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Summary 

Lymphangiogenesis is the formation of new lymphatic vessels from pre-existing 

vasculature, where lymphatic vessels are important in the maintenance of tissue 

fluid homeostasis and immune surveillance. During inflammation, 

lymphangiogenesis can be observed in the draining lymph nodes (LNs) of 

inflamed peripheral tissues. Several immune cells such as B cells, macrophages 

and DCs have been linked to the induction of lymphangiogenesis in the LNs. 

However, the molecular mechanism underlying the remodeling of lymphatic 

vessels in the LNs during inflammation is still in its infancy. Of interest to us is 

the signaling pathway behind B cells-mediated LN lymphangiogenesis, as well as 

the role that the lymphotoxin β receptor (LTβR) signaling pathway may play in 

regulating LN lymphangiogenesis. Although the role of LTβR signaling in the 

control of splenic architecture is well recognized, aspects of the LN 

microenvironment that are dependent on LTβR remain uncertain.  

 

In this study, we showed the requirement of B cells in the expansion of the LNs 

and lymphangiogenesis in response to immunization. The expression of LTα by B 

cells is critical for LN lymphangiogenesis. We demonstrated that LN expansion 

and lymphangiogenesis were reduced when LTβR signaling was inhibited by a 

decoy receptor prior to immunization. Expression of LTα, which forms the 

heterotrimer LTα1β2 together with LTβ, increased in B cells after immunization. 

In addition, we found that LTβR signaling only exert its regulatory role in the 

early stages of lymphangiogenesis. These observations led us to investigate one of 



 xii 

the initial steps of the lymphangiogenesis process involving the degradation of the 

extracellular matrix (ECM) and basement membrane (BM) by matrix 

metalloproteinases (MMPs). The role of MMPs in lymphangiogenesis to date is 

not as well characterized compared to angiogenesis.  

 

Our findings revealed that MMP-13 expression increased in the LNs after 

immunization, and this expression of MMP-13 is regulated by LTβR signaling. 

Study of the localization of MMP-13 in the LNs suggested that the proteinase 

might be involved in driving lymphangiogenesis through the remodeling of ECM 

and BM. Using a stable lymphatic endothelial cell (LEC) line, we showed that 

LECs express MMP-13. Through in vitro experiments, we demonstrated that 

MMP-13 mediates lymphangiogenesis through its proteolytic activites. Overall, 

this study identify LTβR signaling pathway as a key molecular mediator in the B 

cell-mediated lymphangiogenesis, as well as showing that LTβR signaling 

regulates the expression of MMP-13 that is required for the degradation of matrix 

components for sprouting of new lymphatic vessels. 
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1.1 Lymphatic Vessels 

The blood vasculature transports oxygen and nutrients, carrying out exchange of 

molecules and removal of waste products to and from the tissues. In this process, 

hydrostatic and osmotic pressure gradients cause plasma from the blood 

capillaries to enter the surrounding interstitial space. This extravasation of fluids 

and proteins from the blood vessels is balanced by a second vascular system, the 

lymphatic vascular system. The lymphatic vasculature drains and returns this fluid 

(lymph) back to the bloodstream. Unlike the pressurized circulatory system of the 

blood vasculature, there is no central pump in the lymphatic vascular system and 

the lymphatic vasculature is a hierarchical network of vessels with a unidirectional 

lymph flow from the periphery back to the blood circulation. The major roles of 

the lymphatic vasculature comprise the maintenance of tissue fluid homeostasis, 

immune surveillance and fat absorption in the small intestine (Oliver and Alitalo, 

2005). 

 

1.1.1 Lymphatic vasculature 

The lymphatic vessels are part of the lymphatic system, which also includes the 

lymphoid organs, such as the lymph nodes (LNs), spleen, thymus, Peyer’s patches 

and the tonsils. The lymphatic vasculature consists of five main categories of 

conduits: the lymphatic capillaries (or initials), collecting vessels, LNs, larger 

trunks and the thoracic duct (Swartz, 2001). The initial lymphatic capillaries that 

begin blind-ended in the periphery are made up of a single layer of lymphatic 

endothelial cells (LECs) and have a wider lumen compared to blood capillaries 
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(Swartz and Skobe, 2001). There is incomplete coverage of the lymphatic 

capillaries by basement membrane (BM) and, in its place, the LECs are attached 

to the surrounding extracellular matrix (ECM) through anchoring filaments that 

prevent the capillaries from collapsing (Gerli et al., 1990; Schmid-Schönbein and 

Schmid-Schönbein, 1990; Pflicke and Sixt, 2009). Interstitial fluid first enters the 

lymphatic capillary plexus through discontinuous button-like junctions between 

the LECs (Baluk et al., 2007). From there, lymph is drained into the collecting 

vessels. The collecting lymphatic vessels, unlike the lymphatic capillaries, are not 

anchored to the ECM. Instead, they contain perivascular smooth muscle cells that 

facilitate the propulsion of lymph, as well as valves that prevent retrograde flow 

(Figure 1.1) (Schmid-Schönbein and Schmid-Schönbein, 1990; Bridenbaugh et 

al., 2003; Randolph et al., 2005). The collecting vessels then pass through one or 

several clusters of LNs leading into the larger trunks, before draining into the 

thoracic duct where the lymph is discharged into the blood circulation. 

 

1.1.2 Lymphatic vessels markers 

Although the lymphatic system has been observed centuries ago, and its anatomy 

nearly entirely characterized by the 19th century, our understanding of the 

lymphatic system advanced at a much slower rate compared to the blood 

circulatory system in the last century (Swartz, 2001). This is primarily due to the 

fact that lymphatic vessels are difficult to distinguish from blood vessels 

histologically. Furthermore, the majority of blood vascular markers can also be 

found in the lymphatic vessels (Sleeman et al., 2001). It is only with the discovery 
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Figure 1.1: Schematic overview of the structure and function of the lymphatic vasculature. (Adapted from Mol Aspects Med, 32(2), 
Paupert et al., Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment, 146-58, 
copyright 2011 with permission from Elsevier) Endothelial cells of lymphatic capillaries have an oak shaped with overlapping scalloped 
edges (flaps). These flaps are only sealed on the sides by discontinuous button- like junction (BJ) allowing fluid entry through these flaps 
without disturbing cell–cell cohesion. Immune cells (lymphocytes (L), macrophages (M), dendritic cells (DC)) likely enter lymphatic 
capillaries through the intermingled flaps. In contrast to BV, interstitial matrix constitutes the principal microenvironment of initial 
lymphatic since they are devoid of a continuous basement membrane (BM). Anchoring filaments connect lymphatic capillaries to 
extracellular matrix and modulate vessel diameter by pulling adjacent endothelial cells apart. Lymphatic vessels (LV), lymphatic 
endothelial cells (LEC), blood vessels (BV), blood endothelial cells (BEC), fibronectin (FN), hyaluronan (HA). 
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of specific LEC surface markers, as well as specific molecules that govern the 

development and growth of lymphatic vessels, that allowed advances and 

understanding of the lymphatic system (Oliver and Detmar, 2002). 

 

Among the first lymphatic markers to be characterized is the vascular endothelial 

growth factor receptor-3 (VEGFR-3), also known as the fms-related tyrosine 

kinase 4 (FLT4), together with its ligand VEGF-C (Kaipainen et al., 1995; Kukk 

et al., 1996). During early embryonic development, VEGFR-3 was observed to be 

expressed in both the developing venous and the presumptive lymphatic 

endothelia (Kaipainen et al., 1995). However in adult tissues, VEGFR-3 is 

expressed mainly in the lymphatic endothelium, unlike VEGFR-1 and VEGFR-2 

which are found on both the blood and lymphatic endothelia (Kaipainen et al., 

1995; Veikkola et al., 2000; Kriehuber et al., 2001). Following that, a specific 

marker on the surface of LECs and macrophages was identified as the lymphatic 

endothelial hyaluronan receptor (LYVE-1) (Banerji et al., 1999). As the name 

suggests, LYVE-1, a CD44 homolog, is a receptor for hyaluronan. Hyaluronan is 

an ECM glycosaminoglycan that is abundantly found in the skin and 

mesenchymal tissues where it has roles in cell adhesion and cell migration 

(Knudson and Knudson, 1993; Jiang et al., 2011). With the discovery of the 

LYVE-1 marker on LECs, the lymphatic vessels have been visualized in tissue 

sections from several tissues including the skin (Skobe and Detmar, 2000). 

Another surface marker that can also be used to identify the lymphatic vasculature 

is podoplanin (Wetterwald et al., 1996; Breiteneder-Geleff et al., 1999). 
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Podoplanin is a transmembrane mucin-type glycoprotein that is expressed in 

osteoblastic cells, podocytes, lung alveolar type I cells, cells of choroid plexus and 

LECs (Wetterwald et al., 1996). 

 

1.1.3 Development of the lymphatic vasculature 

The development of the lymphatic vasculature, which begins only after the 

embryonic blood vascular system has been set up, is similar to that of blood vessel 

development in terms of morphology such as undergoing sprouting and 

outgrowing of a primary capillary plexus as well as the expansion of the capillary 

plexus (Oliver, 2004; Adams and Alitalo, 2007). However, the unique structure 

and function of the lymphatic vessels means the LECs need to acquire exclusive 

gene products from that of the blood endothelial cells (BECs) during their 

developmental process. Experimental data from mice revealed that one of the 

earliest recognized events in the lymphatic vasculature development is the 

expression of the transcription factor prospero-related homeobox 1 (Prox1) at 

embryonic day (E) 10.5 within a subset of endothelial cells in the cardinal veins 

(Wigle and Oliver, 1999). The Prox1+ endothelial cells then bud from the veins in 

a polarized manner while proliferating and migrating to eventually form the 

embryonic lymph sacs and subsequently the lymphatic plexus (Wigle and Oliver, 

1999). The importance of Prox1 in the development of the lymphatic vasculature 

is revealed in Prox1 knockout mice, where the embryos do not have lymphatic 

vessels and develop severe edema before dying around midgestation (Wigle and 

Oliver, 1999; Wigle et al., 2002). Endothelial cells in these Prox1-/- embryos had 
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reduced and abnormal budding from the cardinal veins, and they fail to 

differentiate into the lymphatic lineage having no expression of specific LEC 

markers (Wigle et al., 2002). These findings supported the widely accepted theory 

regarding the venous origin of the lymphatic vasculature put forward by Florence 

Sabin over a century ago in 1902 (Oliver, 2004). While Prox1 is crucial for the 

initial commitment of the endothelial cells to the lymphatic lineage, another 

factor, VEGF-C is essential for the sprouting of the lymphatic vessels from the 

budding and sprouting of these endothelial cells from the embryonic veins to form 

the lymph sacs (Karkkainen et al., 2004). Similar to Prox1-/- embryos, embryos 

deficient in VEGF-C display a complete lack of lymphatic vessels and die around 

midgestation (Karkkainen et al., 2004). The subpopulation of Prox1+ venous 

endothelial cells is present in the Vegfc1-/- embryos, however, they do not sprout 

and remain confined to the cardinal vein before disappearing, likely due to 

apoptosis (Karkkainen et al., 2004). With the formation of the lymph sacs, the 

lymphatic vascular system goes on to develop separately from the blood vascular 

system, and only associates with the blood vasculature at specific spots for the 

return of the lymph to the bloodstream (Cueni and Detmar, 2008). Two of the key 

molecules involved in regulating the separation of the two vasculatures are the 

adaptor protein SLP-76 and the tyrosine kinase Syk (Abtahian et al., 2003). As 

these two proteins are expressed largely by hematopoietic cells, it seems to 

suggest that the circulating blood cells may also play a role in the development of 

the lymphatic vasculature (Abtahian et al., 2003). 
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1.2 Lymph nodes 

The lymphatic vessels and the LNs are functionally inseparable in the immune 

system. LNs are encapsulated lymphoid organs where collecting vessels converge, 

and they are located at strategic positions of the body to allow a quick and 

efficient initiation of an immune response. Lymphatic vessels form a sinusoidal 

network within the LNs, and the afferent lymphatic vessels are the routes that 

dendritic cells (DCs) use to migrate to the LNs after antigen uptake. The major 

chemokine expressed by LVs for directing lymphatic entry of DCs is chemokine 

(C-C motif) ligand 21 (CCL21), which attracts DCs that express its cognate 

chemokine (C-C motif) receptor 7 (CCR7), a receptor required for DC migration 

to LNs (Förster et al., 1999; Ohl et al., 2004; Randolph et al., 2005). LNs have 

numerous essential roles in the immune system, such as to gather antigens and 

DCs from the peripheries, to recruit naive lymphocytes from the blood and to 

present the proper environment for antigen-specific tolerance or effective primary 

or secondary effector responses (Andrian and Mempel, 2003).  

 

1.2.1 Structure of the lymph node 

Recognizing the morphological features of the LN is fundamental to 

comprehending its functions. LNs contain either a singular or multiple lymphoid 

lobules bound by lymph-filled sinuses and enclosed by a capsule, where two core 

regions, the cortex and the medulla, can be distinguished (Willard-Mack, 2006). 

The cortex, which is the lymphoid compartment of the LN, is made up of a 

reticular meshwork of fibroblasts with separate areas for T and B cells (Gretz et 
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al., 1996; 1997). The route of entry for lymphocytes into the LNs from the blood 

circulation is primarily through specialized blood vessels called the high 

endothelial venules (HEVs). B cells are found in the more superficial cortex area 

made up of follicles and germinal centers with follicular dendritic cells (FDCs) 

cluster in the middle of these follicles, whereas the T cell zones are located in the 

paracortex of the LN entrenched in a scaffold of stromal cells known as the 

fibroblastic reticular cells (FRCs) (Junt et al., 2008; Mueller and Germain, 2009) 

The lymphoid region is an enclosed compartment where fluid can only enter 

through tubules originating from the sinus (Roozendaal et al., 2008). On the other 

hand, the medulla is highly vascularized, consisting mainly of lymph-draining 

sinuses that transport lymph out of the LN. Through the afferent lymphatic 

vessels, lymph enters the LNs into the subcapsular sinus. The lymph then flow 

through several radial cortical sinuses surrounding the lobules that lead into the 

medullary region, merging into larger medullary sinuses before finally exiting the 

LN via the efferent lymphatic vessel at the hilus (Figure 1.2) (Roozendaal et al., 

2008). 

 

1.3 Lymphangiogenesis 

Lymphangiogenesis is the process by which new lymphatic vessels form from 

pre-existing lymphatic vessels. The formation of new lymphatic vessels is a 

complex dynamic process of several different steps, including the sprouting from 

a pre-existing vessel, cell proliferation, migration and differentiation into 

capillaries (Adams and Alitalo, 2007). While lymphangiogenesis and the 
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Figure 1.2: LN architecture. (Adapted by permission from Macmillan Publishers Ltd: Nat Rev Immunol (von Andrian and Mempel, 
2003), copyright 2003) (A) Schematic diagram showing the major structural components of a LN. The main routes of lymph flow into 
and within LN are indicated by arrows. Blind-ending afferent lymph vessels collect and channel interstitial fluid into the subcapsular 
sinus. From here, the lymph is drained towards the hilus through the FRC conduit and trabecular sinuses that connect to medullary 
sinuses. (B) Schematic depiction of a paracortical cord. The T-cell-rich cord (light blue) is shown adjacent to a B-cell follicle (pink) and 
demarcated by lymph-filled sinuses (green). The cord is penetrated by reticular fibres consisting of type 1 and type 3 collagen that are 
contained within the sleeves of the FRCs forming a conduit. At the centre of each cord is a HEV that is surrounded by concentric layers 
of FRCs. The FRC conduit drains lymph into the perivenular channel. 
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remodeling of the lymphatic vessel occur spontaneously during embryogenesis, 

these processes are not restricted to this particular developmental stage (Oliver, 

2004). However, lymphangiogenesis in adulthood is predominantly associated 

with pathological conditions such as inflammation, tissue injury and tumor 

dissemination (Cueni and Detmar, 2008; Alitalo, 2011). 

 

1.3.1 Lymphangiogenic growth factors & receptors 

The first known, and best-characterized, signaling pathway involved in 

lymphangiogenesis is induced by the interactions between VEGF-C and the 

structurally similar VEGF-D and their receptor VEGFR-3 (Jeltsch et al., 1997; Oh 

et al., 1997; Veikkola et al., 2001). Overexpression of VEGF-C and VEGF-D in 

the skin of transgenic mice induced hyperplasia of cutaneous lymphatic vessels 

(Jeltsch et al., 1997; Veikkola et al., 2001). VEGF-C/VEGFR-3 signaling has also 

been shown to stimulate the growth, migration and survival of cultured human 

LECs (Mäkinen et al., 2001). Other than VEGFR-3, VEGF-C and VEGF-D can 

also bind to neuropilin 2 (Nrp2), a semaphorin receptor in the nervous system that 

is expressed in the lymphatic capillaries (Kärpänen et al., 2006). Homozygous 

deletion of Nrp2 in mice leads to either absence or drastic reduction of small 

lymphatic vessels and capillaries (Yuan et al., 2002). After proteolytic cleavage, 

VEGF-C and VEGF-D can also bind to a third receptor, VEGFR-2 (Joukov et al., 

1996; Achen et al., 1998). Although VEGFR-2 is well known for its role in 

angiogenesis, studies have shown that VEGFR-2 can also promote 

lymphangiogenesis both in vitro and in vivo upon activation by its ligand VEGF-
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A (Nagy et al., 2002; Hong et al., 2004; Kunstfeld et al., 2004). However, VEGF-

A cannot replace VEGF-C’s role in lymphatic development (Karkkainen et al., 

2004). Besides inducing inflammatory lymphangiogenesis directly through 

VEGFR-2 signaling on LECs, VEGF-A can also promote lymphangiogenesis 

indirectly by the recruitment of inflammatory cells such as macrophages that 

produce VEGF-C and VEGF-D (Cursiefen et al., 2004b; Baluk et al., 2005). 

 

While the VEGF family of growth factors represents the key lymphangiogenic 

factors, various non-VEGF-related lymphangiogenic factors have also been 

identified. Angiopoietins (Ang) are a family of growth factors known to regulate 

angiogenesis. The endothelial tyrosine kinase Tie2, specific receptor of 

angiopoietin 1 (Ang1), is expressed in cultured LECs as well as in lymphatic 

vessels in vivo (Kriehuber et al., 2001; Morisada et al., 2005). Mice deficient for 

Ang2 exhibit defects in the patterning and function of the lymphatic vessels, and 

Ang1 is sufficient to rescue the lymphatic phenotype in the Ang2 mutant mice 

(Gale et al., 2002). All four angiopoietins have been demonstrated to induce 

lymphangiogenic sprouting, with Ang1 being the most potent (Morisada et al., 

2005; Tammela et al., 2005; Kim et al., 2007). In addition to activating Tie2 

directly, Ang1 may also induce lymphangiogenesis indirectly through the VEGF-

C/VEGFR-3 pathway (Morisada et al., 2005; Tammela et al., 2005). Fibroblast 

growth factor-2 (FGF-2), hepatocyte growth factor (HGF), insulin-like growth 

factor-1 (IGF-1) and IGF-2, and platelet derived growth factor-BB (PDGF-BB) 

have all been shown to induce lymphangiogenesis in various experimental models 
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(Figure 1.3) (Cueni and Detmar, 2006). However, many of these effects may be 

secondary to the induction of VEGF-C and VEGF-D in several different cell types 

(Cueni and Detmar, 2006; Tammela and Alitalo, 2010). The continued discovery 

of new lymphangiogenic factors in recent years, such as adrenomedulin (AM) 

together with its calcitonin receptor-like receptor (CALCRL) and the receptor 

activity-modifying protein 2 (RAMP2) (Fritz-Six et al., 2008); apoptosis 

stimulating protein of p53 (Aspp1) (Hirashima et al., 2008); activin receptor-like 

kinase 1 (ALK1) (Niessen et al., 2010); and liprin β1 (Norrmén et al., 2010), have 

widely expanded our knowledge of lymphangiogenesis (Norrmén et al., 2011). 

 

1.3.2 Inflammatory Lymphangiogenesis 

1.3.2.1 Inflammation 

Inflammation is a tightly controlled physiological response for repairing damage 

against injurious insults such as microbial infections, tissue injury or tumor 

growth. Immediate response to the injury often results in an acute inflammation 

response, while a slower and prolonged response would lead to a chronic 

inflammation process. The major steps in an inflammatory cascade typically 

involve the recruitment and activation of leukocytes to the injury site, followed by 

construction of a physical barrier to limit the damage, and lastly to initiate a 

resolution phase for the repairing and healing of the injured tissue 

(Krishnamoorthy and Honn, 2006). While inflammation is fundamentally a 

protective mechanism leading to recovery, it can cause persistent tissue damage if 
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Figure 1.3: Schematic representation of lymphangiogenic growth factors and their receptors expressed by lymphatic 
endothelium. (Adapted by permission from Macmillan Publishers Ltd: J Invest Dermatol (Cueni and Detmar, 2006), copyright 2006) 
Several vascular endothelial growth factors (VEGF-A, VEGF-C, VEGF-D) promote lymphangiogenesis by activation of distinct 
VEGFRs and Nrp2. FGF-2 acts directly through FGFR-3 and also via induction of VEGF-C. Ang1 activates Tie2 and upregulates 
VEGFR-3. HGF, IGF, PDGF-BB act directly through their respective receptors HGF-R, IGF-1R, and PDGFR. 
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the steps of the inflammatory process are not properly phased or controlled 

(Nathan, 2002). 

 

Lymphangiogenesis has been observed in various forms of inflammation, and the 

biological changes in the LECs are often a result of the accumulation of 

inflammatory cells and the inflammatory mediators such as tumor necrosis factor 

α (TNFα), VEGF-A, VEGF-C and interleukin (IL)-6 that these cells secrete (Ji 

and Ji, 2007; Huggenberger et al., 2011a). The remodeling of lymphatic vessels in 

relation to its role in the transport of immune cells plays an important role in the 

regulation of the inflammatory response. 

 

1.3.2.2 Lymphangiogenesis in peripheral tissues 

Recent work have shown that during inflammation, lymphangiogenesis can be 

observed both in the inflamed peripheral tissues as well as the draining LNs of 

these tissues (Ji, 2009; Kim et al., 2012). Lymphangiogenesis occur in the 

peripheral tissues where the initial lymphatics drain antigen and antigen-

presenting cells (APCs) into the LNs. Remodeling of the lymphatic vessels in the 

LNs then function as bottleneck filters that congregate the afferent lymph to 

initiate the adaptive immune response, as well as inflammation resolution (Kim et 

al., 2012). Majority of the research on inflammatory lymphangiogenesis has been 

focused on the peripheral tissues, where the VEGF-C/VEGFR-3 signaling 

pathway is the key molecular regulator for lymphangiogenesis, followed by the 
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direct and indirect effect of the VEGF-A/VEGFR-2 signaling (Ji and Ji, 2007; 

Tammela and Alitalo, 2010; Kim et al., 2012). Recent work on a mouse model of 

inflammatory peritonitis has shown that the primary mediator of the inflammatory 

response, the nuclear factor-kappaB (NF-κB) family of transcription factors, is 

able to promote lymphangiogenesis upon activation by inflammatory stimuli 

through the activation of Prox1 and subsequent upregulation of VEGFR-3 (Flister 

et al., 2010). 

 

1.3.2.3 Lymphangiogenesis in lymph nodes 

LNs, as discussed above, have an important role in the regulation of inflammation. 

During immune responses, the recruitment of lymphocytes causes the LN to grow 

in size, and this growth is accompanied by growth in the vasculatures. Contrary to 

inflammatory lymphangiogenesis in the inflamed peripheral tissues, research on 

LN lymphangiogenesis have mainly focused on the VEGF-A/VEGFR-2 signaling 

pathway. Our previous study first showed that the expansion of the lymphatic 

vessel network in activated LNs of immunized mice requires the recruitment of B 

cells within the LN, and the LN lymphangiogenesis then results in enhanced DC 

migration from the periphery (Angeli et al., 2006). This finding demonstrated that 

signals initiated within activated draining LNs could increase the migration of 

DCs, despite the latter being in an “upstream” location against the unidirectional 

flow of lymph. In addition, the newly formed lymphatic vessels in the LNs were 

in vicinity with B cells, and B cell follicles co-localized with the expression of 

VEGF-A (Angeli et al., 2006). Therefore, B cells entering the activated LN were 



 

 17 

argued to respond to inflammation by secreting VEGF-A to stimulate 

lymphangiogenesis via VEGFR-2 and it was demonstrated that blocking VEGFR-

2 signaling significantly reduced lymphatic growth and DC trafficking in response 

to immunization (Angeli et al., 2006). 

 

Using a different immunization model, it was revealed that the remodeling of 

lymphatic vessels in the LNs first suffered a transient insufficiency in the function 

of the afferent lymphatic vessels after immunization, followed by recovery at a 

later time point (Liao and Ruddle, 2006). It is most likely due to the difference in 

immunization regimens that we did not observe the transient insufficiency of the 

lymphatic vessels in our previous work. B cells, while important in the early phase 

of lymphangiogenesis, were demonstrated to be dispensable in the latter stages of 

the process (Liao and Ruddle, 2006). Furthermore, the lymphotoxin β receptor 

(LTβR) was shown to be critical in the regulation and maintenance of HEVs in the 

LNs, and together with B cells, important in mediating HEVs and lymphatic 

vessels synchrony and cross talk after immunization (Liao and Ruddle, 2006). 

Besides B cells, DCs have also been reported to drive LN vascular growth 

(Webster et al., 2006). Endothelial cells in the LNs proliferate and increase in cell 

number upon immunization, and this was driven by an increase in VEGF-A levels 

in the LNs (Webster et al., 2006). Although DCs are unlikely to be the source of 

the increased VEGF-A, DCs promote LN vascular growth by upregulating VEGF-

A in a cell recruitment-dependent manner (Webster et al., 2006). Another study 

using a delayed-type hypersensitivity (DTH) response has also shown that 
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inflammatory lymphangiogenesis in LNs was independent of the presence of 

nodal B cells (Halin et al., 2007). In this chronic inflammation model, tissue 

inflammation induced both lymphangiogenesis and angiogenesis in the inflamed 

ears, but only specifically induced lymphangiogenesis and not angiogenesis in the 

draining LNs (Halin et al., 2007). Similar to the acute inflammation model in the 

previous studies, VEGF-A is required for LN lymphangiogenesis (Halin et al., 

2007). In contrast to our previous work, it was demonstrated that VEGF-A was 

only produced at the sites of inflammation and then transported to the draining 

LNs through the afferent lymphatic vessels, implying that LN lymphangiogenesis 

can be regulated by distantly produced lymphangiogenic factors on top of signals 

produced locally (Halin et al., 2007). This phenomenon, however, may be unique 

to chronic inflammation models. 

 

FRCs, stromal cells that are mainly found in the T cell zone and medullary cords 

of the LN, are important in defining the three-dimensional network of the LN. In 

addition to its structural role in the LN, FRC also plays a critical role in the 

migration and survival of lymphocytes in the LN (Buettner et al., 2010). 

Supporting the production of VEGF-A in LN itself, subsequent work has 

illustrated that FRCs are the principal VEGF-A-expressing cells both during 

homeostasis and upon LN stimulation (Chyou et al., 2008). While VEGF-A has 

been known to be important in driving LN endothelial cell proliferation upon 

stimulation, VEGF-A is also demonstrated to mediate homeostatic LN endothelial 

cells proliferation (Webster et al., 2006; Chyou et al., 2008). Additionally, LTβR 
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signaling was also suggested to play a role in LN lymphangiogenesis where it was 

shown that inhibiting LTβR signaling in the LN reduces VEGF-A levels as well 

as endothelial cell proliferation, while stimulation of the LTβR signaling on FRCs 

in vitro upregulates VEGF-A expression (Chyou et al., 2011). 

 

CD11b+ macrophages have also been shown to play a role in LN 

lymphangiogenesis by being the main mediators or sources of VEGF ligands 

including VEGF-A, VEGF-C and VEGF-D in the draining LNs as well as at the 

site of inflammation through a study using a bacterial pathogen-induced acute 

inflammation model in the skin (Kataru et al., 2009). The inflammatory 

lymphangiogenesis that occurs in the draining LNs, as well as in the inflamed 

skin, driven by the upregulation of VEGF ligands expression facilitates lymph 

flow, inflammatory cell migration and antigen clearance, and subsequently 

inflammation resolution (Kataru et al., 2009). In contrast to the previous studies 

that focused on the role of VEGF-A in LN lymphangiogenesis, results from the 

K14-VEGF-C transgenic mice, mice with overexpression of VEGF-C, indicated 

that increase VEGF-C levels was sufficient to promote LN lymphangiogenesis 

(Kataru et al., 2009). Similarly, a study using TNFα-transgenic mice as a model of 

chronic inflammatory arthritis also highlighted the critical role of VEGF-

C/VEFGR-3 signaling in LN lymphangiogenesis where inhibition of VEGFR-3 

specifically reduces inflammatory lymphangiogenesis in the draining LNs (Guo et 

al., 2009). Inhibition of VEGFR-2 in this model of chronic inflammatory arthritis 

also neutralizes LN lymphangiogenesis, however, it was suggested that VEGF-
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A/VEGFR-2 promotes lymphangiogenesis indirectly through its stimulatory 

effects on angiogenesis as well as its recruitment of VEGF-C-producing 

inflammatory cells (Guo et al., 2009). 

