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Summary

Integer transform, an approximation of the Discrete Cosine Transform (DCT)

to avoid the mismatch problem and reduce the computational complexity, is

one of the most important coding tools in the latest video compression stan-

dard, H.264/AVC, and the emerging High Efficiency Video Coding (HEVC). The

H.264/AVC high profiles and HEVC target high and beyond-high definition videos,

respectively. As a result, their integer transform designs are challenging to high

throughputs, especially for large transform sizes. On the other hand, area effi-

ciency must be taken into account to reduce costs for hardware designs.

These challenges are addressed at algorithm and architecture levels in the litera-

ture. In H.264, at the algorithm level, to achieve high throughput, most of the

reported designs follow the fast and low-cost transform algorithms introduced by

H.264 developers. At the architecture level, some designs input, process and output

a data block at once, leading to unpractical wide I/O buses. Some designs deploy

pipelining mechanisms among operating processes. This reduces total delays and

increases throughputs. However, these designs also have very large bus widths.

To achieve area efficiency at the architecture level, hardware-sharing can be done

among (1) coefficient computations, (2) the forward/inverse transforms, or (3) the

xv
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forward and inverse transforms. Technique (1) leads to a very low throughput.

Technique (3) is not applicable in encoder and decoder scenarios. The reported

units deploying technique (2) have yet supported all the transform types.

In HEVC, at the algorithm level, Partial Butterfly algorithms are applied in the

test models (HMs). These scalar-multiplication-containing algorithms are very

complex to be implemented in hardware to achieve high throughput and area

efficiency. The reported fast algorithms are based on the H.264 transforms, which

are not extendable to larger-than-H.264-transform sizes. At the architecture level,

techniques to improve design throughput have not reported yet. For area efficiency,

hardware-sharing among the coefficient computations is reported. However, like

with H.264, this technique leads to a very low throughput.

We address in this dissertation the challenges on transform designs for the H.264/AVC

high profiles and HEVC, and present four high-throughput and area-efficient in-

teger transform designs under the condition of reasonable I/O bus widths. In

addition, we also introduce techniques for portable integer transform designs.

First, we address the question of how to develop portable integer transform designs.

Two H.264/AVC portable inverse transform architectures supporting all the types

of the inverse transforms and rescaling function are proposed with preferable high

throughputs under the reasonable bus-width constraints. In the first design, a

shared-hardware unit among all the inverse transforms is proposed to target area-

efficient challenge. For portability, the Wishbone shared bus system is deployed.

The second design continues to employ the transform unit from the first design for

area efficiency. For a high throughput, the design employs two transform units with

a pipelining mechanism among all the input, output and transform processes. The

Wishbone crossbar-switch bus system is used for portability and pipeline support.

xvi
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Simulation results show that the second design can deliver a higher throughput

than other reported designs. The resulting circuit area is considerably minimal

compared to the designs in its class thanks to the proposed transform unit.

Second, we address the H.264 transform design challenges at the architecture level

by introducing a very-high-throughput forward and inverse transform architecture

under the bus width constraint. The proposed architecture supports all the types

of the forward and inverse transforms together with quantization and rescaling

functions. For area efficiency, the design introduces a novel shared forward unit

and reuses the inverse unit from the first portable design. A novel series of input

and output buffers is proposed to balance the data transferring load in I/O bus.

This can double the processing speed when integrating two transform units without

increasing the bus width. By deploying a pipelining mechanism among all the

input, output, transform and additional quantization processes, the architecture

can out-perform other reported designs in terms of throughput and area efficiency.

Third, we provide performance-cost analyses and propose a novel performance-cost

metric for comprehensive comparisons for H.264 integer transform designs. Some

designs deploy extremely wide buses but their designers were still able to claim the

area efficiencies. This is because the wire area is not counted in the comparison

metrics. The proposed metric is defined as the ratio of data throughput over the

design cost, which includes power, area, and delay, and issues associated with

interconnections in sub-micron design.

Then, to address the HEVC transform design challenges at the algorithm level,

we propose a novel optimization method to achieve fast and low-cost implemen-

tations for scalar-multiplication-containing algorithms in general and Partial But-

terfly algorithms in particular. The method includes a multiplication-to-addition
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conversion step and three levels of optimization: complexity, timing and resource

optimizations. Experimental results show that both the running time and cost of

the implementations generated by the proposed method are about 90% less than

those of the original algorithms. The method is computationally feasible to be

applied to all the Partial Butterfly algorithms from 4× 4 to 32× 32 in size.

Next, we propose a series of novel hardware-oriented HEVC 4×4 and 8×8 fast and

low-cost forward transform algorithms. For a high speed, the algorithms are devel-

oped using the implementations obtained by applying the proposed optimization

method to the Partial Butterfly algorithms. Simultaneously, for the area efficiency,

the strategy of embedding the small transforms into the large transforms is de-

ployed. The running time and cost of the proposed algorithms are about 80% less

than those of the Partial Butterfly algorithms. Compared to the reported algo-

rithms, the proposed algorithms are faster and their costs are lower. Similarly,

fast and low-cost transform algorithms for larger sizes can be also developed.

Finally, we develop, implement and fabricate a high-throughput and area-efficient

transform architecture for HEVC based on the proposed algorithms. To address

the design challenges at the architecture level for a very tight constraint on I/O pin

count, a number of techniques are proposed, including (1) multi-cycle adder design;

(2) multi-stage register design; (3) pipelining mechanism among the addition/sub-

tractions; (4) resource binding; (5) micro-code and control signal optimization;

and (6) fully pipelining mechanism among input, output and transform processes.

Thanks to the proposed techniques, the architecture can support 4× 4 and 8× 8

transforms for up to quad-full high definition (QFHD) videos at the progressive

scan frequency of 30 Hz. This is much larger than the maximum resolution sup-

ported by the reported HEVC transform architectures. The power consumed by

the proposed architecture is also much less than that of other designs.

xviii



List of Tables

2.1 Luma forward transforms corresponding to prediction modes and
sub-partition sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Quantization/Rescaling for all FIT/IIT transforms. . . . . . . . . . 35

3.1 First transform design clock cycle report. . . . . . . . . . . . . . . . 67

3.2 The proposed 24-bit IIT instruction in RISC SPM. . . . . . . . . . 70

3.3 Newly defined instructions for the inverse transforms. . . . . . . . . 70

3.4 Performance comparisons of pre-layout synthesis results. . . . . . . 74

3.5 Performance comparison of pre-layout synthesized designs. . . . . . 82

4.1 Comparisons of FPGA FIT/IIT implementations. . . . . . . . . . . 99

4.2 Comparisons of 0.18µm ASIC FIT/IIT implementations. . . . . . . 100

5.1 Performance-cost function PCM comparison of pre-layout synthe-
sized designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1 Number of additions and multiplications in Partial Butterfly algos. 144

6.2 Length of the longest path of the 1-D Partial Butterfly algorithms. . 144

6.3 Examples of general multiplication addition conversions. . . . . . . 150

6.4 Execution results of the proposed complexity optimization algo. . . 156

6.5 Levels with non-adjacent inputs in the proposed adding trees. . . . 161

6.6 Generated STOSSs for several multiplications. . . . . . . . . . . . . 165

xix



LIST OF TABLES

6.7 Intermediate data during execution of the proposed optimization
method for Partial Butterfly algorithms. . . . . . . . . . . . . . . . 174

6.8 Execution results of the resource optimization algorithm for scalar
multiplication by [83, 36]. . . . . . . . . . . . . . . . . . . . . . . . . 174

6.9 Execution results of the resource optimization algorithm for scalar
multiplication by [18, 50, 75, 89]. . . . . . . . . . . . . . . . . . . . . 176

6.10 The longest path lengths of three different implementations for four
scalar multiplications. . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.11 Number of ASs in three different implementations for four scalar
multiplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.12 Sizes of the search spaces for the Partial Butterfly algorithms. . . . 185

6.13 Sizes of search spaces for different NIs. . . . . . . . . . . . . . . . . 186

6.14 The longest path lengths of the three integer transform algorithms:
the Partial Butterfly, the conventional sequence multiplication free
Partial Butterfly and the proposed integer transform algorithms. . . 187

6.15 Number of ASs of the three integer transform algorithms: the Par-
tial Butterfly, the conventional sequence / parallel multiplication
free Partial Butterfly and the proposed integer transform algorithms.188

6.16 Number of additions and shift operations in two series of the Par-
tial Butterfly-based integer transform algorithms: the conventional
multiplication free algorithms and the proposed integer transform
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.17 The longest path length and resource consumption of the proposed
algorithms in comparison with those of other published HEVC in-
teger transform algorithms. . . . . . . . . . . . . . . . . . . . . . . 189

6.18 Resource scheduling for the proposed 4× 4 1-D transform algo. . . 194

6.19 Resource scheduling for the proposed 8× 8 1-D transform algo. . . 194

6.20 Resource binding for the proposed 8× 8 1-D transform algorithm. . 198

6.21 Inputs and outputs of each AS through different time slots when
performing the proposed 8× 8 1-D transform algorithm (part 1). . . 201

6.22 Inputs and outputs of each AS through different time slots when
performing the proposed 8× 8 1-D transform algorithm (part 2). . . 202

xx



LIST OF TABLES

6.23 Inputs and outputs of each AS through different time slots when
performing the proposed 4× 4 1-D transform algorithm. . . . . . . 203

6.24 Number of possible input sets for adder/subtractors in the proposed
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.25 MUX types and quantities for the ASs in the proposed architecture. 204

6.26 Enable signals of the ASs in the proposed 8 × 8 FIT algorithms,
enas, through different system stages. . . . . . . . . . . . . . . . . . 207

6.27 Enable signals of the ASs in the proposed 4 × 4 FIT algorithms,
enas, through different system stages. . . . . . . . . . . . . . . . . . 207

6.28 Function indication signals of the ASs in the proposed 8 × 8 FIT
algorithms, sub, through different system stages. . . . . . . . . . . . 207

6.29 Function indication signals of the ASs in the proposed 4 × 4 FIT
algorithms, sub, through different system stages. . . . . . . . . . . . 208

6.30 Select signals of the MUXs in the proposed 8 × 8 FIT algorithms,
ms, thought different system stages. . . . . . . . . . . . . . . . . . . 208

6.31 Select signals of the MUXs in the proposed 4 × 4 FIT algorithms,
ms, thought different system stages. . . . . . . . . . . . . . . . . . . 208

6.32 Area and power consumption breakdown of the proposed architecture.217

6.33 The proposed architecture implementation achievement in compar-
ison to that of other architectures. . . . . . . . . . . . . . . . . . . . 222

6.34 Area breakdown of the proposed 1-D transform architecture. . . . . 223

xxi





List of Figures

1.1 Video coding scenarios with broadcasting, streaming and disc playing. 2

1.2 Video coding scenarios with video calling (Richardson, 2010). . . . . 2

1.3 Video encoder block diagram (Richardson, 2010). . . . . . . . . . . 3

1.4 H.264 encoder and its coding tools (Richardson, 2003). . . . . . . . 5

1.5 DCT-II compared to the DFT of an input signal. . . . . . . . . . . 7

2.1 Forward DCT flow graph by Chen et al. (1977). . . . . . . . . . . . 26

2.2 A linear and non-linear quantization (Richardson, 2003). . . . . . . 28

2.3 H.264 encoder block diagram (Richardson, 2003). . . . . . . . . . . 30

2.4 H.264 decoder block diagram (Richardson, 2003). . . . . . . . . . . 30

2.5 Scanning order of residual blocks within a H.264 16× 16 macroblock. 31

2.6 H.264 transform, quantization, rescale and inverse transform flow
(Richardson, 2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 DCT integer approximation with scaling in H.264. . . . . . . . . . . 33

2.8 Integer transform with post-scaling in H.264. . . . . . . . . . . . . . 34

2.9 Inverse integer transform with rescaling in H.264. . . . . . . . . . . 34

2.10 HEVC encoder block diagram (Sullivan et al., 2012). . . . . . . . . 36

2.11 Subdivision of a 64× 64 luma CTB into CBs and TBs. . . . . . . . 37

2.12 Transform matrices in HEVC. . . . . . . . . . . . . . . . . . . . . . 38

2.13 Fast implementations of the H.264 1-D 4× 4 transforms. . . . . . . 41

xxiii



LIST OF FIGURES

2.14 Fast 1-D 8× 8 FIT/IIT algorithms by (Gordon et al., 2004). . . . . 43

3.1 Dataflow diagrams of H.264 inverse integer transforms. . . . . . . . 62

3.2 Proposed shared inverse integer transform hardware unit. . . . . . . 63

3.3 The proposed inverse integer transform architecture. . . . . . . . . . 65

3.4 The proposed top-level architecture with shared bus system and
Wishbone interface signals. . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 The proposed ASIP architecture. . . . . . . . . . . . . . . . . . . . 69

3.6 The proposed IIT architecture. . . . . . . . . . . . . . . . . . . . . 77

3.7 The proposed top-level architecture with crossbar switch bus system. 78

3.8 Pipelined scheduling with the support of two DMACs. . . . . . . . 79

4.1 1-D 8× 8 FIT/IIT algorithms. . . . . . . . . . . . . . . . . . . . . . 92

4.2 Proposed shared forward integer transform hardware unit. . . . . . 93

4.3 The proposed FIT/IIT block architectures. . . . . . . . . . . . . . . 94

4.4 The proposed FIT/IIT module architectures. . . . . . . . . . . . . . 95

4.5 Pipelined scheduling for 8 × 8 residual blocks in the proposed IIT
module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 The proposed top-level system architecture with an ASIP support. . 96

5.1 Interconnect capacitances. . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 0.13µm cross-section and interconnect geometry. . . . . . . . . . . . 112

5.3 DTUA, PCMG/10, and PCMK of the designs in the various com-
parison groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 PCAS functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 PCAS lookup function. . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 PCAS example flowchart. . . . . . . . . . . . . . . . . . . . . . . . 136

xxiv



LIST OF FIGURES

6.1 The 4× 4 1-D Partial Butterfly forward transform algorithms. . . . 143

6.2 The 8× 8 1-D Partial Butterfly forward transform algorithms. . . . 144

6.3 The proposed optimization method for scalar-multiplication-containing
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 The proposed complexity optimization algorithm for for MAC. . . . 156

6.5 The optimized adding tree with four inputs. . . . . . . . . . . . . . 158

6.6 The optimized adding tree with five inputs. . . . . . . . . . . . . . . 159

6.7 Levels of the optimized adding trees. . . . . . . . . . . . . . . . . . 162

6.8 The proposed data structure for the optimized adding trees. . . . . 168

6.9 Data generation of the optimization method for the 4× 4 and 8× 8
Partial Butterfly algorithms. . . . . . . . . . . . . . . . . . . . . . . 175

6.10 Data flows of different implementations for the two scalar multipli-
cations by [83, 36] and [18, 50, 75, 89]. . . . . . . . . . . . . . . . . . 177

6.11 The proposed 8× 8 1-D fast and low-cost Transform algorithms. . . 178

6.12 Running times of three different implementations for four scalar
multiplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.13 Resource consumptions of three different implementations for four
scalar multiplications. . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.14 Resource consumptions of the conventional sequence / parallel mul-
tiplication free and the proposed implementations for four scalar
multiplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.15 Running time of the three integer transform algorithms: the Par-
tial Butterfly, the conventional sequence multiplication free Partial
Butterfly and the proposed integer transform algorithms. . . . . . . 187

6.16 Resource consumption of the three integer transform algorithms:
the Partial Butterfly, the conventional sequence / parallel multipli-
cation free Partial Butterfly and the proposed transform algorithms. 188

6.17 The proposed scheduled sequencing graph for the 4×4 1-D fast and
low-cost forward transform algorithms. . . . . . . . . . . . . . . . . 194

xxv



LIST OF FIGURES

6.18 The proposed scheduled sequencing graph for the 8×8 1-D fast and
low-cost forward transform algorithms. . . . . . . . . . . . . . . . . 195

6.19 The proposed scheduled sequencing graph with resource binding for
the proposed 8× 8 1-D FIT. . . . . . . . . . . . . . . . . . . . . . . 199

6.20 The proposed 8× 8 1-D FIT with resource binding. . . . . . . . . . 200

6.21 The proposed data path design for the proposed 1-D 4×4 and 8×8
forward fransform algorithms. . . . . . . . . . . . . . . . . . . . . . 206

6.22 The proposed architecture design for the proposed 1-D 4 × 4 and
8× 8 forward fransform algorithms. . . . . . . . . . . . . . . . . . . 210

6.23 Pipeline scheduling between input buffer, output buffer, integer
transform blocks and transpose RAMs. . . . . . . . . . . . . . . . . 212

6.24 The proposed 2-D integer transform. . . . . . . . . . . . . . . . . . 213

6.25 Timing diagram of the proposed architecture. . . . . . . . . . . . . 214

6.26 IT1-enlarged timing diagram of the proposed architecture. . . . . . 215

6.27 IT2-enlarged timing diagram of the proposed architecture. . . . . . 216

6.28 Layout of HEVC 4× 4 and 8× 8 transform architecture. . . . . . . 217

6.29 Layout with I/O pads of HEVC 4×4 and 8×8 transform architecture.218

6.30 Die photograph of HEVC 4× 4 and 8× 8 transform architecture. . 219

6.31 Area breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.32 Power breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.33 PCB design for the fabricated HEVC 4× 4 and 8× 8 IC. . . . . . . 221

6.34 Area breakdown of the proposed 1-D transform architecture. . . . . 223

xxvi



List of Acronyms

1

1P6M 1-Poly-6-Metal.

A

AD Addition Depth.

ALU Arithmetic Logic Unit.

AMBA Advanced Micro-controller Bus Architecture by ARM.

ARM Advanced RISC Machines company.

AS Addition/Subtraction.

ASIC Application-Specific Integrated Circuit.

ASIP Application Specific Instruction-Set Processor.

AVC Advanced Video Coding.

AVS Audio Video Standard.

xxvii



LIST OF ACRONYMS

B

BA Block Adder or Addition Block.

BA Bit Array.

BFHD Beyond-Full High Definition.

BO Best Order.

C

CA Conversion Array.

CABAC Context-based Adaptive Binary Arithmetic Coding.

CAVLC Context-based Adaptive VLC.

CB Coding Block.

Chroma Chrominance.

CK Computing Kernel.

CL Length array of 1/0 chains in Bit Array.

CMOS Complementary Metal Oxide Semiconductor.

CO Complexity Optimization.

COR Common Operation Region.

CORAS Common Operation Region label for each Addition/Subtraction AS.

CS Least Significant bit array of 1/0 chains in Bit Array BA.

xxviii



LIST OF ACRONYMS

CTB Coding Tree Block.

CTU Coding Tree Unit.

CU Coding Unit (in HEVC).

CU Control Unit (in hardware architecture).

D

DC coefficient Coefficient with zero frequency in both dimensions.

DCT Discrete Cosine Transform.

DMA Direct Memory Access.

DMAC Direct Memory Access Controller.

DSP Digital Signal Processing.

DST Discrete Sine Transform.

DTUA Data Throughput Per Unit Area.

DVD Digital Versatile Disc.

DWT Discrete Wavelet Transform.

E

enas Enable Adder/Subtractor.

xxix



LIST OF ACRONYMS

F

FDCT Forward Discrete Cosine Transform.

FFT Fast Fourier Transform.

FHD Full High Definition.

FHT Forward Hadamard Transform.

FIT Forward Integer Transform.

FPGA Field-Programmable Gate Array.

FQ Forward Quantization.

FRExt Fidelity Range Extensions.

FSM Finite-State Machine.

H

HD High Definition.

HDL Hardware Description Language.

HDTV High Definition Television.

HEVC High Efficiency Video Coding.

HM HEVC Test Model.

HT Hadamard Transform.

xxx



LIST OF ACRONYMS

I

IB Input Buffer.

IBM International Business Machines Corporation.

IC Integrated Circuit.

IDCT Inverse Discrete Cosine Transform.

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

IHT Inverse Hadamard Transform.

IIT Inverse Integer Transform.

I/O Input/Output.

I/OD Input/Output Delay.

IP Intellectual Property.

IR Instruction Register.

ISO International Standards Organization.

IT Integer Transform.

ITU International Telecommunication Union.

xxxi



LIST OF ACRONYMS

J

JCT-VC Joint Collaborative Team on Video Coding.

JM JVT H.264/AVC Test Model (H.264/AVC Reference Software).

JVT Joint Video Team.

L

LL Low Leakage.

LR Long Register.

LRL Least Significant Part of Long Register LR.

LRM Most Significant Part of Long Register LR.

Luma Luminance.

LUT Lookup Table.

M

MAC Multiplication-to-Addition Conversion.

MACR Multiplication-to-Addition Conversion Result.

MB Macroblock.

MD Martuza and Wahid (2012)’s design.

MF Multiplication Factor.

xxxii



LIST OF ACRONYMS

MPEG Moving Picture Experts Group.

MUX Multiplexer.

N

NAL Number of ASs used in levels.

NI Number of Input of Number of non-zero elements in conversion array

CA.

NIL Number of Inputs to Levels.

NMOS n-channel MOSFET (metal-oxide-semiconductor field-effect transistor).

O

OB Output Buffer.

P

PB Partial Butterfly.

PC Program Counter.

PCAS Performance-Cost Analysis Software.

PCB Printed Circuit Board.

PCM Performance-Cost Metric.

xxxiii



LIST OF ACRONYMS

PCMG Technology-hidden Peformance-Cost Metric for SoC IP blocks having

a small number of pins.

PCMK Technology-hidden Peformance-Cost Metric for SoC IP blocks having

a large number of pins.

PD Processing Delay.

PF Position Factor.

PMOS p-channel MOSFET (metal-oxide-semiconductor field-effect transistor).

ppc pixel per cycle.

pps pixel per second.

PS Positions of non-zero elements in conversion array CA.

PS Permutation Set.

PSNR Peak Signal-to-Noise Ratio.

Q

Q Quantization.

QFHD Quad-Full High Definition.

QP Quantization Parameter.

R

RAM Random-Access Memory.

xxxiv



LIST OF ACRONYMS

RLC Run Length Coding.

RO Resource Optimization.

RT Run time.

RTL Register-Transfer Level.

RVT Regular Voltage Threshold.

S

SoC System-on-Chip.

SP Selected Permutation.

SPM Stored Program Machine.

SR Saved Resource.

STOOS Shortest Timing Operation Order Set.

T

T Throughput.

TB Transform Block.

TMuC Test Model Under Consideration.

TO Timing Optimization.

TRANSRAM Transform RAM.

TSMC Taiwan Semiconductor Manufacturing Company Limited.

xxxv



LIST OF ACRONYMS

U

UHDV Ultra High Definition Video.

UMC United Microelectronics Corporation.

URQ Uniform-Reconstruction Quantization.

V

VCEG Video Coding Experts Group.

VLC Variable Length Coding.

VLSI Very Large Scale Integration.

W

WHXGA Widescreen Hexadecatuple eXtended Graphics Array (5120 × 3200).

WVGA Wide Video Graphics Array (800 × 480).

xxxvi



Chapter 1

Introduction

1.1 Video Coding

Digital video has been becoming an indispensable media to human life with a

variety of consumer applications, including digital television broadcasting, Internet

video streaming, mobile video streaming, video disc playing and video calling.

Due to the fact that raw digital video data are huge while storage capacity and

transmission bandwidth for these applications are limited, compression of video

data is obligatory. Video compression, or video coding is the process to reduce the

redundancy in digital video to achieve a fewer number of bits required to represent

the video. In video coding, an encoder is needed to encode or compress a video

sequence into a compressed form, and a decoder is needed to decode or convert

this compressed form to an approximation of the source video sequence. Video

coding scenarios with encoder and decoder for the above video applications are

described in Figure 1.1 and Figure 1.2 (Richardson, 2010).

The redundancy in digital video consists of three types: temporal, spatial and

statistical redundancies. The temporal redundancy exists due to the high correla-

tions or similarities between video frames that were captured at around the same
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Figure 1.1: Video coding scenarios with digital television broadcasting, Inter-
net video streaming, mobile video streaming and video disc playing (Richardson,

2010).

Figure 1.2: Video coding scenarios with video calling (Richardson, 2010).

time. The spatial redundancy exists due to the high correlations between pixels

(samples) that are close to each other. In video data in which the temporal and

spatial redundancy are exploited, the statistical redundancy can be reduced by

representing data in a more concise format without losing information. That is

the reason why a video encoder normally contains three main function units: a

prediction model targeting the temporal and spatial redundancies, a spatial model

2



1.1. Video Coding

Figure 1.3: Video encoder block diagram (Richardson, 2010).

targeting the spatial redundancy and an entropy encoder targeting the statistical

redundancy (Figure 1.3).

Many different tools for video coding have been researched and proposed. In the

prediction model, inter-frame prediction tools such as motion estimation/motion

compensation can be applied to reduce the temporal redundancy, and intra-frame

prediction tools can be used for the spatial redundancy reduction. In the spatial

model, transform coding tools, such as the Discrete Cosine Transform (DCT), Dis-

crete Wavelet Transform (DWT) and integer transform (IT) together with vector

quantization, can be employed targeting the spatial redundancy. In the entropy

encoder, Run Length Coding (RLC), Variable Length Coding (VLC), Context-

based Adaptive VLC (CAVLC), and Context-based Adaptive Binary Arithmetic

Coding (CABAC) can be performed to reduce the statistical redundancy.

Although a variety of video coding tools are available, commercial video coding

applications, industrial products and services tend to use tools recommended by

video coding standards in order to simplify the inter-operability between encoders

and decoders from different manufactures. The video coding standards - chrono-

logically, H.261 (ITU-T, 1993), MPEG-1 (ISO/IEC 11172, 1993), MPEG-2/H.262

3
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(ISO/IEC 13818-2, 1994), H.263 (ITU-T, 1998), MPEG-4 Part 2 (ISO/IEC 14496-

2, 1999), and H.264/Advanced Video Coding (H.264/AVC) (Wiegand et al., 2003b,c),

hence, have played pivotal roles in spreading technologies and developing video in-

dustries to a stage like today, where video applications, products and services are

widely used by people in their everyday lives.

Among those video coding standards, the latest one, H.264/AVC, has significantly

outperformed and displaced the preceding standards. It provides much better

video quality at substantially lower bit-rate by adopting a number of new coding

tools (Figure 1.4). H.264/AVC has a very broad range of applications, from low

bit-rate Internet streaming applications to HDTV broadcast and Digital Cinema

applications. According to Sullivan and Wiegand (1998); Wiegand et al. (2003a);

Wiegand and Girod (2001), for video streaming applications, the H.264/AVC main

profile allows an average bit-rate saving of about 63% compared to MPEG-2 and

about 37% compared to MPEG-4 Part 2. For entertainment quality applications,

the bit-rate saving of H.264/AVC compared to MPEG-2 is about 45% on aver-

age (Wiegand et al., 2003a). It is able to achieve the same Digital Satellite TV

quality as the current MPEG-2 implementations at less than half of the bit-rate.

In particular, the current MPEG-2 implementations work at around 3.5 Mbit/s,

while H.264 works at only 1.5 Mbit/s (Wenger et al., 2005). H.264 has become

widely deployed in numerous applications, products and services, such as internet

video streaming like YouTube, Vimeo, iTunes Store; web software like Adobe Flash

Player and Microsoft Silverlight; high definition television (HDTV) broadcasting;

Blu-ray discs and players; Sony and Panasonic video recorders with AVCHD for-

mat; Canon DSLR cameras; and CCTV products, etc.

However, an increasing diversity of services and a large growth in demand for
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Forward path

Reconstruction path

Prediction
Fn - P = Dn

uF’n = P + D’n

Figure 1.4: H.264 encoder and its coding tools (Richardson, 2003).

increasing high resolution and high quality videos (e.g. 4k × 2k or 8k × 4k resolu-

tion videos) are creating a very strong need for coding efficiency which is superior

to H.264/AVC’s capabilities. As a result, motivated by the impressive coding

efficiency and phenomenal success of H.264/AVC in industry, the H.264 develop-

ers, ISO/IEC Moving Picture Experts Group and ITU-T Visual Coding Experts

Group, have been working together again to develop a novel High Efficiency Video

Coding (HEVC) standard (Bross et al., 2012). HEVC aims to deliver a dramatic

improvement of quality with a 50% bit-rate reduction compared to H.264/AVC.

HEVC will be finalized in early 2013.

1.2 Integer Transform

Among the redundancy reduction tools for video coding, transform coding is one of

the core tools to reduce the spatial redundancy. It converts input data, i.e., image
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or motion-compensated residual data, into another domain, i.e., frequency domain

(transform domain), to separate the input data into independent components and

concentrate most of the information on a few components. The transform cod-

ing tools can be classified into two categories: the block-based and image-based

transforms. The block-based transforms process video frames in units of blocks,

while the image-based transforms operate on entire frames or large sections of

frames. Compared to the image-based transforms, the block-based transforms re-

quire less memory and are more suitable for video coding since motion estimation

and compensation are also based on block units.

Among the existing block-based transform coding tools, the Discrete Cosine Trans-

form (DCT), and in particular the DCT-II, is the most popular tool because it

has a strong “energy compaction” property (Ahmed et al. (1974); Rao and Yip

(1990)). Most of the signal information tends to be concentrated in a few low-

frequency components of the DCT (Figure 1.5). The DCT is used in MPEG-2,

MPEG-4 with the transform size of 8× 8 pixels.

The transform coding tool of H.264 and HEVC is integer transform. Due to the

mismatch problem between encoder and decoder transforms and the expensive

floating-point arithmetic computation of the DCT, H.264 and HEVC approximate

the DCT to the integer transform. The integer transform carries out all the trans-

forms and quantizations using only integer numbers with a high accuracy. In the

H.264 high profiles, the residual data are transformed in blocks sized up to 8× 8.

In HEVC, a wide range of block sizes, from 4× 4 to 32× 32, is used to adapt the

transform to the varying space-frequency characteristics of residual data.

The H.264/AVC high profiles (Marpe et al., 2005) target higher-fidelity video ma-

terials, especially for application areas like professional film production, video post
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Figure 1.5: DCT-II (bottom) compared to the DFT (middle) of an input
signal (top).

production, or high-definition TV/DVD, while the new HEVC enables the support

for beyond-full high definition videos. In order to support high-definition videos,

all the modules of these two standards including the integer transform modules

must satisfy the high throughput requirements, where throughput is computed

by the number of pixels processed in an unit of time. For hardware designs, in

addition to achieving high throughput requirement, area efficiency must be taken

into account to reduce hardware cost.
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1.3 Challenges of Integer Transform Designs for

H.264 and HEVC

High throughput and area efficiency which enable sufficient support for high reso-

lution and beyond-high resolution videos are not only the requirements but also the

challenges in H.264 high profile and HEVC designs in general. This is because the

improvement of coding efficiency in H.264 and HEVC comes at a price of increased

computational complexity. A lot of experiments by Saponara et al. (2003) show

that the complexity of the H.264 main profile is more than one order of magnitude

compared to that of the MPEG-4 Part 2 simple profile. At the decoder side, the

complexity of H.264 is still two times more complex compared to MPEG-4. For

the emerging standard, HEVC, the price for the bit-rate reduction by a half with

the same quality is expectedly three times more complex than H.264/AVC.

For H.264 high profile and HEVC transform designs in particular, although the

integer transforms are actually less complex than the DCT, the requirement of

high throughput still requires significant research efforts in the literature. While

in the H.264 high profiles, the transforms are up to 8× 8 large with the maximum

matrix coefficient of 12, in HEVC, they are up to 32×32 large with the maximum

matrix coefficient of 90. These increments lead to a large increment in complexity.

This complexity increment and the even-higher requirement of high throughput

for beyond-full high definition videos, definitely require a lot of research efforts in

future.

For hardware designs in general and integer transform hardware designs in par-

ticular, high throughput and area efficiency can be achieved at two levels: the

algorithm level and the architecture level.

8
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1.3.1 Reported Techniques Addressing H.264/AVC Trans-

form Design Challenges

In order to achieve high-throughput and area-efficient transform designs for the

H.264/AVC standard, at the algorithm level, the standard developers have pro-

vided fast and low-cost algorithms for all the forward and inverse transforms,

including the 4 × 4, 8 × 8 integer transforms and the 2 × 2 and 4 × 4 Hadamard

transforms. Similar to the DCT, these fast algorithms decompose a 2-D transform

into two 1-D transforms. In the 1-D transforms, the algorithms transform data

row by row or column by column. Most of the reported integer transform designs

follow these fast algorithms.

At the architecture level, many techniques are used in the literature to increase

design throughputs. A large number of reported designs (Amer et al., 2005; Ko-

rdasiewicz and Shirani, 2005; Raja et al., 2005) process in parallel all the rows/-

columns of a 4× 4 or 8× 8 data block by using eight or sixteen transform units,

respectively. A transform unit is defined as the hardware component correspond-

ing to a 1-D transform for a row or a column. For the 8 × 8 transforms, these

architectures lead to large bus widths of at least 1280 bits. If the architectures

are implemented as hard IP cores, it might be impossible to realize in hardware

implementation due to a huge number of pins, and consequently, a huge number

of I/O pads required. If the architectures are implemented as soft IP cores in a

system, these huge data bus widths lead to very large circuit areas due to their

huge numbers of wires in the high level metal layers. Wiring areas are normally

not reported in the published papers, but the fact is that they are much larger

than the cell areas and significantly affect the total circuit areas of the designs.

In addition, in order to transform all the rows/columns of a block simultaneously,

9
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the architectures themselves require many hardware resources. Therefore, the high

throughput challenge for transform architecture designs should be addressed under

the condition of having a reasonable bus width or I/O pin count.

When the bus of an architecture is narrower than a transform size, or in other

words, several cycles are needed to transfer an entire transform data block to the

architecture, the throughput of the architecture must be computed as the trans-

form size divided by total transform delay, which includes input delay, processing

delay and output delay. Under the condition of having a reasonable bus width,

the input or output delay might be even larger than the processing delay. This

significantly affects the throughput and performance of integer transform designs

in particular and video codec system design in general. Therefore, the I/O de-

lay should be taken into account when designing integer transform architectures.

However, in quite a number of the reported H.264 integer transform designs (Wang

et al., 2003; Kordasiewicz and Shirani, 2005; Chao et al., 2007; Choi et al., 2008;

Park and Ogunfunmi, 2009; Hu et al., 2009), data are presumed available for

processing at the transform modules and performance are measured without the

consideration of the delay due to the data transfer.

In the literature, another technique to increase the design throughput is pipelin-

ing. Among the H.264/AVC main profile transform designs (4 × 4 in size), some

designs (Chen et al., 2006; Shi et al., 2007) applied a pipelining mechanism for

input, output and transform processes. In general, pipelining mechanisms defi-

nitely reduce the total delays as the modules in the architectures work in paral-

lel. Consequently, they increase the throughput and performance of the systems.

Among H.264/AVC high profile transform designs (8 × 8 in size), some designs

(Pastuszak, 2008) applied a pipelining mechanism for the transform and quantiza-

tion processes. Although the transform and quantization processers are pipelined,
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these 8× 8 transform designs still do not count the I/O delay. In addition, the re-

ported designs supporting these pipelining mechanisms have very large bus widths

of thousands of bits, leading to extremely high wiring areas and difficulties in re-

alizing hard IP cores.

Therefore, there is a strong need of having integer transform designs with a reason-

able bus width achieving high throughputs, where the throughputs are computed

including I/O delays.

In order to have an area-efficient design, the hardware-sharing techniques are used.

There are many types of hardware-sharing techniques reported in the literature.

In some designs (Kordasiewicz and Shirani, 2005), instead of using the official fast

algorithms to input, process and output all data of a row/columns in parallel,

the authors implemented the integer transforms, i.e., matrix multiplications, by

directly multiplying a row/column by a column/row of the transform matrices to

output one element of a row/column at a time. The multiplications are imple-

mented using addition and shifts operations. This type of designs can share the

hardware among all the row/column multiplications. However, they have small

throughputs of one pixel per cycle or even less. Since for the H.264 high profiles,

high throughput is the first priority requirement in order to support high definition

videos, this technique is not suitable for high profile designs, but only for main

profile designs.

Besides the row/column multiplication hardware-sharing technique, hardware-

sharing can be deployed among the different sizes of the transforms (Chao et al.,

2007; Pastuszak, 2008; Su and Fan, 2008) or even among the forward and in-

verse transforms (Shi et al., 2007; Choi et al., 2008). However, the sharing among

forward and inverse transform hardwares might not applicable in practice. It is
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because in H.264 decoders, only the inverse transforms are needed. In encoders, all

the forward and inverse transforms are needed and they might work at the same

time. When they share the hardware, we still need two separate hardware units.

In addition, a shared hardware normally has a higher cost than each individual

optimal hardware. If two hardware units are used, the total shared hardware cost

is larger than the total hardware cost of the two individual optimal hardwares.

The hardware-sharing among the different sizes of transforms can be among the

1-D inverse 8 × 8 transform and the 2-D inverse 4 × 4 and 2-D inverse 2 × 2

transforms (Chao et al., 2007), or can be among all the inverse 1-D transforms

where the shared hardware can perform any 1-D inverse transform (Su and Fan,

2008), or can be among all the forward/inverse 1-D transforms where the shared

forward/inverse hardware can perform one 1-D forward/inverse 8 × 8 transform,

two/one 1-D forward/inverse 4× 4 transform(s) (Su and Fan, 2008).

Therefore, there is still lack of shared architectures which share hardware among

all the forward transforms and among all the inverse transforms including the 4×4

and 2× 2 Hadardmard transforms.

Since the integer transform modules are parts of H.264 video encoders and de-

coders, they need to be integrated into larger systems. However, the transform

designs in the literature have different signals and data transfer mechanisms. This

makes it difficult to integrate or reuse the reported components. Therefore, a ques-

tion also can be raised is that how to design portable and flexible architectures

which can be easily integrated into other systems and reused in future?

12
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1.3.2 Reported Techniques Addressing HEVC Transform

Design Challenges

HEVC targets the beyond-full high resolution videos. Hence, its throughput re-

quirement is much higher than in H.264. In addition, HEVC decoder complexity

is about 1.5 times of that of H.264/AVC, while HEVC encoders are expected to

be several times more complex than H.264/AVC encoders. Especially, HEVC sup-

ports 32 × 32 transforms with matrix coefficient values of up to 90, while H.264

supports up to 8× 8 transforms with matrix coefficient values of up to 12. These

large increments in complexity and the even-higher requirement of high through-

puts for the beyond-full high definition videos make it more challenging to develop

high-throughput and area-efficient designs for HEVC.

To the best of our knowledge, until now, there are not many HEVC transform

algorithms and architectures proposed in the literature. In order to achieve high-

throughput and area-efficient transform designs for the HEVC standard, at the

algorithm level, HEVC developers use Partial Butterfly algorithms to implement

the transforms using butterfly additions and multiplications in HEVC test model

HM (ITU-T and JTC1, 2012). Although this series of algorithms is much less

complex than the implementation by multiplications, it is still much more com-

plex than the H.264 fast algorithms when we compare among the equivalent size

transforms.

Techniques used in the literature to develop fast and low-complexity transform al-

gorithms for HEVC are manipulating and decomposing the up-to-8× 8 transform

matrices of HEVC based on the H.264 transform matrices, so that the trans-

forms can be implemented using addition and shift operations. However, these

13
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techniques are impossible to extend to larger transform sizes because H.264 only

supports the transforms of up to 8× 8 in size.

At the architecture level, techniques to improve design throughput have not re-

ported yet in the literature. To reduce the area, hardware-sharing techniques

are still applied in HEVC designs. Similar to the H.264 designs, some researches

implemented the integer transforms by directly multiplying a row/column by a

column/row of the transform matrices to output one element of a row/column at

a time. However, these designs have small throughputs of one pixel per cycle or

even less. On the other hand, some designs also share resources among the large

and small sizes of the transforms.

1.4 Dissertation Contributions and Organization

We address in this dissertation the challenges of the transform designs for the

H.264/AVC high profiles and the emerging HEVC, and presents high-throughput

and area-efficient integer transform designs under the condition of having reason-

able I/O bus widths or I/O pin counts. In addition, the dissertation also introduces

techniques for portable integer transform designs of H.264/AVC in particular, and

for portable hardware designs in general. The design techniques proposed in the

dissertation can be applied not only to integer transform designs of the H.264/AVC

high profiles and HEVC but also to other hardware designs. The dissertation con-

tributions are chronologically listed as follows.

1. We address the question of how to develop portable integer transform designs

for the H.264/AVC high profiles in particular and portable hardware designs in

general. In order to have portable hardware designs which can be easily integrated
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to larger system or reused in future, system bus standards should be employed.

This is because the system bus standards specify the control and data signal names

and their functions, as well as required handshaking mechanisms. Some system

bus standard can be found such as the Wishbone bus and the Advanced Micro-

controller Bus Architecture (AMBA) by ARM.

In this dissertation, we propose two portable inverse transform architectures sup-

porting all types of the inverse transforms and rescaling function for H.264/AVC

with preferable high throughputs under reasonable bus-width constraints. Each

design employs a Wishbone system bus and is supported by a SoC system with

an ASIP and DMAC(s). In the first design, a shared-hardware unit among all

the inverse transforms including 4× 4 and 2× 2 inverse Hadamard transforms is

proposed to target area-efficient challenge. This shared transform unit has filled

the gap of inverse transform hardware-sharing in the literature. The shared unit

includes only one 1-D 8 × 8 inverse transform unit with three levels of hardware

sharing. The first level is that two 4×4 inverse transform units are embedded into

the 1-D 8 × 8 inverse transform unit. The second level is that one 4 × 4 inverse

Hadamard transform shares the same hardware with one 4× 4 inverse transform

unit. The third level is that the 2-D 2 × 2 inverse Hadamard transform is em-

bedded into the 1-D 4 × 4 inverse transform unit. For portability, the Wishbone

shared bus system is employed in this architecture.

While the first design targets portability and area efficiency, the second design

targets high throughputs together with both area efficiency and portability. This

design continues to employ the proposed shared transform unit from the first

design for area efficiency. With the constraint of a reasonable I/O bus width (eight

pixels for each input or output bus), in order to achieve a high throughput, the

second design employs two transform units and deploys a pipelining mechanism
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among all the input, output and transform processes. For the portability and

pipeline support, the Wishbone crossbar-switch bus system is used. The simulation

results show that the second design can deliver a throughput of eight ppc and a

normalized throughput of sixty-four ppc and 15.6 Gpps at 144 MHz using 0.18

µm technology. This is higher than other reported designs. It can support the

transforms for video with the resolution of up to 38.4 Mpels (larger than the

resolution of 7680 × 4800 pels with progressive scan frequency of 30 Hz. The

resulting circuit area is considerably minimal compared to the designs in its class

thanks to the proposed shared hardware with the embodiment of 4× 4 transform

circuit in the 8× 8 transform circuit.

