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SUMMARY 

This study examines the mechanical properties of novel two-dimensional materials with an 

extensive emphasis on graphene and its potential applications. Nanomechanical graphene 

(monolayer and multilayer) devices were fabricated by mechanical exfoliation of graphite 

over trenches in SiO2. Mechanical properties and the effects of anchor geometry on the 

mechanical behaviour have been probed using atomic force microscopy (AFM). An 

analytical framework and finite element modelling has been proposed to support the 

experimental findings. The adopted test methods can be extended to characterize other 

nanomaterials and to elucidate this, results obtained from molybdenum disulfide (MoS2) have 

been presented. The first observation of surface morphology variation in few-layer graphene 

using AFM nanoindentation and thermal engineering of the ripples has been described. 

Graphene irradiation using helium ions and its effects on the mechanical properties has been 

studied for the very first time. The devices have also been patterned to obtain structures with 

sub -10 nm feature sizes using helium ion microscope.  
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CHAPTER 1 : INTRODUCTION 

“Graphene is a splendid material, and its rapid rise to fame shows how quickly science can 

respond to new discoveries. Within a year or so of Andre Geim's and Konstantin Novoselov's 

first work with graphene, it became the subject of dozens of sessions at large science 

meetings. Many scientists, seeing a rich research opportunity, stopped what they were doing 

and turned to graphene.” 

–Dr. H. Frederick Dylla (Executive Director of American Institute of Physics) [1] 

1.1 Motivation and Background 

The steady miniaturization of electromechanical devices brings about the promise of 

revolutionizing electronic systems in tasks as diverse as information processing, molecular 

manipulation and sensing. Nanoelectromechanical Systems (NEMS) is one of the most active 

areas in contemporary electromechanical systems research. Due to advances in technology 

and scaling of devices, MEMS (Microelectromechanical Systems) based devices has reached 

nanoscale dimensions. Silicon has, so far, been the staple building block for state of the art 

MEMS. Its high Young’s modulus (~165 GPa) and good electronic properties make it ideal 

as a structural material for devices such as resonators, switches and valves [2]–[6]. However, 

as devices continue to scale down in dimensions and scale up in operating frequencies, it may 

soon become necessary to explore novel materials to meet future performance demands. 

In recent times, graphene has garnered much interest due to its unique characteristics. 

Graphene is a newly isolated material whose structure consists of a single atomic sheet of 

sp
2
-bonded carbon [7]. The promise of graphene as a material for next generation NEMS lies 

in its extraordinary mechanical and electronic properties. Despite its single-layer 

configuration, graphene maintains an exceptionally high Young’s modulus of ~1 TPa [8][9] 

which is an order of magnitude larger than silicon. Hence, devices of the same dimension 

made from graphene have significantly larger stiffness and can potentially operate at 

frequencies 2 – 3 times higher than that of similar silicon-based structures. In addition, the 
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exceptional breaking strength of graphene ~130 GPa [8] also allows for very thin, large area 

sheets to be suspended without the concern of mechanical fracture, a critical requirement 

since MEMS devices typically involve free-standing structures that exhibit motion upon 

actuation. Being robust, stiff and stable, graphene has exciting potential as a structural 

material for future NEMS. These devices also open up the possibility of integrated systems 

featuring graphene sensors and graphene-based electronics. 

1.2 Objectives 

The research interests during this study are in close conjunction with the needs of intriguing 

novel materials. The main purpose of this research study is to explore the mechanical 

properties and potential applications of a newly isolated two-dimensional (2D) material, 

graphene. 

The first objective of this work is to extract the mechanical properties of the fabricated 

devices using AFM. Two methods of sensing mechanical deformation have been proposed. 

The first method involves electrostatic actuation of the devices and measuring the deflection 

using AFM imaging. The second technique involves the use of an AFM as a nanoindenter to 

sense the mechanical deformation of the structures by obtaining force-deflection curves. By 

adopting these characterization techniques, the mechanical properties of the devices which 

include linear and nonlinear spring constants, Young’s modulus, 2D elastic modulus and pre-

tension of the devices can be extracted. This work also aims to develop analytical modelling 

and finite element simulations (FEM) to support the experimental findings. 

The second objective is to modify the surface morphology of graphene which would enhance 

its properties for various applications. First experiments of inducing ripples in few-layer 

suspended graphene using AFM nanoindentation and engineering the surface corrugations 
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through temperature treatment has been proposed. This capability would particularly be 

useful for making flexible nanoscale devices and electronics based on strain engineering. 

The third objective is to create defects in suspended graphene devices (monolayer and few-

layer) using helium ion irradiation and to explore the mechanical properties of the defective 

structures for the very first time. This study also aims to show the capability of reconstruction 

of graphene lattice after irradiation and its ability to remain suspended without any 

detrimental effects in its mechanical properties. The stability of graphene and its high 

tolerance to irradiation imposed damages indicates the ruggedness of the material and its 

promising use in the future graphene based NEMS under strident conditions. 

The fourth objective of this work is to use the cutting edge tool to pattern the graphene 

devices. Nanopatterning of the structures using helium ion microscope (HIM) has been 

employed to show the potential capability of obtaining sub -10 nm feature sizes. Such efforts 

clearly demonstrate the use of the emerging technology to obtain nanoscale devices with 

enhanced design and performance variations. 

The graphene samples used in this study have been fabricated through micromechanical 

exfoliation of graphite and subsequent transfer to patterned substrates. The working device 

structures can be consistently fabricated through the adopted technique. 

1.3 Overview 

Fabrication and characterization of the recently isolated 2D material graphene has been 

documented in this thesis. Chapter 2 reviews the uniqueness of carbon allotropes and in 

particular the structure of graphene and its properties. This chapter also describes the various 

fabrication methodologies to extract graphene. 
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The various fabrication and characterization techniques adopted in this study are detailed in 

Chapter 3. The extraction of the mechanical properties of the fabricated suspended graphene 

drum structures using AFM is documented in Chapter 4. Analytical modelling and FEM 

simulations have also been detailed to support the experimental findings. The resonance 

characteristics of the structures obtained using plate theory and FEM simulations have also 

been described. This chapter also documents the potential applications of nanomechanical 

graphene devices. 

Chapter 5 details the mechanical properties of monolayer and few-layer graphene devices 

obtained from AFM nanoindentation. This chapter also describes the continuum mechanics 

approach to extract the mechanical properties (Young’s modulus and pre-tension) of the 

devices from the obtained experimental force-deflection curves. The effect of anchor 

geometry on the mechanical properties of the devices has also been discussed. This technique 

has been extended to study the other newly isolated 2D material, MoS2 and the results 

obtained are also presented in this chapter. 

First observation of introducing ripples in few-layer graphene through AFM nanoindentation 

is detailed in Chapter 6. The capability of engineering the extrinsic ripples through thermal 

treatment is also described. 

Chapter 7 introduces the technique to irradiate graphene through helium ions and Raman 

spectroscopy study of the defect formation in the structures after irradiation. The first 

experimental measurements on irradiated graphene to extract its mechanical properties have 

also been described in detail. 
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The capability of using the cutting edge tool to pattern graphene has been documented in 

Chapter 8. The technique to pattern the fabricated devices (monolayer and multilayer) using 

helium ion microscope (HIM) has been demonstrated. 

Chapter 9 concludes this study and indicates the possible future works. 
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CHAPTER 2 : REVIEW OF GRAPHENE AND ITS PROPERTIES 

“Carbon has this genius of making a chemically stable two-dimensional, one-atom-thick 

membrane in a three-dimensional world. And that, I believe, is going to be very important in 

the future of chemistry and technology in general.” 

–Dr. Richard Errett Smalley (Nobel Lecture 1996) [10] 

2.1 Carbon Wonderland: A Walk from Carbon to Graphene 

Carbon is one of the most fascinating elements in group 14 (group IV) on the periodic table 

due to its versatility to form numerous number of compounds. Carbon can contribute to 

different forms of bonding which in turn span a large range of unique properties. The 

hybridization of atomic orbitals (sp
3
, sp

2
 and sp

1
) in carbon enables the carbon atoms to form 

several types of valence bonds which in turn contribute to various different structures [11]. 

The three-dimensional (3D) crystalline pure forms of carbon, namely, graphite and diamond 

have been known to exist since ancient times. After the discovery of zero-dimensional (0D) 

bucky balls (spherical fullerenes) in 1985 by Richard Erret Smalley along with his co-

workers [12] and one-dimensional carbon nanotubes (CNTs) (1D) in 1991 by Sumio Iijima 

[13], the allotropes of carbon have received tremendous attention from the research world. 

The existence of 2D crystalline form of carbon which is now termed as “graphene” and its 

existence was a theoretical debate until its experimental discovery in 2004 by Andre Geim et 

al. from Manchester University [14]. According to Landau and Peierls, it was earlier believed 

that 2D crystals are thermodynamically unstable and thus could not exist in nature [15][16]. 

Later in 1968, Mermin-Wagner theorem was further developed to validate this hypothesis 

which states that due to divergent contributions from thermal fluctuations, the long-range 

crystalline order would be destroyed in 2D crystals at any finite temperature and thus would 

result in melting of a 2D lattice [17]. The very recent observation of corrugations along the 

third dimension (ripples/wrinkles) in graphene provides justifications for its structural 

stability [18][19]. This 2D form of carbon is the mother of all graphitic systems which 
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include 0D fullerenes, 1D nanotubes and 3D graphite. Graphene can be stacked up to form 

graphite, rolled to form CNTs and wrapped into a sphere to form C60 (Buckminster 

fullerene). The crystal structure of the various sp
2
 hybridized allotropes of carbon is shown in 

Figure 2-1, indicating that graphene can be used as a primary building block to create 

graphitic materials of all other dimensionalities [7]. 

 

Figure 2-1: The sp
2
 hybridized allotropes of carbon formed using a single atomic layer of graphene. (Left 

to right) 0D buckyball, 1D nanotube and 3D graphite (adapted from Ref. [7]). 

2.2 Structure of Graphene 

Graphene is one atom thick and consists of sp
2
-bonded carbon atoms [7]. It condenses to 

form a honeycomb lattice due to its sp
2
 hybridization. The interaction of 2s orbital with 2px 

and 2py orbitals causes the formation of sp
2
 hybridized orbitals. It is a 2D hexagonal 

structure, with each atom forming three bonds (ζ bonds) with each of its nearest neighbour’s 
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through the three valence electrons localized along the plane at an angle of 120° [7]. These 

covalent carbon-carbon bonds in graphene are responsible for the strong mechanical 

properties. Whereas the electronic properties are strongly influenced by the π-bonds which 

are formed as the electron cloud for 2pz orbital is spread normal to the plane. The carbon-

carbon bond length in graphene is ~0.142 nm [20]. The graphene hexagon has six ring carbon 

atoms which have six free bonds which include four single bonds and two resonance bonds. 

These carbon atoms covalently bind to six other carbon atoms as shown in Figure 2-2. 

Monolayer graphene sheets stack to form graphite with an interplanar spacing of ~0.335 nm 

[21] and are held together by van der Waals (VdW) forces of attraction. 

 

Figure 2-2: Seven hexagons made using 24 carbon atoms in a single graphene sheet occupying an area of 

~0.8 nm
2
 (adapted from Ref. [22]). 

The hexagonal lattice structure of graphene was confirmed through transmission electron 

microscopy (TEM) studies. It was also found that suspended graphene exhibited ripples on 

the surface with an amplitude of about 1 nm. These intrinsic ripples in graphene provide 

justifications for its structural stability [19]. 
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2.3 Graphene Fabrication Methodologies 

2.3.1 Graphene Synthesis from Graphene Oxide and Graphene Intercalation Compounds 

Fabrication of graphene from graphite oxide and graphene intercalation compounds (GIC) 

was the very first developed methods for graphene synthesis. Insertion of an acid or alkali 

metal in between carbon lamellae which is termed as “intercalation” and exfoliation of 

graphite with nitric and sulphuric acids was reported by Schafhaeutl et al. [23]. But this 

method yielded graphite with a widened interlayer spacing which resulted in electronic 

decoupling between graphene layers. Brodie showed that graphitic oxide (GO) can be 

obtained by treating pure graphite with nitric acid or potassium chlorate [24]. Boehm et al. 

reported that lamellae of carbon can be obtained by rapid heating of graphite oxide or by 

reduction of graphitic oxide in an alkaline suspension [25]. But, the quality of graphene 

produced by this method is low. Further advancements to this technique was developed and it 

was shown that reduction of graphite oxide by focussed solar radiation [26] or by direct laser 

reduction of graphite oxide film coated DVD disc will also result in thin graphene films [27]. 

2.3.2 Micromechanical Exfoliation of Bulk Graphite 

In this method, an adhesive tape is used to separate graphite crystals in order to obtain very 

thin graphene flakes. After obtaining an optically transparent flake, the tape is dissolved in 

acetone and then transferred to a silicon wafer. This technique is now modified and has been 

made simple and reliable by the elimination of letting graphene float in a liquid. The 

modified method adopted by Andre Geim et al. is now termed as “scotch tape” method [14]. 

In this technique, graphite flakes are cleaved several times using a scotch tape until thin 

layers of graphene sheets are obtained. The graphene sheets are then transferred to a substrate 

by pressing down the tape and gently removing it away as indicated in Figure 2-3. The 

substrate which is usually used in this method SiO2 (~300 nm) on silicon as it gives good 
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optical interference which makes graphene visible under an optical microscope [28]. The 

only disadvantage of this method is that fair amount of time and luck is needed to obtain 

suspended/supported structures and the level of difficulty increases when the graphene flake 

has to be deposited at a specific location on a substrate. However, this method is widely being 

used to fabricate nanomechanical graphene devices as it produces good quality and defect 

free graphene sheets. 

 

Figure 2-3: Micromechanical exfoliation of bulk graphite (left) and graphene transferred onto a SiO2 (300 

nm)/Si substrate through scotch tape transfer (right). 

2.3.3 Chemical Vapour Deposition 

In chemical vapour deposition (CVD) method, a metal substrate like copper is annealed in a 

furnace to about 1000 °C under low vacuum and in the presence of methane and hydrogen 

gases [29]. A catalytic reaction between methane and the metal substrate takes place, causing 

the deposition of carbon atoms from methane onto the surface of the metal. The furnace is 

then quickly cooled down to obtain contiguous graphene layer and to avoid the aggregation 

of carbon layers to form bulk graphite [29]. Apart from copper, nickel and cobalt are also 

used as metal substrates. Direct synthesis of graphene on nickel by this method is shown in 
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Figure: 2-4(a) [30]. Graphene obtained through this technique can be transferred to any 

arbitrary substrate by spin coating a polymer such as polydimethysiloxane (PDMS) or 

polymethyl methacrylate (PMMA) as a support and then the metal can be removed using an 

appropriate etchant. The supported graphene on a polymer can now be positioned on top of a 

desired substrate and the polymer can be dissolved using a solvent as shown in Figure: 2-4(b) 

[29]. The experimental conditions and the metal used play very important role to obtain 

graphene with less impurities. For instance, nickel and cobalt absorb more carbon atom than 

copper which leads to the formation of graphite crystal on the metal surface instead of a 

monolayer of graphene. To avoid this either copper or thin nickel film (~300 nm) coated on 

silicon substrate is used [30]. The presence of more hydrogen and methane gas enhances the 

reaction in the former and increases the number of carbon atoms deposited in the latter. 

Additionally, the annealing temperature and the purity of the substrate used also greatly 

influence the production of graphene [31]. Apart from these difficulties, due to the difference 

in thermal expansion coefficient (TEC) of graphene and the metal substrate used, CVD 

graphene is found to have wrinkles. Plasma enhanced chemical vapour deposition (PECVD) 

is also used to fabricate graphene and the method involves an additional radio frequency (RF) 

alternating current (AC) to be passed through the substrate which enhances the carbon 

deposition onto the substrate by ionizing the gases in the chamber [32]. 
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Figure: 2-4: (a) Direct synthesis of large area graphene sheets on thin nickel layers using CVD (adapted 

from Ref. [30]) (b) Roll-to-roll production of graphene films (30 inch) grown on copper foils and 

transferred on a target substrate (adapted from Ref. [29]). 

2.3.4 Epitaxial Growth of Graphene 

Epitaxial graphene can be grown from silicon carbide (SiC) crystal by heating it at around 

1500 °C. In the event of heating, sublimation of silicon occurs thus leaving a layer of carbon 

on the surface [33][34]. Few-layer graphene on SiC fabricated by this method is shown in 

Figure 2-5(a). Graphitization of SiC is greatly influenced by the heating parameters and 

controlling the grain sizes and number of graphene layers is difficult. Another way of 

producing epitaxial graphene can be achieved through molecular beam epitaxy (see Figure 

2-5(b)). In this method, a graphite filament is heated (1000–1100 °C) in an ultra-high vacuum 

chamber which leads to the sublimation of carbon atoms from graphite which in turn 

generates a molecular beam of carbon atoms in vacuum. This molecular beam does not 

interact and thus travels through free space until it hits a metal substrate like iridium to form a 

graphene layer [35][36]. The main disadvantage of this technique is the requirement of ultra 

high vacuum which makes the process very difficult. 
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Figure 2-5: (a) Low energy electron diffraction (LEED) patterns of few layer graphene on SiC(0001) 

(adapted from Ref. [34]) (b) LEED pattern and AFM image showing 1.5 ML (Monolayer) graphene 

epitaxially grown on SiC (adapted from Ref. [35]). 

