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SUMMARY  

Remodelling of keratin cytoskeletal network is essential for cells to respond to 

environmental cues upon wounding. To understand the stress/wound response, 

immortalized keratinocytes were used which expressed a keratin mutation mimicking 

severe EBS Dowling-Meara (a skin fragility disorder), fluorescently tagged for live-

cell imaging. 

All keratinocytes are “activated” to a stress state through up-regulation of kinases and 

wound response proteins, but revert to quiescence after confluence. In mutant cells, 

“activation” is reflected by the presence of keratin aggregates, a hallmark of severe 

EBS-DM. These keratin aggregates accumulate at the leading edge of the cell; they 

are highly dynamic and constantly undergo remodelling. It has been proposed that 

avoiding aggregate formation may improve the disease phenotype. When mutant 

keratinocytes were grown to confluence in a monolayer, a reduction of peripheral 

aggregates was observed, accompanied by a decrease in wound response proteins 

such as β1 integrin and fibronectin. However, upon scratch wounding, these mutant 

keratinocytes migrated faster and have higher induction of wound response proteins 

such as K17 than wild-type keratinocytes, highlighting their “pre-stressed” state of 

activation. 

Epidermal growth factor (EGF) is a major signalling molecule in wound healing and 

thus the EGF signalling pathway was examined for a role in regulating keratin 

remodelling. EGF-treated wild-type keratinocytes have an increased keratin 14 

synthesis and solubility but not mutant keratinocytes. When mutant keratinocytes 

were cultured in media without EGF, a reduction of peripheral keratin aggregates was 

observed, accompanied by a change in desmoplakin localization, both of which were 
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reversed upon re-stimulation with EGF. This EGF-mediated effect appears to be 

associated with the cytoskeletal linker protein, plectin. Inactivation of ERK1/2 kinases 

downstream in the pathway, by both inhibitor treatment and siRNA knockdown, 

resulted in fewer mutant keratinocytes with peripheral aggregates, accompanied by a 

decrease in plectin levels. Fluorescence live-cell imaging was used to confirm the 

relationship between ERK1/2 activation, keratin aggregate status and cell migration in 

mutant keratinocytes. Conversely, plectin knockdown reduced the number of mutant 

keratinocytes with peripheral aggregates and slowed down cell migration in scratch 

wound assays. Understanding the link between keratin remodelling and the EGF 

pathway may identify intervention points for new therapies.  

Keratin remodelling is believed to be driven by phosphorylation/dephosphorylation 

cycles. Examination of the mutation sequence most commonly causing EBS Dowling-

Meara suggested a possible interference of the mutation with a nearby 

phosphorylation site. Phospho-mimetic and phospho-null constructs were therefore 

made for involved serine and tyrosine residues to investigate this possibility. 

Phospho-mimetic constructs mimicking phosphorylation at K14 Y129 increased 

keratin aggregate formation and stress response in osmotic stress assays. A phospho-

null construct at K14 Y129 prevents aggregates and slows down cell migration in 

scratch wound assays. In keratinocytes with both the K14 R125P mutation and a 

phospho-null K14 Y129 mutation, fewer cells with keratin aggregates were observed 

than with K14 R125P mutation alone. This implication that the pathogenic effect of 

the EBS-DM mutations may be working through interference with phosphorylation is 

a new finding that has not been suspected previously, and may have implications for 

therapy. 
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1.1  The importance of skin 

The skin (integumentary system) is the largest organ system of the body, and forms 

the exterior surface of the human body. The skin comprises of 15-18% of the total 

body weight and covers a surface area of approximately 1.5-2.0 m2 for an adult human 

being (reviewed in Goldsmith, 1990). Being a sensory organ, the skin harbors many 

receptors that are capable of sensing pain (nociceptors), pressure (mechanoreceptors) 

and temperature (thermoreceptors) (reviewed in Schmelz, 2011), thus giving the 

organisms an awareness of the surroundings. The skin is also a highly regenerative 

multilayered tissue that is continuously replaced through a process of regeneration 

(proliferation of basal cells) and desquamation (flaking cells from stratum corneum) 

that occurs at the same rate. The typical time for epidermal turnover is about 14-30 

days, which varies with age, health and body site (Reddy et al., 2000). 

1.1.1  Barrier functions of the epidermis 

One of the most important functions of the skin is to form an efficient barrier to 

protect the body from external insults such as microbial (bacteria/fungi/virus), 

chemical/biochemical (irritants/allergens) and physical (mechanical/ultra-violet 

radiations) assaults (reviewed in Proksch et al., 2008). For instance, the sebaceous and 

sweat glands in the skin secrete oil and sweat onto its surfaces to create an acidic 

environment that is unfavorable for growth of micro-organisms. In addition, 

hydrolytic enzymes, antimicrobial peptides and macrophages that are residing in the 

skin can form an immunological barrier against the percutaneous penetration of any 

irritants or allergens (reviewed in Proksch et al., 2008). Moreover, skin pigmentation 

(melanin) is photoprotective against the harmful effects of solar radiation, thus 
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reducing the risk of DNA damage and occurrences of skin cancer (Westerhof et al., 

1981;  reviewed in Kollias et al., 1991). 

1.1.2  Homeostasis of the epidermis  

The skin also plays an important role in internal homeostatic maintenance of body 

temperature and hydration through its ability to regulate heat and water loss 

respectively. For example, rising body temperatures result in dilation of blood vessels 

near the skin surface, allowing heat to dissipate, followed by the evaporation of sweat 

released by the sweat glands which cools the body down (Taylor, 1986).  Likewise, 

the skin barrier prevents the body from excessive water loss and desiccation in a dry 

environment, thus allowing for adaptation to different terrestrial lives. Most 

remarkably, the ability of the skin to repair itself after wounding, through a controlled 

repertoire of phases of cell migration, proliferation and wound contraction, further 

highlights the vital role of the skin in restoring epidermal barrier function of the body, 

hence maintaining homeostasis (reviewed in Martin, 1997). 

1.1.3  Mechanical resilience of the skin 

The skin also exhibits mechanical resilience to physical insults. The ability of the skin 

to withstand large physical forces and thus protect the underlying organs comes 

mostly from the elastic, compressible properties of both dermal collagen and elastic 

fibers (elastin) (Silver et al., 2001). This may then explain why skin can be flexible 

enough to be stretched to large amounts, for example during pregnancy, and to also 

allow a large range of body flexture and limb movements. 
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Some insights into the skin‟s ability to provide mechanical resilience and barrier 

function come from understanding the structure of the skin. In the following 

paragraphs, the compositions of the skin will be discussed in detail. 

 

1.2  Skin composition and functions 

1.2.1  The hypodermis  

The skin comprises of three distinctive layers: namely, the innermost tissue 

hypodermis, the dermis and the outermost epidermis. The mesodermally derived 

hypodermis (subcutis or subcutaneous fat) consists of mainly the loose connective 

tissues and adipose (fatty) tissues that connect the lower reticular dermis to the 

underlying skeletal components (McGrath et al., 2004). 

1.2.2  The dermis 

Overlying the hypodermis is the dermis which consists of connective tissues and is 

separated into two major compartments: the upper papillary layer which lies just 

below the dermal-epidermal junction (basement membrane), and the lower reticular 

layer which is connected to the hypodermis. Epidermal appendages such as hair 

follicles, sebaceous and sweat glands are embedded in the dermis. The major cell 

types that are residing in this dermal layer are the fibroblasts,  macrophages, mast cells 

and circulating immune cells. These cells are embedded in a fibrous matrix consisting 

of collagen and elastin, which provide structural flexibility and tensile strength. The 

fibroblasts are the ones responsible for the production and metabolism of the collagen 

fibers (Rudnicka et al., 1994), a major component of the dermis, and elastin (Davis et 

al., 1999). This ensures control of the dermal composition and configuration.  
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The blood vessels are found in the dermis, such as the cutaneous plexus (lower part of 

the reticular layer), and the subpapillary plexus (near the papillary layer), from which 

fine capillaries loop just below the epidermis. This vascularized dermis provides 

nutrients to the overlying epidermis, which in itself is devoid of any vascularization. 

The dermis contains most of the sensory system of the skin, with Meissner‟s 

corpuscles (touch receptors) located just below the epidermis and Pacinian corpuscles 

(mechanoreceptors that detect pressure) located deeper in the dermis. 

There are several important functions that take place within the dermis, such as the 

regulation of body temperature, activation of immune responses against penetrating 

antigens, and mechanical resilience through the plasticity and remodelling of the 

buffering collagen fibers (Demarchez et al., 1992). Thus, the dermis plays an 

important role in providing mechanical strength and elasticity of the skin.  

1.2.3  The basement membrane 

The basement membrane is a thin sheet of highly specialized extracellular matrix 

(ECM) found at the dermal-epidermal junction and is involved in mediating the 

attachment and orientation of epithelial cells (Edwards and Streuli, 1995). The major 

components of the basement membrane are type IV collagen, heparin sulfate 

proteoglycan, fibronectin and laminin (reviewed in Burgeson and Christiano, 1997). 

The basal cell layer of the epidermis is anchored to the basement membrane by 

hemidesmosomes or focal contacts (discussed later), whilst the basement membrane is 

anchored to the underlying dermis by collagen type VII anchoring fibrils (reviewed in 

Erickson and Couchman, 2000). 
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 Figure 1.1 Architecture of the epidermis

Figure redrawn after Brooke et al., 2012. Picture courtesy of Kenneth Tan  
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1.2.4  The epidermis 

In early embryogenesis, a single-layered ectoderm gives rise to the mesoderm by cells 

migrating down to lie between the ectoderm and the endoderm. Later, the ectoderm 

becomes multilayered and gives rise to the epidermis. At the single layer stage, 

ectodermal proliferation occurs with the mitotic plane perpendicular to the embryo 

surface. This process gives rise to two layers, which results in a superficial layer 

known as the periderm (Weiss and Zelickson, 1975). During development of the 

postnatal epidermis, basal progenitor cells undergo both symmetric and asymmetric 

cell divisions to increase surface area and skin thickness respectively (Smart, 1970; 

Lechler and Fuchs, 2005). In symmetric cell division, mitotic spindles are oriented 

parallel to the underlying basement membrane, allowing basal keratinocytes to 

proliferate and expand in the basal layer of the epidermis. The beginning of 

differentiation is associated with the progenitor cells undergoing asymmetric cell 

division wherein mitotic spindles are oriented perpendicular to the basement 

membrane, giving rise to a proliferative basal cell in the basal layer and another 

daughter cell committed to differentiation in the suprabasal cell layer of the epidermis 

(reviewed in Ray and Lechler, 2011). During the transition, the keratinocytes undergo 

both biochemical and morphological changes till they become anucleated, form an 

impervious cornified envelope and their keratins and cytoplasmic matrix proteins 

become highly cross- linked and are eventually desquamated from the outermost 

epidermis. The desquamated keratainocytes are constantly replaced by inner cells 

differentiating upwards (reviewed in Koster and Roop, 2007). Hence, these 

continuous processes mediate the self-regenerative properties of the epidermis and are 

crucial for maintaining epidermal homeostasis (reviewed in Jones and Simons, 2008). 
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1.2.4.1 Cell types within the epidermis  

The epidermis is a non-vascularized, stratified keratinizing squamous epithelium that 

is composed mostly of keratinocytes. Other cell types that reside in this epithelium are 

the melanocytes (pigment-producing cells), Langerhans cells (antigen-presenting 

immune cells) and the neuroendocrine Merkel cells (sensory cells). Melanocytes and 

Merkel cells typically reside in the basal layer whereas Langerhans cells reside in the 

suprabasal layer. During development, both melanocytes (Holbrook et al., 1989) and 

Merkel cells (Szeder et al., 2003) originate from the neural crest whereas Langerhans 

cells are immune cells derived from the bone marrow (Shelley and Juhlin, 1976; 

Klareskog et al., 1977; Frelinger et al., 1979; Katz et al., 1979). One conundrum in 

understanding the origin of Langerhans cells is that although they are of 

hematopoietic origin, they are derived from precursors that are present in the skin 

prior to birth and bone marrow development. One possibility is that the Langerhans 

cells are derived from the yolk sac primitive macrophages that migrate to the skin via 

blood circulation during mid-embryogenesis (reviewed in Ginhoux and Merad, 2010), 

because they expressed Gr1-CD11b+MCSF-R+F4/80+CX3CR1+ (Bertrand et al., 2005), 

a phenotype similar to the putative Langerhans precursors found in embryonic day 

18.5 (E18.5) epidermis (reviewed in Ginhoux and Merad, 2010). 

The epidermis can be subdivided into four or five different layers depending on body 

site, namely: stratum basale (basal layer), stratum spinosum (spinous layer), stratum 

granulosum (granular layer), stratum lucidum (clear layer - only in palms and soles) 

and the stratum corneum (cornified layer) (see Figure 1.1). 
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1.2.4.2 The stratum basale 

The stratum basale consists of columnar-shaped proliferative keratinocytes that 

adhere tightly to the basement membrane. These basal keratinocytes express both 

keratin 5 (K5) and keratin 14 (K14). Some of these basal cells are epidermal stem or 

progenitor cells, others are transit amplifying cells (reviewed in Blanpain et al., 2007). 

These epidermal stem cells divide and continuously supply a population of daughter 

cells that migrate upwards in the epidermis, while at the same time commit to 

terminal differentiation and cell cycle withdrawal. The stem or progenitor cells of the 

epidermis maintain epidermal renewal throughout life; there are now believed to be 

discrete populations of stem cells responsible for different parts of the hair follicle and 

sweat gland as well as for the interfollicular epidermis (reviewed in Arwert et al., 

2012). 

1.2.4.3 The stratum spinosum 

The stratum spinosum forms part of the suprabasal layer that is generally three to four 

cell layers thick. Cells residing in this layer are named spinous keratinocytes because 

in histological preparations, these cells appear to be joined by „spines‟; this 

appearance is actually caused by a strong uptake of histological stain into the bundles 

of keratin filaments that attach to desmosome cell-cell junctions. The uppermost 

spinous cells contain lamellar granules (or lamellar bodies, Odland bodies), which are 

membrane-bound cytoplasmic organelles that contain a mixture of lipids, proteases, 

antimicrobial peptides and corneodesmosomal proteins (reviewed in Ishida-

Yamamoto and Kishibe, 2011). Ultrastructurally, lamellar granules appear as round 

granules of 0.2 - 0.5 μm in diameter, with parallel stacks of lipid-enriched disks 

enclosed by a trilaminar membrane (Menon, 2002). Their appearance marks the 

various aspects of epidermal differentiation through protein and lipid synthesis. At the 
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upper spinous layer, the cells begin to flatten and elongate, and migrate to the stratum 

granulosum. Both keratin 1 (K1) and keratin 10 (K10) are biochemical markers for 

this spinous layer. 

1.2.4.4 The stratum granulosum 

The stratum granulosum consists of two to three layers of non-dividing, flattened 

keratinocytes that produce distinctive electron dense keratohyalin granules. These 

keratohyalin granules contain both the intermediate filament-associated protein 

profilaggrin and the protein loricrin (Steven et al., 1990). Lamellar granules are also 

found in these granular keratinocytes but are clustered at the cell margins  and fused 

with the plasma membrane. In the uppermost granular layer, keratinocytes discharge 

the ceramide-rich lipid contents of the lamellar granules into the intercellular space, 

where they form extracellular lipid-enriched layers. This granular zone encompasses 

the final viable epidermal layers with the uppermost granular layer connecting to the 

terminally differentiated, non-viable stratum corneum. 

1.2.4.5 The stratum corneum 

The stratum corneum forms the outermost layer of the epidermis where  anucleated 

cornified keratinocyes (corneocytes) are located. However, in palmoplantar tissues, 

there is an additional zone known as stratum lucidum seen between the granulosum 

and stratum corneum. These cells are still nucleated, and are thus referred to 

transitional cells. Corneocytes in the stratum corneum are interconnected to adjacent 

cells via the corneodesmosomes. The borders of these corneocytes overlap, interlock 

and insert into adjacent cells to enhance the stability and strength for the epidermis. It 

is not surprising that any alterations in cell-cell adhesions may result in disrupted 

barrier functions. For instance, mutations in SPINK5 for the gene encoding the serine 
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protease inhibitor LEKTI, alter the stability of desmosomal proteins, hence leading to 

Netherton syndrome (Chavanas et al., 2000), which result in defective cell-cell 

adhesion. 

During the final stages of normal differentiation, the keratin filaments of the 

corneocytes aggregate with filaggrin to form disulphide cross- linked macrofibres 

(Lynley and Dale, 1983), which caused the cells to collapse into a flattened 

morphology. The cornified envelope, a tough protein/lipid polymer structure, forms 

the cell membrane of the terminally differentiated corneocytes by the progressive 

addition of several cornified envelope proteins (reviewed in Proksch et al., 2008), 

such as involucrin (Rice and Green, 1977), which is cross- linked by the action of a 

transglutaminase (Buxman and Wuepper, 1978).  

Because a large proportion of the cornified envelope is made up of lipids and 

cholesterols, mutations affecting the functions of cholesterol efflux transporter (ATP-

binding cassette subgroup 1 membrane 12 transporter, ABCA12) can lead to 

harelequin ichthyosis (Kelsell et al., 2005), resulting in barrier function defects.  This 

suggests that the maintenance of epidermal barrier function is crucial for the integrity 

of the skin. A list of proteins associated with human skin disorders disrupting barrier 

function is tabulated in Table 1.1. 
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Table 1.1 

Human diseases of the epidermis 

Stratum corneum 

 

Molecular target Disease Clinical phenotype (s) Original finding (s) 

ABCA12 (lipid 

transport) 

Harlequin ichthyosis (OMIM 
# 242500) 

Distorted facial features such as eclabion, 
ectropion 

(Kelsell et al., 2005) 

Filaggrin Ichthyosis vulgaris (OMIM # 
146700) 

Diffuse, fine superficial scaling; Kerotosis 
pilaris; Marked palmar hyperlinearity  

(Smith et al., 2006) 

Atopic dermatitis (OMIM # 
605803) 

Eczema associated with asthma; Food 
allergy; Allergic rhinitis 

(Palmer et al., 2006) 

Corneodesmosin Hypotrichosis simplex of 
scalp (OMIM # 146520) 

Late childhood onset of alopecia (Levy-Nissenbaum et 
al., 2003) 

Generalized peeling of skin 
syndrome (OMIM # 270300) 

Superficial exfoliation with unusal 
ichthyosiform erythema; Scaling of 

erythematous patches  

(Oji et al., 2010) 

SPINK5 (LEKTI) Netherton syndrome (OMIM 

# 256500) 

Congenital ichthyosis with defective 

cornificaton; Trichorrexis invaginata; atopic 
dermatitis and hay fever 

(Chavanas et al., 2000) 

Transglutaminase 1 Lamellar ichthyosis (OMIM 
# 242300) 

Newborns covered with colloid membrane 
accompanied with erythroderma; After 

membrane shedding, the skin developed 
severe ichthyosis with large hyperkeratotic 
scales 

(Huber et al., 1995) 

Loricrin Vohwinkel‟s syndrome 
(Keratoderma hereditaria 

mutilans) (OMIM # 604117) 

Hyperkeratosis of palms and soles with a 
honeycomb appearance; Pseudoinhum 

leading to autoamputation; Distinctive 
starfish- like acral keratoses; Sensorineural 

hearing loss  

(Maestrini et al., 1996) 
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Figure 1.2 Intercellular junctions of the epidermis  
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Figures redrawn after Fuchs and Raghavan, 2002 and Simpson et al., 2011. 
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1.3  Anchoring junctions mediating cell-cell adhesion 

Throughout the epidermis, keratinocytes are held together by different cell-cell 

junctions such as the desmosomes, adherens junctions, gap junctions and the tight 

junctions (see Figure 1.2). Desmosomes (macula adherens) attach the keratin 

cytoskeleton of neighboring cells together and confer mechanical resilience (reviewed 

in Green and Simpson, 2007), whereas adherens junctions (zonula adherens) and tight 

junctions (zonula occludens) associate with actin microfilaments and seal cells 

together in an epithelial sheet (reviewed in Madara, 1998; Niessen, 2007). Gap 

junctions comprise of connexins that allow free exchange of chemical or electrical 

signals from one cell to another (reviewed in Mese et al., 2007). Taking all these 

observations together, understanding the properties of each type of junctional proteins 

can provide some insights in the skin‟s ability to provide mechanical resilience. In the 

following paragraphs, the compositions of the anchoring junctions mediating cell-cell 

adhesion will be discussed in detail.  

1.3.1  Desmosomes 

Desmosomes (a composition of the Greek words: „desmos‟ meaning bond and „soma‟ 

meaning body) are the major adhesion complex found in the epidermis in many 

stress-bearing tissues such as the skin and the heart. They are responsible for 

anchoring keratin intermediate filaments to the cell membrane and bridging adjacent 

keratinocytes, to confer mechanical resilience. The desmosomes have a characteristic 

ultrastructural appearance, consisting of two principle domains, namely: (1) the 

extracellular core domain where plasma membrane of two adjacent cells forms a 

symmetrical junction with a central intercellular space of 30 nm, containing the 

electron-dense midline region and (2) the plaques of electron dense material running 
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along the cytoplasm parallel to the junctional region. This cytoplasmic plaque consists 

of two distinctive regions known as the outer dense plaque (ODP) and the inner dense 

plaque (IDP) into which intermediate filaments are observed to insert (North et al., 

1999). The main desmosomal components comprise of the products of three gene 

families: the desmosomal cadherins, the armadillo family of nuclear and junctional 

proteins and the plakins (reviewed in Green and Gaudry, 2000). The extracellular core 

domain is largely composed of the heterophillic associations of the extracellular 

domains of desmosomal cadherins such as desmocollins and desmogleins (reviewed 

in Buxton and Magee, 1992; Koch and Franke, 1994). The cytoplasmic plaque 

comprises of the cytoplasmic tails of desmocollins and desmogleins, together with 

armadillo proteins (plakoglobin and plakophilin) and plakin proteins (desmoplakin). 

The localization of these desmosomal proteins within the desmosomal plaque has 

been mapped using immunogold labeling (North et al., 1999).  

1.3.1.1  Desmosomal cadherins 

Desmocollins (Dsc) and desmogleins (Dsg) are transmembrane glycoproteins of the 

desmosomes. In humans, there are seven desmosomal cadherins, three desmocollins 

(Dsc1-3) (Collins et al., 1991; Mechanic et al., 1991) and four desmogleins (Dsg1-4) 

(Koch et al., 1990; Amagai et al., 1991; Parker et al., 1991; Schafer et al., 1994; 

Kljuic et al., 2003). Each of the desmocollin genes encodes a pair of proteins that are 

generated by alternative splicing, yielding a longer „a‟ form and a shorter „b‟ form 

that differ in the length of their cytoplasmic tail (Collins et al., 1991; Parker et al., 

1991). Desmosomal cadherins are expressed in a variety of epithelial and cardiac 

tissue, of which Dsc2 and Dsg2 are expressed in all desmosomal tissues (Schafer et al., 

1994; Nuber et al., 1995). Within the epidermis, there is a differential pattern of 

desmosomal cadherin expressions across the different layers. For instance, Dsc1 and 
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Dsg1 are preferentially expressed in the suprabasal layers whereas Dsc2 and Dsg2 are 

preferentially expressed in the basal layers. Dsc3 and Dsg3, on the other hand, are 

expressed in both the basal and suprabasal layers (see Figure 1.3). Hence, these 

expression patterns make desmosomal cadherins a useful differentiation marker for 

stratified epithelia. In support of this, Dsc1 knockout mice exhibited epidermal 

hyperproliferation with overexpression of keratins 6 and 16 (K6 and K16), indicating 

abnormal differentiation (Chidgey et al., 2001). However, the process of epidermal 

stratification does not depend entirely on the presence of desmosomal cadherins 

because corneal epithelia only express Dsc2 and Dsg2 (Messent et al., 2000). Other 

regulated gene expression programs such as differentiation-specific keratin expression 

can also play a role in it (reviewed in Fuchs, 1995).  

The importance of desmosomal cadherins in maintaining the integrity of the skin was 

revealed when it was discovered that autoantibodies against desmosomal cadherins 

led to skin blistering disorders. For example, the production of autoantibodies against 

Dsg1 resulted in pemphigus foliaceus (Allen et al., 1993), while autoantibodies 

against Dsg3 resulted in pemphigus vulgaris (Amagai, 1994). Likewise, Dsg3 

knockout mice resulted in a similar phenotype as that of pemphigus vulgaris patients 

(Koch et al., 1997).  Hence, these observations suggest that desmosomal cadherins are 

important in maintaining tissue integrity.   

1.3.1.2  Desmosomal armadillo proteins 

The cytoplasmic plaque of the desmosomes comprises mainly of the plakophilins 1-3 

(PKP1-3), plakoglobin (PG) and desmoplakin (DP). Other proteins identified as 

associated with desmosomes are desmocalmin (Tsukita, 1985), IFAP 300 (Skalli et al., 

1994), pinin (Ouyang and Sugrue, 1996) and periplakin (Ruhrberg et al., 1997). Both 
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PG and PKP belong to the armadillo family of signalling proteins (Peifer et al., 1992). 

They are characterized by the presence of a central domain containing a variable 

number of imperfect 42 amino acid repeats (arm repeats) (reviewed in Garrod and 

Chidgey, 2008). All PKPs contain 9 arm repeats with a flexible insert between repeats 

5 and 6 that introduces a major bend in the overall structure (Choi and Weis, 2005), 

whereas PG contains 12 arm repeats (reviewed in Garrod and Chidgey, 2008). This 

kind of structure can also be found in β-catenin (McCrea et al., 1991; Butz et al., 1992)  

and armadillo (Riggleman et al., 1989; Peifer and Wieschaus, 1990), also members of 

the armadillo family of proteins.   

Plakophillin (PKP) exists as three distinct isoforms (PKP1-3) that are expressed in a 

differentiation-specific manner in the epidermis (reviewed in Hatzfeld, 2007). PKP1 

shows increased expression in suprabasal cells whereas PKP2 shows highest 

expression in basal cells. In contrast, PKP3 is expressed equally throughout the 

epidermal layers (reviewed in Getsios et al., 2004). PKP1 has been shown to localize 

at the cytoplasmic face of the desmosomal plaque (Kapprell et al., 1988; Heid et al., 

1994) where molecular mapping showed that PKP1 lie closer to the plasma membrane 

as compared to PG or DP (North et al., 1999). A role for PKP1 in mediating tissue 

integrity of the skin was demonstrated by the discovery of mutations in PKP1 gene 

that led to ectodermal dysplasia / skin fragility syndrome. Hence, this reveals the 

importance of PKP1 in both cutaneous cell-cell adhesion and epidermal 

morphogenesis (McGrath et al., 1997).  

Plakoglobin (PG), unlike other members of the armadillo family, can interact with the 

desmosomal cadherins (Cowin et al., 1986). PG interacts with the cytoplasmic 

domains of the desmosomal cadherins (Dsc and Dsg) that have sequence similarity 

with other catenin-binding domain of classical cadherins (Mathur et al., 1994; 
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Troyanovsky et al., 1994). Moreover, PG can also bind to the N-terminal domain of 

DP, an intermediate filament linker protein (Kowalczyk et al., 1997). These 

observations demonstrate that PG can link the desmosomal cadherins to the 

cytoskeleton. Molecular mapping of the desmosome provided the evidence for the 

localization of the PG interacting with Dsg, Dsc and DP (North et al., 1999). It has 

been suggested that PG was globular (Kapprell et al., 1987), which could position its 

internal arm repeats nearer to the plasma membrane than its N- or C- terminals. In 

consistent with this, it has been shown that the central domain of PG could bind to the 

N-terminus of the DP (Kowalczyk et al., 1997). 

The notion that PG can interact with both desmosomal cadherins and DP suggests that 

it is important for maintaining tissue integrity. Indeed, deletion in PG led to Naxos 

disease, which was characterized by arrhythmic right ventricular cardiomyopathy 

(ARVC), striate palmoplantar keratoderma and woolly hair (McKoy et al., 2000). 

Likewise, the absence of PG could also lead to lethal congenital epidermolysis bullosa 

(Pigors et al., 2011), hence emphasizing the crucial role played by PG in maintaining 

epithelial and cardiomyocyte integrity. 

1.3.1.3  Desmosomal plakin proteins 

One of the essential components of the desmosome in all tissues is desmoplakin (DP), 

a member of plakin family. Other members include BP230, plectin and periplakin 

(Green et al., 1992; Ruhrberg et al., 1997). The common structural features of this 

family is first described for DP (Green et al., 1990), and all members in this family 

can bind to intermediate filaments. In addition, members such as plectin have an 

actin-binding domain that is thought to connect various cytoskeletal systems together 

(reviewed in Ruhrberg and Watt, 1997). 
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DP consists of an N-terminal plakin domain, a central coiled-coil rod domain and a C-

terminus consisting of three highly homologous plakin repeat domains, namely: A, B 

and C (Choi et al., 2002). As mentioned earlier, the N-terminus of desmoplakin can 

bind to the desmosomal outer plaque proteins such as PG and PKP (Kowalczyk et al., 

1997) whereas the C-terminus can bind to intermediate filament. The central α-helical 

rod domain is thought to be involved in dimer formation (Green et al., 1990). Two 

isoforms of DP exist: DP1 and DP2, where DP2 lacks most of the rod domain due to 

alternative splicing of exon 23 (Green et al., 1988; O'Keefe et al., 1989). DP1 is 

expressed in both skin and heart whereas DP2 is mainly expressed in the skin (Angst 

et al., 1990). Molecular mapping of desmosomes showed that DP could extend across 

most of the outer plaque and the whole of the inner plaque, suggesting that DP was 

localized at where it could interact with most of the desmosomal components (North 

et al., 1999).  

The observation that DP can interact with most of the desmosomal components and 

aid in tethering the intermediate filaments to the neighboring cells suggests that it is 

crucial for maintaining tissue integrity. Indeed, DP knockout mice are usually 

embryonic lethal (Gallicano et al., 1998; Gallicano et al., 2001). Using a conditional 

DP knockout, it was found that the mice exhibited peeling skin and desmosomes 

lacking inner plaques which were devoid of keratin attachment (Vasioukhin et al., 

2001). Moreover, a recessive mutation in DP led to a human disorder characterized by 

generalized striate keratoderma, woolly hair and dilated left ventricular 

cardiomyopathy, resulting in the collapse of keratin network and large intercellular 

spaces (Norgett et al., 2000). On the other hand, DP haploinsufficiency arising from 

the deletion of the amino-terminus do not result in heart defects but present 

palmoplantar keratoderma (Armstrong et al., 1999; Whittock et al., 1999).   
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1.3.1.4  Calcium pumps regulating desmosomal adhesions 

Since desmosomal adhesions are dependent on extracellular calcium concentration 

(Kimura et al., 2007), mutations in the ATP2A2 and ATP2C1 genes coding for 

intracellular calcium pumps are thought to disrupt desmosomal adhesion. Indeed, 

human conditions such as Darier‟s disease and Hailey-Hailey disease implicated an 

important role for calcium in regulating desmosomal adhesions (Sakuntabhai et al., 

1999b; Hu et al., 2000) (see Table 1.3). 

Taken all these observations together, the presence of desmosomes in tissues 

experiencing large amounts of mechanical stress, such as the epidermis or the heart, 

highlights the importance of strong cell-cell adhesion in tissues. This is obvious from 

the severe phenotypes resulting from mutations or loss of desmosomal components. A 

list of desmosomal proteins associated with human skin disorders disrupting tissue 

functions is tabulated in Table 1.2.  
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Figure 1.3  Differential expressions of the junctional proteins

Figure redrawn after Simpson et al., 2011. 



22 
 

Table 1.2  

Human diseases of the epidermal junctions  

Desmosomes 

Molecular target Disease Clinical phenotype (s) Original finding (s) 

DSG1 Bullous impetigo Epidermal blisters at the granular layer caused 

by bacterial proteolytic attack (neonatal mice 
and human keratinocyte cell line) 

(Amagai et al., 2000) 

Staphylococcal scalded skin 

syndrome 

Pemphigus foliaceus Epidermal blisters at the granular layer caused 
by autoantibodies; Acantholysis 

(Koulu et al., 1984) 

DSG3 Pemphigus vulgaris (OMIM # 
169610) 

Epidermal blisters at the basal-suprabasal layer 
caused by autoantibodies; Mucosal erosions 

(Amagai et al., 1991) 

DSG4 Hypotrichosis (OMIM # 
607903) 

Sparse, fragile hair with bullous “bleb” and 
curled ingrown hair shafts within hair follicle 

(Kljuic et al., 2003) 

DSC2 Arrhythmogenic right 
ventricular cardiomyopathy 

(ARVC); ARVC with mild 
palmoplantar keratoderma and 
woolly hair (OMIM # 

610476) 

Ventricular arrhythmias with mild interstitial 
fibrosis and fatty infiltration of myocardium; 

Mild thickening of palms and soles; Tightly 
coiled hair 

(Heuser et al., 2006; 
Simpson et al., 2009) 

DSC3 Hypotrichosis with skin 
vesicles (OMIM # 613102) 

Sparse, fragile hair with normal hair follicles; 
Recurrent skin vesicles 

(Ayub et al., 2009) 

DP/ DSG1 Striate palmoplantar 
keratoderma (DSG1: OMIM # 

148700; DP: OMIM # 
612908) 

Hyperkeratotic bands on the palms and soles (Armstrong et al., 1999; 
Rickman et al., 1999; 

Whittock et al., 1999; 
Hunt et al., 2001) 
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Table 1.3  

Human diseases of the epidermal junctions  

Calcium pumps 

DP Carvajal syndrome (OMIM # 
605676) 

Longitudinal hyperkeratosis of a striate 
palmoplantar keratoderma with woolly hair 

and dilated cardiomyopathy 

(Norgett et al., 2000) 

Lethal acantholytic 
epidermolysis bullosa (OMIM 
# 609638) 

Universal alopecia; neonatal teeth and nail 
loss; Acantholysis; Early death 

(Jonkman et al., 2005) 

PKP1 Ectodermal dysplasia/skin 
fragility syndrome (OMIM # 

604536) 

Cutaneous fragility and congenital ectodermal 
dysplasia affecting skin, hair and nails 

(McGrath et al., 1997) 

PG Naxos disease (OMIM # 
601214) 

Woolly hair; Non-epidermolytic palmoplantar 
keratoderma; Arrhythmogenic right ventricular 

cardiomyopathy 

(McKoy et al., 2000) 

Lethal congenital 
epidermolysis bullosa 

Generalized erythema and epidermolysis with 
no known cardiomyopathy; Total alopecia; 
Early death 

(Pigors et al., 2011) 

Molecular target  Disease Clinical phenotype (s) Original finding (s) 

ATP2C1 

(calcium pump) 

Hailey-Hailey disease 
(OMIM # 169600) 

Erythema blistering in the suprabasal layers; 
Acantholysis 

(Hu et al., 2000) 

ATP2A2 

(calcium pump) 

Darier‟s disease (OMIM # 
124200) 

Acantholysis; Keratotic papules coalescing 
into a hyperkeratotic plaque 

(Sakuntabhai et al., 
1999a; Sakuntabhai et 
al., 1999b) 



24 
 

1.3.2  Adherens junctions 

Adherens junctions are electron dense transmembrane structures that associate with 

the actin cytoskeleton, which are responsible for cell adhesion, motility and changes 

in cell shape (Gumbiner, 1996). The transmembrane core of the adherens junctions 

consists of classical cadherins, namely: epithelial cadherin (E-cadherin) and placental 

cadherin (P-cadherin).  