2. We address the high-throughput and area-efficient challenges on transform de-

signs under a reasonable bus width constraint by introducing a high-throughput

and area-efficient forward and inverse transform architecture for H.264/AVC. The

proposed architecture supports all types of the forward and inverse transforms

together with quantization and rescaling functions. For area efficiency, the design

continues to employ the proposed inverse transform unit in the first design and

proposed a novel shared forward transform unit with three hardware sharing levels,

which is similar to the inverse unit. Based on an observation that the transform

units only read input data in half of the processing time, a novel series of input

and output buffers is proposed to balance the data transferring load in I/O bus.

This is shown to reduce the bus width by half for the same hardware architecture.

Thanks to the novel I/O buffer designs, two transform units are integrated into

the computing kernel to double the processing speed and utilize the bus width. By

deploying a fully pipelining mechanism for input, output, transform and quanti-

zation processes, the architecture can out-perform other reported designs in terms

of throughput and area efficiency.

16



1.4. Dissertation Contributions and Organization

3. The next contribution of this research work is a novel fair metric for performance-

cost comparison among integer transform designs. The metric development is

based on the fact that some designs use a very large bus width but their authors

were still able to claim their area efficiency. This is because the wire area or in-

terconnect area is not counted in the current comparison metrics. Therefore, the

dissertation provides performance-cost analyses and proposes a novel performance-

cost metric for H.264 integer transform designs in order to have a comprehensive

comparison among all the reported designs. The proposed metric is defined as the

ratio of data throughput over the design cost, which includes power, area, and

delay, and issues associated with interconnections in sub-micron design.

4. We propose a novel optimization method to achieve fast and low-cost algo-

rithm implementations for scalar-multiplication-containing algorithms. The op-

timization method can be applied to algorithms which (a) contain scalar multi-

plications, (b) enable operations to be performed in parallel, and (c) require a

short running time with a low resource consumption. The method (Figure 6.3)

includes a multiplication-to-addition conversion step and three levels of optimiza-

tion: (1) Complexity Optimization, (2) Timing Optimization, and (3) Resource

Optimization. The initial step of the method is to convert all multiplications

in the original scalar multiplications to addition and shift operations. Next, in

the first level of optimization, a complexity optimization algorithm is proposed

to minimize the number of addition/subtractions used in the result of the previ-

ous multiplication-to-addition conversion step. In the second optimization level, a

timing optimization strategy is proposed to structurally arrange the addition/sub-

tractions in the minimized conversion result to achieve the shortest running time.

While the first two optimization levels process each multiplication separately, the

third level works with all the multiplications. In this level, a resource optimization
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algorithm is proposed to find the best operation order of the addition/subtractions

for each multiplication, which can provide the best resource-sharing among all the

multiplications. Experimental results show that both the running time and the

cost of the generated implementations for scalar multiplication algorithms by the

proposed method are about 90% less than those of the original implementation

by multiplications of the algorithms (Table 6.14 and Table 6.15). The method is

computationally feasible to be applied to all the Partial Butterfly algorithms from

4× 4 to 32× 32 in size.

5. Based on the strategy of designing the small transforms as parts of the large

transforms facilitating resource-sharing, and based on the optimized implemen-

tations obtained by applying the proposed method to the Partial Butterfly algo-

rithms, we have proposed a series of novel hardware-oriented 4× 4 and 8× 8 fast

and low-cost forward transform algorithms for HEVC (Figure 6.11). The number

of addition/subtractions of the proposed implementations for the 4× 4 and 8× 8

transforms is fourteen and fifty-eight; while their longest paths include four and

five addition/subtractions, respectively. The running time and the cost of the

proposed fast and low-cost transform algorithms (Table 6.14 and Table 6.15) are

75% and 87% less than that of the original Partial Butterfly algorithms in HMs,

respectively. Compared to the reported algorithms for HEVC in the literature,

the proposed 8 × 8 algorithm is faster and its cost is lower (Table 6.17). Fast

and low-cost transform algorithms for larger sizes can be also developed using the

same method.

6. A high-throughput and area-efficient architecture for the HEVC 4 × 4 and

8 × 8 integer transforms is developed, implemented and fabricated based on the

proposed algorithms. A number of techniques has also been proposed, including (1)

multi-cycle adder design; (2) multi-stage register design; (3) pipelining mechanism
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among the addition/subtractions; (4) resource binding; (5) micro-code and control

signal optimization; and (6) fully pipelining mechanism among input, output and

transform processes. Despite under a very tight constraint on I/O pin count or

I/O bus width of half pixel, thanks to the techniques, the proposed architecture

can support the transforms for up to Quad-Full High Definition (QFHD) videos

at the progressive scan frequency of 30 Hz. This is eight times as large as that

of Martuza and Wahid (2012)’s design (Table 6.33). The power consumed by the

proposed architecture is only 44% as much as the power consumed by the Martuza

and Wahid (2012)’s design.

The dissertation is organized as follows. Chapter 2 provides some background

knowledge about the DCT and the integer transforms in H.264 and HEVC and the

related works. Chapter 3 describes two portable inverse transform architectures

for H.264/AVC with the goal of achieving high throughputs under a reasonable

bus width constraint. Chapter 4 introduces a high-throughput and area-efficient

forward and inverse tranform architecture for H.264. Chapter 5 is devoted to

the performance-cost analyses for H.264 integer transform designs. Chapter 6

introduces an optimization method to achieve fast and low cost algorithm imple-

mentation for scalar-multiplication-containing algorithms, and proposes a series

of fast and low-cost algorithms for the HEVC integer transforms, followed by a

high-throughput and area-efficient architecture for the HEVC integer transforms.

Lastly, the conclusions of the dissertation and future work are given in Chapter 7.
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Chapter 2

Background and Related Works

While the Discrete Cosine Transform (DCT) is used in the MPEG-2 and MPEG-4

video coding standards, its integer approximation, the integer transform, is used

in H.264 and HEVC to avoid the mismatch problem between encoder and decoder

transforms and the expensive floating-point arithmetic computation of the DCT.

In MPEG-2 and MPEG-4, the DCT size is 8 × 8. In H.264, the transforms are

from 2× 2 to 8× 8 in size. In HEVC, the transforms are even larger, from 4×4 to

32× 32 in size. One reason for these increments of the transform sizes is to adapt

the transform to the varying spatial frequency characteristics of residual data.

Another reason is that larger transform sizes typically enable better compression

than smaller sizes.

The H.264 integer transform is a loose approximation of the DCT for simple trans-

form implementations. The magnitudes of transform matrix coefficients are less

than 2 and 12 for 4×4 and 8×8 transform sizes, respectively. However, in HEVC,

the sizes of the transforms are much larger. Hence, loose approximations with

small matrix coefficients are impossible. Therefore, the HEVC developers use a

close approximation with symmetry properties to facilitate faster implementation.

The magnitudes of the HEVC transform matrix coefficients are up to 90.
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In this chapter, background knowledge about the DCT and the integer transforms

in H.264 and HEVC together with their quantizations are introduced in Section 2.1.

Section 2.2 presents the related works of the integer transforms in the literature.

2.1 Background

2.1.1 Discrete Cosine Transform and Quantization

2.1.1.1 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) has been adopted as transform coder in

the JPEG, H.26x, and MPEG-1 and -2 compression standards due to its excel-

lent energy compaction for highly correlated data, and the availabilities of fast

algorithms among the orthogonal transforms.

An 1-D DCT operates on a sequence of N samples, X, to create a sequence of N

coefficients, Y . Given a data sample sequence Xi with i = 0, 1, 2, ..., N −1, its 1-D

N-point forward DCT - coefficient sequence, Yk, is defined by Equation (2.1) with

k = 0, 1, ..., N − 1.

Yk = Ck
∑N−1

i=0
Xi cos[

π(2i+ 1)k

2N
] (2.1)

And Xi with i = 0, 1, 2, ..., N − 1, the inverse DCT of Yk with k = 0, 1, ..., N − 1,

is computed as

Xi =
∑N−1

k=0
CkYk cos[

π(2i+ 1)k

2N
], (2.2)

where

Ck =


√

1
N

when k = 0√
2
N

when 1 ≤ k ≤ N − 1.
(2.3)
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Equation (2.1) and Equation (2.2) can be rewritten as Equation (2.4) and Equa-

tion (2.5), respectively:

Yk =
∑N−1

i=0
XiAk,i (2.4) Xi =

∑N−1

k=0
YkAk,i, (2.5)

where A is an N ×N array with elements’ values as follows:

Ak,i = Ck cos
(2i+ 1)kπ

2N
. (2.6)

Considering A is a matrix, the 1-D DCT and its inverse, the 1-D IDCT, also

can be described in terms of matrix multiplication as in Equation (2.7), Equa-

tion (2.8) respectively, where X is a row matrix of samples, Y is a row matrix of

coefficients, and A is an N ×N transform matrix as described in Equation (2.9).

Y = XAT (2.7) X = Y A (2.8)

AN×N =
1

√
N



1 1 ... 1 ... 1
√

2 cos π
2N

√
2 cos 3π

2N
...

√
2 cos

(2i+1)π
2N

...
√
2 cos

(2N−1)π
2N√

2 cos 2π
2N

√
2 cos 6π

2N
...

√
2 cos

2(2i+1)π
2N

...
√
2 cos

2(2N−1)π
2N

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
√
2 cos kπ

2N

√
2 cos 3kπ

2N
...

√
2 cos

k(2i+1)π
2N

...
√
2 cos

k(2N−1)π
2N

.

.

.

.

.

.
.
. .

.

.

.
.
. .

.

.

.
√
2 cos

(N−1)π
2N

√
2 cos

3(N−1)π
2N

...
√
2 cos

(N−1)(2i+1)π
2N

...
√
2 cos

(N−1)(2N−1)π
2N



(2.9)

When N = 2, N = 4, we have:

A2×2 =
1√
2

 1 1
√

2 cos π
4

√
2 cos 3π

4

 =
1√
2

 1 1

1 −1

 (2.10)
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A4×4 =
1

2



1 1 1 1
√

2 cos π
8

√
2 cos 3π

8
−
√

2 cos 3π
8
−
√

2 cos π
8

1 −1 −1 1
√

2 cos 3π
8
−
√

2 cos π
8

√
2 cos π

8
−
√

2 cos 3π
8


(2.11)

Or

A4×4 =
1

2



1 1 1 1

b c −c b

1 −1 −1 1

c −b b −c


(2.12)

where

b =
√

2 cos π
8
≈ 1.307

c =
√

2 cos 3π
8
≈ 0.541.

(2.13)

For image and video compression, the 2-D DCT is required. A 2-D DCT operates

on a block of N × N samples, X, to create a block of N × N coefficients, Y .

Given a data block Xi,j with i, j = 0, 1, 2, ..., N − 1, its 2-D N-point forward DCT

- coefficient block, Yk,l, is defined by Equation (2.14) with k, l = 0, 1, ..., N − 1.

Yk,l = CkCl

N−1∑
i=0

N−1∑
j=0

X
i,j

cos
(2i+ 1)kπ

2N
cos

(2j + 1)lπ

2N
(2.14)

And Xi,j with i, j = 0, 1, 2, ..., N−1, the inverse DCT of Yk,l with k, l = 0, 1, ..., N−

1, is computed as in Equation (2.15).

Xi,j =
N−1∑
k=0

N−1∑
l=0

Xk,lCkCl cos
(2i+ 1)kπ

2N
cos

(2j + 1)lπ

2N
(2.15)

where C, i.e. Ck and Cl, follows Equation (2.3).
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Using matrix A described in Equation (2.6) or Equation (2.9) to rewrite Equa-

tion (2.14), we have:

Yk,l =
N−1∑
i=0

(
N−1∑
j=0

Xi,jCl cos
(2j + 1)lπ

2N

)
Ck cos

(2i+ 1)kπ

2N

=
N−1∑
i=0

(
N−1∑
j=0

Xi,jAl,j

)
Ak,i (2.16)

Naming Y ′i,l as an N × N matrix, where its row i is the 1-D DCT of row i in X.

For row i of Y ′ and X, based on Equation (2.4), we have:

Y ′i,l =
N−1∑
j=0

Xi,jAl,j (2.17)

Therefore, Equation (2.16) becomes:

Yk,l =
N−1∑
i=0

Y ′i,lAk,i (2.18)

Based on Equation (2.4), as can be seen from Equation (2.18), column l of Y is

actually the 1-D DCT of row l in Y ′T , or in another word, is the 1-D DCT of

column l in Y ′. Hence, we can write in terms of matrix multiplication:

Y ′ = XAT (2.19)

Y T = Y ′TAT (2.20)

Thus, we have another formula of the 2-D DCT Y and the 2-D IDCT X, which is

often seen as a definition of the 2-D DCT.

Y =
(
Y ′TAT

)T
= AY ′ = AXAT (2.21) X = ATY A (2.22)

All these manipulations lead to a conclusion that the 2-D forward DCT can be
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Figure 2.1: Forward DCT flow graph for N = 8, Ci = cos(i), Si = sin(i)
(Chen et al. (1977), Rao and Yip (1990)).

.

implemented using the 1-D forward DCT, by taking a 1-D DCT on the rows of

the input block, followed by a 1-D DCT on the columns of the semi-transformed

matrix. Similarly, the 2-D IDCT can be implemented using the 1-D IDCT, by

taking a 1-D IDCT on the columns of the input block, followed by a 1-D IDCT

on the rows of the semi-transformed matrix.

The first DCT algorithm was proposed by Ahmed et al. (1974) where a double-

sized Fast Fourier Transform (FFT) algorithm was used with complex arithmetic

throughout the computation. Chen et al. (1977) later presented a faster 1-D DCT

computation by exploiting the sparseness of the matrices involved. For N = 8, the

numbers of additions and multiplications are twenty-six and sixteen, respectively

(Figure 2.1). Lee (1984) further improved the technique by reducing the number

multiplications to 12.
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The computational complexity of the 2-D DCT is equal to 2N times the numbers

of additions and multiplications required for a 1-D DCT. For N = 8, the number of

additions and multiplications are 416 and 256, respectively, using Chens algorithm

(Chen et al., 1977); and 464 and 192, respectively, using Lee’s (Lee, 1984). Later,

Cho and Lee (1991) proposed a 2-D DCT algorithm which required only 466

additions and 96 multiplications.

2.1.1.2 Quantization

In image and video coding, after transform coding, quantization is usually per-

formed to map the coefficient values with a bigger range to quantized values with

a smaller range, so that the quantized values can be represented with fewer bits

than the original coefficient values. There are two types of quantization: scalar

and vector quantization. A scalar quantizer maps one sample of the input to one

quantized output value, while a vector quantizer maps a group of input samples

to a group of quantized values. Scalar quantization is commonly used in video

coding standards due to its simplicity.

A simple example of scalar quantization is:

FQ = round

(
X

QP

)
(2.23)

Y = FQ.QP (2.24)

where X is input sample, QP (Quantization Parameter) is quantization step size,

FQ is Forward Quantization output, and Y is quantized output.

Figure 2.2 shows two examples of scalar quantization, a linear and non-linear

quantization examples.

27



Chapter 2. Background and Related Works

Figure 2.2: A linear and non-linear quantization (Richardson, 2003).

In video coding, quantization is usually separated into two parts: forward quanti-

zation, whose operation showed in Equation (2.23), in encoders; and inverse quan-

tization or rescaling, whose operation showed in Equation (2.24), in decoders. The

step size, QP , is a critical parameter. If it is large, the range of quantized values is

small and thus the compression efficiency is high. However, the rescaled values are

a crude approximation to the original values. If the step size is small, the rescaled

values closely match the original values, but the compression efficiency is low.

2.1.2 Integer Transforms and Quantization in H.264/AVC

2.1.2.1 Forward/Inverse Integer Transforms

The 8 × 8 Discrete Cosine Transform (DCT) is used as the basic transform in

MPEG-1, MPEG-2 (ISO/IEC 13818-2, 1994), MPEG-4 (ISO/IEC 14496-2, 1999)

and H.263. To avoid the mismatch problem between encoder and decoder trans-

forms and reduce the expensive floating-point arithmetic implementation of the
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DCT, H.264 approximates the DCT in transform coding to carry out all transfor-

mations using just integer numbers. That is the reason why the H.264 transform

is called Integer transform.

In H.264 encoder (Figure 2.3), the output of prediction processes is residual data,

which is divided into marcroblocks. A 16 × 16 residual macroblock, in the usual

case of “4:2:0” color sampling, consists of a 16 × 16 luma and two 8 × 8 chroma

blocks, which are transformed differently (Richardson, 2003). The chroma com-

ponents, including eight blocks labeled 18-25 in Figure 2.5(b) and Figure 2.5(c),

are all 4× 4 transformed. The outputs of a forward transform is named transform

coefficients. The chroma DC coefficients are grouped (blocks 16, 17) and fur-

ther 2× 2 Hadamard transformed. On the other hand, the luma components are

transformed according to prediction modes and sub-partition sizes as showed in

Table 2.1. Figure 2.5(a) illustrates the luma transform in 16× 16 intra prediction

mode. After that, quantization is performed, and quantized transform coefficients

are then transmitted in the scanning order shown in Figure 2.5 to the entropy

encoder. At decoder side (Figure 2.4), data from entropy decoder, after being

reordered, are inverse quantized and inverse transformed. Subsequently, the data

is sent to an addition block to compensate the deducted values in the encoders’

prediction processes.

Figure 2.6 shows a complete process from input residual block X, through forward

integer transform (FIT), quantization, then to inverse quantization (rescaling), in-

verse integer transform (IIT) and output residual block X ′. The core forward/in-

verse transforms includes 4× 4 transform for chroma and luma residual data, and

8× 8 transform for luma residual data. The 2× 2 and 4× 4 DC forward/inverse

transforms are the 2× 2 Hadamard transforms for DC coefficients of chroma com-

ponents and the 4×4 Hadamard transforms for DC coefficients of luma components
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Figure 2.3: H.264 encoder block diagram (Richardson, 2003).

Figure 2.4: H.264 decoder block diagram (Richardson, 2003).

Table 2.1: Luma forward transforms according to prediction modes and sub-
partition sizes. FIT: Forward integer transform; FHT: Forward Hadamard

transform.
Sub-partition size Inter pred.

mode
4× 4 / 8× 8 Intra

pred. mode
16× 16 Intra pred.

mode
∃ a partition < 8× 8 4× 4 FIT 4× 4 FIT 4× 4 FIT, followed by
All partitions ≥ 8× 8 8× 8 FIT 8× 8 FIT 4× 4 FHT for DC coeff

in 16× 16 intra prediction mode.

All FIT/IITs do the same operation as described in Equation (2.25) with different

transform matrix C, except for 4× 4 Forward HT, which follows Equation (2.26).

W = CXCT , (2.25)
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Figure 2.5: Scanning order of residual blocks within a 16 × 16 macroblock
(Richardson, 2003). (a) Luma, (b) Cb, and (c) Cr.
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(Richardson, 2003).

W = CXCT 1

2
. (2.26)
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In particular, 4 × 4 FIT, 8 × 8 FIT, 4 × 4 FHT and 2 × 2 FHT use Cf (Equa-

tion (2.27)), Cef (Equation (2.28)), Hf4×4 (Equation (2.29)) and Hf2×2 (Equa-

tion (2.30)), while 4 × 4 IIT, 8 × 8 IIT, 4 × 4 IHT and 2 × 2 IHT use Ci (Equa-

tion (2.31)) and Cei (Equation (2.32)), Hi4×4 (Equation (2.33)) and Hi2×2 (Equa-

tion (2.34)), respectively.

Cf =



1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1


, (2.27)

Cef =
1

8



8 8 8 8 8 8 8 8

12 10 6 3 −3 −6 −10 −12

8 4 −4 −8 −8 −4 4 8

10 −3 −12 −6 6 12 3 −10

8 −8 −8 8 8 −8 −8 8

6 −12 3 10 −10 −3 12 −6

4 −8 8 −4 −4 8 −8 4

3 −6 10 −12 12 −10 6 −3



, (2.28)

Hf4×4 =



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


, (2.29)

Hf2×2 =

1 1

1 −1

 , (2.30)
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T

fff CEXCY )(  )/( stepijij QYroundZ 

Transform Quantization
X Y Z

Figure 2.7: DCT integer approximation with scaling in H.264 transform cod-
ing.

Ci =



1 1 1 0.5

1 0.5 −1 −1

1 −0.5 −1 1

1 −1 1 −0.5


, (2.31)

Cei = CT
ef , (2.32)

Hi4×4 = Hf4×4, (2.33)

Hi2×2 = Hf2×2. (2.34)

2.1.2.2 Quantization and Rescaling

As the H.264 integer transforms are integer approximations of the DCT, in order

to ensure the accuracy, scaling is used together with the integer transforms (Fig-

ure 2.7). In the figure, X, Y , and Z are the input, transformed, and quantized and

transformed matrices, respectively. Ef and Cf are the scaling and forward integer

transform matrices, respectively. The symbol
⊗

indicates the multiplication of

the factors having the same positions in the two matrices. Quantizer step size,

Qstep, is determined by quantization parameter QP (from 0 to 51) (Richardson,

2003). In order to reduce the number of multiplications, Ef multiplication is per-

formed together with quantization as shown in Figure 2.8, where PFf is position

factor in Ef . Consequently, the inverse transforms and rescaling are performed as

shown in Figure 2.9, where PFi is position factor in pre-scaling matrix Ei.

33



Chapter 2. Background and Related Works
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Figure 2.8: Integer transform with post-scaling in H.264.
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Figure 2.9: Inverse integer transform with rescaling in H.264.

In order to simplify the computation and avoid division, the factor PF
Qstep

is imple-

mented as a multiplication by MF and a right shift.

Zij = round
(
Wij

MF
2qbits

)
, where MF

2qbits
= PF

Qstep
,

qbits = 15 +
⌊
QP
6

⌋
.

(2.35)

Therefore, Zij can be computed as |Zij| = (|Wij| ×MF + f)� qbits and sign(Zij) =

sign(Wij), where f = 2qbits

3
for intra mode and f = 2qbits

6
for inter mode.

Table 2.2 shows quantization and rescaling operations corresponding to each type

of transforms. It should be noted that H.264 does not specify Qstep or PF for the

inverse transforms directly. Instead, it specifies parameter V = QstepPFi64 for

each 0 ≤ QP ≤ 5 and for each coefficient position. Therefore, W
′
ij = ZijVij2

bQP
6 c

(Table 2.2).

2.1.3 Integer Transform in HEVC

Figure 2.10 shows the block diagram of HEVC hybrid video encoder (Sullivan

et al., 2012). Although it is similar to H.264, there are some key differences

that improve compression efficiency of HEVC over its predecessors, including (1)

Coding Tree Units and Coding Tree Block structure; (2) Transform Units and
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Table 2.2: Quantization/Rescaling for all FIT/IIT transforms.

Transform Quantization/Rescaling operations
4× 4 FIT

|Zij| = (|Wij| .MF + f)� qbits (2.36a)

sign (Zij) = sign (Wij) (2.36b)

8× 8 FIT

|Zij| = (|Wij| .MF + 2f)� (qbits+ 1) (2.37a)

sign (Zij) = sign (Wij) (2.37b)

4× 4 FHT

|Zij| = (|WDCij| .MF00 + 2f)� (qbits+ 1) (2.38a)

sign (Zij) = sign (WDCij) (2.38b)

2× 2 FHT

|Zij| = (|WDCij| .MF00 + 2f)� (qbits+ 1) (2.39a)

sign (Zij) = sign (WDCij) (2.39b)

4× 4 IIT

W ′
ij = ZijVij �

⌊
QP

6

⌋
(2.40)

8× 8 IIT

W ′
ij =

(
ZijVij �

⌊
QP

6

⌋)
� 2 (2.41)

4× 4 IHT

W ′
ij =

{
W ′
DCijV00 �

(⌊
QP
6

⌋
− 2
)

if QP ≥ 12,(
W ′
DCijV00 + 21−bQP

6 c
)
�
(
2−

⌊
QP
6

⌋)
otherwise.

(2.42)

2× 2 IHT

W ′
ij =

{
W ′
DCijV00 �

(⌊
QP
6

⌋
− 1
)

if QP ≥ 6,
W ′
DCijV00 � 1 otherwise.

(2.43)
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Figure 2.10: HEVC encoder block diagram (Sullivan et al., 2012).

Transform Blocks; (3) Motion Compensation; (4) Intra-Picture Prediction; (5)

Entropy Coding; (6) In-loop Filtering; (7) Slices, Tiles and Wavefront; and (8)

High-level Syntax.

In the previous standards, “macroblock” is the core of the coding layer. It consists

of a 16×16 block of luma samples and, if the typical “4:2:0” color sampling is used,

two corresponding 8×8 blocks of chroma samples and associated syntax elements.

On the contrary, the equivalent structure in HEVC is the coding tree unit (CTU),

which includes coding tree blocks (CTBs) for luma and chroma. Since a luma

CTB has a larger size L × L with L = 16, 32, or 64 samples, better compression

is typically achieved. Based on a quadtree structure, CTBs are partitioned into

coding blocks (CBs) (Figure 2.12). The luma and chroma CBs are then split

together. A set of one luma CB and the two corresponding chroma CBs with

associated syntax elements is termed a coding unit (CU). A CU can be as small
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(b)

Figure 2.11: Subdivision of a 64 × 64 luma coding tree block (CTB) into
coding blocks (CBs) and transform blocks (TBs) (Sullivan et al., 2012). Solid
lines indicate CB boundaries and dotted lines indicate TB boundaries. (a) The
CTB with its partitioning and (b) the corresponding quadtree. Luma CB can
be as small as 8× 8 where TB can be minimum 4× 4 in size. In this example,

the leaf CBs and TBs are 8× 8 in size.

as a combination of a 8× 8 luma CB and two 4× 4 chroma CBs with associated

syntax elements.

Block transforms are used to code the prediction residual. The CU is at the root

of a transform unit (TU) tree structure, and the CBs may be further split into

smaller transform blocks (TBs) of 4× 4, 8× 8, 16× 16, or 32× 32.

2.1.3.1 Core Transform

Like the H.264 standard, the 2-D transforms in HEVC are computed by apply-

ing the 1-D transforms in both the horizontal and vertical directions. The core

transform matrices were derived by approximating scaled DCT basis functions

to integer values under considerations maximizing the precision and proximity to

orthogonality and limiting the dynamic range for transform computation. HEVC

transform matrices can be found in Figure 2.12.
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H4x4 =

64 64 64 64

83 36-36-83

64-64-64 64

36-83 83-36

(a)

64 64 64 64 64 64 64 64

89 75 50 18-18-50-75-89

83 36-36-83-83-36 36 83

75-18-89-50 50 89 18-75

64-64-64 64 64-64-64 64

50-89 18 75-75-18 89-50

36-83 83-36-36 83-83 36

18-50 75-89 89-75 50-18

H8x8 =

(b)

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

90 87 80 70 57 43 25  9 -9-25-43-57-70-80-87-90

89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89

87 57  9-43-80-90-70-25 25 70 90 80 43 -9-57-87

83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83

80  9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80

75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75

70-43-87  9 90 25-80-57 57 80-25-90 -9 87 43-70

64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64

57-80-25 90 -9-87 43 70-70-43 87  9-90 25 80-57

50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50

43-90 57 25-87 70  9-80 80 -9-70 87-25-57 90-43

36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36

25-70 90-80 43  9-57 87-87 57 -9-43 80-90 70-25

18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18

 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9

H16x16 =

(c)

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

90 90 88 85 82 78 73 67 61 54 46 38 31 22 13  4 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90

90 87 80 70 57 43 25  9 -9-25-43-57-70-80-87-90-90-87-80-70-57-43-25 -9  9 25 43 57 70 80 87 90

90 82 67 46 22 -4-31-54-73-85-90-88-78-61-38-13 13 38 61 78 88 90 85 73 54 31  4-22-46-67-82-90

89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89

88 67 31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38  4 46 78 90 82 54 13-31-67-88

87 57  9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43  9 57 87

85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61  4-54-88-82-38 22 73 90 67 13-46-85

83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83

82 22-54-90-61 13 78 85 31-46-90-67  4 73 88 38-38-88-73 -4 67 90 46-31-85-78-13 61 90 54-22-82

80  9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70  9 80

78 -4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82  4-78

75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75

73-31-90-22 78 67-38-90-13 82 61-46-88 -4 85 54-54-85  4 88 46-61-82 13 90 38-67-78 22 90 31-73

70-43-87  9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90  9-87-43 70

67-54-78 38 85-22-90  4 90 13-88-31 82 46-73-61 61 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67

64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64

61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 67-67-54 78 38-85-22 90  4-90 13 88-31-82 46 73-61

57-80-25 90 -9-87 43 70-70-43 87  9-90 25 80-57-57 80 25-90  9 87-43-70 70 43-87 -9 90-25-80 57

54-85 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88  4 85-54

50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50

46-90 38 54-90 31 61-88 22 67-85 13 73-82  4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46

43-90 57 25-87 70  9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80  9 70-87 25 57-90 43

38-88 73 -4-67 90-46-31 85-78 13 61-90 54 22-82 82-22-54 90-61-13 78-85 31 46-90 67  4-73 88-38

36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36

31-78 90-61  4 54-88 82-38-22 73-90 67-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31

25-70 90-80 43  9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57  9 43-80 90-70 25
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 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9 -9 25-43 57-70 80-87 90-90 87-80 70-57 43-25  9

 4-13 22-31 38-46 54-61 67-73 78-82 85-88 90-90 90-90 88-85 82-78 73-67 61-54 46-38 31-22 13 -4

H32x32 =

(d)

Figure 2.12: Transform matrices in HEVC. (a) H4×4; (b) H8×8; (c) H16×16;
and (d) H32×32.
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Since the size of the supported transforms is increased, it is important to limit the

dynamic range of the intermediate results in transform computation right from the

first stage. For 8-bit HEVC video decoding, a 7-bit right shift and 16-bit clipping

operation are explicitly inserted after the first 1-D vertical inverse transform stage

to guarantee that all intermediate values can be stored in 16-bit memory.

2.1.3.2 Mode-Dependent Alternative Transform

For intra prediction modes, an alternative integer transform derived from a discrete

sine transform (DST) is applied to the 4×4 luma residual blocks with the transform

matrix

H =



29 55 74 84

74 74 0 −74

84 −29 −74 55

55 −84 74 −29


. (2.44)

The new transform based on DST is more suitable to model the fact that the

residual amplitudes tend to increase as the distance from the boundary samples

becomes larger. It is also not more complex than the 4× 4 DCT-style transform,

and in intra-predictive coding, it provides about 1% bit-rate reduction.

It should be noted that the DST-style transform is used for only 4×4 luma trans-

form blocks, since for other cases there is no significant improvement in efficiency

if this additional transform type is used.

2.1.3.3 Scaling and Quantization

Unlike H.264/MPEG-4 AVC, HEVC does not need the pre-scaling operation since

the rows of the transform matrix are close approximations of uniformly-scaled
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basis functions’ values of the orthogonal DCT. This helps reduce the intermediate

memory size, and especially is useful when the transform is large as 32× 32.

For quantization, as in H.264/MPEG-4 AVC, uniform-reconstruction quantization

(URQ) is also used in HEVC. The range of the quantization parameter (QP) is

defined from 0 to 51, and an increase by six doubles the quantization step size,

such that the mapping of QP values to step sizes is approximately logarithmic.

Quantization scaling matrices are also supported in HEVC. However, to reduce

the intermediate memory size, only 4×4 and 8×8 quantization matrices are used.

For 16 × 16 and 32 × 32 transformations, an 8 × 8 scaling matrix is sent and is

applied by sharing values within 2 × 2 and 4 × 4 coefficient groups in frequency

sub-spaces except for values at DC positions, for which distinct values are sent

and applied.

2.2 Related Works

2.2.1 H.264/AVC Integer Transform

In December 2001, ITU-T and MPEG established a Joint Video Team (JVT) to

develop the H.264/AVC video coding standard, which was finalized in March 2003

and approved in May 2003. H.264/AVC achieves a compression efficiency of up

to 50% of bit-rates with much higher visual quality compared to the previous

standards. Its decoder complexity is about four times of that of MPEG-2 and two

times of that of the MPEG-4 Visual Simple Profile Ostermann et al. (2004).
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Figure 2.13: Fast implementation of the H.264 1-D 4 × 4 transforms (Mal-
var et al., 2003). (a) Forward transform algorithm and (b) inverse transform

algorithm.

The 4 × 4 forward and inverse integer transforms (Equations (2.27) and (2.31))

were introduced together with their fast multiplication-free implementations (Fig-

ure 2.13) by Malvar et al. (2003) in a special issue of the IEEE Transactions on Cir-

cuits and Systems for Video Technology, which was dedicated to the newly released

H.264/AVC video coding standard. The fast 1-D implementations (Figure 2.13)

are to transform all data of a row or column in parallel. The 2-D transforms

can be performed by repeatedly applying the corresponding 1-D transform for all

rows/columns of the data block, then for all columns/rows. The fast 1-D 4 × 4

forward/inverse transform implementation only needs eight addition/subtractions

with two shift operations to transform a 4-input row/column. In addition, it can

complete a 1-D transform for a row/column after two addition/subtractions.

In 2004, Gordon et al. (2004) introduced the 8 × 8 forward and inverse integer

transforms (Equations (2.28) and (2.32)) together with their fast multiplication-

free implementations for the H.264/AVC high profiles. Similar to the fast 4 × 4

implementations, the fast 8× 8 1-D implementations transform all data of a row

or column in parallel. The 2-D transforms also can be performed by repeatedly
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applying the corresponding 1-D transform for all rows/columns of the data block,

then for all columns/rows. The fast 1-D 8 × 8 forward/inverse transforms imple-

mentation needs thirty-two addition/subtractions with fourteen shift operations

to transform a 4-input row/column. In addition, it can complete a 1-D transform

for a row/column after five addition/subtractions.

Because the H.264/AVC high profiles (Marpe et al., 2005) target higher-fidelity

video materials, their transform designs are challenging to achieve sufficiently high

throughput. For hardware designs, not only high throughput but also area effi-

ciency must be taken into account due to hardware cost. High throughput and

area efficiency for hardware designs in general and integer transform hardware

designs in particular can be achieved through two levels: the algorithm level and

the architecture level.

At the algorithm level, fast and low-cost algorithms for all the forward and inverse

transforms, including the 4× 4, 8× 8 integer transforms and the 2× 2 and 4× 4

Hadamard transforms, have been provided by the H.264/AVC developers.

At the architecture level, many techniques have been used to increase design

throughputs, where most of the architectures are based on those fast algorithms.

The fast algorithms can be considered as the “official” transform algorithms be-

cause they were proposed by the JVT.

Many designs in the literature (Raja et al., 2005; Kordasiewicz and Shirani, 2005;

Amer et al., 2005) process an entire 4 × 4 or 8 × 8 data block at one time by

using eight or sixteen transform units, respectively. Here, a transform unit is the

hardware component corresponding to 1-D transform a row or a column.
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Figure 2.14: Fast 1-D 8× 8 FIT/IIT algorithms adopted from Gordon et al.
(2004). (a) FIT and (b) IIT.
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Raja et al. (2005) proposed an architecture supporting the 4×4 forward transform

and quantization. The architecture includes eight 1-D transform units, a large

quantization module and a RAM to input, process and output sixteen pixels in

parallel. It can complete a 2-D transform in one clock cycle.

Kordasiewicz and Shirani (2005) reported two 4×4 forward transform architectures

supporting quantization: one is area-optimized and the other is speed-optimized.

The speed-optimized design is based on the official fast algorithms. Sixteen inputs

are fetched at the same time. Similar to the design by Raja et al. (2005), this

architecture includes eight 1-D transform units and process the 2-D 4×4 transform

in one cycle. The design quantization takes another cycle. Therefore, the total

delay to process a 2-D transform is two cycles.

Amer et al. (2005) proposed an 8 × 8 forward transform architecture supporting

quantization. By using sixteen transform units with a quantization module, the

architecture inputs sixty-four pixels in parallel, processes using the fast 8 × 8

algorithm (Gordon et al., 2004) in one cycle, quantizes in one cycle, and outputs

sixty-four coefficients simultaneously. The transform and the quantization block

are pipelined. With the 12-bit depth for each pixel, the data bus width is 64 ×

12× 2 = 1536.

The architectures in this class, especially the architectures supporting 8× 8 trans-

forms, lead to large bus widths of at least 1280 bits. If the architectures are

implemented as hard IP cores, a huge number of pins, and consequently, a huge

number of I/O pads is required. Thus, it is impractical in hardware implemen-

tation. If the architectures are implemented as soft IP cores, the corresponding

circuit areas are very large because of the huge number of wires in the high level

metal layers. Although not being reported in the published scripts, wiring areas
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are actually much larger than the cell areas and significantly affect the total cir-

cuit areas of the designs. Moreover, the architectures themselves requires many

hardware resources to transform all the rows/columns of a block concurrently.

Therefore, this technique is inapplicable for H.264 high profile integer transform

designs; and having reasonable bus width or I/O pin count must be taken into ac-

count when addressing the high throughput challenge for transform architecture

designs.

In the literature, pipelining is another technique to increase the design throughput.

For the H.264/AVC main profile transforms (4×4 in size), a pipelining mechanism

for input, output and transform processes is applied in some designs (Chen et al.,

2006; Shi et al., 2007). The pipelining mechanisms reduce the total delays and

increase the throughputs and performances of the systems.

Chen et al. (2006) proposed a direct 2-D 4 × 4 forward and inverse transform

architecture supporting 4 × 4 forward and inverse Hadamard transforms. The

architecture inputs sixteen pixels simultaneously. By using four transform units

and a pipelining mechanism among input, output and transform processes, the

architecture requires only two cycles to complete a 2-D transform and outputs

eight coefficients at one time.

Shi et al. (2007) proposed a transform architecture which can perform the 4 ×

4 forward and inverse integer transform and the 4 × 4 and 2 × 2 forward and

inverse Hadamard transforms. The shared architecture was developed based on

the structural similarities among all the 1-D forward and inverse transforms. By

using four 1-D shared transform units, the shared 1-D architecture can process a

2-D 4 × 4 transform in two cycles. With a pipelining mechanism for input (four

cycles), output (four cycles) and transform (two cycles) processes, the architecture
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can complete a transform within four cycles. By sharing architecture, the design

can achieve a relatively small area.

The pipelining mechanism is also applied for transform and quantization processes

by some of the H.264/AVC high profile transform designs (8 × 8 in size). A

design by Pastuszak (2008) supports all the forward and inverse transforms with

quantization and rescaling, except for the 2×2 Hadamard transforms. The author

deployed the similarity of the official fast algorithms for different transform sizes.

Thus, one shared 8×8 forward transform unit can perform a 1-D 8×8 transform for

a row/column, or two 1-D 4×4 row/column transforms; and one shared 8×8 inverse

transform unit can perform a 1-D 8×8 transform, or a 1-D 4×4 for a row/column.

The architecture contains eight forward/inverse transform units to process a 2-D

8 × 8 transform in two cycles. The quantization performs thirty-two coefficients

at a time, leading to a delay of two cycles. The transform architecture inputs

sixty-four pixels and output sixty-four coefficients at a time with a 16-bit depth

for each pixel, while the quantization architecture inputs thirty-two transformed

coefficients and output thirty-two quantized transformed coefficients at a time.

Therefore, the total data bus width is 128 pixels. By pipelining the transform,

quantization and middle-buffer data transferring processes, the architecture can

transform an 8× 8 block in two cycles. However, the I/O delay is not counted in

this 8× 8 transform architecture.

In addition, the reported designs supporting these pipelining mechanisms have

very large bus widths, leading to extremely high wiring areas and difficulties in

realizing hard IP cores.

In the literature, hardware-sharing techniques have been used for area-efficient de-

signs. In some designs, the authors implemented the integer transforms by directly
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multiplying a row/column of the data blocks by a column/row of the transform

matrices to output one element of a row/column at a time. The multiplications

are implemented using only addition and shifts operations, and there are shared

hardware components among them.

An area-optimized architecture supporting the 4×4 forward transform with quan-

tization was reported by Kordasiewicz and Shirani (2005). The architecture is not

based on the official fast algorithms. It performs multiplications and outputs one

coefficient among sixteen coefficients of the 1-D transform at once. The multiplica-

tion is implemented by addition and shift operations. Because the coefficients are

processed separately, the multiplication architecture can be shared among them,

leading to a small area. The delay required to output each coefficient is seven cy-

cles, where four cycles are reserved to fetch four inputs. The quantization module

needs four cycles to process. Hence, the total delay to process a 2-D transform is

(7× 16)× 2 + 4 = 228 cycles.

Hardware resource can be shared among all the row/column multiplications in this

class of direct-multiplication designs. However, their throughputs are relatively

small (less than or equal to one pixel per cycle). Since high throughput is the first

priority requirement for the H.264 high profiles in order to support high definition

videos, this direct-multiplication technique is not suitable for high profile designs.

Nevertheless, it is still useful for main profile designs.

In addition to the application to row/column multiplications, the hardware-sharing

technique can be deployed among large and small sizes of the transforms (Chao

et al., 2007; Pastuszak, 2008; Su and Fan, 2008).

A design by Chao et al. (2007) supports all types of the inverse transforms without

rescaling function. The inverse transform architecture has 16-pixel-wide input and
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8-pixel-wide output, leading to a total data bus width of twenty-four pixels. By

deploying similarities among the direct 2-D 4×4 inverse transform, the direct 2-D

inverse Hadamard transforms and the official fast 1-D 8× 8 inverse algorithm, the

architecture uses one 8×8 shared transform unit to perform a 1-D 8×8 transform

for a 8-input row/column, or a half of 2-D 4× 4 transform for a 4× 4 data block,

or a 2-D 2 × 2 inverse Hadamard transform for a 2 × 2 block. The architecture

also includes an 8 × 8 transpose buffer. For each 8 × 8 block, it requires sixteen

cycles to process and three cycles for pipelining.

The architecture reported by Pastuszak (2008) deployed the similarity of the offi-

cial fast algorithms for different transform sizes. Thus, one shared 8 × 8 forward

transform unit can perform a 1-D 8 × 8 transform for a row/column, or two 1-D

4 × 4 row/column transforms; and one shared 8 × 8 inverse transform unit can

perform a 1-D 8× 8 transform, or a 1-D 4× 4 for a row/column.

A design by Su and Fan (2008) supports all the inverse transforms of H.264 and

AVS and without rescaling. Su and Fan (2008) decomposed the transform matrices

into common simple matrix components. The shared architecture can perform

each 1-D transform in four cycles. With a 12-bit-per-pixel 64-pixel input data bus

and a 18-bit-per-pixel 64-pixel output data bus, the 2-D architecture uses two 1-D

transform units and it requires sixteen cycles to complete an 8× 8 transform.

