
 

ANTI-CANCER EFFECTS OF THYMOQUINONE IN 

BREAST CANCER CELLS: INVOLVEMENT OF NON-

HOMOLOGOUS END-JOINING AND TELOMERE-

TELOMERASE HOMEOSTASIS 

 

 

LIM SHI NI 

(B.Sc.(Hons.), NUS) 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF PHYSIOLOGY 

YONG LOO LIN SCHOOL OF MEDICINE 

NATIONAL UNIVERSITY OF SINGAPORE 

 

2012 

  



��

�

 

DECLARATION 

 

 

I hereby declare that the thesis is my original work and it has been written by me in its 

entirety. I have duly acknowledged all the sources of information which have been 

used in the thesis. 

�

�

This thesis has also not been submitted for any degree in any university previously. 

 

 

 

 

Lim Shi Ni 

10th July 2012 

 

�

�



���

�

ACKNOWLEDGEMENTS 

 Many people had provided assistance, knowledge and motivation over the last 

two years and they deserve the recognition and thanks.  

 First and foremost, I would like to extend my sincere appreciation to my 

supervisor, Associate Professor M. Prakash Hande, for the opportunity to join his 

laboratory team as a graduate student and completion of this research and dissertation. 

The two years spent in the graduate student program were one of the most formative 

and fulfilling experiences. Not only was I involved in my own research project, I had 

an opportunity to undertake a research collaboration with KK Women’s and 

Children’s Hospital (KKH) and attend an overseas conference.  

  I would also like to express gratitude to the past and present Genome Stability 

Laboratory colleagues, whose knowledge, wisdom, memories and experiences have 

supported, enlightened and entertained me over the many years of friendship 

cultivated within and outside of NUS. Special thanks to Dr Resham Lal Gurung for 

his generous time, expertise and insights to better my research and writing efforts over 

the years. I sincerely thank them for their contributions and good-natured support. 

 I am very grateful for the unflagging encouragement and wise advice from 

family and friends throughout the two years as a graduate student. Lastly, many 

thanks to the Department of Physiology for their timely coordination of administrative 

matters that made it possible for me to graduate.  

 



����

�

TABLE OF CONTENTS 

DECLARATION ............................................................................................................ i 

ACKNOWLEDGEMENTS ........................................................................................... ii 

TABLE OF CONTENTS .............................................................................................. iii 

SUMMARY .................................................................................................................. vi 

LIST OF FIGURES .................................................................................................... viii 

ABBREVIATIONS ....................................................................................................... x 

LIST OF PUBLICATIONS ........................................................................................ xiv 

LIST OF CONFERENCES ......................................................................................... xiv 

 

CHAPTER 1 .................................................................................................................. 1 

1. Introduction ................................................................................................................ 1 

1.1 DNA damage and repair ....................................................................................... 1 

1.2 DNA repair pathway – Non-homologous end-joining (NHEJ)............................ 3 

1.2.1 Major players in the NHEJ pathway ......................................................................... 3 

1.3 Telomeres and its structure................................................................................... 7 

1.3.1 Telomeric end-replication problem ........................................................................... 8 

1.4 Telomerase – a regulator of telomere length ...................................................... 10 

1.4.1 Regulation of telomerase ........................................................................................ 12 

1.5 Regulation of telomere function ......................................................................... 14 

1.5.1 Telomere binding proteins – regulators of telomere function ................................. 14 

1.5.2 DNA repair proteins involvement in telomere maintenance ................................... 15 

1.5.2.1 ATM and telomere maintenance .......................................................................... 15 

1.5.2.2 DNA-PKcs and telomere maintenance ................................................................ 16 

1.5.2.3 PARP-1 and telomere maintenance ..................................................................... 16 

1.6 Dysfunctional telomere-induced genomic instability in cancer ......................... 17 

1.7 Trends in breast cancer ....................................................................................... 19 

1.7.1 Current treatment for breast cancer ......................................................................... 20 

1.8 Possible development of telomerase inhibition in cancer therapeutics .............. 21 

1.9 Natural plant products in cancer therapy ............................................................ 21 



���

�

1.9.1 Thymoquinone ........................................................................................................ 22 

1.9.1.1 Reported biological effects of TQ ........................................................................ 23 

1.10 Motivation and significance ............................................................................. 24 

1.11 Breast cancer cells as the model of study ......................................................... 25 

1.12 Objectives ......................................................................................................... 27 

 

CHAPTER 2 ................................................................................................................ 28 

2. Materials and Methods ............................................................................................. 28 

2.1 Cell lines and drug treatment.............................................................................. 28 

2.2 Cell viability ....................................................................................................... 29 

2.3 Wound healing assay .......................................................................................... 29 

2.3 Cell cycle analysis .............................................................................................. 29 

2.5 Alkaline single cell gel electrophoresis (comet) assay ....................................... 30 

2.6 Telomeric Repeat Amplification Protocol (TRAP) assay .................................. 31 

2.7 Population doubling (PD) study ......................................................................... 32 

2.8 Telomere Restriction Fragment (TRF) length analysis ...................................... 32 

2.9 Immunofluorescence staining for �H2AX ......................................................... 33 

2.10 Immunofluorescence staining for telomere dysfunction .................................. 34 

2.11 Western blot analysis........................................................................................ 34 

2.12 Gene expression analysis ................................................................................. 35 

2.13 Statistical analysis ............................................................................................ 36 

 

CHAPTER 3 ................................................................................................................ 37 

3. Results ...................................................................................................................... 37 

3.1 Effects of TQ on proliferative ability of normal and breast cancer cells ........... 37 

3.1.1 Breast cancer cells are sensitive to the anti-proliferative effects of TQ .................. 37 

3.1.2 TQ causes deficiencies in cell cycle checkpoint function in breast cancer cells .... 41 

3.1.3 Changes in cell cycle protein expressions in TQ-treated breast cancer cells .......... 44 

3.2 DNA damaging effects of TQ in normal and breast cancer cells ....................... 47 

3.2.1 TQ induces significantly greater DNA damage in breast cancer cells .................... 47 

3.2.2 TQ induces DNA double strand breaks with subsequent inefficient/delayed repair 
in breast cancer cells ........................................................................................................ 50 



��

�

3.2.3 Increased expression levels of p-DNA-PKcs and PARP-1 in TQ-treated breast 
cancer cells ....................................................................................................................... 52 

3.3 Immediate effects of TQ on telomerase expression and activity ....................... 55 

3.3.1 TQ reduces telomerase activity only in MDA-MB-231 cells ................................. 55 

3.3.2 TQ alters c-myc regulatory pathway of hTERT expression in breast cancer cells 
and affects TRF2 expression levels ................................................................................. 57 

3.4 Long-term effects of TQ on cell proliferation and telomere-telomerase 
homeostasis .............................................................................................................. 60 

3.4.1 Prolonged TQ exposure reduces proliferative capacity of breast cancer cells ........ 60 

3.4.2 Telomere shortening in breast cancer cells at 2 weeks of TQ treatment ................. 62 

3.4.3 Prolonged exposure to TQ alters hTERT and TRF2 expression levels in breast 
cancer cells ....................................................................................................................... 64 

3.5 Possible relationship between DNA damage and telomeres .............................. 66 

3.5.1 TQ induces DNA double strand breaks at telomeric regions in breast cancer cells 66 

3.6 Gene expression profiles of normal and breast cancer cells .............................. 68 

3.6.1 Differential gene expression profiles in breast cancer cells .................................... 68 

 

CHAPTER 4 ................................................................................................................ 72 

4. Discussion ................................................................................................................ 72 

 

CHAPTER 5 ................................................................................................................ 85 

5. Limitations and Future Directions ........................................................................... 85 

 

CHAPTER 6 ................................................................................................................ 87 

6. Conclusion ............................................................................................................... 87 

 

REFERENCE LIST ..................................................................................................... 88 

 



���

�

SUMMARY 

 Recent trends in cancer management have sparked a growing interest in 

discovering novel natural compounds that aim to effectively and specifically target 

cancer cells with minimal toxicity in normal cells. The anti-neoplastic effects of 

thymoquinone (TQ), a main active constituent of Nigella Sativa seeds, had been 

demonstrated in various in vitro and in vivo cancer models with minimal toxicity in 

normal cells. However, studies till date have only examined the proliferative ability of 

breast cancer cells upon TQ treatment and the possible underlying mechanisms of 

action of TQ are not well understood.  

Recently, our laboratory had shown that TQ induced telomere shortening, 

DNA damage and apoptosis in glioblastoma cells. Based on the foregoing accounts, 

this study investigated the anti-cancer potential of TQ in breast cancer cells, MDA-

MB-231 and MCF-7. Reduced proliferative capacity was observed only in breast 

cancer cells, which showed inefficient or delayed repair of TQ-induced 

deoxyribonucleic acid (DNA) damage in comparison to normal epithelial cells. 

Specifically, TQ-induced DNA double strand breaks (DSBs) in the breast cancer cells 

could possibly involve the non-homologous end-joining (NHEJ) pathway as the main 

DNA DSB repair mechanism in this study.  

However, the regulation of telomere-telomerase homeostasis by TQ in MDA-

MB-231 and MCF-7 cells appeared to be dissimilar. In MDA-MB-231 cells, the 

observations were likely associated with telomerase inhibition via c-myc regulatory 

pathway of telomerase reverse transcriptase (hTERT) expression with concomitant 

telomeric repeat-binding factor-2 (TRF2) down-regulation and subsequent telomere 

shortening. The acute effects of such de-regulation have been shown to induce DSBs 
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at telomeric sites and also ataxia telangiectasia mutated (ATM)-independent activation 

of DNA-protein kinase catalytic subunit (DNA-PKcs) via mediation of NHEJ repair 

pathway. On the other hand, in MCF-7 cells, telomerase inhibitory effects were 

evident only at high TQ doses and upon chronic low dose exposure for up to 8 weeks. 

The inhibitory effects could possibly involve indirect modulation of the c-myc 

regulatory pathway of hTERT expression with subsequent progressive telomere 

shortening. Likewise in MDA-MB-231 cells, there was subsequent activation of 

DNA-PKcs via mediation of NHEJ repair pathway.  

Taken together, our findings suggest that the common activation of DNA-

PKcs in TQ-treated breast cancer cells could serve as an important observation for 

future possible combinatory treatment with TQ and the potential of translating this 

nature endowed compound for cancer treatment in humans. 
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CHAPTER 1 

1. Introduction 

1.1 DNA damage and repair 

 Deoxyribonucleic acid (DNA) is a stable macromolecule, which carries the 

genetic material essential for all processes of life and maintenance of cellular 

functions. Nevertheless, DNA can be damaged when exposed to environmental 

agents, oxidative stress and spontaneous degradation (Friedberg E. C., 2005a; 

Hoeijmakers, 2001). This may manifest as single or double strand breaks (DSBs), 

base deletions, insertions or point mutations, instability of hydrogen bonds between 

complementary strands and even formation of base adducts (Fig. 1A) (Hoeijmakers, 

2001). However, the most common DNA lesions are the formation of strand breaks, 

especially DSBs which is considered the most deleterious form of DNA damage 

(Jackson, 2002). When a DNA lesion is detected in cells, cell regulatory mechanisms 

are activated to allow correction of any possible DNA or chromosomal defects 

(Hartwell and Kastan, 1994; Hartwell and Weinert, 1989). Inadequate or unsuccessful 

repair may lead to the accumulation of DNA lesions culminating to apoptosis or in 

rare instances progressing to cancer (Fig. 1B) (Hoeijmakers, 2001). Due to the 

essential roles of DNA as aforementioned, it is the only biological macromolecule that 

undergoes repair when damaged so as to preserve genomic integrity and hence 

stability. 

Cells with resistance to DNA damaging agents are likely associated with 

increased cellular repair activities. On the other hand, defective DNA repair pathways 

contribute to hypersensitivity to these agents. Interestingly, somatic or inherited 
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mutations in DNA repair proteins in tumour cells have been reported to rely much 

more than normal cells on the remaining functional DNA repair mechanisms for 

damage repair (Damia and D'Incalci, 2007).  

 

�

 

Figure 1. Possible sources of DNA damage, DNA repair mechanisms and 
subsequent consequences of immediate and sustained DNA damage.�(A) Common 
DNA damaging agents (top), which are capable of inducing the various types of DNA 
lesions (middle) and can be repaired by specific repair pathways (bottom). (B) 
Immediate effects of unrepaired DNA damage causes cell cycle arrest (top) or 
apoptosis (middle), while continued accumulation of DNA damage is likely to lead to 
permanent changes in DNA sequences and hence, cancer. Abbreviations: cis-Pt and 
MMC, cisplatin and mitomycin C, respectively; (6-4) PP and CPD, 6-4 photoproduct 
and cyclobutane pyrimidine dimer, respectively; BER and NER, base- and nucleotide-
excision repair, respectively; HR, homologous recombination; EJ, end joining. 
Reproduced from Nature: Genome maintenance mechanisms for preventing cancer. 
(Hoeijmakers, 2001) 

 

 

A. B
. 
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1.2 DNA repair pathway – Non-homologous end-joining (NHEJ) 

Non-homologous end-joining (NHEJ) pathway is one of the major DNA DSB 

repair pathways in mammalian cells (Jackson, 2002; Lieber et al., 2004). NHEJ 

mediates the repair of DSBs by directly re-joining the broken ends, which will 

ultimately cause deletions of small DNA sequences at the sites of DNA breakages 

(Jackson, 2002). Although NHEJ is active in all cell cycle phases, it has been shown 

to be particularly important for recombination repair in G0 and G1 cell cycle phases as 

such cells do not possess a homologous chromosome, which is required for repair of 

DNA damage (Hendrickson, 1997; Rothkamm et al., 2003). However, the human 

genome is complex and only a small percentage encodes for proteins. Therefore the 

risks associated with such an error-prone repair pathway are not as detrimental as cells 

entering S phase with unrepaired DSBs.  

