminal process then
21 composeAmples(P,P,V);

22 else
23 foreach sP ∈ enableSubProcs(P) do
24 fillAmpleRec(sP,V);
25 composeAmples(P, sP,V);

26 procedure composeAmples(P, sP,V)
27 P.Amples := P.Amples ∪ reformAmples(sP.Amples,P);
28 P.Amples := P.Amples \ {∅}; // A1

29 procedure checkA2Local(config)
30 return(config.EnableSiteType is stateless ∨
31 config.EnableSiteType is stateful ∧
32 isPrivate(config.EnableSiteId)) ;

Algorithm 1: CAmple
not be φ-invisible, which are actions that contain publication events or actions that
involved the update of global variables. Consider the metronome example, if we are
checking property like whether !tick event can be executed infinitely often, an action

process Ps = A > x > B, it returns an empty set {} instead of {A}, and for pruning process

Pp = A < x < B, it returns {A} instead of {A,B} . This exception is related to local criteria
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of A2′(2). Procedure f illAmpleRec(P,V) (line 17) retrieves the ample set candidates under

valuation V and assigns it to P.Amples. In line 18, Enable(P,V) where c = (P,V) gives the

set of all enabled configurations from the configuration c. Procedure checkA2Local(con f ig)

checks whether configuration con f ig satisfies A2′(1). Procedure isPrivate (line 32) checks

whether the site with con f ig.EnableSiteId as unique identity is private in Proc[PG] where Proc

is the process component of con f ig and PG is the argument P of procedure CAmple provided

by user, which is the global process that has Proc as descendant process. The checking is

done by syntax analysis. In Orc, P is a terminal process (line 20) iff it is a site call. Procedure

composeAmples(P, sP,V) (line 26) combines sP.Amples back into P.Amples under valuation V.

Procedure re f ormAmples(sP.Amples,P) (line 27) restructures configurations within sp.Amples

by operational semantics of Orc. For example, consider P = (1+x < x < 2), sP.Amples = {{c}},

and sP = 2. After making a transition, sP.Amples = {{c}}, where c is the configuration (stop,∅)

with c.Event =!2. After restructuring by re f ormAmples(sP.Amples, P), c becomes (1 + 2, ∅),

and c.Event = τ, according to rule ASYM2V as stated below.

Amples(P1) is Amples((1 | 2)) after restructuring by the semantics of P1, which is
{{1¿ 3}, {2¿ 3}}. Amples(P) is Amples(P1) after restructuring by the semantics of
P, which is {{1 ¿ 3 | P2}, {2 ¿ 3 | P2}}. Each ample set in Amples(P) will then be
checked for conditions A3 and A4, and both ample sets turn up to be valid, therefore
the ample set {1 ¿ 3 | P2} is chosen nondeterministically to be the returned value.
Thus there is only a single branch after the initial state when CPOR is applied. There
are a total of 31, 14 and 5 states for LTS of process P in the situations where no POR,
classic POR and CPOR are applied respectively.

3.2 CPOR Algorithm

In this section, we discuss the procedures for CPOR as given in Algorithm 1. CAmple
returns an ample set which is a subset of enabled configurations from the configura-
tion c = (P,V), and Visited is the stack of previously visited configurations. Each
configuration ca in the ample set, where ca = (Proc,Val), is associated with an ac-
tion aa = (Event, Time, EnableSiteType, EnableSiteId), which caused the transition
from c to ca, that is c aa→ ca. Henceforth, we use the dot-notation such as ca.Proc,
ca.Event, etc to denote the component values of ca as well as the component values
of its associated action aa. P.Amples (line 2) is a set that stores ample set candidates
that satisfy conditions A1 and A2, but yet to check for conditions A3 and A4. Proce-
dure enableSubProcs(P) (line 3) returns the set of enabled child processes according
to HCP graph of Orc expressions P as shown in Figure 4, with an exception that for
sequential process Ps = A > x > B, it returns an empty set {} instead of {A}, and
for pruning process Pp = A < x < B, it returns {A} instead of {A,B}. This exception
is applied in order to satisfy the condition A2’(2). Procedure fillAmpleRec(P,V) (line
17) retrieves the ample set candidates under valuation V and assigns it to P.Amples.
In line 18, Enable(c) where c = (P,V) gives the set of all enabled configurations
from the configuration c. Procedure checkA2Local(config) checks whether configu-
ration config satisfies A2’(1). Procedure isPrivate (line 32) checks whether the site
with config.EnableSiteId as unique identity is private in Proc[PG] where Proc is the
process component of config and PG is the argument P of procedure CAmple pro-
vided by user, which is the global process that has Proc as descendant process. The
checking is done by syntax analysis. In Orc, P is a terminal process (line 20) iff it
is a site call. Procedure composeAmples(P, sP,V) (line 26) combines sP.Amples back
into P.Amples under valuation V . Procedure reformAmples (sP.Amples,P) (line 27) re-
structures configurations within sp.Amples by operational semantics of Orc. For ex-
ample, consider P = (1 + x < x < 2), and sP = 2. After making a transition,
sP.Amples = {{c}}, where c is the configuration (stop,∅) with c.Event = !2 . After
restructuring by reformAmples(sP.Amples,P), c becomes (1 + 2,∅), and c.Event = τ ,
according to rule ASYM2V as stated below.

(2,∅) !2→ (stop,∅)
[ ASYM2V ]

(1 + x < x < 2,∅) τ→ (1 + 2,∅)
When P = sP, reformAmples(sP.Amples,P) will simply return sP.Amples. Sub-

sequently, ample sets that are empty sets are filtered away (line 28). We continue on
the discussion of procedure CAmple. To analyze whether an ample set ample is valid,When P = sP, re f ormAmples(sP.Amples, P) will simply return sP.Amples. Subsequently,

ample sets that are empty sets are filtered away (line 28). We continue on the discussion of

procedure CAmple. To analyze whether an ample set ample is valid, the algorithm checks

whether all configurations within satisfy conditions A3 and A4 (line 9, 10). If it turns out

to be true, a valid ample set is found, and it will be returned immediately (line 14, 15). If

no valid ample set has been found in line 3-15, all the enabled configurations from current

configuration c = (P, V) will be returned (line 16). Regarding checking of condition A3 (line

9), there are two kind of actions that might not be∅−invisible, which are actions that contain

publication events or actions that involved the update of global variables. Consider the

metronome example, if we are checking property like whether !tick event can be executed
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infinitely often, an action a with a.Event =!tick is not ∅−invisible. Another example is when

we are checking whether tickNum < 0 is true in all situations, where tickNum is a global

variable, an action a with a : EnableSiteType = GUpdate is not ∅−invisible.

4.2.3 Soundness

Lemma 4.2.3. Given any two actions a1 and a2 in the system, and let s1 and s2 be the enable

sites of actions a1 and a2 respectively. If sites s1 and s2 are not descendant processes of the RHS

process of some pruning combinators and datastores of sites s1 and s2 are disjoint, then action a1 is

independent of action a2.

Proof. Actions a1 and a2 are dependent only when (a) action a1 could disable action a2 or

vice versa or (b) starting from the same configuration, transitions a1a2 and a2a1 could result

in different configurations. Situation (a) could happen if site s1 could possibly modify the

datastore of site s2 or vice versa, or when sites s1 and s2 are the descendant processes of

the RHS process of some pruning combinators. For the later case, consider x < x < (s1|s2),

if site s1 published a value, site s2 will be disabled immediately. Nevertheless, this case

is ruled out by the assumption. Condition (b) could happen when sites s1 and s2 contain

common datastore which they may modify and depend on. Therefore, conditions (a) and

(b) are the results of having common datastore between sites s1 and s2. This implies that if

sites s1 and s2 have disjoint datastores, actions a1 and a2 are independent to each other. �

end.

Lemma 4.2.4. Given a configuration c = (P,V), and process P1 as a descendant process of P. If P1

is not a descendant process of the LHS process of some sequential combinators, then a site S that is

private in P1[P], is permanently private in P1[c] as well.

Proof. We prove by inspecting each rule in the operational semantics of Orc [93]. Only

rule SEQ1V of operational semantics of Orc is possible to transfer the site reference from
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a process p1 to another process p2, while retaining process p1. Consider HCPs under rule

SEQ1V in Figure 4.4, a site S that is private in P1[P0] may not be private in P1[P2], since P3

might have the access to the reference of site S. Therefore, if we exclude this situation by

assuming P1 is not a descendant process of the LHS process of some sequential combinators,

we prove the lemma . � end.

Given a configuration cg = (Pg,Vg), and Pd as a descendant process of Pg, with associated

configuration cd = (Pd,Vd). Ccg is defined as the set of configurations reachable by cg in

LTS; Pcg is defined as {P|c = (P,V) ∧ c ∈ Ccg}; HCP(Pcg) is defined as the HCPs for each

global process inPcg ;Hcg is defined as the union of processes within each HCP in HCP(Pcg);

Hcg[Pd] is the set of processes that contain process Pd and its corresponding descendant

processes in respective HCPs in HCP(Pcg), and Hcg[Pd] ⊆ Hcg .

Lemma 4.2.5. If an action a ∈ Act(cd) satisfies A2’ then the action is independent of any action b

∈ Act(c′), where c′ = (P′,V′), such that P′ = Hcg/Hcg[Pd], and V′ is any valuation.

Proof. Assume an action a ∈ Act(cd) satisfies A2’, and assume the action is dependent to an

action b ∈ Act(c′). Let sites sa and sb be the enable sites of actions a and b respectively. By

A2’(1), site sa is a stateless site or stateful site that is private in pa[Pg]. Site sa could not be

a stateless site since a stateless site does not have a datastore, and thus action a is trivially

independent to any actions in the system by Lemma 1 and A2’(2). Therefore, site sa is a

stateful site that is private in pa[Pg]. By Lemma 2 and A2’(2), site sa is also permanently

private in pa[cg] . By definition, datastores of site sa and sb are disjoint. By Lemma 1 and

A2’(2), actions a and b are independent, a contradiction. � end.

Theorem 4.2.6. If any action a ∈ Act(cd) satisfies A2’, then AmpleAct(cg) = Act(cd) satisfies A2

for all traces in TScg .

Proof. Assume any action a ∈ Act(cd) satisfies A2’, and AmpleAct(cg) = Act(cd) does not

satisfies A2 for some traces in TScg . This means that there exists a finite execution fragment
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l = c
a1
→ c1

a2
→ . . .

an
→ cn

an+1
→ . . . ,where actions a1, . . . , an < Act(cd) and action an+1 depends

on some actions in AmpleAct(cg) = Act(cd). Since Lemma 3 holds, action an+1 must be from

PAct(cd)/Act(cd), we denote the enable site of action an+1 as Sn+1. Since site Sn+1 is disabled

initially in cd, it means that it is enabled later by a site call from a process p′ ∈ Hcg/Hcg[Pd].

For sites in process Pd, site calls from a process p′ ∈ Hcg/Hcg[Pd] could only enable the

sites that are shared in pd[P′g], where P′g is the global process of p′. We denote the set of

datastores of the sites that are shared in pd[P′g] as Dshare, and datastore of Sn+1 is in Dshare.

On the other hand, by Lemma 2 and A2’(2), any action a ∈ Act(cd) is enabled by a site that

is permanently private in pa[cg]. By definition, datastore of the enable site of any action a

∈ Act(cd) must not be found in Dshare. Therefore, action an+1 is independent to all actions in

Act(cd) by Lemma 1 and A2’(2), a contradiction. � end.

Theorem 4.2.7. Algorithm CAmple is sound.

Proof. To show the soundness of the algorithm, we need to show that the returned ample

set satisfies conditions A1-A4. Checking of condition A1 is done at line 28. Conditions

A3 and A4 are checked at the global process level (line 11, 12) at CAmple since they are

only concerned with the property of global process configurations, i.e. their visibility and

whether they have been visited before. By Theorem 1, satisfaction of condition A2’ leads

to satisfaction of condition A2. Condition A2’(1) is checked at line 19. Condition A2’(2)

is guaranteed by constraining the procedure enableSubProcs(P) (line 3) not to return LHS

process of a sequential process and RHS process of a pruning process. � end.

4.3 Evaluation

Our approach has been realized in the ORC Module of Process Analysis Toolkit (PAT) [2, 86].

PAT is designed for systematic validation of distributed/concurrent systems using state-of-

the-art model checking techniques. It can be considered as a framework for manufacturing
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three situations are compared: CPOR is the scenario where Compositional POR ap-
proach as described in Section 3 is applied; POR is the scenario where the classic ap-
proach of POR that only considered the concurrency of processes at level 1 is applied;
No POR/CPOR is the scenario where neither POR nor CPOR is applied. In the table, X
and 7 means the property is satisfied and violated respectively. The results are omitted
(shown as “-”) for states and times, if it takes more than eight hours for verification.

(A) Comparing difference POR methods
States Time(s)

Model Property Size CPOR POR No POR/CPOR CPOR POR No POR/CPOR

Concurrent
(1.1)

2 X 58 1532 10594 0.08 1.13 5

Quicksort
3 X 69 3611 36794 0.11 8.48 74
5 X 237 - - 0.68 - -

Readers-Writers (2.1)
2 7 106 1645 7620 0.07 1.12 4

Problem
3 7 152 18247 142540 0.11 14.86 101
10 7 472 - - 0.49 - -

Auction (3.1) N.A. X 869 - - 0.6 - -
Management (3.2) N.A. X 883 - - 0.75 - -

(B) Comparing Our Model Checker and Maude
States/Rewrites Time(s)

Model Property Our Maude Our Maude

Auction Management
(3.1) X 869 7052663 0.6 14.4
(3.2) X 883 8613539 0.75 19.8

Table 1. Performance evaluation on model checking Orc’s model

Model Concurrent Quicksort is a variant of the classic quicksort algorithm and em-
phasizes its concurrent perspective, as described in [18]. For model Concurrent Quick-
sort, size denotes the number of elements in the array to be sorted. Property (1.1) is used
to verify whether elements in the array will eventually be sorted, and once sorted, it will
remain sorted. Model Readers-Writers Problem is a famous computer science problem
as described in [9], for which size denotes the number of readers. Property (2.1) ver-
ifies whether the model is possible to reach a state that violates the mutual exclusion
condition. Model Auction Management is the case study in [2] which includes the use
of external services. Please refer to [27] for the details of modeling external services in
our work. Property (3.1) is used to verify that if an item has a bid on it, it will eventu-
ally be sold; Property (3.2) is used to verify that every item is always sold to a unique
winner. Part (B) is the comparison of the effectiveness of our model checker for Orc
and that of the model checker Maude [3, 4]. Figures for number of rewrites and time
usage for Maude model checker are from [4], which was run under 2.0GHz dual-core
node with 4GB of memory. The experiments show that CPOR provides greater-scale
reduction than classic POR for HCPs. In addition, our implementation with CPOR is
more efficient than Maude [3, 4].