Hardware-sharing can be deployed not only among different sizes of the transforms,

but also among the forward and inverse transforms (Shi et al., 2007; Choi et al.,

2008).

The shared architecture proposed by Shi et al. (2007) was developed based on the

structural similarities among all the 1-D forward and inverse transforms. By using

this shared architecture, the design can achieve a relatively small area.
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A design by Choi et al. (2008) supports most all the forward and inverse transforms

without quantization and rescaling, except for the 2 × 2 Hadamard transform.

By sharing the architecture among the 4 × 4 with 8 × 8 transforms, and among

the forward and inverse transforms, the 1-D architecture can perform any 1-D

transform of a row or column in one cycle. By using four transform units with

a 32-pixel input and a 32-pixel output data bus and a transpose buffer, it can

process the 1-D 4 × 4 and 8 × 8 transforms in one and two cycles, respectively.

The design requires five cycles to complete an 8× 8 transform.

In a number of H.264/AVC designs (Wang et al., 2003; Kordasiewicz and Shirani,

2005; Chao et al., 2007; Choi et al., 2008; Park and Ogunfunmi, 2009; Hu et al.,

2009), data are presumed available for processing at the transform modules, and

delays due to the data transfer are not taken into account when evaluating per-

formances. This leads the fact that the reported throughputs are higher than the

actual throughputs of the implementations.

Wang et al. (2003) proposed a 2-D 4×4 forward and inverse transform architecture.

The architecture can additionally perform the 4×4 forward Hadamard transform.

It contains two 1-D transform units and a transpose register array, where each 1-D

transform unit performs the 4 × 4 fast algorithms for four parallel inputs. The

transform units are designed to complete the 1-D transforms of a row or column

in one cycle. The architecture inputs four pixels simultaneously and finishes each

2-D transform in four cycles.

Park and Ogunfunmi (2009) proposed an 8 × 8 forward transform architecture

supporting quantization. It is based on the official fast algorithm. The architecture

includes two 1-D transform blocks and a transpose logic with a quantization block.

It inputs a row/column of eight pixels concurrently and processes its 1-D 8 × 8
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transform in one cycle. However, the 1-D block outputs only one coefficient at

once to the transpose logic, leading to the processing delay of sixty-four cycles for

the 1-D transform and the pipelined 2-D transform.

Hu et al. (2009) proposed an architecture supporting the 4× 4 and 8× 8 inverse

transforms, the 4× 4 inverse Hadamard transform and the rescaling. It processes

a transform for each row/column in a cycle and takes seventeen cycles to complete

the 8× 8 inverse transform including rescaling (one cycle).

The research on the state-of-the-art designs for high throughputs shows that there

is a strong need of developing integer transform designs with reasonable bus widths

producing high throughputs, in which I/O delays are included.

The research on the state-of-the-art designs for area efficiency shows that there is

still lack of shared architectures sharing hardware among all the forward trans-

forms and among all the inverse transforms including the 4× 4 and 2× 2 Hadard-

mard transforms.

Integer transform modules eventually need to be integrated into H.264 video en-

coders and decoders together with other modules. However, the reported trans-

form designs in the literature have different signals and data transfer mechanisms.

This makes it difficult to integrate or reuse the reported components. Therefore,

another question also can be raised is that how to design portable and flexible ar-

chitectures which can be easily integrated to other systems and reused in future?

Strongly motivated by the above gaps in the H.264/AVC integer transform designs,

this study addresses the high throughput and area-efficient challenges through

three novel transform architectures (Section 3.2, Section 3.3 and Section 4) with

shared forward/inverse transform units (Section 3.2, Section 3.3 and Section 4),
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two different pipeline mechanisms (Section 3.3 and Section 4), special I/O buffers

(Section 4) and standard bus system deployment (Section 3.2 and Section 3.3).

2.2.2 HEVC Integer Transform

In January 2010, ITU-T VCEG and ISO/IEC MPEG agreed to establish a Joint

Collaborative Team on Video Coding (JCT-VC) (Ohm and Sullivan, 2013) and

a joint call for proposals on video compression technology (ITU-T and ISO/IEC

JTC1, 2010) was issued. The first meeting was held in April 2010 with an agree-

ment on the HEVC project name. In the meeting, submitted proposals in response

to the proposal call were studied. The first version of “Test Model Under Consid-

eration” (TMuC) was established from elements of several promising proposals,

which were discussed by Wiegand et al. (2010). In October 2010, redundant cod-

ing features and low benefit-complexity-rate features were removed from TMuC,

producing an HEVC test model version 1 (HM). The HEVC design has been con-

tinually updated to Draft 9 of the standard (Bross et al., 2012) and HM 9 (ITU-T

and JTC1, 2012). The first version of the HEVC standard is scheduled to be

produced in early 2013.

The goal of HEVC is to achieve a reduction by about half of the bit-rate for

equivalent visual quality compared to H.264/AVC. The current HMs are roughly

meeting or exceeding the targeted goal. From the conducted experiments, the

approximate average bit-rate reduction for equivalent subjective quality was 67%

for full HD sequences, 49% for WVGA sequences, and 58% overall. The PSNR

bit-rate savings of HEVC for the same quality was reported to be around 35-40%

compared to the H.264/AVC High Profiles and 70-80% compared to the MPEG-2

Main Profile (Ohm et al., 2012).
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Complexity considerations are analyzed in depth by Bossen et al. (2012). Overall,

HEVC decoder complexity is about 1.5 times of that of H.264/AVC, while HEVC

encoders are expected to be several times more complex than H.264/AVC encoders.

It is also predicted that due to the complexity, HEVC encoders is a subject of

research for years to be realized.

Two series of algorithms are being used in HMs to implement transform coding for

HEVC in four sizes from 4×4 to 32×32. The first series is purely matrix multipli-

cations, while the second one, Partial Butterfly series, includes butterfly additions

and scalar multiplications. The latter are developed based on the symmetry prop-

erties of the HEVC transform matrices. The former is easier to implement but

very computationally complex and slow, while the latter requires more efforts to

implement but has far fewer mathematical operations (Sullivan et al., 2012). This

is the reason why the Partial Butterfly series is used for all quality and complexity

tests of HMs.

HEVC aims to support beyond-full high resolution videos. Hence, HEVC designs

are required to achieve much higher throughputs than those of H.264 designs. In

addition, the HEVC transforms are much more complex than the H.264 transforms

due to its much larger transform sizes (up to 32 × 32) and much larger matrix

coefficient values (up to 90). Both the large increment in the supported resolutions

and the large increment in complexity make it more challenging to develop high-

throughput and area-efficient designs for HEVC than H.264/AVC.

Similar to H.264/AVC, for HEVC integer transform hardware designs, two de-

sign levels can be considered to achieve high throughput and area efficiency: the

algorithm level and the architecture level.
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At the algorithm level, Partial Butterfly algorithms have been deployed for the

HEVC transforms in HEVC test model HM (ITU-T and JTC1, 2012). The Par-

tial Butterfly algorithms are implemented using butterfly additions and multipli-

cations. Compared to the transform implementation by multiplications, this series

of algorithms is much less complex. However, it is still far more complex than the

equivalent-size transform algorithms of H.264. This is because the H.264/AVC

transform algorithms contain simple sequences of shift and addition operations,

while the Partial Butterfly algorithms for HEVC contain a number of multiplica-

tions with large multipliers. Therefore, less complex and faster transform algo-

rithms using only additions and shift operations are obviously needed.

To the best of our knowledge, until now (December 2012), there are not many

HEVC transform algorithms proposed in the literature. The techniques of manip-

ulating and decomposing the up-to-8×8 transform matrices of HEVC based on the

H.264 transform matrices have been reported to develop fast and low-complexity

transform algorithms for HEVC. As a result, the transforms can be implemented

using addition and shift operations.

In November 2012, Rithe et al. (2012), based on the structural similarity and

symmetry of the HEVC, H.264 and VC-1 transform matrices, proposed a shared

algorithm and architecture to perform 4×4 and 8×8 transforms for the three stan-

dards. The algorithm and architecture was developed based on decompositions of

the 4× 4 and 8× 8 transform matrices into small-size simple matrix components,

where VC-1 transforms can share several components with those of H.264 and

those of HEVC can share several components with those of the other two stan-

dards. These decompositions, at the same time, also enable the implementation

of the transforms by using only addition and shift operations. The proposed al-

gorithm and architecture of HEVC requires eighteen and sixty additions with the
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longest operation path of four and six additions for the 4×4 and 8×8 transforms,

respectively. However, this decomposition method cannot guarantee to be extend-

able to larger sizes of the HEVC transforms due to difficulties in finding small-size

simple matrix components for decompositions. In addition, the authors did not

implement their HEVC design in hardware.

Martuza and Wahid (2012) approached the problem solution in a different way.

Instead of decomposing the HEVC transform matrices into simple matrix compo-

nents, the authors directly used the H.264 8×8 inverse transform matrix for HEVC

8×8 transform implementation with a compensation by the difference between the

two transform matrices. Both H.264 matrix multiplication and the matrix differ-

ence are then implemented using addition and shift operations. The H.264 matrix

multiplication implementation is not based on the recommended simplified algo-

rithms for H.264/AVC (Gordon et al., 2004), which 1-D transforms eight inputs

in parallel to produce eight outputs simultaneously. It directly multiplies eight

inputs by each column of the transform matrix to produce an output at a time.

The sequenced outputs of the algorithm facilitate hardware sharing among the

column multiplications. Therefore, although the algorithm consumes seventy-two

addition/subtractions with the longest path of at least seven addtion/subtractions,

the shared architecture can achieve a relative small resource consumption of thirty-

two adders. However, the architecture requires eight cycles to 1-D transform eight

inputs, where in each cycle, at least seven additions are required to be performed.

This leads to a low throughput as a trade-off for the cost reduction. Since the

HEVC standard enables capability to compress ultra high definition videos, high

throughput should be the highest priority among all the aspects. In addition, this

design also cannot be extendable to larger sizes of the HEVC transforms as H.264

does not have larger-than-8× 8 transforms.
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Both of the above designs are based on H.264 transform matrices to manipulate

HEVC matrices so that the HEVC matrix multiplications can be implemented

using addition and shift operations. At the same time, due to the common opera-

tions, the HEVC and H.264 transforms can share some architecture components.

However, this H.264-shared approach may lead to a longer running time and larger

resource consumption for HEVC transform designs because the shared algorithms

and architectures are normally not as optimized as the individual optimal algo-

rithms and architecture designs.

At the architecture level, techniques to improve design throughput have not re-

ported yet in the literature. Similar to H.264/AVC, in order to reduce the area,

hardware-sharing techniques are reported. Martuza and Wahid (2012) imple-

mented the integer transforms using direct multiplications to share the hardware

resource among all the coefficient computations. However, this direct-multiplication

technique normally produces small throughputs of one pixel per cycle or even less.

In addition, hardware-sharing among large and small sizes of the transforms is

reported (Rithe et al., 2012).

Therefore, together with HEVC finalization, there is an urgent need of developing

fast algorithms and high-throughput architectures for HEVC transforms. As the

size and complexity of the 32× 32 transform in HEVC are large, it is difficult to

manually develop such algorithms. This study researches methods to develop fast

transform algorithms for all the sizes of the HEVC transforms, which facilitate high

throughput designs. In this study, we propose a novel method to automatically find

fast algorithms even for the 32× 32 transforms. Based on the proposed method, a

series of 4× 4 and 8× 8 hardware-oriented fast and low-cost transform algorithms

for HEVC is developed. Fast and low-cost larger size transform algorithms also

can be developed using the same method. A high-throughput and area-efficient
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architecture with hardware implementation is finally developed, implemented and

fabricated based on the proposed algorithms.
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Chapter 3

Portable Inverse Transform

Architectures for H.264/AVC

3.1 Introduction

H.264/AVC (Wiegand et al., 2003b,c) provides better video quality at substantially

lower bit-rate than the previous standards by the adoption of a number of new cod-

ing tools. One of the coding tools, the integer transform, is based on the Discrete

Cosine Transform of the previous standards, e.g. MPEG-4 (ISO/IEC 14496-2,

1999), with the avoidance of the mismatch problem between encoder and decoder

transforms and the reduction of the computational complexity. Four transforms

are used in total, depending on each type of residual data: a Hadamard transform

(HT) for the 4 × 4 array of luminance DC coefficients in intra macroblocks pre-

dicted in the 16×16 mode, a HT for the 2×2 array of chrominance DC coefficients

in every macroblock, and 4× 4 and 8× 8 integer transforms (ITs) for all blocks in

the residual data in fidelity range extensions (FRExt) (Gordon et al., 2004). Both

4 × 4 and 8 × 8 transforms can be chosen dynamically based on the prediction

modes and the sub-partition sizes to improve encoder performance and flexibility.
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Integer transform modules need to be integrated with other modules to form the

entire encoders or decoders or even larger systems. They might also need to

be integrated into testing systems. In order to enable the integration to a larger

system, each module needs to have a proper interface with a hand-shaking protocol

and signals. The component modules in the same system should share the same

handshaking protocol to alleviate integration problems. However, the state-of-

the-art transform designs (Wang et al., 2003; Raja et al., 2005; Amer et al., 2005;

Kordasiewicz and Shirani, 2005; Chen et al., 2006; Shi et al., 2007; Chao et al.,

2007; Pastuszak, 2008) have not addressed this portability and flexibility issue.

Data is assumed available on data bus without any effort to communicate and

fetch data, which is not practical.

In this chapter, we address the portability for integer transform designs in par-

ticular and IP designs in general by deploying an interconnection standard (bus

standard). The standard specifies the bus architectures, signal names and hand-

shaking protocols so that the IP modules which conform to the same intercon-

nection standard can be easily integrated. Several on-chip bus standards can be

found in the literature such as the Wishbone Interconnection Architecture by Sil-

icore (OpenCores, 2002), Advanced Micro-controller Bus Architecture (AMBA)

by ARM (ARM, 1999), CoreConnect by IBM (IBM, 1999) and Avalon by Altera

(ALTERA, 2003). Some of them are open standards and some are commercial.

Among the bus standards, the Wishbone standard out-performs others for its open

property, simplicity, flexibility and portability (Sharma and Kumar, 2012). There-

fore, it has been selected to be deployed in our two portable designs to achieve

portability.

On the other hand, the forward integer transforms are used in H.264 video en-

coders, while the inverse integer transforms are used in both H.264 encoder and
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decoders. This motivates the study in this chapter to concentrate on the inverse

integer transforms. The H.264/AVC high profiles (Marpe et al., 2005) target

higher-fidelity videos for applications like professional film production, video post

production, or high-definition TV/DVD. Therefore, inverse integer transform de-

signs are challenging to achieve high throughput, which is computed as the number

of pixels processed in an unit of time. In addition, the hardware designs also need

high area efficiency to reduce costs.

These challenges can be addressed through two design levels: the algorithm level

and the architecture level. In H.264/AVC, at the algorithm level, fast and low-

cost transform algorithms have been introduced by the H.264/AVC developers, and

most of the reported designs follow these algorithms. At the architecture level, two

techniques for high throughput were reported in the literature. The first technique

(Amer et al., 2005; Kordasiewicz and Shirani, 2005; Raja et al., 2005) is to input a

entire coefficient block, process and output all inverse-transformed (and rescaled)

data in parallel. This leads to unpractical wide I/O bus. The second technique

(Amer et al., 2005; Kordasiewicz and Shirani, 2005; Raja et al., 2005; Pastuszak,

2008) is to deploy pipelining mechanisms among operating processes. This reduces

total delays of all the processes, and consequently, increase throughputs of the

architectures. However, the reported designs employing this technique have very

large bus widths, which produces the unpractically large wiring areas for their

hardware implementations. Therefore, there is a strong need of having the integer

transform designs with a reasonable bus width but still achieving high throughputs.

For area-efficient architectures, different hardware-sharing techniques are reported.

Hardware-sharing can be done among (1) the coefficient computations (Kordasiewicz

and Shirani, 2005) or (2) all the inverse transforms (Chao et al., 2007; Pastuszak,

2008). Technique (1) leads to a very low throughput as only one coefficient is

59



Chapter 3. Portable Inverse Transform Architectures for H.264/AVC

outputted at one time. The architectures using technique (2) have not included

the Hadamard transforms in the shared hardware unit yet.

In this study, besides addressing the portability for inverse integer transform de-

signs, we propose a shared hardware unit among all the inverse integer transforms

including the 4 × 4 and 8 × 8 inverse transforms and the 2 × 2 and 4 × 4 inverse

Hadamard transforms of DC coefficients. This shared hardware unit, named com-

puting kernel, not only targets area efficiency by fully embedding the smaller-size

transforms into the larger-size ones, but also facilitates high-throughput designs by

duplicating the 4×4 inverse transform module. This utilizes the bus width for the

8× 8 transform and enables two 4× 4 transforms to be performed simultaneously.

Based on the shared unit, we also propose two portable inverse integer transform

(IIT) architecture designs for H.264/AVC in this chapter, under the condition of

reasonable bus widths. The first design includes an IIT IP block with an instance of

the proposed shared hardware unit and rescaling module. Thanks to the hardware

unit, the IP block achieves a very reasonable area. The IIT block, which conforms

to the Wishbone shared bus specification for portability, is integrated in a System-

on-Chip controlled by an Application-Specific Instruction Set Processor (ASIP),

allowing functional testability and design flexibility.

While the first portable design focuses on portability and area efficiency, the second

design targets portability and high throughput. Thanks to an efficient pipelining

mechanism, the second architecture can achieve a high throughput with a reason-

able area compared to other designs in the literature. The architecture includes

an ASIP, two DMA controllers and two instances of the proposed IIT IP block

with rescheduled timing. For the portability and pipeline support, all the modules

in this architecture conform to the Wishbone crossbar switch bus specification.
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The chapter is organized as follows. Section 3.2 describes the first portable design

targeting area efficiency. Section 3.3 describes the second portable design targeting

high throughput. The chapter ends with a summary in Section 3.4.

3.2 Portable Area-Efficient Inverse Integer Trans-

form Architecture Design

3.2.1 Proposed Inverse Integer Transform Unit

In the H.264/AVC standard, the 2-D forward transforms are computed using the

row-column decomposition technique. That means a 2-D transform is performed

as a 1-D vertical (column) transform followed by a 1-D horizontal (row) transform.

Since the column and row transformations use the same algorithm, the identical

1-D core can be used.

In 2003, a series of fast and low-cost algorithms for the 4× 4 forward and inverse

integer transforms of H.264/AVC (Equations (2.27) and (2.31)) were introduced

by Malvar et al. (2003). In 2004, Gordon et al. (2004) introduced the 8×8 forward

and inverse integer transforms (Equations (2.28) and (2.32)) together with their

fast and low-cost algorithms for the H.264/AVC high profiles. These fast and

low-cost inverse algorithms are illustrated in Figure 3.1.

As can be seen from the figure, the 1-D 4× 4 IIT (Figure 3.1(a)) and Hadamard

transform (Figure 3.1(b)) algorithms are similar, except for two different coeffi-

cients. In addition, the 1-D 8×8 IIT algorithm (Figure 3.1(c)) has sub-block BA1,

which is similar to the 1-D 4×4 IIT. Especially, after some manipulations, the 2-D
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Figure 3.1: Dataflow diagrams of H.264 inverse integer transforms. (a) 1-D
4× 4 inverse integer transform; (b) 1-D 4× 4 inverse Hadamard transform (2-D
2×2 inverse Hadamard transform); and (c) 8×8 1-D inverse integer transform.
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Figure 3.2: The proposed shared inverse integer transform hardware unit
(computing kernel). (a) Block diagram; and (b) Dataflow diagram.

2× 2 inverse Hadamard transform can be performed using the same architecture

as the architecture of the 1-D 4× 4 inverse Hadamard transform (Figure 3.1(b)).

Based on this analysis, a shared inverse integer transform unit (Figure 3.2(a)) is

proposed. The unit contains a hardware resource to compute the 1-D 8×8 IIT for

an 8-input row/column. It includes four adder blocks: two BA1s, one BA2, and

one BA3. These BA1, BA2, and BA3 are corresponding to the BA1, BA2, and BA3

in Figure 3.1(c), respectively. Adder block BA1 is used to compute all the 1-D

4× 4 transform types, including the 4× 4 inverse transform and the 4× 4 inverse

Hadamard transform, and the 2-D 2× 2 inverse Hadamard transform. Depending

on the transform mode, the proper coefficients (1
2

for integer and 1 for Hadamard

transform) are selected accordingly. To utilize the 8-value I/O bus for the 4 × 4

cases and facilitate high-throughput, BA1 is duplicated. Hence, with two BA1s,

two row/columns of 2× 2/4× 4 blocks then can be transformed simultaneously.

Figure 3.2(b) shows the dataflow diagram of the proposed inverse integer transform

hardware unit. In the 4 × 4 mode, eight inputs are divided into two parts: four

inputs are fed to adder block BA1, while the others are fed to adder block BA’
1

(identical to adder block BA1). Then, two 4× 4 matrices are computed in parallel
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by adder blocks BA1 and BA’
1. Afterwards, results from adder block BA1 are

passed through a multiplexer. Together with the results from adder block BA’
1,

they are bypassed adder block BA3 to output.

In the 8 × 8 transform mode, adder blocks BA1, BA2 and BA3 are all enabled

where adder blocks BA2 and BA3 are specifically designed for the 8×8 transform.

Adder block BA1, which was previously used to compute the 4×4 transform, now

is reused to compute four pixels of even rows. The other four pixels of odd rows

are processed in adder block BA2. Adder block BA3 receives the data from adder

blocks BA1 and BA2, computes the final step and sends data out.

In total, eight multipliers, forty adders, and twenty shifters are required by the

proposed inverse transform unit.

3.2.2 Proposed Inverse Integer Transform Architecture

The proposed shared transform unit (Section 3.2.1), is employed in this IIT ar-

chitecture for area efficiency. Since the bit-depth requirement for the H.264/AVC

standard (Wiegand et al., 2003b) is twelve bits to the input of the inverse inte-

ger transforms, implementation of a 128-bit data bus allows data transferring at

maximum eight coefficients per clock cycle (if sixteen bits are assigned to each

coefficient). This means one column of an 8× 8 matrix or two columns of a 4× 4

matrix can be processed at a time. Compared to the 64-bit data bus, the 128-bit

data bus helps to minimize the bottleneck and provides nearly two times increase

in I/O throughput, but with a slightly larger gate count.

In the proposed inverse transform architecture (Figure 3.3), there are one 8-input

multiplier block, one shifter, one inverse transform unit, one rounding and one
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Figure 3.3: The proposed inverse integer transform architecture.

matrix transposer. A 2-D inverse transform usually needs to be performed by two

1-D transforms (column and row transforms) at two stages. When the proposed

inverse transform block is operating, at the first 1-D transform stage, inputs are

fetched to the rescaling multipliers. Based on the value of QP, multiplicative

factors are generated and used inside the multiplier for rescaling data. Next, data

are passed through a multiplexer to the inverse transform unit for the first 1-D

matrix multiplication. Data are then bypassed in the rounding block and stored

into the matrix transposer. At this point, rows and columns are exchanged for the

second 1-D transform stage. At the second stage, a multiplexer selects the data

coming from the transposer and passes them through processing steps including

core transforming (transform unit), rounding, and sending results to the output.

The detailed operations of the proposed architecture are described as follows. The

input data is first rescaled. This is an important step for all transform modes where

the input matrix must be multiplied by the scaling factor in the same position in

matrix Ef. This multiplier block contains eight parallel multipliers so as it can
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take full advantage of the 128-bit wide data bus. Pipelined multi-stage multipliers

are employed to decrease the combinational delay in one clock cycle. This block is

also responsible for QP DIV 6 and QP MOD 6 operations, and the corresponding

multiplicative factors for the transform. In the inverse transforms, the input data

is scaled by a factor of less than or equal to 58. Therefore, the multiplier requires

only six bits. This helps to minimize the hardware cost.

After being rescaled in the multiplication block, results are passed into the trans-

form unit. The results are then moved to the rounding block for a division. It

divides the values by 64, which can be realized with a arithmetic right shifting

by 6. This block is only enabled in the 4× 4 mode. A simple multiplexer can be

used to bypass the division in other transform configurations. From here we get

the final outputs of the inverse integer transforms.

The transposer requires a total of 64 × 16-bit registers in order to transpose a

maximum of sixty-four pixels of an 8 × 8 matrix. This block is shared between

all the 4 × 4 and 8 × 8 transforms to minimize the number of registers. With

some additional multiplexers, the row and column pixels are exchanged. Since the

second 1-D transform stage requires one row to operate, four clock cycles delay

are expected to perform the 4× 4 transform. Eight cycles for the 8× 8 transform

and the same number of cycles are required to completely send out the data. To

utilize the system and reduce the number of cycles for these transforms, pipelining

is used to increase the throughput of the whole system.

Table 3.1 shows the number of clock cycles required for each transform. Since

pipeline technique is being used, only the first block takes a long time to setup,

subsequent continuous blocks are faster in process.
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Table 3.1: First transform design clock cycle report.
Transform First block Next block
2 × (2 × 2 Hadamard transform) 4 1
2 × (4 × 4 Hadamard transform) 13 11
2 × (4 × 4 integer transform) 13 11
8 × 8 integer transform 21 19

3.2.3 Proposed IIT System Architecture

3.2.3.1 Top-Level System Architecture

For portability, all the modules in the proposed system should conform to a bus

standard. Among the bus standards, the Wishbone standards surpasses others

thanks to its open property, simplicity, flexibility and portability (Sharma and

Kumar, 2012). As a result, a Wishbone shared bus system is deployed in this

architecture.

The top-level system architecture - depicted in Figure 3.4(a) - includes an ASIP,

an external memory, and the proposed inverse transform block with its DMA

controller. The data, address, and control buses are regulated by an Arbiter.

The Wishbone system bus signals at the master and slave interfaces are shown in

Figure 3.4(b).

3.2.3.2 ASIP and Instruction Set

The inverse integer transform block is controlled by an ASIP. The ASIP archi-

tecture is based on a RISC stored program machine (SPM) (Ciletti, 2003) with a

specific instruction set to control up to four IP blocks.

Figure 3.5 shows the architecture of the supporting ASIP. The ASIP consists

of three parts: a controller, a datapath and an internal memory. The controller
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and (b) Wishbone interface signals.
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Figure 3.5: The proposed ASIP architecture.

generates signals to orchestrate the operation of the ASIP. The datapath comprises

an ALU, ten registers, and two multiplexers. The ten registers include four general-

purpose registers (R0, R1, R2, R3), a Zero flag (RegZ), a temporary register (RegY),

a program counter (PC), an instruction register (IR), and an address register

(AddR). AddR is used to store memory address information prior to memory

write or memory read.
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Table 3.2: The proposed 24-bit IIT instruction in RISC SPM.
Opcode Src Dst Ext. mem. src. addr. Ext. mem, dst. addr

0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 3.3: Newly defined instructions for the inverse transforms.

Instruction
Machine byte 1 Byte 2 Byte 3

Action
Opcode Src Dst E-src E-dest

IIT 1010 src ??? E-src E-dest Exec inverse integer transform

The modified ASIP has ten instructions, in which the newly define instruction IIT

is used to invoke the inverse integer transform function.

The ASIP operates through three phases: fetch, decode, and execute. In the fetch

phase, it retrieves an instruction from memory in two clock cycles. In the decode

phase, it decodes the instruction, manipulates the datapath, and loads registers

using one cycle. In the execution phase, it executes and generates the results

within zero to five cycles.

The RISC SPM has three types of instructions: 8-bit, 16-bit, and 24-bit long

instructions. The 8-bit instructions are intended for basic arithmetic operations.

The 16-bit instructions are for accessing the internal memory, and the 24-bit in-

structions are for accessing the external memory. A 24-bit instruction is illustrated

in Table 3.2.

In this instruction, Src is used to indicate the four types of the inverse integer

transforms: the 4× 4 integer transform, the 4× 4 Hadamard transform, the 2× 2

Hadamard transform and the 8× 8 integer transform.
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3.2.3.3 The Inverse Integer Transform Block

The inverse integer transform block includes an IIT component with a Wishbone

(OpenCores, 2002) slave interface to communicate with its Wishbone master in-

terface of the ASIP, and a DMAC with a Wishbone master interface to directly

transfer image data from/to the external memory.

3.2.3.4 System-on-Chip Shared Bus

The ASIP, the external memory, and the IT blocks are connected using a SoC

bus, which is controlled by an arbiter. The arbiter is to decide which master will

transfer data at a certain time.

In the proposed system, the ASIP is a bus master while the external memory

and the IP block are bus slaves. However, this special IP block is designed with

a built-in DMAC which helps to improve the transfer speed of image data from

the external memory to IP block, and vice versa. The DMAC itself also is a bus

master of its own block. As a result, the system has two bus masters and two bus

slaves in total.

3.2.3.5 ASIP and Hand-Shaking Issues with IP block(s)

The ASIP and the IT block are connected via a SoC-based Wishbone system bus,

whose master and slave interfaces are shown in Figure 3.4(b).

In the interface, ASIP sends strobe signal STB O, write enable signal WE O, IT

slave address through ADR R and command through DAT O to all the slaves.

The IT block then reads the slave address in the address bus and decides if it
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is the target block. This slave immediately sends back an acknowledge signal to

ACK I of the ASIP to indicate that it is ready, and read all the necessary data

in the bus. After receiving the acknowledge signal, the ASIP sends BUSMT O

signal with the new bus master code, which represents the above IT block, to the

arbiter. Because the IT block has a Wishbone master interface and a Wishbone

slave interface, so at the next cycle, the above IT block will become the bus master

of the system and has full right to use the system bus. And the ASIP continues

its operation on its internal memory and registers.

Upon completion, the master interface of the IT block will send CYC O to the

arbiter to signal its completion. After receiving this signal, the arbiter will re-

assign the ASIP as the default system bus master.

3.2.4 Experimental Results and Discussion

3.2.4.1 Functionality, Testability and Portability

The proposed design has been implemented with the 4×4 inverse transform for the

residual data; the 4×4 and 2×2 inverse Hadamard transforms for DC coefficients;

and the newly added 8× 8 inverse transform.

A quantization block is also integrated into our design. The hardware sharing

methodology of different types of transform reduces the system area at the cost

of a few extra clock cycles. Based on the instruction analysis, this cost is more

affordable and timing requirement can be met at a slightly higher operating fre-

quency.
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Some video test sequences are converted into bit streams and the complete tests

are conducted on the ASIP. Because the proposed IP block of the inverse integer

transforms is designed on an SoC environment deploying the Wishbone system

bus, it can be ported to other SoC platforms of similar system bus characteristics.

3.2.4.2 Performance and Discussion

The proposed inverse integer transform and inverse quantization architecture with

the ASIP, embedded DMAC, RAM and Wishbone shared-bus system were im-

plemented in Verilog, and verified with RTL simulations using Mentor Graphics

ModelSim. System-level functional verification was also performed by passing dif-

ferent input patterns to the architecture and comparing the output with the results

obtained by Matlab. It was pre-layout synthesized using AMS 0.35µm technology

library by Synopsys Design Compiler. The gate count is 21.5k for the inverse in-

teger transforms in combination with inverse quantization at 150 MHz. Table 3.4

lists the reported designs with their performances.

In Table 3.4, the reported forward and inverse integer transform designs are listed

in chronological order, and if two designs are reported on the same year, the FPGA

design is listed first, followed by the ASIC design. We try to list the reported

designs, but not all designs can be compared due to different reported parameters.

It should be noted that among all the listed designs, only the proposed design

conforms to a bus standard for portability, testability and flexibility.

As can be seen from the table, among the designs supporting the 8×8 transforms,

an implementation of the 8 × 8 integer transform followed by quantization was
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Table 3.4: Performance comparisons of pre-layout synthesis results.
Design Type of

transform
Tech.
(µm)

Gate a

(103)
Speed
(MHz)

I/O
Throughput/
Throughput

(ppc)

Quant.

Wang et al. (2003) 4× 4 fi 0.35 6.5 80 4/4 No
Raja et al. (2005) 4× 4 f Virtex II 3.2K slices

+ 4.1K ff
127 16/16 Yes

Amer et al. (2005) 8× 8 f Virtex II 29K LUT 68 64/64 Yes
Kordasiewicz and

Shirani (2005)
4× 4 f Virtex II 1.6K slcs +

0.5K ff
97 16/8 Yes

Kordasiewicz and
Shirani (2005)

4× 4 f 0.18 51.6 68 c 16/8 Yes

Chen et al. (2006) 4× 4 fih4 0.18 6.4 100 16(I)/
8(O)/8

No

Shi et al. (2007) 4× 4 ih42 0.18 5.0 166 8/4 No
Chao et al. (2007) All d 0.18 9.5 125 8/3.4 No

Proposed All d Virtex 4 2.0K slcs +
1.2K ff

145 8/3.4 Yes

Proposed All d 0.35 21.5 150 8/3.4 Yes
Proposed All d 0.35 8.3 150 8/3.4 No

a Gate count is computed as the total combinational area normalized by the area
of a 2-input NAND gate.

c Speed is computed based on the critical delay of speed-optimized Quantization
circuit. This is the slower of the two DCT and Quantization circuits.

d ‘All’ means all 4 × 4, 8 × 8 integer transforms, and 4 × 4, 2 × 2 Hadamard
transform are supported.

fi Forward and inverse transform.
f Forward transform.
fih4 Forward and inverse transform with additional 4× 4 Hadarmard transforms.
hih42 Forward and inverse transform with additional 4× 4 and 2× 2 Hadarmard

transforms.
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reported by Amer et al. (2005). However, the support for complete coding of

residual data was not implemented.

In the design by Chao et al. (2007) and this design, complete support for coding

of residual data is implemented. In terms of circuit area, the proposed design

outperforms the design by Chao et al. (2007) in its relatively smaller area. The

proposed design without quantization consumes 8.3 Kgates, which is 87.4% of the

gate count of the design by Chao et al. (2007).

For real-time requirement, the proposed architecture can process all existed frame

sizes (Wiegand et al., 2003b,c). For example, if the clock frequency is setup at 146

MHz, it can transform video with the resolution up to 16.4 Mpels, e.g., 4096×2304

(4K) pels or 5120×3200 (WHXGA) pels, and progressive scan frequency of 30 Hz

(30 frames per second). “pel” stands for pixel element.

3.3 Portable High-Throughput Inverse Transform

Architecture

While the first portable design focuses on the portability and area efficiency, the

second portable design targets high throughput in addition to the portability.

Based on the proposed inverse transform unit (Section 3.2.3.4), in order to achieve

high throughput, the second design deploys a pipelining mechanism for all the

modules in the architecture.
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3.3.1 Proposed Inverse Integer Transform Architecture

In this design, the proposed inverse transform architecture includes the same mod-

ules as the proposed inverse transform architecture in Section 3.2.2. However, the

bus width is redesigned at 96-bit input and 96-bit output (Figure 3.6) as 128 bits

used in the first portable design is waste when the H.264 requirement for bit-depth

is twelve bits. In addition, the blocks in the architecture are rescheduled as follows.

The inverse transform block is executed in four major stages: rescaling, 1-D trans-

forms of columns in the computing kernel, 1-D transforms of rows previously stored

in the internal RAM by looping back to the computing kernel, and rounding off

the results. In the first stage, an 8-value column (of 8 × 8 block) or two 4-value

columns (of 4× 4 blocks) are fed to the rescaling multipliers, where multiplicative

factors are generated based on the value of QP (Section 2.1.2.2). In the second

stage, data are passed through a multiplexer to the computing kernel for 1-D col-

umn transform. The results are stored into the internal RAM. The operations of

both stages are performed in one cycle, and repeated until all the columns are

processed. In the third stage, an 8-value row (of 8× 8 block) or two 4-value rows

are fed from the internal RAM to CK for 1-D row transformation followed by a

divide-by-64 rounding operation in the rounder block in the forth stage. Similarly,

the operations in the third and forth stages are finished in one cycle and repeated

until all the rows are processed. By this rescheduling, the proposed IIT archi-

tecture (module) can perform all four inverse transform types and rescaling, i.e.,

scaling or inverse quantization. A 2× 2 data block can be processed in one cycle,

4× 4 block in four cycles, and 8× 8 in eight cycles, compared to one, eleven and

nineteen cycles in the first portable design, respectively.
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Figure 3.6: The proposed IIT architecture.

3.3.2 Proposed IIT System Architecture

H.264/AVC specifies a maximum of twelve bits per pixel value without compro-

mising quality (Wiegand et al., 2003b). A 192-bit data bus is designed accordingly.

I/OD for an 8 × 8 block is then eight cycles. Aggregate throughput is inversely

proportional to total delay, and can be maximized by pipelining the input, pro-

cessing, and output stages. The best pipeline performance can be achieved when

all stages have the same minimum delay. In our proposed system, for 2× 2, 4× 4

and 8 × 8 blocks, I/ODs are one, two and eight cycles, while the PDs are two,

four and sixteen cycles, respectively. As PD is twice as long as I/OD, it is best to

incorporate two IITs.

3.3.2.1 Top-Level System Architecture

The proposed top-level architecture includes an ASIP, two external RAMs, two

DMACs, and two IITs (Figure 3.7). The two external RAMs, one responsible

for input data and the other for output data, are housed in the two DMACs for

efficient data transfer. All modules are connected through a Wishbone two-channel

crossbar switch, regulated by an arbiter (OpenCores, 2002) so that two slaves and

two masters can work in parallel, facilitating the fully pipelining mechanism. By
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Figure 3.7: The proposed top-level architecture with crossbar switch bus sys-
tem.

using two built-in-RAM DMACs to transfer data between RAMs, the two IIT

blocks can be orchestrated to work concurrently.

The system can operate in two modes: instruction mode and automatic mode. In

the first mode, all the modules in the system work under the control of the ASIP.

In the second mode, they operate automatically with the stored parameters.

Figure 3.8 illustrates the pipelined scheduling of the DMAC0 and DMAC1 for IIT0

and IIT1. DMAC0 is responsible for inputting data to the IITs in a staggering

manner. DMAC1, on the other hand, is to output data from the IITs, also in an

alternative manner. As can be seen, from t3 onward, one block is input, processed,

and output in every eight cycles.
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Figure 3.8: Pipelined scheduling with the support of two DMACs.

3.3.2.2 Proposed Inverse Integer Transform in the SoC

The proposed IIT module and its internal RAM are designed as slaves in the SoC,

so that they can work independently. When the IIT operates, the DMACs can

still transfer data to/from its RAM. As a result, the IITs may work concurrently

because the data are always available.

The proposed IIT module can process two commands from ASIP: (1) setting the

quantization parameter (QP); and (2) performing rescaling and the specified in-

verse transform. The following describes the implementation for the second task.

3.3.2.3 ASIP

The ASIP architecture is based on the RISC stored program machine (SPM)

(Ciletti, 2003) with the following modifications allowing control of up to four

IP blocks: (1) A Wishbone system bus is designed into the top level architecture

allowing connections of the functional blocks to the microcontroller; (2) Four newly

defined instructions: DIN, DOUT, IIT, QPS; (3) Five newly defined registers:

Data, Code address, External address, Master Wishbone interface, and CYCO

register.
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3.3.3 Experimental Results and Discussion

3.3.3.1 Simulation and Pre-layout Synthesis Results

The architecture with an ASIP, two DMACs, two embedded RAMs and Wishbone

crossbar-switch bus system is designed and implemented in Verilog, and verified

with RTL simulations using ModelSim. Simulation results show that the proposed

system can compute all four types of IITs including rescaling operation. The pre-

layout synthesis results on Xilinx Virtex IV platform, AMS 0.35µm, and IBM

0.18µm CMOS technologies are shown in Table I.

3.3.3.2 Definition of Normalized Aggregate Throughput

We further define a normalized aggregate throughput concept to facilitate com-

parisons among reported designs with different I/O bus widths. Let T , W , TN and

WN be aggregate throughput (in pixels per cycle), data bus width (in pixels, for

both input and output), normalized aggregate throughput, and normalized data

bus width, respectively. We have:

TN =
WN

W
T. (3.1)

We select WN = 128 pixels as it is the least common multiple for all designs in

comparison.

3.3.3.3 Discussion

We have investigated many IIT designs. However, we only include the designs by

Chao et al. (2007); Ngo et al. (2008); Pastuszak (2008) in Table 3.5 because they
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support 8 × 8 IIT. In these designs, only the designs by Chao et al. (2007); Ngo

et al. (2008) support all types of IITs. Wang et al. (2003); Amer et al. (2005);

Raja et al. (2005); Kordasiewicz and Shirani (2005); Chao et al. (2007) did not

include I/OD in the throughput calculation. Hence, in Table 3.5, for aggregate

throughput computation, W and I/OD of the design by Chao et al. (2007) are

assumed based on its described operation.

The design by Chao et al. (2007) supports all types of IITs except rescaling.

The shared architecture for IITs has 16-pixel-wide input and 8-pixel-wide output,

leading to a total data bus width of twenty-four pixels. In the design, pixels are

assumed available at the IIT. For each 8 × 8 block, it requires sixteen cycles to

process and three cycles for pipelining, yielding a throughput of 3.4 ppc. How-

ever, if I/OD had been considered, its total input and output delay, total delay

and aggregate throughput would have been twelve cycles, thirty-one cycles, and

2.1 ppc, respectively. In order to maximize the throughput, the same pipelining

mechanism as the proposed one is presumably applied, resulting in the aggregate

and normalized aggregate throughput of 3.4 and 18.0 ppc, respectively.

The design by Ngo et al. (2008) supports all IITs with rescaling. The design needs

8-pixel I/O bus, leading to total bus width of sixteen pixels. It requires nineteen

cycles to perform an 8 × 8 IIT including I/O delay yielding an aggregate and

normalized aggregate throughput of 3.4 ppc and 26.9 ppc, respectively.

The design by Pastuszak (2008) supports all IITs and rescaling, except 2 × 2

IHT. It requires a 64-pixel data bus to input or output an 8× 8 block at a time.

Therefore, the total data bus width is 128 pixels. By pipelining all the modules,

and using thirty-two rescaling multipliers and eight units of 1-D hardware, it can
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transform an 8× 8 block in two cycles, yielding a high aggregate and normalized

throughput of thirty-two ppc.

In the proposed design, using 16-pixel-wide data bus and pipelining the two IITs

with I/O, I/OD and PD of eight cycles can be achieved, leading to an aggregate and

normalized aggregate throughputs of eight ppc and sixty-four ppc, respectively.