 

Reinforcing the role of B cell-derived VEGF-A in promoting LN 

lymphangiogenesis, creation of transgenic mice that express human VEGF-A 

specifically in B cells leads to an increase in lymphangiogenesis as well as HEVs 

expansion in the LN (Shrestha et al., 2010). Although increased 

lymphangiogenesis and angiogenesis were observed in the LNs of these mice, the 

B cell-derived VEGF-A suppresses certain aspects of the ensuing immune 

responses, consistent with the hypothesis that VEGF-A function to promote 

homeostasis (Shrestha et al., 2010). As macrophages were also observed to 

accumulate in these LNs, the role that VEGF-A plays in promoting 

lymphangiogenesis is either directly through the activation of VEGFR-2 or 

indirectly via the upregulation of VEGF-C by macrophages (Shrestha et al., 

2010). 

 

While most of the papers reviewed so far have focused on the pro-

lymphangiogenic effects of the residing cells of the LNs, a recent study by Kataru 

et al. (2011) examined the anti-lymphangiogenic effects of T cells on LN 

lymphangiogenesis. T cells were shown to play a role in the regulation of the LN 

lymphatic vessel network density both in the steady and inflammatory states, by 
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which the level of LN lymphangiogenesis is inversely proportional to the number 

of T cells (Kataru et al., 2011). LN lymphangiogenesis is kept in check by T cell 

mainly through the secretion of interferon-γ (IFN-γ), which suppresses lymphatic 

growth by downregulating the expression of LEC-specific genes, particularly 

Prox1 through the Janus kinase-signal transducer and activator of transcription 

(JAK-STAT) pathway (Kataru et al., 2011). Interestingly, a compensatory 

mechanism for antigen presentation to T cells was also implied through the 

increased recruitment of DCs to the LN via the increase in LN lymphangiogenesis 

in T-cell deficient LNs (Kataru et al., 2011). This suggested a feedback 

mechanism of T cells, alongside the pro-lymphangiogenic effects of the B cells, in 

regulating LN lymphangiogenesis to increase the chance of DCs presenting 

antigens to T cells. 

 

Moreover, the plasticity of the newly formed inflammation-induced LN lymphatic 

vessels is highlighted by their ability to regress on the resolution of inflammation 

(Kataru et al., 2009; Mumprecht et al., 2012). While the mechanisms behind this 

observation are unclear, it does draw attention to the dynamic nature of LN 

lymphangiogenesis, as well as underlining the regulation of inflammation by LN 

lymphangiogenesis along with the homeostatic maintenance of the LN lymphatic 

vessel network. Understanding the pro-lymphangiogenic and anti-

lymphangiogenic effects of the residing cells in the LN may provide us with a 

better account of how the LN maintain the balanced regulation of LN 

lymphangiogenesis, especially since the roles of the residing lymphocytes are of 
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utmost interest as they constitute the majority of the cells in the LN. Looking at 

the studies conducted so far in totality has proposed that the inflammatory LN 

lymphangiogenesis involves several intricate interactions between the LECs and 

the immune cells. Although the molecular mechanisms and signaling pathways 

involved in the growth of lymphatic vasculature during embryonic development 

have been relatively well recognized, those underlying inflammatory LN 

lymphangiogenesis are not as well characterized, mainly due to the discrepancies 

in the models examined, such as differences in the inflammatory stimuli used, 

disparities in the route of administration of the stimuli, and the varying time points 

adopted to determine lymphangiogenesis. Particularly of interest to us is the 

signaling pathway behind the B cells mediated LN lymphangiogenesis as well as 

the role(s) that the LTβR signaling pathway may play in regulating LN 

lymphangiogenesis. 

 

1.3.2.4 Lymphangiogenesis in tertiary lymphoid structures 

A study using a transgenic mice model mimicking Hashimoto’s thyroiditis, where 

intra-thyroidal lymphoid follicles form spontaneously, has shown that LTβR 

signaling was required for de novo inflammatory lymphangiogenesis in tertiary 

lymphoid structures (Furtado et al., 2007). Tertiary lymphoid structures are 

similar to secondary lymphoid structures with organized lymphocyte 

compartments and specialized lymphatic vasculature within these lymphoid 

aggregates (Furtado et al., 2007). In this model of de novo lymphangiogenesis in 

the thyroid, VEGFs are not required and instead of B cells, T cells were found to 
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be indispensable for the formation of new lymphatic vessels (Furtado et al., 2007). 

These findings suggest that B cells may only be required for the expansion of 

already existing lymphatic vessels, and T cells while having shown to negatively 

regulate LN lymphangiogenesis, may promote de novo lymphangiogenesis, at 

least in tertiary lymphoid structures. A follow up study by the same group has 

gone on to show that the recruitment of DCs into the tertiary lymphoid aggregates 

are critical in the formation of lymphatic vessels in these structures, and the 

expression of the LT ligands on DCs could be essential in the activation of the 

LTβR signaling necessary for de novo lymphangiogenesis (Muniz et al., 2011). 

These studies are interesting; although tertiary lymphoid structures are 

fundamentally different from LNs and other secondary lymphoid organs in that 

they only formed during inflammation, they have similarities in the organization 

of the structures and may provide insight into the regulation of the LN 

lymphangiogenesis process. 

 

1.4 Lymphotoxin β receptor signaling 

The term LT was first introduced in 1968 to depict a cytotoxic molecule produced 

by lymphocytes in vitro (Ruddle and Waksman, 1967; Granger and Williams, 

1968; Ruddle and Waksman, 1968). Subsequent purification and characterization 

of LTα, as well as TNFα, exposed the close relationship between these 2 

molecules (Aggarwal et al., 1984; 1985a; 1985b). LTα, along with TNFα, are the 

first described members of the TNF superfamily (Ruddle et al., 1992). Members 
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of this superfamily of cytokines have varied functions and are generally 

considered to be primary mediators of immune and inflammatory response. 

1.4.1 Lymphotoxins and their receptors 

LTα and TNFα were initially believed to have similar functions, as the secreted 

LTα3 homotrimers bind to the same TNF receptors (TNFRs) as TNFα (Smith et 

al., 1994). It was only with the discovery of the LTβ molecule (Browning et al., 

1993) and LTβR (Crowe et al., 1994) that changed this view. By itself LTβ does 

not appear to have any function, as it is solely tethered to the cell membrane as a 

type II transmembrane protein (Browning et al., 1993; 1995). When LTβ is co-

expressed with LTα, they predominantly form a membrane-anchored LTα1β2 

heterotrimer (Browning et al., 1993; 1995). A minor form, LTα2β1, can also be 

found on the cell membrane (Browning et al., 1995). LTα1β2 heterotrimers bind to 

a unique LTβR instead of TNF receptors (Ware et al., 1995). In addition, LTβR 

can also be signaled by a second ligand, LIGHT (lymphotoxin-like, exhibits 

inducible expression, and competes with herpes simplex virus [HSV] glycoprotein 

D for herpesvirus entry mediator [HVEM], a receptor expressed by T 

lymphocytes) (Mauri et al., 1998). Other than LTβR, LIGHT can also bind to 

HVEM or the TNF receptor superfamily Decoy Receptor 3 (DcR3) (Figure 1.4) 

(Mauri et al., 1998). The expression pattern of LTα1β2, LIGHT and LTβR hints 

that they are critical for immune cell communication (Table 1.1) (Schneider et al., 

2004; Ware, 2008). Particularly of interest, LTα1β2 is expressed on B and T cells 

while LTβR is expressed on stromal cells and the endothelial cells. 
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Figure 1.4: Ligands and receptors of the tumour-necrosis factor/lymphotoxin 
system. (Adapted by permission from Macmillan Publishers Ltd: Nat Rev 
Immunol (Gommerman and Browning, 2003), copyright 2003) Two fundamental 
pathways can be defined. The TNF pathway is activated by TNF or LTα-induced 
signalling through the two TNFRs. The LT/LIGHT system is composed of a 
typical TNF family receptor, LTβ receptor (LTβR), which binds to two ligands, 
the LTα1β2 heteromer and homotrimeric LIGHT. LIGHT also binds to two 
additional receptors in the TNF family, decoy receptor 3 (DCR3) and herpes-virus 
entry mediator (HVEM).  
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Table 1.1: Expression and regulation of lymphotoxin, LIGHT and their 
receptors. (Adapted by permission from Macmillan Publishers Ltd: Nat Rev 
Immunol (Gommerman and Browning, 2003), copyright 2003) 
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1.4.2 Lymphotoxin β receptor and the NF-κB signaling pathway 

The NF-κB family of transcription factors is involved in a variety of biological 

processes such as immune response, inflammation, cell survival or apoptosis and 

the development and maintenance of lymphoid organs (Weih and Caamaño, 2003; 

Bonizzi and Karin, 2004; Karin and Greten, 2005; Hayden and Ghosh, 2008; 

Vallabhapurapu and Karin, 2009). Similar to TNFR, LTβR signaling activates the 

canonical NF-κB signaling pathway, which is mainly involved in immune and 

inflammatory responses (Warzocha et al., 1995). In addition to the canonical 

pathway, LTβR signaling can also activate another NF-κB signaling cascade 

known as the noncanonical pathway (Figure 1.4) (Dejardin et al., 2002; 

Pomerantz and Baltimore, 2002; Müller and Siebenlist, 2003). The noncanonical 

NF-κB signaling pathway mainly regulates the development and maintenance of 

lymphoid organs, as well as B cell survival and maturation, DC activation and 

bone metabolism (Weih and Caamaño, 2003; Dejardin, 2006). 

 

1.4.3 Role of lymphotoxin β receptor signaling in the development & 

maintenance of lymphoid structures 

LTβR signaling pathway plays a vital role in the development of secondary 

lymphoid organs during embryogenesis as well as the maintenance of these 

organized structures (Fu and Chaplin, 1999; Mebius, 2003; Drayton et al., 2006; 

van de Pavert and Mebius, 2010). Deletion of LTα in the mice, as well as 

knocking out LTβ and LTβR in the mice, results in the deficiency in LN and 

Peyer’s patch formation, disruptive lymphoid architecture and absence of mature 
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FDCs (De Togni et al., 1994; Koni et al., 1997; Fütterer et al., 1998). While the 

development of the spleen is independent of LTβR signaling, this pathway has 

been described to be vital for the spleen’s lymphocyte organization, as well as for 

maintaining aspects of the marginal zone (Gommerman and Browning, 2003; 

Weih and Caamaño, 2003; McCarthy et al., 2006).).  

 

1.4.4 Lymphotoxin β receptor signaling in lymph node homeostasis and 

remodeling 

Studies have shown that LTβR signaling is required for maintaining homeostasis 

of lymphatic vessels and HEVs under steady state, as well as regulating their 

growth and functions in the LNs (Browning et al., 2005; Liao and Ruddle, 2006; 

Chyou et al., 2008). Supporting the contributions of LTβR signaling on vascular 

endothelial cells in LN remodeling, in vitro studies have shown that activation of 

LTβR on human dermal microvascular endothelial cells (HUVECs) and human 

dermal microvascular endothelial cells (HDMECs) could induce proinflammatory 

gene expression via both the canonical and noncanonical NF-κB pathways 

(Cavender et al., 1989; Madge et al., 2008). In addition to controlling the growth 

and functions of lymphatic vessels and HEVs directly during LN remodeling, 

LTβR signaling could exert its influence indirectly through the LTβR-expressing 

FRCs in the LNs via the production of VEGF-A (Chyou et al., 2008). However as 

discussed previously, the extent to which this mechanism regulates VEGF-A 

production in regulating lymphangiogenesis and angiogenesis is unclear due to the 

various sources producing VEGF-A during inflammation such as macrophages or 
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B cells for example, and whether their actions are due to any control by LTβR 

signaling.  

 

Another type of stromal cells present in the LNs known to be subjected to LTβR 

signaling regulation is the FDCs. Inhibition of the LTβR signaling leads to the 

loss of FDCs in lymphoid structures including LNs (Mackay and Browning, 

1998). In addition, LTα1β2 on B cells are necessary for FDCs development and 

chemokine (C-X-C motif) ligand 13 (CXCL13) production by FDCs, a B cell 

chemoattractant required for B cell homing to follicles in LNs (Ansel et al., 2000). 

Furthermore, CXCL13 induces B cells to upregulate the expression of LTα1β2, 

establishing a positive feedback loop likely important in maintaining homeostasis 

(Ansel et al., 2000). Considering the vital role of FDC networks in the formation 

of germinal centers and their functions in antigen presentation and B cell memory, 

the maintenance of FDCs by LTβR signaling may be critical for LN remodeling 

(Klaus et al., 1980; Tew et al., 1997). 

 

In contrast to our knowledge on the role of LTβR in the control of splenic 

architecture, the aspects of the LN microenvironment in mice that are dependent 

on LTβR are less defined, particularly in the context of LN remodeling during 

inflammation. Nevertheless, this is a relevant question as the organization of the 

LN is the central determinant of an efficient immune response and, conversely, 

alteration of this lymphoid environment may be at the origin of chronic 

inflammatory disorders {SainteMarie:2010hi}. 
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1.5 Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) are a family of structurally related zinc-

dependent endopeptidases involved in numerous diverse physiological and 

pathological processes such as angiogenesis, inflammation, cellular migration, 

cardiovascular, lung and rheumatic diseases and cancer (Nagase and Woessner, 

1999; Lemaître and D'Armiento, 2006; Vargová et al., 2012). The first member of 

this enzyme family was identified in 1962 as a collagenase secreted by cultured 

tissue fragments of tadpole tail undergoing metamorphosis (Gross and Lapiere, 

1962). Since their discovery, the main function of the MMPs has been thought to 

be in the regulation and remodeling of the ECM through the proteolytic 

degradation of the ECM components during pathophysiological events (Woessner, 

1991). However, subsequent studies have shown that MMPs can also act on non-

ECM substrates such as cytokines, chemokines, growth factors and growth factor-

binding proteins (McCawley and Matrisian, 2001; Parks et al., 2004; Klein and 

Bischoff, 2011). In the last decade, more comprehensive system-wide approaches 

by proteomics and degradomics, along with murine models have substantially 

widened our knowledge of the exceptionally differing and complicated role of 

MMPs in development and disease (Butler and Overall, 2009; Morrison et al., 

2009; Rodríguez et al., 2010). 

 

With the exception of the membrane-anchored membrane-type (MT)-MMPs, the 

majority of MMPs are extracellular proteinases excreted in their inactive 

proenzyme forms. The general structure of MMPs is made up of the following 
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conserved domains: a signal peptide for secretion or membrane insertion; a 

prodomain that keeps the enzyme in its inactive form by occupying the active site; 

a zinc containing catalytic domain; a hemopexin domain for substrate specificity; 

and a hinge region that connects the catalytic domain to the hemopexin domain 

(Nagase et al., 2006). There are variations in the structures of different MMPs, 

giving rise to a wide range of substrate specificity and distribution. Based on the 

assessment of substrate specificity, organization and homology of the domains, 

and cellular localization, MMPs are widely classified into six groups: 

collagenases, gelatinases, stromelysins, matrilysins, MT-MMPs and other types of 

MMPs (Table 1.2) (Lemaître and D'Armiento, 2006). 

 

1.5.1 Regulation of matrix metalloproteinase activity 

The regulation of MMP catalytic activity takes place at four different stages: 

transcription, proenzyme activation, compartmentalization and enzyme 

inactivation (Parks et al., 2004). Expression of MMPs is strictly controlled at the 

transcriptional level, both spatially and temporally by signaling pathways that can 

be triggered by cytokines, growth factors, cell-to-cell and cell-to-ECM 

interactions (Chakraborti et al., 2003; Lemaître and D'Armiento, 2006; Yan and 

Boyd, 2007). The NF-κB signaling pathway, the mitogen activated protein kinase 

(MAPK) pathway and the signal transducer and activators of transcription (STAT) 

pathway are some of the main signaling pathways involved in the regulation of 

MMP gene expression (Vincenti and Brinckerhoff, 2007; Yan and Boyd, 2007; 

Clark et al., 2008).  
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Table 1.2: Members of the matrix metalloproteinase family. (Adapted from Onkologie, 35(1-2), Vargova et al., 2012, copyright @ 
2012 Karger Publishers, Basel, Switzerland) 
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Activation of inactive proMMPs requires a disruption in the interaction between 

the prodomain and the catalytic site in a process known as the cysteine-switch 

mechanism (Van Wart and Birkedal-Hansen, 1990). While the MT-MMPs are 

already active at the cell membrane due to intracellular activation, most of the 

secreted MMPs are activated outside the cell (Sternlicht and Werb, 2001; Zucker 

et al., 2003). Extracellular activation of proMMPs can be induced either through a 

proteolytic cleavage of the prodomain by active MMPs or serine proteinases such 

as plasmin, or through a allosteric activation involving the displacement of the 

prodomain from the catalytic site (Ra and Parks, 2007; Hadler-Olsen et al., 2011). 

Some activated MMPs have also been reported to degrade plasminogen in a 

negative feedback mechanism to keep the level of MMP activity in control 

(Kessenbrock et al., 2010). 

 

Because the substrate specificity of the MMPS overlaps substantially, as well as 

the large number of substrates that each individual MMP can cleave, a regulatory 

mechanism needs to exist to localize and concentrate the proteases close to their 

target substrates. Secreted MMPs are known to localize on specific regions of the 

cell membrane and the ECM through binding to membrane-anchored proteins and 

receptors or cell-associated ECM molecules (Hadler-Olsen et al., 2011; Murphy 

and Nagase, 2011). This compartmentalization of MMPs is important in 

controlling the specificity of the proteolytic activity of the MMPs and, thus, 

determining their biological functions (Ra and Parks, 2007; Kessenbrock et al., 

2010). 



 

 34 

The proteolytic activities of activated MMPs can be inhibited by endogenous 

inhibitors such as the α2-macroglobulin and the tissue inhibitors of 

metalloproteinases (TIMPs) (Baker et al., 2002). While α2-macroglobulin is a 

general proteinase inhibitor with a broad spectrum of targets, TIMPs are specific 

inhibitors of MMPs (Sottrup-Jensen, 1989; Visse and Nagase, 2003). All active 

MMPs can be inhibited by TIMPs, although there is some difference in the 

inhibitory efficacy against different MMP members (Baker et al., 2002). In 

addition to MMP activity inhibition, TIMPs also have a role in the activation of 

proMMPs (Brew and Nagase, 2010). 

 

1.5.2 Role of matrix metalloproteinases in physiological & pathological 

conditions 

The ability of MMPs to cleave an extensive range of substrates including all the 

components of the ECM, cytokines, chemokines, growth factors and receptors, 

and other proteinases and proteinases inhibitors indicates that any alterations in 

the proteolytic activities of MMPs may result in numerous diseased states. The 

regulation of ECM homeostasis by MMPs activity is remarkably important 

because remodeling of the ECM is central to several physiological and 

pathological conditions (Mott and Werb, 2004). Degradation of the ECM by 

MMPs not only breaks down physical barrier, but also releases biologically active 

fragments and growth factors that influence cellular behavior (Schenk and 

Quaranta, 2003). 
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1.5.2.1 Matrix metalloproteinases in inflammation 

Increased levels of MMPs are observed in all inflammatory processes, signifying 

the role of MMPs as modulators of inflammation (Parks et al., 2004). Although 

matrix proteolysis is a characteristic of the inflammatory process, degradation of 

the ECM is not the sole function of MMPs in inflammation. MMPs can also 

activate or inactivate chemokines by proteolytic processing, and establish 

chemokine gradients influencing leukocyte migration (Van Lint and Libert, 2007; 

Manicone and McGuire, 2008). Furthermore, TNFα and IL-1β are two of the most 

important proinflammatory cytokines that require proteolytic cleavage by MMPs 

for activation (Gearing et al., 1994; Schönbeck et al., 1998). 

 

1.5.2.2 Matrix metalloproteinases in tumorigenesis 

Extensive studies on the role of MMPs in cancer have been carried out for more 

than 30 years since the link between cancer cell invasion and MMP-mediated 

ECM degradation was first established (Liotta et al., 1980). The ability of MMPs 

to cleave all the ECM components together with findings showing upregulation of 

MMPs in almost all types of human cancers, made MMPs promising targets for 

cancer therapy (Coussens et al., 2002). Indeed, ECM degradation and remodeling 

is one of the most important roles of MMPs in cancer, leading to tumor cell 

invasion and metastasis (Kessenbrock et al., 2010). Several MMP members have 

been implicated in this process, with MMP-2, MMP-9 and MT1-MMP considered 

to be among the most critical (Pytliak et al., 2012). However, it is now clear that 

the role of MMPs in cancer is more complex than just ECM degradation. MMPs 
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can also promote cancer progression by regulating signaling pathways that control 

cell growth, apoptosis, inflammation and angiogenesis (Egeblad and Werb, 2002; 

Kessenbrock et al., 2010; Hua et al., 2011). Furthermore, MMP members have 

different roles in tumorigenesis. While the majority of MMPs promote cancer 

progression, some MMPs are inhibitory, possessing tumor-suppressing properties 

in a context-dependent manner (López-Otín and Matrisian, 2007; Decock et al., 

2011). 

 

1.5.2.3 Matrix metalloproteinases in angiogenesis 

Angiogenesis is a process that is dependent on the BM and the remodeling of the 

ECM (Kalluri, 2003). For new blood vessels to sprout from existing vasculature, 

endothelial cells have to first break through the surrounding BM and ECM and 

migrate towards an angiogenic stimulus. This is followed by proliferation of the 

endothelial cells and the subsequent reorganization of the new outgrowth of 

endothelial cells into a tubular structure (Auerbach et al., 2003; Adams and 

Alitalo, 2007).  

 

MMPs play an important role in angiogenesis and the contributions of several 

MMPs, specifically the gelatinases MMP-2 and MMP-9, and MT1-MMP have 

been extensively studied (Handsley and Edwards, 2005; van Hinsbergh et al., 

2006).While proteolytic cleavage of the BM and ECM components by MMPs 

remove the physical constraint imposed on the sprouting vessels, the process may 
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also release growth factors such as VEGF-A, FGF-2 and transforming growth 

factor (TGF)-β that can promote angiogenesis, or generate bioactive fragments 

that inhibit angiogenesis (Rundhaug, 2005; van Hinsbergh and Koolwijk, 2008; 

Ribatti, 2009). For instance, angiogenesis can be promoted by MMP-9 and MMP-

13 through mediating the release of sequestered VEGF-A from ECM (Bergers et 

al., 2000; Lederle et al., 2010). Cleavage of type XVII collagen by MMP-3, 

MMP-7, MMP-9, MMP-13 and MMP-20, and degradation of plasminogen by a 

range of MMPs including MMP-3, MMP-7, MMP-9 and MMP-12 can form 

endostatin and angiostatin respectively, products that suppress angiogenesis 

(Cornelius et al., 1998; Heljasvaara et al., 2005). In addition, MMPs can also 

increase the bioavailability of pro-angiogenic factors such as VEGF-A, whose 

expression is increased by MT1-MMP by forming a complex with VEGFR-2 and 

Src (Eisenach et al., 2010). On the other hand, MMPs can inhibit angiogenesis by 

restricting cell receptor signaling through the cleavage of FGF receptor (FGFR)-1 

by MMP-2 (Levi et al., 1996). As a whole, MMPs are undeniably essential for 

angiogenesis. Due to the opposing effects of MMPs on angiogenesis, the outcome 

may be dependent on the spatial and temporal availability of specific MMPs and 

their substrates. 

 

1.5.2.4 Matrix metalloproteinases in lymphangiogenesis 

As lymphangiogenesis is a process fairly similar to angiogenesis, it is likely that 

MMPs also have a critical role in the sprouting and remodeling of the lymphatic 

vessels. While blood vessels are enclosed by a continuous BM, lymphatic vessels, 
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as described above, are only partially covered by BM and interact closely with the 

ECM through anchoring filaments (Paupert et al., 2011) (Figure 1.1). The 

resulting difference in the ECM and BM components that the two vasculatures 

associate with suggests that the MMPs involved in each sprouting process may be 

different. 

 

The contributions of MMPs during lymphangiogenesis to date are not as well 

characterized compared to angiogenesis. Among the MMP members, MMP-2, 

MMP-9 and MT1-MMP are known to be produced by LECs (Nakamura et al., 

2004; Bruyère et al., 2008), and the use of a broad-spectrum inhibitor that blocks 

the activities of MMP-1, MMP-2, MMP-3, MMP-9 and MMP-13 is able to inhibit 

lymphangiogenesis-related properties of LECs in culture, as well as lymph node 

metastasis (Nakamura et al., 2004). Several studies have also linked 

lymphangiogenesis and lymph node metastasis with elevated expression of MMPs 

such as MMP-2, MMP-3 and MMP-9 (Langenskiöld et al., 2005; Ueda et al., 

2005; Işlekel et al., 2007; Yoo et al., 2011). The role of MMP-2 in 

lymphangiogenesis is highlighted in a study of lymphangiogenesis through a 

model of adult skin regeneration, where the increased expression of MMP-2 in the 

regenerating region correlates with the onset of lymphangiogenesis (Rutkowski et 

al., 2006). Furthermore, examination of lymphatic regeneration using transgenic 

mice lacking MMP-9 suggests that MMP-9 is not needed for lymphangiogenesis 

in the above model (Rutkowski et al., 2006). Blocking of MMP-2 by a synthetic 

inhibitor reduces the tube-forming ability of LECs in the tube formation assay 
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(Matsuo et al., 2007). Thoracic duct rings derived from MMP-2 but not MMP-9 

deficient mice also showed impaired lymphangiogenesis in a three-dimensional 

lymphatic ring assay (Bruyère and Noël, 2010). More specifically, a recent study 

using various in vitro and in vivo models has demonstrated that MMP-2 

participates in lymphangiogenesis during physiological and pathological 

conditions by degrading the interstitial collagen and regulating lymphatic vessel 

branching (Detry et al., 2012). 

 

Studies so far have focused on the role of MMP-2 as a critical mediator of 

lymphangiogenesis. However, taking into account the complex role of MMPs in 

the modulation of angiogenesis, it is plausible that other MMP members may also 

contribute to lymphangiogenesis either positively or negatively. For instance, the 

regulation of VEGF-A bioavailability from the ECM by MMP-9 and MMP-13 

may also promote lymphangiogenesis (Bergers et al., 2000; Lederle et al., 2010). 

Indeed, the role of MMPs in lymphangiogenesis is still at its infancy and further 

studies are needed to elucidate the aspects of lymphangiogenesis that are MMPs 

dependent. 

 

1.6 Aims & rationale 

Most studies to date on inflammatory lymphangiogenesis have been focused on 

the inflamed peripheral tissues. However, the remodeling of the lymphatic vessels 

in the LNs is an important question as the organization of the LN is important for 
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an efficient immune response as well as in the regulation of the inflammatory 

response. In this study, we investigated the role of B cells in the induction of LN 

lymphangiogensis, whether they regulate lymphangiogenesis directly or 

indirectly. Because B cells express LTα1β2, we hypothesized that B cells may 

regulate lymphangiogenesis through LTβR signaling. Thus we also examined the 

involvement of LTβR signaling in the remodeling of the LN and 

lymphangiogenesis in response to an inflammatory stimulus, and how LTβR 

signaling is linked to B cells in driving lymphangiogenesis. 
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Chapter 2: Material & Methods
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2.1 Mice 

7-13-week old CD45.2, CD45.1, µMT and TNFαKO transgenic female mice on a 

C57BL/6 background were obtained from The Jackson Laboratory (Bar Harbor, 

ME). Mice were maintained under specific pathogen-free conditions with access 

to food and water within the National University of Singapore’s satellite Animal 

Housing Unit (NUS). All experiments were performed under protocols approved 

by the National University of Singapore and Biological Resource Center 

Institutional Animal Care and Use Committee. 

 

2.2 Induction of lymph node hypertrophy by immunization with complete 

Freund’s adjuvant/keyhole limpet hemocyanin 

Mice were anesthetized with intra-peritoneal injection of ketamine. The amount of 

ketamine used is determined by the weight of each mice. Equal volumes of 

complete Freund’s adjuvant (CFA) and sterile PBS containing model antigen 

keyhole limpet hemocyanin (KLH) (2.5 mg/ml) were emulsified, and 20 µl of this 

emulsion was injected subcutaneously into the front and rear footpads of the mice 

that drain to the brachial, axillary and popliteal LNs respectively. PBS was used as 

a control. The mice were then sacrificed at various time points after immunization 

by CO2 inhalation. 
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2.3 Inhibition of LTβR signaling in the mice 

2.3.1 Preventive inhibition 

Signaling by LTβR was blocked using the LTβRIg fusion protein (Biogen, a kind 

gift from Jeffrey L. Browning). After the mice were sedated with intra-peritoneal 

injection of ketamine, 15 µg of LTβRIg (15 µl in PBS) was injected 

subcutaneously into the front and rear footpads of the mice 1 day before 

immunization with CFA/KLH. Human IgG (huIgG) (Sigma) was used as a 

control. 

 

2.3.2 Therapeutic inhibition 

For short-term inhibition of LTβR signaling (3 days), 15 µg of LTβRIg was 

injected subcutaneously into the front and rear footpads of the mice 4 days after 

immunization with CFA/KLH. For long-term inhibition of LTβR signaling (>1 

week), mice were given an intra-peritoneal injection of 100 µg of LTβRIg 4 days 

after CFA/KLH immunization. Likewise, huIgG was used as a control. 

