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Summary

Prior work by Case, Jain, Le, Ong, Semukhin and Stephan showed that auto-

matic functions can be computed in linear time without specifying the underlying

model of computation. In the present report it is shown that a function is au-

tomatic if and only if a one-tape Turing machine can compute it in linear time

where input and output have to start at the left end of the tape. It is also shown

that the same equivalence holds when nondeterministic one-tape Turing machines

are considered.

This result is extended to the study of the complexity class AF [log n] which is

roughly the class of functions which can be computed by a machine with automatic

functions as primitive operations in logarithmic time. It is shown that AF [log n]

is a proper subclass of DTIME[n log n] but still significantly larger than the class

AF [1] of automatic functions.

We will investigate a little the class of NAF [log n] which is the class of func-

tions which can be computed non-deterministically by a machine with automatic

functions as primitive operations in logarithmic time. The models AF, DTIME

and NAF are compared to find as much as possible, the relations between them.

v
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Chapter 1

Mathematical Preliminaries

The thesis will investigate the notion of automatic functions and Turing ma-

chines and find the relation between them. One central result is that a function

is automatic if and only if it is computed in linear time by a one-tape Turing

machine with the input and output starting at the same position. This result was

also generalised to non-deterministic one-tape Turing machines. In both cases, the

restriction of the input and output starting at the same position is an important

condition.

In the next part of this thesis, it is investigated which complexity class arises if

a machine uses automatic functions as a primitive to manipulate its data and has

a computational runtime of O(log n). We will call this model AUTOFUNC. This

new model will be compared to a one-tape Turing machine and it will be shown

that there are some computations computed by a one-tape Turing machine in

O(n log n) that cannot by computed by our new model in O(log n) i.e. AF[log n] ⊂

DTIME [n log n].

In addition, we will investigate the model NAF which is the nondeterministic

variation of AUTOFUNC and see how non-determinism affects computational

ability.

In this chapter, we first recall some basic definitions and review the concepts

of Turing machines, Crossing Sequences, Automata and the Pumping Lemma as

1



2 CHAPTER 1. MATHEMATICAL PRELIMINARIES

they will be used frequently in the Chapters 2 and 3.

For more detailed definitions, references on these background topics include

[1], [2] and [6].

As we will be talking about machines, in particular, a finite automaton or

a Turing machine, we first define what it means for an input to be accepted or

rejected by a machine.

Definition 1.0.1. An input, x is said to be rejected by a machine M if for a given

set F of final states of M , the computation of x by M halts at a state qR ∈ F . We

call qR the rejecting state.

Definition 1.0.2. An input, x is said to be accepted by a machine M if the

computation of x by M halts at a state qA ∈ F i.e. M(x) = qA. We call qA the

accepting state. The set of all inputs accepted by M is called the language of M

and denoted by L(M).

As we will be dealing with strings as the input, we define its corresponding

structure.

Definition 1.0.3. The free monoid on a set S is the monoid whose elements

are all the finite sequences (or strings) of zero or more elements from S. It is

usually denoted S∗. The identity element is the unique sequence of zero elements,

often called the empty string and denoted by ε and the monoid operation is string

concatenation.

The idea of a regular language is often used when talking about automata and

computations.

Definition 1.0.4. A regular language is a language that can be generated by a

regular expression or accepted by a finite automata.

Lastly, we will use “Big − O” to talk about the time complexity of computa-

tions.
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Definition 1.0.5. Given f, g : N → N, f is an asymptotic upper bound for g,

denoted by g ∈ O(f) if

∃C > 0, x0 ∈ R such that ∀x ≥ x0, g(x) ≤ Cf(x)

1.1 Turing machines

The Turing machine can be seen as a thought experiment. Developed by Alan

Turing in 1935, this is a theoretical model of computation that plays the role of

an ideal computer. The main components of a Turing machine include the (semi-)

infinite tape, a head and a set of instructions.

The tape represents the memory of the computer and is divided into cells. The

head is the control and can be positioned on any cell of the tape. Each of these

cells can contain only one symbol of a given alphabet, which is read by and/or

written by the head. The set of instructions, also known as tuples, plays the role

of determining the performed actions. We will use the symbols o and # to denote

the start of the tape and the delimiter of the input tape respectively, i.e.# occurs

to the right of the last symbol of the input.

What does a Turing machine do? The Church-Turing Thesis states that “All

computable functions can be computed on Turing machines.” Computable func-

tions are functions that can be calculated using a mechanical calculation device

given unlimited amounts of time and storage space. Essentially, a Turing machine

can compute all functions that our laptop can do and perhaps even more! We will

now study the Turing machines in more detail.

1.1.1 One-tape Deterministic Turing machine

A computation of a Turing machine M on an input x is a (possibly infinite)

sequence of all the acitivity carried out by M on x. The Turing machine M

is deterministic if and only if for all inputs x there is exactly one computation
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which M can do on this input. In this case the sequence is called a deterministic

computation. Often it is enough to consider the sequence of states of the Turing

machine starting with the initial state and each subsequent state that gives rise

to the next state to have enough information. However, sometimes there is more

activity and we may need more information such as the change in symbols, what

is left on the tape and also their respective cell positions.

Definition 1.1.1. A one-tape deterministic Turing machine DM is a tuple (Q,Σ, δ, q0, F )

where

• Q is a finite set of states

• Σ is a finite set of symbols (to be written on the tape)

• δ is the transition function: Q× Σ ∪ {#1} → Q× Σ ∪ {#} × (RLS)

• q0 ∈ Q is the start state of DM

• F ⊂ Q is the set of final states and qR, qA
2 ∈ F

The cells of the tape are conventionally numbered as 1, 2, . . . and each cell can

store precisely one of the alphabet symbols.

The transition function δ performs the following operations given any input

(qi, sk) ∈ Q×Σ∪{#} with its corresponding output as (qj, tk, R) ∈ Q×Σ∪{#}×

(RLS). (see Figure 1.1).

Given that the head is currently at the k-th cell of the tape,

1. qi is the current state of the one-tape deterministic Turing machine and the

head reads the symbol sk in the k-th cell.

2. According to the transition function δ, the old symbol sk is changed to the

new symbol tk.

1Note that the symbol # is not considered as part of the set of alphabets but can be written
in order to represent the erasing of symbols.

2qR, qA are defined as in 1.0.1 and 1.0.2
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Figure 1.1: Deterministic Turing machine - How it works

3. The letter R represents the movement of the read/write head. In this case,

the head moves Right to the (k + 1)-th cell. It can also move Left to the

(k − 1)-th cell or Stay at the k-th cell.

4. Finally, the one-tape deterministic Turing Machine reaches it new state qj

after the new symbol is written.

The symbol # has a second role: We can also use # to represent all empty

(unused) cells in our (semi-)infinite tape. We say that an input x is accepted

by DM if the computation of x by DM results in some accepting state qA i.e

DM(x) = qA, .

