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Abstract 

The Runt domain transcription factor RUNX3 is a prominent tumour suppressor in the 

gastrointestinal tract where it is required for proper proliferation and differentiation of 

gastric epithelial cells. These functions are partly elicited by mediating the tumour 

suppressive TGF-β/SMAD signaling and antagonising the oncogenic Wnt pathway. 

Consistent with these, immoralised Runx3
-/-

 gastric epithelial cells (GIF lines) are 

refractory to TGF-β1-induced apoptosis and are tumorigenic in nude mice, but not 

their Runx3
+/+ 

equivalents. In this study, we observed the spontaneous emergence of a 

tumorigenic and stem-cell like subpopulation, P2 through Epithelial-Mesenchymal 

Transition (EMT) in Runx3
-/-

 GIF-14 cells. Paradoxically, EMT was driven by 

aberrantly activated TGF-β signaling, suggesting that the loss of Runx3 render cells 

sensitised to the EMT-promoting functions of TGF-β. Interestingly, the P2 

subpopulation expressed markedly higher levels of Lgr5, a canonical Wnt target gene 

that is exclusively expressed in the pyloric gastric stem cells. Moreover, TGF-β1-

induced EMT reactivates Lgr5 which acts synergistically with Wnt3a to cause 

amplified activation of Lgr5. This observation was largely absent in Runx3
+/+

 GIF-13 

cells. Finally, the re-introduction of RUNX3 in GIF-14 cells strongly abrogated 

Wnt3a-induced Lgr5, reduced the P2 subpopulation and TGF-β1-activated EMT- and 

stemness-related genes such as Hmga2, Snai1 and Lgr5, confirming the negative roles 

of RUNX3 on EMT and stemness. Taken together, our data revealed that Runx3 

maintains gastric epithelial cell integrity and its absence causes sensitisation to Wnt 

and EMT-activating properties of TGF-β, resulting in increased cellular plasticity and 

the emergence of a tumorigenic, stem cell-like subpopulation. 
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1.1 The RUNX family of transcription factors 

The RUNX family of transcription factors plays pivotal roles in mammalian 

developmental processes (Ito, 1999).  The RUNX family is evolutionarily conserved 

from the nematode worm Caenorhabditis elegans to fruitfly Drosophila melanogaster 

and in mammals, indicating that RUNX proteins have pivotal functions even in the 

most primitive metazoan and unicellular holozoan (Sullivan et al., 2008; Sebe-Pedros 

et al., 2011). RUNX was initially discovered by independent groups to be a nuclear 

protein that binds to the enhancer elements of polyomavirus and Moloney murine 

leukemia viruses (Kamachi et al., 1990; Speck et al., 1990). It was found that the 

RUNX genes encoded the DNA-binding α-subunits of the heterodimeric transcription 

factor, known as polyomavirus enhancer-binding protein 2 or core-binding factor 

(PEBP2/CBF) (Ito, 2004). The founding member of the RUNX gene family is Runt, a 

Drosophila pair-rule gene that controls the segmentation in embryos and is required 

for neurogenesis and sex determination (Kania et al., 1990; Duffy et al., 1991; Duffy 

and Gergen, 1991; Ingham and Gergen, 1998). To date, three mammalian runt-related 

genes RUNX1, RUNX2 and RUNX3 have been characterised which play distinct 

biological roles during development and diseases. 
The RUNX family members share a high degree of sequence and structural 

homology where they contain a highly conserved 128-amino-acid Runt domain and a 

5- amino-acid VWRPY domain (Ito, 1999). The high level of sequence conservation 

reflects a crucial importance of these domains to the function of RUNX proteins. The 

Runt domain is critical for RUNX proteins to function as transcription factors as it 

confers sequence-specific DNA binding and dimerisation with their non DNA-

binding partner, core-binding factor β (CBFβ) (Kamachi et al., 1990). Although the 
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Runt domain can bind DNA independently, its binding affinity and hence 

transcriptional activity is greatly enhanced when dimerised with CBFβ (Ogawa et 

al.,1993; Ogawa et al., 1993). The VWRPY motif located at the carboxyl-terminal 

modulates the transcriptional activity of RUNX proteins by recruiting co-repressors 

such as the transducin-like enhancer (TLE)/Groucho (Levanon et al., 1994; Aronson 

et al., 1997).  

Studies in both Drosophila and mammalian systems suggest that RUNX 

proteins act as context-dependent transcription regulators, which either activate or 

repress gene expression by cooperating with different transcription factors or 

cofactors in specific cell or tissue types (Wheelers et al., 2000).  A classic example of 

synergistic interaction between RUNX proteins and other transcription factors is the 

cooperative DNA binding and transcriptional activation of T cell receptor and 

Moloney murine leukemia virus enhancer elements by RUNX1 and Est-1 (Wotton et 

al., 1994; Sun et al., 1995; Kim et al., 1999). RUNX1 also cooperates with Myb, 

PU.1 and C/EBPα transcription factors to transactivate various promoters and 

enhancers of the hematopoietic genes (Hernandez-Munain and Krangel, 1994; Zaiman 

and Lenz, 1996; Zhang et al., 1996; Britos-Bray and Friedman, 1997; Petrovick et al., 

1998). In other cases, RUNX proteins recruit co-repressors such as TLE/Groucho to 

transcriptionally repress hematopoietic and osteoblastic genes (Imai et al., 1998; 

Javed et al., 2000). Besides associating with co-repressors, RUNX1 interacts with 

p300/CREB-binding proteins (CBP) to recruit histone acetyltransferase, p300/CBP-

associating factor (P/CAF), resulting in epigenetic derepression of myeloperoxidase 

(MPO) during myeloid differentiation (Kitabayashi and Yokoyama et al., 1998). 

Being intricately involved in cell fate determination during development as prominent 
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regulators of gene expression, it is not surprising that the dysregulation of the Runt 

domain-containing genes are often associated with oncogenesis. 
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1.2 Important roles of RUNX genes in development and human cancers  

1.2.1 RUNX1 in hematopoiesis and human leukemia 

Amongst the most studied RUNX genes is Runx1, often regarded as the master 

regulator of adult hematopoiesis in vertebrates. Homozygous deletion of Runx1 in 

mice resulted in complete lack of fetal liver hematopoiesis suggesting that Runx1 is 

absolutely required for definitive hematopoiesis (Okuda et al., 1996; Wang et al., 

1996). In this context, Runx1 is indispensible for the emergence of the first 

hematopoietic stem cells (HSCs) from hematogenic endothelial clusters in the 

embryonic aorta-gonad-mesonephros (AGM) region (North et al., 1999; Yokomizo et 

al., 2001). Conditional targeting of Runx1 in adult mice led to an initial expansion of 

short term HSCs with limited self-renewal capacity, which was followed by stem cell 

exhaustion at a later stage (Ichikawa et al., 2004; Motoda et al., 2008; Jacob et al., 

2010). This is thought to be the result of compromised HSC-niche interactions (Jacob 

et al., 2010). HSCs exhibiting long term self-renewal activity would exit quiescence 

due to disrupted HSC-niche associations to become short term HSCs, eventually 

leading to stem cell exhaustion (Wang et al., 2010). These evidences indicate a role of 

Runx1 in maintaining HSCs in quiescence through a niche-related mechanism. These 

data also suggest that Runx1 deficiency triggers a pre-leukemic state by increasing the 

number of short term HSCs as a cell pool for further oncogenic alterations, leading to 

leukemia development (Growney et al., 2005; Putz et al., 2006). In further support of 

these observations, Runx1-deficient mice developed myelodysplastic syndrome and 

thymic lymphoma, indicating a precancerous condition (Putz et al., 2006). Apart from 

its function in adult HSCs, Runx1 is also essential for terminal differentiation of 

hematopoietic progenitors of the megakaryocytic and lymphocytic lineages (Ichikawa 

et al., 2004). During the development of T lymphocytes, Runx1 is required for active 
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repression of CD4 in CD4
-
CD8

- 
double negative immature thymocytes through direct 

binding to two Runx-binding motifs in the CD4 silencer (Taniuchi et al., 2002). It is 

apparent that Runx1 is involved in multiple levels of adult hematopoiesis from the 

maintenance of quiescent HSCs to defining proper differentiation programs towards 

the full range of hematopoietic lineages.  

Given its pivotal roles in mammalian hematopoiesis, RUNX1 is one of the 

most frequently disrupted genes in human leukemias (Look et al., 1997). Loss of 

RUNX1’s function due to chromosomal translocations and point mutations is featured 

strongly in various types of leukemias such as acute myelogenous leukemia, 

myelodysplastic syndrome, chronic myelogenous leukemia and childhood acute 

lymphoblastic leukemia (Nucifora et al., 1993; Mitani et al., 1994; Golub et al., 1995). 

Inactivation of RUNX1 predisposes patients to the development of leukemias upon 

further genetic mutations. Therefore, RUNX1 is a key regulator of embryonic and 

adult hematopoiesis where its disruption is strongly linked to leukemogenesis.  

 

1.2.2    RUNX2 regulates bone development  

RUNX2 is a major transcription factor required for bone formation in 

mammals. Genetic ablation of Runx2 resulted in impaired osteoblasts maturation and 

osteogenesis, leading to complete lack of bone formation. Therefore, Runx2
-/-

 mice die 

soon after birth from severe respiratory defects possibly caused by the absence of a rib 

cage (Komori et al., 1997; Otto et al., 1997). Consistent with this phenotype, Runx2 

regulates bone-specific genes such as osteocalcin and alkaline phosphatase during 

osteoblast differentiation from mesenchymal precursor cells (Ducy et al., 1999). 

Runx2 heterozygous mice displayed skeletal abnormalities resembling that of the 
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human congenital skeletal disorder, cleidocranial dysplasia. Importantly, loss-of-

function mutations in RUNX2 were found in patients suffering from this disease (Otto 

et al., 2002; Tessa et al., 2003; Xuan et al., 2008). In the context of cancer, RUNX2 

was reported to promote breast and prostate tumour growth, and their metastasis to the 

bone (Javed et al., 2005; Pratap et al., 2008; Das et al., 2009; Akech et al., 2010; Lim 

et al., 2010). Moreover, Runx2 cooperated strongly with c-myc to induce T-cell 

lymphoma in transgenic mouse models (Stewart et al., 1997).  

 

1.2.3    RUNX3 regulates neuron and lymphocyte development 

Compared to its other mammalian members, Runx3 is expressed in a relatively 

diverse cell types including the dorsal root ganglion neurons, hematopoietic cells and 

various epithelial organs including the lung, liver and the gastrointestinal tract. As a 

result, Runx3
-/- 

mice displayed abnormalities in these tissues such as motor 

discoordination, disrupted cytotoxic T lymphocyte function and hyperplasia in the 

gastrointestinal epithelium (Inoue et al., 2002; Levanon et al., 2002; Li et al., 2002; 

Taniuchi et al., 2002; Woolf et al., 2003; Ito et al., 2008). Runx3 controls the axonal 

projection of proprioceptive dorsal root ganglion neurons, and thus the deletion of 

Runx3 led to the loss of these cells and ataxia (Inoue et al., 2002; Levanon et al., 

2002). Distinct from the active repression of CD4 in CD4
-
CD8

- 
double negative 

immature thymocytes by Runx1, Runx3 is necessary for epigenetic silencing of CD4 

in CD4
-
CD8

+
 mature cytotoxic thymocytes (Taniuchi et al., 2002; Woolf et al., 2003). 

Runx3-null CD4
-
CD8

+ 
T cells, but not helper CD4

+
CD8

- 
T cells failed to proliferate 

and displayed defective cytotoxic activity, suggesting that Runx3 has critical 

functions in lineage specification and homeostasis of CD4
-
CD8

+
 lineage T 

lymphocytes (Taniuchi et al., 2002).  
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1.2.4 RUNX3 is a gastrointestinal tumour suppressor  

A function of Runx3 in the gastrointestinal epithelium was first implicated by 

the pronounced hyperplastic gastric epithelium of the Runx3-knockout mice. Further 

analysis revealed that the glandular stomach displayed excessive cell proliferation and 

inhibition of apoptosis in these epithelial cells (Li et al., 2002; Ito et al., 2008). The 

dysregulated proliferation and apoptosis experienced by gastric epithelial cells 

following the loss of Runx3 are consistent with its role as a tumour suppressor in this 

tissue type. However, the neonatal death of Runx3-deficient mice in C57BL/6 genetic 

background has hampered the detailed analysis of their phenotypes. To overcome this, 

a series of immortalised mouse gastric epithelial cell lines, termed GIF lines, were 

established from the entire stomach epithelia of Runx3
+/+

 and Runx3
-/-

 E16.5 fetuses 

in a p53
-/-

 background (Li et al., 2002). Concordant with the tumour suppressive 

properties of Runx3, Runx3
-/-

.p53
-/- 

embryonic GIF cell lines but not their 

Runx3
+/+

.p53
-/- 

equivalents formed tumours when transplanted in immuno-

compromised nude mice (Li et al., 2002).  

More recently, Runx3
-/- 

mice in BALB/c genetic background that survived up 

to one year were generated. Analysis of these mice revealed that spasmolytic 

polypeptide-expressing metaplasia (SPEM), a precancerous metaplasia developed in 

the gastric mucosa due to altered differentiation of the gastric epithelial cells (Ito et al., 

2011). As Runx3 is prominently expressed in pepsinogen-positive chief cells and 

Muc5AC-positive surface mucous cells, it may be involved in the differentiation of 

these lineages. Indeed, Runx3
-/- 

mice exhibited loss of chief cells and antralisation of 

the fundic stomach. This was likely consequent to a block in chief cell differentiation 

or trans-differentiation of chief cells into SPEM cells (Ito et al., 2011). Remarkably, 
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the induction of an intestinal phenotype with ectopic expression of the intestinal-

specific transcription factor Cdx2 was observed in the gastric mucosa of Runx3
-/- 

adult 

mice (Ito et al., 2011). These observations suggest that Runx3
-/- 

gastric epithelial cells 

possess a disrupted gastric epithelial identity and their differentiation in vivo is easily 

altered by extracellular morphogenetic cues. More importantly, Runx3
-/- 

SPEM was 

readily transformed into adenocarcinomas in the stomach by exposure to the 

carcinogen, N-methyl-N-nitrosourea (MNU), indicating that loss of Runx3 induces a 

pre-neoplastic condition in the stomach (Ito et al., 2011).   

Consistent with the disrupted differentiation in adult BALB/c Runx3
-/- 

mice, 

Runx3
-/-

.p53
-/-

 embryonic GIF cell lines displayed impaired cell-cell adhesion, 

epithelial cell polarity and altered differentiation in vitro. When cultured between 

collagen sheets, Runx3
+/+

.p53
-/-

 GIF lines readily formed simple columnar epithelia 

with glandular structures exhibiting intact cell-cell adhesion and apical-basal polarity 

(Fukamachi et al., 2004). In contrast, Runx3
-/-

.p53
-/- 

GIF lines under similar culturing 

conditions displayed altered differentiation as reflected in the inability to form 

glandular structures (Fukamachi et al., 2004). These phenotypes were attributed in 

part to the significantly reduced expression of tight junction proteins critical for cell-

cell adhesion, such as Claudin-1 which was discovered to be a positive target of 

RUNX3 in gastric epithelial cells (Chang et al., 2010). These data suggests that 

Runx3 is crucial for the proper differentiation into glandular epithelial sheet with 

established cell-cell adhesion and polarity in collagen cultures. As Runx3
-/-

.p53
-/- 

GIF 

cell lines formed tumours in nude mice, these tumours were analysed for their 

differentiation capacity. Akin to intestinalisation observed in adult BALB/c Runx3
-/- 

mouse stomachs, analysis of the tumours derived from nude mice and in vitro culture 
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in three dimensional matrigel revealed that Runx3
-/-

 GIF cell lines could trans-

differentiate into intestinal-type cells (Fukamachi et al., 2004). These observations 

indicate that Runx3
-/-

 gastric epithelial cells display cellular plasticity as they are 

prone to the influences of extracellular stimuli. 

The tumour suppressive activities of Runx3 revealed in the analysis of Runx3
-/-

 

mice are firmly supported by human clinical data. In human, loss of RUNX3 

expression is strongly correlated to the genesis and progression of gastric cancer. 

Silencing of RUNX3 was observed in more than 80% of primary gastric tumours and 

gastric cancer cell lines due to hemizygous deletions, promoter hypermethylation and 

protein mislocalisation in the cytoplasm (Li et al., 2002; Ito et al., 2005). Moreover, 

RUNX3 inactivation was also prevalent in human colorectal carcinomas in which 

RUNX3 was silenced in 40% of primary colorectal tumours and 60% of colorectal 

cancer cell lines (Ito et al., 2008). In addition, downregulation of RUNX3 was 

frequently observed in intestinal metaplasia (IM) which is often regarded as a 

precancerous state in gastric cancer (Li et al., 2002). Similarly, inactivation of 

RUNX3 induced intestinal adenomas in both human and mice, which provided 

favourable conditions for the progression of these adenomas to malignant 

adenocarcinomas (Ito et al., 2008). Together, these mouse and human data strongly 

argue that RUNX3 functions as a tumour suppressor in the gastrointestinal tract, 

where its disruption appears to be a key event in early gastrointestinal carcinogenesis.  
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1.3 The involvement of RUNXs in major signaling pathways 

1.3.1 RUNXs are integral components of the TGF-β/SMAD signaling cascade 

Transforming growth factor-β (TGF-β) is a family of multifunctional 

cytokines that regulate growth, differentiation, apoptosis, matrix accumulation and 

motility of many cell types (Blobe et al., 2000). TGF-β acts as a potent inhibitor of 

cell growth in hematopoietic cells, endothelial cells and epithelial cells, whereas it 

stimulates the growth of mesenchymal cells (Derynck et al., 2001). Members of the 

TGF-β superfamily consist mainly of TGF-βs, activins and bone morphogenetic 

proteins (BMPs). The binding of these TGF-β ligands results in the formation of type 

I and type II receptor heterodimeric complex which leads to the activation of 

downstream effectors of the SMAD family. The receptor-activated SMADs (R-

SMADs) become phosphorylated and associate with SMAD4 (Co-SMAD) and 

translocate to the nucleus to regulate transcription of target genes together with other 

transcription factors (Feng and Derynck, 2005; Massague et al., 2005). SMAD2 and 

SMAD3 serve as R-SMADs transducing the TGF-β/activin-like signals while 

SMADs 1, 5 and 8 act as R-SMADs mediating BMP-like signals (Miyazono et al., 

2004). The roles of TGF-β family members in carcinogenesis are complex as they 

demonstrate both tumor suppressive and oncogenic potentials. In the current paradigm, 

the tumour suppressive function of TGF-β dominate in normal tissues and in early 

stages of cancer, but in advanced cancers, changes in TGF-β expression and cellular 

responses tip the balance in favor of its oncogenic activities (Derynck et al., 2001). 

These are supported by the implication that activated TGF-β signaling promotes 

cancer progression and metastasis via epithelial-mesenchymal transition (EMT), 

angiogenesis and immuno-suppression (Wakefield and Roberts, 2002). 
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Interestingly, some of the biological functions of the TGF-β cytokines are 

similar to those of RUNX proteins. Indeed, all three RUNXs have been shown to 

physically interact with R-SMADs (Hanai et al., 1999). For instance, RUNX3 

interacted with Smad2 and Smad3 to cooperatively activate germline immunoglobulin 

constant α (IgCα) promoter to direct class switching to IgA in B lymphocytes (Hanai 

et al., 1999; Pardali et al., 2000). During BMP-induced osteoblastic differentiation, 

the physical interaction between Runx2 and BMP-specific Smad1 and Smad5 

synergistically activated osteoblast-specific gene expression in pluripotent 

mesenchymal precursor cells (Lee et al., 2000). Importantly, impaired RUNX2-

SMAD interaction due to mutations in RUNX2 may contribute to the pathogenesis of 

cleidocranial dysplasia (Zhang et al., 2000). In contrast to the synergy between 

RUNXs and SMADs on their target genes, the association of Runx2 and TGF-β-

specific Smad3 led to transcriptional repression of osteoclacin, and thus inhibited 

osteoblast differentiation (Alliston et al., 2001). Based on these evidences, RUNX 

proteins act as nuclear effectors of the TGF-β signaling pathway through the 

formation of complexes with specific R-SMADs to control transcription in a context 

dependent manner. 

TGF-β/SMAD signaling cascade is one of the central pathways that controls 

the growth and differentiation of gut epithelial cells (Mishra et al., 2005). The role of 

TGF-β signaling as a tumour suppressor pathway in the gastrointestinal tract is best 

illustrated by the prevalent inactivating mutations in several components of the TGF-

β signaling cascade such as the type II TGF-β receptor and SMAD4 in gastrointestinal 

cancers (Park et al., 1994; Markowitz et al., 1995; Lu et al., 1996; Howe et al., 1998; 

Xu et al., 2000). In gastric epithelial cells, RUNX3 mediates the tumour suppressive 



13 

 

effect of TGF-β by cooperating with R-SMADs to activate the transcription of the 

negative regulator of cell cycle, p21
WAF/Cip1 

and proapoptotic gene, BIM (Chi et al., 

2005; Yano et al., 2006; Ito, 2008). Concordant with this, Runx3
-/-

.p53
-/- 

GIF cells 

were resistant to TGF-β1-induced growth arrest and apoptosis (Li et al., 2002). 

Therefore, it appears that an important part of the tumour suppressor function of 

RUNX3 is achieved through the modulation of the TGF-β pathway. 

 

1.3.2 RUNX3 attenuates the oncogenic Wnt signaling pathway 

In mammals, the canonical Wnt pathway is critical in cell fate determination 

in embryogenesis and orchestrates self-renewal in various tissues (Clevers, 2006). 