Efficient VLSI designs not only yield high pixel-per-cycle throughput, but also

high pixel-per-second throughput. This is done by shortening the critical path

length, and thus maximizing circuit operating frequency. Based on the normalized

ppc-throughput and speed of the system, the normalized pps-throughput can be

computed as:

Tpps = Tppcf. (3.2)

Compared to the reported designs, the proposed design achieves a higher nor-

malized aggregate throughputs in both ppc and pps. Compared to the design by

Chao et al. (2007) using 0.18 µm technology, our design has a 3.6-fold normalized

aggregate ppc-throughput (due to a 1.5 times smaller in data bus width and 2.4

times smaller in total delay), and a 4.1-time normalized pps-throughput (due to

the 1.2 times higher in operating frequency). Using the same Virtex IV platform

or 0.35 µm technology with Ngo et al. (2008)’s design, the normalized aggregate

throughputs in ppc and pps of the proposed design are 2.4 and 2.1 times as large

as those of Ngo et al. (2008)’s design, respectively, thanks to 58% less in total de-

lay. Compared to Pastuszak (2008)’s design, our design has a two times higher in

normalized aggregate ppc-throughput in both 0.35 and 0.18 µm technologies since

its bus width is eight times smaller while its throughput is only four times smaller.

The normalized pps-throughput depends on the operating frequency, thus, that
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of our design is 3.3 and 3.5 times as large as that of Pastuszak (2008)’s design in

0.35 and 0.18 µm technologies, respectively.

The proposed system can perform IIT and inverse quantization for videos with

the resolutions of up to 38.4 Mpels and progressive scan frequency of 30 Hz (30

frames/sec). This supported resolution is higher than 7680 × 4800 pels.

3.4 Summary

In this chapter, we address the portability issue for integer transform hardware

designs in particular and for hardware designs in general. In order to achieve

portability, the designs should conform to a bus standard so that they can be easily

integrated with other designs deploying the same bus standard. The Wishbone bus

standard has been selected to be deployed in our designs because it out-performs

other standards in terms of open property, simplicity, flexibility and portability.

Two portable inverse integer transform architecture designs are proposed in this

chapter. In the first design, the most functionally complete inverse integer trans-

form unit is proposed. The unit has the embodiment of 4× 4 circuits in the 8× 8

circuit and the embodiment of 2 × 2 circuit in the 4 × 4 circuits. Then, another

inverse integer transform (IIT) block is also proposed based on the above shared

unit and an additional quantization module. The inverse integer transform design

is implemented on an ASIP-controlled SoC platform conforming to the Wishbone

shared bus standard for portability and testability. The design can perform a

2× 2, 4× 4, and 8× 8 data block in one, eleven and nineteen cycles, respectively.

The design can transform videos with the resolutions of up to 16.4 Mpels and pro-

gressive scan frequency of 30 Hz (30 frames per sec). The resulting circuit area is
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considerably smaller compared to the designs in its class, thanks to the proposed

transform unit.

The second proposed design deploys a fully pipelining mechanism supported by

an ASIP, two DMACs and two proposed IIT blocks. As a result, it can transform

each 2 × 2, 4 × 4, and 8 × 8 data block in one, four, and eight cycles, respec-

tively, compared to one, eleven and nineteen cycles in the first portable design,

respectively. The second architecture can deliver a high normalized throughput of

sixty-four ppc and 15.6 Gpps at 144 MHz using 0.18 µm technology. It supports

the transforms for videos with the resolutions of up to 38.4 Mpels and progressive

scan frequency of 30 Hz (30 frames/sec). The resulting circuit area is more rea-

sonable compared to the designs in its class owing to the proposed inverse integer

transform unit.
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Chapter 4

Very High-Throughput

Forward/Inverse Transform

Architectures for H.264/AVC

4.1 Introduction

In H.264/AVC, there are four transform types in total, including the 4×4 and 8×8

integer transforms, and the 2×2 and 4×4 Hadamard transforms for DC coefficients.

For high-throughput and area-efficient designs, two design levels should be taken

into account: the algorithm and architecture levels. At the algorithm level, the

H.264 developers have proposed fast and low-cost algorithms for all the forward

and inverse transforms. Similar to the DCT, the fast forward/inverse algorithms

decompose a 2-D transform into a 1-D row/column transform, followed by a 1-D

column/row transform. Most of the reported integer transform designs conform

to these fast algorithms.

At the architecture level, two techniques to achieve high throughput designs were

reported in the literature. The first technique (Amer et al., 2005; Kordasiewicz
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and Shirani, 2005; Raja et al., 2005) is to input all data of a block, process and

output all transformed (and quantized) data in parallel, leading to unpractical

wide I/O buses. The second technique (Amer et al., 2005; Kordasiewicz and Shi-

rani, 2005; Raja et al., 2005; Pastuszak, 2008) is to deploy pipelining mechanisms

among operating processes. The pipelining mechanisms can be for input, output

and transform processes as in the transform designs by Chen et al. (2006); Shi

et al. (2007) for the H.264/AVC main profile (4 × 4 in size); or they can be for

transform and quantization processes as in the designs by Pastuszak (2008) with

the transform size of 8×8 for the H.264/AVC high profiles. The pipelining mecha-

nisms can be for input, output and transform processes as in the transform designs

by Chen et al. (2006); Shi et al. (2007) for the H.264/AVC main profile (4× 4 in

size); or they can be for transform and quantization processes in the designs by

Pastuszak (2008) with the transform size of 8×8 for the H.264/AVC high profiles.

The pipelining mechanisms actually reduce the total delays because the modules

in the architectures work in parallel. Thus, they increase system throughput and

performance. Although transform and quantization processers are pipelined, the

I/O delay is not counted in the reported 8 × 8 transform designs. In addition,

the reported designs supporting these pipelining mechanisms have very large bus

widths (of thousands of bits). This leads to unpractically high wiring areas and dif-

ficulties in implementing hard IP cores. Therefore, it is strongly desired to develop

integer transform designs which achieve high throughputs despite a reasonable bus

width.

Different hardware-sharing techniques have been reported to achieve high area

efficiency. Hardware-sharing can be performed among (1) the coefficient compu-

tations (Kordasiewicz and Shirani, 2005); (2) all the forward/inverse transforms
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(Chao et al., 2007; Pastuszak, 2008; Su and Fan, 2008); or (3) the forward and in-

verse transforms (Shi et al., 2007; Choi et al., 2008). Technique (1) leads to a very

low throughput as only one coefficient is outputted at one time. Technique (3)

is not practical as hardware-sharing is only efficient when one shared component

works at one time. Here, in encoders, the forward and inverse transforms should

be performed in parallel while in decoders, only the inverse transforms are needed.

The reported architectures using technique (2) have not included the Hadamard

transforms in the shared hardware units yet.

Many Forward IT (FIT) and Inverse IT (IIT) designs have been reported in the

literature. Among the FIT designs, those by Amer et al. (2005); Pastuszak (2008);

Park and Ogunfunmi (2009); Hu et al. (2009) support 8 × 8 FIT. However, none

of them supports all four types of FITs. Besides, the designs by Pastuszak (2008);

Park and Ogunfunmi (2009); Hu et al. (2009) support quantization. Among the

IIT designs supporting 8 × 8 IIT by Pastuszak (2008); Ngo et al. (2008); Chao

et al. (2007); Su and Fan (2008), the designs by Ngo et al. (2008); Chao et al.

(2007); Su and Fan (2008) support all four types of ITTs. Only the 8 × 8 IIT

designs by Pastuszak (2008); Ngo et al. (2008); Chao et al. (2007); Su and Fan

(2008) have rescaling function. Among all these designs, no design supports all

FITs and quantization, while the design by (Ngo et al., 2008) supports all IITs

and rescaling functions.

In this chapter, we propose high-throughput and area-efficient System-on-Chip-

based (SoC) forward integer transform (FIT) and inverse integer transform (IIT)

modules for H.264/AVC. Continuing the idea that large-size transform operations

should fully reuse small-size ones (including the 4× 4 and 2× 2 Hadamard trans-

forms) for area efficiency, a forward transform unit is proposed. The proposed
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forward and inverse integer transform (FIT/IIT) architectures employ a new for-

ward transform unit and reuse the proposed inverse transform unit from the first

portable design (Section 3.2.1). FIT/IIT modules can perform both the 4 × 4

and 8 × 8 forward/inverse transforms, and the 2 × 2 and 4 × 4 forward/inverse

Hadamard transforms of DC coefficients with a high hardware reuse possibility.

While in the first portable IIT design (Section 3.2), nineteen cycles are required

to complete an 8 × 8 inverse transform, in the second portable IIT design (Sec-

tion 3.3), only eight cycles are needed thanks to a pipelining mechanism and the

execution of rescaling together with the 1-D transform for a column/row in the

same cycle. However, this leads to a reduction of the system frequency (speed).

In this design, in order to achieve an even-higher throughput, quantization/rescal-

ing are scheduled to execute in a separate pipeline stage with the forward/inverse

transform operations. This results in a system speed increment while maintaining

the same number of transformation cycles.

Based on the observation that the transform units only read input data in half

of the processing time, a novel series of input and output buffers is proposed to

balance the data-transfer load in the I/O bus. This reduces the bus width by

half for the same hardware architecture. Thanks to the novel I/O buffer designs,

two transform units are integrated into the integer transform architectures, which

double the processing speed and utilize the bus width. Owing to the fully pipelin-

ing mechanism among input, output, transform and quantization processes, the

architectures can out-perform other reported designs in terms of throughput and

area efficiency.

The remaining of the chapter is organized as follows. The design of the FIT/ITT
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module and its system architecture are presented in Section 4.2. Circuit simu-

lation, pre-layout synthesis results and comparisons are discussed in Section 4.3,

followed by a summary in Section 4.4.

4.2 Proposed Forward and Inverse Architectures

4.2.1 Proposed Forward Transform Unit

Since the inverse transform unit has already been proposed in Section 3.2.1, this

chapter introduces a new shared forward transform unit for area efficiency and

high throughput forward transform designs.

The fast and low-cost 1-D 8 × 8 forward algorithm (Gordon et al., 2004) is used

for our 2-D 8× 8 forward computation. The 1-D transform algorithms are used to

transform a row/column. The 2-D transform algorithms can be done by repeat-

edly applying the 1-D transforms for all rows/columns of the block, then for all

columns/rows.

As can be seen from Figure 4.1, the 1-D 8 × 8 forward integer transform (FIT)

algorithm (Figure 4.1(c)) includes three sub-blocks: F1, F2 and F3. F1 and F2

are equivalent, and are used for the 1-D 4 × 4 FIT (Figure 4.1(a)), the 1-D 4 ×

4 forward Hadamard transform (FHT) and the 2-D 2 × 2 FHT (Figure 4.1(b))

implementation. The 2-D 2 × 2 FHT is implemented using 1-D 4 × 4 FIT with

changes of output order.

Based on these observations, a FIT unit (Figure 4.2), the so-called FIT comput-

ing kernel (CK), is designed to 1-D transform an 8-value row/column, or to 1-D
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Figure 4.1: 1-D 8 × 8 FIT/IIT algorithms. (a) 1-D 4 × 4 FIT; (b) 1-D 4 × 4
FHT (2-D 2× 2 FHT ); and (c) 1-D 8× 8 FIT.
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Figure 4.2: The proposed shared forward integer transform hardware unit.
(a) Block diagram; and (b) Dataflow diagram.

transform two 4-value rows/columns, or to 2-D transform two 2 × 2 blocks si-

multaneously. The FIT CK has one F1, one F2 and one F3 sub-blocks. Using a

single 1-D 8×8 transform architecture to perform all four transforms significantly

reduces the system area.

4.2.2 Proposed FIT/IIT Blocks

The proposed FIT and IIT blocks share the same architecture as shown in Fig-

ure 4.3, where two CKs, either FITs or IITs are used. The 2-D FIT/IIT is executed

in two major stages: (1) 1-D transforms of rows/columns in the CK; and (2) 1-D

transforms of columns/rows previously stored in the internal RAM by looping back

to the CK and rounding off the results. In the first stage, two 8-value column-

s/rows (of an 8× 8 block) or a whole 4× 4 block are passed through a multiplexer

to the CK for 1-D transform. The results are bypassed the rounder and stored

into the internal RAM. This stage is done in one cycle and repeated until all data

blocks are processed. In the second stage, two 8-value columns/rows (of an 8× 8

block) or a whole 4 × 4 block are also fed from the internal RAM back to the

CK for 1-D transform followed by a rounding. Similarly, this stage is finished in

one cycle, and repeated until all data in the block are processed. In total, the
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Figure 4.3: The proposed FIT/IIT block architectures.

architecture requires one, two, eight cycles to rescale a 2 × 2, 4 × 4, 8 × 8 block,

respectively.

4.2.3 Proposed FIT/IIT Module

The proposed FIT/IIT modules are designed to perform FIT/IIT with quantiza-

tion/rescaling functions. The proposed IIT block, for 8 × 8 transform, requires

16-pixel input per cycle in the first four cycles, while requiring 0-pixel input per

cycle in the last four cycles out of total eight cycles. As a result, the rescaling

block needs a sufficient resource to multiply sixteen pixels simultaneously in the

first half, while it will idle in the second half of the total processing time. Not

only the IIT block, but the FIT as well as other designs also have similar issue.

Moreover, quantization/ rescaling with multipliers costs a significant gate count.

The proposed FIT/IIT module can solve the problem by using special buffers.

The module consists of a FIT/IIT block, two input buffers IBs, two output buffers

OBs and a quantization/rescaling block (Figure 4.4).

The IBs operate in a flip-flop manner to input eight pixels every cycle and output

sixteen pixels per cycle in several consecutive cycles. In 8 × 8 transformation,

they require eight consecutive cycles to completely input sixty-four pixels. At the

output, they send out sixteen pixels per cycle in four cycles, and stay idling for
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Figure 4.4: The proposed (a) FIT and (b) IIT modules.

four other cycles. On the other hand, the OBs operate similarly to the IBs but in

a reverse scheme.

With the support of IBs and OBs, quantization/rescaling allows multiplication

of eight pixels concurrently, avoiding the operations on sixteen pixels. Thus, the

proposed module can reduce half of quantization resource, with a small increase

in gate count for the buffers.

By pipelining FIT/IIT, quantization/rescaling blocks and buffers, the module still

can process an 8 × 8 block in eight cycles. Figure 4.5 shows an example of 8 × 8

blocks IIT. As can be seen, from t3 onward, one block is input, processed, and

output in every eight cycles.

The proposed FIT/IIT modules can perform all four types of transform and quan-

tization. They can process a 2× 2 block in one cycle, a 4× 4 block in two cycles,

and an 8× 8 in eight cycles.
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DMAC0 FIT IIT DMAC1

Figure 4.6: The proposed top-level system architecture with an ASIP support.

4.2.4 Proposed System Architecture

The proposed top-level system architecture, shown in Figure 4.6, includes an ASIP,

two built-in-RAM DMACs, and FIT and IIT modules. DMAC0 is responsible for

input data to FIT, while DMAC1 is to output data from IIT.

4.3 Experimental Results and Discussion

4.3.1 Simulation and Pre-Layout Synthesis Results

The FIT and IIT modules with the SoC architecture are RTL-designed and im-

plemented in Verilog, simulated using Mentor Graphics ModelSim, and pre-layout
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synthesized on a Xilinx Virtex IV environment. HDL simulation results are ver-

ified with those generated by the JM 14.2 reference software (Suhring, 2008).

The proposed system correctly supports all the four types of FITs/IITs including

quantization/rescaling. Pre-layout synthesis results on Virtex IV and IBM 0.18

µm CMOS 7SF technology are shown in Tables 4.1 and 4.2, respectively. The

inverse and forward transform architecture can support for videos with the reso-

lution of up to 61.6 and 43.2 Mpels, respectively, with progressive scan frequency

of 30 Hz. In another words, the proposed FIT/IIT can forward/inverse transform

and quantize/rescale in real-time for Ultra High Definition Videos (UHDVs) with

the resolutions of up to 7680× 4320 pels and progressive scan frequency of 30 Hz

in 0.18 µm technology.

4.3.2 Discussion

We reviewed many FIT/IIT designs. However, we only include the designs by

Amer et al. (2005); Pastuszak (2008); Park and Ogunfunmi (2009); Hu et al.

(2009); Ngo et al. (2008); Chao et al. (2007); Su and Fan (2008) in Tables 4.1 and

4.2 because they support 8 × 8 FIT/IIT, the most complex transform of H.264.

Designs supporting sizes of up-to-4× 4 are not included. Throughput T in pixel-

per-cycle (ppc) is computed as the number of pixels processed in one cycle. In

the tables, it is computed for 8× 8 block processing. Throughput T in pixel-per-

second (pps) is calculated as the product of T (ppc) and the operating frequency

f. DTUA is defined as the T (pps) per unit of area. In ASIC implementation, the

area can be reported in terms of the number of gates, whereas in FPGA, the unit

area can be chosen as Virtex slices as most of the implementations are based on

the Virtex platforms. The reported area in LUT unit will be converted to slices,
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since each slice has two LUTs (Xilinx, 2010). The area of designs implemented in

Stratix can not be converted to Virtex slices. Since some designs do not support

quantization or rescaling, we also report the area without quantization or rescaling

to facilitate DTUA comparison.

In Table 4.1, DTUA of the proposed FIT is two and nine times as large as that of

Amer et al. (2005) and Park and Ogunfunmi (2009)’s designs, respectively. The

designs by Amer et al. (2005) and Park and Ogunfunmi (2009) support only 8× 8

FIT, while the proposed design supports all the transforms. Using the same Virtex

4 platform, the proposed IIT design achieves a DTUA which is twice of that of

Ngo et al. (2008)’s design. This better DTUA is mostly due to the significant

decrease in the total delay, resulting in a large improvement in throughput.

Using 0.18 µm technology (Table 4.2), DTUA of the proposed FIT/FIT design is

1.4/2.1 times as large as that of the FIT/IIT design by Pastuszak (2008), respec-

tively. It should be noted that the designs by Pastuszak (2008) do not support the

2 × 2 Hadamard transforms. Compared to the IIT designs by Chao et al. (2007)

and Su and Fan (2008) without rescaling function, the proposed design achieves a

1.2 and 2.5-time DTUA, respectively.

4.4 Summary

We have reviewed a number of FIT/IIT designs and proposed a high throughput

and area-efficient SoC-based FIT/IIT design. With the newly proposed forward

transform unit and the proposed inverse transform unit from the first portable

design (Section 3.2.1), our proposed design can perform all the 4 × 4 and 8 ×

8 transforms with the additional supports for the 2 × 2 and 4 × 4 Hadamard
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transforms of the DC coefficients. With the proposed pipelining mechanism among

input, output, transform and quantization processes, and the special input and

output buffer designs to balance the data load in data input and output buses,

our FIT/IIT design achieves a higher DTUA compared to the reported designs.

In the 0.18 µm technology, the FIT and IIT modules can be operated at the

maximum speeds of 162.1 and 230.9 MHz, respectively. The inverse and forward

transform architecture can entertain videos with the resolution of up to 61.6 and

43.2 Mpels, respectively, at the progressive scan frequency of 30 Hz.
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Chapter 5

Performance-Cost Analyses for

H.264 Forward/Inverse Integer

Transforms

5.1 Introduction

Higher-fidelity videos for application areas like professional film production, video

post production, or high-definition TV/DVD are the main target of the H.264/AVC

high profiles (Marpe et al., 2005). Therefore, the primary objective of all the

existing forward/inverse integer transform (FIT/IIT) designs is to achieve high

performance, whereas the secondary objective is to reduce design costs. High

performance is often in terms of high throughput with preferably high operating

frequency (Wang et al., 2003; Kordasiewicz and Shirani, 2005; Chen et al., 2005,

2006; Hwangbo et al., 2007; Pastuszak, 2008; Choi et al., 2008; Ngo et al., 2008; Su

and Fan, 2008; Do and Le, 2009, 2010). Low cost is seen as having low power (Choi

et al., 2008) or low gate count (Wang et al., 2003; Kordasiewicz and Shirani, 2005;

Chen et al., 2005, 2006; Hwangbo et al., 2007; Shi et al., 2007; Pastuszak, 2008; Do

and Le, 2010). In the literature, throughput is either computed as the maximum
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amount of data input at a time (Kordasiewicz and Shirani, 2005; Chao et al., 2007;

Shi et al., 2007; Ngo et al., 2008) or as the average amount of data processed in

one time unit (Chen et al., 2005, 2006; Hwangbo et al., 2007; Pastuszak, 2008;

Choi et al., 2008; Su and Fan, 2008; Do and Le, 2009, 2010). Typically, the former

produces higher throughputs, while the latter is commonly used in practice. It

should be noted that the designs by Ngo et al. (2008); Do and Le (2009, 2010) are

the proposed designs in Section 3.2, Section 3.3 and Section 4, respectively.

Data throughput rate per unit area (DTUA) was first reported in the literature for

a Discrete Fourier Transform design by Bliss and Julien (1990) for high throughput

cost efficiency. DTUA is used to compare FIT/IIT designs in Pastuszak (2008); Do

and Le (2010); Shi et al. (2007); Chen et al. (2005, 2006); Hwangbo et al. (2007).

Other than DTUA, comparisons among designs in terms of high throughput and

cost efficiency using only throughput, gate count, or power have been arbitrary.

As a result, DTUA has been used as the metric to evaluate high throughput and

cost efficiency in FIT/IIT designs. However, other than throughput and circuit

area involved in DTUA, interconnection, power and delay are not considered.

This leads to the fact that some designs use very wide buses (Pastuszak, 2008;

Chen et al., 2006), which causes large wiring areas, but their authors were still

able to claim their area efficiencies. Therefore, evaluation of high throughput and

cost-efficient designs using only throughput and circuit area is incomprehensive.

Thus, a metric which comprises most if not all performance and cost parameters

is needed.

In this chapter, first, we conduct performance-cost analyses for the H.264 for-

ward/inverse integer transforms, and second, we propose a performance-cost met-

ric (PCM ) for H.264 forward/inverse integer transform (FIT/IIT) designs. The

proposed metric is defined as the ratio of data throughput over the design cost,
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which includes power, area, and delay; and issues associated with interconnections

in sub-micron design. Compared to DTUA, PCM facilitates more comprehensive

comparisons for VLSI FIT/IIT designs. Third, we develop a performance-cost

analysis software to facilitate the use of the proposed PCM technique. When us-

ing this software, users are asked to enter some preliminary parameters of their

designs. Based on the given parameters and the reference designs, it then ana-

lyzes and provides the possible boundaries of the users’ designs in order to have

better PCM s compared to the reference designs. In addition, it can also export

comparison results among different designs. The software is flexibly designed to

facilitate the use of not only our PCM technique in FIT/IIT designs, but also

other different metrics in other architectures.

The rest of the chapter is organized as follows. In Section 5.2, FIT/IIT design

costs are analyzed, followed by performance-cost metric definition and description

in Section 5.2. In Section 5.4, a detailed discussion of PCM in comparison with

DTUA through different designs in the literature is presented. PCAS is introduced

in Section 5.5. The chapter ends with conclusions in Section 5.6.

5.2 Cost Analyses for FIT/IIT/Designs

5.2.1 Estimation of Power Consumption

5.2.1.1 Background

In CMOS technology, power consumption comprises of static and dynamic com-

ponents. Static power consumption is caused by leakage currents, and usually

neglected for systems with continuous operation in submicron technologies (Nebel
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and Mermet, 1997). On the other hand, dynamic power contributes marginally

by short circuit power (typically below 20% (Nebel and Mermet, 1997)), and sig-

nificantly by switching of load capacitance (Rabaey et al., 2003) as follows:

Pdyn = αCLV
2
DDf, (5.1)

where α, CL, VDD and f represent switching activity, load capacitance, supply

voltage, and operating frequency, respectively. Dynamic power is directly propor-

tional to the load capacitance CL comprising: (1) the intrinsic MOS transistor

capacitances; (2) extrinsic MOS transistor fan-out capacitances, and (3) inter-

connect capacitances (Rabaey et al., 2003). The extrinsic capacitances can be

approximated by the gate capacitances of the succeeding gates (Rabaey et al.,

2003), hence it can be used as the total gate capacitances of the IC. While it is

shown that gate and interconnect capacitances contribute significantly to the total

load capacitance (Savidis and Friedman, 2008), interconnect capacitance is grow-

ing in importance with the scaling of technology (Rabaey et al., 2003). Analysis

on Intel microprocessors has shown that over 50% of the dynamic power dissipates

at the interconnects (Savidis and Friedman, 2008). Therefore, total load capaci-

tance can be approximated as the sum of gate and interconnect capacitances as

expressed as:

CL = CG + Cinterconnect. (5.2)

5.2.1.2 Gate Capacitance

The total gate capacitance is proportional to the gate count of the design. Using

the 2-input NAND gate (NAND2) in the standard cell library of a particular
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technology as a unit, CG can be defined as:

CG = βG, (5.3)

where β and G are the gate capacitance and gate count of an unit NAND2. Ac-

cording to Rabaey et al. (2003),

β = CG NMOS + CG PMOS = CoxLchannel(WNMOS +WPMOS), (5.4)

where Cox, Lchannel, WNMOS and WPMOS are gate oxide capacitance per unit area,

channel length, NMOS channel width and PMOS channel width inside the unit

gate, respectively.

5.2.1.3 Interconnect Capacitance

Interconnect capacitance, on the other hand, includes three components (Fig-

ure 5.1(a)): (1) parallel-plate capacitance (Figure 5.1(b)); (2) fringe capacitance

between the side walls of the wires and the substrate; and (3) inter-wire capaci-

tance (Rabaey et al., 2003), as follows:

Cinterconnect = Cpp + Cfringe + Cinterwire. (5.5)

As shown in Figure 5.1(c), Cinterwire dominates the total interconnect capacitance

under submicron technology. Cinterwire between two conservative wires is expressed

(Rabaey et al., 2003) as follows:

Cinterwire =
εdi
tdi
HL, (5.6)
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where εdi and tdi are permittivity and thickness of the dielectric layer, and H and

L are length and thickness of the interconnect. Assume that a layer contains N

parallel wires, its interwire capacitance is

Cinterwire N = (N − 1)
εdi
tdi
HL. (5.7)

When N is large,

Cinterwire N ≈ N
εdi
tdi
HL. (5.8)

5.2.1.4 Inter-wire Capacitance

An IC has several layers of wires generally classified as local and global. In order

to estimate the inter-wire capacitance using (Equation (5.8)), the number of wires

N for each layer is estimated. Rent’s rule (Landman and Russo, 1971) has been

widely used to estimate the number of terminals for modules. For a module

containing B blocks, each block has an average of K pins (terminals), and P , the

average number of pins per module, is

P = KBr, (5.9)

where r is a constant depending on block type.

Based on Rent’s rule, the number of nets (or wires) in a given module can be

computed as follows. Since each block has K pins, there are KB pins in the

module. Meanwhile, P pins are used as module terminals. Therefore, (KB − P )

pins are reserved for nets in the module. From definition, a net connects two pins
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(a)

(b)

(c)

Figure 5.1: (a) Three types of interconnect capacitances; (b) Parallel-plate
capacitance model; (c) Dominance of inter-wire capacitance with design rule.
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from two blocks, thus the number of nets including terminals of the module is

N =
KB − P

2
+ P =

KB + P

2
, (5.10)

N =
KB +KBr

2
= K(B +Br)/2. (5.11)

Now we apply (Equation (5.11)) to find the number of nets at each layer for an IC.

Local wire layers are used to connect gates, hence gates now can be considered as

blocks in (Equation (5.11)). Assume that the IC contains G NAND2 gates. When

blocks are gate array, r = 0.5 (Landman and Russo, 1971), the total number of

local wires connecting G gates is

NLC = 3(G+G0.5)/2 = 1.5(G+
√
G). (5.12)

Global wire layers are used to connect IP blocks in a SoC, hence IP blocks now

can be considered as blocks in (Equation (5.11)). Assume that each IP block has

K pins (or terminals or input/output), the total number of wires in global wire

layers is

NGB = K(B +Br)/2. (5.13)

Also, assume that all global wires have the same height and length, and all local

wires have the same height and length, inter-wire capacitance is

Cinterwire = NLC
εdi
tdi
HLCLLC +NGB

εdi
tdi
HGBLGB, (5.14)

Cinterwire = 1.5
εdi
tdi
HLCLLC(G+

√
G) +

1

2
(B +Br)

εdi
tdi
HGBLGBK. (5.15)
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Let us define

γ = 1.5
εdi
tdi
HLCLLC, (5.16)

θ =
1

2
(B +Br)

εdi
tdi
HGBLGB, (5.17)

then (Equation (5.15)) becomes

Cinterwire = γ(G+
√
G) + θK. (5.18)

5.2.1.5 Formula for Power Consumption

Based on Equations (5.1)-(5.3) and (5.18), the total power consumption of an IC

can be estimated as follow:

P = α[βG+ γ(G+
√
G) + θK]V 2

DDf. (5.19)

5.2.2 Estimation of Circuit Area

Transistors of IC chips are built on top of silicon substrate. Each transistor must

be powered and wired to construct logic gates, circuit blocks, functional units

and higher-level functional structures. The interconnect layers are laid over the

transistors (Figure 5.2). Interconnect layers vary enormously in wire sizes in width

W and thickness H, and are classified into local (bottom) interconnect layers and

global (top) layers, one stacked on top of another. Therefore, the IC area can

be estimated as the maximum among the followings: (1) area of total number of

logic gates, (2) area of local interconnect layers, and (3) area of global interconnect

layers:

A = max{AG, ALC , AGB}. (5.20)
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(a)

L

W S

H

T

(b)

Figure 5.2: (a) 0.13µm cross-section, source-Intel (IBM, 2008); (b) Intercon-
nect geometry.

However, in today’s submicron era, transistors are becoming relatively small, and

chips are mostly made of wires (Weste and Harris, 2004). As stated in Celik et al.

(2002), interconnects have dominant impact on IC area. The local wires (closest

to the transistors) are very small in size, while the global wires are significantly

larger in the thickness and width compared to the local ones. Since the number of

wires can be estimated using Equations (5.12-5.13), assuming they needs number

of layers, ηLC and ηGB, to build all local and global wires, respectively. Area of

112



5.2. Cost Analyses for FIT/IIT/Designs

local and global layers can be estimated as:

ALC ≈ 1.5(G+
√
G)(WLC + SLC)LLC/ηLC , (5.21)

AGB ≈
1

2
W (B +Br)(WGB + SGB)LGB/ηGB, (5.22)

where W , S, L are the width, spacing, and length of wires (as shown in Fig-

ure 5.2(b)), respectively. From Equations (5.21 and 5.22), we define

χ = 1.5(WLC + SLC)LLC/ηLC , (5.23)

ξ =
1

2
(B +Br)(WGB + SGB)LGB/ηGB, (5.24)

thus the area of the layers and the total IC area can be estimated as:

ALC = χ(G+
√
G), (5.25)

AGB = ξK, (5.26)

A = max {ALC , AGB} = max
{
χ(G+

√
G), ξK

}
. (5.27)

Since the size of the global wire is much larger than that of the local one, when the

average number of pins of IP blocks, K, is large enough, AGB will dominate, or IC

area depends on K. On the other hand, if K is small, IC area can be approximated

by ALC , and IC area depends on gate count G.

5.2.3 Estimation of Delay

The total delay D of a processing module includes the input and output delays

and the processing delay to complete a given task. Note that the unit of delay is
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in second, so delay in cycles can be calculated as:

Ds = Dct = Dc/f, (5.28)

where Ds, Dc, t, f are the total delay in seconds and cycles, the period (in seconds),

and operating frequency, respectively.

5.2.4 Estimation of Design Costs

Design cost is defined as the product of power, area, and delay:

Cost = P × A×Ds(in Wm2s), (5.29)

where P is in W, A in m2, and Ds in seconds. Depending on the emphasis, P ,

A or Ds may carry different exponents. In this case, we assume they are equally

important and thus assign exponent of 1 to each of P , A and Ds. From Equations

(5.19) and (5.27), we have

Cost = α[βG+ γ(G+
√
G) + θK]V 2

DDf ×max
{
χ(G+

√
G), ξK

}
. (5.30)

Since G is normally larger than 10,000,
√
G is smaller than 1% of G. Therefore,

√
G can be neglected, and Equation (5.30) becomes

Cost = α [(β + γ)G+ θK]V 2
DDf ×max {χG, ξK} . (5.31)

Sylvester and Keutzer (1999) showed that gates and local interconnects power
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consumption dominate total power consumption. In Equation (5.31), power con-

sumption due to global interconnects becomes αθKV 2
DDf , while power due to gates

and local interconnects become α(β + γ)GV 2
DDf . Therefore, Equation (5.30) can

be simplified as:

Cost = α(β + γ)GV 2
DDf ×max {χG, ξK} . (5.32)

Since in the standard 2-input NAND cells, PMOS width is normally equal to about

0.8 times of NMOS width (AMS, 2006; IBM, 2008), while NMOS width can be

approximately scaled with technology (channel length) at about 3.5 times (Ciletti,

2003). Therefore, Equation (5.4) becomes

β = 1.8CoxLchannelWNMOS ≈ 6.3CoxL
2
channel. (5.33)

In addition, the gate oxide capacitance per unit area Cox is calculated as follows

(Rabaey et al., 2003):

Cox =
εox
tox

=
εroxε0
tox

, (5.34)

ε0 = 8.854× 10−12(F/m), (5.35)

where εox, ε0, εrox, tox are permittivity of SiO2, permittivity of free space (electric

constant or vacuum permittivity), relative static permittivity (or dielectric con-

stant) of SiO2, and gate oxide thickness, respectively. Therefore, Equation (5.33)

becomes

β = 1.8CoxLchannelWNMOS ≈ 6.3
εroxε0
tox

L2
channel. (5.36)
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In a given SoC-based IC, if the average number of pins per IP block is small,

χG > ξK, Equation (5.32) becomes

CostG = (ψGV 2
DDf)GDs, (5.37)

where

ψ = α(β + γ)χ (5.38)

ψ = 1.5α

(
6.3

εroxε0
tox

L2
channel + 1.5

εdi
tdi
HLCLLC

)
(WLC + SLC)LLC/ηLC (5.39)

ψ = 1.5αε0

(
6.3

εrox
tox

L2
channel + 1.5

εrdi
tdi

HLCLLC

)
(WLC + SLC)LLC/ηLC , (5.40)

where εrdi is relative static permittivity of the dielectric layer under the local wires.

On the other hand, if the average number of pins per IP block is large, χG < ξK,

Equation (5.32) becomes

CostK = (ϕGV 2
DDf)KDs, (5.41)

where

ϕ = α(β + γ)ξ (5.42)

ϕ =
1

2
αε0

(
6.3

εrox
tox

L2
channel + 1.5

εrdi
tdi

HLCLLC

)
× (B +Br)(WGB + SGB)

LGB
ηGB

.

(5.43)

In summary, given a system with IP blocks, design cost metric depends on whether

the average number of pins per IP block is small or large. If it is small, the

area due to local interconnect dominates and CostG (Equation (5.37)) can be

used. If it is exceedingly large, global interconnect area dominates, and CostK

(Equation (5.41)) can be used. In both conditions, design cost is proportional to

delay.
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In both cost formulas, ψ and ϕ parameters depend on technology design rules and

process. In particular, they are proportional to the total number of gates and local

interconnect capacitance, which depends on gate length Lchannel, gate oxide thick-

ness tox, and local interconnect thickness HLC and length LLC (Equation (5.40)),

(Equation (5.43)).

5.3 The Proposed Performance-Cost Metric for

FIT/IIT Designs

The throughput of a SoC-based data processing design is measured in the number

of pixel-per-second (pps) (Wang et al., 2003; Chen et al., 2005, 2006; Shi et al.,

2007; Hwangbo et al., 2007; Pastuszak, 2008; Choi et al., 2008; Do and Le, 2009,

2010) or pixel-per-cycle (ppc) (Chao et al., 2007; Ngo et al., 2008; Su and Fan,

2008), whose relationship is described in Equation (5.44). However, the former is

commonly used in practice:

Tpps = Tppcf (5.44)

The throughput (pps, ppc) of IIT modules for n× n data blocks is computed by

total delay (second, cycle) as shown below.

Tpps =
n2

Ds

, (5.45)

Tppc =
n2

Dc

. (5.46)
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In order to compare among designs with different performance and costs, we define

a performance-cost metric (PCM ) as follows:

PCM =
Performance

Cost
=

Tpps
Cost

. (5.47)

Applying Equation (5.47) for IIT module design which processes n× n blocks, we

have

PCM =
n2/Ds

Cost
. (5.48)

Since the design cost can be estimated using either Equation (5.37) or Equa-

tion (5.41) depending on the average number of pins per IP block, PCM now

becomes

PCMG ≈
n2/Ds

(ψGV 2
DDf).G.Ds

, (5.49)

PCMK ≈
n2/Ds

(ϕGV 2
DDf).K.Ds

. (5.50)

In Equation (5.49), gate count and delay are equally important and have the

inverse square effect to PCM. In Equation (5.50), delay has an inverse square

effect, whereas gate count and average number of pins have an inverse linear effect

on PCM. In both formulas, PCM also depends on technology design rules and

process through ψ and ϕ parameters. In order to facilitate comparisons among

designs with the same block size n, the same number of blocks B, and to hide

technology design rules and process parameters ψ or ϕ, we define technology-

hidden PCMs, PCMG (used for SoC IP blocks having a small number of pins K)

and PCMK (used for SoC IP blocks having a large number of pins K), as follows:

PCMG =
ψPCMG

n2
≈ 1

(GV 2
DDf)GD2

s

, (5.51)
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PCMK =
ψPCMK

n2
≈ 1

(GV 2
DDf)KD2

s

. (5.52)

Based on Equation (5.28), we have

PCMG ≈ 1

(GV 2
DDf)G

(
Dc

f

)2 , (5.53)

PCMK ≈ 1

(GV 2
DDf)K

(
Dc

f

)2 . (5.54)

In Equation (5.53), the technology-hidden PCMG is inversely proportional to the

power, area, and delay. We note that there are a f component in the power and

a 1/f 2 component in the combined throughput-delay. As operating frequency

increases, the power increases and thus PCMG decreases. However, as operating

frequency increases, the 1/f 2 factor decreases much faster at the quadratic rate,

thus increases performance by a factor of f 2. The net effect of increasing operating

frequency is an increase in PCMG. Similarly, the net effect of increasing operating

frequency is an increase in PCMK as shown in Equation (5.54).

Similarly, let us define the technology-hidden CG and CK as:

CG =
CostG
ψ

≈ (GV 2
DDf).G.Ds = V 2

DDG
2Dc, (5.55)

CK =
CostK
ϕ

≈ (GV 2
DDf).K.Ds = V 2

DDGKDc. (5.56)

We also have

PCMG ≈ f

V 2
DDG

2D2
c

=
f

CGDc

, (5.57)

PCMK ≈ f

V 2
DDGKD

2
c

=
f

CKDc

. (5.58)
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5.4 Discussion on PCM s on Different Designs

and Metric Comparison to DTUA

5.4.1 General Discussion on Different Designs

We have reviewed many FIT/IIT designs in both 0.35 and 0.18 µm technologies.

However, we only include designs in Pastuszak (2008); Choi et al. (2008); Ngo

et al. (2008); Do and Le (2010); Chao et al. (2007); Su and Fan (2008), which

support 8 × 8 FIT/IIT, and list them in Table 5.1. Since 8 × 8 IT is the most

complex transform among the four types, we will evaluate the performance and

cost of designs based on this transform. For designs whose bit-depth of a pixel

was not reported, a 12-bit depth is assumed. Unless otherwise indicated, 0.18 µm

technology is implied for all designs.

The design by Pastuszak (2008) supports all FITs/IITs and quantization/rescal-

ing, except for 2× 2 FHT/IHT. A 64-pixel input data bus and a 64-pixel output

data bus are used resulting in a total data bus width of 2048 bits. The computing

engine has eight shared 1-D hardware units and thirty-two quantization/rescaling

multipliers. By pipelining all modules, the design is claimed to transform a 8× 8

block in two cycles, giving a high aggregate throughput of thirty-two ppc. The

gate counts of FIT/IIT, using 0.35 µm technology, are 115.3 and 99 Kgates, re-

spectively. The gate counts of FIT/IIT using 0.18 µm technology, are 162.1 and

141.3 Kgates, respectively.

The design by Choi et al. (2008) supports most of the IIT operations except 2× 2

Hadamard transform and de-quantization. A 32-pixel input and a 32-pixel output

data bus are used resulting in a total data bus width of 768 bits assuming twelve

120



5.4. Discussion on PCMs on Different Designs and Metric Comparison to DTUA

bits per pixel. The computing unit has four shared 1-D hardware units. The design

requires five cycles to complete an 8× 8 IIT yielding an aggregate throughput of

12.8 ppc. The gate count is 20.7 Kgates using 0.35 µm technology.

The design by Ngo et al. (2008) supports all IITs with rescaling. A 8-pixel input

and a 8-pixel output data bus are used resulting in a total data bus width of 256

bits. The design requires nineteen cycles to perform a 8 × 8 IIT including I/O

delay yielding an aggregate throughput of 3.4 ppc. The gate count is 21.5 Kgates

using 0.35 µm technology.

The design by Do and Le (2010) performs all FITs/IITs with quantization/rescal-

ing. A 8-pixel input and a 8-pixel output data bus are used resulting in a total

data bus width of 192 bits. The computing unit has two 8×8 1-D hardware units.

By sharing computing resources and buffers for all transforms, each of the two

hardware units alternatively operates on eight units of data without increasing

the delay. With this alternating scheduling, only eight multipliers are required in

each hardware unit. With the pipelined blocks, the buffers also help smoothen

multiplications yielding an aggregate throughput of eight ppc. The gate counts of

FIT/IIT are 62.2 and 47.3 Kgates, respectively.

The design by Chao et al. (2007) supports all IITs without rescaling. A 16-pixel

input and a 8-pixel output data bus are used resulting in a total data bus width of

288 bits, assuming twelve bits per pixel. This design has one shared 1-D hardware

unit. For each 8×8 block, sixteen cycles is required for processing and three cycles

for scheduling, giving rise to an aggregate throughput of 3.4 ppc. The gate count

of IIT taken as the core IIT and controller (not including buffers), is 9.5 Kgates.

The design by Su and Fan (2008) supports all the IITs and without rescaling. A

8-bit-per-pixel 64-pixel input data bus and a 12-bit-per-pixel 64-pixel output data
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bus are used resulting in a total data bus width of 1920 bits. The computing

engine has one shared 1-D hardware unit. The throughput is sixteen cycles and

aggregate throughput is 4.0 ppc. The gate count is 18.1 Kgates.

5.4.2 Discussion on Aggregate Throughput

In order to facilitate the discussion, four groups of designs are classified, including

(1) group 1: 0.35 µm FIT designs; (2) group 2: 0.35 µm IIT designs; (3) group 3:

0.18 µm FIT designs; and (4) group 4: 0.18 µm IIT designs (as shown in Table 5.1).

Note that group 1 has only one design and will not be analyzed further.