1.2.1 Major players in the NHEJ pathway 

The NHEJ pathway is governed by a highly regulated protein complex 

comprising of a large DNA-dependent protein kinase catalytic subunit (DNA-PKcs) 

and its regulatory Ku 70 and 80 subunits (Burma and Chen, 2004; Smith et al., 1999; 

Smith and Jackson, 1999). The importance of the protein complex in NHEJ has been 

shown by several studies, which reported greater occurrences of chromosomal 

aberrations and genomic instability in mouse embryonic fibroblasts (MEFs) and 

mammalian cells lacking in either DNA-PKcs, Ku70 or Ku80 proteins (Barnes et al., 

1998; Ferguson et al., 2000; Gao et al., 1998a; Gao et al., 1998b; Gu et al., 2000; 

Taccioli et al., 1998).  
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In a cellular response to DSBs (Fig. 2), DNA end-binding protein Ku70/80 

complex recognizes and binds to each of the DSB sites (Mahaney et al., 2009; Yuan et 

al., 2010). This consequentially signals the recruitment of DNA-PKcs, which 

stimulates its catalytic activity via phosphorylation of ser-2056 or Thr-2609 clusters 

(Chan et al., 2002; Chen et al., 2005; Ding et al., 2003). Compromised DSB repair 

function of DNA-PKcs has been shown to occur when these two identified cluster 

sites were mutated (Chan et al., 2002; Ding et al., 2003). The interaction of DNA-

PKcs and Ku70/80 forms the DNA-PK complex, which aids in synapsis of the DSB 

sites (Mahaney et al., 2009). The XRCC4-DNA ligase IV is recruited for ligation of 

the double strand ends for completion of the repair process. The kinase activity of 

DNA-PKcs can be regulated by auto-phosphorylation of Ser-2056 cluster, which leads 

to inactivation of its kinase activity and subsequent dissociation of the DNA-PK 

complex after damage repair (Chan et al., 2002; Ding et al., 2003). Serine/threonine 

phosphorylation sites are commonly present in DNA repair proteins and are cognate 

substrates of phophatidylinositol 3-kinase (PI-3K) members (Mahaney et al., 2009; 

Poltoratsky et al., 1995). 

 Ataxia telangiectasia-mutated (ATM) protein kinase, which also belongs to the 

PI-3K super family, is a general DNA damage sensor (Shiloh, 2006). In the event of 

DNA damage, ATM will be activated to phosphorylate downstream targets involved 

in cell cycle arrest, DNA repair and stress response (Riballo et al., 2004; Shiloh, 

2006). Although the involvement of ATM in homologous recombination (HR) of  

DSBs repair has been well-established, recent evidence has revealed a possible 

complementary involvement of ATM in mediating DNA-PKcs phosphorylation at the 
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Thr-2609 cluster upon detection of DSBs contributing to the NHEJ pathway (Chen et 

al., 2007). 

ATM and DNA-PKcs have been shown to be separately involved in regulating 

the phosphorylation of H2AX (An et al., 2010; Burma et al., 2001; Park et al., 2003; 

Stiff et al., 2004). H2AX is a component of chromatin and comprises of a central 

globular domain, an N-terminal tail and a unique C-terminal tail with a conserved 

motif connected by a linker of variable sequence and length (Bonner et al., 2008). The 

conserved motif contains the omega-4 serine 139 that becomes phosphorylated to 

generate gamma-H2AX (�-H2AX) (Rogakou et al., 1998). �-H2AX is a specific and 

efficient coordinator in the early response for DNA DSB repair (Kinner et al., 2008). 

It is a well-established biomarker employed in immunofluorescence experiments for 

detection of DSBs (Kinner et al., 2008).  

Once the initial DNA damage sensor proteins as described previously becomes 

activated, a nucleation reaction is initiated with the recruitment of MDC1 and 

continuing with that of the MRN (Mre11/Rad50/NBS1) complex to further activate 

DNA-PK and ATM (Yuan and Chen, 2010). This generates a feedback loop that leads 

to further phosphorylation of H2AX and chromatin modifications required for the 

recruitment of 53BP1 (Lee et al., 2010; Yuan and Chen, 2010). The activation cascade 

culminates with the recruitment of RNF8 to phosphorylated MDC1 and the 

polyubiquitinylation of H2AX to recruit BRCA1/BARD1 (Wei et al., 2008).  




�

�

 
Figure 2. Double strand break recognition and repair pathways. Ku70/80 
heterodimer recognizes and binds directly to broken DNA double strand ends. 
Recruitment of DNA-PKcs initiates a series of phosphorylation events, including 
generation of �-H2AX. General DNA damage sensor, ATM, can also activate DNA-
PKcs. Subsequent nucleation reaction completes the repair process. Reproduced from 
FEBS Letters: Focus on histone variant H2AX: To be or not to be. (Yuan et al., 2010) 
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1.3 Telomeres and its structure 

 Telomeres are chromosomal end-capping structures first discovered by 

Hermann Muller in 1938 (Rodier et al., 2005). These specialized nucleoprotein 

complexes function to protect from end-to-end chromosomal fusions, prevent the 

recognition of chromosomal ends as DSBs and also from nuclease degradation 

(Greider and Blackburn, 1985; Shay and Wright, 2006)  

Mammalian telomeres consist of repetitive non-coding sequences of TTAGGG 

with a single-stranded 3’ G-rich overhang, which invades into the duplex telomeric 

region forming a secondary structure (Rodier et al., 2005). The secondary structure 

consists of a telomere-loop (T-loop) and a displacement-loop (D-loop), which aid to 

stabilize and cap telomeric DNA (Fig. 3). Specific protein complexes such as 

protection of telomeres-1 (POT1), telomeric repeat-binding factor-1 (TRF1), TRF2, 

TRF1-interacting protein-1 (TIN1), TIN2, TINF2-interacting protein (TPP1) and 

transcriptional repressor/activator protein (RAP1) form the shelterin complex, which 

play additional roles in protecting telomeres and hence maintaining its function (de 

Lange, 2004). Telomere-specific proteins are able to interact and bind directly or 

indirectly to either the single- or double-stranded telomeric DNA (Shay and Wright, 

2006).  
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Figure 3. The proposed structure of telomeres and their associated proteins. 
TRF1 and TRF2 interact with the double-stranded duplex telomeric DNA. Indirectly-
binding proteins bind to telomeric DNA through interaction with directly-binding 
proteins, especially through TRF1 and TRF2. Abbreviations: POT1, protection of 
telomeres-1; RAP1, transcriptional repressor/activator protein; TRF1 and TRF2, 
telomeric repeat-binding factor-1 and telomeric repeat-binding factor-2, respectively; 
TIN2, TRF1-interacting protein-2, respectively; NBS1, nijmegen breakage syndrome 
1; TANK1 and TANK2, tankyrase 1 and tankyrase 2, respectively; hnRNPs, 
heterogeneous nuclear ribonucleoproteins. Reproduced from Nature Reviews: 
Molecular Cell Biology 5. (de Lange, 2004)  
�

1.3.1 Telomeric end-replication problem 

Considering the important roles that telomeres are involved in as 

aforementioned, it is thus necessary to maintain functional telomeres for continued 

cell proliferation.  

Each round of DNA replication in normal somatic cells leads to progressive 

loss of terminal telomeric sequences of approximately 50 to 200 base pairs with each 

cell division (Lansdorp, 2000). The loss of telomeric repeats is primarily attributed to 

the end replication problem of the lagging strand or in some cases due to the presence 

of exonucleases (Xin and Broccoli, 2004). The end replication problem arises due to 

the intrinsic inability of DNA repair mechanisms to fill in the 5’ gap contributed by 
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the short RNA primers, which are required for initiating replication by DNA 

polymerase (Rodier et al., 2005). As a result, progressive telomere attrition occurs 

with each cell division and thus, telomeres are known to serve as mitotic clocks 

recording proliferative history.  

However, continued telomere shortening will eventually lead to the triggering 

of multiple safeguard mechanisms in cells under normal circumstances. Cells stop 

dividing and undergo permanent G0 ,a process also known as replicative senescence or 

mortality stage 1 (M1) (Fig. 4) (Hayflick, 1965). This prevents deregulation of 

proliferation pathway that may otherwise predispose cells to the development of 

cancer.  

However, when a mutation imparts a selective survival advantage, further 

mutations such as those involving the dominant gain-of-function of proto-oncogenes 

or recessive loss-of-function of tumour suppressor genes will tend to accumulate 

(Lengauer et al., 1998; Loeb et al., 2003a). Therefore, cells may bypass M1 when 

somatic mutations that inactivate retinoblastoma (pRB) or p53 tumour suppressor 

genes occur. Consequently, cells continue to proliferate until telomeres are critically 

shortened and are unable to form the secondary telomere structure. This telomere 

dysfunction will then lead to a continuous break-fusion-bridge (BFB) cycle resulting 

in massive gene dosage changes and genetic instability. Eventually, cells will enter 

cellular crisis or mortality stage 2 (M2) (DePinho, 2000), which serves as a potential 

barrier for the road to immortalization.  

As rare event prior to M2, telomerase reactivation or up-regulation allows cells 

to escape crisis and proliferate indefinitely with subsequent progression to invasion 

and metastasis of cancerous cells (Fig. 4) (Greider and Blackburn, 1985). Majority of 
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1.4 Telomerase 

 The holoenzyme, telomerase, was first purified by Greider
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other associated proteins; telomerase-associated proteins (TEP1, TEP3) (Fig. 5) (Chen 

et al., 2009).   

The TERC subunit comprises of an integral 11 base pairs RNA template 

complementary to the TTAGGG repeats. The TERT subunit reverse transcribes and 

elongates the 3’ telomeric end with hexameric repeats through employment of the 

TERC subunit (Feng et al., 1995; Nakamura et al., 1997). Hence, telomerase plays a 

pivotal role in the stabilization of telomere length by compensating for the loss of 

telomeric DNA with each round of replication. This is further validated by Hahn et al. 

(1999) reportedly showing that the retroviral introduction and expression of hTERT 

into large T-antigen expressing human embryonic kidney (HEK) cells and normal 

human BJ fibroblast cells not only stabilizes telomere length but plays a central role in 

cellular resistance to apoptosis (de Lange and DePinho, 1999). Furthermore, deletions 

in genes encoding for the TERC and dyskerin proteins in stem cells have also shown 

to alter their renewal capacity due to the failure of a functional telomerase to maintain 

telomere length (Marciniak and Guarente, 2001; Mitchell et al., 1999; Vulliamy et al., 

2001; Wong et al., 2004).   

All cells and tissues express telomerase at birth, which is subsequently 

suppressed when differentiation occurs (Mattson MP, 2000-). Thus, telomerase 

expression can be considered as a hallmark for human cancers since it is detectable in 

85 to 90 % of tumours and not in normal somatic cells, with the exception of germline 

cells and the proliferating cells of renewal tissues (e.g. bone marrow cells, intestinal 

epithelial cells) (Wright et al., 1996). However, it is important to note that telomerase 

expression alone does not induce a transformed phenotype in cancer but rather the 

association of other internal and external factors too (Hanahan and Weinberg, 2011).  
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Telomerase-mediated telomere length compensation is favoured in cells with 

the shortest telomere length (Gellert G.C., 2005; Shay and Wright, 2005). Such 

scenarios may occur even when most telomeres in the cell population are long, since it 

is the shortest telomere length that determines the fate of the cell (Gellert G.C., 2005).  

 
Figure 5. Simplified structure of telomerase and telomere maintenance 
mechanism. Telomerase complex comprises the TERC, hTERT, dyskerin, HSP90 
and p23 subunits. It extends the 3’ telomere end by adding TTAGGG repeats using 
the complementary RNA template in the TERC subunit. This enables the RNA 
primers to be located further away from 5’ end and hence prevents loss of telomere 
ends associated with the end-replication problem. Modified and reproduced from 
Frontiers in Bioscience: Telomere protein complexes and interactions with telomerase 
in telomere maintenance. (Pinto et al., 2011) 
 

1.4.1 Regulation of telomerase 

The regulatory pathway for telomerase is not fully elucidated and has always 

been an area of interest for most researchers. Nevertheless, reports have shown that 

since hTERC and hTEP-1 are constitutively expressed in mammalian cells, the 

transcription and alternative splicing of TERT will then be the rate-limiting step for 

telomerase expression (Meyerson et al., 1997; Nakayama et al., 1998; Takakura et al., 

1998). A further study by Seimiya et al (2000) also postulated a possible post-

translational involvement of the TERT subunit in telomerase regulation (Seimiya et 

al., 2000).  
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Some upstream positive transcriptional regulators of the TERT gene include c-

myc proto-oncogene, AKT and estrogen receptor � (ER�), while negative regulators 

include pRB tumour suppressor gene, E2F transcription factors and transforming 

growth factor beta (TGF-�) (Fig. 6) (Grandori and Eisenman, 1997; Horikawa and 

Barrett, 2003; Wang et al., 1998).  

The c-myc proto-oncogene is commonly known to be involved in cell 

proliferation and immortalization when constitutively expressed in primary fibroblasts 

(Askew et al., 1991; Kohl and Ruley, 1987) . Consequently, c-myc has been touted as 

a key molecular switch positively regulating telomerase activity and expression of 

TERT, where c-myc binding sites can be found at the TERT promoter region 

(Greenberg et al., 1999; Schneider-Stock et al., 2003; Wu et al., 1999). 

 

Figure 6. Multiple mechanisms for the transcriptional regulation of hTERT gene. 
Various mechanisms act on the hTERT promoter to regulate hTERT transcription. 
Some positive regulators include c-myc and estrogen receptor �, negative regulators 
include p53, pRB and BRCA-1. E: two canonical E-box (CACGTG) elements 
upstream and downstream of the transcription initiation site (+1). Reproduced from 
Carcinogenesis: Transcriptional regulation of the telomerase hTERT gene as a target 
for cellular and viral oncogenic mechanisms. (Pinto et al., 2011) 
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1.5 Regulation of telomere function 

 Both telomere length and stability of the secondary telomeric structure play 

vital roles in regulating the function of telomeres. Telomere length is stabilized by 

achieving a balance between telomere shortening due to the intrinsic end-replication 

problem and the accessibility to telomerase, which aids in adding hexamer repeats to 

the shortened telomeres. In addition, the expression and activity of shelterin proteins 

in cells affect telomere length, stability of the secondary telomeric structures and the 

access to telomerase. 

1.5.1 Telomere binding proteins – regulators of telomere function 

Telomere binding proteins, e.g. TRF1 and TRF2, are also important in 

controlling telomere length in cells. TRF1 and TRF2 bind to double-stranded 

telomeric sequences and maintain the t-loop secondary structure in vitro. However, 

their modes of telomere regulation are vastly dissimilar (Smogorzewska et al., 2000). 

Studies have shown that TRF1 is a negative regulator of telomere length as 

TRF1 over-expression leads to telomere shortening, while a mutant DNA-binding 

domain TRF1 variant results in progressive telomere lengthening (Smith and de 

Lange, 1997; Smogorzewska et al., 2000; van Steensel and de Lange, 1997). In 

addition, the regulatory effects of TRF1 on telomeres are independent of telomerase 

activity, suggesting that TRF1 controls telomerase access to telomeres 

(Smogorzewska et al., 2000).  