Wnt signaling promotes the stabilisation of cytoplasmic β-catenin through functional 

deactivation of glycogen synthase kinase-β (GSK3β) which phosphorylates β-catenin. 

As a result, unphosphorylated β-catenin is translocated to the nucleus to stimulate the 

transcription of Wnt target genes by interacting with the T-cell factor (TCF) or 

lymphoid enhancer-binding factor (LEF) transcription factors (Bienz and Clevers, 

2000). The critical role of Wnt/TCF4/β-catenin signaling in intestinal homeostasis is 

best demonstrated by the phenotype of homozygous Tcf-4 knockout mice. Strikingly, 

the proliferative stem cell compartment was entirely absent in the small intestines of 

Tcf-4
-/- 

neonatal mice, suggesting that Wnt/TCF4/β-catenin pathway is necessary for 

the maintenance of crypt stem/progenitor cells in intestinal epithelium (Korinek et al, 

1998). Recently, a new pool of intestinal stem cells, the crypt base columnar (CBC) 

cells marked by the Wnt target gene, leucine-rich repeat-containing G-protein 

coupled receptor 5 (Lgr5) has been characterised (Barker et al., 2007). Lineage 

tracing experiments using Lgr5-EGFP-IRES-creERT2.Rosa26-lacZ compound mice 
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revealed that Lgr5-positive cells gave rise to all lineages of the intestinal epithelium 

and maintained the epithelia self-renewal over a long period of time (Barker et al., 

2007). Subsequently, Lgr5 was reported to demarcate an analogous stem cell 

compartment in the pyloric stomach (Barker et al., 2010). This was supported by the 

ability of single Lgr5-positive cells to form intestinal/gastric three-dimensional 

organoid structures, resembling those of normal gastrointestinal epithelium (Sato et 

al., 2009; Barker et al., 2010).  

As a major growth factor pathway, the dysregulation of Wnt signaling is 

strongly implicated in gastrointestinal cancers (Clevers, 2006). Constitutive activation 

of the Wnt pathway, either through the inactivation of the adenomatous polyposis coli 

(APC) complex or gain of oncogenic mutations in β-catenin results in the aberrant 

stabilisation and nuclear accumulation of β-catenin (Kinzler and Vogelstein, 1996; 

Bienz and Clevers, 2000). In mouse, this phenomenon is readily reproduced and 

studied in the Apc
min/+

 transgenic mouse model, which carries a heterozygous 

mutation at codon 850 of the Apc tumour suppressor gene (Moser et al., 1992). The 

Apc
min/+ 

mice developed intestinal adenomas spontaneously, which bears close 

resemblance to the phenotype of aged BALB/c Runx3
+/- 

mice (Moser et al., 1992, Ito 

et al., 2008). RUNX3 functions as an attenuator of the Wnt pathway and this was 

reflected in the increased intestinal tumour incidence and mass in Runx3
+/-

.Apc
min/+ 

compound mutant mice (Ito et al., 2008). Consistent with this, increased Wnt 

signaling activity was observed in BALB/c Runx3
-/- 

gastrointestinal epithelium as 

reflected in the upregulation of Wnt target genes such as c-Myc, cyclinD1, EphB2 and 

CD44 (He et al., 1998; Tetsu and McCormick, 1999; Batlle et al., 2002; van de 

Wetering et al., 2002). Due to aberrant activated Wnt signaling in the intestinal 
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epithelium, paneth cells were mislocated from their normal positions at the base of the 

crypt, indicative of profound disruptions to intestinal differentiation (Ito et al., 2008). 

The molecular mechanism underlies the antagonist effects of RUNX3 on Wnt 

signaling is through a direct interaction with the TCF4/β-catenin complex, thus 

revealing a new aspect to its role as a gastrointestinal tumour suppressor.  
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1.4 Understanding the interplay between RUNX3, TGF-ββββ and Wnt 

It is known that the disruption of key regulators of cell proliferation, apoptosis 

and differentiation would lead to the development of gastrointestinal cancers. The 

transcription factor RUNX3 appears to be one such important player which intersects 

multiple key signaling pathways to regulate gene expression. Earlier studies have 

shown that the inactivation of Runx3 in mice would result in defective cell 

proliferation, apoptosis and differentiation in the gastrointestinal epithelium, due to 

the dysregulation of TGF-β and Wnt signaling pathways, rendering them 

precancerous conditions (Li et al., 2002; Ito et al., 2008; Ito et al., 2010). Despite 

these findings, the precise changes in the cell biology of gastric epithelial cells due the 

loss of RUNX3 and how they contribute to tumorigenicity are not fully understood. 

To investigate this, the Runx3
+/+

.p53
-/-

 and Runx3
-/-

.p53
-/-

 gastric epithelial cell lines, 

which have been partially characterised in earlier studies can be used (Li et al., 2002; 

Fukamachi et al., 2004). An important feature of the Runx3
-/-

 GIF lines is that they are 

weakly tumorigenic when transplanted into nude mice, unlike their Runx3
+/+

 

counterparts which do not produce tumours. However, individual GIF cell lines were 

each established from a whole fetal stomach epithelia that consisted a mixture of cell 

types and had not gone through clonal selection. Therefore, they are heterogeneous in 

nature. This heterogeneity is compounded by additional genetic and epigenetic 

changes gained during extended in vitro culture in the absence of p53. As such, 

distinct subpopulations exist within individual Runx3
-/- 

GIF cell lines and the observed 

tumorigenicity may be restricted to specific subpopulations. This study aims to 

identify the tumour-initiating cells within these Runx3
-/- 

GIF cells. This will be 

followed by a thorough interrogation of the identified tumorigenic cell population to 
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generate novel insights into the molecular basis of their tumorigenicity and its 

relationship with Runx3. 
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1.5 Experimental aims 

1. To identify the tumorigenic subpopulation within the Runx3
-/-

.p53
-/-

 GIF-14 

gastric epithelial cells. 

 

2. To investigate the cause of the appearance of this subpopulation and the 

involvement of TGF-β and Wnt signaling pathways. 

 

3. To demonstrate the negative role of Runx3 in the emergence of the 

tumorigenic subpopulation.  
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CHAPTER2 

Materials and methods 
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2.1 Cell culture and growth factor treatments 

Murine gastric epithelial cell lines GIF-5, GIF-9, GIF-13, and GIF-14 were 

previously established from E16.5 Runx3
+/+

.p53
-/-

 and Runx3
-/-

.p53
-/-

 embryonic 

stomachs by Fukamachi (Fukamachi et al., 2004). They were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen, CA, USA) supplemented 

with 4500mg/L glucose, 10% fetal bovine serum (FBS), 100 U/ml penicillin and 

100µg/ml streptomycin antibiotics (Hyclone, UT, USA). The cells were sub-cultured 

in 10-cm or 6-cm tissue culture dishes at 1:10 (Nunc A/S, Roskilde, Denmark), and 

maintained at 37
o
C in a humidified atmosphere containing 5% CO2. To activate TGF-

β pathway, cells were treated with 2.5ng/ml of human recombinant TGF-β1 (R & D 

systems, MN, USA) for the indicated periods prior to Hoechst 33342 staining, 

antibody staining and/or quantitative RT-PCR. TGF-β signaling was inhibited using 

10µM of small molecule TGF-β inhibitor, SB431542 (Sigma-Aldrich, MO, USA). To 

activate Wnt pathway, cells were treated with control- or Wnt3a-conditioned medium 

(Cm) for 15h prior to analysis. To study the contribution of various growth factors, 

cells were treated with 10ng/ml of murine recombinant epidermal growth factor 

(EGF), 10ng/ml of human recombinant EGF, 10ng/ml of human recombinant basic 

fibroblast growth factor (bFGF) and 10ng/ml of human recombinant FGF10 

purchased from PeproTech (NJ, USA) and 10ng/ml of human recombinant hepatocyte 

growth factor (HGF) purchased from Merck Biosciences-Calbiochem (NH, UK) prior 

measurement of transcriptional changes by quantitative RT-PCR. 
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2.2 Production of Wnt3a-conditioned medium  

Wnt3a- and control-conditioned media (Cm) were prepared following protocol 

described in Willert et al., 2003. Mouse L-cells producing secreted Wnt3a ligand and 

the parent L-cells were obtained from American Type Culture Collection (ATCC). 

They were cultured in DMEM supplemented with 4500mg/L glucose, 10% FBS, 100 

U/ml penicillin and 100µg/ml streptomycin antibiotics (Hyclone, UT, USA). Cells 

were passaged 1:10 in 15-cm tissue culture dishes and grown to confluency for 4 days. 

The first harvest of conditioned media was collected, and cells were washed with 

phosphate buffered saline (PBS) prior to addition of 15ml of fresh culture media. The 

second harvest of conditioned media was collected three days later, and mixed with 

media from the first harvest, prior to filter-sterilisation with a 0.45µm filter. 

Conditioned media was kept in -80°C for long term storage. 

 

2.3 Hoechst 33342 and surface antigen staining  

Cells were stained with Hoechst 33342 (Sigma-Aldrich, MO, USA) according 

to Goodell et al., 1996. Briefly, GIF cell lines were trypsinised and resuspended in 

DMEM supplemented with 4500mg/L glucose, 2% FBS, 10mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES; Invitrogen, CA, USA) and 10µg/ml Hoechst 

33342 in the presence or absence of 0.2mM verapamil (Sigma-Aldrich, MO, USA) at 

10
6 

cells/ml. Cells were incubated at 37
o
C for 90min with regular mixing. Cells were 

then resuspended in pre-chilled Hanks’ balanced saline solution (HBSS; Invitrogen, 

CA, USA) containing 2% FBS and 10mM HEPES and subjected to flow cytometry 

analysis. For experiments involving co-staining of surface antigens, cells were stained 

by Hoechst 33342 prior to immunostaining with fluorochrome-conjugated antibodies 

against various surface antigens, primarily EpCAM and CD133. Cells were incubated 
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with anti-EpCAM-phycoerythrin-cyanine (PE-Cy7) (Biolegend, CA, USA; catalogue 

number: 118215) and anti-CD133-phycoerythrin (PE) (Miltenyi Biotec, CA, USA; 

catalogue number: 130-092-334) mouse monoclonal antibodies at 1:100 dilution on 

ice for 10min in dark. The staining procedure was carried out in 50ul and the binding 

reaction was quenched with 1ml of PBS.  

 

2.4 Flow cytometry analysis and fluorescence-activated cell sorting (FACS) 

Cells stained by Hoechst 33342 and/or flurochrome-conjugated antibodies 

were counterstained with 1µg/ml of propidium iodide (PI) before analysis and/or 

FACS enrichment on FACSVantage
TM 

cell sorter (BD Biosciences, CA, USA) or 

FACSAria Special Order cell sorter (BD Biosciences, CA, USA) or LSRII Special 

Order (BD Biosciences, CA, USA). Hoechst 33342 dye was excited by 350nm UV 

laser and its fluorescence was measured at two wavelengths using 450/20nm band-

pass (BP; Hoechst blue) and 675nm long-pass (LP; Hoechst red) optical filters. 

Fluorescence signals of EpCAM-PE-Cy7 and CD133-PE were measured by 

785/50nm and 585/42nm detectors on FACSVantage
TM

 or LSRII Special Order. The 

same machines were used to enrich or analyse lentivirus-infected cells that express 

enhanced green fluorescent protein (EGFP), measured by 530/30nm detector. Flow 

cytometry data were analysed using the FlowJo computer software (Tree Star, OR, 

USA).  
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2.5 Purification of RNA 

Cells were washed with PBS and resuspended in 350µl of RLT lysis buffer 

containing 1% β-mercaptoethanol. RNA extraction was performed using RNeasy 

Mini Kit and RNase-free DNase Set (QIAGEN, Hilden, Germany) following 

manufacturer’s protocol. Briefly, cell lysates were homogenised by vortexing for 1 

minute, followed by addition of 70% ethanol and transferred to RNeasy spin column. 

On column digestion of genomic DNA was carried out using 80µl of DNase I 

incubation mix. The spin column was then washed with buffers RW1 and RPE, 

followed by a final spin to remove residual ethanol. RNA was subsequently eluted in 

30-50µl of RNase-free water and quantified by NanoDrop 1000 Spectrophotometer 

(Thermo Fisher Scientific, MA, USA).  

 

2.6 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

Complementary DNA (cDNA) was synthesized from 0.1-1.0µg of total RNA 

using Omniscript reverse transcription (RT) kit (QIAGEN, Hilden, Germany) in a T3 

Thermocycler (Biometra, DE UK). The reaction mixtures were incubated at 37
o
C for 

70min and the Omniscript reverse transcriptase was inactivated at 95
o
C for 5min. 

Quantitative PCR was performed in 7500 Real-time PCR system using 1µl of cDNA 

and TaqMan Universal PCR Master Mix or Power SYBR Green Master Mix (Applied 

Biosystems, CA, USA). TaqMan gene expression probes for Lgr5 and Gapdh are 

Mm00438890_m1 and Mm99999915_g1 respectively. The list of gene-specific 

oligonucleotide primers used for SYBR Green-based measurements are shown below.  
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Table 2.1. List of SYBR Green primers for qRT-PCR. 

 

2.7 Nude mice transplantation assay 

BALB/c female nude mice were purchased from Biopolis Resource Centre 

(BRC; A*STAR, Singapore) and all procedures performed were in accordance with 

BRC Institutional Animal Care and Use Committee guidelines. GIF-14 clonal lines or 

FACS-purified cells were resuspended in 200µl of PBS and were injected 

subcutaneously into 7-8 weeks or 12-13 weeks old immuno-compromised nude mice. 

Tumour development was monitored weekly and the tumour sizes were scored. The 

diameters of the tumours were determined using rulers and the tumour volumes were 

calculated by the formula 4/3πr
3 

where r represents the radius of tumour. Animals 

were culled when tumour sizes reached 15mm in diameter.  
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2.8 Soft agar colony assay 

FACS-isolated cells were suspended in DMEM supplemented with 0.4% 

agarose and 10% FBS, and seeded at clonogenic densities over a basement layer of 

0.6% agarose. The experiments were set up in 6-well plates at 200,000 and 500,000 

cells/well in triplicates. Colonies of ≥150µm in size were scored after 3 weeks of  

culture at 37
o
C in a humidified atmosphere containing 5% CO2. Photographs of 

representative colonies were taken using Nikon Eclipse TS100 phase-contrast 

microscope (Nikon Corporation, Tokyo, Japan). 

 

2.9 Sphere-forming assay 

FACS-enriched cells were seeded at clonogenic densities in 6-well ultra-low 

attachment plates (Sigma-Aldrich, MO, USA) at 2500 cells/well. The cells were 

cultured in serum-free DMEM:F12 medium (Invitrogen, CA, USA) consisting of 

20ng/ml of human recombinant EGF (PeproTech, NJ, USA), 10ng/ml of human 

recombinant bFGF (Invitrogen, CA, USA), 1x B27 (Invitrogen, CA, USA), 1x N2 

(Invitrogen, CA, USA), 1ng/ml of hydrocortisone (StemCell Technologies, CA, USA), 

5µg/ml of insulin (Invitrogen, CA, USA) and 0.4% bovine serum albumin (BSA) 

Fraction V (Sigma-Aldrich, MO, USA). Methylcellulose (Sigma-Aldrich, MO, USA) 

was added to a final concentration of 0.1-1.0% to prevent cell aggregation. The 

number of spheres/well were counted at the indicated time after culturing. To generate 

secondary spheres, primary spheres were harvested by centrifugation at 500rpm for 

2min and dissociated to single cells by TrypLE Express (Invitrogen, CA, USA) for 7-

10min. Digestion was inactivated by DMEM supplemented with 0.4% BSA. The cells 

were sieved through 40µm nylon mesh (BD Biosciences, CA, USA) and seeded at 

2500 cells/well in sphere medium. Images of representative spheres were captured 
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using Nikon Eclipse TS100 phase-contrast microscope (Nikon Corporation, Tokyo, 

Japan). 

 

2.10 Time-lapse videomicroscopy 

FACS-purified P1 and P2 cells were seeded at clonogenic densities on 25mm 

glass cover slips (Marienfeld Superior, Lauda-Koenigshofen, Germany) or low 

evaporation 6-well plates (BD Biosciences, CA, USA). Following colony formation, 

the glass cover slips were transferred to Sykes Moore (BellCoGlass, NJ, USA) 

chamber with complete CO2-independent medium (Invitrogen, CA, USA), while 

those grown in 6-well plates were replenished with standard growth medium. Sykes-

Moore microperfusion chamber or 6-well plate was placed into a culture chamber 

(PeCon, Erbach, Germany) and mounted on Nikon Ti Eclipse microscope (Nikon 

Corporation, Tokyo, Japan) and maintained at 37
o
C and 5% CO2 throughout the 

experiment. Colonies on glass slips and 6-well plates were visualised at 100x 

magnification by differential interference contrast (DIC) microscopy or phase contrast 

microscopy respectively. DIC images of P1 and P2 colonies were captured by a HQ2 

CCD camera (Photometrics, AZ, USA) at 3min intervals over 18h. For samples 

subjected to TGF-β1 treatment, DIC and phase contrast images of P1 colonies were 

captured before and after 2.5ng/ml of TGF-β1 treatment at 5min intervals for the 

indicated timeframes. These images were processed using Metamorph (Molecular 

Devices, CA, USA) and VirtualDub (http://www.virtualdub.org/) softwares for the 

construction of time-lapse movies.  
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2.11 Immuno-fluoresent staining 

P1 and P2 colonies were generated on coverslips by seeding cells at 

clonogenic densities. Once the colonies were formed, P1 colonies were pre-treated 

with 10µM of TGF-β inhibitor, SB431542 (TOCRIS Bioscience, Bristol, UK) for 15h 

prior to 48h of TGF-β1 treatment at 2.5ng/ml. Colonies were fixed using 4% 

paraformaldehyde and permeablised with 0.5% Triton X-100. After blocking with 1% 

BSA, the colonies were incubated with anti-β-catenin (Sigma-Aldrich, MO, USA; 

clone 6F9; catalogue number: C7082), anti-desmoplakin (Millipore, MA, USA; clone 

DP2.15; catalogue number: CBL173), anti-Smad2/3 (BD Transduction, CA, USA; 

clone 18; catalogue number: 610843), or anti-phospho-Smad2/3 (Santa Cruz, CA, 

USA; catalogue number: sc-11769-R) primary antibodies at 1:200 dilution for 1h at 

room temperature. This was followed by addition of Alexa Fluor 488-conjugated anti-

mouse (Invitrogen, CA, USA; catalogue number: A-11001) or Cy3-conjugated anti-

rabbit (Invitrogen, CA, USA; catalogue number: 10520) secondary antibodies at 

1:500 dilution for 45min at room temperature. F-actin was visualised using phalloidin 

conjugated to Alexa Fluor 350 (Invitrogen, CA, USA; catalogue number: A22281) at 

1:50 dilution. The stained colonies were mounted on glass slides using ProLong Gold 

Antifade reagent (Invitrogen, CA, USA). Images were captured using Nikon Ti 

Eclipse confocal microscope (Nikon Corporation, Tokyo, Japan) or Leica 6000B 

epifluorescence microscope (Leica, Wetzlar, Germany) and processed using 

MetaMorph software (Molecular Devices, CA, USA).  
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2.12 Cloning of RUNX3 and RUNX3
R178Q

 into lentiviral vectors 

2.12.1 Polymerase chain reaction (PCR) amplification 

The p44 isoform of human RUNX3
 
and RUNX3

R178Q
 cDNAs were PCR-

amplified from pcDNA-FLAG-RUNX3 (Bae et al., 1995) and pcDNA-FLAG-

RUNX3
R178Q

 encoding the DNA-binding defective form of human RUNX3 (Inoue et 

al., 2007). PCR amplification was performed in a 50µl reaction mixture containing 

1.25U of Platinum Pfx DNA polymerase (Invitrogen, CA, USA), 1X Pfx 

amplification buffer, 1.5 mM MgSO4, 0.3 mM of each dNTP (Finzymes, Espoo, 

Finland), 0.4µM of forward primer (5’-AAAAAAGAATTCATGCGTATTCCCGTA 

GACCCAAGCACCAGC-3’) and 0.4µM of reverse primer (5’-AAAAAAGCGGCC 

GCTCAGTAGGGCCGCCACACGGCCTCATCC-3’). The PCR cycling parameters 

consisted of 35 cycles at 95
o
C for 30s, 56

o
C for 30s and 72

o
C for 2min. Final 

extension at 72
o
C for 15min was performed. PCR products were analysed by agarose 

gel electrophoresis and the bands of correct sizes were excised and recovered with the 

QIAquick gel extraction kit following manufacturer’s protocol (QIAGEN, Hilden, 

Germany). The PCR products were cloned immediately upstream of IRES-EGFP via 

engineered 5’ EcoRI and 3’ NotI sites in the LeGO-iG2 plasmid (termed iG2), a 

bicistronic lentiviral vector generated by Weber et al., 2008. The ligation of digested 

PCR products and linearised iG2 vector was performed for at least 1h at room 

temperature using T4 DNA ligase (NEB, MA, USA) in a 20µl reaction containing 1µl 

of DNA ligase. The utilisation of internal ribosome entry site (IRES) in the iG2 

lentiviral vector enables co-expression of RUNX3/RUNX3
R178Q

 and EGFP in the 

transduced cells driven by the spleen focus-forming virus (SFFV) promoter. Similarly, 

wild-type RUNX3 and RUNX3
R178Q

 cDNAs were cloned into a modified pBOBI 

lentiviral vector (a kind gift of Dr Vinay Terganonar, Institute of Molecular and Cell 
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Biology, A*STAR, Singapore) using 5’ XbaI and 3’ XhoI sites. The cloning of 

RUNX3 and RUNX3
R178Q

 into the lentiviral vectors was performed by Dr Dominic 

Voon (Cancer Science Institute of Singapore, National University of Singapore, 

Singapore). 