1.3.2.1  Cadherins 

The extracellular domains of E-cadherin form calcium-dependent homophillic 

adhesive interactions with E-cadherin from adjacent cells. Its cytoplasmic domain, on 

the other hand, is responsible for clustering of surface cadherins to form a junctional 

structure (reviewed in Vasioukhin and Fuchs, 2001). The main linkage to the actin 

cytoskeleton is through α-catenin (Rimm et al., 1995), which apart from its role of 

mediating E-cadherin-catenin adhesions, is also responsible for regulating actin 

dynamics and polymerization (reviewed in Vasioukhin and Fuchs, 2001). The 

regulation of actin dynamics allows for the extension and anchorage of filopodia into 

neighboring keratinocytes, strengthening cell-cell adhesions. Conditional deletion of 

E-cadherin in mice resulted in hyperproliferation, abnormal differentiation and 

impaired barrier formation of the epidermis (Young et al., 2003; Tinkle et al., 2004; 

Tunggal et al., 2005), while ablation of both E-cadherin and P-cadherin resulted in 

lethal blistering (Tinkle et al., 2008). Patients harboring CDH3 mutations targeting P-

cadherin suffered from hair loss and macular degeneration (Sprecher et al., 2001; 

Kjaer et al., 2005) (see Table 1.4). Hence, adherens junction components are not only 

essential for regulating cell-cell adhesion but also modulate epidermal morphogenesis. 
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Table 1.4 

Human diseases of the epidermal junctions   

Adherens junctions 

 

 

 

Molecular target Disease Clinical phenotype (s) Original finding (s) 

P-cadherin 

(encoded by 

CDH3) 

Hypotrichosis with juvenile 

macular dystrophy (OMIM # 
601553) 

Hair loss heralding progressive macular 

degeneration and early blindness 

(Sprecher et al., 2001) 

Ectodermal dysplasia; 
Ectrodactyly; Macular 

degeneration (EEM) syndrome 
(OMIM # 225280) 

Hypotrichosis and sparse hair; Syndactyly in 
hands and feets 

(Kjaer et al., 2005) 
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1.3.3  Gap junctions  

Gap junctions are intercellular channels that mediate the direct passage of low 

molecular weight metabolites (< 1 kDa) and ions between the cytoplasm of adjacent 

cells (Kelsell et al., 2001). Gap junctions are formed by connexins, which are 

composed of oligomers of six connexons (Cxs), of which Cx26, Cx43, Cx30, Cx30.3 

and Cx31 are expressed in the epidermal keratinocytes. These connexons can form a 

homotypic or heterotypic channel. Missense mutations in the genes encoding Cx26, 

Cx30, Cx30.3 or Cx31 can lead to several forms of inherited human disorders such as 

Vohwinkel‟s syndrome, Clouston syndrome and Erythrokeratodermia variabilis, 

causing keratoderma and/or hearing loss (see Table 1.5). Hence, gap junction 

components are not only essential for regulating cell-cell communication but also 

modulate epidermal morphogenesis.  
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Table 1.5  

Human diseases of the epidermal junctions   

Gap junctions 

 

 

Molecular target Disease Clinical phenotype (s) Original finding (s) 

Cx26 Keratitis ichthyosis deafness 
syndrome (OMIM # 148210) 

Vascularizing keratitis; Progressive 
erythrokeratoderma; Profound sensorineural 

hearing loss 

(Richard et al., 2002) 

Vohwinkel‟s syndrome 
(Keratoderma hereditaria 

mutilans) (OMIM # 124500) 

Papular and honeycomb keratoderma associated 
with constrictions of digits leading to 

amputations; Distinctive starfish- like acral 
keratoses; Moderate sensorineural hearing loss 

(Maestrini et al., 1999) 

Bart-Pumphrey syndrome 
(OMIM # 149200) 

Hyperkeratosis of knuckle pads; Diffuse 
palmoplantar keratoderma with keratotic bands; 
Sensorineural hearing loss 

(Richard et al., 2004) 

Hereditary non-syndromic 
sensorineural deafness 
(OMIM # 148350) 

Palmoplantar keratoderma; Profound deafness 
and high-frequency hearing loss 

(Kelsell et al., 1997) 

Cx30 Clouston syndrome (hidrotic 
ectodermal dysplasia) (OMIM 

# 129500) 

Palmoplantar hyperkeratosis; Generalized 
alopecia; Nail dystrophy 

(Essenfelder et al., 2004) 

Cx30.3, Cx31 Erythrokeratodermia 
variabilis (OMIM # 133200) 

Diffuse scaling and erythema gyratum repens- like 
migratory lesions 

(Richard et al., 1998; 
Macari et al., 2000) 
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1.3.4  Tight junctions  

Tight junctions are formed by transmembrane and intracellular molecules such as 

occludin, junction adhesion molecule and claudins (reviewed in Bazzoni and Dejana, 

2001). In the granular layer of the epidermis, tight junctions seal epithelial sheets 

together by forming a belt- like adhesion between the cells, creating an environmental 

barrier that controls water loss and protects against pathogen invasion (reviewed in 

Niessen, 2007). Intracellular tight junction components also include scaffolding 

proteins such as zonula occludens (ZO) proteins, namely: ZO1, ZO2 and ZO3, which 

cluster the transmembrane molecules and couple to the actin cytoskeleton (reviewed 

in Niessen, 2007). The role of a transmembrane molecule, claudin, in regulating 

epidermal permeability was found when mice ablated of claudin-1 died of profound 

trans-epidermal water loss (Furuse et al., 2002). Moreover, missense mutations in 

claudin-1 gene led to sclerosing cholangitis associated with ichthyosis (Hadj-Rabia et 

al., 2004), a gastrointestinal syndrome affecting bile secretion, confirming a role for 

claudin-1 in regulating paracellular permeability between epithelial cells . Hence, 

these studies demonstrate that tight junction components are crucial for regulating 

epidermal permeability. 
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Figure 1.4  Cell-matrix junctions of the epidermis  
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1.4  Anchoring junctions mediating cell-matrix adhesion 

At the dermal-epidermal junction (basement membrane), keratin intermediate 

filaments of the basal keratinocytes are anchored to the dermal matrix through the 

hemidesmosomal proteins, whereas actin microfilaments and microtubule filament 

systems are anchored through focal adhesions (see Figure 1.4). Hemidesmosomes are 

multi-protein complexes that mediate epithelial-stroma cohesion in stratified and 

complex epithelial (reviewed in Borradori and Sonnenberg, 1999). These complexes, 

which appear as three- layered structures along the plasma membrane of basal cells, 

are composed of at least five different proteins, namely: the laminin-332 receptor 

α6β4 integrins, the bullous pemphigoid antigens 180 and 230 (BP180 and BP230), 

tetraspanin (CD151) and plectin (reviewed in Jones et al., 1998).  

Focal adhesions are dynamic structures that not only mediate cell-matrix adhesions, 

but also play an important role in cell migration, proliferation and survival. Focal 

adhesions typically undergo assembly and disassembly through the continuous 

association of proteins such as α3β1 integrins, vinculin, talin, kindlin-1 and α-actinin 

(reviewed in Watt, 2002). The presence of these complexes provides a means to 

enhance the stability and also attribute dynamics for the epidermis. The understanding 

of the properties of these different complexes can provide some insights in the skin‟s 

ability to provide mechanical resilience and also adaptability to environmental cues. 

In the next paragraphs, the compositions of the anchoring junctions mediating cell-

matrix adhesion will be discussed in detail.  

1.4.1  Hemidesmosomes 

There are two distinct types of hemidesmosomes, of which type II hemidesmosomes, 

found in intestinal epithelial cells or mammary gland epithelial cells, do not have a 
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clear three- layered structure and are composed solely of α6β4 integrins and plectin 

(Uematsu et al., 1994). Ultrastructurally, type I hemidesmosomes appear as electron-

dense structures comprising of an inner and an outer plaque, accompanied by a sub-

basal dense plate. The inner plaque is composed of hemidesmosomal proteins such as 

plectin and BP230, which serves as an anchorage site for kertain intermediate 

filaments. The outer plaque, on the other hand, consists of the α6β4 integrins and 

BP180 (reviewed in Nievers et al., 1999). The basement membrane underlying the 

hemidesmosomes constitutes a network of interconnecting proteins (reviewed in 

Timpl, 1996). It consists of laminin-332, collagen type IV, and glycoproteins such as 

nidogen, perlecan and fibulins that act as stabilizing bridges (reviewed in Yurchenco 

and O'Rear, 1994). Anchoring filaments, which are composed of BP180 (Masunaga et 

al., 1997) and laminin-332 (Rousselle et al., 1991), traverse across the sub-basal dense 

plate and the lamina lucida of the basement membrane, and connect the 

hemidesmosome to the anchoring fibrils (collagen type IV and VII) in the lamina 

densa and sub-basal lamina densa respectively. These collagens extend further into 

the dermis to connect with collagen I from where they loop back into the lamina 

densa, or insert into anchoring plaques (Keene et al., 1987). This reinforces the 

attachment of the epidermal basement membrane to the underlying dermal connective 

tissue. 

1.4.1.1  α6β4 integrins 

In the outer plaque of the hemidesmosomes, α6β4 integrins serve as a transmembrane 

receptor for laminin-332 and they together make up the core structure of the 

hemidesmosome. α6β4 integrins belong to the large family of heterodimeric receptors 

that mediate the attachments of cells to the extracellular matrix (reviewed in Buck and 

Horwitz, 1987). Both α and β subunits of the integrins have a large extracellular 
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portion, a transmembrane segment, and a shorter cytoplasmic domain. α6β4 integrins 

differ from other integrins in that the cytoplasmic domain of β4 subunit contains over 

1000 amino acids in length and contains two pairs of type III fibronectin (FNIII) 

repeats separated by a connecting segment (Tamura et al., 1990). Transfection of the 

second FNIII repeat and the adjacent 27 amino acids of the connecting segment are 

demonstrated to be critical for the correct localization of α6β4 integrins to the 

hemidesmosomes (Niessen et al., 1997). The cytoplasmic domain of β4 is also crucial 

for the organization of hemidesmosomes because overexpression of tail- less β4 could 

block hemidesmosomal formation (Spinardi et al., 1993). Moreover, the extracellular 

domain of α6β4 integrins is important for cell adhesion. Antibodies against α6β4 

prevent hemidesmosomal assembly and induce dermal-epidermal separation in vitro 

(Kurpakus et al., 1990). This is further supported by studies using α6β4 knockout 

mice where it is observed that there was extensive epithelial detachment devoid of 

hemidesmosomes (Georges-Labouesse et al., 1996; van der Neut et al., 1996). Indeed, 

mutations in the genes encoding α6 and β4 integrin subunits led to patients suffering 

from junctional epidermolysis bullosa associated with pyloric atresia (PA-JEB), 

resulting in cutaneous aplasia and mucosal erosions (Vidal et al., 1995; Shimizu et al., 

1996). Hence, these studies demonstrate that α6β4 integrins are important in 

maintaining the mechanical integrity of both the basal keratinocytes and the basement 

membrane. 

1.4.1.2  Laminin-332 

The α6β4 integrins are receptors for various laminins, but preferentially bind to 

laminin-332 (Niessen et al., 1994), which is predominately found in the epidermal 

basement membrane (Rousselle et al., 1991). Laminin-332 belongs to the 

heterotrimeric proteins of the laminin family, consisting of the α3, β3 and γ2 subunits 
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(Marinkovich et al., 1992), which can act as a ligand for α6β1 and α3β1 integrins as 

well as α6β4 integrins. The first repeat of the G domain of α3 subunit of laminin-332 

is responsible for the binding sites of these integrins (Rousselle et al., 1995). Laminin-

332 also interacts with the NC1 domain of collagen VII, the major component of the 

anchoring fibrils, linking the α6β4 integrins to the dermal matrix (Rousselle et al., 

1997). Cross-linking of laminin-332 with laminin-311 and laminin-321 can result in 

their self-associations and promote stable epithelial-stromal attachment (Champliaud 

et al., 1996). The importance of laminin-332 in maintaining anchorage and motility of 

epithelial cells was demonstrated by the targeted deletion of the α3 subunit of 

laminin-332 in mice that resulted in junctional blisters and disrupted 

hemidesmosomes. Moreover, keratinocytes isolated from these mice had a deficit in 

cell motility (Ryan et al., 1999). Indeed, mutations/deletions in the genes encoding 

laminin-332 subunits led to patients suffering from lethal (Herlitz) junctional 

epidermolysis bullosa (JEB), resulting in severe epidermal fragility associated with 

early death (Kivirikko et al., 1995; Kivirikko et al., 1996). 

1.4.1.3  BP180 

The other transmembrane component of hemidesmosome is BP180 (also known as 

BPAG2 or collagen type XVII). BP180 is a type II transmembrane protein with its C-

terminus located at the extracellular site of the plasma membrane (Giudice et al., 

1992). It contains a series of collagenous repeats in its extracellular domain, which are 

predicted to form collagen- like triple helix (Hirako et al., 1996). Sequences within the 

N-terminus of the cytoplasmic tail of BP180 interact with β4 integrin tail (Borradori 

et al., 1997; Aho and Uitto, 1998) while the NC16A domain of BP180 interacts with 

the α6 integrin subunit (Hopkinson et al., 1995; Hopkinson et al., 1998). The 

importance of BP180 in maintaining the stability/assembly of hemidesmosomes was 
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demonstrated when it was discovered that autoantibodies against BP180 led to bullous 

pemphigoid, a skin blistering disorder (Stanley et al., 1981). Moreover, inherited 

mutation or deletion of BP180 led to patients suffering from generalized atrophic 

benign epidermolysis bullosa (GABEB), resulting in universal alopecia with skin 

atrophy (Jonkman et al., 1995; McGrath et al., 1995). Deficiencies in BP180 do not 

seem to affect the normal localization of α6β4 integrins, laminin-332 and BP230 to 

the basal membrane although the hemidesmosomes are disrupted with a lack of well-

defined cytoplasmic plaques. These studies demonstrate that BP180 is important in 

mediating hemidesmosome assembly and stability.  

1.4.1.4  BP230 

In the inner plaque of the hemidesmosomes, the major cytoplasmic plaque proteins 

are the BP230 (Stanley et al., 1988; Sawamura et al., 1991) and plectin (Wiche et al., 

1991). BP230 and plectin belong to the plakin family of cytoskeletal linker proteins 

that anchor intermediate filaments to the plasma membrane (Tanaka et al., 1991). 

Transfection studies and yeast two-hybrid studies have shown that the N-terminus of 

BP230 could interact with the N-terminus of the cytoplasmic domain of BP180 

(Borradori et al., 1998; Hopkinson and Jones, 2000), which was mediated by the Y-

domain of BP230 (Koster et al., 2003). A role for BP230 in attaching keratins to the 

hemidesmosomal plaque is determined by the C-terminus which contains two copies 

of plakin repeat domains. This was first demonstrated in BP230 knockout mice that 

exhibited poorly formed hemidesmosomes devoid of keratin intermediate filament 

attachment. Moreover, these mice suffered from epidermal blistering, which could be 

a result of the impaired anchorage of intermediate filament to desmosomes that 

caused a deficit in mechanical resilience (Guo et al., 1995). In addition, these mice 

also exhibited spinal nerve degeneration when the gene encoding the neuronal 
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isoform of BP230 (dystonin) was inactivated (Brown et al., 1995). Indeed, the 

importance of BP230 in maintaining the stability/assembly of hemidesmosomes was 

demonstrated when a homozygous nonsense mutation within BP230 gene was found 

in patients suffering from autosomal recessive epidermolysis bullosa simplex, 

resulting in skin blistering (Groves et al., 2010). Hence, these studies demonstrate that 

BP230 is crucial for hemidesmosome assembly and stability.  

1.4.1.5  Plectin 

Another major plaque protein in the hemidesmosome is p lectin. Plectin is a large 

phosphoprotein expressed in both stratified and simple epithelial, where it acts as the 

most versatile cytoskeletal linker protein (Steinbock and Wiche, 1999). Plectin, being 

part of the plakin family, consists of a central α-helical rod domain that is flanked by 

large globular structures of the N- and C- terminal domains (Wiche et al., 1991). The 

N-terminus of plectin can associate with the cytoplasmic tail of β4 (Niessen et al., 

1997; Rezniczek et al., 1998). This region also has a highly conserved actin-binding 

domain that is homologous to that of actin-binding proteins such as spectrin and 

dystrophin (Elliott et al., 1997). The binding site of plectin to intermediate filament is 

determined by the C-terminus, which contains six copies of plakin repeat domains, 

and the interaction has been mapped to a stretch of approximately 50 amino acids 

linking the plakin repeat domains 5 and 6 (Nikolic et al., 1996).  The importance of 

plectin in maintaining hemidesmosomal organization was demonstrated by the 

observation that plectin knockout mice exhibited epidermal blistering coupled with 

abnormalities in cardiac and skeletal muscles (Andra et al., 1997), similar to patients 

suffering from epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) 

(Gache et al., 1996; McLean et al., 1996; Smith et al., 1996). Hence, these studies 
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demonstrate that plectin is a critical cytoskeletal linker in mediating hemidesmosome 

assembly and stability. 

1.4.2  Hemidesmosomal assembly 

Taken together, a model can be used to describe the sequence of hemidesmosomal 

assembly based on the interactions between different hemidesmosomal proteins 

(reviewed in Nievers et al., 1999). Firstly, clustering of the α6β4 integrins with plectin 

may occur at the inner plaque because both the N- and C- terminus of plectin can 

directly associate with the first pair of FNIII repeats and the connecting segment of β4 

integrin (Rezniczek et al., 1998) and also its cytoplasmic tail (Niessen et al., 1997). 

Consequently, co-clustering of plectin with the α6β4 integrins results in the 

association of plectin to keratin intermediate filaments (Nikolic et al., 1996), thus 

forming type II hemidesmosomes. Subequently, BP180 is recruited to the site of 

α6β4-plectin clustering because BP180 can directly interact with the cytoplasmic tail 

of β4 (Borradori et al., 1997; Aho and Uitto, 1998) and also interact with plectin 

(Gache et al., 1996). Finally, hemidesmosomal assembly is completed by the 

recruitment of BP230 to the inner plaque, possibly by BP180 (Borradori et al., 1998),  

and its connection to the keratin intermediate filament (Guo et al., 1995), hence 

forming type I hemidesmosomes.  

In conclusion, hemidesmosomal proteins play an important role in maintaining 

epidermal morphology and integrity. A summary list of hemidesmosomal proteins 

associated with human skin disorders disrupting tissue functions is tabulated in Table 

1.6.  
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Table 1.6  

Human diseases of the epidermal junctions  

Hemidesmosomes 

Molecular target Disease Clinical phenotype (s) Original finding (s) 

BP180  

(ColXVII, 

BPAG2) 

Bullous pemphigoid or 

Herpes gestationis  

Fluid-filled subepidermal blisters caused by 

autoantibodies 

(Morrison et al., 1988; 

Diaz et al., 1990) 
Generalized atrophic bullous 

epidermolysis bullosa 
(GABEB) (OMIM # 226650) 

Scalp alopecia with follicular atrophy; Nail 

atrophy 

(Jonkman et al., 1995; 

McGrath et al., 1995) 

BP230 

(Dystonin, 

BPAG1e) 

Epidermolysis bullosa 
simplex (autosomal recessive) 

Generalized trauma-induced spontaneous blisters 
and erosions; Episodic limb numbness 

(Groves et al., 2010) 
 

α6β4 integrins Junctional epidermolysis 

bullosa with pyloric atresia 
(PA-JEB) (OMIM # 226730) 

Pyloric atresia and cutaneous aplasia; Mucosa 

erosions 

(Vidal et al., 1995; 

Shimizu et al., 1996) 

Plectin Epidermolysis bullosa 
simplex with muscular 

dystrophy (EBS-MD) (OMIM 
# 226670) 

Epidermal blisters heal with atrophic scarring; 
Nail dystrophy; Muscle weakness that 

progressively leads to widespread muscular 
atrophy and ptosis 

(McLean et al., 1996; 
Smith et al., 1996) 

Laminin-332: 

α3, β3 and γ2 

Herlitz  junctional 
epidermolysis bullosa (OMIM 

# 226700) 

Extensive blistering of the skin and mucosal 
surfaces  

(Pulkkinen et al., 1994a; 
Pulkkinen et al., 1994b; 

Kivirikko et al., 1995) 



38 
 

1.4.3  Focal contacts 

Another structure connecting the basal keratinocytes to the dermal matrix is the focal 

adhesions (FAs). FAs are large complexes of proteins that function as cell-matrix 

adhesions through connecting the actin microfilaments and microtubule filaments to 

the underlying extracellular matrix (ECM) such as the dermis (reviewed in Zamir and 

Geiger, 2001). FAs are dynamic structures that are responsible for signal transduction 

and cell migration. In migrating cells, FAs frequently undergo assembly and 

disassembly through the associations and disassociations of many proteins (reviewed 

in Jockusch et al., 1995).  

1.4.3.1  α3β1 integrins 

α3β1 integrins are the major transmembrane ECM receptors found in focal contacts 

(reviewed in Watt, 2002). Integrin clustering occurs at the formation of focal contacts, 

where focal adhesion kinase (FAK) and tensin are recruited (Miyamoto et al., 1995). 

Integrin occupancy by ligands such as fibronectin or laminin can further recruit other 

proteins such as paxillin, vinculin, α-actinin, talin and kindlin to associate with the 

clustered integrins and initiate signal transduction (Dogic et al., 1998; Sondermann et 

al., 1999).  

1.4.3.2  α-actinin 

The first protein to be identified in the adhesion plaque was α-actinin (Lazarides and 

Burridge, 1975). α-actinin is a rod-shaped antiparallel homodimer that cross- links and 

bundles actin filament (Meyer and Aebi, 1990). α-actinin can also bind to the 

cytoplasmic domains of β1 integrin (Otey et al., 1990). 
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1.4.3.3  Vinculin 

The second protein to be identified in the adhesion plaque was vinculin (Geiger, 1979; 

Burridge and Feramisco, 1980). Vinculin is an anchor protein found within focal 

adhesions where it is responsible for linking actin microfilaments to the plasma 

membrane (reviewed in Burridge et al., 1982).  

1.4.3.4  Paxillin 

Among the adhesion proteins, paxillin is a major component of the focal adhesions. 

Paxillin contains several distinct structural domains (Turner and Miller, 1994), 

suggesting that paxillin can act as a scaffold in recruiting structural and regulatory 

proteins into the focal complex. The N-terminus of paxillin also contains binding sites 

for vinculin and FAK (Turner and Miller, 1994). 

There are two FERM (protein 4.1, ezrin, radixin, and moesin) domain-containing 

proteins such as talin and kindlin that are responsible for inside-out and outside- in 

signalling of the integrins (reviewed in Kinashi, 2012).  

1.4.3.5  Talin 

Talin is an ubiquitous 270 kDa protein that links integrin to actin microfilaments. It 

consists of a N-terminal globular head that contains the integrin-binding FERM 

domain, and a rod domain that can associate with the F-actin binding protein vinculin 

(reviewed in Kinashi, 2012). Talin is important in regulating cell adhesion to the 

ECM that is essential for cell migration (ie. during embryogenesis, angiogenesis and 

immune responses), tumour invasion and metastasis (reviewed in Frame and Norman, 

2008; Desiniotis and Kyprianou, 2011).  
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1.4.3.6  Kindlin 

Kindlin is part of the kindlin family that contains a FERM and a pleckstrin homology 

(PH) domain. Like talin, kindlin is also a linker of the integrins to the actin 

cytoskeleton. The importance of kindlin in regulating integrin signaling was derived 

from mutations in gene encoding FFH-1 (KIND1) leading to patients suffering from 

Kindler syndrome which was characterized by poikiloderma and trauma- induced 

blistering (Jobard et al., 2003; Siegel et al., 2003).  Kindler syndrome was thus the 

first FA disorder discovered and the first hereditary skin fragility disorder caused by a 

defect in actin-ECM attachments, rather than keratin-ECM linkages (Siegel et al., 

2003).  

Hence, these studies show how focal adhesion complex is important in regulating 

dynamics and morphogenesis of the epidermis. 
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The epidermal 
proliferation unit. 
Ordered structure of 
the skin where the 
epidermis is stacked 
into columns with a 
clonogenic basal 
layer. (Mackenzie, 
1969) 

 

Epithelial cells isolated 
directly from the skin can be 
passaged for many 
generations when cultured 
together with the fibroblast 
feeder layer. (Rheinwald and 
Green, 1975)   
  

 

EGF increases the culture 
lifetime of epidermal 
keratinocytes by delaying 
senescence and keeping 
them in a proliferative state. 
(Rheinwald and Green, 

1977)  

A quantitative description of 
the in vitro assembly/re-
assembly of intermediate 
filaments from BHK-21 cells 
and established conditions 
for regulation of intermediate 
filament assembly. (Zackroff 

and Goldman, 1979) 

First catalog of 
human cytokeratins 
established and the 
nomenclature is still 
used presently. (Moll 
et al., 1982)  

  

Complete sequencing 
of epidermal type I 
keratin subunit and 
implications of its 
structure. (Steinert et 

al., 1983) 

 

Site-specific, 
phosphorylation-dependent 
disassembly of the 
vimentin intermediate 
filament. (Inagaki et al., 

1987) 

Confirmation of 
keratin heterodimer 
formation at the dimer 
stage using site-
specific mutagenesis 
and recombinant 
proteins. (Hatzfeld 
and Weber, 1990; 

Steinert, 1990) 

Changes in keratin gene 
expression during terminal 
differentiation of the 
keratinocyte results largely 
from changes in synthesis. 

(Fuchs and Green, 1980) 

Nuclear lamins undergo 
reversible mitotic 
disassembly through 
phosphorylation of its 
subunits. (Gerace and 

Blobel, 1980) 

Derivation of the 
fibrillar substructure 
of keratin 
intermediate filament 
consistent to the 10- 
nm filament model. 

(Aebi et al., 1983)  

  

Keratin type I and II 
subunits form 
heterodimers in a 1:1 ratio 
and exist as parallel 
chains in axial register. 
(Hatzfeld and Franke, 
1985; Parry et al., 1985; 

Weber and Geisler, 1985) 

 

Effects of EGF and TGF-α 
in colony expansion by 
increasing cell migration 
rate. (Barrandon and 

Green, 1987)  

Complete sequencing of 
epidermal type II keratin. 

(Steinert et al., 1985) 

 

Mapping of K18 gene 
to chromosome 12 

(Waseem et al., 1990) 

 

Figure 1.5 Key events in the field of epithelial biology with emphasis on intermediate filaments                   
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First report of a 
hereditary skin 
fragility disorder, 
epidermolysis 
bullosa simplex 
(EBS), associated 
with mutations in 
keratin intermediate 
filaments.  
(Bonifas et al., 1991; 
Coulombe et al., 
1991a) 

 

 

Discovery of a point 
mutation at the helix 
termination domain of 
K5, which leads to 
pathogenesis of EBS. 

(Lane et al., 1992)   

 

EBS severity correlates 
with the position of 
keratin point mutations 
(phenotype-genotype 
correlations). (Letai et 
al., 1993) 

EGF and TGF-α induce 
the activation and 
hyperproliferation-
associated K6 and K16. 

(Jiang et al., 1993) 

Functional human K14 
“knockout” leading to 
severe EBS. (Chan et 
al., 1994; Rugg et al., 
1994) 

 

 

Compensatory pairing 
of K15 with K5, in K14 
knockout mice, at the 
basal layer of stratified 
squamous epithelial. 
(Lloyd et al., 1995) 

 

The catalog of human 
hair keratins, I. 

(Langbein et al., 1999)  

 

First report of the 
intermediate 
filament peptide 
structure of helix 2B 
motif with atomic 
resolution. 
(Herrmann et al., 

2000) 

 

Keratins turn over 
by ubiquitination in 
a phosphorylation-
modulated manner. 
(Ku and Omary, 

2000) 

The catalog of human 
hair keratins, II. 

(Langbein et al., 2001) 

 

Divide-and-conquer 
crystallographic strategy 
to unravel the atomic 
structure of intermediate 
filaments. (Strelkov et 

al., 2001)  

 

Complete cytolysis 
and neonatal lethality 
of K5 knockout mice. 

(Peters et al., 2001) 

Keratin dynamics 
(FRAP analysis) in 
living epithelial cells. 

(Yoon et al., 2001) 

 

Role of 14-3-3 binding to 
keratins during mitosis. 

(Ku et al., 2002)  

 
Unraveling the roles of 
conserved segments 1A 
and 2B of the intermediate 
filament dimer in filament 
assembly with atomic 
resolution. (Strelkov et al., 

2002)  

 

Unit length filaments 
(ULFs) resulting from 
lateral association of 
vimentin intermediate 
filament dimers. 

(Herrmann et al., 1996) 
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Roles of K6 and K17 
during wound closure 
in embryonic skin. 
(Mazzalupo et al., 

2003)   

K8 and K18 mutations 
are risk factors for 
developing liver 
diseases. (Ku et al., 

2003) 

Assymetric cell 
divisions in the basal 
layer promote 
stratification and 
differentiation of 
mammalian skin. 
(Lechler and Fuchs, 

2005) 

 

New consensus 
nomenclature for 
mammalian keratins. 
(Schweizer et al., 

2006)  

Wound-induced K17 
influences cell 
growth and size by 
regulating protein 
synthesis. (Kim et 

al., 2006)  

Induction of K17 in 
basal epidermal 
keratinocytes upon 
sulforaphane 
treatment restores 
skin integrity in EBS. 
(Kerns et al., 2007)

               

 

Consensus meeting on 
the diagnosis and 
classification of 
inherited EB. (Fine et 

al., 2008)   

Commencement of the 
human intermediate 
filament database. 
(Szeverenyi et al., 

2008)   

Gene targeting strategy 
that eliminates the entire 
keratin multiprotein family 
reveals the roles of 
keratins in growth and 
protein biosynthesis. 
(Vijayaraj et al., 2009) 

 

Keratin glycosylation 
protects against 
epithelial injury by 
promoting 
phosphorylation and 
activation of cell 
survival kinases. (Ku 

et al., 2010) 

Assymetric cell 
divisions in the basal 
layer promote notch-
dependent epidermal 
differentiation using 
RNA interference 
approach.         

(Williams et al., 2011) 

 
Keratin 
hypersumoylation at rod 
2B domain alters 
filament dynamics. 
(Snider et al., 2011) 
  

 

Intercalary subunit 
exchange along the lengths 
of intermediate filaments 
and elongation by end-to-
end annealing. (Colakoglu 

and Brown, 2009) 

 

Crystal structure of 
K5-K14 coiled-coil 
heterodimer at rod 2B 
domain and trans-
dimer disulfide bond 
formation for 
perinuclear 
organisation of keratin 
filaments. (Lee et al., 

2012) 

Type II keratins precede 
type I keratins during 
early embryonic 
development. (Lu et al., 

2005) 
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1.5  Keratin intermediate filaments  

1.5.1  Keratin expression in the epidermis  

Keratinocyte differentiation plays an important role in the maintanence of epidermal 

barrier function. Since keratins are the most abundant epidermal proteins that are 

found in keratinocytes, changes in keratin expressions as the keratinocytes undergo 

the terminal differentiation program are likely to play a role in epidermal 

morphogenesis. 

Indeed, within the epidermis, there exists a differential pattern of keratin expressions 

that are tighly regulated across the different layers.  For instance, basal keratinocytes 

at the basal layer express K5 and K14 as their major keratins (Nelson and Sun, 1983), 

whereas keratinocytes at the spinous and granular layers are found to express K1 and 

K10 predominantly (Fuchs and Green, 1980). Keratin 2e (now called K2) has been 

found to localize further up in the granular layer, and its expression is delayed relative 

to K1 and K10 (Collin et al., 1992). Other site-specific suprabasal keratins include K9, 

which is confined to palmo-plantar skin (Fuchs and Green, 1980). Why there is a need 

for different keratin expression in the epidermis is not so well understood, but one 

reason could be that keratin filaments are differentially orientated in their spatially 

confined compartments to perform specific functions. Keratin filaments (K5 and K14) 

are orientated in a parallel manner in basal keratinocytes, wherein these cells can 

compact together in epidermal folds seen in histological section (see Figure 1.1), 

allowing them to proliferate in the basal layer. Keratin networks (K1 and K10) are 

arranged in either parallel arrays or cubic-like structures in the uppermost cornified 

layers of the epidermis to establish a stiff corneocyte keratin network (Norlen and Al-

Amoudi, 2004), and the spacing out of corneocytes seen in histological section (see 
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Figure 1.1) could therefore confer mechanical resilience to the epidermis. In support 

of this, in vitro formation of the suprabasal cytoskeleton (K1 and K10) is dependent 

on the pre-existing basal cell intermediate filament (K5 and K14) network (Kartasova 

et al., 1993; Paramio and Jorcano, 1994), hence stressing the need for different keratin 

expressions in the epidermis.  

1.5.1.1  Stratification process 

How these switches in keratin expression occur so precisely as keratinocytes 

progressively undergo terminal differentiation has not been well understood until 

recently. A few recent discoveries highlight key events leading to stratification 

processes. It is shown that in response to canonical Notch/RBP-J (recombining 

binding protein suppressor of hairless) signalling, basal keratinocytes became 

committed to undergo terminal differentiation. This occurs through suppression of 

basal cell gene expression, such as K5 and K14, via Hes-1 (a downstream target of 

Notch/RBP-J) -independent pathways, and induction of spinous cell differentiation 

through switching on differentiation-specific genes such as K1 and K10 expression 

via Hes-1 dependent pathways (Blanpain et al., 2006). In addition, AP2 transcription 

family factors can promote spinous cell commitment by exerting effects antagonistic 

to EGFR signalling, which is known to promote proliferation and serve as a 

suppressor of Notch signalling (Kolev et al., 2008).  Moreover, stratification is 

initiated by asymmetric cell divisions (mitotic spindles perpendicular to basement 

membrane) to enable vertical expansion of the suprabasal keratinocytes (Lechler and 

Fuchs, 2005). The control points for mitotic orientation in epidermal development 

were recently identified in mouse, which involved both the tightly regulated 

expression of mInsc (mouse Inscuteable) and NuMA (nuclear mitotic apparatus 

protein), to direct apical-basal spindle orientation during asymmetric cell division 
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(Poulson and Lechler, 2010).  This process was recently reported to be also under the 

influence of Notch signaling (Williams et al., 2011).  

1.5.1.2  Wound healing (re-epithelialization) 

In situations of epidermal injury, wounded keratinocytes induce K6 proteins (K6a, b 

and c), K16 and K17 in suprabasal cells at the expense of K1 and K10 (Weiss et al., 

1984; Jiang et al., 1993). At this stage known as the re-epithelialization phase of 

wound healing, keratinocytes at the wound edge change their morphology from 

cuboidal to become flattened and extend numerous ruffles known as lamellipodia in a 

polarized manner. Before they migrate into the wound site, they must disassemble 

their desmosomes and hemidesmosomes (at least partially), and relocate their 

integrins onto actin microfilaments to serve as focal adhesions during migration. This 

ensures that the keratinocytes detach from the basement membrane and enter the 

wound bed (reviewed in Santoro and Gaudino, 2005). Keratinocytes advance in 

epithelial sheets (also known as the epithelial tongue) across the wound site, secreting 

collagenases and proteases such as matrix metalloproteinases (MMPs) to dissolve 

parts of the damaged ECM at the front of the migrating sheet (Salo et al., 1994). 

These changes in keratinocyte motility and cell-cell adhesion during re-

epithelialization recapitulate several aspects of type II epithelial to mesenchymal 

transition (EMT) in wound repair (reviewed in Kalluri and Weinberg, 2009), wherein 

epithelial cells undergoing EMT convert from a sedentary to a migratory phenotype, 

remodel the ECM surrounding them and secrete MMPs to assist in their migration 

(reviewed in Leopold et al., 2012). Growth factors and cytokines (Myers et al., 2007), 

stimulated by integrins and MMPs, cause keratinocytes to proliferate close to wound 

edges to generate new keratinocytes for replacement of lost cells, which occurs at a 

much faster rate than in normal tissues (reviewed in Deodhar and Rana, 1997). 



47 
 

Keratinocytes continue migrating across the wound bed till cells from either end meet 

in the middle, at which contact inhibition prevents them from migrating further. At 

this point, keratinocytes begin to secrete new basement membrane proteins (Laplante 

et al., 2001) and reverse their morphology back to cuboidal shapes, re-establishing 

desmosomes to facilate cell-cell adhesion and hemidesmosomes to anchor to the new 

basement membrane again. The functional epidermis is then regenerated from 

epithelial stem cells originating from the basal layer of the interfollicular epidermis  

(reviewed in Liang and Bickenbach, 2002) and skin appendages such as hair follicle  

(Cotsarelis et al., 1990; Taylor et al., 2000; Ito et al., 2005) and sweat gland (Lu et al., 

2012). These epithelial stem cells are self-renewing, and are able to generate the 

rapidly proliferating keratinocytes (transit amplifying cells) needed to reconstruct the 

epidermal barrier (reviewed in Gurtner et al., 2008; Lau et al., 2009). These transit 

amplifying cells can undergo several cell divisions before differentiating via 

Notch/p63 cross-talk (Nguyen et al., 2006) to re- form the strata found in the re-

epithelialized skin, and restore the epithelial barrier function (reviewed in Raja et al., 

2007).  

The dramatic changes in keratin expression that are associated with this profound 

change in keratinocyte behaviour suggest that the functional properties of different 

keratins may directly regulate growth and regeneration of these epithelia. In the 

following paragraphs, the structure and functions of keratin proteins in the 

cytoskeleton will be discussed in detail.  

1.5.2  Keratin structure and assembly 

Keratins belong to the intermediate filament family of proteins, which all share 

similar structure, sequence and function, and are expressed in a tissue- and 
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differentiation-dependent manner. Intermediate filaments, together with actin 

microfilaments and microtubule filaments, form the major constituents of the cellular 

cytoskeleton. The name „intermediate filaments‟ is derived from their diameter, which 

is 10-12 nm, being intermediate between that of actin microfilaments (5-8 nm) and the 

microtubules (25 nm) (reviewed in Omary et al., 2006). Keratins are a major 

constituent of the epidermal keratinocytes. They typically connect to desmosomes and 

hemidesmosomes, thereby contributing not only to stability between epithelial cells 

but also to the stability of the epithelial attachment to the basement membrane, hence 

conferring mechanical resilience to the skin (reviewed in Fuchs and Karakesisoglou, 

2001).  