On the other hand, TRF2 plays an important role in telomere end capping 

(Smogorzewska et al., 2000). This prevents telomeres from chromosomal end-to-end 

fusions through interaction with DNA-damage signalling and repair factors (Chen et 
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al., 2009). Recently, TRF2 has been shown to migrate and localise to sites of DNA 

DSBs suggesting the protective role of TRF2 at telomeric regions (Bradshaw et al., 

2005; Stauropoulos, 2005). The localization of TRF2 to such sites has been observed 

to be faster than the recruitment of ATM (Bradshaw et al., 2005).  

1.5.2 DNA repair proteins involvement in telomere maintenance  

There have been various studies reporting the close knit relationship between 

DNA repair proteins and telomere function (d'Adda di Fagagna et al., 1999; d'Adda di 

Fagagna et al., 2001; Gilley et al., 2001; Hande, 2004; Slijepcevic et al., 1997). It is 

probably the tendency of telomeric sites to be highly prone and sensitive to DNA 

damage with subsequent recruitment and localization of DNA repair factors to 

damaged sites that fuels such reports (Hewitt et al., 2012). In certain circumstances, 

the shelterin complex serves as the connection for interaction between DNA repair 

factors and telomere associated proteins.  

1.5.2.1 ATM and telomere maintenance  

ATM is the first reported DNA repair protein to alter telomere dynamics 

(Metcalfe et al., 1996). Defective ATM in mouse cells causes accelerated telomere 

attrition, fusions and extrachromosomal telomere fragments (Hande et al., 2001). In 

addition, cells derived from ataxia telangiectasia (A-T) patients had increased 

chromosomal aberrations and telomere loss (Hande et al., 2001). Although ectopic 

expression of hTERT in A-T cells was able to extend the lifespan of these cells, 

manifestation of telomere instability still occurred.  

Interestingly, ATM has also been shown to interact with telomere-associated 

proteins, specifically TRF1 and TRF2. ATM phosphorylation of TRF1 results in the 
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release of TRF1 from telomeres (Wu et al., 2007). This is likely to promote 

telomerase access to telomeres and hence telomere lengthening. On the other hand, 

TRF2 binding represses ATM kinase activity and protects telomeres from the 

activation of ATM-dependent DNA damage response pathway (Karlseder et al., 

2004). 

1.5.2.2 DNA-PKcs and telomere maintenance  

DNA repair proteins involved in NHEJ, specifically DNA-PKcs and Ku70/80, 

play a role in telomere capping and hence prevent chromosomal fusions. Mammalian 

cells defective in either Ku70/80 or DNA-PKcs exhibited higher occurrence of end-to-

end telomeric fusions (d'Adda di Fagagna et al., 2001). The role of telomere capping 

by DNA-PKcs arises from observations of DNA-PKcs deficient mouse cells 

displaying higher levels of telomere fusions with no significant changes in telomere 

length (Goytisolo et al., 2001; Hande et al., 1999). Furthermore, the pharmacological 

inhibitor of DNA-PK phosphorylation, IC86621, disrupted telomere end capping 

(Bailey et al., 2004). This further signifies the crucial role of DNA-PK kinase activity 

in performing its telomere end-protection role.  

1.5.2.3 PARP-1 and telomere maintenance  

Poly(ADP)-ribose polymerase 1 (PARP-1) is an abundant nuclear DNA 

damage sensor mediating repair of DNA single strand breaks implicated in the base 

excision repair (BER) pathway (Huber et al., 2004). Studies have shown the 

localization of sporadic PARP-1 at normal telomeres and accumulation when telomere 

erosion occurs (Gomez et al., 2006). Although PARP-1 is dispensable for telomere 

end protection, PARP-1-deficient MEFs displayed hypersensitivity to genotoxic 
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agents and heightened genomic instability due to a greater occurrence of telomere 

attrition (d'Adda di Fagagna et al., 1999; Gurung et al., 2010a).  

No differences in telomerase activity between PARP-1-deficient and wild type 

cells suggest that PARP-1 does not regulate telomerase activity (Samper et al., 2001). 

Further studies also showed no direct interaction between PARP-1 and TERT proteins 

via the yeast-two hybrid assay. Therefore, PARP-1 is most likely to associate with 

telomere-associated proteins, TRF2, in regulating telomere length (Gomez et al., 

2006). In particular, PARP-1 poly(ADP-ribosyl)ates TRF2 and this alters the DNA-

binding domain of TRF2 (Dantzer et al., 2004). Subsequently, TRF2 dissociates from 

telomeres causing relaxation of the t-loop structure, which then provides access to 

DNA repair factors.  

1.6 Dysfunctional telomere-induced genomic instability in cancer 

 Continuous epithelial turnover over time leads to telomere shortening. When 

coupled with inactivation of tumour suppressor genes, replicative senescence can be 

bypassed and subsequent proliferation results in further progressive telomere attrition. 

Hence, the function of telomeres is compromised. The ‘naked’ telomeres are then 

recognized as DSBs by DNA repair machineries resulting in futile end-to-end joining. 

The resultant dicentric chromosome leads to anaphase bridging during segregation in 

mitosis, which breaks apart when pulled across opposite spindle poles. The broken 

chromosome will be repaired once again through fusion with another chromosome 

generating another dicentric chromosome. This eventually perpetuates a breakage-

fusion-bridge (BFB) cycle that facilitates the accumulation of genetic changes and 

hence instability enabling precancerous cells to emerge from crisis to malignancy 

(Maser and DePinho, 2002). In addition, studies by various groups have demonstrated 
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that telomere shortening leads to chromosomal and genomic instability with 

subsequent tumour development in telomerase-deficient mouse models. (Hahn et al., 

1999; Hande, 2004; Pinto et al., 2011; van Steensel and de Lange, 1997; Xin and 

Broccoli, 2004) 

Recently, it has been proposed that the ten hallmarks of cancer (Fig. 7) are 

acquired by most cancer cells (Hanahan and Weinberg, 2011). Interestingly, two of 

the hallmarks are an unstable genome with mutations and limitless proliferative 

capacity. As mentioned previously, telomere dysfunction culminates in massive gene 

dosage changes leading to chromosomal instability, which then drives multiple 

genetic changes (e.g. reactivation of telomerase) paving the road to immortalization 

(Maser and DePinho, 2002). Hence, we are interested to understand the association of 

telomere dysfunction and possible implications for cancer therapy in this study. 

 

Figure 7. The ten hallmarks of cancer and specific therapeutic targets for each of 
the cancer hallmarks. Ten acquired capabilities necessary for cancer development 
and progression. Drugs (boxed) are being developed to target each of the enabling 
characteristics and emerging hallmarks. Reproduced from Cell: Hallmarks of cancer: 
the next generation. (Hanahan and Weinberg, 2011) 
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1.7 Trends in breast cancer 

The prevalence of cancer has been increasing in recent years and is one of the 

leading causes of death in Singapore, accounting for one in every four deaths (Poh, 

2008�� Lim G.H., 2012). Of concern is the rapid rise of breast cancer, which is 

approximately an increment of three percent per year since 1968 (Fig. 8) (Sim et al., 

2006).  

 Breast cancer is chosen as a model for this study due to the much received 

attention in Singapore over the years. It is the most common female cancer in 

Singapore with incidence rate doubling over the years and is expected to reach the 

much higher incidence rate in western countries (Sim et al., 2006). Not only is breast 

cancer the most common female cancer, it has the highest mortality rate in females. 

Survival from breast cancer is related to tumour size at time of diagnosis and 

treatment at an early stage will lead to a more effective and improved outcome 

(Rickard and Donnellan, 1998).  In addition, the natural history of the disease involves 

a pre-invasive phase, for which treatment at this phase allows complete cure for breast 

cancer patients before metastasis sets in (Wee, 2002).  
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patients has a tendency to act on other body cells and hence develop endometrial 

cancer (Bernstein et al., 1999; van Leeuwen et al., 1994). Therefore, much emphasis 

has been placed on discovering novel natural or synthetic compounds that target 

tumour cells more efficiently and selectively with minimal toxicity to normal cells.  

1.8 Possible development of telomerase inhibition in cancer therapeutics 

Telomerase inhibition has been viewed as an attractive target for cancer 

therapeutics in view that a therapeutic window exists in which cancer cells can be 

effectively targeted without affecting normal somatic cells. Furthermore, the length of 

telomeres in cancer cells is shorter in comparison to normal somatic cells (Chen et al., 

2009), thus significantly affecting the survival of cancer cells to a greater extent. Yet, 

one may contest that telomerase inhibition will ultimately affect telomerase positive 

germline cells, stem cells and the proliferating cells of renewal tissues. It is true that 

telomerase inhibition do affect such telomerase positive cells, but all these cells 

generally have longer telomeres than cancer cells and the initial length of telomeres is 

an important factor for telomerase inhibition leading to telomere shortening, coupled 

with growth arrest, senescence or apoptosis (Hahn et al., 1999; Zhang et al., 1999). 

1.9 Natural plant products in cancer therapy 

Over the recent years, natural plant products have sparked a growing interest 

in the area of research for prevention or treatment of cancer (Vuorelaa et al., 2004). 

The identification of pharmacologically active constituents in potential plant products 

as chemo-preventive agents has always been the focus since treatment results have 

been promising (HemaIswarya and Doble, 2006). During the period of 1983 to 1994, 
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approximately 41 % newly approved drugs originated from natural products, of which 

60 % are anti-cancer agents (Cragg et al., 1997). 

Although natural plant products mediate their effects through multiple targets, 

they are known to produce relatively lesser side effects with minimal toxicity 

(Vuorelaa et al., 2004). In comparison to synthetic compounds, natural plant products 

are inexpensive and easily available in ingestive forms with reported years of intake 

by humans. There is also growing evidence linking cancer risk and dietary factors. 

Hence, dietary phytochemicals can be said to be a promising class of compounds with 

health benefits (Sa and Das, 2008). Epidemiological data has shown that a lower 

cancer risk occurs in populations with a greater reliance on spices, fruits and 

vegetables in their diets (Wargovich, 1999). Some reportedly well-known active 

constituents in natural plant products to prevent or treat illnesses or diseases include 

genistein (in soy), epigallocatechin gallate (in green tea) and curcumin (in spice) 

(Gerhauser et al., 2003; Moiseeva et al., 2007). 

However, there are also other natural plant products that have not been 

extensively researched on and might have the potential for new discoveries. An 

example would be thymoquinone (TQ) as evidenced by the limited number of 

published studies and reports over the years (Gali-Muhtasib et al., 2004a; Shoieb et 

al., 2003). Hence, the therapeutic potential of TQ should not be undermined and 

further in-depth investigations should be warranted.  

1.9.1 Thymoquinone  

TQ is the most abundant component in black seed oil (Gali-Muhtasib et al., 

2006; Padhye et al., 2008). Black seeds can be harvested from the Nigella sativa plant 
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cells (Shoieb et al., 2003). Several possible targets, which have been identified to 

contribute to the cancer cell specific effects of TQ, include the regulation of cell cycle 

and apoptotic proteins.  

1.10 Motivation and significance  

Recently, we have shown the novel effects of TQ on DNA damage and 

telomerase activity in brain cancer cells (Gurung et al., 2010b). An interesting finding 

from this study is that telomerase positive hTERT-BJ1 fibroblasts and human 

glioblastoma cells demonstrated increased sensitivity to TQ induced anti-proliferative 

effect as compared to normal cells. Cells with higher basal telomerase activity were 

more affected by TQ’s telomerase inhibition, which is also evidenced by a down 

regulation in hTERT protein expression. In addition, long term TQ treatment 

significantly shortened telomeres suggesting that TQ disrupts telomere length 

maintenance by inhibiting the activity of telomerase over time in cancer cells. 

Dysfunctional telomeres have been shown to activate DNA damage response 

pathways leading to either senescence or apoptosis, which in this study  predominately 

led to apoptosis (Herbert et al., 1999). Therefore, it is of particular interest to 

investigate if TQ also affects telomeres and DNA integrity in breast cancer cells.  

Most of the earlier reports investigated the effects of TQ in relation to 

proliferative ability, cell cycle regulation and apoptotic effects in cancer models (Gali-

Muhtasib et al., 2004b; Hsieh et al., 2006; Roepke et al., 2007; Shoieb et al., 2003). In 

breast cancer models, current studies have only examined the anti-proliferative effects 

after TQ treatment. The mechanism of action of TQ in breast cancer cells has yet to be 

fully understood, although studies have postulated the involvement of the nuclear 

factor kappa-B (NF-�B) and peroxisome prolierator-activated receptors-gamma 
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(PPAR-�) pathways (Chaturvedi et al., 2011; Sayed and Morcos, 2007; Woo et al., 

2012).  

Therefore, this study aims to focus on the DNA damaging and telomere-

telomerase effects and hence the mechanism of action of TQ in breast cancer cells. In 

addition, it is of interest to investigate the effects of TQ in normal breast epithelial 

cells and thereby establish if the effects of TQ are indeed selective towards the cancer 

phenotype.  

Based on the foregoing account, efforts should be placed on gaining further 

understanding of the molecular mechanisms of action of TQ and subsequently on its 

bioavailability in clinical studies. This might then lead to the ultimate goal of 

translating this nature endowed compound for cancer treatment in humans.  

1.11 Breast cancer cells as the model of study 

 Two breast cancer cell types chosen for this study are MCF-7 and MDA-MB-

231. Both are well characterized in vitro model systems for invasive cancer. Being the 

first hormone-responsive breast cancer cell line discovered, estrogen and progesterone 

receptor-positive (ER�(+), PR(+)) MCF-7 cells have been adopted by many 

laboratories as an investigative tool in the mechanisms of cancer therapeutics 

(Simstein et al., 2003). On the other hand, triple-negative (ER�(-), PR(-), HER2/neu(-) 

MDA-MB-231 cells expressing lysine-280 mutant p53 (Kravchenko et al., 2008) are 

much more aggressive in nature (Balduyck et al., 2000) and have been correlated with 

cancer progression, metastasis and apoptosis resistance (Greenblatt et al., 1994). 

Hence, it will be of interest to identify anti-proliferating agents that are able to inhibit 

such invasive cancer cell growth.   
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 In addition, the immortalized but non-transformed human mammary epithelial 

cell line, MCF-10A, will also be used in this study to investigate the selective 

cytotoxic effects of TQ, if any, on normal and cancer cells.  
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1.12 Objectives  

1. To evaluate the growth inhibitory effects of TQ in breast cancer cells. 

2. To investigate the DNA-damaging effects of TQ in breast cancer cells. 

3. To investigate the effects of TQ on telomerase and telomere dysfunction. 

4. To investigate a possible close knit relationship of DNA repair factors and 

telomeres in TQ-pre-treated breast cancer cells.  