 

Figure 2.1. Plasmid map of the LeGO-iG2 lentiviral vector. CMV (promoter): cytomegalovirus; SFFV 
(promoter): spleen focus-forming virus; IRES: internal ribosome entry site; eGFP: enhanced green 
fluorescent protein. Unique restriction sites present in the vector are marked in blue. 

 

2.12.2 Chemical transformation of Escherichia coli 

Three microlitres of ligated products was transformed into 50µl of home-made 

chemically-competent Escherichia coli XL10-Gold strain originally obtained from 

Stratagene (CA, USA). The mixture was kept on ice for 30min prior to heat-shock at 

42
o
C for 80s. The mixture was returned to ice immediately for 5min and recovered in 

200µl Luria-Bertani (LB) medium at 37
o
C with shaking for 1h. The transformation 

mixture was subsequently plated onto LB agar plates containing 100µg/ml of 

ampicillin (Sigma-Aldrich, MO, USA) and incubated overnight at 37
o
C for selection 

of successfully transformed bacterial cells.  
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2.12.3 Purification of plasmid DNA 

DNA purification was performed at small-scale from 3ml of starter cultures 

with QIAprep Spin Miniprep columns (QIAGEN, Hilden, Germany) or large-scale 

from 50ml of overnight cultures with QIAfilter Plasmid Midi kit (QIAGEN, Hilden, 

Germany) according to manufacturer’s protocols. The amount of DNA yielded was 

measured using NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, MA, 

USA).  

 

2.12.4 Sequencing of plasmid DNA 

Clones of recombinant plasmid DNA were fully sequenced using BigDye 

Terminator version 3.1 Cycle Sequencing kit (Applied Biosystems, CA, USA). Each 

sequencing reaction was made up of 300ng of plasmid DNA, 3.2pmol of the forward 

or reverse primer (Section 2.12.1), 8µl of Terminator Ready Reaction Mix and H2O to 

a final volume of 20µl. PCR was carried out in 96-well GeneAmp PCR System 9700 

(Applied Biosystems, CA, USA). The PCR reaction involved an initial denaturation at 

95
o
C for 3min and 35 cycles at 95

o
C for 30s, 52.5

o
C for 10s and 60

o
C for 4min. 

Purification and subsequent sequencing of the PCR products were carried out by the 

Sequencing Facility at the Institute of Molecular and Cell Biology (A*STAR, 

Singapore).  
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2.13 Lentivirus production and transduction 

Lentiviruses were produced according to the protocol described in Tiscornia et 

al., 2006 with minor modifications. Briefly, 0.7x10
6
 HEK293T cells were seeded on a 

6-well plate pre-coated with 0.001% of poly L-lysine (Sigma-Aldrich, MO, USA) one 

day before transfection. iG2- or pBOBI-Control, -RUNX3 or -RUNX3
R178Q

 transfer 

vectors (1µg) were co-transfected into HEK293T cells with third generation 

packaging plasmids containing pLP/VSVG (1µg), pLP1 gag/pol (0.66µg) and pLP2 

Rev (0.33µg) (ViraPower Lentiviral Expression system; Invitrogen, CA, USA) using 

10µl of FuGENE HD (Roche, Basel, Switzerland). The cells were washed with PBS 

8h post-transfection and replaced with fresh DMEM supplemented with 15% FBS 

(HyClone Laboratories UT, USA). The supernatants containing viral particles were 

harvested at 24h and 48h post-transfection. For transduction with iG2-based 

lentiviruses, GIF-14 cells cultured in 6-well tissue culture plates at 80% confluency 

were incubated with virus-containing supernatants in 1:3 ratio to culture media in the 

presence of 5µg/ml of polybrene (Sigma-Aldrich, MO, USA) for 24h before 

replenishment with fresh culture medium. Infected cells were either subjected to 

Hoechst/antibody staining or treated with Wnt3a-Cm or TGF-β1 prior to enrichment 

by FACS. Transduction with pBOBI-based lentiviruses was performed in a similar 

manner in 48-well tissue culture plates and the cells were harvested in situ following 

15h of Wnt3a-Cm treatment.  
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2.14  Protein preparation and Western blotting 

Runx3
+/+

 (GIF-9 and GIF-13) and Runx3
-/-

 (GIF-5 and GIF-14) cells were seeded in 

15-cm tissue culture dishes and harvested at 80% confluency for Western blot 

analysis. Cell pellets were lysed by urea lysis buffer (9M of urea, 2% of Triton-X-100 

and 5% of β−mercaptoethanol) supplemented with 1x Complete protease inhibitor 

(Roche, Basel, Switzerland) and 10mM of phenylmethylsulfonyl fluoride. Transduced 

GIF-14 cells were lysed by RIPA buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 1% 

NP-40, 0.25% sodium deoxycholate and 1mM EDTA) in a similar manner. Sonication 

was then performed using Bioruptor (Diagenode, NJ, USA) to shear the genomic 

DNA to disrupt large protein-DNA complexes, allowing proteins to fully solubilise. 

The cell lysates were centrifuged at 10,000 rpm for 10min and the supernatants were 

collected into fresh microfuge tubes. The amount of protein was quantified using 

Bradford Assay. Briefly, 2µl of cell lysate was mixed with 1.98ml of 1X Bradford dye 

and incubated for 5min at room temperature prior to measurement using GeneQuant 

1300 spectrophotometer (GE Healthcare, Little Chalfont, UK). After quantification, 

the amount of proteins was normalised against the most diluted sample before the 

addition of SDS-containing loading buffer. Cell lysates were heated at 37
0
C for half 

an hour to denature the proteins. Whole cell lysates were resolved in 10% SDS-

polyacrylamide gels and electrophoresed at 170V and 40mA for approximately 2.5h. 

Proteins were transferred onto PVDF membranes (Biorad, CA, USA) at constant 

100V for 1 h 45 min prior to blocking using 5% skim milk in PBST (PBS + 0.1% 

Tween) (Fonterra, AU, New Zealand) for 1h. Murine Runx3 was detected using two 

separate anti-RUNX3 monoclonal antibodies, R3-5G4 and R3-8C9 (a kind gift of 

Kotaro Tada) at 1µg/ml in PBST + 1% skim milk and PBST + 2.5% skim milk, 

respectively. Human RUNX3 was detected using R3-5G4 antibody. Detection of the 



33 

 

housekeeping protein, α-tubulin was performed by incubation with anti-α-tubulin 

antibody (Sigma-Aldrich, MO, USA) at 1:50000 dilution for 1h. Membranes were 

washed for 3 times with PBST buffer before incubation with HRP-conjugated anti-

mouse secondary antibody (GE Healthcare, Little Chalfont, UK) at 1:8000 dilution in 

PBST + 5% skim milk for 1h. After removing excess secondary antibody, 

chemiluminescent signals were captured using Immobilon Western 

Chemiluminescent HRP substrate reagents (Millipore, MA, USA).  

 

2.15 Statistical analysis 

All data performed in replicates are presented with standard error mean (SEM). 

When two data sets were compared, the Student’s t-test was used and p-values < 0.05 

and <0.01 was considered significant. 
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CHAPTER 3 

Identification of a tumorigenic, stem/progenitor-like 

subpopulation within the Runx3
-/-

 GIF-14 gastric epithelial 

cell line 
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3.1 Introduction 

3.1.1 Cell immortalisation and transformation  

Cancer is a multi-step process driven by the sequential accumulation of 

mutations in critical genes such as oncogenes and tumour suppressors. Genetic 

alterations of these genes lead to uncontrolled cell proliferation, resistance to 

apoptosis, and acquisition of other traits associated with the malignant cell phenotype 

(Drayton and Peters, 2002). This process usually takes a period of decades. During 

tumour formation, human cells need to undergo an abnormally long succession of 

growth-and-division cycles in order to complete the steps of tumorigenesis. In the 

current model of this process, the first step is the ability of cells to replicate 

indefinitely, termed immortalisation (Weinberg, 2007). Immortalised cells are pre-

malignant but non-tumorigenic. They are susceptible to cellular transformation upon 

further genetic hits to become tumorigenic. 

Cellular immortalisation and transformation has been intensively studied in 

vitro, most commonly in murine embryonic fibroblasts (MEFs). These studies have 

offered fundamental insights into the biology of carcinogenesis. Under normal 

culturing conditions, MEFs would rapidly cease to proliferate after several passages in 

response to stress (Parrinello et al., 2003). Immortality could be achieved by ectopic 

expression of a number of oncogenes, such as the large T oncoprotein of Simian virus 

40 that inactivated the function of primary negative regulators of cell cycle, p53 and 

pRb (Schreier and Gruber, 1990). Accordingly, mutations of either p53 or its targets 

p16
INK4a

/p19
ARF

 were frequently found in spontaneously immortalised NIH3T3 MEFs 

(Linardopoulos et al., 1995). In addition, forced expression of the catalytic component 

of human telomerase in some cell types led to the generation of immortalised cell 
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lines (Bodnar et al., 1998). In order for immortalised cells to become fully 

transformed, additional mutations are needed, typically through the introduction of an 

oncogene such a constitutively activate H-Ras mutant (Visvanathan et al., 1998). 

Immortalisation and transformation could also be achieved through the introduction of 

oncogenes found in DNA tumour viruses. Middle T and large T oncogenes from 

polyomavirus collaborate with one another to transform rodent cells. The large T 

oncoprotein facilitates immortalisation while the middle T oncoprotein elicits many 

functions associated with the Ras oncogene to confer full transformation 

(Rassoulzadegan et al., 1982). Therefore, much of the process of tumorigenesis could 

be revealed through these studies. 

Classically, there are several experimental approaches to determine successful 

transformation. A particularly common benchmark used in the assessment of 

tumorigenicity in vivo is the subcutaneous transplantation of transformed cells into 

immuno-compromised animals such as the athymic nude mice (Flanagan, 1966). 

Immuno-deficient mice are incapable of mounting immune response against grafted 

cells. Tumorigenicity is measured by the ability of transplanted cells to form tumours 

in mice. As transplantation assays are typically time consuming and lengthy, rapid 

and quantitative in vitro assays have been developed to evaluate tumorigenicity. One 

of the key properties of transformed cells is anchorage-independent growth in which 

cells are able to proliferate without attachment to solid substratum (Cifone and Fidler, 

1980). The soft agar colony formation assay is used to monitor anchorage-

independent growth in a semi-solid agar medium. Cells that have the capability to 

grow as colonies under such conditions are considered tumorigenic. However, the 

initial set-up and final scoring of colonies can be labour-intensive. Although each of 
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these methodologies has its caveats and limitations, they are useful functional assays 

to measure tumorigenic potential.  

 

3.1.2 Strategies for identifying tumour-initiating cells 

In this study, immortalised gastric epithelial (GIF) cell lines were established 

from mouse embryos through genetic disruption of p53. As these cell lines were 

immortalised but not transformed, they were not expected to be tumorigenic. 

However, owing to the loss of the gastric tumor suppressor Runx3, Runx3
-/-

.p53
-/- 

GIF 

cell lines formed tumours when transplanted into immuno-compromised nude mice 

(Fukamachi et al., 2004). Notably, the tumorigenic potential of Runx3
-/-

.p53
-/-

 GIF cell 

lines was inherently low as the cell number necessary for generating tumour was 

typically 10E4 higher than standard transformed cells (Fukamachi et al., 2004). These 

observations indicate that Runx3 deficiency moved the cells one step closer to 

tumorigenesis even though full transformation did not occur. To further understand 

the underlying molecular mechanisms of the tumorigenicty of Runx3
-/-

.p53
-/-

 cells, we 

sought to identify and characterise the properties of these tumorigenic cells in Runx3
-/-

.p53
-/-

 GIF cell lines.  

Recently, the hypothesis that cancer is driven and maintained by a small 

subpopulation of cancer cells within the tumour mass has gained attention in the 

tumour biology field (Lapidot et al., 1994). This subpopulation is often referred to as 

“cancer stem cells” (CSCs). CSCs demonstrate increased resilience against 

conventional chemotherapy and are thought to be responsible for tumour recurrence 

and maintenance. There is also evidence suggesting that CSCs are involved in 

metastasis of solid tumours (Velasco-Velazquez et al., 2011). Therefore, cancer stem 
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cells hold promise as novel cellular targets for the treatment of malignancies (Reya et 

al., 2001). CSCs are experimentally defined by the ability to regrow the tumour in 

immuno-compromised mice from which they were isolated or identified (Lapidot et 

al., 1994). Thus, the term tumour-initiating cells (TICs) are frequently used as it more 

closely reflects the experimental evidence. In this chapter, TICs would be used to 

describe cells bearing cancer stem cell properties. The TICs in tumours are identified 

by the use of molecular markers expressed on the cell surface, which were first 

discovered to enrich for stem cells. In the hematopoietic system, purification of tissue 

stem/progenitor cells relies largely on cell surface markers, which can serve as either 

positive or negative makers for stem/progenitor cell activity (Challen and Little, 2006). 

Often, a combination of several cell surface markers is required to achieve high 

degree of enrichment of stem/progenitor cells as none of these cell surface markers is 

expressed exclusively on stem/progenitor cells. Although the use of cell surface 

markers does confer specificity to the identification and isolation of normal 

stem/progenitor cells and TICs, this strategy fails in the absence of known cell surface 

markers (Wu and Alman, 2008). Unfortunately, cell surface markers that define TICs 

are not well characterised in many solid tumours, including those in gastric cancers.  

In the last decade, the Hoechst 33342 staining technique has gained popularity 

in the study of tissue stem cells as it is a versatile tool to identify, purify and 

characterise resident tissue stem/progenitor cells independent of cell surface markers. 

This method is simple and particularly useful when the stem/progenitor cells are not 

well characterised by cell surface markers. Based on differential staining by the 

Hoechst 33342 dye, this technique has facilitated the enrichment of stem/progenitor 

cells in a variety of normal tissues including blood, skin, lung, liver, heart, mammary 
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gland and skeletal muscle (Wu and Alman, 2008). Hoechst 33342 is a fluorescent dye 

that binds to AT-rich DNA and can be excited by ultraviolet laser. Its fluorescence is 

plotted at two emission wavelengths using 450/20nm band-pass (Hoechst blue) and 

675nm long-pass (Hoechst red) filters on the flow cytometer. When first established 

in the analyses of murine bone marrow cells, it was found that cells dimly stained by 

the Hoechst 33342 dye were strongly enrich for long-term repopulating hematopoietic 

stem cells (Goodell et al, 1996). These cells were termed the “side population” (SP) 

as they resolved to the “side” of the bulk of more strongly stained cells in FACS 

analysis (Figure 3.1; Challen and Little, 2006). The mechanism regulating the efflux 

of Hoechst 33342 dye is partly conferred by the expression of ATP binding cassette 

protein transporters. Forced expression of these membrane-bound transporters such as 

Abcg2/Bcrp1 and Abcb1/MDR1 in murine bone marrow cells resulted in an expansion 

of SP in vitro and increased long-term repopulating hematopoietic stem cells in vivo 

(Bunting et al, 2000; Zhou et al., 2001). Therefore, when Hoechst 33342 staining was 

performed in the presence of an inhibitor of ATP binding cassette protein transporters, 

verapamil, SP cells were ablated (Figure 3.1; Challen and Little, 2006). The gate for 

the SP is set to demarcate the cell population specifically eliminated upon the 

treatment of verapamil as shown in Figure 3.1 (Challen and Little, 2006). However, a 

gradient of dye efflux exists within the SP in which the cells at its tip possessed the 

highest efflux while the cells at the top of the SP display least efflux, as reflected in 

the increasing Hoechst 33342 fluorescence intensity. It was found that the cells with 

the greatest dye efflux capability exhibited the highest long-term hematopoietic stem 

cell activity within the SP (Goodell et al., 1997). Due to the superior enrichment of 

stem cells, a small gate is usually applied to capture the cells at the tip of the SP for 

functional characterisations and comparative analyses. 
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                  A B 

 

Figure 3.1. Flow cytometry profile of murine bone marrow cells after staining with Hoechst 33342. (A) 
The SP appeared as the Hoechst 33342 low fraction capable of pumping out the dye more efficiently 
than the bulk of the Hoechst 3342 high cells. (B) The SP was ablated when verapamil was added in the 
Hoechst 33342 incubation. This figure was taken from Challen and Little, 2006. 

 

Subsequently, the Hoechst 33342 staining method has been utilised to identify 

and isolate TICs in many human cancer cell lines and primary tumours (Wu and 

Alman, 2008). Several studies have shown highly enriched tumour-initiating activity 

for the SP cells purified from hepatocellular, lung, brain, gastrointestinal and 

nasopharyngeal carcinoma cell lines, compared to both the bulk tumour cell 

population and the non-SP population (Kondo et al., 2004; Chiba et al., 2006; 

Haraguchi et al., 2006; Ho et al., 2007; Wang et al., 2007).  

It has been reported that TICs share several properties with normal stem cells, 

especially the capability of self-renewal (Pardal et al., 2003). The sphere-forming 

assay is a standard in vitro assay frequently utilised to characterise normal tissue stem 

cells and TICs in the brain and mammary glands (Weiss et al., 1996;  Al-Hajj et al., 

2003; Dontu et al., 2003; Kondo et al., 2004). Stem cell-like properties are 

demonstrated by the formation of spheres on non-adherent surfaces in serum-free 

culture medium. The ability to generate spheres depends on the presence of 
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stem/progenitor cells within a cell population. Cells that form spheres, which can be 

serially passaged are believed to possess self-renewal properties (Dontu et al., 2003).  

 

3.1.3 Experimental approach 

The experiments described in this chapter are aimed to identify and isolate the 

tumorigenic cells from a Runx3
-/-

.p53
-/-

 GIF cell line (GIF-14) by employing the 

Hoechst 33342 staining technique. These cells are tested for their tumorigenic 

potential using transplantation and soft agar colony formation assays. Furthermore, 

gene expression profiling for stem-cell-related markers and sphere-forming assays 

will be performed to assess whether these tumorigenic cells display stem cell-like 

characteristics. 
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3.2 Results 

3.2.1 Hoechst 33342 staining of GIF-14 cells revealed two distinct subpopulations 

Hoechst 33342 staining was performed on a Runx3
-/-

.p53
-/-

 GIF cell line, GIF-

14, to separate the cells based on their dye exclusion capability. To obtain a 

reproducible Hoechst 33342 staining pattern, a series of optimisations were 

previously performed for various Hoechst 33342 concentrations, incubation time and 

verapamil concentrations. Figure 3.2 shows a typical flow cytometric profile of GIF-

14 cells following staining with Hoechst 33342 under the optimised conditions. GIF-

14 cells could be seen as two major subpopulations, P1 and P2 with significantly 

different fluorescence owing to differential dye efflux properties. The P1 

subpopulation had relatively lower fluorescence as they excluded dye efficiently. This 

lower fluorescence was effectively blocked by verapamil as the cells were unable to 

efflux the dye resulting in increased intracellular Hoechst 33342 concentrations. 

Therefore, the P1 subpopulation was defined by the cell population that had shifted 

upon the treatment of verapamil, the majority of which could be analysed by marking 

a large gate as depicted in Figure 3.2. In contrast, the P2 subpopulation was defined 

by high fluorescence due to its lower dye pumping capacity, and that its staining 

pattern was largely unaffected by verapamil (Figure 3.2).  
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Figure 3.2. Hoechst 33342 staining of Runx3
-/- 

GIF-14 cells revealed two distinct subpopulations. GIF-
14 cells were stained by 10µg/ml of Hoechst 33342 in the absence and presence of 4µg/ml of verapamil 
as described Section 2.3. Hoechst fluorescence is plotted at Hoechst blue (450/20nm BP filter) and 
Hoechst red (675nm LP filter) on the flow cytometer. The gate for P1 is set to encompass majority of the 
cells which are sensitive to verapamil treatment. 
 

3.2.2 P1 and P2 cells display differential EpCAM and CD133 expressions 

 To determine the relative expression of cell surface markers in P1 and P2 

subpopulations, GIF-14 cells were simultaneously stained by Hoechst 33342 and 

antibodies against various cell surface antigens which are known to mark 

differentiation status in different tissues (Table 3.1). The expression levels of the 

tested cell surface markers in P1 and P2 subpopulations are summarised in Table 3.2. 

Surface marker profiling revealed that the expression of CD133, EpCAM, and CD49f 

were substantially higher in P1 compared with P2 (Table 3.2). However, P1 and P2 

subpopulations did not show obvious difference in the expression of other cell surface 

markers such as Sca1, CD71, CD29, CD44 and CD24 (Table 3.2).  
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Table 3.1. Summary of the tested cell surface markers known to mark differentiation status of cells in 
various tissues. 

 

 

Table 3.2. Summary of expression levels of cell surface antigens in P1 and P2 subpopulations. GIF-14 
cells were co-stained by Hoechst 33342 and various antibodies against cell surface antigens and 
analysed by flow cytometry. The percentage of positivity of each surface marker in total GIF-14 cells, P1 
and P2 subpopulations was tabulated. 
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EpCAM is expressed on the cell surface membrane of virtually all epithelial 

cells and hence is generally regarded as an epithelial marker (Latza et al., 1990). 