2.3.5 Chemical Synthesis 

This technique incorporates the dispersion of graphite from a solution as indicated in Figure 

2-6. Graphite flakes are sonicated in a solution and the non-exfoliated graphite is separated 

by centrifugation from graphene [37][38]. Long sonication time needed to disperse graphite 

and obtaining graphene layers without breaking are the disadvantages of this technique. 
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Figure 2-6: Photograph of a polymer PmPV/DCE with GNRs stably suspended in the solution and ultra 

narrow ribbons 1.5, 1.4, 1.5 nm respectively (adapted from Ref. [37]). 

2.3.6 Stamping Method 

In this fabrication process, micropillars/protrusions are created and coated with glue which is 

then used to exfoliate graphene from highly oriented pyrolytic graphite crystals (HOPG) 

[39][40]. The illustration of the stamping process is shown in Figure 2-7. 

 

Figure 2-7: Schematic illustration of the stamping method (left) and AFM image showing a stamped 

square of graphene along with the profile across a location (right) (adapted from Ref. [39]). 

2.3.7 Electrostatic Force Assisted Exfoliation 

Graphene of desired thickness is obtained by applying a bias voltage (see Figure 2-8) and 

since graphene sheets are weakly bound in graphite, they can be easily removed by applying 
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an electrostatic force [41][42]. Bias voltage determines the number of graphene layers to be 

separated and deposited on the target substrate. 

 

Figure 2-8: Schematic illustration of electrostatic force assisted exfoliation of pre-patterned graphene 

(adapted from Ref. [41]). 

2.3.8 Other Methods 

Graphene can also be fabricated through various other techniques and to name a few, 

unzipping graphene from carbon nanotubes (CNTs) as shown in Figure 2-9 [43][44], 

pyrolysis of sodium ethoxide [45] and through exothermic combustion reaction of carbon 

dioxide [46]. However, due to the extreme high quality of exfoliated graphene prepared by 

micromechanical exfoliation of Kish graphite and the ability to consistently produce 

suspended graphene sheets, scotch tape method is widely being used. In this study, this 

method has been adopted due to the above mentioned reasons. 
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Figure 2-9: Unzipping graphene from CNT through an oxidation process (adapted from Ref. [43]). 

2.4 Electronic Properties 

The conduction and valence bands of graphene overlap and hence it is a zero-gap 

semiconductor or a semi-metal. As discussed in Section 2.1, the π bonds in graphene are 

mainly responsible for its unusual electronic properties and the electronic band structure of 

graphene is shown in Figure 2-10. Wallace et al. in early 1947 reported that electron 

momentum k is linearly related for low energies near the six edges (Dirac points) of the 2D 

Brillouin zone which leads to the behaviour of electrons like massless Dirac 

fermions/Graphinos [47]. The low energy electronic state follows a linear relationship instead 

of a parabolic dispersion relation and can be described by Dirac equation for fermions [48]. 
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where fv  is the Fermi velocity, ̂ is the Pauli matrix and k is the quasi particle momentum. 
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Figure 2-10: 3D representation of a single layer graphene sheet showing that the overlap of the 

conduction and valence band shrinks to a single point (adapted from Ref. [49]). 

Transport measurements on mechanically exfoliated graphene indicate that it possesses 

remarkably high electron mobility independent of the carrier type under ambient conditions 

with values exceeding 2×10
5
 cm

2
V

-1
s

-1
 [50]. The corresponding resistivity of graphene was 

found to be 10
-6

 Ωcm (lower than the resistivity of silver!!). It is also observed that, even 

when the charge carrier concentrations turn nearly zero, minimal conductivity is observed in 

both monolayer [51] and bilayer graphene [52]. The room temperature thermal conductivity 

of graphene was measured to be ~5×10
-3

 Wm
-1

K
-1

 [53]. Unlike other metals, quantum Hall 

effect (QHE) is observed even at room temperature in monolayer graphene [54]. Whereas in 

a bilayer graphene, a normal QHE can be observed after doping it to break the symmetry 

between the two graphene monolayers to obtain an energy band gap [52]. Many of these 

unique characteristics make graphene suitable for various applications in nanotechnology 

such as integrated circuits [55], transistors [14] and transparent conducting electrodes [56], to 

name a few. 
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2.5 Mechanical Properties 

The covalent C-C bonds in graphene are the strongest bonds which gives rise to exceptional 

mechanical properties. In order to understand its mechanical properties it is worthwhile to 

recapitulate the mechanical properties of graphite. A detailed description of physics of 

graphite can be found in B.T Kelly’s book which was published in 1981 [57]. The main 

contributions of this book on mechanical properties have been outlined in this section. 

Elastic constant of a material is defined as the ratio of stress to strain. The equations which 

describe the relation of stress and strain for a hexagonal lattice structure like graphite are 

indicated below. 
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where e is the strain, T is the stress and S is the elastic compliance. The above six equations 

can be written in their inverse form as follows. 
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where C is the modulus of elasticity. The two constant C and S can be related as follows. 
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The Young’s moduli parallel to the hexagonal and basal planes are Ec (S33
-1

) and Ea (S11
-1

) 

respectively. The Shear modulus parallel to the basal planes is given by G = S44
-1

 = C44. 

In order to determine the elastic constant Baker and Kelly measured the resonance frequency 

of free-free beam cantilevers (natural graphite flakes). The length and thickness of the beam 

were 0.4 cm to 1 cm and 0.01 to 0.05 cm respectively. The vibrations of these flakes can 

either be dominated by shear or bending. The resonance frequency due to shear and bending 

are given below. 
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Where f is the resonance frequency, G (C44) is the shear modulus, E (S11
-1

) is the Young’s 

modulus, 0  
is the density of graphite; l and t are the length and thickness of the cantilever. 

Shear frequency is inversely proportional to length and bending frequency is inversely 

proportional to square of the length. 

The vibrations in as-received graphite samples were shear dominated with G = 0.1 GPa while 

irradiated graphite crystals were dominated by bending with E = 0.6 TPa. The value of G 

obtained is much lower than expected due to dislocations. A group at Union Carbide Parma 

Laboratories performed a detailed study to determine the elastic shear constant value using 
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ultrasonic pulses, sonic resonance, and static test methods. The elastic constants found by 

them are tabulated below in Table 2-1. 

Table 2-1: Summary of elastic constants and compliances of graphite 

Elastic Moduli Elastic Compliance 

C11 = 1.06± 0.02 TPa S11 = 0.98 ± 0.03 TPa
-1

 

C12 = 180 ± 10 GPa S12 = -0.16 ± 0.06 TPa
-1

 

C13 = 15 ± 5 GPa S13 = -0.33 ± 0.08 TPa
-1

 

C33 = 36.5 ± 1 GPa S33 = 2.3 ± 0.2 TPa
-1

 

C44 =  0.18 to 0.35 GPa 

C12/C11 = 0.17 ± 0.01 

-S12/ S11 = 0.16 ± 0.06 

E = 1/S11 = 1.02 ± 0.03 TPa 

 

The C44 values seems to be spread out and this is due the fact that irradiated and non-

irradiated samples exposed to fast neutrons with irradiated samples giving the higher value. 

This result is comparable to what was obtained during the resonance frequency measurements 

where irradiation increased C44 by reducing basal plane dislocations. As this value matches 

the value found in the specific heat data, this highest value is taken as the true value. 

The experimentally measured Poisson’s ratio C12/C11 is 0.17. The Poisson’s ratio along the 

basal plane of graphite is -S12/S11.  From the expression that relates C and S, the Poisson’s 

ratio υ of graphite along the basal plane is found to be 0.16 ± 0.06. 

Hence, utilizing the enhanced electronic and mechanical attributes of graphene, will lead to a 

new class of next generation NEMS. However, systematic study of the influence of layer 

number on the mechanical properties of graphene is largely unexplored experimentally. 

Hence this study aims to extract the mechanical properties of exfoliated monolayer, few-layer 

and multi-layer pristine graphene and irradiated graphene structures. The effects of vacuum 

annealing on the mechanical properties of the device structures have also been studied. 

Moreover, experimental alteration of the surface morphology of graphene and engineering 
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the morphology through temperature treatment has been explored which enables the 

fabrication of flexible nanolectronic devices. The capability of patterning sub -10 nm features 

in suspended graphene through HIM has been demonstrated which opens up as an emerging 

technology to fabricate electromechanical devices with varying design and performance 

parameters. 
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CHAPTER 3 : FABRICATION AND CHARACTERIZATION 

METHODS 

In this chapter, the fabrication and characterization techniques adopted for this study are 

discussed with details. 

3.1 Device Fabrication Methodology 

The suspended nanomechanical graphene drum structures used in the experiments were 

prepared by mechanical exfoliation [14][58] of Kish Graphite (NGS Naturgraphit GmbH) 

which consists of Bernal stacked layer of graphene sheets. The graphene sheets are held 

together by weak VdW forces and are separated by a distance of ~3.35 Å [39]. The 

fabrication steps adopted in Chapters 4 and 8 are summarized in Figure 3-1. To fabricate the 

trench structures that support the suspended graphene sheets, oxidized silicon die (285 nm 

SiO2 thickness) was first patterned, using optical lithography, with line structures which were 

then metallized with gold to act as contact electrodes. Circular holes, of ~3.8 μm diameter, 

were defined in the oxide in between the gold lines and etched in buffered hydrofluoric acid 

(BHF) solution to obtain trench structures. The depth of the trenches is determined by the 

duration in which the patterned substrates were immersed in the BHF solution. In the 

fabricated substrates, the oxide is not entirely etched through to the substrate (i.e. some oxide 

remains at the bottom of the trenches) as this prevents unsuspended drum structures from 

shorting the entire graphene sheet to the underlying silicon substrate. 
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Figure 3-1: Fabrication of suspended nanomechanical graphene drum structures. The process starts with 

an oxidized silicon die with 285 nm oxide thickness. Two optical mask patterns were used in the process, 

the first to define the electrodes and the second to define the circular trenches. 

 

Figure 3-2: Actual optical images obtained during each fabrication step. 
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Graphite flake was cleaved several times using a scotch tape until thin layers of graphene 

sheets were obtained. The graphene flakes were then transferred to the pre-patterned substrate 

by pressing down the tape and gently removing it away. The resultant devices were 

completely covered (circular plates) or partially covered graphene structures (semi-circular 

plates) which are clamped along its periphery by VdW forces of attraction. Graphene sheets 

of up to 30 μm x 30 μm can be obtained by this process with each sheet covering 4 – 6 

circular trenches, although not all the covered trenches will be suspended. 

The pre-patterned substrates shown in all other chapters were prepared as follows. The trench 

structures to support the graphene were fabricated by a UV photo-lithography process. A 

SiO2 (285 nm)/Si die was patterned using optical lithography to obtain an array of holes ~3.8 

µm in diameter. The patterned substrates were subsequently etched using SF6 plasma to 

define the trench structures. The fabrication sequence of making suspended graphene devices 

and an optical micrograph of a typical sample is shown in Figure 3-3. 

 

Figure 3-3: Fabrication sequence of suspended nanomechanical graphene structures. 
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3.2 Atomic Force Microscopy (AFM) 

AFM is a high-precision type of scanning probe microscopy. It is a Nobel Prize-winning 

invention by Binning et al. in 1986 [59]. It has wide range of applications and is found to be 

extremely useful in characterizing features from nanometer to micrometer scale. 

3.2.1 Principle of AFM Measurement 

The AFM consists of a microcantilever (force sensor) with a sharp tip at its free end and 

measures the forces acting between the tip and the sample surface. This force can be 

described using Hooke’s law, 

cantileverc .d-kF       (3.1) 

in which F is the force, kc is the spring constant and dcantilever is the cantilever deflection. 

These interatomic forces are in the range of 10
-9

 N. The cantilever probes are typically made 

from silicon nitride or silicon. The design variations allow for varied spring constants and 

resonance frequencies. The motion of the cantilever probe is controlled using a feedback loop 

and piezoelectric scanners. The deflection of the cantilever during scanning of the sample is 

measured using a laser spot that is reflected from the top surface of the cantilever onto a 

position sensitive photodetector. The resulting deflection map generates the topography of the 

sample. The schematic of an AFM is shown in Figure 3-4. 
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Figure 3-4: Schematic of an AFM setup (adapted from Ref. [60]). 

3.2.1.1 The Primary AFM Working Modes 

The primary modes of imaging include contact mode, tapping mode or intermitted contact 

mode and non-contact mode. In the contact mode, the force between the probe and the 

sample is kept constant by maintaining a constant cantilever deflection. In this mode the 

interatomic forces are repulsive and the probe is in close proximity to the sample (few 

angstroms). In the tapping mode, the cantilever is oscillated at its resonance frequency and 

the probe taps the sample surface while scanning. A constant tip-sample interaction is 

maintained by constant oscillation amplitude. This mode allows for high resolution imaging 

of the samples which are easily damaged when scanned in contact mode. In non-contact 

mode, the interatomic forces between probe and sample are attractive VdW forces. The probe 

does not contact the surface and the feedback loop monitors the changes in the oscillation 

amplitude due to attractive VdW forces and thus the surface topography is obtained. 

In this thesis all the AFM images have been obtained by operating the AFM in tapping mode. 

Apart from imaging, AFM has been used as a nanoindenter to extract the force versus 
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deflection curves of the samples. The principle of material characterization by 

nanoindentation is described in the next sub-section. 

3.2.2 AFM Nanoindentation 

Nanoindentation technique provides a unique opportunity to probe the mechanical properties 

of devices using depth sensing instruments (DSI). The feasibility of this technique using an 

AFM makes it a very simple and effective technique to measure the mechanical properties of 

devices in the nanoscale. In this technique, an AFM probe tip is forced onto the device 

surface by applying loads and the corresponding probe displacement and piezo displacement 

is recorded by obtaining a force curve as shown in Figure 3-5. This technique opens up a 

possibility to apply loads as small as few nano-Newtons (nN) and measures displacement in 

the range of few nanometers, thus providing depth sensing in nanoscale. The representation 

of an AFM nanoindentation experiment on suspended graphene devices is shown in Figure 

3-6. 

 

Figure 3-5: A typical force curve showing one recording cycle (adapted from Ref. [61]). 
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Figure 3-6: Representation of an AFM nanoindentation measurement on suspended graphene devices. 

3.3 Raman Spectroscopy 

Raman spectroscopy is a Nobel Prize winning invention by C. V. Raman [62]. This non-

destructive spectroscopic technique involves monochromatic light scattering process, usually 

from visible, near infrared or near ultraviolet regime which is used for material identification 

and characterization. The interaction of the monochromatic incident beam on the sample 

causes the photons of the light to be absorbed by the sample and then reemitted. In the event 

of scattering process, two phenomena take place which includes Rayleigh’s scattering 

(intense elastically scattered beam) and Raman scattering (weak inelastically scattered beam) 

as indicated in Figure 3-7. The scattered radiation is composed of components with frequency 

same as the incident radiation along with modified frequency. The light due to Raman 

scattering is focused onto the detector and the elastically scattered light is filtered out. Raman 

shift can be analysed using the captured wave numbers and subsequently the information 

about the vibrational, rotational and other low frequency transitions in molecules can be 

obtained. 
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Figure 3-7: Energy transitions for Rayleigh and Raman scattering (adapted from Ref. [63]). 

3.3.1 Raman Scattering of Graphene 

Raman spectrum of graphene gives information about the in-plane vibration of the sp
2
 

hybridized carbon atoms (G band), stacking orders (2D band or G’) and defects (D band) 

[64]. The G mode is associated with the doubly generated longitudinal optical (LO) and in-

plane transverse optical (iTO) phonons at zone center [65]. The 2D mode originates from a 

double resonance process consisting of inter-valley inelastic-scattering events involving two 

D phonons (near K point) with opposite momenta [64] while the 2D' mode arises from intra-

valley double resonance process involving two D' phonons near the Γ point [64][66]. The 

intensity of G mode increases with increase in graphene thickness whereas the 2D mode 

broadens and gets blue shifted as the number of graphene layers increase. Typical Raman 

spectra obtained from graphene is shown in Figure 3-8. 
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Figure 3-8: Typical Raman spectra of monolyer and few layer graphene (left) showing the broadening of 

2D band (enlarged on the right) (adapted from Ref. [65]). 

Raman spectroscopy has been used in this thesis to characterize suspended graphene 

structures. Although AFM topography can provide the thickness of the graphene samples, the 

method is not accurate for estimating monolayer and few-layer graphene as the error bar in 

the AFM is ±1 nm. Hence only for multilayer structures (> 8 nm) AFM has been used to 

extract the thickness. 

3.4 Singletron Accelerator 

The ion beam facility at Centre for Ion Beam Applications (CIBA) in NUS is equipped with a 

3.5 MV singletron accelerator from High Voltage Engineering Europa (HVEE) in 

conjunction with five beam lines. The schematic of the facility along with a photograph is 

shown in Figure 3-9. The energy of the ion beam which originates from the accelerator is 

controlled by a 90° analysing magnet. The ion beam and the target chamber can be precisely 

chosen using a switching magnet. Magnetic quadrupole lens is used to focus the ion beam 

before the target chamber by creating a demagnified image of the object slits. The steerer 

table allows for rough focussing and monitoring of the beam. The defining slits and the 
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aperture enable to define the beam diameter and optimization. Using a computer controlled 

software the dose and the scanning can be controlled for irradiation tasks. 