It is important to elucidate the anti-proliferative effects of TQ in the breast cancer 

cells, followed by evaluating the effectiveness of TQ in impairing DNA damage repair 

as well as in inhibiting telomerase in breast cancer cells, which could ultimately help 

to develop novel therapeutic agents for human malignancies. 
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CHAPTER 2 

2. Materials and Methods 

2.1 Cell lines and drug treatment 

 Two human breast carcinoma cell lines, MCF-7 and MDA-MB-231 (ATCC, 

Manassas, VA, USA), were grown as monolayer in 75 cm2 flasks in RPMI-1640 

(Gibco, Grand Island, NY, USA) supplemented with 10 % fetal bovine serum (Gibco, 

Grand Island, NY, USA) and 100 U/mL penicillin/streptomycin (Gibco, Grand Island, 

NY, USA). An immortalised but non-transformed human mammary epithelial cell 

line, MCF-10A (ATCC, Manassas, VA, USA), was cultured in MEGM (Lonza 

Corporation, Walkersville, MD, USA) supplemented with 52 µg/mL bovine pituitary 

extract (Lonza Corporation, Walkersville, MD, USA), 10 % fetal bovine serum 

(Gibco, Grand Island, NY, USA) and 100 U/mL penicillin/streptomycin (Gibco, 

Grand Island, NY, USA). All three cell lines were maintained in a humidified 5 % 

CO2 incubator at 37 °C. 

 Stock solution of Thymoquinone (TQ) (Sigma-Aldrich, St. Louis, MO, USA) 

was prepared in dimethylsulfoxide (DMSO) and suitable working concentrations were 

made from the stock in complete medium. Exponentially growing cells were exposed 

to 0 to 20 µM TQ for 48 h. However for telomere length analysis, the cells were 

treated with TQ for up to 8 weeks. Under these conditions, most subcultures before 

crisis exhibited growth rates that were comparable with the control and required cell 

passage weekly. However, cells with reduced growth rates at later passages were 

given fresh medium and test compounds every two to three days. For all experiments, 

vehicle control cells were treated with DMSO (0.1 %).  
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2.2 Cell viability 

The short-term anti-proliferative effect of TQ on the three cell lines was 

assessed by the CellTiter-Glo® Luminescent Cell Viability Assay (Promega, WI, 

USA) according to the manufacturer’s protocol. Cells were seeded in 12-well plates at 

an initial concentration of 2 x 104 cells per well. Following overnight incubation, these 

cells were exposed to 0 to 20 µM TQ for 48 h. The number of viable cells in culture 

was determined by measuring the luminescent signal generated, which is proportional 

to the amount of ATP present. The quantification of ATP can then be correlated to the 

presence of metabolically active cells after TQ treatment.  

2.3 Wound healing assay 

 To investigate the migration ability of cells after TQ exposure, cells were 

seeded in six-well plates until 80 % confluence. A ‘wound’ was created using a 

pipette tip and rinsed with 1 x PBS to remove detached cells. Following, cells were 

incubated with indicated concentrations of TQ for 48 h. Microscopic images of the 

‘wound’ were captured before and after TQ exposure.  

2.3 Cell cycle analysis 

The changes in cell cycle phase distributions after TQ exposure were 

determined by flow cytometry.  Cells were seeded in 100 x 20 mm culture dishes at an 

initial concentration of 5 x 105 cells per culture dish and incubated overnight. 

Following 48 h TQ exposure, harvested cells were washed with 0.1 % bovine serum 

albumin (BSA): 1 x PBS, fixed in ice-cold 70 % ethanol: 1 x PBS and stained with 

propidium iodide (Sigma-Aldrich, St. Louis, MO, USA): RNase A (Roche, CA, USA) 

(2 mg PI and 2 mg RNase A/100 mL 0.1 % BSA in 1 x PBS). Samples were analysed 
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using a fluorescence-activated cell sorter (FACS) calibur (Becton Dickinson, NJ, 

USA) at 488 nm excitation � and 610 nm emission �. A total of 10,000 events per 

sample were evaluated using the WINMDI software (Windows Multiple Document 

Interface). 

2.5 Alkaline single cell gel electrophoresis (comet) assay 

 The extent of DNA damage induced by TQ was investigated by the comet 

assay. Cells were seeded in 100 x 20 mm culture dishes at an initial concentration of 5 

x 105 cells per culture dish. Following 48 h TQ exposure, harvested cells were 

resuspended in Hank’s Balanced Salt Solution (Sigma-Aldrich, St. Louis, MO, USA) 

with 10 % DMSO and 0.5 M EDTA, mixed with 0.7 % low melting point agarose 

(Conda, Madrid, Spain) at 37 °C and applied onto comet slides (Trevigen, 

Gaithersburg, MD, USA). Subsequently, cells were subjected to lysis in lysis solution 

(2.5 M NaCl, 0.1 M pH 8.0 EDTA, 10 mM Tris-HCl, 1 % Triton-X-100) at 4 °C for 

an hour. The slides were then loaded into a gel electrophoresis tank filled with chilled 

alkaline electrophoresis buffer (0.3 M NaOH, pH 13 with EDTA) for denaturation for 

40 minutes in the dark. Electrophoresis was then carried out at constant 25 V/300 mA 

for 20 minutes.  Subsequently, slides were immersed in neutralization buffer (0.5 M 

Tris-HCl, pH 7.4), dehydrated in 70 % ethanol and dried at 37°C. DNA was stained 

with SYBR Green (Trevigen, Gaithersburg, MD, USA). The images were captured 

using Zeiss Axioplan 2 imaging fluorescence microscope (Carl Zeiss AG, 

Oberkochen, Germany) equipped with triple band filter. A total of 50 randomly 

selected cells per sample were analysed using the Comet Imager Software 

(Metasystems, Altlussheim, Germany) to determine the tail moment, which represents 

the fraction of DNA in the comet tail.  
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2.6 Telomeric Repeat Amplification Protocol (TRAP) assay 

Detection of telomerase activity in cell extracts was performed using the 

TRAPeze® XL Telomerase Detection Kit (Chemicon International, Billerica, MA, 

USA) according to manufacturer’s protocol (Piotrowska et al., 2005). Cells were 

seeded in 100 x 20 mm culture dishes at an initial concentration of 5 x 105 cells per 

culture dish. Following 48 h TQ exposure, harvested cell pellets were lysed with 

CHAPS lysis buffer provided on ice for an hour. The supernatant (1.5 µg protein) 

obtained was added to 48 µl of reaction mixture containing TRAP buffer, dNTP mix, 

TS primer, RP Amplifluor® primer, K2 Amplifluor® primer and 2 units of Taq 

polymerase. Subsequently, polymerase chain reaction (PCR) was initiated by the 

telomerase mediated elongation products (i.e. the telomeric DNA repeats) as template. 

Following, normal PCR cycle was performed using primer pairs with quenched 

fluorescein to amplify the telomeric DNA repeats. Fluorescence signals of the PCR 

products were generated by unquenching the fluorescein on PCR primers and 

measured using the fluorescence plate reader TECAN SpectraFluor Plus. Controls 

used for this experiment include CHAPS-only telomerase negative control and Taq 

polymerase-negative control. The ratio between the net increase of fluorescence 

emission (�FL), which is derived from the telomerase-dependent synthesis of the PCR 

product, and the net increase of sulforhodamine emission (�R), which is on the other 

hand derived from the product synthesized on the internal control representing PCR 

efficiency, for each cell line is calculated. The final ratio is then expressed as a 

percentage of the control.  
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2.7 Population doubling (PD) study 

The long-term anti-proliferative effect of TQ on MCF-7 and MDA-MB-231 

cells was assessed by trypan blue exclusion assay. Trypan blue will not be extruded by 

non-viable cells and thus only unstained viable cells were counted with a 

haemocytometer. Cells were harvested and measurements were performed weekly for 

up to 8 weeks of TQ exposure for each cancer cell type. A fresh tissue culture flask 

was then reseeded with 5 x 104 cells, or all cells if the cell number were less than 5 x 

104. The population doubling number (PDN) was calculated as follows: 

PDN = log2(N0/Nx), 

where N0 = number of cells at harvest and Nx = number of cells seeded (ref) 

 The remaining cells were kept for DNA extraction for Telomere Restriction 

Fragment (TRF) length analysis. 

2.8 Telomere Restriction Fragment (TRF) length analysis 

To analyze the average telomere length in a population of cells, pure genomic 

DNA from the harvested cell pellets was firstly extracted using the DNeasy Tissue kit 

(Qiagen, Valencia, CA, USA) according to manufacturer’s protocol. Following, the 

TRF length analysis assay was performed using the Telo-TAGGG Length Assay Kit 

(Roche Applied Science, CA, USA). DNA (1.5 µg/sample) was digested with 

restriction enzymes, Hinf1 and Rsa1, for 10 minutes at 37 oC, where the whole 

genomic DNA except the sub-telomeric and telomeric regions was digested. Digested 

DNA fragments were fractionated by gel electrophoresis in a 0.8 % agarose at 80 V 

for 3 hours. The gel was then washed in hydrochloric solution (0.25 M HCl), 

denaturation solution (0.4 M NaOH) and neutralisation solution (1 M Tris 7.4, 5 M 
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NaCl). The DNA fragments in the gel were transferred to the Nytran® positively-

charged nylon membrane (Sigma-Aldrich, St. Louis, MO, USA) via capillary action 

overnight. Subsequently, cross-linkage of DNA with the membrane was processed by 

ultraviolet light (Stratagene, Santa Clara, CA, USA), hybridized with Digoxgenin 

(DIG)-labelled telomere probe at 42 oC for 3 hours and washed with a series of anti-

DIG alkaline phosphatase washing solutions. The membrane was incubated with 

avidin-conjugated horseradish peroxidase for 5 minutes, followed by horseradish 

peroxidase substrate solution, tetramthylbenzidine, for 5 minutes. Visualization of the 

DNA fragments were detected on X-ray films (Kodak, Rochester, NY, USA). The 

chemiluminescent signals were scanned by the Kodak Gel imaging system and 

analyzed by the Kodak imaging software for quantitative measurements of the mean 

TRF length. 

2.9 Immunofluorescence staining for �H2AX  

Briefly, 5 × 104 cells were seeded on cover slips in six-well plates overnight 

and then subjected to 48 h TQ exposure. Cells were fixed in 4% paraformaldehyde, 

permeabilize in 0.1% Triton-X-100 and incubated with anti-phospho-�H2AX (Ser139) 

(Upstate Biotechnology, Waltham, MA, USA) diluted in 1 x PBS with 4% FCS and 

0.1% Triton X-100. Cells were washed and incubated with FITC-conjugated anti-

mouse secondary antibody (1:500) at room temperature for an hour in the dark. 

Subsequent washes with 1 x PBS were also conducted in the dark. The cover slips 

were sufficiently dried prior to mounting onto slides containing DAPI (Vectashield®, 

Vector Laboratories, Burlingame, CA, USA). Fluorescent images were captured 

through confocal microscopy (Olympus Fluoview FV1000, Center Valley, PA, USA).  
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2.10 Immunofluorescence staining for telomere dysfunction 

Detection of telomere dysfunction induced foci (TIF) analysis was performed 

as described previously. Cells were incubated with anti-phospho-�H2AX (Ser139) 

(Upstate Biotechnology, Waltham, MA, USA) and then with FITC-conjugated anti-

mouse secondary antibody (1:500) as described previously with the exception that 

TBS-T was used for washing instead of 1 x PBS. Following, slides were placed in 4% 

formaldehyde for 20 minutes for cross-fixing to preserve antibodies. Subsequently, 

Cy3-labelled telomere sequence-specific peptide nucleic acid (PNA) probes were 

applied onto post-fixed slides and thermal co-denaturation was carried out at 80 oC for 

6 minutes, following which slides were hybridised in a moist chamber at 37 oC for 2 

hours. After hybridisation, the slides were washed in formamide and 10 % Tween-20 

and counterstained with DAPI (Vectashield®, Vector Laboratories, Burlingame, CA, 

USA). All images were captured on the Zeiss Axioplan 2 imaging fluorescence 

microscope (Carl Zeiss AG, Oberkochen, Germany) equipped with filters for 

observation of DAPI (blue), FITC (green), Cy3 (red) and a triple filter for 

simultaneous observation of DAPI, FITC and Cy3.  

2.11 Western blot analysis 

 Protein expression was analysed by immunoblotting. Briefly, cells were 

seeded in 100 x 20 mm culture dishes at an initial concentration of 5 x 105 cells per 

culture dish. Following 48 h TQ exposure, harvested cells were lysed with RIPA 

(radio-immunoprecipitation assay) buffer (1 % nonidet P-40, 1 % sodium 

deoxycholate, 0.1 % SDS, 0.15 M NaCl, 0.01 M sodium phosphate, 2 mM EDTA, 50 

mM sodium fluoride, 0.2 mM sodium vanadate and 100 U/mL aprotinin, pH 7.2) to 

obtain whole cell lysates containing total cellular proteins. Protein concentration was 
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determined by bicinchoninic acid assay with bovine serum albumin as the standard 

(Pierce Biotechnology Inc., Rockford, IL, USA). Equivalent amounts of protein (60 

µg/assay) were resolved on 10 % SDS-polyacrylamide gel (SDS-PAGE) and 

transferred to Protran® nitrocellulose membrane (Sigma-Aldrich, St. Louis, MO, 

USA). Membranes were incubated with 1 x PBS containing 0.05 % Tween 20 and 5 

% non-fat milk to block non-specific binding for an hour, followed by incubation with 

primary antibodies to target proteins and then with the appropriate secondary 

antibodies conjugated to horseradish peroxidise. Primary antibodies used to probe for 

the different proteins include p53 (Santa Cruz, USA), p21 (Santa Cruz, USA), cyclin 

D1 (Santa Cruz, USA), cyclin B (Santa Cruz, USA), survivin (Santa Cruz, USA), c-

myc (Santa Cruz, USA), hTERT (Santa Cruz, USA), TRF2 (Santa Cruz, USA), 

phosphor-ATM (Santa Cruz, USA), ATM (Santa Cruz, USA), phosphor-DNA-PKcs 

(Santa Cruz, USA), DNA-PKcs (Santa Cruz, USA), PARP-1 (Cell Signalling, USA) 

and actin (Santa Cruz, USA). Immunoreactive bands were visualised by using either 

SuperSignal West Pico or SuperSignal West Femto chemiluminescent reagents 

(Pierce Biotechnology Inc., Rockford, IL, USA) and subsequently quantified using the 

Kodak imaging software.  

