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SUMMARY

Recent developments in shrinkage estimation are remarkable. Being capable

of shrinking some coefficients to exactly 0, the L1 penalized approach combines

continuous shrinkage with automatic variable selection. Its application to the es-

timation of sparse covariance matrix also gains a lot of interest. The thesis makes

some contributions to this area by proposing to use the L1 penalized approach for

the selection of threshold variable in a Smooth Threshold Autoregressive (STAR)

model, applying the L1 penalized approach to a proposed varying coefficient mod-

el and extending a clustered Lasso (cLasso) method as a new way of covariance

matrix estimation in high dimensional case.

After providing a brief literature review and the objectives for the thesis, we

will study the threshold variable selection problem of the STAR model in Chapter



Summary viii

2. We apply the adaptive Lasso approach to this nonlinear model. Moreover, by

penalizing the direction of the coefficient vector instead of the coefficients them-

selves, the threshold variable is more accurately selected. Oracle properties of the

estimator are obtained. Its advantage is shown with both numerical and real data

analysis.

A novel varying coefficient model, called the Principal Varying Coefficient Mod-

el (PVCM), will be proposed and studied in Chapter 3. Compared with the con-

ventional varying coefficient model, PVCM reduces the actual number of non-

parametric functions thus having better estimation efficiency and becoming more

informative. Compared with the Semi-Varying Coefficient Model (SVCM), PVCM

is more flexible but with the same estimation efficiency as SVCM when they have

same number of varying coefficients. Moreover, we apply the L1 penalty approach

to identify the intrinsic structure of the model and improve the estimation efficiency

as a result.

Covariance matrix estimation is important in multivariate analysis with a wide

area of applications. For high dimensional covariance matrix estimation, assump-

tions are usually imposed such that the estimation can be done in one way or

another, of which the sparsity is the most popular one. Motivated by the theories

in epidemiology and finance, in Chapter 4, we will consider a new way of covariance

matrix estimation through variate clustering.
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CHAPTER 1

Introduction

1.1 Background of the Thesis

1.1.1 Penalized Approaches

Modeling the relationship between a dependent variable and its associated in-

dependent variables is a very common problem in statistics. Moreover, many co-

variates which are initially available for inclusion may not be significant and should

be excluded from the model. Given a sample of size n, variable selection can help

improve the prediction performance of the fitted model by removing the redundant
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independent variables. In recent years, an enormous amount of research has been

done on algorithms and theory for variable selection.

Classical variable selection procedures include best subset selection and greedy

subset selection. Exhaustive subset selection needs to evaluate all subsets of co-

variates, which is quite computationally expensive when there are a large number

of predictors. For the three popularly used greedy subset selection methods: for-

ward selection, backward elimination and stepwise selection, selecting or deleting

one independent variable through some criteria is needed. However, it has been

recognized that small changes in data would result in widely discrepant models

from these methods. Moreover, Breiman (1996) showed that the subset selection

procedures are unstable which costs large predictive loss.

Local curvature can be captured as more variables are chosen but the coefficient

estimates suffer from high variance simultaneously. By observing that the uncon-

strained coefficients can explode, various penalized approaches have been proposed

in the past few decades to regularize the coefficients thus controlling the variance.

Consider the linear regression model y = Xβ + ε, where y is an n × 1 vector

of responses, X is an (n× d)-design matrix, β is a d-vector of parameters and ε is

an n × 1 vector of IID random errors. The penalized least squares estimates are
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obtained by minimizing the residual squared error plus a penalty function, i.e.,

β̂penalized = argmin
β

||y −Xβ||2 +
d∑

j=1

pλ(|βj|)

where pλ(·) is a penalty function and the non-negative λ is a tuning parameter.

The ridge penalty function, introduced by Hoerl and Kennard (1970), is

pλ(|βj|) = λ|βj|2

and the bridge penalty function, introduced by Frank and Friedman (1993), is

pλ(|βj|) = λ|βj|q , q > 0.

The ridge regression utilizes the L2-penalty and has good performance in the p-

resence of collinearity. However, it shrinks the OLS estimates proportionally thus

using all the predictors. The bridge regression shrinks smaller regression parame-

ters to zero thus producing sparse models when 0 < q ≤ 1. However, if 0 < q < 1,

the penalty function is not convex, which will make the minimization problems

hard to deal with.

Recent developments of penalized methods are noteworthy. Least absolute

shrinkage and selection operator (Lasso), proposed by Tibshirani (1996), utilizes
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pλ(|βj|) = λ|βj|, i.e., it imposes an L1-penalty on the regression coefficients. Be-

cause of the nature of the L1-penalty, the Lasso does both continuous shrinkage

and automatic variable selection at the same time. This approach is particularly

promising not only because the resulting model is interpretable but also because

it achieves the sparseness goal of variable selection. Fan and Li (2001) proposed

the Smoothly clipped absolute deviation (Scad) penalty where

p′λ(|βj|) = λ{I(|βj| ≤ λ) +
(aλ− |βj|)+
(a− 1)λ

I(|βj| > λ)}

for some a > 2, where I(A) = 1 if the condition A is satisfied and I(A) = 0

otherwise. They further advocated using penalty functions which can result in an

estimator with properties of sparsity, continuity and unbiasedness. As discussed in

Fan and Li (2001), penalized methods should ideally satisfy the “oracle properties”:

that is, asymptotically

• zero coefficients and only zero coefficients are estimated as exactly 0, that

is, the right subset model is identified;

• the non-zero coefficients are estimated as well as the correct subset model

is known and the optimal estimation rate 1/
√
n is obtained.

The Scad penalty function can result in sparse, continuous and unbiased solu-

tions, and the oracle estimator. However, it is limited to the non-convex penalty
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function which increases the difficulty of finding a global solution to the optimiza-

tion problem. Zou and Hastie (2005) proposed the elastic net estimator which is

defined as

β̂enet = argmin
β

||y −Xβ||2 + λ1‖β‖1 + λ2‖β‖22.

The L1 part of the penalty generates a sparse model while the L2 part of the

penalty can handle the highly correlated predictors thus overcoming the drawback

of the Lasso.

On the other hand, the Lasso method is shown to be inconsistent in variable

selection thus lacking the oracle property; see for example, Zhao and Yu (2006).

To overcome this drawback, Zou (2006) proposed the adaptive Lasso estimator

β̂AdaLasso = argmin
β

||y −Xβ||2 + λ

d∑
j=1

ω̂j |βj|,

where ω̂j = |β̂ ini
j |−γ, j = 1, . . . , d with β̂ ini

j being an initial root-n consistent esti-

mate of βj. It allows an adaptive amount of shrinkage for each regression coefficient

which can result in an estimator with oracle properties.
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1.1.2 Threshold Variable Selection

Tong’s threshold autoregressive (TAR) model (see, e.g., Tong and Lim (1980))

is one of the most popular models in the analysis of time series in biology, finance,

economy and many other areas. It assumes different AR model in different regions

of the state space divided according to some threshold variable yt−d, d ≥ 1. A

typical two-regime threshold autoregressive (TAR) model is

yt = a0 +

p∑
j=1

ajyt−j + (b0 +

p∑
j=1

bjyt−j)Ir(yt−d) + εt,

where Ir is an indicator function such that

Ir(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x > r

0 if x ≤ r.

In order to estimate the model, it is necessary to specify the threshold variable.

Tong and Lim (1980) used AIC (Akaike (1974)) to select d. Tsay (1989) proposed

to use the F -statistic in the nonlinearity test F̂ (p, d) to find the estimate of d

such that d̂ = arg max
v∈{1,...,p}

{F̂ (p, v)}. This direct approach is not applicable when

considering linear combination of several variables as the threshold variable.

Chen (1995) proposed two classification algorithms: discarding algorithm and
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Bayesian algorithm to search for the most suitable threshold variable in the general

situation. In the discarding algorithm, finding good initial parameter values is the

first and important step where the data range of p-dimensional explanatory space

is partitioned into kp blocks with range of each explanatory variable partitioned

into k equal intervals. Therefore, large sample is needed to provide reasonable

initial values. The proposed Bayesian algorithm is automatic but relies on the

information of prior distribution and Gibbs sampling method. From the review

of van Dijk, Teräsvirta and Franses (2002), most existing studies focus on either

model specification or parameter estimation with the delay parameter d chosen by

hypothesis testing.

Wu and Chen (2007) proposed a k-state threshold variable driven switching

AR (TD-SAR) model as follows

yt = yt−1φ
(Jt) + ε

(Jt)
t ,

where yt−1 = (1, yt−1, . . . , yt−p)
� and the switching mechanism is determined by

the hidden state variable Jt with pjt = P (Jt = j) = gj(Zt), j = 1, . . . , k. The

threshold variable Zt = β0 + β1X1t + . . .+ βmXmt where Xit, i = 1, . . . , m may be

lag variables, observable exogenous variables or their transformations.

A three-stage algorithm is proposed to build the TD-SAR model in their paper.
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First, the probabilities of the states Jt are estimated through a classification algo-

rithm based on Bayesian approach. Second, the threshold variables are searched

or constructed to provide the best fit of p̂jt. Three methods: CUSUM, SVM and

SVM-CUSUM are provided in this step to select the candidates of threshold vari-

ables. The cumulative sum (CUSUM) method originated from statistical quality

control is used to measure the agreement between the preliminary classification

p̂jt and a threshold variable candidate. The support vector machine (SVM) as a

powerful tool for classification is applied to find the optimal linear combination

β = (β0, β1, . . . , βm)
� for the threshold variable Zt. The SVM-CUSUM is a com-

bined method of CUSUM and SVM to find the potential candidates of threshold

variables. Last, using Bayesian approach, the full model is fitted to the select-

ed small number of threshold variable candidates based on some posterior BIC

(PBIC) which is defined as the average BIC value given the posterior parameter

distribution.

The link function gj(·) in Wu and Chen (2007) is chosen to be the logistic

function

P (Jt = j) =
eZjt

1 + eZjt
.

Actually, this idea of using a smooth link function to replace the step function

I(·) originates from Chan and Tong (1986, esp., P187). They proposed to use

this soft thresholding and introduced a more data driven model, smooth threshold
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autoregressive (STAR) model of the form

yt = a0 +

p∑
j=1

ajyt−j + (b0 +

p∑
j=1

bjyt−j)F
(yt−d − r

c

)
+ εt.

Here, F (·) is any sufficiently smooth function with a rapidly decaying tail. For

example, F (·) can be chosen to be logistic distribution function or cumulative

normal distribution function. This model includes the TAR model as a limiting

case when c → 0 and attracts lots of applications in econometrics, finance and

biology. See, e.g., Chapter 3 of Franses and van Dijk (2000).

1.1.3 Varying Coefficient Model

As a hybrid of parametric and nonparametric model, semi-parametric model

has recently gained much attention in econometrics and statistics. It retains the

advantages of both parametric and nonparametric model and improves the esti-

mation performance in high dimensional data analysis. Parametric model often

imposes some assumptions in the form of the functional such as linear or polyno-

mial, which are not always realistic in applications. Nonparametric model relaxes

the assumptions on model specification and is more adequate in exploring the

hidden relationship between response variable and covariates. However, the local
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smoothing method used by nonparametric modeling has the problem of increas-

ing variance for increasing dimensionality. This is often referred to as the “curse

of dimensionality”. Therefore, the application of the nonparametric model is not

highly successful. Great effort has been made to reduce the complexity of high

dimensional problems. Partly parametric modeling is allowed and the resulting

models belong to semi-parametric models.

Semi-parametric models can reduce the dimension of the estimation by examin-

ing a lower dimension structure although different semi-parametric models explore

the prior information from different angles. Varying Coefficient Model (VCM),

introduced by Cleveland, Grosse and Shyu (1991), assumes that

Y = XTβ(U) + ε =

p∑
i=1

Xiβi(U) + ε,

where Y ∈ R
1 is the response of interest, X = (X1, . . . , Xp) ∈ R

p is the associated

p-dimensional predictor, U ∈ R
1 is the so-called univariate index variable, ε is the

random noise and β(U) ∈ R
p is a vector of unknown smooth functions in u ∈ R

1,

called the varying coefficients. From its mathematical expression, we can see that

the VCM only relies on the index variable and allows the coefficients to be fully

nonparametric. It thus provides a powerful tool for the study of dimension reduc-

tion because the model is easy to interpret and free of the “curse of dimensionality”

of nonparametric modeling.
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As for the estimation of the VCM model, Hastie and Tibshirani (1993) proposed

a one-step estimate for βi(U) based on a penalized least squares criterion. This

algorithm can estimate the models flexibly. However, it is limited to the assumption

that all the coefficient functions have the same degree of smoothness which is quite

strong. Without this assumption, Fan and Zhang (1999) showed that the one-

step method is not optimal. They also proposed a two-step method to repair

this drawback. However, the two-step estimation is numerically unstable. This is

because the two-step estimation adopts the kernel smoothing approach to estimate

the functional coefficients and the kernel approach needs dramatically increasing

sample size to improve the numerical stability when the predictor’s dimension is

large; see, Silverman (1986).

1.2 Research Objectives and Organization of the

Thesis

As can be seen from the above review, the following research gaps still exist:

• Selection of the threshold variable is essential in building a Smooth Thresh-

old Autoregressive (STAR) model. However, determining an appropriate

threshold variable is not easy in practice. Current approaches either focus
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on hypothesis testing methods or some classification algorithms. The hy-

pothesis testing methods are feasible for univariate threshold variable but

tedious for the linear combination of variables. The classification algorithms

either require a good initial fit or rely on some Bayesian algorithm which

may be computationally expensive.

• Varying coefficient models can be used to model multivariate nonlinear

structure flexibly and partly solve the “curse of dimensionality” issue. How-

ever, the numerical stability of the estimation methods has yet to be im-

proved. Small error in the initial condition will result in large discrepancy

in the prediction results due to the numerical instability of the method.

• Currently, studies of high dimensional covariance matrix estimation mainly

focus on the sparse assumption where the shrinkage approaches are applied

to shrink the off-diagonal elements of covariance matrix to exactly 0. How-

ever, it is well known that in many biological and financial cases, the sparsity

assumption amongst all the coefficients is inappropriate. Grouping the vari-

ables if their coefficients are the same is a natural way of solving this issue

as well as achieving the goal of dimension reduction.

In the following Chapter 2 to Chapter 4, we aim to make some contributions

to the above-mentioned three gaps.
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In Chapter 2, we will study the threshold variable selection problem of the

STAR model. We will propose to select the threshold variable by the recently

developed L1 penalizing approach. Meanwhile, noticing that the norm of the co-

efficient vector implies the threshold shape, which should not be penalized, this

thesis will propose a direction adaptive Lasso method by penalizing the direction

of the coefficient vector instead of the coefficients themselves. This study would

provide insights into the threshold variable selection problem and should offer a

better understanding on the application of the penalizing approaches to nonlinear

models.

In Chapter 3, we will propose a novel varying coefficient model, called Princi-

pal Varying Coefficient Model (PVCM). By characterizing the varying coefficients

through linear combinations of a few principal functions, the PVCM reduces the

actual number of nonparametric functions, which may contribute to the improve-

ment of the numerical stability, estimation efficiency and practical interpretability

of the traditional varying coefficient model. Moreover, incorporating the nonpara-

metric smoothing with the L1 penalty, the intrinsic structure can be identified

automatically and hence the estimation efficiency can be further improved.

In Chapter 4, we will consider a way of simplifying a model through variate

clustering. Extension of the approach to the estimation of covariance matrix will
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also be studied. Numerical studies will be performed, suggesting that the cluster-

ing idea has better prediction performance than the sparsity assumption in some

situations.

We will conclude the thesis in Chapter 5 with the summarization and discussion

on future research.
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CHAPTER 2

Threshold Variable Selection via

a L1 Penalty

2.1 Introduction

In this chapter, we study the following STAR(p, q) model

yt = (a0 +

p∑
j=1

ajyt−j) + (b0 +

p∑
j=1

bjyt−j)Φ(θ0 +

q∑
j=1

θjyt−j) + εt, (2.1)
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where we set the smooth link function F (·) in Chan and Tong’s STAR model to

be the standard Gaussian distribution for simplicity of discussion although this is

not essential. {εt} is assumed to be a white noise with finite variance σ2, and be

independent of the past observations {ys, s < t}.

We also choose the threshold variable zt = θ0 +
q∑

j=1

θjyt−j which is a linear

function of lagged endogenous variables. One advantage of the proposed model is

in the selection of threshold variable. For example, if θk are all zeros except for

k = j, then the selected threshold variable is yt−j . We have the following result

about the stationarity of the model.

Lemma 2.1. If

sup
0≤u≤1

p∑
j=1

|aj + bju| < 1, (2.2)

there exists a strictly stationary solution {yt} from the model (2.1).