 

2.4 Stimulation of the LTβR signaling and the TNFR signaling pathways 

with LTβR agonist and TNFR agonist 

Signaling by LTβR and TNFR were stimulated with anti-mouse LTβR antibody 

(eBioscience) and anti-mouse CD120a (TNFR type I/p55) antibody (BioLegend) 

respectively. When individual signaling pathway was stimulated, 20 µl of the 

respective antibody was injected subcutaneously into the front and rear footpads 
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of the mice twice with a 2 day interval. The mice were then sacrificed four days 

after the first administration of the agonist antibody. For priming of the LTβR by 

TNFR activation, 20 µl of the anti-mouse TNFR antibody was injected 

subcutaneously into the mice footpads a day before repeating the protocol to 

stimulate LTβR as described above. For activation of the LTβR signaling pathway 

in µMT mice along with CFA/KLH immunization, anti-mouse LTβR antibody 

was administered a day before and a day after immunization as described above. 

PBS was used as a control for these experiments. 

 

2.5 Subcutaneous application of MMP-13 inhibitor 

To block MMP-13 protease activity in the LNs, the MMP-13 inhibitor CL 82198 

hydrochloride (Tocris Bioscience) was used. 10 µl of PBS was added to 10 µl of 

CL 82198 (75 mM in dimethyl sulfoxide (DMSO)) and 20 µl of this mixture was 

injected subcutaneously into the front and rear footpads of the mice after the mice 

were sedated with ketamine and before immunization with CFA/KLH as 

described above. For control, a mixture containing equal volumes of PBS and 

DMSO was used. Administration of CL 82198 was repeated daily until the mice 

was sacrificed according to the various time points of the study. 

 

2.6 In vivo-labeling of mouse cells with 5-bromo-2'-deoxyuridine (BrdU) 

In vivo BrdU labeling of mouse cells were carried out with the BD PharmingenTM 

BrdU Flow Kit (BD Biosiences) according to the manufacturer’s instructions. In 
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brief, mice were subjected to intra-peritoneal injection of 200 µl of BrdU solution 

(10 mg/ml) on the day of CFA/KLH immunization.  

 

2.7 Transplantation of bone marrow cells 

2.7.1 Generation of WT/WT and WT/µMT mice 

Six-week-old recipient WT and µMT mice were lethally irradiated with 2 doses of 

500 rad 2 hr apart and injected intravenously with a total of 10 × 106 bone marrow 

cells. Two experimental groups of five mice each were designed: WT that 

received WT BM (WT/WT) and µMT that received WT BM (WT/µMT). 

 

2.7.2 Generation of WT/µMT and LTα/µMT mice 

Six-week-old recipient µMT mice were lethally irradiated with 2 doses of 500 rad 

2 hr apart and injected intravenously with a total of 10 × 106 BM cells. Two 

experimental groups of five mice each were designed: µMT that received a mix of 

25% WT BM and 75% µMT BM (WT/µMT) or 25% LTαKO BM and 75% µMT 

BM (LTα/µMT). Six weeks after transplantation, mice were treated with 

CFA/KLH as described above. Control mice included non-transplanted WT and 

µMT mice. 
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2.8 Dendritic Cell migration assay 

The area on either side of the dorsal skin of the mice that drain to the brachial and 

axillary LNs was shaved. Fluorescein-5-isothiocyanate (FITC) (Sigma) (8 mg/ml) 

was first dissolved in equal volumes of acetone (Sigma) and dibutyl phthalate 

(Sigma) and applied in 25 µl aliquots with a pipette tip onto the shaved skin 3 

days after CFA/KLH injection. The mice were sacrificed 18 hr later and cell 

suspensions of the total LN cells were prepared as described above. Flow 

cytometry was then carried out. To quantify the migration of DCs induced by 

FITC application, the total number of FITC+CD11c+ DCs cells per LN was 

calculated by multiplying the percentage of FITC+CD11c+ cells by the total 

number of LN cells. 

 

2.9 Cells isolation 

2.9.1 Isolation of cells from lymph nodes 

Isolation of cells from the LNs including LECs and BECs were performed by 

adopting a formerly described method (Halin et al., 2007). LNs were digested 

without any manipulations at 37 °C in 4 ml of Ca2+/Mg2+ free Hank’s Balanced 

Salt Solution (HBSS) (Gibco) containing collagenase IV (4 mg/ml) (Gibco) with 

gentle agitation. After 45 min, EDTA was added to the HBSS medium till a final 

concentration of 10 mM for another 5 min of incubation. The cell suspension was 

then collected after passing the digested tissue through a 70-µm mesh strainer 4 

times. Total live cell number was evaluated with a hemacytometer after Trypan 

blue staining. 
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2.9.2 Isolation of dendritic cells from lymph nodes (Dendritic cell migration 

assay) 

Cell suspensions of the total LN cells were prepared by incubating the pooled 

brachial and axillary LNs after teasing at 37° C in Ca2+/Mg2+-free HBSS 

containing 400 U/ml collagenase D (Roche Diagnostics) for 25 min, and another 5 

min following the addition of 10 mM EDTA. Single cell suspensions were 

collected after gently pressing the digested tissue through a 70-µm mesh strainer. 

Assessment of the total live cell number was done using a hemacytometer after 

Trypan blue staining. 

 

2.9.3 Isolation of B cells from lymph nodes 

Digestion of the LNs was carried out with collagenase D as described above to 

obtain single cell suspensions. B cells were then isolated from single cell 

suspensions by magnetic-activated cell sorting (MACS) using CD19 MicroBeads 

(Miltenyi Biotec) magnetic labeling and LS Columns (Miltenyi Biotec) for 

magnetic separation. Isolation was done according to manufacturer’s instructions. 

Two fractions were obtained after MACS: the positive B cell fraction and the 

negative fraction. The purity of the fractions was accessed by flow cytometry. 

 

2.10 Flow cytometry 

All the antibodies used in this study are listed in Appendix 1. 
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2.10.1 Immunofluorescence staining of cell surface antigens for flow 

cytometric analysis 

Specific unconjugated or fluorochrome-conjugated primary antibodies and 

appropriate isotype control antibodies were used to stain the cells in fluorescence-

activated cell sorting (FACS) buffer (1% normal mouse serum, 1% normal rat 

serum, 0.5% BSA, 2 mM EDTA in PBS, pH 7.4). Cells were incubated with 

antibodies for 20 min on ice. Appropriate flurochrome-conjugated secondary 

antibodies were added to the cells for staining where necessary and the cells were 

incubated for 20 min on ice. When fixation was required, 1% formalin was used 

to fix the cells. 

 

2.10.2 Intracellular staining of cells for flow cytometric analysis of LEC 

proliferation 

Mice were pulsed with BrdU as described above. The immunofluorescence 

staining of incorporated BrdU in the cells were performed with the BD 

PharmingenTM BrdU Flow Kit according to the manufacturer’s instructions. 

Briefly, cells were first stained for surface antigens as described above. BD 

Cytofix/Cytoperm Buffer were then added to the cells and incubated for 15 min at 

room temperature to fix and permeabilize the cells. The cells were washed with 

BD Perm/Wash Buffer and incubated with BD Cytoperm Plus Buffer for 10 min 

on ice before washing again with BD Perm/Wash Buffer. Re-fixation of the cells 

was carried out with the addition of BD Cytofix/Cytoperm Buffer and incubating 

for 5 min at room temperature. After washing the cells with BD Perm/Wash 
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Buffer, the cells were treated with DNase and subjected to incubation for 1 hr at 

37 oC to expose incorporated BrdU. This was followed by a washing step with BD 

Perm/Wash Buffer. Staining of BrdU was carried out by resuspending the cells in 

BD Perm/Wash Buffer containing diluted APC-conjugated anti-BrdU antibody 

and incubated for 20 min at room temperature. The cells were then washed with 

BD Perm/Wash Buffer and resuspended for flow cytometric analysis. 

 

2.11 Immunofluorescence analysis 

All the antibodies used in this study are listed in Appendix 2. 

 

LNs were either freshly embedded in Tissue-Tek optimum cutting temperature 

compound (Sakura) and frozen on dry ice immediately after extraction or fixed 

overnight in 2% paraformaldehyde/30% sucrose solution at 4°C. The 

paraformaldehyde-fixed LNs were then washed with 30% sucrose solution before 

embedding in the above-mentioned tissue freezing medium and snap frozen. 

Cryostat sections (6-8 µm) from the LNs were cut and mounted on non-coated 

polylysine-coated slides and stored at -20°C. Before carrying out 

immunofluorescence staining, the slides were allowed to thaw and dry at room 

temperature for at least 30 min. The LNs sections were then fixed in ice-cold 

acetone for 15 min. Prior to the actual staining, LN sections were blocked with 

1% BSA in PBS for 10 min to minimize non-specific antibody binding. If 

biotinylated primary antibody was used in the staining, the Avidin/Biotin 
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Blocking Kit (Vector Laboratories) was employed according to the manufactuer’s 

instructions before the addition of the primary antibody to inhibit the endogenous 

biotin, biotin receptors, and avidin binding sites present in the tissues. Primary 

antibodies diluted in PBS containing 10% normal mouse were added to the LN 

sections and incubated in a humidified chamber for 1 hr at room temperature or 

overnight at 4°C. The slides were then washed 3 times for 5 min each in PBS. LN 

sections were then incubated for 1 hr in a humidified chamber in the dark with 

secondary antibodies diluted in PBS containing 10% normal mouse. The slides 

were again washed 3 times for 5 min each in PBS. After the last wash, the slides 

were mounted with a cover slip using the Dako Fluorescent mounting medium 

(Dako Cytomation). Images were taken with the Carl Zeiss Axio Imager.Z1 and 

Axiocam HR microscope camera. 

 

2.12 Polymerase chain reaction (PCR) 

2.12.1 Total RNA extraction from mammalian cells and tissues 

Total RNA was isolated from LNs, isolated B and T cells, monolayer SV-LECs or 

RAW 246.7 cells using a combination of TRIzol® Reagent (Invitrogen), MaXtract 

High Density tubes (Qiagen) and NucleoSpin® RNA II kit (Macherey-Nagel). 

Briefly, the homogenized samples were incubated in TRIzol® Reagent for 5 min at 

room temperature to allow complete dissociation of the nucleoprotein complex 

before chloroform (20% volume of TRIzol® Reagent) was added to the lysates 

and subjected to vigorous shaking. The contents were then transferred to the 

MaXtract High Density tubes and centrifuged for 12000 x g for 15 min at 4°C. 
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The separated aqueous phase was mixed with an equal volume of 70% ethanol 

and transferred to the NucleoSpin® RNA II Column from the NucleoSpin® RNA 

II kit for purification and DNA digestion according to the manufacturer’s 

instructions. The concentration of the total RNA extracted was quantified using 

the NanoDropTM 1000 Spectrophotometer (Thermo Scientific). 

 

2.12.2 Reverse transcription 

Reverse transcription was performed with SuperScriptTM III First-Strand 

Synthesis System for RT-PCR (Invitrogen) according to the manufacturer’s 

instructions. Briefly, 2 µg of total RNA was mixed with 1 µl of 50 µM oligo(dT)20 

and 1 µl of 50 ng random hexamers before topping up to 10 µl with DEPC-treated 

water. The mixture was incubated at 65°C for for 5 min then placed on ice for at 

least 1 min. 10 µl of cDNA Synthesis Mix, consisting of 2 µl of 10X RT buffer, 4 

µl of 25 mM MgCl2, 2 µl of 0.1 M DTT, 1 µl of RNaseOUTTM (40 U/µl) and 1 µl 

of SuperScriptTM III RT (200 U/µl), was added to each RNA/primer mixture to a 

total volume of 20 µl. The reaction was incubated for 10 min at 25°C followed by 

50 min at 50°C and finally terminated at 85°C for 5 min and chilled on ice. 1 µl of 

RNase H was added to each tube and incubated for 20 min at 37°C. An aliquot of 

the reaction was used for PCR. 
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2.12.3 Semi-quantitative PCR 

The resulting cDNA from the reverse transcription reaction (2 µl) was used in a 25 

µl PCR reaction containing GoTaq Flexi DNA Polymerase (Promega) and 400 

nM of primers. Primer squences are listed in Appendix 3. PCR amplification was 

performed by denaturation at 95°C for 30 s, annealing at 55°C for 45 s, and 

extension at 72°C for 1 min,  for 30 or 35 cycles, on a 2720 Thermal Cycler 

(Applied Biosystems). 20 µl of each PCR products was separated by 

electrophoresis on a 1.5% (w/v) agarose gel supplemented with 1 µg/ml ethidium 

bromide in TAE buffer (40 mM Tris-acetate and 1mM EDTA). DNA bands were 

visualized under ultraviolet illumination. The integrity and input of CDNA was 

confirmed using β-actin. 

 

2.12.4 Quantitative real-time PCR (qPCR)  

qPCR was carried out on a 7500 Real-Time PCR System (Applied Biosystems). 

Reactions were performed in a 20 µl final volume containing 2 µl of cDNA, 200 

nM of primers and iTaqTM SYBR® Green Supermix With ROX (Bio-Rad). Primer 

sequences are listed in Appendix 4. Amplification and data collection were 

completed as per manufacturer’s instruction. Briefly, 40 cycles of amplication 

were performed with a denaturation at 95°C for 30 s, annealing at 55°C for 1 min, 

and extension at 72°C for 1 min. GAPDH was used as a housekeeping gene to 

normalize the amount of mRNA. The relative expression of each sample was 

caluculated by the 2-∆∆CT method. 
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2.13 Protein expression & analysis 

2.13.1 BCA protein assay 

Protein concentration was determined by the BCA protein assay. 10 µl of each 

sample together with standard was pipetted into a 96-well flat-bottom plate with a 

working protein range of 25-2000 µg/ml. Preparation of the BCA working reagent 

was done by mixing BCA Reagent A with BCA Reagent B in a 50:1 ratio. 200 µl 

of the resulting BCA working reagent was then added to each well and mixed 

thoroughly on a plate shaker. Incubation of the plate was carried out at 37°C for 

30 min. Absorbance was measured from 540-590 nm on a spectrophotometer 

plate reader (Biorad). A standard curve plotted with the standards (average 

corrected absorbance measurement of each standard against its concentration in 

µg/ml) was used to determine the protein concentration of the samples. 

 

2.13.2 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) 

Protein samples were prepared by adding 2x Lammli’s sample buffer (100mM 

Tris-HCl pH 6.8, 4% SDS, 0.2% (w/v) bromophenol blue, 20% (v/v) glycerol and 

10% (v/v) ß-mercaptoethanol) and heated at 95°C for 5 min before loading onto 

resolving gels of 10% (w/v) polyacrylamide and 5%(w/v) polyacrylamide 

stacking gels cast between 2 glass plates (Bio-rad). SDS-PAGE was carried out 

with the vertical slab gel unit, Mini-PROTEAN III Cell (Bi0-Rad). The PageRuler 

Plus Prestained Protein Ladder (Fermentas) was used as the protein marker. Gel 

electrophoresis was carried out in running buffer (25 mM Tris-HCl pH 8.3, 192 
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mM glycine and 0.1% SDS) at a constant voltage of 80-100 V for 2-3 hr at room 

temperature until the proteins were well separated. 

 

2.13.3 Transfer of proteins 

The separated proteins in the SDS-PAGE gels were electrophoretically transferred 

to nitrocellulose membranes (Bio-Rad) using the Mini Trans-Blot Cell (Bio-Rad). 

Transfer buffer (25 mM Tris-HCl pH 8.3, 192 mM glycine and 0.1% SDS) was 

cooled to 4°C and the gels were allowed to equilibrate for 5 min in the ice-cold 

buffer prior to the transfer. The transfer was performed overnight at 4°C and at a 

constant voltage of 20 V. 

 

2.13.4 Immunoblotting 

All the antibodies used in this study are listed in Appendix 5. 

 

The membranes were blocked in blocking buffer (Tris-buffered saline (TBS) with 

0.1% Tween 20 and 5% skim milk) at room temperature for 1 hr. After washing 

thrice with TBST (TBS with 0.1% Tween 20) at 10 min per wash, the membranes 

were incubated with the primary antibody of interest in blocking buffer overnight 

at 4°C. As above, the membranes were washed 3 times with TBST before 

incubating for 1 hour at room temperature with a horseradish peroxidase (HRP)-

conjugated secondary antibody in TBST at the dilutions recommended by the 
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manufacturer. The membranes were again washed 3 times with TBST before they 

were subjected to chemiluminescence detection with the SuperSignal West Pico 

Chemiluminescent Substrate (Thermo Scientific) and visualization of the signal 

on ChemiDoc XRS (Bio-rad). 

 

2.13.5 Zymography assay 

Resolving gels of 10% (w/v) polyacrylamide and 1% (w/v) gelatin and 5%(w/v) 

polyacrylamide stacking gels were cast. Protein samples were prepared by adding 

2X Lammli’s sample buffer (100mM Tris-HCl pH 6.8, 4% SDS, 0.2% (w/v) 

bromophenol blue, 20% (v/v) glycerol) without the addition of reducing agent 

such as ß-mercaptoethanol and without boiling. The PageRuler Plus Prestained 

Protein Ladder was used as the molecular weight standards. . Gel electrophoresis 

was performed in the Mini-PROTEAN III Cell with running buffer (25 mM Tris-

HCl pH 8.3, 192 mM glycine and 0.1% SDS) at a constant voltage of 125 V for 

~2 hr at room temperature until the bromophenol blue tracking dye reached the 

bottom of the gel. The gel was then removed from the cassette and washed twice 

for 60 min in 100 ml of renaturing solution (2.5% Triton X-100 pH 8.0) at room 

temperature with gentle agitation. 100 ml of development buffer (0.05 M Tris–

HCl pH 8.0, 5 mM CaCl2) was added to the gel and agitated for 15 min at room 

temperature before transferring to a 37°C incubator for 16-20 hr.  The gel was 

stained in staining solution (0.1% Coomassie Brilliant Blue R-250 (w/v) in 

fixing/destaining solution) for at least 4 hr until the gel was uniformly dark blue 

and destained in fixing/destaining solution (45% (v/v) methanol, 10% (v/v) acetic 
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acid and 45% (v/v) water) until the bands were clearly visible against the blue 

background. Quantification of the intensity of the proteinase bands was performed 

using ImageJ (version 1.43) (National Institute of Health [NIH]). 

 

2.14 Cell Culture 

2.14.1 SV-LEC 

SV-LEC, a LEC line isolated from mesenteric adventitia from mice expressing 

temperature-sensitive SV40 large T antigen, was obtained from J. Steven 

Alexander (Louisiana State University Health Sciences Center) as a kind gift 

(Ando et al., 2005). High glucose (4500mg/L) Dulbecco’s modified Eagle’s 

medium (DMEM) (Gibco) enriched with 10% fetal bovine serum (FBS) 

(Hyclone) and 1% Penicillin-Streptomycin antibiotics (Invitrogen) was used as the 

culture medium to maintain the cells. SV-LECs were grown in a 37oC incubator at 

90% humidity level supplied with 5% CO2. Confluent monolayers were sub-

cultured weekly at 1:4 dilution. PBS was used to rinse the cells before a buffered, 

Ca2+/Mg2+-free salt solution containing 0.5% (w/v) trypsin and 0.2% (w/v) EDTA 

was used to dissociate adherent cells from tissue culture flasks. Dissociated cells 

were subsequently washed down by DMEM and collected by centrifugation at 

300 x g for 5 min. Following re-suspension in fresh culture medium, SV-LECs 

were seeded in new culture flasks. 
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2.14.2 RAW 264.7 cells 

The RAW 264.7, a macrophage-like, Abelson leukemia virus transformed cell line 

from BALB/c mice was obtained from the American Type Culture Collection 

(ATCC). Roswell Park Memorial Institute (RPMI)-1640 medium with L-

glutamine and sodium bicarbonate (Sigma) enriched with 10% FBS and 1% 

Penicillin-Streptomycin antibiotics was used to maintain the cells. RAW 264.7 

cells were grown in a 37oC incubator at 90% humidity level supplied with 5% 

CO2. Culture medium was replaced every 2 to 3 days. Subcultures of RAW 264.7 

cells were prepared by scraping. Culture medium was removed except for a small 

amount (leave 10 ml of culture medium for a 75 cm2 culture vessel) and cells were 

dislodged from the flask with a cell scraper. Appropriate aliquots of the 

suspension were then seeded into new culture vessels in a ratio of 1:4. 

 

2.14.3 HMVEC-dLy cells 

Primary human adult lymphatic microvascular endothelial cells (HMVEC-dLyAd-

Der Lym Endo Cells) were obtained from Lonza Walkersville (Walkersville, 

MD). Endothelial growth medium 2 microvascular (EGM-2 MV) Bulletkit 

(Lonza) consisting of various growth supplements were used to maintain the cells. 

Thawing of the cryopreserved HMVEC-dLy cells, the initiation of the culture 

process and the general maintenance of the cells including subculturing were done 

according to the instructions provided by Lonza Walkersville. Briefly, HMVEC-

dLy cells were seeded at the recommended seeding density of 5000 cells/cm2 and 

incubated at 37oC and 5% CO2. Medium was changed every 2 days and HMVEC-
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dLy were sub-cultured when they reached 80% confluency and then plated at a 

1:4 ratio in fresh medium. HMVEC-dLy cells were used for a maximum of five 

passages. 

 

2.15 Tube formation assay 

The basement membrane extract used for the tube formation assay is BD 

Matrigel™ Basement Membrane Matrix, Growth Factor Reduced (BD 

Biosciences). A day before the start of the assay, cells were split using procedures 

as described above such that they would be ~80% confluent in 24 hr and matrigel, 

originally kept in the -20oC freezer were allowed to thaw in ice in a refrigerator at 

4oC. For experiments using MMP-13 silenced SV-LECs, the cells were allowed to 

be transfected with siRNA for 72 hr. On the day of the assay, 100 µl of fully 

thawed Matrigel was loaded per well of a 96-well flat-bottom plate and 

centrifuged at 300 x g for 10 min at 4oC to remove any air bubbles trapped in the 

wells. The plate was then transferred to a cell culture incubator and incubated at 

37oC for 30 min to allow the Matrigel to gel. The ~80% confluent cells were 

harvested as described above to make a single cell suspension and cell number 

was determined using a hemacytometer after Trypan blue staining. The cells were 

then resuspended in their respective basal culture media at a concentration of 3 x 

105 cells/ml. 1 ml of the single cell suspension was then loaded into various tubes 

corresponding to the number of conditions to be tested and centrifuged at 300 x g 

for 10 min. 1 ml of corresponding serum-free media containing basal media, 

MMP inhibitors, anti-mouse LTβR antibody (eBioscience) or recombinant TNFα 
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(R & D systems) and their respective control media (containing PBS or DMSO) 

were then added to the cell pellets to make single cell suspensions. The following 

MMP inhibitors were used and applied in the mentioned concentrations GM6001 

(100 µM) (Calbiochem, Merck), MMP-9/MMP-13 inhibitor (100 µM) 

(Calbiochem, Merck) and CL 82198 (75 µM). 100 µl ( 3 x 104  cells) of the single 

cell suspensions was added gently to each well of the 96-well plate on top of the 

gelled Matrigel. The plate was then incubated at 37°C, 5% CO2 in the cell culture 

incubator until the desired result was achieved (6-18 hr). Images were then taken 

using a Canon PowerShot G6 mounted on a Carl Zeiss Axiovert 40 CFL. For live-

cell imaging of the tube formation process, images were taken for a period of 3 hr 

with a 90 s interval between each image using the Olympus Confocal Laser 

Scanning Biological Microscope FV1000 in a live-cell imaging chamber. 

Quantification of tube formation was performed in a blinded fashion using a 

commercial imaging service (Wimasis GmbH, Munich, Germany). 

 

2.15 Scratch wound assay 

SV-LECs were first allowed to grow to confluence on 6-well plates. Following 

starvation in serum-free DMEM overnight, a scratch was made across each full 

well diameter with a p200 pipette tip. Media were then replaced with DMEM (1% 

FBS) with CL 82198 (75 µM) or DMSO as control. The wounded monolayers 

were then photographed immediately after scratching before incubating at 37°C, 

5% CO2 in the cell culture incubator until the desired outcome was achieved (12 

hr). Images were taken at 0 hr and 12 hr using a Canon PowerShot G6 mounted on 
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a Carl Zeiss Axiovert 40 CFL. Percentage of wounded area that was closed was 

determined using ImageJ. 

 

2.16 RNA interference (RNAi) 

siRNA targeting MMP-13, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

(positive control) and the non-targeting negative control siRNA were all 

purchased from Dharmacon (Thermo Scientific) and shipped as dry pellets. 

Transfection of siRNA into SV-LECs grown to 60% confluence was performed 

using DharmaFECT 1 transfection reagent from Dharmacon (Thermo Scientific) 

according to the manufacturer’s instructions. MMP-13 siRNA (ON-TARGETplus 

siRNA from Dharmacon) was used at a final concentration of 50 nM. Briefly, 

siRNA was diluted in serum-free medium and mixed with equal volume of the 

DharmaFECT 1 transfection reagent that was also diluted in serum-free medium 

and incubated for 20 min at room temperature. The amount of DharmaFECT 1 

added as well as the total volume of the transfection mix was dependent on the 

size of the plate format used. For 6-well plate, 5 µl of DharmaFECT 1 was added 

to each well for transfection. Antibiotic-free complete medium was then added to 

the mix. Culture medium was then removed from the cells, and the transfection 

mix added to them. The transfection medium was replaced with complete medium 

after 24 hr in order to reduce cytotoxicity. Transfected cells are incubated at 37°C 

with 5% CO2 for 48 hr (for mRNA analysis) or 72 hr (for protein analysis and 

tube formation assay). 
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2.17 Statistical analysis 

Statistical comparisons were made using the Student’s two-tailed t test. Data were 

expressed as mean ± standard deviation (SD). Analysis was performed with Prism 

5 (Graph-Pad Software, Inc.). 
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Chapter 3: B cells mediate lymphangiogenesis in the lymph nodes 

through the expression of  lymphotoxin α  
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3.1 Introduction 

The lymphatic vasculature is indispensable in various physiological processes 

such as the maintenance of tissue fluid homeostasis, immune surveillance and fat 

absorption. Lymphangiogenesis, the process of forming new lymphatic vessels 

from pre-existing vasculatures, occurs spontaneously during embryogenesis. 

However, lymphangiogenesis and the remodeling of the lymphatic vessels in 

adulthood is mainly involved in pathologic processes such as inflammation, tissue 

injury and tumor cell metastasis (Cueni and Detmar, 2008; Alitalo, 2011). 

 

Lymphangiogenesis has been known to occur in various forms of inflammation, 

and the remodeling of the lymphatic vessels is usually due to the accumulation of 

inflammatory cells and the inflammatory mediators that these cells secrete such as 

TNFα, VEGF-A and VEGF-C (Ji and Ji, 2007; Huggenberger et al., 2011a). In 

our previous study, the expansion of the lymphatic vessel network in activated 

LNs of immunized mice has been shown to require the recruitment of B cells 

within the LNs (Angeli et al., 2006). Since then, macrophages (Kataru et al., 

2009), DCs (Webster et al., 2006), FRCs (Chyou et al., 2008) and T cells (Furtado 

et al., 2007) have all been shown to be involved in lymphangiogenesis in the 

lymphoid structures. The molecular mechanisms and signaling pathways 

underlying inflammatory LN lymphangiogenesis are not as well characterized 

compared to the growth of lymphatic vasculature during embryonic development. 

This study is focused on the signaling pathway behind the B-cells mediated LN 

lymphangiogenesis. 
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In this chapter, we delve into the role of B cells in driving LN lymphangiogenesis 

in our CFA/KLH model of immunization. Taking into account the important 

function of FDC networks in the formation of germinal centers and the regulation 

of B cell functions in immunity (Klaus et al., 1980; Tew et al., 1997), we also 

examined the possible involvement of FDCs in lymphangiogenesis. 
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3.2 Results 

3.2.1 Induction of LN lymphangiogenesis by CFA/KLH immunization 

We began by investigating the effects of immunization with CFA/KLH on LN 

lymphangiogenesis. Immunohistochemistry together with flow cytometry were 

performed in order to examine the modifications in the lymphatic vessel network, 

together with the extent of lymphangiogenesis by quantifying LEC number in the 

non-immunized and immunized LNs. CFA/KLH, an immunization model that 

triggers robust LN expansion (Angeli et al., 2006), was used to immunize the 

mice. Explicitly, subcutaneously injections of CFA/KLH (controls were injected 

with PBS) into the footpads of the mice were carried out, and the brachial and 

axillary LNs that drain the front footpads were extracted after 4 days for the flow 

cytometric analysis, while the popliteal LNs that drain the rear footpads were 

obtained for immunostaining (Figure 3.1). The time point was chosen because a 

robust inflammatory response could be detected in the LNs 4 days after 

immunization. Immunostaining of the LNs revealed that lymphatic vessels, 

recognized specifically by LYVE-1 immunoreactivity, were mainly located in the 

subcapsular sinus of the non-immunized control LNs, whereas the B220+ B cells 

were detected in the cortex of the LNs (Figure 3.1A). As expected, the size of the 

LN and the B cell compartment, as well as the organization of the lymphatic 

vessel network, all showed significant differences after CFA/KLH immunization. 

Immunized LNs expanded in size along with the B cell compartments, and the 

lymphatic vessels were seen to be more enlarged in the subcapsular space. 

Intriguingly, lymphatic vessels were also observed in the cortex of the LNs in 

close association with the B cells. The lymphatic vessels growing into the cortex 
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are in vicinity to B cells, frequently seen to be around the B cell follicles (Figure 

3.1A). 