1.5.2.1  Keratin intermediate filament family 

Keratin genes form the largest group of the intermediate filament family in the human 

genome, comprising of 54 distinct functional genes. According to their biochemical 

properties (isoelectric points and molecular weights), keratins can be classified into 

two groups, the acidic type I and the basic to neutral type II keratins  (Moll et al., 

1982). A new consensus nomenclature for mammalian keratin genes and proteins has 

recently been reported, and is divided into three categories: (1) epithelial keratins, (2) 

hair keratins and (3) keratin pseudogenes (Schweizer et al., 2006). This nomenclature 

includes 28 type I (K9, K10, K12-K20, K23-K28, K31-K40) and 26 type II (K1-K8, 

K71-K86) keratins, which form two clusters of 27 genes each on chromosomes 

17q21.2 and 12q13.13 [the gene for type I K18 being located in the type II keratin 

gene domain as discovered in (Waseem et al., 1990)], thereby extending the catalog of 

human cytokeratins first set up in 1982 (Moll et al., 1982).  
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1.5.2.2  Primary structure of keratin 

Like all other intermediate filament proteins, keratins contain a central α-helical rod 

domain of ~ 310 amino acids that is interrupted by non-α-helical linkers and flanked 

by non-α-helical amino-terminal “head” and carboxy-terminal “tail” domains, giving 

rise to a highly conserved tripartite structure (reviewed in Herrmann et al., 2009). The 

central rod domain is composed of sub-domains 1A, 1B, 2A and 2B (Weber et al., 

1988) which are separated by linkers L1, L12 and L2, and an additional interruption 

in segment 2B, the so-called stutter region (North et al., 1994). These regions of 

sequence discontinuity are highly conserved in all intermediate filament proteins 

(Weber and Geisler, 1985) and may not form α-helices (reviewed in Steinert et al., 

1994) (see Figure 1.6). A role for the stutter region in K14 rod 2B domain is recently 

suggested wherein the highly conserved cysteine residue at 367 (K14 C367) may be 

involved in mediating trans-dimer disulfide formation between K5 and K14 

heterodimers, hence promoting perinuclear organization of keratin filaments (Lee et 

al., 2012). Moreover, it is proposed that trans- filament disulfide linkages between 

pairs of keratin intermediate filament (K5 and K14) may affect its alignment in the 

reorganisation of nuclear shape in different calcium concentrations mimicking 

stratification process. It is observed that in low calcium medium, keratinocytes have 

parallel keratin bundles with elongated nucleus whereas at high calcium concentration, 

keratin filament bundles tend to wrap around the round shape nuclei, where they cross 

each other at various angles to form a cube- like architecture (Lee et al., 2012). This 

suggests that the orientation of keratin intermediate filaments may confer epithelial 

cells the network stiffness required for the mechanical resilience of the epidermis.  

The rod domain is composed of heptad repeats, ie. repeats of seven amino acid 

residues (a-b-c-d-e-f-g)n, in which positions “a” and “d” are generally occupied by 
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hydrophobic residues that drive coiled-coil heterodimer formation. Positions “e” and 

“g” are normally occupied by hydrophilic and charged residues that may provide 

additional interactions to strengthen the binding (see Figure 1.7). The starting residues 

of rod 1A domain and the ending residues of rod 2B domain, known as the helix 

initiation and the helix termination motifs respectively, comprise of ~ 20 amino acid 

sequence motifs that are highly conserved among the different keratins (see Figure 

1.6). These motifs are crucial for initiating keratin intermediate filament assembly and 

any mutations residing in these motifs will interfere with the early stages of filament 

elongation (Steinert et al., 1993). Indeed, the helix boundary motifs are known to be 

mutational “hot spots” in almost all inherited keratin disorders (Muller et al., 2006). 

On the other hand, variations in the amino acid sequences residing at the “head” and 

“tail” domains seem to account for the diversity among individual keratin proteins 

(reviewed in Lane and McLean, 2004). In addition, these end domains can undergo 

posttranslational modifications that can further modulate the solubility, organization 

and function of the keratin intermediate filaments (reviewed in Omary et al., 2006). 

1.5.2.3  Secondary structure of keratin 

Keratins are obligate heterodimers of epidermal type I (Steinert et al., 1983) and type 

II (Steinert et al., 1985) keratins in a 1:1 molar ratio, which exhibit a parallel, in-

register alignment (Parry et al., 1985; Hatzfeld and Weber, 1990; Steinert, 1990). 

Almost any type I and type II pair will co-polymerize in vitro (Hatzfeld and Franke, 

1985). However, the resulting filaments are not stable and co-polymerization is not 

efficient between pairs of keratins that are not normally co-expressed in tissues. Since 

full- length intermediate filament dimers spontaneously assemble into filaments, this 

makes intermediate filaments poor candidates for study by crystallization. Hence, up 

till now, there are still no crystal structure of the full- length intermediate filament 
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dimer, unlike that of the other cytoskeletal structures such as globular actin (Bubb et 

al., 2002) or the tubulin dimer (Nogales et al., 1998). In an attempt to overcome the 

difficulties in studying intermediate filament structure, a divide- and- conquer 

approach has been used (Strelkov et al., 2001). This method produced and 

characterized 17 overlapping soluble fragments of intermediate filament protein, and 

some of these fragments produced useful diffraction data at the resolution between 1.4 

and 3 Å. Using these results and molecular modeling, a model of the vimentin 

homodimer has been constructed (Strelkov et al., 2002). A more recent study revealed 

the crystal structure of K5-K14 coiled-coil heterodimer in the rod 2B domain, and 

some distinctive features of K5-K14 rod 2B heterodimer, as compared to vimentin rod 

2B homodimer, were observed. Firstly, the hydrogen bonds and most of the salt 

bridges in the K5-K14 model were unidirectional or asymmetric, which was different 

from those in vimentin homodimer. Secondly, the K5-K14 model formed more 

asymmetrical salt bridges with minimal symmetrical hydrophobic interaction clusters 

and these features could promote a strong inclination for the formation of K5-K14 

heterodimers (Lee et al., 2012). Moreover, the crystal structure of the K5-K14 rod 2B 

heterodimer indicated a strong negative charge potential at the C terminus and a 

strong positive charge at the N terminus where both K5 and K14 could contribute to 

the polarized surface potential of the 2B coiled-coil in a complementary manner. This 

bias in surface-charge distribution was distinct from that of other filament crystal 

structures previously observed, such as that of the rod 2B domains of lamin A/C 

(Strelkov et al., 2004) and vimentin (Strelkov et al., 2002), and were thought likely to 

play a role in the axial alignment of K5-K14 heterodimers in forming larger oligomers 

(Lee et al., 2012). 
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1.5.2.4  Keratin intermediate filament formation 

Physiologically, the smallest soluble oligomer that can be detected in vivo is a 

tetramer consisting of two anti-parallel heterodimers (Soellner et al., 1985). It was 

proposed that two adjacent lengths of the coiled-coil dimers aligned in an anti-parallel 

and a half-staggered arrangement such that their coil 1B subdomains could overlap, 

forming a protofilament (one tetramer) (Steinert et al., 1993; Bernot et al., 2005). This 

resultant anti-parallel formation of the tetramer makes keratin filaments apolar in 

nature. Two of these protofilaments then intertwine to form a protofibril (two 

tetramers) (Aebi et al., 1983). Four of these protofibrils then rapidly associate laterally 

into unit- length filaments (eight tetramers) (Herrmann et al., 1996) from where they 

longitudinally anneal to form short filaments. These filaments then further assemble 

by end-to-end annealing of filaments which then undergo radial compaction to form 

~10 nm diameter intermediate filaments (reviewed in Herrmann et al., 2009) (see 

Figure 1.8). In vivo demonstration of these processes was shown recently whereby 

exchanges of intermediate filament subunits could occur along the lengths of 

intermediate filament and this was known as intercalary subunit exchange (Colakoglu 

and Brown, 2009). 

 

.  
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Figure 1.6  Keratin structure and its helix motifs  

 

 

 

 

 

 

 

 

Helix initiation motif 

Helix termination motif 

Figure redrawn after Herrmann et al., 2009   
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Figure 1.7 Pairing of type I (K14) and type II (K5) keratins at the helix motifs  
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Figure 1.8 Phases of intermediate filament assembly  

Parallel dimer in exact register 

Anti-parallel tetramer in staggers 

Lateral association of 8 tetramers 

into unit-length filaments (ULFs) 

X 7 

Longitudinal annealing of 

ULFs and filaments 

Radial compaction of extended filaments 

Figure redrawn after Herrmann et al., 2009   
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1.6  Post-translational modifications of keratin intermediate filament  

1.6.1  Phosphorylation 

Keratins are subjected to multiple post-translational modifications that have important 

consequences for their structures and properties (reviewed in Coulombe and Omary, 

2002). Post-translational modifications can occur via several modalities including 

phosphorylation (Gilmartin et al., 1980; Ikai and McGuire, 1983), glycosylation (Tao 

et al., 2006a), sumoylation (Snider et al., 2011), caspase cleavage (Caulin et al., 1997) 

and ubiquitylation (Ku and Omary, 2000), of which phosphorylation is the most 

widely studied (reviewed in Coulombe et al., 2000). For instance, increased levels of 

phosphorylated keratins were detected in mitotic cells (Celis et al., 1983) or in various 

stress paradigms (Liao et al., 1997; Toivola et al., 2002), where keratin filaments 

either disassembled completely into soluble subunits and granular aggregates or 

collapsed into cage-like thick filament bundles (Lane et al., 1982). Phosphorylation 

may also affect keratin organization by shifting the equilibrium between the soluble 

and filamentous state towards the soluble form (Chou and Omary, 1993).  

1.6.1.1  Kinases regulating keratin organization 

One of the emerging families of kinases that play a role in phosphorylating keratin 

intermediate filaments is the mitogen activated protein kinases (MAPKs). Several 

growth factors, including epidermal growth factor (EGF), vascular endothelial growth 

factor (VEGF), insulin and inflammatory cytokines, activate MAPKs. The best 

characterized of the MAPK pathways is the MEK/ERK signalling cascade.  This 

signalling casade is activated by protein tyrosine kinase receptors, such as EGF 

receptor (EGFR) or VEGF receptor (VEGFR). When the growth factors bind to their 

cognate receptors, the tyrosine receptor dimerizes and concomitantly activates its 
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intracellular protein tyrosine kinase via auto-phosphorylation. The phosphotyrosine 

then serve as docking sites for SH2 or PTB domain containing proteins (reviewed in 

Schlessinger and Lemmon, 2003; Pawson, 2004). These docking proteins include 

FRS2 (FGF receptor substrate-2), IRS1 (insulin receptor substrate-1), and Gab1 (the 

Grb2-associated binding protein), which when phosphorylated, recruit multiple Grb2 

and Shp2 molecules (reviewed in Lemmon and Schlessinger, 2010). The Grb2 and 

Shp2 molecules, together with SOS, are brought in close proximity to Ras and 

activate it. Activated Ras, in turn, triggers a cascade of activation of three protein 

kinases, Raf1, MEK1/2 and ERK1/2 (Ullrich and Schlessinger, 1990). Activated 

ERK1/2 can then translocate into the nucleus where it phosphorylates and activates 

transcription factors such as ATF2, c-Jun, Elk1 and SAP1 (Hill and Treisman, 1995).  

Recent studies have revealed the presence of scaffold proteins that can confer spatial 

and temporal regulation of the MAPK pathway. Originally identified in yeast (Elion, 

2001), these scaffold proteins bring multiple components of the MAPK cascade in 

close proximity to facilitate efficient propagation of the signal (reviewed in Brown 

and Sacks, 2009). Scaffold proteins that can modulate the assembly and activation of 

ERK1/2 module have been identified, including KSR (kinase suppressor of Ras 

signalling) (Kornfeld et al., 1995), MP1 (MEK partner 1) (Schaeffer et al., 1998) and 

β-arrestin (Luttrell et al., 1999). 

Other MAPKs include c-Jun N-terminal kinase (JNK) and p38. JNK was originally 

identified as the protein kinase stimulated by UV radiation that could phosphorylate 

and activate the proto-oncogenic transcription factor c-Jun (Hibi et al., 1993). The 

JNK pathway is mainly activated by cellular stress (UV radiation) and 

proinflammatory cytokines such as TNFα and IL-1 (reviewed in Davis, 2000), 

resulting in the activaton of c-Jun and ATF2 (Derijard et al., 1994; Gupta et al., 1995). 
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These stimuli activate JNKs through several upstream kinases such as 

MEKK1/MKK4 complex and HPK-1/MLK1/MKK7 signalling module bound by JIP-

1 scaffold protein (reviewed in Chang and Karin, 2001; Weston and Davis, 2007).  

p38 MAPK was originally identified as a 38 kDa protein that was tyrosine 

phosphorylated in response to lipopolysaccharide-stimulated macrophages (Han et al., 

1994). The p38 MAPK pathway is predominantly activated by environmental stress 

such as osmotic shock, hypoxia, heat shock and UV radiation (reviewed in Ashwell, 

2006), resulting in the activation of ATF2, Fos, Jun and Elk1 (reviewed in Obata et al., 

2000). These stimuli activate p38 through several upstream kinases such as MKK3 

and MKK6, which are themselves phosphorylated by several upstream kinases, 

including TAK1 (through TRAF6/TAB1/2), MLK3 and ASK1 (MEKK5) (reviewed 

in Johnson and Lapadat, 2002; Brancho et al., 2003).  

It is suggested that in normal physiological condition, MAPK cascades would  occur 

independently but during pathological situations, there will be significant cross-talks 

between them (reviewed in Noselli and Perrimon, 2000). Because p38 MAPK and 

JNK are often activated in stress stimuli, they are collectively known as stress 

activated protein kinases (SAPK). 

A role for MAPKs in keratin phosphorylation was demonstrated when activated p38 

MAPK and MK2/3 cooperatively phosphorylated several epithelial keratins such as 

K8, K18 and K20 in intestinal epithelial cells (Menon et al., 2010). Moreover, p38 

MAPK was found to colocalize with keratin granules that were induced during 

mitosis, in various stress situations and in cells producing mutant keratins, which 

correlated with phosphorylation of K8 serine 74, a well known p38 target site. In 

addition, inhibiting kinase activity using p38 MAPK inhibitors reduced the formation 
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of these granules, suggesting a role for phosphorylation in regulating keratin 

organization (Woll et al., 2007). Also, when keratinocytes were subjected to hypo-

osmotic stress, a sustained stress-activated response (SAPK/JNK pathway) was 

observed in cells that produced mutant keratins as compared to control cells, 

concomitant with an increase in phosphorylated K5 (D'Alessandro et al., 2002). These 

studies show that signalling cascades involving phosphorylation are important in 

regulating keratin organization. 

1.6.1.2  Phosphatases regulating keratin organization 

Phosphatases regulate kinase activity by removing phosphate groups and are therefore 

key players in all phosphorylation driven signalling cascades. Phosphatases also play 

a role in regulating keratin and other intermediate filament organization. For instance, 

it was found that structural organization of intermediate filament in interphase cells 

required protein phosphatase activity (Eriksson et al., 1992). In another study, it was 

shown that phosphorylated K8 at serine 432 was a physiological substrate for 

phosphatase PP2A after hypo-osmotic stress and also occured preferentially in 

mitotically active cells (Tao et al., 2006b). Moreover, phosphatase of regenerating 

liver-3 (PRL-3), a member of the PRL protein tyrosine phosphatase family, was also 

shown to mediate the dephosphorylation of K8 at serine residues 74 and 432, and this 

led to the promotion of cells with increased migration and metastatic potential 

(Mizuuchi et al., 2009; Khapare et al., 2012). These studies show that signalling 

cascades involving dephosphorylation are also equally important in regulating keratin 

organization.  
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1.6.2  Glycosylation 

Keratins are also subjected to glycosylation, which refers to the addition of O-linked 

single N-acetylglucosamines (O-GlcNAc) to serine and threonine residues. K13 was 

the first keratin to be modified by glycosylation (King and Hounsell, 1989). It was 

later shown that keratins such as K8 and K18 (Chou et al., 1992; Chou and Omary, 

1993) were being glycosylated, and mutational analysis of these sites suggested a role 

for glycosylation in filament assembly (Ku and Omary, 1995). A role for keratin 

glycosylation in protecting epithelial tissue from injury was recently suggested 

through the promotion of phosphorylation and activation of cell survival kinases (Ku 

et al., 2010). 

1.6.3  Ubiquitylation 

The ubiquitin-proteasome pathway starts with the activation of ubiquitin by the 

ubiquitin-activating enzyme (E1), followed by the transfer of ubiquitin to an 

ubiquitin-conjugating enzyme (E2). E2 then shuttle the ubiquitin molecule to the 

substrate-specific ubiquitin ligase (E3), which then delivers the ubiquitin to the 

substrate destined to be degraded. Polyubiquitin chain formation continues with the 

conjugation of subsequent ubiquitin moieties to the attached ubiquitin on the substrate 

and the substrate-ubiquitin conjugate is then degraded by 26S proteasome in an ATP-

dependent manner (Hershko and Ciechanover, 1998; Ciechanover et al., 2000). 

Specifically, the E2s involved in keratin degradation are from the UbcH5/Ub3 

families (Jaitovich et al., 2008) whereas the E3s involved in keratin degradation are 

the RING finger proteins (He et al., 2008; Duan et al., 2009). One of the pathological 

features of intermediate filament-associated diseases is the accumulation of 

intracytoplasmic inclusion bodies (aggresomes) that are made up mainly of 
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intermediate filament proteins and ubiquitin (Lowe et al., 1988). Studies have also 

shown that there is cross-talk between phosphorylation and ubiquitylation of keratins 

(Ku and Omary, 2000). For instance, phosphorylation of K8 at Ser 73 was required 

for ubiquitylation of the keratin protein following shear stress in alveolar epithelial 

cells (Jaitovich et al., 2008). Signalling kinases such as p38, ERK and src may also 

play a role in the formation of aggresomes (Wu et al., 2005; Nan et al., 2006), thus 

strengthening the link between phosphorylation of keratins and ubiquitylation fate for 

degradation. 

1.6.4  Sumoylation 

Other than ubiquitylation, sumoylation is also an important regulatory modification 

for keratin intermediate filament. Sumoylation is a reversible process of adding and 

removing small ubiquitin- like modifier (SUMO) polypeptides (SUMO-1, -2 or -3) 

(Bergink and Jentsch, 2009) that targets the internal lysine residues of protein and 

affects protein localization, interactions with binding partners and degradation (Geiss-

Friedlander and Melchior, 2007). A recent study had revealed the role of sumoylation 

on keratin intermediate filament in response to stress, affecting keratin organization 

and solubility (Snider et al., 2011). Moreover, the degree of sumoylation could 

determine keratin dynamics, where modest sumoylation of wild-type K8 could 

promote solubility whereas hypersumoylation of K8, prominent in chronic liver 

disease, could result in reduced solubility (Snider et al., 2011).  

In summary, these studies have revealed the requirements for rapid assembly and 

proper organization of intermediate filament subunits into stable filaments in 

maintaining the cytoskeletal structure of epidermal keratinocytes. Hence, the first 

discovery of pathogenic mutations in keratin intermediate filaments leading to 
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patients suffering from the epidermal fragility disorder, epidermolysis bullosa simplex 

(EBS), further reinforced the idea that keratins play an important role in providing 

cells with mechanical resilience. 

1.7  Keratinopathies (mutations in keratins) 

The association between keratin intermediate filament and inherited skin fragility 

disorders such as EBS was first described in the early 1990s (Bonifas et al., 1991; 

Coulombe et al., 1991a; Lane et al., 1992). Since then, the number of keratin 

mutations associated with pathological conditions has increased, with mutations in 

more than 100 different genes including approximately 20 different keratin genes (for 

details, see the Human Intermediate Filament Database, www.interfil.org; Szeverenyi 

et al., 2008). These mutations are mostly autosomal dominant because mutations in 

one keratin can affect its heterodimer partner in a dominant negative manner during 

filament assembly and elongation (reviewed in Arin, 2009).  

1.7.1  Spectrum of disease phenotypes of keratin mutations  

In addition, there exists a wide spectrum of disease phenotypes that are associated 

with the site (s) at which these mutant keratins are located in the epidermis. For 

instance, K14 and K5 (expressed in epidermal basal keratinocytes) mutations result in 

EBS (Bonifas et al., 1991; Coulombe et al., 1991a; Lane et al., 1992) whilst keratin 

mutations in K10 and K1 (expressed in suprabasal keratinocytes) lead to bullous 

congenital epidermolytic hyperkeratosis, also known as epidermolytic hyperkeratosis 

(Cheng et al., 1992; Chipev et al., 1992). K2 (K2e expressed in upper spinous layers) 

mutations give rise to ichthyosis bullosa of Siemens (Rothnagel et al., 1994), K9 

(palmoplantar skin) mutations result in epidermolytic palmoplantar keratoderma (Reis 

et al., 1994), K4 and K13 (oral mucosa) mutations lead to white-sponge nevus 

http://www.interfil.org/
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(Richard et al., 1995; Rugg et al., 1995) and K6 (K6a, b), K16, K17 (plamoplantar 

skin, oral mucosa and epithelial oesophagus, nail) mutations give rise to 

pachyonychia congenita (Bowden et al., 1995; McLean et al., 1995) (See Table 1.7 

for clinical descriptions).  

1.7.1.1  Phenotypic variation between different mutations in the same gene 

Of note, there is a phenotypic variation between different mutations in the same gene 

(reviewed in Lane, 1994; McLean and Lane, 1995). For instance, mutations found at 

the helix motifs of the keratin intermediate filament usually result in a more severe 

phenotype than a mutation that is located at the other non-helical domains. These 

severe phenotypes are usually presumably attributed to a deficit in filament assembly 

kinetics and organization. Hence, a genotype-phenotype correlation in keratin 

disorders exists (Letai et al., 1993). In addition, in patients suffering from severe EBS 

with mutations in K14, the most frequently mutated residue is the arginine at the 

codon 125 within the helix initiation motif (Szeverenyi et al., 2008). This residue, 

found within the helix initiation motif, is highly conserved throughout the type  I 

keratins and contain a CpG dinucleotide sequence. CpG nucleotides have a very high 

rate of mutation due to the de-amination of 5-methylcytosine to thymine. This 

thymine is not removed by uracil DNA glycosylase during DNA synthesis and thus is 

subjected to pair with adenine during replication, hence giving rise to a point mutation 

(reviewed in Corden and McLean, 1996). Point mutations found in the helix initiation 

motif or the helix termination motif in K5 and K14 have been reported to cause most 

of the severe EBS Dowling-Meara phenotypes. On the other hand, mutations affecting 

residues found at the nonhelical head and linker domains in K5/K14 often contribute 

to milder phenotypes such as EBS-localized or EBS-generalized (Coulombe et al., 

2009).  
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1.7.1.2  Phenotypic variation between different mutations of the same amino 

acid residue in the same gene 

Different mutations of the same amino acid residue in the same gene can also 

contribute to phenotypic variation. For example, K14 M119T mutation results in 

EBS-DM (severe phenotype) whereas K14 M119V mutation results in EBS-

generalized (mild phenotype) (Cummins et al., 2001). Likewise, K14 A413P mutation 

results in EBS-localized whereas K14 A413T mutation results in normal phenotype 

(Murrell et al., 2011; Natsuga et al., 2011). The Natsuga study was supported by in 

silico modelling where proline substitution resulted in deleterious structural defects of 

K14 protein but not threonine substitution in which slight instability of the structure 

was observed (Natsuga et al., 2011). It was believed that structurally, threonine and 

adenine could be considered interchangeable because they could substitute for one 

another on a frequency that equals their occurence in structured proteins (Henikoff 

and Henikoff, 1992).  

1.7.1.3  Phenotypic variation due to genetic modifiers  

In cases where there is an aggravation of disease condition, it was shown that genetic 

modifiers can play a role in the pathogenesis. Coinheritance of both filaggrin (FLG) 

(p. R2447X) and K16 (KRT16) (p. L132P) mutations resulted in a more severe 

pachyonychia congenita condition than that of K16 mutation (p. L132P) alone 

(Gruber et al., 2009). Hence, this indicates that FLG can serve as a genetic modifier 

for pachyonychia congenita condition.  
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1.7.1.4  Phenotypic variation due to functional redundancy for keratins  

In addition, there is a functional redundancy for keratins. For instance, functional 

redundancy was observed in relatively mild phenotype of patients with recessive EBS 

due to the lost of both K14 alleles. This was probably a result of the compensatory 

presence of K15 in basal keratinocytes (Jonkman et al., 1996; Batta et al., 2000). 

Another example was that patients with K1 mutations suffered from palmoplantar 

keratoderma but not in patients with K10 mutations. This was possibly due to the 

compensatory presence of another type I keratin, K9, in the palmoplantar skin 

(DiGiovanna and Bale, 1994). Of note, patients with K9 mutations suffered from 

palmoplantar keratoderma as well because K10 cannot replace the loss of K9 in 

palmoplantar skin.  

Since basal keratinocytes express K14 and K5 predominately and that K14 and K5 

mutations are associated with skin fragility disorder such as EBS (which is within the 

scope of this thesis), the classification of epidermolysis bullosa (EB) and its subtype 

EBS will be discussed in detail in the following paragraphs. 

1.8  Classification of epidermolysis bullosa (EB) 

Epidermolysis bullosa (EB) encompasses a group of heterogenous hereditary diseases 

that have skin fragility (blister formation) upon mild trauma. The term was first used 

in 1886 (Koebner, 1886). Over the years, as improvements in the diagnostic and 

research techniques coupled with insights in the molecular background of EB 

increased, a novel classification system was developed (Pearson, 1962) and the latest 

consensus was recently established (Fine et al., 2008). 
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Presently, EB can be classified into four major subtypes known as EBS, junctional EB 

(JEB), dystrophic EB (DEB) and Kindler syndrome (KS), distinguished by 

differences in the ultrastructural level within which blisters occur in the skin, either 

spontaneously or following minor friction or trauma (Fine et al., 2008). This is often 

diagnosed using immunofluorescence antigen mapping and/or electron microscopy 

analysis. For instance, in EBS, the plane of cleavage is intraepidermal (basal or 

suprabasal). In JEB, the blisters cleave the lamina lucida. In DEB, the blisters form 

beneath the lamina densa (sub-lamina densa). Skin fragility in KS can give rise to 

multiple (mixed type) planes of cleavage (see Figure 1.9). A list of EB subtypes is 

also tabulated in Table 1.8.  
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Table 1.7  

Human keratinopathies of the epidermis  

        

    

Molecular target Disease Clinical phenotype (s) Original finding (s) 

K5, K14 Epidermolysis bullosa 

simplex (OMIM # 131760) 

Skin fragility from cytolysis of basal 

keratinocytes 

(Bonifas et al., 1991; 

Coulombe et al., 1991a; 
Lane et al., 1992). 

K1, K10 Epidermolytic hyperkeratosis 
(OMIM # 113800) 

Erythematous blistering due to fragility of 
suprabasal keratinocytes; Later development of 

hyperkeratosis 

(Cheng et al., 1992; 
Chipev et al., 1992) 

K2 Ichthyosis bullosa of Siemens 

(OMIM # 146800) 

Bullous ichthyosis without erythroderma; 

Epidermolysis limited to upper spinous layers; 
Later development of dark brown hyperkeratosis 

(Rothnagel et al., 1994) 

K9 Epidermolytic palmoplantar 
keratoderma (OMIM # 

144200) 

Epidermolysis and hyperkerotosis of palm and 
soles 

(Reis et al., 1994) 

K4, K13 White-sponge nevus (OMIM 

# 193900) 

Spongy white plaques, often on buccal mucosa; 

Oral leukokeratosis 

(Richard et al., 1995; 

Rugg et al., 1995) 

K6, K16, K17 Pachyonychia congenita 
(PC-1: OMIM # 167200; PC-
2: OMIM # 167210)  

Dystrophic nails; Palmoplantar hyperkeratosis; 
Follicular hyperkeratosis; Oral leukokeratosis  

(Bowden et al., 1995; 
McLean et al., 1995) 
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Table 1.8  

Classification of epidermolysis bullosa (EB) 

  

Molecular target  Disease Clinical phenotype (s) Original finding (s) 

K5, 14  

 

 

 

PKP1, DP 

Epidermolysis bullosa 

simplex (basal) (OMIM # 
131760) 

Skin fragility from cytolysis of basal 

keratinocytes 

(Bonifas et al., 1991; 

Coulombe et al., 1991a; 
Lane et al., 1992). 

Epidermolysis bullosa 
simplex (suprabasal) (PKP1: 

OMIM # 604536; DP: OMIM 
# 609638) 

Cutaneous fragility and congenital ectodermal 
dysplasia affecting skin, hair and nails 

(McGrath et al., 1997; 
Jonkman et al., 2005) 

Laminin-332: 
α3, β3 and γ2  

 

 

α6β4 integrins 

Herlitz junctional 
epidermolysis bullosa (OMIM 

# 226700) 

Extensive blistering of the skin and mucosal 
surfaces 

(Pulkkinen et al., 1994a; 
Pulkkinen et al., 1994b; 

Kivirikko et al., 1995) 
Junctional epidermolysis 

bullosa with pyloric atresia 
(OMIM # 226730) 

Pyloric atresia and cutaneous aplasia; Mucosa 

erosions 

(Vidal et al., 1995; 

Shimizu et al., 1996) 

Collagen VII Dystrophic epidermolysis 
bullosa (OMIM # 226600) 

Severe blistering with atrophic scarring; Nail 
atrophy;  Mucosa erosions 

(Christiano et al., 1993) 

FFH-1  

(KIND1) 

Kindler syndrome (OMIM # 
173650) 

Congenital blistering; Photosensitivity; 
Progressive poikiloderma with dyschromatic 

macules; Telangiectases and cutaneous atrophy 

(Jobard et al., 2003; 
Siegel et al., 2003) 
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Figure 1.9 Classification of epidermolysis bullosa (EB) 

  

EBS (suprabasal) EBS (basal) 

JEB DEB 

KS 

Basal cells 

Suprabasal cells 

Lamina lucida 
Lamina densa 
Anchoring fibrils 
Type I and III collagen 

Normal skin 

+ 

Figure redrawn after Shinkuma et al., 2011. 
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1.9  Classification of epidermolysis bullosa simplex (EBS) 

1.9.1  Characterization of EBS phenotypes 

EBS is one of the major subtypes of EB and is characterized by an intraepidermal 

level of blister formation (see Figures 1.9 and 1.10). EBS is the most prevalent type of 

EB with approximately 1 in 25,000 live births (Horn and Tidman, 2000). According 

to the latest EB classification, EBS has been subdivided into basal and suprabasal 

EBS, depending on the ultrastructural level of blistering within the epidermis (Fine et 

al., 2008). At the structural level, electron microscopy consistently revealed 

aggregates of electron-dense material in a subset of patients suffering from severe 

EBS Dowling-Meara (Anton-Lamprecht and Schnyder, 1982). Consequently, 

immunoelectron microscopy confirmed the presence of keratin intermediate filaments 

in these electron-dense aggregates (Ishida-Yamamoto et al., 1991) (Figure 1.10). A 

role for keratins in EBS phenotype was suggested from the expression of mutant 

keratin cDNAs (both truncations and mutations) in cultured epithelial cells that 

resulted in a dominant-negative disruption and aggregation of endogenous keratin 

network (Albers and Fuchs, 1989; Coulombe et al., 1991b). Mutations in the KRT5 

and KRT14 genes encoding the basal proteins K5 and K14 were subsequently reported 

in individuals suffering from basal EBS (Bonifas et al., 1991; Coulombe et al., 1991a; 

Lane et al., 1992). These studies provide the first evidence that epidermal keratins are 

the site of mutations contributing to basal EBS. 
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Figure 1.10 Clinical photograph, histological section and ultrastructural 

details of the skin of EBS-DM patient 

  

Histological section  

Intraepidermal 

cleavage of the 

epidermal basal layer, 

immunostained with 

K14 (RCK 107). 

(Picture courtesy of 

Declan Lunny and 

John Common)  

Ultrastructural section  

Electron dense 

clumping of keratin 

tonofilaments, 

forming aggregates. 

(Picture courtesy of 

Robin Eady)  

Clinical photograph of a EBS-DM patient 

Singaporean patient 

having K14 R125C 

mutation. Note the severe 

blistering at the feet. 

(Photograph courtesy of 

Jean Ho, National Skin 

Center, Singapore)  
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1.9.1.1  Genotype-phenotype correlation of EBS  

Missense mutations and small in- frame deletions or insertions are commonly found in 

the rod domain of K5 and K14 that result in a dominant-negative effect on disrupting 

keratin cytoskeleton in basal keratinocytes. The phenotype of basal EBS patients 

varies with the onset and severity of blistering and they can be classified into three 

main subtypes, namely: EBS-localized (formerly known as Weber Cockayne), which 

is the mildest form, characterized by mild blistering confined to hands and feets, 

occurring at 1-2 yrs when the child starts walking; EBS-generalized (previously 

known as Koebner) with generalized blistering throughout life, occurring upon birth, 

and EBS-DM (also known as EBS Dowling-Meara), the most severe form, with 

congenital blistering in a herpetiform (clusters) pattern on erythematous skin, usually 

involving the oral mucosa and onycholysis. The main distinctive diagnosis for EBS-

DM was the presence of keratin clumps (aggregates) in basal keratinocytes (Anton-

Lamprecht and Schnyder, 1982). Hence, there exists a genotype-phenotype 

correlation in EBS based on the positions of keratin mutation and the severity of the 

skin disorder. A list of other EBS subtypes is also tabulated in Table 1.9. 
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Table 1.9  

Classification of basal epidermolysis bullosa simplex (EBS)   

 

EBS subtypes  Molecular target (s) Clinical phenotype (s) Original finding (s) 

EBS-localized (OMIM # 

131800) 

K5, K14  Blistering localized at hands and feet (Weber, 1926; 

Cockayne, 1947) 
EBS-generalized (OMIM # 

131900) 

K5, K14 Blistering mainly at hands and feet with 

generalized skin fragility 

(Koebner, 1886) 

EBS, Dowling-Meara (EBS-

DM) (OMIM # 131760) 

K5, K14 Severe, generalized, clusters, hemorrhagic 
blistering, mucosal and nails affected  

(Dowling and 
Meara, 1954) 

EBS, autosomal recessive 

(EBS-AR) (OMIM # 601001) 

K14 Very rare variant. Similar to EBS-generalized 
though frequency of blistering may be lower 

(Batta et al., 2000) 

EBS, migratory circinate 

(EBS-migr) (OMIM # 609352) 

K5 Very rare variant. Annulatory migratory multiple 
erythema circinatum, multiple vesicles on hands 

and feet, lesions heal with pigmentation  

(Gu et al., 2003) 

EBS with mottled 

pigmentation (EBS-MP) 

(OMIM # 131960) 

K5 Mild skin blistering, mottled pigmentation of trunk 

and limbs, punctate palmoplantar keratoderma, nail 
dystrophy  

(Fischer and Gedde-

Dahl, 1979) 

EBS, Ogna (EBS-Og) (OMIM 

# 131950) 

Plectin Widespread skin blistering, Onychogryphosis (Olaisen and Gedde-
Dahl, 1973; Koss-

Harnes et al., 2002) 
EBS with pyloric atresia 

(EBS-PA) (OMIM # 612138) 

Plectin Pyloric atresia and cutaneous aplasia; Skin 

blistering on trunk and limbs 

(Nakamura et al., 

2005) 
EBS with muscular dystrophy 

(EBS-MD) (OMIM # 226670) 

Plectin Epidermal blisters heal with atrophic scarring; Nail 

dystrophy; Muscle weakness that progressively 
leads to widespread muscular atrophy and ptosis 

(McLean et al., 

1996; Smith et al., 
1996) 
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1.10  Other functions of keratin intermediate filament 

1.10.1  A role for keratins in regulating cell size and protein synthesis 

Cell growth requires the strict orchestration during development and in response to 

various injuries. Two recent studies demonstrate a keratin-mediated modulation of 

epidermal cell size  (Kim et al., 2006; Galarneau et al., 2007). K17, an intermediate 

filament protein rapidly induced in wounded stratified epithelia, is reported to regulate 

keratinocyte size by upregulating protein synthesis through association with 14-3-3σ. 

This could allow the nuclear translocation of 14-3-3σ to initiate protein translation, 

which takes place through activation of the Akt and mTOR signalling pathways (Kim 

et al., 2006). In addition, K8 and K18 could also regulate hepatic cell size and protein 

synthesis through regulating Akt kinase activity (Galarneau et al., 2007). Additional 

support of a role for keratins in regulating cellular metabolism came from the 

generation of transgenic mice devoid of the entire keratin intermediate filament 

family, which (although lethal) revealed a role for keratin in cells localizing glucose 

transporters (GLUT1 and 3) via activation of mTOR signalling pathways (Vijayaraj et 

al., 2009).  

1.10.2  A role for keratins in regulating stress kinase activity 

Keratins may also protect tissues from injury by serving as a phosphate “sponge” to 

absorb stress- induced kinase activity such as p38 and JNK (Ku and Omary, 2006).     

To summarize, these studies emphasize that there is now an emerging shift in 

paradigm, that intermediate filaments are not only structural proteins but also play an 

essential role as signalling organizers and buffers of cellular stress (Eriksson et al., 

2009). 
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1.11 Aims and outline of thesis   

The observations that keratin aggregates (which co-exist with proper filament 

formation) arised solely from EBS-DM mutations (K14 R125C/K14 R125H) but not 

EBS-generalized type of mutation (K14 L384P) (Letai et al., 1993) were particularly 

intriguing because this would mean that the severity of disease might be attributed to 

the impairment of proper elongation of keratin filaments (since EBS-DM mutations 

are known to predominantly reside in the helix initiation or helix termination motifs 

of the keratin) and this could affect the physiological condition of the keratinocytes. 

To address this issue, keratinocytes were derived from the skin of patients suffering 

from EBS-localized and EBS-DM conditions, immortalized and maintained in cell 

cultures (Morley et al., 2003). These led to reports showing that EBS-DM 

keratinocytes had an intrinsic upregulation of stress kinases and they showed 

sustained stress responses to osmotic stress (D'Alessandro et al., 2002) and faster 

migration during scratch wound assays (Morley et al., 2003). These reports were in 

line with their intrinsic down-regulation of dual-specificity phosphatases (DUSPs) 

(Liovic et al., 2008) and junction proteins (Liovic et al., 2009) respectively. Moreover, 

ERK1/2 activation in EBS-DM keratinocytes provided resistance for these mutant 

cells against apoptosis during mechanical stress (Russell et al., 2010). Hence, these 

studies demonstrate that there exists a change in the physiological condition of EBS-

DM keratinocytes. Though much work has been done to characterize these cells, the 

detailed molecular mechanism underlying keratin remodelling in stress (in terms of 

keratinocyte activation status, keratin dynamics and modifications) in these EBS-DM 

keratinocytes is still not well understood. 
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Therefore, experiments are designed to address the following questions: 

1. Why do EBS-DM cells show faster re-epithelialization in culture than wild-

type cells? – Chapter 3 

Hypothesis: EBS-DM cells are in a constitutively stressed or activated state 

reminiscent to a wound condition.  