We propose to use the recently developed L1 regularization approaches which

tend to produce a parsimonious number of nonzero coefficients for zt, thus leading

to a simple way of selecting the significant/threshold variables without testing the

2q − 1 subsets of {yt−1, yt−2, . . . , yt−q}. The lasso penalty can perform model selec-

tion as well as estimation. However, its variable selection may be inconsistent; see,

e.g., Zou (2006). In this Chapter, we adopt the adaptive lasso penalty proposed



2.2 Estimation 17

in Zou (2006), which is convex and leads to a variable selection estimator with the

oracle properties. Moreover, we propose a direction adaptive lasso method. By pe-

nalizing the direction of the coefficient vector instead of the coefficients themselves,

the threshold variable is more accurately selected, especially when the sample size

is not large enough. Note that the norm of the coefficient vector implies the thresh-

old shape, which should not be penalized. Our penalization on the direction can

achieve this goal while the direct penalization on the coefficient cannot. Both nu-

merical and real data analysis are provided to illustrate its advantage. The oracle

properties of the resulting estimators are also obtained.

2.2 Estimation

2.2.1 The Conditional Least Squares Estimator

Let a = (a0, a1, . . . , ap)
�, b = (b0, b1, . . . , bp)

�, θ = (θ0, θ1, . . . , θq)
�, we rewrite

model (2.1) as

yt = x�
t a+ (x�

t b)Φ(s
�
t θ) + εt, (2.3)
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where

x�
t = (1, yt−1, . . . , yt−p), s

�
t = (1, yt−1, . . . , yt−q),

for t = m+ 1, . . . , T and m = max(p, q).

The unknown parameter vector η = (a�, b�, θ�)� = (η1, . . . , ηL)
� (L = 2p +

q + 3) is assumed to be in an open set Θ of R⊗(2p+q+3). Denote θ = (θ0, ϑ
�)� =

(θ0, θ1, . . . , θq)
� with ϑ = (θ1, . . . , θq)

� ∈ R
q and the true value ϑ0 = (θ10, . . . , θq0)

�.

Denote the true value of η by η0 = (a�
0 , b

�
0 , θ

�
0 )

�. For ease of exposition, we use the

boldfaced letter to denote a vector if there exists the same notation for a scalar.

For example, a0 denotes the true value of the vector a = (a0, a1, . . . , ap)
� and θ0

denotes the true value of vector θ = (θ0, θ1, . . . , θq)
�. Let K be the index set of

those j ∈ I ≡ {1, . . . , q} with θj0 	= 0 and κ be the number of components of K

and denote K̄ = I\K.

For each t, we refer to the lagged variables of yt in the set {yt−j, j ∈ K} as the

significant threshold variables and define the transition variable zt as

zt = s�t θ = θ0 + θ1yt−1 + . . .+ θqyt−q. (2.4)

Denote by Ft = σ(y1, . . . , yt) (t ≥ 1) the σ−field generated by ys, 1 ≤ s ≤ t and
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by F0 the trivial σ−field. Define

lt = (1, l̃�t )
�, l̃t = (yt−1, . . . , yt−m)

� (2.5)

and

g(η, l̃t) = g(η,Ft−1) ≡ Eη(yt|Ft−1) = x�
t a+ (x�

t b)Φ(s
�
t θ), t ≥ 1.

Given a set of observations {y1, . . . , yT}, the conditional least squares (LS) estima-

tor minimizes the objective function

QT (η) =

T∑
t=m+1

(yt − Eη(yt|Ft−1))
2 (2.6)

=
T∑

t=m+1

{
yt − x�

t a− (x�
t b)Φ(s

�
t θ)

}2
,

with respect to η. Let ηLST denote the least squares estimator.

Theorem 2.1. If {yt} is a stationary ergodic sequence of integrable variables and

l̃0 has a positive density function almost everywhere, then as T → ∞,

ηLST → η0, a.s. (2.7)
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and

T 1/2(ηLST − η0) ⇒ N(0, σ2U−1), (2.8)

where

U ≡ Eη0

(
∂g(l̃t, η0)

∂η
· ∂g(l̃t, η0)

∂η�

)
(2.9)

= Eη0

(
∂g(l̃0, η0)

∂η
· ∂g(l̃0, η0)

∂η�

)

is positive definite.

Remark 2.1. Using the Fisher information matrix I(η),

I(η) = Eη

{
∂ log f

∂η
· ∂ log f

∂η�

}

=
1

σ2
Eη

{
∂g(l̃t, η)

∂η
· ∂g(l̃t, η)

∂η�

}
, (2.10)

where f = (
√
2πσ)−1 exp{− ε2t

2σ2}, the result of the Theorem 2.1 can be written as

T 1/2(ηLST − η0) ⇒ N(0, I−1(η0)). (2.11)
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2.2.2 The Adaptive Lasso Estimator

In this section, we shrink the unnecessary coefficients of the transition variable

zt to 0 and select the true threshold variables by the adaptive lasso approach

proposed by Zou (2006). We use ηADL
T to denote the adaptive lasso estimator of η

which minimizes

QADL
T (η) = QT (η) + λT

q∑
j=1

ŵj |θj|, (2.12)

where the weight ŵj is the reciprocal of an increasing function of the corresponding

LS estimate of θj , i.e., ŵj = 1/|θLSj |γ, λT > 0, γ > 0 are two nonnegative tuning

parameters.

Let KADL
T = {j : θADL

j 	= 0, 1 ≤ j ≤ q}, where θADL
j is the adaptive lasso

estimate of θj . Recall that K = {1 ≤ j ≤ q : θj0 	= 0} and κ = |K|. That is,

the correct model has κ significant threshold variables. For any vector/matrix A,

denote by A(K) a sub-vector/sub-matrix of A formed by the elements at K’th rows

(and K’th columns) of A. For example, if A = (aij)1≤i,j≤5 and K = {1, 3}, then

A(K) = (aij)i,j=1,3.

Theorem 2.2. Suppose that λT√
T
→ 0, and λTT

γ−1

2 → ∞. Then the adaptive lasso

estimates ηADL
T satisfy the following oracle properties:
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1. Consistency in variable selection:

lim
T→∞

P (KADL
T = K) = 1.

2. Asymptotic normality:

√
T (ηADL

T,(K) − η0,(K)

)
⇒ N2p+κ+3

(
0, I−1(η0,(K))

)
.

The second part of Theorem 2.2 implies that the final estimator can achieve the

efficiency of the estimator when the true threshold variables are known and esti-

mated with irrelevant variables being removed. Thus, as in the literature estimator

ηADL
T has the so-called oracle property.

2.2.3 The Direction Adaptive Lasso Estimator

As c → +∞, the function Φ(c(x− r)) approaches to the indicator function

Ir(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x > r,

0 if x ≤ r,

which is the threshold principle of the classical two-regime TAR model. However,

in the STAR(p, q) model (2.1), when the length of the vector ϑ = (θ1, . . . , θq)
� is
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large, penalizing θ̃j ≡ θj/‖ϑ‖ instead of θj seems more desirable (j = 1, 2, . . . , q)

than penalizing the coefficient vector since the latter also penalizes the length of

the coefficients, which plays the role of c.

We call the estimator by adaptively penalizing the direction of coefficient vector

the direction adaptive lasso estimator and denote it as ηDAL
T , which minimizes

QT (η) + λT

q∑
j=1

w̃j|θ̃j | = QT (η) +
λT

l(ϑ)

q∑
j=1

w̃j|θj |, (2.13)

where l(ϑ) =
√

θ21 + . . .+ θ2q , the new weight w̃j is the reciprocal of an increasing

function of the corresponding LS estimate of θ̃j , i.e.,

w̃j = 1/|θ̃LSj |γ =
lγ(θLST )

|θLSj |γ ,

and λT > 0, γ > 0 are two nonnegative tuning parameters.

The oracle properties of ηADL
T are provided by the following theorem.

Lemma 2.2. As T → ∞, ϑ̃LS
T , the LS estimator of ϑ̃ satisfies

ϑ̃LS
T → ϑ̃0, a.s.
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and

T 1/2(ϑ̃LS
T − ϑ̃0) ⇒ N(0, Σ̃),

where ϑ̃0 = ϑ0/l(ϑ0) and

Σ̃ = (ϑ�
0 ϑ0)

−1(Iq − ϑ̃0ϑ̃
�
0 )I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 )

is a non-negative definite matrix with rank q − 1. Here, Iq is the q × q identity

matrix, I−1(ϑ0) is submatrix composed of the last q rows and the last q columns of

the inverse matrix of I(η0) defined in (2.10).

Denote KDAL
T = {j : θ̃DAL

j 	= 0, 1 ≤ j ≤ q}, where θ̃DAL
j is the adaptive lasso

estimate of θ̃j .

Theorem 2.3. Suppose that λT√
T

→ 0, and λTT
γ−1

2 → ∞. Then the direction

adaptive lasso estimates ηDAL
T satisfy the following oracle properties:

1. Consistency in variable selection:

lim
T→∞

P (KDAL
T = K) = 1.
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2. Asymptotic normality:

√
T (ηDAL

T,(K) − η0,(K)

)
⇒ N2p+κ+3

(
0, I−1(η0,(K))

)
.

Under the same condition as the adaptive lasso method, Theorem 2.3 indicates

that the proposed direction adaptive lasso also selects the correct subset of thresh-

old variables consistently. From the asymptotic normality, the method can estimate

the non-zero parameters efficiently as if we knew in advance which variables were

uninformative and were removed.

2.3 Numerical Experiments

2.3.1 Computational Issues

For the adaptive lasso and direction adaptive lasso estimator, we apply the

Local Quadratic Approximation (LQA) proposed in Fan and Li (2001) to our

implementation. Suppose we have an initial value θ0 = (θ00, θ01, . . . , θ0q)
� that is

close to the optimization solution, except for a constant, we can equivalently get
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the adaptive lasso estimator through minimizing

QT (η) +
λT

2
θ�Σθ,

and get the direction adaptive lasso estimator through minimizing

QT (η) +
λT

2l(θ)
θ�Σθ,

where Σ ≡ Σ(θ0) = diag(v) with θ0 being the value of the last step, and for the

adaptive lasso,

v = (0, w1/|θ01|, . . . , wq/|θ0q|)�, wi = 1/|θLSi |γ,

for the direction adaptive lasso,

v = (0, w̃1/|θ01|, . . . , w̃q/|θ0q|)�, w̃i = 1/|θ̃LSi |γ.

Remark 2.2. Under the assumption that θ0 	= 0, the transition variable

zt = θ0 + θ1yt−1 + . . .+ θqyt−q (2.14)
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can also be equivalently written as

zt =
1 + τ1yt−1 + . . .+ τqyt−q

c
(2.15)

with

c = 1/θ0, τj = θj/θ0, j = 1, . . . , q.

In the numerical experiments, we use this form to evaluate the estimation accuracy.

Specifically, when we evaluate the MSE of the estimate of θ̂ = (θ̂0, θ̂1, . . . , θ̂q)
�,

we use (τ̂ , ĉ) = (τ̂1, . . . , τ̂q, ĉ) instead. That is, we evaluate the deviation of (τ̂ , ĉ)

from the true value (τ0, c0) with τ0 = (τ10, . . . , τq0) = (θ10/θ00, . . . , θq0/θ00) and

c0 = 1/θ00.

M-folder Cross Validation (CV) and Bayesian Information Criterion (BIC) are

used to select the tuning parameter ρ = (λ, γ) and γ ∈ {0.5, 1, 2}which is consistent

with the choice of γ in Zou (2006). For the BIC, the criterion is

BICρ = log(RSSρ) + df(ρ)× log(T −m)

T
,

where

RSSρ = T−1

T∑
t=m+1

{
yt − x�

t a− (x�
t b)Φ(s

�
t θ)

}2
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and df(τ) = 2p+3+ q̂ with q̂ being the number of nonzero coefficients identified by

the estimate. For the M-folder CV, denote the full data set by T, and denote the

cross-validation training and test set by T −T ν and T ν , ν = 1, . . . ,M, respectively.

For each ρ and ν, we find the estimate using the training set and find a ρ that

minimizes

CV (ρ) =

M∑
ν=1

∑
yk∈T ν

(yk − ŷk)
2,

where ŷ is the corresponding fitted value.

2.3.2 Numerical Results

Our aim of numerical experiments is to show the performance of using the

L1-penalization to select the threshold variables. Moreover, the finite sample per-

formance of the LS estimator, adaptive lasso estimator and the proposed direction

adaptive lasso estimator are also compared. We summarize the results in the fol-

lowing aspects. (1) Estimation accuracy. Mean Squared Error (MSE) is examined.

For r = 1, . . . , R, let

MSEr =

p∑
i=0

(âri − ai0)
2 +

p∑
i=0

(b̂ri − bi0)
2

+

q∑
i=1

(τ̂ ri − τi0)
2 + (ĉr − c0)

2.
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and MSE=
∑R

r=1MSEr/R. The standard deviation MSEr over the R simulation

replications is also measured. (2) The average number of correctly selected 0

coefficients of the threshold variable.

For the tuning parameter selection, we use one of the following three setups for

tuning parameter selection.

Setup 1 Two folder CV.

λ is taken to be a set of values with exponentially increasing gaps, say, λ =

ndb, db = lb + (N − 1)d, with lb > 0, d = ub−lb
N−1

, ub < 0.5, where the integer

N is the number of choices of λ, and lb and ub are chosen such that (λ, γ)

satisfies

λ√
n
→ 0,

λ√
n
· nγ/2 → ∞.

as n → ∞.

Setup 2 Five folder CV and λ = 0.5i, i = 1, 2, . . . , 20.

Setup 3 BIC and λ = 0.5i, i = 1, 2, . . . , 20.

In the Example 2.1 and 2.2, a total of 50 simulation replications are conducted

for each model. For every simulated data, we find the least squares (LS), adaptive

lasso (AL) and the direction adaptive lasso (DAL) estimates. The calculation

results are summarized in below tables. We can see from Tables 2.1, 2.2, 2.3 and
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2.4 that the DAL method can indeed improve the estimation efficiency and is more

powerful in eliminating the unimportant variables.

Example 2.1. In the simulation, we consider the following STAR model.

Model 1 : p = 2, q = 2, the true threshold variable set is {yt−2} ⊆ {yt−1, yt−2}.

The model is

yt = (8− 0.4yt−1 + 0.5yt−2) + (−10 + 0.3yt−1 − 0.4yt−2)Φ(−5 + 6yt−2) + εt,

where εt is simulated from N(0, 1).

Table 2.1 Estimation results for Example 2.1 under Setup 1
n Method MSE S.d. Avg. no. of 0 coeff.

50 LS 5.0885 230.7513 0
AL 1.3200 46.6351 0.56
DAL 0.6407 27.2812 0.76

100 LS 1.1944 58.5926 0
AL 0.1322 1.3404 0.58
DAL 0.2261 5.9606 0.66

200 LS 0.0446 0.4138 0
AL 0.0353 0.2849 0.74
DAL 0.0401 0.3846 0.84

500 LS 0.0113 0.0962 0
AL 0.0108 0.0946 0.76
DAL 0.0111 0.0964 0.78

Example 2.2. In this example, we let the order q = 4 which is bigger than the

largest lag of the true threshold variables.

Model 2: p = 2, q = 4, true threshold variable set is {yt−1, yt−3} ⊆ {yt−1, yt−2, yt−3, yt−4}.
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Table 2.2 Estimation results for Example 2.1 under Setup 2
n Method MSE S.d. Avg. no. of 0 coeff.
50 LS 4.2117 224.9379 0

AL 1.1895 35.3070 0.58
DAL 0.4380 8.1961 0.72

100 LS 45.8695 2908.6 0
AL 0.2163 6.7845 0.62
DAL 0.1372 2.5903 0.70

200 LS 0.0499 0.8037 0
AL 0.0398 0.3985 0.60
DAL 0.0427 0.5044 0.64

The model is

yt = (2 + 0.5yt−1 − 0.4yt−2)

+(−1.5− 0.4yt−1 + 0.2yt−2)Φ(−10 + 5yt−1 + 3yt−3) + εt,

Table 2.3 Estimation results for Example 2.2 under Setup 1
Estimation accuracy Model complexity

n Method MSE S.d. θ̂2 = 0 θ̂4 = 0 θ̂2 = 0

Avg. 0 no. and θ̂4 	= 0 and θ̂2 	= 0 and θ̂4 = 0

50 LS 0.1136 1.0532 0 - - -
AL 0.5348 14.2598 0.88 0.30 0.14 0.22
DAL 0.1828 4.9394 1.44 0.14 0.14 0.58

100 LS 0.0677 0.7656 0.02 0.02 0 0
AL 0.2207 5.3545 0.92 0.28 0.16 0.24
DAL 0.0710 0.9065 1.3 0.08 0.10 0.56

200 LS 0.0274 0.2856 0 - - -
AL 0.0882 1.6219 1.32 0.26 0.10 0.48
DAL 0.0302 0.3619 1.68 0.10 0.06 0.76

500 LS 0.0098 0.0795 0.02 0 0.02 0
AL 0.0124 0.1393 1.50 0.14 0.08 0.64
DAL 0.0103 0.1007 1.82 0.04 0.10 0.84

Example 2.3 (The Canadian Lynx Data). To further illustrate the performance
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Table 2.4 Estimation results for Example 2.2 under Setup 3
Estimation accuracy Model complexity

n Method MSE S.d. θ̂2 = 0 θ̂4 = 0 θ̂2 = 0

Avg. 0 no. and θ̂4 	= 0 and θ̂2 	= 0 and θ̂4 = 0

50 LS 0.1531 2.6703 0.02 0 0.02 0
AL 9.2426 596.30 1.28 0.22 0.18 0.44
DAL 0.1932 3.2533 1.62 0.16 0.06 0.70

100 LS 0.0678 0.7654 0 - - -
AL 0.0801 1.0342 1.28 0.12 0.24 0.46
DAL 0.0683 0.8363 1.72 0.06 0.10 0.78

200 LS 0.0293 0.3022 0 - - -
AL 0.0302 0.3418 1.52 0.16 0.12 0.62
DAL 0.0299 0.3301 1.82 0.12 0.02 0.84

of the proposed method in selecting the threshold variable set, we examine one

popular studied real data set. Following Tong (1990), we transform the data by

taking base-10 logarithm to the original data, and denoted the transformed time

series by yt. Now assume that the time series follows the STAR(p,q) model. Ap-

plying different estimation methods to the data, we have the results listed in Table

2.5.