Despite being widely expressed in many adenocarcinomas (Latza et al., 1990), its 

expression in gastric cancer tissues is not well studied. Similar to EpCAM, the 

involvement of CD49f in gastric tumours is obscure. It is known that CD49f forms 

heterodimers with the integrin β4 subunit which acts as the receptor for laminin in all 

epithelial cells (Krieger et al., 2004).  CD133 is not only expressed in organ-specific 

stem cells, but also in differentiated epithelial cells in the liver, pancreas and colon 

(Weigmann et al., 1997; Florek et al., 2005, Shmelkov et al., 2008). Our results 

revealed that these three cell surface markers, which are prominently expressed in 

epithelial cells, were depleted in the P2 subpopulation, suggesting that P2 cells have 

reduced epithelial cell characteristics compared to P1 cells. Such differences in 

epithelial cell differentiation status may have implications in the relative tumorigenic 

potential of P1 and P2 subpopulations. 

Co-staining of antibodies against EpCAM and CD133 together with Hoechst 

33342 in the GIF-14 cell line was performed. For flow cytometric analyses, a large P1 

gate was set in order to include the majority of P1 cells to ensure the relative 

expressions of EpCAM and CD133 is representative of P1 cells. The results showed 

that the P1 subpopulation displayed EpCAM
high

CD133
+ 

expression pattern while the 

P2 subpopulation was demarcated by EpCAM
low

CD133
-
 antigen profile (Figure 3.3 

top panel). Conversely, EpCAM
high

CD133
+
 and EpCAM

low
CD133

-
 fractions enriched 

for P1 and P2 subpopulations, respectively (Figure 3.3 bottom panel). Therefore, the 

above data indicate that P1 and P2 represent distinct subpopulations of varied 

differentiation status within the GIF-14 cell line. 
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Figure 3.3. Double staining of EpCAM/CD133 with Hoechst 33342 in GIF-14 cells. Hoechst 33342-
stained GIF-14 cells were co-stained by antibodies against EpCAM and CD133. Cells were then 
subjected to flow cytometry. The distribution of EpCAM and CD133 within P1 and P2 subpopulations 
(top panel) and the Hoechst 33342 profiles of EpCAM

high
CD133

+
 and EpCAM

low
CD133

-
 fractions were 

analysed by the Flowjo software.   
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3.2.3 The P2 subpopulation forms tumours more readily than the P1 subpopulation 

Staining of GIF-14 cells by Hoechst 33342 enables the purification and 

functional characterisation of P1 and P2 subpopulations. To test their relative 

tumorigenicities in vivo, these two subpopulations were allografted into the immuno-

compromised nude mice. These transplantation experiments were performed in two 

complementary approaches using: 1) FACS-fractionated P1 and P2 cells isolated from 

parental GIF-14 culture, and 2) clonal lines established from enriched P1 and P2 

subpopulations. In the first experiment, P1 and P2 subpopulations were sorted from 

parental GIF-14 line by FACS and briefly cultured in vitro for recovery and 

expansion. Purified P1 and P2 cells were analysed by Hoechst 33342 staining to 

confirm that they maintained their respective staining patterns prior to transplantation 

into nude mice (Figure 3.4). For each tested subpopulation, cells were transplanted 

subcutaneously into hind flanks of each mouse. Unsorted parental GIF-14 cells were 

similarly injected in the neck region of the same mouse to act as a control. Two 

independent transplantations using 4x 10
6 

and 2x 10
6
 cells were performed. In both 

experiments, the P2 subpopulation was observed to form tumours more readily in 

nude mice than the P1 subpopulation. This was reflected in the higher tumour 

incidence and greater tumour size (Figure 3.5).  

 

Figure 3.4. Hoechst 33342 staining profiles of sorted P1 and P2 subpopulations. P1 and P2 cells were 
purified by FACS and expanded in culture for about 1 week. Hoechst 33342 staining was performed on 
sorted cells prior to transplantation. 
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Figure 3.5. Relative tumorigenicity of FACS-enriched P1 and P2 cells in nude mice allografts. Top plot: For 
each mouse, 4x 10

6 
of sorted P1 (left hind flank), sorted P2 (right hind flank) and unsorted (neck) cells 

were injected and tumour sizes were scored after 8 weeks (n=5). Age of mice was 12-13 weeks. Bottom 
plot: Independent but similar experiment in which 2x 10

6
 cells were transplanted and the tumours were 

examined after 11.5 weeks (n=9). Age of mice was 7-8 weeks. Each dot on the plots represents tumour 
size from a single mouse. Black horizontal bars denote the mean tumour volume for each cell population. 

Tumour volume was calculated by the formula 4/3πr
3 

where r is tumour radius. Student’s t-test was 
performed and single asterisk represents p-value <0.05. Tabulation of the number and diameter of tumours 
is shown in the tables on the right of the plots.  
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P1 and P2 clonal lines were raised from purified P1 or P2 cells through single-

cell cloning in 96-well plates. Nine P1 and twelve P2 single-cell clones were obtained 

and three clonal lines derived from each subpopulation were analysed for the 

maintenance of their Hoechst 33342 staining patterns. The results for a representative 

clonal line derived from P1 or P2 subpopulation were shown in Figure 3.6. P1 and P2 

clonal lines preserved their respective Hoechst 33342 profiles preceding 

transplantation in nude mice in a similar manner as described earlier. Consistent with 

the results from sorted pooled cells, the tested P2 clonal line was significantly more 

tumorigenic than the P1 clonal line both in terms of the frequency of tumour initiation 

and tumour size (Figure 3.7). Thus, we conclude that the tumour-initiating cells reside 

largely in the low dye effluxing, EpCAM
low

CD133
- 
P2 subpopulation within the GIF-

14 cell line.  

 

Figure 3.6. Hoechst 33342 staining of P1 and P2 clonal lines. FACS-purified P1 and P2 cells were 
seeded at clonagenic density in 96-well plates and colonies were raised from single P1 or P2 cells. 
These colonies were then expanded in culture and anlaysed for Hoechst 33342 staining patterns prior to 
transplantation. 
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Figure 3.7. Comparison of the tumorigenic potential of P1 and P2 clonal lines. For each mouse, 2x 10
6 

of P1 clone2 (left hind flank), P2 clone3 (right hind flank) and unsorted (neck) cells were inoculated and 
tumours were harvested after 14 weeks (n=10). One mouse had no tumour at all sites. Age of mice was 
7-8 weeks. Each dot on the plots signifies tumour size from one mouse. Black horizontal bars represent 
the average tumour sizes for each cell population. Student’s t-test was performed and single asterisk 
represents p-value <0.05. Tumour number and size are tabulated in the table next to the graph. 

 

3.2.4 P2 cells form colonies more readily in soft agar assay 

FACS-enriched P1 and P2 cells were further evaluated for their ability to 

exhibit anchorage-independent growth in vitro by soft agar assay. The isolated cell 

populations were suspended at clonogenic density in agar mixed with normal culture 

medium and colony formation was determined. Control sorted cells were all the cells 

collected within the FACS plot including P1 and P2 subpopulations. Consistent with 

the transplantation data, P2 cells formed colonies far more readily than P1 cells, 

reflecting greater tumorigenicity (Figure 3.8). The colonies were scored manually 

using a microscope as they were generally small. This reflects the low tumorigenicity 

of immortalised GIF-14 cells.   
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Figure 3.8. Comparison of anchorage independent growth of sorted P1 and P2 cells. FACS-fractionated 
P1, P2, control sorted and unsorted parental GIF-14 cells were subjected to soft agar assay to assess 
the relative anchorage independent growth potential. Control sorted cells represents the total population 
within the entire FACS plot. After 3 weeks of culture, colonies ≥150µm in size were scored and the data 
are represented as means ± standard error mean (SEM) (n=3). Double asterisks denotes p-value <0.01. 
Representative phase contrast images of the colonies were taken from samples with 200,000 cells/well. 
Scale bars, 200µm.  

 

3.2.5 The P2 subpopulation is enriched for stem cell-related genes 

To ascertain whether the tumorigenic P2 subpopulation shares attributes of 

stem cells, gene expression profiling was performed to measure the transcript levels 

of stem cell-related markers by quantitative RT-PCR (qRT-PCR). In order to perform 

the most effective comparison in the gene expression between P1 and P2, a small gate 

was applied to capture the highest dye-effluxing P1 cells as shown in Figure 3.9 left 

panel. This ensures that fractionated P1 and P2 cells are of high purity. Three 

independent preparations of P1 and P2 subpopulations were performed and the results 

are summarised in Figure 3.9. The expression levels of these markers are expressed as 
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ratios to those of control sorted cells and plotted on log scale. Our results revealed that 

the P2 subpopulation expressed significantly higher levels of embryonic stem cell 

markers Oct4 and Nanog than the P1 subpopulation (Figure 3.9). Furthermore, P2 was 

strongly enriched for Lgr5 to 100-fold. Lgr5 is a G protein-coupled receptor that 

marks a newly discovered stem cell population in the intestinal crypt and pyloric 

gastric glands (Barker et al., 2007; Barker et al., 2010) (Figure 3.9) . P2 cells also 

expressed elevated levels of Sox9, which is reported to co-localise with Lgr5 in 

gastrointestinal stem cells (Barker et al., 2010; Van der Flier et al., 2009) (Figure 3.9). 

Taken together, these data indicate that the P2 subpopulation enriches for stem cell-

related genes, particularly Lgr5.  

 

Figure 3.9. Gene expression profiling of P1 and P2 subpopulations. Left panel: Cells were sorted into 
P1 and P2 gates based on Hoechst 33342 staining for qRT-PCR. In this experiment, a small gate for P1 
was applied to capture the highest dye effluxing-P1 cells. Right panel: Expression levels of embryonic 
and gastrointestinal stem cell makers are presented relative to those of control sorted cells that included 
the total population in the FACS plot. Three separate experiments were carried out and each dot on the 
plot represents a single experiment. Student’s t-tests were performed on P1 and P2 values for various 
genes and the corresponding p-values are shown (single and double asterisks denote p-value <0.05 
and p-value <0.01, respectively).   
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3.2.6 P2 cells display greater sphere-forming capacity than P1 cells 

To assess the functional significance of elevated expression of stem cell-

associated transcripts in the P2 subpopulation, in vitro sphere assay was performed to 

evaluate stem cell-like activity. Isolated P1, P2, control sorted and unsorted cells from 

the GIF-14 line were cultured in suspension in serum-free medium supplemented with 

growth factors. As sphere-forming assay measures stem cell-like activity at the single 

cell level, it is critical to seed cells at clonogenic density and keep them apart to yield 

accurate quantification of sphere-initiation. To reduce aggregation of cells, varying 

amount of methylcellulose was added in the sphere medium in different experiments. 

Under this culturing condition, P2 cells consistently displayed 5-fold greater sphere-

forming capacities than P1 cells, revealing that they possessed increased 

stem/progenitor properties (Figure 3.10A). P2-derived spheres could be maintained 

for an extended period without obvious signs of differentiation. Moreover, in a 

preliminary experiment, these spheres could be serially passaged to generate 

secondary spheres readily, which is indicative of self-renewal activity (Figure 3.10B). 

In comparison, P1 cells were both less efficient in forming long-lived primary spheres 

and generating secondary spheres (Figures 3.10A and B).  
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A 

 
  

 
 

B 

 

Figure 3.10. Relative sphere-initiating efficiency of P1 and P2 subpopulations. (A) FACS-isolated P1 
and P2 cells were compared to control sorted (all cells on the FACS plot) and unsorted cells for sphere-
forming potential. Cells were cultured in serum-free medium supplemented with various growth factors 
as stated in Section 2.9 and 0.1% of methylcellose was added to the culture media to reduce the 
formation of cell aggregates. The graph represents the number of spheres ≥300µm in size generated 
from 5000 cells after 30 days of culture (means ± SEM, n=5). Double asterisks denotes p-value <0.01. 
Phase contrast images of spheres are shown. Scale bars, 300µm. (B) Primary spheres were dissociated 
and replated to generate secondary spheres following the procedures described in Section 2.9. The 
graph represents the number of secondary spheres formed from each cell population after 20 days of 
culture in a preliminary experiment. 
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3.2.7 Wnt3a activates Lgr5 expression and promotes sphere formation 

It was reported that the gastrointestinal stem cell marker, Lgr5 is a target of 

the canonical Wnt pathway in the intestinal epithelium (Barker et al., 2007). More 

recently, Lgr5 has been shown to amplify Wnt signaling through its association with 

R-spondin proteins (de Lau et al., 2011). As the P2 subpopulation in GIF-14 cell line 

was found to enrich for Lgr5, activation of Lgr5 by the Wnt pathway was hence tested 

in this cell model. To stimulate the canonical Wnt signaling, FACS-isolated P1, P2 

and unsorted parental GIF-14 cells were either treated with Control- or Wnt3a-

conditioned medium (Cm) for 15h prior to qRT-PCR analysis. The results revealed 

that Lgr5 mRNA levels were greatly activated by Wnt3a-Cm in GIF-14 cells (Figure 

3.11). 

 

Figure 3.11. Changes in Lgr5 mRNA expression upon Wnt3a stimulation. FACS-isolated P1, P2 and 
GIF-14 unsorted cells were treated with Control- or Wnt3a-Cm in 1:3 ratio to the culture medium for 15h 
and Lgr5 mRNA levels were ascertained, normalised against those of Gapdh. Data are presented 
relative to Control-Cm treated GIF-14 unsorted cells. Double asterisks denotes p-value <0.01.  
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To ascertain whether Wnt3a promotes sphere formation as reflected in its 

induction of Lgr5, sphere-forming assay was carried out to examine the efficiency of 

sphere formation in GIF-14 cells in the presence of Wnt3a-Cm. To optimise the 

conditions for sphere formation using conditioned media, Control- and Wnt3a-Cm 

was diluted with sphere medium at various ratios of 1:20, 1:10 and 1:3. Treatment 

with Wnt3a-Cm led to a 2-fold increase in sphere-initiation across all dilution factors 

compared to Control-Cm (Figure 3.12A). As conditioned medium contained low 

levels of serum, which promoted the formation of cell aggregates, the amount of 

conditioned medium was kept minimal while maintaining good Wnt3a-reponsiveness. 

Thus, a dilution factor of 1:10 was chosen for the subsequent experiment. Under this 

condition, Wnt3-Cm treatment consistently resulted in increased sphere formation by 

2-fold relative to Control-Cm (Figure 3.12B).  

A B 

 

Figure 3.12. The effects of Wnt3a-Cm treatment on sphere formation. (A) Sphere-forming assay was set 
up at various dilutions 1: 20, 1:10 and 1:3 of Control- and Wnt3a-Cm with sphere medium using GIF-14 
parental cells. Spheres ≥75µm in size were counted after 9 days of culturing and 0.5% of 
methylcellulose was used to keep the cells apart as low amount of serum in the conditioned media 
caused cell aggregation. (B) The above experiment was repeated with 1:10 Control- and Wnt3a-Cm 
dilution and spheres ≥100µm in size were scored after 11 days. The number of spheres are presented in 
means ± SEM, n=5. Double asterisks denotes p-value <0.01.  
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3.3 Discussion 

To understand the basis of the tumorigenic nature of immortalised murine 

Runx3
-/-

.p53
-/-

 gastric epithelial cell lines, we set out a thorough characterisation of a 

Runx3
-/-

.p53
-/-

 line, GIF-14, with the aim of identifying and studying the tumorigenic 

population. Through a combination of Hoechst 33342 and cell surface marker staining, 

we identified a low dye-effluxing P2 subpopulation within GIF-14 that was marked 

by EpCAM
low

CD133
-
 antigen profile. P2 cells were found to display significantly 

greater tumor-initiating activity when transplanted in nude mice. 

In our study, the Hoechst 33342 staining technique was a valuable tool for 

isolating the subpopulations in the GIF-14 cell line. Although fractionation by FACS 

based on Hoechst 33342 profile is typically laborious and slow, it ensures that the 

enriched P1 and P2 subpopulations are of high purity. This is critical for comparing 

the relative tumorigenicity of these subpopulations in functional assays. It should be 

noted that the dye uptake kinetics are highly dynamic and the Hoechst 33342 profile 

of a mixed population is a function of arbitrary settings on the flow cytometer 

(Ibrahim et al., 2007; Wu and Alman, 2008). Although the P1 subpopulation shares 

the common attributes of low Hoechst 33342 fluorescence and verapamil sensitivity, 

it is not considered analogous to a true SP. Despite being present in many cancer cell 

lines, the physiological relevance of the SP during in vitro culture remains a topic of 

contention. It is known that the function of normal stem cells is highly dependent on 

contextual signals from the surrounding niche, which also seems true for TICs (Clarke 

et al., 2006). The high dye efflux may improve the survival of TICs in adverse 

microenvironment and confer drug resistance. However, the immortalised GIF-14 cell 

line maintained in in vitro culturing conditions may possess different Hoechst 33342 
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efflux properties compared to cells residing in their tissue niche. Indeed, the low dye 

effluxing-subpopulation, P2 correlates with tumorigenicity in GIF-14 cells. 

In view of these drawbacks in Hoechst 33342 staining, expression of cell 

surface markers in the subpopulations of GIF-14 would provide useful information 

about their differentiation states. The tumorigenic P2 fraction was depleted for CD133, 

EpCAM and CD49f cell surface markers, suggesting a link between loss of epithelial 

phenotype and tumorigenicty (Table 3.2). This relationship is also demonstrated in the 

marked reduction in the expression of Claudin-1, which is a critical component of the 

epithelial tight junction in tumorigenic Runx3
-/-

.p53
-/-

 GIF cell lines compared to 

Runx3
+/+

.p53
-/-

 cells (Chang et al., 2010). In addition, Runx3
-/-

.p53
-/-

 GIF cell lines 

were prone to trans-differentiation into intestinal-like cells, indicating that they do not 

retain strong epithelial cell identity (Fukamachi et al., 2004; Fukamachi et al., 2008). 

Allograft transplantation assays in nude mice revealed that the P2 

subpopulation was significantly more tumorigenic than the P1 counterpart (Figures 

3.5 and 3.7). It has been reported that complete tissue disruption during the retrieval 

of TICs from their living niche would select for cells that are more independent of 

their niche or better equipped for survival in mice (Vermeulen et al., 2008). Thus, the 

increased tumorigenicity observed in the P2 subpopulation may be attributed to their 

greater adaptability and resistance to apoptosis in the graft niche. As P2 cells are 

unable to efflux Hoechst 33342, they retained high levels of the dye which can be 

cytotoxic. The fact that the P2 subpopulation would still initiate tumours more readily 

strongly suggests that P2 cells have a survival advantage over P1 cells. Alternatively, 

the tissue microenvironments into which the cells were transplanted might have 
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preferentially supported the growth of P2 cells by providing the necessary growth 

factors and nutrients. 

In addition to the significant differences between P1 and P2, variations in the 

ability to form tumours by the P1 subpopulation from two independent 

transplantations were observed (Figures 3.5 and 3.7). These could be explained by the 

differences in the immune system and tumour immunity of the nude mice used in the 

two experiments. Differences in the age of mice and number of cells transplanted in 

these experiments could trigger varied immune responses. nude mice are deficient in 

T and B cells, but they contain natural killer cells that constitute a major part of innate 

immunity against foreign cells or tumour growth (Flanagan, 1966). Despite the 

murine origin of transplanted cell populations, immune response against these cells 

could still be mounted. Therefore, to eliminate the contribution of immune cells, more 

immune-comprised NOG (NOD/Shi-scid/IL-2Rγ
null

 ) mice which lack T, B, natural 

killer and antigen presenting cells could be used to improve engraftment of foreign 

cells (Ito et al., 2002).  

The relationship between tumour-initiation activity and stem/progenitor 

phenotype has been established in many contexts. In the GIF-14 cell line, the P2 

tumorigenic subpopulation was highly enriched for stem cell-related markers, 

especially the gastrointestinal stem cell marker Lgr5 as revealed by gene expression 

profiling. Functionally, these Lgr5-expressing cells form long-lived spheres that could 

be serially passaged in serum-free cultures more readily than other cells within GIF-

14. Thus, the P2 subpopulation displayed stem/progenitor features. Our results 

support the notion that TICs display stem/progenitor characteristics, suggesting that 

signaling pathways regulating self-renewal may be conserved among TICs. Although 
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these pathways are tightly controlled in normal stem cells, they may be constitutively 

activated or mis-regulated in TICs, leading to tumorigenesis (Beachy et al., 2004). For 

instance, the canonical Wnt pathway is well known to regulate the self-renewal of 

crypt stem/progenitor cells in intestinal epithelium (Korinek et al, 1998). Aberrant 

activation of Wnt signaling is heavily involved in the carcinogenesis of 

gastrointestinal neoplasia (Clevers, 2006). In GIF-14 cells, treatment with Wnt3a-Cm 

which mimicked constitutive stimulation of Wnt signaling resulted in increased 

stem/progenitor activity, as reflected from the robust induction of Lgr5 and greater 

sphere-formation (Figures 3.11 and 3.12).  

The correlation between Lgr5, a target of the Wnt pathway with 

stem/progenitor characteristics and tumorigenicity has implications in the etiology of 

gastric cancer. During cancer development, abnormal activation of growth factor 

signaling such as the canonical Wnt pathway through genetic or/and epigenetic 

alterations may activate Lgr5 and impart stem/progenitor properties. These Lgr5-

expressing cells may become targets for oncogenic insults, leading to the generation 

of TICs that drives tumour growth. This hypothesis is supported by the recent report 

that Lgr5-positive stem cells are the cells-of-origin of intestinal adenomas in mouse 

model (Barker et al., 2009). Therefore, it is probable that Lgr5-expressing P2 

subpopulation within the precancerous Runx3
-/-

.p53
-/-

 GIF-14 cell line represents 

precursors of these TICs in full-blown cancer. It has been reported that Lgr5 

expression is exclusively restricted to the crypt base columnar stem cells in the 

intestines and is quickly silenced in their transit-amplifying daughter cells (Van der 

Flier et al., 2009).  Given its tight regulation in vivo, it is remarkable that a 

subpopulation of an immortalised cell line is enriched for Lgr5. The cause for the 
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appearance of the tumorigenic, less epithelial-like and Lgr5-positive P2 subpopulation 

will be explored in the next chapter.  
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CHAPTER 4:  

Spontaneous EMT gives rise to the tumorigenic and stem 

cell-like subpopulation in the GIF-14 line 
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4.1 Introduction 

4.1.1 Properties of epithelial cells and mesenchymal cells 

The epithelium is an important tissue with unique properties and it lines most 

of the internal organs, covering the internal and external surfaces of the body. The 

epithelia are composed of epithelial cells that are tightly bound together in sheets and 

form barriers which protect the body from the external environment (Kolega, 1985). 