 

Figure 3-9: Schematic of the ion beam facility at CIBA (Department of Physics, NUS) (left) and a 

photograph of the facility (right). 

In this thesis, the helium ion irradiation experiments were carried out using this 3.5 MV 

singletron facility. The experimental procedures and the obtained results are discussed in 

detail in Chapter 7. 

3.5 Helium Ion Microscope (HIM) 

A new cutting edge tool in the field of nanofabrication is the Carl Zeiss Orion NanoFab. The 

photograph of the instrument and the schematic of the tool are shown in Figure 3-10. The two 

most important technology advancements of this tool are ion source and the nature of the 

beam interaction with the sample that is being imaged. This technique is based on the field 

ionization of helium ions using a cryogenically cooled metal tip such as tungsten which is 
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truncated by trimer of atoms (metal tip is positively biased and is exposed to very low 

quantities of helium under vacuum and is modified such that only three atoms remain at the 

edge of the tip). Under large bias, ion streams are emitted by the trimer which is then aligned 

and focussed by optics column to obtain the helium ion beam. This beam is rastered across 

the sample to obtain images. Apart from imaging, HIM has the capability to directly pattern 

arbitrary features with sub -10 nm dimensions on both supported and suspended graphene 

[67][68]. This is a direct patterning method without using any resists. Moreover, one has the 

freedom to pattern any arbitrary design and the patterned structures will be devoid of any 

contamination arising from the resists used in conventional lithography methods.  

 

Figure 3-10: Photograph of HIM (left) and the schematic of the tool (right) (adapted from Ref. [61]). 

This tool has been used to pattern the fabricated samples and the results are shown in detail in 

Chapter 8. 
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CHAPTER 4 : FABRICATION AND CHARACTERIZATION OF 

GRAPHENE DRUM STRUCTURES 

4.1 Introduction 

Various published work in recent years have established the feasibility of suspended 

graphene as nanoscale electromechanical devices, with much of these studies focusing on the 

resonance properties of graphene sheets. Few-layer graphene sheets suspended over a silicon 

dioxide trench have been demonstrated to operate as clamped-clamped beam resonators at 

frequencies as high as 70 MHz with Q-factors of ~100 [69]–[71]. Drum structures fabricated 

from graphene oxide have also been shown to resonate at frequencies up to ~60 MHz with Q-

factors of ~4000 by Robinson et al. [72], although the Young’s modulus of graphene oxide is 

significantly lower (~185 GPa). Due to their low mass and superior stiffness (compared to 

silicon), graphene structures hold plenty of promise in mass sensing applications. The 

sensitivity of a resonant mass sensor is proportional to the mass of the sensing element and 

inversely proportional to its resonance frequency [73]. Few-layer graphene structures have 

lateral dimensions of a few microns and are no more than a few nanometers thick [69]–[71], 

which makes their mass very small. The substantially higher Young’s modulus of graphene 

also makes such structures much stiffer and hence resonates at higher frequencies. This 

makes the mass/resonance frequency ratio of graphene structures significantly better than 

silicon-based ones which in turn results in an improvement in the mass sensitivity. However, 

before graphene structures can be employed in practical devices, it is first necessary to 

characterize the mechanical properties of the structures themselves. While previous studies 

[69]–[71] have featured extensive measurements on structure characteristics such as 

resonance frequency and Q-factor, analytical modelling and simulation of the structures’ 

mechanical behaviour remains somewhat lacking. Such efforts can help assess the potential 

performance of graphene structures in various applications. Various theoretical studies on the 

mechanics of graphene sheets based on atomistic [74], continuum [75] and hybrid [76]–[78] 
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models have also been presented; however, these studies do not involve measurements on 

actual graphene structures. 

4.2 Experimental Details 

The devices for characterization were prepared by adopting the technique described in 

Section 3.1. 

4.2.1 Test Setup for Characterization 

Suitable candidates for measurement were identified optically, looking for few-layer 

graphene sheets suspended over a trench and contacting at least one gold electrode line. The 

graphene sheet is in electrical contact with the electrode as long as part of the sheet overlaps 

the gold line. This overlapping is verified by topographical scans using AFM. An optical 

micrograph of one of the graphene drum samples (labeled Device 2) is shown in Figure 

4-1(a). The 285 nm thick oxide layer appears violet under optical microscopy with pieces of 

graphene turning up in colours ranging from deep violet to blue, depending on the layer 

thickness. However, optical imaging is insufficient for quantifying the number of layers of 

the selected graphene sheets and hence AFM was employed to measure the thickness. 

 

Figure 4-1: (a) Optical micrograph of a suspended graphene drum device (labeled as Device 2). (b) 

Wiring of the graphene drum structure for static deflection measurements. A voltage VS was applied 

across the back gate and the graphene. 

Static deflection experiments were then carried out to investigate the mechanical properties of 

the suspended graphene drums. Both fabrication and device testing were carried out at room 
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temperature (~28 °C). The devices were wired up as shown in Figure 4-1(b) and a voltage VS 

was applied across the back gate and the graphene. Since the graphene is grounded (0 V 

potential) and the back gate is positively biased at VS, an electrostatic force is induced 

between the two surfaces which in turn works to deflect the suspended graphene. This 

deflection was then detected using AFM (JEOL JSPM-5200). The AFM is highly sensitive to 

topographical changes in the out-of-plane direction and can pick up height variations as small 

as 1 nm. The AFM scans obtained provide information on both the peak displacement 

amplitude as well as the deflection mode shape of the drum structure. 

The micrograph in Figure 4-2(a) is a two-dimensional representation of the topographical 

data of the scanned region, with the colour contrast being a direct indication of the height of 

the sample at a particular scan point. The darker regions represent areas which are lower in 

height compared to the brighter regions. Figure 4-2(b) is a three-dimensional plot of the data 

and Figure 4-2(c) is a graph of the height variation across the diameter of the sample, 

showing the cross-sectional profile of the graphene. 

 

Figure 4-2(a): AFM scan of Device 2 at VS = 0 V. The colour contrast in the micrograph is representative 

of the topographical data at each region (refer to height scale). The suspended graphene drum is located 

at the lower right. (b) A 3D representation of the scan in (a) showing the layer suspension and the 

thinness of the graphene. (c) Graph of the height variation at the diameter AA' of the device showing 

initial sag of 24 nm. 
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Despite the best efforts taken during sample preparation, it was unable to obtain suspended 

drum structures that were completely flat over the trench opening but instead all the devices 

fabricated had an initial sag which caused them to have a parabolic cross-sectional profile 

despite no actuation voltage VS being applied (see Figure 4-2(c)). As graphene is extremely 

lightweight and has extraordinary stiffness, it is unlikely that the weight of the structure 

pulling down at its central point could cause this much sag or initial deflection. It is also 

improbable that compressive stress is the cause for the initial sag as it is known that 

suspended graphene sheets are instead affected by uniaxial tensile stress [79]–[80], which 

would in fact stretch the graphene and reduce the degree of initial sag. The most plausible 

explanation for the presence of the initial sag is that the area of material covering the trench is 

greater than the area of the opening, resulting in the excess graphene having to fit into the 

trench itself which gives rise to some sagging. Similar phenomenon is observed for other 

devices fabricated by mechanical exfoliation of graphene [81]. 

 

Figure 4-3: (a) Cross-sectional profiles of Device 2 when unbiased (VS = 0 V) and when biased at VS = 10 

V. (b) Resultant cross-section obtained after subtracting the biased and unbiased profiles. The peak 

deflection of Device 2 at VS = 10 V is 6.9 nm. 

To determine the static deflection induced, a scan of the unbiased device was first taken to 

determine the initial state of the drum. A second scan of the same region was then taken 

while a voltage VS was applied to the back gate. The cross-sectional profile of the unbiased 

scan was then subtracted from the biased scan (see Figure 4-3) and the resulting profile is the 

deflection mode shape of the graphene drum with the lowest point of the profile being the 

peak deflection. By performing the profile subtraction, the deflection at each point of the 
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sagging graphene sheet, caused by the applied electrostatic force, is extracted. Hence, the 

subtracted profile provides a reasonable indication of the change in the deflection from the 

initial state of the drum. This method of determining the peak deflection and deflection mode 

shape was used for all our subsequent measurements. 

The drum structures are essentially clamped circular plates made of graphene and hence their 

mechanical motion can be modelled using plate theory. The following section presents a 

theoretical framework for analyzing the static deflection of the graphene drums. 

4.3 Analytical Modelling and Finite Element Simulations 

The nanomechanical graphene drums are geometrically similar to solid circular plates and 

hence, it would be meaningful to use plate theory for estimating the peak deflections of these 

structures. When the deflections of the drum structure are small in comparison with its 

thickness, pure bending theory can be accepted. However, for large deflections (i.e. when the 

deflections are greater than half the thickness), stress-stiffening becomes significant and the 

spring constant of the drum increases with deflection magnitude [82]. The relationship 

between applied force and deflection thus becomes nonlinear. As our drum devices exhibit 

large deflection in experiment, their mechanical behaviour cannot be modelled using pure 

bending theory. In order to estimate the peak deflections of these structures, an approximate 

solution has been derived below. 

4.3.1 Approximate Solutions for Large Deflection of Uniformly Loaded Graphene Drums 

The four devices used in experiments are clamped graphene drums; hence an approximate 

solution for maximum deflection is derived for graphene drums with clamped boundaries. 

Due to the structural similarities between graphene drums and solid circular plates, the 

equations derived below are based on plate theory. 
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From the classical theory of plates, we know that, the peak deflection d0 is at the centre of the 

plate and is given by [82], 

 
D

Pa
d

64

4

0        (4.1) 

where P is the uniform loading, a is the radius of the plate and D is the flexural rigidity. For a 

thin elastic plate of thickness h, 

 
 2112 


3Eh

D      (4.2) 

where E is the Young’s modulus and ν is the Poisson’s ratio. 

 

Figure 4-4: Clamped drum structure under uniformly distributed load. 

A clamped drum structure under uniformly distributed load is shown in Figure 4-4. The 

boundary conditions for clamped graphene drums are  
a

d
r0  = 0 and 

0,r
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d




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
 = 0. The 

parameter d0, r and a represent the maximum displacement, radial coordinate and radius of 

the graphene drum respectively. 
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In order to derive the equations for large static deflection, an energy method proposed by 

Timoshenko, S. P. is used [82]. His method has been outlined in this section, but the final 

derived equation is specific to graphene drums. 

The shape of the deflected drum for large deflections is assumed to be the same as in small 

deflections. Hence, the deflection d at any point of the circular plate can be described by, 
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As the deflection of the drum is symmetric about the centre (i.e. d is a function of r), the 

corresponding equation describing the strain energy Ubend due to bending of the plate is, 
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The polynomial expression representing the radial displacement u (from stretching of the 

circular plate) is given by, 

  ......2

321  rCrCCraru     (4.6) 

Each term in this equation should satisfy the boundary condition and u should be equal to 

zero at the centre and at the edge of the solid drum. 

From Equations (4.3) and (4.6), the strain components εr and εt of the middle plane are 

estimated. The strain energy Ustretch due to stretching of the middle plane is given by, 
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The strain on the middle surface of the drum can be neglected, when the maximum 

deflections of the drum are small in comparison to its thickness. However, when the 

deflections are comparable to the drum thickness or larger than the thickness itself, the effect 

of strain should be included. 

The strain energy due to stretching of the middle plane can be reduced to the following 

equation by omitting the higher order terms. 
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When the total energy of the drum is minimum, the constants C1 and C2 are estimated. 
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Substituting Equation (4.8) in Equation (4.9) yields two simultaneous equations. Solving the 

two equations gives, 
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The expressions for the constants C1 and C2 are substituted in Equation (4.8) and the 

following equation for stretching energy is obtained. 
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The total strain energy is the sum of bending and stretching energies and is given by, 
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When the load on the plate increases, the middle plane of the drum gets stretched as the 

maximum deflection values tend to go beyond the values of the drum thickness. This 

stretching or strain effect in the middle surface of the graphene drum has been compensated 

by introducing a correction factor and the second term in Equation (4.12) represents this. By 

applying the principle of virtual displacements, the deflection of the drum can be obtained. 
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where P is the uniformly distributed load. 

By substituting Equation (4.12) in Equation (4.13) and using the Poisson’s ratio for graphene 

as ν = 0.16 [57][81], we get, 
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When the maximum deflections of the drum are small compared to the thickness of the drum, 

then the last term in Equation (4.14) becomes negligible and the relationship between force 

and maximum deflection would be linear. When the deflection values get closer to the drum 

thickness or larger than the thickness itself, then the second term in Equation (4.14) would 

reduce the deflection value, i.e. a part of the total energy applied will go into stretching the 

middle plane of the drum, leaving less energy for bending, hence reducing the total 

displacement. 
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The maximum displacement of the graphene drum structure subjected to different distributed 

load values and the mode shape of the deflections were also validated using finite element 

simulations. The method adopted for simulation and results obtained are discussed in the 

following section. 

4.3.2 Finite Element Simulation 

The mechanical behaviour of the nanomechanical graphene drum structures were also 

simulated using the finite element tool ANSYS. FEM helps to achieve a detailed visualization 

of where the graphene drum structures deflect and also reveals the distribution of these 

displacements. The ANSYS software is capable of handling the nonlinear effects and has 

been used in this case to estimate the peak static deflections of the graphene drums and also 

the mode shape of the deflections. 

The graphene drum structures were modelled as thin circular plates using elements which 

account for the lateral geometric deformation that takes place during large bending. The 

graphene drums were built using SOLID45 element type. This element type is used for 3-D 

modelling of solid structures and is capable of handling stress stiffening and large deflections. 

The material properties used in the simulations include Young’s modulus E = 1TPa, 

Poisson’s ratio ν = 0.16 and material density ρ = 2200 kg m
-2

. These values used are the 

known values for bulk graphite [57]. The built graphene drums were anchored along its 

periphery to get clamped boundaries and a very fine meshing was done to get accurate 

deflection results. Figure 4-5(a) shows a meshed 4.74 μm diameter graphene drum with 

clamped boundaries and uniformly distributed load. The “large displacement static” static 

analysis option was chosen under solution controls to account for the nonlinearity in peak 

deflections. 
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The electrostatic force F was calculated using the parallel plate equation and applied as a 

uniformly distributed load over the circular surface in the model, 

 2
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2 dg

AV
F Sr


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
     (4.15) 

where ε0 = 8.854 × 10
-12

 Fm
-1

 is the permittivity of free space, εr is the effective relative 

permittivity, A = πa
2
 is the area of the graphene drum, VS is the applied voltage, g is the initial 

gap (= 285 nm – initial sag of the drum) and d0 is the peak deflection. The effective relative 

permittivity r accounts for possible electric field enhancement effects caused by the presence 

of residual oxide at the bottom of the trench structure and is given by, 
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where air = 1 is the relative permittivity of air, tair is the initial air gap (= trench depth – 

initial sag of the drum), ox = 3.9 is the relative permittivity of SiO2 and tox is the residual 

oxide thickness. 

The electrostatic force is converted to uniform load/pressure (P = F/A) and is then applied on 

the top surface of the drum as shown in Figure 4-5(a). The pressure applied causes the drum 

to deflect. The outcome of this is recorded as the deflection profile with peak deflection 

value. Figure 4-5(b) shows the isometric view of the 3-D finite element model (built using 

ANSYS) used to simulate the electrostatic deflection of Device 2, actuated at VS = 20 V. The 

simulated deflection profile (mode shape) is shown below with a peak deflection of 35.9 nm.  
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Figure 4-5: (a) Image of meshed Device 2 (4.74 μm diameter graphene drum) with clamped boundaries 

and uniformly distributed load. (b) Isometric view of Device 2 and its deflection profile indicating the 

maximum deflection (applied voltage VS = 20 V). 

A total of four nanomechanical graphene drum structures were fabricated and the 

measurements of their static deflection are presented in the following section. The analytical 

and finite element simulation models presented in this section were also used to obtain the 

theoretical/simulated deflections and mode shape of the samples and a comparison of the 

experimental results and modelled data are also made. 