Both biological facts and previous statistical data analysis suggest that the

significant threshold variable can be yt−2 or yt−3 or both. See, e.g., Tong (1990)

section 7.2, and Fan and Yao (2003). Both the adaptive Lasso and the direction

adaptive Lasso tend to lend support to the above suggestion.
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Table 2.5 Estimation results for Example 2.3 under Setup 1
p q Method threshold variable(s) p q Method threshold variable(s)
2 2 AL yt−2 3 2 AL yt−2

DAL yt−2 DAL yt−2

3 AL yt−1, yt−2, yt−3 3 AL yt−2

DAL yt−1, yt−3 DAL yt−2

4 AL yt−2, yt−4 4 AL yt−1, yt−2, yt−3

DAL yt−2 DAL yt−3

5 AL yt−2, yt−4 5 AL yt−2, yt−3, yt−4

DAL yt−2 DAL yt−2

4 2 AL yt−2 5 2 AL yt−2

DAL yt−2 DAL yt−2

3 AL yt−3 3 AL yt−2

DAL yt−3 DAL yt−2

4 AL yt−3 4 AL yt−3

DAL yt−3 DAL yt−3

5 AL yt−3 5 AL yt−3

DAL yt−3 DAL yt−3

2.4 Proofs

Proof of Lemma 2.1: For x = (x1, . . . , xm)
�, m = max(p, q), denote Φ(x) =

Φ(θ0 +
∑q

j=1 θjxj) thus 0 ≤ Φ(x) ≤ 1 and we have

|g(η, x)| = |(a0 +
p∑

j=1

ajxj) + (b0Φ(x) +

p∑
j=1

bjΦ(x)xj)|

= |(a0 + b0Φ(x)) +

p∑
j=1

(aj + bjΦ(x))xj |

≤ |a0 + b0Φ(x)| +
∣∣∣ p∑
j=1

(aj + bjΦ(x))xj

∣∣∣
≤

p∑
j=1

|aj + bjΦ(x)||xj |+ C
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≤
p∑

j=1

∣∣∣aj + bjΦ(x)
∣∣∣max{|x1|, . . . , |xp|}+ C

When

sup
0≤u≤1

p∑
j=1

|aj + bju| < 1,

the model is geometrically ergodic by the Theorem 3.2 of An and Huang (1996).

Hence, there exists a stationary distribution F such that the time series yt given

by (2.1) and initiated at l̃0 = (y−1, . . . , y−m+1)
� ∼ F is strictly stationary. �

Proof of Theorem 2.1:

The proof that U is positive definite is the same as the proof given by Chan

and Tong (1986) in its Appendix II, we thus omit it here.

To show the consistency and asymptotic normality, we follow from the standard

method proposed in Klimko and Nelson (1978).

First, note that ηLST is actually obtained by solving the equations

∂QT (η)

∂ηj
= 0, j = 1, 2, . . . , L, (2.16)

and if we denote the difference ut(η) by

ut(η) = yt − g(η,Ft−1),
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then {ut(η0)} is a sequence of martingale differences.

Now, we expand T−1/2∂QT (η)/∂η in a Taylor series at η0 and suppose that ηLST

satisfies (2.16), we have

0 = T− 1

2

∂QT (η
LS
T )

∂η

= T− 1

2

∂QT (η0)

∂η
+ T−1(UT +DT (η

∗)) · T 1

2 (ηLST − η0), (2.17)

where

UT ≡ ∂2QT (η0)

∂η∂η�
,

DT (η
∗) ≡ ∂2QT (η

∗)
∂η∂η�

− UT (2.18)

=
∂2QT (η

∗)
∂η∂η�

− ∂2QT (η0)

∂η∂η�
,

and η∗ being an appropriate intermediate point between η0 and ηLST .

We claim that

(2T )−1UT → U, a.s. . (2.19)
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In fact, denote (UT )ij as the (i, j)-th element of the matrix UT , we have

1

2
(UT )ij =

(
T∑

t=m+1

∂g(l̃t, η0)

∂ηi
· ∂g(l̃t, η0)

∂ηj

)

−
(

T∑
t=m+1

∂2g(l̃t, η0)

∂ηi∂ηj
ut(η0)

)
.

By the strong law of large numbers for martingales, we get

1

T

T∑
t=m+1

∂2g(l̃t, η0)

∂ηi∂ηj
ut(η0) → 0, a.s., (2.20)

and by the ergodic theorem we have

1

T

T∑
t=m+1

∂g(l̃t, η0)

∂ηi
· ∂g(l̃t, η0)

∂ηj
→ Uij a.s.,

thus

1

2T
(UT )ij → Uij , a.s.

Similar to (2.20), we have

1

T

∂QT (η0)

∂η
= − 2

T

T∑
t=m+1

∂g(l̃t, η0)

∂η
ut(η0) → 0, a.s..
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Next, we show that for any δ > 0 such that ‖η∗ − η0‖ ≤ δ,

lim
T→∞

sup
δ→0

|DT (η
∗)ij|

Tδ
< ∞, 1 ≤ i, j ≤ L, a.s. . (2.21)

In fact,

|DT (η
∗)ij | =

∣∣∣∂2QT (η
∗)

∂ηi∂ηj
− ∂2QT (η0)

∂ηi∂ηj

∣∣∣
≤ |

T∑
t=m+1

{∂g(l̃t, η
∗)

∂ηi
· ∂g(l̃t, η

∗)
∂ηj

− ∂g(l̃t, η0)

∂ηi
· ∂g(l̃t, η0)

∂ηj
}|

+
∣∣∣ T∑
t=m+1

{∂2g(l̃t, η0)

∂ηi∂ηj
ut(η0)− ∂2g(l̃t, η

∗)
∂ηi∂ηj

ut(η
∗)
}∣∣∣.

And from the Taylor expansion,

ut(η
∗) = ut(η0) +

∂g(l̃t, η0)

∂η�
(η0 − η∗)(1 + op(1)),

∂g(l̃t, η
∗)

∂ηi
=

∂g(l̃t, η0)

∂ηi
+

∂g2(l̃t, η0)

∂ηi∂η�
(η∗ − η0)(1 + op(1)),

and

∂2g(l̃t, η
∗)

∂ηi∂ηj
=

∂2g(l̃t, η0)

∂ηi∂ηj
+

∂3g(l̃t, η0)

∂ηi∂ηj∂η�
(η∗ − η0)(1 + op(1)).

Note that

∂g(l̃t, η0)

∂η
=

(
xt, xtΦt, (x

�
t b)ϕtst

)�
,

where Φt ≡ Φ(s�t θ), ϕt ≡ ϕ(s�t θ) with ϕ(·) being the standard normal pdf are
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both continuous for all η ∈ Θ. Since {yt} is a stationary ergodic sequence of inte-

grable variables, ut(η0) is a sequence of martingale differences, by the martingale

convergence theorem, it is easy to see that (2.21) is satisfied.

The conditions of the Theorem 2.1 of Klimko and Nelson (1978) are satisfied.

We thus get the strong consistency (2.7) from (2.19), (2.20) and (2.21).

Next, we prove the asymptotic normality: T 1/2(ηLST − η0) ⇒ N(0, σ2U−1).

In view of (2.17), (2.19) and the proved consistency result, we only need to

show that

1

2
T− 1

2

∂QT (η0)

∂η
⇒ N(0, σ2U). (2.22)

In fact, using the Cramer-Wold method, to show (2.22), it suffices to prove that

∀ h = (h1, . . . , hL)
� ∈ R

L,

1

2
T− 1

2h�∂QT (η0)

∂η
⇒ N(0, v), (2.23)

where

v = σ2Eη0

(
L∑

k=1

hk
∂g(l̃t, η0)

∂ηk

)2

.
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Note that ∂QT (η0)/∂η = −2
T∑

t=m+1

ut(η0)∂g(l̃t, η0)/∂η, let

f1(l̃t, h, η) ≡ −
L∑

k=1

hk
∂g(l̃t, η)

∂ηk
,

it follows that

1

2
T− 1

2h�∂QT (η0)

∂η
= T− 1

2

T∑
t=m+1

f1(l̃t, h, η0)ut(η0). (2.24)

Define

Yt =
f1(l̃t, h, η0)ut(η0)

σ
√

Eη0(f
2
1 (l̃t, h, η0))

=
f1(l̃t, h, η0)ut(η0)√

v

V 2
T =

T∑
t=m+1

E(Y 2
t |Ft−1) , σ2

T = EV 2
T ,

we claim that

(1) V 2
T /σ

2
T → 1 in probability. This is shown by

V 2
T =

T∑
t=m+1

E(Y 2
t |Ft−1) =

( T∑
t=m+1

f 2
1

)
/Ef 2

1 , σ2
T = T −m

and the ergodic theorem.
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(2) Lindeberg condition: for any ε > 0,

1

σ2
T

T∑
t=m+1

E(Y 2
t I(|Yt| ≥ εσT )) → 0.

is satisfied. This is shown by noting that

YT,t ≡ Yt

σT
=

Yt√
T −m

=
f1(l̃t, h, η0)ut(η0)

√
T −mσ

√
E(f 2

1 (l̃t, h, η0))
≤ C√

T −m
→ 0

as T → ∞ where C > 0 is some finite constant.

By the martingale CLT, we have

T∑
t=m+1

Yt/
√
T ⇒ N(0, 1) (2.25)

and (2.22) is proved.

We therefore complete the proof of consistency and asymptotic normality of

ηLST . �

Remark 2.3. The result (2.19) can be written as

(2T )−1

(
∂2QT (η0)

∂η∂η�

)
→ σ2I(η0), a.s. (2.26)
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and the result (2.22) can be written as

1

2
T− 1

2

∂QT (η0)

∂η
⇒ N(0, σ4I(η0)). (2.27)

Proof of Theorem 2.2:

The proof is an application of the same method used to show the oracle prop-

erties of the adaptive lasso estimator in Zou (2006) to our case.

Step 1. We first show the asymptotic normality.

Let η = η0 + u/
√
T , u = (u1, . . . , uL)

�, L = 2p+ 3 + q, and

ΨT (u) = QT (η0 + u/
√
T ) + λT

q∑
j=1

ŵj

∣∣∣θj0 + u2p+3+j√
T

∣∣∣.

Suppose ûT = argminu ΨT (u), then

ηADL
T = η0 + ûT/

√
T or ûT =

√
T (ηADL

T − η0)

since

ηADL
T = argminQT (η) + λT

q∑
j=1

ŵj|θj |.



2.4 Proofs 42

Denote VT (u) ≡ ΨT (u)−ΨT (0), we have

VT (u) = {QT (η0 + u/
√
T )−QT (η0)} (2.28)

+
{
λT

q∑
j=1

ŵj

(|θj0 + u2p+3+j√
T

| − |θj0|
)}

≡ HT (u) + PT (u),

where the loss function term

HT (u) = QT (η0 + u/
√
T )−QT (η0)

and the penalty term

PT (u) = λT

q∑
j=1

ŵj

(|θj0 + u2p+3+j√
T

| − |θj0|
)
.

Note that

QT (η0 + u/
√
T )−QT (η0)

=
1√
T
u�∂QT (η0)

∂η
+

1

2T
u�∂

2QT (η0)

∂η∂η�
u(1 + op(1)).
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From the results (2.26) and (2.27), we know that as T → ∞,

1√
T

∂QT (η0)

∂η
⇒ W ∼ N(0, 4σ4I(η0))

and

1

2T

∂2QT (η0)

∂η∂η�
→ σ2I(η0) a.s..

Thus the loss function term

HT (u) ⇒ u�W + σ2u�I(η0)u.

Now we consider the limiting behavior of the penalty term.

If j ∈ K, i.e., θj0 	= 0, from the result of the Theorem 2.1,

ŵj = 1/|θLSj |γ → |θj0|−γ, a.s.

and

√
T
(|θj0 + u2p+3+j√

T
| − |θj0|

) → u2p+3+jsgn(θj0).
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Since λT/
√
T → 0, we have

λT√
T
ŵj

√
T
(|θj0 + u2p+3+j√

T
| − |θj0|

) → 0.

If j ∈ K̄, i.e., θj0 = 0, then
√
T
(|θj0 +

u2p+3+j√
T

| − |θj0|
)
= |u2p+3+j|. Since

√
TθLSj = Op(1) and λTT

(γ−1)/2 → ∞, we have

λT√
T
ŵj = λTT

γ−1

2 |
√
TθLSj |−γ → ∞.

Therefore, by Slutsky’s theorem, we have VT (u) ⇒ V (u) for every u, where

V (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u(K))
�W(K) + σ2(u(K))

�I(η0,(K))u(K),

if u2p+3+j = 0, ∀j ∈ K̄

∞, otherwise ,

where u(K) and W(K) are the j-th (j ∈ {2p+3+k : k ∈ K̄}) elements deleted from

u and W respectively. Note that the unique minimum of V (u) is

umin =
( − 1

2σ2 I
−1(η0,(K))W0,(K)

0

)
,

where 0 denotes that the other corresponding components u2p+3+j, j ∈ K̄ are all 0
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in the vector u. Following the epi-convergence property of Knight (1999), we have

ûT,(K) ⇒ − 1

2σ2
I−1(η0,(K))W(K)

and the other components → 0, i.p..

Finally, recall that W(K) ∼ N(0, 4σ4I(η0,(K))), we get

√
T (ηADL

T,(K) − η0,(K)) ⇒ N
(
0, I−1(η0,(K))

)
. (2.29)

Step 2. Now we prove the consistency.

If j ∈ K, then θADL
j → θj0 i.p., thus P (j ∈ KADL

T ) → 1. Thus we only need to

show that ∀j ∈ K̄, P (j ∈ KADL
T ) → 0.

By the KKT optimality conditions,

1√
T

∂QT (η
ADL
T )

∂θj
+

λT√
T
ŵjsgn(θ

ADL
j ) = 0.

Note that ∣∣ λT√
T
ŵjsgn(θ

ADL
j )

∣∣ = λT√
T
T γ/2|

√
TθLSj |−γ → ∞, i.p.,
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whereas

1√
T

∂QT (η
ADL
T )

∂θj

=
1√
T

∂QT (η0)

∂θj
+

1

T

∂2QT (η0)

∂θ2j

√
T (θADL

j − θj0)(1 + op(1))

⇒ some normal distribution

by (2.29) and Slutsky’s theorem. Thus, for j ∈ K̄,

P (j ∈ KADL
T ) ≤ P

(
| 1√

T

∂QT (η
ADL
T )

∂θj
| = λT√

T
ŵj

)
→ 0.

This completes the proof. �

Proof of Lemma 2.2:

Recall that ϑ = (θ1, . . . , θq)
�, denote

g(ϑ) = (ϑ�ϑ)−1/2 =
1√

θ21 + . . .+ θ2q

, (2.30)

then

ϑ̃ =
ϑ

l(θ)
=

ϑ

(ϑ�ϑ)1/2
≡ ϑg(ϑ).
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From the asymptotic result of ϑLS
T , we have

g(ϑLS
T ) → g(ϑ0).

Thus,

ϑ̃LS
T = ϑLS

T g(ϑLS
T ) → ϑ̃0 = ϑ0g(ϑ0) a.s..

Next we will show the asymptotic normality. From (2.11), we know that

√
T (θLST − θ0) ⇒ N(0, I−1(θ0)),

where I−1(ϑ0) is submatrix composed of the last q rows and the last q columns of

the inverse matrix of I(η0) defined in (2.10). Thus,

√
T (ϑ̃LS

T − ϑ̃0) =
√
T (ϑLS

T g(ϑLS
T )− ϑ0g(ϑ0))

=
√
T
(
ϑLS
T g(ϑLS

T )− ϑ0g(ϑ
LS
T ) + ϑ0g(ϑ

LS
T )− ϑ0g(ϑ0)

)
=

√
T (ϑLS

T − ϑ0)g(ϑ
LS
T ) + ϑ0

√
T (g(ϑLS

T )− g(ϑ0))

⇒ some normal distribution

by the Slutsky theorem and the continuous mapping theorem.

It is easy to see that the mean of the asymptotic normal distribution is 0. We
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now provide the asymptotic covariance matrix Σ̃ and show that its rank is q − 1.