5 Related work
This work is related to research on applying POR to hierarchical concurrent systems.
Lang et al. [20], proposed a variant of POR using compositional confluence detec-
tion. The proposed method works by analyzing the transitions of the individual process

Table 4.1: Performance evaluation on model checking Orc’s model

model-checker. The data are obtained with Intel Core 2 Quad 9550 CPU at 2.83GHz and

4GB RAM. ORC module supports verification of deadlock-freeness, Linear Temporal Logic

(LTL) [82] property, and reachability property base on [68].

In part (A) of Table 4.1, three situations are compared: CPOR is the scenario where Com-

positional POR approach as described in Section 4.2 is applied; POR is the scenario where

classic approach of POR that only considered the concurrency of processes at level 1 is

applied; No POR/CPOR is the scenario where neither POR or CPOR is applied. Works

such as [65, 20, 64] are not included for comparison. The reason is they optimized POR by

restructuring or leveraging the information of processes at level 1, while CPOR is to extend

POR to HCP, and this two approaches are orthogonal. This means that they could be used

to optimized CPOR, in the same way they are used to optimized for POR, since CPOR and

POR have same level 1 processes. In the table,X and 7 means the condition is satisfied and

violated respectively. The results are omitted (shown as “-") for states and times, if it takes

more than eight hours for verification. Model Metronome is described in Section 4.1. Prop-

erty (1.1) is used to check for deadlock-freeness; property (1.2) is used to check whether
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“tick" and “tock" are always possible to be published in the future. Property (1.3) is a

reachablity testing which is used to test whether it is possible to have two consecutive

“tick"s or “tock"s published. Model Concurrent Quicksort is a variant of classic quicksort

algorithm which emphasizes its concurrent perspective, as described in [61], for which the

size column denotes the number of elements in the array to be sorted. Property (2.1) is used

to verify whether elements in the array will eventually be sorted, and once sorted, it will

remain sorted. Model Readers-Writers Problem is a famous computer science problem as

described in [36], for which the size column denotes the number of readers. Property (3.1)

verifies whether it is possible to reach a state that violates the mutual exclusion condition.

Model Auction Management is the case study found in [9] which includes the use of external

services. Please refer to [89] for the details of modeling of external services in our module.

Property (4.1) is used to verify if an item has a bid on it, it is eventually sold; Property

(4.2) is used to verify every item is sold to a unique winner. Part (B) of Table 4.1 is the

result of comparing the effectiveness of our Orc’s model checker, with the work reported

in [10, 11]. In [10, 11], Maude model checker is used for verification. Figures reported for

number of rewrites and time usage for Maude model checker are from [11], which is run

under 2.0GHz dual-core node with 4GB of memory. For all models, CPOR has shown state

reduction over POR, and it also shows that our model checker is more efficient than the

work reported in [10, 11].

4.4 Related work

This work is related to research on applying POR to hierarchical concurrent systems. Lang

et al. [65], propose an approach of POR using compositional confluence detection. The

proposed method works by analyzing the transitions of the individual process graph as

well as the synchronization structure to identify the confluent transitions in the system
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graph. Transitions within the individual process graphs (at level 1) are assumed to be

dependent, thus all possible transitions will be generated for individual process graphs.

While in our work, we further exploit the independency within each process recursively.

Basten et al. [20], propose an approach to enhance POR via process clustering. The proposed

method combines processes (at level 1) in clusters, and applies partial order reduction at

proper cluster-level to achieve more reduction. The local transitions of each process (at

level 1) are assumed to be dependent. Krimm et al. [64], propose an approach to compose

the processes (at level 1) of an asynchronous communicating system incrementally, at the

same time apply POR for the generated LTS. The local transitions of each process (at level

1) in the system are assumed to be dependent.

This work is related to research on verifying Orc. Yang et al. [39], propose an approach

to translate the Orc language to Timed Automata for verification. In [87], we propose a

preliminary idea in verifying Orc directly based on its semantics. In both approaches, no

reduction to the LTS is considered. Alturki et al. [9, 10], propose an approach to translate

the Orc language to rewriting logic for verification. An operational semantics of Orc in

rewriting logic is defined, which is proved to be semantically equivalent to the operational

semantics of Orc. To make the formal analysis more efficient, a reduction semantics of Orc

in rewriting logic is again defined, which is proved to be semantically equivalent to the

operational semantics of Orc in rewriting logic. We have compared the efficiency of our

model checker with theirs in Section 4.3.
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Chapter 5

Integrated Verification of Service

Composition

Based on Service Oriented Architecture (SOA), Web services make use of open standards,

such as WSDL [6] and SOAP [5], that enable the interaction among heterogeneous appli-

cations. A real-world business process may contain a set of services. A Web service is a

single autonomous software system with its own thread of control. A fundamental goal of

Web services is to have a collection of network-resident software services, so that it can be

accessed by standardized protocols and integrated into applications or composed to form

complex services which are called composite services. A composite service is constructed

from a set of component services. Component services have their interfaces and functional-

ities defined based on their internal structures. While the technology for creating services

and interconnecting them with a point-to-point basis has achieved a certain degree of ma-

turity, there is a challenge to integrate multiple services for complex interactions. Web

service composition standards have been proposed in order to address this challenge. The

de facto standard for Web service composition is Web Services Business Process Execution

Language (WS-BPEL) [56]. WS-BPEL is an XML-based orchestration business process lan-

67
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guage. It provides basic activities such as service invocation, and compositional activities

such as sequential and parallel composition to describe composition of Web services. BPEL

is inevitably rich in concurrency and it is not a simple task for programmers to utilize

concurrency as they have to deal with multi-threads and critical regions. It is reported

that among the common bug types concurrency bugs are the most difficult to fix correctly,

the statistic shows that 39% of concurrency bugs are fixed incorrectly [95]. Therefore, it

is desirable to verify Web services with automated verification techniques, such as model

checking [18].

There are two kinds of requirements of Web service composition, i.e., functional and non-

functional requirements. Functional requirements focus on the functionalities of the Web

service composition. Given a booking service, an example of functional requirement is that

a flight ticket with price higher than $2000 will never be purchased. The non-functional

requirements are concerned with the Quality of Service (QoS). These requirements are

often recorded in service-level agreements (SLAs), which is a contract specified between

service providers and customers. Given a booking service, an example of non-functional

requirements is that the service will respond to the user within 5 ms. Typical non-functional

requirements include response time, availability, cost and so on. However, it is difficult

for service designers to take the full consideration of both functional and non-functional

requirements when writing BPEL programs.

Model checking is an automatic technique for verifying software systems [18], which helps

find counterexamples based on the specification at the design time so that it could detect

errors and increase the reliability of the system at the early stage. Currently, increasing

number of complex service processes and concurrency are developed on Web service

composition. Hence, model checking is a promising approach to solve this problem. Given

functional and non-functional requirements, existing works [46, 49, 62, 72] only focus

on verification of one aspect, and disregard the other, even though these two aspects are
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inseparable. Different non-functional properties might have different aggregation functions

for different compositional structures, and this poses a major challenge to integrate the non-

functional properties into the functional verification framework.

In this work, we propose a method to verify BPEL programs against combined functional

and non-functional requirements. A dedicated model checker is developed to support

the verification. We make use of the labeled transition systems (LTSs) directly from the

semantics of BPEL programs for functional verification. For non-functional properties,

we propose different strategies to integrate different non-functional properties into the

functional verification framework. We focus on three important non-functional properties

in this work, i.e., availability, cost and response time. To verify availability and cost, we

calculate them on-the-fly during the generation of LTS, and associate calculated values to

each state in the LTS. Verification of response time requires an additional preprocessing

stage, before the generation of LTS. In the preprocessing stage, response time tag is assigned

to each activity that is participated in the service composition. With such integration, we

are able to support combined functional and non-functional requirements.

The contributions of our work are summarized as follows.

1. We support integrated verification of functional and non-functional properties for

Web service composition. To the best of our knowledge, we are the first work on such

integration.

2. We capture the semantics of Web service composition using labeled transition systems

(LTSs) and verify the Web service composition directly without building intermedi-

ate or abstract models before applying verification approaches, which makes our

approach more suitable for general Web service composition verification.

3. Our approach has been implemented and evaluated on the real-world case studies,

and this demonstrates the effectiveness of our method.
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Chapter Outline. The rest of section is structured as follows. Section 5.1 describes the BPEL

running example. Section 5.2 introduces QoS compositional model. Section 5.3 shows how

to verify functional and non-functional propeties. Section 5.4 provides the evaluation of

our work. Section 5.5 reviews the related work.

5.1 Motivating Example

In our work, we assume that composite services are specified in the BPEL language. BPEL

is the de facto standard for implementing composition of existing services by specifying an

executable workflow using predefined activities. BPEL is an XML-based orchestration busi-

ness process language for the specification of executable and abstract business processes.

It supports control flow structures such as sequential and concurrency execution. In the

following, we introduce the basic BPEL notations. <receive>, <invoke>, and <reply>

are the basic communication activities which are defined to receive messages, execute

component services and return messages respectively for communicating with component

services. There are two kinds of <invoke> activities, i.e., synchronous and asynchronous

invocation. Synchronous invocation activities are invoked and the process waits for the

reply from the component service before moving on to the next activity. Asynchronous in-

vocation activities are invoked and moving on to the next activity directly without waiting

for the reply. The control flow of composite services is specified using the activities like

<sequence>, <while>, <if> and <flow>. <sequence> is used to define the sequential

ordering structure, <while> is used to define the loop structure, <if> is used to define the

conditional choice structure, and <flow> is used to implement concurrency structure.
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Personal Billing
Service (PBS)

Corporate Billing
Service (CBS)

is non-corporate is corporate

Receive from user
(fu)

Manufacture Service
(MS)

Shipper Service
(SS)

Reply user
(ru)

Figure 5.1: Computer Purchasing Service

5.1.1 Computer Purchasing Services (CPS)

In this section, we introduce the computer purchasing service (CPS), which is designed

to allow users to purchase a computer online using credit cards. The workflow of CPS is

illustrated in Figure 5.1.

CPS has four component Web services, namely Personal Billing Service (PBS), Corporate

Billing Service (CBS), Manufacture Service (MS), Shipper Service (SS). CPS is initialized

(denoted by ) upon receiving the request from the customer ( f u) with the information

of the customer and the computer that he wishes to purchase for. Subsequently, an <if>

activity (denoted by ) is used for checking whether the customer is a corporate customer

or non-corporate customer. If it is a corporate customer, CBS is invoked synchronously

to bill the corporate customer, otherwise, PBS is invoked synchronously to bill the non-

corporate customer with credit card information. Upon receiving the reply, a <flow>
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activity (denoted by ) is triggered and MS and SS are invoked concurrently. MS is in-

voked synchronously to notify manufacture department for manufacturing the purchased

computers. SS is invoked synchronously to schedule shipment for the purchased comput-

ers. Upon receiving the reply message from SS and MS, reply user (ru) is called to return

the result of the computer purchasing to the customer. Then, the workflow of CPS has

ended (denoted by ).

A property that CPS must fulfill is that it must invoke reply user (ru) within 5 ms. Notice

that this property combines the functional (must invoke reply user (ru)) and non-functional

(within 5 ms) requirements.

5.1.2 BPEL Notations

In order to present BPEL syntax compactly, we define a set of BPEL notations below:

• rec(S) and reply(S) are used to denote “receive from” and “reply to” a service S;

• sInv(S) (resp. aInv(S)) is used to denote synchronous (resp. asynchronous) invocation

of a service S;

• P1||P2 is used to denote <flow> activity, i.e., the concurrent execution of BPEL activi-

ties P1 and P2;

• P1 / b . P2 is used to denote <if> activity, where b is a guard condition. Activity P1

is executed if b is evaluated true. Otherwise, activity P2 will be executed;

• P1; P2 is used to denote <sequence> activity, where P1 is executed followed by P2.

We denote activities that contain other activities as composite activities, they are P1||P2,

P1 / b .P2 and P1; P2. For activities that do not contain any other activities, we denote them

as atomic activities, they are rec(S), reply(S), sInv(S) and aInv(S).
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QoS Attribute PBS CBS MS SS

Response
Time(ms)

1 2 3 1

Availability(%) 90 80 80 80

Cost($) 3 2 2 2

Table 5.1: QoS Attribute Values

5.2 QoS-Aware Compositional Model

In this section, we define the QoS compositional model used in this work and briefly intro-

duce the semantics of BPEL, captured by labeled transition systems (LTSs). We introduce

some definitions used in the semantic model in the following.

5.2.1 QoS Attributes

In this work, we deal with quantitative attributes that can be quantitatively measured

using metrics. There are two classes of QoS Attributes, positive and negative attributes.

Positive attributes (e.g., availability) have a good effect on the system, and therefore, they

need to be maximized. Availability of the service is the probability of the service being

available. Negative attributes (e.g., response time, cost) need to be minimized as they have

the negative impact on the system. Response time of the service is defined as the delay

between sending a request and receiving the response and cost of the service is defined

as the money spent on the service. In this work, we assume the unit of response time,

availability and cost to be millisecond (ms) , percentage (%) and dollar ($). Table 5.1 shows

the information of response time, availability and cost of each component service for the

CPS example as described in Section 5.1.1.