The epithelial cells are joined together by specialised membrane structures such as 

adherens junctions, tight junctions, gap junctions and desmosomes, organised as a 

lateral belt. These cells possess apical-basal polarity as reflected in the presence of 

distinct membrane proteins and outer-leaflet on the apical versus basolateral plasma 

membrane domains. The epithelial cells are typically polygonal in shape and their 

movements are restricted within the epithelial layer (Fristrom, 1988). In our study, the 

GIF cell lines are established from epithelial cells of the mouse stomach, which 

consist of simple columnar epithelial cells that are elongated and columnar.  

Distinct from epithelial cells, mesenchymal cells are found most abundantly in 

the connective tissue and are vastly different in their properties. Unlike epithelial cells, 

mesenchymal cells do not form organised sheets, and consequently lack the apical-

basal polarity as their epithelial counterparts, which are arrayed according to proper 

cell-cell junctions and actin cytoskeleton arrangement. Owing to these properties and 

their weaker cell-cell adhesion, mesenchymal cells possess migratory capabilities, 

often making transient contacts with their neighbours (Schock and Perrimon, 2002). 

In culture, mesenchymal cells adopt a spindle-shaped morphology and are highly 

motile, whereas polygonal-shaped epithelial cells grow as clusters of cells that 

maintain complete cell-cell adhesion with each other (Thiery and Sleeman, 2006). 
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4.1.2 Epithelial-Mesenchymal Transition 

The epithelial-mesenchymal transition (EMT) refers to a complex cellular and 

molecular programme through which epithelial cells temporarily lose their 

characteristics, such as cell-cell adhesion and apical-basal polarity, and take on the 

properties of mesenchymal cells such as cell motility. This process has long been 

recognised as a fundamental event in morphogenesis and organogenesis during 

embryonic development in vertebrates and invertebrates (Hay, 1968). The epithelial 

cells that are converted to mesenchymal cells migrate to distant sites where they 

undergo a reverse process, termed mesenchymal-epithelial transition (MET) to give 

rise to internal organs (Nieto, 2011). Several rounds of EMTs and METs are 

necessary for the formation of body plan and differentiation of multiple tissues and 

organs (Baum et al., 2008). EMT first occurs during gastrulation in which epiblast 

cells break away from the basement membrane to delaminate from the primitive 

streak to form the mesoderm germ layer (Shook and Keller, 2003). At later stage of 

embryogenesis, neural crest cells arising from the dorsal part of the neural tube 

undergo EMT and migrate to contribute to the formation of various tissues, including 

neurons, bones, smooth muscles and melanocytes (Lee et al., 2006). Subsequently, 

secondary and tertiary cycles of EMTs and METs are also responsible for the 

development of other structures, particularly the somites, heart, secondary palate, 

reproductive tracts and placenta (Thiery et al., 2009).  Consistent with the importance 

of EMT in embryogenesis, mutations in genes driving EMT are often associated with 

congenital defects such as mesodermal malformation and neural crest emigration 

failure (Nieto et al., 1994; Carver et al., 2001).  
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The hallmarks of EMT are defined by the loss of cell-cell junctions, disruption 

of apical-basal polarity, changes in cell shape and the acquisition of cell motility 

(Thiery and Chopin 1999). These typically involve the dissolution of epithelial 

junctional structures consisting of adherens junction, tight junctions and desmosomes. 

Loss of E-cadherin, a major component of the adherens junction with concurrent 

upregulation of non-epithelial cadherins such N-cadherin has been regarded as a 

critical event of EMT (Llorens et al., 1998). Concurrently, constituents of the core 

polarity complexes such as Par, Crumbs and Scribble are often downregulated or 

reorganised (Moreno-Bueno et al., 2008). Concomitant with the loss of epithelial cell 

identity, epithelial cells gain mesenchymal features such as spindle-like morphology, 

increased cell motility and invasion (Thiery, 2002). These often involve concerted and 

dramatic changes in the cytoskeleton organisation and extracellular matrix (ECM) 

composition to allow cells to change shape and migrate. Typically, reorganisation of 

the actin cytoskeleton and increased production of cytoskeletal and ECM proteins 

such as vimentin and fibronectin occur which leads to the stimulation of the integrin 

signaling to facilitate cell migration and invasion (Xu et al., 2009).  

 

As EMT and MET are highly controlled and spatial-temporally regulated 

processes during embryonic development, they do not occur under usual 

circumstances. However, reactivation of the EMT trans-differentiation programme in 

adulthood has been implicated in the conversion of early stage tumours to invasive 

malignancies (Thiery, 2002). Increasing findings reveal that the acquisition of an 

EMT phenotype is critically linked to epithelial cancer progression and metastasis 

which allows tumour cells to disseminate from primary tumours to distant loci 

through intravasation into the blood circulation (Irie et al., 2005; Chaffer et al., 2006; 
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Aigner et al., 2007; Moustakas and Heldin, 2007). Subsequently, these metastatic 

tumour cells with mesenchymal phenotype are believed to undergo MET to form 

macroscopic metastases at secondary sites that resemble the primary tumours (Kong 

et al., 2011). Therefore, it appears that the regulatory programme that governs 

embryonic EMT is exploited by tumour cells to adopt metastatic traits during tumour 

progression (Thiery et al., 2009).  

 

4.1.3 Regulatory factors controlling EMT 

EMT is regulated by a complex network of transcriptional regulators under the 

control of mitogenic signals. During EMT, various extracellular cues including 

soluble growth factors and components of the ECM activate a genetic program that 

leads to pronounced cellular changes in epithelial cells (Boyer et al., 2000). Multiple 

growth factors and morphogens, such as transforming growth factor-β (TGF-β), Wnt, 

fibroblast growth factor (FGF), hepatocyte growth factor (HGF), epidermal growth 

factor (EGF), Notch and sonic hedgehog proteins are capable of inducing an EMT 

(Thiery and Sleeman et al., 2006). The gene regulatory networks governing EMT 

during embryonic development have been well established in sea urchin and 

Drosophila, whereas those operating in the vertebrates are far from complete (Thiery, 

2009). The key transcription factors involved in the regulatory loops include Snail, 

Twist, Zeb, Foxc, Goosecoid, Sox, Eomesodermin, Mesps and others, of which the 

Snail, Twist and Zeb families are best characterised in the mammalian system (Polyak 

and Weinberg, 2009; Thiery, 2009). Recently, a non-histone chromatin binding factor, 

the high mobility group a2 (Hmga2), has been proposed to be a potential master 

regulator of EMT, whereby ectopic expression of HMGA2 activated the transcription 

of Snai1, Snai2 and Twist (Thuault et al., 2006). The induction of these transcription 
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factors in response to extracellular signals leads to the activation or repression of 

several sets of genes that influence cell morphology and behaviour. These molecular 

targets consist of epithelial/polarity genes such as E-cadherin, β-catenin, zonula 

occludins (ZO), claudins, desmoplakin and Crumbs3, as well as mesenchyaml genes 

including fibronectin, vimentin, N-cadherin and matrix metalloproteases (MMPs) 

(Batlle et al., 2000; Ikenouchi et al., 2003; Yang et al., 2004; Vandewalle et al., 2005; 

Bindels et al., 2006; Shirakihara et al., 2007; Whiteman et al., 2008).  

 

4.1.4 TGF-β and Wnt signaling pathways are important regulators of EMT 

The TGF-β pathway is an important regulator of cellular processes such as cell 

proliferation, apoptosis and differentiation in the gastrointestinal tract (Derynck et al., 

1997). It is regarded as a tumour suppressor pathway in this context as inactivation of 

the components of the TGF-β signaling cascade is prevalent in gastrointestinal 

cancers (Park et al., 1994; Markowitz et al., 1995; Howe et al., 1998). The TGF-β 

signaling cascade has been well-delineated in which TGF-β signals through a 

heterodimeric complex of type I and type II trans-membrane receptors. Upon ligand 

binding to type II receptors, Smad2 and Smad3 are activated via phosphorylation by 

type I receptor kinases and form heterotrimeric complexes with Smad4. These 

complexes translocate into the nucleus and regulate the transcription of a variety of 

genes in collaboration with specific transcription factors and coactivators or 

corepressors (Massague et al., 2006). 

Members of the TGF-β family of cytokines are regarded as major inducers of 

EMT during embryogenesis. This is clearly demonstrated in the multiple 

developmental defects in the heart and palatal fusion in TGF-β-null embryos due to a 
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lack of EMT (Pelton et al., 1990; Dickson et al., 1995; Sanford et al., 1997). Due to 

its diverse functions in various tissues, the role of TGF-β in carcinogenesis is 

distinctively pleiotropic. Although TGF-β acts as tumour suppressor through the 

induction of growth arrest and apoptosis at the early stage of cancer, surprisingly it 

also acts as a major driver of metastasis during cancer progression by inducing EMT 

(Heldin et al., 2009; Massague, 2008). For instance, constitutive activation of TGF-β1 

in transgenic mice led to the development of invasive spindle cell carcinomas from 

benign skin tumours (Cui et al., 1996). Furthermore, cancer cells often produce 

autocrine TGF-β to activate EMT, which enhances survival and invasion of migratory 

cancer cells (Derynck et al., 2001).  

The canonical Wnt signaling pathway plays a central role in the development 

and regeneration of gastrointestinal tract, and its dysregulation is one of the best-

characterised causes of gastrointestinal neoplasia (Clevers, 2006). The association 

between Wnt and EMT has been established during embryogenesis in which Wnt is a 

necessary component to drive EMT in neural crest formation and somitogenesis 

(Garcia-Castro and Bronner-Fraser, 1997; Galceran et al., 2004). Wnt proteins 

regulate EMT through the control of β-catenin-mediated transcriptional activity. β-

catenin plays dual roles in EMT: it enhances cell-cell adhesion when associated with 

the E-cadherin complex in adherens junctions (Ozawa et al., 1989), it also functions 

as a transcription coactivator upon entry into the nucleus when Wnt pathway is 

activated (Behrens et al., 1998). Consistent with the key roles that EMT and an 

activated Wnt pathway play in cancer progression, the translocation of β-catenin from 

cell membrane to nucleus is often observed at the invasive front of the primary 

carcinomas in metastatic human cancers (Brabletz et al., 2001).   
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4.1.5 EMT promotes the formation of “cancer stem cells” 

Apart from its better studied involvement in advanced cancer, recent evidence 

suggests that EMT may have a role in tumour initiation by promoting the genesis of 

“cancer stem cells”. Two independent groups have demonstrated that mammary 

epithelial cells undergoing EMT gained stem cell-like characteristics (Mani et al., 

2008; Morel et al., 2008). Immortalised human mammary epithelial cells that were 

induced to undergo EMT upon the overexpression of Snai1 or Twist or TGF-β1 

treatment were capable of forming mammospheres in vitro, indicating that they 

display properties of stem cells (Mani et al., 2008). In a separate study, the 

constitutive activation of EMT in Ras-transformed mammary epithelial cells led to a 

significant increase in the number of cancer stem cells, marked by CD44
high

CD24
low

 

antigen profile (Morel et al., 2008). These data indicate that the aberrant activation of 

an EMT induces a genetic reprogramming in epithelial cells which enables them to 

become phenotypically plastic. As a result, epithelial cells acquire stem cell 

characteristics, mesenchymal features, resistance to apoptosis and eventually become 

tumorigenic (Polyak and Weinberg, 2009). 
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4.1.6 Experimental approach 

In the Runx3
-/-

 GIF-14 cell line, the P2 subpopulation was found to be depleted 

for epithelial-specific surface antigens CD133, EpCAM and CD49f, suggesting that 

P2 cells display reduced epithelial phenotype. As the P2 subpopulation was shown to 

be tumorigenic, the relationship between a loss of epithelial characteristics and the 

tumorigenicity in the GIF-14 cell line will be investigated in the context of EMT. To 

achieve this, the following experimental approaches are taken: (1) measuring the gene 

expression of specific markers by quantitative RT-PCR, and their sub-cellular 

distribution by immuno-fluorescent staining; and (2) live monitoring of cell behaviour 

by time-lapse imaging. In the former approach, gene expression profiling of epithelial 

markers E-cadherin and EpCAM, EMT-inducing transcription factors Snai1, Snai2 

and Twist and mesenchymal markers N-cadherin, Vimentin, Fibronectin will be 

performed in GIF-14 subpopulations. Secondly, immuno-fluroscent staining coupled 

with confocal microscopy will be employed to study the distribution of epithelial- and 

mesenchymal-related proteins. This technique is widely practiced as high resolution 

three-dimensional images displaying spatial localisation of proteins using specific 

fluorescent dyes can be generated (Wright et al., 1993). To track the behaviour of 

cells in terms of their cell morphology and migration real-time, live cell imaging 

techniques such as time-lapse imaging will be performed. Time-lapse imaging is 

particular useful for sequence-capturing of dynamic cellular events over a long period 

of time (Jang et al., 2011). Finally, the effects of various EMT-inducing growth 

factors, in particular TGF-β and Wnt, on gene expression and cell biology of GIF-14 

cells will be investigated using the above experimental approaches.  
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4.2 Results 

4.2.1 The P2 subpopulation displays mesenchymal-like characteristics 

P1 and P2 subpopulations displayed distinct cell morphology when cultured 

on plastic culture dish and glass cover slips. Figure 4.1 shows the morphologies of 

FACS-purified P1 and P2 cells grown on plastic culture dish at sub-confluent 

densities. P1 cells resembled typical epithelial cells with polygonal shapes. In contrast, 

P2 cells displayed features similar to mesenchymal cells, such as elongated and 

spindle-like morphologies (Figure 4.1). Although both subpopulations were seeded at 

the same cell density, the P1 subpopulation formed cell clusters more readily than the 

P2 subpopulation, suggesting that the P1 cells have relatively stronger cell-cell 

adhesion (Figure 4.1).  

 

Figure 4.1. P1 and P2 cells in the GIF-14 cell line showed distinct differences in cell morphology. P1 
and P2 cells were fractionated by FACS and they were expanded in vitro. Images of these cells at sub-
confluent densities were captured by phase contrast microscopy. Scale bars, 50µm.  
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To confirm the above observations, time-lapse imaging was carried out to 

monitor the growth of P1 and P2 colonies. Freshly FACS-fractionated P1 and P2 cells 

were seeded at clonogenic densities on glass cover slips for the formation of single 

cell-derived colonies. The glass cover slips were transferred into a Sykes Moore 

chamber and mounted on a Nikon Ti Eclipse microscope through which images were 

captured at 3 min intervals. The progressive, time-lapse images of a representative 

colony from each subpopulation at indicated times of imaging are presented in Figure 

4.2. P1 colonies took on a compact appearance and grew slowly in a cohesive manner, 

where neighboring cells were in constant contact with each other, thus displaying 

characteristics of epithelial cells (Figure 4.2). This observation was conserved in all 

P1 colonies monitored over the course of 18h. In striking contrast, cells within P2 

colonies were disorganised in their arrangement and expanded rapidly with constant 

delamination and outward migration. These properties were particularly pronounced 

at the boundaries of P2 colonies (Figure 4.2). The dynamics and high motility of the 

P2 cells revealed by time-lapse imaging suggest that the P2 cells may possess weaker 

cell-cell adhesive force compared to P1 cells. 
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Figure 4.2. P1 and P2 colonies displayed markedly different morphology and migration. Time-lapse 
imaging of single-cell derived P1 and P2 colonies was performed in which images were captured by 
differential interference contrast (DIC) microscopy at 3min intervals over a period of 18h. Images of 
representative colonies at the indicated time points are presented. Scale bars, 50µm. 
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To further assess the mesenchymal nature of the P2 subpopulation, gene 

expression profiling experiments were performed in which the expression of well-

established EMT- and mesenchymal-associated markers in P1 and P2 subpopulations 

were measured by quantitative RT-PCR. The gating strategy employed for the 

fractionation of P1 and P2 subpopulations by FACS is similar to that in Figure 3.9 in 

which P1 cells with the greatest dye efflux was captured by setting a small and 

selective gate. In total, three independent fractionations of GIF-14 cells were 

performed and the expression levels of each marker gene were calculated as ratios to 

those of the control samples (Figure 4.3). In all the experiments, mesenchymal 

markers such as Fibronectin (Fn1) were significantly elevated in the P2 

subpopulation (Figure 4.3). Furthermore, the P2 subpopulation expressed markedly 

higher levels of key EMT-inducing transcription factors, Snai1, Snai2 and Twist 

compared to the P1 subpopulation (Figure 4.3). Lastly, P2 cells had reduced 

expression of the epithelial cell marker, EpCAM, and this is in agreement with the 

lower EpCAM protein levels in these cells as determined by surface antigen staining 

and flow cytometry in Table 3.2. Taken together, our data indicate that the P2 

subpopulation has reduced epithelial characteristics and concurrently displays 

morphological and molecular properties of mesenchymal cells.   
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Figure 4.3. Expression levels of epithelial-, EMT- and mesenchymal-related markers in P1 and P2 cells. 
Left panel: Cells were fractionated based on Hoechst 33342 staining into P1 and P2 populations for 
qRT-PCR. A small gate was set to collect P1 cells with the greatest dye efflux potential. Right panel: 
Expression levels of epithelial-, EMT-, and mesenchymal-associated genes relative to those of control 
sorted cells (total population in the FACS plot). Data presented are a compilation of three independent 
experiments and each dot on the plot represents the read-out of a single experiment. Student’s t-tests 
were performed on P1 and P2 values. Double asterisks denotes p-value <0.01.   

 

4.2.2 TGF-β1 induces EMT- and mesenchymal-related genes in GIF-14 cells 

To induce EMT experimentally in the GIF-14 cell line, parental GIF-14 cells 

were treated with human recombinant TGF-β1 ligand for 24h and 48h. Changes in 

EMT- and mesenchymal-related markers that were enriched in the P2 subpopulation 

were determined by qRT-PCR. These treatments resulted in robust induction of 

EMT/mesenchymal-associated genes (Figure 4.4). Induction was most prominently 

observed in Snai1 at 24h post-treatment. In contrast, N-cad, Fn1 and Snai2 were 

strongly induced at 48h post-treatment (Figure 4.4). These observations suggest that 

the activation of Snai1 by TGF-β1 is probably a primary event that leads to the 

secondary induction of its target genes, such as N-cad and Fn1. Collectively, the 

above results suggest that an EMT has been induced by TGF-β1 in GIF-14 cells. 

Unexpectedly, treatment of TGF-β1 also caused 5-fold induction of Lgr5 transcript in 

GIF-14 cells at 48h post-treatment (Figure 4.4). As Lgr5 is a specific gastrointestinal 

stem cell marker, this finding is consistent with the notion that EMT promotes the 

acquisition of stem cell-like properties in epithelial cells.  
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Figure 4.4. Changes in the expression of EMT- and mesenchymal-related genes in response to TGF-β1 
treatment. Parental GIF-14 cells were treated with 2.5ng/ml of TGF-β1 for 24 or 48h and changes in the 
expression of epithelial-, EMT- and mesenchymal-related genes were determined by qRT-PCR. The 
values of each gene were normalised against those of Gapdh and expressed relative to the untreated 
controls. The data from three independent experiments were compiled (means ± SEM, n=3). Single and 
double asterisks represent p-value < 0.05 and p-value <0.01, respectively.    
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4.2.3 TGF-β1 and Wnt3a promotes the expansion of the P2 subpopulation 

The strong resemblance between the P2 subpopulation and GIF-14 cells that 

have undergone TGF-β1-induced EMT suggests that P2 cells are the product of EMT. 

To demonstrate this, Hoechst 33342 staining was performed on GIF-14 cells treated 

with TGF-β1 at various time points across a 10-day period. To account for changes 

due to culture conditions, untreated cells were traced for the same period of time. 

Compared to the untreated cells, three days of TGF-β1 treatment resulted in an 

expansion of the P2 subpopulation from 4.8% to 10.1%. This was concomitant with 

shrinkage of the P1 subpopulation from 51.0% to 22.3% (Figure 4.5A). This trend 

was persistent and further enhanced over 10 days of TGF-β1 treatment period (Figure 

4.5A). In this analysis, a small P1 gate was marked to highlight a receding of the “tip” 

of P1, which indicated a loss of dye efflux over time.  It is worth noting that the same 

conclusion could be drawn when a larger gate was used. 