4.4 Experimental Results & Discussion 

The static deflection experiment results from our four sample devices are presented in this 

section. Table 4-1 summarizes the dimensional characteristics of the four suspended drum 

structures that were successfully fabricated using the process depicted in Figure 3-1. The 

trench depths indicate the amount of oxide that was removed during BHF etching from the 

initial 285-nm thick oxide layer. This initial sag for each device is also indicated in Table 4-1.  
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Table 4-1: Summary of dimensional characteristics of the graphene drum structures 

Label 

Dimensions 
Trench 

depth 

(nm) 

Residual 

oxide 

thickness, 

tox (nm) 

Initial sag 

(nm) Diameter, 2a 

(μm) 

Thickness, h 

(nm) 

Device 1 3.86 12 85 200 18 

Device 2 4.74 15 100 185 24 

Device 3 5.70 8 200 85 114 

Device 4 3.88 10 80 205 40 

4.4.1 Static Deflection 

Each of the four sample devices were wired up as shown in Figure 4-1(b) and their peak 

deflections were recorded at various applied VS. The static deflection measurements for all 

four of our drum devices are summarized in Figure 4-6. The measurement error contributed 

by the AFM is about 1 nm. However, since the diameters of each drum structure are different, 

the electrostatic force experienced by each device varies for the same applied voltage VS. The 

electrostatic force is calculated using Equation (4.15) and the peak deflection data is re-

plotted as force-deflection curves in Figure 4-7. What is immediately apparent is the 

nonlinear relationship between applied electrostatic force and measured peak deflection 

which is consistent across all the samples. This is to be expected as the largest deflection for 

each device is about or larger than the thickness of the graphene sheet. A nonlinear force-

deflection relationship was also observed by [9] during nanoindentation experiments on 

suspended monolayer graphene membranes. Using an assumed Young’s modulus of 1 TPa 

for graphene, the theoretical deflections of all four samples were calculated using Equation 

(4.14) and simulated with ANSYS. These data are also presented in Figure 4-7. 

For Device 1 and 4 (see Figure 4-7(a) and Figure 4-7(d)), the three sets of results are in good 

agreement, indicating that the actual Young’s modulus of our graphene structures is indeed 



Chapter 4 Fabrication and Characterization of Graphene Drum Structures 

 

46 

 

close to 1 TPa. Prior theoretical [8] and experimental [9] studies on the mechanical properties 

of graphene have turned up similar values for its Young’s modulus. However, some 

discrepancies in the experimental data can be observed for Device 2 and 3 (see Figure 4-7(b) 

and Figure 4-7(c)) which contradicts the previous conclusion. The source of these 

discrepancies may be better understood by studying the deflection mode shapes of the drums 

which will be discussed in the following section. 

 

Figure 4-6: Measured peak deflection plotted against applied voltage VS for Device 1 to 4. 

 

Figure 4-7: Analytical, simulated and experimental force-deflection plots for (a) Device 1, (b) Device 2, (c) 

Device 3 and (d) Device 4. Measurement error contributed by the AFM is ±1 nm as reflected by the error 

bars (error bars are omitted for (c) as the measurement span is significantly larger than the error). The 

electrostatic force is calculated using Equation (4.15) and with an effective relative permittivity. 
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Other mechanical parameters of the drums which can be deduced from the experimental 

force-deflection data include the linear and nonlinear spring constants. The equation of 

motion describing the nonlinear static deflection of the graphene drum is, 

3

0301 dkdkF       (4.17) 

where F is the applied electrostatic force and k1 and k3 are the linear and nonlinear spring 

constants respectively. The analytical spring constants derived from Equation (4.14) are, 
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Similar forms for the linear and nonlinear spring constants have also been derived in other 

studies [75]–[78]. 

 

Figure 4-8: Best-fit curve (obtained using method of least squares) through the measured deflections for 

Device 4. The critical deflection amplitude dcrit is derived from the point at which the best-fit curve 

diverges from the tangent (shown in inset). 

The experimental values for k1 and k3 can be obtained by fitting the measured deflections for 

each device to Equation (4.17) using the method of least squares. Figure 4-8 shows the best-

fit curve for Device 4 from which the spring constants k1 = 4.21 N m
-1

 and k3 = 0.0197 N m
-3

 

are acquired. In addition, the critical deflection amplitude dcrit, defined as the maximum 

amplitude which the drum can be actuated to before it displays nonlinear behaviour, can also 
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be derived from the best-fit curve. To achieve this, a straight line passing through the origin is 

drawn tangent to the best-fit curve (see Figure 4-8) with dcrit being the point at which the line 

and curve diverge. 

Table 4-2: Summary of measured mechanical parameters of the graphene drum 

structures 

Table 4-2 summarizes the measured mechanical parameters for each of the four samples. 

Analytical (derived using Equation (4.18)) and FEM simulated values have also been 

included. The measured spring constant values for Device 1 and 4 are in fairly good 

agreement with analytical calculations and simulation while, as is the case for the force-

deflection curves, some deviation is observed for Device 2 and 3. The data presented in Table 

4-2 shows that the drums can be actuated to about 18 – 34 % of their thickness before 

displaying nonlinear deflection. For the first three samples, we also observe that dcrit 

increases with h or with k1. This appears to suggest that thicker or stiffer (with larger k1) 

devices may actually be more resilient to nonlinear behaviour (i.e. they can sustain larger 

vibration amplitudes before exhibiting nonlinearity). However, a larger sample size is 

required to validate this conclusion. In the following section, an investigation of the 

Device 

Measured 
Analytical 

(Eq. (18)) 
FEM Simulation 

dcrit 

(nm) 

h 

(nm) 
h

d crit  

(%) k1 

(N m
-1

) 

k3 

(N m
-3

) 

x 10
16

 

k1 

(N m
-1

) 

k3 

(N m
-3

) 

x 10
16

 

k1 

(N m
-1

) 

k3 

(N m
-3

) 

x 10
16

 

1 6.11 4.00 7.98 2.51 7.18 2 2.34 12 19.5 

2 37.6 12.7 10.33 2.62 9.81 2.64 3.96 15 26.4 

3 3.24 8.47 1.08 0.767 0.821 0.832 1.42 8 17.8 

4 4.21 1.97 4.57 2.07 4.38 2.12 3.36 10 33.6 
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deflection mode shapes of the drums is presented which may reveal some of the causes for 

the non-conformal deflection behaviours of Device 2 and 3. 

4.4.2 Deflection Mode Shape 

The AFM scans also provide information on the curvature of the nanomechanical drum 

structures during actuation and these profiles are indicative of the structures’ deflection mode 

shapes. A plot of the measured deflection mode shapes of Device 1 to 4 during actuation is 

shown in Figure 4-9. From the mode shapes, we can observe that while Device 1 and 4 (see 

Figure 4-9(a) and Figure 4-9(d)) maintain roughly parabolic deflection profiles, the mode 

shapes displayed by Device 2 and 3 (see Figure 4-9(b) and Figure 4-9(c)) are significantly 

different. The expected deflection mode shape of a clamped circular plate, obtained via 

analysis and simulation, are also shown in Figure 4-9. It is obvious that while the deflection 

profiles of Device 1 and 4 follow the analytical and simulated mode shapes quite closely, the 

mode shapes of Device 2 and 3 both do not match up. In both instances (for Device 2 and 3) 

it appears that the underlying trench may actually be the main contributor to the mode shape 

deformation. As the trench structures are prepared by means of wet etching (refer to Section 

3), it is exceedingly difficult to achieve 90° sidewalls due to the isotropic nature of the etch. 

If the sidewall of the trench is not etched steep enough, the area near the circumference of the 

suspended graphene may actually stick to the sidewall as the drum deflects. 
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Figure 4-9: Analytical, simulated and experimental deflection mode shapes of (a) Device 1, (b) Device 2, 

(c) Device 3 and (d) Device 4 at their highest actuation voltages VS.  

The peak deflections are scaled so that only the shapes of the profiles are compared. The 

experimental mode shapes of Device 1 and 4 are in good agreement with theory and 

simulation. However, the mode shapes of Device 2 and 3 are flat near the circumference of 

the drums (see circled regions), possibly resultant from the graphene sticking to the sidewalls 

of the underlying trench. 

To confirm this hypothesis, the graphene layers for both Device 2 and 3 were stripped from 

the substrate using oxygen plasma and an AFM scan was then carried out on the underlying 

trenches. Figure 4-10 shows the cross-sectional profile of the trenches overlaid with the 

deflection mode shapes of Device 1, 2, 3 and 4 (at their highest actuation voltages). It is clear, 

from the profiles in Figure 4-10, that part of the graphene layer is indeed touching the 

sidewalls of the trench for Device 2 and 3. The effect of this phenomenon is a reduction in 

the diameter of the suspended drum structure and an increase in its stiffness. The area 

exposed to the biased back gate also decreases, resulting in a reduction in the electrostatic 

force. These two effects combine to reduce the overall deflection of the drum, which is 

consistent with our results in Figure 4-10(b) and Figure 4-10(c), where the measured 
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deflections for both Device 2 and 3 are consistently less than the analytical and simulated 

data. 

 

Figure 4-10: Cross-sectional profile of the underlying trenches overlaid with the deflection mode shape of 

the graphene layer of (a) Device 1 (actuated at VS = 8 V), (b) Device 2 (actuated at VS = 20 V), (c) Device 3 

(actuated at VS = 20 V) and (d) Device 4 (actuated at VS = 12 V). The overlapping portions of the 

graphene and trench profiles are circled in (b) and (c). 

It is likely that the graphene is sticking to the sidewalls of the trenches at these regions, hence 

altering the mode shape and peak deflection induced by the applied VS. No overlapping was 

observed for Device 1 and 4. The electrostatic force magnitudes and analytical deflections of 

Device 2 and 3 were re-calculated using a reduced diameter of 3.85 μm and 4.22 μm (the 

diameter of the graphene layer that was not sticking to the sidewalls) respectively and the 

resultant analytical and experimental data is plotted in Figure 4-11. It can be observed that the 

theoretical and experimental data are now in better agreement, although the experimental 

measurements are still slightly lower. The sidewall sticking is likely to induce some tensile 

stress on the graphene sheet by stretching the sheet in lateral direction. The presence of this 

tensile stress, in effect, makes the graphene layer stiffer since the downward electrostatic 

force now has to overcome both the tensile stress and the mechanical restoring force of the 

layer in order to bend it. Hence, the possible presence of the tensile force makes the 

experimentally measured values still lower than the newly derived analytical deflections. 
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Figure 4-11: Analytically calculated deflections for (a) Device 2 and (b) Device 3 using reduced diameters 

2a of 3.85 μm and 4.22 μm (the diameter of the graphene layer that was not sticking to the sidewalls) 

respectively. 

The newly derived force-deflection relationships are in better agreement with the 

experimental measurements. With this understanding of the mechanical performance of our 

drum structures, their potential applications are discussed in the following section. 

4.5 Potential Application for Graphene Drum Structures 

A nanomechanical drum structure of this nature can find prospective applications as 

resonators or mass sensors. It is possible to actuate our graphene drums as resonator devices 

by adding a sinusoidal voltage to the DC bias applied to the back gate. The resonance 

frequency f0 can be estimated by the Equation (4.19) [83], 
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where E is the Young’s modulus, ν is the Poisson’s ratio of graphene, m is the mass and h and 

a are the thickness and radius of the drum structure respectively. 

The remarkable stiffness of graphene (Young’s modulus of ~1 TPa) allows for 

extraordinarily small structures while maintaining high operating frequencies, highlighting its 

exciting potential as a material for next generation NEMS devices. Resonant mass sensing 

appears to be a very promising avenue for development as the small size and high operating 
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frequencies of graphene devices allow for significant improvement in sensitivity over silicon-

based devices. 

Resonant mass sensors work based on the principle of induced frequency shift when the 

overall mass of the sensor changes [73][84][85]. Assuming that the spring constant of the 

drum does not change significantly when the structure is mass loaded, the sensitivity of a 

drum-based mass sensor can be estimated by [73], 
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     (4.20) 

where f0 is the resonance frequency of the unloaded sensor. Table 4-3 summarizes the 

analytical (calculated using Equation (4.1)) and FEM simulated (using ANSYS) resonance 

properties of Device 1 and 4. Their potential mass sensitivities are also derived using 

Equation (4.20). Device 2 and 3 are omitted from the discussion as the presence of trench 

sidewall sticking is likely to have adverse implications on their resonance performance.  

Table 4-3: Theoretical resonance characteristics and mass sensitivities of the graphene 

drum structures 

Label Mass, m (g) 
Analytical f0 

(MHz) 

Simulated f0 

(MHz) 

Mass 

sensitivity 

(g Hz
-1

) 

Device 1 3.08 x 10
-13

 33.4 33.8 1.84 x 10
-20

 

Device 4 2.60 x 10
-13

 26.9 27.2 1.93 x 10
-20

 

A mass sensor based on our graphene drum structure is, in theory, able to achieve mass 

sensitivities in the 10
-20

 g Hz
-1

 range. This sensitivity can be further improved by reducing the 

structure dimensions which would lower the mass of the drum and increase its f0. This is a 

two order of magnitude improvement over silicon-based structures which have managed 10
-18

 

– 10
-12

 g Hz
-1

 resolution [73][84][85]. Sensors have also been developed with carbon 
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allotropes such as fullerenes and CNTs. Additional modeling with graphene in nano-

cantilever mode had been performed and the modeling results have been compared with 

single wall (SW) CNT-based resonators of similar dimensions. Summary of the results are 

shown in Table 4-4. 

Table 4-4: Theoretical resonance characteristics and mass sensitivities of the graphene 

nano-cantilever and CNT structures 

Label Dimensions Frequency (MHz) Mass (g) 

Mass 

Sensitivity 

(g/Hz) 

SWCNT 

Length, L = 3 

μm  

Diameter, D = 

1 nm 

   
  
  

    
 
 

 
 [86] 

  = 0.43 

B0 = 1.875 

E = 1 TPa; ρ = 1300 

kg/m
3
 

3.06 × 10
-18

 7.12 × 10
-24

 

Graphene 

Nanocantilever 

Length, L = 3 

μm; Width, w 

= 1 nm; 

Thickness, t = 

0.335 nm 

   
 

  
 
   

    
 [83] 

  = 0.100 

I = (wd
3
)/12, E = 1 

TPa, ρ = 2300 Kg/m
3
 

2.34 × 10
-18

 2.34 × 10
-23

 

Though the numerical mass sensitivity values suggest, CNT’s have better mass sensitivity 

than the graphene nano-cantilever of similar dimensions, graphene has other additional 

advantages. Graphene being a 2D flat sheet possesses larger surface area which allows for 

more contact with the added molecules or materials. Secondly, the graphene interface with 

other materials is found to be strong when compared to CNT’s link to materials. The ultimate 

tensile strength of SWCNTs is 13 – 53 GPa, whereas graphene has a tensile strength of ~130 

GPa which allows for better stress handling capabilities. Moreover, the mass sensitivity can 

be enhanced by varying the dimensions and designs of graphene based resonators. Sakhaee-

Pour et al. demonstrated that a single layer of graphene is highly sensitive to an added mass 

of the order of 10
-6

 fg through molecular structural mechanics simulations [86]. Researchers 

from Columbia university reported graphene as a highly sensitive mass sensor (sensitive to 

around 1 zeptogram which is about 10
-21

 g) [71]. Zeptogram sensing from gigahertz 
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vibrations of single layer cantilever based nanosensor have also been reported [87]. Mass 

sensitivities of 10
-24

 g (yoctogram) have been reported for graphene based nanoribbon 

resonator through molecular dynamic simulation studies [88]. As the size of the sample 

decreases, determining the mass is prone to difficulties. Therefore, resolving mass of 

nanoparticles or single molecules need extremely high sensitive material. Graphene has an 

extra bonus of being a 2D material and a low electronic noise material, thus enabling ultra-

sensitive and ultra-fast sensors based on graphene. It also allows for various design variations 

by simply carving the material and thus the properties of the designed resonators can be 

controlled which is demonstrated in Chapter 8 of the thesis. 

4.6 Conclusions 

The mechanical characterization of a nanomechanical graphene drum structure for NEMS 

devices was presented in this chapter. Drums of diameters 3.8–5.7 μm were fabricated with 

thicknesses ranging from 8 to 15 nm. The devices were actuated and measured for their 

electrostatic deflection using AFM. From the deflection measurements, the structures were 

found to have linear spring constants ranging from 3.24 to 37.4 N m
−1

 and could be actuated 

to about 18–34% of their thickness before displaying nonlinear deflection. An analytical 

framework, based on large deflection of circular plates, was also formulated to model the 

deflection behaviour. Finite element simulations were carried out, using ANSYS, to reinforce 

the analytical model. For two of the drum structures, the peak deflections and deflection 

mode shapes are in good agreement with analytical calculated values and FEM simulations. 

The experimental data agree well with analytical and finite element models using Young’s 

modulus of 1 TPa. The resonance characteristics of the devices were then derived by both 

plate theory and FEM simulations. It was found that the drum structures can vibrate at 

frequencies in excess of 25 MHz. The small size and high theoretical operating frequencies of 

our graphene structures make them very promising for resonant mass sensing applications. 
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Sensitivities of up to 10
−20

 g Hz
−1

 can potentially be achieved. This is a two order of 

magnitude improvement over proposed silicon structures which have managed 10
−18

–10
−12

 g 

Hz
−1

 resolution. 

The test method adopted for extracting the mechanical properties of graphene in this chapter 

pose certain limitations. During the characterization, when the actuation voltages 

(electrostatic forces) get larger, imaging graphene through AFM becomes difficult due to 

image distortion and extraction of the actual membrane deflection gets tedious. In order to 

overcome this experimental difficulty, in the following chapter, a technique using AFM as a 

nanoindenter is proposed to precisely extract the mechanical properties of suspended 

graphene (monolayer and few-layer) devices. This technique also eliminates the need for an 

electrode to apply forces and the structures can be actuated through point contact mechanical 

perturbation.