Hypothesis testing: Analyze for markers of wound activated state such as wound-

associated keratin, integrin, extracellular matrix protein and matrix metalloproteinase 

in various cell culture conditions such as subconfluence, confluence (monolayer) and 

scratch wound assays that will mimic an in vitro assay system of the experimental 

keratinocyte activation cycle. 

2. What influences keratin remodelling and how does it play a role in cell 

migration? – Chapter 4 

Hypothesis: EGF influences keratin remodelling to affect cell migration 

Hypothesis testing: Analyze for indicators of keratin remodelling such as keratin 

solubility, keratin aggregate formation and changes in keratin dynamics using kinase 

inhibitors or siRNAs to intervene with the EGF/ERK1/2 signaling pathway. 

3. Why do EBS-DM cells form peripheral keratin aggregates? – Chapter 5 

Hypothesis: Phosphorylated K14 residues at the rod 1A domain influences keratin 

aggregate formation. 

Hypothesis testing: Generate phospho-null and phospho-mimetic constructs of the 

serine and tyrosine residues involved at the K14 rod 1A domain and analyze their 

phenotypes through osmotic stress and scratch wound assays.  
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2.1 Materials 

Table 2.1.1  Chemicals and reagents used in this thesis 

Company Chemicals and reagents 

Calbiochem (Darmstadt, Germany) EGFR inhibitor, AG1478 

Promega (Madison, USA) MEK1/2 inhibitor, U0126 

Invitrogen (Carlsbad, USA) Agarose 

A.G. Scientific, Inc. (San Diego, 

USA) 

NP-40 

GE Healthcare (Piscataway, USA) Urea 
Amersham Hyperflim 
Amersham ECLTM Prime reagents 

Sigma-Aldrich (St. Louis, USA) Sodium orthovanadate 
Bovine Serum Albumin (BSA) 
Dimethylsulfoxide (DMSO) 

Sodium fluoride 
β-glycerolphosphate 

Tween 20 
Sodium chloride 
Ethylenediaminetetraacetic acid (EDTA) 

Sodium deoxycholate 
Paraformaldehyde 

Epidermal growth factor (EGF) 
Ponceau S solution 

Roche Applied Science (Indianapolis, 
USA) 

Complete mini EDTA-free Protease 
inhibitor 

Calbiochem (Darmstadt, Germany) Phenylmethanesulfonyl Fluoride (PMSF) 

Applied Biosystems Power SYBR® green PCR master mix 

1st base Tris buffer (pH 8.0)  
Tris-buffered saline (TBS) 

VWR International Ltd (Radnor, 
USA) 

Triton X-100 

Thermo Fisher Scientific Inc. 
(Waltham, USA) 

Lonza GelStar* nucleic acid gel stain 
Lab-Tek II #1.5 chambered coverslips  
(2-well/4-well). 

WillCo-wells (Amsterdam, The 

Netherlands) 

WillCo-dish® Glass Bottom Dishes 
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Table 2.1.2  Antibodies used in this thesis 

Company Antibody 

Cell signaling Technology Inc. 
(Danvers, MA, USA) 

Mouse monoclonal anti-phospho-ERK1/2 
(Thr202/Tyr204) 

Mouse monoclonal anti-phospho-p38 
(Thr180/Tyr182) 
Mouse monoclonal anti-phospho-JNK 

(Thr183/Tyr185) 
Rabbit polyclonal anti-ERK1/2 

Rabbit polyclonal anti-p38 
Rabbit polyclonal anti-JNK 
Rabbit polyclonal anti-GAPDH 

BD Biosciences (San Jose, CA, 
USA) 

Mouse monoclonal anti-plectin (clone 31) 
Mouse monoclonal anti- fibronectin (clone 10)  

Sigma-Aldrich (St. Louis, USA) Mouse monoclonal anti-FLAG (clone M2) 
Mouse monoclonal anti-actin (clone AC-15)  

Jackson ImmunoResearch 

Laboratories 
(West Grove, USA) 

Rhodamine red-X-conjugated donkey anti-

mouse secondary antibodies 
Rhodamine red-X-conjugated donkey anti-rabbit 

secondary antibodies 
FITC-conjugated donkey anti-mouse secondary 
antibodies 

Dako Cytomation (Glostrup, 

Denmark) 

Horseradish peroxidase (HRP)–conjugated 

swine anti-rabbit secondary antibody 
Horseradish peroxidase (HRP)–conjugated 

rabbit anti-mouse secondary antibody 

Novacastra (Wetzlar, Germany) Mouse monoclonal anti-β1 (CD29) 
Mouse monoclonal anti-K5 (XM-26) 

Mouse monoclonal anti-K17 (E3)  
(Troyanovsky et al., 1989) 

Molecular probes (Life 
Technologies; Carlsbad, USA) 

Alexa Fluor® 647 Phalloidin 

Antibodies generated by our 

laboratory or gifts from other 
laboratories 

Mouse monoclonal anti-K14 (LL001)  

(Purkis et al., 1990) 
Rabbit polyclonal anti-K5 (BL-18)  

(Purkis et al., 1990) 
Rabbit polyclonal anti-phospho-K5 (LJ4) 
(Liao et al., 1997) 

Mouse monoclonal anti-desmoplakin (11-5F) 
(David Garrod, Manchester) 
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2.1.3  Plasmids 

pXJ40 FLAG-ERK2 mammalian expression vector encoding rat ERK2 protein was 

fused to an N-terminal FLAG epitode tag that was driven by the cytomegalovirus 

(CMV) enhancer/promoter.  This plasmid, together with the pXJ40 FLAG expression 

vector (Manser et al., 1997), was kindly provided by Dr. Edward Manser, Institute of 

Medical Biology, Singapore. The pEGFP K14 WT and pEGFP K14 R125P 

mammalian expression vectors, encoding for either human K14 wild-type protein or 

K14 mutant protein respectively, were fused to an N-terminal EGFP epitode tag that 

was driven by the CMV promoter. These two plasmids were previously made and 

described in (Liovic et al., 2009). pLVX-EF1α-AcGFP1-C1 lentiviral expression 

vector was kindly provided by Dr. Lim Sai Kiang, Institute of Medical biology, 

Singapore. pHR-CMV 8.2 delta packaging vector and pCMV VSV-G envelope vector 

were kind gifts from Nick Leslie, University of Dundee. 

2.1.4  Cell lines and cell culture  

Both NEB-1 and KEB-7 keratinocytes were patient-derived cell lines that were 

immortalized through HPV16. NEB-1 keratinocytes express wild-type keratins while 

KEB-7 keratinocytes express the severe EBS-DM mutation R125P in the K14 rod 1A 

domain (Morley et al., 2003). Isogenic pathomimetic cell lines, NEB-1 EGFP-K14 

WT and NEB-1 EGFP-K14 R125P, were generated as previously described in (Liovic 

et al., 2009). Cell lines were cultured in 75% DMEM (Dulbecco‟s modified Eagle‟s 

medium) plus 25% Ham‟s F12 medium, containing 1% L-glutamine, 1% 

penicillin/streptomycin and 10% fetal bovine serum (FBS), with additional growth 

factors such as hydrocortisone (0.4 g/ml), transferrin (5 g/ml), lyothyronine (2 x 

10-11 M), adenine (1.9 x 10-4 M), insulin (5 g/ml) and epidermal growth factor (EGF) 
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(10 ng/ml). EGF was omitted from culture media for cells to be cultured in the 

absence of EGF. N/TERT-1 was an hTERT-immortalized human keratinocyte cell 

line that maintained the ability to differentiate (Dickson et al., 2000). N/TERT-1 cells 

were cultured at low density in serum-free media (KSFM, Invitrogen), supplemented 

with 0.3 mM Ca2+, 0.2 ng/ml EGF, 25 μg/ml BPE, 1% L-glutamine and 1% 

penicillin/streptomycin. To sustain confluent cultures, medium was changed to a 1:1 

mixture of KSFM and DF-K medium (DF-K medium consisted of equal volumes of 

DMEM high glucuose and Ham‟s F-12 supplemented with 0.3 mM Ca2+, 0.2 ng/ml 

EGF, 25 μg/ml bovine pituitary extract (BPE), 1% L-glutamine and 1% 

penicillin/streptomycin). HEK293T cells were cultured in DMEM supplemented with 

10% FBS and 1% penicillin/streptomycin. These cell lines were fibroblast feeder cell 

independent and were cultured at 37 C in 5% CO2. Cells were regularly passaged at 

80-90% confluence, except for N/TERT-1 cells (30-40% confluence). This procedure 

began by aspirating the existing culture media from the tissue culture flask, washed 

with phosphate buffer saline (PBS) once, and then incubated in the presence of 

trypsin/versene with 0.125% EDTA. After incubation at 37 C for 7 min, the detached 

cells were neutralized with 5 ml of media and transferred into an empty 15 ml falcon 

tube. Cells were pelleted by centrifuging at 1000 rpm for 5 min, and the pellets were 

resuspended in 1 ml culture media, and seeded at 1:10 in new tissue culture flasks.   

2.1.5  Cryopreservation of cell lines 

Subconfluent cell cultures were trypsinised, pelleted and resuspended in freezing 

media containing 70% DMEM, 20% FBS and 10% dimethylsulphoxide (DMSO). The 

cell suspensions were then aliquoted at 1 x 106 cells/ml in cryovials, placed into Mr. 
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Frosty freezing container (Nalgene, NUNC), and kept at -80 C overnight before 

transferring to liquid nitrogen tank for longer storage.  

2.1.6  Thawing of cell lines 

Frozen cryotubes were taken out from liquid nitrogen tank, rapidly thawed in a 37 C 

water bath and transferred into 5 ml of pre-warmed culture media. The cell suspension 

was pelleted by centrifugation, resuspended in culture media and seeded into tissue 

culture flask to allow for overnight adhesion of cells to the vessel surface.  

2.2  Drug/EGF treatment methodology 

Cells were seeded onto either 6-well plates with 22 mm² glass coverslips or 100 mm 

petri dish for 3 days to reach 80% confluence before the drug treatment regime. The 

inhibitors, U0126 (10-100 µM) (Promega) and AG1478 (10 µM) (Calbiochem) were 

dissolved in dimethylsulphoxide (DMSO). Final concentrations of DMSO added to 

cells were ≤ 1% and this amount was observed to have no effect on cell viability in 

these experiments. U0126 (10-100 µM) were added into the media and cells were 

then incubated for 1 hr before fixation or lysis. For EGF treatment study, cells were 

cultured in media without EGF for 48 hrs and subjected to EGF (10-100 ng/ml) 

treatment for 48 hrs before being harvested for RNA and immunoblot analysis. 

Alternatively, cells were cultured in media without EGF (-EGF) for two passages 

before seeding them onto either 6-well plates with 22 mm² glass coverslips or 100 

mm petri dish. Cells were then first serum starved (in the absence of FBS) for 6  hrs 

before incubation in media supplemented with EGF (100 ng/ml) for 2 hrs. After 2 hrs, 

drug inhibitors such as U0126 (10 µM) or AG1478 (10 µM) were then added into the 

media in the presence of EGF (100 ng/ml) and cells were incubated for another hour 

before lysis or fixation. 
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2.3  Molecular biology methodology 

2.3.1  Site-directed mutagenesis 

Site-directed mutagenesis was performed using the QuikChange Site-directed 

Mutagenesis kit (Agilent Technologies, CA, USA) according to manufacturer‟s 

instructions. pEGFP-K14 WT plasmid DNA was used as a template at 100 ng/μl for 

introducing specific mutations (underlined red) through PCR-based method by using 

the following mutagenic primers to generate the respective constructs: K14 S128A 

(Forward: 5‟-CAA TGA CCG CCT GGC CGC CTA CCT GGA CAA GG-3‟; 

Reverse: 5‟-CCT TGT CCA GGT AGG CGG CCA GGC GGT CAT TG-3‟); K14 

S128D (Forward: 5‟-CAA TGA CCG CCT GGC CGA CTA CCT GGA CAA GG-3‟; 

Reverse: 5‟-CCT TGT CCA GGT AGT CGG CCA GGC GGT CAT TG-3‟); K14 

Y129F (Forward: 5‟-GCC TGG CCT CCT TCC TGG ACA AGG TG-3‟; Reverse: 

5‟-CAC CTT GTC CAG GAA GGA GGC CAG GC-3‟) and K14 Y129E (Forward: 

5‟-GAC CGC CTG GCC TCC GAA CTG GAC AAG GTG CGT G-3‟; Reverse: 5‟-

CAC GCA CCT TGT CCA GTT CGG AGG CCA GGC GGT C-3‟) respectively. 

Likewise, pEGFP-K14 R125P plasmid DNA was also used as a template at 100 ng/μl 

for introducing specific mutations (underlined red) by using the following mutagenic 

primers to generate K14 R125P_Y129F as follows: (Forward: 5‟-GCC TGG CCT 

CCT TCC TGG ACA AGG TG-3‟; Reverse: 5‟-CAC CTT GTC CAG GAA GGA 

GGC CAG GC-3‟). For introducing deletions (strikethrough red), pEGFP-K14 WT 

plasmid DNA was used as a template at 100 ng/μl by using the following mutagenic 

primers to generate K14 S128del as follows: (Forward: 5‟-CAA TGA CCG CCT 

GGC CTCCTA CCT GGA CAA GG-3‟; Reverse: 5‟- CCT TGT CCA GGT AGG 

AGG CCA GGC GGT CAT TG-3‟); and pEGFP-K5 WT plasmid DNA was used as a 

template at 100 ng/μl by using the following mutagenic primers to generate K5 
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S181del as follows: (Forward: 5‟-CTC AAC AAT AAG TTT GCC TCC TTC ATC 

GAC AAG GTG CGG-3‟; Reverse: 5‟- CCG CAC CTT GTC GAT GAA GGA GGC 

AAA CTT ATT GTT GAG-3‟). The mixture of 1 x QuikChange reaction buffer, 

template DNA, forward and reverse mutagenic primers, dNTPs, H2O and PfuTurbo 

DNA polymerase were then incubated in the thermal cycler with the following 

cycling parameters: Step 1: 95ºC for 1 min (initial denaturation), Step 2: 95ºC for 50 s 

(denaturation), Step 3: 65ºC for 50 s (annealing), step 4: 68ºC for either 8 min (EGFP-

K14) or 10 min (EGFP-K5) (extension). Steps 2-4 were then repeated for either 18 

cycles (single amino acid changes) or 19 cycles (deletions), and at the end of it Step 5 

was operated at 68ºC for 7 min (final extension). The resulting PCR product was 

mixed with Dpn I restriction enzyme and incubated at 37ºC for 3 hrs to digest the 

parental methylated and hemimethylated DNA. The intact site-mutated plasmid DNA 

was then transformed using XL-1 blue supercompetent cells. The mixture of plasmid 

DNA and supercompetent cells were heat-shocked at 42°C for 30 s, and incubated 

with SOC media at 37°C shaker for 1 hr. The mixture was then spread onto LB agar 

plate containing 240 µg/ml kanamycin and incubated at 37°C overnight for growing 

single colonies. Positive clones were verified and all the mutant constructs were 

confirmed by sequencing. 
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2.3.2  Cloning 

2.3.2.1  Restriction digestion of DNA 

The pEGFP-C1 plasmid DNA was first linearised using the restriction enzyme XbaI, 

and the K14 (WT, R125P, S128del, Y129F, Y129E and R125P_Y129F) DNA 

sequences were next sub-cloned from the pEGFP-C1 plasmid into the pLV-EF1α-

AcGFP1-C1 lentiviral plasmid through PCR-based method. A unique BstBI 

restriction enzyme recognition site was introduced in the design of the forward primer 

(in bold) (5‟-TCC ATC CAT TCG AAT ACT ACC TGC AGC CGC CAG-3‟) and 

was used together with the reverse primer (5‟-GGT TCA GGG GGA GGT GTG GG-

3‟). The mixture of 1 x PCR reaction buffer, template DNA, forward and reverse 

primers, Q buffer, dNTPs, H2O and Taq DNA polymerase were then incubated in the 

thermal cycler with the following cycling parameters: Step 1: 94ºC for 2 min (initial 

denaturation), Step 2: 94ºC for 30 s (denaturation), Step 3: 60ºC for 30 s (annealing), 

Step 4: 72ºC for 1 min 30 s (extension). Steps 2-4 were then repeated for 35 cycles, 

and at the end of it Step 5 was operated at 72ºC for 10 min (final extension). Both 

pLV-EF1α-AcGFP1-C1 lentiviral vector and the respective PCR products were 

digested by BstBI and BamHI restriction enzymes in the presence of restriction 

enzyme buffer at 37ºC overnight.  
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Figure 2.1 Map of mammalian expression vector pEGFP-C1 

Genes of interest (K14 WT/R125P) were ligated into the multicloning sites 

(MCS) of pEGFP-C1 plasmid (from www.clontech.com) and fused with EGFP.  

http://www.clontech.com/
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Figure 2.2 Map of mammalian expression vector pLVX-EF1α-AcGFP1-C1 

Genes of interest (K14 WT/R125P/S128del/Y129F/Y129E/R125P_Y129F) 

were cloned from pEGFP-C1 plasmid and ligated into the multicloning sites 

(MCS) of pLVX-EF1α-AcGFP1-C1 plasmid (from www.clontech.com) and 

fused with AcGFP1.  

http://www.clontech.com/
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2.3.2.2  DNA agarose gel electrophoresis 

A 1% (w/v) agarose gel was cast by weighing 1 g of agarose into 100 ml of 1 x TBE 

buffer and microwaved till the agarose melted. Lonza GelStar* nucleic acid gel stain 

was added to the melted agarose, poured into the gel casting apparatus and allowed to 

solidify. 6x DNA loading dye was added to DNA samples to a final 1x concentration 

and loaded onto the wells of the gel which was submerged in 1x TBE buffer and 

electrophoresed at 70 V for 2 hrs. The separated DNA bands were visualized using 

the Fujiflim LAS4000 illuminator and photographed for record purpose.  

2.3.2.3  DNA gel extraction 

DNA gel extraction was performed using the QIAquick Gel Extraction Kit. Briefly, 

DNA band was excised from the gel using a clean scalpel under blue light and 

weighed in eppendorf tubes. 3 volumes of QG buffer were added to the gel slice and 

the mixture was incubated at 50ºC for 10 min until the agarose gel was completely 

melted. 1 gel volume of isopropanol was added to the tubes and mixed before 

transferring into the QIAquick spin column. The column was centrifuged at 13,000 

rpm for 1 min to allow binding of the DNA to the column. 750 μl of PE buffer was 

added to wash the filter column once and the DNA was eluted into 30 μl of RNAse-

free water.  

2.3.2.4 Dephosphorylation of plasmid DNA 

To facilitate efficient ligation of vector DNA (lentiviral plasmid) to insert DNA (PCR 

product), vector DNA was dephosphorylated by incubating with the shrimp alkaline 

phosphatase at 37ºC for 30 min and then heat inactivated for 15 min.  
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2.3.2.5  Ligation of DNA 

Ligation of both vector and insert DNA was performed at a ratio o f 1:5 respectively in 

the presence of T4 DNA ligase buffer and T4 DNA ligase. The mixture was incubated 

at room temperature for 1 hr for ligation to take place.  

2.3.3  Transformation of chemically competent cells 

5 μl of ligated DNA product was mixed into one vial of One Shot® TOP10 chemically 

competent E.coli cells and incubated on ice for 30 min. The mixture of ligated DNA 

product and competent cells was heat-shocked at 42°C for 30 s, and incubated with 

SOC media at 37°C shaker for 1 hr. The mixture was then spread onto LB agar plate 

containing 100 µg/ml ampicillin and incubated at 37°C overnight for growing single 

colonies. 

2.3.4  PCR analysis of transformants  

Bacterial colonies were screened for positive ligation events as follows: A single 

bacterial colony was inoculated to 6 μl of sterile H2O to serve as a PCR template. 

PCR reactions were carried out in 10 μl volumes comprising of 1 x Green GoTaq® 

Flexi buffer, template DNA, forward and reverse primers, dNTPs, MgCl2, H2O and 

GoTaq® DNA polymerase. The PCR cycling parameters were as follows: Step 1: 

95ºC for 6 min (initial denaturation), Step 2: 95ºC for 30 s (denaturation), Step 3: 

52ºC for 30 s (annealing), Step 4: 72ºC for 4 min (extension). Steps 2-4 were then 

repeated for 30 cycles, and at the end of it Step 5 was operated at 72ºC for 5 min 

(final extension). PCR products were resolved on 1% agarose gels at 70 V for 2 hrs to 

check for correct insert size. 
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2.3.5  Amplification and isolation of plasmid DNA from bacteria (Mini-prep) 

Bacterial colonies containing positive ligation events were inoculated into 3 ml LB 

broth with 100 µg/ml ampicillin and leave it to incubate at 37ºC with shaking for 8 hrs. 

Plasmid DNA isolation from bacteria was performed using the QIAprep® Spin 

Miniprep Kit. Briefly, 2 ml of overnight bacterial culture was retrieved and 

centrifuged at 13,000 rpm. The supernatant was removed and the bacterial pellet was 

resuspended in 250 μl of P1 buffer containing RNase A and LyseBlue reagent. 250 μl 

of P2 lysis buffer was added and the tube was inverted gently and left for 5 min. 350 

μl of chilled N3 buffer was then added immediately for neutralization and the cell 

debris was pelleted by centrifugation at 13,000 rpm. The supernatant was collected 

and decanted into the QIAprep spin column. The column was centrifuged at 13,000 

rpm for 1 min to allow DNA to settle onto the column and bounded to it by PB buffer. 

750 μl of PE buffer was added to wash the filter column once and the plasmid DNA 

was eluted by 30 μl of RNAse-free water.  

2.3.6.  DNA sequencing 

DNA sequencing was carried out using BigDye® Terminator v3.1 Cycle sequencing 

kit by mixing the DNA template, forward or reverse primer, H2O and Terminator 

Ready Reaction Mix in a total of 10 μl reaction volumes. The PCR cycling parameters 

were as follows: Step 1: 96ºC for 1 min, Step 2: 96ºC for 10 s, Step 3: 50ºC for 5 s, 

Step 4: 60ºC for 4 min. Steps 2-4 were then repeated for 25 cycles, and at the end of it 

hold at 4ºC. Samples were submitted to the DNA sequencing facility at Institute of 

Molecular and Cell Biology for purification and subjected to capillary electrophoresis 

on the ABI PRISM 3730xl DNA Analyzer.  
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2.3.7.  Bacterial DNA maxi-prep using Endofree® Plasmid Maxi Kit  

Large-scale amplification of plasmid DNA and its isolation from bacteria was 

performed using the Endofree® Plasmid Maxi Kit. Briefly, 1 ml of bacterial culture 

broth was added into 100 ml of lysogeny broth (LB) containing 100 µg/ml ampicillin 

and incubated at 37ºC with shaking for 16 hours. 90 ml of overnight bacterial culture 

was retrieved and centrifuged at 6,000 g for 15 min at 4 ºC. The supernatant was 

removed and the bacterial pellet was resuspended in 10 ml of P1 buffer containing 

RNase A and LyseBlue reagent. 10 ml of P2 lysis buffer was added and the tube was 

inverted gently and left for 5 min. 10 ml of chilled P3 buffer was then added 

immediately for neutralization and the cell debris was decanted into the QIAfilter 

Maxi Cartridge. The cell lysate was filtered through the cartridge and collected onto a 

50 ml falcon tube. 2.5 ml of ER buffer was added to the filtered lysate, mixed by 

inverting and incubate on ice for 30 min. The filtered lysate was then decanted into 

the QIAGEN-tip and then washed twice with 30 ml QC buffer. Plasmid DNA was 

eluted with 15 ml QN buffer and precipitated with 10.5 ml isopropanol. The plasmid 

DNA pellet was collected by centrifugation at 4,000 rpm for 1 hr, washed with 70% 

ethanol for 1 hr at 4,000 rpm, air-dried and finally dissolved in endotoxin free TE 

buffer.  

2.3.8  Preparation of bacteria stocks 

Bacterial stocks of successful transformation events were prepared in 50% glycerol. 

The LB-glycerol suspension was thoroughly mixed and then placed in -80ºC freezer 

for long term storage. 
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2.3.9  Transient transfection 

For transient transfection studies, NEB-1 cell line was plated at 80% confluency on 22 

mm² coverslips in a 6-well plate and transfected with the pEGFP-K14 WT and mutant 

constructs using the EffecteneTM reagents (Qiagen, Germany) according to 

manufacturer‟s protocol. Briefly, 0.4 μg of DNA were added into an eppendorf tube  

with 100 μl of DNA condensation (EC) buffer, and 3.2 μl of Enhancer. Mixture was 

vortexed and incubated at room temperature for 5 min. 10 μl EffecteneTM transfection 

reagent was then added into the mixture followed by vortexing and incubated at room 

temperature for 10 min to allow transfection complex to form. Meanwhile, culture 

media was aspirated from the flask and replenished with new media. After 10 min, the 

transfection mixture was then added dropwise onto the cells and cells were harvested 

for respective assays at least 24 hrs post transfection. The expression of pEGFP-K14 

WT and mutant constructs were then analyzed after 36 hrs post-transfection using 

immunofluoresence.  

2.3.10  Viral packaging and collection 

To establish stable cell lines expressing EGFP-K14 constructs, high- titre lentiviruses 

were ultilized. Non-replicative lentiviruses were produced by triple transfection of 

HEK293T cells in 15 cm dishes with 1.5 µg pLVX-EF1α-AcGFP1-C1 lentiviral 

expression vector, 1 µg pHR-CMV 8.2 delta packaging vector and 1 µg pCMV VSV-

G envelope vector using Effectene transfection reagent (Qiagen, Germany). The viral 

supernatant was collected after 48 hrs and 72 hrs post transfection before filtering 

through 22 µm filter system to remove cell debris. The supernatant was then 

ultracentrifuged at 16,000 g for 2 hrs at 4ºC. The resultant pellet was resuspended in 

DMEM and frozen at -80ºC in aliquots.  
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2.3.11  Viral titration of N/TERT-1 cells and quantification  

40, 000 N/TERT-1 cells were seeded onto each well of the 24-well plate for 16 hrs 

before they were infected by the various viral-packaged constructs in the presence of 

24 µg/ml of polybrene in titrations of 10-2, 10-3, 10-3/2 dilutions (of each construct) 

and incubated for 72 hrs. The cells in each well were then trypsinized, collected onto 

fluorescence-activated cell sorting (FACS) tubes and centrifuged for 5 min at 1000 

rpm. The pellet was then washed once in PBS, centrifuged and resuspended in PBS 

for FACS analysis. The viral titer for each construct was then derived from the 

percentage of GFP-positive cells in a population of 40, 000 infected cells at the 

specific dilution and determined as the number of viral particles per ml. The 

multiplicity of infection (M.O.I) was then calculated by determining the number of 

cells to be infected divided by the viral titer (number of viral particles per ml) and the 

volume of viral supernatant to be added in experiments could be derived.  

2.3.12  Viral infection of N/TERT-1 cells to generate stable cell lines 

To generate stable cell lines, various viral-packaged constructs (M.O.I =1.0) were 

added together with 24 µg/ml of polybrene to infect 1 million N/TERT-1 cells in 

suspension and pre-incubated at 37ºC for 1 hr before seeding them onto 100 mm 

dishes. GFP-positive cells were then selected by FACs sorting after one week of 

transduction and remained in culture for further experiments. The levels of expression 

of transfected AcGFP-K14 wild type and mutant constructs and their ratio with the 

endogenous wild-type K14 were then assessed by immunoblotting with LL001 

monoclonal antibody against K14 (Purkis et al., 1990). Cells having a 1:1 ratio of 

transfected AcGFP-keratin wild type or mutant protein to endogenous wild type 

keratin were then cultured and expanded.  
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2.3.13  Transient infection of N/TERT-1 cells 

For transient viral infection, viral-packaged constructs (AcGFP-K14 R125P, AcGFP-

K14 R125P_Y129F) of various multiplicity of infection values (M.O.I = 0.5, 1.0, 2.0) 

were added together with 24 µg/ml of polybrene to infect 100, 000 N/TERT-1 cells in 

suspension and pre- incubated at 37ºC for 1 hr before seeding them onto 22 mm² 

coverslips in a 6-well plate. The cells were then incubated at 37ºC for 72 hrs before 

fixation. 

 

2.4  Gene expression analysis 

2.4.1  RNA extraction 

Total RNA was extracted from the cells using the RNeasy Mini Kit (Qiagen, 

Germany). Briefly, cells were kept on ice, washed in ice-cold PBS, scrapped and 

collected in 1 ml of PBS onto respective tubes. Cells were pelleted by centrifugation 

at 5,000 rpm at 4ºC and the pellet was lysed in 350 μl of RLT buffer with β-

mercaptoethanol. Lysate was homogenized using the QIAshredder spin column and 

RNA was precipitated with 70% ethanol. The precipitated RNA was decanted into 

RNeasy spin column and centrifuged at 13,000 rpm for 1 min. The column was 

washed with 700 μl RW1 buffer and DNase digestion was carried out on the column 

using the RNase free DNase set to avoid genomic DNA contamination. Column was 

then washed with 500 μl RPE buffer twice before the RNA was eluted by 30 μl of 

RNAse-free water. The RNA quantity and concentration were determined using 

Nanodrop ND-1000.  
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2.4.2  cDNA synthesis 

cDNA (complementary DNA) synthesis was performed with 1 μg of total RNA, using 

the Transcriptor First Strand cDNA Synthesis kit (Roche Applied Science). Briefly, 

total RNA was first denatured with oligo(dT)15 primer for 10 min before mixing with 

the 1x reaction buffer, protector RNase inhibitor, dNTPs, H2O and reverse 

transcriptase. Reverse transcription was then carried out at 50ºC for 60 min.  

2.4.3  Quantitative real-time PCR (qPCR) 

Real-time quantitative PCR was carried out using the ABI-PRISM 7500 Sequence 

Detection System (Applied Biosystems). 3 μl of 10 x diluted reversed transcribed 

cDNA samples were added to 5 μl of Power SYBR Green PCR Master Mix (Applied 

Biosystems) and 2 μl of primers mix (forward and reverse primers). Reactions were 

conducted in triplicate within 384-well reaction plates (Applied Biosystems) at a final 

volume of 10 μl on the ABI-PRISM 7500 machine. The list of forward and reverse 

primers was listed in Table 2.2. The cycling parameters were as follows: Step 1: 95ºC 

for 10 min, Step 2: 95ºC for 15 s and Step 3: 60ºC for 60 s. Steps 2-3 were repeated 

for 40 cycles. A dissociation curve was added as an additional parameter to check 

primer amplification integrity with the following steps: 95ºC for 15 s, 60ºC for 15 s 

and 95ºC for 15 s. Data was analyzed using the Sequence Detection System 7500 

software (Applied Biosystems). Relative quantification was ca lculated by the ΔΔCt  

method normalized to either hypoxanthine-guanine phosphoribosyltransferase (HPRT) 

or ribosomal protein P0 (RPLP0) housekeeping genes.  
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2.4.4  Over-expression studies 

For over-expression studies, isogenic pathomimetic cell lines were plated at 80% 

confluence in 100 mm dishes and transfected with a rat FLAG-tagged ERK2 cDNA 

using 2 g DNA and 60 l EffecteneTM reagent. The expression of FLAG-ERK2 was 

then analyzed from a time scale of 24-48 hrs post-transfection using western blotting.  

2.4.5  RNA interference (siRNA) 

For knockdown studies, isogenic cell lines were plated at 80% confluence in 100 mm 

dishes and transfected with DharmaFECTTM 1 siRNA transfection reagent 

(Dharmacon) according to the manufacturer‟s instructions. Cells were transfected 

with either ON-TARGETplus siRNA (Dharmacon) targeting MAPK3 (ERK1), 

catalog no: J-003592-08-0020, ON-TARGETplus SMARTpool siRNA (Dharmacon) 

targeting MAPK1 (ERK2), catalog no: L-003555-00-0005 or ON-TARGETplus 

siRNA (Dharmacon) targeting plectin (PLEC), catalog no: J-003945-09-0020 (see 

Table 2.3). The mixture of ERK1-ERK2 siRNAs, PLEC siRNAs or control siRNA 

against GAPD (Dharmacon), catalog no: D-001830-01-20, was used in experiments at 

100 nM concentrations. After 24 hrs, fresh medium was replaced and cells were 

harvested for RNA or immunoblot analysis 48-72 hrs post-transfection. 
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Table 2.2 Primer sequences for qPCR using SYBR Green Master Mix 

 

Table 2.3 siRNAs for knockdown studies 

 

   

Genes Forward primer Reverse primer 

β1 integrin 5‟-TTA TTG GCC TTG 
CAT TAC TGC T-3‟ 

5‟-CCA CAG TTG TTA CGG 
CAC TCT-3‟ 

ERK1 

(MAPK3) 

5‟-ACA TTG TGC AGG 

ACC TGA TGG AGA-3‟ 

5‟-TAA GGT CGC AGG TGG 

TGT TGA TGA-3‟ 

ERK2 

(MAPK1) 

5‟-CCA CCC ATA TCT 
GGA GCA GT-3‟ 

5‟-CAG TCC TCT GAG CCC 
TTG TC-3‟ 

Fibronectin 5‟-CAC AGC TTC TCC 

AAG CAT CA-3‟ 

5‟-TGG CTG CAT ATG CTT 

TCC TA-3‟ 

HPRT 5‟-CCT GGC GTC GTG 
ATT AGT GAT-3‟ 

5‟-AGA CGT TCA GTC CTG 
TCC ATA A-3‟ 

KRT17 5‟-GGT GGG TGG TGA 

GAT CAA TGT-3‟ 

5‟-CGC GGT TCA GTT CCT 

CTG TC-3‟ 

MMP9 5‟-TAC CAC CTC GAA 
CTT TGA CAG CGA-3‟ 

5‟-GCC ATT CAC GTC GTC 
CTT ATG CAA-3‟ 

Plectin 5‟-ACC CTC TGA GCT 

TTG CAT GT-3‟ 

5‟-CCC ACG GTC AGG TTA 

GTG TT-3‟ 

KRT14 5‟-CTT GGG TGG TGG 
CTT TGG-3‟ 

5‟-GTC CAC TGT GGC TGT 
GAG AA-3‟ 

KRT5 5‟-CAC TGT CAA CCA 

GAG TCT CCT GAC T-3‟ 

5‟-CGG TCC TCA CCC TCT 

GGA T-3‟ 

RPLP0 5‟-CAG ATT GGC TAC 
CCA ACT GTT-3‟ 

5‟-GGG AAG GTG TAA TCC 
GTC TCC-3‟ 

ON-TARGETplus siRNA Target sequences 

Human ERK1 (MAPK3) 5‟-CCU GCG ACC UUA AGA UUU G-3‟ 

Human ERK2 (MAPK1) 5‟-UCG AGU AGC UAU CAA GAA A-3‟ 

 5‟-CAC CAA CCA UCG AGC AAA U-3‟ 

 5‟-GGU GUG CUC UGC UUA UGA U-3‟ 

 5‟-ACA CCA ACC UCU CGU ACA U-3‟ 

Human Plectin (PLEC) 5‟-GAA GAG ACA CAG AUC GAC A-3‟ 
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2.5  Protein expression analysis 

2.5.1  Cell lysis and protein quantification 

1 million cells were seeded onto 100 mm petri dish and grown to 80% confluence. 

Cells were kept on ice, washed in ice-cold PBS, scrapped and collected in 1 ml of 

PBS onto respective tubes. The cell suspensions were then centrifuged at 5,000 rpm 

for 5 min. The supernatant was removed and the cell pellet was re-suspended in 100 

µl of lysis buffer containing: 20 mM Tris-HCl (pH 7.6), 140 mM NaCl, 5 mM EDTA, 

1% (v/v) NP-40, 0.5% (w/v) sodium deoxycholate supplemented with Complete, Mini 

(EDTA-free) protease inhibitor cocktail tablet (Roche) per 10 ml lysis buffer, 1 mM 

sodium orthovanadate (Na3VO4) and 1 mM phenylmethylsulphonyl fluoride (PMSF), 

5 mM sodium fluoride, 50 mM β-glycerolphosphate, of which all were added fresh, 

immediately prior to use. The cells were then lysed on ice for 15 min. Cell lysates 

were then centrifuged at 16, 000 g for 15 min at 4 ºC. Supernatant was then 

homogenized by passing through a QIAshredder column tube (QIAGEN) with 

centrifugation at 16, 000 g for 2 min at 4 ºC. The homogenized supernatant was 

collected and stored at -80 ºC. For the pellet, it was re-suspended in pelleting buffer 

[Tris-HCL (pH 8.0). 10 mM MgCl2, 5 mM EDTA, 1 mM Na3VO4 and 1 mM PMSF] 

containing 250 U benzonase nuclease (Novagen) and was incubated for 30 min at 

room temperature. After repelleting, the final pellets were washed in PBS containing  

1 mM PMSF and 1 mM Na3VO4 and then re-suspended in 4X LDS buffer 

(Invitrogen), in a volume equivalent to the supernatant. Protein concentration of the 

supernatant was then determined by BCA assay (Thermo Scientific Pierce) and 

standardized using bovine serum albumin. 
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2.5.2  Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

For sodium dodecylsulphate (SDS) polyacrylamide gel electrophoresis, 20 – 40 g of 

each sample‟s supernatant or pellet was mixed with 4X LDS sample buffer 

(Invitrogen), boiled for 10 min at 70 ºC, and separated on 4-12 % Bis-Tris SDS 

polyacrylamide precast gels (invitrogen) for 50 min at 200V constant. In cases where 

higher molecular weight proteins (plectin, fibronectin or desmoplakin) are to be 

blotted, 20 – 40 g of each sample was mixed with 4X LDS buffer (Invitrogen), 

heated for 10 min at 70 ºC and separated on 3-8 % Tris-Acetate SDS polyacrylamide 

precast gels (invitrogen) for 60 min at 150V constant.  