1.1.2 One-tape Non-deterministic Turing machine

Definition 1.1.2. A one-tape non-deterministic Turing machine NM is a tuple

(Q,Σ, δ, q0, F ) where
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Figure 1.2: Non-deterministic Turing machine - First four levels viewed as a com-
putation tree

• Q is a finite set of states

• Σ is a finite set of symbols (to be written on the tape)

• δ is written as a 5-tuple that represents a transition relation i.e. δ ⊂ Q ×

Σ ∪ {#} ×Q× Σ ∪ {#} × (RLS)

• q0 ∈ Q is the start state of NM

• F ⊂ Q is the set of final states and qR, qA ∈ F

One way to view the non-deterministic computation would be to look at it as

a computation tree (see Figure 1.2).

The nodes of the tree represent each of the states reached and the edges repre-

sent the transition from one state to another as the read/write head passes from

one cell to the next. A computation path is a path that start from the root of

the tree q0 and ends at one of the final states qf ∈ F . NM can “guess” a path to

an accepting state if one exists and it subsequently carries out the computation
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of that path. We say that an input x is accepted by NM if the computation tree

of NM has at least one accepting computation path.

We state now three preliminary results relating deterministic Turing machines

and non-deterministic Turing machines.

Theorem 1.1.3. It is always possible to obtain a deterministic Turing machine

DM from a non-deterministic Turing machine NM (without the condition of keep-

ing the same time bounds of each machine)3.

Proof. The idea of the proof relies on a technique that does a breadth-first search

of NM’s computation tree. The DM that we want is the one that consists of only

one of the accepted paths of NM.

Example 1.1.4. Given an integer n, one wants to find its prime factorisation,

that is, the prime numbers p1, p2, . . . , pk such that

k∏
i=1

pi = n

To simulate NM that does this computation by DM, let n1 := n. One would

need DM to divide n1 by each prime number 2, 3, 5, . . . in this particular order.

The first prime number that divides n1 would be p1. Then proceed to the next

level of NM’s computation tree n2 = n1

p1
. We divide n2 by each prime number

2, 3, 5, . . . again until we find p2. For each level l ∈ {2, 3, . . . , k + 1}, repeat the

division of nl := nl−1

pl−1
by each prime number 2, 3, 5, . . . again, pl−1 being the first

prime number that divides nl−1 at the (l − 1)-th level. Note that pa can equal pb,

for some a, b ∈ {1, 2, 3, . . . , k}. The process continues until we get nk+1 = 1 so we

have altogether k prime numbers, i.e.
∏k

i=1 pi = n is found.

Theorem 1.1.5. Let qA be the accepting state of DM and q′A be that of NM. There

exists a constant c such that if NM(x) = q′A after l steps for any input x, then

one knows that DM(x) = qA in at most cl steps for the same input x.

3In fact, most variations of Turing machines can be simulated by a one-tape Turing machine,
proving that the notion is robust. However, the efficiency of computation might be different.
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Figure 1.3: Crossing Sequence - Cri at the i-th boundary between cell i and cell
i+ 1

1.2 Crossing Sequences

Definition 1.2.1. Given a one-tape Turing machine and an input n, we define a

crossing sequence at the i-th cell Cri as the sequence of states in which the Turing

machine finds itself when crossing the boundaries between the i-th cell and the

(i+ 1)-th cell. These states can also include those that correspond to moves where

the head stays in the same position4.

The crossing sequence at boundary i as seen in Figure 1.3 is q6, q3, q1, q2, q8, q4, q9, q5.

As mentioned earlier, the state q1 is the state of the machine before it reads cell

i + 1; and likewise in the other direction, q4 is the state of the machine before it

reads cell i.

We now state three propositions relating to crossing sequences.

4These states are possibly repeated.
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Proposition 1.2.2. If a one-tape Turing machine with inputs x1 and x2 gives

outputs y1 and y2 respectively, and satisfies the following conditions

1. the crossing sequences at the i-th cell of both inputs are of equal lengths

2. the input symbols after the i-th cell for both x1 and x2 are the same

3. the first i symbols of y1 and y2 are the same

then y1 = y2.

Proposition 1.2.3. The computational time by the machine that is computing a

function f(x) is at least the sum of the the lengths of the crossing sequences at

each position of x.

Proposition 1.2.4. Given a Turing machine TM and input wm of length n, let

Cr(wm) be some crossing sequence of the input wm. If wm is the shortest input

such that Cr(wm) ≥ m, then every crossing sequence can occur at most twice for

the cells of wm.

Proof. This is based on the proof in [12, Proposition VIII.1.3]. Let wm be the

shortest word on which the Turing machine has a computation with a crossing

sequence Cr = Cr(wm) of length at least m. In addition, the following argument

shows that the Turing machine does not halt in between the two identical crossing

sequences that make up the omitted section. Otherwise, the section cannot be

omitted.

This is because without loss of generality, there would be a situation where the

crossing sequence on the right would have as many forward and backward passes

while the one on the left have one more forward pass than backward pass. This

immediately means that the crossing sequences cannot be identical.

With that, we suppose now that on the contrary, all words wm exist, that is,

wm is not the shortest input. We want to arrive at a contradiction by showing

that there are no three identical crossing sequences in the word wm.
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Figure 1.4: There cannot be three identical crossing sequences in the word wm

Suppose the 3 identical crossing sequences Cr1, Cr2, Cr3 separate wm into 4

parts, uvxy and Cr the crossing sequence of length at least m in one of the sections

(see Figure 1.4). If Cr is not in the section v, then v can be omitted by pumping

down the word to give uxy. On uxy, some computation still has the crossing

sequence Cr. But |uxy| is shorter than |wm|. If Cr is in the section v, then the

pumping can be done on section x and |uvy| is still shorter than |wm|. Either way,

we get a contradiction. So we can say that on wm, the same crossing sequence can

occur at most twice.

Theorem 1.2.5. Given a one-tape Turing machine TM and constant c for which

every non-deterministic run on input of length n needs at most cn steps, then there

is a constant c′ such that every crossing sequence has at most length c′.

Proof. This result is also seen in [5] and [14]. By Theorem 1.2.4 and using the

same notations, we know that each crossing sequence Cr(wm) can occur at most

twice. Consider now 2 cases.

Case 1:

Suppose there exists a word x for infinitely many m such that wm = x. Then

computations on x can be arbitrarily long. This implies that the Turing machine

is not running in linear time.

Case 2:

Let d be such that there are at most dm crossing sequences of length m, d ≥ 8. This
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bound exists because for each crossing sequence, there are finitely many symbols.

For a given constant c, choose m such that

|wm| ≥ 4d3c+1

Now, half of the crossing sequences are of length longer that 3c. Therefore, the

runtime of Turing machine is at least |wm|3c2 . The runtime is scaled up by a

factor and so Turing machine does not run in time |wm| · c. This means that only

finitely many wm exist and hence the length of the crossing sequence must be

bounded.

1.3 Automata

Informally, an automaton works in a similar way to a Turing machine because

it reads an input and moves in the forward direction. However, this movement is

only in one direction over the input from left to right and it does not modify the

input. At the end of the input, the automaton either accepts or rejects the input.

1.3.1 Deterministic Finite Automata

Definition 1.3.1. A deterministic finite automaton is defined formally as a 5-

tuple DFA = (Q,Σ, δ, q0, F ) where

• Q is the (finite) set of states

• Σ is the (finite) set of symbols

• δ is the transition function: Q× Σ→ Q

• q0 is the start state of the automaton

• F ⊂ Q is the set of all final states
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Let qj be the state reached after the first j symbols x1x2 . . . xj of the input

string x. Upon reading the next symbol xj+1, the DFA makes a transition into

the new state δ(qj, xj+1) := qj+1. The DFA said to accept the input string if the

state reached after the last symbol xn, qf is in the set F of final states.