Note that ∂g(ϑ)/∂ϑ = −(ϑ�ϑ)−3/2ϑ and ϑLS
T − ϑ0 = Op(T

−1/2), we have

ϑ0

√
T (g(ϑLS

T )− g(ϑ0))

= ϑ0

√
T
∂g(ϑ0)

∂ϑ� (ϑLS
T − ϑ0) + Op(T

−1/2)

= −ϑ0ϑ
�
0

√
T (ϑLS

T − ϑ0)(ϑ
�
0 ϑ0)

−3/2 +Op(T
−1/2).

Denote ZT,1 =
√
T (ϑLS

T − ϑ0)g(ϑ
LS
T ) and ZT,2 = −ϑ0ϑ

�
0

√
T (ϑLS

T − ϑ0)(ϑ
�
0 ϑ0)

−3/2,

we next calculate the covariance matrix of ZT,1 + ZT,2.

Var(ZT,1 + ZT,2) = E(ZT,1 + ZT,2)(ZT,1 + ZT,2)
�

= E
(√

T (ϑLS
T − ϑ0)

√
T (ϑLS

T − ϑ0)
�g2(ϑLS

T )
)

−E
(√

T (ϑLS
T − ϑ0)

√
T (ϑLS

T − ϑ0)
�ϑ0ϑ

�
0 (ϑ

�
0 ϑ0)

−3/2g(ϑLS
T )

)
−E

(
ϑ0ϑ

�
0

√
T (ϑLS

T − ϑ0)
√
T (ϑLS

T − ϑ0)
�(ϑ�

0 ϑ0)
−3/2g(ϑLS

T )
)

+E
(
ϑ0ϑ

�
0

√
T (ϑLS

T − ϑ0)
√
T (ϑLS

T − ϑ0)
�ϑ0ϑ

�
0 (ϑ

�
0 ϑ0)

−3
)
.

Since as T → ∞,
√
T (ϑLS

T −ϑ0) ⇒ N(0, I−1(ϑ0)) and g(ϑLS
T ) → g(ϑ0), a.s., we thus

get the limiting covariance matrix

Σ̃ = I−1(ϑ0)(ϑ
�
0 ϑ0)

−1 − I−1(ϑ0)ϑ0ϑ
�
0 (ϑ

�
0 ϑ0)

−2
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−ϑ0ϑ
�
0 I

−1(ϑ0)(ϑ
�
0 ϑ0)

−2 + ϑ0ϑ
�
0 I

−1(ϑ0)ϑ0ϑ
�
0 (ϑ

�
0 ϑ0)

−3.

Recall that ϑ̃0 = ϑ0(ϑ
�
0 ϑ0)

−1/2, we have

Σ̃ = {I−1(ϑ0)(ϑ
�
0 ϑ0)

−1 − I−1(ϑ0)ϑ̃0ϑ̃
�
0 (ϑ

�
0 ϑ0)

−1}

−{ϑ̃0ϑ̃
�
0 I

−1(ϑ0)(ϑ
�
0 ϑ0)

−1 − ϑ̃0ϑ̃
�
0 I

−1(ϑ0)ϑ̃0ϑ̃
�
0 (ϑ

�
0 ϑ0)

−1}

= (ϑ�
0 ϑ0)

−1I−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 )

−(ϑ�
0 ϑ0)

−1ϑ̃0ϑ̃
�
0 I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 )

= (ϑ�
0 ϑ0)

−1(Iq − ϑ̃0ϑ̃
�
0 )I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 ).

Notice that the q × q matrix Iq − ϑ̃0ϑ̃
�
0 is an idempotent matrix due to the

relationship ϑ̃�
0 ϑ̃0 = 1. That is, (Iq − ϑ̃0ϑ̃

�
0 )

2 = Iq − ϑ̃0ϑ̃
�
0 given ϑ̃�

0 ϑ̃0 = 1. We thus

have

rank(Iq − ϑ̃0ϑ̃
�
0 ) = q − 1.

Denote A = Iq − ϑ̃0ϑ̃
�
0 = A�, B = I−

1

2 (ϑ0) and C = AB then

Σ̃ = (Iq − ϑ̃0ϑ̃
�
0 )I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 ) = CC�.
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From the Sylvester’s inequality, we get

rank(Σ̃) = rank(CC�) = rank(C)

= rank(AB) ≤ min{rank(A), rank(B)} = q − 1

rank(Σ̃) = rank(AB) ≥ rank(A) + rank(B)− q = q − 1.

Therefore, we show that the rank of the matrix Σ̃ is q − 1. �

Proof of Theorem 2.3:

The proof is very similar to that of the Theorem 2.2 and the only difference

concerns the treatment of the penalty term.

Let η = η0 + u/
√
T , u = (u1, . . . , uL)

�, L = 2p+ 3 + q, and

ΨT (u) = QT (η0 + u/
√
T )

+λT

q∑
j=1

w̃j

∣∣∣(θj0 + u2p+3+j√
T

)g(ϑ0 +
u2p+4:2p+3+q√

T
)
∣∣∣,

where g(ϑ) is defined in (2.30) and the q-dimensional sub-vector u2p+4:2p+3+q is

composed of the components u2p+4, u2p+5, . . . , u2p+3+q of the vector u. We denote

u2p+4:2p+3+q as ũ.
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It follows that the penalty term

PT (u) = λT

q∑
j=1

w̃j

(∣∣∣θj0 + u2p+3+j√
T

∣∣∣g(ϑ0 +
ũ√
T

)
− |θj0|g(ϑ0)

)
.

Since g′(ϑ) = −(ϑ�ϑ)−3/2 = −(g(ϑ))3, from the Taylor expansion of g, we have

g
(
ϑ0 +

ũ√
T

)
= g(ϑ0)− (g(ϑ0))

3 ũ
�ϑ0√
T

(1 + op(1)).

If j ∈ K, i.e., θ̃j0 	= 0, from the result of the Lemma 2.2,

w̃j = 1/|θ̃LSj |γ → |θ̃j0|−γ, a.s.

and

√
T
(∣∣∣θj0 + u2p+3+j√

T

∣∣∣g(ϑ0 +
ũ√
T

)
− |θj0|g(ϑ0)

)
=

√
T
(∣∣∣θj0 + u2p+3+j√

T

∣∣∣− |θj0|
)
g(ϑ0)

−
∣∣∣θj0 + u2p+3+j√

T

∣∣∣(g(ϑ0))
3ũ�ϑ0(1 + op(1))

→ u2p+3+jsgn(θj0)g(ϑ0)− |θj0|(g(ϑ0))
3ũ�ϑ0

= g(ϑ0)
(
u2p+3+jsgn(θ̃j0)− |θ̃j0|ũ�ϑ̃0

)
.
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Since λT/
√
T → 0, we have

λT√
T
w̃j

√
T
(∣∣∣θj0 + u2p+3+j√

T

∣∣∣g(ϑ0 +
ũ√
T

)
− |θj0|g(ϑ0)

)
→ 0.

If j ∈ K̄, i.e., θ̃j0 = 0, then

√
T
(∣∣∣θj0 + u2p+3+j√

T

∣∣∣g(ϑ0 +
ũ√
T

)
− |θj0|g(ϑ0)

)
= |u2p+3+j|g

(
ϑ0 +

ũ√
T

)
→ |u2p+3+j|g(ϑ0).

When θ̃j0 = 0, we have
√
T θ̃LSj =

√
T (θ̃LSj − θ̃j0) = Op(1) from the asymptotical

normality result of Lemma 2.2. It follows that

λT√
T
w̃j = λTT

γ−1

2 |
√
T θ̃LSj |−γ → ∞

since λTT
(γ−1)/2 → ∞.

Therefore, using the same notations as in the proof of Theorem 2.2 and by

Slutsky’s theorem, we have VT (u) ⇒ V (u) for every u, where

V (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u(K))
�W(K) + σ2(u(K))

�I(η0,(K))u(K),

if u2p+3+j = 0, ∀j ∈ K̄

∞, otherwise ,



2.4 Proofs 53

and get the same asymptotic normality result.

As for the variable selection consistency, we only need to show that

∀j ∈ K̄, P (j ∈ KDAL
T ) → 0.

Recall that the objective function of the direction adaptive lasso estimator is

QT (η) + λT

q∑
i=1

w̃i|θ̃i| = QT (η) + λTg(ϑ)

q∑
i=1

w̃i|θi|.

For j ∈ K̄, consider the event j ∈ KDAL
T . By the KKT optimality conditions,

we have

0 =
1√
T

∂QT (η
DAL
T )

∂θj
− λT√

T
(g(ϑDAL

T ))3θDAL
j

q∑
i=1

w̃i|θDAL
i |

+
λT√
T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )

=
1√
T

∂QT (η
DAL
T )

∂θj
− λT√

T
g(ϑDAL

T )θ̃DAL
j

q∑
i=1

w̃i|θ̃DAL
i |

+
λT√
T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )

=
{ 1√

T

∂QT (η
DAL
T )

∂θj

− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K

w̃i|θ̃DAL
i |

}

+
{ λT√

T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )
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− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K̄

w̃i|θ̃DAL
i |

}
(2.31)

≡ ST1 + ST2

We first claim that the term

ST1 =
1√
T

∂QT (η
DAL
T )

∂θj

− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K

w̃i|θ̃DAL
i |

⇒ some normal distribution (2.32)

In fact,

1√
T

∂QT (η
DAL
T )

∂θj
⇒ some normal distribution

and

λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K

w̃i|θ̃DAL
i | → 0

as for i ∈ K, w̃i → |θi0|−γ, θ̃DAL
j →p 0, θ̃

DAL
i →p θ̃i0 and λT/

√
T → 0. By Slutsky’s

theorem, we get (2.32).
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We next show that ST2 →p ∞. Note that

ST2 =
λT√
T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )

− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K̄

w̃i|θ̃DAL
i |

= λTT
γ−1

2 g(ϑDAL
T )

{ 1

|√T θ̃LSj |γ sgn(θ̃
DAL
j )

−θ̃DAL
j

∑
i∈K̄

1

|√T θ̃LSi |γ |θ̃
DAL
i |

}
→p ∞

since λTT
γ−1

2 → ∞ and ∀j ∈ K̄,
√
T θ̃LSj = Op(1).

Therefore, for j ∈ K̄,

P (j ∈ KDAL
T ) ≤ P (|ST1| = |ST2|) → 0.

This completes the proof. �
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CHAPTER 3

On a Principal Varying

Coefficient Model (PVCM)

3.1 Introduction of PVCM

Let (Y,X, U) be a random triplet, where Y ∈ R
1 is the response of interest,

X = (X1, · · · , Xp)
� ∈ R

p is the associated p-dimensional predictor, and U ∈ R
1

is the so-called index variable. The conventional varying coefficient model (Hastie

and Tibshirani (1993)) assumes that Y = X�β(U)+ε, where ε is the random noise

and β(u) = (β1(u), . . . , βp(u))
� ∈ R

p is a vector of unknown smooth functions in
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u, called the varying coefficients. Ever since Hastie and Tibshirani (1993), VCM

has gained a lot of popularity in the literature attributing to the following three

facts. Firstly, VCM is easy to interpret. This is because, conditioned on the index

variable U = u, VCM reduces to a standard linear regression model which has been

well understood in practice. Secondly, VCM allows the varying coefficient β(u) to

be fully nonparametric. Thus, it has much stronger modeling capability than a

standard linear regression model. Lastly, because the index variable U ∈ R
1 is

typically a univariate variable, VCM is free of the curse of dimensionality. VCM

and its variants have been extensively studied in the literature during the past

two decades. See, for example, Fan and Zhang W. (1999), Cai et al (2000), Fan

and Zhang W. (2000), Fan and Zhang J. (2000), Huang et al (2002), Zhang et al

(2002), Fan and Huang (2005), and Fan and Zhang W. (2008).

It is remarkable that, although the estimation of VCM requires only one dimen-

sional kernel smoothing, it is still very unstable. The model cannot be estimated

well when the predictor’s dimension p is large even moderately. There are two

approaches to improve the estimation efficiency. The first approach is to employ

a more efficient estimation method. It is generally believed that the polynomial

splines especially the penalized polynomial splines are more efficient than the ker-

nel smoothing approach. See Wood (2006) for a comprehensive review. Another

way to improve the efficiency is through further model specification without losing
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much information. The semi-varying coefficient model (SVCM) proposed by Zhang

W. et al (2002) and Fan and Huang (2005) is a good example for this purpose.

SVCM confines some coefficients to be constant but allows the others to vary with

the index variable U .

In this Chapter, we consider an extension of the SVCM by allowing different

varying coefficients to be linearly dependent. To further illustrate the idea, let

us revisit the Boston house price data. The response of interest is the median

value of owner-occupied homes (MEDV, in $1000) with 13 covariates, denoted

by X1, . . . , X13 respectively. As noticed by Fan and Huang (2005), the following

varying coefficient model with the lower status of the population (U = LSTAT )

being the index variable is appropriate for the data,

MEDV = β1(U)X1 + . . .+ β13(U)X13 + ε. (3.1)

In the below figure 3.1, the first panel shows all the coefficients, of which with

big variation are selected and labeled. The selected coefficients are redrawn in

the second panel. After liner transformation and standardization, those selected

coefficients are shown in panel 3.

In (3.1), the varying coefficients can be estimated by the method based on

the local linear smoothing; see for example Wu and Liang (2004). The estimated
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Figure 3.1 The estimated varying coefficients for the Boston House Price Data.

coefficients are shown in the first panel of Figure 3.1. For those coefficients with big

variation as labeled and redrawn in the second panel, remarkably similar shapes

are shared after some linear transformations as shown in the third panel, which

implies that different varying coefficients are likely to be linearly dependent and

that the index affects those coefficients in a similar way. To quantify such a linear

dependency, we estimate Σβ = cov{(β1(U), β2(U), . . . , β13(U))�} and find that

its eigenvalues are 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0004, 0.0006,

0.0126, 0.0370, 0.1445, 0.5668, 25.8584 respectively. The largest eigenvalue 25.8584

by itself can explain 97% of Σβ ’s total variation, suggesting that the coefficients

β�(u), � = 1, 2, . . . , 13 have a common principal function γ(u), i.e.

βk(U) = θk + φkγ(U) + other terms with less contribution,

where both θk and φk (1 ≤ k ≤ 13) are constant parameters. As a consequence,
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model (3.1) can be further simplified as

MEDV =
(
θ1X1 + θ2X2 + . . .+ θ13X13

)
+ γ(U)

(
φ1X1 + φ2X2 + . . .+ φ13X13

)
+ ε.

(3.2)

Theoretically, the estimators produced by (3.2) are more efficient than those by

(3.1), because only one nonparametric function γ(·) needs to be estimated in (3.2),

but a total of p = 13 functions need to be done in (3.1). Furthermore, model

(3.2) identifies two important factors given by θ1X1 + θ2X2 + . . . + θ13X13 and

φ1X1 + φ2X2 + . . . + φ13X13 respectively. The first factor is linearly related to

the response, and the second one nonlinearly in the sense that it has a nontrivial

interaction with the index variable U . Thus, model (3.2) is also more informative

as compared with model (3.1).

In this Chapter, we shall discuss a more general model of (3.2). For convenience,

we refer to the new model as the Principal Varying Coefficient Model (PVCM).

Compared with the conventional varying coefficient model, PVCM discovers the

possible linear dependence structure amongst the varying coefficients. As one can

see from (3.2), such a linear dependence structure can reduce the actual number of

nonparametric functions, and thus further improves estimation efficiency. On the

other hand, separating the coefficients into liner and nonlinear parts is more infor-

mative in data analysis. Moreover, PVCM is more flexible and allows a predictor

to appear in both linear and nonlinear parts simultaneously.
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3.2 Model Representation and Identification

Let (Yi, Xi, Ui) be the observation collected from the ith subject, i = 1, 2, . . . , n,

where Yi ∈ R
1 is the response, Xi = (Xi1, · · · , Xip)

� ∈ R
p is the p-dimensional

predictor, and Ui ∈ R
1 is the univariate index variable. The conventional VCM

model assumes

Yi = β1(Ui)Xi1 + β2(Ui)Xi2 + . . .+ βp(Ui)Xip + εi,

where βk(·), k = 1, . . . , p, are unknown coefficient functions and E(εi|Xi, Ui) = 0

almost surely. Let β0(u) = (β1(u), β2(u), . . . , βp(u))
�. Motivated by the exam-

ple above, we further assume the following principal component structure for the

coefficient functions

β0(u) = θ0 +B0γ0(u),

where θ0 ∈ R
p and B0 = (b1, . . . , bd0) ∈ R

p×d0, with rank(B0) = d0 < p, are

parameters and γ0(u) = (g1(u), . . . , gd0(u))
� are unknown principal functions. As

a consequence, we come up with the following Principal Varying Coefficient Model

(PVCM)

Yi = θ�0 Xi + g1(Ui)b
�
1 Xi + . . .+ gd0(Ui)b

�
d0
Xi + εi. (3.3)

For convenience, we refer to d0 as the number of principal functions, θ�0 Xi

the linear part, and X�
i B0γ0(Ui) the nonlinear part. We further assume that

the principal functions γ0(u) ∈ R
d0 satisfy rank{cov(γ0(Ui))} = d0. Otherwise,

functional elements in γ0(u) are linearly dependent, and the rank of B0 can be
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further reduced. Obviously, model (3.3) becomes a standard linear regression model

if d0 = 0 and a full VCM if d0 = p. PVCM also includes the semi-varying coefficient

model (SVCM) of Zhang W. et al (2002) as a special case if the last p− q elements

in θ0 are zeros and the first q elements in all bk, k = 1, . . . , d0, are zeros.