Given a component service s with n QoS attributes, we use a vector Qs = 〈q1(s), . . . ,
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qn(s)〉 to represent QoS attributes of the service s , where qi(s) represents the value of ith

attribute of the component service s. Similarly, Q′cs = 〈q1(cs)′, . . . , qn(cs)′〉 is used to denote

the QoS attributes of the composite service cs, where qi(cs)′ represents the ith attribute of

the composite service cs.

5.2.2 QoS for Composite Services

A composite service S is constructed using a finite number of component services to reach a

business goal. Let C = 〈s1, s2, . . . , sn〉 be the set of all component services that are used by S.

The QoS of composite services is aggregated from the QoS of the component services, based

on the service internal compositional structure, and the type of QoS attributes. Table 5.2

shows the aggregation functions for each compositional structure. We consider three types

of QoS attributes: response time, availability and cost. For response time, in sequential

composition, the response time of the composite service is aggregated by summing up the

response time of each component service. As for parallel composition, the response time

of the composite service is the maximum response time among that of each participating

component service. For loop composition, the response time of the composite service is

obtained by summing up the response time of the participating component service for

k times, where k is the number of maximum iteration of the loop. And for conditional

composition, the response time of the composite service is the maximum response time

of n participating component services since it is not known that which guard is satisfied

at the design phase. For availability, in sequential composition, the availability of the

composite service is the product of that of all component services in the sequence because

it means all component services are available during the sequential execution. It is similar

to parallel and loop composition for aggregation of availability of the composite services.

For conditional availability of the composite service, since one component service will

be chosen at execution, therefore, we denote the availability as the minimum availability
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QoS Attribute Sequential Parallel Loop Conditional

Response
Time

n∑
i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Availability
n∏

i=1
q(si)

n∏
i=1

q(si) (q(s1))k
n

min
i=1

q(si)

Cost
n∑

i=1
q(si)

n∑
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Table 5.2: Aggregation Function

among all component services participated in the conditional composition. For cost, in

sequential composition, the cost of the composite service is decided by the total cost of

component services. For the conditional composition, the cost of the composite service is

the maximum cost of n participating component services. Other common QoS attribute

types can be aggregated in the similiar way with these three attributes. For example, QoS

attributes like reliability share the same aggregation function with availability.

5.2.3 Labeled Transition Systems

The QoS-aware composite model in this work is defined using labeled transition systems

(LTS). In the following we define various terminologies that will be used in this work.

Definition 5.2.1 (System State). A system state s is a tuple (P,V,Q), where P is the composite

service process and V is a (partial) variable valuation that maps variables to their values, Q is a

vector which represents QoS attributes of the composite service.

Two states are equivalent iff they have the same process P , the same valuation V and the

same QoS vectors Q. Given a system state s = (P,V,Q), Q = 〈r, a, c〉 is a vector with three

elements, where r, a, c ∈ R≥0, and 0 ≤ a ≤ 1. r, a, c represent the response time, availability,

and cost of the state s. The response time, availability, and cost are calculated from the
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execution that starts at initial state s0 up to the state s. Henceforth, we use the notation

Q(ResponseTime), Q(Availability) and Q(Cost) to denote the value of r, a, and c of QoS vector

Q, respectively.

Definition 5.2.2 (Composite Service Model). A composite service modelM is a tuple (Var,P0,V0,F),

where Var is a finite set of variables, P0 is the composite service process, and V0 is an initial valuation

that maps each variable to its initial value. F is a function which maps component services to their

QoS attribute vectors.

Given a composite service (Var,P0,V0,F), an example of valuation V is {var1 7→ 1, var2 7→⊥},

where var1,var2 ∈ Var, and var2 7→⊥ is used to denote that var2 is undefined.

Definition 5.2.3 (LTS). An LTS is a tuple L = (S, s0,Σ,→), where

• S is a set of states,

• s0 ∈ S is the initial state,

• Σ is a set of actions,

• → : S × Σ × S is a transition relation.

For convenience, we use s a
→ s′ to denote (s, a, s′) ∈ → and we denote the LTS of a

BPEL service M as L(M). Given a composite service model M = (Var,P0,V0,F), L(M)

=(S, (P0,V0,Q0),Σ,→). Q0 is the QoS attribute vector of the initial state, where the avail-

ability is 1, cost and response time are equal to 0. Give a state s ∈ S, Enable(s) is denoted

as the set of states reachable from s by one transition; formally, Enable(s) = {s′|s′ ∈ S ∧ a ∈

Σ ∧ s a
→ s′ ∈ →}. An execution π of L is a finite alternating sequence of states and actions

〈 s0, a1, s1, . . . , sn−1, an, sn 〉, where {s0, . . . , sn} ∈ S and si
ai+1
→ si+1 for all 0 ≤ i < n. We denote

the execution π by s0
a1
→ s1

...
→ sn−1

an
→ sn. A state s is called reachable if there is an execution

that ends in s and starts in an initial state.
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s0:(i1 / b . i2; i3||i4,Q0)

s1:(i3||i4,Q1) s2:(i3||i4,Q2)

s3:(i4,Q3) s4:(i3,Q4) s5:(i4,Q5) s6:(i3,Q6)

s7:(stop,Q7) s8:(stop,Q8)

if else

Figure 5.2: LTS of CPS where i1 is sInv(PBS), i2 is sInv(CBS), i3 is sInv(MS) and i4 is sInv(SS)

Assume a composite service model isM = (Var,P0,V0,F) and the LTS ofM is L(M) =(S,

s0,Σ,→). Every action a ∈ Σ is triggered by an atomic activity. The atomic activities used

in this work are rec(S), reply(S), sInv(S), and aInv(S), where S is the component service

that the atomic activities are communicated with. For activities rec(S) and sInv(S), they

are required to wait for reply from component service S before continuing, therefore their

availability, cost and response time are equivalent to the availability, cost and response time

of component service S. For activities reply(S) and aInv(S), they are not required to wait

reply from the component service S, therefore they are regarded as internal operations.

We assume the availability, cost and response time for an internal operations as 100%, $0

and 0 ms respectively (see Section 5.3.3 for discussion). Given two states s = (P,V,Q), s′ =

(P′,V′,Q′), where s, s′ ∈ S, s a
→ s′ ∈→, and a ∈ Σ, we use the function AtomAct(a) to denote

the atomic activity that triggers the action a. As an example, given s = (sInv(S); rec(S),V,Q)

and s′ = (rec(S),V,Q), the function AtomAct(a) returns the activity sInv(S). We define the

function ResponseTime(a), Availability(a) and Cost(a) to map the action a to the response time,

availability, and cost of the activity returned by AtomAct(a). Using the previous example,

ResponseTime(a) is the response time of activity sInv(S), which is essentially the response

time of component service S.

The LTS of CPS as discussed in Section 5.1 is shown in Figure 5.2, where we omit the

Receive f rom user( f u), Reply user(ru), all actions a ∈ Σ, and component V in the state for the

reason of brevity. From state s0, conditional activity i1 / b . i2 is enabled. Given that {b 7→⊥},



5.3. VERIFICATION OF FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS 78

either i1 or i2 might be executed, therefore states s1 and s2 are evolved from state s0. Noted

that if guard b is defined, then only one branch is explored in the LTS. From state s1, the

flow activity i3||i4 is enabled, and both activities i3 and i4 are allowed to execute. This leads

to states s3 and s4, respectively. State s3 evolves into state s7 after activity i4 is executed.

stop activity in state s7 is a special activity which does nothing. Other states in LTS could be

reasoned similarly. We assume that the upper bound on the number of iterations for loop

activities is known, therefore, there is no recursive activities in BPEL.

5.3 Verification of Functional and Non-Functional Requirements

This section is devoted to discuss how to verify combined functional and non-functional

requirements based on the LTS semantics of web service composition. Current works

only verify one aspect of requirements, either functional or non-functional requirement,

however, these two aspects are inseparable. For example, some property such as in the

CPS example is required to reply the user within 5 ms, involves both functional and non-

functional requirements. Therefore, we propose an approach to combine functional and

non-functional requirements.

5.3.1 Verification of Functional Requirement

To verify functional requirements of a BPEL program, LTS of the BPEL program is built from

composite service model. We support the verification of deadlock-freeness, reachability of

a state. To verify the LTL formulae, we make use of automata-based on-the-fly verification

algorithm [35], by firstly translating a formula to a Büchi automaton and then checking

emptiness of the product of the system and the automaton. For fairness checking, we utilize

the on-the-fly parallel model checking based on Tarjan strongly connected components

(SCC) detection algorithms similar to [84].
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5.3.2 Integration of Non-Functional Requirement

In this section, we present our approach in integrating the non-functional requirements

into verification framework. Different non-functional properties might have different ag-

gregation functions for different compositional structures, and this poses a major challenge

to integrate the non-functional properties into the functional verification framework. In

the following, we adopt two different strategies in integrating the non-functional require-

ments. We first discuss our approach in integration of availability and cost, and following

that, we discuss the integration of response time.

5.3.2.1 Integration of Availability and Cost

In this section, we present our approach to integrate the availability and cost to the veri-

fication framework. Given two states s = (P,V,Q), s′ = (P′,V′,Q′), where s, s′ ∈ S, s a
→ s′

∈→, and a ∈ Σ, the availability and cost of state s′ is calculated using the following formulae:


s′.Q(availability) = s.Q(availability) ∗ Availability(a)

s′.Q(cost) = s.Q(cost) + Cost(a)
(5.1)

Example. We illustrate the integration using the LTS of CPS as shown in Figure 5.3. In state

s0, it has the initial availability of 1 and initial cost of $0. From state s0, it evolves into state

s1 after invocation of i1. Since i1 has availability of 0.9 and cost of $3 (refer to Table 5.1),

therefore the resulting QoS vector of state s1 is 〈r1, 1 ∗ 0.9, 0 + 3〉 = 〈r1, 0.9, 3〉. From state s1,

it evolves into state s3 after the invocation of i3, and since i3 has availability of 0.8 and cost

of $2, the resulting QoS vector of state s3 is 〈r3, 1 ∗ 0.9 ∗ 0.8, 0 + 3 + 2〉 = 〈r3, 0.72, 5〉. Other

states are calculated similarly.

In general, given an execution π = s0
a1
→ s1

...
→ sn−1

an
→ sn in L(M), where {s0, . . . , sn} ∈ S and

si
ai+1
→ si+1 ∈ →, for all 0 ≤ i < n
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s0:(i1 / b . i2; i3||i4, 〈0, 1, 0〉)

s1:(i3||i4, 〈r1, 0.9, 3〉) s2:(i3||i4, 〈r2, 0.8, 2〉)

s3:(i4, 〈r3, 0.72, 5〉) s4:(i3, 〈r4, 0.72, 5〉) s5:(i4, 〈r5, 0.64, 4〉) s6:(i3, 〈r6, 0.64, 4〉)

s7:(stop, 〈r7, 0.576, 7〉) s8:(stop, 〈r8, 0.512, 6〉)

if else

Figure 5.3: LTS of CPS with Availability and Cost, where i1 is sInv(PBS), i2 is sInv(CBS), i3
is sInv(MS) and i4 is sInv(SS)


si+1.Q(availability) = s0.Q(availability)∗

i∏
m=1

Availability(am)

si+1.Q(cost) = s0.Q(cost)+
i∑

m=1
Cost(am)

(5.2)

with s0.Q = 〈0, 1, 0〉.

5.3.2.2 Integration of Response Time

One might naively think that we can adopt the method of calculating the cost as the method

for calculating the response time. However, this would result in incorrect result. Refer

to Figure 5.3, the value of response times r2, r5, r6, and r8 will be 2 ms, 5 ms, 3 ms, and 6

ms respectively by using the method of calculating the cost in Section 5.3.2.1. In such case

the value of r8 is incorrect. The reason is that it should be calculated as maximum of value

of r5 and r6, since parallelism allows both i3 and i4 to be executed simultaneously, and the

total time for the response time is decided by the maximum response time of i3 and i4. A

challenge to evaluate the maximum time in state s8 is that the information of parallism in

state s2 (i3||i4) is removed in state s5 and state s6 (only left with i3 or i4). In order to retain

this information, we preprocess the BPEL service model M to associate with a time tag

which will be used to calculate the response time in the LTS generation stage.

Algorithm 6.1 presents the main algorithm for preprocessing. Given a BPEL process P0,
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s0:([[[i1]1 / b . [i2]2]2; [[i3]5
||[i4]3]5]5, 〈0, 1, 0〉)

s1:([[i3]5
||[i4]3]5, 〈2, 0.9, 3〉) s2:([[i3]5

||[i4]3]5, 〈2, 0.8, 2〉)

s3:([[i4]3]5, 〈5, 0.72, 5〉) s4:([[i3]5]5, 〈3, 0.72, 5〉) s5:([[i4]3]5, 〈5, 0.64, 4〉) s6:([[i3]5]5, 〈3, 0.64, 4〉)

s7:(stop, 〈5, 0.576, 7〉) s8:(stop, 〈5, 0.512, 6〉)

if else

Figure 5.4: LTS of CPS with Response Time, Availability and Cost, where i1 is sInv(PBS), i2
is sInv(CBS), i3 is sInv(MS) and i4 is sInv(SS)

TagTime(P0, x) returns the process P′0 which is the process P0 with its internal activities

associated with time tags. Given each activity Acv ∈ P0, a value timetag ∈ R≥0 is associated

with Acv, denoted as Acv.timetag. Acv.timetag represents the total time delay from the

start of process P0, up to the completion of activity Acv. In the following, we describe the

Algorithm 6.1. The function TagTime(P0, x) is used to calculate the total time delay from

the start of process P0 up to the completion of activity Acv. Variable x ∈ R≥0 is the the

total time delay from the start of process P0 to the point just before the execution of activity

Acv. Lines 1, 5, 9 and 11 are used to detect the structure of the activities. At line 1, if P is

detected to be a sequential activity, activity A will be tagged with the delay x (line 2) as A

is triggered once P is triggered. Subsequently, activity B will be tagged. Since activity B is

executed after the completion of activity A, therefore the x is set to be the value of A.timetag

(line 3). Finally, the timetag of P is the same as timetag of B, since the completion of activity

B implies the completion of execution of process P (line 4). At line 5, if P is detected to be

a concurrent or conditional activity, activity A and activity B will be tagged with value x

(lines 6 and 7), since A and B are triggered at the same time once P is triggered. At line 8, the

timetag of P is the maximum value of timetag of A and B (refer to Section 5.2.2 for details).