2.12 Gene expression analysis 

Total RNA was extracted from QIAmp RNA Blood Mini Kit (Qiagen, 

Valencia, CA, USA) and quantified using NanoDrop 1000 (Thermo Scientific, 

Waltham, MA, USA). RNA integrity was checked using Bio-Analyzer (Agilent 

Technologies, Santa Clara, CA, USA). Five hundred nanograms of extracted RNA 

from each sample were used for the gene expression study. TotalPrep RNA 

Amplification Kit (Ambion®, TX, USA) was used for cRNA amplification process. 
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The biotinylated amplified RNA thus generated was used for hybridization with 

HumanRef8 V3.0, Human Whole-Genome Expression BeadChips (Illumina Inc., 

USA) for 16 hours at 58 °C. After the incubation period, the arrays were washed and 

stained with Streptavidin-Cy3 (GE Healthcare, Bio-Sciences, UK). Illumina Bead 

Array Reader was used to scan the arrays. The array data thus obtained after scanning 

was imported and analysed using Partek® Genomics Suite™ (Partek GS) (Partek 

Incorporated, MO, USA). 

2.13 Statistical analysis 

All data were expressed as mean ± SEM and statistically subjected to 

Student’s paired t-test using Microsoft Excel 2007 (Microsoft Corp., USA). The 

difference was considered to be statistically significant when p<0.05. 
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CHAPTER 3  

3. Results 

3.1 Effects of TQ on proliferative ability of normal and breast cancer cells 

3.1.1 Breast cancer cells are sensitive to the anti-proliferative effects of TQ 

Most cancer cells possess the potential of limitless replicative capacity, which 

is one of the hallmarks of cancers, contributing to the ability to proliferate indefinitely 

and invade into other tissues (Hanahan and Weinberg, 2011). Hence, it is of interest to 

investigate possible anti-proliferative effects of thymoquinone (TQ) in breast cancer 

cells. Moreover, normal mammary epithelial cells were also examined to determine 

whether the anti-proliferative effects of TQ were only specific to cancer cells.  

TQ treatment resulted in growth inhibitory effects in breast cancer cells, 

MDA-MB-231 and MCF-7 (Fig. 10). In particular, the cell viability and migratory 

ability were considerably affected after 48 h incubation within the indicated 

concentration range of TQ tested (0 – 20 µM).  

Both breast cancer cells exhibited a decline in viability of cells after TQ 

treatment for 48 h within the indicated concentration range tested (0 – 20 µM) (Fig. 

10A). MDA-MB-231 cells displayed a drastic reduction in viability from 1 µM TQ, 

while MCF-7 cells showed a similar drastic reduction in viability from a higher TQ 

concentration of 7 µM. On the other hand, spontaneously immortalised but non-

transformed mammary epithelial cells, MCF-10A, appeared to be the least sensitive 

with no apparent changes in cell viability within the indicated concentration range of 

TQ tested (0 – 20 µM).  
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To further evaluate the growth inhibitory effects of TQ on breast cancer cells, 

the migration ability of MDA-MB-231 and MCF-7 cells were investigated using the 

scratch wound assay. MDA-MB-231 and MCF-7 cells had reduced migration in a 

dose-dependent manner, especially at higher TQ concentrations (Fig, 10B). In 

contrast, the migratory potential of MCF-10A cells remained unaffected relative to 

untreated after exposure to 48 h TQ at the concentrations tested (1 µM, 10 µM and 20 

µM).  

Interestingly, MDA-MB-231 cells appeared to be more sensitive than MCF-7 

cells to TQ treatment with substantial reduction in cell viability from concentrations of 

0.5 µM and above as compared to from concentrations of 6 µM and above for MCF-7 

cells (Fig. 10A). In addition, there was a greater suppression in migratory ability in 

MDA-MB-231 cells than MCF-7 cells (Fig. 10B) at all three concentrations (1 µM, 10 

µM and 20 µM) of TQ tested.  

The IC50 is defined as the concentration of drug resulting in 50 % growth 

inhibition in vitro (Yung-Chi and Prusoff, 1973). The IC50 values for TQ for the 

breast cancer cells were derived from the dose-response curve in Figure 10A. MDA-

MB-231 and MCF-7 cells were found to have an IC50 value of 1 µM and 10 µM 

respectively, which were used for subsequent functional studies.  
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three independent experiments carried out in triplicates. (B)

by the scratch wound assay. Representative 
growth of MCF-10A, MDA
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viability of breast cancer cells, but not immortalized human mammary epithelial cells. 
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7 cells. Cell viability was assessed by Cel

luminescent cell viability assay and the percentage cell viability was normalised 
against control (0.1 % DMSO) for each cell line. Data represent the mean ± SEM of 
three independent experiments carried out in triplicates. (B) TQ suppressed

by the scratch wound assay. Representative 
10A, MDA-MB-231 and MCF

following 48 h TQ exposure at the indicated concentrations. Data is representative of 

nhibitory effects of TQ on breast cancer cells. (A) TQ reduced 
viability of breast cancer cells, but not immortalized human mammary epithelial cells. 

response curve following 48 h TQ exposure at the indicated concentrations in 
7 cells. Cell viability was assessed by Cel

luminescent cell viability assay and the percentage cell viability was normalised 
against control (0.1 % DMSO) for each cell line. Data represent the mean ± SEM of 
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following 48 h TQ exposure at the indicated concentrations. Data is representative of 
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(A) TQ reduced 
viability of breast cancer cells, but not immortalized human mammary epithelial cells. 

response curve following 48 h TQ exposure at the indicated concentrations in 
7 cells. Cell viability was assessed by CellTiter-

luminescent cell viability assay and the percentage cell viability was normalised 
against control (0.1 % DMSO) for each cell line. Data represent the mean ± SEM of 

migratory 
by the scratch wound assay. Representative 

231 and MCF-7 cells 
following 48 h TQ exposure at the indicated concentrations. Data is representative of 
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3.1.2 TQ causes deficiencies in cell cycle checkpoint function in breast cancer 

cells 

The observed differences in the cell viability and migratory trends prompted 

our investigation of cell cycle changes in the cells following 48 h exposure to TQ.  

Figures 11A and 11B illustrate the cell cycle histograms of MCF-10A, MDA-

MB-231 and MCF-7 cells after 48 h exposure to TQ. No significant shifts in cell cycle 

profiles were observed in MCF-10A cells after 48 h TQ (1 µM and 10 µM) (Fig. 

11C). However, exposure to TQ led to delays in cell cycle progression in breast cancer 

cells. MDA-MB-231 cells presented an increase (p<0.05) of 3.24 % G2/M phase of 

cells accompanied by a decrease in G1 phase after 48 h TQ (1 µM) (Fig. 11D). 

Concomitant increases (p<0.05) of 0.60 % and 9.09 % in sub-G1 (apoptotic) and G1 

phase of cells respectively were exhibited in MCF-7 cells upon 48 h TQ treatment (10 

µM) (Fig. 11E).  

Hence, the growth inhibitory effects in breast cancer cells as observed 

previously (Fig. 10) could likely be attributed to cell cycle arrest in G2/M and G1 

phases for MDA-MB-231 and MCF-7 cells respectively.  
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Figure 11. Growth inhibition of breast cancer cells following 48 h TQ exposure is 
largely attributed to changes in cell cycle profiles. (A-B) Cell cycle profiles for (A) 
MCF-10A and MDA-MB-231 without (0 µM) or with (1 µM) TQ treatment and (B) 
MCF-10A and MCF-7 without (0 µM) or with (10 µM) TQ treatment as measured by 
propidium iodide staining. Data is representative of three independent experiments. 
(C-E) Percentages of cells in each phase of the cell cycle for (C) MCF-10A, (D) 
MDA-MB-231 and (E) MCF-7 cells without (0 µM) or with (1 µM, 10 µM) TQ 
treatment. Data represent the mean ± SEM of three independent experiments carried 
out in duplicates. 
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3.1.3 Changes in cell cycle protein expressions in TQ-treated breast cancer cells 

 Alterations in cell cycle profiles were observed in TQ-treated breast cancer 

cells (Fig. 11) and to further elucidate the possible mechanisms behind such changes, 

expression of cell cycle related proteins (e.g. p53, p21, cyclin D1, cyclin B and 

survivin) were investigated.  

 In immortalised but non-transformed mammary epithelial cells, MCF-10A, 

cell cycle protein expression levels of p53, p21, survivin, cyclin D1 and cyclin B 

persisted and remained fairly unchanged upon 48 h TQ exposure at the indicated 

concentrations tested (1 µM, 10 µM and 20 µM) (Fig. 12). 

 In contrast, MDA-MB-231 cells displayed dose-dependent down-regulation in 

p53, p21, survivin and cyclin D1 expression levels after 48 h TQ treatment (Fig. 12A-

E). However, cyclin B expression levels showed slight down-regulation upon 48 h TQ 

treatment (Fig. 12F). This observation corroborates well with cell cycle profiles 

indicative of a G2/M arrest in TQ-treated MDA-MB-231 cells. 

 Similarly, in MCF-7 cells, down-regulation of survivin and cyclin D1 

expression levels were evident upon 48 h TQ exposure (Fig. 12A, 12D, 12E). 

Expression levels of p53 and p21 were up-regulated at low doses of TQ (1 µM and 10 

µM) but were down-regulated at a high TQ dose of 20 µM (Fig.12B, 12C). Only 

cyclin B protein expression levels persisted and remained fairly unchanged at the 

indicated TQ doses tested (Fig. 12F). Cell cycle profiles showed TQ-induced G1 

arrest in MCF-7 cells, hence when treated at IC50 TQ doses concomitant down-

regulation of cyclin D1 and up-regulation of p53 and p21 expressions were observed.  
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Figure 12. Changes in expression levels of cell cycle proteins in TQ-treated breast 
cancer cells. (A) Protein expression levels were assessed by western blot following 48 h 
TQ exposure at the indicated concentrations for MCF-10A, MDA-MB-231 and MCF-7 
cells. (B-F) Relative intensity of western blots for (B) p53, (C) p21, (D) survivin, (E) 
cyclin D1 and (F) cyclin B in MCF-10A, MDA-MB-231 and MCF-7 cells following 48 h 
TQ exposure at the indicated concentrations for displayed blot. �-Actin serving as the 
internal control.  
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3.2 DNA damaging effects of TQ in normal and breast cancer cells 

3.2.1 TQ induces significantly greater DNA damage in breast cancer cells  

 Growth arrest serves as a safeguard mechanism to ensure that cells have 

sufficient time for repairing the DNA damage incurred (Beckerman, 2009). In 

addition, our laboratory had previously shown TQ induced DNA damage in 

glioblastomas (Gurung et al., 2010b). Hence, to determine if the observed cell cycle 

profile changes in the cells or lack thereof were associated with DNA damage, the 

alkaline single cell gel electrophoresis (comet) assay was performed to evaluate DNA 

damage at 48 h following TQ exposure. In addition, to determine the repair capacity 

of cells following induction of DNA damage, if any, was evaluated after a 48 h 

recovery period. Nuclei with undamaged DNA appear round (Fig. 13A); nuclei with 

damaged DNA in the form of strand breaks resulted in DNA fragments which 

migrated faster during gel electrophoresis giving rise to a ‘tail’ (Fig. 13B). Mean 

comet tail moment, a function of tail length and fraction of DNA in ‘tail’, was used as 

a measure of DNA damage.  

 In line with the cancer cell specific anti-proliferative effects as mentioned 

earlier, TQ induced elevated levels of DNA damage in breast cancer cells as compared 

to normal cells. Upon 48 h TQ exposure, MDA-MB-231 and MCF-7 cells displayed 

significant mean tail moment increases (p<0.001) of 4.93 µm and 3.13 µm 

respectively in comparison to controls (Fig. 13C, 13D).  Also, it was noted that MCF-

10A cells displayed significantly lower (p<0.01) tail moments at 48 h TQ exposure 

compared to the breast cancer cells. Although the damage was significant at a lower 

TQ dose of 1 µM, no significant changes in cell cycle profiles were observed.   



���

�

 The decrease in tail moment back towards the baseline is indicative of damage 

repair and also if the DNA damage induced was mainly due to the effects of the drug. 

Following 48 h recovery period, reductions in tail moments for all cells, in particular 

the breast cancer cells, were observed (Fig 13C, 13D). However, the reduction in tail 

moments for recovered MDA-MB-231 and MCF-7 cells did not achieve levels prior to 

TQ treatment. MCF-10A cells displayed no differences in post-recovery tail moments 

between treated (1 µM and 10 µM) and untreated cells.  
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Figure 13. TQ induced greater amount of DNA damage in breast cancer cells. 
Representative images of (A) normal and (B) damaged (presence of tail as depicted by 
an arrow) nucleus following alkaline single gel electrophoresis (comet) analysis in 
breast cancer cell, MDA-MB-231. (C-D) Extent of DNA damage measured in terms 
of mean tail moment (product of tail length and fraction of DNA in tail) after 48 h 
exposure to TQ (1 µM or 10 µM), which was followed by a 48 h recovery period for 
(C) MCF-10A and MDA-MB-231 cells and (D) MCF-10A and MCF-7 cells. Data 
represent the mean tail moment (µm) ± SEM of three independent experiments. * 
indicates the change in DNA damage with respect to control is statistically significant, 
i.e. p < 0.05, **p < 0.01, ***p < 0.001. # indicates the change in DNA damage with 
respect to control between cell lines for same treatment is statistically significant, i.e. 
p < 0.05, ##p < 0.01, ###p < 0.001. 
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3.2.2 TQ induces DNA double strand breaks with subsequent inefficient/delayed 

repair in breast cancer cells 

 Various forms of DNA damage exist and may manifest as single or DSBs, 

simple base deletions, insertions or point mutations, instability of hydrogen bonds 

between complementary strands and adducts between adjacent bases or with other 

molecules (Hoeijmakers, 2001). For the focus of this study, it is of interest to examine 

if TQ specifically induces DNA DSBs by performing the �-H2AX 

immunofluorescence staining assay (Kinner et al., 2008). Representative images show 

the nuclei (stained blue with DAPI) of an untreated (Fig. 14A) and TQ-treated (Fig. 

14B) breast cancer cell, MCF-7. The amount of DNA DSBs was quantified by 

enumerating the number of positive �-H2AX foci (stained green) formed.  