Because we are dealing with strings, one useful extension that is considered is

the transition function δ̂, that we call the extended transition function. Intuitively,

δ̂ is a multi-step version of δ. This function accepts input strings and not just

symbols (of a string) and goes directly from the start state to the final state.

Definition 1.3.2. The language accepted by a deterministic finite automaton is

the set L(DFA) = {x ∈ Σ∗ : δ̂(q0, x) ∈ F}.

1.3.2 Non-deterministic Finite Automata

Definition 1.3.3. A non-deterministic finite automaton is defined formally as a

5-tuple NFA = (Q,Σ, δ, q0, F ) where

• Q is the (finite) set of states

• Σ is the (finite) set of symbols

• δ is the transition function: Q×Σ→ P(Q), where P(Q) is the power set of

Q

• q0 is the start state of the automaton

• F ⊂ Q is the set of all final states

Because we are dealing with non-determinism, we need to consider a slight

variation of the extended transition function. For each S ⊆ Q, let δ̂(S, ε) = S and

define inductively for x ∈ Σ∗ and a ∈ Σ, δ̂(S, xa) :=
⋃
q∈δ̂(S,x) δ(q, a)

Definition 1.3.4. The non-deterministic automaton NFA accepts x if and only

if δ̂({q0}, x) ∩ F 6= ∅.
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1.4 Pumping Lemma

The main use of the Pumping Lemma is to prove that certain languages are

not regular.

Lemma 1.4.1. The Pumping Lemma states that if R is a regular language, then

there is a number p ∈ N which represents the pumping length, such that if a string

s ∈ R is of length at least p, then s may be divided into three shorter words

s = xyz, satisfying the following 3 properties:

1. for each i ∈ Z≥0, xyiz ∈ R

2. |y| > 0

3. |xy| ≤ p

Proof. Let DFA be a deterministic finite automaton (Q,Σ, δ, q0, F ) that accepts

R, and p = |Q|. Suppose s = t1t2 . . . tn ∈ L(DFA) and n ≥ p. One has

p+ 1 states︷ ︸︸ ︷
q0

t1−→ q1
t2−→ q2 . . . qp−1

tp−→ qp . . . qn ∈ F

By the pigeonhole principle, q0, q1, . . . , qp must have repeat states, that is, qj = qk

for some 0 ≤ j < k ≤ p. One can write the above as

q0
x−→ qj

y−→ (qk = qj)
z−→ qn ∈ F

where x = t1t2 . . . tj, y = tj+1tj+2 . . . tk and z = tk+1 . . . tn. Then one can see that

|xy| ≤ p and |y| > 0. Also, for every i ≥ 0, since one has

q0
x−→

i times︷ ︸︸ ︷
qj

y−→ qj . . .
y−→ qj

z−→ qn ∈ F

the automaton has to accept all words of the form xyiz, i.e. xyiz ∈ L(DFA).



14 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Remark 1.4.2. Note that one can in the above proof choose j, k such that n−p ≤

j < k ≤ n. Then the x, y, z selection satisfies s = xyz with the following 3

conditions:

1. for each i ∈ Z≥0, xyiz ∈ R

2. |y| > 0

3. |yz| ≤ p

This permits one to do pumping near the end of the word.



Chapter 2

Automatic Functions and Linear

Time

Informally, an automatic function is a function from strings to strings whose

graph is recognised by a finite automaton. More formally, this is based on the

notion of convolution. In this chapter, we will introduce the concept of convolution

of strings and proceed to show two key results between automatic functions and

one-tape Turing machines.

2.1 Convolution

Definition 2.1.1. Suppose x and y are two strings such that x = x1x2 . . . xm and

y = y1y2 . . . yn. Let x′ = x′1x
′
2 . . . x

′
r and y′ = y′1y

′
2 . . . y

′
r, where

i) r = max(m,n),

ii) x′i =

xi, if i ≤ m

#, otherwise

iii) y′i =

yi if i ≤ n

# otherwise

15
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Then the convolution of the two strings x and y is

conv(x, y) = (x′1, y
′
1)(x

′
2, y
′
2) . . . (x

′
r, y
′
r).

We can define the convolution of a fixed number of strings similarly in order to

define functions which have a fixed number of inputs instead of one. We can use

convolutions also to define functions with several inputs computed by one-tape

Turing machines. The exposition in this chapter just follows the basic case of

mapping strings to strings.

Definition 2.1.2. A function f is called automatic if and only if there is a deter-

ministic finite automaton which recognises the convoluted input-output pairs; that

is, given conv(x, y), the automaton accepts if and only if x is in the domain of f

and f(x) = y.

Note that in the above Definition 2.1.2, one could replace the requirement that

the automaton is deterministic by working with non-deterministic finite automata.

The class of functions defined would then be the same.

Theorem 2.1.3 states the importance of the concept of automatic functions and

automatic relations.

Theorem 2.1.3. Every function, which is first-order definable from finite number

of automatic functions and relations, is automatic again and the corresponding

automaton can be computed effectively from the other automata.

This gives the second nice fact that structures consisting of automatic functions

and relations have a decidable first-order theory. This is presented in [8] and [9].

Throughout the thesis, we only consider one-tape Turing machines where the

tape content before the computation is the input and the tape content after the

computation is the output. These Turing machines can be either deterministic

or non-deterministic. We define that a Turing machine computes a function f as

follows.
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Definition 2.1.4. We say that a (not necessarily deterministic) Turing machine

computes a function f if and only if the following two conditions are satisfied:

• for each x in the domain of f , there is a computation which replaces x on

the tape by the output f(x) and which halts.

• if a computation of the machine starts with input x on the tape and halts

with output y on the tape, then x is in the domain of f and f(x) = y.

Note that every deterministic Turing machine can by definition also be viewed

as a non-deterministic one, hence every function computed by a deterministic

Turing machine is also computed by a non-deterministic one satisfying the same

complexity bounds.

The main result of this chapter is that the following three models are equivalent:

• automatic functions

• functions computed in deterministic linear time by a one-tape Turing ma-

chine where input and output start at the same position

• functions computed in non-deterministic linear time by a one-tape Turing

machine where input and output start at the same position

This equivalence is shown in the following two results, where the first one gen-

eralises a remark in [3] stating that an automatic function can be computed in

linear time.

2.2 Automatic Functions and Deterministic Lin-

ear Time One-tape Turing machines

Theorem 2.2.1. Let f be an automatic function. Then there is a deterministic

linear time one-tape Turing machine which replaces any legal input x on the tape

by the output f(x) starting at the same position as x before.
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Proof. Assume that a deterministic automaton with c states (numbered 1 to c,

where 1 is the starting state) accepts a word of the form conv(x, y) · (#,#) if

and only if x is in the domain of f and y = f(x); the automaton rejects any

other sequence. Suppose input is x = x1x2 . . . xr. Now one considers the following

additional work-tape symbols consisting of all tuples (a, s1, s2, . . . , sc):

• a is # or one of xk’s

• for d ∈ {1, 2, . . . , c}, sd takes the values −,+ or ∗

The symbols −,+ and ∗ are used in 2 different ways. First, consider the k-th

cell:

• sd = − if and only if there is no word of the form y1y2 . . . yk−1 such that the

automaton on input (x1, y1)(x2, y2) . . . (xk−1, yk−1)
1 reaches the state d

• sd = + if and only if there is exactly one such word

• sd = ∗ if and only if there are at least two such words.