 

After presenting the expansion of the lymphatic vessel network by 

immunohistochemistry, we went on to quantify the number of LECs by flow 

cytometry. The LN cells were stained for CD45 (a marker for hematopoietic 

cells), podoplanin and CD31. As mentioned previously, podoplanin is a marker of 

LECs, while CD31 is a marker for endothelial cells, staining both LECs and 

BECs. Representative flow cytometry plots pre-gated on live cells illustrated the 

isolation of the non-hematopoietic LECs, which are CD45lowPodoplanin+CD31+ 

(Figure 3.1B). Stromal cells, consisting of FRCs and FDCs, along with BECs are 

also represented on the plot by CD45lowPodoplanin+CD31- and 

CD45lowPodoplanin-CD31+ respectively (Figure 3.1B). Expansion of the LN was 

observed 4 days after immunization, resulting in about 6-fold increase in LN 

cellularity as compared to non-immunized LNs (Figure 3.1C). Similarly, there 

was also approximately a 5-fold increase in the number of LECs in the LNs after 

CFA/KLH immunization (Figure 3.1C), reinforcing the expansion of the 

lymphatic vessel network observed by immunostaining. Taken together, 

immunohistochemistry and flow cytometry allowed the qualitative and 

quantitative analysis of lymphangiogenesis in LNs following immunization. Our 

results revealed that inflammation-associated immunization with CFA/KLH 

induced a marked remodeling of the lymphatic vessel network within the LNs.  
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Figure 3.1: Expanded LNs and lymphangiogenesis 4 days after CFA/KLH 
immunization. (A) LN sections from control (PBS) and immunized (CFA/KLH) 
mice were stained for LYVE-1 and B220, markers for lymphatic vessels and B 
cells respectively. (B) Representative flow cytometry plot showing the gating of 
LECs (CD45lowPodoplanin+CD31+), BECs (CD45lowPodoplanin-CD31+) and 
stromal cells (CD45lowPodoplanin+CD31-). (C) LN cellularity and number of 
LECs in LNs were evaluated 4 days after CFA/KLH immunization. Images and 
flow cytometry results are representative of 5 independent experiments (n=3). 
Significant differences are designated by *p < 0.05 and **p < 0.01. 
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3.2.2 Requirement of B cells in the expansion of the LNs and LN 

lymphangiogenesis in response to immunization 

Since the lymphocytes are the main constituents of the LNs, the enlargement of 

the LNs upon immunization requires an expansion in the B and T cell sections of 

the LN as well. As the B and T lymphocytes are also known to play a role in LN 

lymphangiogenesis, we next investigated the growth in the B and T cell 

compartments of the LN 4 days after CFA/KLH immunization. The representative 

flow cytometry plot showed how the B220+ B cells and CD3+ T cells were gated 

(Figure 3.2A). Correspondingly, LN cellularity showed approximately 5-fold 

increase in the total cell count after immunization (Figure 3.2B). While there was 

an expected increase in the lymphocytes count upon CFA/KLH administration, B 

cells increased proportionally more than T cells. B cells increased by more than 5-

fold after immunization, whereas there was only about a 3-fold increase in T cell 

count (Figure 3.2B). These observations together with the expansion of the 

lymphatic vessel network in the B cell follicles led us to hypothesize that B cells 

might be essential for the increase in LN cellularity as well as LN 

lymphangiogenesis. 

 

In order to investigate the role of B cells in LN lymphangiogenesis, we evaluated 

the effect of CFA/KLH immunization on µMT mice that lack B cells. LNs from 

WT and µMT mice were stained with both LYVE-1 and B220 to visualize the 

lymphatic vessel network and the presence of B cells. Accordingly, B cells were 

absent in the LNs of µMT mice, while in the LNs of WT mice, B cells can be 



 

 69 

 

Figure 3.2: Expansion of the B and T cells population in the LNs after 
immunization. (A) Representative flow cytometry plot showing B cells (B220+) 
and T cells (CD3+) in the LNs. (B) LN cellularity and number of B and T cells in 
LNs were evaluated 4 days after CFA/KLN immunization. Data shown are 
representative of 5 independent experiments with 3 mice per group in each 
experiment and significant differences are designated by **p < 0.01 and ***p < 
0.001.  
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observed in the cortex region (Figure 3.3A). Immunization on the WT mice 

footpad induced the enlargement of the draining LNs together with the expansion 

of the lymphatic vessel network, but these effects on the LNs of µMT mice were 

greatly reduced (Figure 3.3A). While lymphatic vessels can be observed in the 

cortex region of the B cells follicles in the LNs of WT mice, LYVE-1 staining of 

the µMT mice was mainly localized around the subcapsular space of the LNs 

(Figure 3.3A). The observations made in the immunohistochemistry study were 

reinforced by flow cytometry analysis. LN expansion was smaller in response to 

CFA/KLH immunization in µMT mice, having only a 3-fold increase in LN 

cellularity compared to the 5-fold increase seen in WT mice (Figure 3.3B). In the 

absence of B cells, the immunized LNs of the µMT mice were also strikingly 

smaller than the immunized LNs of the WT mice having only about 9 million 

cells per LN in the µMT mice compared to the 16 million cells per LN seen in the 

WT mice (Figure 3.3B). Total LECs count in the the µMT mice was also 

remarkably reduced compared to WT mice. The LNs of non-immunized WT mice 

have 5 times as much LECs as the LNs of non-immunized µMT mice (Figure 

3.3B). Following immunization, the expansion of the lymphatic vessel network 

can be indicated by the 4-fold increase in the number of LECs in the LNs of WT 

mice (Figure 3.3B). On the other hand, the number of LECs in the LNs of µMT 

mice only increased by less than 2-fold in response to CFA/KLH (Figure 3.3B). 

These results from the µMT mice suggested that B cells may indeed play a critical 

role in LN lymphangiogenesis. 
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Figure 3.3: Absence of lymphangiogenesis in µMT mice. (A) LN sections from 
control (PBS) and immunized (CFA/KLH) WT and µMT mice were 
immunostained for LYVE-1 and B220. (B) LN cellularity and number of LECs in 
the LNs of WT and µMT mice were analyzed 4 days after immunization with 
CFA/KLH. Images and flow cytometry results are representative of 3 independent 
experiments (n=3). Significant differences are designated by *p < 0.05 and **p < 
0.01. 
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Having established that the LNs of µMT mice which do not have B cells react 

much less drastically upon CFA/KLH immunization in terms of LN expansion 

and LN lymphangiogenesis, we speculated that the lack of B cells in the µMT 

mice may be the main cause for our observations. To address this issue, we 

generated chimeric mice where µMT recipient mice were transplanted with BM 

from WT mice to increase the number of B cells in these mice (WT/µMT). As 

control, WT recipient mice received BM transplantation from WT mice 

(WT/WT). From the flow cytometry analysis, the non-immunized LNs of the 

WT/µMT were slightly smaller than the WT/WT control and they expanded by 5-

fold upon CFA/KLH immunization compared to the 8-fold seen in the LNs of the 

control mice (Figure 3.4A). Parallel to µMT mice, the LNs of the chimeric 

WT/µMT mice have a much lower total LECs count compared to their WT/WT 

mice counterpart, having almost 5 times less LECs as the LNs of the control mice 

(Figure 3.4A). The total LEC count of the immunized WT/µMT mice LNs was 6-

fold less than that of the WT/WT control mice LNs (Figure 3.4A). However, the 

fold change of the LEC count in the LNs after immunization was about the same 

in the LNs of both the WT/µMT mice and the WT/WT mice (Figure 3.4B). The 

effect of CFA/KLH immunization was able to increase the number of LECs in the 

LNs by 8-fold, indicating the expansion of the lymphatic vessel network in both 

group of mice (Figure 3.4B). Although the number of LECs in the LNs of the 

chimeric WT/µMT mice was much lower than in the control group, comparable to 

the µMT mice, our results indicated that the increase in number of B cells in µMT 

mice was able to restore lymphangiogenesis in the LNs after CFA/KLH
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Figure 3.4: Transplantation of B cells in µMT mice induced LN 
lymphangiogenesis by immunization. (A) LN cellularity and number of LECs in 
LNs of WT/WT & WT/µMT mice were evaluated 4 days after CFA/KLH 
immunization. (B) Fold change in the number of LECs in LNs of WT/WT & 
WT/µMT mice after immunization. Data shown are representative of 3 
independent experiments with 3 mice per group in each experiment and 
significant differences are designated by **p < 0.01 and ***p < 0.001.
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immunization, reinforcing the importance of B cells in LN lymphangiogenesis. 

 

3.2.3 Expression of LTα by B cells critical for LN lymphangiogenesis 

induced by immunization 

After showing that LN lymphangiogenesis induced by immunization is dependent 

on B cells, we decided to investigate the signaling pathway involved. As LTα has 

been described to promote lymphangiogenesis (Mounzer et al., 2010), and B cells 

are known to express LTα, we hypothesized that the B cells-induced 

lymphangiogenesis may be dependent on LTα. To test this hypothesis, we again 

generated chimeric mice from µMT hosts through BM transplantation to generate 

mice with B cells that were deficient for LTα. These mice were reconstituted with 

a mix of 25% LTαKO BM and 75% µMT BM {Angeli:2006gb}, and as a result, 

the leukocytes present in these mice were mainly LTα+, and only B cells were 

LTα- (Table 3.1). Since LTα is required in the generation of the LTβR ligand, 

LTα1β2, these chimeric mice also cannot form the LTα1β2 heterotrimer on the B 

cell surface.  A second group of chimeric mice reconstituted with 25% WT BM 

and 75% µMT BM, was generated as control. From the immunohistochemistry 

results, the LNs of the control WT/µMT mice revealed a fairly healthy population 

of B cells similar to those of the WT mice (Figure 3.5). As expected from the flow 

cytometry data of our previous experiment, reconstitution of WT BM in µMT 

mice fully enabled the LNs to expand and lymphangiogenesis to occur upon 

immunization (Figure 3.5). Interestingly, the LNs from the LTαKO/µMT mice 
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Table 3.1: B cells population in the different mice group 

Mice B cell population 

WT Normal 

µMT Absent 

WT/µMT Normai 

LTαKO/µMT No LTα 
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Figure 3.5: Examination of the LV network in the LNs of the various 
chimeric mice following immunization. Non-immunized and immunized LN 
sections from control and chimeric mice were immunostained for LYVE-1 and 
B220. Images are representative of 2 independent experiments consisting of 5 - 6 
mice per group in each experiment. 
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had a lower number of B cells in the LNs at steady state, suggesting that when 

LTα expression was selectively removed {Mackay:1998ka}, B cells either do not 

move into the LNs or they are not retained in the LNs (Figure 3.5). In response to 

CFA/KLH, the LNs of the LTαKO/µMT chimeric mice were able to increase 

slightly in size, but lymphangiogenesis was not detected (Figure 3.5). These 

observations from the LTαKO/µMT chimeric mice were similar to those from the 

µMT mice (Figure 3.5). Taken together, these data suggested that the expression 

of LTα on B cells in the LNs is necessary for optimal LN expansion and 

lymphangiogenesis after CFA/KLH immunization. 

 

3.2.4 Implication of FDCs in the induction of LN lymphangiogenesis in 

response to immunization 

The importance of FDCs in B cell functions and the formation of germinal centers 

led us to investigate the role of FDCs in LN lymphangiogenesis. As FDCs are 

maintained by the presence of the LTβR signaling (Tumanov et al., 2003), we 

wondered if the lack of LN lymphangiogenesis observed in the mice lacking B 

cells or mice with LTα- B cells is due to the absence of FDCs in the LNs. 

Therefore, we assessed the presence of FDCs by staining for FDCM2 in the LNs 

of these mice. We first analyzed LNs from  WT mice where FDC clusters were 

clearly observable in the region of the B cells follicles in both the non-immunized 

and immunized LNs (Figure 3.6A and B). On the other hand, in the absence of B 

cells in the µMT mice, FDCs were not detected at both steady state and inflamed 

LNs (Figure 3.6A and B). Predictably, LNs of the WT/µMT mice that were 
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Figure 3.6: Examination of the FDC network in the LNs of the various chimeric mice. (A) Non-immunized and immunized LN 
sections from control and chimeric mice were immunostained for LYVE-1 and FDCM2. (B) High magnification images of the boxed 
regions in (A). Images are representative of 2 independent experiments consisting of 5-6 mice per group in each experiment. 
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occupied with B cells were also populated with FDCs in both non-immunized and 

immunized LNs similar to WT mice (Figure 3.6A and B). Results from 

LTαKO/µMT chimeric mice were comparable to µMT mice whereby FDCs were 

not seen in the LNs (Figure 3.6A and B). These results indicated that the 

expression of LTα on B cells, and likely the resultant expression of LTα1β2, was 

critical for the localization of FDCs in the LNs. Furthermore, these data also 

suggest that the presence of FDCs might be involved in LN lymphangiogenesis 

upon immunization. 

 

To further inspect the role of FDCs in the LN lymphangiogenesis, we made use of 

TNFα-deficient mice with unorganized B cell follicles and absence of FDC 

networks in the LNs (Pasparakis et al., 1996; 1997). TNFαKO mice were 

immunized with CFA/KLH and the extent of LN expansion and 

lymphangiogenesis assessed by flow cytometry. Comparing the LN cellularity of 

the WT and TNFα deficient mice by flow cytometry prior to immunization 

showed that the LNs from the TNFαKO mice were smaller than those found in the 

WT mice (Figure 3.7). After CFA/KLH immunization, total LN cellularity of the 

TNFαKO mice were expectedly lower than WT mice, however, there was still a 

significant increase in the total cell count of about 9-fold comparable to WT mice 

(Figure 3.7), suggesting that despite the lack of TNFα in the mice, there were 

compensatory pathways present to make up for its absence in mediating 

inflammation. The LECs count in the LNs of TNFαKO mice were lower than that 

of the WT mice, but after immunization, the number of LECs increased by more 
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than 10-fold to be on par with the number of LECs in the immunized WT LNs 

(Figure 3.7), clearly demonstrating that LN lymphaniogenesis is not impaired in 

these TNFαKO mice. Following that, we also compared the number of 

lymphocytes, DCs and macrophages in the LNs (Figure 3.7). In our flow 

cytometry analysis, we defined DCs by the expression of CD11c and 

macrophages by CD11b.  Expectedly from the enlargement of the LN, there were 

significant increases in the amount of B and T cells in the TNFαKO mice LNs 

upon immunization like the WT mice (Figure 3.7). The number of DCs and 

macrophages also increased significantly in the LNs of TNFαKO mice after 

CFA/KLH treatment (Figure 3.7). Although the DC count in the immunized LNs 

of TNFKO mice was only 60% of the total amount of DCs compared to the 

immunized LNs of WT mice, the 10-fold increase in the number of DCs from the 

non-immunized TNFαKO mice LNs was proportional to those of the WT mice 

(Figure 3.7). In the same way, the amount of macrophages in both the non-

immunized LNs and immunized LNs of the WT mice was more than twice the 

number of macrophages found in the respective LNs of the TNFαKO mice, but 

the relative 7-fold increase in the sum of macrophages from non-immunized to 

immunized LNs was analogous in both group of mice (Figure 3.7). Taken 

together, these results revealed that the deprivation of TNF in the TNFαKO was 

inconsequential to LN expansion and lymphangiogenesis in response to 

immunization. That LN lymphangiogenesis was able to occur in the absence of 

FDCs in the TNαFKO mice also suggested that the FDCs may be dispensable in 

the process. 
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Figure 3.7: Effects of CFA/KLH immunization on TNFαKO mice. LN 
cellularity, number of LECs, B and T cells, DCs and macrophages in LNs of WT 
and TNFKO mice were evaluated 4 days after CFA/KLH immunization. Data 
shown are representative of 3 independent experiments with 4 mice per group in 
each experiment and significant differences are designated by **p < 0.01 and 
***p < 0.001.   



 

 83 

3.3 Discussion 

In our study, we qualitatively and quantitatively analyzed lymphangiogenesis by 

immunohistochemistry and flow cytometry, respectively. We demonstrated that 

immunization in mice footpad with CFA/KLH was able to induce a distinct 

remodeling of the lymphatic vessel network within the LNs. The fact that the 

newly formed lymphatic vessels in the expanded LNs after immunization were in 

close contact with the B cells, and that the B cells population expanded more than 

T cells following immunization, led us to hypothesize the implication of B cells in 

regulating lymphatic vessel growth in the LNs. 

 

Using µMT mice that lack B cells, we were able to show the importance of B cells 

in mediating lymphangiogenesis as µMT mice do not display any expansion in the 

lymphatic vessel network after immunization. Our data indicated that 

reconstitution of µMT mice with WT B cells was able to restore lymphatic vessel 

growth, further illustrating the central role of B cells in LN lymphangiogenesis. 

 

While B cells have been reported to drive lymphangiogenesis through a 

mechanism dependent on VEGF-A (Angeli et al., 2006), we now show that the 

expression of LTα on B cells is critical for modulating the growth of new 

lymphatic vessels after immunization. Intriguingly, the B cell follicles of 

LTαKO/µMT mice were not as organized compared to control mice. This was 

most likely due to the absence of FDC networks in these mice as a result of the 
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lack of LTβR signaling from B cells of these mice. Investigation of the FDC 

networks in the LNs of chimeric mice suggested that they might be vital for 

lymphangiogenesis as the absence of FDC networks correlates with deficiency in 

the lymphatic vessel network expansion. 

 

However, our results with the TNFαKO mice suggested that LN 

lymphangiogenesis can still occur in the absence of the FDC networks. This 

exaggerated growth in lymphatic vessels after immunization in TNFαKO mice is 

in line with a previous study (Baluk et al., 2009), and showed that either TNFα 

and/or FDCs are not required for lymphangiogenesis, or compensatory pathways 

are involved in the TNFαKO mice. Nevertheless, our study illustrated the 

importance of B cells in regulating lymphangiogenesis, as well as linking this 

regulation to the LTα and LTβR signaling. 
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Chapter 4: Regulation of lymph node lymphangiogenesis by 

lymphotoxin β receptor signaling  
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4.1 Introduction 

The LTβR signaling pathway is important in the development of secondary 

lymphoid organs as well as in maintaining the organization of these 

microenvironments (Fu and Chaplin, 1999; Mebius, 2003; Drayton et al., 2006; 

van de Pavert and Mebius, 2010). Unlike the role of LTβR in the control of 

splenic architecture, the aspects of the LN organization in mice that are LTβR-

dependent are less defined, especially in the remodeling of LN during 

inflammation. Studies on LTβR signaling in the LNs have focused on the 

maintenance and regulation of the homeostasis and function of lymphatic and 

blood vessels (Browning et al., 2005; Liao and Ruddle, 2006; Chyou et al., 2008). 

Interestingly, LTβR signaling has been shown to be required for de novo 

inflammatory lymphangiogenesis in tertiary lymphoid structures (Furtado et al., 

2007). 

 

In the previous chapter, we demonstrated that the expression of LTα on B cells is 

critical in the regulation of lymphangiogensis after immunization. In this chapter, 

we explored the role of LTβR signaling in lymphangiogenesis and LN 

remodeling. We made use of a LTβR inhibitor, the fusion protein LTβRIg, in our 

study (Browning, 2008). LTβRIg acts as a soluble decoy receptor that inhibits 

both LTβR ligands: LTα1β2 and LIGHT. We also sought to examine the 

expression of LTβR by LECs, as well as investigate the possible source of the 

LTβR ligand, LTα1β2, in the regulation of lymphangiogenesis. 
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4.2 Results 

4.2.1 LTβR signaling in the regulation of LN expansion and 

lymphangiogenesis following immunization 

With the aim of studying the role of LTβR signaling in LN expansion and 

lymphangiogenesis induced by our model of CFA/KLH immunization, we used 

LTβRIg to inhibit the LTβR ligands. This inhibitor was injected subcutaneously 

into the mice footpads a day before immunization with CFA/KLH, and we chose 

the same timepoint of 4 days after immunization to examine the ensuing LN 

expansion and lymphangiogenesis by both flow cytometry and 

immunohistochemistry. In our flow cytometry experiment, we added a group of 

untreated mice alongside the control group that were treated with huIgG to test the 

effect of huIgG on the mice (Figure 4.1). Treating the mice with either huIgG or 

LTβRIg did not lead to any changes to the baseline LN cellularity as compared to 

the non-treated mice (Figure 4.1A). As expected, mice administered with huIgG 

showed a significant 5-fold increase in LN cellularity after immunization, similar 

to the non-treated mice (Figure 4.1A). In contrast, the treatment of LTβRIg was 

able to block the expansion of the LNs in response to CFA/KLH, as the LNs of 

immunized LTβRIg-treated mice did not result in any significant increase in LN 

cellularity, with only less than a 2-fold increase (Figure 4.1A). Having revealed 

the effects of LTβR signaling on LN expansion, we proceeded to explore its 

influence on lymphangiogenesis. By the same comparison, huIgG and LTβRIg did 

not alter the sum of LECs in non-immunized LNs (Figure 4.1A). Likewise, 

immunized LNs of non-treated mice and huIgG-treated mice showed a 7-fold and 

10-fold increase in LN LECs number respectively (Figure 4.1A). The treatment of 
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huIgG on mice was shown not to have any negative influence on the LNs in terms 

of total LN cellularity and LEC count in response to immunization, and thus, 

huIgG-treated mice were used as control in subsequent experiments. However, 

LTβRIg-treated mice only resulted in a less than 4-fold increase in LEC number 

after CFA/KLH immunization (Figure 4.1A), illustrating that blocking LTβR 

signaling in the LN impedes lymphangiogenesis. The examination of the LN and 

lymphatic vessel network expansion in LNs of immunized mice by 

immunostaining further strengthened our findings that LTβRIg impairs the growth 

of LN and lymphangiogenesis in response to CFA/KLH (Figure 4.1B). Control 

LNs treated with huIgG exhibited the increase in the LN size and expansion of the 

lymphatic vessel network in the subcapsular sinus as well as in the cortex after 

immunization as expected from our previous data (Figure 4.1B). Conversely, LNs 

from mice treated with LTβRIg only presented a minimal increase in size and did 

not show any significant difference in the architecture of the lymphatic vessel 

network before and after immunization (Figure 4.1B). The wide-spread growth of 

lymphatic vessels in the cortex region of the LNs that characterized immunized 

LNs were not observed in the LTβRIg-treated LNs (Figure 4.1B). These results, 

together with the quantitative flow cytometry analysis of the total LN cell count 

and  LECs number, were in line with our hypothesis that LTβR signaling has a 

vital role in lymphangiogenesis upon immunization. 

 

While we have shown that LN lymphangiogenesis induced by immunization with 

CFA/KLH is mediated by LTβR signaling, the identity of the LTβR-expressing 
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Figure 4.1: Blocking the LTβR signaling pathway inhibits LN expansion and 
lymphangiogenesis following immunization. (A) LN cellularity and number of 
LECs were evaluated in LNs of non-, huIgG- and LTβRIg-treated mice 4 days 
after immunization. (B) LN sections from non-immunized and immunized mice 
treated with huIgG (control) or LTβRIg were stained for LYVE-1 and B220. 
Images and flow cytometry results are representative of 5 independent 
experiments (n=3). Significant differences are designated by *p < 0.05 and **p < 
0.01. 
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cells involved in the signaling in our model has not been defined. Therefore, we 

examined the expression of LTβR on LECs, taking into consideration the 

likelihood that the LTβR signaling pathway could promote lymphangiogenesis 

directly through LECs. Our study of the expression of LTβR was established by 

immunohistochemistry of LN sections together with flow cytometry analysis of 

LECs. We first determined by immunohistochemistry in both non-immunized and 

immunized LNs if the LTβR expression could be detected on lymphatic vessels, 

and secondly, if there are any differences in the expression in response to 

CFA/KLH. Figure 4.2A reveals the high and low magnification microscopy 

images of these LNs respectively. As stated previously, CD31 is a marker for 

endothelial cells. Lymphatic vessels were represented by the double positive 

staining of LYVE-1 and CD31, although the expression of CD31 was shown to be 

quite low (arrowheads in Figure 4.2A). The structures expressing a high level of 

CD31 but negative for LYVE-1 staining were the blood vessels, likely HEVs 

considering the structure of the cells (arrows in Figure 4.2A). Furthermore, these 

blood vessels stained brightly for LTβR, consistent with previous studies on the 

marked expression of LTβR on HEVs (Gommerman and Browning, 2003). 

Lymphatic vessels were also observed to express LTβR, although the expression 

level was lower compared to blood vessels as shown by the intensity of the 

staining (Figure 4.2A). Comparison of the non-immunized LNs with the 

immunized LNs revealed that there was no apparent difference in the expression 

level of LTβR on both vessels (Figure 4.2A), suggesting that neither LECs nor 

BECs upregulate the expression of LTβR in response to CFA/KLH. We then used 

flow cytometry to examine LTβR expression on LECs to corroborate our findings 
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Figure 4.2: Expression of LTβR by LECs. (A) LN sections from non-
immunized and immunized mice were stained for LYVE-1, CD31 and LTβR. 
LYVE-1+CD31low lymphatic vessels (arrowhead) and LYVE-1-CD31+ blood 
vessels (likely HEVs) (arrow) were examined for coexpression of LTβR. (B) 
FACs analysis of the expression of LTβR on LECs with BECs as a postive 
control. Data shown are representative of 3 independent experiments with 3 mice 
per group in each experiment. 
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from the immunostaining results. The representative flow cytometry dot plot was 

pre-gated on live, CD45low cells as described earlier on (Figure 4.2B). As in the 

immunohistochemistry analysis, CD45lowPodoplanin-CD31+ BECs were 

employed as the positive control in our study and as anticipated, both BECs and 

CD45lowPodoplanin+CD31+ LECs exhibited expression of LTβR (Figure 4.2B). 

Similarly, we also could not detect any difference in expression of LTβR in LECs 

of non-immunized and immunized LNs. Collectively, these outcomes illustrated 

the positive expression of LTβR on LECs, and this expression suggested that 

regulation of LN lymphangiogenesis following immunization by LTβR signaling 

might be through a direct interaction on the LTβR expressed on LECs.  

 

Previously we have shown the unexpected amplified LN lymphangiogenesis in 

TNFαKO mice. Here, we examined if this uncharacteristic expansion in the 

lymphatic vessel network in TNFα deficient mice is under the regulation of the 

LTβR signaling pathway. TNFαKO mice were treated with either LTβRIg or with 

huIgG as control before CFA/KLH immunization. From our results, it appeared 

that at baseline level without immunization, blocking LTβR signaling resulted in a 

slight decrease in LN cellularity of about 30% when compared to the control 

(Figure 4.3A). After immunization, the total cell count of LTβRIg treated LNs 

from TNFαKO mice had only about 60% of the total cell count of the control 

TNFαKO mice LNs (Figure 4.3A). However, while treatment of LTβRIg 

restricted LN expansion of TNFαKO mice after immunization, blocking LTβR did 

not appear to have any effect on lymphangiogenesis. Comparing the number of
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Figure 4.3: Unexpected LN lymphangiogenesis in TNFαKO mice not 
regulated by LTβR. (A) LN cellularity and number of LECs were evaluated in 
LNs of huIgG- and LTβRIg-treated TNFαKO mice 4 days after immunization. (B) 
LN sections from non-immunized and immunized mice TNFαKO treated with or 
LTβRIg were stained for LYVE-1 and B220. Images and flow cytometry results 
are representative of 5 independent experiments (n=3). Significant differences are 
designated by *p < 0.05, **p < 0.01 and ***p < 0.001. 
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LECs in control and LTβRIg treated LNs of TNFαKO mice before and after 

immunization showed no significant differences in lymphatic vessel growth at 

both baseline and inflamed states (Figure 4.3A). Immunohistochemistry analysis 

of LN sections from TNFαKO mice reinforced our observations from our flow 

cytometry results. Immunized TNFαKO LNs treated with LTβRIg looked smaller 

compared to the control LNs (Figure 4.3B). Expanded lymphatic vessel network 

could also be observed in both the control and treatment LNs (Figure 4.3B). 

Furthermore, confirming what was previously described (Pasparakis et al., 1997), 

the B cell follicles of these LNs were disorganized due to the absence of FDC 

networks (Figure 4.3B). These observations suggested that LTβR signaling is 

involved in mediating LN expansion in the TNFαKO mice but not 

lymphangiogenesis in response to immunization. 

 

4.2.2 Blocking lymphangiogenesis through the LTβR signaling pathway 

hampers the enhancement of DC migration induced by immunization  

The enhancement of DC migration to the LNs induced by CFA/KLH 

immunization was supported by the growth of the LN along with LN 

lymphangiogenesis (Angeli et al., 2006). As we have shown that inhibiting the 

LTβR signaling impeded LN expansion and lymphangiogenesis, we wondered if 

blocking the same signaling pathway would have any effect on the enhanced DC 

migration following immunization. To address this issue, FITC painting assay was 

carried out, where DC migration was stimulated by an epicutaneous application of 

FITC in a contact sensitizing solution on the scapular area of the skin that drains 



 

 95 

to the same brachial and axillary LNs as the front footpads of the mice. Because 

administration of CFA/KLH is known to result in a strong inflammation reaction 

at the site of injection, a separate location was selected for the FITC painting so as 

not to subject the DCs to this inflammation. This is important since we want to 

show that any variations in DC migration is only due to the activation of the 

draining LNs. As before, LTβRIg was administered subcutaneously into the front 

footpads of the mice a day before CFA/KLH was injected into the same footpads.  