Model (3.3) is not uniquely identifiable. For example, let C be an arbitrary

d0 × d0 orthonormal matrix. Then, we can re-define B0 := B0C and γ0(u) :=

C�γ0(u). Model (3.3) still holds with these newly defined B0 and γ0(u). Parameter

vector θ0 is also not unique even if B0 is fixed. For example, let c ∈ R
d0 be an

arbitrary constant vector. We can re-define θ0 := θ0 − B0c and γ0(·) := γ0(·) + c,

then model (3.3) is still correct. To fix the identification problem, we can always

appropriately select the constant c such that Eγ0(U) = 0. Next proposition can be

easily proved by noting β0(u) = θ0 +B0γ0(u) and the Sylvester’s rank inequality.

Proposition 3.1. With cov{γ0(Ui)} being of full rank, the linear subspaces spanned

by B0 and cov{β0(Ui)} are the same, i.e. S (cov{β0(Ui)}) = S (B0). If we further

rewrite the model such that E{γ0(Ui)} = 0, then E{β0(Ui)} = θ0.

Because S (B0) = S (Σβ) with Σβ = cov{β0(U)}, we can define B0 = (b1, · · · , bd0) ∈
R

p×d0, where bj (1 ≤ j ≤ d0) are the eigenvectors associated with Σβ’s d0 largest

eigenvalues. As long as Σβ ’s first d0 eigenvalues are mutually different, B0 is unique-

ly identifiable. For convenience, we assume throughout the rest of this Chapter

that the non-zero eigenvalues of Σβ are all different from one another.

As an alternative of model identification, we can also rewrite the model in such
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a way that

B�
0 B0 = Id0 , θ0 ⊥ B0 and var(g1(U)) ≥ . . . ≥ var(gd0(U)) > 0. (3.4)

By Proposition 3.1, it is easy to see that any PVCM satisfying (3.4) is iden-

tifiable. This way of identifying the model is more preferable because it has less

parameters when E{β0(U)} ∈ S (cov{β0(Ui)}), in which case θ0 = 0. This fact

will be used in our test for whether there exists a linear combination of X whose

coefficient does not change with U . This fact can also be used to test whether

there are constant coefficients in SVCM.

We end this section by mentioning relevant ideas of principal functions. Fac-

tor models or principal component analysis that extracts the main informative

variables from a large number of variables are powerful approaches towards multi-

variate analysis. However, most of the models are under linear settings or under

nonlinear framework; see for example Stock and Watson (2002) and Hastie and

Stuetzle (1989). Our approach is under a functional framework.

3.3 Model Estimation

3.3.1 Profile Least-square Estimation of PVCM

PVCM is a semiparametric model, thus the popular nonparametric smoothing

methods such as kernel smoothing and splines can be used for its estimation. In
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this section, we will investigate the model estimation using the kernel smoothing

approach. Estimation based on splines can be investigated similarly.

We firstly consider the estimation of θ0 and B0 under the assumption d0 is

known in advance. The estimation of d0 will be addressed later. Proposition 3.1

motivates a very convenient way to estimate B0 and θ0. Specifically, by the local

linear estimation (see, e.g., Fan and Gijbels (1996)) we can estimate β0(u) by β̂(u),

where β̂(u) is the minimizer of a in

min
a∈Rp,b∈Rp

n−1
n∑

i=1

{
Yi − a�Xi − b�Xi(Ui − u)

}2

Kh(Ui − u), (3.5)

whereKh(u) = K(u/h)/h andK(·) is a kernel function. Consequently, we estimate

Σβ by Σ̂β = n−1
∑{β̂(Ui) − β̄}{β̂(Ui) − β̄}�, where β̄ = n−1

∑
β̂(Ui). We then

estimate θ0 by θ(0)
def
= β̄ and B0 by B(0) def

= (b̂
(0)
1 , · · · , b̂(0)d0

), where b̂
(0)
j is the eigen-

vector associated with the jth largest eigenvalue of Σ̂β for 1 ≤ j ≤ d0. Let A be

an arbitrary matrix and �A stand for a vector constructed by stacking A’s columns.

Denote by ‖A‖ the operation norm, i.e., the maximal absolute singular value of A.

The estimation error for B(0) can be then defined as ‖B̂(0)(B̂(0))� − B0B
�
0 ‖. We

have the following consistency for the estimators.

Theorem 3.1. Under the conditions (C.1)–(C.4) in the section 3.6, we have

‖θ(0) − θ0‖ = Op{h2 + (nh/ log(n))−1/2} and ‖B̂(0)(B̂(0))� − B0B
�
0 ‖ = Op{h2 +

(nh/ log(n))−1/2}.

If parameters B0 and θ0 are temporarily known, we can then estimate the

nonparametric functions in γ0(u) easily by the standard estimation methods for
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varying coefficient models; see for example Fan and Zhang W. (1999). The re-

sulted estimators will be functions of the parameters θ0 and B0. Substituting the

estimators into the model, we get a parametric model nominally, in which the pa-

rameters θ0 and B0 can then be estimated using the standard nonlinear parametric

regression methods. Specifically, consider the local linear smoother of model (3.3)

min
a(u)∈Rp ,b(u)∈Rp

n∑
i=1

{Yi −X�
i θ − a(u)�B�Xi − b(u)�B�Xi(Ui − u)/h}2Kh(Ui − u).

If B and θ are close to the true values, then the minimizer of a(u) is a local linear

estimator of the coefficient functions γ0(u), denoted by

γ̂(u|B, θ) = {Sn(u,B)}−1B�[Ln,0(u)− Sn,0(u)θ (3.6)

−Sn,1(u)B(B�Sn,2(u)B)−1B�(Ln,1(u)− Sn,1(u)θ)],

where

Sn,k(u) =

n∑
i=1

Kh(Ui − u){(Ui − u)/h}kXiX
�
i ,

Ln,k(u) =

n∑
i=1

Kh(Ui − u){(Ui − u)/h}kXiyi,

for k = 0, 1, 2, and

Sn(u,B) = B�{Sn,0(u)− Sn,1(u)B(B�Sn,2(u)B)−1B�Sn,1(u)}B.

Let γ̄(B, θ) = n−1
∑n

i=1 γ̂(Ui|B, θ) and γ̃(u|B, θ) = γ̂(u|B, θ)− γ̄(B, θ).

Substituting γ̃(Ui|θ, B) into the model, we have Yi ≈ X�
i θ+X�

i Bγ̃(Ui|θ, B)+εi,
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i = 1, 2, . . . , n. Thus, we consider

Q(θ, B) = n−1

n∑
i=1

{
Yi −X�

i θ −X�
i Bγ̃(Ui|θ, B)

}2

,

and estimate θ0 and B0 by

(θ̂, B̂) = argmin
θ,B

Q(θ, B). (3.7)

Although the minimization is searched over the whole space, as in many model

estimations an initial estimator is sometimes essential. The initial estimator θ(0)

and B(0) can be used for this purpose. Other robust estimation method such as

the back-fitting method of Wu and Liang (2004) is also helpful. To facilitate the

theoretical investigation, Theorem 3.1 allows us to restrict the parameter space in a

small range of the true parameters Θn = {(θ, B) : ||θ−θ0||+||B−B0|| ≤ M(h2+δn)}
for some constant M > 0.

Theorem 3.2. Suppose the conditions (C.1)–(C.4) in the section 3.6 hold. Let

(θ̂, B̂) = argmin(θ,B)∈Θn
Qn(θ, B). Then

√
n

⎛
⎜⎝ θ̂ − θ0

vec(B̂ −B0)

⎞
⎟⎠ D→ N{0,Σ−1

0 (Σ1 + Σ2)Σ
−1
0 }

in distribution, where

Σ0 = E
{⎛
⎜⎝ X

γ0(U)⊗X

⎞
⎟⎠

⎛
⎜⎝ X

γ0(U)⊗X

⎞
⎟⎠

� }
,
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Σ1 = E

⎧⎪⎨
⎪⎩
[{⎛

⎜⎝ Ip

γ0(U)⊗ I

⎞
⎟⎠+

(⎛
⎜⎝ W (U)

γ0(U)⊗W (U)

⎞
⎟⎠ − E

⎛
⎜⎝ W (U)

γ0(U)⊗W (U)

⎞
⎟⎠)

V (U)
}
Xε

]⊗2

⎫⎪⎬
⎪⎭ ,

Σ2 = E

⎛
⎜⎝ W (U)

γ0(U)⊗W (U)

⎞
⎟⎠B0E{γ0(U)γ�

0 (U)}B�
0 E

⎛
⎜⎝ W (U)

γ0(U)⊗W (U)

⎞
⎟⎠

�

,

with W (U) = E(XX�|U) and V (U) = B0(B
�
0 W (U)B0)

−1B�
0 .

After θ0 and B0 are estimated, we can estimate γ0(u) immediately by γ̂(u|θ̂, B̂)

and have the following limiting distribution.

Theorem 3.3. Under the regularity condition (C.1)-(C.4) in the section 3.6, we

have in distribution

√
nhf̂(u){γ̂(u|B̂, θ̂)− γ0(u)− 1

2
μ2γ

′′
0 (u)h

2} D→

N
(
0, {B�

0 W (u)B0}−1B�
0 W2(u)B0{B�

0 W (u)B0}−1
)
,

where W2(u) =
∫
K2(v)dvE{XX�ε2|U = u}, μ2 =

∫
v2K(v)dv and f̂(u) =

n−1
∑n

i=1 Kh(Ui − u).

Writing the model as a VCM, the estimated coefficient functions are β̂PV CM(u) =

θ̂ + B̂γ̂(u|B̂, θ̂). It follows from Theorems 3.2 and 3.3 that

√
nhf̂(u){β̂PV CM(u)− β0(u)− 1

2
μ2β

′′
0(u)h

2} D→ N{0,ΣPV CM(u)},

where ΣPV CM(u) = B0{B�
0 W (u)B0}−1B�

0 W2(u)B0{B�
0 W (u)B0}−1B0. However,

if we treat the model as a VCM and estimate it by the method in Fan and Zhang
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W. (1999), then the estimator β̂V CM(u) has

√
nhf̂(u){β̂V CM(u)− β0(u)− 1

2
μ2β

′′
0(u)h

2} D→ N{0,ΣV CM(u)},

where ΣV CM(u) = {W (u)}−1W2(u){W (u)}−1; see Fan and Zhang W. (1999). If

d0 < p, it is easy to see that

ΣPV CM(u) < ΣV CM(u),

indicating that the estimator based on a PVCM is indeed more efficient than that

based on a VCM. The smaller d0 is, the more efficient is PVCM compared with

VCM.

To make statistical inference, we also need to estimate the variance-covariance

matrices in the limiting distributions. These matrices can be estimated simply by

their sample versions with the unknown functions and parameters being replaced

by their estimators respectively. By the local linear kernel smoothing, W (u) can

be estimated consistently by

Ŵ (u) =
n∑

i=1

wn,h(Ui − u)XiX
�
i /

n∑
i=1

wn,h(Ui − u),

where wn,h(Ui−u) = Kh(Ui−u)
∑n

i=1Kh(Ui−u){(Ui−u)/h}2−Kh(Ui−u){(Ui−
u)/h}∑n

i=1Kh(Ui − u){(Ui − u)/h}, and E{XX�ε2|U = u} by

n∑
i=1

wn,h(Ui − u)XiX
�
i {Yi −X�

i θ̂ − γ̂(Ui)B̂
�Xi}2/

n∑
i=1

wn,h(Ui − u).

As an example of hypothesis testing, we consider whether there is a separate linear
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part in the model under identification (3.4), i.e. whether there exists a linear

combination θ�0 X such that θ�0 B0 = 0 and θ0 	= 0. The corresponding hypothesis

is

H0 : (I −B0B
�
0 )θ0 	= 0.

With the identification of (3.4), we can construct a test statistic

ST = n(θ̂ − θ0)
�P̂ (P̂S00P̂ )+P̂ (θ̂ − θ0),

where P̂ = (I − B̂B̂�) and S00 is the submatrix of estimated Σ−1
0 (Σ1 + Σ2)Σ

−1
0

in its first p rows and first p columns, and A+ denotes the Moore-Penrose inverse

of matrix A. We get the following corollary from rank(Ip − B0B
�
0 ) = p − d0, the

identification (3.4) and Theorem 3.2.

Corollary 1. Under the model assumption (C.1) and (C.4) and H0, with identi-

fication (3.4) we have ST
D→ χ2(p− d0) as n → ∞.

By Corollary 1, we reject H0 if ST > χ2
1−α(p− d0) with significance level α.

Next, we consider the estimation of d0. To this end, we propose here the

following BIC-type criterion:

BIC(d) = log σ̂2
d + d× log(nh)

nh
, (3.8)

where d is the working number of principal functions, nh is the effective sample
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size in nonparametric regression, and σ̂2
d is given by

σ̂2
d = n−1

n∑
k=1

{
Yk −X�

k θ̂ − γ̂�(Uk)B̂
�Xk

}2

,

where estimators θ̂, B̂ and γ̂(Ui) are all obtained under the working number, d, of

principal functions. For the purpose of completeness, define BIC(0) = n−1
∑

(Yi −
Ȳ )2 with Ȳ = n−1

∑
Yi. Then d0 is estimated by d̂ = argmin0≤d≤pBIC(d).

Theorem 3.4. Assuming the technical conditions (C.1)–(C.4) as given in the sec-

tion 3.6, we have P (d̂ = d0) → 1.

By Theorem 3.4, it is also easy to see that Theorems 3.1 - 3.3 still hold if we replace

d0 by d̂.

3.3.2 Refinement of Estimation Based on the Adaptive Las-

so Penalty

In this section, we estimate the model by incorporating the kernel smoothing

with the L1 penalty. As well demonstrated in the literature, the L1 penalty ap-

proach has several advantages. Specifically for PVCM, the L1 penalty can achieve

the following goals simultaneously. (1) To identify variables that have cross effect

with the index variable on the response, and those that only have simple linear

effect. (2) To identify abundant variables and automatically remove them from

the model. (3) To improve the estimation efficiency. Moreover, the L1 penalty

approach can estimate the model well even when the number of covariates is large.



3.3 Model Estimation 71

Let α = (α1, . . . , αp(d0+1))
� = (θ�, vec(B)�)�. Let S = {1, 2, . . . , p(d0 + 1)}

and A = {s ∈ S : αs 	= 0}. Then A is the index set that contains only non-

zeros elements in α. Following Zou (2006), consider the following adaptive Lasso

estimation,

α̃(n) = (θ̃�n , vec(B̃n)
�)� = argmin

(θ,B)

{
Q(θ, B) + λn

p∑
i=1

(ŵk|θk|+
d0∑
j=1

ŵij|Bij|)
}

= arg min
α∈RS

{
Q(θ, B) + λn

p(d0+1)∑
s=1

ŵs|αs|
}
, (3.9)

where ŵs = 1/|α̂s|τ with τ > 0 and α̂s is the estimator of α defined in (3.7). Let

An = {s ∈ S : α̃
(n)
s 	= 0}. Then An is the variables that are selected in either the

linear part or nonlinear part of PVCM or both. If a variable is not selected either

in the linear or the nonlinear part, the variable is abundant and will be removed

automatically from the model.

Theorem 3.5. Under the conditions of Theorem 3.2 and λn/
√
n → 0, λnn

τ−1

2 →
∞, we have the following asymptotic properties for the estimators θ̃n and B̃n.

(1) The coefficients with nonzero values in both θ0 and B0 can be consistently

identified, i.e.

lim
n→∞

P (An = A ) = 1.

(2) The estimated parameters achieve the oracle efficiency where the zero coef-

ficients are known and removed in advance, i.e.

√
n

⎛
⎜⎝ θ̃ − θ0

vec(B̃ −B0)

⎞
⎟⎠

A

D→ N
{
0,
(
(Σ0)A

)−1(
Σ1 + Σ2

)
A

(
(Σ0)A

)−1}
,(3.10)
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where notation MA denotes the submatrix of M with jth row (and jth col-

umn if M is a matrix) being removed from matrix M , where j ∈ Ā .

In practice, the selection of the tuning parameter λn is essential in the esti-

mation. We found the commonly used BIC criterion works well, which is stated

below. To indicate the dependence of the estimators on the tuning parameter λ,

write the estimators of (3.9) as θ̃λ and B̃λ respectively. Define

BIC(λ) = log{Q(θ̃λ, B̃λ)}+ log(n)
pn
n
,

where pn is the number of nonzero values in θ̃λ and B̃λ. The asymptotic perfor-

mance of the BIC in selecting λ can be similarly discussed as in Wang and Xia

(2009). The details are omitted here.