Now the Turing machine simulating the automaton replaces the cell to the left

of the input by o,2 the cell containing x1 by (x1,+,−, . . . ,−). Then, for each new

cell with entry xk (from the input or # if that has been exhausted) the Turing

machine replaces xk by (xk, s1, s2, . . . , sc) under the following conditions, (where

the entry in the previous cell was (xk−1, s
′
1, s
′
2, . . . , s

′
c)):

• sd = + if and only if there is exactly one (yk−1, d
′) such that s′d′ is + and

the Turing machine transfers on (xk−1, yk−1) from state d′ to d and there

is no pair (yk−1, d
′) such that s′d′ is ∗ and the Turing machine transfers on

(xk−1, yk−1) from d′ to d;

• sd = ∗ if and only if there are at least two pairs (yk−1, d
′) such that s′d′ is

+ and the Turing machine transfers on (xk−1, yk−1) from state d′ to d or

1Here the xi and yi can also be # when a word has been exhausted.
2Recall that this just marks the start position of the input on the tape.
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there is at least one pair (yk−1, d
′) such that s′d′ is ∗ and the Turing machine

transfers on (xk−1, yk−1) from d′ to d;

• sd = − if and only if for all pairs (yk−1, d
′) such that the Turing machine

transfers on (xk−1, yk−1) from d′ to d, it holds that s′d′ is −.

These 3 cases are mutually exclusive.

The Turing machine replaces each symbol in the input as above until it reaches

the cell where the intended symbol (a, s1, s2, . . . , sc) has sd = + for some accepting

state d. If this happens, the Turing machine memorises the state d, turns around,

erases this cell and goes backward.

When the Turing machine comes backward from the cell k + 1 to the cell k,

where the state memorised for the cell k + 1 is d′, then it determines the unique

(d, yk) such that sd = + (as stored in cell k) and the Turing machine transfers

from d to d′ on (xk, yk); now the Turing machine replaces the symbol on cell k by

yk (if yk 6= #) and by the blank symbol (if yk = #). Then the Turing machine

keeps the state d in the memory and goes to the left and repeats this process until

it reaches the cell which has the symbol o on it. Once the Turing machine reaches

there, it replaces this symbol by the blank and terminates.

For the verification, note that the output y = y1y2 . . . (with # appended)

satisfies that the Turing machine, after reading (x1, y1)(x2, y2) . . . (xk, yk), is always

in a state d with sd = + (as written in cell k + 1 in the algorithm above), as the

function value y is unique in x; thus, whenever the Turing machine ends up in

an accepting state d with sd = + then the input-output-pair conv(x, y) · (#,#)

has been completely processed and x ∈ dom(f) ∧ f(x) = y has been verified.

Therefore, the Turing machine can turn and follow the unique path, marked by

+ symbols, backwards in order to reconstruct the output from the input and the

markings. All superfluous symbols and markings are removed from the tape in

this process. As y depends uniquely on x, the Turing machine accepting conv(x, y)

can accept at most c symbols after the word x; hence the runtime of the Turing

machine is bounded by 2 · (|x|+ c+ 2), that is, the runtime is linear.
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Note that this deterministic Turing machine makes two passes: one from the

origin to the end of the word and one back. These two passes are needed as

guessing is not possible. To see this, consider the function f(x1x2 . . . xk−1xk) =

xk x2 . . . xk−1x1, where the first and last symbol are exchanged and the others

remain unchanged. For a deterministic one-tape Turing machine, one can observe

that this action of swapping the first and last symbol cannot be done in one pass.

2.3 Automatic Functions and Non-Deterministic

Linear Time One-tape Turing Machines

Theorem 2.3.1. Let f be a function computed by a non-deterministic one-tape

Turing machine in linear time, with the input and output starting at the same

position. Then f is automatic.

Proof. The proof is based on crossing sequences. We can also read about this in

[7].

Without loss of generality, one can assume that there is a special symbol o to

the left of the input occurring only there and that the automaton each time turns

when it reaches this position. Furthermore, it starts there and returns to that

position at the end. A computation accepts only when the full computation has

been accomplished and the automaton has returned to its origin o.

The proof method of the above result is done by showing that if it is computable

in time |x|, there is a constant c′ so that every computation visits each cell at most

c′ times, otherwise the function f would not be linear time computable. This is

possible by Theorem 1.2.5. This permits to represent the computation locally by

storing for each visit to a cell — the direction from which the Turing machine

entered the cell, in which state it was, what activity it did and in which direction

it left the cell. This gives, for each cell, only a constant amount of information

which can be stored in the cell using a sufficiently large alphabet.

Now a non-deterministic automaton can recognise the set {conv(x, y) : x ∈
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Figure 2.1: Non-deterministic Turing machine recognising conv(x, y)

dom(f) ∧ y = f(x)} by guessing on each cell, the local information of the visits

of the Turing machine. It compares it with the information from the previous

cell and checks whether it is consistent. So, suppose the input x = x1x2x3 . . . is

transformed to output f(x) = y = y1y2y3 . . . . The machine goes over the string

and at each time, it guesses the crossing sequence at the i-th cell Cri. It then

guesses the crossing sequence at the (i+ 1)-th cell Cri+1 and sees if the activities

match and whether xi+1 gets transformed to yi+1. This is only a finite amount of

information as the finite number of crossing sequences have finite length.

If you go from the left to right, the computation is that in each cell, it can

visit at most finitely many times. So the non-deterministic computation looks like

Figure 2.1.

The automaton passes over the full word and when it reaches the end, the ma-

chine should have reached an accepting state, somewhere along the computation.

This occurs when the input matches the output and the computation is verified

at every step from beginning to end. However, the computations are rejected

if there is inconsistency. As per all non-deterministic automata, there needs to

be at least one accepting run and this run corresponds to the non-deterministic

Turing machine that terminates. If there is a run with a wrong result, then the
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non-deterministic Turing machine cannot terminate and this implies that there

was a problem in the verification in the automaton. So the automaton accepts

conv(x, y) if and only if the non-deterministic computation transforms some input

of the form ox#∗ into some output of the form oy#∗.

During the verification process, certain conditions must be noted, namely, when

changing direction, the computation must move onto the next layer (see Figure

2.1)3 below the preceding computation, so that when reading the crossing se-

quences, one can read them off systematically in order of occurrence.

Lastly, the equivalence of the three models is seen as a result of Theorem 2.2.1

and Theorem 2.3.1.

2.4 Importance of the input-output start posi-

tion

One might ask whether the condition on the input and output starting at the

same position is really needed. The answer is “yes”.

Suppose that on the contrary, this condition is not needed and that all functions

linear time computable by a one-tape Turing machine without any restrictions on

output positions are automatic. Then one could consider the free monoid over

{0, 1}. For this monoid {0, 1}∗, the following function could be computed from

conv(x, y).