In group 2, as can be seen in column 10, the throughput in terms of pps (pps-

throughput) of the design by Pastuszak (2008) is 5.1 times as high as that of

the design by Ngo et al. (2008). This is mainly because the delay of Pastuszak

(2008)’s design is 10.5% of that of Ngo et al. (2008)’s design, although its speed is

only 52.6% of that of Ngo et al. (2008)’s design. The design by Choi et al. (2008)

cannot be compared as there is no design with similar features.

In group 3, the pps-throughput of the design by Pastuszak (2008) is 1.9 times as

high as that of the design by Do and Le (2010). This is mainly because the delay

of Pastuszak (2008)’s design is 25% of that of Do and Le (2010)’s design, although

its speed is only 47.6% of that of Do and Le (2010)’s design.

In group 4, among the designs without rescaling function, the pps-throughput of

the design by Do and Le (2010) is 4.3 and 4.6 times as high as that of the design

by Chao et al. (2007) and Su and Fan (2008), respectively. This is because the

delay of Do and Le (2010)’s design is 41.7% and 50% of that of Chao et al. (2007)’s
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and Su and Fan (2008)’s design, respectively, and its speed is 1.8 and 2.3 as high

as that in the other two designs, respectively.

Also in group 4, among the designs with rescaling, the pps-throughput of the

design by Pastuszak (2008) is 1.4 times as high as that of Do and Le (2010)’s

design. This is because the delay of Pastuszak (2008)’s design is 25% of that of

Do and Le (2010)’s design, although its speed is only 35.7% of that of Do and Le

(2010)’s design.

In general, the design by Pastuszak (2008) has highest pps-throughput followed

by those by Do and Le (2010) and Chao et al. (2007). Yet, throughput alone does

not indicate the effectiveness of a design. We discuss DTUAs of the designs in the

next section.

5.4.3 Discussion on DTUA

DTUA increases when the throughput increases or the area decreases.

In group 2, DTUA of the design by Pastuszak (2008) is 1.1 times as high as that of

the design by Ngo et al. (2008). This is because the pps-throughput of Pastuszak

(2008)’s design is 5.1 times as high as that of Ngo et al. (2008)’s design, although

its gate count is 4.6 times as large as that of the other design.

In group 3, DTUA of the design by Do and Le (2010) is 1.4 times as high as

that of the design by Pastuszak (2008). This is because the gate count of Do and

Le (2010)’s design is only 3.5% of that of Pastuszak (2008)’s design, although its

pps-throughput is only 52.6% of the pps-throughput of Pastuszak (2008)’s design.
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In group 4, among the designs without rescaling, DTUA of the design by Do and

Le (2010) is 1.2 and 2.5 times as high as that of the design by Chao et al. (2007)

and Su and Fan (2008), respectively. This is mainly because the pps-throughput

of Do and Le (2010)’s design is 4.3 and 4.6 times as high as that of Chao et al.

(2007)’s and Su and Fan (2008)’s design; and its gate count is only 28.6% and

5.6% of that of the other two designs, respectively.

Also in group 4, among designs with rescaling, design in Do and Le (2010) is 2.1

times higher in DTUA than that of Pastuszak (2008) mainly due to a 3.0-time

smaller in gate count, despite a 1.4-time lower in pps-throughput.

In the previous section, the design by Pastuszak (2008) has higher pps-throughput

followed by those by Do and Le (2010) and Chao et al. (2007). In this section, the

performance is gauged by the area-based DTUA. The design by Pastuszak (2008)

is no longer the best. The design by Do and Le (2010) has the highest in most

cases.

DTUA does not include power consumption and delay. In sub-micron technology,

the area and power consumption of interconnects have played important roles.

This is a weakness of DTUA as a performance indicator.

5.4.4 Discussion on Design Costs

An assumption is made for comparison among different designs that the SoC

includes only IIT module. Therefore, designs using the same technology can have

the same ψ or ϕ. As a result, CG and CK can be used for CostG and CostK

comparison, and PCMG and PCMK for PCMG and PCMK comparison. Since

the widths of the address bus and control bus are small compared to those of the
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data bus in IIT, the average number of pins K for IIT module can be approximated

by the data bus width.

In Table 5.1, columns 11 and 12 show CG (Equation (5.55)) and CK (Equa-

tion (5.56)) of different designs, respectively. Note that CG is proportional to

the square of both operating voltage and gate count, and linearly proportional

to the delay. On the other hand, CK is proportional to the square of operating

voltage, and linearly proportional to gate count, bus width, and delay. Within a

design technology, since the operating voltage is the same, it can be left out of the

analysis.

In group 2, CG of the design by Ngo et al. (2008) is only 45.4% of that of Pastuszak

(2008)’s design. This is mainly because the gate count of Ngo et al. (2008)’s design

is only 21.7% of that of Pastuszak (2008)’s design, although its delay is 9.5 times

as long as the other design’s delay. Likewise, cost CK of the design by Ngo et al.

(2008) is 25.6% of that of Pastuszak (2008)’s design. This is mainly because its

bus width and gate count are both smaller, which are only 12.5% and 21.7%,

respectively, of those of Pastuszak (2008)’s design, although its delay is 9.5 times

as long as the delay in Pastuszak (2008)’s design.

In group 3, CG of the design by Do and Le (2010) is only 58.8% of that of the

design by Pastuszak (2008). This is mainly because the gate count of Do and

Le (2010)’s design is only 38.5% of that of Pastuszak (2008)’s design, although

its delay is 4.0 times as long as the other delay. Likewise, cost CK of the design

by Do and Le (2010) is only 14.5% of that of Pastuszak (2008)’s design. This is

because its bus width is only 9.3% of the Pastuszak (2008)’s design’s bus width,

although its delay is 4.0 times as long as the other delay.
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In group 4, among designs without rescaling, CG of the design by Chao et al.

(2007) is only 33.3% and 19.6% of that of the design by Su and Fan (2008) and

Do and Le (2010), respectively. This is mainly because the gate count of Chao

et al. (2007)’s design is only 52.6% and 28.6% of that of the design by Su and Fan

(2008) and Do and Le (2010), respectively, although its delay is 1.2 and 2.4 times

as long as the other two designs’ delays, respectively. On the other hand, design

in Do and Le (2010) is slightly smaller and its CK is only 9.2% of that of Chao

et al. (2007)’s and Su and Fan (2008)’s design, respectively. This is because its

bus width is only 66.7% and 10.0% of that of the other two designs, respectively.

Among designs with rescaling, CG of the design by Do and Le (2010) is only 41.7%

of that of the design by Pastuszak (2008). This is mainly because the gate count

of Do and Le (2010)’s design is only 33.3% of that of Pastuszak (2008)’s design,

although its delay is 4.0 times as long as the other delay. Likewise, CK of Do and

Le (2010)’s design is only 12.2% of that of Pastuszak (2008)’s design because its

bus width is only 9.3% of the other bus width.

In general, designs by Do and Le (2010) and Chao et al. (2007) have the lowest

costs, where Chao et al. (2007)’s design is without rescaling. Among CG and CK ,

it is easier to choose reasonable bus width for lowest CK than to find smallest gate

count for lowest CG.

In summary, up to this section, the design by Pastuszak (2008) has the best

aggregate pps-throughput followed by those by Do and Le (2010) and Chao et al.

(2007). However, the design by Do and Le (2010) has the highest DTUA followed

by Pastuszak (2008)’s design, and those by Do and Le (2010) and Chao et al.

(2007) have the lowest costs.
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5.4.5 Discussion on PCM s with respect to DTUA

In Table 5.1, columns 13 and 14 show PCMG (Equation (5.53)) and PCMK (Equa-

tion (5.54)) of all designs. Figure 5.3 shows the bar graphs of the values of DTUAs,

PCMG/10 (to be able to fit in the same graphs), and PCMK among the designs

in the various comparison groups.

We note that PCMG (Equation (5.57)) is proportional to operating frequency,

and inversely proportional to the cost CG and delay. PCMK (Equation (5.58))

is proportional to operating frequency, and inversely proportional to the cost CK

and the delay.

In group 2, PCMG of the design by Pastuszak (2008) is 2.3 times as high as that

of the design by Ngo et al. (2008). This is mainly because the delay in Pastuszak

(2008)’s design is only 10.5% of that of Ngo et al. (2008)’s design, although its

cost CG is 2.2 times as high as CG of Ngo et al. (2008)’s design and its operating

frequency is 55.6% of that of Ngo et al. (2008)’s design. On the other hand, PCMK

of the design by Pastuszak (2008) is 1.3 times as high as that of Ngo et al. (2008).

This is mainly because the delay in Pastuszak (2008)’s design is only 10.5% of

that of Ngo et al. (2008)’s design, although its cost CK is 3.9 times as large as Ngo

et al. (2008)’s design’sCK and its frequency is only 55.6% of the other frequency.

Together with DTUA, this is illustrated in Figure 5.3(a). Even though DTUA and

PCMG of Pastuszak (2008) are relatively higher than those of Ngo et al. (2008),

its PCMK is lower. The much larger bus width of Pastuszak (2008) is reflected in

the lower PCMK compared to that in Ngo et al. (2008).

The question is when to use PCMG and when to use PCMK ? It has shown that

the design by Pastuszak (2008) has good performance due to its high throughput,
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(a) (b)

(c) (d)

Figure 5.3: DTUA, PCMG/10, and PCMK among the designs in the various
comparison groups. (a) Group 2, 0.35µm, IIT; (b) Group 3, 0.18µm, FIT; (c)
Group 4, 0.18µm, IIT without rescaling; and (d) Group 4, 0.18µm, IIT with

rescaling.

high DTUA, and high PCMG value. However, when the technology shrinks, the

interconnection issues start to dominate and thus PCMK cost becomes large. It is

suggested to use PCMK in sub-micron technology or when bus width is exceedingly

large, and to use PCMG otherwise.
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In group 3, PCMG of the design by Do and Le (2010) is similar to that of the de-

sign by Pastuszak (2008), while its PCMK is 3.7 time as large as that of Pastuszak

(2008)’s design. This is because CG and CK of Do and Le (2010)’s design are only

58.8% and 14.3% of those of Pastuszak (2008)’s design, respectively; and its oper-

ating frequency is 2.1 times as fast as that of Pastuszak (2008)’s design, although

its delay is 4.0 times longer than the other delay. As shown in Figure 5.3(b), the

design by Do and Le (2010) has higher DTUA, comparable PCMG, and much

higher PCMK indicating that Do and Le (2010) is more favorable over Pastuszak

(2008).

In group 4, among the designs without rescaling, the design by Chao et al. (2007)

has the highest PCMG, which is 3.2 and 1.2 times as high as those of Su and Fan

(2008)’s and Do and Le (2010)’s designs, respectively. This is because CG of Chao

et al. (2007)’s design is only 33.3% and 19.6% of those of Su and Fan (2008)’s and

Do and Le (2010)’s designs, respectively, although its delay is 1.2 and 2.4 times

as long as the delays in the other two designs, respectively. The design by Chao

et al. (2007) specifically targets small gate count compared to others.

On the other hand, the design by Do and Le (2010) has the highest PCMK, which

is 4.4 and 49.6 times as high as those of the designs by Chao et al. (2007) and

Su and Fan (2008). This is because its operating frequency is 1.8 and 2.3 times

as fast as those of the other two designs; its delay is only 41.7% and 50% of

the other two delays; and its cost CK is 100% and 9.2% of those in the other two

designs, respectively. The design by Do and Le (2010) is very much larger in PCMK

compared to that of Su and Fan (2008). This is because Su and Fan (2008) requires

extremely large I/O bus of 1920 bits, compared to 192 bits. This is another scenario

where DTUA clearly fails to report. This is shown in Figure 5.3(c). Clearly, the

design by Su and Fan (2008) has the lowest values in all metrics. Chao et al.
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Figure 5.4: PCAS functions.

(2007) dominates in PCMG (and DTUA), while Do and Le (2010) dominates in

PCMK.

Among the designs with rescaling function, PCMG and PCMK of the design by

Do and Le (2010) are 1.6 and 5.6 times as high as those of the design by Pastuszak

(2008). This is because CG and CK of Do and Le (2010)’s design are only 45.4%

and 12.5% of those of Pastuszak (2008)’s design, respectively, although its delay is

25% of the other delays. This is shown in Figure 5.3(d). The three metrics show

the same trend when DTUA, PCMG and PCMK of Do and Le (2010) is 2.1, 1.6

and 5.6 times larger than those of Pastuszak (2008).

In general, DTUA provides conventional view on assessing the performance-cost

based on the area-only cost function. PCMA provides the area-centric cost func-

tion, while PCMK provides the interconnection-centric cost existed mostly in sub-

micron designs with large number of pins.

DTUA has been used to assess the performance of a design using only throughput

and area. If interconnections and large number of I/O pins, power consumption

are concerned, DTUA fails to report. Thus, the most performed designs should

have highest values in both PCMG and PCMK.
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5.5 Performance-Cost Analysis Software

5.5.1 Overview of PCAS functions

Based on PCM, a performance-cost analysis software (PCAS) has been developed

to analyze and compare users’ designs with reference designs. In particular, it

helps to manage the references, generate different metric formulas, analyze the

designs based on these metrics, lookup the allowed boundaries of their designs in

order to have the best designs, and export comparison tables. In addition, due to

a flexible function design, PCAS can be used not only for FIT/IITs using PCM

but also other designs and metrics.

5.5.2 PCAS function description

The detail functions of PCAS are illustrated in Figure 5.4. Branch 1 of the figure

lists the functions for users to organize their work in projects. Functions that allow

users to manage metrics, the central of analysis and comparison, are illustrated

in Branch 2. In a project, different metrics, i.e., outputs, can be created and

reused in other projects. Formulas of the metrics can be generated and modified

based on variables, i.e., design input parameters. These inputs also can be added

or removed. In the FIT/IIT case study, the outputs are throughput, CG, CK ,

PCMG, PCMK and DTUA, while the inputs are G, f , K and DC . There also are

classified inputs such as whether FIT or IIT the module is, whether quantization

step is included and which technology is used. In addition, as published designs

are also essential for analysis and comparison, PCAS provides functions to manage

them for reference (Branch 3). Users can add or remove reference designs in current
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project or database. Once the references are added to a project, they are stored in

the database and can be reused in other projects; thus, the users do not have to add

them again. On the other hand, when a user removes a reference, it is removed by

default only in the current project, not in database, since other projects might still

use it. When a reference is added, the user needs to provide all the required input

information of the reference. Besides adding and removing, importing function is

available for users to import a reference from database to the current project. In

addition, users can update information of a reference, leading to the update of the

database and all the projects.

The main object of a project is the proposed design. Similar to reference de-

signs, the proposed design is managed by adding, removing and updating functions

(Branch 4). In addition, when users design a new architecture, they probably need

to know how good their design is compared to the existing ones. PCAS can provide

a suggestion through the lookup function. The software allows users to choose one

input and one output for the lookup function, in which the input is the lookup

parameter for the new design and the output is the main metric. Next, the other

input parameter values of the new design need to be provided. PCAS starts to

compute all the metrics of the references, then search for the best designs based on

the main metric, and finally compute the optimal value for the lookup parameter

of the new design so that the users can use it as a goal to achieve a design which

is better than the best reference designs. In the FIT/IIT case study, gate count or

operating frequency (speed) can be chosen as the lookup parameter, while PCMG

and PCMK can be selected as the main metrics. PCAS helps the users analyze

the possible maximum gate count or minimum speed of their proposed designs

based on its preliminary parameters in order to have a higher PCMG and PCMK

compared to the highest PCMG and PCMK of the reference designs (Figure 5.5).
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Figure 5.5: PCAS lookup function.

Finally, PCAS can export comparison results to a table (Branch 5). The table

looks similar to Table 5.1 and may or may not contain the information of the new

design.

5.5.3 Optimal value calculation for look-up parameter in

FIT/IIT case study

In the FIT/IIT case study, assuming that gate count is chosen as the lookup pa-

rameter, and PCMG is the main metric. Assuming that design X is the best among

all reference designs, i.e., having the highest PCMG, and design A is the current

design which is being processed by the lookup function. From Equation (5.57), we

have

PCMGA ≈
fA

V 2
DDA

.G2
A.D

2
CA

, (5.59)

PCMGX ≈
fB

V 2
DDZ

.G2
X .D

2
CX

. (5.60)
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The current design A is better than the best reference design X when

PCMGA > PCMGX , (5.61)

fA
V 2
DDA

.G2
A.D

2
CA

>
fB

V 2
DDZ

.G2
X .D

2
CX

. (5.62)

As technology is used to classify the designs, we only select the same technology

for comparison. This means A and X have the same working voltage VDD. So we

have

GA <
GXDCX

DCA

√
fA
fX
. (5.63)

Therefore, the gate count of the new design A needs to be smaller than
GXDCX

DCA

so

that A is better than the best reference design X.

Similarly, if gate count and PCMK are the chosen input/output, and Y is the

highest-PCMK reference, we have

GA <
GYKYD

2
CY

KAD2
CA

fA
fY
. (5.64)

Overall, in order to have the best design in terms of both PCMG and PCMK, the

gate count of the new design A needs to be smaller than the smaller value between

GXDCX

DCA

√
fA
fX

and
GYKYD

2
CY

KAD
2
CA

fA
fY

.

Similar to the gate count lookup process, speed lookup function will compute the

optimal value for speed. In order to have a better design in terms of both PCMG

and PCMK, the speed of the new design A need to be smaller than the smaller

value between
fXG

2
AD

2
CA

G2
XD

2
CX

and
fY GAKAD

2
CA

GYKYD
2
CX

(using PCMG and PCMK metrics, re-

spectively).
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Figure 5.6: PCAS example flowchart.

5.5.4 Using PCAS example in FIT/IIT case study

This part presents an example of using PCAS in the FIT/IIT case (Figure 5.6).

After creating a project, defining all inputs, and generating all output formulas,

three references (Chao et al., 2007; Su and Fan, 2008; Do and Le, 2010) are added

with their inputs. Their outputs are then automatically computed and presented

in Figure 5.5. The users may want to design an IIT with the shown inputs. If the

users estimate their design speed as 200MHz, and choose to lookup for the gate

count, PCAS can analyze the references and compute the possible maximum gate

counts. The results are 28.54 Kgates and 28.84 Kgates for PCMG and PCMK

metrics, respectively. As a result, in order to have better PCM s than the refer-

ences, the new design must have the gate count smaller than 28.54 Kgates.
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5.5.5 Flexible design of PCAS

PCAS is developed with the aim to facilitate the use of PCM technique. More-

over, PCAS is flexibly designed so that it can facilitate different metrics for other

architectures. Its flexibility is supported by the followings arguments. Firstly, the

inputs and outputs of projects are easily added or removed. Secondly, the formulas

of the outputs are modifiable with PCM s as the default formulas. Thirdly, the

lookup parameter and the metric can be arbitrarily chosen among the inputs and

outputs for the lookup function.

5.6 Summary

High performance and low cost are design objectives for SoC and IP designs in

general, and H.264 forward/inverse integer transform (FIT/IIT) designs in partic-

ular. The DTUA has been the metric in the literature for comparisons among the

high throughput and area-efficient FIT/IIT designs. However, due to the incom-

prehensiveness of the current metric(s) used for comparison, some designs use very

large bus widths but their authors were still able to claim their area efficiencies.

In this chapter, a novel PCM concept is proposed for the H.264 forward/inverse

integer transforms. PCM is defined as the ratio of data throughput over the design

cost - a product of power, area, and delay. Compared to DTUA, PCM facilitates

more comprehensive comparisons among the FIT/IIT designs.

The design by Do and Le (2010) can be considered as the best FIT and IIT design

in groups 3 and 4 in 0.18 µm technology, respectively. Besides, in group 4 without

quantization function, the design by Chao et al. (2007) is the second best. On the
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other hand, the design by Pastuszak (2008) is considered as the best IIT design

in group 2 with quantization.

Performance-cost analysis software is subsequently proposed to facilitate the use of

the PCM technique. Using the software, users can manage the reference designs,

generate analyzing formulas, analyze and lookup the allowed boundaries in their

designs and export comparison results. PCAS is flexibly designed in order to

facilitate the use of not only our PCM technique for FIT/IITs, but also other

metrics for other architectures.
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Chapter 6

Fast and Low-Cost Algorithms

and A High-Throughput

Area-Efficient Architecture for

HEVC Integer Transforms

6.1 Introduction

Motivated by the impressive coding efficiency and phenomenal success of H.264/AVC

in industry, and a high growth in demand for band-width driven video applica-

tions (such as 3-D, multi-view, web-based, smart phone and tablet applications),

the H.264 developers, ISO/IEC Moving Picture Experts Group and ITU-T Visual

Coding Experts Group, have been working together again to develop a novel High

Efficiency Video Coding (HEVC) standard. It is currently finalizing and going to

be in early 2013, with the aim of (1) supporting increased resolution videos, i.e.,

beyond full high definition; and (2) saving half of bit-rate with equivalent quality

for high definition (HD) and full high definition (FHD) resolution videos compared
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to the current H.264/AVC standard. However, together with the improvement on

compression capability, the complexity of HEVC decoder and encoder is about 1.5

and several times, respectively, of those of H.264/AVC (Bossen et al., 2012).

In HEVC, transform coding is still one of the most important coding tools. In

the H.264 high profiles, residual data are transformed in blocks with sizes of up to

8×8. In HEVC, a wide range of block sizes, from 4×4 to 32×32, is used to adapt

the transforms to the varying space-frequency characteristics of residual data. As

a result, the computational complexity of the integer transforms is dramatically

increased. On the other hand, in order to support beyond-FHD resolutions, HEVC

coding tools in general, and transform coding in particular need to achieve a very

high throughput. However, all the core transform matrices in HEVC are totally

different from those of H.264/AVC. It is desired to develop fast transform and

low-complexity algorithms, and high throughput and area-efficient architectures

for the HEVC forward and inverse integer transforms.

Video encoders are always more complex than video decoders. Therefore, more

effort should be made to reduce the complexity of the modules in video encoders,

especially in HEVC encoder.

However, there are not many forward or inverse transform algorithms and archi-

tectures reported in the literature till now (December 2012). In the HEVC test

models (HMs), the Partial Butterfly algorithms with butterfly additions and scalar

multiplications are used. Due to the multiplications, they are far more complex

than the H.264 fast transform algorithms and are questionable to achieve a high

throughput to support beyond-FHD videos in hardware implementation. Rithe

et al. (2012) proposed an algorithm and architecture for the 4× 4 and 8× 8 2-D

transforms with hardware implementation. However, it is not feasible to extend
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their work to larger sizes of transforms because the algorithms are developed based

on the H.264 transform matrices. Due to the similar reason, the reported 8 × 8

1-D inverse transform architecture design by Martuza and Wahid (2012) is not

applicable to other transform sizes. In addition, cost is set at the highest priority

in the design by Martuza and Wahid (2012) instead of throughput. It should be

noted that in order to enable to support beyond-FHD videos in HEVC, through-

put is the crucial parameter in design optimizations. As a result, the maximum

resolution that the design by Martuza and Wahid (2012) can 2-D transform is

below FHD.

There is an urgent need to develop fast and low-cost algorithms and high-throughput

architectures for HEVC transforms with the sizes from 4 × 4 to 32 × 32. Due to

the complexity of the 32×32 transform, manual development of its fast algorithm

is challenging. We explore in this chapter the way to develop fast transform al-

gorithms for all the sizes of the HEVC transforms to facilitate high throughput

designs. We propose a novel method to automatically generate fast algorithms

even for 32 × 32 transforms. Based on the proposed method, we develop a series

of 4 × 4 and 8 × 8 hardware-oriented fast and low-cost transform algorithms for

HEVC. Fast and low-cost transform algorithms for larger sizes can also be de-

veloped using the same method. Finally, we develop, implement and fabricate a

high-throughput and area-efficient architecture based on the proposed algorithms.

The experimental results show that both the running time and the cost of the

automatically generated implementations for scalar multiplication algorithms by

the proposed method are about 90% less than those of the original implementation

by multiplications. The method is computationally feasible to be applied to all

the Partial Butterfly algorithms from 4 × 4 to 32 × 32. The running time and

the cost of the proposed fast and low-cost transform algorithms are 75% and 87%
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less than that of the original Partial Butterfly algorithms in HMs, respectively.

Compared to the reported HEVC transform algorithms in the literature, the pro-

posed algorithms are faster and their costs are lower. With a number of proposed

techniques, under a very challenging constraint on the I/O pin count of half-pixel,

the proposed architecture can support the transforms for up to Quad-Full High

Definition (QFHD) videos at the progressive scan frequency of 30 Hz. This is

eight times as large as that of Martuza and Wahid (2012)’s design. The proposed

architecture consumes only 44% power of the Martuza and Wahid (2012)’s design.

The chapter is organized as follows. Section 6.2 describes the Original Partial

Butterfly Transform Algorithms in HEVC test model HM. In Section 6.3, a novel

optimization method for scalar-multiplication-containing algorithms and a series of

novel integer transform algorithms for HEVC are proposed. Section 6.4 introduces

a novel high-throughput and area-efficient architecture. The chapter ends with a

summary in Section 6.5.

6.2 The Partial Butterfly Transform Algorithms

In general, a 2-D forward/inverse transformation of a block can be computed by

repeatedly applying the 1-D forward/inverse transform algorithms to all rows and

columns of the block. The forward transformation of a residual block includes

two stages. In the first stage, all rows are 1-D transformed by applying an 1-D

transform algorithm; while in the second stage, all columns of the first stage’s

result are transformed using the same algorithm.

The original 4×4 and 8×8 1-D Partial Butterfly forward transform algorithms in

HM7.0 (Appendix) are illustrated in Figure 6.1 and Figure 6.2, respectively. As
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Figure 6.1: The 4× 4 1-D Partial Butterfly forward transform algorithms.

can be seen, four inputs (from src0 to src3) or eight inputs (from src0 to src7) are

added, subtracted and multiplied to produce four outputs (from dst0 to dst3) or

eight outputs (from dst0 to dst7), respectively. Each arrow represents a data flow

from its tail to head. Each number on one arrow represents a multiplication of

the data by the number. Each adder symbol in front of dst1,dst3, dst5 and dst7

in Figure 6.2 represents one 4-input adder or three 2-input adders. Especially, the

dashed region in this figure has the same structure with Figure 6.1. Therefore, the

4×4 1-D Partial Butterfly algorithm can be implemented as a part of the 8×8 1-D

Partial Butterfly algorithm. Table 6.1 lists the number of additions and multipli-

cations needed in the 4× 4 / 8× 8 1-D/2-D transforms using the Partial Butterfly

algorithms. The total number of 2-input additions at Column 4 of Table 6.1 is

calculated based on the fact that a 16-bit multiplication can be implemented by

fifteen 2-input additions. As can be seen from Table 6.1, as the 4× 4/8× 8 1-D

Partial Butterfly algorithms contain a number of multiplications, their 2-D trans-

formations are relatively complex, leading to long running times with the longest

calculation path of nineteen adders for the 1-D 8 × 8 algorithm (Table 6.2) and

a high resource consumption of 6280 adders for the 2-D 8 × 8 algorithm, which

consequently leads to a low throughput and a large area, respectively. Therefore,
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Figure 6.2: The 8× 8 1-D Partial Butterfly forward transform algorithms.

Table 6.1: Number of additions and multiplications in the Partial Butterfly
algorithms for the 4× 4/8× 8 1-D/2-D forward transforms.

Transform Number of
16-bit

Multiplications

Number of 2-input
Additions /
Subtractions

Total number of 2-input
Additions

4× 4 1-D 8 8 8× 15 + 8 = 128
8× 8 1-D 24 28 24× 15 + 28 = 388
4× 4 2-D 64 64 64× 15 + 64 = 1024
8× 8 2-D 384 448 384× 15 + 448 = 6208

Table 6.2: The length of the longest path of the 1-D Partial Butterfly algo-
rithms for the 4× 4/8× 8 1-D forward transforms.

Transform Number of adders used in the longest path
4× 4 1-D 1 adder + 1 multiplier + 1 adder = 17 adders
8× 8 1-D 1 adder + 1 multiplier + 3 adders = 19 adders
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it is desired to have develop complex 1-D transform algorithms which require less

time to perform and consume less resource than the Partial Butterfly algorithms.

6.3 A Novel Optimization Method for Scalar-

Multiplication-Containing Algorithms and Novel

Integer Transform Algorithms for HEVC

The complexity caused by the scalar multiplications in the Partial Butterfly algo-

rithms leads to a low throughtput and large area. This can be reduced by convert-

ing scalar multiplications to addition/subtractions. It should be noted that each

scalar multiplication is considered as a set of multiplications of a number by differ-

ent multipliers. For example, a multiplication by 18 can be implemented by using

two shift operations and one addition/subtraction as x × 18 = x � 4 + x � 1.

Instead of using a 16-bit multiplication, using one 16-bit addition and two shift

operations is definitely less complex.

Several algorithms have been proposed in the literature to convert constant multi-

plications to addition/subtractions, including Canonical Sign Digit (CSD) (Hewlitt

and Swartzlander, 2000), Minimal Signed Digit (MSD) (Park and Kang, 2001) and

Booth encoding (Patterson and Hennessy, 1998). However, none of them deal with

scalar multiplication conversion.

A multiplication may be converted to addition/subtractions in different ways. For

instance, a multiplication by 7 can be performed by using two shift operations and

two addition/subtractions as x×7 = x� 2+x� 1+x, or can be performed using

one shift operation and one addition/subtraction as x × 7 = x � 3 − x, which
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is less complex than the previous way. As can be seen, different conversions may

have different complexities, affecting running time and resource usage of algorithm

implementation. Therefore, finding the least complex Multiplication-to-Addition

Conversion Result (MACR) for each multiplication component plays an essential

role in improving the original Partial Butterfly algorithms in terms of complexity

reduction.

Even when the least complex MACR for a multiplication is found, different opera-

tion orders may lead to different running times and different throughputs. This is

because operations may be performed in parallel in hardware implementation. For

example, a multiplication by 89, which is converted to additions as x× 89 = x�

6+x� 4+x� 3+1, may be performed in ((x� 6+x� 4)+x� 3)+1 order, or

in (x� 6+x� 4)+(x� 3+1) order, or in (x� 6+1)+(x� 4+x� 3) order,

or in other orders. In the first operation order, the required time to perform the

multiplication is about three times as large as the time required for an addition.

This ratio is about two times in the second and the third operation orders as two

additions in the two brackets can be performed simultaneously. The time needed

for shift operations is omitted in hardware designs as the shift operations will be

implemented by shifting wires.

Furthermore, the Partial Butterfly algorithms contain scalar multiplications, where

each scalar multiplication is considered as a set of multiplications of a number by

different multipliers. In order to ensure a high throughput of HEVC hardware

implementation for high definition video compression, the multiplications are re-

quired to perform in parallel. Although the multiplications are different, it is

possible to find some Common Operation Regions (CORs) in the implementa-

tion of the multiplications by optimizing the operation orders of the least complex

MACRs. Let’s take multiplications by 6 and 13 as an example. The multiplication
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by 6, x×6, has the least complex MACR of x� 2+x� 1 and the multiplication

by 13, x × 13, has the least complex MACR of x � 3 + x � 2 + x. While the

multiplication by 6 has only one operation order, the multiplication by 13 may

have three operation orders with the same running time, which is also the shortest

among all the orders. They are (1) (x� 3 +x� 2) +x; (2) x� 3 + (x� 2 +x);

and (3) (x � 3 + x) + x � 2. If order (1) is selected for the multiplication by

13, a Common Operation Region (COR) found between the two multiplications is

x � 1 + x, hence x × 6 = (x � 1 + x) � 1 and x × 13 = (x � 1 + x) � 2 + x.

However, if order (2) or (3) is selected, no COR can be detected. If CORs are

found among the multiplications, they just need to be performed once for all or a

number of multiplications, and the multiplications then can utilize their outputs.

Hence, the resource can be saved and the hardware area can be reduced. In this

example, the implementation of the multiplications by 6 and 13 with order (1), af-

ter reformulated based on the COR, only needs two addition/subtractions instead

of three. Therefore, after having the least complex MACRs for all multiplications,

determining their best operation orders with the shortest running time to achieve

the largest CORs is the key to improve the Partial Butterfly algorithms and build

up fast and low-cost integer transform algorithms for HEVC.

In this section, we propose (1) a novel optimization method on complexity, running

time and resource consumption for scalar-multiplication-containing algorithms;

and (2) a series of novel algorithms named hardware-oriented fast and low-cost

integer transform algorithms for HEVC. The optimization method (Figure 6.3)

can be applied to algorithms which (a) contain scalar multiplications; (b) en-

able operations to perform in parallel; and (c) require a short running time with

a low resource consumption. These algorithms are undergone through a general

Multiplication-Addition Conversion step and three levels of optimization including
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(i) Complexity Optimization, (ii) Timing Optimization and (iii) Resource Opti-

mization (Figure 6.3). In the first level of optimization, a Complexity Optimization

algorithm is proposed to find the least complex Multiplication-to-Addition Conver-

sion Result (MACR) for each multiplication of the original scalar-multiplication-

containing algorithms, e.g., the Partial Butterfly algorithms. In other words, the

first optimization level minimizes the number of additions for each MACR from the

previous general Multiplication-Addition Conversion step. In the second optimiza-

tion level, a Timing Optimization scheme is proposed to (1) generate a hardware-

oriented adding tree for each minimized MACR with a given or a shortest running

time; and to (2) find all possible options to assign addition operands of the mini-

mized MACR to the leaves of the adding tree. As each option leads to an operation

order, each minimized MACR with its optimized adding tree has a set of different

operation orders, named Shortest Timing Operation Order Set (STOOS). Finally,

in the last optimization level, a Resource Optimization algorithm is proposed to

find the Best Order (BO) in each STOOS. This is to achieve the largest Common

Operation Regions (COR) among all the minimized MACRs. By utilizing these

CORs, this resource optimization algorithm can minimize the number of additions

for all the multiplications, i.e., for the entire scalar-multiplication-containing al-

gorithms. A case study of the optimization method (Figure 6.3) is conducted to

prove its advantages. In particular, by applying the optimization method to the

Partial Butterfly algorithms, we develop a series of novel hardware-oriented inte-

ger transform algorithms for HEVC. Compared to the original Partial Butterfly or

conventional multiplication-free Partial Butterfly algorithms, the novel algorithms

are much simpler, require shorter running time and use less resource.
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Figure 6.3: The proposed optimization method for scalar-multiplication-
containing algorithms.

6.3.1 A Novel Optimization Method

Figure 6.3 shows the steps and algorithms in the proposed method to reduce

complexity, running time and resource consumption of the scalar-multiplication-

containing algorithms. These steps and algorithms are sequently described in

detail in Section 6.3.1.1, Section 6.3.1.2, Section 6.3.1.3 and Section 6.3.1.4.
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Table 6.3: Examples of general multiplication addition conversions.
Multiplications Binary

Representations
General Multiplication Addition Conversion

x× 64 100 0000 x� 6
x× 83 101 0011 x+ (x� 1) + (x� 4) + (x� 6)
x× 36 10 0100 (x� 2) + (x� 5)
x× 18 1 0010 (x� 1) + (x� 4)
x× 50 11 0010 (x� 1) + (x� 4) + (x� 5)
x× 75 100 1011 x+ (x� 1) + (x� 3) + (x� 6)
x× 89 101 1001 x+ (x� 3) + (x� 4) + (x� 6)

6.3.1.1 General Multiplication-to-Addition Conversion

In general, a multiplication can be converted to additions and shift operations by

decomposing the multiplier into a sum of powers of 2. For example, 18 can be

decomposed as 18 = 16 + 2 = 1 � 4 + 1 � 1. Therefore, a multiplication by 18

can be decomposed as x× 18 = x � 4 + x � 1. More examples can be found in

Table 6.3.

6.3.1.2 Proposed Complexity Optimization Algorithm

In hardware implementation, it is possible to design a component to perform both

addition and subtraction functions with a negligible increment in area compared

to a single adder or to a single subtractor. This adder/subtractor is commonly

used in hardware design and FPGA since using a combined adder/subtractor com-

ponents can save resources and is much more convenient than using two separate

components.

For the input scalar-multiplication-containing algorithm types of this optimization

method (Figure 6.3), it is also better to consider converting a multiplication to

Addition/Subtractions and shift operations (ASs) instead of converting to addition
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and shift operations only. It is not only because of the above advantages but also

because when using ASs, a multiplication may be converted in different ways and

the least complex result should be selected for implementation. If only additions

and shift operations are used, there is only one conversion result. For example, a

multiplication by 7 (Ob111) can be converted to ASs as x×7 = x� 2+x� 1+x,

or as x × 7 = x � 3 − x. Clearly, the latter is less complex than the former.

As complexity affects running time and resource consumption, and consequently,

affects the throughput and area of the final system hardware, it is essential to find

the least complex Multiplication-to-Addition Conversion Result (MACR) for each

multiplication component in the input algorithms to ensure a high throughput and

effective area design.

Assuming that we have a multiplication by B to be converted to ASs. B can be

represented in binary as:

B = bN−1bN−2...b1b0, with bi = 0, 1, (6.1)

where N is the number of bits needed to represent B:

N = dlog2Be . (6.2)

Putting all the bits in the binary representation of B into a Bit Array, BA, we

have

BA = [bi], where i = 0→ N − 1,

bi = 0, 1.
(6.3)
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For each conversion result, MACR, by generating a Conversion Array, CA, as an

N + 1 element array of {0, 1,−1},

CA = [ci], where i = 0→ N

ci = 0, 1,−1,
(6.4)

we have the corresponding conversion of B:

B =
N∑
i=0

ci(1� i), (6.5)

and the corresponding MACR:

x×B =
N∑
i=0

ci(x� i). (6.6)

Taking B = 7 as an example, we have N = 3 and BA = [1, 1, 1]. After that,

if we convert B = 1� 2 + 1� 1 + 1� 0,

x×B = x� 2 + x� 1 + x� 0,

then we have CA = [0, 1, 1, 1];

if we convert B = 1� 3− 1� 0,

x×B = x� 3− x� 0,

then we have CA = [1, 0, 0,−1].

CA has one more element compared to BA array, because it reserves this element

for the conversion to subtraction at bit N − 1 of B. This is illustrated in the

second conversion of the example above.
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If we use only additions and shift operations for conversion, CA is the same as

BA with element N equal to 0:

CA = [0, BA]. (6.7)

The corresponding MACR is

B =
N∑
i=0

ci(1� i) =
N−1∑
i=0

bi(1� i). (6.8)

x×B =
N∑
i=0

ci(x� i) =
N−1∑
i=0

bi(x� i). (6.9)

As can be seen, if bi is equal to 0, the corresponding power-of-2 components,

1 � i and x � i, are omitted in the sums in Equation (6.8) and Equation (6.9),

respectively. If there is any chain containing consecutive ′1′ elements in array

BA = [bi], i = 0→ N − 1, that is

bi = 1, where i = k → k + p;

k = 0→ N − 1;

and 0 ≤ p ≤ N − k − 1,

then we can replace:

k+p∑
i=k

bi �i = 1� (k + p+ 1)− 1� k. (6.10)

Therefore, if the combined ASs are used for multiplication conversion, instead of

using p ASs, i.e., additions, we need to use only one AS, i.e., subtraction. This

replacement will have advantages when p is greater than 1. The number of ASs

153



Chapter 6. Fast and Low-Cost Algorithms and A High-Throughput
Area-Efficient Architecture for HEVC Integer Transforms

reduced is then equal to p− 1. When p is equal to 1, or the ′1′ chain only includes

two elements, which is corresponding to one addition, there is no AS reduction

when replacing this addition by a subtraction. However, we may gain benefits

at the next ′1′ chain if it starts at position k + p + 2, i.e., one position away

from the current ′1′ chain, due to the appearance of ′1′ element at the position

k+p+ 1 after the replacement. If p is equal to 0, the replacement of zero addition

by a subtraction actually increase the number of ASs used for the current ′1′

chain. Even if the next ′1′ chain starts at position k + p + 2, the present of ′1′ at

position k + p + 1 only can reduce one more AS in the next chain replacement.

Hence, in total, subtraction replacement when p is equal to 0 does not benefit the

optimization process.

Based on the above analysis, a complexity optimization algorithm (Figure 6.4,

Algorithm 2) is proposed to find all possibilities to reduce the number of ASs

needed for a multiplication implementation by effectively replacing each group of

additions by a subtraction. The input to the algorithm is the multiplier, while

the output is Conversion Array, CA. The final conversion result, MACR (Equa-

tion (6.6)), is optimal because the algorithm optimizes one by one ′1′ element

chain and guarantee that the optimization at the current chain does not affect the

optimization process for the next chain. Some results, i.e., the final Conversion

Array CA, when applying the proposed Complexity Optimization Algorithm to

several multiplications are shown in Table 6.4.
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Algorithm 1 Complexity optimization algorithm for MAC (unoptimized version).

Require: An integer B > 0 (Input: Multiplier)
Require: An integer N ≥ 0 (Number of bits representing B)
Require: A N -element array BA of 0, 1 (Bits representing B)
Require: A N + 1-element array CA of 0, 1, -1 (Conversion Array)
Require: Two integer arrays CS, CL (The least significant bits and Lengths of

′1′/′0′ chains in BA. If position 0 exists a ′0′ chain, it is omitted in both arrays.
Add a ′0′ chain before the most significant position)

Require: An integer K ≥ 0 (Number of elements in CL) and two integer i, j
1: Initialize N ← dlog2Be, BA, CA← [0, BA], CS, CL, K, i← 0
2: while i < K do . chain i (′1′)
3: if CL[i] = 1 then
4: i← i+ 2 . Go to the next ′1′ chain
5: end if
6: if CL[i] = 2 then
7: if CL[i+ 1] = 1 then
8: CA[CS[i]]← −1 . Convert
9: CA[CS[i] + CL[i]]← 1

10: for j = CS[i] + 1→ CS[i] + CL[i]− 1 do
11: CA[j]← 0
12: end for
13: CS[i+ 2]← CS[i+ 2]− 1 . Update next chain’s parameters
14: CL[i+ 2]← CL[i+ 2] + 1
15: i← i+ 2 . Go to the next ′1′ chain
16: else
17: i← i+ 2 . Go to the next ′1′ chain
18: end if
19: end if
20: if CL[i] > 2 then
21: CA[CS[i]]← −1 . Convert
22: CA[CS[i] + CL[i]]← 1
23: for j = CS[i] + 1→ CS[i] + CL[i]− 1 do
24: CA[j]← 0
25: end for
26: if CL[i+ 1] = 1 then
27: CS[i+ 2]← CS[i+ 2]− 1 . Update next chain’s parameters
28: CL[i+ 2]← CL[i+ 2] + 1
29: i← i+ 2 . Go to the next ′1′ chain
30: else
31: i← i+ 2 . Go to the next ′1′ chain
32: end if
33: end if
34: end whilereturn CA
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Figure 6.4: The proposed complexity optimization algorithm for for MAC.

Table 6.4: Results when applying complexity optimization algorithm (Algo-
rithm 2) to several multiplications.