As P1 and P2 cells could further be distinguished by their differential EpCAM
 

and CD133
 
expression, changes in these markers were also measured by flow 

cytometry, and presented as a percentage of the total cell population. Consistent with 

the enlargement of P2 subpopulation, the fraction of the P2-associated 

EpCAM
low

CD133
-
 cells increased from 51% to 84% after 10 days of TGF-β1 

treatment (Figure 4.5B). This was accompanied by a decrease in the percentage of the 

P1-associated EpCAM
high

CD133
+
 cells from 49% to 16% (Figure 4.5B). Together, 

these data provide strong evidence that TGF-β1 treatment promotes an expansion of 

the P2 subpopulation, and reduces P1 subpopulation in GIF-14 cells. 
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A 

 

 
 
B 

 

Figure 4.5. The effects of TGF-β1 treatment on Hoechst 33342 and cell surface marker staining profiles. 
GIF-14 cells were treated with 2.5ng/ml of TGF-β1 for a period of 10 days. Co-staining of Hoechst 
33342 together with CD133 and EpCAM was performed at indicated time points and the cells were 
analysed on the flow cytometer. Changes in Hoechst 33342 staining profile were presented on the 
FACS plots (A) while the percentages of EpCAM

high
CD133

+
 and EpCAM

low
CD133

-
 cells relative to their 

combined values were shown in (B). Student’s t-test was performed for day10 after TGF-β1 treatment 
and double asterisks denotes p-value <0.01.   
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The above observations prompted us to test the effects of Wnt3a, which is 

another well known inducer of EMT. To activate the canonical Wnt signaling, 

parental GIF-14 cells were treated with Wnt3a-conditioned medium (Wnt3a-Cm) or 

control-Cm over a period of 10 days. To determine the effects of Wnt, changes in 

EpCAM
high

CD133
+
 and EpCAM

low
CD133

-
 fractions were ascertained by flow 

cytometry over the course of the treatment. Relative to control-Cm, Wnt3a-Cm 

resulted in increased EpCAM
low

CD133
- 
cells from 43.1% to 56.3% after 3 days of 

treatment. Concomitantly, slight decrease in EpCAM
high

CD133
+
 cells was observed in 

Wnt3a-Cm treated cells (Figure 4.6). This effect was gradually enhanced with 

prolonged Wnt3a-Cm treatment (Figure 4.6). However, it was noted that control-Cm 

caused a milder but similar effect to that of Wnt3a-Cm, indicating that conditioned 

media may contain certain growth factors which would induce EMT (Figure 4.6). 

 

Figure 4.6. The effects of Wnt3a-Cm treatment on CD133/EpCAM marker profile. GIF-14 cells were 
subjected to CD133 and EpCAM staining at the indicated time points, following a period of 10 days of 
treatment with Control or Wnt3a-Cm (1:3 dilution with culture medium). Changes in CD133/EpCAM 
surface antigen profile were analysed by flow cytometry. 
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4.2.4 TGF-β1 causes a direct transition of  P1 to P2 phenotype 

The preliminary observation that TGF-β1 treatment leads to an expansion of 

the P2 subpopulation with simultaneous decrease in P1 subpopulation could be either 

due to: 1) TGF-β1 induces a direct transition of P1 to P2 phenotype or 2) a negative 

selection against P1 cells by TGF-β1. To exclude the latter possibility, time-lapse 

microscopy was employed to study changes in single-cell derived P1 colonies 

following TGF-β1 treatment. Two independent imaging experiments were conducted 

in which P1 colonies were cultured on plastic plates and glass cover slips for phase 

contrast (Figure 4.7A) and differential interference contrast (DIC) imaging (Figure 

4.7B), respectively. The colonies were allowed to adapt to the environment in the 

culture chamber prior to TGF-β1 treatment for 67h. Images of representative colonies 

at indicated time points are shown in Figures 4.7A and 4.7B. Untreated colonies were 

imaged simultaneous in a separate well or chamber to account for the effects of 

culturing conditions on the behaviour of cells. 

In these experiments, TGF-β1 treatment of P1 colonies did not trigger 

apoptosis; rather it resulted in a marked gain in mesenchymal-like phenotype (Figure 

4.7A). As the treatment progressed, TGF-β1-treated cells took on a stretched and 

spindle-like morphology. Moreover, cells became increasingly detached and motile at 

the periphery of the colonies (Figure 4.7A). These changes were in striking contrast to 

the untreated control colonies which displayed epithelial properties. This phenomenon 

was clearly observed in two separate imaging experiment using different microscopy 

and culture substrata, namely plastic/phase-contrast and glass slip/DIC imaging 

(Figure 4.7B). Importantly, the resultant phenotype of P1 colonies following TGF-β1 

treatment closely resembled that of P2-derived colonies (Figure 4.7 & 4.2). Therefore, 
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these data provide strong evidence that the expansion of P2 subpopulation in GIF-14 

cells upon TGF-β1 treatment described in Section 4.2.3 is due to a direct transition of 

P1 cells to cells bearing P2 phenotypes. 

A 

 

Figure 4.7A. Morphological changes in P1 colonies induced by TGF-β1. Time-lapse microscopy of 

single-cell derived P1 colonies treated with 2.5ng/ml of TGF-β1 was set up according the descriptions in 

Section 2.10. Phase contrast images of control and TGF-β1 treated P1 colonies cultured on low 
evaporation 6-well plastic plates were taken concurrently for 67h at 5min intervals. Images of the 
representative colonies at various treatment time points are shown. Scale bars, 50µm. 
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B 

 

Figure 4.7B. Morphological changes in P1 colonies induced by TGF-β1. Time-lapse microscopy of 

single-cell derived P1 colonies treated with 1.25ng/ml of TGF-β1 was set up as described in Section 

2.10. DIC images of control and TGF-β1 treated colonies grown on glass cover slips were captured in 
separate Sykes Moore chambers for 84h at 5min intervals. Images of the representative colonies at the 
indicated treatment time points are shown. Scale bars, 50µm.  
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4.2.5 TGF-β1 causes major sub-cellular changes in GIF-14 cells 

The sub-cellular changes in cells undergoing EMT have been extensively 

studied. To provide conclusive evidence that TGF-β induces EMT in GIF-14 P1 

colonies, immuno-fluorescent staining of cell-cell adhesion proteins and 

mesenchymal markers were performed. In this study, single-cell derived untreated or 

TGF-β1 treated P1 as well as P2 colonies were stained for desmoplakin, F-actin and 

β-catenin. High and low magnifications of confocal images of representative colonies 

were captured (Figure 4.8A and 4.8B). Desmoplakin is an essential component of the 

desmosomes that is a major feature of epithelial cells, as described in Section 4.1.3. In 

untreated P1 colonies, desmoplakin staining was prominent at intercellular boundaries 

where it appeared as punctate foci consistent with the presence of desmosomes. After 

48h of TGF-β1 treatment, a pronounced redistribution of desmoplakin from the 

plasma membrane to the cytoplasm and nuclei was observed, indicating a disassembly 

of the desmosomes (Figures 4.8A and 4.8B).  

F-actin filaments are important constituents of the cytoskeleton structures 

required for the maintenance of cell-cell junctions and cell shape. In untreated P1 

colonies, F-actin was largely localised in close proximity to the cell membrane. TGF-

β1 treatment of P1 cells resulted in a striking reorganisation of F-actin filaments in the 

form of stress fibres (Figures 4.8A and 4.8B). This is consistent with the observed 

increase in cell motility as shown in Figure 4.7. As stress fibres are part of the focal 

adhesion complex formed when cells make stable connections to the substratum, they 

enable cells to extend their leading edge to attach to the substratum for movement 

(Doherty and McMahon, 2008). 
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The immuno-fluorescent staining of β-catenin revealed its predominant 

localisation at intercellular junctions in untreated P1 colonies. TGF-β1 treatment 

caused a loss of membranous β-catenin staining in P1 cells, indicating a disruption of 

the adherent junctions (Figures 4.8A and 4.8B). In addition, increased nuclear β-

catenin staining was observed in cells at the periphery of the colonies, suggesting an 

activated Wnt signaling (Figures 4.8A and 4.8B). Therefore, TGF-β1 treatment 

induced a change of cell-cell adhesion structures and increased cell motility in P1 

colonies. More importantly, the resultant phenotype induced in P1 colonies by TGF-

β1 resembled closely to those of P2-derived colonies (Figure 4.8A and 4.8B). This 

coincides with the adoption of P2-like cell morphology and motility by P1 colonies 

upon TGF-β1 treatment shown in Figure 4.7. Interestingly, a gradient of decreasing 

epithelial with concurrent increasing mesenchymal features from the centre towards 

the edge of single-cell derived P2 colonies was observed, reflecting an inherent state 

of plasticity in P2 cells (Figure 4.8B).  
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4.2.6 Autocrine TGF-β drives spontaneous EMT in the GIF-14 line 

The occurrence of a mesenchymal-like P2 subpopulation under normal 

culturing of GIF-14 cells suggests that these cells are undergoing spontaneous EMT. 

Therefore, the possibility that an autocrine and constitutively active TGF-β pathway 

which promotes and maintains the P2 subpopulation in steady state was investigated. 

In this study, a specific and potent TGF-β inhibitor, SB431542, abrogates TGF-β 

signaling by inhibiting the phosphorylation of Smad2 by type I TGF-β receptors 

(Inman et al., 2002) was used. Parental GIF-14 cells were pre-treated with TGF-β 

inhibitor for 15h prior to the addition of TGF-β1 ligand for another 48h. TGF-β 

activity was assessed by immuno-fluorescent staining of total and phosphorylated 

Smad2/3, the nuclear effectors of TGF-β signaling. Untreated GIF-14 cells showed 

cytoplasmic and nuclear staining of total Smad2/3, indicating that the TGF-β pathway 

is partially and constitutively active in GIF-14 cells (Figure 4.9). Treatment with 

TGF-β1 triggered nuclear translocation of cytoplasmic Smad2/3, yielding exclusive 

nuclear total Smad2/3 staining (Figure 4.9). Pre-treatment with SB431542 blocked the 

nuclear accumulation of total Smad2/3 in both untreated and TGF-β1 treated cells, 

demonstrating the inhibition of autocrine and exogenous TGF-β signaling (Figure 4.9). 

However, despite the clear redistribution of total Smad2/3, persistent localisation of 

phosphorylated Smad2/3 in the nucleus was observed though the canonical TGF-β 

pathway was inhibited (Figure 4.9).  
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Phase contrast images were captured to evaluate the changes in cell 

morphology in response to SB431542. GIF-14 cells were pre-treated with SB431542 

for 15h before treatment with TGF-β1 for 24h. As described in Sections 4.2.4 and 

4.2.5, TGF-β1 treatment resulted in distinct morphological changes in GIF-14 cells 

and endowing them with mesenchymal features (Figures 4.7 and 4.8). Concordant 

with the nuclear exclusion of total Smad2/Smad3, treatment with SB431542 

effectively blocked the TGF-β1-induced morphological changes in GIF-14 (Figure 

4.10). Moreover, uninduced GIF-14 cells treated with SB431542 appeared epithelial-

like phenotype with greater compactness compared to resting GIF-14 cells (Figure 

4.10). These data suggest that a constitutively active TGF-β pathway promotes 

mesenchymal-like morphology in some GIF-14 cells and its blockade by SB431542 

would reverse these changes and promote epithelial cell phenotype. 

                 

 

Figure 4.10. Changes in the cell morphology of GIF-14 cells upon TGF-β inhibitor (SB431542) 
treatment. GIF-14 cells were pre-treated with 10µM of SB431542 for 15h prior to the addition of 2.5ng/ml 

of TGF-β1 for another 24h. Phase contrast pictures of these cells are shown. Scale bars, 50µm. 
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 To assess the effect of SB431542 on gene expression, qRT-PCR analyses were 

performed. Concordant with the observations described in Section 4.2.2, TGF-β1 

treatment resulted in elevated expression of Snai1, Snai2, Twist, Vim, Fn1 and Hmga2 

(Figure 4.11). Treatment with TGF-β inhibitor drastically reduced the basal and TGF-

β1-induced expression of these genes to a level below those of untreated controls 

(Figure 4.11).  

 

Figure 4.11. Changes in EMT- and mesenchymal-associated genes in GIF-14 cells upon TGF-β 

inhibitor (SB431542) treatment. GIF-14 cells were pre-treated with 10µM of TGF-β inhibitor for 15h prior 

to 24h of 2.5ng/ml TGF-β1 induction. EMT- and mesenchymal-related transcripts were ascertained by 
qRT-PCR. Expression levels were normalised against those of Gapdh and expressed relative to 
untreated control for each gene.  
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 Finally, to demonstrate whether TGF-β inhibitor promotes the P1 subpopulation, 

Hoechst 33342 staining was performed on GIF-14 cells treated with TGF-β inhibitor 

for an extended period. Treatment with TGF-β inhibitor for 3 days resulted in an 

increase in P1 subpopulation from 22.7% to 53.8%. This was accompanied by a 40% 

reduction in the P2 subpopulation from 9.91% to 6.48% (Figure 4.12). These effects 

sustained for 7 days of TGF-β inhibitor treatment (Figure 4.12). Therefore, these data 

suggest that TGF-β inhibitor drives cells towards the P1 phenotype.  

 

Figure 4.12. The effects of prolonged TGF-β inhibitor (SB431542) treatment on Hoechst 33342 staining 

profiles in GIF-14 cells. Parental GIF-14 cells were treated with 10µM of TGF-β inhibitor, SB431542 and 
Hoechst 33342 staining was performed on three and seven days post-treatment and analysed by flow 
cytometry. 
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4.2.7 EGF and HGF cooperate with TGF-β1 to induce EMT-related genes 

In addition to TGF-β, EMT is also shown to be regulated by other growth 

factors pathways, such as epidermal growth factor (EGF), fibroblast growth factor 

(FGF), and hepatocyte growth factor (HGF) pathways. Therefore, their ability to 

activate EMT in GIF-14 cells was investigated. In addition, the potential cooperation 

between TGF-β and these growth factors was also studied. Parental GIF-14 cells were 

treated with EGFs, FGFs, HGF and TGF-β1 alone or together with TGF-β1 for 24h 

and gene expression profiling of EMT- and mesenchymal-related genes was 

performed. The results showed that robust activation of Snai1, Fn1 and Hmga2 was 

observed when cells were singly treated with TGF-β1, but not EGFs, FGFs and HGF 

(Figure 4.13). Co-treatment of EGFs or HGF together with TGF-β1 resulted in greater 

activation of Snai1 and Hmga2 transcripts (Figure 4.13). These data show that TGF-β 

is the primary factor that induces the EMT signature, though some degree of 

cooperation between TGF-β and EGF or HGF was observed. 
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4.3 Discussion 

In the previous chapter, the P2 subpopulation in the GIF-14 cell line was 

found to have reduced epithelial characteristics. Thus, the possibility of GIF-14 cells 

undergoing EMT was investigated. Through time-lapse microscopy and gene 

expression profiling, the P2 subpopulation was shown to display mesenchymal-like 

features and was highly enriched for EMT- and mesenchymal-associated markers, 

indicating that the P2 cells are products of spontaneous EMT in GIF-14 cells. 

Furthermore, TGF-β1 treatment readily caused an expansion of the tumorigenic, 

Lgr5-positive P2 subpopulation as revealed by Hoechst 33342 staining, along with 

significant induction of EMT- and mesenchymal-related transcripts. These 

observations strongly implicate EMT as major contributor to the tumorigenicity of 

GIF-14 cells. However, it was noted that E-cadherin mRNA levels was comparable in 

P1 and P2 cells and its expression remained unaffected by TGF-β1 (Figures 4.3 and 

4.4). The reason for these observations is currently unclear though known repressors 

of E-cadherin such as Snai1 and Snai2 were induced. At this point, it has yet been 

demonstrated that Snai1 and Snai2 are responsible for driving the EMT phenotype in 

GIF-14 cells, thus they are viewed as markers for TGF-β responsiveness. It would be 

necessary to verify the protein expression and sub-cellular localisation of E-cadherin 

in P1 and P2 subpopulations. As reported in Section 3.1.2, the GIF cell lines exist in 

an immortalised but untransformed, pre-malignant state. Hence, tumour initiation and 

growth requires additional mutations and/or growth stimuli from a permissive tissue 

microenvironment. In this context, the reprogramming properties of EMT may 

contribute to tumor formation by conferring greater adaptability and increased 

resistance to apoptosis to ensure better survival in graft niche when transplanted. 
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Moreover, cells that have undergone EMT may be more responsive to growth factors 

present in the microenvironment.  

An unexpected and intriguing observation from this study is that prolonged 

TGF-β1 treatment induced Lgr5, hitherto known only as a Wnt target and an 

exclusive gastrointestinal stem cell marker (Figure 4.4) (Barker et al., 2007; Barker et 

al., 2010). This finding indicates that EMT promotes a stem cell-like state in GIF-14 

cells by imparting greater cellular plasticity. This observation is analogous to the 

recently reported phenomenon that aberrant activation of EMT in mammary epithelial 

cells would generate “cancer stem cells” (Mani et al., 2008). A key implication of this 

phenomenon is that differentiated cells can revert to a stem cell-like state through the 

reprogramming properties of EMT, which challenges existing dogmas of 

carcinogenesis (Mani et al., 2008; Morel et al., 2008).  

The phenotypic plasticity of GIF-14 cells was further demonstrated in two 

observations: 1) P1 readily took on a P2-like phenotype upon TGF-β1 treatment; and 

2) a gradient of epithelial and mesenchymal characteristics within individual P2 

colonies (Figures 4.7 and 4.8B). This phenomenon is akin to the intermediate 

“metastable” phenotype observed during EMT, in which co-expression of mixed 

epithelial and mesenchymal traits occur within the same cell population (Savagner et 

al., 2005). Interestingly, cells within the TGF-β1-treated P1 colonies displayed more 

drastic changes in membrane morphology than those in P2 colonies, suggesting that 

exogenous TGF-β1 and autocrine signals may induce different degree of 

“metastability” (Figure 4.8A). It would be worthwhile to investigate whether P2 cells 

could be further induced to completely lose epithelial characteristics by TGF-β1. The 

intermediate phenotype is considered unstable and contributes to the adaptability and 
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tumorigenicity of cells aberrantly altered by EMT. The co-existence and persistence 

of P1 and P2 in normal in vitro culture also suggests that a dynamic equilibrium may 

exist between P1 and P2. While epithelial-like P1 cells are primed to undergo EMT 

induced by TGF-β1 and Wnt3a (Figures 4.5, 4.6 and 4.7), P2 cells may revert to P1 

phenotype through a reverse process, i.e. Mesenchymal-Epithelial Transition (MET).  

An important observation from immuno-fluorescent staining experiments is 

the shift from membranous to nuclear staining of β-catenin when cells become more 

motile and detached at the boundary of P2 or TGF-β1 treated P1 colonies (Figure 

4.8B). This indicates an activated Wnt signaling which is reminiscent of the invasive 

front of metastatic tumours, where activation of TGF-β and Wnt pathways drives 

EMT and metastasis (Brabletz et al., 2005; Klymkowsky and Savagner, 2009). As the 

immuno-fluorescent data are qualitative in nature, these could be corroborated with 

biochemical approach such as subcellular fractionation combined with Western 

blotting to verify the changes in membrane, cytosolic and nuclear localisation. 

Consistent with the involvement of Wnt pathway in EMT, Wnt3a treatment in GIF-14 

cells induced EpCAM
low

CD133
-
 cells in a similar manner to TGF-β1 (Figure 4.6). It 

is plausible that TGF-β1 induces the Wnt pathway by depleting β-catenin at the 

adherens junctions which in turn cooperates with Wnt to reinforce EMT.  

The spontaneous emergence of P2 cells in GIF-14 cells suggests the existence 

of constitutively active EMT-inducing pathways due to autocrine growth factors. The 

identity of these signals was investigated through two approaches: 1) the addition of 

exogenous growth factors; and 2) the use of a specific inhibitor for the canonical 

TGF-β pathway. The data from these experiments provide evidence that an autocrine 

TGF-β pathway is responsible for the promotion and maintenance of the P2 
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subpopulation within GIF-14 cells, in a Smad2/3-dependent manner. This was 

confirmed by the remarkable reversal to an epithelial phenotype in the presence of 

TGF-β inhibitor as measured by cell morphology, gene expression and Hoechst 33342 

staining (Figures 4.9 to 4.12). These are concordant with the recent report that the 

maintenance of the mesenchymal state required sustained activation of TGF-β and 

Wnt pathways in an autocrine fashion in mammary epithelial cells. Importantly, 

disruption of autocrine signaling loops would suppress cell migration, self-renewal 

and tumorigencity (Scheel et al., 2011). In addition to the activation of Smads2/3, 

Smad–independent signaling such as the mitogen-activated protein kinase (MAPK) 

pathways, phosphatidylinositol 3-kinase-Akt and RhoA pathways are also involved in 

TGF-β-mediated EMT (Hartsough and Mulder, 1995; Atfi et al., 1997; Frey and 

Mulder, 1997; Hanafusa et al., 1999; Bakin et al., 2000; Bhowmick et al., 2001). For 

instance, TGF-β-mediated regulation of RhoA-GTPase activity through the 

Occludin/Par6/Smurf1 pathway at the tight functions of epithelial cells has been 

implicated in priming for EMT (Ozdamar et al., 2005). Activation of the Rho cascade 

induces the formation of stress fibres (Ridley and Hall, 1992) which was clearly 

observed in P2 and TGF-β1-treated P1 colonies. Therefore, the involvement of RhoA 

pathway in TGF-β-induced EMT could be investigated.  