Let the output be

f(x, y) =

z if y = xz

# if such a z does not exist

For this, the machine just compares x1 with y1 and erases (x1, y1), x2 with y2 and

erases (x2, y2) and so on, until it reaches

3This just ensures that the states of the crossing sequences are represented in the right order.
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i) a pair of the form (xm, ym) with xm 6= ym

ii) a pair of the form (xm,#)

iii) a pair of the form (#, ym)

iv) the end of the input

In cases i) and ii), the output has to be # and the machine just erases all

remaining input symbols and puts the special symbol # to denote the special

case. In case iii), the value z is just obtained by changing all remaining input

symbols (#, yk) to yk and the Turing machine terminates. In case iv), the valid

output is the empty string and the Turing machine codes it adequately on the

tape. Hence f would be automatic.

But now one could first-order define concatenation g by letting g(x, z) be that

y for which f(x, y) = z; this would give that the concatenation is automatic, which

is known to be a false statement.

Proof. If f is automatic, then ∃c∀x[|f(x)| ≤ |x|+ c]. However, when we consider

the set
{
conv

(
x, f(x)

)
: x ∈ dom(f)

}
and use Lemma 1.4.1, we can see that

given any 2 strings x and y and a pumping constant c, there is the case when

the concatenation of these 2 strings might result in the difference between the

lengths of the input and output to be much larger than the pumping constant, i.e.

|x + y| − |x| >> c. However, the output of an automatic function can only be a

constant longer than the input. For any string y of arbitrary length, we are not

guaranteed of this condition. Hence concatenation is not automatic.

Thus, the condition on the starting-positions cannot be dropped.



Chapter 3

Automatic Functions as a Model

of Computation

The next model of computation studied is one that uses automatic functions

as primitive operations. We will name the model as AUTOFUNC and use the

abbreviation AF in the following definition.

Definition 3.0.1. AF[h(n)] defines the class of all functions which are computed

in the following machine model in O(h(n)) steps on input of length n.

Here a machine uses strings as data and can do instructions of the following

type:

• Assignments of the type “a = f(b, c)” where f is a fixed automatic function.

• Conditional branches of the type “If a ∈ R then go to ln1 ” where R is a

regular set.

• Unconditional jumps.

• The command halt.

Initially the input is in a fixed variable x and after the computation the output

is in a variable y. The machine can have any finite number of variables and the data

1ln will be defined later on in Proposition 3.1.1

24
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type of each variable is a string over a fixed alphabet. The steps of the machine

are interpreted in an obvious way, where the functions f for updating variable

values and the automatic relations R can have any fixed arity not exceeding the

number of variables.

For example, the function f(x) = xx is in AF [n]. The algorithm can be written

as

1. y = x.

2. z = x.

3. If z = ε then go to 7.

4. Append the first symbol of z at the end of y.

5. Remove the first symbol from z.

6. Go to 3.

7. Halt.

Note that the instructions in 4 and 5 can be written via automatic functions of

the form y = f(y, z) and z = g(z) where f(y, z) consists of y plus the first symbol

of z while g(z) consists of all symbols of z except the first one. The run-time is

O(n) as the program goes only n rounds through the loop from lines 3 to 6 where

n is the number of symbols in x.

A computation halts when the program reaches the halting state and a program

is an AF[h(n)] program only if there is a constant c such that the program reaches

the halting state for every input x ∈ {0, 1}n within h(n) · c+ c steps.

3.1 How AUTOFUNC works

A Turing machine carries out computations in the local sense. The usefulness

of AUTOFUNC is where one can directly process information from the function.



26
CHAPTER 3. AUTOMATIC FUNCTIONS AS A MODEL OF

COMPUTATION

One would use automatic functions as operations on the inputs and can do auto-

matic updates in one step. Thus each step of this model can do something more

intelligent than a Turing machine.

In this chapter, we would make a program which uses automatic functions to

manipulate its data and do its test (with finitely many string variables) and then

compare its complexity with other models of computation, in particular, DTIME

and NAF .

Proposition 3.1.1. Let Σ be the set of symbols. A function f is in AF [h(n)] if

and only if there are automatic functions F,G,H such that f is computed by the

algorithm

Input x and let z = F (x);

While G(z) 6= z, do z = G(z);

Let y = H(z) and output y

in a way that the inner loop is run at most h(n) times for input of the length n.

Proof. One direction is clear and follows by definition. If f ∈ AF [h(n)], then its

computational time must be of order O(h(n)) for an input of length n.

For the other direction, we need that the simulation uses the convolution of the

line number (ln) (for the counting of number of steps carried out) and also all vari-

ables involved as values for the configuration. Let z = conv(ln, x, y, z1, z2, · · · , zk)

represent the whole configuration of the machine that simulates the model AUT-

OFUNC. The function F (x) = (1, x, ε, ε, ε, · · · , ε) makes the initial configuration

with input x.

This algorithm can be written as a program, given as a list of numbered state-

ments. For example,

1. z1 = f1(x)

2. If R2(x, z1, z2), then go to 8.
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3. z3 = f2(z1, x)

4. z2 = max(z1, z3)

5. ...

6. ..

7. .

8. Halt

The function G is an updating function of the simulation.

G
(
conv(ln, x, y, z1, z2, · · · , zk)

)
=



Halt if ln = 8

conv(2, x, f1(x), z1, z2, · · · , zk) if ln = 1

conv(8, x, y, z1, z2, · · · , zk) if ln = 2

and R2(x, z1, z2)

conv(3, x, y, z1, z2, · · · , zk) if ln = 2

and ¬R2(x, z1, z2)

· · · · · · · · ·
...

This updating step is carried out until the While loop is void, i.e. the config-

uration does not change. Then the function H
(
conv(ln, x, y, z1, z2, · · · , zk)

)
= y

extracts the output y.

The inner loop runs as long as the algorithm executes a command, until Halt

is reach. Each update of G(z) uses up one step of the algorithm. Due to this

1-to-1 correspondence between the number of steps taken and the iterations of the

function G, we know that if the algorithm runs O(h(n)) times, then the While

loop runs O(h(n)) steps until it reaches a fixed point in the algorithm.
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For the following example, one can use the fact that one can implement bi-

nary addition, comparison and bit-wise “and” on natural numbers via automatic

functions.

Example 3.1.2. Suppose we have this program that computes the square of the

input x. The configuration (ln, x, y, z1, z2) has x = 0101 being the input to be read,

y being the output and z1 and z2 being the auxiliary variables.

Note that one in the field of automatic structures stores binary numbers in

reverse order, so 001 represents four and 0101 represents ten. This is the same for

z2
2. This is because the convolution of automatic functions reads from the left.

Hence we need to “reorder” the binary number such that the ones are read first

before the tens and so on.

This algorithm runs in O(n) steps and the program is as follows, with + being

binary addition operator.