 Significantly higher average number of foci positive for �-H2AX were 

observed in breast cancer cells, MDA-MB-231 (p<0.05) and MCF-7 (p<0.01), upon 

24 h and 48 h TQ exposure relative to their respective controls (Fig. 14C, 14D). 

Interestingly, the average number of positive �-H2AX foci formed from 24 h to 48 h 

TQ exposure remained at fairly similar levels for both cells. No significant differences 

in the average number of positive �-H2AX foci formed were observed in MCF-10A 

cells after 24 h and 48 h TQ exposure.  

 In the breast cancer cells, with subsequent 24 h and 48 h recovery periods, the 

average number of positive �-H2AX foci formed was significantly sustained at levels 

after TQ treatment (Fig. 14C, 14D). This observation could be an indication of a 

delayed or inefficient repair capacity of the TQ-treated breast cancer cells. However, 

MCF-10A cells displayed no differences in post-recovery average number of positive 

�-H2AX foci formed between treated (1 µM and 10 µM) and untreated cells.  
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Figure 14. TQ induced significant DNA double strand breaks with subsequent 
inefficient/delayed repair in breast cancer cells. Representative images of �-H2AX foci 
(green) and cell nuclei (blue) in (A) untreated and (B) TQ-treated breast cancer cell, 
MCF-7, assessed by the �-H2AX immunofluorescence assay. Average number of �-
H2AX foci per cell following exposure with TQ (1 µm or 10 µM) for 24 h and  48 h, 
which was followed by 24 h and 48 h recovery periods in (C) MCF-10A and MDA-MB-
231 cells and (D) MCF-10A and MCF-7 cells. Data represent mean ± SEM of three 
independent experiments. * indicates the increase in the average number of foci per cell 
with respect to control is statistically significant, i.e. p < 0.05, **p < 0.01, ***p < 0.001. # 
indicates the change in DNA damage with respect to control between cell lines for same 
treatment is statistically significant, i.e. p < 0.05, ##p < 0.01, ###p < 0.001  
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3.2.3 Increased expression levels of p-DNA-PKcs and PARP-1 in TQ-treated 

breast cancer cells 

 It is clearly evident that TQ induced DSBs specifically in breast cancer cells as 

compared to normal cells (Fig 14C, 14D) and the immediate response to DNA insult 

involves activation of DNA repair pathways. Consistent with these findings, activation 

of DNA-repair pathway was observed only in breast cancer cells.  

After 48 h TQ exposure, ATM phosphorylation and basal ATM expression 

levels remained fairly unchanged in MCF-10A cells (Fig. 15A, 15B, 15C). DNA-

PKcs phosphorlyation expression levels persisted unchanged at the indicated TQ 

doses (Fig. 15D), while a slight up-regulation in basal DNA-PKcs expression could be 

observed at all doses of TQ (Fig. 15E). No differences in PARP-1 expression levels 

could be observed at the indicated concentration range of TQ tested (Fig. 15F)  

 In contrast, activation of ATM was observed in MDA-MB-231 cells at a high 

TQ dose of 20 µM (Fig. 15B). This was accompanied by the concomitant dose-

dependent decrease in basal ATM expression (Fig. 15C). Slight up-regulation of both 

phosphorylated (Fig. 15D) and basal DNA-PKcs expression levels (Fig. 15E) could be 

observed at a low TQ doses (1 µM and 10 µM), with significant up-regulation at a 

high TQ dose (20 µM). Dose-dependent increase in PARP-1 expression levels was 

evident with the concomitant up-regulation of the cleaved PARP-1 expression level 

(Fig. 15A, 15F).  

 On the other hand, MCF-7 cells displayed concomitant dose-dependent 

decrease in phosphorylated and basal ATM expression levels at 48 h TQ exposure at 

the indicated concentration range (Fig.15B, 15C). DNA-PKcs phosphorylation 

increased in a dose-dependent manner (Fig. 15D), while basal DNA-PKcs expression 
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Figure 15. Activation of DNA-PKcs and PARP-1 in TQ-treated breast cancer 
cells. (A) DNA damage response protein expression levels were assessed by western 
blot following 48 h TQ exposure at the indicated concentrations for MCF-10A, MDA-
MB-231 and MCF-7 cells. (B-F) Relative intensity of western blots for (B) p-ATM, 
(C) ATM, (D) p-DNA-PKcs, (E) DNA-PKcs and (F) PARP-1 in MCF-10A, MDA-
MB-231 and MCF-7 cells following 48 h TQ exposure at the indicated concentrations 
for displayed blot. �-Actin serving as the internal control. 
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3.3 Immediate effects of TQ on telomerase expression and activity 

3.3.1 TQ reduces telomerase activity only in MDA-MB-231 cells 

 Our previous study showed the reduction in telomerase activity and hTERT 

expression levels in hTERT-BJ fibroblasts upon exposure to TQ (Gurung et al., 

2010b). Hence, it would be of interest to investigate if similar effects were also 

observed in TQ-treated breast cancer cells. Telomerase activity in the cells after 48 h 

TQ exposure was assessed by TRAP assay. Quantification of PCR products is 

deduced by calculating the ratio between the net increase of fluorescence emission 

(�FL), which is derived from the telomerase-dependent synthesis of the PCR product, 

and the net increase of sulforhodamine emission (�R), which is derived from the 

product synthesized on the internal control. The ratio ���
��

 is then calculated as a 

percentage of the respective control.  

 MDA-MB-231 cells displayed a significant (p<0.05) reduction (34 %) in 

telomerase activity at 48 h TQ (1 µM) (Fig. 16A), while MCF-7 cells exhibited 

insignificant increased percentage in telomerase activity at 48 h TQ (10 µM) (Fig. 

15B). No differences in telomerase activity were recorded in MCF-10A cells after 48 

h TQ (1 µM and 10 µM) exposure (Fig. 16A, 16B).  
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Figure 16. Effects of TQ on telomerase activity. Graphs shows telomerase activity 
(measured in terms of ���

��
 as a % of control) as assessed by TRAP assay. Telomerase 

activity in (A) MCF-10A and MDA-MB-231 cells and (B) MCF-10A and MCF-7 
cells subjected to TQ (1 µm or 10 µM) for 48 h. Data represent the mean ± SEM (% 
of control) of three independent experiments. * indicates change in telomerase activity 
with respect to control is statistically significant, i.e. p-value < 0.05.  
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3.3.2 TQ alters c-myc regulatory pathway of hTERT expression in breast cancer 

cells and affects TRF2 expression levels 

The c-myc proto-oncogene is commonly known to be involved in cell 

proliferation and immortalisation when expressed constitutively in primary fibroblasts 

(Askew et al., 1991; Kohl and Ruley, 1987). Consequently c-myc has been touted as a 

key molecular switch positively regulating telomerase activity and expression of 

TERT, where c-myc binding sites can be found at the TERT promoter region 

(Greenberg et al., 1999; Schneider-Stock et al., 2003; Wu et al., 1999). TERT is the 

catalytic component of telomerase, which regulates telomere length in cells (Feng et 

al., 1995; Nakamura et al., 1997). Hence, western blot was employed to determine if 

any changes could be detected in the c-myc regulatory pathway affecting hTERT 

protein expression levels. To further examine if the observed effect of TQ on 

telomerase activity was accompanied by additional changes in telomere structure, 

telomere-associated protein TRF2, which have been reported to play a role in telomere 

length maintenance was also investigated (Smogorzewska et al., 2000).   

A dose-dependent down-regulation in c-myc and hTERT expression was 

observed in 48 h TQ-treated MDA-MB-231 cells (Fig. 17A, 17B, 17C). On the other 

hand, TRF2 expression decreased upon exposure to a low TQ dose (1 µM) and 

gradually returned back to basal levels at higher TQ doses (10 and 20 µM) (Fig. 17A, 

17D).  

MCF-7 cells exhibited a down-regulation in c-myc upon TQ exposure (1 – 20 

µM) (Fig. 17B), while hTERT expression persisted at lower dose of TQ (1 µM) with a 

prominent down-regulation occurring at a higher dose of TQ (20 µM) (Fig. 17C). A 

similar trend in TRF2 expression was observed in TQ-treated MCF-7 cells as in 
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Figure 17. Alteration of c-myc. hTERT and TRF2 expression levels upon TQ 
treatment. (A) Expression levels of c-myc, hTERT and TRF2 assessed by western 
blot in MCF-10A, MDA-MB-231 and MCF-7 cells following 48 h TQ exposure at the 
indicated concentrations. (B-D) Relative intensity of western blots for (B) c-myc, (C) 
hTERT and (D) TRF2 in MCF-10A, MDA-MB-231 and MCF-7 cells following 48 h 
TQ exposure at the indicated concentrations for displayed blot. �-Actin serving as the 
internal control. 
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3.4 Long-term effects of TQ on cell proliferation and telomere-telomerase 

homeostasis 

3.4.1 Prolonged TQ exposure reduces proliferative capacity of breast cancer cells 

 Chemotherapy usually involves prolonged low-dose treatment for cancer 

patients (Peres, 2000). Two in vivo studies have illustrated that continuous low-dose 

chemotherapeutic drugs (e.g. cyclophosphamide and methotrexate) eradicated 

tumours in mice (Bocci et al., 2005; Hanahan et al., 2000). Moreover, the 

extrapolation to clinical setting with a continuous low-dose regimen in breast cancer 

patients exhibited shrunken or stabilized tumour size with reduced side effects. 

Therefore, in order to understand the effects of long term exposure to TQ in breast 

cancer cells, population doubling (PD) study using the trypan blue-exclusion assay 

was performed in these cells. 

With prolonged exposure for up to 8 weeks to a non-toxic TQ dose based on 

cell viability assay (Fig. 10A), a gradual decline in proliferative capacity of the breast 

cancer cells could be observed (Fig. 18). The decline in cumulative PD for MDA-MB-

231 cells was greater than for MCF-7 cells. This was expected due to a greater 

sensitivity of MDA-MB-231 cells to TQ as established earlier. The gradual decline in 

PD confirmed that the prolonged effects of TQ were less likely attributed due to 

cytotoxicity of TQ. Consequently, this observation further prompted our investigation 

into a possible telomere length maintenance and telomerase-inhibitory mechanism 

upon chronic low dose TQ exposure in MDA-MB-231 and MCF-7 cells.  
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Figure 18. Prolonged exposure to TQ reduced proliferative capacity of breast 
cancer cells. Cumulative population doubling (PD) curve assessed by trypan blue-
exclusion PD study. MDA-MB-231 and MCF-7 cells were treated with 1 µM and 10 
µM TQ respectively for the indicated weeks shown. Data represent the mean ± SEM 
of two independent experiments. 
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Figure 19. TQ induced telomere attrition in breast cancer cells upon prolonged 
exposure for up to 8 weeks. (A) TRF analysis for average telomeric length in a cell 
population. Telomeric restriction fragments detected in Southern blot for breast cancer 
cells, MDA-MB-231 and MCF-7, treated without (0 µM) or with TQ (1 µm or 10 µM) 
for the indicated number of weeks. Data represent the mean change (% of control). (B) 
Corresponding histograms displaying the total change in telomere length for MDA-
MB-231 and MCF-7 cells for displayed blot. (C) Corresponding histograms 
displaying the telomere attrition rate for MDA-MB-231 and MCF-7 cells for 
displayed blot. Telomere attrition rate was derived by dividing the TRF length 
decrease or increase by the number of PD.  
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3.4.3 Prolonged exposure to TQ alters hTERT and TRF2 expression levels in 

breast cancer cells  

 To investigate the possible mechanism (e.g. telomerase-dependent mechanism 

or telomerase-independent mechanism via regulation of proteins involved in shelterin 

complex) involved in inducing telomere shortening following TQ treatment, we 

checked protein expression levels of hTERT and TRF2. As aforementioned, telomere 

length maintenance may be altered by telomerase-dependent (e.g. hTERT expression) 

or telomerase-independent (e.g. disruption in shelterin complex) mechanisms.  

In MDA-MB-231 cells, down-regulation of hTERT expression relative to 

control was evident at 2 weeks after TQ treatment and levels subsequently returned to 

basal control levels at 4 and 8 weeks after TQ treatment (Fig.20A, 20B). However, 

MCF-7 cells displayed a down-regulation of hTERT expression level only at 4 and 8 

weeks TQ treatment.   

 For both breast cancer cells, up-regulation of TRF2 expression was observed at 

2 weeks after TQ treatment with levels subsequently reduced to basal control levels at 

4 and 8 weeks after TQ treatment (Fig. 20C). 
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3.5 Possible relationship between DNA damage and telomeres 

3.5.1 TQ induces DNA double strand breaks at telomeric regions in breast cancer 

cells 

 Results obtained so far have shown the induction of DNA DSBs and the 

perturbation of telomere maintenance in TQ-treated breast cancer cells. Hence, the 

TIF assay was performed to investigate if initial DNA damage activation occurred at 

telomeric sites where double immunostaining co-localisation of �-H2AX in 

conjunction with telomere specific probes represents cells with positive TIFs (Fig. 

21A) (Brugat et al., 2010; Takai et al., 2003).  

 Significantly higher proportion of cells positive for TIFs (�2) were observed in 

breast cancer cells, MDA-MB-231 (p<0.05) and MCF-7 (p<0.05), upon 48 h TQ 

exposure relative to their respective controls (Fig. 21B). Interestingly, the highest 

proportion of cells positive for TIFs (�2) formed for both MDA-MB-231 and MCF-7 

cells were treatment at their IC50 doses of 1 µM and 10 µM, respectively. Moreover, 

breast cancer cells which were treated at doses above their IC50 values showed a 

subsequent reduction in proportion of cells positive for TIFs (�2). However, MCF-

10A cells displayed minimal differences in proportion of cells positive for TIFs (�2) 

between the treated and untreated cells. 
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3.6 Gene expression profiles of normal and breast cancer cells  

3.6.1 Differential gene expression profiles in breast cancer cells 

 In order to further understand the differential responses of the two breast 

cancer cell lines, MDA-MB-231 and MCF-7, towards the effects of TQ, gene 

expression profiling of the cell lines for inherent similarities and differences was 

performed. Following microarray analysis, a total of 2,518 genes (approximately 7 % 

of genes analysed) were differentially expressed in MCF-7 as compared to MDA-MB-

231 cells based on the set of criteria assigned (p<0.05; fold difference of 2) (Fig. 

22A). This suggests that many genetic differences exist amongst the two different cell 

types at basal levels and could likely contribute to the differential responses and 

sensitivities towards the effects of TQ.  