3.4 Simulation Studies

Consider two varying coefficient models where the covariates Xi1 ≡ 1, and

Xijs (1 < j ≤ p) are simulated from a multivariate normal distribution with

cov(Xij1, Xij2) = 0.5|j1−j2| for any j1, j2 ≥ 2, and Ui is simulated from U [0, 1], and

ε from N(0, 1). The coefficients and principal functions are respectively as follows.

Model 1. θ0 = b0, B0 = b1, γ0(u) = 10u(1− u)− 5/3,

Model 2. θ0 = b0, B0 = (b2, b3), γ0(u) = {cos(2πu), sin(2πu)}�,
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where

b0 = (1, 1, . . . , 1︸ ︷︷ ︸
7

, 0, . . . , 0)�, b1 = (1,−1, . . . , 1,−1︸ ︷︷ ︸
[(p−1)/3]

, 0, . . . , 0)�,

b2 = (1, . . . , 1︸ ︷︷ ︸
[(p−1)/3]

, 0, . . . , 0)� and b3 = (0, . . . , 0︸ ︷︷ ︸
[(p−1)/3]

, 1, . . . , 1︸ ︷︷ ︸
[(p−1)/3]

, 0 . . . , 0)�. As one can see,

Model 1 has 1 principal function (d0 = 1) and Model 2 has 2 (d0 = 2).

In the following calculation, we use the Newton-Rahpson algorithm to solve the

minimization problem in (3.7). For the minimization in (3.9), we use the quadratic

norm to approximate the L1 norm and then the Newton-Rahpson algorithm to

solve the minimization numerically.

For each model setting, a total of 500 simulation replications are conducted.

For each simulation replication, we first compute the conventional varying coeffi-

cient estimator β̂(u) according to (3.5). See, e.g., Fan and Zhang (1999) for more

details. The bandwidth h is selected by leave-one-out cross-validation. The same

bandwidth is then used throughout the rest of the entire computational process,

except for the estimation of B0 and θ0 where the bandwidth is multiplied by n−0.1

for the purpose of undersmoothing; see Carroll et al (1997). We apply the pro-

posed BIC criterion (3.8) to estimate the number of principal functions, d̂. The

percentage of replications in which the number of principal functions is correctly

estimated is summarized in the third column of Table 1. In the column, as sample

size increases the percentage of replications with d̂ = d0 converges 100% quickly,

confirming that d̂ is indeed a consistent estimator for d0.

As shown in Theorem 3.5, the proposed estimation with L1 penalty can do the
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variable selection. To check the variable selection in the linear part and nonlinear

part, we count in each estimation the number of zero rows (i.e. the rows in which

all elements are zeros) in the estimated θ and B respectively. Note that if a row of

estimated θ is zero, it means the corresponding variable is not selected in the linear

part. Similarly, if all the elements in a row of B are zero, it means the corresponding

variable is removed from the nonlinear part. From the fourth and fifth columns

of Table 1, by comparing the numbers with those in the square brackets that

correspond to true number of zeros, we see that as sample size increases, the

adaptive L1 penalty is consistent in selecting the variables in the linear part or

nonlinear part.

We evaluate the overall model estimation performance by checking the estima-

tion error of the coefficients. With estimated d0, we then compute θ̂ and B̂ and

thus β̂(ui) = θ̂ + B̂γ̂(ui). The estimation error is evaluated by

n−1

n∑
i=1

|β̂(ui)− θ0 −B0γ0(ui)|,

where |�| = (|�1| + |�2| + . . . + |�p|)/p for any vector � = (�1, . . . , �p)
�. The aver-

age error of estimators across the 500 simulation replications are summarized in

columns 6, 7 and 8 of Table 3.1. In these columns, as the sample size increases,

the error steadily shrinks towards 0. This trend confirms that all the estimator

are consistent. However, treating a PVCM as a VCM, the estimation efficiency

will be very much adversely affected by comparing column 7 with column 6. By

comparing the eighth column with the seventh column, we can see that imposing

the adaptive L1 penalty, the estimation efficiency can be substantially improved,

especially when the number of covariates is large.
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Below figure 3.2 shows the simulation results of the testing hypothesis H0 with

significance level 0.05. In each panel, the black, blue, green and red lines correspond

to sample sizes 100, 200, 500 and 1000 respectively. The horizontal dash line marks

the significance level 0.05.
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Figure 3.2 The simulation results based on 5000 replications under each model
setting.

Next, we check the performance of the proposed statistical testing for the hy-

pothesis on the linear part. However, the following simulations are done with small

p, since the testing method may not work well when p is large as being understood

in the literature. We allow the linear part θ0 to change with c, i.e. θ = c× b0. The
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bigger c is, the more influential the linear part is. If c = 0, the models have no

linear part. We also change the signal-to-noise ratios (SNR) by changing the vari-

ance of ε. With significance level α = 0.05, we calculate the rejection frequencies

for H0 : |θ0| = 0 under model specification (3.4). In both models, when c = 0 there

is not linear part, and thus the rejection frequency should be around 0.05. As c in-

creases, the influence of the linear parts increases. As a consequence, the rejection

frequencies should also increase. Our simulation results for c = 0, 0.05, 0.1, 0.15

and 0.2 reported in Figure 3.2 support our theory quite well, indicating that the

hypothesis testing statistic has reasonable power with roughly correct significant

level. It is also reasonable to see that as the number of principal components in-

creases, the power of hypothesis testing decreases because the freedom of the linear

part is reduced.

3.5 A Real Example

The Boston House Price Data of Harrison and Rubinfeld (1978) has attracted

lots of attention of statisticians. Various models have been applied to it, such as the

linear regression model (Belsley et al (1980)), the additive model (Fan and Jiang

(2005)) and the varying coefficient model (Fan and Huang (2006)). The response

of interest is the median value of owner-occupied homes (MEDV, in $1000) with 13

covariates: lower status of the population (LSTAT), per capita crime rate (CRIM)

by town, average number of rooms per dwelling (RM), full-value property-tax rate

per $10,000 (TAX), nitrogen dioxides concentration (NOX, parts per 10 million),

pupil-teacher ratio by town (PTRATIO), proportion of owner-occupied units built
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prior to 1940 (AGE), proportion of residential land zoned for lots over 25,000 square

feet (ZN), proportion of non-retail business acres per town (INDUS), Charles River

dummy variable (1 if tract bounds river; 0 otherwise; CHAS), weighted distances

to five Boston employment centres (DIS), index of accessibility to radial highways

(RAD), 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town (B).

Fan and Huang (2005) proposed to fit the data with a semi-varying coefficient

model with U =
√
LSTAT as the index variable. However, as the number of

covariates p = 13 is too big for a varying coefficient model to be estimated well,

Fan and Huang (2005) only used 6 variables in their model. With the superior

estimation efficiency of PVCM over CVM, we can include all the variables into the

PVCM. Next, we fit the PVCM to the data with all the variables. We standardize

all the variables before fitting the model.

As we mentioned in the first section, remarkably similar shapes are shared

among different estimated varying coefficients. The eigenvalues of the estimated Σβ

suggest that the number of principal functions is d0 = 1. Such a conclusion is more

formally confirmed by our BIC criterion (3.8). The BIC values for d0 = 0(linear

model), d0 = 1, . . . , and d0 = 10 are respectively -1.1593, -1.7199, -1.6950, -1.5482,

-1.4933, -1.2018, -0.8020, -0.5044, -0.2011 and -0.1034. Therefore, the number of

principal functions is selected as 1. The corresponding parameters in the model are

estimated and listed in Table 2. It is interesting to see that some of the covariates

are eliminated from the model such as AGE, INDUS and CHAS because they do

not appear in either the linear part or the nonlinear part. In a different model

that only includs the variables in the top panel of Table 2, AGE was also removed

by Fan and Huang (2006) based on a statistical testing approach. Some other



3.5 A Real Example 78

covariates have no cross effect with LSTAT on the response, such as TAX, NOX,

ZN and DIS.

The principal function γ̂(u) is estimated and shown in Figure 3.3 together with

its centralized pointwise 95% confidence band based on Theorem 3.3. Its 95%
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Figure 3.3 The estimated principal function (in the middle) for the real dataset.

centralized point wise confidence band is denoted by the dash lines.

To further verify the model appropriateness to the data, we consider the predic-

tion of the PVCM and compare it with linear regression model and the conventional

varying coefficient model (VCM). We randomly partition all the 506 observations

into a training set and a prediction set. We estimate the PVCM based on the

training set, and use the estimated model to make prediction for the prediction

set. With different size of training set and prediction set, the average prediction

errors based on 1000 random partitions are listed on Table 3.3. It is easy to see

from the table that the conventional VCM has very poor prediction capability, and



3.6 Proofs 79

is much worse than the simple linear regression model. However, PVCM with one

principal function as identified by the proposed method has much better prediction

ability than VCM and even substantially better than the linear regression model.

The prediction ability can be further improved when the L1 penalty is imposed

in the estimation, though the primary purpose of imposing the L1 penalty is for

variable selection.

3.6 Proofs

To establish the asymptotic theory for the proposed estimation methods, we

need the following technical assumptions.

(C.1) (The Index Variable). The index variable U has a bounded compact support

D and a probability density function f(u), which is Lipschitz continuous and

bounded away from 0 on D .

(C.2) (Smoothness Assumptions). Every component of W (u) = E(XX�|U = u)

and L(u) = E(XY �|U = u) is Lipschitz continuous. In addition to that, we

assume β0(u) has continuous second order derivatives in u ∈ D . The matrix

W (u) is positive definite for all u ∈ D .

(C.3) (Moment Conditions). There exist s > 2 and δ < 2 − s−1, such that

E‖X‖s < ∞ with n2δ−1h → ∞, where ‖ · ‖ stands for a typical L2 nor-

m.

(C.4) (The Kernel and Bandwidth). We assume that the kernel function K(·) is a
symmetric density function with a compact support. Moreover, we assume
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h ∝ n−c with c > 0 such that
√
nh2 → 0 and nh/ logn → ∞.

We remark that the above regularity conditions are rather standard. Similar

assumptions have been used in, for example, Zhang W. Y. et al (2002) and Fan and

Huang (2005). Let μk =
∫
tkK(t). Then by (C.4) we have μ0 = 1 and μ1 = 0. For

ease of exposition, we further standardize K(·) such that μ2 = 1 in the following

proofs.

Lemma 3.1. Under the regularity conditions (C.1)-(C.4), for the estimator defined

in (3.6) we have the following expansion

γ̂(u|B, θ) = γ0(u) +
1

2
μ2γ

′′
0 (u)h

2 + {B�W (u)B}−1{nf(u)}−1B�
n∑

i=1

Kh(Uiu)Xiεi

+{B�W (u)B}−1B�W (u)(B0 − B)γ0(u) + {B�W (u)B}−1B�W (u)(θ0 − θ)

+Op(h
3 + hδn + δ2n)

uniformly for any u ∈ U and (θ, B) ∈ Θn.

Proof. Write Yi −X�
i θ = εi +X�

i Bγ0(Ui) +X�
i (B0 −B)γ0(Ui) +X�

i (θ0 − θ).

Thus

n∑
i=1

Kh(Uiu)Xi{Yi −X�
i θ} =

n∑
i=1

Kh(Uiu)Xiεi +

n∑
i=1

Kh(Uiu)XiX
�
i Bγ0(Ui) (3.11)

+
n∑

i=1

Kh(Uiu)XiX
�
i (B0 − B)γ0(Ui) + Sn(u)(θ0 − θ).
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Let sn(u) =
∑n

i=1Kh(Uiu). By Mack and Silverman (1982), we have uniformly for

u ∈ U , s−1
n (u) = (nf(u))−1(1 +Op(h

2 + δn)), and

1

n

n∑
i=1

Kh(Uiu)XiX
�
i = f(u)W (u)(1 +Op(h

2 + δn)),
1

n

n∑
i=1

Kh(Uiu)Xiεi = Op(δn).

Thus,

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i = W (u) +Op(h

2 + δn),

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i γ0(Ui) = W (u)γ0(u) +Op(h

2 + δn),

s−1
n (u)

n∑
i=1

Kh(Uiu)Xiεi = {nf(u)}−1
n∑

i=1

Kh(Uiu)Xiεi +Op(h
2δn + δ2n),

and

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i (B0−B)γ0(Ui) = W (u)(B0−B)γ0(u)+‖B0−B‖Op(h

2+δn)

uniformly for u ∈ U . Combining the above results yields that uniformly in u ∈ U ,

s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i Bγ0(Ui)

= s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i Bγ0(u) + s−1

n (u)

n∑
i=1

Kh(Uiu)XiX
�
i B{γ0(Ui)− γ0(u)}

= s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i Bγ0(u)

+s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i B{γ ′

0(u)(Uiu) +
1

2
μ2γ

′′
0 (u)(Uiu)

2 +Op(U
3
iu)}

= s−1
n (u)

n∑
i=1

Kh(Uiu)XiX
�
i Bγ0(u) + {f−1(u)f ′(u)W ′(u)Bγ ′

0(u) +
1

2
μ2W (u)Bγ ′′

0 (u)}h2

+Op(h
3).
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For (θ, B) ∈ Θn, we have

γ̂(u|B, θ) = (B�Sn(u)B)−1B�
n∑

i=1

Kh(Uiu)Xi{Yi −X�
i θ}

= (B�s−1
n (u)Sn(u)B)−1B�

(
s−1
n (u)

n∑
i=1

Kh(Uiu)Xi{Yi −X�
i θ}

)

= γ0(u) +
1

2
μ2γ

′′
0 (u)h

2 + {B�W (u)B}−1{nf(u)}−1B�
n∑

i=1

Kh(Uiu)Xiεi

+{B�W (u)B}−1B�W (u)(B0 − B)γ0(u) + {B�W (u)B}−1B�W (u)(θ0 − θ)

+Op(h
3 + hδn + δ2n).

As a special case,

γ̂(u|B0, θ0) = γ0(u) +
1

2
μ2γ

′′
0 (u)h

2 + {B�
0 W (u)B0}−1{nf(u)}−1B�

0

n∑
i=1

Kh(Uiu)Xiεi

+Op(h
3 + hδn + δ2n). (3.12)

We have completed the proof. �

Proof of Theorems 3.1.

By Theorem 1 of Fan and Zhang (2000) or Lemma 3.1, we have

sup
u∈D

|β̂(u)− β0(u)| = Op(h
2 + δn), (3.13)

where δn = {nh/ log(n)}−1/2. Theorems 3.1 follows immediately from (3.13). �

Proof of Theorem 3.2.
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Let α = (θ�, vec(B)�)�, α0 = (α0,1, ..., α0,p(d0+1))
� = (θ�0 , vec(B0)

�)�, α̂ =

(θ̂�, vec(B̂)�)� and Q(α) = Q(θ, B). By Taylor expansion about α0, we have

0 =
∂Q(α̂)

∂α
=

∂Q(α0)

∂α
+

∂2Q(α∗)
∂α∂α� (α̂− α0),

where α∗ lies on the line segment between α0 and α̂. Let Δi(α) = Yi − X�
i θ −

X�
i Bγ̃(Ui), ηi(α) = Yi −X�

i θ−X�
i Bγ0(Ui), then Δi(α) = ηi(α)−X�

i B(γ̃(Ui)−
γ0(Ui)), ηi(α0) = εi, and

Q(α) =

n∑
i=1

Δ2
i (α).

Let Q0(α) =
∑n

i=1 η
2
i (α). From Lemma 3.1, when ||α−α0|| = Op(h

2 + δn) we have

sup
u∈U

‖γ̃(u)− γ0(u)‖ = Op(h
2 + δn) = op(1).

Thus Δi(α) = ηi(α) − X�
i B(γ̃(Ui) − γ0(Ui)) = ηi(α) + op(1), ∂Δi(α)/∂α =

∂ηi(α)/∂α + op(1). It follows that

1

2n

∂2Q(α)

∂α∂α� =
1

n

n∑
i=1

∂Δi(α)

∂α

∂Δi(α)

∂α� +
1

n

n∑
i=1

Δi(α)
∂2Δi(α)

∂α∂α�

=
1

n

n∑
i=1

∂ηi(α)

∂α

∂ηi(α)

∂α� +
1

n

n∑
i=1

ηi(α)
∂2ηi(α)

∂α∂α� + op(1)

=
1

n

n∑
i=1

∂ηi(α0)

∂α

∂ηi(α0)

∂α� +
1

n

n∑
i=1

ηi(α0)
∂2ηi(α0)

∂α∂α� + op(1)

→ E
{∂η1(α0)

∂α

∂η1(α0)

∂α�

}
= W, in probability.
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In the last step, ∂2ηi(α0)/(∂α∂α
�) = 0 is used. Write

1

2
√
n

∂Q(α0)

∂α
=

1√
n

n∑
i=1

{ηi(α0)−X�
i B0(γ̃(Ui)−γ0(Ui))}{∂ηi(α0)

∂α
+
∂Δi(α0)

∂α
−∂ηi(α0)

∂α
}.