 

Gating of the CD11c+FITC+ DCs that migrated from the skin into the LNs was 

shown in the representative flow cytometry plot (Figure 4.4A). The expected 

increase in the number of CD11c+FITC+ DCs in the LNs following immunization 

was a result of the increase in the migration of DCs from the periphery as reported 

previously (Angeli et al., 2006). We first looked at LN cellularity to confirm that 

effects of the treatment of LTβRIg in the LNs and similar to the experiment 

before, the increase in the cellularity of the LNs after immunization was opposed 

by the inhibition of the LTβR signaling in the mice treated with LTβRIg (Figure 

4.4B). Evaluation of the number of migrated DCs in the LNs indicated a 3-fold 

rise in the sum of CD11c+FITC+ DCs in the LNs of control mice after 

immunization (Figure 4.4B). Interestingly, the number of CD11c+FITC+ DCs was 

reduced in the immunized LNs of LTβRIg-treated mice (Figure 4.4B), likely a 

result of the reduced lymphangiogenesis in the LNs. An analysis was also done on 

the B and T cell count of the LNs to evaluate the influence of blocking LTβR 

signaling on lymphocytes in the LNs in response to immunization. Parallel to our
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Figure 4.4: Blocking lymphangiogenesis through the LTβR signaling 
pathway hampers the enhancement of DC migration induced by 
immunization. (A) Non-immunized and immunized mice were subjected to FITC 
painting on the skin and update of FITC by DCs was analyzed. A representative 
flow cytometry plot of CD11c+FITC+ DCs is shown. (B) LN cellularity, number 
of migrated DCs and B and T cells in non-immunized and immunized LNs treated 
with huIgG and LTβRIg were evaluated 18 hr after FITC application. Data shown 
are representative of 3 independent experiments with 3 mice per group in each 
experiment and significant differences are designated by *p < 0.05 and **p < 
0.01. 
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 earlier study, the LNs of the huIgG-treated control mice displayed a 6-fold 

increase in the amount of B cells upon immunization, while T cells only showed a 

3-fold increase in number (Figure 4.4B). As projected by the observations on LN 

cellularity, LTβRIg treatment also impeded the expansion of the lymphocytes 

compartments in the immunized LNs (Figure 4.4B). Following the blocking of 

LTβR signaling, the increase in B cells number were restricted to only 3-fold, 

whereas there was no significant increase in the amount of T cells in response to 

immunization (Figure 4.4B). Summing up the data from the experiments thus far 

indicated that LTβR signaling is critical in LN lymphangiogenesis induced by 

immunization. The reduced growth of lymphatic vessels in inflamed LNs due to 

the blocking of LTβR signaling can then inhibit the increase in DC migration 

typically detected in response to immunization. 

 

4.2.3 Immunization induces the expression of LTα in B cells 

After verifying the expression of LTβR on LECs, we set out to identify the source 

of the LTβR ligands involved in the signaling pathway. B and T cells are the main 

LTα1β2-expressing cells found in the LNs (Gommerman and Browning, 2003). As 

we have shown that lymphangiogenesis in the LN is promoted by B cells, and 

based on our LTαKO/µMT mice data, where chimeric mice with B cells that were 

deficient for LTα suffered from the inability to induce LN lymphangiogenesis 

upon immunization, we hypothesized that rather than T cells, LTβR signaling 

implicated in lymphangiogenesis is activated through the ligands produced by B 

cells. Furthermore, since we did not observe any upregulation of LTβR expression 
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on both BECs and LECs upon immunization, we speculated that the effects of 

LTβR signaling on lymphangiogenesis may be due to an increase in the LTβR 

ligands in response to CFA/KLH. To prove these assumptions, we isolated B and 

T cells from the LNs and measured the mRNA levels of the LTβR ligands in these 

cells at various time points after CFA/KLH immunization. In view of the fact that 

we have based our analysis of the LNs on the 4th day after immunization, where 

distinct modifications in lymphatic vessel network of the LNs could be detected, 

we opted to evaluate the mRNA expression levels of the LTβR ligands at earlier 

time points: 1 day, 2 days and 3 days after immunization. 

 

CD19+ magnetic beads (MACS) were used to isolate the B cells from the LNs. 

The negative fraction of the LN cell suspension after the separation of B cells was 

thought to consist mainly of T cells. An examination of the purity of the two 

fractions by flow cytometry was carried after the isolation process as represented 

by Figure 4.5A. The average purity of the positive selection of B cells was shown 

to be above 80%, while the negative fraction was indeed confirmed to be an 

accurate representation of the T cell fraction, consistently comprising of above 

85% of T cells (Figure 4.5A). mRNA was then extracted from these two fractions 

for the subsequent PCR analysis. 

 

From the PCR results, LTα was only weakly expressed in B cells at Day 0 of 

immunization (non-immunized) (Figure 4.5B). Interestingly, the expression of 

LTα increased in B cells along with the number of days after immunization 
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Figure 4.5: Differential expression of LTβR ligands by B and T cells upon 
immunization. (A) Purity of the B cell and T cell (negative) fractions were 
evaluated after MACS by flow cytometry. (B) Expression of LTβR ligands by B 
and T cells in the LNs at different time points after CFA/KLH immunization. Data 
shown are representative of 5 independent experiments with 3 mice per group in 
each experiment. 
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(Figure 4.5B). The expression of LTβ in the B cells on the other hand, was 

consistent throughout the four time points that we observed (Figure 4.5B). While 

LIGHT was originally not detected in our first PCR run at 30 cycles of 

amplification, subsequent PCR runs with increased cycles of amplification was 

able to reveal weak expression of LIGHT by B cells that increased from Day 0 to 

Day 3 of immunization (Figure 4.5B). In contrast, there was no upregulation of 

any mRNA levels in T cells (Figure 4.5B). The expression of LTβ in T cells was 

fairly uniform throughout the experiment, mirroring that of B cells (Figure 4.5B). 

Contrary to that in B cells, LTα and LIGHT expression in T cells was moderately 

even across the various time points, with LTα seemingly having a lower 

expression at Day 3 compared to Day 0 (Figure 4.5B). Remarkably, there was a 

presence of an additional band for LTα in both B and T cells (Figure 4.5B). An 

additional set of primers was used for verification and it showed similar results, 

suggesting that the extra band corresponded to the inclusion of an intron. Together 

with our earlier results, the upregulation of LTα by B cells suggested that B cells 

stimulate lymphangiogenesis in the LNs through activation of the LTβR signaling 

pathway by increasing production of LTβR ligands, particularly LTα1β2, in 

response to CFA/KLH immunization. 

 

4.2.4 Activation of the LTβR signaling pathway in the absence of 

immunization is insufficient to trigger lymphangiogenesis 

The fact that blocking the LTβR signaling pathway is capable of preventing LN 

lymphangiogenesis from taking place after immunization indicates that LTβR 
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signaling is a fundamental requirement for lymphatic vessel growth.  However, 

we do not know if activation of the LTβR signaling alone is able to initiate the 

lymphangiogenic process. Therefore, to further explore the role of LTβR signaling 

in LN lymphangiogenesis, we decided to activate LTβR in the LNs without any 

immunizing agent and investigate if stimulation of the LTβR signaling alone is 

sufficient to trigger lymphangiogenesis or LN expansion. For this experiment, we 

administered the receptor agonist, LTβRag, subcutaneously into the mice footpads 

twice with a 2 days interval in between, hoping to have a sustained activation of 

the signaling pathway, before analyzing the results on flow cytometry and 

immunohistochemistry 4 days after the first administration of the agonist. 

Regrettably, the LN cellularity of both the control and the LTβRag-treated LNs 

did not show any significant difference in number (Figure 4.6A). While the 

treatment of LTβRag seemed to result in a small rise in the amount of LECs 

compared to the number in the control LNS, this increase was statistically not 

significant (Figure 4.6A). Next, we proceed on to study the LN sections by 

immunostaining, thinking that even if there was no overall significant increase in 

LECs number by the application of LTβRag, there might be differences in the 

overall lymphatic vessel network due to remodeling of the vessels by the 

activation of the LTβR signaling. However, we could not distinguish any 

observable differences in the architecture of the lymphatic vessel network as well 

as the B cell compartment of the LNs that we have stained for (Figure 4.6B). 

These data indicated that activation of the LTβR by itself is not adequate to trigger 

the growth of the lymphatic vessels. 
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Figure 4.6: Activation of the LTβR signaling pathway in the absence of 
immunization is insufficient to trigger lymphangiogenesis. (A) LN cellularity 
and number of LECs were evaluated in LNs after treatment with LTβRag for 4 
days. (B) LN sections from PBS control and immunized LTβRag-treated mice 
were stained for LYVE-1 and B220. Images and flow cytometry results are 
representative of 3 independent experiments (n=3).  
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Results from our previous experiment with LTβRag suggested that the induction 

of lymphangiogenesis in the LNs is not dependent on LTβR signaling only, but 

also on additional inflammatory signals brought about by the immunizing agent 

CFA/KLH during our immunization process. We also wondered if the activation 

of the NF-κB pathway by LTβR alone is a strong enough signal to trigger 

lymphangiogenesis, as both the canonical and non-canonical pathways of NF-κB 

have been shown to regulate cellular responses in a cooperative manner (Tully et 

al., 2012). To test this conjucture, we decided to activate TNFR, which triggers 

the canonical NF-κB pathway, along with LTβR activation. First, we used agonist 

for TNFR, TNFRag, and LTβRag to stimulate fibroblasts separately and together 

and measure the expression of CXCL-13 expression. CXCL-13 is chosen in our 

test as the gene expression is known to be controlled by NF-κB signaling 

pathway. We found that while fibroblasts stimulated with either LTβRag or 

TNFRag showed a 2-fold increase in gene expression, combined stimulation of 

fibroblasts with LTβRag and TNFRag showed a 3-fold increase in gene 

expression (Figure 4.7A). We then injected TNFRag subcutaneously into the 

footpads of the mice in the same way as the previous experiment: twice 2 days 

apart, and sacrificing the mice for examination 4 days after the first administration 

of TNFRag. Analogous to the LTβRag experiment, the treatment of TNFRag did 

not result in any significant expansion of the LNs, as well as any increase of the 

lymphatic vessels as seen by the number of LECs from our flow cytometry 

analysis (Figure 4.7B). Again, our data pointed out that stimulation of the TNFR 

alone in the LNs was not sufficient to trigger lymphangiogenesis in the absence of 

immunization. Next, we injected TNFRag subcutaneously into the mice footpads 



 

 104 

 

Figure 4.7: Triggering both the canonical and non-canonical NF-κB 
pathways by activation of TNFR and LTβR is not adequate to induce LN 
lymphangiogenesis. (A) Fibroblasts treated with either TNFR agonist, LTβR 
agonist or both for 12 hr were collected and CXCL-13 mRNA levels were 
quantified by qPCR and normalized to GAPDH mRNA levels. Data shown are 
representative of more than 3 independent experiments. (B) LN cellularity and 
number of LECs were evaluated in LNs after treatment with TNFRag for 4 days. 
(C) LN cellularity and number of LECs were evaluated in LNs after activation of 
both TNFR and LTβR. Data shown are representative of 3 independent 
experiments with 3 mice per group in each experiment. 
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a day before repeating the exact same experimental protocol as we did in the 

LTβRag study. Our analysis revealed the same outcome as the above two 

experiments, that is, there was no significant difference in both the LN cellularity 

and the total number of LECs in the LNs (Figure 4.7C). Together, our results 

showed that while LTβR signaling is essential for the induction of 

lymphangiogenesis in the LNs, activation of LTβR alone orafter priming by 

TNFR activation is not enough to trigger the growth of lymphatic vessels. 

 

We have shown that in the absence of immunizing agents, activation of the LTβR 

signaling pathway alone is not sufficient for inducing LN lymphangiogenesis. 

Next, we wondered if the stimulation of LTβR signaling can initiate the growth of 

lymphatic vessels in a system whereby LN lymphangiogenesis is impaired despite 

the presence of immunizing agents. The µMT mice would be a suitable model as 

we have verified that there is diminished lymphangiogenesis in the LNs following 

CFA/KLH immunization due to the lack of B cells. In our experiment, we have 

included three groups of mice in our experiment: WT mice as a positive control, 

µMT mice as a negative control, and the treatment group was µMT mice 

administered with LTβRag. Mice were injected subcutaneously into the footpads 

with either PBS, for controls, or LTβRag a day before and a day after 

immunization with CFA/KLH. Flow cytometry and immunohistochemistry 

studies were done on the LNs 4 days after immunization. LN cellularity analysis 

from non-immunized mice showed that µMT mice LNs were slightly smaller than 

those of WT mice and, like treatment of LTβRag in WT mice, there was no 
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Figure 4.8: Stimulation of LTβR along with immunization is not enough to 
initate LN lymphangiogenesis in µMT mice. (A) LN cellularity and number of 
LECs were evaluated in LNs of WT, µMT and µMT mice treated with LTβRag 4 
days after immunization. (B) LN sections from WT, µMT and µMT mice treated 
with LTβRag were stained for LYVE-1 and B220 after immunization. Images and 
flow cytometry results are representative of 3 independent experiments (n=3). 
Significant differences are designated by *p < 0.05 and **p < 0.01. 
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significant increase in the total cell number in the LNs of the LTβRag-treated 

µMT mice compared to the control µMT mice (Figure 4.8A). Activation of LTβR 

signaling in the LNs of µMT mice did not lead to further expansion of the LNs 

following immunization, displaying a 3-fold increase in LN cellularity analogous 

to the control µMT mice, while the WT mice LNs expanded by more than 5-fold 

(Figure 4.8A). Examination of the LECs number in the LNs indicated similar 

results as above. LECs count in the non-immunized LNs of µMT mice was lower 

than that of WT mice LNs and, although injection of LTβRag resulted in a slight 

increase in the amount of LECs in the LNs of µMT mice, the difference was not 

statistically significant (Figure 4.8A). Upon immunization, the number of LECs in 

the WT mice LNs was more than twice the amount of LECs in the LNS of µMT 

mice in both the LTβRag-treated and control group (Figure 4.8A). There was no 

substantial difference in the number of LECs in the µMT mice LNs with or 

without activation of LTβR signaling by the receptor agonist (Figure 4.8A). The 

flow cytometry data were substantiated by examining the LN sections of these 

mice (Figure 4.8B). While the expansion of the lymphatic vessels in the cortex 

region of the LNs could clearly be seen in the WT LNs, such modifications in the 

lymphatic vessel network in the LNs of µMT mice were largely absent (Figure 

4.8B). The treatment of LTβRag did not bring about any noteworthy differences 

in the µMT mice LNs (Figure 4.8B). Thus, these findings indicate that, even with 

immunization, LTβR signaling is insufficient by itself to support 

lymphangiogenesis in LNs that are lacking B cells. 
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4.2.5 Therapeutic inhibition of the LTβR signaling does not affect LN 

lymphangiogenesis 

Previously in our experiments with blocking LTβR signaling, we administered the 

inhibitor LTβRIg before immunizing the mice. This “preventive” method of 

impeding the LTβR signaling pathway was shown to be effective in preventing 

LN expansion and lymphaniogenesis. While we have then proceeded on to prove 

that activation of LTβR by itself is not adequate to promote LN 

lymphangiogenesis, the next question is whether a sustained LTβR signaling is 

necessary to maintain the growth of the lymphatic vessels, exploring the 

therapeutic potential of inhibiting LTβR signaling in limiting lymphangiogenesis. 

To answer this question, we decided to inhibit the LTβR signaling after 

lymphangiogenesis has taken place in the LN and investigate if this would lead to 

the regression of lymphatic growth. Since lymphangiogenesis in the LNs on the 

4th day after CFA/KLH immunization has been well-documented in our studies, 

for our current “therapeutic” protocol, we only began to block LTβR signaling in 

the mice 4 days after immunization by injecting LTβRIg subcutaneously into their 

footpads. Flow cytometry study on the effects of “therapeutic” blocking of LTβR 

signaling on LN lymphangiogenesis was done 3 days after administration of 

LTβRIg. First we looked at the effects of immunization for 7 days on the control 

LNs. LNs that had been immunized for 7 days displayed a greater than 9-fold 

dramatic increase in cell count, indicative of continued expansion of the LNs from 

4 days to 7 days after immunization (Figure 4.9). Reflecting the enlargement of 

the LNs, there was a comparable large increase in the number of LECs of more 

than 7-fold in the LNs after immunization (Figure 4.9). These figures signaled that 
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Figure 4.9: Effects of therapeutic inhibition of LTβR signaling for 3 days 
after immunization on LN cellularity and lymphangiogenesis. LN cellularity 
and number of LECs were evaluated in LNs mice treated with huIgG or LTβRIg 
for 3 days after 4 days of CFA/KLH immunization. Data shown are representative 
of 3 independent experiments with 3 mice per group in each experiment and 
significant differences are designated by *p < 0.05, **p < 0.01 and ***p < 0.001. 
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the LNs endured sustained growth and lymphangiogenesis 7 days after CFA/KLH 

immunization. Next we evaluated the influences of blocking LTβR signaling after 

the LNs had been allowed time for expansion and lymphangiogenesis to take 

place. There was no significant difference in the LN cell count of the non-

immunized LTβRIg-treated LNs compared with the LNs of the control mice 

(Figure 4.9). However, the treatment of LTβRIg resulted in a less robust 

expansion of the LNs upon immunization (Figure 4.9). LNs of mice with LTβR 

signaling inhibited had a 7-fold increase in LN celllularity, and only about 75% of 

the total cell count of the control mice LNs (Figure 4.9). Similarly, there was no 

significant difference in the sum of LECs in the non-immunized LNs of the mice 

with or without LTβRIg treatment (Figure 4.9). Although we expected the amount 

of LECs in the LNs of LTβRIg-treated mice to be less than that of the control 

mice due to inactivation of LTβR after immunization, the flow cytometry analysis 

revealed that there was no substantial variation in the number of LECs when 

compared with the control group (Figure 4.9). LECs in the LNs treated with 

LTβRIg exhibited a 7-fold increase in number that was equivalent to the control 

mice (Figure 4.9). Therefore after the expansion of the size and lymphatic vessel 

network in the LNs had transpired, blocking LTβR signaling for 3 days could only 

moderate the expansion of the LNs and not regulate lymphatic vessel growth. 

 

Inhibition of the LTβR signaling for 3 days after immunization of the LNs did not 

result in reduced LN lymphagiogenesis. We wondered if this was due to the 

inadequate time allowed for the blocking of LTβR signaling to have a significant 
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effect on LN lymphangiogenesis, as a study on LTβR signaling had revealed that 

it requires one or two weeks for the effects of LTβRIg treatment to be fully 

established (Browning et al., 2005). Before we repeated the experiment to allow 

for a longer duration of LTβR inhibiton, we decided to first study the effects of 

prolonged immunization on LN lymphangiogenesis. We have shown that swelling 

of the LNs and lymphangiogenesis could be detected a week after immunization. 

Thus, we chose to look at LN lymphangiogenesis at later time points, namely, at 

day 15, 20 and 25 after immunization. As seen from our analysis on LN 

cellularity, massive expansion of the LNs could be seen for all three time points 

(Figure 4.10). However, for the three time points that we had selected, the largest 

cell count was detected at day 15, and the number gradually decreased as the days 

of immunization increased (Figure 4.10). Analysis of LEC count in the LNs by 

quantitative flow cytometry revealed that lymphangiogenesis was present in the 

LNs throughout the three time points selected (Figure 4.10). Although a similar 

trend in the number of LECs could be observed on the immunized LNs, the 

differences were not significant (Figure 4.10). These data indicated that the effects 

of CFA/KLH immunization on the expansion of the LNs and lymphangiogenesis 

could still be detected up to 25 days after immunization. While the decrease in LN 

cellularity from day 20 onwards hinted at the resolution of inflammation in the 

LNs, there was no accompanying regression of the lymphatic vessels at these time 

points. 
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Figure 4.10: Prolonged LN enlargement and lymphangiogenesis after 
immunization. LN cellularity and number of LECs in LNs were evaluated 16, 20 
and 24 days after CFA/KLH immunization. Data shown are representative of 3 
independent experiments with 3 mice per group in each experiment and 
significant differences are designated by *p < 0.05, **p < 0.01 and ***p < 0.001. 
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Having confirmed that the effect of prolonged CFA/KLH immunization on LN 

cellularity and lymphangiogenesis, we went on to investigate the consequences of 

extended LTβRIg treatment on LN lymphangiogenesis. In the same way, we first 

immunized the mice for 4 days before administering LTβRIg via intraperitoneal 

injection. For this experiment, LTβR signaling was inhibited for a week to allow 

for its effects to manifest prior to examining the outcomes by flow cytometry and 

immunohistochemistry. We began by looking at the effects on non-immunized 

LNs from administering the mice with LTβRIg for a week. Like our earlier 

experiments where we treated the mice with LTβRIg for a shorter duration, 

extended treatment of LTβRIg on the mice via intraperitoneal injections did not 

result in any significant changes in the LN cellularity and numbers of LECs in the 

LNs at baseline level (Figure 4.11A). For our flow cytometry analysis, we also 

delved into the effects of blocking LTβR signaling for 1 week on the 

hematopoietic cellular components of the LNs, namely the B and T cells, DCs and 

macrophages. As expected from our examination of the LN cellularity, there was 

also no substantial variations in the above mentioned cell types in the LNs after 

LTβRIg treatment (Figure 4.11A). After immunization, the therapeutic treatment 

of LTβRIg reduced the cellularity of the inflamed LNs by about 40% (Figure 

4.11A). However, the exact same blocking of LTβR signaling did not reduce 

lymphangiogenesis. Instead, the amount of LECs for the LTβRIg-treated LNs 

increased as compared to the untreated immunized LNs (Figure 4.11A). Analysis 

of the B and T cells revealed a comparable decrease in numbers as the total LN 

cellularity of the LTβRIg-treated immunized LNs (Figure 4.11A). Similarly, 

LTβRIg treatment also led to a reduction in the number of DCs in the LNs after 
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Figure 4.11: Effects of prolonged therapeutic inhibition of LTβR signaling 
for 1 week after immunization on the LNs. (A) LN cellularity, number of LECs, 
B and T cells, DCs and macrophages were evaluated in LNs mice treated with 
huIgG or LTβRIg for 1 week after 4 days of CFA/KLH immunization. (B) LN 
sections from non-immunized and immunized mice treated with huIgG or LTβRIg 
were stained for LYVE-1, B220 and TCRβ. Images and flow cytometry results are 
representative of 3 independent experiments (n=3). Significant differences are 
designated by *p < 0.05, **p < 0.01 and ***p < 0.001. 
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immunization (Figure 4.11A). Surprisingly though, the number of macrophages in 

the inflamed LTβRIg-treated LNs was about the same as that of the inflamed 

control LNs, and did not follow a proportional diminution in numbers due to the 

reduced size of the LNs (Figure 4.11A). Immunohistochemical analysis on the 

LNs revealed the expansion of the lymphatic vessel network, along with the 

growth of new lymphatic vessels around the B cells follicles in the control 

immunized mice (Figure 4.11B). These modifications of the lymphatic vessel 

network could be observed in the inflamed LNs of LTβRIg-treated mice as well 

(Figure 4.11B), confirming that blocking LTβRIg for a week four days after 

immunization did not have any effect on lessening lymphangiogenesis in the LNs.  

 

To reinforce our findings that LN lymphangiogenesis, once it has taken place, 

does not require LTβR signaling to sustain itself, we repeated our extended 

therapeutic treatment of LTβRIg in the mice for 2 weeks. Our experimental 

protocol was largely the same as before, except that we injected the mice twice 

with LTβRIg a week apart for a total of 2 weeks of LTβR signaling inhibition and 

17 days of immunization. Our results illustrated that treatment of LTβRIg for 2 

weeks produced similar outcomes as blocking LTβR signaling for a week (Figure 

4.12).  There were no significant differences in the LN cellularity, LECs number, 

as well as the cell count of the B and T cells, DCs and macrophages that we 

examined in the LNs of the non-immunized control and LTβRIg treated mice 

(Figure 4.12). On immunized mice, the LTβRIg treatment led to smaller LNs with 

about half the total cell count of the control LNs (Figure 4.12). Again, there was 
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an increase in the number of LECs in the LNs from the resulting LTβR signaling 

inhibition as we have seen in the one-week blocking (Figure 4.12). Examination 

of the B and T cells count displayed proportional decrease in numbers, while there 

was no significant difference in the number of DCs in the inflamed LNs after 

LTβRIg treatment (Figure 4.12). This time round, the additional week of LTβR 

signaling blocking gave rise to an increase of almost twice the amount of 

macrophages in the LNs weighed against control mice (Figure 4.12). These results 

suggest that lymphangiogenesis, once it has taken place, does not require LTβR 

signaling to sustain itself. 
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Figure 4.12: Effects of prolonged therapeutic inhibition of LTβR signaling 
for 2 weeks. LN cellularity, number of LECs, B and T cells, DCs and 
macrophages were evaluated in LNs mice treated with huIgG or LTβRIg for 2 
weeks after 4 days of CFA/KLH immunization. Flow cytometry results are 
representative of 3 independent experiments (n=3), and significant differences are 
designated by *p < 0.05, **p < 0.01 and ***p < 0.001. 
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4.3 Discussion 

Our earlier study established the requirement of the expression of LTα by B cells 

for the induction of lymphangiogenesis after immunization. Here, we highlighted 

the regulation of lymphangiogenesis by LTβR signaling. Using a soluble inhibitor 

of the LTβR, we demonstrated that inhibition of the LTβR signaling prevented the 

expansion of the LN and lymphangiogenesis following immunization. Impeding 

lymphangiogenesis by blocking LTβR signaling could also mediate secondary 

responses in the LNs brought about by the expansion of the lymphatic vessel 

network, such as the enhancement of DC migration.  

 

We also showed that LECs express LTβR, opening up the possibility that 

lymphangiogenesis could be induced directly through the activation of the LTβR 

signaling on LECs. This is interesting because we have presented earlier that the 

newly formed lymphatic vessels in the cortex of immunized LNs are in vicinity to 

B cells, which are known to express the LTβR ligand, LTα1β2. Our findings that B 

cells, but not T cells, upregulate the expression of LTα upon immunization further 

strengthened our notion that B cells regulate lymphangiogenesis through 

activation of the LTβR signaling. 

 

To further investigate the role of LTβR signaling in LN lymphangiogenesis, we 

made use of a LTβR agonist to stimulate LTβR signaling. The fact that activation 

of the LTβR, and together with TNFR, in the absence of immunization did not 
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result in LN lymphangiogenesis suggested that additional signaling brought about 

by immunization is required for LN lymphangiogenesis. Triggering the LTβR 

along with immunization is again insufficient to initate LN lymphangiogenesis in 

µMT mice shows that B cells are strictly required for the growth of lymphatic 

vessel and the effect of LTβR signaling is not directly on LECs. The absence of 

FDCs in the µMT mice might also be a factor in the lack of lymphangiogenesis. 

 

Interestingly, our therapeutic treatment of LTβRIg on LNs after immunization has 

taken place did not result in any reduction in lymphangiogenesis in the LNs. 

These findings suggested that once lymphangiogenesis has been initated in the 

LN, the process does not require further LTβR signaling to maintain the the 

growth of new lymphatic vessels. More importantly, it indicates that the 

involvement of LTβR signaling in lymphangiogenesis is at the early stages of the 

process. 
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Chapter 5: Blocking lymphotoxin β receptor signaling reveals the 

role of matrix metalloproteinase-13 in lymph node 

lymphangiogenesis 
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5.1 Introduction 

Our findings, that inhibition of lymphangiogenesis by blocking LTβR signaling 

was only observed when the mice were treated with LTβRIg prior to CFA/KLH 

immunization, give rise to the hypothesis that the LTβR signaling may exert its 

regulatory role in the early stages of lymphangiogenesis. Since one of the intital 

steps of lymphangiogenesis involves the degradation of the ECM and BM by 

MMPs, and that the NF-κB signaling pathway is involved in the regulation of 

MMP gene expression, we propose that LTβR signaling may control the 

expression of MMPs in the LNs 

 

The lack of a complete coverage of  the lymphatic capillaries by BM means that 

the sprouting of new lymphatic vessels may be mainly through the degradation of 

ECM comprising mainly of the fibrillar type I collagen (Wiig et al., 2010; Paupert 

et al., 2011). We focused our study on four members of the MMP family: MMP-2, 

MMP-9, MMP-13 and MT1-MMP. We chose these MMPs based on their 

substrate specificities as well as their involvement in the degradation of the ECM. 

MMP-2, MMP-9, and MT1-MMP have been considered to be among the most 

involved MMP members in angiogenesis. (Handsley and Edwards, 2005; van 

Hinsbergh et al., 2006). The membrane bound MT1-MMP, one of the most 

important enzymes in pericellular proteolytic activities, is capable of acting as an 

interstitial collagenase (Barbolina and Stack, 2008). Gelatinases, MMP-2 and 

MMP-9, are known to actively degrade type IV collagen, a major component of 

the BM (Pytliak et al., 2012). Interestingly, research to date on the role of MMPs 
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in lymphangiogenesis has centered on MMP-2 (Matsuo et al., 2007; Bruyère and 

Noël, 2010; Detry et al., 2012). MMP-13, also known as collagenase 3, despite 

belonging to the collagenase subfamily of MMPs, has an active site sequence 

similar to the gelatinases (Knäuper et al., 1996a). Therefore MMP-13 is also an 

interesting candidate as it is able to cleave a wide range of substrates, including 

various components of the ECM, together with displaying high collagenolytic and 

gelatinolytic activity (Knäuper et al., 1996a; Lemaître and D'Armiento, 2006). 

 

Here, we examined the mRNA expression as well as the proteolytic activities of 

the MMPs in the LNs upon immunization and their regulation by LTβR signaling. 