 In addition, we investigated prominent gene expression patterns and 

correlations between cell types and treatment through the principle component 

analysis (PCA) graph (Fig. 22B). Data shows mutually exclusivity between cell types, 

which are carried out in duplicates, and is indicative of minimal experimental errors 

during the microarray process.  

To elucidate transcriptomic differences between control and TQ-treated cells, 

we determined the changes in gene expression levels and selected genes involved in 

cell cycle, DNA damage response, telomere-telomerase regulation and other 

signalling pathways. Different genes were observed to be deregulated for the different 

cell types (Fig. 22C-F). 

 Exposure to 48 h TQ in MDA-MB-231 cells resulted in the down-regulation 

of cell cycle gene ZFHX3, which encodes for a transcription factor involved in 

transactivating p21 (Fig. 22C). This observation corroborated with the down-regulated 
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p21 protein expression obtained from western blot (Fig. 20C). Gene expression of 

DNA damage response gene BRAP, which encodes for a BRCA1-associated (breast 

cancer type 1 susceptibility) protein involved in the repair of DNA DSBs, also 

displayed a down-regulation. Interestingly, only two differentially regulated genes 

involved in telomere and telomerase regulation, SIRT2 and SERF1A, were detected. 

Both were down-regulated in TQ-treated MDA-MB-231 cells. SIRT2 gene encodes 

for Sirtuin protein involved in chromatin silencing at telomeres, while SERF1A 

encodes for a protein located at telomeric regions. In addition, the expression of gene 

encoding for interlukin-1 receptor-associated kinase 4 (IRAK4) proteins, which 

activates nuclear factor kappa-B (NF-�B) in mammals, was down-regulated.  

In TQ-treated MCF-7 cells, a down-regulation in a number of cell cycle genes, 

such as E2F3 and CDC6, involved in G1 to S transition, were observed (Fig. 22D). 

Hence accounting for the G1 phase cell cycle arrest observed previously (Fig. 11B, 

11E). In addition, a greater number of DNA damage response genes, such as 

GADD45G, and FANCC, were shown to be down-regulated upon TQ exposure for 48 

h. The FANCC gene encodes for the fanconi anaemia group C protein that delays 

apoptosis and promotes homologous recombination of DNA DSBs. Moreover, there 

was a down-regulation in MYCBP and PKCZ genes, which are indirect positive 

regulators of hTERT transcription.  

Only approximately 0.01% of genes for the different functional groupings 

were deregulated in MCF-10A cells exposed to either TQ doses (1 µM and 10 µM) 

(Fig. 22E, 22F). Some of which included the up-regulation of BIRC2 (anti-apoptotic) 

and PRKCB (positive regulator of hTERT transcription) genes.  
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Figure 22. Differential gene expression profiles in MDA-MB-231 and MCF-7 
cells. (A) Volcano plot indicates differentially regulated genes. Clusters in blue 
indicate genes differentially regulated (p<0.05; 1 way ANOVA). Black bold lines (X 
axis) indicate fold change cut off of 2. (B) PCA analysis of breast cancer cell lines, 
MDA-MB-231 and MCF-7, and immortalised mammary epithelial cell line, MCF-
10A, following 48 h TQ treatment. 56 % of the data are represented in the scatterplot. 
PCA separates data sets according to distance from a base vector (PC #1-3). (C-F) 
Differential gene expression in breast cancer cells following 48 h TQ treatment. 
Functional groupings of selected differentially expressed genes in (C) MDA-MB-231, 
(D) MCF-7 and (E-F) MCF-10A cells treated with either 1 µM or 10 µM TQ. Data 
expressed as fold change (p<0.05) in TQ-treated cells as compared to their respective 
controls. 
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CHAPTER 4 

4. Discussion 

A major concern of cancer chemotherapy is the non-specific targeting of both 

normal and cancerous cells by radiotherapy as well as cytotoxic therapeutic drugs. 

This highlights the importance of discovering potential bioactive constituents in 

natural plant compounds, which have been reported to target tumour cells more 

efficiently and selectively with minimal toxic effects on normal cells (Vuorelaa et al., 

2004).  

In this study, investigations into how TQ affects cell viability, migration and 

cell cycle checkpoints demonstrated the anti-proliferative effects of TQ, which were 

selective towards breast cancer cells. More importantly, minimal effects on the growth 

of normal epithelial cells, MCF-10A, were observed following exposure to TQ. This 

is consistent with other reports indicating TQ’ s anti-neoplastic effects without 

affecting corresponding normal cells (Gali-Muhtasib et al., 2004a; Shoieb et al., 

2003). MDA-MB-231 cells showed significant reduction in cell viability and 

migration than MCF-7 cells upon 48 h TQ exposure. This illustrates that MDA-MB-

231 cells, which are highly metastatic, are more sensitive towards the anti-

proliferative effects of TQ.  

The growth inhibition observed is likely attributed to cell cycle arrest in G2/M 

and G1 phases for MDA-MB-231 and MCF-7 cells, respectively. Findings from cell 

cycle profiles corroborated with cyclins B and D1 protein expression levels, which 

were down-regulated in TQ-treated MDA-MB-231 and MCF-7 cells, respectively. 

Cyclin B forms a mitotic promoting factor (MPF) through binding to cyclin dependent 
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kinase (cdk) and regulates entry into the mitotic (M) phase of the cell cycle 

(LeBrasseur, 2003). On the other hand, cyclin D1 is a proto-oncogene and an 

important cell cycle regulator in G1 to S phase transition. Cyclin D1 binds cdk4/6 and 

hyperphosphorylates pRB, which releases RB-sequestered E2F transcription factors 

allowing transcription of genes required for entry into G1 phase (Alao et al., 2006).  

Apart from cyclin proteins, expression levels of p53, its downstream target p21 

and survivin (an inhibitor of apoptosis) were also investigated (Levesque et al., 2008; 

Wang et al., 2004). In normal cells, p53 becomes activated upon DNA damage 

leading to p21-triggered growth inhibitory effects for damage repair to set in (Gasco et 

al., 2002; Weiss et al., 2003). This scenario was observed in low dose TQ-treated 

MCF-7 cells, where an up-regulation of p53 and p21 primarily led to p53-mediated 

p21-dependent G1 arrest allowing for DNA damage repair.  

However, attenuation of p21 in malignant cells has been shown to possibly 

prevent normal repair process and promote apoptosis (Weiss et al., 2003). This could 

be a likely explanation of the sudden reduction in p53 and p21 expression upon 

exposure to high TQ dose in MCF-7 cells. Being a more sensitive cell line towards 

TQ’ s effects, MDA-MB-231 cells also exhibited dose-dependent down-regulation of 

survivin, p53 and p21 proteins. At the gene expression level, there was also a 

significant down-regulation in ZFHX3 gene, which encodes a transcription factor 

transactivating p21. The down-regulation of ZFHX3 gene and survivin, p53, p21 

protein expressions might contribute to the G2/M arrest-induced growth inhibitory 

effects of low TQ dose, while also possibly inducing apoptosis at high TQ doses as 

evidenced by the presence of cleaved PARP protein expression levels in MDA-MB-

231 cells.   
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The modus operandi for majority chemotherapeutic drugs is through induction 

of DNA damage with subsequent obligatory cell cycle arrest for repair and execution 

of cell death for irreparable damage (Chu and Vincent T. DeVita, 2007; Luo and 

Leverson, 2005; Madhusudan and Hickson, 2005; Madhusudan and Middleton, 2005). 

As DNA damage and repair play a central role in cellular response to therapy, it is of 

significant interest to understand the correlation between the DNA damage and repair 

and the sensitivity or resistance phenotype of the breast cancer cells towards TQ in 

this study. To investigate this possibility, the alkaline single cell gel electrophoresis 

(comet) assay and immunofluorescence staining for �-H2AX were performed to 

measure general DNA damage and DNA DSBs, respectively.  �-H2AX is involved in 

the early response to DNA DSBs and hence employed as an established biomarker for 

DSBs (Kinner et al., 2008). In conjunction, a recovery period was employed to make 

inferences in subsequent damage repair. Collectively, TQ induced significant DNA 

DSBs in both breast cancer cell types with minimal damage in MCF-10A cells. 

Furthermore, the breast cancer cells exhibited sustained DNA damage after recovery 

periods possibly indicating an inefficient or delayed repair capacity of damaged DNA. 

Hence, the induction of DNA DSBs by TQ in MDA-MB-231 and MCF-7 cells is 

likely to lead to G2/M and G1 cell cycle phase arrest, respectively, with consequent 

reduced cancer cell growth.   

Human tumour cells harbour numerous mutations that allow irregular and 

unregulated growth (Hanahan and Weinberg, 2011; Loeb et al., 2003b; Vogelstein and 

Kinzler, 1993). Acquired resistance in tumour cells could be due to either up-

regulation of DNA repair genes or defective signalling pathways which alter the 

apoptotic response (Damia and D'Incalci, 2007). In order to further elucidate the 
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mechanism involved in TQ-induced DNA damage, expression levels of related DNA 

repair proteins known to be involved in DNA DSB repair were investigated. ATM 

serves as a general DNA damage sensor but the main player in the repair of DSBs via 

NHEJ pathway is DNA-PKcs (Burma and Chen, 2004; Shiloh, 2006; Smith et al., 

1999; Smith and Jackson, 1999).         

In MDA-MB-231 cells, a dose-dependent up-regulation of p-ATM and p-

DNA-PKcs expression is likely to be a response to TQ-induced DNA damage and 

DSBs, respectively. Apart from being a primary sensor protein, ATM is one of the 

upstream proteins involved in the HR pathway for the repair of DSBs via recruitment 

of the MRN complex (Chen et al., 2007). In addition, recent evidences have also 

shown that ATM serves as an upstream regulator of DNA-PKcs and hence the 

phosphorylation and activation of DNA-PKcs at Thr-2609 cluster for mediating 

double strand repair (Chen et al., 2007). In this study, the phosphorylation of DNA-

PKcs in TQ-treated MDA-MB-231 cells was evaluated only at the ser-2056 clusters; 

therefore the activation of DNA-PKcs is likely to be ATM-independent. However, we 

are not able to conclude if activation of DNA-PKcs also occurs via ATM dependent 

phosphorylation at the Thr-2609 clusters. Further experiments such as using an 

antibody that is specific for detecting phosphorylated DNA-PKcs at Thr-2609 clusters 

can help validate ATM-dependent phosphorylation of DNA-PKcs. Nevertheless, the 

increase in p-DNA-PKcs expression is greater than for p-ATM expression 

demonstrating that NHEJ pathway, rather than HR pathway, as the predominant 

mediation of DSB repairs. Interestingly, DNA-PKcs is preferentially activated in 

MDA-MB-231 cells upon exposure to low TQ dose, while ATM activation occurs at 

high TQ dose. This could possibly be due to the complementary roles that ATM and 
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DNA-PKcs have in double strand repair breaks (Martin et al., 2012). The initial end-

joining of the broken sites is carried out by recruiting DNA-PKcs with the completion 

of the repair process by ATM.  

Numerous reports have demonstrated that DNA DSBs not only arise from 

ionising radiation or reactive oxygen species, but also from single strand breaks 

(Kuzminov, 2001). If single strand breaks are not repaired by base excision repair 

(BER) before replication in S phase, duplication of these ‘lesions’  will lead to the 

formation of DSBs. PARP-1 is a modulator of BER, which binds to single strand 

breaks with subsequent synthesizing and transferring of poly(ADP-ribose) polymers 

to various nuclear proteins for initiation of repair (Pachkowski et al., 2009). 

Interestingly, a dose-dependent up-regulation of PARP-1 in TQ-treated MDA-MB-

231 cells was observed and could likely be a response to increased formation of TQ-

induced single strand breaks (Zaremba et al., 2011). We have since shown that TQ 

induced DNA DSBs but further investigations would be required to determine if 

greater single or DSBs were specifically induced in MDA-MB-231 cells after 48 h TQ 

exposure.  

NHEJ pathway occurs in all phases of cell cycle but is predominantly involved 

in the repair of DSBs in G1 phase of cell cycle (Hendrickson, 1997; Rothkamm et al., 

2003). Hence, the up-regulation of phosphorylated DNA-PKcs in TQ-induced G1 cell 

cycle arrest in MCF-7 cells is expected. Similar to MDA-MB-231 cells, the increased 

PARP-1 expression in TQ-treated MCF-7 could also be a possible response to 

formation of TQ-induced single strand breaks. However, this was observed only at the 

highest TQ dose tested in MCF-7 cells and could possibly be due to their reduced 

sensitivity at low TQ doses. The down-regulation in basal ATM and p-ATM 
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expressions in TQ-treated MCF-7 cells indicate that NHEJ pathway could be the main 

mediator in TQ-induced DSB repair. In addition, gene expression study in TQ-treated 

MCF-7 cells revealed the down-regulation of FANCC gene, which encodes a protein 

delaying apoptosis while allowing HR of DSBs. Hence, the mechanism for TQ-

induced DNA DSBs involves cell cycle arrest followed by the activation of DNA 

repair protein, DNA-PKcs, for NHEJ repair pathway in both breast cancer cells.  

Recently, our laboratory discovered a novel effect of TQ on telomerase 

inhibition in human glioblastomas, which led to telomere shortening upon prolonged 

exposure to TQ (Gurung et al., 2010b). Telomerase activity is directly correlated with 

protein expression of hTERT, which is known to be the rate-limiting subunit of 

telomerase (Feng et al., 1995; Nakamura et al., 1997). hTERT is a downstream target 

of c-myc factor and c-myc binds to E-box (CACGTG) hTERT promoter region with 

subsequent expression of hTERT gene (Greenberg et al., 1999; Schneider-Stock et al., 

2003; Wu et al., 1999). Hence, c-myc is a positive regulator of hTERT expression. In 

this study, telomerase activity was significantly reduced in 48 h TQ-treated MDA-

MB-231 cells but not in MCF-7 or MCF-10A cells. The telomerase inhibitory effects 

in MDA-MB-231 cells were associated with a down-regulation in c-myc and hTERT 

expression. Although telomerase inhibition was not observed in MCF-7 cells treated 

with 48 h TQ at its IC50 value, a higher TQ dose displayed slight reduction in c-myc 

and hTERT protein levels. The reduction of telomerase activity at IC50 observed only 

in MDA-MB-231 cells could possibly contribute to the greater sensitivity of TQ in 

MDA-MB-231 cells as compared to MCF-7 cells. A reduction in telomerase activity 

has shown to increase sensitivity of the cells to numerous chemotherapeutic agents 

and radiation (Nakamura et al., 2005). Furthermore, the different observations suggest 
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that TQ might exert its anti-proliferative effects in MDA-MB-231 and MCF-7 cells 

via different biological pathways. Studies have shown that estradiol primarily 

regulates c-myc transcription in estrogen receptor (ER) positive cells, while regulates 

c-myc post-transcriptional level in ER negative cells (Duangmano et al., 2010). This 

could be a possible explanation for the observed differential telomerase inhibition of 

TQ in the breast cancer cells. In ER(-) MDA-MB-231 cells, TQ could directly affect 

the ribonucleic acid (RNA) stability of c-myc by reducing its half-life and leading to 

hTERT down-regulation. On the other hand, in ER(+) MCF-7 cells, TQ is required to 

modulate either ER or its cellular signal transduction pathways (e.g. ERK/MAPK) 

first before downstream regulation of transcription factor, c-myc. Hence only a 

sufficiently higher TQ dose would cause the reduction in c-myc and hTERT protein 

levels in MCF-7 cells.  