(3.14)

Let Zn0 = Zn1 + Zn2 with Zn1 = n−1/2
∑n

i=1 ηi(α0)∂ηi(α0)/∂α and

Zn2 =
1√
n

n∑
i=1

ηi(α0)
(∂Δi(α0)

∂α
−∂ηi(α0)

∂α

)
− 1√

n

n∑
i=1

X�
i B0(γ̃(Ui)−γ0(Ui))

∂ηi(α0)

∂α
.

By Lemma 3.1, we have

∣∣∣ 1

2
√
n

∂Q(α0)

∂α
− Zn0

∣∣∣ =
∣∣∣ 1√

n

n∑
i=1

X�
i B0(γ̃(Ui)− γ0(Ui))

(∂Δi(α0)

∂α
− ∂ηi(α0)

∂α

)∣∣∣
≤ √

n max
1≤i≤n

|X�
i B0(γ̃(Ui)− γ0(Ui))| max

1≤i≤n

∥∥∥∂Δi(α0)

∂α
− ∂ηi(α0)

∂α

∥∥∥
=

√
nOp(h

2 + δn)Op(h
2 + δn) = op(1).

It is easy to check that

Zn1 = −n−1/2
n∑

i=1

⎛
⎜⎝ Xi

γ0(Ui)⊗Xi

⎞
⎟⎠ εi.

Let �(U) = (1,γ0(U)�)� ⊗ W (U) and �̄ = E�(U). Write Zn2 = n1/2(En1 − En2),

where

En1 = n−1/2
n∑

i=1

ηi(α0)
(∂Δi(α0)

∂α
− ∂ηi(α0)

∂α

)
,

En2 = n−1/2
n∑

i=1

X�
i B0(γ̃(Ui)− γ0(Ui))

∂ηi(α0)

∂α
.
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Under assumptions (C.1)-(C.4), we can show that

En1 = op(1) (3.15)

and

En2 =
1

2
E{(�(U)− �̄)B0γ

′′
0 (U)}n1/2h2 +

1√
n

n∑
j=1

(�(Uj)− �̄)V (Uj)Xjεj

+�̄B0
1√
n

n∑
i=1

γ0(Ui) + op(1). (3.16)

Thus, we have

Zn2 =
1

2
E{(�(U)− �̄)B0γ

′′
0 (U)}n1/2h2 +

1√
n

n∑
j=1

(�(Uj)− �̄)V (Uj)Xjεj

+

⎛
⎜⎝ EW (U)

E{γ0(U)⊗W (U)}

⎞
⎟⎠B0

1√
n

n∑
i=1

γ0(Ui) + op(1),

where W (u) and V (u) are defined in Theorem 3.2. By the Central Limit Theorem

(CLT), we have

Zn1 +
1√
n

n∑
j=1

(�(Uj)− �̄)V (Uj)Xjεj → N(0,Σ1),

where Σ1 is given in Theorem 3.2. On the other hand, since Eγ0(U) = 0, we have

n−1/2
n∑

i=1

γ0(Ui) → N
(
0, E{γ0(U)γ�

0 (U)}
)
.

Theorem 3.2 follows from last three equations and (3.14).
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Now, we turn to prove (3.15) and (3.16). We only give the details for the latter.

Decompose En2 into two terms.

En2 =
1√
n

n∑
i=1

X�
i B0(γ̂(Ui)−γ0(Ui))

∂ηi(α0)

∂α
− 1√

n

n∑
i=1

X�
i B0γ̄

∂ηi(α0)

∂α
� E1

n2−E2
n2,

(3.17)

where γ̂(Ui) = γ̂(Ui|θ0, B0) and γ̄ = n−1
∑n

i=1 γ̂(Ui). From Lemma 3.1, we have

E1
n2 =

1√
n

n∑
i=1

⎛
⎜⎝ Xi

γ0(Ui)⊗Xi

⎞
⎟⎠X�

i B0{1
2
γ ′′
0 (Ui)h

2 +Rn(Ui) +Op(h
3 + hδn + δ2n)},

where Rn(Ui) = {nf(Ui)B
�
0 W (Ui)B0}−1B�

0

∑n
j=1Kh(Uij)Xjεj. It follows from the

laws of large numbers

1√
n

n∑
i=1

⎛
⎜⎝ Xi

γ0(Ui)⊗Xi

⎞
⎟⎠X�

i B0γ
′′
0 (Ui)h

2 = E{�(U)B0γ
′′
0 (U)}n1/2h2 + op(1).(3.18)

As f(u) is bounded away from 0, we then have

1√
n

n∑
i=1

⎛
⎜⎝ Xi

γ0(Ui)⊗Xi

⎞
⎟⎠X�

i B0Rn(Ui) =
1√
n

n∑
j=1

{ n∑
i=1

⎛
⎜⎝ Xi

γ0(Ui)⊗Xi

⎞
⎟⎠X�

i V (Ui)

× 1

nf(Ui)
Kh(Uij)

}
Xjεj

=
1√
n

n∑
j=1

�(Uj)V (Uj)Xjεj +Δn, (3.19)
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where

Δn =
1√
n

n∑
j=1

{ n∑
i=1

⎛
⎜⎝ Xi

γ0(Ui)⊗Xi

⎞
⎟⎠X�

i V (Ui)
1

nf(Ui)
Kh(Uij)− �(Uj)V (Uj)

}
Xjεj.

By simple calculation, we have V ar(Δn) = O{(h2 + δn)
2} and thus

Δn = Op(h
2 + δn). (3.20)

For E2
n2, by Lemma 3.1 we have γ̄ = Op(h

2 + δn),

γ̄ =
1

n

n∑
i=1

γ0(Ui) +
1

2
Eγ ′′

0 (U)h2 +
1

n

n∑
i=1

(B�
0 W (Ui)B0)

−1B�
0 Xiεi + op(n

−1/2)

and

1

n

n∑
i=1

∂ηi(α0)

∂α
X�

i =
1

n

n∑
i=1

⎛
⎜⎝ XiX

�
i

γ0(Ui)⊗XiX
�
i

⎞
⎟⎠ = �̄+Op(n

−1/2).

It follows from Lemma 3.1 that

E2
n2 = �̄

{
B0

1√
n

n∑
i=1

γ0(Ui) +
1

2
B0Eγ ′′

0 (U)
√
nh2 +

1√
n

n∑
i=1

V (Ui)Xiεi

}
+ op(1).

(3.21)

Equation (3.16) follows from (3.17)-(3.21) and the following fact

�̄B0
1

2
Eγ ′′

0 (U)h2 − E{�(U)B0
1

2
γ ′′
0 (U)}n−1/2h2 = −1

2
E{(�(U)− �̄)B0γ

′′
0 (U)}h2.

This completes the proof. �
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Proof of Theorem 3.3. The result of theorem 3.3 can be easily seen from

(3.12).

Proof of Theorem 3.4.

For ease of exposition, denote Ui − u by Uiu and Ui − Uj by Uij. For any fixed

d, denote the estimators of θ0, B0 and γ0(u) by θ̂d, B̂d and γ̂d(u) respectively. By

the proof of Theorem 1, θ̂d − θ0 = Op(h
2 + δn), and that there exist nonrandom

matrix Bd and function γd(u) such that

B̂d − Bd = Op(h
2 + δn), γ̂d(u)− γd(u) = Op(h

2 + δn)

uniformly for u ∈ D . By the definition of d0, if d ≥ d0 then Bdγd(u) = B0γ0(u),

and if d < d0 then E||B0γ0(U) − Bdγd(U)|| > 0. It is easy to see by the above

facts and the CLT that

σ̂2
d = n−1

n∑
i=1

{Yi − (θ0 +Bdγd(Ui))
�Xi}2 +Op(h

2 + δn)

= n−1

n∑
i=1

{εi − (B0γ0(Ui)− Bdγd(Ui))
�Xi}2 +Op(h

2 + δn)

= n−1
n∑

i=1

ε2i − 2n−1
n∑

i=1

εi(B0γ0(Ui)− Bdγd(Ui))
�Xi

+n−1

n∑
i=1

{(B0γ0(Ui)− Bdγd(Ui))
�Xi}2 +Op(h

2 + δn)

= σ2 + E{(B0γ0(U)− Bdγd(U))�X}2 +Op(h
2 + δn + n−1/2). (3.22)
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Therefore, as a special case we have σ̂d0 = σ2 +Op(h
2 + δn + n−1/2). Note that

E{(B0γ0(U)− Bdγd(U))�X}2 = E{(B0γ0(U)−Bdγd(U))�W (U)(B0γ0(U)− Bdγd(U))}

≥ λ1(W (u))E||B0γ0(U)− Bdγd(U)|| def
= c0 > 0.

Therefore, for d < d0 we have σ̂2
d ≥ σ2

d0
+ c0 +Op(h

2 + δn + n−1/2). Therefore

P

{
BIC(d) > BIC(d0)

}
→ 1 for any d < d0. (3.23)

Case 2. (d ≥ d0, overfitted model) For ease of exposition, we only consider the

case that εi is independent of (Xi, Ui). If d > d0, following the same argument of

Theorem 3.2 and Lemma 3.1 we have θ̂d − θ0 = Op(n
−1/2) and

Bdγd(u)− B0γ0(u) =
1

2
μ2Bdγ

′′
d (u)h

2 +Bd{nf(u)B�
d W (u)Bd}−1B�

d

n∑
i=1

Kh(Uiu)Xiεi

+Op(n
−1/2 + h3 + hδn + δ2n).

where Op(n
−1/2 + h3 + hδn + δ2n) are independent of εi. Thus, by CLT we have

σ̂2
d = n−1

n∑
j=1

(
εj − 1

2
μ2Bdγ

′′
d (Uj)h

2 −Bd{nf(Uj)B
�
d W (Uj)Bd}−1B�

d

n∑
i=1

Kh(Uij)Xiεi

)2

+Op{n−1/2(n−1/2 + h3 + hδn + δ2n)}

= n−1
n∑

i=1

ε2i − 2n−1
n∑

j=1

εiBd{nf(Uj)B
�
d W (Uj)Bd}−1B�

d

n∑
i=1

Kh(Uij)Xiεi

+
1

4
μ2
2E{Bdγ

′′
d (U)}2h4 +Op((nh)

−1 + n−1/2h2 + n−1).



3.6 Proofs 90

It is easy to see that

V ar(n−1

n∑
j=1

εiBd{nf(Uj)B
�
d W (Uj)Bd}−1B�

d

n∑
i=1

Kh(Uij)Xiεi) = O(
1

n2h
).

Note that Bdγ
′′
d (U) are the same for different d ≥ d0. Thus, we have

σ̂2
d = σ̂2

d0
+Op{(nh)−1 + n−1/2h2}.

It follows that log σ̂2
d − log σ̂2

d0
= Op{(nh)−1+n−1/2h2}. As a consequence, we have

BIC(d)− BIC(d0) = (d− d0)
log(nh)

nh
+Op{(nh)−1 + n−1/2h2},

where the first term on the right hand side dominates under the condition (C.4).

Hence,

P
{
BIC(d) > BIC(d0)

}
→ 1 for any d > d0. (3.24)

Equations (3.23) and (3.24) together imply that P{BIC(d) > BIC(d0)} → 1. This

further implies that P (d̂ = d0) = 1. �

Proof of Theorem 3.5 .

The proof is an adaption to our case of Zou (2006). We first show (3.10).

Let α̃(n) = α0 + u/
√
n where u = (u1, . . . , uS)

� ∈ RS, the objective function

(3.9) can be written as a function of u as

Q̃n(u) = Qn(α0 +
u√
n
) + λn

S∑
s=1

ŵs|α0,s +
u√
n
|.
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Let ũ = argminu∈RS Q̃n(u) and obviously Q̃n(u) is minimized at ũn =
√
n(α̃(n) −

α0). Next, write

Dn(u) = Q̃n(u)− Q̃n(0)

=
(
Qn(α0 +

u√
n
)−Qn(α0)

)
+ λn

S∑
s=1

ŵs

(|α0,s +
us√
n
| − |α0,s|

)
≡ I1,n(u) + I2,n(u),

where I1,n(u) = Qn(α0 +
u√
n
) − Qn(α0) is due to the loss function and I2,n(u) is

due to the penalty term. From the proof of theorem 2, we know that

1

2n

∂2Q(α0)

∂α∂α� → Σ0 in probability,

1

2
n− 1

2

∂Q(α0)

∂α

D→ Z = N(0,Σ1 + Σ2).

Thus the loss function term

I1,n(u) =
1√
n
u�∂Q(α0)

∂α
+

1

2n
u�∂

2Q(α0)

∂α∂α� u(1 + op(1))
D→ 2u�Z + u�Σ0u.

Now, we consider the limiting behavior of the penalty term I2,n(u). If s ∈ A , that

is α0,s 	= 0, then ŵs → |α0,s|−τ in probability and
√
n(|α0,s + us/

√
n| − |α0,s|) →

ussgn(α0,s). Since λn/
√
n → 0, we have

λn√
n
ŵs

√
n(|α0,s + us/

√
n| − |α0,s|) → 0.

If s 	∈ A then
√
n(|α0,s + us/

√
n| − |α0,s|) = |us|. Since

√
nα̂n = Op(1) and

λnn
τ−1

2 → ∞, we have λn√
n
ŵs = λnn

τ−1

2 |√nα̂
(n)
s |−τ → ∞ in probability. It follows
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that

Dn(u) ⇒ D(u) =

⎧⎪⎨
⎪⎩

2(uA )�ZA + (uA )�(Σ0)A (uA ), if us = 0, ∀s 	∈ A

∞, otherwise ,

where uA and ZA are the j-th (j ∈ Ā ) elements deleted from u and Z respectively.

Note that Dn(u) is convex, and the unique minimum of D(u) is

umin =
( −

(
(Σ0)A

)−1

ZA

0

)
,

where 0 denotes a vector of zeros. Following the result of epi-convergence, we have

α̃
(n)
A

D→
(
(Σ0)A

)−1

ZA = N

(
0,
(
(Σ0)A

)−1

(Σ1 + Σ2)A

(
(Σ0)A

)−1
)

(3.25)

and α̃
(n)

Ā
→ 0. Now we prove the consistency part. It suffices to show that ∀s ∈ Ā ,

P (s ∈ An) → 0. By the KKT optimality conditions,

1√
n

∂Qn(α̃
(n))

∂αs
+

λn√
n
ŵssgn(α̃

(n)
s ) = 0.

If s ∈ Ā , then

λn√
n
ŵs = λnn

τ−1

2 |√nα̂(n)
s |−τ → ∞

in probability, whereas

1√
n

∂Qn(α̃
(n))

∂αs
=

1√
n

∂Qn(α̃
(n))

∂αs
+

1

n

∂2Qn(α̃
(n))

∂α2
s

√
n(α̃(n)

s − α0,s)(1 + op(1))

D→ some normal distribution
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by (3.25) and Slutsky’s theorem. Thus, for s ∈ Ā ,

P (s ∈ A
(n)) ≤ P

(
| 1√

n

∂Qn(α̃
(n))

∂αs
| = λn√

n
ŵs

)
→ 0.