Chapter 5 Mechanical Behaviour of Graphene: An AFM Nanoindentation Study 

 

57 

 

CHAPTER 5 : MECHANICAL BEHAVIOUR OF GRAPHENE: AN AFM 

NANOINDENTATION STUDY 

5.1 Introduction 

In recent years, extensive research has been done to extract the electronic properties of 

graphene devices by making structures like single molecule gas detectors [90], transistors 

[14][91], p-n junctions [92], nanoribbons [93][94], quantum dot [95], nanoconstrictions [96], 

optical modulators [97], transparent conducting electrodes in organic light emitting diodes 

and light-emitting electrochemical cell [98][56] and spin valve devices [99]. However, the 

mechanical properties of suspended graphene have not been studied systematically to date 

although the possibility of making suspended graphene structures as nanomechanical devices 

have been demonstrated. Dynamic measurement studies have shown that mono/few layer 

suspended graphene sheets can be operated as nanoelectromechanical resonators [69]–

[72][100]. Linear and nonlinear mechanical properties of graphene (8 nm to 15 nm) have 

been measured by electrostatic actuation and sensing through AFM (see Chapter 4) [101]. 

Static deflection measurements have also been made using AFM nanoindentation to extract 

the stiffness of multilayer graphene (2 – 8 nm) [79]. Similar test method has been adopted to 

determine the nonlinear elastic properties, and intrinsic strength of graphene [80]; bending 

rigidity and tension [70] of suspended graphene structures. Atomic resolution images of 

suspended graphene membranes and deflection of the freestanding membranes from their 

initial equilibrium height have been achieved using scanning tunneling microscopy (STM) 

[102][103]. Theoretical and computational studies on graphene have also been explored. 

Linear and nonlinear mechanics of graphene sheets have been extracted using various 

techniques like atomistic, continuum and hybrid approaches [74]–[77]. However, the 

influence of layer number (thickness of graphene) and anchor geometry on the mechanical 

properties of graphene based nanomechanical devices have not been widely explored so far. 

Therefore, this chapter aims to address this in detail. 
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The characterization technique adopted in this chapter is AFM nanoindentation. This method 

eliminates the difficulties and inaccuracies that arise from the electrostatic actuation and 

sensing through AFM imaging used in the previous chapter. This method is more 

straightforward and can be incorporated on devices without electrodes. Hence hereafter in all 

the following chapters this technique has be used to precisely extract the mechanical 

properties. Moreover, this method can be extended to study the mechanical properties of 

other nanomaterials and to demonstrate such a capability, MoS2 which is also a 2D layered 

structure has been characterized and the results obtained are also shown in this chapter. 

5.2 Device Characterization 

The optical micrograph of a pristine sample is shown in Figure 5-1 from which a clear 

contrast between regions of different graphene thicknesses can be observed. The exact 

thickness of the graphene was confirmed using Raman spectroscopy which will be discussed 

in detail in the following sub-section. 

 

Figure 5-1: Optical microscopy image showing suspended graphene with different thicknesses over pre-

patterned substrate. 

5.2.1 AFM 

After identifying the presence of graphene on the pre-patterned substrate, an AFM tapping 

mode image was obtained to confirm the suspension of graphene over circular trenches. An 

AFM silicon cantilever of ~74 KHz resonance frequency (FESP7 Veeco probe) was used to 

obtain the topographical image in ambient conditions. All the images were obtained from 
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JEOL JSPM 5200. An AFM topographic image of a monolayer suspended graphene is shown 

in Figure 5-2. In this study Raman spectroscopy has also been used to confirm the thickness 

of graphene.  

 

Figure 5-2: AFM topographical image of a suspended monolayer graphene (Device 1). The colour 

contrast in the micrograph is representative of the topographical data at each region (refer to height 

scale). The suspended graphene device (diameter – AA') is located at the right. 

5.2.2 Raman Spectroscopy 

Raman spectroscopy has proved to be the most reliable non-destructive method to determine 

the thickness of graphene [104][105][64]. It is also a widely used tool to probe the lattice 

defects and amount of charged impurities in graphene [106][107]. Moreover, the Raman 

spectrum also provides insights to the intrinsic characteristics of graphene. Visible Raman 

spectroscopy was carried out at room temperature using Renishaw Invia Raman system. The 

excitation wavelength used was 532 nm and the laser power at the sample was below 1.0 

mW/cm
2
. The above power density has been chosen to avoid laser induced lattice damage of 

graphene [108]. A 100X objective lens was used with a laser spot size of ~1 µm and the 

scattered light from the sample was collected in the back scattering geometry. The Raman 

spectrum was analysed by curve fitting using multiple Lorentzians with a slopping 

background. Typical Raman spectra of a single layer (Device 1) and five layer graphene 
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(Device 4) on SiO2 (285 nm)/Si substrate obtained after indentation is shown in Figure 5-3(a) 

and Figure 5-3(b) respectively. 

 

Figure 5-3: Raman spectra of a suspended monolayer graphene obtained after indentation (a) Device 1 

(b) Device 2. 

From Figure 5-3 it is clear that the D peak is inactive, and thus the graphene used in our 

experiments can be considered to have good crystalline quality. The very intense 2D (~2700 

cm
-1

) and 2D' (~3240 cm
-1

) bands of each sample further confirmed that the graphene possess 

very good sp
2
 hybridized crystalline quality. The relative intensity and shape of the G and 2D 

Raman peaks change with respect to number of graphene layers [64][104][109]. For visible 

excitation the G and 2D Raman peaks appear around 1580 cm
-1 

and 2700 cm
-1 

respectively. It 

is very obvious from figures Figure 5-3(a) and Figure 5-3(b) that the intensity of the G band 

increases relative to 2D band as graphene thickness increases. A monolayer graphene is 

identified by a sharp and symmetric 2D band peak. The 2D peak becomes broader as the 

layer number increases due to induced multiple double resonant scattering pathways. The full 

width at half maximum (FWHM) of the 2D peaks is estimated to be 24 cm
-1

 and 65 cm
-1

 in 

Figure 5-3(a) and Figure 5-3(b) respectively,  which corresponds to monolayer and 5 layer 

graphene.  

5.2.3 AFM Force-Distance Curves 

The mechanical properties of graphene devices were obtained from AFM force curve 

measurements. First, a force distance curve was acquired on clean hard silicon substrate. This 
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curve was used as a reference for all calculations. A typical force curve obtained on a silicon 

substrate is shown in Figure 5-4. From the force curve, only the contact portion of the attract 

curve is used for the analysis which start from zero level force. All measurements were 

carried out in ambient conditions. 

 

Figure 5-4: A typical F-Z curve obtained from a clean silicon substrate. 

The inverse slope of the contact portion of the attract curve yields the deflection sensitivity of 

the cantilever. The cantilever deflection (nm) is obtained by [110], 

(Volts)(nm) cantilevercantilever dDd      (5.1) 

where D is the deflection sensitivity of the cantilever (nm/V). 

The force applied is related to the cantilever deflection by, 

cantileverc dkF       (5.2) 

where kc is the spring constant of the cantilever. 

An AFM Silicon cantilever of ~74 KHz resonance frequency (FESP7 Veeco probe) was used 

for all the measurements shown in this this section. The frequency of the cantilever was 

obtained using the AFM in tapping mode. This value agrees well with the specifications 

provided by the manufacturer (75 KHz with a nominal spring constant of 2.8 N/m). 
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A topographic image of the suspended graphene was acquired using the AFM in non-contact 

mode. The probe tip was then moved to the center of the suspended graphene where the loads 

were subsequently applied. The deflection of the graphene device (δ) was then obtained from 

the following relationship [110]. 

 cantileverpiezo dZ       (5.3) 

where δ is the deflection of graphene, Zpiezo is the piezo displacement and dcantilever is the 

cantilever deflection. 

The schematic of attract curves of a hard silicon substrate and graphene is shown in Figure 

5-5(a). The δ–Z curve is then converted to F-d curve as shown in Figure 5-5(b). By 

subtracting the two curves, the final force versus deflection plot of graphene was thus 

obtained as shown in Figure 5-5(c).  

 

Figure 5-5: (a) A typical schematic force curve of a clean silicon substrate and suspended graphene. (b) 

Converted and resampled F-d curve. (c) Final force versus deflection of graphene. 
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5.2.3.1 Extraction of Elastic and Nonlinear Properties of Graphene Nanomechanical Devices 

Force versus deflection curves were obtained for graphene devices with different thicknesses 

ranging from 3.35 Å to 16.75 Å (monolayer to 5 layers) [104]. All the curves exhibit 

nonlinear deflection behaviour which is similar to membrane behaviour. In this case, the 

deflection of the membrane does not linearly increase with increase in force due to stretching 

of the membrane and stress stiffening effects [82]. By modelling the deflection behaviour of 

graphene device based on continuum mechanics, the relationship between graphene 

deflection and the point force which is applied to the center of the device structure is obtained 

as indicated in Equation (5.4) [82][111]. As the radius of the AFM probe tip used for the 

experiments is 8±2 nm, which is much smaller than the lateral diameter of the graphene 

device which is ~3.8 µm, the forces applied can be assumed to be point loads. 
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where F is the point force applied to the center of the device structure, E is the Young’s 

modulus of graphene, T is the pre-tension in the device structure, ʋ  is the Poisson’s ratio of 

graphene, a is the radius of the graphene, h is the thickness of the graphene and q is given by, 

)16.015.005.1(

1
2 

q     (5.5) 

 where ʋ  = 0.16 is the Poisson’s ratio of graphene [111]. 

The linear term in the Equation (5.4) corresponds to the bending rigidity and stretching of the 

graphene. The cubical term corresponds to the stress stiffening effects and thus makes the 

force (F) versus deflection (δ) curve nonlinear. The Young’s modulus and pre-tension of the 

device can be obtained by fitting the force versus deflection curve to Equation (5.4) 

[82][111]. 
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The mechanical properties that can be extracted from the force versus deflection curve 

include linear and nonlinear spring constants. The equation that describes the nonlinear static 

deflection of graphene devices is 

3
31  kkF       (5.6) 

where F is the applied force, k1 is the linear spring constant and k3 is the nonlinear spring 

constant. 

The Equation (5.6) can be directly related to Equation (5.4) and thus the analytical linear and 

nonlinear spring constant obtained are 
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For an atomically thin graphene layer, the thickness (h) is negligible and the E term in 

Equation (5.7) represents the 2D elastic modulus. 

The following section highlights the experimental results obtained from graphene devices. 

Measurement results from five different graphene devices with thickness ranging from 1 to 5 

atomic layers are shown. Results from monolayer graphene device with partially anchored 

geometry have also been discussed. 

5.3 Results and Discussion 

High resolution AFM images were obtained in the region of interest and the probe tip was 

then moved to the center of the device structure. Subsequently the probe tip was pushed down 

by applying loads to the AFM cantilever and the corresponding force curves were obtained. 

A three dimensional image of a suspended graphene device and the corresponding force 

curve obtained on one of the device are shown in Figure 5-6 and Figure 5-7 respectively. 
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Figure 5-6: An AFM 3D topographic image showing an empty hole and suspended graphene with fully 

and partially anchored geometry. 

 

Figure 5-7: A typical attract portion of the force curve obtained from a fully anchored monolayer 

graphene device (Device 1). 

Force versus deflection characteristics of five graphene devices are highlighted in this 

section. The dimensional characteristics of the five devices are shown in Table 5-1. 
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Table 5-1: Summary of dimensional characteristics of the graphene devices 

Label 

Dimensions 
Number of 

graphene 

layers 

Anchor 

geometry 
Diameter 2a (μm) 

Thickness, t 

(nm) 

Device 1 3.76 .335 1 
Fully 

anchored 

Device 2 3.76 .67 2 
Fully 

anchored 

Device 3 3.8 1.005 3 
Fully 

anchored 

Device 4 3.8 1.675 5 
Fully 

anchored 

Device 5 3.25 .335 1 
Partially 

anchored 

AFM nanoindentation measurements on the five devices yielded the static deflection 

characteristics. The force versus deflection curves obtained for the five devices is shown in 

Figure 5-8. The experimental force versus deflection curves were fitted using Equation (5.6) 

for devices with fully anchored geometry and are shown with a red solid line in Figure 5-8(a) 

– (d). 
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Figure 5-8: Experimental force versus deflection traces obtained for (a) Device 1, (b) Device 2, (c) Device 

3 and (d) Device 4. All curves were obtained by adopting the method described in Section 5.2.3. The fitted 

curves (red solid line) were obtained using Equation (5.6) from Section 5.2.3.1. 

From the AFM nanoindentation force versus deflection curves, we were able to extract the 

linear and nonlinear spring constants of the devices. The F-d traces were fitted using 

Equation (5.6) to obtain the linear and nonlinear spring constants of the devices. The relation 

of stiffness of the devices with respect to its thickness (number of graphene layers) is shown 

in Figure 5-9(a) and Figure 5-9(b) respectively. 
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Figure 5-9: Graphene layer dependent (a) linear spring constant and (b) nonlinear spring constant. 

 

Figure 5-10: Experimental force versus deflection traces obtained for fully anchored monolayer graphene 

(Device 1) and partially anchored monolayer graphene (Device 5). 

From the experimental results as shown in Figure 5-8, Figure 5-9 and Figure 5-10 it is very 

clear that the stiffness of the structure is dependent on its dimensions and anchor geometry. A 

monolayer graphene which is fully anchored along its periphery exhibits low stiffness 

compared to same thickness graphene which is partially clamped with lower lateral 

dimensions. Hence by varying the anchor geometry we are able to obtain structures of 

varying stiffness which would operate at different frequencies. This provides a 
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straightforward means by which resonators of varying frequencies can be designed. The 

possibility of using helium ion microscope to pattern the devices structures and thus 

providing a means to easily vary device frequencies have been discussed in detail in Chapter 

8. 

Moreover, from the k1 and k3 values obtained, the Young’s modulus and pre-tension of 

graphene devices can be derived using Equation (5.7). The Young’s modulus and the pre-

tension of the devices are shown in Table 5-2. For Device 1 the deduced 2D elastic modulus 

is found to be 375 N/m which in good agreement with previous findings [9]. 

Table 5-2: Deduced Young’s modulus and pre-tension of graphene devices 

Label 

Young’s 

Modulus 

TPa 

Pre-tension N/m 

Device 1 (Monolayer) 1.12 0.79 

Device 2 (Bilayer) 3.25 1.46 

Device 3 (3 layers) 3.25 1.86 

Device 4 (5 layers) 3.43 2.3 

It is found that the pre-tension increases with increase in graphene thickness which is similar 

to the increasing trend observed for graphene with thickness greater than 2 nm [80]. The 

variation in Young’s modulus and pre-tension is due to the different adhesion forces of the 

graphene to the substrate and the stacking faults in multilayer graphene. The van der Waals 

forces of attraction strongly influence the mechanical behaviour of monolayer and multilayer 

graphene. In a suspended monolayer graphene this force only influences the adhesion 

between graphene and the underlying SiO2/Si substrate. On the other hand, in a multilayer 

graphene, it controls the graphene and substrate adhesion as well as the adhesion between 

graphene layers (inter layer coupling) [112][113]. The varying adhesion strength causes the 
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contact stiffness (clamping boundary condition) to be different for different graphene 

thicknesses. Hence when the static deflection curves are fitted to the same model, it yields a 

varying pre-tension and Young’s modulus for different layers of graphene.  

The various reported experimental and theoretical values of the Young’s modulus of 

graphene range between 0.5 TPa to 6.88 TPa [79][114]–[121]. Most of the reported 

theoretical values were obtained based on a single sheet of graphene. The theoretical study of 

Young’s modulus based on the number of graphene layers (1 – 5) show no significant change 

in the values [118]. This was because the boundary condition was assumed to be the same for 

mono and multi-layer graphene. But, in reality the clamping stiffness in the direction of 

thickness would greatly influence the mechanical properties of graphene based devices. It is 

also found that the size and chirality of graphene also influence the Poisson’s ratio and 

Young’s modulus of graphene [119]. In our experiments we find that the Young’s modulus of 

a monolayer graphene is ~1.12 TPa. On the other hand, we find that few layer graphene 

exhibits a Young’s modulus of ~3 TPa when the force versus deflection plots are fitted to the 

same model. Firstly, the change in boundary condition does vastly affect the Young’s 

modulus of the graphene thus resulting in large variation in the deduced values [79]. The 

material properties in Equation (5.4) are very sensitive to any slight variation in the boundary 

conditions and hence can result in the variation of calculated Young’s modulus for different 

graphene thicknesses [111][120]. Secondly, it is difficult to precisely predict or observe the 

clamping conditions of each device and hence it cannot be factored into the model. Hence we 

believe that the value of 1.12 TPa derived for monolayer graphene is the best estimate for 

Young’s modulus. 

After indentation measurements all devices were tested using Raman spectroscopy to check 

for any defects. It is found that after the devices were perturbed through indentation, there is 
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no significant defect formation and the quality of graphene is maintained. This proves that the 

graphene is robust, stiff and stable although it a 2D material [121]. 

5.4 Characterization of MoS2 

The characterization technique described in detail in this chapter to study the mechanical 

behaviour of graphene can be extended to study other nanomaterials. In order to show such 

capability, MoS2 which is a layered semiconducting material has been explored through 

nanoindentation in the following sub-sections. 