Telomeres are not only regulated by telomerase but also by telomere-

associated proteins (de Lange, 2004). In particular, TRF2 plays a key role in 

protecting telomeres by maintaining the correct TTAGGG structure at telomere 

termini. TRF2 expression levels were down-regulated upon TQ exposure in MDA-

MB-231 cells. A possible implication would be the loss of the telomeric protection 

cap. The ‘naked’  telomeres would be more vulnerable to the external environment and 

be recognized as DSBs activating the DNA repair pathway (Peuscher and Jacobs, 

2011).  

However, in TQ-treated MCF-7 cells, elevated levels of TRF2 were expressed 

at high TQ doses. The elevation of TRF2 at higher TQ doses might be a response to 

eroded telomeres, where TRF2 could be involved in suppressing ATM kinase activity 

and hence protect telomeres from ATM-dependent HR repair (Karlseder et al., 2004). 
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However, it is important to note that TRF2 may be present in other cellular 

components other than on telomeres (Baker et al., 2011; Hiyama, 2009). Isolation of 

nuclear proteins is highly recommended rather than the isolation of total cellular 

protein for investigating TRF2 protein expression levels at telomeres.  

Results have in so far shown the inhibition of telomerase, especially so for 

hTERT expression, in both cancer cells at different TQ doses. Telomerase activity has 

implications on telomere length, which reduces by approximately 50-200 bp with each 

cell division (Lansdorp, 2000). Low dose chronic exposure to TQ allows for more 

pronounced changes in telomere length since TRF assay measures the average 

telomere length in the cell population rather than individual telomeres of a 

chromosome (Kimura et al., 2010). Telomere shortening was observed within 2 weeks 

of TQ exposure in both breast cancer cells with comparable rates of telomere attrition. 

Continued TQ treatment for 4 and 8 weeks in MCF-7 cells further reduced telomere 

length, while MDA-MB-231 cells showed gradual increase in telomere length. These 

observations were consistent with hTERT protein expression where significant 

hTERT down-regulation occurred at 4 and 8 weeks of TQ exposure in MCF-7 cells, 

while hTERT down-regulation occurred at 2 weeks of TQ exposure with subsequent 

hTERT up-regulation at 4 and 8 weeks of TQ exposure in MDA-MB-231 cells. 

Surprisingly, TRF2 up-regulation in both breast cancer cells were observed at 2 weeks 

TQ treatment with levels subsequently down-regulated at 4 and 8 weeks. A recent 

study found elevated levels of TRF2 in breast cancer cells with short telomeres (Diehl 

et al., 2011). The higher levels of TRF2 expression after 2 weeks TQ exposure could 

be a feedback response for increasing binding to telomeres for protecting critically 

shortened telomeres. Another contentious issue is the down-regulation of TRF2 in 
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MDA-MB-231 cells which exhibited lengthened telomeres and there could be two 

possible speculations. The original function of TRF2 had been proposed to protect 

telomeres, so the loss of TRF2 could contribute to the loss of telomere function 

(Smogorzewska et al., 2000). Many studies have shown that the telomere lengths in 

cells with absence or loss of function of TRF2 were longer and due to a higher 

occurrence of telomere fusions (Smogorzewska et al., 2000; van Steensel et al., 1998). 

In addition, MDA-MB-231 cells have shorter initial telomere length than MCF-7 cells 

and shorter telomeres would require lesser cell divisions to reach the critical length 

threshold  due to the end replication problem coupled with the inhibition of telomerase 

(Scheinberg et al., 2010). Therefore the subsequent gradual increases in telomere 

length could be a result of telomere fusions arising from loss of TRF2 end-capping 

function. The second possibility arises from MDA-MB-231 cells acquiring alternative 

lengthening of telomere (ALT) mechanism due to acquired resistance to TQ. Since 

MDA-MB-231 cells are more sensitive towards TQ’ s effects, there could be a strong 

selection pressure for the emergence of resistant cells that employ or acquire the ALT 

mechanism over 4 and 8 weeks of TQ exposure. Moreover the ALT mechanism has 

been shown to be independent of telomerase (Bryan et al., 1995). By performing a 

more sensitive assay, the quantitative fluorescence in-situ hybridisation (Q-FISH), 

measurements of telomere length will have an improved resolution of 200 bp as 

compared to TRF assay (Slijepcevic, 2001). Cancer cells are heterogeneous in nature 

and variability in telomere length exists in cell populations (Savre-Train et al., 2000). 

Hence Q-FISH also allows for measurement of telomere length of individual 

chromosome arms in a cell and would allow us to safely conclude if the occurrence of 

telomere lengthening is due to telomere fusions or the ALT mechanism. 
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From the population doubling study that was carried out in concordance with 

TRF assay, there was a gradual decline in proliferative capacity of the breast cancer 

cells upon chronic non-toxic TQ dose over a period of 8 weeks. Hence, the 

perturbations in telomere length maintenance were likely attributed to the direct or 

indirect effects of TQ on telomerase and/or telomere binding protein, TRF2, rather 

than the direct cytotoxicity of TQ.  

As telomeres are fragile sites that function to protect DNA, inhibition of 

telomerase in tumour cells could render telomeres more susceptible to the induction of 

greater DNA damage. Evidences exist that preferential DNA damage can result from 

disruption in telomerase activity or telomere-associated regions when exposed to 

certain chemotherapeutic agents (e.g. doxorubicin) and this leads to loss of telomere 

cap protection (Gurung et al., 2010b; Tamakawa et al., 2010). Such a phenomenon 

may result in the uncapped telomeres being recognized as DNA DSBs. In this study, 

we have in so far shown that TQ not only induced acute DNA damage, but also 

telomere dysfunction via regulation of telomerase activity and/or telomere binding 

protein, TRF2. Further investigation of the co-localization of �-H2AX with telomere 

specific probes revealed the possibility of activation of DNA damage response at 

telomeres upon TQ exposure. Specifically significant percentage of cells with positive 

TIFs could be observed in the breast cancer cells when treated at their IC50 TQ 

values. However, higher TQ doses had lesser percentage of cells with positive TIFs. 

This is expected as higher TQ doses had greater reduction in viability, migration and 

increased induction of DNA damage of the breast cancer cells. When cells sustain 

DNA damage, cell cycle arrest allows for damage repair and irreparable damage in 
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cells is likely to lead to apoptosis as evidenced by increased PARP-1 cleavage, 

especially so for MDA-MB-231 cells.  

Taken together, breast cancer cells are indeed more sensitive to the anti-

proliferative effects of TQ than normal cells and different mechanisms seem to be 

responsible for the effects of TQ in MDA-MB-231 and MCF-7 cells (Fig. 23). In 

MDA-MB-231 cells, TQ not only altered telomerase activity via c-myc regulation of 

hTERT expression but also reduced TRF2 expression. The long term effects of such 

regulation led to telomere shortening within 2 weeks of TQ treatment with reduced 

proliferative capacity of MDA-MB-231 cells. The acute effects of such regulation 

have shown to possibly induce DNA DSBs at telomeres (increased positive TIFs 

formation) and ATM-independent activation of DNA-PKcs at these sites for 

mediating repair via the NHEJ pathway. The increased DNA damage induced possibly 

led to a G2/M arrest for damage repair and also led to apoptosis at higher TQ dose 

exposure. These events consequently reduced cell viability and migratory ability of 

MDA-MB-231 cells.  

However, in MCF-7 cells, TQ could likely modulate c-myc down-regulation 

directly via ER or indirectly via ER signalling pathways (e.g. ERK/MAPK) leading to 

hTERT down-regulation and telomerase inhibition, especially at high doses. The long 

term effects of such regulation led to progressive telomere shortening throughout 8 

weeks of TQ treatment with reduced proliferative capacity of MCF-7 cells. Evidence 

has also shown a possible dysregulation of TRF2 in telomerase-independent pathway 

leading to progressive telomere shortening. The acute effects of such regulation could 

induce DNA DSBs at telomeres (increased positive TIFs formation) or at random 

DNA sites with activation of DNA-PKcs at these sites for mediating repair also via the 
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NHEJ pathway. The increased DNA damage induced possibly led to a p53-mediated 

p21-induced G1 arrest for damage repair. These events consequently reduced cell 

viability and migratory ability of MCF-7 cells.  

The direct or indirect involvement of telomerase in mediating the effects of TQ 

in MCF-7 cells is still unclear and could also possibly involve telomerase-independent 

mechanisms (e.g. dysregulation of telomere binding proteins). Further insights into the 

differential responses of the two breast cancer cells via comparison of gene expression 

profiling at basal levels revealed a total of 2,518 differentially regulated genes and is 

equivalent to approximately 7 % of total genes analysed. This implies that genetic 

differences exist amongst the two different cell types at basal levels and could likely 

to contribute to the differential responses and sensitivities towards the effects of TQ. 

For example, MCF-7 cells possess wild-type p53 and functional ER, unlike MDA-

MB-231 cells, which possess mutant p53 and lack of functional ER (Gasco et al., 

2002). The property of estrogen receptors has been illustrated to regulate c-myc 

expression at transcriptional and post-transcriptional levels in ER(-) and ER(+) cells, 

respectively.  

Since estrogen receptors have been shown to be implicated in the differential 

sensitivity of the two cell lines, the status of p53 might also contribute to such an 

observation. A study carried out by Avila et al. (1994) demonstrated that quercetin, 

which is a natural bioflavanoid, showed different extent of growth inhibitory effects in 

wild-type p53 MCF-7 cells and mutant p53 MDA-MB-468 cells. Higher 

concentrations of quercetin were required for MCF-7 cells to achieve inhibition levels 

in MDA-MB-468 cells (Avila et al., 1994). Therefore, the p53 status may be 

implicated in the sensitivity of the two breast cancer cells towards TQ, where MDA-
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CHAPTER 5 
5. Limitations and Future Directions 

 Taken together, the in vitro results have in so far demonstrated the selectivity 

of TQ towards the cancer phenotype with minimal toxic effects in the immortalised 

normal cells tested. However, further assessment is required when extrapolated to in 

vivo settings to determine if the effects are mirrored by in vitro TQ effects. 

 Results have shown that TQ induced significant DNA DSBs and caused 

telomere dysfunction in the breast cancer cells. More importantly, an up-regulation of 

activated DNA-PKcs following TQ exposure was observed. Therefore, it would be 

worthwhile to determine if DNA-PKcs are recruited specifically due to DNA DSBs at 

telomeric sites or random DNA damage at non-telomeric sites by performing dual 

immunofluorescence staining studies involving the co-localisation of DNA-PKcs with 

telomere specific probes.  

Studies have validated the promising results of combinatorial therapy by 

inhibition of DNA repair pathway and other signalling pathways to facilitate efficient 

anti-cancer therapy with improved outcomes. For example an inhibitor of DNA-PKcs, 

NU7441, which is currently in early phase of clinical trials, has been shown to 

increase radiosensitivity of cells and also sensitise cells to topoisomerase II poisons 

(Cowell et al., 2005; Helleday et al., 2008; Madhusudan and Hickson, 2005). In a 

previous study, we have shown that DNA-PKcs is important in mediating the 

cytotoxic effects of TQ in human glioblastoma cells (Gurung et al., 2010b). It would 

be of interest to investigate if DNA-PKcs plays a similar role in breast cancer cells, 

given that DNA-PKcs has been shown to be activated following TQ exposure and also 
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NHEJ pathway seemingly activated for TQ-induced DSB repair. These cancer cells 

could be pre-treated with NU7026, a pharmacological inhibitor of DNA-PKcs 

(Willmore et al., 2004), before incorporation of TQ to assess if impairment of DNA-

PKcs and the NHEJ pathway could render cancer cells greater sensitivity towards TQ 

with ultimate cell death.  

In this study, both breast cancer cells displayed differential sensitivities 

towards TQ exposure. As described previously, the different estrogen receptor status 

in MDA-MB-231 (ER+) and MCF-7 cells (ER-) could influence and contribute to the 

altered c-myc regulation of hTERT expression. Particularly, the loss of estrogen 

receptor function could possibly increase sensitivity of the cells towards TQ as 

observed in TQ-treated MDA-MB-231 cells. Hence, it would be interesting to observe 

if siRNA mediated silencing of estrogen receptor in MCF-7 cells could render greater 

sensitivity towards to TQ, especially so for effects on telomerase.  

Some immortalised human cell lines and tumours maintain telomeres in the 

absence of any detectable telomerase activity by alternative lengthening of telomeres 

(ALT) mechanism, where a possible role of recombination has been suggested (Bryan 

et al., 1995). Since ALT and telomerase-dependent maintenance co-exist in some 

immortalised cells, it is possible that recombination and other repair mechanisms may 

render some tumours to be resistant to conventional therapy.  Hence, the action of TQ 

on telomere homeostasis in ALT cells (e.g. U2OS cells) could also be elucidated. 
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CHAPTER 6 

6. Conclusion 

 The compound, thymoquinone, which is derived from black seed oil, is an 

ingredient used in Asian food and has shown to have a potential use in anti-cancer 

therapy. Being a natural plant product, TQ is a pleiotropic agent that is likely to affect 

multiple signalling pathways in many patho-physiological conditions. Our study 

shows promising anti-proliferative effects of TQ in breast cancer cells and the 

involvements of DNA repair pathways and telomere-telomerase homeostasis have 

shown to be implicated in contributing to the observed effects. However, we cannot 

discount the possible roles of other signalling pathways in mediating the effects of 

TQ. Nevertheless, the outcome of the proposed study would provide a better 

understanding and contribution to the molecular mechanism of the anti-cancer 

properties of TQ and subsequently in combinatorial approach to facilitate efficient 

cancer cell killing.  
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