Taken together, our results show that the GIF-14 cell line undergoes EMT 

readily induced by autocrine or exogenous TGF-β1 or Wnt3a to give rise to the 

tumorigenic, stem cell-like and mesenchymal-like P2 subpopulation characterised in 

Chapter 3. An unexpected degree of phenotypic plasticity was observed in GIF-14 

where P1 cells would dedifferentiate into the Lgr5-positive P2 cells through the 

reprogramming properties of EMT. The phenomenon of spontaneous EMT is likely to 
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be restricted to Runx3
-/- 

GIF cell lines as Runx3
+/+ 

lines are not tumorigenic and 

possess intact cell-cell adhesions (Li et al., 2002; Fukamachi et al., 2004). In view of 

the previous reports that Runx3
-/- 

GIF cell lines were refractory to the growth 

suppressive and apoptotic effects of TGF-β1 compared to Runx3
+/+ 

cells (Li et al., 

2002), it is surprising that Runx3
-/- 

GIF-14 cells are susceptible to EMT-promoting 

effects of TGF-β1. Therefore, Runx3 may play an important role in modulating the 

TGF-β pathway. For this reason, the relationship between the loss of Runx3 and 

susceptibility to EMT will be further investigated in the following chapter. 
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CHAPTER 5 

Runx3 safeguards gastric epithelial cells against aberrant 

activation of EMT and phenotypic plasticity 
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5.1 Introduction 

5.1.1 Runx3
-/-

 GIF cell lines display altered differentiation and epithelial phenotype 

Despite the observation of a hyper-proliferative stomach in the Runx3-null 

mouse model, the study of Runx3 function in gastric epithelial cells was severely 

hampered by the early death (postnatal day1) of C57BL/6 Runx3
-/-

 mice. To alleviate 

this problem, a series of mouse gastric epithelial cell lines, termed the GIF cell lines 

were established by the immortalisation of Runx3
+/+

.p53
-/-

 or Runx3
-/-

.p53
-/-

 gastric 

epithelial cells isolated from E16.5 fetuses. In the initial characterisation of these 

embryonic cell lines, it was revealed that when cultured between collagen sheets, 

Runx3
+/+

 GIF lines readily formed simple columnar epithelia with glandular 

structures. Like normal gastric epithelial cells, these cells exhibited polarity with 

mucus droplets localised on the luminal surface (Fukamachi et al., 2004). In contrast, 

Runx3
-/- 

GIF lines under the same culturing conditions displayed an altered in vitro 

phenotype that was characterised by poor organisation and disrupted differentiation. 

Of particular note, these cells failed to develop apical-basal polarity and glandular 

structures (Fukamachi et al., 2004). The former was subsequently found to be caused 

by the reduced expression of tight junction proteins important for cell-cell contact, 

such as Claudin-1 which was found to be a positive target of Runx3 (Chang et al., 

2010). These data indicate that Runx3 is required for the proper differentiation into 

glandular epithelial sheet with established cell-cell adhesion and polarity in collagen 

gel cultures.  

When subcutaneously transplanted into immuno-compromised nude mice, it 

was found that only Runx3
-/-

 GIF lines and not their Runx3
+/+ 

counterparts were 

tumorigenic (Li et al., 2002). The resultant Runx3
-/-

 GIF-generated tumours were 
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studied to provide further insights into their differentiation potentials. Remarkably, 

histological analysis of tumours in nude mice and in vitro culture in three dimensional 

matrigel showed that Runx3
-/-

 GIF lines were capable of trans-differentiating into 

intestinal-type cells (Fukamachi et al., 2004; Fukamachi et al., 2008). Together, all 

the above data indicate that Runx3
-/-

 cells are prone to losing their identity as gastric 

epithelial cells when perturbed by extracellular morphogenetic cues. These 

observations are further supported by recent finding from adult BALB/c Runx3
-/- 

mice, 

which showed altered differentiation and intestinalisation of the gastric epithelium, 

characterised by the loss of chief cells and aberrant expression of the intestinal 

specific transcription factor Cdx2 (Ito et al., 2011). 

 

5.1.2 Altered TGF-β and Wnt signaling in Runx3
-/-

 GIF lines 

A prominent feature of Runx3
-/-

 GIF lines is their resistance to TGF-β1-

mediated growth arrest and apoptosis (Li et al., 2002). This is consistent with the 

critical function of RUNX3 as a mediator of the TGF-β/Smad tumour suppressor 

pathway in gastric epithelial cells. Through direct interactions with the Smad 

transcription factors, RUNX3 transcriptionally activate the expression of p21
WAF/Cip1 

and BIM, a negative regulator of cell cycle and a pro-apoptotic gene respectively (Chi 

et al., 2005; Yano et al., 2006; Ito 2008). Indeed, the ability to escape TGF-β-

mediated apoptosis is considered to be an important basis for the tumorigenicity of the 

Runx3
-/-

 GIF lines. However, the TGF-β signaling pathway is remarkably pleiotropic 

in that while it serves as a major cancer barrier in early carcinogenesis due to its 

tumour suppressive activities, its ability to aberrantly activate EMT renders it a major 

driver of cancer progression and metastasis in late stage cancers (Wakefield and 
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Roberts, 2002). It is therefore possible that the resistance of Runx3
-/- 

GIF lines to 

TGF-β-mediated apoptosis is a result of the skewing of TGF-β signaling towards 

EMT-activating properties due to the absence of Runx3. Apart from its involvement 

in TGF-β signaling, RUNX3 acts as a molecular antagonist to the canonical Wnt 

pathway through direct interaction with the TCF4/β-catenin complex in human 

colorectal cancer cell lines (Ito et al., 2008). Consistent with this, Runx3
-/-

 intestinal 

epithelial cells in primary cultures displayed higher sensitivity to Wnt stimulation 

than their Runx3
+/+

 equivalents (Ito et al., 2008). However, the response to Wnt 

signaling has yet been addressed in gastric epithelial cells. In our study, Wnt 

responsiveness was demonstrated in the Runx3
-/-

 GIF-14 cell line through the 

activation of Lgr5 by Wnt3a. Hence, Runx3 is also involved in modulating the Wnt 

pathway in the stomach and the dysregulation of which is heavily implicated in 

gastrointestinal neoplasia as well as aberrant activation of EMT (Brabletz et al., 2001; 

Kim et al., 2002, Kolligs et al., 2002; Vincan and Barker, 2008).  

In the previous chapter, it was demonstrated that the Runx3
-/-

 GIF-14 cell line 

underwent spontaneous EMT to give rise to a tumorigenic and stem cell-like P2 

subpopulation. This was attributed to a constitutively active TGF-β pathway caused 

by an autocrine TGF-β loop in GIF-14 cells during normal in vitro culture. 

Furthermore, the canonical Wnt pathway was also shown to promote the formation of 

EpCAM
low

CD133
-
/P2 subpopulation. Given that Runx3 is involved in both TGF-β 

and Wnt pathways, the roles of Runx3 in EMT and tumorigenicity of gastric epithelial 

cells will now be investigated through the use of Runx3-null and Runx3-expressing 

GIF cell lines.  
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5.1.3 Experimental approach 

The contribution of Runx3 in the regulation of EMT would be studied by two 

approaches: 1) Comparing the TGF-β and Wnt responsiveness of Runx3
+/+

 and 

Runx3
-/- 

GIF cell lines; and 2) Studying the effects of exogenous RUNX3 on the TGF-

β and Wnt responsiveness of Runx3
-/- 

GIF-14 cells. For the former, TGF-β and Wnt 

responsiveness of multiple Runx3
+/+

 and Runx3
-/- 

GIF cell lines would be quantified 

and compared. To accomplished the latter, lentiviruses will be employed which 

enables the sustained and stable expression of RUNX3 due to their ability to integrate 

into the host genome following transduction (Naldini et al., 1996; Kafri et al., 1997; 

Miyoshi et al., 1997).  Furthermore, lentiviruses are capable of delivering the 

transgenes into dividing as well as non-dividing cells (Burkrinsky et al., 1993), hence 

enabling the study of all subpopulations within the GIF-14 cell line. The response of 

multiple GIF lines to various treatments and exogenous RUNX3 will be quantified by 

the methodologies established in the studying of GIF-14 cells, as described in 

previous chapters. 
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5.2 Results 

5.2.1 Runx3
-/- 

GIF lines are sensitised to TGF-β1-induced EMT 

To investigate whether the reduced epithelial and EMT-prone phenotype 

observed was a unique characteristic of GIF-14 cells or a general phenomenon among 

the Runx3
-/- 

GIF cells lines, the expression of EpCAM and CD133 were measured in 

four individual Runx3
-/- 

and Runx3
+/+ 

GIF cell lines. Flow cytometry analyses 

revealed that the EpCAM
low

CD133
-
 fraction associated with the tumorigenic, 

mesenchyml-like P2 cells in GIF-14 was significantly represented only in Runx3
-/-

 

GIF-5 and GIF-14 cells. Moreover, the average expression of EpCAM was also 

significantly lower in Runx3
-/-

 cell lines, reflecting an overall loss of epithelial 

phenotype (Figure 5.1A). The loss of epithelial characteristics in Runx3
-/-

 cell lines is 

in agreement with published reports in which these cell lines showed defective 

epithelial morphology when grown in collagen cultures (Fukamachi et al., 2004). The 

relative expression of Runx3 in these GIF cell lines was assessed by Western blotting 

using two separate Runx3-specific monoclonal antibodies, R3-5G4 and -8C9. This 

also confirmed the absence of contaminating Runx3-expressing cells in Runx3
-/-

 GIF 

lines (Figures 5.1B and C). 
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A 

 

  
B C 

  

Figure 5.1. EpCAM/CD133 antigen profiles and the expression of Runx3 in Runx3
-/-

 and Runx3
+/+

 GIF 
cell lines. (A) Runx3

+/+ 
(GIF-9 and GIF-13) and Runx3

-/-
 (GIF-5 and GIF-14) cell lines were subjected to 

co-staining of antibodies against surface markers EpCAM and CD133 and analysed on the flow 
cytometer. To determine the relative expression levels of Runx3, total cell lysates were used in Western 
blot analysis (Section 2.14) using anti-Runx3 monoclonal antibodies (B) R3-5G4 and (C) R3-8C9. As 

loading control, immunoblotting of α-tubulin was performed. 
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The reduced epithelial characteristics in Runx3
-/- 

lines suggest that they may be 

prone to undergo EMT. To test this, Runx3
-/- 

and Runx3
+/+

 lines were treated with 

TGF-β1 and changes in gene expression was measured by qRT-PCR. This revealed 

remarkable differences in TGF-β1 responsiveness between the two groups. In Runx3-

null GIF-5 and GIF-14 lines, induction of EMT- and mesenchymal-related marker 

genes were observed within 24h, with the levels of Snai1 prominently elevated 

(Figure 5.2). In contrast, only marginal induction of these marker genes were 

observed in Runx3
+/+ 

GIF-9 and GIF-13 lines (Figure 5.2). These results provide 

sufficient evidence that an important function of Runx3 in gastric epithelial cells is to 

protect them against the aberrant activation of EMT. 
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5.2.2 Exogenous RUNX3 reduces the P2 subpopulation 

To verify the negative correlation between Runx3 and mesenchymal-like 

phenotype in Runx3
-/-

 GIF lines, wild-type human RUNX3 and RUNX3
R178Q

 were 

stably re-introduced into Runx3-null GIF-14 cells by lentiviruses. RUNX3
R178Q

 is a 

DNA-binding defective mutant of RUNX3 which bears an amino acid substitution of 

arginine to glutamine in the Runt domain and used as a negative control (Inoue et al. 

2007). As RUNX3/RUNX3
R178Q

 was cloned upstream of the IRES-EGFP sequences in 

the iG2 lentiviral vector (Section 2.12.1), RUNX3/RUNX3
R178Q

 and enhanced green 

fluorescent protein (EGFP) could be co-expressed in infected cells. Thus, this strategy 

enables the tracing of transduced cells by flow cytometry and fractionation by FACS 

based on stable expression of EGFP. The transduction effeciency achieved by iG2 

lentiviruses was approximately 50%. However, the percentage of EGFP
+
 cells in iG2-

RUNX3 infected samples would steadily decline over the course of an experiment, 

indicating that RUNX3 exerts a negative selection pressure that is consistent with its 

tumor suppressor activity. GIF-14 cells transduced with lentiviruses encoding iG2-

Control, iG2-RUNX3 or iG2-RUNX3
R178Q

 were subjected to Hoechst 33342 staining 

and analyses by flow cytometry 4 and 6 days post-infection. The ectopic expression of 

RUNX3 markedly altered the Hoechst 33342 staining profile. RUNX3 caused a 

reduction of P2 subpopulation 4 days post-infection and this trend was persistent and 

further enhanced at six days post-infection (Figure 5.3). In contrast, stable 

introduction of RUNX3
R178Q

 resulted in Hoechst 33342 staining pattern 

indistinguishable from that of cells infected with the iG2-Control lentivirus. This 

indicates that the effect of RUNX3 is dependent on its DNA-binding activity (Figure 

5.3). To demonstrate that there is a close coupling of EGFP expression and that of 

ectopic proteins, EGFP
+ 

and EGFP
-
 cells were fractionated and analysed by Western 
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blot using RUNX3-specific R3-5G4 antibody. This revealed that exogenous proteins 

were detectable in the EGFP
+
 but not in EGFP

-
 fractions, indicating that the purity of 

the FACS-enriched cells was high (Figure 5.3). The expression levels of exogenous 

RUNX3/RUNX
R178Q

 were estimated to be ~130-fold that of endogenous Runx3 in 

GIF-13 cells relative to α-tubulin (data not shown). 

 

Figure 5.3. Optimisation of lentivirus transduction for the over-expression of RUNX3 in GIF-14 cells. 
GIF-14 cells were transduced with lentiviruses encoding encoding wild-type RUNX3 or its DNA-binding 
defective mutant, RUNX3

R178Q
. Transduction efficiency was determined by the percentage of EGFP

+
 

cells and the Hoechst 33342 staining patterns in EGFP
+
 cells were analysed by flow cytometry 4 and 6 

days post-transduction. PI denotes propidium iodide. The expression of exogenous proteins in FACS-
enriched GIF-14 cells 6 days post-transduction was confirmed by Western blot analysis. Exogenous 

RUNX3 amd RUNX3
R178Q

 was detected using R3-5G4 antibody. Immunoblotting of α-tubulin was 
included as loading control. 
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The results from the previous experiment showed that at least six days of 

infection was required for RUNX3 to exert pronounced effects, this infection regime 

was employed in the subsequent sections. GIF-14 cells were transduced with 

lentiviruses encoding iG2-Control, iG2-RUNX3 or iG2-RUNX3
R178Q

. At two days 

post-infection, cells were treated with TGF-β1 for 4 days prior to Hoechst 33342 

staining for flow cytometric analysis. Three separate experiments were performed and 

the FACS plots from a representative experiment were shown in Figure 5.4A. Our 

results revealed that ectopic expression of RUNX3 resulted in an ablation of the P2 

subpopulation and this effect was augmented when cells were treated with TGF-β1 

(Figure 5.4A). The data from three experiments were compiled in which P2 cells was 

presented as a percentage of combined P1 and P2 cell populations (Figure 5.4B). 

Importantly, the Hoechst 333242 staining pattern from RUNX3
R178Q

 infected cells 

was indistinguishable from that of the iG2-Control, confirming that the effect of 

RUNX3 is dependent on its DNA-binding activity (Figures 5.4A and 5.4B). 

Interestingly, over expression of RUNX3 also caused P1 cells to display lower dye 

efflux capacity (Figure 5.4A), possibly due to a downregulation of the ATP binding 

cassette protein transporters by RUNX3.  

As P1 and P2 cells could be demarcated based on their differential EpCAM
 

and CD133
 
expression, changes in these markers were also determined by flow 

cytometry and expressed as a percentage of combined EpCAM
high

CD133
+ 

and 

EpCAM
low

CD133
-
 populations. Consistent with the Hoechst 33342 staining data, 

exogenous RUNX3 but not RUNX3
R178Q

 reduced the P2-associated 

EpCAM
low

CD133
-
 fraction. In addition, an increase in the P1-associated 

EpCAM
high

CD133
+
 fraction in RUNX3 infected cells was observed (Figure 5.4C). 
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Therefore, our data suggest that exogenous RUNX3 exerts an antagonistic effect on 

the mesenchymal-like P2 cells. 

A 

 

 

B C 

 

 

Figure 5.4. The effects of exogenous RUNX3 on Hoechst 33342 staining and EpCAM/CD133 profiles 
in GIF-14 cells. (A) GIF-14 cells were transduced with EGFP-tagged iG2-Control, -RUNX3 or -
RUNX3

R178Q
 lentiviruses for 48h preceding the treatment with 2.5ng/ml of TGF-β1 for 4 days. EGFP

+
 

infected cells were subjected to Hoechst 33342 staining and analysed by flow cytometry. Profiles of 
EGFP

-
 cells served as negative controls. The experiments were performed in triplicates and the 

FACS charts from one representative experiment were shown here. (B) Changes in the P2 

subpopulation following TGF-β1 treatment in EGFP
+
 cells in three separate experiments were 

compiled. The relative levels of P2 cells are presented as a percentage of P1 and P2 combined 
values (means ± SEM, n=3). (C) Corresponding changes in EpCAM and CD133 surface antigen 
expression in EGFP

+
 cells from three independent experiments were compiled. The relative levels of 

EpCAM
high

CD133
+ 

and EpCAM
low

CD133
-
 populations are presented as a percentage of their 

combined values (means ± SEM, n=3). Single and double asterisks represent p-value <0.05 and p-
value <0.01, respectively.    
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5.2.3 RUNX3 suppresses TGF-β1-induced EMT-related genes and Lgr5 

To assess the effect of RUNX3 on TGF-β1-induced genes, gene expression 

profiling was performed. Three independent infections were set up as described in 

Section 5.2.2, with the exception that GIF-14 cells were infected for 6 days prior to 

24h of TGF-β1 treatment. Infected cells were enriched by FACS based on EGFP 

fluorescence and harvested for qRT-PCR analyses. The results showed that RUNX3 

partially and completely abrogated TGF-β1-induced Snai1 and Hmga2 respectively, 

but not RUNX3
R178Q

 (Figure 5.5). As TGF-β1 treatment was shown to activate Lgr5 

in Section 4.2.2, the effect of RUNX3 on TGF-β-induced Lgr5 was therefore tested. 

The results showed that exogenous RUNX3 strongly inhibited TGF-β1-induced Lgr5 

and Sox9. Interestingly, the basal expression of these genes was also suppressed by 

RUNX3 in contrast to those of Snai1 and Hmga2 (Figure 5.5). Together, these data 

indicate that RUNX3 plays a negative role in the regulation of TGF-β1-induced EMT 

genes and Lgr5 in a DNA-binding dependent manner. To confirm the expression of 

exogenous proteins, Western blotting was performed, which revealed that exogenous 

RUNX3 and RUNX3
R178Q

 were expressed at comparable levels in lentivirus-

transduced GIF-14 cells (Figure 5.5).  
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Figure 5.5. Changes in EMT- and stemness-related genes in the presence of exogenous RUNX3. (A) 
GIF-14 cells were treated with TGF-β1 for 24h following 6 days of infection by lentiviruses encoding 
Control, RUNX3 or RUNX3

R178Q
. EGFP

+
 infected cells were enriched by FACS and changes in EMT- 

and stemness-associated markers were measured by qRT-PCR. Three separate infection experiments 
were carried out and the expression levels were normalised against those of Gapdh and presented as a 
ratio to the untreated iG2-Control sample for individual genes (means ± SEM, n=3). Single and double 
asterisks represent p-value <0.05 and p-value <0.01, respectively. Western blotting was performed to 
confirm the expression levels of exogenous RUNX3 and RUNX3

R178Q
 48h post-infection using R3-5G4 

antibody. Immunoblotting of α-tubulin was included as loading control. 
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5.2.4 Runx3
-/- 

GIF cells display increased Wnt responsiveness 

The Wnt target gene and stem cell marker Lgr5 was shown to be highly 

induced by Wnt3a-Cm in Runx3
-/- 

GIF-14 cells in Section 3.2.7. As RUNX3 is known 

to be a potent molecular antagonist of the Wnt pathway through its direct interaction 

with the TCF4/β-catenin complex, the Wnt responsiveness of Runx3
-/-

 and Runx3
+/+

 

cells were compared (Ito et al., 2008). GIF-14 (Runx3
-/-

) and GIF-13 (Runx3
+/+

) cells 

were treated with Wnt3a- or Control-Cm for 15h and the expression of Lgr5 transcript 

was ascertained by qRT-PCR. The results revealed that GIF-14 cells were highly 

sensitised to Wnt3a-Cm as reflected in the strong induction of Lgr5 while GIF-13 

cells were not responsive to Wnt3a (Figure 5.6).  Moreover, GIF-14 cells showed a 6-

fold greater basal expression of Lgr5 than GIF-13 cells, indicative of a constitutively 

active Wnt signaling (Figure 5.6). These data indicate that similar to earlier 

observations in colorectal epithelial cells, Runx3 has an inhibitory effect on the 

canonical Wnt pathway in GIF cells.  

                

Figure 5.6. Comparison of Wnt responsiveness of Runx3
-/-

 and Runx3
+/+

 GIF cell lines. Runx3
-/-

 GIF-14 
and Runx3

+/+ 
GIF-13 lines were treated with Control or Wnt3a-Cm diluted 1:3 by culture medium for 15h 

prior to measurement of Lgr5 transcripts by qRT-PCR. The expression levels were normalised against 
those of Gapdh and expressed relative to GIF-14 treated with control-Cm. Double asterisks denotes p-
value < 0.01. 
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To assess whether higher basal Lgr5 expression correlates to increased sphere 

formation, the sphere-forming potential of Runx3
-/-

 GIF-14 and Runx3
+/+

 GIF-13 cells 

were compared. These two cell lines were cultured in serum-free sphere medium and 

the number of spheres was scored. The results revealed that GIF-14 cells possessed 4-

fold higher sphere-forming activity than GIF-13 cells (Figure 5.7). While spheres 

formed by GIF-14 cells could be maintained for a long period of time, GIF-13 cells 

gave rise to sphere-like structures that quickly disintegrated into clusters of mixed cell 

morphologies indicative of differentiation (Figure 5.7). Collectively, these data 

indicate that Runx3 is a negative regulator of a stem cell-like state through the 

suppression of Lgr5 and sphere formation. 