1. z1 = x

2. z2 = 1

3. y = ε

4. If z2 is at a position of a 0 in x, then go to 7.

5. If |z2| > |x|, then go to 10.

6. If z2 is not at a position of a 0 in x, then y = y + z1.

7. z1 = z1 + z1

8. z2 = z2 + z2

9. Go to 4.

10. Halt.
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Figure 3.1: Example 3.1.2 - How the variables update as the algorithm runs

z2 plays the role of a pointer to indicate which symbol in x is being read at

each step. For example, when z2 = 001, then it is pointing at the third symbol of

x. The third symbol of x is a 0, which would bring us to step 4 in the algorithm.

When z2 = 00001, its length is longer than |x|, which leads us to step 5 and

subsequently the halting step 10. We can see from Figure 3.1 that the output is

finally 0010011, which in binary form 1100100 stands for one hundred, the square

of ten.

3.2 AF [1] ⊂ AF [log n]

We show in this section that if f /∈ AF [1], then f needs at least O(log n) steps.

Example 3.2.1. Consider the function fbin(x) that converts an input x of length

n into a binary number representing n.

We first show that this function is not automatic. We can see this by applying

Lemma 1.4.1 and refering to Remark 1.4.2

Input x = 1010︸︷︷︸
x1

01︸︷︷︸
x2

1︸︷︷︸
x3

has a length of 7

Output z = 111#︸ ︷︷ ︸
z1

##︸︷︷︸
z2

#︸︷︷︸
z3

has a length of 3

2The binary addition operation is carried out in the usual manner (with the none reversed
binary numbers).
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Let z = z1z2z3 be made up of 3 sections as seen above. We will do pumping

on the middle section x2 and z2. By Definitions 1.0.4 and 2.1.2, if a function is

automatic, then the set of all convolutions of inputs and outputs is regular. We

note that the input x is much longer than the output z. Hence in this regular set,

after pumping, we get

Input (pumped) x = 1010︸︷︷︸
x1

01︸︷︷︸
x2

01︸︷︷︸
x2

1︸︷︷︸
x3

has a length of 9

Output (pumped) z =

|fbin(x)|︷︸︸︷
111 #︸ ︷︷ ︸
z1

##︸︷︷︸
z2

##︸︷︷︸
z2

#︸︷︷︸
z3

has a length of 3

Only the input is modified. The output is not changed. Looking at z1z
∗
2z3, we

observe that the input gets longer but the output coded inside z is not modi-

fied, because only the number of # are increased, which do not affect overall the

output3.

Initially, the function is finite to one, that is, the function has finitely many

values that are mapped to the same output. Now, by pumping lemma, there can be

infinitely many inputs that go to the same output. We obtain thus a function that

is properly infinite to one. So there are infinitely many inputs that are mapped to

the same output. This shows that fbin(x) /∈ AF [1].

To see that fbin(x) ⊂ AF [log n], let the propositions

Podd(x) true if x has an odd number of 1’s

Pnull(x) true if x ∈ 0∗

Subsequently, define the following two functions

3The pumping can be placed at any position of the output, for this example, we pump at the
section z2.
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Figure 3.2: fbin(x) code

fhalf (x) =


the function that makes each (2k + 1)-th

position 1 to 0 for k ∈ N if |x| ≥ 2

1 if |x| = 1

fone(x) = 1|x|

The code for fbin(x) would be as seen in Figure 3.1.

Suppose the input

x = 1010011

When computed, fbin(x) first determines

y = fone(x) = 1111111

z = #|x| = #######

then carries out the following steps:
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• Step 1 -

Podd(y) = true

z = 1######

y = 0101010

• Step 2 -

Podd(y) = true

z = 11#####

y = 0001000

• Step 3 -

Podd(y) = true

z = 111####

y = 0000000

• Step 4 -

z = 111

which is the output and also the binary representation of 7, the length of input x.

This function runs in at least log n time.

Example 3.2.2. The sorting function fsort(x) that sorts symbols from the input

x ∈ {0, 1}∗ such that the number of each symbol remains the same but the output

is 0i1j where i+ j = |x|.

First we show that the sorting function is not automatic.

Proof. To see this, we can consider the sorting function with input 1n0n that will

be sorted to 0n1n with n larger than the pumping constant c. If we apply Lemma
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1.4.1 and pump the the front sections of the input and output, the number of 1s

of the input increases and the number of 0s of the output increases. That is, 1n+c

gets mapped to 0n+c.

However, we show that fsort can be done in O(log n).

Suppose that

x = 111010010001110110011111

The machine will first count with time O(log n) in the same way as in Example

3.2.1, the number of zeros and remember its binary code. For our choice of x,

there are nine 0’s so we get the binary representation 1001. Next the machine

copies the whole output but replaces the 0’s by 1’s, to get

111111111111111111111111

Based on the digits of the binary representation read from left to right, and

∀k ∈ N

• if the machine reads 1 in the binary representation, it replaces every (2k+1)-

th 1 by a 0

• if the machine reads 0 in the binary representation, it replaces every (2k)-th

1 by a 0

Start :1111111111111111111111111

Step 1 (binary digit read: 1) :0101010101010101010101010

Step 2 (binary digit read: 0) :0100010001000100010001000

Step 3 (binary digit read: 0) :0100000001000000010000000

Step 4 (binary digit read: 1) :0000000001000000000000000
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At Step 4, the machines recognises that there are indeed nine 0’s in front of the

first 1. What it does next is to replace all subsequent 0’s after the first 1 in Step

4 by 1’s to get

000000000111111111111111

The input is now sorted.

Based on Examples 3.2.1 and 3.2.2, since there are functions that can be done

in O(log n) which are not automatic, we conclude that AF [1] ⊂ AF [log n].

3.3 AF [log n] ⊂ DTIME[n log n]

We consider now the function fdl(x) = a2|x|, that produces an output that is

twice the length of the input x. Let’s first describe how a Turing machine that

counts up to twice the length of the input works.

Suppose the input alphabet consists of {a, b}. We denote the counting alphabet

by the set {0, 1} and counted in binary numbers. We start with a given input of

7 symbols. We use #s to mark the end of the input and all subsequent cells.

bbbbbbb#############

At each step, the head moves right by one position after changing each b to the

output a. This results in the same number of a’s as the number of steps carried

out so far. The next few cells will then be written with the counting alphabet

depending on the binary representation of the number of steps carried out so far.

In other words, these two symbols count how many digits have been processed

up to the current step. We can consider {0, 1} playing the role as the auxiliary

memory. What we want to see is that the last line has 14 a’s.

The process of the first seven steps is shown in Figure 3.2.

When the machine reaches the first #, the auxiliary memory starts to count

back down but its head continues to move forward in the same way as before,
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Figure 3.3: fdl(x) = a2|x| - Steps 1 to 7

Figure 3.4: fdl(x) = a2|x| - Steps 8 to 14

adding a’s to replace every # after each subsequent step. The machine stops

when the (counter) number has vanished. This occurs exactly at the 2|x|-th step

and at this step, one has exactly 2|x| a’s, in this case

aaaaaaaaaaaaaa

as seen in Figure 3.3.

For this particular Turing machine computing fdl(x), locally, each step requires

the counting of O(log n) of binary digits. This is because the operations are not

atomic and require several steps of the Turing machine which include reading,

erasing, writing etc. If there are n symbols in the input, there will be a total of

2n steps. Hence, the total run time of the computation is of order O(n log n).