2.5.3  Protein detection and chemiluminesence 

For immunoblotting, protein transfer was carried out using the iBlot dry blotting 

machine system onto nitrocellulose membranes (Invitrogen) for 7 min. Non-specific 

binding to the membrane was blocked by incubation in TBS-T containing 5% milk, 

for 1 hr with gentle agitation. Blots were then incubated overnight at 4 ºC with the 

primary antibodies in 5 ml TBS-T containing 5% BSA with gentle agitation. The 

membranes were then washed twice with TBS-T, and bound primary antibodies were 

then incubated for 1 hr with secondary antibodies. The membranes were then washed 

four times before visualized by enhanced chemiluminescence (ECL) using the 

Fujiflim LAS4000 illuminator.  

2.5.4  Immunocytochemistry 

100, 000 cells were seeded onto 22 mm² glass coverslips in 6-well plate and grown to 

80% confluence (either non-treated or prior to drug treatment regime) before being 

fixed with 4% parafarmaldehyde in PBS, pH 7.4 at room temperature for 7 min. After 
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fixation, cells were treated in blocking buffer (3% normal goat serum in PBS) and 

permeabilized with 0.1% Triton X-100 in PBS at room temperature for 20 min. On 

the other hand, for methanol fixation, cells were fixed with methanol at -20ºC for 10 

min and blocked with 10% FBS for 20 min. Cells were washed twice with PBS and 

then incubated overnight with primary antibodies. Cells were then washed 3 x 5 min 

in PBS and the primary antibodies were detected using the respective secondary 

antibodies by incubating 45 min in the dark. Cells were then washed 3 x 5 min in PBS 

and incubated in 4-6-diamidino-2-phenyllindole (DAPI) (1:2500) (Sigma) dissolved 

in PBS. Cells were subsequently washed 3 x 5 min in PBS and mounted on coverslips 

using Hydromount with 2.5% DABCO to reduce photobleaching. Slides were air-

dried and viewed with an inverted Deltavision epifluorescence microscope (Applied 

Precision, USA). Images were visualized with either an Olympus UApo/340 20x (N.A. 

0.75) objective lens; Olympus UApo/340 40x (N.A. 1.35) or an Olympus PlanApo 

60x (N.A. 1.42) oil immersion objective lens with a Photometric CCD camera 

(CoolSNAP HQ2) using the SEDAT filter set. Images were then processed using the 

SoftWorRx application (Applied Precision, USA).  

2.6  Time-lapse microscopy imaging and image processing 

2.6.1  Differential interference contrast (DIC) live-cell migration 

For DIC live-cell imaging, 100 – 300 cells were grown on a 4-well Lab-Tek II #1.5 

chambered coverslips. Single cell was selected with the „mark and visit‟ tool of 

SoftWoRx from each cell line. To generate movies of randomly migrating live cells, 

repetitive images were collected every 5 min for a total of 5 hrs using an Olympus 

UApo/340 20x (N.A. 0.75) objective lens. A minimum of ten individual fields was 

recorded for each cell line. DIC image stacks of single cell migration were analyzed 
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and processed using several macros written with ImageJ. One macro was written to 

apply top-hat and variance filters on the DIC time- lapse sequence while the other was 

written to segment the single cell body and analyzed the filtered sequence. During this 

stage, auto-threshold was manually adjusted for the best possible segmentation. Total 

distance travelled by each cell for 5 hrs was then extracted using another macro and 

their corresponding migration paths were plotted.  

2.6.2  Fluorescence live-cell imaging 

For fluorescence live-cell imaging, 10, 000 cells were grown on a 35 mm WillCo-

dish® glass-bottomed dish (WillCo-wells, Amsterdam). Images (1024x1024 dpi, 1x1 

binning) of cells expressing the fluorescence constructs were collected every 15 sec 

for a period of 30 min using an Olympus UPlanApo/IX70 100x (N.A. 1.35) oil 

immersion objective lens. These sequences of images were then converted into 

movies and subsequently analyzed using SoftWoRx software (Applied Precision, 

USA). Image series, presented as inverse fluorescence micrographs, were taken from 

time- lapse recordings and shown as data in the results section. Both DIC and 

fluorescence live-cell imaging were carried out using an inverted Deltavision 

epifluorescence microscope (Applied Precision, USA), equipped with a fully 

motorized Z stage (Applied Precision, USA) and linked to Photometrics CCD camera 

(CoolSNAP HQ2) using the SEDAT filter set. Samples were maintained at 37ºC in a 

5% CO2 environment. 
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2.6.3  Phase contrast live-cell imaging of scratch wounds using IncuCyteTM 

20, 000 cells were seeded onto each well of an Essen ImageLock 96-well plate and 

grown to confluence before being subjected to wounding with a 96-well 

WoundMaker Tool, which gently removed cells from the confluent monolayer using a 

96 array of PTFE pin tips. Cells were then washed twice with media and the plate was 

placed inside the IncuCyte. For EGF treatment study, cells were treated with either 

DMSO, AG1478 (10 µM) or U0126 (10 µM) in fresh media before imaging. 

Alternatively, cells grown to sub-confluence were transfected with DharmaFECTTM 1 

siRNA transfection reagent (Dharmacon) according to the manufacturer‟s instructions. 

Cells were transfected with ON-TARGETplus siRNA (Dharmacon) targeting plectin 

(PLEC), catalog no: J-003945-09-0020. The mixture of PLEC siRNAs or control 

siRNA against GAPD (Dharmacon), catalog no: D-001830-01-20, was used in 

experiments at 100 nM concentrations. After 24 hrs, fresh medium was replaced and  

after 48 hrs post-transfection, cells were then subjected to wounding with a 96-well 

WoundMaker Tool. Wound images were acquired immediately and at 1 hr intervals 

for 14-28 hrs. Scratch wound data was analyzed and processed using several macros 

written with ImageJ. One macro applies the built- in ImageJ Sobel edge filter to locate 

the edges of the wound while the other applies auto-threshold methods to find the 

wound area and calculate the recovery of the wound. Red line marks the denuded area 

from which cells were removed at the start of the wound (0 hr); green line marks the 

remaining uncovered area after 14-28 hrs. Areas between red (or green) lines were 

derived from a macro written with ImageJ. Area covered was obtained by the 

subtraction of the initial wound area and the remaining uncovered area, and the data 

for area covered / initial wound area were presented for each treatment. 
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2.6.4  Confocal live-cell imaging using MEK1/2 inhibitor treatment 

10, 000 cells were grown on a 35 mm WillCo-dish® glass-bottomed dish (WillCo-

wells, Amsterdam). Time-lapse analyses were then performed with a Zeiss LSM510 

inverted confocal microscope. For each movie, images were taken every minute for 1 

hr using an EC Plan-Neofluar 40x/1.30 oil immersion objective lens. This was 

performed by using the filter, BP-505-530 and the beam splitters: MBS: HFT 

405/488/561, DBS1: NFT 565, DBS2: NFT 490 respectively. Argon LASER was 

used at 488 nm wavelength at 19.8% power and the pinhole was set to 124 μm. The 

scan mode was: Plane, line series, with an average limited to Line 2 so as to limit the 

LASER exposure to the cells to minimize cell death or photobleaching. Drug 

treatment was initiated after 1 hr of acquisition by removing the original medium and 

replacing it with fresh medium containing the MEK inhibitor U0126 at 100  μM. Such 

treatment was maintained for another hour before washing out by replacing it with 

fresh medium. For image processing and migration analysis, false color coding 

images were obtained by first converting the images extracted from the movies to 

TIFF files, then importing them into ImageJ software and converting them to 8-bit 

images. Next, for each movie (“control”, “treatment” and “washout” movies), an 

artificial color was given to the images corresponding to the time points: 0 min, 30 

min and 60 min (green, blue and red color, respectively). The three images were then 

merged together and presented as shown.  
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2.7  Functional studies 

2.7.1  Osmotic stress assay 

1 million cells were seeded onto 100 mm petri dish and cultured to 80% confluence. 

The subconfluent culture was left intact or being subjected to hypo-osmotic shock 

upon immersion in 150 mM urea for 5 min at 37 ºC as described in (D'Alessandro et 

al., 2002). Cells were then allowed to recover in fresh media for varying periods of 

time before being harvested for immunoblot analysis.  

2.7.2  Confluence assay 

100, 000 cells were seeded onto 22 mm² glass coverslips in 6-well plate or 1 million 

cells were seeded onto 100 mm petri dish and they were grown to subconfluence 

(80%), confluence (monolayer) (100%), 1 day post confluence (100% + 1) or 2 days 

post confluence (100% + 2) before being fixed for immunostaining or harvested for 

immunoblot analysis respectively. 

2.7.3  Multiple scratch wound assays 

100, 000 cells were seeded onto 35 mm petri dish and grown to 2 days post 

confluence. Upon confluent, the monolayer was left intact or subjected to wounding 

using 3 yellow tips mounted onto a multi-channel pipette to generate multiple scratch 

wounds vertically and horizontally across the 35 mm petri dish. Cells were then 

washed twice in media and left to recover for either 18 hrs or 24 hrs post-wounding 

before being harvested for immunoblot analysis. 
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2.8  Statistical analysis 

2.8.1  Differential interference contrast (DIC) live-cell migration 

For single cell migration study, the distribution of cell migration for each cell line was 

represented in the form of histograms using the histogram data analysis tool add- in in 

Microsoft® Excel. The total distance travelled by each cell for 5 hrs was determined 

and the results were represented as mean distance travelled by each cell for n = 55 

(NEB-1) and n = 45 (KEB-7) respectively. 

2.8.2  Confluence assay 

For confluence assay, 500 – 800 cells at different confluence states were counted 

using ImageJ analysis software. The total number of cells and the number of cells 

with aggregates were counted and represented as % of cells with aggregates.  

2.8.3  Drug/EGF treatment 

For the EGF treatment study, 700 – 900 cells from each treatment group were counted 

for 4 independent experiments using ImageJ analysis software. The total number of 

cells and the number of cells with aggregates were counted and represented as % of 

cells with aggregates.  

2.8.4  Phase contrast live-cell imaging of scratch wounds using IncuCyteTM 

For scratch wound assays, both the initial wound area (denoted by red line) and the 

area of wound region covered (denoted by the green line) for each treatments were 

derived and presented as ratio of area covered/initial wound area for n = 3. 
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2.8.5  Co-localization study 

For quantification of co-localization studies, data were obtained from 20 cells 

immunostained with either P-ERK1/2 (Thr202/Tyr204) or ERK1/2 and they were 

represented as Pearson Coefficient of Correlation values using the SoftWoRx 

software (Applied Precision, USA).  

2.8.6  MEK1/2 inhibitor treatment 

For the U0126 inhibitor treatment studies, 400-1000 cells from each treatment group 

were counted for n = 8 independent experiments using imageJ analysis software. The 

number of cells with aggregates were counted and represented as number of cells with 

aggregates relative to control.  

2.8.7  Viral titration of N/TERT-1 cells with AcGFP-K14 R125P and AcGFP-

K14 R125P_Y129F constructs 

For the infection study, 500 – 3000 cells from each multiplicity of infection (M.O.I) 

treatment group of 0.5, 1.0 and 2.0 respectively were counted for 3 independent 

experiments using ImageJ analysis software. The total number of cells, the number of 

GFP-positive cells and the number of cells with aggregates were counted and 

represented as % infection efficiency and % of cells with aggregates.  

2.8.8  General statistical analysis 

All data were presented as mean  SD, except for single cell migration which was 

presented as mean  S.E.M. Data analysis was performed by one-way analysis of 

variance (ANOVA) followed by post hoc Tukey‟s test for multiple comparisons of at 

least three groups or unpaired Student‟s t-test between two groups using Prism 5.0 

(Graphpad Software Inc.). p values of < 0.05 were considered statistically significant.  
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3.1  Introduction 

Normal homeostasis of the epidermis is maintained by a tightly controlled 

keratinocyte differentiation program that provides the barrier function of the body. 

However, in response to injury, this self-renewal program is interrupted and the 

keratinocytes become “activated”, which occurs not only on wounding but also in in 

vitro culture conditions (reviewed in Grinnell, 1990; Grinnell, 1992). During this 

wound healing process, the junction and adhesion molecules of the keratinocytes 

undergo significant changes (reviewed in Martin, 1997). For instance, the 

keratinocytes partially disintegrated their hemidesmosomes and began to express 

vitronectin, fibronectin receptors and α5β1 integrins, which allowed them to migrate 

over the provisional wound matrix (Cavani et al., 1993; Haapasalmi et al., 1996; 

Singer and Clark, 1999). Fibronectin is a major component of this provisional wound 

matrix (reviewed in Clark, 1990), which accumulates in wound fluid such as in the 

suction blisters (Wysocki and Grinnell, 1990).  

One of the markers of activated keratinocytes is the suprabasal expression of K6, K16 

and K17 proteins at the expense of K1 and K10 (Weiss et al., 1984), hence deviating 

from the usual differentiation program. It is thought that these wound- induced 

keratins provide plasticity and flexibility of the cytoskeleton of the migrating 

keratinocytes (Coulombe, 1997), hence promoting the reorganization of keratin 

filaments during the onset of re-epithelialization (Paladini et al., 1996). 

As the keratinocytes migrate, they form new focal adhesion complexes and undergo 

intracellular actinomyosin filaments contraction as they push forward towards the 

wound bed (Mitchison and Cramer, 1996). Due to the switching of integrin receptors 

(β4 to β1) and assembly of associated actin filament networks, there is a lag of several 
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hours before epidermal migration begins (Grinnell, 1992). Initiation of keratinocyte 

migration occurred 16-24 hours after injury (Winter, 1962), and its early phase was 

not affected by mitosis (Matoltsy, 1955). However, keratinocytes located behind the 

migrating sheet could undergo a transient burst of proliferation a few hours after the 

onset of migration, providing more cells to sustain re-epithelialization (Garlick and 

Taichman, 1994).  

Wound-edge keratinocytes also up-regulate several matrix metalloproteinases (MMP) 

such as MMP-2 and MMP-9 (gelatinases), which can cleave basal lamina collagen 

(type IV) and anchoring fibril collagen (type VII) (Salo et al., 1994), thus aiding in 

tissue remodelling.  

Once the activation cycle is completed, keratinocytes become deactivated and revert 

to normal differentiation, giving rise to the quiescent stratified epidermis. This 

process is termed the keratinocyte activation cycle (Freedberg et al., 2001).  

EBS Dowling-Meara (EBS-DM) keratinocytes have an intrinsic upregulation of 

activated stress kinases and they show sustained stress responses to osmotic stress 

(D'Alessandro et al., 2002) and faster migration during scratch wound assays (Morley 

et al., 2003). Why these EBS-DM keratinocytes have a faster wound response is not 

completely understood, although this could have something to do with their 

keratinocyte activation state.  

In this chapter, it is hypothesized that EBS-DM cells are in a constitutively stressed or 

activated state reminiscent to a wound condition. Experiments are designed to address 

the following: (1) the differences between wild-type and EBS-DM cells at sub-

confluence in terms of (a) their stress activated protein kinase (SAPK) activation, (b) 

their difference in migration speeds (single and collective cell migration) and (c) 
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wound response protein expression (K17, β1 integrin, fibronectin and MMP-9); (2) 

changes in wound response protein levels in EBS-DM cells as they transit to 

quiescent state (100 % confluence or more) and (3) changes in wound response 

protein levels upon reverting from confluence to an activation state when subjected to 

multiple scratch wounding. It is found that EBS-DM cells are intrinsically “primed” 

to be in the constitutively activated state, which might be a consequence of the 

pathogenesis of recurrent blister formation in EBS-DM patients. 

 

3.2  Results 

3.2.1  Characterization of EBS-DM cell lines 

As the first step to identify the physiological differences between wild-type cells and 

EBS-DM cells, wild-type keratinocytes isolated from the skin of a normal individual, 

immortalized and named as NEB-1 (wild-type K14) (Morley et al., 2003), mutant 

keratinocytes isolated from the skin of a EBS-DM patient (harbouring EBS-DM 

mutation K14 R125P), immortalized and named as KEB-7 (Morley et al., 2003) and 

NEB-1 keratinocytes stably expressing EGFP-tagged K14 WT and K14 R125P 

(Liovic et al., 2009) were used in this study.  

It was confirmed that KEB-7 keratinocytes show spontaneous appearance of keratin 

aggregates at the periphery, and that this occurs in the presence of intact filament 

formation [Figure 3.1 (I) (i) (B)], compared to wild-type NEB-1 keratinocytes in 

[Figure 3.1 (I) (i) (A)]. Characterization of NEB-1 keratinocytes stably expressing 

EGFP-K14 R125P showed a phenotype reminiscent to that of KEB-7 cells from their 

densely packed keratin bundles at the perinuclear region and keratin aggregates 
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segregated at the cell periphery [Figure 3.1 (I) (ii) (B)]. This was distinct from cells 

stably expressing EGFP-K14 WT, which did not show any peripheral keratin 

aggregates [Figure 3.1 (I) (ii) (A)]. Moreover, the presence of normal filament 

formation was not completely impaired in the EGFP-K14 R125P keratinocytes 

[Figure 3.1 (I) (ii) (B)], which was similar to that of KEB-7 cells [Figure 3.1 (I) (i) 

(B)], and showed a co-existent of normal filaments with peripheral keratin aggregates.  

It is also observed that there are variations in the level of K14 expression in t issue 

culture, as is commonly seen in many cell lines, and this could be due to the time 

lapse since the last cell division or due to an unidentified microenvironmental factor 

that affect keratin synthesis in culture.  

To evaluate the protein levels of endogenous and exogenous K14 of the different cell 

lines, immunoblot analysis was performed on cell lysates from NEB-1, KEB-7, 

EGFP-K14 WT and EGFP-K14 R125P cell lines at subconfluence [Figure 3.1 (II)]. It 

was shown that KEB-7 cells have significantly higher (* p < 0.05) levels of K14 

proteins (2.02 ± 0.99 folds) than NEB-1 cells (1.00 ± 0.00), although the ratio of wild-

type K14 and mutant K14-R125P proteins of the KEB-7 cells within this band could 

not be determined [Figure 3.1 (III) (i)]. Equal amounts of endogenous K14 (1.00 ± 

0.00) and exogenous K14 (1.03 ± 0.21 folds) protein levels were observed in EGFP-

K14 WT cells [Figure 3.1 (III) (ii)], whereas the amount of exogenous K14 proteins 

(1.59 ± 0.50 folds) were significantly higher (* p < 0.05) than that of the endogenous 

K14 proteins (1.00 ± 0.00) in EGFP-K14 R125P cells [Figure 3.1 (III (ii)], an 

observation similar to that reported in (Beriault et al., 2012) using the same cell lines. 

These results showed that NEB-1 K14 R125P cells predominantly expressed the 

exogenous mutant K14 proteins, with the endogenous wild-type K14 proteins 

contributing to 40% of the total [Figure 3.1 (III (ii)]. This may be because the CMV-
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driven transfected K14 construct is not responding to local feedback signals when the 

K14 level in the cell becomes too high, whereas the normal K14 promoter driving the 

endogenous K14 is responsive to such signals. Thus, synthesis of the endogenous K14 

can be regulated and shut down whilst the transfected K14 cannot. These observations 

also suggest that EBS-DM cell lines have an abnormal K14 expression profile, 

because the levels of K5 proteins are the same in all four cell lines [Figure 3.1 (III) 

(iii)], and this could be a response to the accumulating mutant keratins (in the form of 

aggregates) at the leading edge. 
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Figure 3.1 Characterization of EBS-DM cell lines. (I) Spontaneous formation of keratin 

aggregates co-existing with filaments in EBS-DM cells. (i) Immunostaining of (A) NEB-1 

and (B) KEB-7 keratinocytes with anti-K14 (LL001). Scale bar, 30 µm. (ii) Stable 

expression of (A) EGFP-K14 WT and (B) EGFP-K14 R125P in NEB-1 keratinocytes. 

Scale bar, 30 µm. (II) EBS-DM (KEB-7) cells expressed higher levels of K14 than wild-

type (NEB-1) cells. Insoluble fractions of cell extracts were prepared from these cell lines 

at subconfluence. Immunoblot analysis of these cell lysates shown using antibodies to K14 

(LL001) and K5 (XM-26). Actin used as loading control. (III) Densitometry values of (i) 

endogenous K14 levels, (ii) exogenous K14 relative to endogenous K14 levels and (iii) K5 

protein levels of the respective cell lines at subconfluence, normalized to actin loading 

control and data presented as relative to NEB-1 group or endogenous K14 group and as 

mean ± S.D for n= 3. Statistical significance was assessed by one-way analysis of variance, 

followed by Tukey‟s test, * p < 0.05 vs NEB-1 group or endogenous K14 group.  
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3.2.2  Keratin aggregates localized at the leading edge are highly dynamic 

To demarcate the region where the keratin aggregates were segregated, mutant 

keratinocytes expressing EGFP-K14 R125P was immunostained with phalloidin, 

which could bind F-actin subunits specifically. It was observed that keratin aggregates 

were organized in a polarized manner [Figure 3.2 (i) (A)], at sites of lamellipodial 

protrusions where directed cell migration normally occurred [Figure 3.2 (i) (B)]. 

Time-lapse imaging of EGFP-K14 R125P cell line showed that the small, highly 

dynamic peripheral keratin aggregates originated from the base of the lamellipodium, 

coalesced to form larger keratin granules, disassembled and incorporated into the pre-

existing keratin network in a retrograde transport fashion [Figure 3.2 (ii)]. This 

observation was consistent to another study that utilized EYFP-K14 R125C, where 

the authors demonstrated that the keratin aggregates localized at the periphery were 

transported in an actin-meditated manner and incorporated into perinuclear keratin 

filaments (Werner et al., 2004). Hence, these results showed that keratin aggregates at 

lamellipodial protrusions were highly dynamic. This would allow for the rapid 

remodelling of both keratin and actin subunits during directed cell migration.  
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Figure 3.2 Keratin aggregates localized at the leading edge are highly dynamic. 

Continuous remodelling of keratin aggregates at sites of lamellipodial protrusions. (i) 

(A) Localization of keratin aggregates at sites of (B) F-actin (phalloidin) formation in 

EGFP-K14 R125P cells. Scale bar, 30 µm. (ii) Time-lapse imaging of EGFP-K14 

R125P cell at intervals of 15 sec for 30 min. The montage showed movements of 

keratin aggregates at intervals of 1 min during acquisition from 18
th

  to 23
th
 min. Small 

peripheral keratin aggregates observe to coalesce (red arrows), disassemble and 

incorporate into the pre-existing keratin network (blue arrows). Scale bar, 10 µm. 
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3.2.3  Intrinsic and sustained stress activation in isogenic EBS-DM cells during 

osmotic stress 

It was previously shown that EBS-DM (KEB-7) keratinocytes have an intrinsic 

upregulation of stress activated kinases and they showed sustained stress responses to 

osmotic stress (D'Alessandro et al., 2002). These results were reproducible when the 

isogenic pathomimetic cell line (EGFP-K14 R125P) was exposed to the same osmotic 

stress regime and then examined for stress kinase activation [Figure 3.3 (i)]. It was 

observed that upon 30-60 min recovery from 5 min of 150 mM urea treatment, 

phosphorylated K5 was upregulated in both cell lines, suggesting that there was a 

remodelling of keratin intermediate filaments under stress [Figure 3.3 (i)]. A 

concomitant increase in both JNK1/2 and p38 phosphorylation [Phospho-JNK (P-

JNK1/2) /phospho-p38 (P-p38)] were also observed in this recovery time course, 

confirming that both JNK1/2 and p38 activation were involved in this stress regime 

[Figure 3.3 (i)].  

One consistent observation was the intrinsic and sustained levels of stress-activated 

protein kinases (SAPKs: P-p38 and P-JNK1/2) in the mutant cells during the osmotic 

stress treatment regime as compared to the wild-type cells [Figure 3.3 (ii)]. For 

instance, the mutant cells have higher basal levels of P-p38 and P-JNK1/2 than wild-

type cells, suggesting intrinsic stress activation [Figure 3.3 (ii)]. Moreover, the mutant 

cells have higher levels of p38 and JNK1/2 activation than wild-type cells throughout 

the time course after recovery from osmotic stress, indicating sustained stress 

activation [Figure 3.3 (ii)]. This could be associated with altered filament kinetics of 

mutant keratin protein leading to a misfolded protein response (Russell et al., 2010). 

Keratinocytes derived from patients suffering from EBS-localized mutation (mild 

phenotype with no keratin aggregates) also have an intrinsic activation of SAPKs 
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(D'Alessandro et al., 2002). This state also leads to mutant keratinocytes 

downregulating their dual-specificity phosphatases which will further shift the 

equilibrium of SAPKs being constitutively activated in these cell lines (Liovic et al., 

2008). 
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Figure 3.3 Intrinsic and sustained stress activation in isogenic EBS-DM cells during 

osmotic stress.  EBS-DM cells have intrinsic and sustained upregulation of stress-activated 

protein kinases (P-p38 and P-JNK). (i) EGFP-K14 WT and EGFP-K14 R125P cells were 

exposed to 5 min of 150 mM urea treatment, and left to recover for 30 min and 1 hr 

respectively. Soluble fractions of cell extracts were prepared from these cells. Immunoblot 

analysis of these cell lysates shown using antibodies to P-K5, P-JNK (Thr183/Tyr185), 

JNK, P-p38 (Thr180/Tyr182) and p38. GAPDH used as loading control. (ii) Densitometry 

values of P-p38 and P-JNK protein levels for the respective cell lines at different conditions, 

normalized to total p38 or total JNK and GAPDH loading control. 
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3.2.4  EBS-DM mutation predisposes keratinocytes to have directional 

persistence in single cell migration 

To determine whether the EBS-DM mutation has any effect on the directional 

migration of keratinocytes, single cell motility of each cell line was investigated by 

using live-cell DIC (differential interference contrast) imaging to monitor the random 

migration of keratinocytes (Sehgal et al., 2006; Hamill et al., 2009). Tracked plots of 

randomly migrating single cell suggested that the KEB-7 cells show more directional 

persistence and migrated further away from the central origin [Figure. 3.4 (i) (B)], 

whereas majority of the NEB-1 cells migrated around the central origin in a non-

directional manner [Figure. 3.4 (i) (A)]. The total distances travelled over 5 hrs by 

each cell from each cell line were represented as a distribution in the form of 

histograms: NEB-1 (49-638 μm) and KEB-7 (68-996 μm) respectively [Figure 3.4 (ii) 

(A-B)]. The mean distance travelled by KEB-7 cells (444.0 ± 31.48 μm) was 

significantly higher (*** p < 0.001) than that of NEB-1 cells (276.1 ± 18.05 μm) 

[Figure 3.4 (iii)], thus demonstrating an intrinsic faster migration rate over a period of 

5 hrs. 

3.2.5  Keratinocytes harboring EBS-DM mutation close up wounds faster in 

scratch wound assays  

Epidermal keratinocytes do not normally migrate as single cells but as sheets of 

interconnected cells, so it is possible that the migration response of single cells is 

exaggerated and/or the stress state is abnormally high. Therefore, in vitro scratch 

wound assays were used to examine the collective migration of keratinocytes, 

monitored by live-cell phase contrast imaging of the cell monolayer after wounding. It 

was confirmed that KEB-7 shows faster migration than NEB-1 at 26 hrs post-

wounding [Figure 3.5 (i)], and that EGFP-K14 R125P cells close up wound faster 

than that of EGFP-K14 WT cells at 14 hrs post-wounding [Figure 3.5 (ii)]. These 
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results were consistent with previous studies (Morley et al., 2003; Liovic et al., 2009) 

and further demonstrated that the presence of keratin aggregates, which is correlated 

with intrinsic stress in these EBS-DM keratinocytes, is associated with faster 

migration in both single and collective cell migration assays.  
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Figure 3.4 EBS-DM mutation predisposes keratinocytes to have directional 

persistence in single cell migration. EBS-DM cells have higher motility rates in single 

cell migration. (i) Live-cell DIC images of single cell from each cell line were obtained 

every 5 min for a total of 5 hours. DIC images of single cell were then filtered, 

segmented and adjusted to auto-threshold by macros written with ImageJ. Each track 

represented a cell over a period of 5 hours for n = 55 (NEB-1) and n = 45 (KEB-7). (ii) 

Total distance travelled by each cell for 5 hrs was extracted and represented in the form 

of histograms. (iii) Data presented as mean distance travelled and as mean ± S.E.M. 

Statistical significance was assessed by unpaired t-test, *** p < 0.001 vs. NEB-1 group. 
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Figure 3.5 Keratinocytes harbouring EBS-DM mutation close up wounds faster in 

scratch wound assays. EBS-DM cells have faster migration speeds in collective cell 

migration. (i-ii) Cells grown to confluence in an Essen ImageLock 96-well plate were 

subjected to wounding with a 96-well WoundMaker Tool. Images acquired immediately 

and at 1 hr intervals for 14 or 26 hrs using the IncuCyte imaging system. Data were 

processed by ImageJ software. Red line marks the denuded area from which cells were 

removed at the start of the wound (0 hr); green line marks the remaining uncovered area after 

14 or 26 hrs wound closure time (14 or 26 hrs).  
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3.2.6  EBS-DM cells express more wound response proteins at both the mRNA 

transcript and protein levels  

The observations that EBS-DM cells have intrinsic stress activation and that they 

migrated faster than wild-type cells lead to the hypothesis that they are in an 

“activated” state of the keratinocyte activation cycle. To test this hypothesis, the 

levels of proteins associated with a wound response (reviewed in Santoro and 

Gaudino, 2005) were examined in the four cell lines at sub-confluence. An 

upregulation of K17 (wound-induced keratin) expression was observed in the EBS-

DM cells as compared to wild-type cells, at both the mRNA transcript [Figure 3.6 (I) 

(i)] and protein levels [Figure 3.6 (II) (i)]. Other wound-associated genes observed to 

be up-regulated in the EBS-DM cells as compared to wild-type cells included the β1 

integrin (wound-associated integrin), fibronectin (wound-associated extracellular 

matrix, ECM protein), and MMP-9 (wound-associated matrix metalloproteinase), a 

gelatinase induced during wound healing and a marker for migratory phenotype 

[Figure 3.6 (I) (ii- iv), Figure 3.6 (II) (ii) and (iii)]. These differences in expression 

levels of wound response proteins between EBS-DM and wild-type cells suggest that 

EBS-DM cells are more activated than the wild-type cells, and these increased levels 

of wound response proteins such as β1 integrin and MMP-9 may be the factors 

predisposing EBS-DM cells to migrate further and faster in cell migration assays.  
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Figure 3.6 EBS-DM cell lines expressed high levels of wound response proteins at both 

the mRNA transcript and protein levels. EBS-DM cells were more “activated” than wild-

type cells. (I) RNA isolated from NEB-1, KEB-7, EGFP-K14 WT and EGFP-K14 R125P cell 

lines at sub-confluence. cDNAs were prepared and analyzed by real-time PCR for 

quantification using specific primers to (i) K17, (ii) β1 integrin, (iii) fibronectin, (iv) MMP-9, 

normalized to RPLP0. Data presented as mRNA expression relative to NEB-1 and as mean ± 

S.D for n = 3 of each group. Statistical significance was assessed by one-way analysis of 

variance, followed by Tukey‟s test, * p < 0.05 vs. NEB-1 or EGFP-K14 WT group. (II) 

Soluble fractions of cell extracts were prepared from each cell line at sub-confluence. 

Immunoblot analysis of these cell lysates shown using antibodies to (i) K17 (E3), (ii) β1 

integrin (CD29) and (iii) fibronectin (clone 10). Actin used as loading control. Densitometry 

values of (i) soluble K17 levels, (ii) β1 integrin levels and (iii) fibronectin levels of the 

respective cell lines at subconfluence, normalized to actin loading control. Data presented as 

relative to NEB-1 group and as mean ± S.D for n= 2 sets of experiments. 
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3.2.7  Loss of keratin aggregates as EBS-DM cells become confluent 

Experiments were then undertaken to assess whether driving the mutant cells into 

confluence would influence the number of keratin aggregates. Subconfluent (80% 

confluence) keratinocytes were first cultured to 100% confluence (into a monolayer) 

and further grown to 1 and 2 days post-confluence (i.e. quiescence, or approaching 

quiescence) before fixing them or harvesting them for immunoblot analysis. It was 

observed that as these mutant keratinocytes were grown from full confluence to 1 and  

2 days post-confluence, EGFP-K14 R125P cells began to lose their peripheral keratin 

aggregates [Figure 3.7 (i) and (ii)]. These changes in appearance could be due to a 

change in activation status as they transited from activated to quiescent state. 

3.2.8 Loss of keratin aggregates is accompanied by a change in desmoplakin 

localization 

It was observed that mutant keratinocytes grown beyond confluence have a change in 

desmoplakin localization [Figure 3.8 (A‟) and (B‟)], wherein cytoplasmic 

desmoplakin (seen in subconfluent cells with aggregates) became increasingly 

localized to cell-cell adhesion sites in the confluent EGFP-K14 R125P cells [Figure 

3.8 (A‟‟) and (B‟‟), insert], thus suggesting that the presence of keratin aggregates 

was influenced by the state of the desmosomal adhesion between adjacent mutant 

keratinocytes. This inverse correlation between less extensive desmoplakin 

localization to the desmosomes and the presence of more misfolded keratin 

aggregates in cells with EBS-DM mutation suggests that desmoplakin may directly 

affect the stability of mutant K14-containing filaments. If this is so, then reduction of 

desmosomes may promote a more migratory phenotype and increase keratin 

aggregate formation, whereas more extensive desmosome assembly co uld limit cell 

migration and reduce keratin aggregates.  
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Figure 3.7 Loss of keratin aggregates as EBS-DM cells become confluent.              

Loss of peripheral aggregates as EBS-DM cells approach the quiescent state. (i) 

Immunofluorescence images showing EGFP-K14 R125P cells at different confluence 

states from (A) 80%, (B) 100%, (C) post confluence for 1 day (100% + 1) and (D) 2 days 

(100% + 2). Scale bar, 20 µm. (ii) Quantification of the number of cells with keratin 

aggregates at different confluence states using ImageJ. Data presented as % of cells with 

aggregates relative to 80% confluence group for n = 500-800 cells counted.   
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Figure 3.8 Loss of keratin aggregates is accompanied by a change in desmoplakin 

localization. Desmoplakin localization in EBS-DM cells changed from cytoplasmic to cell-

cell adhesion borders as confluence increased. (A-B) Immunofluorescence images showing 

EGFP-K14 R125P cells at 80% and 100% confluence. (A‟-B‟) Immunostaining of EGFP-

K14 R125P cells with anti-desmoplakin I/II (11-5F), and (A‟‟-B‟‟) a 2x magnified image of 

desmoplakin localization shown in the insert. Scale bar, 40 µm.  
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3.2.9  Loss of peripheral aggregates is associated with changes in β1 integrin 

and fibronectin levels  

Because a change in appearance (reduction of keratin aggregates) of the mutant 

keratinocytes was observed by growing them beyond confluence (approaching 

quiescent state), experiments were conducted by immunoblot analysis to determine 

whether increasing quiescence could induce a change in their activation state. In all 

the four cell lines, it was observed that there was a decrease in the levels of wound 

response proteins such as β1 integrin and fibronectin as confluence increased [Figure 

3.9 (i) and (ii)]. Hence, driving the mutant keratinocytes into a quiescent state 

(increasing confluence) could neutralize their activation status and loss of keratin 

aggregates could be an indicator of a shift in activation state.  

3.2.10  EBS-DM cells induce more soluble K17 proteins upon wounding  

For biochemical analysis of the scratch wound- induced activation changes, a multiple 

scratch protocol was devised [Figure 3.10 (I) (A) and (A‟)]. Multiple scratch wounds 

were generated on the confluent monolayer of both EGFP-K14 WT and EGFP-K14 

R125P cells to drive the cells into an activated state. The levels of wound response 

proteins at 18 hrs or 24 hrs post-scratch were then analysed using immunoblot 

analysis. It was observed that there was an increase in β1 integrin levels in both cell 

lines upon wounding, supporting the migratory phenotype of keratinocytes during 

wound closure [Figure 3.10 (II) (i) and (ii)]. It was further demonstrated that EGFP-

K14 R125P keratinocytes induced more soluble K17 proteins (0.23 ± 0.19) than wild-

type keratinocytes (0.15 ± 0.14) at 18 hrs post-scratch, and that the levels of soluble 

K17 proteins in the EBS-DM cells were higher than the wild-type cells at all time 
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points after wounding [Figure 3.10 (II) (i) and (ii)]. Hence, these results confirmed 

that EBS-DM cells are more activated than wild-type cells. 