We also studied the compartmentalization of the MMPs in the LNs as well as their 

possible involvement in the lymphangiogenesis process. 
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5.2 Results 

5.2.1 LTβR signaling regulates the expression of MMP-13 in LNs 

In order to investigate the relationship between MMPs and LN 

lymphangiogenesis, we first examined the mRNA expression levels of the 

selected MMP-2, MMP-9, MMP-13 and MT1-MMP in the LNs after CFA/KLH 

immunization. With the purpose of studying the regulation of MMPs by LTβR 

signaling, again, we exploited the fusion protein LTβRIg. We selected time points 

of 1 day, 2 days and 4 days after immunization to look at the mRNA expression 

levels of the various MMPs in the LNs as lymphangiogenesis progresses. 

Following our preventive blocking protocol, LTβRIg was administered 

subcutaneously into the footpads of the mice a day before CFA/KLH 

immunization. Figure 5.1A shows the starting amount of each MMPs in the LNs. 

For MMP-2, MMP-9 and MT1-MMP, there were no significant differences in 

their expression with or without LTβRIg treatment (Figure 5.1B). mRNA 

expression of these three MMPs followed a similar trend whereby their expression 

decreased as the days after immunization increased (Figure 5.1B). Of the four 

MMPs studied, only MMP-13 showed a significant 8-fold increase in mRNA 

expression level 1 day after immunization, and decreased to a 4-fold increase in 

mRNA expression 2 days after immunization and finally dropping to baseline 

level at 4 days after immunization in control mice (Figure 5.1B). Increased 

expression of MMP-13 could also be detected in mice with LTβR signaling 

inhibited (Figure 5.1A). However, intriguingly, the increase in MMP-13 mRNA 

expression in control mice was significantly higher than mice treated with 

LTβRIg1day before immunization (Figure 5.1B). As we noticed that the 
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Figure 5.1: Expression of MMP-2, MMP-9, MMP-13 and MT-MMP in LNs. 
(A) Starting CT value (absolute mRNA level) of each MMP in the LNs. (B) qPCR 
analysis of MMP-2, MMP-9, MT1-MMP and MMP-13 expression in LNs at 1, 2 
and 4 days after immunization. (C) qPCR analysis of MMP-13 expression in LNs 
at 6 and 12 hr after immunization. Data shown are representative of 3 independent 
experiments with 3-4 mice in each group. 
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expression level of MMP-13 was highest on the first day after immunization and 

dropped off at subsequent time points, we wondered if MMP-13 was expressed at 

higher levels at even earlier time points. Thus we continued to determine the 

expression of MMP-13 at 6 hours and 12 hours after immunization. We found that 

the MMP-13 was expressed at much higher levels in these earlier time points with 

a 13-fold and a 18-fold increase in mRNA expression levels at 6 hours and 12 

hours respectively in the LNs of control mice (Figure 5.1C). Similarly, the 

blocking of the LTβR signaling pathway resulted in a significant reduction in the 

expression of MMP-13 (Figure 5.1C). Our results indicated that there is 

upregulation of MMP-13 expression in response to CFA/KLH immunization, and 

this expression is controlled by LTβR signaling. 

 

The increased mRNA expression of MMP-13 in the LNs within the first day after 

immunization suggested that the protease might have an important role in the 

regulation of the early stages of LN lymphangiogenesis. To test our hypothesis, 

we ran a gelatin zymography assay with the whole cell lysate from the LNs of the 

mice. The point of running a zymography assay is that the MMPs with various 

molecular weights could be identified and quantified on a single gel based on the 

degradation of the substrate. As we are measuring the protease activity, we 

collected the LNs from the mice at an interval of 12 hours from the start of 

immunization to 36 hours after immunization. The mice were treated with either 

HuIgG as control or LTβRIg to assess the effects of LTβR signaling blocking. 

Although gelatin is known to be a preferred substrate for both MMP-2 and MMP-
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Figure 5.2: Proteolytic activites of MMP-9 and MMP-13 in the LNs. (A) A 
representative zymography showing MMP-9 and MMP-13 levels in the LNs at 0, 
12, 24 and 36 hr after immunization. (B) MMP levels in zymography were 
determined by band densitometry and are shown as fold increase relative to 
corresponding MMPs in control LNs at 0 hr. Data shown are representative of 3 
independent experiments with 3 mice in each group. 
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9, only MMP-9 gelatinase activity as well as MMP-13 could be detected on the 

gel (Figure 5.2A). Quantification of the bands on the gel by ImageJ revealed that 

the activity of MMP-13 in the LNs was increased by almost 5-fold at 12 hours 

after CFA/KLH injection compared to non-immunized control mice (Figure 

5.2B). MMP-13 activity remained at 2-fold of baseline activity at 24 hours before 

dropping to a comparable level with non-immunized mice at 36 hours after 

immunization (Figure 5.2B). As expected, the activity of MMP-13 in the LNs was 

significantly reduced by the treatment of LTβRIg (Figure 5.2B). While we did not 

detect any increase in MMP-9 mRNA expression by qPCR, quantification of the 

zymography assay by densitometry showed that MMP-9 activity in the LNs 

briefly increased by more than 2-fold at 12 hours after immunization in the control 

mice before reverting back to baseline levels at subsequent time points (Figure 

5.2B). Similar to MMP-13, blocking LTβR signaling in the LNs of the mice 

prevented the increase in MMP-9 activity seen in control mice (Figure 5.2B). Our 

data indicated that the increase in activities of MMP-13 and MMP-9 in response 

to immunization was regulated by LTβR signaling. 

 

5.2.2 Localization of MMP-13 and MMP-9 in the LNs 

We have demonstrated the increase in MMP-13 expression and activity in the LNs 

upon immunization through our mRNA analysis and zymography studies 

respectively. However, due to the nature of the above experiments, we do not 

know the localization of MMP-13. This is an important question because 

compartmentalization of MMPs in tissues, which is the binding of MMPs to 
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specific regions in the pericellular environment, is an critical aspect of MMP 

activity regulation. Knowing the location of MMP-13 in the LNs could also 

provide a hint on its role in the regulation of LN lymphangiogenesis. Therefore, 

we proceeded on to determine the localization of MMP-13 by 

immunohistochemistry. We looked at the expression of MMP-13 in non-

immunized LNs as well as LNs after 1 day and 3 days of immunization. The LN 

sections were also stained for LYVE-1, ERTR7 and CD11b to examine the 

localization of MMP-13 with respect to the lymphatics, the FRCs and the 

macrophages correspondingly. 

 

First we stained for LYVE-1 together with MMP-13 (Figure 5.3A). Both before 

and after immunization, MMP-13 staining could be seen to co-localize with 

LYVE-1 staining under high magnification (400x) (Figure 5.3A). Interestingly, 

some segments of the lymphatic vessels in the non-immunized LNs exhibited 

decreased LYVE-1 expression (Figure 5.3A). The downregulation of LYVE-1 

expression on lymphatic segments was more prominent and was observed more 

frequently after immunization (Arrows in Figure 5.3A). Comparing the LYVE-1 

and MMP-13 staining of the same lymphatic vessel, as pointed out by the arrows 

in the LN after 1 day of immunization, antibodies for LYVE-1 only covered 

approximately half the lymphatic vessel, whereas MMP-13 stained for the entire 

lymphatic vessel (Figure 5.3A). A similar staining pattern was observed in LNs 

after 3 days of immunization (Arrows in Figure 5.3A). Curiously, we noticed that 

the parts of the lymphatic vessels that were not stained for LYVE-1 typically 
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stained for MMP-13 with a higher intensity in contrast to the other regions that 

were LYVE-1+ (Arrows in Figure 5.3A). Besides being observed to co-localize 

with LYVE-1, MMP-13 was also seen to stain for LYVE-1- vessel-like structures 

(Arrowheads in Figure 5.3A). These structures were most likely to be blood 

vessels. Next, we examined the localization of MMP-13 together with ERTR7 

(Figure 5.3B). FRCs, as revealed by ERTR7 staining, were found mainly in the T 

cell zone (paracortex) as well as surrounding the blood and lymphatic vessels in 

the LNs (Figure 5.3B). From our immunohistochemistry results, MMP-13 was 

generally not found to be co-stained with the FRCS in the paracortex region of the 

LNs but was instead observed only around the vessels in the LNs (Figure 5.3B). 

There were no discernible differences in the staining pattern of MMP-13 with 

respect to ERTR7 in LNs of both non-immunized and immunized mice (Figure 

5.3B). Because macrophages have been reported to be a major cellular source of 

MMP-13 (Fallowfield et al., 2007), we stained for CD11b along with MMP-13 

(Figure 5.3C). In the LN sections of non-immunized mice, CD11b+ cells could be 

observed to stain weakly for MMP-13 (Figure 5.3C). The staining of MMP-13 on 

the CD11b+ cells increased in intensity slightly at 1 day and 3 days after 

immunization, indicating the presence of higher levels of MMP-13 in these cells 

in response to CFA/KLH (Figure 5.3C). 

 

The increase in the levels of activity of MMP-9 in the LNs indicated that MMP-9 

might also be crucial in the degradation processes in the LNs in response to 

immunization. Hence, after investigating the localization of MMP-13 in the LNs, 
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Figure 5.3: Localization of MMP-13 in the LNs. LN sections from non-immunized and immunized mice at day 1 and 3 were stained 
for MMP-13 and (A) LYVE-1, (B) ERTR7 and (C) CD11b. (A) LYVE-1+ lymphatic vessels (arrows) and structures resembling HEVs 
(arrowheads) were examined for costaining of MMP-13. Images are representative of 4 independent experiments consisting of 3 mice per 
group in each experiment. 
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we next examined the localization of MMP-9 in the LNs. Similar to our previous 

immunohistochemistry study on MMP-13, we stained for LYVE-1, ERTR7 and 

CD11b together with MMP-9 on resting LNs and LNs following 1 day and 3 days 

of immunization. Looking at the staining of MMP-9 together with LYVE-1, we 

observed that the localization of MMP-9 largely followed that of MMP-13 with 

respect to LYVE-1 staining (Figure 5.4A). MMP-9 was detected to co-localize 

with LYVE-1 staining in non-immunized LNs as well as in LNs after 

immunization (Arrows in Figure 5.4A). Other than appearing on LYVE-1+ 

lymphatic vessels, MMP-9 also localize on LYVE-1- blood vessels (Arrowheads 

in Figure 5.4A). We also noticed the broken LYVE-1 staining of the lymphatic 

vessels and similar to the staining of MMP-13, segments of the lymphatic vessels 

that were not covered by LYVE-1 generally appeared to stain brighter for MMP-9 

compared to the other parts of the vessels that were LYVE-1+ (Arrows in Figure 

5.4A). Next we stained for ERTR7 alongside MMP-9 (Figure 5.4B). Different 

from MMP-13, MMP-9 was seen to co-localize with ERTR7 staining both around 

the vessels of the LNs as well as the FRCs in the T cell zone of the non-

immunized LNs (Figure 5.4B). Following the immunization of the mice, the 

effects of CFA/KLH did not seem to result in any significant changes in the 

staining of MMP-9 with respect to ERTR7 (Figure 5.4B). We also did not observe 

any changes in the intensity of MMP-9 staining (Figure 5.4B). Finally, we 

examined the localization of MMP-9 alongside CD11b staining (Figure 5.4C). 

The staining of MMP-9 could hardly be seen in CD11b+ cells in the LNs of non-

immunized mice (Figure 5.4C). The presence of MMP-9 in the CD11b+ cells 

appeared to increase after 1 day of immunization as indicated by the increase in 
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the intensity of the MMP-9 staining on the CD11b+ cells (Figure 5.4C). However, 

this increment in MMP-9 seemed to be transient as the brightness of the MMP-9 

staining in the CD11b+ cells dropped to similar levels as those in the non-

immunized LNs after 3 days of immunization (Figure 5.4C). 

 

The compartmentalization of MMP-13 and MMP-9 around the lymphatic vessels 

suggested that the degradation of the ECM and/or basement membrane by MMPs 

might have been an important first step in the lymphangiogenesis process. Types I 

and IV collagen, known to be among the main ECM and BM components, are 

recognized substrates of MMP-13 and MMP-9, respectively. Thus, we decided to 

investigate the expression and localization of types I and IV collagen by 

immunohistochemistry, with respect to MMP-13 and MMP-9, LYVE-1 and 

CD31. Non-immunized LNs along with LNs after 3 days of immunization were 

used in this study to compare the effects of immunization on the collagen 

distribution in the LNs. 

 

We first studied the localization of types I and IV collagen in non-immunized LNs 

under high magnification (400x) (Figure 5.5A). As before, blood vessels were 

identified by the expression of high levels of CD31 and the absence of LYVE-1 

staining. Unlike lymphatic vessels, where MMP-13 and MMP-9 were revealed to 

co-localize with LYVE-1+ lymphatic vessels as previously described, MMP-13 

and MMP-9 were observed to surround the CD31+ blood vessels (Figure 5.5A).
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Figure 5.4: Localization of MMP-9 in the LNs. LN sections from non-immunized and immunized mice at day 1 and 3 were stained for 
MMP-9 and (A) LYVE-1, (B) ERTR7 and (C) CD11b. (A) LYVE-1+ lymphatic vessels (arrows) and structures resembling HEVs 
(arrowheads) were examined for costaining of MMP-9. Images are representative of 4 independent experiments consisting of 3 mice per 
group in each experiment. 
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The staining of type IV collagen appeared to follow similar patterns to both 

MMP-13 and MMP-9, where collagen IV could be detected to co-localize with 

LYVE-1 staining, and around CD31+ structures (Figure 5.5A). The staining of 

collagen IV around the blood vessels appeared to be thicker and usually of a 

higher intensity compared to the weak and “punctuated” staining on the lymphatic 

vessels (Figure 5.5A). For type I collagen, the staining was also similar to both 

MMPs as well as type IV collagen. Collagen I staining was observed on the 

LYVE-1+ lymphatic vessels and encircling CD31+ blood vessels, however, the 

intensity of the collagen I staining was about the same for both types of vessels 

and not especially brighter on blood vessels (Figure 5.5A). Although both 

collagen IV and I could be seen to stain for the reticular fibers in the LNs, type IV 

collagen staining appeared to be stronger around the vessels while type I collagen 

staining was more evenly distributed among the reticular fibers and the vessels 

(Figure 5.5A). Disrupted staining of LYVE-1 on lymphatic vessels could again be 

detected on sections of LNs after 3 days of immunization (Figure 5.5B). However, 

unlike for LYVE-1 expression, it was observed that the CD31 expression on the 

lymphatic vessels was uniform (Figure 5.5B). MMP-13 and MMP-9 staining were 

similarly observed to co-stain with LYVE-1 and the staining of the MMPs was 

particularly brighter at parts of the lymphatic vessels not stained with LYVE-1 

(Figure 5.5B). The staining pattern and intensity of both types IV and I collagen 

were comparable to non-immunized LNs, suggesting that immunization did not 

influence the main collagen make-up of the ECM and BM (Figure 5.5B). We also 

looked at LNs that were immunized for1day and found the staining were similar 

to LNs after 3 days of immunization (data not shown). 
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Figure 5.5: Localization of types I and IV collagen in the LNs with respect to compartmentalization of MMP-9 and -13. LN 
sections from (A) non-immunized and (B) immunized mice at day 3 were stained for LYVE-1, CD31 and MMP-13, MMP-9, type IV or 
type I collagens. Images are representative of 4 independent experiments consisting of 3 mice per group in each experiment. 
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We then investigated the effects of blocking LTβR signaling on the localization 

and distribution of both MMP-13 and MMP-9, and both types IV and I collagen in 

relation to lymphatic vessels in the LNs after immunization. We compared LN 

sections after 3 days of immunization whereby the modifications of the lymphatic 

vessels brought about by the effects of immunization were readily detectable. The 

staining of LYVE-1 on the lymphatic vessels of  LTβRIg treated immunized LNs 

(Figure 5.6B) appeared to be more weakly stained compared to control 

immunized LNs (Figure 5.6A) when viewed under high magnification (400x). 

Furthermore, the downregulation of LYVE-1 on lymphatic segments seemed to be 

more frequent and cover a larger portion of the lymphatic vessels after LTβRIg 

treatment on the LNs (Figure 5.6B). LTβRIg treatment did not seem to affect the 

staining of both MMP-13 and MMP-9 (Figure 5.6B). MMP-13 staining could still 

be detected around the vessels and are usually brighter on the parts of the 

lymphatic vessels not stained for LYVE-1 (Figure 5.6B). Similarly, no differences 

in the immunofluroscent staining of both type IV and I collagen were detactable 

on the LTβRIg treated LNs compared to the control (Figure 5.6B).  

 

To sum it up, study of the compartmentalization of MMP-13 by 

immunohistochemistry indicated that MMP-13 was found mainly in the LNs 

surrounding both the lymphatic vessels and the blood vessels, as well as the 

CD11b+ macrophages. On the other hand, the main distribution of MMP-9 in the 

non-immunized LNs was found around the lymphatic vessels, the blood vessels 

and the FRCs. After immunization, a transient increase in the amount of MMP-9 
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could also be detected in the CD11b+ macrophages at 1 day after immunization. 

Staining for the collagen in the LNs indicates that BM, as identified by collagen 

IV in this study, is present around lymphatic vessels in the LNs, although it is 

discontinuous and much thinner compared to the blood vessels. On the other side, 

type I collagen, one of the main components of the ECM, is more evenly spread 

out in the LNs. 
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Figure 5.6: Effect of blocking LTβR signaling on MMP-9 and -13 and type I and IV collagens in the LNs. LN sections from 
immunized mice at day 3 treated with (A) huIgG and (B) LTβRIg were stained for LYVE-1, CD31 and MMP-13, MMP-9, type IV or 
type I collagens. Images are representative of 4 independent experiments consisting of 3 mice per group in each experiment. 
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5.3 Discussion 

Our data show for the first time the regulation of the expression of MMPs by the 

LTβR signaling, as well as the involvement of MMP-13 in lymphangiogenesis. Of 

the four MMPs analyzed, we demonstrated that upregulation of MMP-13 mRNA 

expression levels could be detected as early as 6 hours after immunization. Using 

a gelatin zymography assay, we were able to confirm the upregulation of MMP-13 

upon immunization through its proteinase activity, along with detecting an 

increase in MMP-9 activity. Interestingly, both the increase in mRNA expression 

levels and proteinase activity of MMP-13, and proteolytic activity of MMP-9 can 

be moderated by blocking LTβR signaling, suggesting that the regulatory role of 

LTβR signaling in the early stages of LN lymphangiogenesis may be in the 

control of MMP-13 expression. 

 

Studying the compartmentalization of MMP-13 and MMP-9 in the LNs, we 

revealed that they localize mainly around lymphatic vessels, blood vessels and 

FRCs. As the localization of the MMPs is critical in determining the specificity of 

proteolysis, we also looked at the expression of types I and IV collagen which are 

the main components of the ECM and BM, respectively. These types of collagens 

are also the main substrates of MMP-13 and MMP-9. While lymphatic vessels are 

known for the absence or at most partial covering by BM (Wiig et al., 2010; 

Paupert et al., 2011), we do detect collagen IV around the lymphatic vessels, 

although the amount of collagen IV surrounding the lymphatic vessels is much 

lower and discontinuous compared to the HEVs. These observations indicate that 
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for sprouting lymphangiogenesis to occur, degradation of collagen IV in addition 

to collagen I may be required. In addition, effects, if any, brought about by 

blocking LTβR signaling on the localization of the MMPs and the main collagen 

constituents of the ECM and BM could not be detected by the fluorescent 

microscope. 

 

In conclusion, the close association of the MMPs and collagens imply that the role 

of MMP-13, and perhaps MMP-9 as well, in lymphangiogenesis may be in the 

degradation of the ECM and BM.  
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Chapter 6: Matrix metalloproteinase-13 regulates 

lymphangiogenesis through proteolytic degradation of 

extracellular matrix and basement membrane  
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6.1 Introduction 

In the previous chapters, we identified the regulatory role of LTβR signaling in 

the initiation of lymphangiogenesis through the expression of MMP-13. MMP-13 

has been widely recognized as the main collagenase in mice involved in the 

remodeling of fibrillar collagen due to the restricted expression of MMP-1 in the 

murine system (Henriet et al., 1992). In addition, MMP-13 has been associated 

with numerous types of cancer, and high expression of the protease is often linked 

to the malignancy of the tumors {Balbin:1999ww, Klein:2011cv}. Due to its 

ability to cleave collagen II, MMP-13 is also critical in bone development and 

disease {Lemaitre:2006ga}. Besides being an effective proteinase against a broad 

spectrum of ECM components, MMP-13 is a major player in the MMP activation 

cascade (Leeman et al., 2002). For instance, MMP-13 is involved in the activation 

of proMMP-9 (Knäuper et al., 1997), and proMMP-13 can be activated by MT1-

MMP and MMP-2 (Knäuper et al., 1996b). 

 

Having established the link between MMP-13 expression and lymphangiogenesis, 

we sought to determine the aspect of the growth of lymphatic vessels that is 

regulated by MMP-13. We hypothesized that MMP-13 is important in controlling 

the steps in the lymphangiogenesis process that requires proteolytic activity such 

as LEC adhesion or migration. Using a stable mouse LEC line from mesenteric 

adventitial tissue (SV-LEC) (Ando et al., 2005), we showed that LECs are capable 

of producing MMP-13 upon stimulation. Through an in vitro model of 
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lymphangiogenesis, we demonstrated that indeed, MMP-13 mediates 

lymphangiogenesis through its proteolytic activities. 
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6.2 Results 

6.2.1 SV-LECs upregulate the expression of MMP-13 upon stimulation 

Endothelial cells have been widely known to express various members of the 

MMP family (Newby, 2012) and, specifically, MMP-2, MMP-9 and MT1-MMP 

have been shown to be produced by LECs (Nakamura et al., 2004). Using the 

stable mouse LEC line, SV-LEC for our study of LECs in vitro, we set out to 

evaluate the expression of the various MMPs, MMP-2, MMP-9, MT1-MMP and 

MMP-13 by LECs. As TNFα is a known stimulator of MMPs expression, we used 

recombinant TNFα to induce the expression of the MMPs by the SV-LECs. We 

then measured the mRNA expression levels of the MMPs at 2, 6, 12, and 30 hours 

after TNFα stimulation. 

 

SV-LECs were found to express all four MMPs at baseline (Figure 6.1A) Upon 

stimulation with TNFα, the mRNA expression of MMP-2 increased by 1.2-fold 

after 2 hours compared to resting SV-LECs, but its expression dropped as the 

duration of TNFα stimulation increased, settling at about 0.4-fold of the baseline 

level after 30 hours of stimulation (Figure 6.1B). On the other hand, the mRNA 

expression of MMP-9 fluctuated throughout the various time points reaching 1.5-

fold of baseline expression at 30 hours of TNFα stimulation (Figure 6.1B). For 

MT1-MMP, its mRNA expression in the SV-LECs slowly declined with time 

after TNFα stimulation to 0.4-fold of the level expressed by resting SV-LECs at 

the last time point that we measured (Figure 6.1B). Unlike the other three MMPs 
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Figure 6.1: Expression of MMP-2, -9, -13 and MT1-MMP in SV-LECs after 
stimulation by TNFα . (A) Starting CT value (absolute mRNA level) of each 
MMP in SV-LECs. (B) SV-LECs treated with recombinant TNFα for various 
time points up to 30 hr were collected and MMPs mRNA levels were quantified 
by qPCR and normalized to GAPDH mRNA levels. Data shown are 
representative of more than 5 independent experiments. 
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examined so far, the mRNA expression of MMP-13 increased steadily with time 

after TNFα stimulation, finally reaching a 35-fold increase in mRNA expression 

compared to baseline level (Figure 6.1). These results indicated that stimulation of 

SV-LECs by TNFα resulted in a drastic upregulation in MMP-13 mRNA 

expression, while there were no increase in mRNA expression of MMP-2, MMP-9 

and MT1-MMP. More significantly, these findings highlighted the ability of LECs 

to upregulate the expression of MMP-13 upon stimulation, suggesting that LECs 

may be the cellular source of MMP-13 in the LNs during inflammation. 

 

While we have shown that LECs are capable of producing and upregulating the 

expression of MMP-13, there exist several cell types in the LNs that have been 

known to produce MMPs. Of these cells, macrophages have been reported to 

produce several MMPs including the gelatinases and the collagenases (Shapiro et 

al., 1990; 1993). To determine the contribution of MMP-13 by macrophages, we 

made use of a mouse macrophage cell line, RAW 264.7, to stimulate with TNF for 

the same time points as the previous experiment. 

 

Similar to SV-LECs, MMP-2, MMP-9, MMP-13 and MT1-MMP were found to 

be expressed in RAW cell. However, their expression pattern after TNFα 

stimulation were different compared to SVLECs. The mRNA expression of 

MMP-2 increased to 2-fold after 2 hours of TNFα, and dropped to baseline levels 

after 6 hours before increasing to 2-fold of the mRNA expression level of the 
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Figure 6.2: Expression of MMP-2, -9, -13 and MT1-MMP in RAW cells after 
stimulation by TNFα . RAW cells treated with recombinant TNFα for various 
time points up to 30 hr were collected and MMPs mRNA levels were quantified 
by qPCR and normalized to GAPDH mRNA levels. Data shown are 
representative of 4 independent experiments. 
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resting RAW cells at 30 hours of TNFα stimulation (Figure 6.2). On the other 

hand, there was a continual increase in the mRNA expression of MMP-9 starting 

at 6 hours after TNFα stimulation and peaking at 30 hours after stimulation with a 

16-fold increase in the expression of MMP-9 (Figure 6.2). For MT1-MMP, 

upregulation of mRNA expression could be detected at 2 hours after stimulation 

and continued to 6 hours of TNFα treatment with an expression of almost 5-fold 

the initial level before dropping off at subsequent time points (Figure 6.2). There 

was also an early 2.5-fold increase in the expression of MMP-13 mRNA after 2 

hours of TNFα treatment, though the expression dropped to resting RAW cells 

level after 6 hours and remained low for the length of the experiment (Figure 6.2). 

These data disclosed that while macrophages were capable of producing MMP-2, 

MMP-13 and MT1-MMP and even increasing their expression to a minor extent 

in response to TNFα stimulation, the chief protease whose expression was largely 

upregulated after prolonged TNFα stimulation was MMP-9. Thus, macrophages 

are unlikely to be the major source of MMP-13 in the early stages of LN 

lymphangiogenesis since we do not detect a significant increase in MMP-13 

expression. 

 

6.2.2 Blocking MMP-13 proteolytic activity prevents tube formation by SV-

LECs 

Having shown that LECs are likely the main producers of MMP-13 in the LNs 

upon immunization, we proceed on to investigate the capacity of SV-LECs to 

undergo in vitro lymphangiogenesis by using the tube formation assay. The tube 
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formation assay was chosen as our in vitro lymphangiogenesis model because it 

comprises several steps in lymphangigogenesis such as the adhesion of 

endothelial cells to the substrate, migration, alignment, protease activity as well as 

tubule formation (Arnaoutova et al., 2009; Arnaoutova and Kleinman, 2010). SV-

LECs were seeded onto matrigel on a 96-well plate and incubated overtime to 

allow for tube formation to occur. We found that SV-LECs were able to 

spontaneously form tubes on the matrigel in the absence of any lymphangiogeneic 

factors (Figure 6.3A). As early as an hour of incubation, the cells could be seen 

aligning themselves on the matrigel substrate. At 6 hours after seeding, a network 

formed by the lumens of the tubes could be observed (Figure 6.3A). To explore 

the role of MMP-13 in the tube formation of SV-LECs, we measured the amount 

of MMP-13 secreted by the cells when they were undergoing the tube formation 

process. After allowing SV-LECs to grow on matrigel for 3 hours, we took the 

conditioned media for analysis of MMP-13 protein expression by western blot. 

For our control, the cells were grown on an empty well without the addition of 

any substrate. Interestingly, the blot showed that there was a marked increase in 

the secretion of MMP-13 by SV-LECs when they were incubated on matrigel for 

3 hours (Figure 6.3B). No band could be detected for SV-LECs when they were 

grown on the culture plate alone without any substrates (Figure 6.3B). We also 

looked at the secretion of MMP-9 by SV-LECs but could not detect any bands 

through western blot between cells that were grown on matrigel and on empty 

well (data not shown). Together, these data suggested that the ability of SV-LECs 

to spontaneously undergo tube formation when grown on matrigel is associated 

with an increased secretion of MMP-13. 
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Figure 6.3: Spontaneous tube formation of SV-LECs on matrigel. (A) 
Formation of tubular structures by SV-LECs grown on matrigel after 6 hr. (B) 
Western blot analysis of the MMP-13 protein levels in the conditioned media of 
SV-LECs grown on culture plate without substrate versus matrigel after 3 hr. 
Results shown are representative of more than 10 independent experiments.  
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As we have demonstrated earlier, SV-LECs appeared to only upregulate the 

expression of MMP-13 upon stimulation although they also expressed other 

MMPs including MMP-2, MMP-9 and MT1-MMP. Therefore, we could not rule 

out the possibility that other MMPs, other than MMP-13 might be involved in the 

tube formation process. To address this issue, we made use of three separate 

MMPs inhibitors: GM6001, MMP-9/MMP-13 inhibitor and a MMP-13 inhibitor, 

to block the activity of different MMPs and evaluate their effects on tube 

formation by SV-LECs. First, GM6001 is a broad-spectrum MMP inhibitor, 

targeting MMP-1, MMP-2, MMP-3, MMP-8 and MMP-9. MMP-9/MMP-13 

inhibitor primarily targets MMP-9, and has MMP-13 as its secondary target. And 

lastly, MMP-13 inhibitor as its name suggests, predominantly targets MMP-13.  