In addition, we know that this function cannot be computed by a machine

using depth of O(log n) of concatenated automatic functions. This is because an

automatic function can increase the input by a length of a constant c number of
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symbols so that the output is n+c log n. This is not the case since we see that the

output of the function fdl(x) has a length 2n. Thus, it is not within the complexity

class of our model AF [log n]4.

Hence the function fdl(x) = a2|x| proves that it is not possible to speed up

the computation of f by our AUTOFUNC. Hence AF [log n] is a sub class of

DTIME[n log n].

Remark 3.3.1. The mode of counting can also be done in ternary and decimal

mode, as long as the counting alphabets are not part of the input alphabet. On the

other hand, using a unary counter would make the machine run back and forth in

time O(n), thus making the total run time quadratic O(n2).

3.3.1 Importance of the input-output start position

We have seen in section 2.4 that the significance of the having the input-

output position restriction. If a function does not have this restriction, then there

would be more movement of information if we want to move it back into the time

complexity class of O(n log n).

We first look at fdiff that starts by erasing some of the input symbols.5 Sup-

pose that we have an input of the form v2w with v ∈ {0}n and w ∈ {0, 1}n being

mapped to 2w; inputs without a 2 are mapped to the empty string. The output

is relocated compared to the input. The automatic function that can compute

this is the one that changes all symbols to a blank until either a 2 or a blank is

reached and then halts. This is done in linear time. The Turing machine that can

compute this also works in a similar way. It first erases the zeroes in front until

it reaches the 2 and stops the computation. This can also be done in linear time.

So fdiff ∈ AF [n] ∩DTIME[n].

4The observation that any function in AF [log(n)] maps inputs of length n to outputs having
at most length n+c log n+c′ was also observed by Chang Moqiao in her honours year project who
had studied a preliminary version of this thesis which did not explicitly use this proof method.

5Assume output strings are of a shorter length than the input strings.
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fdiff actually shows that the difference in starting positions of input and

output actually saves us computational time. Because if one has a function

fsame that wants the same starting positions for the input and output, then

it would carry out the computations as per fdiff and perform additional steps

due to the ‘shifting’ process. This extra work will render fsame /∈ AF [log n] and

fsame /∈ DTIME[n log n].

Without loss of generality, we assume that the starting position is at the front.

If we were to add another step to the output of the function fdiff to move the

output to the front, we observe that one needs to move the output n positions to

the start. There is no real way to reduce the computational time of this movement.

At most, the run time can be divided by a constant.

We show next how a one tape Turing machine that initially works by erasing

zeroes for example, would require Ω(n2) time if one wants to subsequently move

the output to the same position of the input.

Consider the function fsame now to be the function that takes an input

02m−12{0, 1}m and brings the last third of the input to the first third of the output

so that we have the restrictive model. They are both of length m. We use 2 as

the separating symbol in the string as before. So this time, we do not want to just

simply erase the front symbols.

To see that the computational time is of order Ω(n2). Observe that the last

third section of {0, 1}m has to move over the second third of the input. Both have

m number of symbols. Let m′ be such that m < m′ < 2m and Crm′ be the cross-

ing sequence at the m′-th cell. For each w ∈ {0, 1}m, we will look at the 3-tuple

(Crsm′ ,m
′, l), where Crsm′ is the shortest crossing sequence at the m′-th cell and of

length l.

Case 1:

∃v, w ∈ {0, 1}m with the same (Crsm′ ,m
′, l). Then a problem arises with the

convolution of input and output because there can be switching of the different
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Figure 3.5: fsame - Restrictive model requiring input and output starting at the
same position

parts and the function is subsequently not well-defined.

Case 2:

Suppose now that (Crsm′ ,m
′, l) are all different. Then there are m possible values

of m′, m possible values of l and for L, the longest crossing sequence amongst all

values of l for any string w ∈ {0, 1}m, cL possibilities for Crsm′ . Since there are 2m

number of strings w with each their own unique 3-tuple,

m · L · cL ≥ 2m

For large m, we can say that m ≤ 2
m
3 and L ≤ 2

m
3 . This is because we assume

that L is not growing exponentially, otherwise the computation will be at least
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linear.

2
2m
3 · cL ≥ 2m for some constant c

cL ≥ 2
m
3

L · log c ≥ m

3

L ≥ m

3 log c

So there is indeed a word w that produces crossing sequences with the condition

L ≥ m
3 log c

. Hence m
3 log c

can be a lower bound for all values of l. Since there are

at least m crossing sequences satisfying this lower bound, the whole computation

has a runtime of at least m2

3 log c
.

Since fsame is computed in time Ω(n2) by a Turing machine, it must be that

fsame /∈ DTIME[n log n]. By Section 3.3 of this chapter, we deduce that fsame /∈

AF [log n].

3.4 Non-deterministic Automatic Functions Com-

putation Model

Definition 3.4.1. The complexity class of NAF [h(n)] is the class of all functions

computable by the machine that uses automatic functions to manipulate its data

in a non-deterministic manner. The functions within this complexity class can be

computed in the order of O(h(n)).

The main difference between NAF and AF is that for NAF , one can make a

program with an additional step which guesses the value of a variable. However,

whichever the variable guessed, the algorithm has to terminate in O(h(n)) steps,

where n is the length of the input x and not any variable guessed. At each step,

the value of variables are updated with automatic functions. At the end of the

computation, the machine halts and accepts, or halts and rejects.
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For NAF [h(n)], given the set {conv(x, y, z) : x = input, y = output, z =

{accept, reject}},

• F is multivalued and the set {conv(input, output) : F (input) can be output}

is regular.

• For all x, there is a run ending with y = f(x) and z = accept.

• If the process terminates with conv(x, y, accept), then y = f(x)

• On input x ∈ Σn, no run takes longer than h(n) steps and conv(x, y, z) is

either conv(x, f(x), accept) or conv(x, y, reject)

Example 3.4.2. This is the same as Example 3.1.2 except that now, the non-

determinism would guess a satisfying assignment and the algorithm would verify

it. We need to add that G can take different values.

We can iterate G and after log n iterations or when G reaches a fixed point of

the form (x, y, accept) or (x, y, reject). In line number form, there are 2 special

line numbers, one for accept, one for reject corresponding to 2 possible fixed points

with halt, where the machine replaces the variable z with accept or reject.

3.4.1 AF [1] = NAF [1]

This result follows from Theorem 2.1.3.

For non-determistic computations, if there are constantly many steps, one can

guess for each of these steps, the intermediate results in the variable, that is, make

an existential quantifier and then verify that it matches with that of a determistic

computation. All computations are accepted, so everything runs in a consistent

manner. Hence, for any constant depth computation, they can be captured by

automatic functions. This permits a first order definition of the outcome. So

if one can non-deterministically guess the outcome, one can also do it without

non-determinism.
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This means that for constant level, non-determinism does not give something

more than one would have with just a deterministic machine. On the other hand,

we will see that for logarithmic levels, the non-determinism permits one to compute

things that a deterministic model cannot do.

3.4.2 AF [log n] ⊂ NAF [log n]

To show that the complexity class ofAF [log n] is a proper subset ofNAF [log n],

we will show that there exists a function that can be computed in NAF [log n]

which cannot be computed in time O(log n) by the AF model.