B BA CA No. ASs
saved

54 [1, 1, 0, 1, 1, 0] [1, 0, 0, -1, 0, -1, 0] 1
55 [1, 1, 0, 1, 1, 1] [1, 0, 0, -1, 0, 0, -1] 2

438 [1, 1, 0, 1, 1, 0, 1, 1, 0] [1, 0, 0, -1, 0, 0, -1, 0, -1, 0] 2
1910 [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0][1, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0] 4
3276[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0] [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0] 0
214 [1, 1, 0, 1, 0, 1, 1, 0] [1, 0, 0, -1, 0, -1, 0, -1, 0] 1
86 [1, 0, 1, 0, 1, 1, 0] [1, 1, 0, -1, 0, -1, 0] 0

6.3.1.3 Proposed Timing Optimization Strategy

After the first level of optimization in Chapter 6.3.1.2, a multiplication is converted

to a subtraction. The minuend of the subtraction is a sum of the power-of-2 com-

ponents corresponding to ′1′ elements in CA. The subtrahend of the subtraction is

the power-of-2 components corresponding to ′−1′ elements. We denote the number
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Algorithm 2 Complexity optimization algorithm for MAC (optimized version).

Require: An integer B > 0 (Input: Multiplier)
Require: An integer N ≥ 0 (Number of bits representing B)
Require: A N -element array BA of 0, 1 (Bits representing B)
Require: A N + 1-element array CA of 0, 1, -1 (Output: Conversion Array)
Require: Two integer arrays CS, CL (The least significant bits and Lengths of

′1′/′0′ chains in BA. If position 0 exists a ′0′ chain, it is omitted in both arrays.
Add a ′0′ chain before the most significant position)

Require: An integer K ≥ 0 (Number of elements in CL) and two integer i, j
1: function Convert(i) . Convert an Addition Chain to Subtraction
2: CA[CS[i]]← −1 . Lsb
3: CA[CS[i] + CL[i]]← 1 . Msb
4: for j = CS[i] + 1→ CS[i] + CL[i]− 1 do
5: CA[j]← 0 . Middle bits
6: end for
7: end function
8: function Update(i) . Merge ′1′ from previous conversion to the chain
9: CS[i]← CS[i]− 1

10: CL[i]← CL[i] + 1
11: end function
12: Initialize N ← dlog2Be, BA, CA← [0, BA], CS, CL, K, i← 0
13: while i < K do . chain i (′1′)
14: if (CL[i] ≥ 2) & (CL[i+ 1] = 1) then . chain ′1′ and chain ′0′

15: Convert(i)
16: Update(i+ 2) . Update next ′1′ chain
17: end if
18: if (CL[i] ≥ 3) & (CL[i+ 1] ≥ 2) then
19: Convert(i)
20: end if
21: i← i+ 2 . Go to the next ′1′ chain
22: end whilereturn CA

of non-zero elements in CA as NI . We assume the number of Addition/Subtrac-

tions (ASs), NA, is needed to perform the multiplication. It can be computed as

in Equation (6.11).

NA = NI − 1. (6.11)

Because scalar-multiplication-containing algorithms (Figure 6.3) are to be imple-

mented in hardware, their operations can be performed in parallel. Therefore,
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Figure 6.5: Optimized adding tree with NI = 4. Addition depth AD = 2.
Running time RT = 2×RTA.

different orders of their operations can lead to different running-times. If the

operations are performed in sequence, the running-time is

RT = NA ×RTA, (6.12)

where RTA is the running-time of an AS. However, if ASs are allowed to run in

parallel, the shortest running time can be achieved when we add all the numbers

in pairs at one time. Next, we add all the outputs of the previous ASs in pairs.

This step is repeated until there is only one output left. Since this strategy utilizes

addition parallelism as much as possible, the running time is the optimal value.

We define Addition Depth, AD, as the largest number among the numbers of

ASs required from any inputs to the final output. The relationship between the

running time of the multiplication and Addition Depth is

RT = AD ×RTA. (6.13)

The optimized Addition Depth, ADo, which is achieved by the proposed strategy,

is

ADo = dlog2NIe . (6.14)

Figure 6.5 and Figure 6.6 illustrate the adding tree generated for two examples

when NI is equal to 4 and 5, respectively.
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Figure 6.6: Optimized adding tree with NI = 5. Addition depth AD = 3.
Running time RT = 3×RTA.

Although the adding trees generated by the proposed timing-optimization strategy

leads to the shortest running times, they do not lead to an unique addition order

or operation order. When the operands corresponding to non-zero elements in

array CA are assigned as the inputs of an optimized adding tree, their different

permutations may provide different operation orders. With a permutation, the

adding tree may add the component corresponding to the most significant element

in CA with the second most together. In another permutation, it may add the

most significant one with the least significant component. Different orders may

cause different effects on the optimization process. Therefore, some properties of

the adding trees generated using the proposed timing-optimization strategy are

going to be described in detail for future use.

1. Generated adding trees for NI inputs have AD levels of ASs, computed using

Equation (6.14) (Figure 6.7).

2. If the number of inputs to level j is NILj, the number of ASs used in level j,

NALj, is

NALj =

⌊
NILj

2

⌋
, (6.15)

and the number of inputs left for level j + 1 is

NILj+1 = NILj −NALj = NILj −
⌊
NILj

2

⌋
. (6.16)
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Algorithm 3 is designed to implement these calculation.

Algorithm 3 Calculation of the number of inputs (NIL) and ASs (NAL) for
each level of a multiplication.

Require: An integer NI > 0 (Input: Number of non-zero elements in array CA)
Require: An integer AD > 0 (Addition Depth)
Ensure: AD = dlog2NIe
Require: Two integer arrays NIL, NAL
Require: An integer j

1: for j = 1→ AD do . For each level
2: if j = 1 then
3: NIL[j]← NI . Inputs of Level 1
4: else
5: NIL[j]← NIL[j − 1]−

⌊
NIL[j−1]

2

⌋
6: end if
7: NAL[j]←

⌊
NIL[j]

2

⌋
8: end forreturn NIL, NAL

3. Most of the time, the inputs of ASs in level j (j = 1 → AD) are from the

adjacent level j − 1. However, in some cases, they can be from even lower levels,

e.g., Figure 6.7(b), Figure 6.7(d), Figure 6.7(e) and Figure 6.7(f). Particularly, in

Figure 6.7(d), the AS at level 3 has two inputs: one is from level 2 and the other

is from level 0, i.e., original input.

4. If the situation of taking inputs from non-adjacent levels happens in one level,

it only happens at the last AS among the ASs of the level.

5. If the number of ASs at level j (NALj) multiplied by 2 is greater than the

number of ASs at the lower-adjacent level j − 1 (NALj−1), the second input of

the last AS at level j is from non-adjacent level. This non-adjacent level is the

nearest lower level having the number of ASs greater than 2 times of that of its

upper-adjacent level. Table 6.5 lists numbers of ASs in different levels for NI from

2 to 12, and shows the cases (?) when ASs take inputs from non-adjacent level.
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Table 6.5: Levels with non-adjacent inputs in the proposed adding trees when
NI = 2→ 12.

NI L1 L2 L3 L4 Levels with Non-Adjacent Input Input Levels
2 1 0 0 0

3 1 1 (?) 0 0 L2 L0

4 2 1 0 0

5 2 1 1 (?) 0 L3 L0

6 3 1 1 (?) 0 L3 L1

7 3 2 (?) 1 0 L2 L0

8 4 2 1 0

9 4 2 1 1 (?) L4 L0

10 5 2 1 1 (?) L4 L1

11 5 3 (?) 1 1 (?) L4, L2 L2, L0

12 6 3 1 1 (?) L4 L2

Taking NI = 11 as an example, we can see that level 4 and level 2 have inputs

from the non-adjacent levels, which are level 2 and level 0.

As mentioned before, after having the optimized adding tree with the shortest

running time for a multiplication, the components corresponding to non-zero ele-

ments in array CA are assigned as the inputs of the tree. Different permutations

of these components may lead to different operation order, consequently, different

effects for the optimization process. Therefore, we need to find all the permuta-

tions which lead to different operation orders, named Shortest Timing Operation

Order Set (STOOS). It should be noted that for any addition, exchanging the

order of its two inputs does not lead to any changes in operation order. Hence,

we can always assign the component which is corresponding to the more signifi-

cant bits in CA to the left input of ASs in level 1 compared to the right. This

assignment does not affect STOOS at all. Based on this analysis, the number of

permutations, S, for a multiplication with NI non-zero elements in array CA can
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Figure 6.7: Levels of optimized adding trees. (a) NI = 2; (b) NI = 3; (c)
NI = 4; (d) NI = 5; (e) NI = 6; and (f) NI = 7.
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be computed as

S =
NI !⌊

NI

2

⌋
! (2!)

⌊
NI
2

⌋ . (6.17)

Also based on the above analysis, Algorithm 4 is proposed to generate STOOS of

a given multiplication.

Table 6.6 shows the arrays STOSSs generated by Algorithm 4 for several multi-

plications. As can be seen from row 1 of the table, when B = 54, after the first

optimization, we have CA = [1, 0, 0,−1, 0,−1, 0]. Since CA has 3 non-zero com-

ponents, we only have three permutations which can lead to different operation

orders based on the optimized adding tree (Figure 6.7(b)). In particular, with

permutation [2, 1, 0], x � 6 and −(x � 3) are added in level 1 of the adding

tree. This sum is added together with −(x � 1) in level 2 of the adding tree.

It should be noted that permutation [1, 2, 0] leads to the same operation order

with that of permutation [2, 1, 0]. Therefore, [1, 2, 0] is not included in STOSS.

For permutation [2, 0, 1], x� 6 and −(x� 1) are added in level 1 of the adding

tree. This sum is added together with −(x� 3) in level 2 of the adding tree. For

permutation [1, 0, 2], −x � 3 and −(x � 1) are added in level 1 of the adding

tree. This sum is added together with (x� 6) in level 2 of the adding tree.

6.3.1.4 Proposed Resource Optimization Algorithm

In the novel timing and resource consumption optimization method for scalar-

multiplication-containing algorithms, the optimization level 1 minimize the num-

ber of ASs used for each multiplication. The inputs of this optimization level

are multipliers of all multiplications in scalar multiplications, while its output is

the least complex Multiplication Addtion Conversion Results (MACRs) of all the

multiplications. Each MACR corresponding to a multiplication is represented in

163



Chapter 6. Fast and Low-Cost Algorithms and A High-Throughput
Area-Efficient Architecture for HEVC Integer Transforms

Algorithm 4 STOOS generation for a multiplication.

Require: An integer NI > 0 (Input: Number of non-zero elements in array CA)
Require: An integer S > 0 (Number of permutations in STOOS)
Ensure: S = NI !⌊

NI
2

⌋
!(2!)b

NI
2 c

Require: One NI-element binary array STATUS
Require: One NI-element integer array LABEL
Require: One integer array STOOS[S,NI ]

1: function SELECT(j) . Select 2 components for 2 inputs of AS j
2: for k = NI − 1→ 1 do . Msb first
3: if STATUS[k] = 0 then . Still available
4: STATUS[k]← 1 . Select k for the left input
5: LABEL[2× j]← k
6: for l = k − 1→ 0 do . less significant than k
7: if STATUS[l] = 0 then
8: STATUS[l]← 1 . Select l for the right input
9: LABEL[2× j + 1]← l

10: if j + 1 <
⌊
NI

2

⌋
then

11: SELECT(j + 1)
12: else . the last AS of level 1
13: if NI mod 2 = 0 then
14: Store LABLE into STOOS array
15: else
16: for t = NI − 1← 0 do
17: if STATUS[t] = 0 then
18: LABEL[2× j + 2]← t
19: end if
20: end for
21: end if
22: end if
23: STATUS[l]← 0 . Re-assign l status
24: end if
25: end for
26: STATUS[k]← 0 . Re-assign k status
27: end if
28: end for
29: end function

30: Initialize STATUS[i], i = 0→ NI − 1; Empty STOOS
31: SELECT(0) return STOOS
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Table 6.6: Generated STOSSs using Algorithm 4 for several multiplications.
B CA NI STOOS[0→ S − 1, 0→ NI − 1]
54 [1, 0, 0, -1, 0, -1, 0] 3 [2, 1, 0; 2, 0, 1; 1, 0, 2]
55 [1, 0, 0, -1, 0, 0, -1] 3 [2, 1, 0; 2, 0, 1; 1, 0, 2]
438 [1, 0, 0, -1, 0, 0, -1, 0, -1,

0]
4 [3, 2, 1, 0; 3, 1, 2, 0; 3, 0, 2, 1]

1910 [1, 0, 0, 0, -1, 0, 0, 0, -1,
0, -1, 0]

4 [3, 2, 1, 0; 3, 1, 2, 0; 3, 0, 2, 1]

3276 [1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0]

6 [5, 4, 3, 2, 1, 0; 5, 4, 3, 1, 2, 0; 5, 4, 3, 0, 2, 1;
5, 3, 4, 2, 1, 0; 5, 3, 4, 1, 2, 0; 5, 3, 4, 0, 2, 1;
5, 2, 4, 3, 1, 0; 5, 2, 4, 1, 3, 0; 5, 2, 4, 0, 3, 1;
5, 1, 4, 3, 2, 0; 5, 1, 4, 2, 3, 0; 5, 1, 4, 0, 3, 2;
5, 0, 4, 3, 2, 1; 5, 0, 4, 2, 3, 1; 5, 0, 4, 1, 3, 2]

214 [1, 0, 0, -1, 0, -1, 0, -1, 0] 4 [3, 2, 1, 0; 3, 1, 2, 0; 3, 0, 2, 1]
86 [1, 1, 0, -1, 0, -1, 0] 3 [2, 1, 0; 2, 0, 1; 1, 0, 2]

an array CA storing values ′0′, ′1′ and ′ − 1′ and can be computed using Equa-

tion (6.6). It should be noted that each non-zero element in CA is corresponding

to a component to be added or subtracted in the optimized MACR.

Optimization level 2 is based on the fact that ASs can be performed in parallel

since scalar-multiplication-containing algorithms will be implemented in hardware

with aim of achieving high throughputs with area efficiencies. In this level of

optimization, for each multiplication, running time is optimized and the shortest

adding tree is selected. Then, the Shortest Timing Operation Order Set (STOOS)

is generated for each multiplication storing permutations of operands in the mini-

mized MACR of the multiplication. Each permutation in STOOS leads to different

operation orders based on the optimized adding trees. The input of the second op-

timization level is arrays CAs of multiplications from the first optimization level,

and its output is the shortest adding tree and array STOOS corresponding to each

multiplication.
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After minimizing the complexity in optimization level 1 and minimizing the run-

ning time for each multiplication in level 2, in optimization level 3, Common

Operation Regions (CORs) among all multiplications will be investigated based

on STOOS and the adding tree for each multiplication. If the minimized MACRs

of two multiplications with specific operation orders has a COR, the operations in

the COR can be shared for both multiplications. Therefore, Saved Resource (SR)

is all operations in the COR. If n multiplications share a COR, SR is n−1 times of

all operations in the COR. Different operation orders of the minimized MACR for

each multiplication may have different CORs, and consequently, lead to different

SRs. Hence, the maximum SR is searched in all multiplication with all operation

orders. By sharing the operations of the CORs corresponding to the maximum

SR, resource consumption can be minimized. The input of the optimization level 3

is arrays CAs, arrays STOOS and the optimized adding trees for multiplications.

Its output is the BO of in STOOS, maximum SR and largest CORs.

In this optimization problem, the objective function SR can be computed as the

number of reducible ASs. An AS can be an addition/subtractions of maximum 2l

inputs where l is the level of the AS and inputs are power-of-2s corresponding to

the non-zero elements in CA. The resource optimization method is to determine

the largest common operation regions (CORs). Two ASs are called “common”

or replaceable when (1) they are at the same level in the adding trees; (2) the

distances from other elements to the lowest element added by the two ASs are the

same; and (3) all signs of their elements are the same in pairs or are opposite in

pairs. If we simply compare the positions and signs of the elements, we will miss

many common ASs. COR includes common ASs.

In order to automatically search for the maximum SR in all the STOOS space of

the multiplications, adding tree data representation should support the followings:
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1. The representation needs to facilitate the search within one level. It is because

an AS at one level is only comparable to other AS at the same level.

2. From a particular AS representation, it is possible to find the information of

its children.

3. The representation of an AS needs to show the least signification (lowest)

element position, distances from other elements to the least significant element,

and signs of all elements.

Figure 6.8 illustrates the proposed data structure for the optimized adding tree

for NI = 2→ 8.

The size of data, T [m], m = 0 → M − 1, for representing all ASs in level m of

multiplication is

T = 2dlog2NI[m]e+1. (6.18)

Given the multiplications by M numbers: B[m], m = 0 → M − 1, after the

first optimization level, we have Conversion Array CA[M,Nx + 1], where Nx is

the maximum number of bits representing B[m] (Equation (6.2)), and CA[m,nx],

nx = 0→ Nx, is for each multiplication by B[m]. We generate array P [M,NI[M ]]

to store the positions of non-zero elements in CAs, where P [m,n] (m = 0 →

M − 1, n = 0 → NI[m] − 1) is the position of nth non-zero elements in CA[m].

In the second optimization level, we generate STOOS[M,S[M ], NI[M ]], where

STOOS[m, s, n], n = 0→ NI−1 is the sth permutation of STOOS corresponding

to multiplication by B[m]. Hence, P [m,STOOS[m, s, n]], n = 0 → NI − 1

is sth permutation of operands corresponding to the minimized MACR of the

multiplication by B[m].
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NI = 8

L3 p d1 d2 d3 d4 d5 d6 d7 s0 s1 s2 s3 s4 s5 s6 s7

L2 p d1 d2 d3 s0 s1 s2 s3 p d1 d2 d3 s0 s1 s2 s3

L1 p d1 s0 s1 p d1 s0 s1 p d1 s0 s1 p d1 s0 s1

L0 p s p s p s p s p s p s p s p s

NI = 7

L3 p d1 d2 d3 d4 d5 d6 s0 s1 s2 s3 s4 s5 s6

L2 p d1 d2 d3 s0 s1 s2 s3 p d1 d2 s0 s1 s2

L1 p d1 s0 s1 p d1 s0 s1 p d1 s0 s1

L0 p s p s p s p s p s p s p s

NI = 6

L3 p d1 d2 d3 d4 d5 s0 s1 s2 s3 s4 s5

L2 p d1 d2 d3 s0 s1 s2 s3

L1 p d1 s0 s1 p d1 s0 s1 p d1 s0 s1

L0 p s p s p s p s p s p s

NI = 5

L3 p d1 d2 d3 d4 s0 s1 s2 s3 s4

L2 p d1 d2 d3 s0 s1 s2 s3

L1 p d1 s0 s1 p d1 s0 s1

L0 p s p s p s p s p s

NI = 4

L2 p d1 d2 d3 s0 s1 s2 s3

L1 p d1 s0 s1 p d1 s0 s1

L0 p s p s p s p s

NI = 3

L2 p d1 d2 s0 s1 s2

L1 p d1 s0 s1

L0 p s p s p s

NI = 2

L1 p d1 s0 s1

L0 p s p s

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.8: The proposed data structure for the optimized adding trees for
NI = 2→ 8. p, d and s stand for position, distance and sign, respectively.
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Algorithm 5 is to generate data for all the adding trees of all M given multipli-

cations. Its output is the adding tree data, L[M,AD[M ], S[M ], T [M ]], where M

is the number of multiplication; AD[m] is Addition Depth of multiplications m

(Equation (6.14)); S[m] is number of permutations in STOOS of multiplication

m (Equation (6.17)); and T [m] is the size of data to represent all ASs in each level

of multiplication m (Equation (6.18)).

After adding tree data are generated, Algorithm 8 is applied to search for all

BTOOS space to find the COR having the highest SR.

Utilizing all the common ASs as labeled in the algorithm, we can optimize the

scalar-multiplication containing algorithms to become hardware-oriented multiplication-

free algorithms with the shortest running time and least resource consumption.

6.3.2 Proposed Fast and Low-Cost Transform Algorithms

The Partial Butterfly algorithms presented in HEVC test Model HM7.0 are the

algorithms to perform the integer transforms for HEVC with different sizes of

4 × 4, 8 × 8, 16 × 16 and 32 × 32. Figure 6.1 and Figure 6.2 illustrates the

4 × 4 and 8 × 8 Partial Butterfly algorithms, respectively. As can be seen, they

contain scalar multiplications. In particular, the 4 × 4 algorithms contain multi-

plications of [83, 36], while the 8× 8 algorithms contain multiplications of [83, 36]

and [18, 50, 75, 89]. Since the Partial Butterfly algorithms are urgently needed to

be implemented in hardware with high throughput and area-efficient requirement,

they satisfy the conditions for being applied to the proposed Optimization Method

to reduce complexity and facilitate high throughput and area-efficient hardware

implementation.
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Algorithm 5 Data generation for all adding trees of all M given multiplications.

Require: An integer M > 0 (Input: Number of Multiplication)
Require: An integer array B[M ] > 0 (Input: Multipliers)
Require: An integer N (Max no. of bits representing B[m], m = 0→M − 1)
Require: An integer array CA[M,N + 1] (Conversion Array)
Require: An integer array NI[M ] > 0 (No. of non-zero elements in array CA)
Require: An integer array PS[M,NI[M ]] (Positions of non-zero CA elements)
Require: An integer array AD[M ] > 0 (Addition Depth of multiplications)
Require: An integer ADmax
Require: Two integer arrays NIL[M,AD[M ]], NAL[M,AD[M ]]

(Number of Inputs and Adders for each level of each multiplication)
Require: Integer i, j, k, l, m, s
Require: An integer array S[M ] > 0 (No. of permutations in STOOS of mul.)
Require: An integer array STOOS[M,S[M ], NI[M ]]
Require: An integer array T [M ] > 0 (size of L[M,AD[M ], S[M ])
Require: An integer array L[M,AD[M ], S[M ], T [M ]]

(Data for each multiplication, level, permutation)

1: Compute N = max{dlog2B[m]e)}, m = 0→M − 1 (Equation (6.2))
2: Compute optimized CA[M,N + 1] using Complexity Optimization algorithm

(Algorithm 2) at the optimization level 1.
3: Initialize NI[m] = Number of non-zero elements in CA[m], m = 0→M − 1
4: Initialize PS[m,n] = Position of non-zero element n in CA[m], m = 0→M−1,
n = 0→ NI[m]− 1

5: Initialize AD[m] (Equation (6.14)), ADmax = max{AD[m]}, m = 0→M−1
6: Initialize NAL[m, l], NIL[m, l], m = 0 → M − 1, l = 1 → AD[m] (Equa-

tion (6.15), Equation (6.16) and Algorithm 3)
7: Initialize NAL[m, 0]← NI[m], m = 0→M − 1

(to use check adjacent input at level 1)
8: Initialize S[m] (Equation (6.17)), m = 0→M − 1
9: Initialize STOOS[M,S[M ], NI [M ]] using Algorithm 4

10: Compute T [m], m = 0→M − 1 (Equation (6.18))

11: for m = 0→M − 1 do . each multiplication
12: for s = 0→ S[m]− 1 do . each permutation in STOOS
13: for l = 0→ AD[m] do . each level
14: if l = 0 then
15: for t = 0→ NI[m]− 1 do
16: L[m, l, s, 2× t]← PS[m,STOOS[m, s, t]]
17: L[m, l, s, 2× t+ 1]← CA[m,PS[m,STOOS[m, s, t]]]
18: end for
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Algorithm 6 Data generation for STOOS of multiplications (cont.).

19: else
20: if 2×NAL[m, l] ≤ NAL[m, l − 1] then . Adjacent inputs
21: for t = 0→ NAL[m, l]− 1 do . each AS in level l
22: Take position and sign information of 2l components in
23: level l − 1 starting from L[m, l − 1, s, 2l+1 × t]
24: Find the smallest position among 2l components and
25: store into L[m, l, s, 2l+1 × j]
26: Re-compute all distances based on the new based position
27: Copy signs up
28: end for
29: else . The last AS has non-adjacent input
30: for t = 0→ NAL[m, l]− 2 do . each AS in level l
31: Take position and sign information of 2l components in
32: level l − 1 starting from L[m, l − 1, s, 2l+1 × t]
33: Find the smallest position among 2l components and
34: store into L[m, l, s, 2l+1 × j]
35: Re-compute all distances based on the new based position
36: Copy signs up
37: end for
38: for t = l − 2→ 0 do . Find the non-adjacent input level ti
39: if 2×NAL[m, t+ 1] < NAL[m, t] then
40: ti← t
41: Stop For loop
42: end if
43: t← NAL[m, l]− 1 . last AS
44: Copy position and sign information of 2l−1 components
45: in level l − 1 starting from L[m, l − 1, s, 2(l + 1)× t]
46: Copy position and sign of the last components in level ti
47: Find the smallest position among 2l components and store
48: into L[m, l, s, 2(l + 1)× j]
49: Re-compute all distances based on the new based position
50: Copy signs up
51: end for
52: end if
53: end if
54: end for
55: end for
56: end forreturn L[M,AD[M ], S[M ], T [M ]]

171



Chapter 6. Fast and Low-Cost Algorithms and A High-Throughput
Area-Efficient Architecture for HEVC Integer Transforms

Algorithm 7 Resource optimization algorithm: Search for all BTOOS space to
find the COR having the highest SR.

Require: An integer M > 0 (Input: Number of Multiplication)
Require: An integer array L[M,AD[M ], S[M ], T [M ]] (Input: Adding tree data)
Require: Two integer array SP [M ], SPx[M ] (Selected Permutation for Mul.s)
Require: Two integer SR, SRx (Saved Resource)
Require: An integer ADx (Maximum Addition Depth)
Ensure: ADx = max{AD[m]}, m = 0→M − 1
Require: An integer array CORAS[M,AD[M ], NAL[M,AD[M ]]]

(Common Operation Region label for each AS)
Require: An Integer R (Region ID)
Require: An Boolean CMN (Have common AS or not)

1: function SELECT4MUL(i) . Select a permutation in STOOS for mul. i
2: for j = S[i]− 1→ 0 do
3: SP [i]← j . Select permutation j for mul. i
4: if i < M − 1 then
5: SELECT4MUL(i+ 1)
6: else . Selected permutations for all mul.
7: SR← 0 . Initialize SR
8: R← 0 . Initialize R
9: for l = ADx− 1→ 1 do . Level

10: for m = 0→M − 1 do . Mul
11: for t = 0→ NAL[m, l]− 1 do . No. of ASs in a Level
12: if CORAS[m, l, t] = 0 then . No COR assigned
13: CMN ← FALSE
14: R← R + 1
15: for k = t+ 1→ NAL[m, l]− 1 do . in same mul
16: if 2 ASs [m, l, t]&[m, l, t] are “common” then
17: CMN ← TRUE
18: CORAS[m, l, k] = R
19: Label all childs of AS[m, l, k]: CORAS = R
20: SR← SR+ AS[m,l,t] size
21: end if
22: end for
23: for u = m+ 1→M − 1 do . Search in other muls
24: for v = 0→ NAL[u, l]− 1 do
25: if 2 ASs [m, l, t]&[u, l, v] are “common” then
26: CMN ← TRUE
27: R← R + 1
28: CORAS[u, l, v] = R
29: Label all childs of AS[u, l, v]: CORAS = R
30: SR← SR+ AS[m,l,t] size
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Algorithm 8 Resource optimization algorithm: Search for all BTOOS space to
find the COR having the highest SR.

31: end if
32: end for
33: end for
34: if CMN = TRUE then
35: CORAS[m, l, t] = R
36: Label all childs of AS[m, l, t]: CORAS = R
37: else
38: R← R− 11
39: end if
40: end if
41: end for
42: end for
43: end for
44: if SR > SRx then . New SP is better, → select
45: SRx← SR
46: SPx← SP
47: Store CORAS[M,AD[M ], NAL[M,AD[M ]]]
48: end if
49: end if
50: end for
51: end function

52: Initialize SRx← 0
53: Initialize CORAS[M,AD[M ], NAL[M,AD[M ]]]← 0
54: SELECT4MUL(0) return L[M,AD[M ], S[M ], T [M ]]

When applying the proposed optimization method to the 4× 4 and 8× 8 Partial

Butterfly algorithms, we compute and generate all related data, including B, CA

(at optimization level 1 with Complexity Optimization algorithm 2), NI, STOOS

(at optimization level 2 by algorithm 4), PS, AD, NIL, NAL (algorithm 3), S

and T (algorithm 5) for each multiplication in the scalar multiplications. The

computation result can be found in Table 6.7. It should be noted that since the

binary representation of the multipliers in the 4 × 4 and 8 × 8 Partial Butterfly

algorithms are sparse, the CA after being applied the complexity optimization

level in the method is the same as before.
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Table 6.7: Intermediate data during execution of the proposed optimization
method for 4× 4 and 8× 8 Partial Butterfly algorithms.

B B (0b) NI STOOS (index from 0→ +) PS AD NIL NAL S T
83 101 0011 4 [3, 2, 1, 0; 3, 1, 2, 0; 3, 0, 2, 1] [0, 1, 4, 6] 2 4 / 2 1 /2 3 8
36 10 0100 2 [2, 1, 0] [2, 5] 1 2 1 1 4
18 1 0010 2 [1, 0] [1, 4] 1 2 1 1 4
50 11 0010 3 [2, 1, 0; 2, 0, 1; 1, 0, 2] [1, 4, 5] 2 3 / 2 1 / 1 3 8
75 100 1011 4 [3, 2, 1, 0; 3, 1, 2, 0; 3, 0, 2, 1] [0, 1, 3, 6] 2 4 / 2 1 / 2 3 8
89 110 1001 4 [3, 2, 1, 0; 3, 1, 2, 0; 3, 0, 2, 1] [0, 3, 5, 6] 2 4 / 2 1 / 2 3 8

Table 6.8: Execution results of the resource optimization algorithm (Algo-
rithm 8) when applying to scalar multiplication by [83, 36] of the 4× 4 Partial

Butterfly algorithm.
SP (0→ +) SR

[0, 0] 1
[1, 0] 0
[2, 0] 1

Adding tree data are then generated (Algorithm 5) for all the multiplications in

the 4× 4 and 8× 8 Partial Butterfly Algorithms (Figure 6.9).

Table 6.8 shows the intermediate results when searching for the permutation set

SP with the highest SR in all STOOS space using Algorithm 8. The scalar

multiplication in this example is [83, 36] of the 4× 4 Partial Butterfly algorithm.

When designing integer transform architectures, a good strategy is to design the

small transform blocks as parts of the large transform blocks to save resources.

Although the 8×8 Partial Butterfly algorithm includes [83, 36] and [18, 50, 75, 89],

we do not apply the optimization method to the six multipliers. The optimized

implementation of [83, 36] in the 4 × 4 Partial Butterfly algorithm are kept. We

only apply the method to optimize the implementation of scalar multiplication

[18, 50, 75, 89]. Table 6.9 shows the searching results of the resource optimization

algorithm (Algorithm 8).

According to the result when running the Resource Optimization Algorithm 8 for
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 B = 83

s = 0 s = 1 s = 2

L2 0 6 4 1 1 1 1 1 0 6 4 1 1 1 1 1 0 6 4 1 1 1 1 1

L1 4 2 1 1 0 1 1 1 1 5 1 1 0 4 1 1 0 6 1 1 1 3 1 1

L0 6 1 4 1 1 1 0 1 6 1 1 1 4 1 0 1 6 1 0 1 4 1 1 1

B = 36

L1 2 3 1 1

L0 5 1 2 1

B = 18

L1 1 3 1 1

L0 4 1 1 1

 B = 50 

s = 0 s = 1 s = 2

L2 1 4 3 1 1 1 1 4 3 1 1 1 1 4 3 1 1 1

L1 4 1 1 1 1 4 1 1 1 3 1 1

L0 5 1 4 1 1 1 5 1 1 1 4 1 4 1 1 1 5 1

 B = 75 

s = 0 s = 1 s = 2

L2 0 6 3 1 1 1 1 1 0 6 3 1 1 1 1 1 0 6 3 1 1 1 1 1

L1 3 3 1 1 0 1 1 1 1 5 1 1 0 3 1 1 0 6 1 1 1 2 1 1

L0 6 1 3 1 1 1 0 1 6 1 1 1 3 1 0 1 6 1 0 1 3 1 1 1

 B = 89

s = 0 s = 1 s = 2

L2 0 6 4 3 1 1 1 1 0 6 4 1 1 1 1 1 0 6 4 1 1 1 1 1

L1 4 2 1 1 0 3 1 1 3 3 1 1 0 4 1 1 0 6 1 1 3 1 1 1

L0 6 1 4 1 3 1 0 1 6 1 3 1 4 1 0 1 6 1 0 1 4 1 3 1

Figure 6.9: Data generation of the optimization method for the 4 × 4 And
8 × 8 Partial Butterfly algorithms: L[m, l, s, t], where m = 0 → M − 1, l =
0 → AD[m], s = 0 → S[m] − 1, and t = 0 → T [m] − 1]. For 4 × 4 and 8 × 8

algorithms, M = 2 and 4, respectively.
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Table 6.9: Execution results of the resource optimization algorithm (Algo-
rithm 8)when applying to scalar multiplication by [18, 50, 75, 89] of the 8 × 8

Partial Butterfly algorithm.
SP (0→ +) SR SP (0→ +) SR SP (0→ +) SR SP (0→ +) SR SP (0→ +) SR
[0, 0, 0, 0] 3 [0, 0, 2, 0] 2 [0, 1, 1, 0] 2 [0, 2, 0, 0] 3 [0, 2, 2, 0] 3
[0, 0, 0 ,1] 3 [0, 0, 2 ,1] 1 [0, 1, 1 ,1] 3 [0, 2, 0 ,1] 3 [0, 2, 2 ,1] 2
[0, 0, 0, 2] 3 [0, 0, 2, 2] 2 [0, 1, 1, 2] 1 [0, 2, 0, 2] 3 [0, 2, 2, 2] 2
[0, 0, 1, 0] 2 [0, 1, 0, 0] 2 [0, 1, 2, 0] 2 [0, 2, 1, 0] 3
[0, 0, 1 ,1] 2 [0, 1, 0 ,1] 3 [0, 1, 2 ,1] 2 [0, 2, 1 ,1] 3
[0, 0, 1, 2] 2 [0, 1, 0, 2] 1 [0, 1, 2, 2] 1 [0, 2, 1, 2] 2

the Partial Butterfly algorithms, Selected Permutation SP for 4× 4 is [2, 0] with

the highest number of reducible ASs SR = 2. For 8 × 8, SP is [0, 2, 0, 0] with

the highest SR = 3. Utilizing all the common ASs as labeled by the optimization

algorithm, we can achieve AS implementations for the scalar multiplications in the

Partial Butterfly algorithms ([83, 36] and [18, 50, 75, 89]) as shown in Figure 6.10(c)

and Figure 6.10(f). As can be seen, the proposed implementation for [83, 36]

only requires three ASs with the longest path of two ASs, while the proposed

implementation for [18, 50, 75, 89] only requires six ASs with the longest path of

two ASs.

Based on the strategy of designing the small transforms as parts of the large

transforms, and based on the optimized implementations of the two scalar multi-

plications in the Partial Butterfly algorithms, we propose a series of novel 4×4 and

8× 8 fast and low-cost forward transform algorithms (Figure 6.11). In the figure,

the 4×4 algorithm implementation is shown as a part of the 8×8 implementation

(the dashed region). The numbers of ASs of the proposed implementations for the

4× 4 and 8× 8 transforms are fourteen and fifty-eight, respectively. Their longest

paths consist of four and five ASs, respectively.
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Figure 6.10: Data flows of different implementations for the two scalar mul-
tiplications by [83, 36] and [18, 50, 75, 89]. (a) The original multiplication-by-
[83, 36] implementation using multiplications in the 4 × 4 Partial Butterfly al-
gorithm; (b) the conventional parallel multiplication-free implementation for
the multiplication by [83, 36]; and (c) the optimized implementation using the
proposed optimization method for the multiplication by [83, 36]; (d) the origi-
nal multiplication-by-[18, 50, 75, 89] implementation using multiplications in the
8×8 Partial Butterfly algorithm; (e) the conventional parallel multiplication-free
implementation for the multiplication by [18, 50, 75, 89]; and (f) the optimized
implementation using the proposed optimization method for the multiplication

by [18, 50, 75, 89].
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Figure 6.11: The proposed 8× 8 1-D fast and low-cost Transform algorithms.
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6.3.3 Discussion

6.3.3.1 Discussion on the Proposed Method

Table 6.10 and Figure 6.12 illustrate the longest path lengths and running time

of three different implementations for four scalar multiplications. The four scalar

multiplications includes two scalar multiplications by [83, 36] and [18, 50, 75, 89];

the scalar multiplication portion in the 4 × 4 1-D Partial Butterfly algorithm;

and the scalar multiplication portion in the 8 × 8 1-D Partial Butterfly algo-

rithm. The three implementations includes (1) the original implementation using

multiplications in the 1-D Partial Butterfly algorithms; (2) the conventional se-

quence multiplication-free implementation; and (3) the proposed implementation.

It should be noted that ASs in implementation (2) are performed in sequence. In

the case as many ASs are performed in parallel as possible, the longest path or

the running time is the shortest, and it has the same value as that in implemen-

tation (3). It also should be noted that the running time of an implementation

is proportional to its longest path. As can be seen, the implementation devel-

oped by the proposed method can finish the four scalar multiplications after two

addition/subtractions. This running time is about 87% and 33% less than that

of the original Partial Butterfly algorithm implementation and the conventional

sequence multiplication-free implementation, respectively.

Table 6.11, Figure 6.13 and Figure 6.14 illustrate the number of ASs in three

different implementations for four scalar multiplication algorithms. The four

scalar multiplication algorithms includes two scalar multiplications by [83, 36] and

[18, 50, 75, 89]; the scalar multiplication portion in the 4× 4 1-D Partial Butterfly

algorithm; and the scalar multiplication portion in the 8× 8 1-D Partial Butterfly
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Table 6.10: The longest path lengths of three different implementations for
four scalar multiplications. The four scalar multiplications includes two scalar
multiplications by [83, 36] and [18, 50, 75, 89]; the scalar multiplication portion in
the 4× 4 1-D Partial Butterfly algorithm; and the scalar multiplication portion
in the 8 × 8 1-D Partial Butterfly algorithm. The three implementations in-
cludes (1) the original implementation using multiplications in the 1-D Partial
Butterfly algorithms; (2) the conventional sequence multiplication-free imple-

mentation; and (3) the proposed implementation.

Algorithms (1) (2) (3)
Scalar multiplication by [83, 36] 15 ASs 3 ASs 2 ASs

Scalar multiplication by [18, 50, 75, 89] (multilications are
implemented in parallel)

15 ASs 3 ASs 2 ASs

4× 4 1-D Partial Butterfly with 2 scalar multiplications by
[83, 36] (scalar multilications are implemented in parallel)

15 ASs 3 ASs 2 ASs

8× 8 1-D Partial Butterfly with 2 scalar multiplications by
[83, 36] and 4 scalar multiplications by [18, 50, 75, 89] (scalar

multilications are implemented in parallel)

15 ASs 3 ASs 2 ASs

Table 6.11: Number of ASs in three different implementations for four scalar
multiplications. The four scalar multiplications includes two scalar multipli-
cations by [83, 36] and [18, 50, 75, 89]; the scalar multiplication portion in the
4 × 4 1-D Partial Butterfly algorithm; and the scalar multiplication portion in
the 8× 8 1-D Partial Butterfly algorithm. The three implementations includes
(1) the original implementation using multiplications in the 1-D Partial But-
terfly algorithms; (2) the conventional sequence / parallel multiplication-free

implementation; and (3) the proposed implementation.

Algorithms (1) (2) (3)
Scalar multiplication by [83, 36] 2× 15 = 30 ASs 4 ASs 3 ASs

Scalar multiplication by [18, 50, 75, 89] 4× 15 = 60 ASs 9 ASs 6 ASs
4× 4 1-D Partial Butterfly with 2 scalar

multiplications by [83, 36]
60 ASs 8 ASs 6 ASs

8× 8 1-D Partial Butterfly with 2 scalar
multiplications by [83, 36] and 4 scalar

multiplications by [18, 50, 75, 89]

300 ASs 44 ASs 30 ASs
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Figure 6.12: Running time of three different implementations for four scalar
multiplications. The four scalar multiplications includes two scalar multipli-
cations by [83, 36] and [18, 50, 75, 89]; the scalar multiplication portion in the
4 × 4 1-D Partial Butterfly algorithm; and the scalar multiplication portion in
the 8× 8 1-D Partial Butterfly algorithm. The three implementations includes
the original implementation using multiplications in the 1-D Partial Butterfly
algorithms, the conventional sequence multiplication-free implementation, and

the proposed implementation.
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Figure 6.13: Resource consumptions of three different implementations for
four scalar multiplications. The four scalar multiplications includes two scalar
multiplications by [83, 36] and [18, 50, 75, 89]; the scalar multiplication portion
in the 4× 4 1-D Partial Butterfly algorithm; and the scalar multiplication por-
tion in the 8 × 8 1-D Partial Butterfly algorithm. The three implementations
includes the original implementation using multiplications in the 1-D Partial
Butterfly algorithms, the conventional sequence / parallel multiplication-free

implementation, and the proposed implementation.
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Figure 6.14: Resource consumptions of the conventional sequence / parallel
multiplication-free and the proposed implementations for four scalar multipli-
cations. The four scalar multiplications includes two scalar multiplications by
[83, 36] and [18, 50, 75, 89]; the scalar multiplication portion in the 4 × 4 1-D
Partial Butterfly algorithm; and the scalar multiplication portion in the 8 × 8

1-D Partial Butterfly algorithm.

algorithm. The three implementations includes (1) the original implementation

using multiplications in the 1-D Partial Butterfly algorithms; (2) the conventional

sequence / parallel multiplication-free implementation; and (3) the proposed im-

plementation. As can be seen, the numbers of ASs required in the implementation

developed by the proposed method are three, six, six and thirty for the two scalar

multiplications by [83, 36] and [18, 50, 75, 89] and the two scalar multiplication por-

tions in the 4× 4 and 8× 8 1-D Partial Butterfly algorithms, respectively. These

numbers of ASs are only 10% of those of implementation (1). The numbers of ASs

required in the proposed implementation for the scalar multiplication by [83, 36]

and the scalar multiplication portion in the 4× 4 1-D Partial Butterfly algorithm
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are 25% less than those of implementation (2). For the scalar multiplication by

[18, 50, 75, 89] and the scalar multiplication portion in the 8× 8 1-D Partial But-

terfly algorithm, the proposed implementation requires about 33% less ASs than

implementation (2).