After 8 hours of incubation, SV-LECs treated with DMSO as control formed a 

distinctive network of tubule lumens on matrigel (Figure 6.4). For SV-LECs 

treated with the pan-MMP inhibitor GM6001, tubes could still be formed, 

although the formation process is diminished judging by the number of branch 

points observed (Figure 6.4). When the MMP-9/MMP-13 inhibitor blocked the 

activities of MMP-9 and, to a lesser degree, MMP-13, no tube formation was 

observed (Figure 6.4). SV-LECs were only able to attach to the matrigel and 

briefly aligned themselves (Figure 6.4). Some cells could be seen stretching and 

trying to establish contact with other cells, but the majority of the cells remained 

in clusters (Figure 6.4). Intriguingly, the blocking of MMP-13 alone brought 

about the most severe inhibition of tube formation (Figure 6.4). There were no 

tubular structures and no rearrangement of the SV-LECs positions and only 

clusters of cells that appeared slightly rounded could be detected on the matrigel 
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Figure 6.4: Effects of different MMP inhibitors on tube formation of SV-
LECs. Appearance of SV-LEC tubes on matrigel in media with DMSO (control), 
GM6001, MMP-9/MMP-13 inhibitor or MMP-13 inhibitor after 8 hr. Data shown 
are representative of more than 5 independent experiments. 
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(Figure 6.4). Overall, these results revealed that MMP-13 was the principal 

protease involved in the tube formation by SV-LECs (Figure 6.4). 

 

The tube formation assay involves several steps implicated in the 

lymphangiogenesis process including endothelial cells adhesion, migration, matrix 

degradation and tubule formation as described previously. Therefore, while we 

have demonstrated that blocking MMP-13 was able to prevent tube formation, it 

was not clear to us which of the earlier step of the process was being inhibited. To 

answer this question, the tube formation assay was repeated with live-cell imaging 

to obtain a better understanding of how inhibiting MMP-13 was able to stop SV-

LECs from forming tubes. Similarly, SV-LECs were treated with DMSO as 

control or MMP-13 inhibitor and seeded on matrigel for 3 hours. Due to the brief 

time that we incubated our SV-LECs, we did not observe the formation of the 

lumens of tubes by the SV-LECs being treated with the control DMSO after 3 

hours (Figure 6.5). However, the cells had already attached to the matrigel, and re-

positioned themselves in order to form tubes (Figure 6.5). When MMP-13 

inhibitor was added to the SV-LECs, the cells only managed to cluster together in 

rounded clumps (Figure 6.5). 

 

From the tube formation time-lapse video of the SV-LECs under control treatment 

of DMSO, we could see that the SV-LECs first attached to the matrigel as 

rounded solitary cells (Video 6.1). As time passed, the cells grouped together in 

small clusters before they slowly become elongated and reached out to other cell 
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Figure 6.5: Live-cell imaging of the effects of blocking MMP-13 on the tube 
formation process by SV-LECs. Before and after images of SV-LECs on 
matrigel in media with DMSO or MMP-13 inhibitor. Data shown are 
representative of 3 independent experiments. 
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clumps, forming what appeared to be branches of the tubes (Video 6.1). These 

activities illustrated that SV-LECs underwent several processes necessary for 

lymphangiogenesis to take place, namely attachment to a surface matrix, protease 

activity required for the migration of the cells, and lastly, tubule formation. When 

MMP-13 inhibitor was added to the culture media, SV-LECs also existing as 

rounded isolated cells were inadequately attached to the matrigel substrate (Video 

6.2). Following that, SV-LECs gradually grouped together with neighbouring 

cells to form small clusters of rounded cells and remained at that stage till the end 

of the experiment without any further migration or changes in the morphology of 

the cells necessary for tube formation (Video 6.2).  These observations implied 

that inhibiting MMP-13 likely reduced the protease activity necessary for the 

proper attachment of SV-LECs on the matrigel as well as degradation of the 

matrigel that is obligatory for cell migration. 

 

Next, we assessed the effects of blocking the proteolytic activities of MMP-13 on 

LEC migration with the scratch wound assay. SV-LECs were grown on a 6-well 

plate until they formed a confluent monolayer before we induced a wound by 

scratching across the SV-LEC monolayer. We then determined the migration of 

SV-LECs by looking at the closure of the wound after 12 hours. Images captured, 

both at the start and at the end of the 12 hours incubation period, demonstrated 

significant migration of SV-LECs toward the scratch (Figure 6.6A). However, no 

obvious difference in the rate of SV-LEC migration could be observed between 

the group treated with MMP-13 inhibitor and the control group treated with 
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Figure 6.6: Effects of blocking MMP-13 on wound closure by SV-LECs in the 
scratch wound assay. (A)  Confluent monolayers of SV-LECs scratched with a 
pipette tip (0 hr) were incubated with MMP-13 incubator or DMSO (control) for 
12 hr to allow the closure of the wound. (B) Percentage of wounded area that was 
closed by the SV-LECs after 12 hr. Results shown are representative of 3 
independent experiments. 
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DMSO (Figure 6.6A). Quantifying the percentage of wound area that was closed 

after 12 hours revealed that both SV-LECs treated with DMSO as control and 

MMP-13 inhibitor had about 60% wound area recovered and there was no 

significant difference between the two groups (Figure 6.6B). Overall these results 

indicated that MMP-13 was not required for the migration of SV-LECs, and 

confirmed that blocking MMP-13 proteolytic activities prevented the degradation 

of matrigel that is necessary for tube formation. 

 

Having outlined the prohibiting effects of inhibiting MMP-13 on tube formation 

with a selective MMP-13 inhibitor, we then tried to use siRNA to knock down the 

expression of MMP-13. The decision to make use of siRNA to silence MMP-13 is 

based on its specificity along with the added physiological relevance compared to 

using a synthetic chemical inhibitor. First we tested for the specificity of the 

MMP-13-targeted siRNA, before carrying out tube formation with the siRNA-

transfected SV-LECs in vitro, with the hope of ultimately using the MMP-13-

targeted siRNA in our in vivo model. Following the transfection of SV-LECs with 

the MMP-13 siRNA for 48 hours, we measured the expression of MMP-13 

mRNA in the cells as well as secreted MMP-13 in the media. MMP-13 mRNA 

expression analysis revealed that the MMP-13 siRNA achieved a greater than 

80% knock down in the gene expression compared to the untransfected control, 

the mock transfection control (only transfection reagent added to the cells) and the 

negative scrambled siRNA control (Figure 6.7A). Similarly, secreted MMP-13 

protein analysis by western blot of the conditioned media showed that the SV-



 

 168 

LECs transfected with the MMP-13 siRNA secreted a considerably reduced 

amount of the protease as illustrated by the lack of a band as compared to the 

other three controls (Figure 6.7A). 

 

After verifying the specificity and efficacy of the MMP-13 siRNA, we proceeded 

on to carry out the tube formation assay with the siRNA-transfected SV-LECs. 

Non-specific scrambled siRNA was used as a control for transfecting SV-LECs. 

From the images taken of the cells after 6 hours, we could clearly spot formation 

of tubes from the control SV-LECs as well as from the SV-LECs transfected with 

MMP-13-targeted siRNA, although the extent of tube formation appeared to be 

diminished in the latter SV-LECs (Figure 6.7B). To ascertain the effects of 

silencing MMP-13 by siRNA on tube formation by the transfected SV-LECs, we 

carried out quantification of the tube formation by measuring three parameters of 

the process: total tubes present, total tube length and total branch points. Each 

parameter was measured in both groups of cells and normalized against the 

control group. Analysis of the total tubes present indicated that while knocking 

down MMP-13 in the SV-LECs led to less tubes formed, the difference was not 

significant (Figure 6.7C). Similarly, studies of the total tube length and total 

branch points presented minor reductions in tube formation by the MMP-13 

siRNA transfected SV-LECs (Figure 6.7C). These findings stated that while SV-

LECs transfected with the MMP-13-targeted siRNA led to significant knockdown 

of the gene in the cells, this silencing effect was not sufficient to result in a 

dramatic decrease in tube formation. 
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Figure 6.7: Effects of silencing MMP-13 with siRNA on tube formation. (A) 
Efficiency of the MMP-13 siRNA as assessed by mRNA levels via qPCR and 
protein levels via western blot. (B) Formation of tubular structures on matrigel by 
SV-LECs transfected with control scrambled siRNA or MMP-13 siRNA. (C) 
Tube formation by SV-LECs transfected with MMP-13 siRNA was quantified by 
the number of total tubes, total tube length and total branch points in a blinded 
fashion and presented as fold increase relative to control SV-LECs transfected 
with scrambled siRNA. Data shown are representative of 3 independent 
experiments.  
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We have proved the importance of MMP-13 in tube formation by SV-LECs 

through inhibition experiments. Next, we decided to look at the effects of 

upregulating MMP-13 on tube formation. In order to increase the expression of 

MMP-13 on SV-LECs, we seeded the cells on matrigel with TNFα added into the 

media. We also added a receptor agonist, LTβRag, to investigate the effects of 

stimulating the LTβR signaling on tube formation. At 6 hours after incubation of 

the SV-LECs, the expected formation of tubes was detected in the control group 

as well as in both the treatment groups (Figure 6.8A). Microscope images of the 

results seemed to suggest that the degree of tube formation was intensified in SV-

LECs treated with rLTαβ and TNF (Figure 6.8A). Again we quantified the extent 

of tube formation by the total tubes present, the total length of the tubes and the 

total branch point to substantiate our observations. Our analysis revealed that, 

compared to the control group, there were minimal differences seen in the 

treatment groups although the treatment groups showed increases in all three 

parameters measured (Figure 6.8B). Contrasting the differences in tube formation 

between the two treatment groups showed that stimulation of SV-LECs with 

rLTαβ did not give rise to any significant differences to treating the SV-LECs 

with TNF (Figure 6.8B). These results suggested that MMP-13 expressed by SV-

LECs at baseline levels was already sufficient for tube formation to occur 

spontaneously, thus, any upregulation of MMP-13 or other forms of stimulation of 

the SV-LECs did not result in any significant increase in the extent of tube 

formation. 
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Figure 6.8: Effects of stimulation of LTβR and TNFR signaling on tube 
formation. (A) Appearance of SV-LEC tubes on matrigel in media with PBS 
(control), LTβRag or recombinant TNFα after 6 hr. (B) Tube formation by SV-
LECs stimulated with LTβRag or recombinant TNFα was quantified by the 
number of total tubes, total tube length and total branch points in a blinded fashion 
and presented as fold increase relative to control SV-LECs. Results shown are 
representative of 3 independent experiments. 
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6.2.3 MMP-13 is not involved in the regulation of LECs proliferation 

Proliferation of LECs is a key step in the expansion of the lymphatic vessel 

network (Adams and Alitalo, 2007). Furthermore, blocking LTβR signaling has 

been shown to reduce endothelial cells proliferation in the LNs (Chyou et al., 

2008). Therefore, we next wondered if MMP-13 has any regulatory role in LECs 

proliferation as well as if the reduced lymphangiogenesis we observed in LNs at 4 

days post-immunization is a direct consequence of the reduced MMP-13 

expression brought about by LTβRIg treatment. To address this, we injected a 

MMP-13 inhibitor subcutaneously into the footpads of the mice before injection 

of CFA/KLH for immunization. The mice were then subjected to in vivo-labeling 

of cells with BrdU for cell proliferation analysis via flow cytometry. 

 

We first assessed LECs proliferation in the LNs of mice after 2 and 3 days of 

immunization without any treatment (Figure 6.9A).  LN cellularity and LEC 

numbers increased over time following immunization (Figure 6.9A). After 2 days 

of immunization, we could already detect a 2-fold increase in the LN cellularity 

and the amount of LECs present in the enlarged LNs was twice that of the non-

immunized LNs, while this increase in both the LN cellulary and LEC numbers 

were greater at day 3 of immunization (Figure 6.9A). The rate of BrdU uptake by 

LECs also increased from about 5% at day 2 to about 12% at day 3 post 

immunization, associating the increased LEC numbers with cell proliferation 

(Figure 6.9A). Blocking the activity of MMP-13 by the MMP-13 inhibitor 

reduced the LN cellularity of LNs after 2 and 3 days of immunization, although 
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Figure 6.9: Effects of blocking MMP-13 on LECs proliferation. (A) LN cellularity, number of LECs and LEC proliferation as 
assessed by BrdU uptake were evaluated in LNs after 2 and 3 days of CFA/KLH immunization. (B) LN cellularity, number of LECs and 
LEC proliferation were evaluated in LNs after 2 and 3 days of immunization with and without inhibiting MMP-13. Data shown are 
representative of 3 independent experiments with 3 mice per group in each experiment and significant differences are designated by *p < 
0.05, **p < 0.01 and ***p < 0.001. 
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the difference was not significant (Figure 6.9B). Similarly, LEC numbers of the 

immunized LNs treated with MMP-13 inhibitor were decreased slightly at both 

time points, but the difference was again not significant (Figure 6.9B). The minor 

reduction in LEC numbers of these treated LNs was reflected in the rate of cell 

proliferation where the differences in the percentage of BrdU+ LECs were small 

and not statistically significant (Figure 6.9B). These results indicated that 

blocking MMP-13 did not have any influence on LECs proliferation. 

 

6.2.4 Inhibition of MMP-13 activity prevents tube formation in a primary 

human LEC line 

While the tube formation assays that we have conducted with murine SV-LECs 

thus far have illustrated clearly the importance of MMP-13 in the process, we 

decided to test the role of MMP-13 in in vitro lymphangiogenesis in another 

system, the primary human dermal adult lymphatic microvascular endothelial 

cells, HMVEC-dLy, for further validation. After verifying the expression of 

MMP-13 by the HMVEC-dLy (data not shown), we repeated the tube formation 

assay on the human LECs with the MMP-13 inhibitor. 

 

Unlike the stable SV-LEC line, the primary HMVEC-dLy took a much longer 

time for tube formation to occur. After 18 hours of incubation, control HMVEC-

dLy treated with DMSO spontaneously developed into a characteristic network of 

tubule lumens on the matrigel (Figure 6.10). As expected with blocking MMP-13 
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in the tube formation assay, HMVEC-dLy treated with MMP-13 inhibition did not 

exhibit any tubular structures (Figure 6.10). Instead, clusters of cells were 

observed with a few clusters having extensions to other clusters of cells (Figure 

6.10). These results indicated that MMP-13 was also an essential player in the 

tube formation by HMVEC-dLy, thus, further confirming its significance in the 

lymphangiogenesis process. 
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Figure 6.10: Blocking MMP-13 inhibits tube formation in a primary human 
LEC line. Appearance of HMVEC-dLy on matrigel in media with DMSO or 
MMP-13 inhibitor after 18 hr. Results shown are representative of 3 independent 
experiments.  
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6.3 Discussion 

While MMP-2, MMP-9 and MT1-MMP have been shown to be produced by 

LECs (Nakamura et al., 2004), this is the first report on the expression of MMP-

13 by murine LECs. With the SV-LECs, we could detect the expression at 

baseline of all four MMPs tested, MMP-2, MMP-9, MMP-13 and MT1-MMP. 

Surprisingly, when SV-LECs were stimulated with TNFα, a known activator of 

MMPs transcription (Galis et al., 1995; Siwik et al., 2000), only MMP-13 

displayed a dramatic increase in expression levels. However, we did not detect 

similar increases in MMP-13 after stimulation of macrophages with TNFα, 

suggesting that LECs may be the predominant cellular source of MMP-13 in the 

LNs in response to immunization. This is particularly interesting, as we have 

shown earlier that LECs express LTβR. Together, these findings suggest that 

LTβR signaling may act directly on LECs leading to production of MMP-13 

following immunization. 

 

After demonstrating that SV-LECs are capable of spontaneous tube formation on 

matrigel, we showed that SV-LECs increased the secretion of MMP-13 when they 

are grown on matrigel. Blocking MMP-13 activity with a synthetic inhibitor 

prevents the formation of tubular structures by SV-LECs on matrigel. Our time-

lapse study of the tube formation process together with the results from the scratch 

wound assay suggest that MMP-13 is important in the matrix degradation 

necessary for the proper attachment of SV-LECs on the matrigel as well as for the 

cell migration process. However, inhibiting a wide range of MMPs including 
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MMP-1, MMP-2, MMP-3, MMP-8 and MMP-9 with GM6001 and MMP-9 with 

the MMP-9/MMP-13 inhibitor did not result in the complete blockage of tube 

formation by SV-LECs. This is unexpected due to the reports of MMP-2 

involvement in lymphangiogenesis (Nakamura et al., 2004; Matsuo et al., 2007; 

Bruyère et al., 2008; Detry et al., 2012). In our model, only blocking of MMP-13 

is necessary to prevent tube formation.  

 

Silencing the expression of MMP-13 by SV-LECs with siRNA did not lead to 

significant inhibition of SV-LECs tube formation, suggesting that the >80% 

knockdown of MMP-13 expression is still not enough to impede the process. 

Similarly, increasing the expression of MMP-13 by stimulation of the SV-LECs 

with LTβRag or TNFα did not result in any significant changes in the generation 

of tubular structures by SVLECs suggest that the levels of MMP-13 is not a 

limiting factor in the tube formation process. 

 

While LTβR signaling inhibition has been reported to reduce endothelial cells 

proliferation (Chyou et al., 2008), we show here that blocking MMP-13 did not 

have any effect on LECs proliferation. Our results suggest that LTβR signaling 

may have other roles in regulating the growth of lymphatic vessels in addition to 

regulating the expression of MMP-13. Furthermore, these results reveal that the 

role of MMP-13 in lymphangiogensis may be solely as a collagenase on the 

degradation of the ECM and BM. 
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We observed similar inhibition of the tube formation in  primary human LECs by 

blocking MMP-13, thus further confirming MMP-13 significance in the 

lymphangiogenesis process. Collectively, our findings suggest that MMP-13 

promotes lymphangiogensis through the degradation of the ECM necessary for 

sprouting and cell migration. 
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Chapter 7: Discussion  



 

 181 

The discovery of molecular mechanisms underlying the remodeling of lymphatic 

vessels in the LNs during inflammation is still in its infancy. Similarly, the role of 

LTβR signaling in the control of the LN architecture, especially in the context of 

inflammation remains uncertain. Through the work presented in this study, we 

have shown that the B cell mediated lymphangiogenesis in the LNs is regulated by 

LTβR signaling. Furthermore, we have demonstrated that this regulation of 

lymphatic vessel growth by LTβR is only at the early stage of the process, via the 

expression of MMP-13. The proteolytic activity of MMP-13 is vital for the 

degradation of the ECM and BM to enable the sprouting of new lymphatic 

vessels. In this chapter, results of all the research work done so far are 

summarized and discussed, and suggestions for future directions are put across as 

well. 

 

7.1 LTβR signaling in B cells-mediated LN lymphangiogenesis 

7.1.1 Importance of B cells in LN lymphangiogenesis 

Expansion of the LNs during inflammatory conditions is a result of the increased 

recruitment of lymphocytes and monocytes into the LNs via the HEVs in order to 

optimize antigen-presenting between the antigen-presenting cells and the 

lymphocytes for an effective immune response (Gretz et al., 2000; Palframan et 

al., 2001; Soderberg et al., 2005). The increase in LN size is accompanied by 

remodeling of the lymphatic vessel network of the LN, which is vital for 

improving the mobilization of DCs to the draining LNs (Angeli et al., 2006). LN 

lymphangiogenesis can be regulated by locally produced VEGF-A (Angeli et al., 
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2006), or remotely mediated by VEGF-A released at the inflamed peripheral 

tissues (Halin et al., 2007). B cells in inflamed LNs have been shown to contribute 

to the expansion of the lymphatic vessel network through the expression of 

VEGF-A (Angeli et al., 2006; Shrestha et al., 2010). Here, we provide evidence 

that B cells mediate LN lymphangiogenesis through the expression of LTα. The 

expansion of the lymphatic vessel network after immunization was not observed 

in µMT mice that lack B cells. While reconstitution of µMT mice with B cells 

restored LN lymphangiogenesis after immunization, the growth of lymphatic 

vessels was not detected in µMT mice reconstituted with B cells that were LTα-/-. 

LTα is expressed on both B and T cells, although it appears that the expression of 

LTα on T cells is not able to compensate the loss of expression of LTα on B cells 

in mediating LN lymphangiogenesis. LTα exists in two forms: a secreted 

homotrimer LTα3 that binds to TNFRs, as well as a membrane tethered 

heterotrimer LTα1β2 with LTβ that binds to LTβR. Besides playing known critical 

roles in both inflammation and lymphoid organ development (De Togni et al., 

1994; Hjelmström et al., 2000), LTα3 has been recently described to be important 

in lymphatic vessel function and lymphangiogenesis (Mounzer et al., 2010). 

While we have demonstrated the importance of LTα expression on B cells in the 

expansion of the lymphatic vessel network, further work is required to 

substantiate the role of LTα3 in our model of lymphangiogenesis. 

 

There was also a lack of FDCs in the LNs of chimeric mice that do not express 

LTα on B cells. This is not surprising, due to the well-recognized role of LTα1β2 
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on B cells in the development and maintainance of the FDCs (Mackay and 

Browning, 1998; Ansel et al., 2000). However, what is intriguing is that the lack 

of FDCs in the LNs coincides with the absence of LN lymphangiogenesis, 

suggesting that FDCs may have a role in regulating the growth of lymphatic 

vessels. Further indications of the role of FDCs in lymphangiogenesis comes from 

the same chimeric mice experiments. Even though LTα was also expressed by T 

cells, this expression was not able to make up for the loss of LTα on B cells. This 

implies that the role of LTα on B cells in mediating lymphangiogenesis may not 

simply be in the secreted LTα3 form, but also in the membrane bound LTα1β2 

form, where signaling is restricted by both the location of the ligand-expressing 

cells as well as the receptor-expressing cells. Stromal cells, including the FDCs 

and FRCs, have been recently recognized to participate in maintaining the 

homeostasis of the immune system as well as launching efficient immune 

responses (Mueller and Germain, 2009). Moreover, FRCs have been shown to 

regulate LN remodeling and vascularity through VEGF-A expression (Chyou et 

al., 2008). Given that the growth of new lymphatic vessels in the B cell follicles 

are of close proximity to the FDCs, it is possible that FDCs may promote 

lymphangiogenesis directly by releasing lymphangiogenic factors such as VEGF-

A that promotes the growth and proliferation of LECs (Konstantinou et al., 2009). 

On the other hand, FDCs may also regulate the remodeling of lymphatic vessels 

indirectly by organizing the B cell follicles. FDCs are known to secrete CXCL13 

that attracts B cells to migrate into B cell follicles (Ansel et al., 2000), as well as 

producing the B cell activating factor (BAFF) that is important for B cell 

homeostasis (Woodland et al., 2006). The reverse scenario may also be plausible, 
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where B cells modulate lymphangiogenesis indirectly by maintaining the FDC 

network through the expression of LTα1β2 (Ansel et al., 2000) 

 

Interestingly, both the production of CXCL13 and BAFF by FDCs are regulated 

by LTβR signaling (Ansel et al., 2000; Nishikawa et al., 2006). Due to the close 

interactions and interdependency between B cells and FDCs, development and 

maintenance of functional FDCs by LTβR signaling is indispensable for normal B 

cell functions, and vice versa. However, additional research is needed to clarify 

the role of FDCs in LN lymphangiogenesis. 

 

7.1.2 Regulation of LN lymphatic vessel growth and function by LTβR 

signaling 

LTβR signaling has been shown to be important in regulating the lymphatic 

vessels and HEVs in the remodeling of the LNs (Browning et al., 2005; Liao and 

Ruddle, 2006; Chyou et al., 2008). Our study on the short-term inhibition of the 

LTβR signaling in the LNs through the use of the soluble decoy LTβRIg shows 

that the expansion of the LN and lymphangiogenesis following immunization 

were reduced. The process of lymphocytes entry into the LNs begins with the 

adherence of the L-selectin expressed on lymphocytes to the peripheral lymph 

node addressins (PNAd) found on the luminal surfaces of HEV (Miyasaka and 

Tanaka, 2004). The diminished increase in LN cellularity is likely an effect of 

impaired lymphocyte migration into the LNs. PNAd and mucosal vascular 



 

 185 

addressin cell-adhesion molecule (MAdCAM) on HEVs, molecules important for 

lymphocyte trafficking, have been demonstrated to be  downregulated when LTβR 

signaling is blocked (Drayton et al., 2003; 2004; Browning et al., 2005). The 

reduced LN expansion may also be a result of reduced growth of the HEVs as 

LTβR blockage has been shown to result in decreased VEGF-A expression and 

endothelial cell proliferation (Chyou et al., 2008). Consistently, we also observed 

a reduction in lymphangiogenesis after LTβRIg treatment. That LECs express 

LTβR indicates that LTβR signaling may control the growth of lymphatic vessels 

directly through LECs. Furthermore, inhibition of the LTβR signaling pathway 

was revealed to reduce DC migration from the periphery to the LNs following 

immunization. Increased buildup of DCs in enlarged inflamed LNs was previously 

shown to be a result of the expanded lymphatic vessel network in these LNs that 

leads to enhance migration of DCs into the LNs (Angeli et al., 2006). While LTβR 

signaling is vital in mediating the expression of CCL19 and 21 in the spleen (Ngo 

et al., 1999), blocking LTβR did not appear to reduce the expression of these 

chemokines that are necessary to direct DC trafficking in the LNs (Browning et 

al., 2005). Therefore, the decline in DC migration is most probably a direct 

consequence of the decrease in lymphangiogenesis by the blocking of LTβR, 

indicating the regulation of lymphatic vessel function by LTβR signaling. 

 

We first used the TNFαKO mice model in an attempt to study LN 

lymphangiogenesis in an environment with B cells in the absence of FDCs. 

However, the abnormal growth of lymphatic vessels in the LNs of these mice 
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makes it apparent that they are not the most appropriate model available. A 

previous study on airway inflammation has also demonstrated the exaggerated 

response to infection, including abnormal lymphangiogenesis, by the TNFαKO 

mice, indicating that genetic deletion of the gene does not give the same result as 

blocking with a synthetic inhibitor (Baluk et al., 2009). Given the central role that 

TNFα plays as a proinflammatory cytokine involved in instigating the 

inflammatory cascade through the NF-κB signaling pathway (Karin and Greten, 

2005; Hayden and Ghosh, 2008), it is not suprisingly that compensatory pathways 

arise from the deletion of the gene in these mice (Marino et al., 1997; Baluk et al., 

2009). However, which signaling pathways are upregulated remain to be 

determined. Our experiment with LTβRIg in the TNFαKO mice suggests that 

while the entry of lymphocytes is still regulated by LTβR signaling, the 

compensatory pathways controlling lymphangiogenesis is independent of this 

signaling pathway. 

 

7.1.3 Role of B cells in LTβR signaling 

Corresponding to our findings that the expression of LTα on B cells is central to 

LN lymphangiogenesis, analysis of LTβR ligands expression by B and T cells 

highlights the role of B cells in modulating LTβR signaling. Upon immunization, 

the expression of LTα is upregulated in B cells but not T cells, indicating that B 

cells may be critical as a cellular source of ligand of the regulation of LTβR 

signaling in lymphangiogenesis. Lending support to our proposition, a previous 

study has reported the involvement of B cells and LTβR signaling in the cross-talk 
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between lymphatic vessels and HEVs in the LNs (Liao and Ruddle, 2006). The 

remodeling of LNs induced by virus infection was also orchestrated by LTα1β2-

expressing B cells (Kumar et al., 2010). However, B cells were demonstrated to 

be dispensable in the de novo lymphangiogenesis within tertiary lymphoid 

structures (Furtado et al., 2007). Although T cells was shown to be required for 

this de novo lymphangiogenesis, they did not seem to play similar vital role in our 

model of lymphatic growth in immunized LNs. We also provided evidence for 

alternative splicing of the LTα gene in mice. Alternative splicing is the process 

where a single gene can give rise to different mRNAs resulting in the generation 

of various protein isoforms with differing and even opposing functions. Because 

of its contributions to proteome diversity in humans, alternative splicing is 

decidedly applicable to disease and therapy (Garcia-Blanco et al., 2004). Although 

the amount of isoforms of the LTα gene has not been determined, recent work has 

illustrated the differential expression of up to seven LTα isoforms in human 

following lymphocyte activation (Smirnova et al., 2008). Future work on the 

functional studies of LTα ought to consider the possible influence of the various 

LTα isoforms and characterization of the splice variants may be valuable in 

refining our knowledge of the role of LTα in mediating inflammation and immune 

response. 

 

In contrast to LTα and LTβ, LIGHT do not appear to have a critical influence in 

the development of secondary lymphoid organs (Scheu et al., 2002; Tumanov et 

al., 2003). One of the most prominent role of LIGHT is in the activation of T cells 
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in the regulation of inflammatory responses (Ware, 2008). While the expression 

and role of LIGHT in T cells are well-recognized , the understanding of the 

function of LIGHT in B cells is still inadequate. Consistent with a previous study 

(Kang et al., 2007), we detected a weak expression of LIGHT by B cells that 

increases after immunization. Additional studies will be required to comprehend 

the implications of this upregulation of LIGHT expression by B cells in 

inflammatory conditions. 