If P is detected to be a synchronous receive activity or invocation activity, the timetag of P

is set to the sum of x and ResponseTime(P) (line 10).

Example. In the following, we use an example to illustrate how to calculate the re-



5.3. VERIFICATION OF FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS 82

Algorithm 5.1: Algorithm TagTime(P, x)
input : P, the BPEL process
input : x, the delay from the start to execution of process P
output: P’, process P with time tag

1 if P is A; B then
2 TagTime(A, x);
3 TagTime(B,A.timetag);
4 P.timetag← B.timetag ;

5 else if P is A||B or A / b . B then
6 TagTime(A, x);
7 TagTime(B, x);
8 P.timetag← max(A.timetag,B.timetag) ;

9 else if P is rec(S) or sInv(S) then
10 P.timetag← x + ResponseTime(P);

11 else if P is reply(S) or aInv(S) then
12 P.timetag← x;

sponse time for each state in the LTS. Given initial service process P0 = sInv(PBS) / b .

sInv(CBS); (sInv(MS)||sInv(SS)) , we denote P′0 = TagTime(P0, 0) and

P′0 = [[[sInv(PBS)]1 / b . [sInv(CBS)]2]2; [[sInv(MS)]5
||[sInv(SS)]3]5]5

where for each activity A ∈ P, [A]t is used to denote the activity A with A.timetag = t. Next,

in the LTS generation stage, Algorithm 5.2 is used to calculate the response time for each

state.

Given the process P of some state s ∈ S, CalculateTime(P) in Algorithm 5.2 returns the total

response time t ∈ R≥0 from the initial state s0 to s′. The value t is assigned to Q(responseTime)

for state s′. Lines 1, 6, 11 are used to detect the structure of the activities. We introduce

a special activity skip to denote the completion of execution of an atomic activity. skip

is used for the purpose of calculating the response time, and it will be removed after

the calculation. At line 1, if P is detected to be a sequential activity, the activity A is then

checked whether it is a skip activity. If it is (line 2), which implies that activity A has finished
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Algorithm 5.2: Algorithm CalculateTime(P)
input : P, BPEL process with time tagged
output: t ∈ R≥0, the time delay from the start of initial process P0 to the completion

of P

1 if P is A; B then
2 if A is skip then
3 return A.timetag;

4 else
5 return CalculateTime(A);

6 else if P is A||B or A / b . B then
7 if A is skip and B is skip then
8 return P.timetag;

9 else
10 return CalculateTime(PreviousActive(P));

11 else if P is skip then
12 return P.timetag;

execution, A.timetag is returned (line 3). Otherwise, CalculateTime(A) is invoked in order to

determine the response time (line 5). At line 6, if P is detected to be a concurrent activity or

conditional activity, A and B will be determined whether both are skip activities. If it is (line

7), which implies that P has finished execution, P.timetag is returned (line 8). Otherwise,

CalculateTime(PreviousActive(P)) is invoked in order to obtain the response time (line 10)

where PreviousActive(P) is used to denote previous execution activity. For example, given

s = (i1||i2,V,Q), s′ = (skip||i2,V′,Q′) , and s a
→ s′ ∈ →, PreviousActive(skip||i2) will return

AtomAct(a) = i1. At line 11, P is determined to be a skip activity implies that P has finished

execution, therefore, P.timetag is returned (line 12). The value of timetag for each BPEL

process is obtained using Algorithm 6.1.

Example. In Figure 5.4, given the initial state s0, there are two branches due to the con-

ditional process. If sInv(PBS) is executed, it will evolved into state s1 with process P′1

where

P′1 = [[[skip]1]2; [[sInv(MS)]5
||[sInv(SS)]3]5]5
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By running the Algorithm 5.2 for PBS to get the response time of PBS, it will return the

value 2, therefore state s1 has the response time of 2 ms. After the calculating the response

time, the skip are removed from P′1, which result in process P1 = [[sInv(MS)]5
||[sInv(SS)]3]5

as shown in Figure 5.4. The calculation of other states is similar.

5.3.3 Discussion

If a system is verified that it does not satisfy the requirement that the response time is less

than a ms in a state s, where a ∈ R≥0, it does not necessarily mean that such constraint will

be violated in the state s during the execution. The response time is served as an estimated

reference value. Furthermore, we do not take the response time, cost, and availability

of internal operations into account. In reality, such information can be estimated using

runtime monitoring method [71].

5.4 Evaluation

We evaluate our approach using three case studies. Each case study is a composite service

represented as a BPEL process. The experiment data was obtained on a system using Intel

Core I7 3520M CPU with 8GB RAM. The experimental results are summarized in Table 5.3.

5.4.1 Computer Purchasing Service (CPS)

As described in Section 5.1, CPS is used for allowing users to purchase a computer online

using credit cards. The workflow of CPS is illustrated in Figure 5.1. The property Reach

(replyUser∧ (responseTime>5)) is to verify whether the activity reply user (ru) can be reached

with response time more than 5 ms. The result is invalid as shown in Table 5.3, which

implies that if the reply user (ru) is reached, it will be always be less than 5 ms, which is
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Services Property Result #State #Transition Time(s)

CPS

( replyUser ∧ (responseTime>5)) invalid 21 29 0.0087

� responseTime≤5 valid 26 36 0.0089

� availability>0.6 valid 26 36 0.0083

LS
Reach (replyUser ∧ (responseTime>6)) invalid 106 241 0.0584

� responseTime≤6 valid 242 572 0.1866

TAS

Reach (replyUser ∧ (responseTime>3)) invalid 128 287 0.0631

� responseTime≤3 valid 264 622 0.0642

Reach (replyUser ∧ (availability≤0.3)) invalid 128 287 0.0437

Table 5.3: Experiment Results

the intended outcome we need. Properties � reponseTime≤5 and � availability>0.6 are LTL

formulas, which are invariant properties denoted that the CPS’s response time must always

be less than two milliseconds and the CPS’s availability is always larger than 50%. These

two properties are both verified to be valid in the CPS system. The number of visited states,

total transitions and time used for verification are listed in Table 5.3.

5.4.2 Loan Service (LS)

The goal of a Loan Service (LS) is to provide users for applying loans. The loan approval

system has several component systems, Loan Record Service (RS), Loan Approval Service

(LAS), Customer Details Service (CDS), Customer Loan History Service (CLHS), Customer

Credit Card History Service (CCHS), Customer Employment Information Service (CES) and

Customer Property Information Service (CPIS). Upon receiving the request from a customer,

CDS will be invoked synchronously. If the requested load amount is less than $10000, CES

is invoked and then RS is invoked to record the customer’s loan information. After that,

loan approval message will be replied to the customer. Otherwise, if the requested amount

is not less than $10000, CLHS, CCHS, CES and CPIS are invoked concurrently to obtain
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more detailed information about the customer. Upon receiving all replies, LAS is invoked

to determine whether to approve the load request of the customer or not. If the request is

approved, RS is invoked synchronously and then loan approval message will be replied

to the customer, otherwise, loan failure message will be replied to the customer. Two

properties are verified for LS as listed in Table 5.3, we omit the discussion of the properties

as they are similar to the properties of CPS.

5.4.3 Travel Agency Service (TAS)

Travel Agency Service (TAS) provides a service that helps users to arrange the flight,

hotel, transport, etc., for a trip. Once the request is received from the user, Hotel Booking

Service (HBS), Fight Booking Service (FBS), Local Transport Service (LoTS) and Local

Agent Service (LAS) are triggered to search for available hotel, flight, local transportation

and local travel agent concurrently that fulfill the user’s requirements. If all four services

have returned non-empty results, Record Booking Information Service (RBS) and Notify

Agent Service (NAS) are invoked concurrently to store detailed booking information into

the system and notify the agent about the customer’s details. Finally, TAS replies the

detailed booking information to the user. Otherwise, TAS replies booking failure result to

the user. Three properties are verified for TAS as listed in Table 5.3. Properties Reach (reply

User∧ (responseTime>3)) and � responseTime≤3 are similar to the properties verified in CPS,

therefore we omit discussion of these two properties here. Property Reach (replyUser ∧

(availability≤0.3)) is to verify whether reply user (ru) can be reached with the availability

less than 0.3. The result is invalid as shown in Table 5.3, which implies that if the reply user

(ru) is reached, the availability is always greater than 0.3, which is the intended result that

we need.

The experiment shows that our approach can be used to verify the combined functional

and non-functional property for real-world BPEL program efficiently.
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5.5 Related Work

A number of approaches have been proposed to deal with requirements of Web service

composition. These work can be divided into two major directions. One direction is to

transform WS-BPEL processes into intermediate formal models specified in some formal

languages and then verify the functional behaviors of the service composition based on the

formal models. Foster et al. [46] translate BPEL processes into finite state processes notation.

Qian et al. [77] transform BPEL processes into timed automata, and then use Uppaal as

the model checker to verify the functional properties of the TA model, such as reachability.

In [72, 67], the authors transform BPEL processes into Promela models and then use SPIN

to verify the models. In [96], Yu et al. present a a lightweight specification language

called PROPOLS to describe the temporal logic in a BPEL process. Different from these

approaches, our current approach verifies functional properties of BPEL processes based

on its semantics, thus it does not need to be translated into any other formal languages

since there are some disadvantages of using intermediate models as mentioned at the

beginning of this section. More important, our work combines verification of functional

and non-functional requirements while works above only consider functional verification,

which cannot verify functional and non-functional requirements at the same time.

Another direction has its focus on the non-functional aspect of BPEL processes. In [62],

Koizumi and Koyama propose a performance model to estimate the processing execution

time by integrating a Timed Petri Net model and statistical models. However, it only

focuses on one type of non-functional requirements and does not consider the functional

behaviors. In [49], Fung et al. propose a message tracking model to support QoS end-to-end

management of BPEL processes. This work is based on the run-time data, which needs the

deployment of the services, in addition, it does not consider the functional requirements of

BPEL processes. Our approach verifies both functional and non-functional requirements

at design time, which can detect errors at the early stage. In [94], Xiao et al. propose
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a framework to use the simulation technique to verify the non-functional requirements

before the service deployment, which is similar to our work. While their work only focus

on non-functional aspect, our work supports verification of combined functional and non-

functional properties. In [88], we propose a fully automatic approach for synthesis the local

time requirement based on the given global time requirement of Web service composition.

Different from them, our work focuses on checking LTL constraint satisfaction. And to

the best of our knowledge, our work is the first one to verify combined functional and

non-functional properties.



Chapter 6

Dynamic Synthesis of Response Time

Requirement

Service-oriented architecture is a paradigm that promotes the building of software applica-

tions by using services as basic components. Services make their functionalities available

through a set of operations accessible over a network infrastructure. To assemble a set of

services to achieve a business goal, service composition such as BPEL (Business Process

Execution Language) Orchestration [56] has been proposed. The service that is composed

by service composition is called a composite service, and services that the composite service

makes use of are called component services.

In business where timing is critical, a requirement on the service response time is often

an important clause in service-level agreements (SLAs), which is the contractual basis

between service consumers and service providers on the expected quality of service (QoS)

level. Henceforth, we denote the response time requirement of composite services as global

time requirement; and the set of constraints on the response times of the component services

as the local time requirement. The response time of a composite service is highly dependent

89
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on that of individual component services. It is therefore important to derive the local

time requirement from the global time requirement so as to identify component services

which could be used to build the composite service while satisfying the response time

requirement.

Consider an example of a stock indices service, which has an SLA with the subscribed

users, such that the stock indices would be returned in two seconds upon request. The

stock indices service makes use of three component services, including a paid service, to

request for the stock indices. The stock indices service provider would be interested to

know the local time requirement of the component services.

BPEL is a service composition language that supports complex timing constructs and

control flow structures such as concurrency. Such a combination of timing constructs,

concurrent calls to external services, and complex control structures makes it a challenge

to synthesize the local time requirement.

In this section, we present a fully automated technique for the synthesis of the local time

requirement in BPEL. The approach works by performing dynamic analysis on the service

composition, using techniques of parameter synthesis for real-time systems. For the syn-

thesized local time requirement to be useful, it needs to be as weak as possible, to avoid

discarding any service candidates that might be part of a feasible composition. This is

particularly important, as often having a faster service would incur higher cost. To synthe-

size a better constraint that allows larger sets of feasible composition, we provide an extra

analysis on the behavior of the composite service based on its associated labeled transition

systems (LTSs). Our synthesis approach does not only avoid bad scenarios in the service

composition, but also guarantees the fulfillment of global time requirement.

Our contributions are as follows:

1. Given a composite service, we develop a sound method for synthesizing the local
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time requirement in the form of a set of constraints on the local service response times.

The approach is implementation independent, therefore can be applied at the design

stage of service composition.

2. We develop a fully automated tool to evaluate the proposed method and apply it to

real-world case studies.

The synthesized local time requirement has multiple advantages. First, it allows the se-

lection of feasible services from a large pool of services with similar functionalities but

different local response times. Second, the designer can avoid over approximations on the

local response times. An over approximation may lead the service provider to purchase

a service at a higher cost, while a service at a lower cost with a slower response time

may be sufficient to guarantee the global time requirement. Third, the local requirements

serve as a safe guideline when component services are to be replaced or new services are

to be introduced. Last but not least, the requirement synthesized by our method gives a

quantitative measure of the robustness of the composite services. Indeed, if the global time

requirement is satisfied given a local response time of 2 seconds, it may not be the case

anymore for a value bigger than, but very close to, 2 seconds (e.g., 2.001 seconds). The

constraint synthesized gives a measure of the upper bound until which each local response

time can vary.

Chapter Outline.The rest of this section is structured as follows. Section 6.1 introduces a

timed BPEL running example. Section 6.2 provides the necessary definitions and termi-

nologies. Section 6.3 introduces our approach to dynamically analyze the BPEL process.