In the proposed optimization method, we observe that the complexity optimization

algorithm at optimization level 1, with time complexity O(n), can guarantee an

optimal MACR using only additions and subtractions. It searches for all the

possibilities to reduce the number of ASs for each ′1′ chain without affecting the

conversion of the other ′1′ chains.

In the second level of optimization, the proposed adding tree guarantees the short-

est running time for each multiplication because it utilizes the parallelism of ASs

as much as possible. The only thing preventing the running time from being

shorter is the operation dependency. However,this dependency cannot be further

optimized.

The STOOS generation algorithm (Algorithm 4) guarantees a full set of permu-

tations with different operation orders of the minimized MACR operands. The

algorithm has a factorial time complexity.

In the third optimization level, the adding tree data generation and the searching in

the STOOS space lead to a very competitive implementation. The implementation

greatly reduces the resource consumption. However, the time complexity for the

full search is large (factorial-exponential). The number of elements in the search

space is

SM =

 NI !⌊
NI

2

⌋
! (2!)

⌊
NI
2

⌋
M

, (6.19)
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Table 6.12: Sizes of the search spaces for the Partial Butterfly algorithms.
Partial Butterfly Algorithms N M NImax Smax Max no. of search cases

4× 4 7 2 4 3 9
8× 8 7 4 4 3 81

16× 16 7 8 4 3 6 561
32× 32 7 16 4 3 43 046 721

where each element is a set of operation orders and each operation order is selected

for a multiplication among the STOOS of that multiplication. We name an element

in the search space as permutation set (PS). The number of PSs is the size of the

STOOS search space.

In the 4 × 4 to 64 × 64 Partial Butterfly algorithms, the multipliers of scalar

multiplication are smaller than 128 or 7-bit wide. It can be proved that after the

first optimization level, the number of non-zero elements, NI , in array CA is

NI ≤
N

2
, (6.20)

where N is the number of bits used to represent the multipliers. Therefore, NI ≤
N
2

= 4. Hence, the number of permutations in STOOS of each multiplication

(Equation (6.17)) is

S ≤ NI !⌊
NI

2

⌋
! (2!)

⌊
NI
2

⌋ = 3. (6.21)

The maximum number of permutation sets (PSs) among all multiplication is then

3M , where M is the number of multiplications. In the 4×4, 8×8, 16×16 and 32×32

Partial Butterfly algorithms, M = 2, 4, 8 and 16, respectively. Table 6.12 shows

the maximum number of PSs for all the Partial Butterfly algorithms. As can be

seen, with the listed number of search cases, the search algorithm in the proposed

method completely are able to deal with all the Partial Butterfly algorithms.
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Table 6.13: Sizes of search spaces for different NIs.
NI 2 3 4 5 6 7 8
S 1 3 3 15 15 105 105

No. of search cases 1 3M 3M 15M 15M 105M 105M

Table 6.13 shows the maximum number of search cases for different NI .

Although for scalar-multiplication algorithms, the number of search cases is large

and depends on the number of ′1′ bits after the first optimization NI and the

number of multipliers M , all search cases are independent. Therefore, for the

scalar-multiplication-containing algorithms which have multipliers greater than

or equal to 65536 (16-bit wide) and have large number of multiplications in the

scalar multiplications, searching and computing objective function of each case can

be setup to be run in different computers or parallel computing. In addition, the

search algorithm only needs to run once, then we can use the optimized algorithms

to develop hardware architectures.

6.3.3.2 Discussion on the Proposed IT Algorithms

Table 6.14, Figure 6.15, Table 6.15 and Figure 6.16 illustrate the longest path, run-

ning time, number of ASs and resource consumption, respectively, of the Partial

Butterfly algorithms, the conventional multiplication-free Partial Butterfly algo-

rithms, and the proposed integer transform algorithms. As can be seen, the pro-

posed algorithms can fully perform the 4× 4 and 8× 8 1-D transforms after 4 and

5 addition/subtractions, respectively. Compared to the original Partial Butter-

fly algorithms and the conventional sequence multiplication-free Partial Butterfly

algorithms, the speed of the proposed algorithms increases by 75% and 20%, re-

spectively. By using fourteen and fifty-eight ASs for the 4×4 and 8×8 transforms

respectively, the proposed algorithms requires around 87% and 16% less resource
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Table 6.14: The longest path lengths of the three integer transform algorithms:
the Partial Butterfly, the conventional sequence multiplication-free Partial But-

terfly and the proposed integer transform algorithms.
Transform Partial

Butterfly
Conventional sequence

multiplication-free Partial
Butterfly algorithm

Proposed integer transform
algorithm

4 x 4 1-D 17 5 4
8 x 8 1-D 19 6 5

Figure 6.15: Running time of the three integer transform algorithms: the
Partial Butterfly, the conventional sequence multiplication-free Partial Butterfly

and the proposed integer transform algorithms.

than the original and the conventional sequence/parallel multiplication-free Par-

tial Butterfly algorithms, respectively. Table 6.16 shows further details of the total

number of ASs and shift operations (Ss) used in the conventional sequence/paral-

lel multiplication-free algorithms and the proposed algorithms for the 4× 4/8× 8

1-D/2-D forward transforms.
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Table 6.15: Number of ASs of the three integer transform algorithms: the
Partial Butterfly, the conventional sequence / parallel multiplication-free Partial

Butterfly and the proposed integer transform algorithms.
Transform Partial

Butterfly
Conventional

sequence/parallel
multiplication-free Partial

Butterfly algorithm

Proposed integer transform
algorithm

4 x 4 1-D 128 16 14
8 x 8 1-D 388 72 58
4 x 4 2-D 1024 128 112
8 x 8 2-D 6208 1152 928

Figure 6.16: Resource consumption of the three integer transform algorithms:
the Partial Butterfly, the conventional sequence / parallel multiplication-free

Partial Butterfly and the proposed integer transform algorithms.
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Table 6.16: Number of additions and shift operations in two series of
the Partial Butterfly-based integer transform algorithms: the conventional
multiplication-free algorithms and the proposed integer transform algorithms

for the 4× 4/8× 8 1-D/2-D forward transforms.

Transform Number of operations in the
conventional multiplication-free

algorithms

Number of operations in the
proposed algorithms

4× 4 1-D 4As+ 2As+ 1S + (4As+ 5Ss)×
2 + 2As = 16As+ 11Ss

4As+ 2As+ 1S + (3As+ 4Ss)×
2 + 2As = 14As+ 9Ss

8× 8 1-D 8As+ (16As+ 11Ss) + (9As+
11Ss)× 4 + 8As+ 4As =

72As+ 55Ss

8As+(14As+9Ss)+(6As+7Ss)×
4 + 8As+ 4As = 58As+ 37Ss

4× 4 2-D 128As+ 88Ss 112As+ 72Ss
8× 8 2-D 1152As+ 880Ss 928As+ 592Ss

Table 6.17: The longest path length and resource consumption of the proposed
algorithms in comparison with those of other published HEVC integer transform

algorithms.
1-D Algorithms 8× 8

Martuza
and

Wahid
(2012)

4× 4
Rithe
et al.

(2012)

8× 8
Rithe
et al.

(2012)

Proposed
4× 4

Proposed
8× 8

Length of the longest path ≥ 7 4 6 4 5
Resource consumption 72 18 60 14 58

Table 6.17 lists the longest path and resource consumption in AS unit of the pro-

posed algorithms in comparison with other published algorithms for HEVC. Since

Martuza and Wahid (2012) reported the number of adders used in the architecture

but did not report the number of additions in the algorithm, the details in the

table are calculated based on the authors’ report. As can be seen, the speed of the

proposed 8× 8 algorithm increases by 29% and 17% compared to that of Martuza

and Wahid (2012) and Rithe et al. (2012)’s 8× 8 algorithms, respectively. Its cost

reduces by 19% and 3% compared to that of Martuza and Wahid (2012) and Rithe

et al. (2012)’s algorithms, respectively. The proposed 4× 4 algorithm is as fast as

the Rithe et al. (2012)’s algorithm, but consumes 22% less resource.
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6.4 A Novel High-Throughput Area-Efficient Ar-

chitecture

6.4.1 High Throughput Requirement under I/O Pin Con-

straints

In soft and hard IP designs, number of input/output (I/O) pins are normally

limited due the cost of wire area and packaging. However, in video applications,

more I/O pins/wires leads to less time needed for data transfer between IPs/ICs.

Therefore, much more effort is put to design applications for high resolution video

with a limited number of I/O pins.

In order to solve a series of design problems which requires high throughputs with

a limited number of I/O pins, a big challenge has been set for this architecture

design with a very tight constraint on number of I/O pins at sixteen pins. It should

be noted that HEVC requires 16-bit depth for each pixel and high throughput to

process ultra high resolution video. With HEVC 16-bit depth requirement, the

constraint limits the system to inputting half-pixel and outputting half-pixel at a

time. Dealing with ultra high resolution video under the half-pixel I/O condition

is a tough work requiring a large effort to design. Once the architecture design can

fulfill the HEVC requirement with this tight constraint, it guarantees that designs

for looser constraints are feasible by applying the same techniques.

The tight constraint leads to sixteen cycles to only input or output a row/column

of eight pixels, and eight cycles to input or output a row/column of four pixels.

Running time of a system includes input time, processing time and output time.

The processing time can vary depending on the system design, but the I/O time is
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fixed when the number of I/O pins is fixed. Therefore, the shortest running time

is the input time or output time. This can only be achieved by applying pipelining

mechanisms for input, output and processing operations, and at the same time,

the processing time is shorter or equal to the I/O time. In order to do pipelining

efficiently, time to process a 8-pixel and 4-pixel row/column should not exceed the

I/O times, i.e., sixteen and eight cycles, respectively.

The I/O times are fixed at sixteen and eight cycles for the 8×8 and 4×4 transforms,

respectively. Since the running time cannot be shorter than the I/O time, we

cannot further optimize the running time in terms of number of cycles. We only can

optimize it by shortening the period, i.e., increasing the operating frequency of the

system. By minimizing the running time, the throughput is maximized. Therefore,

in this design, the applied techniques can be classified into two categories: one

is to design an efficient pipelining mechanism, and the other is to shorten the

operating period. In addition to these two categories, another applied technique

is to minimize resource consumption.

6.4.2 Architecture Design

The design requires sixteen input and output pins. Hence, eight pins are used for

input and eight pins are used for output. As described in the HEVC standard,

the transform inputs are 16-bit depth, while internal operations are 32-bit depth.

Therefore, the proposed architecture has half-pixel input and half-pixel output. All

the internal components are 32-bit depth. The following sub-sections describe the

techniques used to achieve high-throughput and area-efficient architecture designs

even under such very tight I/O constraints.
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6.4.2.1 Multi-Cycle Adder Design for High Frequency

We select the 1-D algorithms proposed in Section 6.3.2 for this architecture design

due to its low complexity, high throughput and low resource consumption (Fig-

ure 6.11). Based on the analysis in Section 6.4.1, we are given processing time

constraints of eight and sixteen cycles for the 4× 4 and 8× 8 transforms.

As can be seen in Table 6.14, the lengths of the longest paths of the proposed 4×4

and 8× 8 algorithms are four and five additions, respectively. If we design in such

a way that each 1-D algorithm is performed in one cycle, then the period is equal

to the running time of four additions for the 4 × 4 transforms and five additions

for the 8× 8 transforms. If we design in a way that each addition is performed in

one cycle, then the period is equal to the running time of an addition; and it takes

four and five cycles to complete the 4× 4 and 8× 8 transforms, respectively. The

second way is feasible and better as we have eight and sixteen cycles for the 4× 4

and 8× 8 transforms, respectively.

In order to further reduce the operating period, we can implement a special multi-

cycle adder, which can perform an addition in several cycles, so that the period

can be a part of the running time of the addition. Since we have eight cycles to

perform the 4× 4 transform and the longest path in the proposed 4× 4 algorithm

includes four additions, we can implement each addition as a 2-cycle adder to

utilize all eight cycles. Similarly, each addition can be implemented as a 3-cycle

adder in the 8× 8 transform to utilize all fifteen cycles.

In this architecture design, both the 4 × 4 and 8 × 8 transforms are included.

Therefore, the optimal choice is implementing each addition as a 2-cycle adder. As
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a result, eight and ten cycles are required to complete the 4×4 and 8×8 transforms,

respectively. This satisfies the initial requirement stated in Section 6.4.1.

Since each adder needs to perform both addition and subtraction, ripple carry

adder/subtractor is often selected for this class of designs. Let us assume that we

need to implement a n-bit addition by a m-cycle adder. Instead of using a n-bit

adder, we use a
⌈
n
m

⌉
-bit adder and design a controller to control the adder to add

different sets of bits in different cycles, from the least significant bit sets to the

most significant bit sets. Since the running time of a ripple carry adder/subtractor

is proportional to the binary length of the inputs to be added, by using
⌈
n
m

⌉
-bit

adder, we can reduce the period about m times.

Not only reducing the period, but using multi-cycle adders also saves resource.

Since an n-bit ripple carry adder/subtractor includes n 1-bit adder/subtractors,

using
⌈
n
m

⌉
-cycle adders consumes m times less resource than using n-bit adder/-

subtractors.

Therefore, by using 2-cycle adders, we can reduce the period and resource con-

sumption by two times compared to using conventional adders if each adder is

designed to perform in a cycle. If the entire 1-D 4 × 4 or 8 × 8 transform is de-

signed to perform in a cycle, using 2-cycle adders can reduce the period by eight

or ten times, respectively, and reduce the resource consumption by two times

compared to using conventional adders.

6.4.2.2 Pipeline Scheduling for 1-D Transforms

The scheduled sequencing graphs with 2-cycle adders for the proposed 4×4 and 8×

8 transform algorithms can be found in Figure 6.17 and Figure 6.18. Subsequently,
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Figure 6.17: The proposed scheduled sequencing graph for the 4× 4 1-D fast
and low-cost forward transform algorithms.

Table 6.18: Resource scheduling for the proposed 4 × 4 1-D transform algo-
rithm.

Operations Start time
v0, v1, v2, v3 1

v4, v5, v6, v7, v8, v9 3
v10, v11 5
v12, v13 7

Table 6.19: Resource scheduling for the proposed 8 × 8 1-D transform algo-
rithm.

Operations Start time
v0, v1, v2, v3, v18, v19, v20, v21 1

v4, v5, v6, v7, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33 3
v8, v9, v10, v11, v12, v13, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43,

v44, v45

5

v14, v15, v46, v47, v48, v49, v50, v51, v52, v53 7
v16, v17, v54, v55, v56, v57 9

we have the resource schedules for the proposed 4 × 4 and 8 × 8 1-D FITs in

Table 6.18 and Table 6.19.
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Figure 6.18: The proposed scheduled sequencing graph for the 8× 8 1-D fast
and low-cost forward transform algorithms.
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6.4.2.3 Multi-Stage Register Design for Pipeline

As the system works in a pipelining mechanism, output of each addition/subtrac-

tion (AS) is required to be stored in a register, so that it can be used in the next

stage or time slot. If several ASs in different stages are grouped to share hardware,

i.e., we use an adder for these ASs and use a register to store the adder output,

then in each stage, the register is loaded and restored with the output of the cor-

responding AS in the stage. Once it is restored, the previous value is overwritten

as the register only can store one value at a time.

As can be seen in Figure 6.18, some outputs may be used in several stages or time

slots. For example, the outputs of AS18, AS19, AS20 and AS21 are used as inputs

in both time slots 3-4 and 5-6. The outputs of AS22, AS25, AS28 and AS31 are

used as inputs in both time slots 5-6 and 7-8. If conventional registers are used

and we want to keep the outputs in several stages, the registers storing these ASs’

outputs cannot be shared. It means that if some of these ASs are grouped with

other ASs to share hardware, separate registers are needed to store the outputs

of these ASs. These separate registers cannot be shared or reused, leading to a

resource waste. In addition, it also takes time and raises difficulties to select which

register to store the output of the shared adder.

Therefore, a special register type, i.e., multi-stage register, is designed to store

these outputs, which can hold the stored values in multiple stages. Assuming the

output are n bits long, the length of a m-stage register is n × m bits. When

the register stores a value, it shifts the current stored data to the left n bits and

store the value into the n least significant bits. Therefore, by using this m-stage

register, we can retrieve the m-bit value from the register not only in the next

stage but also after m stages from the register. In addition, the writing operation
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of this register is the same as that of a conventional register. The advantages of

using this m-stage register compared to using m separate registers includes (1) the

m-stage register can be shared and reused, while m separate registers cannot be

reused in other stages; and (2) storing ASs’ outputs into the m-cycle register once

the shared adder completes its computation is faster and more convenient than

selecting which register to store.

6.4.2.4 Resource Binding for Low Resource Consumption

As addition/subtractions (ASs) are scheduled to run in different times, resource

sharing can be enabled. By binding different ASs in different timing, we can

use just one adder/subtractor to perform all these ASs. Therefore, the more

ASs we can bind together, the more resource we can save. The optimal choice

is using the number of adder/subtractors equal to the maximum number of ASs

performing at the same time. As can be seen from Figure 6.18, Time 5-6 uses the

maximum number of ASs, i.e., 18, among all the time slots; and this number of

adder/subtractors is the best choice.

However, binding ASs also leads to the use of multiplexors (MUXs). Binding

two ASs requires a 2-1 MUX. Binding three or four ASs needs a 4-1 MUX, while

binding from four to seven ASs generates a 8-1 MUX. Therefore, during binding,

we also need to optimize the number of MUXs and its sizes. Figure 6.19 shows

our proposed scheduled sequencing graph with resource binding for the proposed

8×8 1-D FIT. A detail resource binding can be seen in Table 6.20. In Figure 6.20,

the ASs are re-indexed following the corresponding binding resources. It should

be noted that the dashed region is also the same as the 4× 4 transform. Hence, in

order to design both transforms, the ASs from number 4 to 7 have to select one
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Table 6.20: Resource binding for the proposed 8×8 1-D transform algorithm.

Binding Resource Binding Resource Binding Resource
B(v0) 0 B(v20) 8 B(v40) 8
B(v1) 1 B(v21) 9 B(v41) 14
B(v2) 2 B(v22) 6 B(v42) 15
B(v3) 3 B(v23) 10 B(v43) 9
B(v4) 0 B(v24) 11 B(v44) 16
B(v5) 1 B(v25) 7 B(v45) 17
B(v6) 2 B(v26) 12 B(v46) 7
B(v7) 3 B(v27) 13 B(v47) 6
B(v8) 0 B(v28) 8 B(v48) 10
B(v9) 1 B(v29) 14 B(v49) 12
B(v10) 4 B(v30) 15 B(v50) 14
B(v11) 2 B(v31) 9 B(v51) 16
B(v12) 5 B(v32) 16 B(v52) 9
B(v13) 3 B(v33) 17 B(v53) 8
B(v14) 2 B(v34) 6 B(v54) 14
B(v15) 3 B(v35) 10 B(v55) 16
B(v16) 3 B(v36) 11 B(v56) 10
B(v17) 2 B(v37) 7 B(v57) 12
B(v18) 6 B(v38) 12
B(v19) 7 B(v39) 13

between two different input sets: one is from the source for the 4×4 transform, and

the other is from ASs number 0 to 3 for the 8× 8 transform. This is the same as

generating four more ASs to bind and may increase the size of four corresponding

MUXs or may increase the number of MUXs.

As HEVC requires 16-bit depth pixels and 32-bit internal operations, we use 32-

bit adder/subtractors. Let us assume that outputs of 32-bit Adder/Subtractors

AS0 to AS5 (Figure 6.20) are stored in 32-bit registers R0 to R5, and those of

32-bit AS10 to AS17 are store in 32-bit registers R6 to R13. As outputs of AS6 to

AS9 need to be held to use in two different stages or time slots, their outputs are

designed to connect to special 64-bit long registers LR0 to LR3. Each long register

can be divided into two parts, i.e., 32-bit LRL (Least Significant Part of LR) and
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Figure 6.19: The proposed scheduled sequencing graph with resource binding
for the proposed 8× 8 1-D FIT.
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Figure 6.20: The proposed 8× 8 1-D FIT with resource binding.
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Table 6.21: Inputs and outputs of each AS through different time slots when
performing the proposed 8 × 8 1-D forward transform algorithm. Each cell
includes input1 (from register), input2 (from register) and output (to register).

AS Time 1-2 Time 3-4 Time 5-6 Time 7-8 Time 9-10
AS0

(R0)
src0, src7,
e0 (R0)

e0 (R0), e3

(R3), ee0 (R0)
ee0 (R0), ee1

(R1), dst0 (R0)
AS1

(R1)
src1, src6,
e1 (R1)

e1 (R1), e2

(R2), ee1 (R1)
ee0 (R0), −ee1

(R1), dst4
& (R1)

AS2

(R2)
src2, src5,
e2 (R2)

e1 (R1), −e2

(R2), eo1 (R2)
eo1 (R2),

eo1 � 6 (R2),
eo1b2l1 (R2)

eo1b1 � 1
(R4), eo1b2l1
(R2), eo1b2l2

(R2)

eo0b1 � 1
(R5), −eo1b2l2

(R2), dst6§
(R2)

AS3

(R3)
src3, src4,
e3 (R3)

e0 (R0), −e3

(R3), eo0 (R3)
eo0 (R3),

eo0 � 6 (R3),
eo0b2l1 (R3)

eo0b1 � 1
(R5), eo0b2l1
(R3), eo0b2l2

(R3)

eo1b1 � 1
(R5), eo0b2l2
(R3), dst2#

(R2)
AS4

(R4)
eo1 � 4 (R2),
eo1 � 1 (R2),
eo1b1 (R4)

AS5

(R5)
eo0 � 4 (R3),
eo0 � 1 (R3),
eo0b1 (R5)

AS6

(LR0)
src3, −src4,
o3 (LRL0)

o3 � 3
(LRL0), o3

(LRL0), o3b1l1
(LRL0)

o3 � 5 (LRM0),
o3b1l1 � 1

(LRL0), o3b1l2
(LRL0)

o3b1l2 (LRL0),
o2b3l2 (R9),
P31 (LRL0)

AS7

(LR1)
src2, −src5,
o2 (LRL1)

o2 � 3
(LRL1), o2

(LRL1), o2b1l1
(LRL1)

o2 � 5 (LRM1),
o2b1l1 � 1

(LRL1), o2b1l2
(LRL1)

o3b1l1 � 1
(LRM0), o2b1l2

(LRL1), P11

(LRL1)
AS8

(LR2)
src1, −src6,
o1 (LRL2)

o1 � 3
(LRL2), o1

(LRL2), o1b1l1
(LRL2)

o1 � 5 (LRM2),
o1b1l1 � 4

(LRL2), o1b1l2
(LRL2)

o0b1l1 � 1
(LRM3),
−o0b1l2

(LRL2), P70

(LRL2)

32-bit LRM (Most Significant Part of LR). These two parts can be written and

read independently to each other. Table 6.21, Table 6.22 and Table 6.23 show

inputs and outputs of the ASs through different time slots when performing the

proposed 8× 8 and 4× 4 1-D forward transform algorithms.
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Table 6.22: Inputs and outputs of each AS through different time slots when
performing the proposed 8 × 8 1-D forward transform algorithm. Each cell
includes input1 (from register), input2 (from register) and output (to register).

AS Time 1-2 Time 3-4 Time 5-6 Time 7-8 Time 9-10
AS9

(LR3)
src0, −src7,
o0 (LRL3)

o0 � 3
(LRL3), o0

(LRL3), o0b1l1
(LRL3)

o0 � 5 (LRM3),
o0b1l1 � 1

(LRL3), o0b1l2
(LRL3)

o0b1l2 (LRL3),
−o1b3l2 (R11),
P50 (LRL3)

AS10

(R6)
o3 � 1

(LRL0), o3

(LRL0), o3b2l1
(R6)

o3b1l1 � 3
(LRL0), o3b2l1

(R6), o3b2l2 (R6)

o3b2l2 (R6),
o2b1l1 � 1

(LRM1), P51

(R6)

P50 (LRL3),
P51 (R6), dst5

(R6)

AS11

(R7)
o3 � 2

(LRL0), o3

(LRL0), o3b3l1
(R7)

o3b1l1 (LRL0),
o3b3l1 � 4 (R7),
o3b3l2 (R7)

AS12

(R8)
o2 � 1

(LRL1), o2

(LRL1), o2b2l1
(R8)

o2b1l1 � 3
(LRL1), o2b2l1

(R8), o2b2l2 (R8)

o2b2l2 (R8),
−o3b3l2 (R7),
P71 (R8)

P70 (LRL2),
P71 (R8), dst7

(R8)

AS13

(R9)
o2 � 2

(LRL1), o2

(LRL1), o2b3l1
(R9)

o2b1l1 (LRL1),
o2b3l1 � 4 (R9),
o2b3l2 (R9)

AS14

(R10)
o1 � 1

(LRL2), o1

(LRL2), o1b2l1
(R10)

o1b1l1 � 3
(LRL2), o1b2l1
(R10), o1b2l2

(R10)

o1b2l2 (R10),
o0b3l2 (R13),
P10 (R10)

P11 (LRL1),
P10 (R10), dst1

(R10)

AS15

(R11)
o1 � 2

(LRL2), o1

(LRL2), o1b3l1
(R11)

o1b1l1 (LRL2),
o1b3l1 � 4 (R11),
o1b3l2 (R11)

AS16

(R12)
o0 � 1

(LRL3), o0

(LRL3), o0b2l1
(R12)

o0b1l1 � 3
(LRL3), o0b2l1
(R12), o0b2l2

(R12)

o0b2l2 (R12),
−o1b1l1 � 1
(LRM2), P30

(R12)

P30 (R12),
−P31 (LRL0),
dst3 (R12)

AS17

(R13)
o0 � 2

(LRL3), o0

(LRL3), o0b3l1
(R13)

o0b1l1 (LRL3),
o0b3l1 � 4 (R13),
o0b3l2 (R13)
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Table 6.23: Inputs and outputs of each AS through different time slots when
performing the proposed 4 × 4 1-D forward transform algorithm. Each cell
includes input1 (from register), input2 (from register) and output (to register).

AS Time 1-2 Time 3-4 Time 5-6 Time 7-8
AS0

(R0)
src0, src3, e0 (R0) e0 (R0), e1 (R1),

dst0 (R0)
AS1

(R1)
src1, src2, e1 (R1) e0 (R0), −e1 (R1),

dst2 (R1)
AS2

(R2)
src1, −src2, e2

(R2)
o1 (R2), o1 � 6
(R2), o1b2l1 (R2)

o1b1 � 1 (R4),
o1b2l1 (R2), o1b2l2

(R2)

o0b1 � 1 (R5),
−o1b2l2 (R2), dst1

(R2)
AS3

(R3)
src0, −src3, e3

(R3)
o0 (R3), o0 � 6
(R3), o0b2l1 (R3)

o0b1 � 1 (R5),
o0b2l1 (R3), o0b2l2

(R3)

o1b1 � 1 (R5),
o0b2l2 (R3), dst3

(R2)
AS4

(R4)
o1 � 4 (R2),

o1 � 1 (R2), o1b1

(R4)
AS5

(R5)
o0 � 4 (R3),

o0 � 1 (R3), o0b1

(R5)

For example, in Table 6.21, Adder/Subtractor AS0 (connected to R0), at time 1-2

when running the proposed 8×8 algorithm, has two inputs src0 and src7 as shown

in Figure 6.20. Its output after time 1-2 is e0 (Figure 6.20), which is then stored

back in R0 to be used in next time slots. At time 3-4, it has two inputs e0 and

e3 (Figure 6.20) and one output ee0 (Figure 6.20). At this time, e0 and e3 values

have been already stored in R0 and R3, respectively, since time 1-2. After that,

the addition result ee0 (Figure 6.20) is also stored back in R0 to be used in next

time slots.

As can be seen from Table 6.21, Table 6.22 and Table 6.23, each time AS0 can

choose one of four input sets, including (1) src0 and src7 in time 1-2 of the 8× 8

algorithm; (2) R0 and R3 in time 3-4 of the 8×8 algorithm; (3) R0 and R1 in time

5-6 of the 8× 8 algorithm; or (4) src0 and src3 in time 1-2 of the 4× 4 algorithm.

Hence, a 32-bit MUX 4-1 can be used at the two inputs of AS0. The numbers
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Table 6.24: Number of possible input sets for adder/subtractors in the pro-
posed architecture.

AS Input
sets

AS Input
sets

AS Input
sets

AS Input
sets

AS Input
sets

AS0 4 AS4 1 AS8 4 AS12 4 AS16 4
AS1 4 AS5 1 AS9 4 AS13 2 AS17 2
AS2 6 AS6 4 AS10 4 AS14 4
AS3 6 AS7 4 AS11 2 AS15 2

Table 6.25: MUX types and quantities for the ASs in the proposed architec-
ture.

MUX type Quantity (each AS has 2 inputs)
32-bit 6-1 MUX 2× 2 = 4
32-bit 4-1 MUX 10× 2 = 20
32-bit 2-1 MUX 4× 2 = 8

of input sets for all the Adder/Subtractors from AS0 to AS17 can be found in

Table 6.24.

Based on Table 6.24, it is clear that two 32-bit 6-1 MUXs, ten 32-bit 4-1 MUXs

and two 32-bit 2-1 MUXs are needed for all the eighteen ASs in the proposed

architecture (Table 6.25).

6.4.2.5 1-D Transform Data Path Design

The proposed 1-D design inputs, processes and outputs four and eight pixels si-

multaneously in the 4× 4 and 8× 8 transforms, respectively. Each input is 16-bit

deep. Therefore, the proposed shared 1-D architecture needs 8 × 16 = 128 input

pins and 128 output pins. However, as all internal operations of the standard re-

quires 32-bit depth, the 128 I/O pins are converted to 256 pins to facilitate internal

processing.
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Figure 6.21 shows the proposed architecture design for the proposed 1-D 4 × 4

and 8 × 8 forward transform. On the right side of the figure, registers R0 to

R13 and LR0 to LR3 together with source register from src0 to src7 are shown.

Adder/Subtractors from AS0 to AS17 can be found at the bottom of the figure.

Above the ASs, there are thirty-two multiplexors, which are listed in Table 6.25.

The inputs of those multiplexors are connected to the above registers, while their

outputs are connected to the inputs of the ASs. In addition, the outputs of those

ASs are connected to the above registers in order to store addition/subtraction

results. All the ASs, multiplexors and registers are controlled through control

signals generated by a Control Unit.

6.4.2.6 Micro-Code and Control Signal Optimization

The Control Unit is an FSM generating control signals to all components in the

Data Path. The Adder/Subtractors need ENable signals enas, and function indi-

cation signal sub to indicate addition or subtraction function needed to perform.

The Multiplexors require Select signals ms. Long registers LR0 to LR3 also needs

a control signal to know when to shift and store data.

Table 6.26 and Table 6.27 show the values of the enable signals for eighteen ASs in

the Data Path design. They are determined based on Table 6.21, Table 6.22 and

Table 6.23. Table 6.28 and Table 6.29 show the values of sub signals for eighteen

ASs to determine whether addition or subtraction is required. Table 6.30 and

Table 6.31 shows the control signal to the MUXs.

As some of the control signals for the Control Unit are similar, or some signals

are always equal to ‘1’ or ‘0’, optimization can be done to reduce the redundancy.

As can be seen in Table 6.26, enas0 = enas1, enas2 = enas3, enas4 = enas5,
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Figure 6.21: The proposed data path design for the proposed 1-D 4 × 4 and
8× 8 forward fransform algorithms.206



6.4. A Novel High-Throughput Area-Efficient Architecture

Table 6.26: Enable signals of the ASs in the proposed 8× 8 FIT algorithms,
enas, through different system stages.

enas at 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Time 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1
Time 2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1
Time 3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
Time 4 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
Time 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Time 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Time 7 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0
Time 8 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0
Time 9 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0
Time 10 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0

Table 6.27: Enable signals of the ASs in the proposed 4× 4 FIT algorithms,
enas, through different system stages.
enas at 5 4 3 2 1 0
Time 1 0 0 1 1 1 1
Time 2 0 0 1 1 1 1
Time 3 1 1 1 1 1 1
Time 4 1 1 1 1 1 1
Time 5 0 0 1 1 0 0
Time 6 0 0 1 1 0 0
Time 7 0 0 1 1 0 0
Time 8 0 0 1 1 0 0

Table 6.28: Function indication signals of the ASs in the proposed 8 × 8
FIT algorithms, sub, through different system stages. If sub equals to 0, the

corresponding AS performs addition. Otherwise, it performs subtraction.
sub at 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Time 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Time 2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Time 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
Time 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
Time 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Time 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Time 7 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
Time 8 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
Time 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Time 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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Table 6.29: Function indication signals of the ASs in the proposed 4 × 4
FIT algorithms, sub, through different system stages. If sub equals to 0, the

corresponding AS performs addition. Otherwise, it performs subtraction.
sub at 5 4 3 2 1 0
Time 1 0 0 1 1 0 0
Time 2 0 0 1 1 0 0
Time 3 0 0 0 0 1 0
Time 4 0 0 0 0 1 0
Time 5 0 0 0 0 0 0
Time 6 0 0 0 0 0 0
Time 7 0 0 0 1 0 0
Time 8 0 0 0 1 0 0

Table 6.30: Select signals of the MUXs in the proposed 8× 8 FIT algorithms,
ms, thought different system stages (msi is used as the select signal for two

multiplexors at the two inputs of ASi).

ms at 17 16 15 14 13 12 11 10 9 8 7 6 3 2 1 0
Time 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Time 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Time 3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Time 4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Time 5 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Time 6 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Time 7 0 2 0 2 0 2 0 2 3 3 3 3 3 3 0 0
Time 8 0 2 0 2 0 2 0 2 3 3 3 3 3 3 0 0
Time 9 0 3 0 3 0 3 0 3 0 0 0 0 4 4 0 0
Time 10 0 3 0 3 0 3 0 3 0 0 0 0 4 4 0 0

Table 6.31: Select signals of the MUXs in the proposed 4× 4 FIT algorithms,
ms, thought different system stages (msi is used as the select signal for two

multiplexors at the two inputs of ASi).

ms at 3 2 1 0
Time 1 1 1 1 1
Time 2 1 1 1 1
Time 3 2 2 2 2
Time 4 2 2 2 2
Time 5 3 3 0 0
Time 6 3 3 0 0
Time 7 4 4 0 0
Time 8 4 4 0 0
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enas6 = enas7, enas8 = enas9, enas10 = enas12 = enas14 = enas16, and enas11 =

enas13 = enas15 = enas17. Therefore, we only need to keep enas at positions 0,

2, 4, 6, 8, 10 and 11 for the 8 × 8 transform. Similarly, from Table 6.27, we only

need to keep enas at positions 0, 2 and 4 for the 4× 4 transform. For sub signals

(Table 6.28 and Table 6.29), we only need to keep values at positions 1, 2, 3, 6,

8, 12, 16 for 8 × 8 and positions 1, 2, 3 for the 4 × 4 transform. sub signals at

positions 0, 4, 5, 10, 11, 13, 14, 15 and 17 can be omitted since they are always

equal to ‘0’. For MUX select signals (Table 6.30 and Table 6.31), we only need

to keep values at positions 0, 2, 6, 10 and 11 for the 8 × 8, and 0 and 2 for the

4×4 transform (Figure 6.22). This microcode and control signal optimization can

reduce the circuit area due to the less number of wires connected between Control

Unit and Data Path blocks.

6.4.2.7 Proposed 1-D Transform Architecture

Figure 6.22 shows the proposed 1-D shared transform architecture for the 4 × 4

and 8×8 transforms with the proposed data path in Section 6.4.2.5 and a Control

Unit. The microcode and control signals (ms, enas and sub) are minimized to

reduce the circuit area.

6.4.2.8 Pipeline Scheduling for 2-D Transforms

A pipeline mechanism is deployed for the 2-D transforms among the input process,

the output process and the two 1-D transforms (Figure 6.23). The system starts at

t0 to input the first eight pixels (row 1.0) to an input buffer block (IB) in sixteen

cycles. The IB collects, merges all half-pixels and sends them to 1-D integer

transform block 1 (IT1) at t1. At t1, the IB collects the second eight pixels (row
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Figure 6.22: The proposed architecture design for the proposed 1-D 4×4 and
8× 8 forward fransform algorithms.210
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1.1), while IT1 transforms the first eight pixels (row 1.0). Then, it transfers the

result to Transpose RAM 1. The process is repeated. At t8, eight pixels of row

2.0 are started to input to the IB. At the same time, IT1 starts to process row

1.7. At t9, the transformation of eight rows of block 1 from row 1.0 to 1.7, have

completed and the result is in Transpose RAM 1. At the same time, eight pixels

of row 2.1 are started to input to the IB. IT1 starts to process row 2.0. The IT2

starts to transform column 1.0 from Transpose RAM 1 and transfer the results

to the output buffer (OB). As RAM 1 is now storing transformed data of block

1, when IT1 finishes processing row 2.0, it will store data into Transpose RAM

2. From t10 onwards, all hardware blocks work simultaneously. The OB receives

a package of eight pixels from IT2 and output half-pixel at a cycle. The number

of cycles needed to transform each 8× 8 block is 16× 8 = 128 cycles, where each

cycle is just 16-bit addition time long.

6.4.2.9 Proposed 2-D Transform Architecture

Figure 6.24 shows the architecture of the proposed 2-D 4×4 and 8×8 transforms.

The architecture consists of one input buffer (IB), one output buffer (OB), two

1-D transform blocks (IT1 and IT2) and two RAMs for data transpose between

two times of 1-D transform.

Figure 6.25 shows the detailed timing diagram of the proposed system. Figure 6.26

and Figure 6.27 are the enlarged parts of Figure 6.25.
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Figure 6.23: Pipeline scheduling between input buffer (OB), output buffer
(OB), integer transform (IT) blocks and transpose RAMs.
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Figure 6.24: The proposed 2-D integer transform.

6.4.3 Experimental Results and Discussion

6.4.3.1 Experimental Results

The architecture design is implemented in Verilog using UMC 65nm Low Leakage

(LL) RVT technology at 1.2V. It is functionally verified using ModelSim, syn-

thesized using Design Compiler, logically verified using NCVerilog, floor-planned

and place-and-routed using Encounter, post-place-and-route-verified with gds file
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Figure 6.25: Timing diagram of the proposed architecture.

using NCVerilog. The design has been sent for fabrication. The testing PCB has

also been designed and fabricated.

Figure 6.28 shows the layout implementation of the architecture. Figure 6.29 and

Figure 6.30 shows the physical layout with I/O pads and die photograph of the

IC fabricated using UMC 65nm Low Leakage (LL) technology, respectively. The

number of I/O pads is sixteen and the gate counts include an Input Buffer, an

Output Buffer, two Transpose RAMs and two integer transform blocks are 54.7K.
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Figure 6.26: IT1-enlarged timing diagram of the proposed architecture.

The IC total power consumption is 8.94 mW. The maximum operating frequency

that the implementation can achieve is 500 MHz. The architecture can support the

transforms for up to Quad-Full High Definition (QFHD) videos, i.e., resolution of

3840×2160 pels, at the progressive scan frequency of 30 Hz (30 frames per second).

Table 6.32, Figure 6.31 and Figure 6.32 show the area and power breakdown of

the proposed architecture. As can be seen, the 1-D transforms only consumes 17.2
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Figure 6.27: IT2-enlarged timing diagram of the proposed architecture.216
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Figure 6.28: Layout of HEVC 4× 4 and 8× 8 transform architecture.

Table 6.32: Area and power consumption breakdown of the proposed archi-
tecture.

Modules Gate count (gates) Area (%) Power (mW) Power (%)
IB 1643.75 3 0.212 2.4
OB 1203.75 2.2 0.433 4.8
IT1 17203 31.5 2.512 28.1
IT2 17211.5 31.5 2.181 24.4

TRANSRAM1 8549.75 15.6 1.773 19.8
TRANSRAM2 8545.61 15.6 1.769 19.8

IT-FSM 342 0.6 6.18E − 02 0.7
IT 54699.36 100 8.9418 100

Kgates and 2.3 mW in average, which is 31% and 26% in average of the total area

and power consumption. The transpose RAMs occupy a large portion, 32%, of

the total area and consumes 40% of the IC power. The input and output buffer

area and power consumption are rather small, at 5% and 7% in total, respectively.

Figure 6.33 shows the PCB design for the fabricated IC.

6.4.3.2 Discussion

Table 6.33 shows the details of the proposed implementation in comparison to

the implementation of Martuza and Wahid (2012). Gate count of a design is the

217



Chapter 6. Fast and Low-Cost Algorithms and A High-Throughput
Area-Efficient Architecture for HEVC Integer Transforms

Figure 6.29: Layout with I/O pads of HEVC 4 × 4 and 8 × 8 transform
architecture.

design area normalized by the area of the smallest 2-input NAND gate. In the

UMC 65nm technology, the size of the smallest 2-input NAND gate is 0.8µm width

×1.8µm height. I/O throughput is the number of pixels that the architecture can

input or output at the same time. Throughput is the number of pixels processed

in an unit of time, where the time includes the I/O time and processing time.

The throughput unit is pixels per cycle or pixels per second. When comparing the

designs whose I/O pin counts are small, i.e., I/O time is longer than processing
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Figure 6.30: Die photograph of HEVC 4×4 and 8×8 transform architecture.

IB 
3% 

OB 
2% 

IT1  
31% 

IT2  
31% 

TRANSRAM1 
16% 

TRANSRAM2 
16% 

IT-FSM 
1% 

Figure 6.31: Area breakdown.
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2% 

OB 
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24% 

TRANSRAM1 
20% 

TRANSRAM2 
20% 

IT-FSM 
1% 

Figure 6.32: Power breakdown.

time, the throughput need to be normalized by the number of I/O pins, since the

number of I/O pins plays a crucial role in limiting the design throughput. As power

of a design depends on the process technology and voltage, it is also normalized

by voltage square for a fair comparison. Therefore, although the Martuza and

Wahid (2012) mapped the design to CMOS 0.18µm, which is different with the

technology that the proposed design is implemented, fair comparisons still can be

achieved because throughput, area and power are all normalized.

As can be seen from the table, Martuza and Wahid (2012) proposed an 1-D 8 ×

8 inverse transform architecture for HEVC, while the proposed architecture is

a 2-D 4 and 8 × 8 forward transform architecture. We use our proposed 1-D

architecture including its controller to compare to the design of Martuza and

Wahid (2012)(MD). Thanks to the period optimization using 2-cycle adders, the

proposed 1-D architecture implementation can achieve a normalized throughput
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(a) (b)

Figure 6.33: PCB design for the fabricated HEVC 4 × 4 and 8 × 8 IC. (a)
PCB and (b) Level shifter.

of 500 Mpps, which is 2.4 times as much as that of MD. Even in terms of direct

throughput, the proposed design throughput is 18% more than that of the MD.