 

While blocking LTβR signaling is able to inhibit the expansion of the lymphatic 

vessel network in inflamed LNs, activating the LTβR via a receptor agonist in the 

absence of immunization is insufficient to initate lymphangiogenesis. This is 

perhaps not surprising as a complex multifactorial network of chemical mediators, 

including cytokines and chemokines, are known to be secreted in response to 

inflammation that may be necessary for the growth of lymphatic vessels (Nathan, 

2002). However, activation of LTβR together with CFA/KLH immunization is 

still not able to drive lymphangiogenesis in µMT mice. These observations 

suggest that the role of B cells in lymphangiogenesis is not simply that of 

supplying the ligand LTα1β2 for LTβR signaling. It is possible that B cells may 

regulate lymphangiogenesis through the production of lymphangiogenic factors. 

Indeed, B cells have been shown to express a substantial amount of VEGF-A 

when activated ex vivo (Angeli et al., 2006). In addition to the absence of B cells, 

µMT mice also do not have FDCs in the LNs. As discussed previously, the 
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presence of FDC network in the LNs may also be essential for the growth of 

lymphatic vessels. 

 

7.1.4 Temporal control of LTβR signaling in LN lymphangiogenesis 

Studies have generally focused on the effect of blocking LTβR signaling on 

lymphatic vessels in resting LNs (Browning et al., 2005; Chyou et al., 2008); here, 

we explored the therapeutic potential of inhibiting LTβR on lymphangiogenesis in 

inflamed LNs. While LN cellularity was reduced after LTβRIg treatment, 

blocking LTβR signaling did not reduce the extent of lymphangiogenesis in the 

inflamed LNs. The absence of effect on lymphatic vessel growth with blocking 

LTβR signaling after immunization was also supported in a previous study using a 

different immunization protocol (Liao and Ruddle, 2006). It appears that once 

lymphangiogenesis has been initiated, the process is no longer subjected to LTβR 

regulation. These observations are significant because they hint at the possible 

temporal control of LTβR signaling in lymphangiogenesis. Indeed, our subsequent 

results revealed the importance of LTβR signaling in the early stages of the 

expansion of the lymphatic vessel LNs in the LNs through the expression of 

MMP-13. 

 



 

 190 

7.2 Role of MMP-13 in lymphangiogenesis 

7.2.1 Regulation of MMP-13 expression by LTβR signaling 

The regulation of lymphangiogenesis by MMPs is an area of research that has 

been relatively overlooked. While the role of MMPs in angiogenesis is widely 

recognized, data on the evidence of MMPs in lymphangiogenesis have not been as 

substantial. Early studies looking at similar links between MMPs and 

lymphangiogenesis often resulted in dismissive outcomes. One such report 

showed that the Ets 1 transcription factor, which is involved in angiogenesis 

through the induction of several matrix-degrading proteases, including MMP-2, 

MMP-9 and MT1-MMP, is not expressed by LECs (Wernert et al., 2003). 

However, later studies have verified the expression of these three MMPs in LECs 

as well as the involvement of MMP-2 in lymphangiogenesis (Nakamura et al., 

2004; Matsuo et al., 2007; Bruyère et al., 2008; Detry et al., 2012). Studies on 

MMPs in lymphangiogenesis have mainly looked at MMP-2, MMP-9 and MT1-

MMP perhaps due to their undisputed role in regulating angiogenesis. However, 

as mentioned earlier, differences btween the exposure of the lymphatic vessels 

and blood vessels to the ECM as well as the lack of a continuous BM for 

lymphatic vessels suggest that MMPs that are implicated in lymphangiogenesis 

may be different from those that are vital for angiogenesis. In our study, we have 

established the novel role of MMP-13 in mediating lymphangiogenesis. 

 

MMP-13 belongs to the group of MMPs known as collagenase. As the name 

suggests, the main substrates for this group of MMPs  are the interstitial collagens 
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I, II and III. In addition, having similarities in the active site sequence with 

gelatinases imply that MMP-13 can also cleave collagen IV and gelatin (Knäuper 

et al., 1996a). MMP-13 was originally cloned from human breast cancer tissue in 

1994 (Freije et al., 1994). Human MMP-13 is homologous to mouse MMP-13, 

which is also known as its main interstitial collagenase (Henriet et al., 1992; Freije 

et al., 1994). Interestingly, similar expression pattern of mouse MMP-13 to human 

MMP-1, and the failure to isolate MMP-1 in mouse, imply a functional homology 

between mouse MMP-13 and both the human MMP-1 and MMP-13 (Henriet et 

al., 1992; Balbín et al., 2001). The ability of MMP-13 to cleave a varity of ECM 

components, including type IV collagen which is one of the main constituent of 

the BM, strongly suggests that it may be vital for lymphangiogenesis. 

Furthermore, as MMP-13 is highly entangled in the MMP activation 

cascade(Leeman et al., 2002), it may also link up other MMPs in the process of 

driving lymphangiogenesis. Our data show that the regulatory role of LTβR 

signaling in the initiation of lymphangiogenesis is through the expression of 

MMP-13 in the LNs. Among the MMPs that we studied including MMP-2, MMP-

9 and MT1-MMP, only the mRNA expression of MMP-13 in the LNs increased 

dramatically upon immunization and this increase in mRNA level is impeded by 

blocking LTβR signaling. However, we could also detect an increase in the 

proteolytic activity of MMP-9 after immunization in the LNs through the 

zymography assay along with MMP-13 activity. Correspondingly, increase in the 

proteolytic activities of both MMPs was reduced with LTβRIg treatment.  
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7.2.2 Compartmentalization of MMP-13 in the LNs 

Analysis of the compartmentalization of MMP-13 and MMP-9 in the LNs 

revealed the close association of these MMPs with the lymphatic vessels, blood 

vessels, FRCs as well as type I and IV collagen. MMP-13 and MMP-9 were found 

to be surrounding the lymphatic vessels, which were also enclosed by collagen I 

(representing the ECM) and also a considerable amount of collagen IV (the main 

component of the BM). Interestingly, both collagens are recognized substrates of 

MMP-13. Reports have suggested that both MMP-13 and MMP-9 are capable of 

binding to cell surface and ECM molecules (Murphy and Nagase, 2011). The 

binding of MMPs to a specific location in the pericellular environment, otherwise 

known as compartmentalization, is an important aspect of MMP activity 

regulation. Attaching MMPs to a fixed location is able to build up a pool of 

enzymes and focus their activities to specific targets in the extracellular space. 

Our observations suggest that MMP-13 may be involved in the sprouting of the 

lymphatic vessels through the degradation of the surrounding ECM and BM. 

Among the various functions of MMP-13, MMP-13 is known to activate 

proMMP-9 (Knäuper et al., 1997). Furthermore, activated MMP-9 can in turn 

activate proMMP-13, resulting in a positive feedback loop (Han et al., 2007). 

Hence as both MMPs are bound at similar locations of the pericellular 

environment of the LNs, even though we did not detect any increase in the mRNA 

expression of MMP-9 in the LNs, it is possible that MMP-13 may also act 

indirectly in driving lymphangiogenesis through the activation of MMP-9. 

Interestingly, in addition to MMP-13, the expression of MMP-9 has been shown 

to increase in the regeneration region of the skin in a mouse model of 
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lymphangiogenesis (Rutkowski et al., 2006). Through observations in MMP-9-

deficient mice, they determined that MMP-9 is not required for adult dermal 

lymphangiogenesis (Rutkowski et al., 2006). We have also examined LN 

lymphangiogenesis induced by CFA/KLH immunization in MMP-9-deficient 

mice and found that there were no significant differences in the lymphatic vessel 

network in the LNs after immunization between WT and MMP-9-deficient mice 

(data not shown). However, even though various MMPs have been recognized to 

be vital for angiogenesis, studies have demonstrated that mice deficient in most of 

the MMPs do not have any significant differences in the blood vasculature due to 

overlapping in their proteolytic activities (Rundhaug, 2005). Further studies are 

required to evaluate the exact involvement of MMP-9 in the remodeling of 

lymphatic vessels. 

 

In our study, we also noticed the discontinuous expression of LYVE-1 on the 

lymphatic vessels in the LNs. This is a phenomenon that has also been recently 

observed in lymphatic vessels in various organs and tissues including the skeletal 

muscle and cornea (Gehlert et al., 2010; Wardrop and Dominov, 2011; Nakao et 

al., 2012), and the sinusoidal endothelium of the liver (Arimoto et al., 2010). The 

proinflammatory cytokine TNFα has been reported to downregulate the 

expression of LYVE-1 in some inflammatory conditions (Johnson et al., 2007). 

While the reason behind the local loss of LYVE-1 on the lymphatic vessels is 

unclear, this occurance coincides with lymphatic vessels that are undergoing 

remodeling. That we detect a brighter staining of MMP-13 and MMP-9 around 
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regions of the lymphatic vessels with decreased LYVE-1 expression suggests that 

a higher concentration of the enzymes are assembled at these locations. These 

observations lend additional support to our hypothesis in the role of MMP-13 in 

mediating lymphatic vessel remodeling. 

 

7.2.3 In vitro modulation of lymphangiogenesis by MMP-13 

While MMPs are well-recognized to be produced by BECs (Newby, 2012), the 

expression of MMPs by LECs have not been thoroughly investigated. In 

agreement with previous reports, we demonstrated the expression of MMP-2, 

MMP-9 and MT1-MMP by LECs (Nakamura et al., 2004; Bruyère et al., 2008). 

On top of that, we showed for the first time that LECs express MMP-13. Among 

the cell types present in the LNs, macrophages are also a well-established 

producer of MMP-13 in addition to endothelial cells (Fallowfield et al., 2007). 

When comparing the expression of MMPs between LECs and macrophages, we 

found that only LECs display a dramatic increase in MMP-13 upon inflammatory 

stimulation, thus suggesting that LECs may be the main supplier of MMP-13 in 

our lymphangiogenesis model. Because we have confirmed the expression of 

LTβR by LECs, these findings together imply that LTβR signaling may act 

directly on LECs in modulating the release of MMP-13. 

 

In vitro study of lymphangiogenesis allowed us to dissect the specific step in the 

process that is regulated by MMP-13. Through the tube formation assay and 
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scratch wound assay, we verified the proteolytic activity of MMP-13 in regulating 

the growth of lymphatic vessels. When grown on matrigel, LECs simultaneously 

upregulate the expression of MMP-13 and form tubular structures resembling the 

lumen of a vessel. This tube formation by LECs was prevented when we blocked 

the activites of MMP-13 with a synthetic inhibitor. Because tube formation 

involves several steps of the lymphangiogenesis process, our time-lapse video on 

the formation of tubes indicates that the proteolytic activities of MMP-13 is 

required for the adhesion of LECs on the matrigel. The inability of LECs to 

adhere properly to the matrigel likely affects subsequent steps in the process like 

the migration and alignment of the LECs to form tubular structures. We confirmed 

the above observations with the scratch wound assay, which measures the ability 

of LECs to migrate on a surface without the need for any proteolytic degradation. 

That inhibiting MMP-13 did not affect LEC migration in the scratch wound assay 

indicates that the primary role of MMP-13 in lymphangiogenesis may be in the 

degradation of the matrix. 

 

The importance of MMP-13 in lymphangiogenesis was further emphasized 

through our efforts to hinder tube formation by silencing MMP-13 gene expession 

in LECs. When the expression of MMP-13 was knocked down using siRNA, we 

did not detect any major reduction in the tube formation by LECs. The difference 

between blocking MMP-13 activity with a synthetic inhibitor and silencing the 

gene expression is that the inhibitor exerts its effects after the enzyme is secreted 

into the media, whereas gene silencing greatly reduces the amount of MMP-13 
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that is being secreted. If the inhibitor is not limiting, it will be able to bind to and 

inhibit the increased release of MMP-13 by LECs on matrigel. Although 

verification of the gene silencing, via both mRNA and protein expression, showed 

more than 80% knockdown of MMP-13 in LECs at basal conditions, the extent of 

the upregulation of MMP-13 secretion by LECs when growing on matrigel is 

unclear. Our observations seem to indicate that only a miminal amount of MMP-

13 is required to induce in vitro lymphangiogenesis. Further prove of this 

deduction is provided when we demonstrated that no significant changes in the 

extent of lymphangiogenesis was observed when we attempt to increase the 

secretion of MMP-13 by activating LECs with rTNFα. 

 

Although the proliferation of LECs is naturally essential in the expansion of the 

lymphatic vessel network, our results showed that blocking the activites of MMP-

13 in the LNs did not result in any significant decrease in LECs proliferation. This 

suggests that inhibiting the proteolytic activityies of MMP-13 may have an effect 

on the morphology of the lymphatic vessel network, as the remodeling of 

lymphatic vessels has been thought to be directed by the physical contraints due to 

the components of the ECM, leading to either a stationary phenotype or branching 

in the presence of dense matrix (Detry et al., 2012). While the total LEC count did 

not reveal any discrepancies in the lymphangiogenesis process, a detailed analysis 

on the morphology of the lymphatic vessels and collagen deposition in the LNs 

may reveal more about the effects of blocking MMP-13 on lymphatic vessel 

remodeling. 
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7.3 Proposed mechanims driving lymphangiogenesis in the inflamed LNs 

Based on our findings, we propose a model where B cells mediate the initiation of 

lymphangiogenesis through the expression of MMP-13 via LTβR signaling 

(Figure 7.1). As the LTβR ligand, LTα1β2 is tethered to the membrane, binding to 

the receptor have to be a cell-cell interaction. This indicates that the LTβR-

expressing cells participating in the signaling ought to be in the vicinity of B cells. 

Because we have validated the expression of LTβR on LECs and illustrated the 

expansion of the lymphatic vessel network within the B cell follicles, as well as 

the capacity of LECs to secrete MMP-13, the LTβR signaling pathway could be a 

direct interaction between B cells and LECs. Upon LTβR activation, LECs then 

increase the expression of MMP-13 to initiate the sprouting of new lymphatic 

vessels through the degradation of ECM and BM. Interactions of B cells with 

LECs via LTβR signaling may lead to the production of lymphangiogenic factors 

by B cells to further aid in the lymphangiogenesis process. This pathway is also 

probable given that B cells are capable of producing an elevated amount of 

VEGF-A that can induce lymphangiogenesis and LN expansion (Angeli et al., 

2006; Shrestha et al., 2010). A second possible pathway is through B cells 

interactions with FDCs via LTβR signaling, or BECs, macrophages and other 

stromal cells present in the LNs that express LTβR. This interaction then leads to 

the activation of B cells and/or FDCs (other cells) in producing lymphangiogenic 

factors to drive lymphangiogenesis. 
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Figure 7.1: Diagram depicting the possible pathways of lymphangiogenesis 
mediated by LTβR signaling. B cells may drive lymphangiogenesis directly 
through activating LTβR signaling on LECs, leading to production of 
lymphangiogenic factors such as VEGF-A and the secretion of MMP-13. B cells 
may also induce lymphangiogenesis indirectly through LTβR signaling on stromal 
cells such as FDCs, BECs or macrophages.  



 

 199 

7.3.1 Regulation of lymphangiogenesis through the role of MMP-13 in the 

activation cascade of MMPs 

Current literature on the role of MMPs in lymphngiogenesis have all agreed on the 

involvement of MMP-2 to some degree (Nakamura et al., 2004; Rutkowski et al., 

2006; Matsuo et al., 2007; Bruyère et al., 2008; Detry et al., 2012). However, 

when we blocked the activities of a wide range of MMPs including MMP-2 and 

MMP-9 with a broad spectrum inhibitor, we did not detect any significant effects 

on LECs in forming tube-like structures on matrigel. These differing observations 

are surprising due to the above mentioned studies describing the contributions of 

MMP-2. Part of the explanation may be attributable to the source of LECs as well 

as the experimental models used. Even though blocking MMP-2 along with other 

MMPs did not have an effect on tube formation by LECs in our study and we did 

not detect any significant increase in mRNA levels of the other three MMPs we 

evaluated in the LNs, we cannot rule out their role in our model of 

lymphangiogenesis. Recent studies are beginning to uncover the complexity of the 

role of MMPs in regulating tissue homeostasis, providing evidence that these 

proteases do not normally function alone, but rather they regulate the activity of 

other proteases forming cascades and regulatory networks (Overall and Kleifeld, 

2006; Morrison et al., 2009). As proMMP-13 can be activated by MMP-2 as well 

as MT1-MMP (Knäuper et al., 1996b), and in turn, proMMP-2 is activated by 

MT1-MMP, these MMPs may also influence the lymphangiogenesis process 

indirectly through the activation of MMP-13. Studies on MMP-13 in tumors have 

shown the coexpression of MMP-2 and MT1-MMP with MMP-13, suggesting 

that these expression patterns may be necessary to provide an environment for the 
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Figure 7.2: Proposed model of how the various MMPs may work to stimulate 
lymphangiogenesis upon LTβR stimulation in a cascade. LECs (possible 
cellular source of MMP-13) is mediated by LTβR signaling upon inflammation to 
increase the expression of MMP-13. Increase expression of MMP13 leads to 
activation of proMMP-9. In turn, MMP-9 can also activate proMMP-13, resulting 
in a positive feedback loop. MMP-2 and MT1-MMP can also activate MMP-13. 
The presence of these other MMPs may be in providing an optimal working 
environment for MMP-13 leading to to increase proteolytic activity. Degradation 
of the ECM and BM then faciliates sprouting lymphangiogenesis. The degradation 
of the ECM may also lead to the increase of VEGF-A bioavailability, further 
promoting lymphangiogenesis. 
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activation of MMP-13 (Cazorla et al., 1998; Johansson et al., 1999). It is worth 

noting that MMP-2 can also activate proMMP-9 (Fridman et al., 1995). 

Interestingly, MMP-2, MMP-9, MMP-13 and MT1-MMP together have been 

implicated in a MMP activation cascade in a human chondrosarcoma cell line 

(Cowell et al., 1998). Therefore, we propose a model on the initiation of 

lymphangiogenesis by MMP-13 and how the various MMPs may regulate the 

process (Figure 7.2). 

 

7.4 Relevance of this study 

Lymphangiogenesis has been associated with a number of inflammatory 

disorders, including the chronic inflammatory disease psoriasis (Kunstfeld et al., 

2004), rheumatoid arthritis (Xu et al., 2003; Zhang et al., 2007), inflammatory 

bowel disease (Alexander et al., 2010), Kawasaki disease (Ebata et al., 2011; 

Hirono and Ichida, 2011) and chronic airway inflammation (Baluk et al., 2005; 

2009). Typically, it is assumed that lymphangiogenesis aids in the resolution of 

chronic inflammation by increasing lymph flow in draining away accumulated 

fluids and inflammatory cells and cytokines. Indeed, studies targeting the 

stimulation of lymphangiogenesis and improving lymphatic drainage have shown 

to be effective in alleviating the severity of inflammation and edema in chronic 

inflammatory diseases (Polzer et al., 2008; Guo et al., 2009; Kajiya et al., 2009; 

Huggenberger et al., 2010; 2011b). However, increased lymphangiogenesis can 

also leads to the inception of an inflammatory response through the enhanced 

drainage of APCs to the draining LNs. Undesirable inflammation due to 
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lymphangiogenesis observed in organ transplantation are found to be associated 

with transplant rejections (Cursiefen et al., 2003; Kerjaschki et al., 2004; 

Cursiefen et al., 2004a; Kerjaschki, 2006). Considering the evidence presented in 

these studies, while the influence of lymphangiogenesis in these inflammatory 

disorders still require further study, targeting the lymphatic vasculature may 

represent an effective mode of therapy. 

 

The structuring of the LN and the remodeling of the lymphatic vessel network are 

the principal determinants of an efficient immune response during inflammation. 

Lymphangiogenesis in the LNs can serve to increase migration of inflammatory 

cells from the inflamed peripheral tissues for antigen presentation and 

inflammatory resolution (Kataru et al., 2009). Increased drainage to the LNs by 

the growth of the lymphatic vessel network may also be advantageous in clinical 

settings, such as improving the delivery of DC vaccines to LNs. Ex vivo 

manipulation of DCs has been experimented as therapeutic vaccines for infectious 

disease and cancer for more than a decade (Steinman and Banchereau, 2007; 

Palucka and Banchereau, 2012). Despite the benefits of DC vaccines to 

conventional methods, one of the major deficiencies is the inability of the injected 

DCs to migrate to the draining lymphoid organs, with only about 1% success rate 

(de Vries et al., 2003). Our study on the regulation of lymphangiogenesis in the 

LNs which boosts DC migration may present new approaches in optimizing DC 

vaccination protocols. 
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On the other hand, LN lymphangiogenesis has also been associated with 

pathological conditions. While the spread of malignant cells from tumor through 

the lymphatics or blood vessels to distant organs has been established as a 

hallmark of cancer (Hanahan and Weinberg, 2000), recent studies have shown that 

tumors can induce lymphangiogenesis within sentinel LNs before metastasis to 

facilitate their dissemination (Hirakawa et al., 2005; Qian et al., 2006; Harrell et 

al., 2007; Hirakawa et al., 2007). As the concept behind the expansion of the 

lymphatic vessel network within the LNs before tumor metastasis is comparable 

to the growth of the lymphatic vessels within the draining LNs during 

inflammation, our proposed model of the LTβR-mediated lymphangiogenesis may 

be relevant to tumor LN lymphangiogenesis. Particularly of interest is the 

potential link between MMP-13 and tumor lymphangiogenesis. MMP-13 has been 

implicated in a variety of malignant tumors such as breast cancer, 

chondrosarcoma, head and neck carcinoma, and melanoma, where high 

expression of MMP-13 may be necessary for metastasis of specific tumors 

through the proteolytic degradation of the extracellular environment (Pendás et 

al., 2000; Ala-aho and Kähäri, 2005; Zigrino et al., 2009). Recent studies have 

also demonstrated the newfound role of MMP-13 in tumor angiogenesis, in part 

through the regulation of VEGF-A bioavailability (Lederle et al., 2010; Kudo et 

al., 2012; Wang et al., 2012). A thorough understanding of the role of MMP-13 in 

cancer processes may assist in the development of therapeutic approaches to 

contain the progression and metastatic capacity of tumor cells. 

 



 

 204 

7.5 Future directions 

The degradation of the ECM and BM is the most apparent role of MMPs in the 

regulation of angiogenesis, and lymphangiogenesis, as it allows the sprouting of 

new vessels from pre-existing ones by directly removing the imposing physical 

constraints. However, studies have shown that proteolytic cleavage of the ECM 

and BM can also release factors that may promote or inhibit angiogenesis 

(Rundhaug, 2005; van Hinsbergh and Koolwijk, 2008; Ribatti, 2009). The 

capacity of MMP-13 to free ECM-bound VEGF-A was put forward through an in 

vitro study which investigated the amount of VEGF-A that was released from 

collagen type I gel containing the growth factor via MMP-13 (Lederle et al., 

2010). The releasing of sequestered VEGF-A by MMPs was first reported in a 

study of MMP-9 in triggering the angiogenic switch in pancreatic islet tumors 

(Bergers et al., 2000). In addition, MMP-13 can also indirectly stimulate 

angiogenesis through promoting VEGF-A secretion by fibroblasts and endothelial 

cells (Kudo et al., 2012). In line with previous studies in the role of VEGF-A in 

LN lymphangiogenesis (Angeli et al., 2006; Halin et al., 2007; Shrestha et al., 

2010), the ability of MMP-13 to increase the bioavailibity of VEGF-A is 

particularly intriguing. As LTβR signaling has been shown to regulate the 

expression of VEGF-A in the LNs (Chyou et al., 2008), releasing sequestered 

VEGF-A may be an additional way in which the signaling pathway increases the 

bioavailability of the lymphangiogenic factor. It would be interesting to explore if 

the ability of MMP-13 in modulating the increase of VEGF-A in the LNs during 

inflammation may represent additional control of lymphangiogenesis. 
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In our current study, we studied the involvement of MMP-13 in 

lymphangiogenesis through its mRNA expression and proteolytic activities, as 

well as compartmentalization in the LNs. Another important determinant in the 

regulation of MMP activity is through enzyme inactivation, of which TIMPs play 

a major role (Baker et al., 2002; Brew and Nagase, 2010). Characterization of 

MMP-13 has shown that the enzyme can be inhibited by TIMP-1, TIMP-2 and 

TIMP-3 (Knäuper et al., 1996a). Interestingly, the expression of TIMPs has also 

been shown to be regulated by NF-κB signaling (Bommarito et al., 2011). 

Therefore, to further examine the role of MMP-13 in the LTβR signaling-

mediated lymphangiogenesis, it may be interesting to examine the contributions of 

TIMPs in LN lymphangiogenesis, as well as its regulation by LTβR. 

 

7.6 Conclusion 

In summary, we have identifed the LTβR signaling pathway as a key molecular 

mediator in the B cell-mediated lymphangiogenesis. We have also shown that 

LTβR signaling regulates the expression of MMP-13 that is important for the 

sprouting of lymphatic vessels through the degration of the matrix components. 

While much progress have been made in the elucidation of the various regulatory 

pathways involved in lymphangiogenesis, a clear understanding of the interactions 

between lymphatic vesels and the surrounding matrix environment could provide 

new insights into the lymphangiogenesis process and the role of main players such 

as those that govern the degradation of the ECM. 
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Appendix 1: List of antibodies used for flow cytometry 

Antibody (conjugation) Company Clone 

Goat anti-mouse LTβR (biotin) R & D systems Polyclonal 
Hamster anti-mouse CD3e (APC) eBioscience 145-2C11 
Hamster anti-mouse CD11c (PE) eBioscience N418 
Hamster anti-mouse podoplanin DKSH 8.1.1 
Mouse anti-FITC (biotin) Jackson 1F8-1E4 

Mouse anti-mouse CD45.2 (FITC) eBioscience 104 

Mouse anti-mouse CD45.2 (PerCP-Cy5.5) eBioscience 104 

Rat anti-mouse B220 (FITC) eBioscience RA3-6B3 

Rat anti-mouse B220 (PerCP-Cy5.5) eBioscience RA3-6B4 

Rat anti-mouse CD11b (PerCP-Cy5.5) BD pharmingen M1/70 

Rat anti-mouse CD31 Serotec ER-MP12 

Rat anti-mouse CD31 (FITC) BD Pharmingen 390 

Anti-rat IgG (APC) Invitrogen N.A. 

Anti-syrian hamster IgG (PE) Calbiochem N.A. 

Streptavidin Cy2 Jackson N.A. 

Streptavidin Per-Cy5.5 eBioscience N.A. 
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Appendix 2: List of antibodies used for immunofluorescence analysis 

Antibody (conjugation) Company Clone 

Armenian hamster anti-mouse CD31 Millipore MAB1398Z 
Armenian hamster anti-mouse TCRβ BD Pharmingen H57-597 
Goat anti-mouse LTβR (biotin) R & D systems Polyclonal 
Rabbit anti-type IV collagen Cosmo Bio Polyclonal 
Rabbit anti-mouse collagen type I Millipore Polyclonal 

Rabbit anti-mouse MMP-9 Abcam Polyclonal 

Rabbit anti-mouse MMP-13 Santa Cruz Polyclonal 

Rat anti-mouse B220 eBioscience RA3-6B2 

Rat anti-mouse B220 (biotin) eBioscience RA3-6B3 

Rat anti-mouse B220 (biotin) eBioscience RA3-6B3 

Rat anti-mouse CD11b BD Pharmingen M1/70 

Rat anti-mouse CD31 (FITC) BD Pharmingen 390 

Rat anti-mouse ERTR7 Acris ER-TR7 

Rat anti-mouse FDC ImmunoKontact FDC-M2 
Anti-armenian hamster IgG (DyLight549, 
DyLight647) Jackson N.A. 

Anti-rabbit IgG (Cy2, Cy3 or Cy5.5) Jackson N.A. 

Anti-rat IgG (Cy2, Cy3 or Cy5.5) Jackson N.A. 

Streptavidin Cy3 or DyLight549 Jackson N.A. 
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Appendix 3: List of primers used for semi-quantitative PCR 

Target gene Primer sequence (from 5’ to 3’) 

β-actin  
forward TGGCACCACACCTTTCTACAATGAGC 
reverse GCACAGCTTCTCCTTAAGCAGAAAGAGG 

LTα (1) 
forward TGCCAGGACAGCCCATCCAC 
reverse TGAGCAGGAACACAGCCCC 

LTα (2) 
forward CCAGGACAGCCCATCCACT 
reverse GTGGACAGCTGGTCTCCCTT 

LTβ 
forward TGGATGACAGCAAACCGTCG 

reverse AACGCTTCTTCTTGGCTCGC 

LIGHT 
forward GGCTGGAACAGAACCACCG 
reverse CCAAGTCGTGTCTCCCATAAC 
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Appendix 4: List of primers used for qPCR 

Target gene Primer sequence (from 5’ to 3’) 

GAPDH  
forward AGGCCGGTGCTGAGTATGTCG 
reverse GCAGAAGGGGCGGAGATGAT 

MMP-2 
forward TAACCTGGATGCCGTCGT 
reverse TTCAGGTAATAAGCAAAATTGAA 

MMP-9 
forward CGGCACGCCTTGGTGTAGCA 
reverse AGGTGAGGGGGCGCCTGTAG 

MMP-13 
forward GCCAGAACTTCCCAACCAT 

reverse TCAGAGCCCAGAATTTTCTCC 

MT1-MMP 
forward AACTTCGTGTTGCCTGATGA 
reverse TTTGTGGGTGACCCTGACTT 
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Appendix 5: List of antibodies used for immunoblotting 

Antibody (conjugation) Company Clone 

Rabbit anti-MMP-9 Abcam Polyclonal 
Rabbit anti-MMP-13 Santa Cruz Polyclonal 
Mouse anti-GAPDH (HRP) Sigma GAPDH-71.1 
Anti-rabbit IgG (HRP) Jackson N.A. 
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