Section 6.4 presents the synthesis algorithms and their soundness proofs. Section 6.5 dis-

cusses the application of our approach on two case studies. Section 6.6 reviews related

works.
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6.1 A Timed BPEL Example

BPEL [56] is an industrial standard for implementing composition of existing Web services

by specifying an executable workflow using predefined activities. In this work, we assume

the composite service is specified using the BPEL language. Basic BPEL activities that

communicate with component Web services are <receive>, <invoke>, and <reply>,

which are used to receive messages, execute component Web services and return values

respectively. We denote them as communication activities. The control flow of the service

is defined using structural activities such as <flow>, <sequence>, <pick>, <if>, etc. In

this section, we illustrate a Vehicle Booking Service (VBS) as a running example in this work.

6.1.1 Vehicle Booking Service

Receive User

A. Invoke FC

OnAlarm 1 secondOnMessage FC

× Reply User

S. Invoke TC S. Invoke FB

X Reply User

S. Invoke TB S. Invoke FB

X Reply User X Reply User

flightPrice ≥ 1000

trainPrice < fightPrice

Figure 6.1: Vehicle Booking Service

The goal of Vehicle Booking Service (VBS) is to provide a combined flight and train booking

services by integrating several independent existing services. It provides an SLA for its

subscribed users, saying that it must respond within five seconds upon request.
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The VBS has four component Web services: a flight checking service (FC), a train checking

service (TC), a flight booking service (FB), and a train booking service (TB). The workflow

of the VBS is sketched in Figure 6.1 in a tree structure. When a request is received from

a subscribed customer (Receive User), it would asynchronously invoke (i.e., the system

moves on after the invocation without waiting for the reply) the flight checking service

(A. Invoke FC) to request for the flight information. A <pick> construct (denoted by

) is used here to wait incoming response (<omMessage>) from previous asynchronous

invocation and timeout (<onAlarm>) if necessary. If the response from FC (OnMessage FC)

is received within one second, an <if> branch (denoted by ) is used to check for the

price of flight ticket. Otherwise, if the time-out occurs (OnAlarm 1 second), VBS stops

waiting for the result from FC and notifies the user regarding the failure of getting flight

information (Reply User). If the price of the flight ticket is less than 1000, the flight booking

service (S. Invoke FB) is invoked synchronously (i.e., invoke and wait for reply) and then the

booking result is replied to the user. Otherwise, TC is invoked synchronously (S. Invoke TC)

to check the information of the train ticket followed by an <if> activity. If the price of the

train ticket is less than that of flight, then TB is invoked synchronously (S. Invoke TB) to

book the train ticket and the booking result is replied to the user (Reply User). Otherwise,

the FB is invoked synchronously (S. Invoke FB) to book the flight ticket and the booking

result is replied to the user (Reply User). The activity with a X (resp. ×) represents the

desired (resp. undesired) activity that ends the composition.

The global time requirement for VBS is that VBS should respond within five seconds upon

request. It is of particular interest to know the local time requirements for services FC, TC,

FB, and TB, so as to fulfill the global time requirement.

6.1.2 BPEL Notations

We succinctly recall the BPEL syntax notations below:
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• rec(S) and reply(S) are used to denote “receive from” and “reply to” a service S,

respectively;

• sInv(S) (resp. aInv(S)) denotes the synchronous (resp. asynchronous) invocation of a

service S;

• P||Q denotes the concurrent composition of BPEL activities P and Q;

• P; Q denotes the sequential composition of BPEL composition P and Q;

• P / b . Q denotes the conditional composition, where b is a guard condition. If b is

evaluated as true, BPEL activity P is executed, otherwise activity Q is executed;

• pick(S⇒P, alrm(a)⇒Q) denotes the BPEL pick composition, which contains two branches

of activities: onMessage activity and onAlarm activity, where either branch of the ac-

tivity will be executed. onMessage activity is activated when the message from service

S arrives within a seconds, where a ∈ R>0, and BPEL activity P is subsequently exe-

cuted; onAlarm activity is activated at a seconds, and BPEL activity Q is subsequently

executed. If the message arrives at exactly a seconds, then P or Q executes non-

deterministically. Given a pick activity P, we use P.onMessage and P.onAlarm to denote

the onMessage and onAlarm branches of P respectively.

6.2 Formal Model for Parametric Analysis

A composite service S makes use of a finite number of component services to accomplish a

task. Let C = {s1, . . . , sn} be the set of all component services that are used by S. The response

time of a service is reflected on the time spending on the communication activities. For

example, assume that the only communication activity that communicates with component

service s is sInv(s1). Upon invoking of service s, the construct sInv(s1) waits for the reply.

The response time of s1 is equivalent to the waiting time in sInv(s1). Therefore, by analyzing
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the time spent in sInv(s1), we can get the response time of component service s1. Given

a composite service S, let ti ∈ R≥0 be the response time of component service si for i ∈

{1, . . . ,n}, and let Ct = {t1, . . . , tn} be a set of component service response times that fulfill

the global time requirement of service S. Because ti, for i ∈ {1, . . . ,n}, is a real number, there

are infinitely many possible values, even in a bounded interval (and even if one restricts

to rational numbers). A method to tackle this problem is to reason parametrically, by

considering these response times as unknown constants, or parameters. Let ui ∈ R≥0 be the

parametric response time of component service si for i ∈ {1, . . . ,n}, and let Cu = {u1, . . . ,un}

be the set of component service parametric response times. Using constraints on Cu, we

can represent an infinite number of possible response times symbolically. The local time

requirement of composite service S is specified as a constraint over Cu. An example of local

time requirement is (u1 ≤ 6) ∧ (u2 ≤ 5). This local time requirement specifies that, in order

for S to satisfy the global time requirement, service s1 needs to respond within 6 time units,

and service s2 needs to respond within 5 time units.

We review relevant definitions in the following.

6.2.1 Clocks, Parameters, and Constraints

The clocks, parameters and constraints that we use in this paper are similar to the ones used

in the formalisms of timed automata [12] and parametric timed automata [14]. A clock is a

variable with values in the set of non-negative real numbersR≥0. A clock is used to record

the time passing of a communication activity. All clocks are progressing at the same rate.

X is defined as a universal set of clocks. Let X = {x1, . . . , xH} ⊂ X (for some integer H) be a

finite set of clocks. A clock valuation is a function w : X→ R≥0, that assigns a non-negative

real value to each clock.

A parameter is an unknown constant. LetU denote the universal set of parameters, disjoint
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with X. Given a finite set of parameters U = {u1, . . . ,uM} ⊂ U (for some integer M), a

parameter valuation is a function π : U → R≥0 assigning a non-negative real value to each

parameter. We can identify a valuation π with the point (π(u1), . . . , π(uM)). A linear term

over X ∪ U is an expression of the form
∑

1≤i≤N αizi + d for some N ∈ N, with zi ∈ X ∪ U,

αi ∈ R≥0 for 1 ≤ i ≤ N, and d ∈ R≥0. Given X ⊂ X and U ⊂ U, an inequality over X and U is

e ≺ e′with≺∈ {<,≤}, where e and e′ are linear terms over X∪U. A constraint is a conjunction

of inequalities. We denote by CX∪U the set of all constraints over X and U. Henceforth, we

use w (resp. π) to denote a clock (resp. parameter) valuation.

Let C ∈ CX∪U, C[π] denote the constraint over X obtained by replacing each u ∈ U with π(u)

in C. Similarly, C[π][w] denotes the constraint obtained by replacing each clock x in C[π]

with w(x). We write (w, π) |= C, if C[π][w] evaluates to true. C is empty, if there does

not exist a parameter valuation π, such that π |= C; otherwise C is non-empty. We define

C↑ = {x + d|x ∈ C∧ d ∈ R≥0}, as time elapsing of C, i.e., the constraint over X and U obtained

from C by delaying an arbitrary amount of time. Given two constraints C1,C2 ∈ CX∪U, C1

is included in C2, denoted by C1 ⊆ C2, if ∀w, π : (w, π) |= C1 ⇒ (w, π) |= C2. Similarly, C1 is

strictly included in C2, denoted by C1 ⊂ C2, iff C1 ⊆ C2 and C1 , C2.

6.2.2 Syntax of Composite Services

Definition 6.2.1 (Composite Service Model). A composite service model M is a tuple

(Var,V0,P0), where Var is a finite set of variables, V0 is an initial valuation that maps each

variable to its initial value, and P0 is the composite service process.

Parametric composite service models extend composite service models with parameters in

place of constants.

Definition 6.2.2 (Parametric Composite Service Model). A parametric composite service

model M is a tuple (Var,V0,U,P0,C0), where Var is a finite set of variables, V0 is an initial



6.2. FORMAL MODEL FOR PARAMETRIC ANALYSIS 97

valuation that maps each variable to its initial value, U is a finite set of parameters, P0 is the

composite service process, and C0 is the initial constraint.

Given a service model M with a parameter set U = {u1, . . . ,um}, and given a parameter

valuation (π(u1), . . . , π(uM)), M[π] denotes the valuation of M with π, viz., the model

(Var,V0,U,P0,C), where C is C0 ∧
∧M

i=1(ui = π(ui)). Note that M[π] can be seen as a

non-parametric service model (Var,V0,P0[π]), where P0[π] corresponds to P0 where each

occurrence of a parameter ui has been replaced with its valuation π(ui).

6.2.3 Semantic Models

In this work, we capture the semantics of composite services using labeled transition

systems (LTSs). The behavior of composite service is affected by the input data. Since the

input data is unpredictable, in order to reason about the general behavior of composite

service, it is useful to obtain a local time requirement which could guarantee global time

requirement for any input data. For example, given a conditional expression P / b . Q,

the execution of activity P or activity Q is based on the valuation of b; but if we choose

to abstract from data, either P or Q will be executed non-deterministically. A state of the

LTS represents a status of the composite service. Informally, a concrete state is a state that

contains data information, and the LTS that contains concrete states is denoted as a concrete

LTS. An abstract state is a state which abstracts away data information, and the LTS that

contains abstract states is denoted as an abstract LTS. Our dynamic analysis is based on the

abstract LTS. In the following, we provide the formal definition of various terminologies

that are used in this work.

Definition 6.2.3 (Concrete State). A concrete state sc ∈ Sc is a tuple (V,P,C,D), where V is a

valuation of the variables (i.e., a function that maps a variable name to its value), P is a composite

service process, C is a constraint over CX, and D is the (real-valued) duration from the initial state
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s0 to the beginning of the state s.

Definition 6.2.4 (Concrete Labeled Transition System). A concrete labeled transition system

is a tuple Lc = (Sc, sc
0,Σ,→c), where

• Sc is a set of concrete states,

• sc
0 ∈ Sc is the initial state,

• Σ is the universal set of actions,

• →c : Sc × Σ × Sc is a transition relation.

Definition 6.2.5 (Abstract State). An abstract state s ∈ S is a tuple (P,C,D), where P is a

composite service process, C is a constraint over CX∪U, and D is the (parametric) duration from the

initial state s0 to the beginning of the state s (i.e., a linear term on the parameters).

Definition 6.2.6 (Abstract Labeled Transition System). An abstract labeled transition system

is a tuple L = (S, s0,Σ,→), where

• S is a set of abstract states,

• s0 ∈ S is the initial state,

• Σ is the universal set of actions,

• → : S × Σ × S is a transition relation.

Henceforth, when clear from the context, we refer to an abstract state (resp. abstract LTS)

as a state (resp. LTS).

The following definitions could be easily extended to concrete states and concrete LTSs.

Given an LTS L = (S, s0,Σ,→), a state s ∈ S is said to be a terminal state if there does not

exist a state s′ ∈ S and an action a ∈ Σ such that (s, a, s′) ∈ →; otherwise, s is said to be
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a non-terminal state. There is a run from a state s to state s′, where s, s′ ∈ S, if there exist

a set of states {s1, . . . , sn} ⊆ S and a set of actions {a1, . . . , an} ⊆ Σ such that s1 = s, sn = s′,

and ∀i ∈ {1, . . . ,n − 1}, (si, ai, si+1) ∈ →. A complete run is a run that starts in the initial state

s0 and ends in a terminal state. Given a state s ∈ S, we use Enable(s) to denote the set of

states reachable from s; formally, Enable(s) = {s′|s′ ∈ S ∧ a ∈ Σ ∧ (s, a, s′) ∈ →}. Given a state

s = (P,C,D), we use the notation s.P to denote the component P of s, and similarly for s.C

and s.D. These actions are used to update the active state sa ∈ S, and store them as part of

the execution run Π.

GivenM = (Var,U,P0,C0), the global time requirement forM requires that, for every state

(P,C,D) reachable from the initial state (P0,C0, 0) in the LTS, the constraint D ≤ TG is

satisfied, where TG ∈ R≥0 is the global time constraint. The local time requirement requires

that if the response times of all component services of M satisfy the local time constraint

CL ∈ CU, then the service S satisfies the global time requirement.

6.3 Dynamic Analysis with LTS

Our approach for synthesizing local time constraint for component services is based on the

dynamic analysis of the constraint of each state in the LTS of the composite serviceM. In

this section, we present how we analyze the LTS with real-time semantics using parametric

techniques.

In order to analyze the LTS with real-time semantics, we use clocks to record the elapsing of

time. The clock formalism has been used to record the time elapsing in several formalisms,

in particular in timed automata (TA) [12]. In TAs, the clocks are defined as part of the models

and state space. It is known that the state space of the system could grow exponentially

with the number of clocks and that the fewer clocks, the more efficient real-time model

checking is [21]. An alternative approach is to create clocks on the fly when necessary,
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Act(A(S), x) = A(S)x A1
Act(mpick, x) = mpickx A2
Act(A(S)x′ , x) = A(S)x′ A3
Act(mpickx′ , x) = mpickx′ A4
Act(P ⊕Q, x) = Act(P, x) ⊕ Act(Q, x) A5
Act(P; Q, x) = Act(P, x); Q A6

where A ∈ {rec, sInv, aInv, reply}, ⊕ ∈ {|||, /b.},
and mpick = pick(S⇒Pt, alrm(a)⇒Pa).

Figure 6.2: Activation function

and have them pruned when no longer needed. This approach was initially proposed for

(parametric) stateful timed CSP [83, 15]. This allows smaller state space compared to the

explicit clock approach; we refer to this second approach as the implicit clock approach. We

use here the implicit clock approach when analyzing the BPEL model with LTSs.