5.4.1 Overview on MoS2 

Atomically thin semiconducting MoS2 is a layered structure and a transition metal 

dichalcogenide. It has recently drawn much interest due to its large intrinsic band gap (~1.8 

eV) [122]. MoS2 is found to exhibit room temperature mobility of 200 cm
2
 V

-1
 S

-1
 and on/off 

ratios of 1 × 10
8
 [122]. Like graphene, the individual sheets of MoS2 are held together by 

weak VdW forces and an individual sheet of MoS2 consists of one molybdenum layer in 

between two layers of sulphur. The distance between two sheets of molybdenum is ~6.15 A° 

and the separation between molybdenum and sulphur sheets are ~1.59 A° with each MoS2 

sandwich layer measuring 0.65 nm [123]. Very thin layers of MOS2 can be obtained through 

exfoliation which is very much similar to the exfoliation technique described to fabricate 

graphene (see Section 2.3.2). This 2D material was used as an industrial lubricant and a 

catalyst in petroleum refineries until the development of a MoS2 transistor by Radisavljevic et 

al. in 2011 [122]. From then, it has been reported to have many applications like field effect 

transistors and logic gates to name a few [122][124]. 

5.4.2 Mechanical Properties of MoS2 

The suspended MoS2 structures and the substrates that hold the MoS2 sheets were prepared 

by adopting the same procedure as described in Section 3.1. An optical micrograph of a 3 

layer and a 5 layer suspended MoS2 is shown in Figure 5-11. 
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Figure 5-11: An optical micrograph showing a 3 layer and a 5 layer suspended MoS2 on a SiO2/Si 

substrate. 

Nanoindentations were performed in ambient conditions with ~1.2 N/m stiffness cantilever 

on the suspended regions (~4.5 µm diameter) of MoS2. The force curves obtained on a hard 

surface and a suspended 5 layer MoS2 is shown in Figure 5-12 (a) and (b) respectively. 

 

Figure 5-12: AFM force curves obtained on (a) SiO2 surface (b) 5 layer suspended MoS2 

The mechanical properties of the devices were extracted by adopting the similar method used 

for suspended graphene structures. The Young’s modulus and pre-tension of the MoS2 were 

found to be 0.2–0.37 TPa and 0.15±0.09 N/m for 3, 5 and 8 layer MoS2 samples which is in 

good agreement with the previous findings [125]. 
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5.5 Conclusions 

The nanoscale resolution of the AFM nanoindentation technique has enabled to obtain 

nonlinear static deflection characteristics of nanomechanical graphene structures of ~3.8 μm 

diameter and thickness ranging from 3.35 Å to 16.75 Å. Graphene devices whose periphery is 

fully anchored and partially anchored were also characterized and it was found that the 

mechanical properties of the devices are greatly influenced by the anchor geometry which 

provides a straightforward means to obtain devices with different fundamental vibrating 

frequencies. Linear and nonlinear spring constants varying from 2.5 N/m to 7.3 N/m and 1 × 

10
14

 N/m
3
 to 15 × 10

14 
N/m

3 
were obtained for monolayer to five layers graphene devices. It 

is also found that a monolayer graphene exhibits a Young’s modulus of 1.12 TPa and 2D 

elastic modulus of 375 N/m. The estimated pre-tension for the devices (0.79 N/m to 2.3 N/m) 

show an increasing trend with the increase in graphene thickness. Even after indentation the 

graphene devices were found to be defect free as shown by the absence of D peak in Raman 

spectrum. This study has thus enabled to understand the influence of layer number and 

anchor geometry on the mechanical properties of graphene devices. The low mass and high 

stiffness of graphene makes these devices as a good alternative for sensor applications (e.g. 

force, charge and mass sensors). 

The characterization technique used to study graphene structures can be used to examine 

other nanomaterials and to demonstrate such capability, test structures containing suspended 

MoS2 were also characterized by the AFM nanoindentation technique. Apart from extracting 

the mechanical properties of the test structures, this method can also be used to vary the 

surface morphology of the suspended graphene by inducing out-of-plane excitation which is 

demonstrated in the following chapter. 
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CHAPTER 6 : STUDY OF EXTRINSIC RIPPLE MORPHOLOGY OF 

GRAPHENE 

6.1 Inroduction 

The surface morphology of graphene is not perfectly planar and it is found to exhibit out-of-

plane corrugations in the third dimension called “ripples/wrinkles” [19]. The reason for the 

presence of wrinkles is explained in Section 2.1. Ripples in graphene tend to vary the local 

atomic potential and hence influence the electronic properties [18].
 
These corrugations can 

affect the properties of graphene primarily by the formation of electron-hole puddles
 

[126][127] and increasing the scattering rate [128][129].
 
It was also shown that ripples in 

graphene could enhance the spin-orbit coupling [130] and the spectroscopic measurements by 

Levi et al. revealed Landau levels in strained graphene nanobubbles without applying any 

external magnetic field [131].The above mentioned experimental report clearly demonstrates 

the presence of strain induced pseudo-magnetic fields in graphene [131]. Ripples in graphene 

are also reported to alter the chemical reactivity
 
and hence can be utilized for regioselective 

chemical modification of graphene [132]. 

Ripples in graphene have been explored by various theoretical studies [133]–[139]. It is 

found that ripples could appear randomly across a suspended graphene sheet (intrinsic 

ripples) [19] and the ripple texture (orientation, wavelength and amplitude) can be controlled 

by manipulating the clamping conditions and making use of the negative thermal expansion 

coefficient of graphene [140]. It is also revealed that graphene is an electronic membrane and 

ripples can be introduced by changing the electro chemical potential [140]. It has been 

reported that the surface morphology of graphene can be changed under, applied uniaxial 

stress [141], in-plane shear
 
[142] or strain [143], out-of-plane excitation [144]–[147] and 

thermal fluctuations [18]. The possibility of controlled tailoring of out-of-plane periodic 
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corrugations in graphene opens up a potential opportunity for making flexible nanoscale 

devices and electronics based on strain engineering [148]–[150]. 

Out-of-plane excitation is found to have a profound impact on the surface morphology of 

graphene [144]–[147]. This excitation technique can be effectively achieved through 

nanoindentation. Nanoindentation is a simple and widely employed tool to study the 

mechanical properties of materials under a point-contact perturbation as described in the 

previous chapter (See Chapter 5). The mechanical deformation of a 2D material during 

nanoindentation can subsequently modify its surface morphology by forming periodic ripples 

[144]–[146]. Theoretical studies on nanoindentation induced surface corrugations in graphene 

have been explored through molecular dynamics simulations and quasi-continuum method 

[144]–[146]. However, to date, there has been no experimental study on modifications in 

surface morphology of exfoliated suspended graphene after nanoindentation. In light of these 

theoretical reports, our experimental effort to control the local surface morphology of 

suspended graphene using nanoindentation and thermal engineering of the induced 

undulations would establish a novel route for the fabrication of flexible nanoelectronic 

devices. 

In this chapter, the possibility of inducing surface corrugations and engineering the extrinsic 

ripples through temperature treatment in few-layer graphene using nanoindentation has been 

discussed in detail. 

6.2 Experimental Details 

The fabrication sequence (see Section 3.1) and the test method adopted to study the change in 

surface morphology of suspended graphene after mechanical deformation is illustrated in 

Figure 6-1. An optical micrograph of one of the fabricated suspended graphene structure is 

shown in Figure 6-2. Visible Raman spectroscopy (see Figure 6-3) and indentation (see 
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Figure 6-4) was carried out on the fabricated devices by following the procedure highlighted 

in Section 5.2. The FWHM of the 2D peaks in Figure 6-3(a–c) are 52, 64 and 67 cm
-1

 which 

corresponds to 2-, 4- and 5- layer graphene respectively [64][66]. 

 

Figure 6-1: Fabrication sequence to obtain suspended graphene structures and test method adopted to 

study the surface morphology of graphene after mechanical deformation. 

 

Figure 6-2: An optical microscopy image of a four layer supported and suspended graphene. 
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Figure 6-3: (a–c) Raman spectra of 2-, 4- and 5- layer suspended graphene structures respectively. 

 

Figure 6-4(a): AFM scan of one of the devices (suspended 5 layer graphene). The diameter of the sample 

is marked as AA'. (b) A 3D representation of the scan (c) Force versus deflection curve obtained from the 

nanoindentation of the structure. 
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6.3 Results and Discussion 

6.3.1 Ripple Formation in Few-Layer Graphene 

The force curve measurements were carried out for all samples and the estimated pre-tension 

of 2-, 4- and 5- layer graphene is found to be 1.46 N/m, 2 N/m and 2.3 N/m respectively. 

Perturbing the 2D system through nanoindentation causes the surface area to change and the 

system will stabilize by reaching its minimum energy position. The indentation was 

performed at the same location six times before actually extracting the mechanical properties 

of the device. The ripple morphology was unaffected after several cycles of indentation. The 

force versus deflection curves was also observed to be identical after every indentation cycle 

indicating that there were no irreversible changes to the structure. Therefore extracted 

mechanical properties of the pristine sample were obtained after confirming the stability of 

the structure. The effects of nanoindentation on the surface morphology of the devices were 

investigated by analyzing the post-indentation surface profiles acquired from AFM non-

contact mode images. The AFM micrographs obtained before and after nanoindentation of 

the 2-, 4- and 5- layer suspended graphene structures are shown in Figure 6-5(a-c). The 

formation of periodic surface corrugations oriented in the lateral direction and displaced in 

the out-of-plane (z-direction) after indentation is obvious from Figure 6-5(d–f). From Figure 

6-5(d) it is also observed that, secondary ripples (ripples in the supported regions of 

graphene) were formed at the edges of the clamped boundary in the 2- layer sample. The 

height variation of the ripples across the diameter of the suspended region (across AA') as 

indicated in Figure 6-4(a) formed in the samples were analyzed [Figure 6-6]. The ripples are 

found to be with amplitude varying from 7 nm to 22 nm and width ranging from 250 nm to 2 

µm across ~4 µm clamped graphene membranes as shown in Figure 6-6(a–c). The number of 

ripples and the FWHM of the large amplitude ripple in Figure 6-6(a–c) as a function of layer 

number is plotted in Figure 6-7(a) and Figure 6-7(b) respectively. 
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Figure 6-5: (a–c) AFM topography images of 2-, 4- and 5- layer suspended graphene structures obtained 

before nanoindentation respectively. (d–f) AFM topography images showing surface morphology 

variation after indentation of 2, 4 and 5 layer graphene respectively. The region marked with dotted lines 

in 5(d) corresponds to secondary ripples in 2-layer graphene. 
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Figure 6-6: (a–c) Profile graphs showing the height variation along the diameter AA' (marked in Fig. 

4(a)) of the fabricated devices (2-, 4- and 5- layer graphene respectively) extracted from Fig. 5(d–f). 

 

Figure 6-7: (a) Number of ripples versus layer number and (b) FWHM of the large amplitude ripple as a 

function of layer number. 

The formation of ripples in suspended graphene membrane is a result of circumferential 

compression induced by the nanoindentation process and the stabilization of the 

instantaneously deformed structure is determined by the in-plane and bending stiffness [145]. 

The intrinsic ripples already present in the sample could also be modified in this process. The 
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out-of-plane excitation induced by the AFM probe tip leads to the modification of local 

surface morphology which includes flattening of the pre-existing thermal ripples and 

emergence of new high amplitude stable undulations [147]. The intrinsic thermal ripples were 

found to be flattened due to anharmonic stabilization which causes the bending and stretching 

modes to be coupled. [18][147]. 

The orientation angle of the ripples in each structure is found to be unique. The clamping 

condition of a suspended graphene is not isotropic and therefore the mechanical compression 

caused during nanoindentation alters the edges of the structure at the clamped contacts. The 

induced ripples will be oriented along the resultant anisotropic local strain and the orientation 

of these extrinsic ripples will be unique for each sample due to the above mentioned reasons. 

Thus the orientation of the ripples in Figure 6-5(d–f) is attributed to the resultant anisotropic 

strain direction in the structure and hence aligned along the direction of strain [140]. It is 

clear from Figure 6-6 & Figure 6-7(a) that as the number of graphene layers increases the 

density of the ripples get suppressed. The FWHM of the large amplitude ripple is found to 

increase with increase in number of graphene layers as shown in Figure 6-5, Figure 6-6 and 

Figure 6-7(b). It is also found that, the number of wrinkles decrease with increase in graphene 

thickness and is barely visible for thicker graphene. The stiffness of a graphene structure 

increases with increase in thickness and therefore the formation of out-of-plane ripples is less 

countenanced in thicker graphene. Morozov et al. and Singh et al. have recently reported that 

the ripples becomes lesser and suppressed with increasing number of graphene layers 

[151][152]. It should also be noted that, the radius of an AFM nanoindenter tip used is 8±2 

nm and if the ripple sizes are less than the size of the probe tip (< 10 nm); it would not be 

possible to resolve in the current study. 

The indendation process proves the capability of producing ripples of amplitude 7–22 nm and 

wavelength 250 nm – 2 µm in few-layer graphene samples. Xu et al. found that, ripples of 
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~10 nm in width and ~3 nm in height in graphene results in the formation of midgap states 

along with a decrease in conductivity [153]. This indicates that corrugations of few nm width 

and amplitude are found to have a deep impact on the electrical properties of graphene 

devices [153]. 

6.3.2 Thermal Engineering of Induced Ripples 

To demonstrate the effects of high vacuum annealing on indentation induced ripple structure 

in graphene, results obtained from bilayer graphene sample is discussed in detail in this 

section. Bilayer graphene has recently drawn special attention mainly due to the tunability of 

its bandgap [154]. The electronic bandgap plays a significant role in the transport [155][157] 

and optical properties [154][159] of graphene based devices such as p-n junctions, field-

effect transistors and optoelectronic devices. Hence, tunable bandgap in bilayer graphene 

helps to realize useful characteristics for flexible electronics and devices. Very recently, Yan 

et al. have demonstrated a dual-gated bilayer graphene hot-electron bolometer which exhibits 

an intrinsic speed (>1 GHz) and noise-equivalent power (33 fW Hz
-1/2

) [160]. The 

mechanical properties of the pristine and annealed samples have also been studied. The 

capability to introduce extrinsic undulations in bilayer graphene through nanoindentation thus 

enables new research directions to study the spring constant mapping of rippled structure. 

Also, the mechanically induced local curvature variations open up possibilities to tune the 

optical transparency limits of graphene and the different sizes of ripples enable its use for 

optical lenses with tunable focal length. 

6.3.2.1 Results and Discussion 

The AFM topography image of the suspended bilayer graphene structure is shown in Figure 

6-8(a). The force versus displacement (F-δ) curve of the sample after nanoindentation is 

shown in Figure 6-8(b). 
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Figure 6-8: (a) Two dimensional AFM scan image of the suspended bilayer graphene. (b) Force versus 

deflection curve obtained from the nanoindentation of the structure. 

From the F-δ curves, the spring constants, pre-tension and Young’s modulus were estimated 

and are shown in Table 6-1. Figure 6-8(a) and Figure 6-9(a) show the two dimensional AFM 

scan image obtained before and after indentation. The mechanical properties and surface 

morphologies of the same sample were investigated after in-situ vacuum (2.8 × 10
-4

 Pa) 

annealing at 350 °C in the AFM chamber. An AFM micrograph of the sample after annealing 

is given in Figure 6-9(b) and the corresponding line profile is shown in Figure 6-9(b'). The 

flattening of the nanoindentation induced ripples [Figure 6-8(a) and Figure 6-9(a')] after 

annealing is evident from Figure 6-9(b). The mechanical properties and variations in surface 

morphology of the annealed sample were again investigated. The AFM image and the 

corresponding force versus displacement curve obtained from the annealed structure after 

nanoindentation is shown in Figure 6-10(a) and Figure 6-10(b) respectively. The increase in 

amplitude of the thermally generated undulations after indentation can be seen in Figure 

6-10(a) and the deduced mechanical properties from Figure 6-10(b) are shown in Table 6-1. 
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Figure 6-9: AFM topography images obtained (a) After nanoindentation. (b) After vacuum annealing and 

subsequent cooling. The corresponding line profiles (across diameter AA' as shown in figure 2) of the 

device structure after nanoindentation and after temperature treatment are shown in (a') and (b') 

respectively. 

Figure 6-10(b) and Figure 6-10(b') clearly show the alteration in the ripple geometry after 

annealing. The plausible reason for this observation could be the strain induced by the 

thermal expansion coefficient (TEC) mismatch between the graphene and the substrate. The 

TEC of graphene is found to be negative while for silicon substrate it is positive, i.e. 

graphene contracts and silicon expands on heating. The thickness of the SiO2 (~285 nm) in 

the substrate is much smaller than the silicon thickness (~550 µm) and hence the effect of 

SiO2 TEC can be safely neglected when compared to the contributions from silicon [140]. 

First principle calculations by Mounet et al. showed that the TEC of graphene is negative for 

a wide range of temperature (up to 2500 K) [161]. A very recent continuum theory of 

elasticity study by de Andres et al. also showed that monolayer and bilayer graphene exhibit 

negative TEC up to 700 K [162]. Silicon possesses a positive TEC for the entire temperature 
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range (300 K to 1500 K) [163]. The above indicated large TEC mismatch between the 

graphene membrane and the underlying substrate causes biaxial strain and leads to thermal 

deformation between graphene and the substrate [140]. During heating, the substrate/trench 

expands while graphene membrane contracts and hence graphene experiences biaxial tension. 