It should be noted that the reported frequency of the MD achieved only when

synthesizing the design to the technology without any post-synthesized verification

or post-place-and-route verification.

Although the proposed design requires only eighteen ASs compared to thirty-two

adders of the MD, the proposed 1-D architecture consumes 17.2 Kgates, 1.4 times

of the MD gate count. Table 6.34 and Figure 6.34 show an area breakdown of the

proposed 1-D transform implementation. As can be seen, the ASs occupy 10.4

Kgates (60% of the 1-D area), while the registers and MUXs occupy 6.6 Kgates

(38% of the 1-D area). Therefore, the overhead area is basically due to the added
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Table 6.33: The proposed architecture implementation achievement in com-
parison to that of other architectures.

Architectures Martuza and
Wahid (2012)

The proposed 1-D
architecture

The proposed 2-D
architecture

Technonogy CMOS 0.18µm UMC 65nm UMC 65nm
Voltage 1.8 V 1.2 V 1.2 V

Total I/O pins 32 pins 16 pins 16 pins
Transform type 1-D 8× 8 Inverse,

HEVC
1-D 4× 4, 8× 8
Forward, HEVC

2-D 4× 4, 8× 8
Forward, HEVC

Number of adders
in 1-D

32 adders 18 ASs 18 ASs

Frequency 211.4 MHz 500 MHz 500 MHz
Gate count (Gates) 12.3K + 4K

standard cells
17.2K 54.7K

Power 11.7 mW 2.3 mW 8.94 mW
I/O throughput

(pels/cycle)
1 ppc 0.5 ppc 0.5 ppc

Throughput
(pels/cycle)

1 ppc 0.5 ppc 0.5 ppc

Throughput
(pels/s)

211.4 Mpps 250 Mpps 250 Mpps

Normalized
Throughput(pels/s)

(32 pins)

211.4 Mpps 500 Mpps 500 Mpps

Normalized Power
(1.2V)

5.2 mW 2.3 mW 8.94 mW

Max resolution Full HD (1920 ×
1080) 30p

QFHD (3840 ×
2160) 30p

QFHD (3840 ×
2160) 30p

registers and MUXs for the pipelining mechanisms. It also should be noted that

Martuza and Wahid (2012) reported their design gate count in two different places:

at one place in the script, it is 12.3K and 4K standard cells, and in a table, it is

12.3K in a table. We use 12.3 Kgates to compare.

From Table 6.33, we also see that the proposed 1-D architecture implementation

consumes a power of 2.3mW , which is only 44% of that of the MD. The maximum

resolution that the proposed 2-D architecture can deal is quad-full high definition

with the resolution of 3840 × 2160 pels at the progressive scanning frequency of 30
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Table 6.34: Area breakdown of the proposed 1-D transform architecture.
Gate count
(Kgates)

%

ASs 10.4 60.5
Registers 3.7 21.5

FSM 0.2 1.5
MUXs 2.9 16.5

ASs 
60% 

Registers 
22% 

FSM 
1% 

MUXs 
17% 

Figure 6.34: Area breakdown of the proposed 1-D transform architecture.

frames per second. This is four times of the resolution that Martuza and Wahid

(2012) reported to be able to process. However, their design is 1-D transform.

Therefore, for 2-D transforms, Martuza and Wahid (2012)’s design only can process

up to 1280 × 800 pels. Hence, the maximum resolution that the proposed 2-D

architecture can process is eight times as large as that of the Martuza and Wahid

(2012)’s design.
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6.5 Summary

In this chapter, we have proposed (1) a novel optimization method to automat-

ically minimize complexity, running time and resource consumption for scalar-

multiplication-containing algorithms; (2) novel 4× 4 and 8× 8 hardware-oriented

fast and low-cost integer transform algorithms for HEVC; and (3) a high-throughput

and area-efficient transform architecture for the HEVC 4×4 and 8×8 transforms.

The proposed optimization method can be applied to algorithms which contain

scalar multiplications and the algorithms’ operations can be performed in paral-

lel. The method includes three optimization levels which are corresponding to

two algorithms and one scheme to sequently optimize the scalar multiplications’

implementation. In the first level of optimization, the proposed complexity opti-

mization algorithm is applied to find the least complex multiplication-to-addition

conversion result (MACR) for the multiplications. In the second optimization

level, the proposed timing optimization scheme generates the shortest adding tree

for the minimized running time and lists all possible operation orders correspond-

ing to the tree (STOOS). While the first two optimization levels are for one by

one multiplication, the last optimization level is for all multiplications in the scalar

multiplications. In this level, the proposed resource optimization algorithm is ap-

plied to find the best operation order, which provides the largest shared regions

among the multiplications to enable hardware utilization. The experimental re-

sults show that the speed of the automatically generated implementation by the

method for the scalar multiplications increases by about 90%, while the cost re-

duces by 90% compared to the implementation by multiplications. Compared to

the conventional multiplication-free implementation, the speed of the generated

implementation increases by 33% while the cost reduces from 25 to 33%. It is also
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proved that the method is computationally feasible to be applied to all the Partial

Butterfly algorithms from 4× 4 to 32× 32.

By applying the proposed optimization method for the scalar multiplications in

the Partial Butterfly algorithms and based on the idea of sharing resource among

different transform sizes, we have proposed novel 4×4 and 8×8 hardware-oriented

fast and low-cost integer transform algorithms for HEVC. The implemental results

show that the proposed algorithms can fully perform the 4 × 4 and 8 × 8 1-

D transforms after 4 and 5 addition/subtractions, respectively. Compared to the

original Partial Butterfly algorithms and the conventional sequence multiplication-

free Partial Butterfly algorithms, the speed of the proposed algorithms increases

by 75% and 20%, respectively. By using fourteen and fifty-eight ASs for the 4× 4

and 8 × 8 transforms respectively, the proposed algorithms requires around 87%

and 16% less resource than the original and the conventional sequence/parallel

multiplication-free Partial Butterfly algorithms, respectively. Compared to the

reported algorithms in the literature for HEVC, the speed of the proposed 8 × 8

algorithm is 29% and 17% faster than that of Martuza and Wahid (2012) and

Rithe et al. (2012)’s 8 × 8 algorithms, respectively. Its cost reduces by 19% and

3% compared to that of Martuza and Wahid (2012) and Rithe et al. (2012)’s

algorithms, respectively. The proposed 4 × 4 algorithm is as fast as the Rithe

et al. (2012)’s algorithm, but consumes 22% less resource.

We have developed a high-throughput and area-efficient transform architecture

for the HEVC 4 × 4 and 8 × 8 transforms in this chapter. The architecture is

under a very tight constraint on the I/O pin count of sixteen pixels. We have also

introduced several techniques to achieve the requirement of high throughput for

HEVC under such constraint. They are (1) multi-cycle adders to reduce system

period, consequently, increase throughput; (2) multi-stage registers for pipelining
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mechanism; (3) pipelining mechanism with two levels for the 1-D transforms and

2-D transforms; (4) resource binding to reduce cost; and (5) micro-code and control

signals optimization to reduce circuit area. The architecture design is implemented

in Verilog using UMC 65nm Low Leakage (LL) RVT technology at 1.2V with

multi-level of verifications till post-place-and-route-verification. Then the design

is sent for Chip fabrication. Testing PCB is also designed and fabricated. Thanks

to the techniques, the proposed architecture can support the transforms for up to

Quad-Full High Definition (QFHD) videos, i.e., resolution of 3840× 2160 pels, at

the progressive scan frequency of 30 Hz. This is eight times as large as that of the

Martuza and Wahid (2012)’s design with a trade-off of the increment in circuit

area of 40% for 1-D architecture. The proposed architecture consumes only 44%

of that of the Martuza and Wahid (2012)’s design.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

Integer transform, which is based on the Discrete Cosine Transform (DCT) with

the avoidance of the mismatch problem and the reduction of the computational

complexity, is one of the most important coding tools in both H.264/AVC, the

latest video compression standard, and an emerging High Efficiency Video Coding

(HEVC), which will be finalized in early 2013.

While the H.264/AVC high profiles support higher-fidelity videos for application

areas like professional film production, video post production, or high-definition

TV/DVD, HEVC supports beyond-full high definition videos or 3-D, multi-view

applications. Therefore, designs of all the modules including the integer trans-

forms in H.264/AVC or HEVC are challenging to achieve high throughputs. For

hardware implementation, area efficiency is needed to reduce design cost. In ad-

dition, integration, reusability and testability of hardware designs should be also

considered.

In this thesis, we have addressed the above challenges in integer transform de-

signs for H.264/AVC and HEVC through four integer transform designs with two
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design levels: algorithm and architecture. While the first three designs address

the challenges of H.264/AVC at the architecture level, the forth design addresses

the challenges of HEVC at both algorithm and architecture levels. The first two

designs are portable inverse integer transform designs for H.264/AVC. While the

first design addresses portability and area efficiency, the second design focuses on

portability and high throughput. The third design includes a forward and an in-

verse integer transform architectures for H.264/AVC, which targets both the high

throughput and area efficiency goals. The forth design is an algorithm and ar-

chitecture design of the forward integer transforms for HEVC, also targeting high

throughput and area efficiency.

In the first portable design, we have proposed the most functionally complete in-

verse integer transform unit. This unit consists of only one 1-D 8 × 8 inverse

transform unit with three levels of hardware sharing, including (1) embedding two

4×4 inverse transform units into the 1-D 8×8 inverse transform unit; (2) sharing

one 4× 4 inverse Hadamard transform with one 4× 4 inverse transform unit; and

(3) embedding a 2-D 2× 2 inverse Hadamard transform into the 1-D 4× 4 inverse

transform unit. Then, an inverse integer transform block is proposed deploying the

proposed shared transform unit and an additional quantization module. The in-

verse integer transform design is implemented on an ASIP-controlled SoC platform

conforming to the Wishbone shared bus standard for portability and testability.

The design can perform a 2 × 2, 4 × 4, and 8 × 8 data block in one, eleven and

nineteen cycles, respectively. The design can support the transforms for videos

with the resolutions of up to 16.4 Mpixel2 with a progressive scan frequency of 30

Hz (30 frames per sec). The resulting circuit area is considerably minimal com-

pared to other designs in its class thanks to the proposed transform unit, which
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has the embodiment of 4 × 4 circuits in the 8 × 8 circuit and the embodiment of

2× 2 circuit in the 4× 4 circuits.

The second portable design deploys a fully pipelining mechanism supported by an

ASIP, two DMACs and two inverse integer transform blocks. The inverse trans-

form block is reused from the first portable design after rescheduling its operation

timing. As a result, it can perform a 2×2, 4×4, and 8×8 data block in one, four

cycles, and eight cycles, respectively, compared to one, eleven and nineteen cycles

in the first portable design, respectively. The second architecture can deliver a

high normalized throughput of sixty-four ppc and 15.6 Gpps at 144 MHz using

0.18 µm technology, and can support the transforms for videos with the resolu-

tions of up to 38.4 Mpixel2 with a progressive scan frequency of 30Hz. These are

higher than those of other reported designs in its class. Thanks to the proposed

functionally complete inverse integer transform unit, the resulting circuit area is

considerably reasonable compared to that of other designs in the same class.

The third design is a high throughput and area-efficient SoC-based FIT/IIT de-

sign. Thanks to the newly proposed forward transform unit and the proposed

inverse transform unit from the first portable design, our proposed design can per-

form both 4× 4 and 8× 8 transforms with additional supports for 2× 2 and 4× 4

Hadamard transforms of DC coefficients with a reasonable area. Thanks to the

proposed pipelining mechanism among input, output, transform and quantization

processes, and thanks to the special input and output buffer designs to balance

the data load in data input and output buses, our FIT/IIT design achieves a

higher DTUA compared to other reported designs. In the 0.18 µm technology, the

FIT and IIT modules can be operated at 162.1 and 230.9 MHz, respectively. The

inverse and forward transform architecture can support for videos with the resolu-

tion of up to 61.6 and 43.2 Mpixel2, respectively, with progressive scan frequency
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of 30 Hz.

Besides the three H.264/AVC transform designs, a novel metric for performance-

cost comparison among the reported designs is also proposed in this thesis. DTUA

has been the metric in the literature for comparisons among high throughput

and area-efficient FIT/IIT designs. However, due to the incomprehensiveness

of DTUA as well as the current metrics for comparison, some designs use very

large bus widths but their authors were still able to claim their area efficiencies.

In this thesis, we have proposed a novel performance-cost metric, PCM, for the

H.264 forward/inverse integer transforms. PCM is defined as the ratio of data

throughput over the design cost, which is a product of power, area, and delay.

Compared to DTUA, PCM facilitates more comprehensive comparisons among

FIT/IIT designs. Performance-cost analysis software is subsequently proposed to

automatically compute values of different metrics, including PCM s and DTUA,

facilitating a comprehensive comparison among inputted designs.

For the emerging HEVC, due to the higher order of complexity compared to H.264,

high throughput is even more challenging in integer transform designs. In this the-

sis, we high throughput and area efficiency for HEVC integer transform designs

are addressed at both algorithm and architecture levels. At the algorithm level, we

explore fast and low-cost integer transform algorithms, while at the architecture

level, we explore the high-throughput and area-efficient architectures. We have

proposed (1) a novel optimization method to automatically minimize complexity,

running time and resource consumption for scalar-multiplication-containing algo-

rithms, (2) a series of novel 4×4 and 8×8 hardware-oriented fast and low-cost inte-

ger transform algorithms for HEVC, and (3) a high-throughput and area-efficient

transform architecture for the HEVC 4× 4 and 8× 8 transforms.
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The novel optimization method is to achieve fast and low-cost algorithm imple-

mentations for scalar-multiplication-containing algorithms in general and the Par-

tial Butterfly algorithms in particular. The method includes a multiplication-to-

addition conversion step and three levels of optimization: (1) Complexity Opti-

mization, (2) Timing Optimization and (3) Resource Optimization. Experimental

results show that the speed of the automatically generated implementation by the

method for the scalar multiplications increases by about 90%, while the cost re-

duces by 90% compared to the implementation by multiplications. Compared to

the conventional multiplication-free implementation, the speed of the generated

implementation increases by 33% while the cost reduces from 25 to 33%. It is also

proved that the method is computationally feasible to be applied to all the Partial

Butterfly algorithms from 4× 4 to 32× 32.

By applying the proposed optimization method for the scalar multiplications in

the Partial Butterfly algorithms and based on the idea of sharing resource among

the different transform sizes, we have proposed a series of novel 4 × 4 and 8 × 8

hardware-oriented fast and low-cost integer transform algorithms for HEVC. The

number of addition/subtractions of the proposed implementations for the 4 × 4

and 8 × 8 transforms is fourteen and fifty-eight, respectively. It it can fully per-

form the 4× 4 and 8× 8 1-D transforms after four and five addition/subtractions,

respectively. Compared to the original Partial Butterfly algorithms and the con-

ventional sequence multiplication-free Partial Butterfly algorithms, the speed of

the proposed algorithms increases by 75% and 20%, respectively. The proposed

algorithms require around 87% and 16% less resource than the original and the

conventional sequence/parallel multiplication-free Partial Butterfly algorithms, re-

spectively. Compared to the reported algorithms in the literature for HEVC, the

speed of the proposed algorithm is 17-29% faster and its cost is less.
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Chapter 7. Conclusions and Future Works

Finally, we have developed, implemented and fabricated a high-throughput and

area-efficient transform architecture for the HEVC 4 × 4 and 8 × 8 transforms

based on the proposed algorithms. The architecture has designed under a very

tight constraint on the I/O pin count of sixteen pixels. We have also introduced

several techniques to achieve a high throughput for HEVC transform designs under

such a tight constraint in this thesis. The architecture design is implemented in

Verilog using UMC 65nm Low Leakage (LL) RVT technology at 1.2V with multi-

level of verifications till post-place-and-route-verification. Then the design is sent

for Chip fabrication. Testing PCB is also designed and fabricated. Thanks to the

above techniques, the proposed architecture can support the transforms for up to

Quad-Full High Definition (QFHD) videos, i.e., resolution of 3840×2160 pixel2, at

the progressive scan frequency of 30 Hz. This throughput is much higher and the

design’s power is much less than those of the reported designs in the literature.

7.2 Future Works

As predicted by Ohm and Sullivan (2013), HEVC encoders may require years of

research to be realized due to its complexity. There still has a huge room to explore

and reduce the complexity of the HEVC encoders and decoders in general and of

the forward and inverse integer transforms in particular.

We have already proposed the fast and low-cost 4×4 and 8×8 forward transforms

for HEVC. HEVC also supports the 4 × 4 and 8 × 8 inverse integer transforms

as well as the 16 × 16 and 32 × 32 forward and inverse integer transforms with

an additional Discrete Sine Transform for 4 × 4 luma residual blocks. Therefore,

fast and low-cost algorithms are needed for all these transforms. As the proposed
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7.2. Future Works

optimization method can generate optimized implementations for scalar multipli-

cations. One direction of future work is to develop fast and low-cost 4 × 4 and

8×8 inverse transform algorithms, 16×16 and 32×32 forward and inverse integer

transform algorithms and 4× 4 DST algorithms using the proposed optimization

method. Based on the fast and low-cost algorithms, high-throughput and area-

efficient architectures for these transforms could be subsequently developed.

Another future direction is to continue to improve the optimization method. The

current optimization method has a large time complexity for its full search, which

is factorial-exponential. Heuristics could be put into the optimization algorithms

to reduce the search space or to localize the best candidate. The optimization

method could be extended to deal with different running time, not only the shortest

running time.

233





Bibliography

Ahmed, N., Natarajan, T., Rao, K. R., Jan 1974. Discrete Cosine Transform.

IEEE Transactions on Computers C-23 (1), 90–93.

ALTERA, Jan 2003. Avalon bus specification – reference manual.

URL http://www.altera.com.cn/literature/manual/mnl_avalon_bus.pdf

Amer, I., Badawy, W., Jullien, G., Mar 2005. A high-performance hardware imple-

mentation of the H.264 simplified 8× 8 transformation and quantization [video

coding]. In: Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing 2005 (ICASSP 2005). Vol. 2. Philadelphia, Penn-

sylvania, USA, pp. ii/1137 – ii/1140 Vol. 2.

AMS, 2006. Standard cell library of 0.35µm CMOS (version 3.72).

ARM, May 1999. AMBA specification (rev 2.0).

URL http://infocenter.arm.com/help/topic/com.arm.doc.ihi0011a/

index.html

Bliss, W. G., Julien, A. W., Apr 1990. Efficient and reliable VLSI algorithms and

architectures for the discrete fourier transform. In: Proceedings of the Interna-

tional Conference on Acoustics, Speech and Signal Processing 1990 (ICASSP

1990). Vol. 2. Albuquerque, New Mexico, USA, pp. 901–904.

235

http://www.altera.com.cn/literature/manual/mnl_avalon_bus.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0011a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0011a/index.html


BIBLIOGRAPHY

Bossen, F., Bross, B., Sühring, K., Flynn, D., 2012. HEVC complexity and imple-

mentation analysis.

Bross, B., Han, W.-J., Sullivan, G. J., Ohm, J.-R., Wiegand, T., Oct 2012. High

Efficiency Video Coding (HEVC) text specification draft 9.

Celik, M., Pileggi, L., Odabasioglu, A., 2002. IC Interconnect Analysis, 1st Edi-

tion. Springer.

Chao, Y.-C., Tsai, H.-H., Lin, Y.-H., Yang, J.-F., Liu, B.-D., Jul 2007. A novel de-

sign for computation of all transforms in H.264/AVC decoders. In: Proceedings

of the IEEE International Conference on Multimedia and Expo 2007 (ICME

2007). Beijing, China, pp. 1914–1917.

Chen, K.-H., Guo, J.-I., Wang, J.-S., May 2005. An efficient direct 2-D transform

coding IP design for MPEG-4 AVC H.264. In: Proceedings of the IEEE Inter-

national Symposium on Circuits and Systems 2005 (ISCAS 2005). Kobe, Japan,

pp. 4517–4520.

Chen, K.-H., Guo, J.-I., Wang, J.-S., Apr 2006. A high-performance direct 2-D

transform coding IP design for MPEG-4 AVC/H.264. IEEE Transactions on

Circuits and Systems for Video Technology 16 (4), 472–483.

Chen, W. H., Smith, C. H., Fralick, S. C., Sep 1977. A fast computational al-

gorithm for the Discrete Cosine Transform. IEEE Transactions on Acoustics,

Speech, and Signal Processing COM–25 (9), 1004–1009.

Cho, N. I., Lee, S. U., Mar 1991. Fast algorithm and implementation of 2-D DCT.

IEEE Transactions on Circuits and Systems 38 (3), 297–305.

Choi, W., Park, J., Lee, S., Nov 2008. A high-performance & low-power unified

4× 4 / 8× 8 transform architecture for the H.264/AVC codec. In: Proceedings

236



BIBLIOGRAPHY

of 23rd International Conference Image and Vision Computing New Zealand

(IVCNZ 2008). Lincoln University, Christchurch, New Zealand, pp. 1–6.

Ciletti, M. D., 2003. Advanced Digital Design with the Verilog HDL. Prentice

Hall.

Do, T. T., Le, T. M., Dec 2009. A high normalized aggregate throughput soc-

based inverse integer transform design for H.264/AVC. In: Proceedings of 12th

International Symposium on Integrated Circuits (ISIC 2009). Singapore, pp.

453–456.

Do, T. T., Le, T. M., May 2010. High throughput area-efficient soc-based for-

ward/inverse integer transforms for H.264/AVC. In: Proceedings of the IEEE

International Symposium on Circuits and Systems 2010 (ISCAS 2010). Paris,

France, pp. 4113–4116.

Gordon, S., Marpe, D., Wiegand, T., Mar 2004. Simplified use of 8× 8 transforms

– updated proposal & results.

URL http://wftp3.itu.int/av-arch/jvt-site/2004_03_Munich/

JVT-K028.doc

Hewlitt, R. M., Swartzlander, E. S., Oct 2000. Canonical signed digit representa-

tion for fir digital filters. In: Proceedings of IEEE Workshop on Signal Processing

Systems 2000 (SISP 2000). Lafayette, Louisiana, USA, pp. 416–426.

Hu, X., Liu, B., Zhang, C., Jul 2009. A high performance parallel transform and

quantization architecture for H.264 decoder. In: Proceedings of the IEEE Inter-

national Conference on Communications, Circuits and Systems 2009 (ICCCAS

2009). Milpitas, California, USA, pp. 1059–1060.

237

http://wftp3.itu.int/av-arch/jvt-site/2004_03_Munich/JVT-K028.doc
http://wftp3.itu.int/av-arch/jvt-site/2004_03_Munich/JVT-K028.doc


BIBLIOGRAPHY

Hwangbo, W., Kim, J., Kyung, C.-M., May 2007. A high-performance 2-D inverse

transform architecture for the H.264/AVC decoder. In: Proceedings of the IEEE

International Symposium on Circuits and Systems 2007 (ISCAS 2007). New

Orleans,USA, pp. 1614–1616.

IBM, Sep 1999. The CoreConnect bus architecture.

URL https://www-01.ibm.com/chips/techlib/techlib.nsf/products/

CoreConnect_Bus_Architecture

IBM, 2008. Standard cell library of 0.13µm CMOS CMRF8SF (version 1.4.0.12

LM).

ISO/IEC 11172, Nov 1993. Coding of moving pictures and associated audio for

digital storage media at up to about 1,5 mbit/s – part 2: Video.

ISO/IEC 13818-2, Nov 1994. Generic coding of moving pictures and associated

audio information - part 2: Video.

ISO/IEC 14496-2, Jan 1999. Coding of audio-visual objects - part 2: Visual.

ITU-T, Mar 1993. H.261: Video codec for audiovisual services at p × 384 kbit/s.

URL http://www.itu.int/rec/T-REC-H.261-199303-I/en

ITU-T, Feb 1998. H.263: Video coding for low bit rate communication.

URL http://www.itu.int/rec/T-REC-H.263-199802-S/en

ITU-T, JTC1, I., Nov 2012. HEVC Test Model: HM 9.

URL https://hevc.hhi.fraunhofer.de/

ITU-T and ISO/IEC JTC1, Jan 2010. Joint call for proposals on video compression

technology.

238

https://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
http://www.itu.int/rec/T-REC-H.261-199303-I/en
http://www.itu.int/rec/T-REC-H.263-199802-S/en
https://hevc.hhi.fraunhofer.de/


BIBLIOGRAPHY

Kordasiewicz, R. C., Shirani, S., Sep 2005. ASIC and FPGA implementations of

H.264 DCT and quantization blocks. In: Proceedings of the IEEE International

Conference on Image Processing 2005 (ICIP 2005). Vol. 3. Genoa, Italy, pp.

1020–1023.

Landman, B. S., Russo, R. L., Dec 1971. On a pin versus block relationship for

partitions of logic graphs. IEEE Transactions on Computers c-20 (12), 1469–

1479.

Lee, B. G., Dec 1984. A new algorithm to compute Discrete Cosine Transform.

IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP–32 (6),

1243–1245.

Malvar, H. S., Hallapuro, A., Karczewicz, M., Kerofsky, L., Jul 2003. Low-

complexity transform and quantization in H.264/AVC. IEEE Transactions on

Circuits and Systems for Video Technology 13 (7), 598–603.

Marpe, D., Wiegand, T., Gordon, S., Sep 2005. H.264/MPEG4-AVC fidelity range

axtensions: Tools, profiles, performance, and application areas. In: Proceedings

of the IEEE Conference on Image Processing 2005 (ICIP 2005). Vol. 1. Genoa,

Italy, pp. 593–596.

Martuza, M., Wahid, K., May 2012. A cost effective implementation of 8 × 8

transform of HEVC from H.264/AVC. In: Proceedings of 25th IEEE Canadian

Conference on Electrical and Computer Engineering (CCECE ’12). Montreal,

Quebec, Canada, pp. 1–4.

Nebel, W., Mermet, J., 1997. Low Power Design in Deep Submicron Electronics,

1st Edition. Springer.

239



BIBLIOGRAPHY

Ngo, N., Do, T., Le, T., Kadam, Y., Bermak, A., Jun 2008. ASIP-controlled

inverse integer transform for H.264/AVC compression. In: Proceedings of 19th

IEEE/IFIP International Symposium on Rapid System Prototyping (RSP ’08).

Monterey, California, USA, pp. 158–164.

Ohm, J.-R., Sullivan, G. J., Jan 2013. High Efficiency Video Coding: the next

frontier in video compression. IEEE Signal Processing Magazine 30 (1), 152–

158.

Ohm, J.-R., Sullivan, G. J., Schwarz, H., Tan, T. K., Wiegand, T., 2012. Compar-

ison of the coding efficiency of video coding standards: Including high efficiency

video coding (HEVC).

OpenCores, Sep 2002. WISHBONE System-on-Chip (SoC) interconnection archi-

tecture for portable IP cores.

URL http://cdn.opencores.org/downloads/wbspec_b3.pdf

Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F.,

Stockhammer, T., Wedi, T., Mar 2004. Video coding with H.264/AVC: tools,

performance, and complexity. IEEE Circuits and Systems Magazine 4 (1), 7–28.

Park, I.-C., Kang, H.-J., June 2001. Digital filter synthesis based on minimal

signed digit representation. In: Proceedings of Design Automation Conference

2001 (DAC 2001). Las Vegas, Nevada, USA, pp. 486–473.

Park, J. S., Ogunfunmi, T., Apr 2009. A new hardware implementation of the

H.264 8 × 8 transform and quantization. In: Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing 2009 (ICASSP

2009). Taipei, Taiwan, pp. 585–588.

240

http://cdn.opencores.org/downloads/wbspec_b3.pdf


BIBLIOGRAPHY

Pastuszak, G., Apr 2008. Transforms and quantization in the high-throughput

H.264/AVC encoder based on advanced mode selection. In: Proceedings of the

IEEE Computer Society Annual Symposium on VLSI 2008 (ISVLSI ’08). Le

Corum, Montpellier, France, pp. 203–208.

Patterson, D. A., Hennessy, J. L., 1998. Computer Organization and Design: Hard-

ware and Software Interface, 2nd Edition. Morgan Kauffman.

Rabaey, J. M., Chandrakasan, A., Nikolic, B., 2003. Digital Integrated Circuits:

A Design Perspective, 2nd Edition. Prentice Hall.

Raja, G., Khan, S., Mirza, M. J., Dec 2005. VLSI architecture & implementation

of H.264 integer transform. In: Proceedings of 17th International Conference on

Microelectronics (ICM 2005). Islamabad, Pakistan, pp. 218–223.

Rao, K. R., Yip, P., 1990. Discrete Cosine Transform: Algorithms, Advantages,

Applications. Academic Press.

Richardson, I. E. G., 2003. H.264 and MPEG-4 Video Compression: Video Coding

for Next Generation Multimedia, 1st Edition. Wiley.

Richardson, I. E. G., 2010. The H.264 Advanced Video Compression Standard,

2nd Edition. Wiley.

Rithe, R., Cheng, C.-C., Chandrakasan, A. P., Nov 2012. Quad full-HD transform

engine for dual-standard low-power video coding. IEEE Journal of Solid-State

Circuits 47 (11), 2724–2736.

Saponara, S., Blanch, C., Denolf, K., Bormans, J., Apr 2003. The JVT advanced

video coding standard: Complexity and performance analysis on a tool-by-tool

basis. In: Proceedings of the International Packet Video Workshop 2003 (PV

2003). Nantes, France, pp. 1–12.

241



BIBLIOGRAPHY

Savidis, L., Friedman, E. G., 2008. Physical Design Trends for Interconnect, 1st

Edition. Morgan Kaufmann.

Sharma, M., Kumar, D., Apr 2012. Wishbone bus architecture – a survey and

comparison. International journal of VLSI Design & Communication Systems

3 (2), 107–124.

Shi, B., Zheng, W., Li, D., Zhang, M., Jul 2007. Fast algorithm and architec-

ture design for H.264/AVC multiple transforms. In: Proceedings of the IEEE

International Conference on Multimedia and Expo 2007 (ICME 2007). Beijing,

China, pp. 2086–2089.

Su, G.-A., Fan, C.-P., Dec 2008. Low-cost hardware-sharing architecture of fast 1-

D inverse transforms for H.264/AVC and AVS applications. IEEE Transactions

on Circuits and Systems II: Express Briefs 55 (12), 1249–1253.

Suhring, K., Sep 2008. H.264/AVC reference software: JM 14.2.

URL http://iphome.hhi.de/suehring/tml/download/old_jm/jm14.2.zip

Sullivan, G. J., Ohm, J.-R., Han, W.-J., Wiegand, T., 2012. Overview of the High

Efficiency Video Coding (HEVC) standard.

Sullivan, G. J., Wiegand, T., Nov 1998. Rate-distortion optimization for video

compression. IEEE Signal Processing Magazine 15 (6), 74–90.

Sylvester, D., Keutzer, K., Apr 1999. System-level performance modeling with

BACPAC – Berkeley advanced chip performance calculator. In: Proceedings

of the International Workshop on System-Level Interconnect Prediction 1999

(SLIP 1999). Monterey, California, USA, pp. 109–114.

Wang, T.-C., Huang, Y.-W., Fang, H.-C., Chen, L.-G., May 2003. Parallel 4 × 4

2D transform and inverse transform architecture for MPEG-4 AVC/H.264. In:

242

http://iphome.hhi.de/suehring/tml/download/old_jm/jm14.2.zip


BIBLIOGRAPHY

Proceedings of the IEEE International Conference on Circuits and Systems 2003

(ISCAS 2003). Vol. 2. Bangkok, Thailand, pp. 800–803.

Wenger, S., Hannuksela, M., Stockhammer, T., Westerlund, M., Singer, D., Feb

2005. RFC 3984: RTP Payload format for H.264 video.

URL http://tools.ietf.org/html/rfc3984#page-2

Weste, N., Harris, D., 2004. CMOS VLSI Design: A Circuits and Systems Per-

spective, 3rd Edition. Addison Wesley.

Wiegand, T., Girod, B., Oct 2001. Lagrange multiplier selection in hybrid video

coder control. In: Proceedings of the IEEE Conference on Image Processing

2001 (ICIP 2001). Vol. 3. Thessaloniki, Greece, pp. 542–545.

Wiegand, T., Ohm, J.-R., Sullivan, G. J., Han, W.-J., Joshi, R., Tan, T. K.,

Ugur, K., Dec 2010. Special section on the joint call for proposals on high

efficiency video coding (HEVC) standardization. IEEE Transactions on Circuits

and Systems for Video Technology 20 (12), 1661–1666.

Wiegand, T., Schwarz, H., Joch, A., Kossentini, F., Sullivan, G. J., Jul 2003a.

Rate-constraint coder control and comparison of video coding standards. IEEE

Transactions on Circuits and Systems for Video Technology 13 (7), 608–703.

Wiegand, T., Sullivan, G., Luthra, A., Mar 2003b. Draft ITU-T Recommendation

and Final Draft International Standard of Joint Video Specification (ITU–T

Rec. H.264 — ISO/IEC 14496–10 AVC).

URL http://wftp3.itu.int/av-arch/jvt-site/2003_03_Pattaya/

JVT-G050r1.zip

243

http://tools.ietf.org/html/rfc3984#page-2
http://wftp3.itu.int/av-arch/jvt-site/2003_03_Pattaya/JVT-G050r1.zip
http://wftp3.itu.int/av-arch/jvt-site/2003_03_Pattaya/JVT-G050r1.zip


BIBLIOGRAPHY

Wiegand, T., Sullivan, G. J., Bjøntegaard, G., Luthra, A., Jul 2003c. Overview

of the H.264/AVC video coding standard. IEEE Transactions on Circuits and

Systems for Video Technology 13 (7), 560–576.

Xilinx, Aug 2010. Virtex-4 family overview.

URL http://www.xilinx.com/support/documentation/data_sheets/

ds112.pdf

244

http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf


List of Publications

Journal Papers

1. Trang T.T. Do and Yajun Ha. A Novel Speed and Resource Optimiza-

tion Method for Scalar-Multiplication Implementations and Novel Fast and

Low-Cost Integer Transform Algorithms for HEVC. IEEE Transactions on

Circuits and Systems for Video Technology, to be submitted.

2. Trang T.T. Do and Yajun Ha. A High-Throughput and Area-Efficient Inte-

ger Transform Design for HEVC. IEEE Transactions on Circuits and Sys-

tems for Video Technology, to be submitted.

Conference Papers

1. Binh P. Nguyen, Trang T. T. Do, Chee-Kong Chui, and Sim-Heng Ong.

Prediction-based Directional Search for Fast Block-Matching Motion Estima-

tion. In Proceedings of the Symposium on Information and Communication

Technology (SoICT 2010), ACM ICPS 449, pages 86–91, Hanoi, Vietnam,

27-28 August 2010.

2. Trang T. T. Do, Thinh M. Le, Binh P. Nguyen, and Yajun Ha. Performance-

Cost Analyses Software for H.264 Forward/Inverse Integer Transform. In

245



List of Publications

Proceedings of 21st IEEE International Symposium on Rapid System Proto-

typing (RSP 2010), pages 1–7, Fairfax, Virginia, USA, 8-11 June 2010.

3. Trang T. T. Do and Thinh M. Le. High Throughput Area-Efficient SoC-

Based Forward/Inverse Integer Transforms for H.264/AVC. In Proceedings

of the IEEE International Symposium on Circuits and Systems 2010 (ISCAS

2010), pages 4113–4116, Paris, France, 30 May - 2 June 2010.

4. Trang T. T. Do and Binh P. Nguyen. A High-Accuracy and High-Speed 2-D

8× 8 Discrete Cosine Transform Design. In Proceedings of 1st International

Conference on Green Computing and 2nd AUN/SEED-Net Regional Confer-

ence on ICT (ICGC-RCICT 2010), pages 135–139, Yogyakarta, Indonesia,

2-3 March 2010.

5. Binh P. Nguyen and Trang T. T. Do. Cross Directional Rectangle Search for

Fast Block-Matching Motion Estimation. In Proceedings of 1st International

Conference on Green Computing and 2nd AUN/SEED-Net Regional Confer-

ence on ICT (ICGC-RCICT 2010), pages 132–134, Yogyakarta, Indonesia,

2-3 March 2010.

6. Trang T. T. Do and Thinh M. Le. A High Normalized Aggregate Throughput

SoC-based Inverse Integer Transform Design for H.264/AVC. In Proceedings

of 12th International Symposium on Integrated Circuits (ISIC 2009), pages

453–456, Singapore, 14-16 December 2009.

7. Nghia T. Ngo, Trang T.T. Do, Thinh M. Le, Y.S. Kadam, and A. Bermak.

ASIP-controlled Inverse Integer Transform for H.264/AVC Compression. In

Proceedings of 19th IEEE/IFIP International Workshop on Rapid System

Prototyping (RSP 2008), pages 158–164, Monterey, California, USA, 2-5

June 2008.

246


	Declaration
	Acknowledgements
	Contents
	Summary
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Video Coding
	1.2 Integer Transform
	1.3 Challenges of Integer Transform Designs for H.264 and HEVC
	1.3.1 Reported Techniques Addressing H.264/AVC Transform Design Challenges
	1.3.2 Reported Techniques Addressing HEVC Transform Design Challenges

	1.4 Dissertation Contributions and Organization

	2 Background and Related Works
	2.1 Background
	2.1.1 Discrete Cosine Transform and Quantization
	2.1.1.1 Discrete Cosine Transform
	2.1.1.2 Quantization

	2.1.2 Integer Transforms and Quantization in H.264/AVC
	2.1.2.1 Forward/Inverse Integer Transforms
	2.1.2.2 Quantization and Rescaling

	2.1.3 Integer Transform in HEVC
	2.1.3.1 Core Transform
	2.1.3.2 Mode-Dependent Alternative Transform
	2.1.3.3 Scaling and Quantization


	2.2 Related Works
	2.2.1 H.264/AVC Integer Transform
	2.2.2 HEVC Integer Transform


	3 Portable Inverse Transform Architectures for H.264/AVC
	3.1 Introduction
	3.2 Portable Area-Efficient Inverse Integer Transform Architecture Design
	3.2.1 Proposed Inverse Integer Transform Unit
	3.2.2 Proposed Inverse Integer Transform Architecture
	3.2.3 Proposed IIT System Architecture
	3.2.3.1 Top-Level System Architecture
	3.2.3.2 ASIP and Instruction Set
	3.2.3.3 The Inverse Integer Transform Block
	3.2.3.4 System-on-Chip Shared Bus
	3.2.3.5 ASIP and Hand-Shaking Issues with IP block(s)

	3.2.4 Experimental Results and Discussion
	3.2.4.1 Functionality, Testability and Portability
	3.2.4.2 Performance and Discussion


	3.3 Portable High-Throughput Inverse Transform Architecture
	3.3.1 Proposed Inverse Integer Transform Architecture
	3.3.2 Proposed IIT System Architecture
	3.3.2.1 Top-Level System Architecture
	3.3.2.2 Proposed Inverse Integer Transform in the SoC
	3.3.2.3 ASIP

	3.3.3 Experimental Results and Discussion
	3.3.3.1 Simulation and Pre-layout Synthesis Results
	3.3.3.2 Definition of Normalized Aggregate Throughput
	3.3.3.3 Discussion


	3.4 Summary

	4 Very High-Throughput Forward/Inverse Transform Architectures for H.264/AVC
	4.1 Introduction
	4.2 Proposed Forward and Inverse Architectures
	4.2.1 Proposed Forward Transform Unit
	4.2.2 Proposed FIT/IIT Blocks
	4.2.3 Proposed FIT/IIT Module
	4.2.4 Proposed System Architecture

	4.3 Experimental Results and Discussion
	4.3.1 Simulation and Pre-Layout Synthesis Results
	4.3.2 Discussion

	4.4 Summary

	5 Performance-Cost Analyses for H.264 Forward/Inverse Integer Transforms
	5.1 Introduction
	5.2 Cost Analyses for FIT/IIT/Designs
	5.2.1 Estimation of Power Consumption
	5.2.1.1 Background
	5.2.1.2 Gate Capacitance
	5.2.1.3 Interconnect Capacitance
	5.2.1.4 Inter-wire Capacitance
	5.2.1.5 Formula for Power Consumption

	5.2.2 Estimation of Circuit Area
	5.2.3 Estimation of Delay
	5.2.4 Estimation of Design Costs

	5.3 The Proposed Performance-Cost Metric for FIT/IIT Designs
	5.4 Discussion on PCMs on Different Designs and Metric Comparison to DTUA
	5.4.1 General Discussion on Different Designs
	5.4.2 Discussion on Aggregate Throughput
	5.4.3 Discussion on DTUA
	5.4.4 Discussion on Design Costs
	5.4.5 Discussion on PCMs with respect to DTUA

	5.5 Performance-Cost Analysis Software
	5.5.1 Overview of PCAS functions
	5.5.2 PCAS function description
	5.5.3 Optimal value calculation for look-up parameter in FIT/IIT case study
	5.5.4 Using PCAS example in FIT/IIT case study
	5.5.5 Flexible design of PCAS

	5.6 Summary

	6 Fast and Low-Cost Algorithms and A High-Throughput Area-Efficient Architecture for HEVC Integer Transforms
	6.1 Introduction
	6.2 The Partial Butterfly Transform Algorithms
	6.3 A Novel Optimization Method for Scalar-Multiplication-Containing Algorithms and Novel Integer Transform Algorithms for HEVC
	6.3.1 A Novel Optimization Method
	6.3.1.1 General Multiplication-to-Addition Conversion
	6.3.1.2 Proposed Complexity Optimization Algorithm
	6.3.1.3 Proposed Timing Optimization Strategy
	6.3.1.4 Proposed Resource Optimization Algorithm

	6.3.2 Proposed Fast and Low-Cost Transform Algorithms
	6.3.3 Discussion
	6.3.3.1 Discussion on the Proposed Method
	6.3.3.2 Discussion on the Proposed IT Algorithms


	6.4 A Novel High-Throughput Area-Efficient Architecture
	6.4.1 High Throughput Requirement under I/O Pin Constraints
	6.4.2 Architecture Design
	6.4.2.1 Multi-Cycle Adder Design for High Frequency
	6.4.2.2 Pipeline Scheduling for 1-D Transforms
	6.4.2.3 Multi-Stage Register Design for Pipeline
	6.4.2.4 Resource Binding for Low Resource Consumption
	6.4.2.5 1-D Transform Data Path Design
	6.4.2.6 Micro-Code and Control Signal Optimization
	6.4.2.7 Proposed 1-D Transform Architecture
	6.4.2.8 Pipeline Scheduling for 2-D Transforms
	6.4.2.9 Proposed 2-D Transform Architecture

	6.4.3 Experimental Results and Discussion
	6.4.3.1 Experimental Results
	6.4.3.2 Discussion


	6.5 Summary

	7 Conclusions and Future Works
	7.1 Conclusions
	7.2 Future Works

	Bibliography
	List of Publications