6.3.1 Clock Activation

Clocks are implicitly associated with timed processes. For instance, given an action sInv(s),

a clock starts ticking once the process becomes activated. To introduce clocks on the fly,

we define an activation function Act in Fig. 6.2. Given a process P, we denote by Px the

corresponding process that has been associated with clock x. The activation function will

be called when a new state s is reached to assign a new clock for each newly activated

communication activity. Rules A1 and A2 state that a new clock is associated with BPEL

communication activity if it is newly activated. Rules A3 and A4 state that if a BPEL

communication activity has already been assigned a clock, it will be never reassigned.

Rules A5 and A6 state that function Act is applied recursively for activated child activities

for BPEL structural activities.
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idle(A(S)x) = x ≤ tS I1
idle(B(S)x) = (x = 0) I2
idle(P ⊕Q) = idle(P) ∧ idle(Q) I3
idle(P; Q) = idle(P) I4
idle(mpickx) = x ≤ tS ∧ x ≤ a I5

where A∈{rec, sInv}, B∈{aInv, reply}, ⊕∈{|||, /b.},
mpick=pick(S⇒Pt, alrm(a)⇒Pa), and tS is the
parametric response time of service S.

Figure 6.3: Idling function

6.3.2 Idling Function

We define in Fig. 6.3 the function idle that, given a state s, calculates how long an activity A

can idle in s. The result is a constraint over the clocks and the parameters. Rule I1 considers

the situation that the communication requires to wait for the response of component services

S, and the value of clock x must not be larger than the response time parameter tS of the

service. Rule I2 considers that the situation that no waiting is required. Rules I3 to I5 state

consider that the function idle is applied recursively for activated child activities of a BPEL

structural activity.

6.3.3 Bad Activity

Given a BPEL serviceM, we define a bad activity as an activity such that its execution will

immediately cause the system to violate the global time requirement. The bad activity is

executed due to the failure of receiving the responses from component services. In the case

of the VBS example, it corresponds to a situation where the component service TC fails to

response within one second. To distinguish the bad activities, we allow the user to annotate

a BPEL activity A as a bad activity, denoted by [A]bad. The annotation can be achieved, for

example, by using extension attribute of BPEL activities. The execution of activity [A]bad

will result the LTS ofM to end in an undesired terminal state, which we denote as a bad
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state. A terminal state which is not a bad state is called a good state. The synthesized local

time requirement needs to guarantee the avoidance of all bad states and the reachability of

at least one good state.

6.3.4 Operational Semantics

We define the operational semantics of a parametric composite service model as a set

of firing rules. A state s = (P,C,D) that satisfies a rule could evolve to another state

s′ = (P′,C′,D′) according to the rule. We list the rules in Fig. 6.4.
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4.3 Bad Activity
Given a BPEL serviceM, we define a bad activity as an
activity such that its execution will immediately cause
the system to violate the global time requirement. The
bad activity is executed due to the failure of receiving
the responses from component services. In the case
of the VBS example, it corresponds to a situation
where the component service TC fails to response
within one second. To distinguish the bad activities,
we allow the user to annotate a BPEL activity A as
a bad activity, denoted by [A]bad. The annotation can
be achieved, for example, by using extension attribute
of BPEL activities. The execution of activity [A]bad will
result the LTS of M to end in an undesired terminal
state, which we denote as a bad state. A terminal state
which is not a bad state is called a good state. The
synthesized local time requirement needs to guarantee
the avoidance of all bad states and the reachability of
at least one good state.

4.4 Operational Semantics
We define the operational semantics of a parametric

composite service model as a set of firing rules. A
state s = (P,C,D) that satisfies a rule could evolve to
another state s′ = (P′,C′,D′) according to the rule. We
list the rules in Fig. 4.

As an example, for rule rSInv, given state s =
(sInv(S)x,C,D), it could evolve into state s′ =
(Stop, x = ts ∧ C↑,D + ts) via action e ∈ Σ if the
precondition x = ts ∧C↑ is satisfied, where Stop is the
activity that does nothing. Other firing rules can be
described similarly. [ÉA: Still, I’d suggest to describe
much more of them. You also need to explain how
to compute C and D.]

4.5 State Space Exploration

Let Y = 〈x0, x1, · · · 〉 be a sequence of clocks. Starting
from the initial state s0 = (P0,C0, 0), we iteratively
construct successor states as follows. Given a state
(P,C,D), a clock x which is not currently associated
with P is picked from Y. The state (P,C,D) is trans-
formed into (Act(P, x),C ∧ x = 0,D), i.e., timed
processes which just become activated are associated

x = ts ∧ C↑
[ rSInv ]

(sInv(S)x,C,D)
e
↪→ (Stop, x = ts ∧ C↑,D + ts)

x = ts ∧ C↑
[ rRec ]

(rec(S)x,C,D)
e
↪→ (Stop, x = ts ∧ C↑,D + ts)

x = 0 ∧ C↑
[ rReply ]

(reply(S)x,C,D)
e
↪→ (Stop, x = 0 ∧ C↑,D)

x = 0 ∧ C↑
[ rAInv ]

(aInv(S)x,C,D)
e
↪→ (Stop, x = 0 ∧ C↑,D)

(A,C,D)
e
↪→ (A′,C′,D′),C′ ∧ idle(B)

[ rFlow1 ]

(A ||| B,C,D)
e
↪→ (A′ ||| B,C′ ∧ idle(B),D′)

(B,C,D)
e
↪→ (B′,C′,D′),C′ ∧ idle(A)

[ rFlow2 ]

(A ||| B,C,D)
e
↪→ (A ||| B′,C′ ∧ idle(A),D′)

[ rCond1 ]

(ACbBB,C,D)
e
↪→ (A,C,D)

[ rCond2 ]

(ACbBB,C,D)
e
↪→ (B,C,D)

(A,C,D)
e
↪→ (A′,C′,D′),A′ 6= Stop

[ rSeq1 ]

(Ao
9B,C,D)

e
↪→ (A′o

9B,C′,D′)

(A,C,D)
e
↪→ (Stop,C′,D′),C ∧ C′

[ rSeq2 ]

(Ao
9B,C,D)

τ
↪→ (B,C ∧ C′,D′)

let mpick = pick(S⇒Pt, alrm(a)⇒Pa)

(x = ts) ∧ idle(mpickx) ∧ C↑
[ rPick1 ]

(mpickx,C,D)
e
↪→ (Pt, (x = ts)

∧ idle(mpickx) ∧ C↑,D + ts)

(x = a) ∧ idle(mpickx) ∧ C↑
[ rPick2 ]

(mpickx,C,D)
e
↪→ (Pa, (x = a)

∧ idle(mpickx) ∧ C↑,D + a)

Fig. 4: Operational semantics

with x and C is conjuncted with x = 0. Then, a firing
rule is applied to get a target state (P′,C′,D′). Lastly,
clocks which do not appear within P′ are pruned
from C′. Observe that one clock is introduced and zero
or more clocks may be pruned during a transition.
Actually, a clock is introduced only if necessary; if the
activation function does not activate any subprocess,
this new clock is not created.
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4.3 Bad Activity
Given a BPEL serviceM, we define a bad activity as an
activity such that its execution will immediately cause
the system to violate the global time requirement. The
bad activity is executed due to the failure of receiving
the responses from component services. In the case
of the VBS example, it corresponds to a situation
where the component service TC fails to response
within one second. To distinguish the bad activities,
we allow the user to annotate a BPEL activity A as
a bad activity, denoted by [A]bad. The annotation can
be achieved, for example, by using extension attribute
of BPEL activities. The execution of activity [A]bad will
result the LTS of M to end in an undesired terminal
state, which we denote as a bad state. A terminal state
which is not a bad state is called a good state. The
synthesized local time requirement needs to guarantee
the avoidance of all bad states and the reachability of
at least one good state.

4.4 Operational Semantics
We define the operational semantics of a parametric

composite service model as a set of firing rules. A
state s = (P,C,D) that satisfies a rule could evolve to
another state s′ = (P′,C′,D′) according to the rule. We
list the rules in Fig. 4.

As an example, for rule rSInv, given state s =
(sInv(S)x,C,D), it could evolve into state s′ =
(Stop, x = ts ∧ C↑,D + ts) via action e ∈ Σ if the
precondition x = ts ∧C↑ is satisfied, where Stop is the
activity that does nothing. Other firing rules can be
described similarly. [ÉA: Still, I’d suggest to describe
much more of them. You also need to explain how
to compute C and D.]

4.5 State Space Exploration

Let Y = 〈x0, x1, · · · 〉 be a sequence of clocks. Starting
from the initial state s0 = (P0,C0, 0), we iteratively
construct successor states as follows. Given a state
(P,C,D), a clock x which is not currently associated
with P is picked from Y. The state (P,C,D) is trans-
formed into (Act(P, x),C ∧ x = 0,D), i.e., timed
processes which just become activated are associated

x = ts ∧ C↑
[ rSInv ]

(sInv(S)x,C,D)
e
↪→ (Stop, x = ts ∧ C↑,D + ts)

x = ts ∧ C↑
[ rRec ]

(rec(S)x,C,D)
e
↪→ (Stop, x = ts ∧ C↑,D + ts)

x = 0 ∧ C↑
[ rReply ]

(reply(S)x,C,D)
e
↪→ (Stop, x = 0 ∧ C↑,D)

x = 0 ∧ C↑
[ rAInv ]

(aInv(S)x,C,D)
e
↪→ (Stop, x = 0 ∧ C↑,D)

(A,C,D)
e
↪→ (A′,C′,D′),C′ ∧ idle(B)

[ rFlow1 ]

(A ||| B,C,D)
e
↪→ (A′ ||| B,C′ ∧ idle(B),D′)

(B,C,D)
e
↪→ (B′,C′,D′),C′ ∧ idle(A)

[ rFlow2 ]

(A ||| B,C,D)
e
↪→ (A ||| B′,C′ ∧ idle(A),D′)

[ rCond1 ]

(ACbBB,C,D)
e
↪→ (A,C,D)

[ rCond2 ]

(ACbBB,C,D)
e
↪→ (B,C,D)

(A,C,D)
e
↪→ (A′,C′,D′),A′ 6= Stop

[ rSeq1 ]

(Ao
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e
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9B,C′,D′)

(A,C,D)
e
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τ
↪→ (B,C ∧ C′,D′)

let mpick = pick(S⇒Pt, alrm(a)⇒Pa)

(x = ts) ∧ idle(mpickx) ∧ C↑
[ rPick1 ]

(mpickx,C,D)
e
↪→ (Pt, (x = ts)

∧ idle(mpickx) ∧ C↑,D + ts)

(x = a) ∧ idle(mpickx) ∧ C↑
[ rPick2 ]

(mpickx,C,D)
e
↪→ (Pa, (x = a)

∧ idle(mpickx) ∧ C↑,D + a)
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with x and C is conjuncted with x = 0. Then, a firing
rule is applied to get a target state (P′,C′,D′). Lastly,
clocks which do not appear within P′ are pruned
from C′. Observe that one clock is introduced and zero
or more clocks may be pruned during a transition.
Actually, a clock is introduced only if necessary; if the
activation function does not activate any subprocess,
this new clock is not created.

Figure 6.4: Operational semantics

As an example, for rule rSInv, given state s = (sInv(S)x,C,D), it could evolve into state

s′ = (Stop, x = ts ∧ C↑,D + ts) via action e ∈ Σ if the precondition x = ts ∧ C↑ is satisfied,

where Stop is the activity that does nothing. Other firing rules can be described similarly.
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6.3.5 State Space Exploration

Let Y = 〈x0, x1, · · · 〉 be a sequence of clocks. Starting from the initial state s0 = (P0,C0, 0),

we iteratively construct successor states as follows. Given a state (P,C,D), a clock x which

is not currently associated with P is picked from Y. The state (P,C,D) is transformed into

(Act(P, x),C ∧ x = 0,D), i.e., timed processes which just become activated are associated

with x and C is conjuncted with x = 0. Then, a firing rule is applied to get a target state

(P′,C′,D′). Lastly, clocks which do not appear within P′ are pruned from C′. Observe

that one clock is introduced and zero or more clocks may be pruned during a transition.

Actually, a clock is introduced only if necessary; if the activation function does not activate

any subprocess, this new clock is not created.

6.3.6 Application to an Example

Consider a composite serviceM, where the LTS ofM is shown in Figure 6.5.

• At state s0, activation function assigns clock x to record time elapsing of pick activity

mpick, with x initialized to zero time unit. The tuple becomes the intermediate state

sx
0 = (mpickx, x = 0, 0).

• From intermediate state sx
0, it could evolve into the intermediate state s′1 by applying

the rule rPick1, if the constraint c1 = (true ∧ x = tPS ∧ idle(mpickx) ∧ (x = 0)↑), where

idle(mpickx) = (x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is satisfiable. Intuitively,

c1 denotes the constraint where tPS time units elapsed since clock x has started. In

fact, c1 is satisfiable (for example with tPS = 0.5 and x = 0.5). Therefore, it could

evolve into the intermediate state s′1 = (rgood, x = tPS ∧ idle(mpickx) ∧ (x = 0)↑, tPS) =

(rgood, x = tPS ∧ x ≤ 1, tPS). Since clock x is not used anymore in s′1.P which is rgood, it is

eliminated using variable elimination techniques such as Fourier-Motzkin [80]. After
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s0:(mpick, true, 0)

sx
0:(mpickx, x = 0, 0)

s′1:(rgood, x = tps ∧ x ≤ 1, tps) s′2:(rbad, x = 1 ∧ x ≤ tps, 1)

s1:(rgood, tps ≤ 1, tps) s2:(rbad, tps ≥ 1, 1)

sx
1:((rgood)x, tps ≤ 1 ∧ x = 0, tps) sx

2:((rbad)x, tps ≥ 1 ∧ x = 0, 1)

s′3:(Stop, tps ≤ 1 ∧ x = 0, tps) s′4:(Stop, tps ≥ 1 ∧ x = 0, 1)

s3:(Stop, tps ≤ 1, tps)X s4:(Stop, tps ≥ 1, 1)×

where mpick=pick(PS⇒rgood, alrm(1)⇒rbad), rgood=reply(User),
rbad=[reply(User)]bad, tPS is the parametric response time o f service PS.