In the event of cooling, graphene undergoes compressive stress due to the contraction of the 

substrate [164]. Hence, surface morphology of graphene is found to have been significantly 

altered after thermal annealing and cooling. Ripple geometry alteration includes flattening of 

the nanoindentation induced ripples and appearance of low density static fluctuations. Bao et 

al. have also observed flattening of pre-existing ripples and emergence longer wavelength 

ripples at room temperature after annealing the suspended samples at similar temperature 

(~700 K) used in this study [140][165]. After temperature treatment the direction of this 

resultant clamping condition would be altered and thus the ripple orientation in figures Figure 

6-9(a) and Figure 6-9(b) are found to be different [140]. 

The mechanical properties (pre-tension, Young’s modulus linear and nonlinear spring 

constants) of the structure have also undergone significant reduction and the values are 

shown in Table 6-1. The pre-stress associated to graphene after fabrication is found to have 

been lowered by 50% after thermal treatment. Thus the mechanical properties of the 

nanostructure have been considerably lowered and under the same applied force, the 

displacement in the structure after annealing is found to be more than the deflection before 

heat treatment. Thus thermal annealing if found to be one of the ways to alter the mechanical 

properties of graphene devices. Annealing graphene at 300 
ο
C was reported to enhance the 

performance of graphene based field effect transistors by a factor of 90 and exhibiting very 

high transconductance value of 5900 µS/µm (corresponding carrier mobility ~2230 cm
2
/Vs) 

[166]. 
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By repeated mechanical loading the texture of the ripple were observed to be modified as 

indicated in Figure 6-11(a-d) and Figure 6-11(a’-d’). 

 

Figure 6-10: (a) AFM micrograph of the annealed suspended bilayer graphene sample obtained after 

indentation (b) Force versus displacement curve obtained from the nanoindentation of the annealed 

structure. 

Table 6-1: Summary of estimated mechanical properties 

Label 

Before 

Annealing 

After 

Annealing 

Linear spring constant N/m 4.6 2.27 

Nonlinear spring constant × 10
14 

N/m
3
 5.8 1.6 

Pre-tension N/m 1.46 0.72 

Young’s modulus TPa 3.25 0.78 
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Figure 6-11: (a-d) AFM scan images obtained after each indent cycle. (a’–d’) Corresponding profile 

graphs showing the height variation along the diameter AA’ of the device after each indent cycle. 
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The capability to introduce extrinsic undulations in graphene through nanoindentation thus 

enables new research directions to study the spring constant mapping of the rippled structure. 

Also, the mechanically induced local curvature variations open up possibilities to tune the 

optical transparency limits of graphene and the different sizes of ripples enables its use for 

optical lenses with tunable focal length [167][168]. 

6.4 Conclusions 

The point-contact perturbation method employed in this study alters only the local surface 

morphology without modifying the contiguous regions. Controlling the local texture of free-

standing graphene by AFM nanoindendation and thus engineering the electrical [126]–[129], 

chemical [132][153] and magnetic properties [130][131], can lead to future flexible electronic 

devices. Thermal engineering of the nanoindentation induced ripples have also been 

demonstrated in bilayer graphene. Significant alteration in ripple morphology after annealing 

was observed, which include flattening of nanoindentation-induced ripples and presence of 

thermally generated undulations. NEMS is typically an integration of nanoelectronics and 

mechanical devices and the ability to produce tunable electronic components based on 

graphene along with its mechanical benefits enables a tremendous development of NEMS 

technology. 

In the previous chapters, characterization of pristine graphene was demonstrated. It is also 

important to study the behaviour of such systems with induced defects as they would be 

prone to lattice imperfections in various environmental conditions. Therefore, in the 

following chapter, properties of irradiation induced damaged graphene has been explored. 
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CHAPTER 7 : MECHANICAL PROPERTIES OF IRRADIATED AND 

PATTERNED GRAPHENE 

7.1 Overview of Irradiated Graphene 

Graphene being the main focus of interest in material science is found to exhibit unique 

mechanical and electronic properties as discussed in the previous chapters. It is very 

important to understand the behaviour of graphene based systems under various 

environmental conditions which can induce structural defects. This is because the properties 

of pristine graphene would be affected when used for different applications. Moreover, such 

study would also be helpful to carefully manipulate its structure which can in turn be used to 

tailor its properties. 

The lattice imperfections (e.g. vacancies, reconstructions with non-six member rings and 

voids) caused by irradiation using ions, protons or electrons can drastically alter the 

electronic [169], thermal [170], mechanical [171], magnetic [172] and optical properties of 

graphene. The damage threshold of supported and suspended graphene samples when 

exposed to 2 MeV H
+
 irradiation was found to increase with layer number [121]. Ion 

irradiation on graphene sheets deposited on SiO2 by 500 keV C
+
 ions also showed that the 

disorder in monolayer is more than bilayer and multilayer graphene sheets [173]. Lehtinen et 

al. have studied the effects of ion bombardment on graphene and have shown that graphene 

can be used as a wrapping membrane for ion beam analysis on volatile targets or living cells 

which should be separated from the vacuum system [174]. It has been shown using STM 

imaging that electronic structure of monolayer graphene can be tuned using 30 keV Ar
+
 ions 

by inducing disorder which substantially reduces the Fermi velocity [176]. Stolyarova et al. 

have observed graphene bubbles after irradiating graphene using energetic protons (0.4-0.7 

MeV) and have demonstrated that these mono-atomic sheets can trap gases for sufficiently 

long period of time [176]. Electron beam induced defects in graphene field-effect transistors 
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is also found to decrease the carrier mobilities and minimum conductivity [177]. Lopez et al. 

reported enhanced resistance of single layer graphene on SiO2/Si substrate exposed to 30 kV 

Ga
+
 ion beam [178]. Nanopatterning using 30 keV He

+
 beam to obtain sub -10 nm feature 

sizes in suspended graphene have also been achieved [68] and is demonstrated in detail in the 

following section. Krasheninnikov and Nordlund have reviewed the ion and electron 

irradiation induced effects in carbon allotropes and other nanostructured materials [179]. 

In this chapter, suspended graphene nanomechanical devices have been exposed to 500 keV 

helium ions and the ion beam induced defects were studied using Raman spectroscopy. The 

corresponding changes in mechanical properties at various ion fluences have also been 

explored for the very first time. The induced defects were found to decrease with an increase 

in layer number. Monolayer graphene is found to remain suspended and the surface 

morphology analysis indicates the bulging of the mono and multilayer graphene even after 

irradiating with an ion fluence of 1.1 × 10
17

 ions/cm
2
. The variation of Young’s modulus with 

respect to ion fluence has also been investigated in the current work. 

7.2 Experimental Details 

Suspended graphene samples were prepared by adopting the fabrication technique described 

in Section 3.1. Graphene samples prepared by exfoliation technique tend to be contaminated 

with adhesive tape residues and adsorbed molecules from the environment. When the 

exfoliated graphene samples were irradiated with focussed 30 keV He ions, the hydrocarbons 

from the sample were found to be re-deposited on the graphene sample [68]. Jones et al. 

reported the formation of graphane and partially hydrogenated graphene by electron 

irradiation (5-10 keV) of adsorbates on graphene [180]. Using electrostatic force microscopy 

study it is reported that a monolayer of water molecules is adsorbed on top of exfoliated 

graphene samples exposed to air. [181]. The pristine graphene samples used for the ion 
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irradiation study has thus been annealed at 400 °C for 8 hours inside a tube furnace in the 

presence of forming gas (5% H2 and 95% Ar) to remove the tape residues. The annealing 

temperature and duration used was found to be effective in removing the tape residues. The 

graphene samples were also heated (250 °C for 30 min) inside the irradiation chamber before 

each irradiation step to remove the adsorbed molecules that has been adsorbed from the 

ambient air. The pristine samples mentioned in the later part of the text refer to the graphene 

annealed in a tube furnace for removing the adhesive tape residues. 

Ion irradiations were carried out using a 3.5 MV Singletron facility at CIBA, NUS. The 

graphene samples were loaded into the nuclear microscopy chamber with a strip heater 

attached in the sample holder and the samples were annealed before each irradiation step as 

mentioned before. A collimated beam of 500 keV helium ions was focused to a beam spot 

size of ~5 μm on the target chamber using a set of quadrupole lenses. The graphene flake was 

identified using an optical microscope which is attached to the irradiation chamber. The 

focused ion beam was then raster-scanned under normal incidence over an area of 2 × 2 mm
2
 

with the graphene flake positioned at the centre of each scan. The chamber pressure and ion 

beam current density during the irradiation experiments were maintained at 1 × 10
-6

 mbar and 

50 nA/mm
2
 respectively. Visible Raman spectroscopy (excitation wavelength - 532 nm) was 

carried out using a WITec CRM200 Raman system. The Raman spectrum was analyzed by 

curve fitting using multiple Lorentzians with a sloping background. AFM imaging (tapping 

mode) and AFM nanoindentation of the pristine and irradiated samples was carried out using 

JEOL JSPM 5200. 

7.3 Results and Discussion 

Ion irradiation experiments were carried out on monolayer, bilayer and 5 layer suspended 

graphene samples. The optical microscopy image of the samples used is shown in Figure 7-1. 

The thickness of the graphene samples were confirmed using Raman spectroscopy. 



Chapter 7 Mechanical Properties of Irradiated and Patterned Graphene 

 

92 

 

 

Figure 7-1: Optical micrograph showing (a) Suspended bilayer and monolayer graphene (b) Suspended 5 layer 

graphene. 

7.3.1 Raman Spectroscopy Results 

The graphene samples were irradiated at four different ion fluences (8 × 10
15

, 3 × 10
16

, 7 × 

10
16

 and 1.1 × 10
17

 ions/cm
2
). The corresponding Raman spectra obtained from the pristine 

and irradiated monolayer, bilayer and 5 layer suspended graphene samples are shown in 

Figure 7-2, Figure 7-3 and Figure 7-4 respectively. 

 

Figure 7-2: Raman spectra obtained on a suspended monolayer graphene (a) Pristine (b) After 1
st
 

irradiation (8 × 10
15

 ions/cm
2
) (b) After 2

nd
 irradiation (3 × 10

16
 ions/cm

2
) (c) After 3

rd
 irradiation (7 × 10

16
 

ions/cm
2
) (d) After 4

th
 irradiation (1.1 × 10

17
 ions/cm

2
). 
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Figure 7-3: Raman spectra obtained on a suspended bilayer graphene (a) Pristine (b) After 1
st
 irradiation 

(8 × 10
15

 ions/cm
2
) (b) After 2

nd
 irradiation (3 × 10

16
 ions/cm

2
) (c) After 3

rd
 irradiation (7 × 10

16
 ions/cm

2
) 

(d) After 4
th

 irradiation (1.1 × 10
17

 ions/cm
2
). 

 

Figure 7-4: Raman spectra obtained on a suspended 5 layer graphene (a) Pristine (b) After 1
st
 irradiation 

(8 × 10
15

 ions/cm
2
) (b) After 2

nd
 irradiation (3 × 10

16
 ions/cm

2
) (c) After 3

rd
 irradiation (7 × 10

16
 ions/cm

2
) 

(d) After 4
th

 irradiation (1.1 × 10
17

 ions/cm
2
). 

The prominent Raman modes in Figure 7-2(a), Figure 7-3(a) and Figure 7-4(a) are the G 

mode at ~1580 cm
-1

 and the 2D mode at ~2700 cm
-1

 respectively [182]. The FWHM of the 

2D peaks from the three figures Figure 7-2(a), Figure 7-3(a) and Figure 7-4(a) are found to be 

33 cm
-1

, 50 cm
-1

 and 65 cm
-1

 which corresponds to monolayer, bilayer and 5 layer graphene 

respectively [66]. 

Graphene samples irradiated at a fluence of ~ 8 × 10
15

 ions/cm
2
 begin to show a D mode at 

~1340 cm
-1

 (see Figure 7-2(b), Figure 7-3(b) and Figure 7-4(b)). This is the in-plane 

breathing mode of A1g symmetry due to the presence of six-fold aromatic rings and requires a 
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defect for its activation [182]. The ratio of the integrated intensities of D to G (denoted as 

I(D)/I(G)) increases with ion fluence. In the irradiated samples, apart from D, G, and 2D 

modes, another peak at ~2930 cm
-1

 which is a combination mode of D and D' is also visible 

[182]. As the fluence increases, the second order peaks increase in width and in Figure 

7-2(d), Figure 7-3(d) and Figure 7-4(d) those peaks are barely seen. The deconvolution of the 

spectra in the irradiated samples show a sharp mode at ~1623 cm
-1

 called the D' mode [182]. 

The I(D)/I(G) ratio increases with ion fluence in all the graphene samples. The fluence 

dependence of the damage from the Raman spectra of the pristine monolayer, bilayer and 5 

layer suspended graphene samples are shown in Figure 7-5. The variation of I(D)/I(G) ratio 

with ion fluence φ for 2- and 5- layers can be fitted using the f(φ) = α [1 – e
-(φ/φ

0
)
] where α 

and φ
0 are the two fitting parameters. 

 

Figure 7-5: The variation of I(D)/I(G) for monolayer (green), bilayer (red) and 5 layer (blue) with ion 

fluence. The spectra are fitted using f(φ) = α [1 – e
-(φ/φ

0
)
]. 

The best fitted curves with experimental data are shown in Figure 7-5. The parameter α being 

a fixed value, the non-linearity in defect production comes from the second factor of the 

equation, which essentially presents the probability of generating defect at a given ion 
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fluence. The parameter (φ
0
)

-1
 represents damage cross section for the impact of a single ion. 

From Figure 7-5, it can be seen that the value of (φ
0
)

-1
 for a bilayer is found to be higher than 

that of 5 layer graphene samples. For monolayer graphene, the damage is even higher and the 

I(D)/I(G) ratio is found decrease with ion fluence as discussed in Ref. [183]. An idea about 

the contribution of ballistic effects in the present keV He irradiation on graphene system can 

be estimated by calculating the displacements per target atoms (dpa) using TRIM 

simulations. If we consider sputtering due to head-on collisions, the calculated displacements 

per atom from TRIM simulations [184] yield about 0.01 dpa at a fluence of 10
17

 ions/cm
2
. 

For TRIM simulations, the sample is treated as an amorphous matrix with homogenous mass 

density and the ion kinetic energy is transferred ballistically to the target atom. Also TRIM 

simulations treats the dissipation of transferred energy in a 3D system, whereas for the case 

of a 2D system like graphene the transferred energy is dissipated in a two-dimensional plane. 

The electronic and the nuclear energy loss of 500 keV He
+
 ions in an amorphous carbon 

target with the density of graphite is estimated (using TRIM [184]) to be  43 eV/Å and 0.084 

eV/Å respectively. The above factor is based on Ziegler-Biersack-Littmark (ZBL) theory of 

ion stopping [184] and cannot explain the nature of the observed damage and the quenching 

of the defects with layer number. Production of defects in nano-systems is different from that 

in bulk materials. The system dimensions and size significantly affect the dissipation of 

energy brought in by the energetic particle. 

7.3.2 AFM Nanoindentation Results 

Nanoindentation experiments were carried out in ambient conditions on the pristine and the 

irradiated monolayer, bilayer and 5 layer suspended graphene samples and the corresponding 

mechanical properties were determined (see Chapter 5 for details on the experimental 

procedure and analysis). All the AFM imaging and nanoindentation experiments were carried 

out using a ~1.2 N/m AFM cantilever. A typical force curve obtained on a hard SiO2 surface 
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and on a pristine monolayer sample is shown in Figure 7-6. Similar force curves were 

obtained after each irradiation step on all the suspended graphene samples and the curves 

were analysed using the continuum mechanics model (see Chapter 5 for details) to extract the 

mechanical properties. 

 

Figure 7-6: Force curves obtained from AFM nanoindentation experiments on a SiO2 surface (left) and 

pristine monolayer suspended graphene (right). 

The AFM tapping mode image was obtained to confirm the suspension of the graphene 

samples after each irradiation step. The AFM images obtained on one of the pristine and 

irradiated (after 4
th
 irradiation) monolayer, bilayer and 5 layers graphene samples are shown 

in Figure 7-7(a–c). From these images and the corresponding line profiles it is evident that all 

the graphene samples remain suspended even after exposing it to an ion fluence of 1.1 × 10
17

 

ions/cm
2
. Graphene of all thicknesses ranging from monolayer to few-layer shows a 

formation of bubble (bulge) after irradiation. These bubbles indicate that graphene can trap 

gases. These samples were imaged again after ~2 months to confirm the stability of such 

bubbles. The images confirmed the presence of bubbles and this observation indicates the 

robustness of the quasi two-dimensional material, graphene. This clearly shows that graphene 

can be used in harsh environmental conditions and also finds intriguing applications such as 

usage as an ultimate membrane to wrap the targets, like living cells which has to be separated 

from the vacuum system during ion beam analysis [176]. 
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Figure 7-7: AFM topography images obtained using tapping mode on (a) Monolayer pristine and 

irradiated sample (1.1 × 10
17

 ions/cm
2
) (b) Bilayer pristine and irradiated sample (1.1 × 10

17
 ions/cm

2
) (c) 

5 layer pristine and irradiated sample (1.1 × 10
17

 ion/cm
2
). 