In summary, the findings in this chapter demonstrate that EBS-DM keratinocytes are 

more activated than wild-type keratinocytes in terms of its constitutive activated 

SAPK activation, up-regulation of wound-associated proteins such as K17 and β1 

integrin and faster migration.  Confluence leads to a reduction of keratin aggregates in 

EBS-DM keratinocytes, accompanied by a decrease in activation state and wounding 

results in a faster reactivation of wound response as compared to controls.  
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Figure 3.9 Loss of peripheral aggregates is associated with changes in β1 integrin 

and fibronectin levels. Loss of keratin aggregates is associated with a decrease in 

activation state. (i) Soluble fractions of cell extracts were prepared from each cell line at 

different confluence states from 80%, 100%, post-confluence for 1 day (100% + 1) and 2 

days (100% + 2). Immunoblot analysis of these cell lysates shown using antibodies to β1 

integrin (CD29) and fibronectin (clone 10). Actin used as loading control. (ii) 

Densitometry values of β1 integrin and fibronectin protein levels of the respective cell 

lines in different confluence states, normalized to actin loading control. Data presented as 

relative to 80% confluence group and as mean ± S.D for n= 2 sets of experiments. 
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Figure 3.10 EBS-DM cells induce more soluble K17 proteins upon wounding. 

EBS-DM cells have a greater wound response than wild-type cells. (I) Formation of 

multiple scratch wounds (A‟) from a monolayer of cells (A). (II) (i) Soluble and 

insoluble fractions of cell extracts were prepared from each cell line that were 

unscratched, post-scratched for 18 hrs and 24 hrs respectively. Immunoblot analysis 

of these cell lysates shown using antibodies to β1 integrin (CD29), K17 (E3) and K5 

(XM-26). Actin used as loading control. (ii) Densitometry values of β1 integrin and 

soluble K17 protein levels of the respective cell lines in different conditions, 

normalized to actin loading control and presented as mean ± S.D for n= 2 sets of 

experiments.  
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3.3  Discussion 

The work described in this chapter is based on the use of an in vitro model of the 

epithelial wound response. (1) An experimental keratinocyte activation cycle was 

established in an in vitro assay system, by growing cells to confluence and then 

scratch wounding them. The transition of the cultured keratinocytes could then be 

studied from subconfluent (activated) to confluence (quiescent) and then re-activating 

the cells by scratch wounding to stimulate the wound response processes. (2) The 

transition from normal state (wild-type cells) to activated state (EBS-DM cells) is 

associated with up-regulation of wound response proteins such as K17, MMP-9, β1 

integrin and fibronectin, as has been described for wounds in vivo, validating this 

model. (3) EBS-DM cells were confirmed to be in a more activated state than wild-

type cells, even without the application of additional stress, as indicated by their 

higher levels of several stress-associated proteins. (4) The tight correlation between 

the appearance of keratin aggregates (rapid remodelling of keratin precursors at the 

leading edge) and the activation state of the keratinocytes suggests that the presence 

of aggregates could be an indicator of activation state.  

The observations of peripheral keratin aggregates in the mutant keratinocytes (KEB-7 

and EGFP-K14 R125P), but not in the wild-type keratinocytes (NEB-1 and EGFP-

K14 WT), were consistent with previous studies in either EBS-DM patient-derived 

keratinocytes or over-expression of mutant constructs in cell culture system (Letai et 

al., 1993; Werner et al., 2004). An abnormal K14 expression profile was observed in 

EBS-DM cells as compared to wild-type cells, although it is not known whether this 

imbalance of keratin levels is a general feature of keratin mutation. Time-lapse 

imaging showed that the peripheral keratin aggregates were highly dynamic, 

undergoing rapid remodelling at sites of lamellipodial protrusions. The present data 
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also showed the inherent stress activation in EGFP-K14 R125P cells, as seen by 

constitutive upregulation of activated stress kinases (P-JNK and P-p38), in agreement 

with earlier work (D'Alessandro et al., 2002). It was reported that during wound 

healing, p38 activation was observed in the leading keratinocytes (Harper et al., 2005). 

Since EBS-DM cells show constitutive stress activation, their responses in single and 

collective cell migration assays were further examined. It was demonstrated that the 

EBS-DM mutation pre-disposed the cells to migrate further and faster in single and 

collective cell migration respectively, suggesting that the inherent stress is connected 

to the increased motility of these mutant keratinocytes.  

Keratinocytes that are “activated”, or in a wound-healing state, expressed several 

wound response markers. For instance, K6, K16 and K17 are important wound-

induced keratins that when ablated, resulted in compromised wound healing 

(Mazzalupo et al., 2003) and delayed re-epithelialization (Wojcik et al., 2000). 

Migrating keratinocytes also undergo a switch in integrins (β4 to β1) at wound sites 

(reviewed in Santoro and Gaudino, 2005), which facilitates migration over the fibrin-

fibronectin rich provisional wound matrix (O'Keefe et al., 1985; Nickoloff et al., 

1988). Other keratinocyte-upregulated components such as MMP-2 and MMP-9 are 

also known to facilitate wound healing (Salo et al., 1994). 

To determine whether these EBS-DM mutant keratinocytes were in an “activated” 

state equating to wound healing, levels of these wound- induced proteins were 

examined in both the wild-type and EBS-DM cell lines. It was found that wound-

induced proteins such as K17, MMP-9, β1 integrin and fibronectin were intrinsically 

upregulated in EBS-DM cells as compared to wild-type cells, supporting the 

proposition that EBS-DM cells are in a constitutively activated state, effectively 

“primed” for wound healing. 
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Cells grown to confluence in culture (epithelial cell monolayer) are known to mimic a 

quiescent state of the keratinocyte activation cycle (reviewed in Santoro and Gaudino, 

2005). In the present study, EBS-DM cells were grown to high confluence in culture 

to bring them out of their activation state. It was observed that as confluence 

increased, there was a reduction of peripheral keratin aggregates seen in the mutant 

cells, accompanied by a change in desmoplakin localization from a cytoplasmic 

distribution of desmoplakin to its localization at cell-cell borders. 

Desmoplakin is known to interact directly with keratin intermediate filaments through 

part of its C-terminal domain (Kouklis et al., 1994).  Previous studies have shown that 

desmosomes are able to adopt two alternative adhesive states, one calcium-dependent 

(weakly adhesive) and the other calcium-independent (hyper-adhesive) (Kimura et al., 

2007), which could be modulated by PKC (Wallis et al., 2000).  The calcium 

independent state was distinguished by strong desmoplakin staining at cell-cell 

borders in confluent cultures, to which its hyper-adhesiveness was attributed (Kimura 

et al., 2007), whereas desmosomes at the wound edge were characterized by a 

calcium-dependent state, with weak desmoplakin staining at cell-cell borders, 

possibly due to internalisation of desmosomes (Garrod et al., 2005).  

The importance of desmoplakin in tethering keratin intermediate filaments to cell-cell 

junctions was revealed by the phenotype of desmoplakin conditional knockout mice, 

which exhibited peeling skin and desmosomes that lacked inner plaques and were 

devoid of keratin attachment (Vasioukhin et al., 2001). In the present study, the 

reduction of keratin aggregates upon increasing confluence could be explained by a 

cessation of keratin remodelling at the leading edge, as cells no longer need to migrate 

and keratin filaments become attached to stabilized desmosomes at cell-cell borders. 

Members of our group have observed a connection between desmosomal adhesive 
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state and keratin aggregate formation (unpublished data) and the work presented here 

also suggests that restoring desmoplakin localization might be crucial in attenuating 

the activation status of EBS-DM cells. 

Next, it was established that the activation states of EBS-DM cells decreased upon 

increasing confluence, as seen by a decline in β1 integrin and fibronectin protein 

levels. Finally, the activated state of these confluent keratinocytes could be restored 

by scratch wounding, where a higher induction of soluble K17 in EBS-DM cells at 18 

hrs post-wounding was observed as compared to wild-type cells, thus confirming the 

constitutive stress activation of EBS-DM cells. 

Recent findings have shown that ERK1/2 activation in EBS-DM keratinocytes could 

protect these mutant cells against apoptosis during mechanical stress (Russell et al., 

2010). This suggests that cells effectively “primed” for wound healing are more able 

to adapt to stress, and that altered filament kinetics may play a role in this. 

Identification of the mechanisms underlying the regulation of keratin filament kinetics 

could give us some insights to the pathogenesis of skin fragilty disorder or even 

aggresome formation (Mallory body) in cholestatic liver diseases (Fickert et al., 2003).  

In conclusion, the results in this chapter demonstrated that EBS-DM cells are 

constitutively activated, and the presence of keratin aggregates (rapid remodelling of 

keratin precursors at the leading edge) could be an indicator for the activation state. A 

schematic diagram summarising the results of Chapter 3 is depicted in Figure 3.11. 
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Figure 3.11 Schematic diagram summarising the results of Chapter 3. 
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CHAPTER 4        

EGF INVOLVEMENT IN REGULATING 

KERATIN EXPRESSION AND DYNAMICS 
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4.1  Introduction 

The keratinocyte activation cycle is regulated by extracellular signal cues such as the 

tumor necrosis factor α (TNF-α), epidermal growth factor (EGF), transforming 

growth factor α and β (TGF-α and TGF-β) and interferon γ (IFN-γ) (Freedberg et al., 

2001). EGF and TGF-α, members of the EGF family and ligands for EGF receptor 

(EGFR), are considered the key mitogens and chemotactic factors that drive wound 

closure (reviewed in Kirfel and Herzog, 2004). It has been shown that both EGF and 

TGF-α can play an important role in colony expansion through the induction of 

epithelial cell migration (Barrandon and Green, 1987). This induction of cell 

migration is attributed to the rapid formation of lamellipodia and filopodia (Chinkers 

et al., 1979), mediated by the activation of small guanosine triphosphatase (GTPase) 

Rac by EGF (Nobes and Hall, 1995). 

During re-epithelialization of wounds, epidermal keratinocytes revert to a migratory 

phenotype and move over a fibronectin-rich provisional wound matrix (Midwood et 

al., 2004). Forward locomotion is mediated by the formation of lamellipodia that 

extend into the wound (reviewed in Lauffenburger and Horwitz, 1996; Welch et al., 

1997), and this may involve a coordination between the three interconnected filament 

systems, namely intermediate filaments, actin microfilaments and microtubules  

(reviewed in Mikhailov and Gundersen, 1998; Waterman-Storer and Salmon, 1999; 

Chang and Goldman, 2004). In addition, intermediate filament-associated proteins 

such as BPAG-1 and plectin from the plakin family (Leung et al., 2002) also have a 

role to play in cell migration during wound healing. It was shown that BPAG-1 

knockout mice have defects in wound healing (Guo et al., 1995) while plectin-/- 

fibroblasts have difficulty in reorganizing their actin cytoskeleton, resulting in 

reduced cell migration (Andra et al., 1998). Together, these studies show that there is 
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an interplay between filaments and filament-associated proteins contributing to cell 

migration. 

Keratin intermediate filaments play a major role in the structural stability of epithelial 

tissues by forming a cytoskeletal scaffold and providing mechanical resistance to 

stress (reviewed in Owens and Lane, 2003). Keratin intermediate filaments typically 

connect to both desmosomes and hemidesmosomes and thereby not only contribute to 

stability between epithelial cells but also to the stability of the epithelial attachment to 

the basement membrane (reviewed in Kowalczyk et al., 1999; Nievers et al., 1999). 

Besides its structural role, accumulating experimental evidence has shown that the 

keratin cytoskeletal network is highly dynamic, with constant turnover in cells 

(Windoffer and Leube, 1999; Yoon et al., 2001; Windoffer et al., 2004). Time-lapse 

imaging of cultured cells expressing fluorescent-tagged keratins revealed the 

dynamics of keratin particles being transported along microtubules (Yoon et al., 2001; 

Liovic et al., 2003) or actin stress fibers (Woll et al., 2005; Kolsch et al., 2009). A 

recent model to account for the assembly and disassembly of keratins, independent of 

biosynthesis, has been proposed by Leube and colleagues and is suggested to explain 

how the rigid keratin cytoskeletal network can be remodelled rapidly without network 

disruption (reviewed in Windoffer et al., 2011). For instance, during cell migration, 

keratin precursors were observed to nucleate at the lamellipodial regions, possibly 

associated with focal adhesions (Windoffer et al., 2006), and then to elongate and 

move towards the cell interior in an actin-mediated retrograde manner, before 

becoming incorporated into the peripheral keratin network (Woll et al., 2005). 

Although much of this work was done by imaging live cells and measuring 

morphological changes in keratin structures, the molecular mechanism regulating 
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keratin remodelling in wound- induced stress response is not well understood, and 

Leube‟s model remains hypothetical to date (reviewed in Windoffer et al., 2011). 

Keratin aggregates in EBS-DM cells form in lamellipodia [Figure 3.2] and 

lamellipodia are produced in response to EGF-induced Rac activation (Nobes and 

Hall, 1995) during cell migration. In this chapter, it is hypothesized that EGF 

influences keratin remodelling to affect cell migration during wound response. 

Experiments are carried out using the EBS-DM (EGFP-K14 R125P) cells (previously 

established in Chapter 3 to be in a constitutively activated state) as a model to dissect 

the signalling pathways involved. The results obtained show that EGF can affect 

keratin synthesis and solubility by increasing soluble K14 levels and also regulate 

keratinocyte migration in scratch wound assays. It is demonstrated that when EGFP-

K14 R125P cells are cultured in media without EGF, a reduction of keratin aggregates 

is observed, which can be restored upon re-stimulation with EGF. This EGF-mediated 

effect appears to be associated with the cytoskeletal linker protein, plectin.  

Inactivation of ERK1/2 kinase downstream of EGF signalling results in fewer mutant 

keratinocytes with peripheral aggregates, accompanied by a decrease in plectin levels. 

In the mutant keratinocytes, ERK1/2 knockdown with siRNA also results in a 

decrease of both peripheral aggregates and plectin levels. Fluorescence live-cell 

imaging is used to confirm the relationship between ERK1/2 activation, keratin 

aggregate status and cell migration in mutant keratinocytes. Conversely, plectin 

knockdown could reduce the number of mutant keratinocytes with peripheral 

aggregates and slow down mutant cell migration in scratch wound assays. In 

summary, these results suggest that EGF signalling plays a role in regulating keratin 

remodelling in wound- induced stress activated cells during migration, through 

modulating plectin levels. 
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4.2  Results 

4.2.1  EBS-DM cells have more soluble K5 and K14 proteins than wild-type 

cells 

It has been shown that remodelling of the keratin intermediate filament network is 

mediated by post-translational modifications such as keratin phosphorylation, which 

might favour the unpolymerised state of keratins by increasing their solubility 

(Toivola et al., 2002; Omary et al., 2006). 

In Chapter 3, it was observed that there was an abnormal K14 expression profile in 

KEB-7 (EBS-DM) cells when compared to NEB-1 (wild-type) cells. Experiments 

were therefore carried out to determine whether the abnormal K14 expression profile 

was consistently observed when compared to another wild-type cell line (N/TERT-1 

cells) and whether there is any difference in keratin solubility. Soluble/supernatant 

and insoluble/pellet fractions were prepared from N/TERT-1 (wild-type) cells and 

KEB-7 (EBS-DM) cells at subconfluence. Immunoblot analysis of cell lysate 

fractions showed that at the basal level, KEB-7 (EBS-DM) cells expressed more K14 

(2.98 ± 0.79 folds) (* p < 0.05) and K5 (2.61 ± 0.47 folds) (** p < 0.01) proteins than 

N/TERT-1 (wild-type) cells (1.00 ± 0.00) in the soluble fraction (non-filamentous, 

disassembled) but not in the insoluble fraction (pelletable, filamentous) [Figure 4.1 (i-

ii)]. These results confirmed the abnormal K14 expression profile in EBS-DM cells. It 

is possible that the presence of severe keratin mutation results in increased synthesis 

or it could be that the location of the R125P mutation alters K14 phosphorylation (a 

hypothesis tested in Chapter 5), hence attributing to its increased solubility.  
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N/TERT-1 KEB-7 

K14 (LL001) 

K5 (XM-26) 

Actin 

Soluble fraction Insoluble fraction 

Actin 

Figure 4.1 EBS-DM cells have more soluble K5 and K14 proteins than wild-type cells. 

(i) Soluble and insoluble fractions of cell extracts were prepared from these cell lines at 

subconfluence. Immunoblot analysis of these cell lysates shown using antibodies to K14 

(LL001) and K5 (XM-26). Actin used as loading control. (ii) Densitometry results showing 

the intensity of soluble K14 or K5 levels for each cell line, normalized to its actin loading 

control and data presented as relative to N/TERT-1 group and as mean ± S.D for n = 3 of 

each treatment. Statistical significance was assessed by unpaired t-test, * p < 0.05, ** p < 

0.01 vs. N/TERT-1 group.  
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4.2.2  EGF treatment increases K14 synthesis and solubility in wild-type but not 

EBS-DM cells 

EGF is known to be an essential mitogenic and chemotactic factor for keratinocytes 

during wound healing (reviewed in Kirfel and Herzog, 2004), and to induce 

keratinocyte migration (Barrandon and Green, 1987). EGF is also known to induce 

keratin gene expression (Jiang et al., 1993; Tomic-Canic et al., 1998) which is 

mediated by downstream signalling pathways involving transcription factors such as 

c-Fos and c-Jun components of AP-1 that activate keratin promoter (Ma et al., 1997; 

Sinha et al., 2000). In an effort to understand the mechanisms regulating keratin 

remodelling in response to stress, the EGF signalling pathway was therefore explored 

to assess its effects on the keratin cytoskeleton.  

To address whether EGF could regulate keratin remodelling, the effects of EGF on 

keratin synthesis and solubility were examined in both cell lines. N/TERT-1 cells 

cultured in serum-free media without EGF for 48 hrs were subjected to EGF (10 

ng/ml, 100 ng/ml) treatments for 48 hrs. It was found that there was a significant 

increase (* p < 0.05) in K14 mRNA transcript in N/TERT-1 cells upon treatment with 

EGF (10 ng/ml) (1.36 ± 0.22 folds) and EGF (100 ng/ml) (1.44 ± 0.20 folds) as 

compared to untreated control (1.00 ± 0.00), whereas there was no significant change 

in K5 mRNA transcript in N/TERT-1 cells upon treatment with EGF (100 ng/ml) 

(0.99 ± 0.16 folds) as compared to untreated control (1.00 ± 0.00) [Figure 4.2 (I) (i) 

(A-C)], indicating increased K14 synthesis in response to EGF. 

To determine the changes in keratin protein solubility upon EGF treatment, 

soluble/supernatant and insoluble/pellet fractions were prepared from N/TERT-1 cells. 

It was found that the soluble fraction of K14 (non-filamentous, disassembled) in 
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N/TERT-1 cells increased significantly (* p < 0.05) upon treatment with EGF (100 

ng/ml) (2.36 ± 0.63 folds), as compared to untreated control (1.00 ± 0.00), whereas 

there was no significant change in the insoluble fraction of K14 (pelletable, 

filamentous), indicating increased solubility of K14 in response to EGF [Figure 4.2 (I) 

(ii) and (iii)]. There was also no significant change in the soluble K5 expression of 

N/TERT-1 cells upon EGF (100 ng/ml) treatment (1.23 ± 0.88 folds) as compared to 

untreated control (1.00 ± 0.00) [Figure 4.2 (I) (ii) and (iii)]. 

EBS-DM cells (KEB-7) were cultured without EGF for 48 hrs prior to the same EGF 

treatment regimes. It was found that there was no significant change in K14 mRNA 

transcript in KEB-7 cells upon treatment with EGF (100 ng/ml) (1.14 ± 0.18 folds) as 

compared to untreated control (1.00 ± 0.00), as well as no significant change in K5 

mRNA transcript in KEB-7 cells upon treatment with EGF (100 ng/ml) (1.12 ± 0.28 

folds) as compared to untreated control (1.00 ± 0.00) [Figure 4.2 (II) (i) (A-C)]. 

To determine the changes in keratin protein solubility upon EGF treatment, 

soluble/supernatant and insoluble/pellet fractions were prepared from KEB-7 cells. It 

was found that there was a slight increase in the soluble K14 expression (non-

filamentous, disassembled) upon EGF (100 ng/ml) treatment (1.42 ± 0.30 folds), 

though it was not significant as compared to untreated control (1.00 ± 0.00) [Figure 

4.2 (II) (ii) and (iii)]. Similarly, there was also a slight increase in the soluble K5 

expression upon EGF (100 ng/ml) treatment (1.33 ± 0.36 folds), but it was also not 

significant as compared to untreated control (1.00 ± 0.00) [Figure 4.2 (II) (ii) and (iii)]. 

These results suggest that changes in keratin expression in EBS-DM cells are 

relatively subtle to EGF treatment, possibly because of a constitutively activated EGF 

signalling in these mutant cells, a hypothesis that is tested below [see 4.2.6]. 
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(iii)  

Figure 4.2 (I) EGF treatment increases K14 synthesis and solubility in wild-type cells. 

N/TERT-1 cells cultured in serum-free media without EGF for 48 hrs were subjected to 

EGF treatments (10 ng/ml and 100 ng/ml) for 48 hrs. (i) RNA was isolated from each 

treatment group. cDNAs were prepared and analyzed by real-time PCR for quantification 

using specific primers to (A) KRT14, (B) KRT5, normalized to RPLP0. Data presented as 

mRNA expression relative to untreated control (CTRL), and as mean ± S.D for n = 3 of 

each treatment. Statistical significance was assessed by one-way analysis of variance, 

followed by Tukey‟s test, * p < 0.05 vs. CTRL group. (C) Amplified cDNA products from 

real-time PCR showing the levels of KRT14 and KRT5 mRNA expression upon EGF 

treatment (ii) Soluble and insoluble fractions of cell extracts were prepared from each 

treatment group. Immunoblot analysis of these cell lysates shown using antibodies to K14 

(LL001) and K5 (XM-26). Actin used as loading control. (iii) Densitometry results 

showing the intensity of soluble K14 or K5 levels for each EGF treatment group, 

normalized to its actin loading control and data presented as relative to untreated CTRL 

group and as mean ± S.D for n = 3 of each treatment. Statistical significance was assessed 

by one-way analysis of variance, followed by Tukey‟s test, * p < 0.05 vs. CTRL group.  
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(iii)  

Figure 4.2 (II) No significant change in keratin synthesis and solubility in EBS-DM 

cells in response to EGF treatments . KEB-7 cells cultured in media without EGF for 48 

hrs were subjected to EGF treatments (10 ng/ml and 100 ng/ml) for 48 hrs. (i) RNA was 

isolated from each treatment group. cDNAs were prepared and analyzed by real-time 

PCR for quantification using specific primers to (A) KRT14, (B) KRT5, normalized to 

RPLP0. Data presented as mRNA expression relative to untreated control (CTRL), and as 

mean ± S.D for n = 3 of each treatment. Statistical significance was assessed by one-way 

analysis of variance, followed by Tukey‟s test. (C) Amplified cDNA products from real-

time PCR showing the levels of KRT14 and KRT5 mRNA expression upon EGF 

treatment. (ii) Soluble and insoluble fractions of cell extracts were prepared from each 

cell line. Immunoblot analysis of these cell lines shown using antibodies to K14 (LL001) 

and K5 (XM-26). Actin used as loading control. (iii) Densitometry results showing the 

intensity of soluble K14 or K5 levels for each EGF treatment group, normalized to its 

actin loading control and data presented as relative to untreated CTRL group and as mean 

± S.D for n = 3 of each treatment. Statistical significance was assessed by one-way 

analysis of variance, followed by Tukey‟s test. 
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4.2.3  EGF regulates keratinocyte migration through its downstream signalling 

pathways 

Since remodelling of the keratin cytoskeleton is active during cell migration and EGF 

is known to stimulate migration, the effect of EGF on cells with defective keratins 

was investigated. It was observed that collective migration of keratinocytes, measured 

by the area recovered in a scratch wound assay, could be slowed down drastically in 

the presence of AG1478, a known EGFR inhibitor, in both EGFP-K14 WT (0.12 ± 

0.05) (+++ p < 0.001) and EGFP-K14 R125P (0.06 ± 0.03) (### p < 0.001) cells [Figure 

4.3 (iii) and (iv)] as compared to DMSO-treated controls [Figure 4.3 (i) and (iv)]. In 

addition, the effects of a downstream signalling kinase in the EGF pathway, ERK1/2, 

was examined by incubating the cells with U0126 [(MEK inhibitor known to prevent 

MEK1/2 from phosphorylating its downstream target, ERK1/2 (Favata et al., 1998)] 

prior to scratch wounding. The data showed that U0126 treatment could also slow 

down cell migration significantly in both EGFP-K14 WT (0.46 ± 0.12) (++ p < 0.001) 

and EGFP-K14 R125P (0.63 ± 0.14) (## p < 0.01) cells [Figure 4.3 (ii) and (iv)] as 

compared to DMSO-treated controls [Figure 4.3 (i) and (iv)]. 
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Figure 4.3 EGF regulates keratinocyte migration through its downstream signalling 

pathways. (i-iii) Cells grown to confluence in an Essen ImageLock 96-well plate were 

subjected to wounding with a 96-well WoundMaker Tool and treated with either DMSO, 

AG1478 (10 µM) or U0126 (10 µM) in fresh media. Images were acquired immediately and 

at 1 hr intervals for 20 hrs using the IncuCyte imaging system. Data were then processed by 

ImageJ software. Red line marks the denuded area from which cells were removed at the 

start of the wound (0 hr); green line marks the remaining uncovered area after 20 hrs wound 

closure time (20 hrs). (iv) Areas between red (or green) lines were derived from a macro 

written with ImageJ and quantified. Data presented as ratio of area covered/initial wound 

area and as mean ± S.D for n = 3 of each group. Statistical significance was assessed by 

one-way analysis of variance, followed by Tukey‟s test, *
 
p < 0.05 vs. EGFP-K14 WT 

CTRL group;
 ++

 p < 0.01, 
+++

 p < 0.001 vs. EGFP-K14 WT CTRL group; and 
## 

p < 0.01, 
### 

p < 0.001 vs. EGFP-K14 R125P CTRL group. 
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4.2.4  EGF influences keratin aggregate formation 

To investigate whether EGF plays a role in mediating keratin remodelling in wound-

induced stress activated cells, EBS-DM (EGFP-K14 R125P) cells were cultured in 

media without EGF for two passages and subconfluent cultures were assessed for the 

number of cells with aggregates [Figure 4.4 (I) (i)]. In the absence of EGF, cells 

proliferated in tight colonies [Figure 4.4 (I) (i) (A)] whereas colony boundaries were 

more diffuse in those cells constantly cultured with EGF [Figure 4.4 (I) (i) (B)]. It was 

observed that there was fewer cells having aggregates in the –EGF group [Figure 4.4 

(I) (i) (A)] as compared to those constantly cultured with EGF [Figure 4.4 (I) (i) (B)]. 

Moreover, desmoplakin staining showed that cells cultured in –EGF group have well-

developed desmosomes with neighboring cells (cell-cell borders) [Figure 4.4 (I) (ii) 

(A)] as compared to cells constantly cultured with EGF (where desmoplakin was 

more cytoplasmic) [Figure 4.4 (I) (ii) (B)]. 

In order to remove the effects of serum on keratin aggregate formation in the EGFP-

K14 R125P cells, experiments on subconfluent cells were carried out by first serum-

starving the cells for 6 hrs before EGF treatment [Figure 4.4 (II) (i) (A)]. In addition, 

a „rescue‟ experiment was performed where cells in the –EGF control (CTRL) group 

were re-stimulated with EGF (100 ng/ml) for a short-term exposure of 3 hrs. The 

results showed that there was an increase in the number of cells with peripheral 

aggregates after 3 hrs of EGF stimulation [Figure 4.4 (II) (i) (B)]. It was shown that 

cells in the CTRL + EGF group also yielded a significant (* p < 0.05) increase in the 

number of cells with aggregates (12.3 ± 4.2) as compared to control group (7.37 ± 2.6) 

[Figure 4.4 (II) (ii)]. Moreover, it was observed that there was a significant (# p < 0.05) 

reduction in the number of cells with aggregates in the CTRL + EGF + AG1478 
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group, (7.8 ± 1.4) as compared to CTRL + EGF group (12.3 ± 4.2) [Figure 4.4 (II) 

(ii)].  

These studies support a role for the EGF signalling pathway in regulating keratin 

aggregate formation, possibly because EGF induces keratin synthesis to a level where 

the mutant K14 protein cannot become incorporated, or retained, in filaments in the 

EBS-DM cells. 
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Figure 4.4 (I) EGF influences keratin aggregate formation. Loss of keratin 

aggregates was associated with a decrease in EGF exposure. (i) Immunofluorescence 

images showing the effects of EGF removal on keratin aggregates formation. EGFP-

K14 R125P cells cultured in (A) media without EGF for two passages or (B) constantly 

cultured with EGF before fixation. Scale bar, 40 μm. (ii) Immunofluorescence images 

showing the effects of EGF removal on keratin aggregate formation and desmoplakin 

localization. EGFP-K14 R125P mutant cells cultured in (A) media without EGF for 

two passages or (B) constantly cultured with EGF were immunostained with antibodies 

to desmoplakin (11-5F). Scale bar, 40 μm.  
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(i)  

EGFP-K14 R125P 

Figure 4.4 (II) EGF influences keratin aggregate formation through its downstream 

signalling pathways. (i) Immunofluorescence images showing the effects of EGF removal 

on keratin aggregates formation.  (A) EGFP-K14 R125P cells were cultured in media 

without EGF (CTRL) and serum starved for 6 hrs before (B) re-stimulated with EGF (100 

ng/ml) for 3 hrs. Scale bar, 40 μm. (ii) EGFP-K14 R125P cells were cultured in media 

without EGF (CTRL), serum starved for 6 hrs, re-stimulated with EGF for 3 hrs prior to 

treatment with inhibitors U0126 (MEK1/2 inhibitor) and AG1478 (EGFR inhibitor) for 1 hr. 

Quantification of the number of EGFP-K14 R125P keratinocytes showing keratin aggregates 

after EGF removal (CTRL), EGF re-stimulation for 3 hrs and treatment with inhibitors 

U0126 (MEK1/2 inhibitor) and AG1478 (EGFR inhibitor) for 1 hr. Numbers of cells with 

aggregates were counted using ImageJ. Data presented as % of cells with aggregates as mean 

± S.D for n = 4 sets of 700-900 cells counted. Statistical significance was assessed by one-

way analysis of variance, followed by Tukey‟s test, * p < 0.05, vs. CTRL group or 
# 
p < 0.05 

vs. CTRL + EGF group.  
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4.2.5  EGF also modulates plectin levels 

Because of the changes in keratin aggregate appearance, the effect of EGF stimulation 

was examined in further detail. The phosphorylation status of downstream signalling 

kinase ERK1/2 in these treatment groups was examined by immunoblot analysis 

[Figure 4.5]. As expected, there was an increase in ERK1/2 phosphorylation 

[phospho-ERK1/2 (P-ERK1/2)] upon EGF stimulation, which could be abolished by 

both U0126 (10 μM) and AG1478 (10 μM) treatments [Figure 4.5]. 

As well as its effects on keratin and desmoplakin, differential effects of EGF 

signalling pathway activation on keratin mutant cells were seen for the 

hemidesmosomal-associated protein, plectin, but not adherens junction protein, E-

cadherin or armadillo protein, plakoglobin [Figure 4.5]. The cytoskeleton linker 

protein plectin is one of the major keratin-associated proteins in keratinocytes forming 

part of the hemidesmosomes. Treatment with EGF increased plectin levels in the 3 hrs 

treatment regime [Figure 4.5]. However, only the EGFP-K14 R125P cells showed 

plectin downregulation upon inhibitor treatment, but not the EGFP-K14 WT cells, 

suggesting that plectin levels are especially sensitive to EGF signalling in the mutant 

EGFP-K14 R125P cells. Thus, an increase in EGF leads to both an increase in plectin 

levels and an increase in keratin aggregate formation in the EBS-DM cells, and both 

are reversed by an EGF signalling inhibition in the mutant cells [compare Figures 4.4 

(II) (ii) and 4.5]. These results suggest that EGF may influence keratin dynamics by 

modulating plectin levels, a hypothesis that is tested below [see 4.2.12]. 
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Figure 4.5 EGF also modulates plectin levels. EGFP-K14 WT and EGFP-R125P cell 

lines were cultured in media without EGF and serum starved for 6 hrs before the 

treatment regimes. They were re-stimulated with EGF for 3 hrs prior to treatment with 

inhibitors U0126 (MEK1/2 inhibitor) and AG1478 (EGFR inhibitor) for 1 hr. Soluble 

fractions of cell extracts were prepared from the cells. Immunoblot analysis of these cell 

lysates shown using antibodies to plectin (clone 31), E-cadherin (clone 36), plakoglobin 

(clone 15), P-ERK1/2 (Thr202/Tyr204) and ERK1/2 respectively. Actin used as loading 

control. 
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4.2.6  Misregulated ERK1/2 activation in EBS-DM cell lines 

The level of activated ERK1/2 was examined in all the four cell lines at 

subconfluence. Both KEB-7 and EGFP-K14 R125P (cells expressing EBS-DM 

mutation) show higher levels of P-ERK1/2 than NEB-1 and EGFP-K14 WT (both 

K14 wild-type) cell lines respectively [Figure 4.6 (i)]. Moreover, when both EGFP-

K14 WT and EGFP-K14 R125P cells were serum-starved and immunoblotted with P-

ERK1/2 antibody, intrinsic activation of ERK1/2 was observed in the EBS-DM cells 

which were not seen in the wild-type cells [Figure 4.6 (ii)]. Re-stimulation with EGF 

(100 ng/ml) restored ERK1/2 phosphorylation in both the cell lines. Thus, cells 

harboring the K14 R125P mutation show constitutive ERK1/2 activation. 

Activation of ERK1/2 was further examined in both EGFP-K14 WT and EGFP-K14 

R125P keratinocytes by over-expressing FLAG-ERK2 for 24-48 hrs and then probing 

by immunoblotting. ERK1/2 activation upon FLAG-ERK2 over-expression was 

sustained from 24-36 hrs in both cells [Figure 4.6 (iii)]. However, at 48 hrs post-

transfection, P-ERK1/2 levels in EGFP-K14 WT keratinocytes had declined, whilst 

the signal was still sustained in EGFP-K14 R125P cells, even when its FLAG 

expression had diminished [Figure 4.6 (iii)]. This indicates a high level of constitutive 

ERK1/2 activation in EGFP-K14 R125P cells, possibly connected with their low level 

of phosphatase activity (Liovic et al., 2008). 
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Figure 4.6 Misregulated ERK1/2 activation in EBS-DM cell lines. Intrinsic and sustained 

activation of ERK1/2 in EBS-DM cells. (i) Soluble fractions of cell extracts were prepared 

from each cell line at sub-confluence. Immunoblot analysis of these cell lysates shown using 

antibodies to P-ERK1/2 (Thr202/Tyr204) and ERK1/2. Actin used as loading control. (ii) 

Both EGFP-K14 WT and EGFP-K14 R125P cells were serum-starved for 6 hrs before re-

stimulation with EGF (100 ng/ml) for 3 hrs. Soluble fractions of cell extracts were prepared. 

Immunoblot analysis of these cell lysates shown using antibodies to P-ERK1/2 

(Thr202/Tyr204) and ERK1/2. GAPDH used as loading control. (iii) EGFP-K14 WT and 

EGFP-R125P cells were transiently transfected with either FLAG CTRL or FLAG-ERK2 

expression plasmid for 24-48 hrs. Soluble fractions of cell extracts were prepared from each 

cell line. Immunoblot analysis of these cell lysates shown using antibodies to FLAG, P-

ERK1/2 (Thr202/Tyr204) and ERK1/2. Actin used as loading control.  
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4.2.7  Co-localization of P-ERK1/2 and the peripheral keratin aggregates 

Immunofluorescence analysis with antibodies to P-ERK1/2 showed co- localization of 

activated ERK1/2 with the peripheral keratin aggregates in the mutant keratinocytes 

[Figure 4.7 (i) A‟‟]. Co-localization results showed a significant increase (*** p < 

0.001) in Pearson‟s coefficient of correlation values of P-ERK1/2 (0.78 ± 0.08) as 

compared to ERK1/2 (0.26 ± 0.10) staining respectively [Figure 4.7 (ii) and (iii)], 

which demonstrated that the activated forms of ERK1/2 co- localized with mutant 

keratin aggregates. 

4.2.8  ERK1/2 inhibition reduces peripheral keratin aggregates 

Because P-ERK1/2 co- localized with peripheral keratin aggregates of the EGFP-K14 

R125P cells, the effect of the MEK1/2 inhibitor, U0126 on these mutant keratinocytes 

was examined. Cells were exposed to DMSO or U0126 (10-100 μM) treatments for 1 

hr before fixation [Figure 4.8 (i) (A-D)]. Immunofluoresence images showed a dose-

dependent reduction in the number of cells with aggregates from U0126 (10 μM) 

(0.81 ± 0.09 folds) (** p < 0.01) to U0126 (100 μM) (0.56 ± 0.08 folds) (*** p < 

0.001) as compared to DMSO-treated control (1.00 ± 0.00) [Figure 4.8 (ii)]. These 

observations were further confirmed by staining cells with P-ERK1/2 antibody after 1 

hr treatment with U0126 (100 μM). Immunofluoresence images showed that co-

localization of P-ERK1/2 with the peripheral aggregates was abolished upon U0126 

treatment as compared to DMSO-treated control [Figure 4.8 (iii) (A‟‟) and (B‟‟)]. It 

was also observed that ERK1/2 inhibition resulted in more of the mutant keratin 

localizing into filaments [Figure 4.8 (iii) (B)]. 
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Figure 4.7 Co-localization of P-ERK1/2 and peripheral keratin aggregates. 