Figure 6.5: LTS of serviceM

elimination of clock variable x and simplification of the expression, the intermediate

state s′1 becomes the state s1 = (rgood, tPS ≤ 1, tPS).

• From intermediate state sx
0, it could also evolve into the intermediate state s′2, by

applying the rule rPick2, if the constraint c2 = (true ∧ x = 1 ∧ idle(mpickx) ∧ (x = 0)↑),

where idle(mpickx) = (x ≤ tPS ∧ x ≤ 1) and (x = 0)↑ = x ≥ 0, is satisfiable. It is

easy to see that c2 is satisfiable; therefore, it could evolve into the intermediate state

s′2 = (rbad, x = 1∧x ≤ tPS, 1). After clock pruning from intermediate state s′2, it becomes

state s2 = (rbad, tPS ≥ 1, 1).

• From state s1, activation function assigns clock x for reply activity rgood, and it evolves

into intermediate state sx
1. From intermediate state sx

1, it could evolve into intermediate

state s′3 by applying rule rReply, if the constraint c3 = (tPS ≤ 1 ∧ x = 0 ∧ (x = 0)↑) is

satisfiable. In fact it is, and therefore it evolves into state s′3 = (stop, tPS ≤ 1∧x = 0, tPS).

After pruning of the used clock, it evolves into the terminal state s3 = (stop, tPS ≤
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1, tPS). Since the terminal state is not caused by a bad activity, s3 is considered as a

good state, denoted by X in Figure 6.5.

• From state s2, it could also evolve into terminal state s4 = (stop, tPS≥1, 1) with similar

reason as above. Since the terminal state is caused by a bad activity, it is considered

as a bad state, denoted by × in Figure 6.5.

Note that all intermediate states s′i and sx
i , where i ∈ N and 0 ≤ i ≤ 4, are served as

illustrative purpose, and are not part of the state space for composite serviceM. Henceforth,

the intermediate states will be omitted for the sake of conciseness.

6.4 Local Time Requirement Synthesis

In this section, given a global time constraint TG for a serviceM, we present an approach

to synthesize local time constraint CL based on the LTS. We show that if response times of

all component services of S satisfy the local time requirement, the service S would end at a

good state regardless of the values input by the user.

6.4.1 Synthesis of Local Time Requirement

We assume a composite serviceM and its LTS LM = (S, s0,Σ,→); let Sgood be the set of all

good states of service LM. In this section, we assume there is no bad state; we will discuss

bad states in Section 6.4.2.

A critical problem is, given LM, to synthesize the local time requirement for serviceM. We

make two observations here. First, a good state sg = (Pg,Cg,Dg) ∈ Sgood is reachable from

the initial state s0 iff Cg is satisfiable. Second, whenever the good state sg is reached, we

require that the total delay from initial state s0 to state sg must not be larger than the global
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s0:(mpick, true, 0)
OMsg_FC

s1:(i1, tFC≤1, tFC)
i1

s3:(stop, tFC≤1, tFC+t1)X

OAlarm_1
s2:(i2 / b=1 . i3, tFC≥1, 1)
[i f ]

s4:(i2, tFC≥1, 1)
i2

s6:(stop, tFC≥1, t2+1)X

[else]
s5:(i3, tFC≥1, 1)

i3
s7:(stop, tFC≥1, t3+1)X

mpick=pick(FC⇒i1, alrm(1)⇒i2 / b=1 . i3)

Figure 6.6: LTS of composite service S

s0:(mpick′, true, 0)
OMsg_FC

s1:(i1, tFC≤1, tFC)
i1

s3:(stop, tFC≤1, tFC+t1)X

OAlarm_1
s2:(i2 / b=1 . [i3]bad, tFC≥1, 1)

[i f ]
s4:(i2, tFC≥1, 1)

i2
s6:(stop, tFC≥1, t2+1)X

[else]
s5:([i3]bad, tFC≥1, 1)

i3
s7:(stop, tFC≥1, t3+1)×

mpick′=pick(FC⇒i1, alrm(1)⇒i2 / b=1 . [i3]bad)

Figure 6.7: LTS of composite service S′

time constraint TG, i.e., Dg ≤ TG. To sum up, given a good state sg = (Pg,Cg,Dg) where

sg ∈ Sgood, we require the constraint (Cg =⇒ (Dg ≤ TG)) to hold. The constraint means that

whenever state sg is reachable from initial state s0, the total (parametric) delay from initial

state s0 to state sg must be less than the global time constraint TG. The synthesized local

time constraint forM is the conjunction of such constraints for each good state sg ∈ Sgood,

i.e.,
∧

(Pg,Cg,Dg)∈Sgood
(Cg =⇒ (Dg ≤ TG)). We will show in Section 6.4.5 such that there does

not exist a parameter valuation π, that can trivially satisfy the local time constraint by not

satisfying the constraints of all good states, i.e., π 6|= sg.Cg for all sg ∈ Sgood.

Figure 6.6 shows the LTS of a composite service S that contains an mpick process, where i j

denotes sInv(s j), such that s j is a component service with parametric response time t j, for

j ∈ {1, 2, 3}. For composite service S in Figure 6.6, we have three good states (states s3, s6,

and s7), and the synthesized local time requirement for composite service S is:
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((tFC ≤ 1) =⇒ (tFC + t1 ≤ 5)) ∧

((tFC ≥ 1) =⇒ (t2 + 1 ≤ 5)) ∧

((tFC ≥ 1) =⇒ (t3 + 1 ≤ 5))

which can be simplified as

((tFC ≤ 1) =⇒ (tFC + t1 ≤ 5)) ∧

((tFC ≥ 1) =⇒ (t2 + 1 ≤ 5) ∧ (t3 + 1 ≤ 5))

6.4.2 Addressing the Bad States

As an example, let us now change the definition of i3 in Figure 6.6 as [sInv(s3)]bad, resulting

in the LTS shown in Figure 6.7, where state s′7 is a bad state. We use this example to provide

the intuition how to modify the synthesized constraint to avoid reaching bad states. Note

that the constraint s′7.C = tFC ≥ 1 is introduced by the pick activity. A way to avoid the

reachability of s′7 is to prevent the transition OAlrm_1 from firing. An effective way to

achieve this is by adding the inequality ¬s′7.C to the synthesized constraint.

Therefore, given ci = (si.C =⇒ (si.D ≤ TG)), for i ∈ {3, 6}, the local time requirement for

composite service S′ would be (c3 ∧ c6)∧¬s′7.C. This constraint can ensure the reachability

of at least one of the good states and avoid the reachability of all bad states. (This will be

proved in Section 6.4.5.)

6.4.3 Synthesis Algorithms

Algorithm 6.1 presents the entry algorithm for synthesizing the local time constraint for a

given service CS, by traversing the LTS = (S, s0,Σ,→) of CS.

This algorithm makes use of a second algorithm synConsAOLTS(s) depicted in Algo-

rithm 6.2. Given a state s = (P,C,D) in the LTS of service CS, synConsAOLTS(s) re-

turns a constraint c ∈ CU. If state s is a good state (line 1), then it returns the constraint
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Algorithm 6.1: Algorithm LocalTimeConstraint(s0)
input : Initial state s0
output: The local time constraint CL

1 Cons← synConsAOLTS(s0);
2 return Cons ∧ Kbad;

Algorithm 6.2: Algorithm synConsAOLTS(s)
input : State s of LTS
output: The constraint for LTS that starts at s

1 if s is good state then
2 return (s.C =⇒ (s.D ≤ TG));

3 if s is bad state then
4 Kbad = Kbad ∧ ¬(s.C);
5 return true;

6 if s is non-terminal state then
7 SC← {synConsAOLTS(s′)|s′ ∈ Enable(s)};
8 return

∧
{c|c ∈ SC};

s.C =⇒ (s.D ≤ TG) (line 2), where TG is the given global time constraint of the service CS.

Kbad ∈ CU is a static variable that is used to collect the negation of the constraint associated

to states that are marked with a bad status. If state s is a bad state (line 3), then Kbad is con-

juncted with negation of s.C (line 4), and returns true as the constraint (line 5). The reason

for returning true is to ensure that that the returned constraint does not subsequently mod-

ify the constraint returned by synConsAOLTS(s0), since true ∧ C′ = C′, for any C′ ∈ CU. If s

is a non-terminal state (line 6), SC ∈ CU is populated with the result of synConsAOLTS(s′),

for each enabled state s′ from non-terminal state s (line 7). Given A = {c1, . . . , cn} ⊂ CU, we

denote by
∧

A the conjunction of constraints in A, i.e., c1∧ . . .∧ cn. In line 8, the conjunction

of all the elements in SC is returned as the constraint.

Let us now return to the description of Algorithm 6.1. Upon getting the constraint of

Cons = synConsAOLTS(s0) (line 1), the synthesized local time constraint of service CS,

which is Kbad ∧ Cons, is returned as the final result (line 2).
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s0:(S, true, 0)

s1:(P1, true, 0)

s4:(A1, tFC ≤ 1, tFC)

s2:(rbad, tFC ≥ 1, 1)

s3:(stop, tFC ≥ 1, 1)×

s5:(S2; rgood, tFC ≤ 1, tFC)

s6:(rgood, tFC ≤ 1, tFC + tFB)

s7:(stop, tFC ≤ 1, tFC + tFB)Xs8:(S1; A2, tFC ≤ 1, tFC)

s9:(A2, tFC ≤ 1, tFC+tTC)

s10:(S3; rgood, tFC ≤ 1, tFC+tTC)

s11:(rgood, tFC ≤ 1, tFC+tTC + tTB)

s12:(stop, tFC ≤ 1, tFC+tTC + tTB)X

s13:(S2; rgood, tFC ≤ 1, tFC+tTC)

s14:(rgood, tFC ≤ 1, tFC+tTC + tFB)

s15:(stop, tFC ≤ 1, tFC+tTC + tFB)X

AInv FC
OAlrm 1

OMsg FC
reply user

[else]

SInv FB

reply user

[if]

SInv TC

[if]

SInv TB

reply user

[else]

SInv FB

reply user

where S=a1; P1, P1=pick(FC⇒A1, alrm(1)⇒rbad), A1=(S1; A2)/
b . (S2; rgood),A2=(S3; rgood) / b .
(S2; rgood), a1=aInv(FC), S1=sInv(TC),
S2=sInv(FB), S3=sInv(TB), rgood=(reply(user)), rbad=[reply(user)]bad.

Figure 6.8: LTS of VBS

6.4.4 Application to the Running Example

Figure 6.8 shows the LTS of the running example introduced in Section 6.1. Algorithm

synConsAOLTS(s) is used to synthesize the local time requirement for VBS based on the

LTS. The local time requirement of the running example is:



6.4. LOCAL TIME REQUIREMENT SYNTHESIS 110

¬(tFC ≥ 1) ∧

(tFC ≤ 1) =⇒ (tFC + tFB ≤ 5) ∧

(tFC ≤ 1) =⇒ (tFC+tTC + tTB ≤ 5) ∧

(tFC ≤ 1) =⇒ (tFC+tTC + tFB ≤ 5)

and after simplification using Z3 [37], it becomes

tFC < 1 ∧

tFC + tFB ≤ 5 ∧ tFC+tTC + tTB ≤ 5 ∧ tFC+tTC + tFB ≤ 5

This result provides us useful information regarding how the component services collec-

tively satisfy the global time constraint. That is of most importance for selecting component

services. For the case of VBS, one way to fulfill the global time requirement of VBS is to

select service FC with response time that is less than 0.9 seconds, and all other services that

have response times less than 2 seconds.

6.4.5 Soundness

The algorithm is working on the abstract LTS to synthesize the local constraint at design

time. On the other hand, the synthesized constraint is used in the concrete LTS during the

runtime. Therefore, we use the abstract LTS for the properties that are concerned with the

synthesis algorithm, while we use concrete LTS for the properties that are concerned with

the usage of the synthesized constraint. In addition, we assume that all loops have a bound

on the number of iterations and the execution time (see Section 5.3.3 for discussion).

Lemma 6.4.1. GivenM be a service model, the abstract and concrete LTSs ofM are acyclic. Proof.

This holds due to the assumption on the loop activities, such that the upper bound on the number

of iterations and the time of execution, is known, and there are no recursive activities in BPEL. �

end.
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Given a parameter valuation π, a state in a non-parametric service modelM[π] is said to be

an intermediate (resp. final) state if it is a non-terminal (resp. terminal) state in parametric

service model M. A concrete LTS of M[π] is deadlockable if and only if there exists an

intermediate state s in the concrete LTS of M[π] such that Enable(s) = ∅. This happens

because π 6|= s′.C, for each s′ ∈ Enable(s) in the concrete LTS of parametric service modelM.

We show thatM[π] is not deadlockable in the next lemma.

Lemma 6.4.2. Given a concrete service modelM, there do not exist a non-empty constraint C and

a parameter valuation π |= C, such that the concrete LTS ofM[π] is deadlockable. Proof. Without

loss of generality, assume the concrete LTS as L = (S, s0,Σ,→). The constraint of initial state is

true, i.e., s0.C = true; therefore it is always satisfiable. Given a state s, and a state s′ such that

s′ ∈ Enable(s), the situation where π |= s.C and π 6|= s′.C could only happen when if s′C is stronger

than s.C, i.e., s′.C ⊂ s.C. In such a case, the additional constraints in s′.C must be introduced by

pick or flow activity to constrain the relative speed of the services. Assume the pick construct as

mpick = pick(S⇒P, alrm(a)⇒Q), where S is a service with parameter response time tS, a ∈ R≥0

and P,Q are composite service activities. For the left branch of mpick to be enabled, the satisfaction

of constraint tS ≤ a is required, while for right branch of mpick to be enabled, the satisfaction

of constraint tS ≥ a is required. Since given any parameter valuation π, mpick will be able to

execute either of the branches, therefore it cannot be deadlocked. Assume the concurrent activity as

conc = P||Q, where P,Q are composite service activities. If P (resp. Q) is a reply or asynchronous

invocation activity, then P (resp. Q) is always executable, since it takes no time. If P and Q are

synchronous invocation activity or receive activity, which takes parameter response time tP and tQ

respectively, then activity P is executable, if tP ≤ tQ, and activity Q is executable if tQ ≤ tP. Since

given any parameter valuation π, either of the branches in conc is executable, therefore it cannot be

deadlocked. � end.