The mechanical properties from the force versus deflection plots were extracted for the 

pristine as well the irradiated samples. The deflection plots and the corresponding changes in 

the mechanical properties (Young’s modulus and pre-tension) obtained from one of the 5 

layer and bilayer samples with ion fluence are shown in Figure 7-8(a–c) and Figure 7-9(a–c) 

respectively. It is very clear from the obtained results that the Young’s modulus of the 5- and 

2- layer graphene has increased after irradiating with an ion fluence of 8 × 10
15

 ions/cm
2
. 

With subsequent irradiation with increase in ion fluence, the Young’s modulus and the pre-

tension of the samples were found to decrease. Moreover, in spite of irradiating graphene 

samples with a high ion fluence of 1.1 × 10
17

 ions/cm
2
, the samples remain suspended 

without any detrimental effects in its mechanical properties. This clearly demonstrates that, 

graphene possess very high ion irradiation tolerance even with an increase in irradiation 

induced damage. These defective graphene structures which include monolayer, bilayer and 5 

layer suspended graphene did not show any signs of instability or breakage when exposed to 

high ion fluences (~1.1 × 10
17

 ions/cm
2
). Even with an increase in accumulation of the 
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irradiation damage as evident from the Raman spectroscopy results, the AFM 

nanoindentation results demonstrate the ability of graphene to withstand the consecutive 

irradiation with an increase in ion fluence. 

 

 

Figure 7-8: (a) Force versus deflection curves obtained from a pristine and irradiated 5 layer graphene 

sample (b) Young’s modulus variation with respect to ion fluence (c) Pre-tension variation with respect to 

ion fluence. 
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Figure 7-9: (a) Force versus deflection curves obtained from a pristine and irradiated bilayer graphene 

sample (b) Young’s modulus variation with respect to ion fluence (c) Pre-tension variation with respect to 

ion fluence. 
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Figure 7-10: Force versus deflection curves obtained from a pristine and irradiated monolayer graphene 

sample. 

The force versus deflection plots obtained for the irradiated monolayer sample could not be 

fitted using the continuum mechanics model to extract its mechanical properties. It was 

observed that even for very low forces (~few nN) the membrane had deflected more than 50 

nm which resulted in loss of data in the lower force region (see Figure 7-10) due to the use of 

the same AFM cantilever (stiffness ~1.2 N/m). One needs to use a cantilever of lower 

stiffness to extract and compare the mechanical properties of monolayer. The induced defects 

in the monolayer are found to be more than multilayers as indicated in Figure 7-5. 
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Figure 7-11: (a) Variation of Young’s modulus with respect to ion fluence for three suspended bilayer 

graphene devices (b) Variation of pre-tension with respect to influence for three suspended bilayer 

graphene devices. 

 

Figure 7-12: (a) Variation of Young’s modulus with respect to ion fluence for three suspended 5 layer 

graphene devices (b) Variation of pre-tension with respect to influence for three suspended 5 layer 

graphene devices. 

In order to show the repeatability and consistency in the measurement results, the mechanical 

properties of bilayer and 5 layer suspended graphene versus ion fluences is plotted for three 

different device structures (see Figure 7-11 and Figure 7-12). 

7.4 Nanopatterning of Graphene – An Overview 

Some of the existing methods to pattern graphene structures include electron beam 

lithography (EBL), scanning probe methods, focussed ion beam (FIB) milling and direct 

etching using electron beam in TEM. These milling methods can generate patterns with 
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feature sizes of several tens of nm but impose certain difficulties. The conventional EBL 

which is a resist-based lithography, leaves resist residues on graphene and it is also not 

suitable to pattern suspended graphene structures [185]. Scanning probe methods offers high 

spatial resolution but the process of patterning is slow and it is not feasible to pattern 

suspended graphene as well [186]. Focussed ion beam milling based on liquid-metal ion 

sources (LMIS) is not suitable for patterning narrow structures (beam spot size 3-7 nm) and 

causes significant damage to the graphene layer [187]. The high energy (80-300 keV) 

required for direct etching using an electron beam [188] creates undesired deposition of 

carbon or defects which cause graphene to lose its crystallinity. Moreover, this method 

requires transfer of graphene to TEM grids and sophisticated sample preparation which make 

the process very tedious. In order to overcome the difficulties of the conventional methods, 

suspended graphene structures have been patterned using helium ion microscope. HIM 

patterning offers high precision milling as well as sub-nm resolution imaging. Helium ions 

are more massive than electrons which eliminate the diffraction effects due to the short de 

Broglie wavelength unlike conventional scanning electron microscopes. Helium is also less 

massive than gallium which overcomes the limitation of sub-surface sample damage usually 

present in FIB systems. The above stated advantages of HIM provide sub-nm resolution 

imaging and milling. Typically doses needed for imaging is two orders of magnitude less 

than the dose used for milling. Therefore, non-destructive imaging of the samples can be 

obtained before and after nanopatterning. Any complex geometric design or arbitrary patterns 

can be created using the NPGS software and the milling time to create such patterns would be 

~few seconds.  

HIM patterning enables a straightforward means to vary the dimensions of the device 

structures which opens up an excellent opportunity to obtain devices with varying 

frequencies. The results obtained from nanostructuring of graphene as indicated below, 
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clearly shows that HIM is an emerging technology to obtain nanoelectromechanical 

structures with enhanced design and performance variations. Moreover, high resolution 

imaging with high surface sensitivity has evidently enabled to inspect the patterns created on 

graphene. The fabrication sequence and the working principle of a HIM have been discussed 

in detail in Sections 3.1 and 3.5 respectively. Figure 7-13 show as an AFM image of a 

suspended drum which was patterned to obtain z-axis diaphragm flexure. The potential 

devices have been annealed at 350 degrees for 4 hours in the presence of forming gas (5% H2, 

95% Ar) in a tube furnace which facilitated the removal of glue residues that gets attached to 

the samples during graphene transfer. Glue residues, if present will cause adverse effects 

during patterning. 

 

Figure 7-13: (a) Three dimensional AFM image showing suspended graphene membrane and empty 

trenches (b) An enlarged view of the suspended graphene (c) Superimposed AFM profiles of suspended 

graphene (initial sag – 10 nm) and an empty trench (~250 nm). 
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7.5 HIM Patterning 

Direct patterning of the different NEMS structures were obtained by helium ion beam with a 

Nanometer Pattern Generation System (NPGS, from JC Nabity Lithography Systems, 

Bozeman, Montana). The various patterns achieved are shown in Figure 7-14. These patterns 

were achieved using 30 keV He
+
 ions with an ion beam current of 0.4 pA at a fluence of 

~10
18

 ion/cm
2
. The helium ion beam was raster scanned on the surface of the graphene 

membrane to obtain the design created using NPGS. Suspended graphene drum structures 

have been patterned to obtain z-axis diaphragm flexures. The main advantage of these types 

of flexures is that they offer smooth elastic motion without introducing nonlinearities like 

friction. Diaphragm flexures are radial arrangement of flexure beams. Analyses on these 

types of flexures have been studied previously [189]. Figure 7-14 shows the nested patterns 

obtained using HIM and they clearly indicate that high precision milling is possible. 

 

Figure 7-14: Nested planar diaphragm structures demonstrating the range of dimensions achievable with 

this technique. The inner structures have sub -10 nm features (FOV) – 1 μm. Symmetrical (a) Multi 

folded flexure (b) Circular diaphragm flexure and (c) Spiral Archimedes. 
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Figure 7-15: Circular diaphragm flexures (a) Spiral Archimedes (FOV – 1 μm) (b) Spiral Archimedes 

(FOV – 500 nm) (c) Spiral Archimedes (FOV – 250 nm) (d) Symmetrical multi folded flexure (FOV – 1 

μm) (e) Symmetrical multi folded flexure (FOV – 500 nm) (f) Symmetrical multi folded flexure (FOV – 

250 nm). 

The patterned images shown in Figure 7-15 confirm the capability to fabricate a variety of 

graphene NEMS with sub -10 nm critical dimensions. This opens up a new avenue to 

fabricate and optimize NEMS based devices such as sensors and resonators with varying 

mechanical properties. 

7.6 FEM Analysis of Patterned Devices 

The mechanical response of suspended nanomechanical graphene devices before and after 

patterning has been estimated using Ansys software. The structures were built using Shell 63 

element type. This element type is suited to model thin-wall structures and has both bending 

and membrane capabilities. The material properties used in finite element modelling include 

Young’s modulus E = 1 TPa, Poisson’s ratio ν = 0.16 and material density ρ = 2200 kg m
2
 

[57][81]. Structural characteristics of the fabricated devices and their corresponding 
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mechanical properties are shown in Table 7-1 and Table 7-2 respectively. FEM results 

indicate that the suspended nanomechanical graphene structures would potentially vibrate in 

several 10’s of MHz. Their low mass and high operating frequencies make them well suited 

for mass sensing applications. From the simulations it is obvious that the fabricated devices 

would possess mass sensitivities greater than 10
-21

 g Hz
-1

. Figure 7-16 show the simulated 

mode shape of the devices before and after patterning. 

Table 7-1: Structural characteristics of fabricated devices 

Label 

Structural Characteristics 

Diameter 

(μm) 

Thickness 

(nm) 

Mass 

(g) 

Device 1 2 11 7.602 x 10
-14

 

Device 2 3 7 4.948 x 10
-17

 

Device 3 3 1 7.068 x 10
-18

 

 

Table 7-2: Simulated results of suspended graphene 

Label 
Resonance Frequency f0 

MHz 

Mass Sensitivity 

g Hz
-1

 

Device 1 111 1.369 x 10
-21

 

Device 2 31.5 3.14 x 10
-24

 

Device 3 4.5 3.14 x 10
-27
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Figure 7-16: Simulated mode shape of suspended graphene. (a) Graphene drum structure (Device 1) 

before patterning (b) Symmetric circular diaphragm (Device 2) and (c) Multi folded diaphragm (Device 

3) after patterning obtained using Ansys. 

7.7 Conclusions 

Suspended graphene nanomechanical devices were exposed to 500 keV helium ions and the 

ion beam induced defects and modifications in the mechanical properties have been studied 

using Raman spectroscopy and AFM nanoindentation respectively. An increase in Young’s 

modulus of bilayer and 5 layer graphene was observed after irradiating with an ion fluence of 

8 × 10
15

 ions/cm
2
. Even after subsequent irradiation of the samples with increase in ion 

fluence did not cause any detrimental effects to the mechanical properties. It has also been 

demonstrated that graphene bubbles are formed after irradiation and remain without any 

degradation for sufficiently long period of time. Monolayer, bilayer and 5 layer graphene 

samples were all found to be suspended in spite of the accumulated damages after irradiating 

with an ion fluence of 1.1 ×10
17

 which clearly indicates the unique structural stability of 

graphene. This study thus shows the high tolerance of graphene to harsh environmental 
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conditions and hence it would serve as a robust membrane for the future 

nanoelectromechanical systems. 

All the test structures shown in previous chapters are clamped circular graphene membranes. 

Obtaining sub -10 nm features on the circular membranes with various design capabilities 

could be achieved through high resolution milling using helium ions. The fabricated 

suspended graphene membranes have been patterned using Helium ion microscope which has 

the capability to pattern sub -10 nm features and any arbitrary design can be patterned 

without any resist. Precision milling at high speed along with high resolution imaging and 

high surface sensitivity using this technique opens the possibility of mechanical studies in a 

size range previously unobtainable by current fabrication techniques. Several exemplary 

graphene drum structures have been presented to demonstrate this capability. Lower mass 

(~10
-14 

g to 10
-18 

g) and higher operating frequencies (~MHz) make these structures well 

suited to mass sensing applications and sensitivities greater than 10
-21

 g Hz
-1

 can be achieved. 
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CHAPTER 8 : CONCLUSIONS AND FUTURE WORKS 

“Whatever the future brings, the one-atom-thick wonderland will almost certainly remain in 

the limelight for decades to come. Engineers will continue to work to bring its innovative by-

products to market, and physicists will continue to test its exotic quantum properties. But 

what is truly astonishing is the realization that all this richness and complexity had for 

centuries lain hidden in nearly every ordinary pencil mark.” 

-Andre K Geim and Philip Kim [190] 

8.1 Conclusions 

Fabrication and characterization of the newly isolated 2D material, graphene, has been 

addressed in detail in this thesis. The structures were fabricated by micromechanical 

exfoliation of graphite and subsequent transfer to pre-patterned substrates. Mechanical 

properties of fabricated multilayer structures have been studied by electrostatic actuation and 

sensing through AFM imaging. Analytical modelling and FEM simulations have also been 

incorporated to study the deflection behaviour of graphene. These experiments demonstrates 

that graphene possesses superior mechanical properties (Young’s modulus ~1 TPa) and along 

with its low mass could make it an alternative material for sensing applications.  

In order to overcome the limitations of the electrostatic actuation technique, AFM 

nanoindentation was used to systematically characterize graphene structures. The effects of 

layer number on the mechanical properties have been precisely studied. The mechanical 

properties of the devices have been extracted from the experimental results, by applying a 

continuum mechanics model. This characterization method is a straightforward and simple 

technique and can be used to study the mechanical properties of other low dimensional 

structures. To show this capability, characterization results of suspended MoS2 prepared by 

the same exfoliation technique have been presented. 

The capability to pattern arbitrary features of sub -10 nm dimensions in the suspended 

graphene samples through HIM patterning have been demonstrated. This method overcomes 
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the limitations of conventional lithography techniques and the structures can be directly 

patterned. This opens the possibilities of mechanical studies in a size range previously 

unobtainable through other techniques and also enables fabrication of nanoscale devices with 

varying design and frequencies. 

Suspended monolayer and few-layer graphene structures have also been irradiated through 

helium ion beam at different fluences. The characterized results show the unique nature of 

graphene to remain suspended even after the formation of defects and lattice reconstruction. 

Even after subsequent irradiation of the samples with increase in ion fluence did not cause 

any detrimental effects to the mechanical properties. It has also been demonstrated that 

graphene bubbles are formed after irradiation and remain without any degradation for 

sufficiently long period of time. The stability of graphene under such irradiation induced 

damage proves the robustness of the material and its potential use in the next generation 

NEMS under harsh environmental conditions. 

First experiments showing the capability of inducing nanometer sized ripples in few-layer 

graphene through nanoindentation have been demonstrated. Tailoring these extrinsic 

corrugations by vacuum annealing at ~620 K has been achieved. It was also shown that after 

annealing the mechanical properties of the structures are significantly altered. Ripples in 

graphene alter the electronic structure of graphene and would thus enable tunable electronic 

devices. NEMS, being a system with mechanical and electronic components, using 

graphene’s mechanical and electronic benefits will lead to a new technological revolution. 

8.2 Recommendations for Future Works 

Experimental efforts were taken to study the resonance properties of suspended graphene 

structures using laser doppler vibrometry (LDV). The device structures (monolayer to few 

layer) were electrostatically actuated using a sinusoidal ac signal with a dc offset and the 
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detection of the device vibration was aimed to be sensed through the micro system analyser 

(MSA 500) which is capable of sensing out-of-plane vibrations up to ~24 MHz with 

displacements in the order of ~pm. But, unfortunately the resonance peak was not observed 

and the plausible explanation for this could be the relatively large spot size of the laser beam 

(~several microns). The diameter of a device structure is ~3.5 µm and the distance between 

two adjacent holes is ~7 µm. The laser light is thus focussed in the neighbouring regions of a 

3 µm diameter device structure and thus causing an enhanced noise from the supported as 

well as other suspended locations which might mask the actual resonance of the test sample. 

Therefore developing techniques to study the out-of-plane vibrations of these structures 

would be worthwhile to find new applications for graphene based devices. 

Irradiating few-layer graphene through helium ions show that the Young’s modulus of the 

material increases for certain ion fluence and then decreases with further increase in ion 

fluence. The fluence used for a monolayer graphene is relatively high which has caused a 

higher damage cross-section. Hence, performing such irradiation experiments with lower 

fluences on monolayer graphene and finding the critical fluence up to which the hardness of 

the material can be increased when compared to the pristine structure will be useful for 

tuning the physical and mechanical properties of the devices for various applications. 

The effects of vacuum annealing on the graphene samples at ~350° C have been discussed in 

this thesis. Similar test measurements can be carried out at various temperatures in order to 

study the annealing effects on the mechanical properties of the devices. 

The fabrication method adopted in this study produces good quality and defect free graphene 

sheets. But, producing very large area graphene and transferring it to a specific location on 

any given arbitrary substrate with certain defined features is an issue. Hence adopting and 

improving newer methods of fabrication which can produce large area graphene sheets with 
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quality comparable to exfoliated graphene will be very useful in developing novel devices. 

The experimental techniques used in this thesis will thus be very useful to explore the 

properties and applications of such structures. 

The field of graphene is very new but enormous progress has been made in the last couple of 

years since its experimental discovery. Hope more intriguing opportunities open up for 

physicists and engineers to explore this unique mono-atomic material. 
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