Interaction between P-ERK1/2 and keratin aggregates. (i) Immunofluorescence images 

showing the localization of both (A‟) P-ERK1/2 (Thr202/Tyr204) and (B‟) ERK1/2 in 

EGFP-K14 R125P cells, merged with images of (A-B) EGFP-K14 R125P respectively. 

(A‟‟-B‟‟) Image areas used as co-localization analysis shown. Scale bar, 30 µm. (ii) 

(A‟‟‟-B‟‟‟) Pearson coefficient of correlation was 0.8081 (P-ERK1/2) and 0.3827 

(ERK1/2) respectively. (iii) Co-localization quantification of 20 EGFP-K14 R125P cells 

at the aggregate region stained with either P-ERK1/2 (Thr202/Tyr204) or ERK1/2. Data 

presented as Pearson coefficient of correlation value and as mean ± S.D.
 
Statistical 

significance was assessed by unpaired t-test, *** p < 0.001 vs. ERK1/2 stained group.   
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Figure 4.8 ERK1/2 inhibition reduces peripheral keratin aggregates. ERK1/2 was 

involved in regulating keratin aggregate formation. (i) Immunofluorescence images showing 

the effects of MEK1/2 inhibition on the formation of peripheral keratin aggregates. EGFP-

K14 R125P mutant cells subjected to either (A) DMSO (CTRL) or (B-D) U0126 (MEK1/2 

inhibitor) (10, 50, 100 μM) treatment for 1 hr. Scale bar, 40 μm. (ii) Quantification of the 

number of EGFP-K14 R125P keratinocytes with peripheral aggregates after either DMSO 

or U0126 (MEK1/2 inhibitor) (10, 50 and 100 µM) treatments for 1 hr. Number of cells with 

peripheral keratin aggregates were counted in each of the treatment groups using ImageJ. 

Data presented as relative control (number of cells with aggregates) as mean ± S.D for n = 8 

sets of 400-1000 cells counted. Statistical significance was assessed by one-way analysis of 

variance, followed by Tukey‟s test, ** p < 0.01, *** p < 0.001 vs. DMSO (CTRL) group. 

(iii) Immunofluoresence images showing EGFP-K14 R125P mutant cells subjected to either 

DMSO or U0126 (MEK1/2 inhibitor) (100 µM) treatments for 1 hr. Cells were then stained 

with P-ERK1/2 and their merged images shown. Scale bar, 30 µm.  
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4.2.9  ERK1/2 inhibition only reduces plectin levels in EBS-DM cells 

Immunoblot analysis of protein levels after 1 hr treatment with U0126 (10-100 μM) 

showed complete loss of phosphorylated ERK1/2 in both EGFP-K14 WT and EGFP-

K14 R125P cells [Figure 4.9]. Since plectin in the EGFP-K14 R125P cells was 

affected during the EGF treatment regime described previously, plectin levels upon 

U0126 treatment was examined to understand its role in regulating keratin aggregate 

formation. Basal level of plectin of the untreated EGFP-K14 R125P cells was already 

significantly higher than that of the EGFP-K14 WT cells [Figure 4.9]. In addition, a 

dose-dependent decrease in the levels of plectin was only observed in the EGFP-K14 

R125P cells upon increasing concentrations of U0126 treatment, but this was not seen 

in the EGFP-K14 WT cells [Figure 4.9], further supporting the possibility that plectin 

levels are associated with the formation of keratin aggregates and this effect is 

downstream of ERK1/2 activity. Hence, these experiments indicated that the 

formation of keratin aggregates might be modulated by the activity of ERK1/2 kinase 

and plectin levels. 
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Figure 4.9 ERK1/2 inhibition only reduces plectin levels in EBS-DM cells. 

EGFP-K14 WT and EGFP-K14 R125P cells subjected to either DMSO (CTRL) or 

U0126 (MEK1/2 inhibitor) (10, 50, 100 µM) treatments for 1 hr. Soluble fractions of 

cell extracts were prepared from these cells. Immunoblot analysis of these cell 

lysates were shown using antibodies to plectin (clone 31), P-ERK1/2 

(Thr202/Tyr204) and ERK1/2. Actin used as loading control.  
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4.2.10  ERK1/2 knockdown reduces peripheral keratin aggregates  

To eliminate the possibility of non-specific effects of U0126 treatment, siRNA 

knockdown experiments were performed in EGFP-K14 R125P cells, specifically 

targeting the genes ERK1 and ERK2. At 48 hrs and 72 hrs post-transfection of the 

siRNA, there was a significant decline (*** p < 0.001; ### p < 0.001) in both ERK1 

and ERK2 expression at the mRNA transcript [Figure 4.10 (i)] and protein [Figure 

4.10 (ii)] levels. The results consistently showed fewer mutant cells with keratin 

aggregates in ERK1/ERK2 siRNA transfected cells as compared to control siRNA 

transfected cells at 72 hrs post-transfection [Figure 4.10 (iii)], further supporting a 

direct regulation of keratin aggregate formation by ERK1/2 activity. At 72 hrs post-

transfection, ERK1/ERK2 knockdown was the most effective and a decrease in the 

number of mutant cells with aggregates was observed. At this time, a slight decrease 

in plectin levels was also apparent [Figure 4.10 (ii)]. This lends support to the 

possibility of plectin involved in regulating keratin aggregate formation through 

ERK1/2 activity. 
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Figure 4.10 ERK1/2 knockdown reduces peripheral keratin aggregates.            

Direct involvement of ERK1/2 activation in regulating keratin aggregate formation.  (i) 

RNA isolated from EGFP-K14 R125P cells that were transiently transfected with either 

CTRL siRNA for 72 hrs or ERK1/ERK2 siRNA for 48 hrs and 72 hrs respectively. 

cDNA were prepared and analyzed by real-time PCR for quantification using specific 

primers to ERK1 and ERK2, normalized to HPRT. Data presented as relative mRNA 

expression to CTRL siRNA and as mean ± S.D for n = 3 of each group. Statistical 

significance was assessed by one-way analysis of variance, followed by Tukey‟s test, 

*** p < 0.001 vs. ERK1 CTRL siRNA group; 
###

 p < 0.001 vs. ERK2 CTRL siRNA 

group. (ii) Soluble fractions of cell extracts were prepared from EGFP-K14 R125P cell 

line that was transiently transfected with either CTRL siRNA for 72 hrs or ERK1/ERK2 

siRNA for 48 hrs and 72 hrs respectively. Immunoblot analysis of these cell lysates 

shown using antibodies to plectin (clone 31), P-ERK1/2 (Thr202/Tyr204) and ERK1/2. 

Actin used as loading control. (iii) Immunofluoresence images showing EGFP-K14 

R125P cells transiently transfected with either CTRL siRNA or ERK1/ERK2 siRNA 

treatment for 72 hrs. Scale bar, 40 µm.  
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4.2.11  ERK1/2 regulates keratin dynamics and cell migration 

The link between ERK1/2 activity and keratin aggregate formation was further 

supported by time- lapse live-cell imaging of subconfluent EGFP-K14 R125P cells 

during exposure to U0126 treatment, imaged over 1 hr [Figure 4.11]. In basal 

conditions, keratin aggregates were localized at the leading edge of each cell during 

migration. Upon U0126 (100 μM) treatment, the cells were observed to initially 

retract, and showed a decrease in keratin dynamics, and aggregate formation appeared 

to cease very quickly. After washout of U0126 and replenishment with fresh medium, 

keratin aggregates reappeared in the peripheral cytoplasm and cells began to migrate 

again [Figure 4.11]. These experiments further demonstrated that P-ERK1/2 

localization at the leading edge was involved in regulating keratin dynamics.  
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Figure 4.11 ERK1/2 regulates keratin dynamics and cell migration.            
ERK1/2 activation affects keratin dynamics and cell migration. Time-lapse imaging of 

EGFP-K14 R125P cells under the effect of U0126 (MEK1/2 inhibitor) (100 µM). (A) 

Cells at the basal level were recorded at intervals of 1 min for 1 hr, (A‟) treated with 

U0126 for 1 hr, (A‟‟) followed by a wash out of U0126, replenished with fresh media 

and further imaged for 1 hr. Images were processed using imageJ and different color 

codings were used to demarcate the distance travelled by the keratinocytes at 0 (green), 

30 min (blue) and 60 min (red) after each treatment respectively. Scale bar, 10 µm. 
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4.2.12  Plectin knockdown reduces peripheral keratin aggregates 

To establish whether plectin directly regulated keratin aggregate formation, siRNA 

knockdown experiments were performed in both EGFP-K14 WT and EGFP-K14 

R125P cells, specifically targeting the plectin gene, PLEC. At 48 hrs and 72 hrs post-

transfection of the PLEC siRNA, there was a significant decrease in plectin 

expression of the EGFP-K14 WT (* p < 0.05) and EGFP-K14 R125P (** p < 0.01) 

cells at the mRNA transcript as compared to CTRL siRNA transfected cells [Figure 

4.12 (i)]. This led to the down-regulation of plectin levels in both cell lines after 48 

hrs and 72 hrs post-transfection [Figure 4.12 (ii)]. Significantly fewer mutant cells 

with keratin aggregates were observed in PLEC siRNA transfected cells as compared 

to control siRNA transfected cells at 72 hrs post-transfection [Figure 4.12 (iii)], 

confirming an involvement of plectin in the likelihood of keratin aggregate formation 

in the EBS-DM cells.   

4.2.13  Plectin knockdown in EBS-DM cells slows down wound closure 

The role of plectin in regulating cell migration of both wild-type and EBS-DM cells 

were then examined in scratch wound assays. At 72 hrs post-transfection, plectin 

knockdown was the most effective and a decrease in the number of mutant cells with 

aggregates was observed. At this time, wound closure was slowed down significantly 

(*** p < 0.001) in PLEC siRNA transfected mutant cells (0.50 ± 0.10) as compared to 

control siRNA transfected mutant cells (0.78 ± 0.10) [Figure 4.13 (i) and (ii)], thus 

suggesting that plectin could also affect cell migration, possibly through modulating 

keratin dynamics in the mutant cells. However, a reverse result was observed in the 

wild-type cells, wherein PLEC siRNA transfected wild-type cells (0.74 ± 0.15) 

resulted in faster wound closure as compared to control siRNA transfected wild-type 
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cells (0.58 ± 0.15) [Figure 4.13 (i) and (ii)], an observation that was consistent to that 

reported in (Osmanagic-Myers et al., 2006). This intriguing observation suggests that 

plectin expression in the EBS-DM cells may be different from that of the wild-type 

cells and that it may affect cell behaviour in terms of cell migration in this context. 

More work will be needed to understand these differences.  

In summary, the results presented in this chapter demonstrate that EGF signalling not 

only affects keratin synthesis and solubility but also affects keratin remodelling, as 

aggregate formation in EBS-DM cells, through its downstream ERK1/2 signalling 

pathways, and that this may be effected through modulation of plectin levels.  
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Figure 4.12 Plectin knockdown reduces peripheral keratin aggregates. Direct 

involvement of plectin in regulating keratin aggregate formation. (i) RNA isolated from 

both EGFP-K14 WT and EGFP-K14 R125P cells that were transiently transfected with 

either CTRL siRNA for 72 hrs or PLEC siRNA for 48 hrs and 72 hrs respectively. cDNAs 

were prepared and analyzed by real-time PCR for quantification using specific primers to 

plectin, normalized to HPRT. Data presented as relative mRNA expression to CTRL siRNA 

and as mean ± S.D for n = 3 of each group. Statistical significance was assessed by one-way 

analysis of variance, followed by Tukey‟s test, * p < 0.05; ** p < 0.01 vs. CTRL siRNA 

group. (ii) Soluble fractions of cell extracts were prepared from both EGFP-K14 WT and 

EGFP-K14 R125P cell line that was transiently transfected with either CTRL siRNA for 72 

hrs or PLEC siRNA for 48 hrs and 72 hrs respectively. Immunoblot analysis of these cell 

lysates shown using antibodies to plectin (clone 31). Actin used as loading control. (iii) 

Immunofluoresence images showing EGFP-K14 R125P mutant cells transiently transfected 

with either CTRL siRNA or PLEC siRNA treatment for 72 hrs. Scale bar, 40 µm. 
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Figure 4.13 Plectin knockdown in EBS-DM cells slows down wound closure. Direct 

involvement of plectin in regulating cell migration. (i) EGFP-K14 WT and EGFP-K14 

R125P cells were transiently transfected with either CTRL siRNA or PLEC siRNA and 

grown to confluence in an Essen ImageLock 96-well plate. After 48 hrs post-transfection, 

the cells were subjected to wounding with a 96-well WoundMaker Tool.  Images were 

acquired immediately and at 1 hr intervals for 18 hrs using the IncuCyte imaging system. 

Data were then processed by ImageJ software. Red line marks the denuded area from which 

cells were removed at the start of the wound (0 hr); green line marks the remaining 

uncovered area after 18 hrs wound closure time (18 hrs). (ii) Areas between red (or green) 

lines were derived from a macro written with ImageJ. Data presented as ratio of area 

covered/initial wound area and as mean ± S.D for n = 3 of each group. Statistical 

significance was assessed by one-way analysis of variance, followed by Tukey‟s test, 
#
 p < 

0.05 vs. WT CTRL siRNA group, *** p < 0.001 vs. R125P CTRL siRNA group. 
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4.3  Discussion 

The results reported in this chapter demonstrate several important aspects of 

regulation of keratin remodelling, namely that (1) EGF can regulate keratin 

expression and remodelling in keratinocytes, (2) EGF signalling through ERK1/2 can 

modulate the activated state of EBS-DM cells and (3) plectin probably plays a role in 

keratin remodelling during cell migration. 

Keratin remodelling involves an interchange between the soluble subunits and the 

insoluble filamentous protein, and is mediated by regulation of post-translational 

modifications such as phosphorylation (Chou and Omary, 1993). In the present study, 

it is shown that there is an imbalance in soluble keratin (K14 and K5) levels in KEB-7 

cells when compared to wild-type cells, suggesting that there is increased keratin 

synthesis or remodelling in the mutant cells.  

EGF is known to induce keratin synthesis and expression (Wang et al., 2006; Yoneda 

et al., 2011). In the present study, it is further shown that EGF can increase keratin 

synthesis and solubility, indicated by an increase in both K14 mRNA expression and 

soluble K14 proteins, in the wild-type but not EBS-DM cells. The subtle changes in 

keratin expression in EBS-DM cells upon EGF treatments may possibly be explained 

by a constitutively activated ERK1/2 signalling in these mutant cells, which may 

account for its higher basal keratin expression. Together, these results suggest a role 

for EGF in keratin synthesis and remodelling in keratinocytes, and also highlight a 

misregulated EGF signalling in EBS-DM cells.  

During migration, cells constantly remodel their cytoskeleton in response to 

extracellular cues. This is especially important in wound healing, where basal 

keratinocytes undergo a dramatic reorganization of the cytoskeleton during the 
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transition from stationary cuboidal tissue residents to flattened, polarized migrating 

cells as they migrate across the wound bed (Ortonne et al., 1981). EGF has long been 

known to be a key mitogen and motogen of keratinocytes in driving wound closure 

(Hudson and McCawley, 1998) and this EGF-mediated cell motility is attributed to 

activation of downstream ERK1/2 kinase that can contribute to alterations in the actin 

cytoskeleton through Rac- induced lamellipodia formation (Klemke et al., 1997; Vial 

et al., 2003).  

In this study, EGFR and MEK1/2 inhibitors were used in scratch wound assays to 

show that EGF and ERK1/2 activation were required for facilitating wound closure in 

the keratinocyte cell lines used in these experiments. It was observed that EGFR 

inhibition was more potent in slowing down cell migration than MEK1/2 inhibition in 

both cell lines, suggesting that other pathways parallel to EGF-ERK1/2 signalling, 

such as PKC or Akt pathways, might also be involved in regulating cell migration.  

A direct role of EGF in mediating keratin remodelling was demonstrated in stress 

activated EBS-DM cells, whereby it was observed that fewer cells expressed the 

classic keratin aggregates that are the hallmark of severe EBS when the cells were 

cultured in media without EGF as compared to cells constantly cultured in EGF.  

Besides its effect on keratin solubility and cell migration, EGF also probably affects 

other cytoskeleton components. A previous study reported that desmoplakin 

localization can be affected by EGF (Yin et al., 2005). In the present study, it was 

observed that there was a change in localization of desmoplakin proteins, from 

cytoplasmic to membrane-bound (junction-associated) in the mutant keratinocytes in 

response to EGF removal. Desmoplakin is an important component of desmosomes 

that provides anchoring sites for keratin intermediate filaments through its C-terminal 
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domain, to facilitate cell-cell adhesion (reviewed in Getsios et al., 2004). Interference 

with desmosomal adhesion leads to reduced tissue integrity and tissue blistering 

(Anhalt et al., 1990). Indeed, a recent study has shown that EBS-DM cells exhibited a 

down-regulation of junction proteins as compared to wild-type cells, suggesting that 

keratin mutations led to a reduction in cell-cell adhesion, which could contribute to 

defective tissue integrity and skin blistering (Liovic et al., 2009).  

The present study showed that by increasing cell-cell adhesion upon EGF removal, 

keratin dynamics were slowed down and resulted in a reduction in the number of 

mutant cells with keratin aggregates. A „rescue‟ experiment was performed by re-

stimulating the cells with EGF and it was observed that there was an increase in the 

number of cells with peripheral aggregates, which correlated with increased ERK1/2 

activation. These results suggested that EGF signalling could induce an increase in the 

activation state of EBS-DM cells and increase the likelihood of the mutant cells 

forming keratin aggregates. This is the converse of the decrease in aggregates seen as 

cells become confluent whilst approaching a quiescent state (Chapter 3).  

During wound healing, hemidesmosomes are reorganised in response to chemotactic 

factors such as EGF, allowing cells to migrate (Mainiero et al., 1996). Plectin, being 

localized at hemidesmosomes (reviewed in Wiche, 1998), could be affected by the 

influence of EGF. In this study, it was observed that the levels of plectin were 

increased in response to EGF stimulation, and that the plectin levels were decreased 

by EGFR and ERK1/2 inhibition in mutant cells (but not wild-type cells), and this 

correlated with a decrease in peripheral keratin aggregates. Hence, these observations 

suggest that plectin is involved in keratin remodelling under the influence of EGF.  
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It was also found in this study that ERK1/2 kinase in EBS-DM cells (EGFP-K14 

R125P) are constitutively activated, both intrinsically and sustained, as compared to 

wild-type cells. To study the possible role of ERK1/2 kinase in regulating keratin 

remodelling, co-localization studies were undertaken and it was observed that 

activated ERK1/2 kinase in the mutant cells co- localized with peripheral keratin 

aggregates at sites of lamellipodial protrusion. The sustained activation of ERK1/2 at 

lamellipodial protrusion and its minimial nuclear localization in mutant keratinocytes 

would suggest that there was a lack of nuclear anchoring proteins such as DUSPs that 

could mediate dephosphorylation of ERK1/2 in the nucleus (Caunt et al., 2008a; 

Caunt et al., 2008b). Indeed, one observation made from EBS-DM cell lines was the 

differential regulation of DUSPs where the authors showed that MKP-1, MKP-2 and 

hVH3 (DUSP-5) were significantly downregulated in KEB-7 cells as compared to 

NEB-1 cells at basal conditions (Liovic et al., 2008). This suggests that the up-

regulation of ERK1/2 activity could be a consequence of lower DUSPs activity in the 

mutant cells. Moreover, the possibility of a scaffold protein modulating the 

localization of activated ERK1/2 in close proximity to peripheral keratin aggregates is 

apparent because recent studies have shown that scaffold protein such as KSR could 

control whether ERK1/2 phosphorylate cytosolic or nuclear substrates by regulating 

its dimerisation state (Casar et al., 2008). More work will be needed to understand this 

better.  

Previous studies have also reported that keratinocytes exposed to various stress 

stimuli show abnormally elevated ERK1/2 activation and keratin phosphorylation. For 

instance, it was shown that in response to osmotic stress, KEB-7 showed higher and 

persistent levels of activated ERK1/2 that correlated with increased phosphorylated 

keratin 5 (Morley et al., 2003). Moreover, studies have reported that phosphorylation 
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of K8-S432 is mediated by EGF through ERK1/2 signalling (Ku and Omary, 1997), 

and this ERK1/2-mediated phosphorylation could contribute to K8 reorganisation and 

epithelial tumour cell migration (Busch et al., 2012). Another study also revealed that 

the increased ERK1/2 signalling in response to mechanical stretching could provide 

EBS-DM keratinocytes resistance to stretch-induced apoptosis (Russell et al., 2010). 

These studies show how keratinocytes can adapt to stress stimuli by remodelling their 

keratin cytoskeleton via phosphorylation.  

In this study, the results further substantiated the role of ERK1/2 as a regulator of 

keratin remodelling in wound- induced stress activated cells. By inhibiting ERK1/2 

activity, it was observed that there was a reduction in the number of cells with 

peripheral keratin aggregates. In addition, ERK1/2 inhibition resulted in keratinocytes 

having more bundled keratin filaments at the perinuclear regions as compared to 

untreated control.  

One observation was that the basal plectin level was already higher in the mutant cells 

as compared to wild-type cells. Moreover, this plectin level seemed to be particularly 

sensitive to ERK1/2 inhibition in the mutant cells but not wild-type cells. One could 

speculate that because the mutant keratinocytes with peripheral keratin aggregates 

would undergo continual actin and keratin remodelling till they formed elongated 

filaments, they would have to synthesize more plectin proteins in order to stabilize the 

intermediate filament network. Since ERK1/2 inhibition resulted in the reduction of 

both actin and keratin dynamics in the mutant cell line, plectin cross- linkers that could 

not incorporate into the filament network would be degraded and thus reduce its level. 

This is in contrast to wild-type keratinocytes that could incorporate proper actin and 

keratin filament network with plectin cross-linkers and hence were possibly 

unaffected by ERK1/2 inhibition. A previous work has also described an altered 
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plectin stability in EBS-DM cells when KEB-7 cells were subjected to cyclic 

mechanical stretch. It was found that plectin was relocated from cell junctions and 

associated with the fragmented keratin rings that formed upon mechanical stress, a 

phenomenon that was not observed in the wild-type cells (Russell et al., 2004). 

To substantiate these results, it was shown in this study that ERK1/2 knockdown 

resulted in a reduction of number of cells with keratin aggregates and a decrease in 

plectin levels, thus confirming a direct role of ERK1/2 in regulating keratin aggregate 

formation and plectin levels. This observation was also confirmed by performing 

time- lapse imaging of U0126 treated EGFP-K14 R125P cells, where a decrease in 

keratin dynamics was accompanied with slower cell migration that could be restored 

upon removing the U0126 inhibitor. This demonstrates that ERK1/2 could regulate 

keratin dynamics during cell migration.  

Recent study has also revealed the role of plectin in its ability to organize and 

stabilize the intermediate filament system in plectin-/- keratinocytes (Osmanagic-

Myers et al., 2006). The keratin network of these keratinocytes is less rigid and has 

irregularly loosened bundles of intermediate filaments. In view of this observation, 

the role of plectin in regulating keratin aggregate formation was examined in this 

study. It was demonstrated that plectin knockdown mutant keratinocytes have a 

reduction in the number of cells with keratin aggregates, accompanied by a reduced 

cell migration in scratch wound assays, a result consistent to the findings of plectin-/- 

fibroblasts (Andra et al., 1998) but different from that of plectin-/- keratinocytes 

(Osmanagic-Myers et al., 2006). On the contrary, plectin knockdown wild-type 

keratinocytes were able to migrate faster in scratch wound assay similar to that 

reported in (Osmanagic-Myers et al., 2006). These differences in results could 

possibly be attributed to the presence of different plectin isoforms, as expressed in 
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EBS-DM keratinocytes compared to normal keratinocytes. This particular switch in 

plectin isoforms might be important to cause a change in keratinocyte activation state 

so as to be “primed” for wound response. Further experiments will be needed to 

verify this idea.  

In conclusion, the results in this chapter show that EGF signalling could play a role in 

regulating keratin remodelling in constitutively activated EBS-DM cells during cell 

migration, through modulating plectin levels. A schematic diagram summarising the 

results of Chapter 4 is depicted in Figure 4.14.  
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Figure 4.14 Schematic diagram summarising the results of Chapter 4. 
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CHAPTER 5        

KERATIN PHOSPHORYLATION IN EBS 

PATHOLOGY 
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5.1  Introduction 

Structural modifications of keratin intermediate filaments, which ranges from 

physiological assembly and disassembly of keratin subunits, to detrimental keratin 

aggregation in many forms of stress and disease, are deemed to be important for 

cellular response to environmental cues (reviewed in Magin et al., 2004; Pekny and 

Lane, 2007; Godsel et al., 2008). These changes in keratin filament network is mostly 

mediated by phosphorylation, as seen in keratin reorganization upon sheer stress 

(Ridge et al., 2005), during cell division (Celis et al., 1985) and phosphatase inhibitor 

treatments (Paramio, 1999). The sites and extent of post-translational modifications 

that keratins can undergo are largely defined by their structural characteristics. For 

instance, the tripartite structure of keratins is comprised of a central α-helical coiled-

coil domain flanked by the non-α-helical “head” and “tail” domains. It is well 

established that the “head” and “tail” domains are consensus sites for post-

translational modifications such as glycosylation and phosphorylation, and have 

important mechanistic link to disease manifestations (reviewed in Omary et al., 2006). 

For example, mice that over-expressed human K8 S74A, which cannot be 

phosphorylated by SAPK at Ser74, had an increased predisposition to Fas-mediated 

liver injury than wild-type mice. This was further supported by mice over-expressing 

K8 G62C that showed a dramatic decrease in K8 Ser74 phosphorylation and a similar 

injury phenotype to the K8 S74A mutant (Ku and Omary, 2006). These studies 

demonstrated that the highly conserved S74-containing phosphoepitope (LLpSPL) of 

K8 could serve to sequester SAPK activity, thus acting as a “phosphate sponge” to 

protect tissues from injury (Ku and Omary, 2006). A similar function was also found 

for the phosphosite of K20 S13, which served as a unique marker for intestinal tissue 

injury (Zhou et al., 2006). In addition, transgenic mice expressing K18 S53A mutant 
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further revealed that this phosphosite was crucial in protecting hepatocytes from liver 

injury (Ku et al., 1998b). Moreover, mice that over-expressed human K18 S34A, 

which prevented Ser34 phoshorylation and 14-3-3 binding, resulted in abnormal 

mitotic bodies after partial hepatectomy and persistent 14-3-3 nuclear localization (Ku 

et al., 1998a; Ku et al., 2002). A role for keratin reorganisation was also found in a 

phosphosite of K8 S432, which was mediated by MAPK after EGF stimulation and 

cdc2 kinases during mitotic arrest respectively (Ku and Omary, 1997). Hence, these 

studies demonstrate that phosphorylation at the “head” and “tail” domains have 

importance in disease manifestions and that they play a role in keratin remodelling. 

However, to date, there is limited experimental evidence of post-translational 

modifications occuring in the keratin rod domain, other than caspase-mediated 

cleavage of type I keratins occuring at the rod domain during apoptosis (Caulin et al., 

1997; Ku et al., 1997; Ku and Omary, 2001) and a recent study showing sumoylation 

at rod 2B domain (Snider et al., 2011). The rod domain is comprised of heptad repeats, 

ie. repeats of seven amino acid residues (a-b-c-d-e-f-g)n, in which positions “a” and “d” 

are generally occupied by hydrophobic residues that drive coiled-coil heterodimer 

formation. Positions “e” and “g” are normally occupied by hydrophilic and charged 

residues that may provide additional interactions to strengthen the binding. The 

starting residues of rod 1A domain and the ending residues of rod 2B domain, known 

as the helix initiation and the helix termination motifs respectively, comprise of ~ 20 

amino acid sequence motifs that are highly conserved among the different keratins. 

These motifs are crucial for initiating keratin intermediate filament assembly and thus 

any mutations residing in these motifs will interfere with the early stages of filament 

elongation (Steinert et al., 1993). 



187 
 

In this chapter, it is hypothesized that phosphorylation can occur at the rod 1A domain 

because other post-translational modification such as sumoylation of lysine residues 

were found in the rod 2B domain (Snider et al., 2011). This hypothesis is tested using 

cell culture models and demonstrated that the tyrosine residue, but not the serine 

residue, located in K14 rod 1A domain could possibly be phosphorylated and gives  

rise to cells having peripheral aggregates, reminiscent to the appearance of EBS-DM 

cells. It is also shown that this phosphorylated tyrosine residue is responsible for 

increased stress response and contributes to cell migration, thus suggesting its role in 

the pathogenesis of EBS. 

 

5.2  Results 

5.2.1  Schematic diagram showing the position of possible keratin 

phosphorylation sites in the K14 rod 1A domain 

Keratins are obligate heterodimers of epidermal type I (Steinert et al., 1983) and type 

II (Steinert et al., 1985) keratins in a 1:1 molar ratio, which exhibit a parallel, in-

register alignment (Parry et al., 1985; Hatzfeld and Weber, 1990; Steinert, 1990). The 

pairing of type I (K14) and type II keratin (K5) is initiated by the rod 1A domain 

(helix initiation motif) and terminated at the rod 2B domain (helix termination motif). 

In the rod 1A domain of K14, the highly conserved arginine residue at 125 [in bold in 

Figure 5.1] is the “mutational hot spot” for being the most frequently mutated amino 

acid, giving rise to a wide spectrum of skin disorders ranging from epidermolysis 

bullosa simplex to epidermolytic hyperkeratosis (Szeverenyi et al., 2008). As can be 

seen from the helical model of K14 rod 1A domain, K14 R125 (positively charged 

residue) reside in the “g” position of the heptad repeat that is responsible for 
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electrostatic interactions between the asparagine residue of K5 at 176 (K5 N176) at 

the “e” position of the heptad repeat [Figure 5.1]. Residing beside K14 R125 residue 

is a serine residue at 128 (K14 S128) and a tyrosine residue at 129 (K14 Y129). K14 

Y129 occupies in the “d” position of the heptad repeat that drives coiled-coil 

formation of the heterodimer between the phenylalanine residue of K5 at 179 (K5 

F179) at the “a” position of the heptad repeat [Figure 5.1]. Hence, any alterations of 

these residues could disrupt heterodimer formation and lead to skin fragility disorders. 

 5.2.2  Muliple sequence alignment of human keratins (K12-K17) and its 

orthologs 

To determine whether the serine and tyrosine residues residing in the helix initiation 

motif are conserved in the type I keratin family, a multiple sequence alignment of 

selected keratins (K12-K17) was performed. The clustalw results showed that the 

tyrosine residue was remarkably conserved in all the human keratins (K12-K17) and 

across its orthologs (Mus musculus and Rattus norvegicus) whereas even though the 

serine residue was also highly conserved in all the human keratins (K12-K17), it was 

not conserved across its orthologs as exemplified by K14 and K16 [Figure 5.2, 

multiple alignment using clustalw at www.interfil.org/toolClustal.php]. Reports 

pertaining to keratin mutations affecting the serine or tyrosine residues of the helix 

initiation motif were identified from the Human Intermediate Filament Database 

(www.interfil.org) and it was observed that these mutations were found to be 

associated with diseases such as epidermolytic palmoplantar keratoderma, 

epidermolytic hyperkeratosis, epidermolysis bullosa simplex and pachyonychia 

congenital types 1 and 2 [Table 5.1]. Interestingly, it was found out that K14 Y129D 

(a possible phospho-mimicking residue) gave rise to severe EBS-DM condition (Chan 

et al., 1996) whereas K14 Y129C (a possible non-phosphorylatable residue) gave rise 

http://www.interfil.org/toolClustal.php
http://www.interfil.org/
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to a milder phenotype, intermediate between EBS-generalized and EBS-DM 

conditions (Rugg et al., 2007), suggesting that the disease phenotype was not due to 

the lost of the highly conserved hydrophobic tyrosine residue per se (since both 

mutations replace the tyrosine residue) but rather the charged status of K14 Y129 may 

be involved in determining the degree of heterodimer disruption and hence affect the 

severity of the skin fragility disorder. Since these two serine and tyrosine residues are 

potential phosphorylation sites for either serine/theronine or tyrosine kinases to act on, 

it is hypothesized that phosphorylation can occur at the rod 1A domain, typically at 

the helix initiation motif.  

 

Figure 5.1 Schematic diagram showing the position of possible keratin 

phosphorylation sites at the K14 rod 1A domain.  
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  Figure 5.2 Multiple sequence alignment of human keratins (K12-K17) and its orthologs  
 

              defgabcdefg 

  Human|K12             LGILSGNDGGLLSGSEKETMQNLNDRLASYLDKVRALEEANTELENKIREWYETRGTGTA 

  R_norvegicus|K12      LCIFSGNDGGLLSGSEKETMQNLNDRLASYLGKVRALEEANAELENKIREWYETRRTGDS 

  M_musculus|K12        LCIFSGNDGGLLSGSEKETMQNLNDRLASYLGKVRSLEEANAELENKIREWYETRRTRDA 

 

  Human|K13             --DFGACDGGLLTGNEKITMQNLNDRLASYLEKVRALEEANADLEVKIRDWHLKQ---SP 

  R_norvegicus|K13      --DFGSVDGGLLSGNEKITMQNLNDRLASYLEKVRALEAANADLEVKIRDWHLKQ---SP 

  M_musculus|K13        --DFGGVDGGLLSGNEKITMQNLNDRLASYLDKVRALEAANADLEVKIRDWHLKQ---SP 

 

  Human|K14             -------GDGLLVGSEKVTMQNLNDRLASYLDKVRALEEANADLEVKIRDWYQRQ---RP 

  R_norvegicus|K14      SGFGGGLGDGLLVGSEKVTMQNLNDRLATYLDKVRALEEANSDLEVKIRDWYQRQ---RP 

  M_musculus|K14        GGLGGGIGDGLLVGSEKVTMQNLNDRLATYLDKVRALEEANTELEVKIRDWYQRQ---RP 

 

  Human|K15             --GFGGGDGGLLSGNEKITMQNLNDRLASYLDKVRALEEANADLEVKIHDWYQKQ---TP 

  R_norvegicus|K15      --DFGGGDGGLLSGNEKVTMQNLNDRLASYLDKVRALEEANTELEVKIRDWYQKQ---SP 

  M_musculus|K15        --DFGGGDGGLLSGNEKVTMQNLNDRLASYLDKVRALEQANTELEVKIRDWYQKQ---SP 

 

  Human|K16             --GGFAGGDGLLVGSEKVTMQNLNDRLASYLDKVRALEEANADLEVKIRDWYQRQ---RP 

  R_norvegicus|K16      --FGGGLGDGLLVGSEKVTMQNLNDRLATYLDKVRALEEANSDLEVKIRDWYQRQ---RP 

  M_musculus|K16        --LGGGIGDGLLVGSEKVTMQNLNDRLATYLDKVRALEEANRDLEVKIRDWYQRQ---RP 

 

  Human|K17             -------VDGLLAGGEKATMQNLNDRLASYLDKVRALEEANTELEVKIRDWYQRQ---AP 

  R_norvegicus|K17      -------VDGLLAGGEKATMQNLNDRLASYLDKVRALEEANTELEVKIRDWYQKQ---AP 

  M_musculus|K17        -------VDGLLAGGEKATMQNLNDRLASYLDKVRALEEANTELEVKIRDWYQKQ---AP 

                                              .*** *.** **********:** ***:** ** :** **::*:  :    . 

  

  

Figure 5.2    Multiple sequence alignment of human keratins (K12-K17) and its orthologs using 

clustalw at www.interfil.org/toolClustal.php  

http://www.interfil.org/toolClustal.php
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Table 5.1  Patient keratin mutation (s) affecting the serine or tyrosine residues of the helix initiation motif  

  

  
Type I 

keratin  

Serine mutation (s) /  

Disease phenotype / Original report 

Tyrosine mutation (s) /  

Disease phenotype / Original report 

K9 No report yet Y167del insWL/ Epidermolytic palmoplantar 
keratoderma / (He et al., 2004) 

K10 No report yet Y160D /  Epidermolytic 

hyperkeratosis / 
(Chipev et al., 1994) 

Y160S /  Epidermolytic 

hyperkeratosis  / (Arin et 
al., 1999) 

K14 

 

S128del /  EBS-DM / 
(Wood et al., 2003; 

Bolling et al., 2011) 

S128P / EBS-DM / 
(Jerabkova et al., 2010) 

Y129D /  EBS-DM / 
(Chan et al., 1996) 

Y129C /  Severity 
intermediate between 

EBS-generalized and EBS-
DM / (Rugg et al., 2007) 

K16 S130del /  Pachyonychia congenital type 1  / (Smith 
et al., 1999; Wilson et al., 2011) 

No report yet 

K17 S97del /  Pachyonychia congenital type 2  / 

(Terrinoni et al., 2001) 

Y98D /  Pachyonychia congenital type 2  / (Smith et 

al., 1997) 

Table 5.1  Reports pertaining to keratin mutations affecting the serine or tyrosine residues of the helix initiation 

motif were identified from the Human Intermediate Filament Database (www.interfil.org).  

http://www.interfil.org/
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5.2.3  Spontaneous formation of keratin aggregates in K14 Y129 but not K14 

S128 phospho-mimetic cells  

To test the hypothesis, several EGFP-tagged constructs that were phospho-null (K14 

S128A and K14 Y129F) and phospho-mimetic (K14 S128D and K14 Y129E) were 

generated using site-directed mutagenesis [Figure 5.3 (i)]. By transiently expressing 

these EGFP-tagged constructs in NEB-1 cells, it was observed that the phospho-

mimetic construct EGFP-K14 Y129E gave rise to cells that have peripheral 

aggregates, whereas EGFP-K14 S128D gave rise to cells with only filamentous 

keratin networks, a phenotype similar to phospho-null constructs EGFP-K14 S128A 

and EGFP-K14 Y129F [Figure 5.3 (ii)]. These observations suggested that altering 

the charge of K14 Y129 residue (negatively charged K14 Y129E mimicking 

phosphorylation) could affect keratin remodelling during filament elongation (similar 

to EGFP-K14 R125P cells described in Chapter 4) but not negatively charged K14 

S128 residue (K14 S128D), hence supporting a role for phosphorylation at the rod 1A 

domain, particularly targeting the K14 Y129 residue.  