Theorem 6.4.3 (Soundness). Consider a service M with its LTS L = (S, s0,Σ,→). Let Sgood

be the collection of good states in S and Sbad be the collection of all bad states in S. Let Q be the
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constraint synthesized by Algorithm 6.1 for serviceM as Q. If Q is non-empty, given any parameter

valuation π |= Q, it holds that:

1. At least one of the good states sg ∈ Sgood is reachable in any concrete LTS ofM[π];

2. There is no bad state sb ∈ Sbad that is reachable in any concrete LTS ofM[π].

Proof. To show item 1, we need to ensure that

1. The duration to reach any good state sg ∈ Sgood from initial state s0 satisfies the global time

requirement;

2. At least one of the good states sg ∈ Sgood is reachable.

For item 1, the result is immediate. We therefore focus on item 2. The result of item 2 is followed

from Lemma 6.4.1 since non-deadlock in non-terminal state implies that it will reach a terminal

state which is either good state or bad state. Assume that it could not be a bad state (which we will

show later), therefore it must be a good state, and item 2 holds.

To show item 2, we observe that Kbad contains the negated constraints from each of the bad states,

i.e., Kbad = {
∧

(¬sb.Ci)|sb ∈ sbad}. Since the synthesis result are conjuncted Kbad, therefore the

constraints of all bad states are unsatisfiable, which implies that all bad states are non-reachable

(this also completes the proof of item 2). In addition, the conjunction of Kbad in the synthesis

result does not have the side effect of resulting in a deadlock in the concrete LTS of M[π], due

to Lemma 6.4.2. � end.

Proposition 6.4.4. LetM be a concrete service model, and Sgood be the set of all good states in con-

crete LTS ofM. Assume the synthesized constraint is Qg∧Kbad, where Qg =
∧

(Pi,Ci,Di)∈Sgood
(Ci =⇒

(Di ≤ TG)), and TG be the global time constraint. Given the constraint Qg as non-empty, there

does not exist a parameter valuation π such that π |= Qg and π 6|= sg.Ci for all sg ∈ Sgood. Proof.
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Assume there exists such a parameter valuation π. According to Theorem 6.4.3, at least a good

state is reachable in concrete LTS ofM[π]. Without loss of generality, assume a good state that is

reachable as (P,C,D), which implies that π |= C. This contradicts the assumption. � end.

6.5 Evaluation

In this section, we report about the evaluation of our approach using two case studies. Each

case study consists of a service composition in the form of a BPEL process. The experiment

data were obtained on a system using Intel Core I5 2410M CPU with 4 GB RAM.

6.5.1 Stock Market Indices Service

The Stock marked indices service (in short SMIS) is used as a running example in [88].

The goal of SMIS is to provide updated stock indexes to the subscribed users. It provides

a service level agreement (SLA) to the subscribed users stating that it always responds

within three seconds upon request. The SMIS has three component Web services: a

database service (DS), a free news feed service (FS) and a paid news feed service (PS).

The strategy of the SMIS is calling the free service FS before calling the paid service PS in

order to minimize the cost. Upon returning the result to the user, the SMIS would also store

the latest results in an external database service provided by DS (storage of the results is

omitted here). Upon receiving the response from DS, the process is followed by an <if>

branch. If the indexes are available, then they are returned to the user. Otherwise, FS

is invoked asynchronously. A <pick> construct is used here to await incoming response

from previous asynchronous invocation and timeout if necessary. If the response from FS is

received within one second, then the result is returned to the user. Otherwise, the timeout

occurs, and SMIS stops waiting for the result from FS and calls PS instead. Similar to FS, the

result from PS is returned to user, if the response from PS is received within one second.
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Otherwise, it would notify the user regarding the failure of getting stock indexes. The

resulting LTS has 15 states with 14 transitions, and it takes 0.0076 seconds for synthesizing

the gLTC, and it takes 0.0078 seconds for synthesizing the sLTC for each state of the LTS.

The gLTC for TBS after simplication is shown below.

((tFS < 1) ∧ ((tDS + tFS) ≤ 3) ∧ (tDS ≤ 3))

∨ ((tFS < 1) ∧ (tDS ≤ 2) ∧ ((tDS + tPS) ≤ 2) ∧ (tPS ≤ 2))

∨ ((tPS < 1) ∧ (tFS>1) ∧ ((tDS + tPS) ≤ 2) ∧ (tDS ≤ 2))

∨ ((tPS < 1) ∧ ((tDS + tFS) ≤ 3) ∧ (tDS ≤ 2) ∧ (tFS ≤ 3) ∧ ((tDS + tPS) ≤ 2))

6.5.2 Computer Purchasing Services

We consider in this section a computer purchasing service (CPS). The goal of a CPS (e.g.,

Dell.com) is to allow a user to purchase the computer system online using credit cards.

Our CPS makes use of five component services, namely Shipper Service (SS), Logistic

Service (LS), Inventory Service (IS), Manufacture Service (MS), and Billing Service (BS).

The global time requirement of the CPS is to response within three seconds. The CPS starts

upon receiving the purchase request from the client with credit card information, and the

CPS spawns three workflows (viz., shipping workflow, inventory workflow, and billing

workflow) concurrently. In the shipping workflow, the shipping service provider is invoked

synchronously for the shipping service on computer systems. Upon receiving the reply, LS

which is a service provided by internal logistic department is invoked synchronously to

record the shipping schedule. In the manufacture workflow, IS is invoked synchronously

to check for the availability of the goods. Subsequently, MS is invoked asynchronously

to update the manufacture department regarding the current inventory stock. In the

billing workflow, the billing service which is offered by third party merchant, is invoked

synchronously for billing the customer with credit card information. The LTS of this system

contains 121 states and 120 transitions. The time taken for the synthesis gLTC takes 0.0532
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seconds, and the time taken for the synthesis sLTC for each state of the LTS takes 0.0562

seconds. The gLTC for CPS is given below.

((tSS + tLS + tIS + tBS) ≤ 3) ∧ (tSS ≤ 3) ∧ (tLS ≤ 3) ∧ (tIS ≤ 3) ∧ (tBS ≤ 3)

Note that tMS does not appear in the local time constraint for CPS. The reason is that MS

is invoked asynchronously without expecting a response; therefore its response time is

irrelevant to the global time requirement of CPS.

6.5.3 Travel Booking Service

The goal of a travel booking service (TBS) (such as Booking.com) is to provide a combined

flight and hotel booking service by integrating two independent existing services. TBS

provides an SLA for its subscribed users, saying that it must respond within five seconds

upon request. The travel booking system has five component services, user validation

service (VS), flight service (FS), backup flight service (FSbak), hotel service (HS) and backup

hotel service (HSbak). Upon receiving the request from users, TBS spawns two workflows

(viz., a flight request workflow, and a hotel request workflow) concurrently. In the flight

request workflow, it starts by invoking FS, which is a service provided by a flight service

booking agent. If service FS does not respond within two seconds, then FS is abandoned,

and another backup flight service FSbak is invoked. If FSbak returns within one second, then

the workflow is completed; otherwise it is considered as a failure for the flight request

workflow. The hotel request workflow shares the same process as the flight request work-

flow, by replacing FS with HS and FSbak with HSbak. The resulting LTS has 562 states with

2387 transitions, and it takes 1.004 seconds for synthesizing the LTC and it takes 1.05 sec-

onds for synthesizing the sLTC for each state in LTS respectively. The local time constraint

for TBS is shown below.



6.6. RELATED WORK 116

((tHSbak < 1) ∧ (tFSbak < 1) ∧ ((tFSbak + tHSbak) ≤ 1))

∨ ((tHSbak < 1) ∧ (tFS < 2))

∨ ((tHS < 2) ∧ (tFSbak < 1))

∨ ((tHS < 2) ∧ (tFS < 2))

∨ ((tFSbak > 2tHSbak) ∧ (tHSbak > 2tFSbak)

∧ (tHSbak < 1) ∧ (tFSbak < 1))

6.6 Related Work

This work shares common techniques with work for constraint synthesis for scheduling

problems. The use of models such as Parametric Timed Automata (PTA) [14] and Paramet-

ric Time Petri Nets (TPNs) [91] for solving such problems has received recent attention. In

particular, in [30, 66, 47], parametric constraints are inferred, guaranteeing the feasibility

of a schedule using PTAs with stopwatches. In [15], we extended the “inverse method”

(see, e.g., [16]) to the synthesis of parameters in a parametric, timed extension of CSP.

Although PTAs or TPNs might have been used to encode (part of) BPEL language, our

work is specifically adapted and optimized for synthesizing local timing constraint in the

area of service composition. The quantitative measure of the robustness of concurrent

timed systems has been tackled in different papers (see [69] for a survey). However, most

approaches consider a single dimension ε: transitions can usually be taken at most ε (before

or after) units of time from their original firing time. This can be seen as a “ball” in |U|

dimensions of radius ε. In contrast, our approach quantifies robustness for all parameter

dimensions, in the form of a polyhedron in |U| dimensions.

Our method is related to using LTS for analysis purpose in Web services. In [24], the

author proposes an approach to obtain behavioral interfaces in the form of LTS of external

services by decomposing the global interface specification. It also has been used in the

model checking the safety and liveness properties of BPEL services. For example, Foster
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et al. [42, 45] transform BPEL process into FSP, subsequently using a tool named as WS-

Engineer for checking safety and liveness properties. Simmonds et al. [81] proposes a

user-guided recovery framework for Web services based on LTS. Our work uses LTS in

synthesizing local time requirement dynamically.

Our method is related to the finding of a suitable quality of service (QoS) for the system [97].

The authors of [97] propose two models for the QoS-based service composition problem [17]

model the service composition problem as a mixed integer linear problem where constraints

of global and local component serviced can be specified. The difference with our work is

that, in their work, the local constraint has been specified, whereas for ours, the local

constraints is to be synthesized. An approach of decomposing the global QoS to local QoS

has been proposed in [8]. It uses the mixed integer programming (MIP) to find optimal

decomposition of QoS constraint. However, the approach only concerns for simplistic

sequential composition of Web services method call, without considering complex control

flow and timing requirement.

Our method is related to response time estimation. In [63], the authors propose to use

linear regression method and a maximum likelihood technique for estimating the service

demands of requests based on their response times. [70] has also discussed the impact of

slow services on the overall response time on a transaction that use several services concur-

rently. Our work is focused on decomposing the global requirement to local requirement,

which is orthogonal to these works.
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Chapter 7

Conclusion

This chapter summarizes this thesis. We will conclude the thesis in Section 7.1 and discuss

the on-going work and future directions in Section 7.2.

7.1 Summary

In this thesis, we study the verification and analysis of web service composition. In the

following, we briefly summarize our contributions of the thesis again.

Firstly, we have proposed practical solutions to link two different views (choreography

and orchestration) of Web services using model checking methods. We propose formal

languages for modeling choreography and orchestration respectively with formal oper-

ational semantics, which create a unified semantics model for the two views, so that it

allows communications between choreography and orchestration models. In addition,

we propose a method to mechanically synthesize a prototype a Web service orchestration

from the choreography, by repairing the choreography if necessary and projecting relevant

behaviors to each service provider.

119
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Secondly, we provide functional verification for Orc programs. Orc is a hierarchical con-

current language that has highly concurrent semantics, and this has posed a challenge of

state-explosion problem for its verification. To address this problem, we also proposed a

new method, called Compositional Partial Order Reduction (CPOR), which aims to pro-

vide the reduction with a greater scale than current partial order reduction methods in

the context of hierarchical concurrent processes. CPOR exploits the independency within

local transitions. It applies POR recursively for the hierarchical concurrent processes, and

several possible ample sets are composed in a bottom-up manner. It has been used in model

checking Orc programs to verify the functional requirements of Web service composition.

Experiment results show that CPOR provides significant state-reduction for Orc programs.

Thirdly, we have illustrated our approach to verify combined functional and non-functional

requirements (i.e., availability, response time and cost) for Web service composition. To

the best of our knowledge, we are the first work on such integration. We capture the

semantics of web service composition using labeled transition systems (LTSs) and verify the

Web service composition directly without building intermediate or abstract models before

applying verification approaches. For different kinds of non-functional requirements, we

have proposed different aggregation functions. Furthermore, our experiment shows that

our approach can work on real-world BPEL programs efficiently.

Lastly, given the global time requirement, we propose an automated method for synthe-

sizing the local time requirement for component services of a composite service. Our

approach is based on the dynamic analysis of the LTS of a composite service by making

use of parameterized timed techniques.
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7.2 Ongoing and Future Work

In Chapter 3 we have illustrated a model-based method for fully automatic analysis of Web

service composition, which offered a lightweight approach to tackle the synthesis problem.

In future work, we plan to investigate state reduction methods that can be used to increase

the efficiency of conformance checking.

In Chapter 4, we have presented the verification of Orc program, and have proposed a

state reduction method, called Compositional Partial Order Reduction (CPOR), to pro-

vide state-reduction for the verification of Orc program. As for future works, we would

further evaluate CPOR by applying it for verifying programs in other languages that has

hierarchical concurrent structure, such as CSP [52].

In Chapter 5, we have presented that our approach to verify combined functional and

non-functional requirements for Web service composition can work on real-world BPEL

programs efficiently. For future directions, we will consider various heuristics that could

be used to reduce the number of states and transitions for effective verification. Another

possible direction is to extend this work to other domains that share similar problems such

as sensor network [98].

In Chapter 6, we have evaluated our technique for synthesizing the local time requirement

for the component services of a composite service with real-world case studies. However,

it is just the starting of this work. We plan to investigate the combination of our approach

with other approaches such as the "inverse method" [15] to evaluate the possibility of

synthesizing a better local time requirement.
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