Proof. Consider the function fdl(x) = 12|x|. We will show that fdl(x) ∈ NAF [log n]\

AF [log n]. Suppose for example that the input is

11111111

so |x| = 8. The machine now guesses non-deterministically the number of 1’s there

are in the input and gives the following

11111111·11111111

The next few steps taken by the machine would be the deterministic verification

of the individual steps of the process that results in the Accept or Reject of the

computation. We start at 11111111·11111111, whereby the machine will first

convert every (2k + 1)-th digit 1, k ∈ N to a zero. Then it compares the parity of

1s before and after the the dot ·

If

(
number of 1s before the dot;

number of 1s after the dot

)
=



(
even and ≥ 2;
even and ≥ 2

)
, computation continues(

odd and ≥ 1;
odd and ≥ 1

)
, computation continues(

zero;
zero

)
, remove the dot ·

otherwise , Reject
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The process continues with every subsequent line until either a Reject is reached

or the machine sees

00000000· t t t t t t t t6

It then checks if every t is a 0 and if so, removes the dot · and Accept.

In the example given, this would be observed

11111111·11111111

01010101·01010101

00010001·00010001

00000001·00000001

00000000·00000000

0000000000000000

Accept

Suppose that the input is

11111

and that the machines guesses wrongly. One would observe for example

11111·11111111

01010·10101010

00010·00100010

Reject

In this case it is the parity of the number of 1s that do not match, causing the

rejection of the computation. This comes from the fact that the guessed number

of digits was wrong. In fact, for any non-deterministic incorrect guess that the

machine makes, it would only take at most log n steps for the machine to reach a

6We are not concerned at this point what symbols are at each t.



3.4. NON-DETERMINISTIC AUTOMATIC FUNCTIONS COMPUTATION
MODEL 43

Reject state.

Hence the function fdl(x) = 12|x| is indeed in the class NAF [log n]. And from

section 3.3, this same function would not be computable by the model of automatic

functions AF in time O(log n).

3.4.3 NAF [log n] and DTIME[n log n]

We now compare the 2 classes NAF [log n] and DTIME[n log n]. We will show

that one of them is not properly contained in the other.

If we have a NAF algorithm, we can simulate it with a non-deterministic

Turing machine NM because each step of NM is recognised by an NFA as to

whether the step is permitted by an automatic relation. For each step, it goes

log n times from the left end to the right end and back. Hence the length of its

crossing sequence has a depth of log n, but this is indeed too short. We need a

longer crossing sequence to realise the function we want to compute.

Example 3.4.3. If x is an input that has length 2m for some m ∈ N, then the out-

put f(x) = 14m, else, f(x) = ε. This is in NAF [log n] but not in DTIME[n log n].

The algorithm is as follows.

1. z1 = 1|x|

2. Guess for z2 a value from {1}∗.

3. If z1 ∈ {0}∗1 and z2 ∈ {0}∗1, then go to 10.

4. If z1 ∈ {0}∗1 and z2 /∈ {0}∗1, then go to 14.

5. If z1 ∈ {0, 1}∗{0}+ ∪ {ε}, then go to 12.

6. If z2 ∈ {0, 1}∗{0}+ ∪ {ε}, then go to 14.

7. Convert all first 1s in z1 to 0, keeping all second 1s.

8. Convert all first, second and third 1s in z2 to 0, keeping all fourth 1s.
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9. Go to 3.

10. Let y = 1|z2|.

11. Halt and Accept.

12. Let y = ε.

13. Halt and Accept.

14. Halt and Reject.

For this algorithm, the input at every step keeps every 2k-th position 1, 1 ≤

k ≤ n
2
. The output keeps every 4j-th position 1, 1 ≤ j ≤ n2

4
. This goes on until

the output reaches the form 0∗1. If this does not happen, the output is rejected.

If the input reaches 0∗10+, then the output would be ε. This algorithm is done

in log n time and its non-determinism is seen at step 2 where the guessing takes

place.

Example 3.4.4. Suppose we have an input of length n = 4m + r with r < 3.4m.

Consider the function that takes each i-th symbol and swaps it with the (n−i+1)-th

symbol. This is in DTIME[n log n] but not in NAF [log n].

We can construct a Turing machine that uses a larger alphabet than the input

alphabet. This permits the convolution of symbols of the tape and symbols of

the counter. So while keeping the symbol of the input on the first entry of the

convolution, it can use the second entry to count the number of symbols there

are. It counts with a counter with modulo base 4 to get the number m. It then

moves back to the beginning and since the counter has only log n digits, it takes

O(n log n) to move to the front. For the output, the Turing machine counts in

modulo base 2 instead and outputs 2m symbols. This can also be marked off in

O(n log n). The head then moves to the end of the word and erases every thing

up to the 2m-th symbol.
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Figure 3.6: Input xyz gets mapped to output ymixmi

This cannot be done in NAF (log n). Suppose we consider the output as 2

sections of length 2m−1 and the crossing sequence in the middle Cr (see Figure 3.5),

which we get upon doing the automatic function. It has at each non-deterministic

step, verifies with an automaton and goes back. Since we know

n < 4m.4

log n < 2m+ 2

For some constant c, Cr has a length of

c · log n = m · 2c

The section z of the input is erased, leaving only 2m−1 possibilities for charac-

ters on each half of the output string and hence 22m−1
many possible outputs that

must go over Cr when the inverting is done. However there are only c̃O(m) many

crossing sequences for some constant c̃ and for big m,

22m−1

> c̃O(m)

So indeed, the number of possible outputs will be more than the number of crossing

sequences the longer the input.
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Figure 3.7: Input x̃ỹz̃ gets mapped to output ỹmix̃mi

Figure 3.8: Input x̃yz gets mapped to output ỹmixmi

Suppose there is another input x̃ỹz̃ which outputs ỹmix̃mi (see Figure 3.6). If

Cr = C̃r, we have 2 different inputs with the same crossing sequence. Then we

can have x̃yz giving an output ˜ymixmi and this will be an accepting computation

also (see Figure 3.7).

This means that we can exchange the first half and keep the second half of the

word for this particular crossing sequence Cr. But by assumption, xy 6= x̃ỹ implies

x̃y 6= xỹ. This computation which is accepted is producing an incorrect output.

Hence this computation although accepted, is not doing what its supposed to do

and hence is not in NAF [log n].

This means that the crossing sequence in the middle must have a length of

order greater than O(log n). Hence NAF [log n] is not capturing everything that

can be done by DTIME[n log n].
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We have seen a function that can be done inNAF [log n] but not inDTIME[n log n]

in Example 3.4.3 and vice versa in Example 3.4.4. Hence the two models are not

comparable.

Remark 3.4.5. We also see that from Section 3.3 and Section 3.4.2 that AF [log n] ⊂

NAF [log n] ∩DTIME[n log n].

3.5 Some Open Questions

A lot of functions show how we can make outputs of certain lengths in one

model but not in the other model. However, we can add one more restriction in

trying to study and compare between different models of computation that require

the input and output to both have the same lengths.

• Is there f ∈ NAF [log n] \ AF [log n] with ∀x, |f(x)| = |x|?

• Is there f ∈ NAF [log n] \DTIME[n log n] with ∀x, |f(x)| = |x|?
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