However, the conventional view of keratin structure suggests that in normal 

physiological condition the K14 Y129 residue at position “d” of the heptad repeats 

would be buried in the hydrophobic core of the heterodimer, thus making it less 

accessible to kinase action. It was of interest to find out if shifting this tyrosine 

residue away from its position “d” to a position “c” at the outermost positions of the 

coiled coil, making it readily accessible to kinase action, would affect keratin 

remodelling. The results showed that by expressing EGFP-K14 S128del in NEB-1 

cells, which could shift the K14 Y129 residue from the “d” to a “c” position [Figure 

5.3 (iii)], cells with peripheral aggregates were observed [Figure 5.3 (ii)], suggesting 

that K14 Y129, now being accessible, could possibly be phosphorylated to give rise to 
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this phenotype. One might argue that the deletion of K14 S128 residue could distort 

the entire keratin protein sequence and thus gave rise to keratin aggregates. Helical 

wheel modelling of the residues repositioned by deleting K14 S128 revealed that both 

the hydrophobic and electrostatic interactions would be restored by K14 L130 

(hydrophobic) occupying the “d” position and K14 D131 (negatively charged) 

occupying the “g” position [Figure 5.3 (iii)]. Hence, deleting K14 S128 residue 

should not affect the helical structure to a significant extent. This prediction was 

supported by a control experiment in which EGFP-K5 S181del was expressed in 

NEB-1 cells: this construct shifts the K5 F182 residue to the “c” position [Figure 5.3 

(iv)]. This gave rise to cells with filamentous keratin networks [Figure 5.3 (ii)]. 

Helical wheel modelling again predicted that reshuffling the residues by deleting K5 

S181 would retain both the hydrophobic and electrostatic interactions by placing K5 

I183 (hydrophobic) in the “d” position and K5 D184 (negatively charged) in the “e” 

position [Figure 5.3 (iv)]. Hence, the deletion of K5 S181 did not affect the helical 

structure to a significant extent, as it did not generate a dominant negative or 

disruptive phenotypes and the recombinant K5 is still able to incorporate into 

filaments.  

These data demonstrated that deletion of an amino acid at these „c‟ positions in the 

helix initiation motif does not per se disrupt the keratin network, due to the 

compensation by adjacent hydrophobic and charged residues that maintained 

appropriate electrostatic interactions. Thus, the severe pathogenic effect of the K14 

mutations S128del and Y129D are unlikely to be due to misfolding of the helix, but to 

the altered phosphorylation status of the mutant protein.  It was also interesting to note 

that patients harbouring serine deletions at the helix initiation motif of K14 or 
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K16/K17 suffered from EBS-DM or pachyonychia congenital type I/II respectively 

[Table 5.1].  

One obstacle to the hypothesis of phosphorylation acting on the rod domains has 

always been the prediction that the coiled-coil rod domains woud be inaccessible to 

kinase action. However, this obstacle may be lessened by recent suggestion that the 

helix 1A region of keratins may not be as tightly folded as was previously thought 

(Parry et al., 2002; Smith et al., 2002; Strelkov et al., 2002). It was suggested that in 

the intermediate filament dimer, the head domain may fold back across helix 1A and 

the dimer may alternate between a two-stranded coiled-coil rope and two separate α-

helical strands, with linker L1 acting as a flexible hinge (Parry et al., 2002; Strelkov et 

al., 2002). It was postulated that this arrangement could be destabilized under 

appropriate conditions such as phosphorylation or in the presence of cations, which 

could cause the head domain to detach from the surface of the dimer, thereby 

unwinding the α-helical strands of the two-stranded coiled-coil segment 1A, and the 

separation was facilitated by the extended linker L1 (Smith et al., 2002). 
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EGFP-K14 S128D 

 

EGFP-K14 S128A 

EGFP-K14 Y129E 

 

EGFP-K14 Y129F 
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Figure 5.3 (i) Schematic diagrams showing the mutations of K14 S128 and K14 Y129 at 

helix initiation motif to generate phosphomimetics (ii) Spontaneous formation of 

keratin aggregates in K14 Y129 but not K14 S128 phosphomimetic cells. Keratin 

aggregates co-existed with filaments in phosphomimetic cells. (ii) Transient expression of 

(A) EGFP-K14 S128A, (B) EGFP-K14 S128D, (C) EGFP-K14 S128del, (D) EGFP-K14 

Y129F, (E) EGFP-K14 Y129E and (F) EGFP-K5 S181del in NEB-1 keratinocytes. Scale 

bar, 30 µm. 

 

(i)  

(ii)  
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Figure 5.3 (iii) Schematic diagrams showing the shift of K14 Y129 from “d” to a “c” 

position after K14 S128 is deleted. Note that the interactions between the 

hydrophobic cores are restored by K14 L130 shifting to the “d” position and 

electrostatic interactions are also restored by K14 D131 shifting to the “e” position. 

 

Figure 5.3 (iv) Schematic diagrams showing the shift of F182 from “d” to a “c” 

position after K5 S181 is deleted. Note that the interactions between the 

hydrophobic cores are restored by K5 I183 shifting to the “d” position and 

electrostatic interactions are also restored by K5 D184 shifting to the “e” position. 

 

(iii)  

(iv)  
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5.2.4  Similar keratin aggregates seen in K14 R125P and K14 Y129E cells 

Stable cell lines expressing these phospho-mimetic constructs in N/TERT-1 cells were 

generated, and a similar phenotype of peripheral keratin aggregates was confirmed in 

both AcGFP-K14 R125P and AcGFP-K14 Y129E cells [Figure 5.5 (i)]. Ratios of 

exogenous (transfected) to endogenous K14 expression were compared in all the 

stable cell lines and found to be close to a 1:1 ratio [Figure 5.5 (ii)]. Hence, the 

peripheral keratin aggregates observed in the AcGFP-K14 Y129E cells were 

inherently due to K14 Y129E mutation and did not represent artefacts of over-

expression resulting from the AcGFP-tag.   

5.2.5  Sustained stress activation in phosphomimetic cells during osmotic stress 

Since AcGFP-K14 Y129E cells showed the same phenotype as AcGFP-K14 R125P 

cells, it was of interest to find out whether they have similar stress response to 

osmotic stress as determined in the EGFP-K14 R125P cells in Chapter 3. It was 

observed that there was a higher level of p38 kinase activation after 240 min recovery 

from osmotic stress treatment in the phospho-mimetic keratinocytes, but not the 

phospho-null keratinocytes [Figure 5.5]. This suggested that the presence of keratin 

aggregates could predispose these mutant keratinocytes to sustained stress activation.  
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Figure 5.4 Similar keratin aggregates seen in AcGFP-K14 R125P and AcGFP-

K14 Y129E cells. Phosphorylation of K14 Y129 may contribute to keratin aggregate 

formation. (i) Stable expression of (A) AcGFP-K14 WT, (B) AcGFP-K14 R125P, (C) 

AcGFP-K14 S128del, (D) AcGFP-K14 Y129F and (E) AcGFP-K14 Y129E  in N/TERT-1 

keratinocytes. Scale bar, 30 µm. (ii) Insoluble fractions of cell extracts were prepared from 

these cell lines at subconfluence. Immunoblot analysis of these cell lysates shown using 

antibodies to K14 (LL001) and K5 (XM-26). Actin used as loading control.  
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Figure 5.5 Sustained stress activation in phosphomimetic cells during osmotic stress. 

Phosphomimetic cells have sustained levels of stress-activated protein kinases (P-p38). (i) 

AcGFP-K14 Y129F and AcGFP-K14 Y129E cells were exposed to 5 min of 150 mM urea 

treatment, and left to recover for 60 min, 120 min and 240 min respectively. Soluble 

fractions of cell extracts were prepared from these cells. Immunoblot analysis of these cell 

lysates shown using antibodies to P-p38 (Thr180/Tyr182) and p38. GAPDH used as loading 

control. (ii) Densitometry values of P-p38 protein levels for the respective cell lines at 

different conditions, normalized to total p38 and GAPDH loading control.  
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5.2.6  Phospho-null cells close up wound slower than wild-type cells in scratch 

wound assays 

To determine whether K14 Y129 phosphorylation state could play a role in cell 

migration, both the AcGFP-K14 WT and phospho-null AcGFP-K14 Y129F cells were 

subjected to scratch wound assays [Figure 5.6 (i)]. It was found that there was a 

significant decrease (* p < 0.05) in wound closure in these phospho-null AcGFP-K14 

Y129F cells (0.78 ± 0.14) as compared to AcGFP-K14 WT cells (0.91 ± 0.13) [Figure 

5.6 (ii)], thus suggesting that the phosphorylation state of K14 Y129 affects cell 

migration.  

5.2.7 Double mutant AcGFP-K14 R125P_Y129F infected cells form less 

peripheral keratin aggregates than AcGFP-K14 R125P infected cells 

Knowing that K14 Y129 phosphomimetic construct increased the stress response in 

AcGFP-K14 Y129E cells through the formation of keratin aggregates and that 

phospho-null AcGFP-K14 Y129 reduced cell migration, it was hypothesized that K14 

R125P mutants may have an intrinsic effect through phosphorylation at K14 Y129. A 

AcGFP-K14 R125P_Y129F double mutant construct was therefore generated to 

introduce both K14 R125P (hypothetical phosphorylation facilitator) and K14 Y129F 

(phospho-null mimetic) into the same cell. Both lentiviral-packaged AcGFP-K14 

R125P and AcGFP-K14 R125P_Y129F constructs were collected for transient 

infections of N/TERT-1 cells at different multiplicity of infections (M.O.Is = 0.5, 1.0 

and 2.0) [Figure 5.7 (i- ii)]. The number of keratinocytes with peripheral aggregates 

were counted and compared at the same infection efficiency. It was observed that 

there was a significant decrease (** p < 0.01) in the number of cells with aggregates 

in the double mutant AcGFP-K14 R125P_Y129F cells (4.01 ± 1.05 %) as compared 
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to those with only the AcGFP-K14 R125P construct (9.11 ± 0.80 %) [Figure 5.7 (ii)]. 

This supports the hypothesis that phosphorylation of K14 Y129 is part of the 

mechanism generating aggregates in the K14 R125P mutant cells. This could be due 

to disruption of keratin heterodimer formation (by proline residue) increasing 

accessibility of tyrosine kinase to phosphorylate the K14 Y129 residue. 
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Figure 5.6 Phospho-null cells close up wound slower than wild-type cells in scratch 

wound assay. K14 Y129 phosphorylation affects cell migration. (i) AcGFP-K14 WT and 

AcGFP-K14 Y129F cells grown to confluence in an Essen ImageLock 96-well plate were 

subjected to wounding with a 96-well WoundMaker Tool. Images were acquired immediately 

and at 1 hr intervals for 20 hrs using the IncuCyte imaging system. Data were then processed 

by ImageJ software. Red line marks the denuded area from which cells were removed at the 

start of the wound (0 hr); green line marks the remaining uncovered area after 20 hrs wound 

closure time (20 hrs). (ii) Areas between red (or green) lines were derived from a macro 

written with ImageJ. Data presented as ratio of area covered/initial wound area and as mean ± 

S.D for n = 3 of each group. Statistical significance was assessed by unpaired t-test, * p < 

0.05 vs. AcGFP-K14 WT group. 
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Figure 5.7 Double mutant AcGFP-K14 R125P_Y129F infected cells form less peripheral 

keratin aggregates than AcGFP-K14 R125P infected cells. A decrease in keratin 

aggregates of EBS-DM cells was associated with non-phosphorylatable K14 Y129. (i) 

N/TERT-1 cells were transiently infected with the viral-packaged AcGFP-K14 

R125P_Y129F double mutant construct for 72 hrs before fixation. Immunofluorescence 

images showing the effects of viral-packaged double mutant AcGFP-K14 R125P_Y129F 

construct at increasing multiplicity of infection (M.O.I.) values from 0.5 to 1.0. Scale bar, 40 

μm. (ii) Bar graphs showing the effects of viral-packaged AcGFP-K14 R125P and AcGFP-

R125P_Y129F constructs at increasing M.O.I. values on keratin aggregate formation. Cells 

were counted in each of the viral infected group at each M.O.I. using ImageJ and quantified. 

Data presented as % infection efficiency (No. of GFP positive cells/total no. of cells x 100%) 

and % GFP cells with aggregates (No. of GFP cells with aggregates/ No. of GFP cells x 

100%) and as mean ± S.D for n = 3 sets of 500-3000 cells counted. Statistical significance 

was assessed by unpaired t-test, ** p < 0.01 vs. AcGFP-K14 R125P group of M.O.I. = 2.0. 
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5.3  Discussion 

The findings in this chapter raise several novel and important aspects of keratin 

modifications in the pathogenesis of EBS-DM. (1) These results revealed the first 

suggestion of phosphorylation in the helix initiation motif of K14 rod 1A domain, i.e.  

at the K14 tyrosine 129 residue, and suggest that this may be involved in EBS 

pathogenesis. (2) Evidence is presented suggesting that the Dowling-Meara mutation 

at K14 R125 is less likely to give rise to aggregates if the tyrosine residue K14 Y129 

cannot be phosphorylated. (3) These data also suggest that phosphorylation of K14 

Y129 might be an indication of a keratinocyte activated state due to increased keratin 

remodelling and cell migration. 

Keratin intermediate filaments are organised into a dynamic scaffold that form the 

cytoskeleton of the cell. The keratin subunits are constantly undergoing a reversible 

process of assembly and disassembly during mitosis and in response to various stress 

stimuli (reviewed in Goldman et al., 2008). One of the more established mechanism 

through which keratin assembly is modulated is via keratin phosphorylation by 

protein Ser/Thr kinases as exemplified by K8, K18 and K19 (Chou and Omary, 1991; 

Zhou et al., 1999). However, tyrosine phosphorylation in keratins is not as well 

characterized as serine phosphorylation because there were barely detectable 

phospho-tyrosine levels in crude epidermal keratin preparations (Steinert et al., 1982) 

or low levels of phosphorylated tyrosine residue were seen in keratins upon exposure 

to EGF treatment (Aoyagi et al., 1985). Previous studies had also shown indirectly 

that the tyrosine residues in K8 and K19 could be phosphorylated by inhibition of 

tyrosine phosphatases using the potent and irreversible tyrosine phosphatase inhibitor 

pervanadate (Feng et al., 1999), and that tyrosine phosphorylation was involved in the 

rapid and reversible keratin network remodeling through the use of orthovanadate, 
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another tyrosine phosphatase inhibitor (Strnad et al., 2002). Although these studies 

showed that tyrosine phosphorylation could occur in keratins, they did not specify the 

identity of the tyrosine residue being phosphorylated until recently, a direct evidence 

that K19 could be phosphorylated on its tyrosine-391 residue located at the tail 

domain was demonstrated (Zhou et al., 2010). 

The results in this chapter demonstrate that tyrosine phosphorylation is also possible 

in the rod 1A domain of K14, at the K14 Y129 residue residing in the helix initiation 

motif. This K14 Y129 residue is located at the “d” position of the heptad repeats 

necessary for driving coiled coil formation of the heterodimer, and is highly 

conserved in all the epidermal keratins and across its orthologs. Mutation in this 

tyrosine residue (ie. K14 Y129D) results in significant structural distortions of the α-

helical backbone (Smith et al., 2004), which could explain why patients harboring this 

kind of mutation suffer from EBS-DM (a severe skin blistering disorder) (Chan et al., 

1996).  Interestingly, a variant of the K14 Y129 mutation (K14 Y129C) results in 

patients suffering from a milder phenotype of skin blistering disorder, intermediate 

between EBS-generalized and EBS-DM (Rugg et al., 2007), suggesting that replacing 

the highly conserved tyrosine residue did not contribute to the severity of blistering 

disorder per se but rather the charge of the mutated residue or the degree of structural 

distortion was the determinant factor.  In this study, the possibility of tyrosine 

phosphorylation at this K14 Y129 residue was explored by generating phospho-

mimetic (K14 Y129E) and phospho-null (K14 Y129F) constructs. It was 

demonstrated that the phospho-mimetic expression resulted in cells having peripheral 

keratin aggregates as opposed to the phospho-null construct. Since the formation of 

keratin granules or aggregates are largely thought to be mediated by phosphorylation 

due to their appearance in response to various phosphatase inhibitors (Kasahara et al., 
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1993; Takuma et al., 1993; Yatsunami et al., 1993; Feng et al., 1999; Strnad et al., 

2001), it was clear that K14 Y129 phosphorylation was contributing to keratin 

aggregate formation. The possibility that K14 S128 could be phosphorylated was not 

apparant because over-expression of K14 S128D did not result in cells having keratin 

aggregates. 

In normal physiological conditions, apolar residues occupying the “a” and “d” 

positions of the heptad repeats are packed together in the interior of the helix bundle 

(hydrophobic core), whereas those hydrophilic residues occupying the “e” and “g” 

positions have opposing charges and form a salt bridge stabilized by electrostatic 

interactions that are in contact with the solvent-exposed surface, hence shielding the 

apolar residues from the aqueous environment (Pauling and Corey, 1953). It was of 

interest to find out whether by shifting the K14 Y129 residue out of the hydrophobic 

core to the exterior surfaces of the helix would it increase its probability of being 

phosphorylated. With this in mind, K14 S128del and K5 S181del constructs were 

generated and it was demonstrated that deleting these residues itself did not hinder the 

formation of keratin heterodimer as observed in K5 S181del over-expression 

(filamentous keratin network) and that the appearance of keratin aggregates in K14 

S128del was largely due to the shifting of K14 Y129 residue to the “c” position of the 

heptad repeats that might increase its phosphorylation state as opposed to the shifting 

of a phospho-null K5 F182 to the “c” position of the heptad repeats in K5 S181 

deletion. 

Stable cell lines harbouring the phospho-mimetic and phospho-null expression 

constructs were generated and it was demonstrated that the phospho-mimetic AcGFP-

K14 Y129E cell line has intrinsic and sustained stress kinase activation which was 

reminiscent to the EBS-DM cell lines (AcGFP-K14 R125P), thus strengthening the 
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role of keratin aggregates as an indicator for keratinocyte activation as described in 

Chapter 3. It was also shown that the phosphorylation state of K14 Y129 might play a 

role in cell migration since AcGFP-K14 Y129F cells closed up wound slower than 

AcGFP-K14 WT cells. 

EBS-DM cells harbouring the K14 R125P mutation are known to exhibit faster cell 

migration and intrinsic stress response (as discussed in Chapter 3). A proline mutation 

in this position is likely to be disruptive to helical formation, since it was previously 

reported that a proline residue residing in the α-helical strand could result in a kink of 

the α-helix axis by about 26º (Barlow and Thornton, 1988). Because the K14 Y129 

residue (d) resides beside the K14 R125 residue (g) in the helical structure, a K14 

R125P mutation could distort the helical structure and expose K14 Y129 residue to 

the exterior and thus facilitate its phosphorylation. This notion was tested by 

simultaneously introducing mutations at both these residues in N/TERT-1 cells. It was 

demonstrated that there was a significant decrease in the number of keratinocytes with 

aggregates in the transiently infected AcGFP-K14 R125P_Y129F double mutant cells 

as compared to the AcGFP-K14 R125P transiently infected cells. In conclusion, these 

results support the hypothesis that Y129 phosphorylation could play a role in the 

pathogenesis of EBS-DM condition. A schematic diagram summarising the results of 

Chapter 5 is depicted in Figure 5.8. 

It would be interesting to find out which tyrosine kinase may be involved in 

phosphorylating K14 Y129 residue, as this could be important in regulating the stress 

response in wound- induced situations. Potential tyrosine kinases could be FAK 

(Schaller et al., 1992) or Src (sarcoma) kinases (Oppermann et al., 1979) because 

these tyrosine kinases are known to play a role in cell migration and recent study has 

shown that FAK-Src complex could regulate adhesion turnover through paxillin, ERK 
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and myosin light-chain kinase at the leading edge (Webb et al., 2004), rendering them 

in close proximity to the keratin aggregates. Further work will be done to investigate 

this possibility. 

In summary, the results in this chapter have opened up new avenues for strategies 

targeting post-translational modifications of keratins in view of the treatment of 

devastating skin blistering disorders ranging from epidermolysis bullosa simplex to 

epidermolytic hyperkeratosis.  In this case, phospho-Y129 could be a useful biomarker 

of keratinocyte activation. More work is needed to validate this hypothesis.  
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Figure 5.8 Schematic diagram summarising the results of Chapter 5. 
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CHAPTER 6        

SIGNIFICANCE AND IMPLICATIONS OF 

THESE STUDIES 
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6.1  Significance and implications of these studies 

In the introduction to this thesis (Chapter 1), a literature review of epidermal tissue 

maintenance is presented, describing a process in which differential keratin 

expression in keratinocytes is regulated as the cells migrate upwards through the 

epidermal layers, paralleled by changes in expression of adhesion junctions. A defect 

in any of these cytoskeletal components (keratins or junctional proteins) can result in 

epidermal malfunction, mainly resulting in skin blistering disorders. Hence, these 

cytoskeletal components are important for providing mechanical resilience to the skin. 

In mechanical injury, the normal processes of keratinocyte differentiation are 

perturbed and keratinocytes initiate an activation cycle (Freedberg et al., 2001) that 

takes them through the wound healing process and back to a steady state after 

epidermal regeneration. Wound healing is a tightly regulated sequence of events 

wherein cell-matrix junctional proteins are altered (partial dissolving of 

hemidesmosomes), and the keratinocytes produce a different set of integrins for 

lateral migration and express matrix metalloproteinases for remodelling of the 

provisional matrix at the wound bed (reviewed in Santoro and Gaudino, 2005). An 

impaired wound healing process can lead to the formation of chronic (non-healing) 

wounds such as diabetic ulcers and pressure ulcers (Menke et al., 2007), where the 

epidermis is hyperpoliferative (indicated by mitotically active cells in the suprabasal 

layers), hyperkeratotic (indicated by thick cornified layer) and parakeratotic (indicated 

by presence of nuclei in the cornified layer). These histological observations suggest 

that the chronic wound keratinocytes do not sucessfully complete either the activation 

(keratinocytes are able to proliferate but do not migrate) or differentiation (incomplete 

differentiation due to presence of nuclei in cornified layer) stage of the keratinocyte 

activation cycle (Morasso and Tomic-Canic, 2005). Hence, chronic wounds failed to 
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proceed through an orderly and timely process of healing, resulting in poor 

anatomical and functional outcome (Lazarus et al., 1994).  

Because knowing the mechanisms underlying keratinocyte activation cycle is crucial 

to understanding wound healing processes, it was of interest to explore and attempt to 

unravel the mechanisms underlying these processes in this thesis work. In Chapter 3 

of this thesis, the EBS-DM keratinocytes (harbouring K14 R125P mutation) were 

shown to be a valid cell culture model of activated keratinocytes because of their 

intrinsic stress and upregulation of wound-response proteins, predisposing them to 

migrate faster in wound closure assays as reported in previous studies (D'Alessandro 

et al., 2002; Morley et al., 2003). Thus, EBS-DM keratinocytes may be a useful model 

for analysing early stages of epidermal wound activation. It is also suggested that the 

appearance of keratin aggregates (keratin remodelling at the leading edge) could be an 

indicator of the activated state because aggregates diminished or disappeared when 

monolayer keratinocytes approached the quiescent state of the keratinocyte activation 

cycle upon increasing confluence (mimicking wound closure).  

Desmosomes are now known to be highly dynamic structures that are assembled 

during cell-cell contact. This desmosomal assembly is a coordinated process, with an 

initial phase of rapid desmoplakin accumulation at cell-cell borders, followed by the 

assembly and translocation of cytoplasmic particles containing both desmoplakin and 

plakophilin, mediated by both desmoplakin- intermediate filament interactions and 

actin microfilaments (Godsel et al., 2005). Moreover, a recent study has shown that 

desmoplakin assembly and dynamics in migrating epithelial cells is initially 

dependent on actin microfilaments prior to association with keratin intermediate 

filaments, thus revealing a role for desmosomal assembly during wound healing 

(Roberts et al., 2011). The EBS-DM keratinocytes used here reflect similar 
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desmoplakin changes, as a change in localization of desmoplakin was seen to occur 

upon transition from subconfluence to confluence, i.e. from cytoplasmic desmoplakin 

(subconfluent, activated state) to desmoplakin at cell-cell adhesion borders (confluent, 

approaching quiescent state).  

Previous studies have proposed a role of K17 in the timely closure of embryonic skin 

wounds (Mazzalupo et al., 2003), and it has been reported that K17 induction can 

regulate cell growth via controlling protein synthesis during the wound healing 

process (Kim et al., 2006). In the present study, it was also demonstrated that during 

reversion from confluent to activated state in in vitro scratch wound assays, EBS-DM 

cells induced more soluble K17 proteins than wild-type cells, confirming their 

constitutively activated state.  

The role of EGF in regulating wound closure and keratin remodelling was explored in 

Chapter 4. EGF stimulation induces keratinocyte migration, as shown by earlier 

studies (Barrandon and Green, 1987), and the same effect was observed here in the 

EBS-DM cells. EGF was shown to increase lamellipodial formation (Chinkers et al., 

1979), and it is specifically in the lamellipodia that the EBS-DM keratin aggregates 

form [Figure 3.2]. Keratinocyte motility, stimulated by EGF signalling and blocked 

by EGF signalling inhibition, was observed to be tightly coupled to the degree of 

keratin aggregate formation. EGF-induced changes in desmoplakin localization were 

also observed in EBS-DM cells, suggesting a reduction of desmosome adhesions, 

which is coherent to a shift in migratory behaviour in the activation of keratinocytes.  

Plectin is a major cytoskeleton linker protein, which is expressed as several different 

isoforms (plectin 1, 1a, 1b, 1c, 1d, 1e, 1f and 1g) due to differential splicing, with 

organelle-specific localization and show preferential binding to hemidesmosomes, 
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focal adhesions, mitochondria, microtubules or Z-disks (reviewed in Wiche and 

Winter, 2011). Previous studies have shown differences in wound closure speeds in 

different plectin knockout cell lines, depending on which plectin isoform the cells 

predominantly expressed. For instance, plectin isoform 1-/- fibroblasts migrated slower 

in scratch wound assays (Abrahamsberg et al., 2005) whereas plectin-/- keratinocytes 

resulted in faster migration, which upon re-expression of plectin 1a could cause 

slower migration (Osmanagic-Myers et al., 2006). Hence, these results revealed the 

differential role played by plectin isoforms in regulating cell migration. It is not 

known which plectin isoforms are preferentially being expressed in the wild-type and 

the EBS-DM cells yet, and the expression of different plectin isoforms may be 

different in the two cell lines, which contribute to different migration speeds in wound 

closure assays. Further experiments will be needed to validate this idea.  

It was also demonstrated that constitutive activation of ERK1/2 kinase in EBS-DM 

cells, downstream of EGF signaling, contributed to their activated state and this 

ERK1/2-dependent EGF effect could also modulate plectin levels. Overall, the results 

confirm a potential role of EGF in regulating the constitutively activated state of EBS-

DM keratinocytes. Further experiments will be undertaken to see whether this can 

ultimately be manipulated for therapeutic applications.  

In Chapter 5, a hypothesis is developed on the role of keratin phosphorylation in 

keratinocyte activation and keratin aggregate formation. Assembly and disassembly of 

intermediate filament proteins is known to be driven by phosphorylation cycles  

(Inagaki et al., 1989; Izawa and Inagaki, 2006), thought to occur predominantly in the 

head and tail domains (reviewed in Omary et al., 2006). The findings in the present 

study provide the first suggestion that phosphorylation can occur in the rod 1A 

domain of K14 and have identified a tyrosine residue in the helix initiation motif as a 
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potential target site. Past work aimed at defining the phosphorylation sites of keratin 

intermediate filament proteins have mostly focussed on serine/threonine residues 

located at the “head” and “tail” domains of K8/K18 (Ku and Omary, 1997; Ku et al., 

1998a; Omary et al., 2009), and this has become a paradigm for post-translational 

modifications in keratins. Any changes in phosphorylation status of these 

serine/threonine residues could contribute to both physiological processes and 

pathological diseases (Omary et al., 2006). Hence, understanding their regulation 

could give some insights to keratin remodelling in stress.  

Keratins can also be glycosylated (King and Hounsell, 1989; Ku et al., 2010) and 

ubiquitylated (Ku and Omary, 2000; Jaitovich et al., 2008), and recent studies have 

also demonstrated the possibility of sumoylation (Snider et al., 2011). The Snider 

study reported that sumoylation occurs on lysine residues in rod 2B domain of 

K8/K18/K19, thus indicating that the rod domain may be accessible for post-

translational modifications (Snider et al., 2011), contrary to earlier views that this 

domain should be tightly packed in a coiled-coil with its type II partner (K5 in this 

case).  

In the present study, it is demonstrated that engineering a phosphomimetic residue at 

K14 Y129 (AcGFP-K14 Y129E) can give rise to peripheral keratin aggregates and 

that such cells show constitutive stress kinase activation, reminiscent to that of EBS-

DM cells (KEB-7 and EGFP-K14 R125P). The localization of keratin aggregates 

observed in EBS-DM cells are clearly different from the cytoplasmic granules that are 

generated during stress stimuli (heat or osmotic stress), phosphatase inhibitor (okadaic 

acid or orthovanadate) treatments or mitosis (Strnad et al., 2002; Toivola et al., 2002; 

Woll et al., 2007), as unlike the cytoplasmic granules, EBS-DM keratin aggregates are 

mainly confined to the lamellipodia. This may depend on either the types of kinases 
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(serine/threonine vs. tyrosine) phosphorylating the keratin or the site of keratin 

residues being phosphorylated (“head” or “tail” domains vs. rod domain). Further 

work will be needed to understand how these different kinases regulate keratin 

reorganisation and to identify their target residue in the keratin structure.  

Previous studies suggest that the helix 1A region of keratins may not be as tightly 

folded as was originally thought to be (Parry et al., 2002; Smith et al., 2002; Strelkov 

et al., 2002), and this may possibly allow tyrosine kinase to gain access and 

phosphorylate the K14 Y129 residue. One can postulate that in times of stress, 

phosphorylation of K5 partner leads to unwinding of the α-helical strands of the two-

stranded coiled-coil segment 1A or K5 may simply begin to interact with another 

keratin such as wound- induced K17, allowing K14 to be susceptible to tyrosine 

phosphorylation. 

Using phospho-null variants, it was demonstrated that K14 Y129 phosphorylation 

status may also play a role in cell migration. It is predicted that the K14 R125P 

mutation seen in EBS-DM cells may lead to more phosphorylation at K14 Y129 by 

increasing the accessibility of this residue to potential tyrosine kinases such as FAK 

or Src, which are recruited and localized at focal contacts during lamellipodial 

formation (reviewed in McLean et al., 2005), the site where keratin aggregates are 

localized. Although there is no direct interaction between these tyrosine kinases and 

keratin aggregates [as quantitated using immunostaining by members of our group 

(unpublished data)], they may be associated in a parallel manner, wherein mutant 

keratin filament reorganisation at the leading edge may increase the probability of 

K14 Y129 being phosphorylated by these tyrosine kinases when these kinases are 

recruited to focal contacts to regulate adhesion turnover during lamellipodial 

formation. In support of this, a recent study has shown that vimentin disassembly by 
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phosphorylation at the cell periphery facilitates lamellipodial protrusions (Helfand et 

al., 2011). 

Further breakthroughs are needed to better understand the mechanism of keratin 

intermediate filament assembly, and its spatial and temporal regulation in living cells. 

As more of the complexity of keratin function is understood, it is becoming very 

important to know how different keratin networks are generated, maintained and 

regulated in epithelial cells. 

 

6.2  Conclusion 

The work carried out in this thesis has been achieved mainly due to the availability of 

immortalised cell lines derived from EBS patients and also the generation of cell lines 

stably expressing EGFP-tagged K14 mutation. Taken into account all the findings in 

this thesis, it is proposed that constitutive stress activation arising from keratin 

mutation (K14 R125P) could be a possible mechanism to the pathogenesis of 

inherited skin blistering disorder such as EBS Dowling-Meara type. Much evidence 

points to the fact that EBS-DM keratinocytes are in a constitutively activated state, 

based on their higher SAPK activation, and they have faster stress and wound 

response than normal keratinocytes. It is shown that EGF-ERK1/2 signalling can 

modulate the activated state of EBS-DM keratinocytes and this can be seen by 

changes in keratin aggregates at the leading edge. Evidence is presented that 

phosphorylation of a tyrosine residue (K14 Y129) in the helical rod 1A domain is 

likely to contribute to keratin aggregate formation in EBS-DM keratinocytes and that 

increasing the phosphorylation state of this residue is associated with increased cell 

migration, possibly because both processes are likely to be mediated by a common 
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tyrosine kinase such as FAK or Src. It is proposed that the remodelling of keratin 

filaments, which occurs at the lamellipodia and is mediated by recruitment of tyro sine 

kinases at these sites, is increased in EBS-DM cells due to the greater probability of 

K14 Y129 phosphorylation that results from the K14 R125P mutation. This elevated 

phosphorylation may be responsible for the observed aggregate formation at the 

leading edge. Furthermore, if lamellipodial formation is induced by remodelling of 

intermediate filaments as proposed by (Helfand et al., 2011), then increased keratin 

remodelling (resulting from increased phosphorylation) could lead to increased 

keratinocyte migration, explaining the faster scratch wound closure observed in these 

cells. 

It is also suggested that phospho-K14 Y129 could be a useful biomarker of 

keratinocyte activation. More work is needed to validate this hypothesis. Knowing 

these mechanisms will open up new avenues to alleviate wound injury and also offer 

new therapeutic options for the treatment of hereditary skin blistering disorder such as 

EBS. 

 

6.3  Future perspectives 

An exciting consequence of the research described in this thesis is that it may open up 

a new approach to therapy for a group of diseases that have so far been incurable, ie. 

epithelial fragility disorders caused by keratin mutations, such as epidermolysis 

bullosa simplex. Several gene correction strategies have been suggested for inherited 

skin disorders. To overcome the dominant negative effects of keratin mutations, 

translation of mutated keratins can be inhibited by siRNA (Hickerson et al., 2006; 

Leachman et al., 2008) or the mRNA exon segments encoding the mutant keratin can 



219 
 

be replaced using spliceosome-mediated RNA trans-splicing (SMaRT) (Wally et al., 

2010). Another approach is to induce the expression of another gene with similar 

function, but which is not susceptible to the disruptive effect of the mutant gene. For 

instance, desmin, an intermediate filament protein normally expressed in muscle cells, 

can be used to reinforce the fragile keratin network in EBS-DM cells (Magin et al., 

2000; D'Alessandro et al., 2004). Functional redundancy of the keratin protein family 

can also be exploited to improve EBS-DM conditions. For example, sulphoraphane, a 

component of broccoli, can upregulate K16 and K17 to compensate for the loss of 

K14 protein in K14 knockout mouse and reduce blister formation (Kerns et al., 2007). 

Despite many efforts, gene therapy has only entered the phase 1b of clinical trial in 

pachonychia congenita (Leachman et al., 2010).  

The findings in this thesis further suggest another strategy to deal with the EBS-DM 

condition by targeting the EGF/SAPK signalling pathways, which contribute to the 

constitutive activation of EBS-DM keratinocytes. This therapeutic strategy could be 

designed to target any keratin mutation that results in sustained stress activation 

irrespective of their type of mutation. The identification of phospho-K14 Y129 could 

be a useful biomarker of keratinocyte activation and could be used for treatment 

efficacy. The next stages in this research will involve the use of these EBS-DM cell 

lines in larger scale to test and screen for compounds that can reduce their stress 

activation state, in a bid to alleviate EBS patient conditions and improve the patient‟s 

quality of life.  
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APPENDICES 

Appendix 1 

Generation of EGFP-K14 phospho-mimetic constructs and their verification  

  

EGFP-K14 WT 

EGFP-K14 S128A (TCC to GCC) 
(ii) 

(i) 
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EGFP-K14 S128D (TCC to GAC) 

(iv) 

(iii) 

EGFP-K14 S128 del (CCT del) 
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EGFP-K14 Y129F (TAC to TTC) 

EGFP-K14 Y129E (TAC to GAA) 
(vi) 

(v) 
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Appendix 2 

Generation of EGFP-K5 mutant construct and its verification  

 

  

EGFP-K5 S181 del (TCC del) 
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Appendix 3 

Generation of EGFP-K14 R125P_Y129F double mutant construct and its 

verification 

 

 

 

 

 

 

 

 

EGFP-K14 R125P_Y129F (CGC to CCC; TAC to TTC) 

EGFP-K14 R125P (CGC to CCC) 

(ii) 

(i) 