   
     

Figure 5.7. Relative sphere-initiation potential of GIF-14 and GIF-13 cells. Sphere-forming assay was 
set up using GIF-14 and GIF-13 cells in the presence of 0.1% of methylcellulose as described in 
materials and methods. Data are presented as number of spheres (≥250µm in size) generated from 
5000 cells after 25 days in culture (means ± SEM, n=4). Double asterisks denotes p-value < 0.01. 
Representative phase contrast images of spheres are shown. Scale bars, 300µm. 
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5.2.5 Exogenous RUNX3 abrogates Wnt3a-induction of Lgr5 and sphere formation 

To verify the negative role of Runx3 on the canonical Wnt pathway in GIF 

gastric epithelial cells, exogenous wild-type RUNX3 or RUNX3
R178Q

 (a DNA-binding 

defective mutant) were ectopically introduced into Runx3-null GIF-14 cells by the 

pBOBI series of lentiviruses. As the transduction efficiency for these viruses was 

approximately 80%, the cells were harvested in situ following 15h of Control- or 

Wnt3a-Cm treatment, without enrichment by FACS. Our results revealed that 

RUNX3 partially abrogated the robust induction of Lgr5 by Wnt3a while the ectopic 

expression of RUNX3
R178Q

 had no effect (Figure 5.8). These data indicate that 

RUNX3 antagonises the canonical Wnt pathway in a DNA-binding dependent manner 

in gastric epithelial cells. The relative expression of exogenous proteins in GIF-14 

cells was assessed by Western blot analysis. This confirmed that the expression levels 

of ectopic RUNX3 and RUNX3
R178Q

 were similar (Figure 5.8).  
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Figure 5.8. The effects of exogenous RUNX3 on Wnt3a-induced Lgr5. (A) GIF-14 cells were infected 
with pBOBI-Control, -RUNX3 or -RUNX3

R178Q
 lentiviruses for 48h preceding treatment with control or 

Wnt3a-Cm (1:3 dilution with culture medium) for another 15h. Cells were harvested for quantification of 
Lgr5 mRNA levels by qRT-PCR. Values are normalised against those of Gapdh and expressed as ratios 
to that of control-Cm treated cells for each sample. Double asterisks denotes p-value < 0.01. (B) GIF-14 
cells were transduced with the pBOBI-based series of lentiviruses for 48h. The expression levels of 
exogenous proteins were confirmed by Western blot analysis 48h post-infection using R3-5G4 antibody. 

Immunblotting of α-tubulin served as loading control. 
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The strong inhibition of Wnt3a-induction of Lgr5 by exogenous RUNX3 

prompted the testing of its effect on sphere formation. GIF-14 cells were infected with 

lentiviruses encoding wild-type RUNX3 or iG2-Control for 6 days and subjected to 

enrichment by FACS. Sphere-forming capacities of FACS-purified cells were 

evaluated. The results revealed that ectopic expression of RUNX3 dramatically 

reduced sphere formation by 4-fold compared to iG2-Control (Figure 5.9A). In a 

similar experiment, GIF-14 cells infected with wild-type RUNX3 or iG2-Control 

viruses were pre-treated with Control- or Wnt3a-Cm prior to purification by FACS. 

Sphere-forming assay was performed on enriched cells cultured in Control- or Wnt3a-

Cm diluted 1:10 by sphere medium. Under this condition, ectopically expressed 

RUNX3 consistently suppressed sphere-formation (Figure 5.9B).  Moreover, RUNX3 

also completely blocked the induction of sphere-formation by Wnt3a (Figure 5.9B). 

Together, these data clearly demonstrate that RUNX3 acts as a negative regulator of 

stem cell-like phenotype by strong blockade of Wnt3a-induction of Lgr5. 
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A 

 
 

 
B 

 

Figure 5.9. The effects of exogenous RUNX3 on sphere-initiation. (A) GIF-14 cells were transduced 
with lentiviruses encoding Control, RUNX3 or RUNX3

R178Q
. Six days post-infection, EGFP

+
 cells were 

fractionated by FACS and cultured in sphere medium containing 0.5% of methylcellulose. Spheres 
(≥150µm in size) generated from 8000 cells were counted after 34 days of culture (means ± SEM, n=5). 
Double asterisks denotes p-value < 0.01. Phase contrast images of spheres are shown. Scale bars, 
300µm. (B) Transduced GIF-14 cells were pre-treated with control or Wnt3a-Cm for 2 days prior to 
enrichment of EGFP

+
 cells by FACS 6 days post-infection and sphere-forming assay was performed. 

Conditioned media was supplied in 1:10 dilution with sphere medium containing 1% of methylcellulose. 
Number of spheres formed from 8000 cells was scored 25 days after culture (means ± SEM, n=5). 
Double asterisks denotes p-value < 0.01. 
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5.2.6 Runx3 abrogates the synergistic activation of Lgr5 by TGF-β and Wnt3a 

To investigate the tripartite relationship between EMT, stemness and Runx3, a 

co-induction with TGF-β1 and Wnt3a was performed on GIF-14 (Runx3
-/-

) and GIF-

13 (Runx3
+/+

) cells. Cells were pre-treated with TGF-β1 for varying periods before 

they were co-treated with control- or Wnt3a-Cm for a further 15h. Quantitative RT-

PCR measurement of Lgr5 and Snai1 of treated cells revealed distinct induction 

patterns in GIF-14 cells. Notably, Snai1 was strongly activated by TGF-β1 within 15h 

of treatment, but was unresponsive to Wnt3a (Figure 5.10). In comparison, Lgr5 

transcript was initially suppressed by TGF-β1 at 15h, but was moderately induced 

upon prolonged treatment for 48h. Surprisingly, Wnt3a-induction of Lgr5 was 

dramatically augmented with TGF-β1 pre-treatment for 48h from 9-fold to 30-fold. 

This synergistic effect was not observed at shorter TGF-β1 pre-treatment time points 

(Figure 5.10). These data implies that the strong synergy between TGF-β1 and Wnt3a 

in activating Lgr5 transcription involves an independent but cooperative mechanism. 

Remarkably, the Wnt3a- and TGF-β1-responsiveness observed for these two genes 

was completely muted in Runx3
+/+

 GIF-13 cells, underscoring the strong opposing 

effects of Runx3 on the cooperative activation of Lgr5 by TGF-β1 and Wnt3a (Figure 

5.10).  
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5.3 Discussion 

The identification of a tumorigenic and stem cell-like subpopulation in the 

Runx3
-/-

 GIF-14 cell line and the discovery of its induction by TGF-β1 and Wnt3a 

signals raised important questions. These pathways are critical for the development, 

homeostasis and carcinogenesis in the gastrointestinal tract and RUNX3 is known to 

act in cooperation or in antagonism with them in this specific context (Chi et al., 2005; 

Yano et al., 2006; Ito et al., 2008). This chapter addresses the relationship between 

the absence of Runx3 and the susceptibility to spontaneous EMT in gastric epithelial 

cells; and to further understand the contribution of the dysregulated TGF-β and Wnt 

pathways to the observed cellular plasticity. 

The cell surface markers analysis revealed that Runx3
-/-

 GIF lines displayed a 

reduced epithelial phenotype that is in contrast to Runx3
+/+

 lines (Figure 5.1A). 

Indeed, further analysis showed that the Runx3
-/-

 GIF cells lines were highly sensitised 

for TGF-β1-induced expression of EMT- and mesenchymal-associated markers 

(Figure 5.2). This is a paradoxical and intriguing observation as it was previously 

reported that Runx3
-/-

 GIF lines were refractory to TGF-β1-induced apoptosis, 

consistent with the tumour suppressor activity of RUNX3 (Li et al., 2002). The data 

from the current study suggests that in the absence of Runx3, the TGF-β signal would 

be diverted from its tumour suppressive and growth modulating functions, towards its 

EMT-inducing, morphogenetic functions. This point could be tested by analysing 

activation of the components or target genes of TGF-β-induced growth inhibition and 

EMT pathways through biochemical methods. These results further suggest that the 

pleiotropic effects of TGF-β pathway in gastrointestinal carcinogenesis could be due 
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to the silencing or mutation of an integral component, such as a partner transcription 

factor like RUNX3.  

A negative role of Runx3 in EMT is supported in the reduction of P2 cells by 

exogenous RUNX3 in GIF-14 cells as revealed by Hoechst 33342 staining (Figure 

5.4A and B). Moreover, the re-introduction of RUNX3 also caused a partial blockade 

of TGF-β1-induced key EMT-promoting factors, Snail and Hmga2 in a DNA-binding 

dependent manner (Figure 5.5A) Apart from being a negative regulator of EMT, 

RUNX3 strongly antagonises TGF-β1-induced stem cell-like state as demonstrated in 

the complete abrogation of stemness-related markers, Lgr5 and Sox9 induced by TGF-

β1. However, unlike Snai1 and Hmga2, the basal levels of Lgr5 and Sox9 were also 

suppressed by ectopic RUNX3 (Figure 5.5A). As Lgr5 and Sox9 are also known Wnt 

targets, this observation could be due in part to the antagonistic function of RUNX3 

against the canonical Wnt pathway, as reported in intestinal epithelial cells (Ito et al., 

2008). Indeed, the altered response to extracellular cues observed in Runx3
-/- 

GIF cell 

lines is not restricted to TGF-β signaling, but also the Wnt pathway. GIF-14 cells 

were sensitised to Wnt3a-induction of Lgr5 and formed spheres more readily 

compared to Runx3
+/+

 GIF-13 cells (Figures 5.6 and 5.7). This negative correlation 

between Runx3-deletion and sphere initiation was further supported by the 

abolishment of Wnt3a-induction of Lgr5 and sphere formation by exogenous RUNX3 

(Figures 5.8A and 5.9). Together, these data demonstrate that Runx3 acts as a barrier 

to the acquisition of stem cell-like or plastic state induced either by TGF-β1 or Wnt3a. 

The negative effects of ectopic RUNX3 on EMT and sphere formation were apparent 

only 6 days after lentivirus-mediated delivery. These observations are surprising as 

RUNX3 is known to regulate gene expression through direct transcriptional control. It 
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is possible that RUNX3 could act through an indirect mechanism in which its target 

gene is a transcription regulator. Alternatively, RUNX proteins has been reported to 

control gene expression by remodeling the chromatin structure through interactions 

with proteins such as histone deacetylases and p300 (Kitabayashi, et al. 1998; 

Lutterbach et al. 2000; Amann et al. 2001; Westendorf et al. 2002; Schroeder et al. 

2004). Therefore, RUNX3 could function through epigenetic mechanisms and these 

global changes may occur in a progressive manner. 

Lastly, the combined effects of dysregulated TGF-β and Wnt signaling were 

seen in their strongly cooperative induction of Lgr5 in GIF-14 cells. A notable aspect 

of this observation is that the two treatments induced Lgr5 expression with different 

kinetics. While Wnt3a transiently activated Lgr5, the effect of TGF-β1 was latent 

(Figure 5.10). The delayed actions of TGF-β1 may indicate that its effects were 

indirect and possibility acting through intermediate effectors. Alternatively, TGF-β1 

may function via epigenetic mechanisms involving the remodeling of chromatin 

structures, which makes the Lgr5 locus more accessible to transcription factors. 

Indeed, this increased accessibility may be the basis of the strong cooperation 

between TGF-β1 and Wnt3a in inducing Lgr5 at the later time point (Figure 5.10). 

The implication herein is that the reprogramming properties of EMT induced by an 

aberrant TGF-β signal would increase cellular plasticity, as reflected in the 

reactivation of Lgr5. This in turn sensitises cells to the mitogenic effects of the Wnt 

pathway. In GIF-14 cells, these compounding defects are causal to the genesis of the 

tumorigenic and stem cell-like P2 subpopulation. This novel molecular mechanism 

may underlie the tumorigenicity of all Runx3
-/- 

GIF cell lines. Finally, our findings 

may also provide an explanation for the increased phenotypic plasticity and 
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precancerous conditions observed in adult BALB/c Runx3
-/- 

gastric mucosa, 

characterised by hyperproliferation, development of preneoplastic metaplasia (SPEM) 

and transdifferentiation into intestinal-like cells. 
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CHAPTER 6:   

Overall discussion 
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6.1 Summary of findings 

Based on the data presented in this study, a model is illustrated in Figure 6.1, 

where a tumorigenic and mesenchymal-like subpopulation, P2 was identified in the 

Runx3
-/-

.p53
-/-

 GIF-14 cell line. Interestingly, the P2 subpopulation expresses high 

levels of Lgr5 which is a target gene of the canonical Wnt pathway, and a 

gastrointestinal stem cell marker. The P2 subpopulation arises through the induction 

of spontaneous EMT by a constitutively active TGF-β pathway. Moreover, Runx3
-/-

 

GIF-14 cells were prone to the induction of Lgr5 and stemness by Wnt3a. The 

combined effects of overly active TGF-β and Wnt pathways led to the synergistic 

induction of Lgr5 expression through cooperative but independent mechanisms. These 

defects were largely restricted to Runx3
-/-

 GIF cell lines, and not observed in Runx3
+/+

 

lines. Furthermore, the re-introduction of exogenous RUNX3 in GIF-14 cells led to an 

ablation of P2 cells, suppression of TGF-β1-induced EMT- and stemness-related 

genes, and abrogation of Wnt3a-induction of Lgr5, confirming the negative effect of 

RUNX3 on EMT and stemness. Collectively, our results demonstrate the critical role 

of Runx3 in maintaining the gastric epithelial cell phenotype, the absence of which 

predisposes cells to EMT-induced phenotypic plasticity and the appearance of a 

tumorigenic and stem cell-like subpopulation.   
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Figure 6.1. A model summarising the role of Runx3 in protecting gastric epithelial cells against EMT-
induced cellular plasticity and tumorigenicity. 
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6.2 Significance of findings  

The model of carcinogenesis that involves cumulative genetic mutations 

typically in tumour suppressors and oncogenes is a well established paradigm. These 

genetic alterations drive the immortalisation and eventual transformation of normal 

cells into their malignant derivatives (Nowell, 1976). The multi-step progression of 

tumours is thought to follow a sequence of clonal successions which ultimately 

produces a malignant clone most suitable for uncontrolled proliferation in the micro-

environment (Nowell, 1976). Recent data from the study of leukemias have revealed 

that the maintenance and continual evolution of a malignant clone is supported by a 

small minority of cells, termed “cancer stem cells”. Based on their existence, a refined 

model that holds a hierarchical organisation exists within a tumour mass, and the 

tumour is propagated by a small subpopulation of cancer cells (Lapidot et al., 1994; 

Clarke et al., 2006).  

Related to the advent of the cancer stem cell theory, recent discovery of 

aberrant EMT reactivation could generate a stem cell-like state in differentiated 

mammary epithelial cells further challenge the stem cell origin of cancer (Mani et al., 

2008; Morel et al., 2008). The ability of differentiated tumour cells to dedifferentiate 

into stem cell-like, tumour-initiating cells in vivo might resolve some of the 

conceptual difficulties over the cell-of-origin of cancer. In particular, the observed 

multipotency of EMT-induced “cancer stem cells” argues that cancer need not to be 

derived from mutated stem cells, but could derive from differentiated cells (Scheel 

and Weinberg, 2011). Therefore, EMT has emerged as an important path to a state of 

phenotypic plasticity, enabling cancer cells to dynamically enter into and exit from 

stem cell-like state. This notion is strongly supported by our observation that 
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spontaneous EMT promotes the emergence of a stem cell-like subpopulation within a 

Runx3
-/-

 gastric epithelial cell line, that is concurrently tumorigenic. Furthermore, it 

implicates a safeguarding role for Runx3 against EMT-induced cellular plasticity and 

tumour-initiation in gastric epithelial cells, thus fulfilling its tumour suppressor 

function.  

Analogous to the reprogramming properties of EMT to induce phenotypic 

plasticity, the recently described somatic cell reprogramming has succeeded in 

converting differentiated cells to pluoripotent stem cells. Of relevance to our study, 

p53 is shown to play an important regulatory role in both EMT and somatic cell 

reprogramming. Inactivation of the p53-related pathways was required to greatly 

enhance the generation of induced pluoripotent stem (iPS) cells, through the escape of 

p53-mediated senescence and apoptosis (Hong et al., 2009; Kawamaura et al., 2009; 

Li et al., 2009; Marion et al., 2009; Utikal et al., 2009) Similarly, inactivation of p53 

function that enabled cells to evade senescence and apoptosis facilitated the induction 

of EMT by Twist and Zeb1 proteins as well as growth factors such TGF-β and EGF 

(Ansieau et al., 2008; Liu et al., 2008; Araki et al., 2010; Ohashi et al., 2010). Thus, it 

is plausible that the immortalisation of GIF cell lines against a p53
-/-

 background may 

reduce the threshold for the induction of EMT. Given that the Runx3
+/+

.p53
-/-

 

remained resistant to EMT, the protective role of Runx3 against EMT-induced 

cellular plasticity is highlighted even in the absence of p53. 

The representation of stem cell-like cells within tumour cell populations in 

vivo is likely to be influenced by both the intrinsic phenotypic plasticity of these cells 

and contextual signals (Chaffer et al., 2011). The spontaneous conversion of a stem 

cell-like subpopulation in GIF-14 cells may be augmented in vivo by contextual cues 
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in the tumour niche, particularly those that drive the EMT. TGF-β and the Wnt 

pathways are the best known activators of EMT, and the dysregulation of these 

signaling pathways would collaborate to amplify the induction of EMT and cellular 

plasticity. This cooperation is clearly demonstrated in the synergistic induction of 

Lgr5 by TGF-β1 and Wnt3a in Runx3
-/-

 GIF-14 cells, but not in Runx3
+/+

 GIF-13 cells. 

Therefore, an important part the tumour suppressor function of RUNX3 is to ensure 

that TGF-β and Wnt signaling pathways are properly regulated. In the case of TGF-β 

pathway, it is conceivable that Runx3 acts as a molecular switch to transduce the 

tumour suppressive functions of TGF-β and inhibit its EMT-promoting effects by 

orchestrating a set of genetic programs in gastric epithelial cells. In the absence of 

Runx3, the transcriptional circuitry would be disrupted and this is reflected in the 

ability of Runx3
-/- 

GIF lines to bypass the tumour suppressive effects of TGF-β1, 

while becoming sensitised to its EMT-inducing functions.  
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6.3 Future work  

The precise mechanism through which Runx3 interferes with the EMT process 

remains unknown. Two complementary approaches could be carried out to elucidate 

this: 1) genome-wide comparative study of P1 and P2 cells to identify putative 

regulators of EMT; and 2) investigate the potential candidates of RUNX3 target genes. 

An important finding uncovered from this study is the existence of two distinct 

cellular states P1 and P2 within the GIF-14 cells, thus genome-wide microarray of P1 

and P2 cells would shed light on the potential key regulators of EMT. As TGF-β 

signaling pathway is a well-established central player in EMT in our model, several 

candidates mediating the effects of TGF-β have been found. One of the promising 

candidates is Hmga2, a non-histone chromatin protein which acts as a architectural 

factor that alters the chromatin structure, and promotes the assembly of protein 

complexes to regulate transcription (Fusco and Fedele, 2007). This was demonstrated 

in the cooperation of HMGA2 and Smads to transactivate the transcription of Snai1 in 

mammary epithelial cells (Thuault et al., 2008).  To gain an insight into the global 

epigenetic changes mediated by Hmga2, genome-wide chromatin immuno-

precipitation (ChIP) of Hmga2 will be performed upon ectopic Hmga2 expression in 

GIF cells. To demonstrate that Hmga2 is a direct target of RUNX3, promoter studies 

could be performed in which Hmga2 proximal promoter and intronic enhancers 

containing putative Runx binding sequences will be cloned to study the effects of 

exogenous RUNX3 on these cis-regulatory elements. 

The discovery of a negative role of Runx3 in protecting gastric epithelial cells 

against EMT-mediated cellular plasticity is made in immortalised GIF cell lines. 

These lines are pre-conditioned to undergo EMT in the absence of p53 and Runx3. To 
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validate these data in vivo, conditional targeting of Runx3 using stomach-specific Cre 

recombinase will be performed to assess whether the loss of Runx3 would cause 

greater phenotypic plasticity in the gastric mucosa. To complement this, ex vivo 

culture systems using normal gastric epithelial cells and stem cells will be employed. 

Previously, Barker et al. succeeded in generating long-lived gastric organoid 

structures from single Lgr5-positive pyloric stomach stem cells. The gastric organoid 

cultures would serve as an important platform for in vitro deletion of Runx3 in normal 

gastric epithelial cells, and specifically in Lgr5-positive stem cells.  

The aberrant reactivation of EMT in advanced cancer is believed to be a major 

contributor to tumour metastasis, which allows tumour cells to disseminate from 

primary tumours to distal sites (Thiery, 2002). As Runx3 is a negative regulator of 

EMT, its inactivation may render tumour cells prone to the pro-metastatic effects of 

EMT at later stages of gastric cancer. Indeed, preliminary studies have revealed that 

the loss of RUNX3 is significantly associated with poor clinical outcome in gastric 

cancer patients, and its reactivation leads to abrogation of metastasis in animal models 

(Wei et al., 2005).  Therefore, the protective role of Runx3 against gastric cancer 

metastasis could be further investigated. In conclusion, our findings implicate a 

safeguarding function of Runx3 against EMT-induced cellular plasticity and tumour-

initiation, and perhaps metastasis would partly explain the frequent inactivation of 

RUNX3 in human gastric cancers Thus, this reinforces that the reactivation of 

RUNX3 through the administration of DNA methylation inhibitors such as decitabine 

and azacitidine may present a novel therapeutic strategy for gastric cancer.  
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