We have completed the proof. �
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Table 3.1 Estimation results based on 500 replications
corr. (incorr.) zeros estimation errors

Model sample correct in the rows of (and their standard error)
and (p) Size d0 θ B VCM PVCM PVCM+L1

100 98% 0.0(0.0) 4.5(0.0) 0.2287 0.1741 0.1409
(0.0411) (0.0457) (0.0340)

I(p = 7) 200 100% 0.0(0.0) 4.9(0) 0.1578 0.1121 0.0910
(0.0270) (0.0249) (0.0243)

500 100% 0.0(0.0) 5.0(0.0) 0.0972 0.0742 0.0576
(0.0149) (0.0140) (0.0139)

[0(0)] [5(0)]

100 90% 0(0) 2.9(0.1) 0.2584 0.2129 0.1887
(0.0494) (0.0399) (0.0363)

II(p = 7) 200 100% 0.0(0.0) 3.0(0.0) 0.1721 0.1407 0.1243
(0.0275) (0.0271) (0.0273)

500 100% 0(0) 3.0(0.0) 0.1117 0.0873 0.0861
(0.0137) (0.0132) (0.0135)

[0(0)] [3(0)]

100 93% 5.9(0.0) 8.8(0.1) 0.2796 0.2114 0.0998
(0.0530) (0.0449) (0.0378)

I(p = 13) 200 100% 6.0(0.0) 9.0(0.0) 0.1749 0.1327 0.0617
(0.0216) (0.0226) (0.0151)

500 100% 6.0(0.0) 9.0(0.0) 0.1030 0.0694 0.0365
(0.0130) (0.0110) (0.0081)

[6(0)] [9(0)]
100 86% 5.3(0.4) 4.9(1.8) 0.3701 0.2651 0.2273

(0.0782) (0.0476) (0.0393)

II(p = 13) 200 97% 5.6(0.0) 5(0.3) 0.2094 0.1478 0.1161
(0.0298) (0.0201) (0.0211)

500 100% 6.0(0.0) 5.0(0.0) 0.1241 0.0884 0.0759
(0.0122) (0.0101) (0.0105)

[6(0)] [5(0)]

100 72% 13.8(0.1) 14.4(2) 0.3409 0.2919 0.1180
(0.0867) (0.0931) (0.0551)

I(p = 21) 200 % 14.0(0.0) 15.0(0.0) 0.1878 0.1400 0.0485
(0.0231) (0.0217) (0.0191)

500 14.0(0.0) 15.0(0.0) 0.1124 0.0719 0.0298
(0.0099) (0.0102) (0.0064)

[14(0)] [15(0)]
100 84% 12.0(0.4) 9.0(5.7) 0.5395 0.4305 0.3197

(0.1045) (0.1025) (0.0510)

II(p = 21) 200 92% 13.5(0.0) 9.0(1.0) 0.2559 0.1704 0.1242
(0.0300) (0.0214) (0.0173)

500 100% 13.9(0.1) 9.0(0.2) 0.1334 0.0876 0.0584
(0.0104) (0.0082) (0.0082)

[14(0)] [9(0)]
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Table 3.2 Estimation results for the Boston House Price Data
coefficient LSTAT CRIM RM TAX NOX PTRATIO AGE

θ0 -0.5478 0 0.1968 -0.2335 -0.1325 -0.1756 0
(0.0586) (—) (0.0701) (0.0482) (0.0526) (0.0235) (—)

B0 -0.2683 0.3026 0.6068 0 0.2743 0 0
(0.1924) (0.1999) (0.1762) (—) (0.1292) (—) (—)

ZN INDUS CHAS DIS RAD B

θ0 0.1003 0 0 -0.2373 0.3749 0.1381
(0.0390) (—) (—) (0.0413) (0.0602) (0.0526)

B0 0 0 0 0 0.6245 0
(—) (—) (—) (—) (0.2303) (—)

Table 3.3 Average prediction errors of 1000 partitions
Size of training set Linear model VCM PVCM PVCM + penality

200 0.3028 0.9312 0.2514 0.2434
300 0.2918 0.8210 0.2349 0.2262
400 0.2866 0.8661 0.2274 0.2215
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CHAPTER 4

Shrinkage Estimation on

Covariance Matrix

4.1 Introduction

Recent development in applying L1 penalty for the estimation and variable se-

lection of parametric models is an effective way towards the challenging “small-n-

large-P” problems that are encountered often in data analysis, especially in genetic

analysis, finance study and other disciplines; see, for example, Fan and Li (2001),

Wang et al. (2007) and Zou (2006). Compared with traditional estimation method-

s, its major advantage is the simultaneous execution of both parameter estimation

and variable selection. In particular, allowing an adaptive amount of shrinkage for
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each regression coefficient results in an estimator as efficient as oracle. Further-

more, the L1 penalty approach has very good computational properties; see, for

example, Osborne et al (2000) and Efron et al (2004) for more details.

However, current penalty approaches mainly aim to shrink some coefficients to

exactly zero thus obtaining the sparsity in the unknown parameter and reducing

the dimension. She (2010) proposed a clustered Lasso which incorporates the L1-

penalty for clustering into the objective function, where the motivation is to group

relevant variables based on their effects in the microarray study. In this Chapter,

we will study the rationality of clustering effect through several examples, and

extend the clustering idea to the covariance matrix estimation after giving a clear

framework of clustered Lasso regression. Simulation studies and real data analysis

will then be provided, suggesting that the clustering idea applied to both covariance

matrix estimation and regression can have better prediction performance than the

sparsity assumption in some situations.

Consider model

Yi = β�
0 Xi + εi, i = 1, 2, ..., n, (4.1)

where Xi = (xi1, ...,xip)
� and β0 = (β10, ..., βp0)

�. When p is large, the estimation

of model (4.1) is very unstable or even impossible for example when n < p. There-

fore some constraints must be imposed such that the model can be simplified and

estimated.

A fundamental assumption for the estimation to have better efficiency is the

sparsity assuming that many of the coefficients β10, ..., βp0 are exactly 0. Statis-

tically, sparsity is equivalent to variable selection, which is one of the reasons for
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sparsity to get the most attention of statisticians, though its appropriateness is

debatable as in a survey study recently by Siegfried (2010). Alternative ways of

constraining the model complexity have been proposed. For example, the fused

Lasso of Tibishrani et al (2005) assumes that the coefficients changes according

to a specified index. The group Lasso of Yuan and Lin (2006) assumes that the

coefficients in a group are either all 0 or all nonzero.

One of the motivations for the research in this Chapter is the well-known fact

in epidemiology and other disciplines that there are often cumulative effect which

is “individually minor, but collectively significant” (http://ceq.hss.doe.gov/). Sim-

ply speaking, it is the summation of a set of variables that generates effect. As

an example, air pollutants are cumulated in human body and thus cause health

problems. More precisely, let NO2,t be the average concentration of NO2 on day t.

To investigate its effect on public health yt, say the number of hospital admission

on day t, one can use a linear regression model

yt = a0 + a1NO2,t−1 + ...+ apNO2,t−p + εt,

where p is very large due to the fact that pollutants cannot be cleaned easily from

human body especially from the lungs. In terms of statistical modelling, direct

estimation of the model will result in very unstable estimate that has negative

coefficients which is hard to be interpreted, and has very bad prediction ability.

See the calculation in Figure 4.3 with the penalty parameter λ = 0. Actually, it

is known in epidemiology that the effect of air pollutant is through cumulation of
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pollutants in a period of time, i.e.

yt = a0 + a1

q∑
k=1

NO2,t−k + a2

p∑
k=q+1

NO2,t−k + εt,

where a1 > 0 but a2 = 0. See Xia and Tong (2006) for more details. In this model,

some of coefficients are the same and are clustered, which is what we are going to

investigate in this Chapter.

Another motivation for this research is the well-known factor models in finance

study, such as the Capital Asset Pricing Model (CAPM) and the three-factor model

of Famma and French (1993). CAPM states that the returns of any individual

security or a portfolio, denoted by x1, ...,xp and their values at time t by xt,1, ...,xt,p,

have a common factor namely the market return, denoted by Rm or Rt,m at time

t, which is roughly the overall performance of all the individual securities, i.e.

Rt,m =
∑p

i=1 xt,i. Therefore, when we try to make prediction of one portfolio based

on all the other portfolios, the theory in finance suggests the following model

xt,k = αk + bkRt−1,m + εt,k = αk + bk

p∑
i=1

xt−1,i + εt,k,

where εt,k are random noise. In other words, all the coefficients in the above model

are clustered to 1 group with the same values. In other cases, Famma and French

(1993) suggested that there are 3 clusters of coefficients corresponding to the 3

factors in finance.

Figure 4.1 shows the calculations based on the data provided by Professor

Kenneth French for the monthly returns of 100 portfolios in the past years. See,
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Figure 4.1 The correlation coefficients between each individual of 100 portfolios
and the market performance.

e.g., http://mba.tuck.dartmouth.edu /pages/faculty/ken.french/data library.html.

The 95% confidence interval for each coefficient is also plotted by the vertical bar,

showing that none of the coefficient is close to 0. It suggests that there are clusters

of portfolios, for example x1,x2,x3, that have the same loading in the common

factor. As a consequence, many elements, for example σk1 = cov(xk,x1), σk2 =

cov(xk,x2) and σk3 = cov(xk,x3) for any k > 3, in the covariance matrix Σ0 =

(σij)1≤i,j≤p should have same value.

This kind of patterns in the covariance matrix were frequently observed in

finance analysis. Tsay (2011) calculated the correlation coefficients of the daily

returns of 9 companies, with stock symbols AIC, BA, BAC, GS, INTC, JPM, MS,

PG and WFC respectively in New York stock exchange market, from 2000 to 2009

for 2515 observations. Based on statistical hypothesis testing, he clustered the

correlation coefficient matrix in blocks as shown in Table 1. It is interesting to see

that many of the correlation coefficients have the same values, and there is no zero
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values in the matrix.

Table 4.1 Correlation coefficient matrix for the daily returns of 9 stocks
AIG GS MS BAC JPM WFC BA INTC PG

AIG 1.00 0.58 0.58 0.56 0.56 0.56 0.35 0.35 0.35
GS 0.58 1.00 0.58 0.56 0.56 0.56 0.35 0.35 0.35
MS 0.58 0.58 1.00 0.56 0.56 0.56 0.35 0.35 0.35
BAC 0.56 0.56 0.56 1.00 0.69 0.69 0.35 0.35 0.35
JPM 0.56 0.56 0.56 0.69 1.00 0.69 0.35 0.35 0.35
WFC 0.56 0.56 0.56 0.69 0.69 1.00 0.35 0.35 0.35

BA 0.35 0.35 0.35 0.35 0.35 0.35 1.00 0.27 0.27
INTC 0.35 0.35 0.35 0.35 0.35 0.35 0.27 1.00 0.27
PG 0.35 0.35 0.35 0.35 0.35 0.35 0.27 0.27 1.00

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The above examples suggest that the parameters in many statistical estimations

have clusters in each of which the parameters take the same values. In this Chapter,

we are going to incorporate the clusters into the estimation method and improve

the estimation efficiency.

4.2 Coefficients Clustering of Regression

Motivated by the examples and discussions above, we consider a model with

several clusters of coefficients, in each cluster the coefficients are the same, i.e.

Y = φ0 + φ1

∑
�∈A1

x� + ... + φL

∑
�∈AL

x� + ε. (4.2)

We call model (4.2) the clustered model. It is easy to see that the sparsity assump-

tion is a special case of the clustered model. Another motivation for this model is

based on the approximation of a general model by a reduced model with a smaller

number of coefficient values. It is known that with sample size n, we can only
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estimate at most p = n − 1 parameters. When there are more than n parameters

in the model, a straightforward approach is to find a model with L(< n) param-

eters values that can best approximate the original model. The clustered model

tries to group the parameters into L < min{p, n} clusters, and approximate the

parameters in each cluster by one single value, in order to minimize the difference

of the approximation, i.e.

min
φ0,φ1,...,φL

{
min

βk∈{φ1,...,φL}
k=1,2,...,p

E{Y − (φ0 + β1x1 + ...+ βpxp)}2
}
.

For ease of exposition, after rearranging the order of xi, i = 1, ..., p, we can assume

that

A1 = {1, ..., p1}, A2 = {p1 + 1, ..., p1 + p2}, ..., AL = {
L−1∑
i=1

pi + 1, ...,
L−1∑
i=1

pi + pL},(4.3)

where
∑L

i=1 pi = p.

The model (4.2) has strong link with the fused Lasso of Tibshirani et al (2005),

where the clusters are usually based on the orders of a specified index. In this

setting, the clustering is allowed to be more flexible and the index may not exist.

This is more realistic because in many cases variates are arranged randomly. The

difference between this model and the grouped Lasso by Yuan and Lin (2006)

is obvious. The grouped Lasso cares about whether a group of variates can be

removed from the model as a whole, while model (4.2) cares about whether those

variates share the same coefficients.

Since clusters A1, ..., AL in model (4.2) are unknown, we can only start with
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the general model (4.1) and identify the clusters later. Suppose that β̂ is a root-n

consistent estimator of β0, which will be taken as the initial value. More details

about the initial value will be discussed later. Define weights ŵjk = 1/|β̂j − β̂k|α

for some α ≥ 0, and weight matrix W = (ŵjk). Consider the following objective

function

Q(β) =

n∑
i=1

(Yi −X�
i β)

2 + λn

p∑
k=1

p∑
j=k+1

ŵjk|βj − βk|, (4.4)

and let

β̂∗(n) = argmin
β

Q(β). (4.5)

We call β̂∗(n) the clustered Lasso estimator (cLasso).

To make the idea clear and state the theory easily, we introduce the following

variable transformation. For (4.3), without loss of generality we assume that the

variables are rearranged such that values in β0 are in a descending order, i.e.

β0 = (β1,0, . . . , βp1,0, βp1+1,0, . . . , βp1+p2,0, . . . , βp,0)
�,

where β1,0 ≥ β2,0 ≥ ... ≥ βp,0; otherwise we can apply a permutation matrix to β0.

The design matrix X and the weight matrix W are also arranged accordingly. Let
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Γ = diag(Γ1, Γ2, ..., ΓL) with

Γj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/pj 1/pj 1/pj ... 1/pj

1 −1 0 ... 0

1 0 −1 ... 0

...
...

...
...

...

1 0 0 ... −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

pj×pj

, for j = 1, . . . , L.

Define Ml = p0 + p1 + . . .+ pl−1 where p0 = 0, l = 1, . . . , L, L+ 1. We have

γ0 := Γβ0 := (γ0
1 , γ

0
12, . . . , γ

0
1p1, γ

0
2 , γ

0
22, . . . , γ

0
2p2, . . . , γ

0
L, γ

0
L2, . . . , γ

0
LpL

)�, (4.6)

where for l = 1, . . . , L,

γ0
l =

1

pl

pl∑
i=1

βMl+i,0, γ0
lk = βMl+1,0 − βMl+k,0 = 0, k = 2, . . . , pl. (4.7)

Finally, using a permutation matrix P, we get

PΓβ0 = (γ0
1 , . . . , γ

0
L, γ

0
12, . . . , γ

0
1p1

, . . . , γ0
L2, . . . , γ

0
LpL

)� (4.8)

= (γ0
1 , γ

0
2 , . . . , γ

0
L, 0, . . . , 0︸ ︷︷ ︸

p−L

)�.

We use the operator G (·) to denote these transformations, that is, G (β) = PΓβ

for any vector β ∈ R
p. Accordingly, for the clustered Lasso estimator β̂∗(n) defined

in (4.5),

G (β̂∗(n)) = PΓβ̂∗(n) := (φ̂
∗(n)
1 , φ̂

∗(n)
2 , . . . , φ̂∗(n)

p )�. (4.9)
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Let

X̃i = P (Γ−1)�Xi, i = 1, . . . , n,

then model Yi = X�
i β + εi is transformed to

Yi = X̃�
i G (β) + εi. (4.10)

Let X̃ = (X̃1, . . . , X̃n)
�, then X̃ = XΓ−1P�, where the design matrix X =

(X1, . . . , Xn)
�. Define the index sets A + = {1, 2, . . . , L}, A − = {L + 1, . . . , p}

and

A
+
n = {j ∈ {1, . . . , p}, φ̂∗(n)

j 	= 0}, A
−
n = {1, . . . , p} − A

+
n .

The corresponding design matrix X̃ can also be written as

X̃ := (x̃1, . . . , x̃p) = (x̃1, . . . , x̃L, x̃L+1, . . . , x̃p) := (X̃A + , X̃A −),

where X̃A + denotes an n × L matrix composed of the elements of X̃ with the

column index belonging to A +, and X̃A − denotes an n× (p−L) matrix composed

of the elements of X̃ with the column index belonging to A −.

Assume that the design matrix X satisfies

C = lim
n→∞

n−1X�X (4.11)
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where C is a positive definite matrix. Then

C̃ := lim
n→∞

n−1X̃�X̃ = P (Γ−1)�CΓ−1P� (4.12)

is also positive definite.

Theorem 4.2.1. Suppose ε1, ..., εn are IID with mean 0 and variance σ2, and that

λn/
√
n → 0 and λnn

(α−1)/2 → ∞. Then the cLasso estimator β̂∗(n) must satisfy

(1) Consistency in variable clustering: lim
n→∞

P (A +
n = A +) = 1.

(2) Asymptotic normality:
√
n
(
G (β̂∗(n))A + − G (β0)A +

)
D→ N(0, σ2C̃−1

A +), where

C̃A + denotes the sub-matrix of C̃ formed by the elements at A +’s row and

A +’s column of C̃.

To investigate the estimation efficiency, we consider a special case where β0 =

1pβ10. The simple LSE, denoted by β̂(n), satisfies
√
n(β̂(n)−1pβ10) → N(0, C−1σ2).

By the definition of Γ, the estimated β10 by cLasso is actually β̂
∗(n)
1 = p−11�

p β̂
(n).

The most efficient and unbiased estimator of β10 among the linear combinations of

β̂(n) is ��β̂(n) where � = (�1, ..., βp)
� with �1 + ...+ �p = 1 and ��C−1� = min! It is

known from the theory of quadratic programming with linear equality constraints

that � satisfies ⎛
⎜⎝C−1 1p

1�
p 0

⎞
⎟⎠

⎛
⎜⎝�

λ

⎞
⎟⎠ =

⎛
⎜⎝0

1

⎞
⎟⎠ ,

where λ is a Lagrange multiplier. The solution is � = {1�
p C1p}−1C1p. It is easy

to see that only when the sums of every row of C are the same, the cLasso esti-

mator achieves the optimal efficiency. Noting that the fused Lasso also has similar

problem in its estimation efficiency. The estimator ��β̂(n) is actually the LSE of
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model y = β10

∑p
k=1 xk + ε. After the blocks are identified by cLasso as shown in

Theorem 4.2.1(1), we can achieve optimal estimation efficiency by estimating the

reduced model.

When the true parameter β0 is sparse, i.e., some of the elements are exactly 0,

the penalty function (4.4) cannot penalize them to exactly 0. In the above notation,

this sparsity means γ0
l = 0 for some l ∈ {1, . . . , L}. Without loss of generality, we

assume γ0
L = 0. Otherwise we can use a permutation matrix to rearrange it. To

achieve sparsity, we need to impose another penalty. Denote the weight vector by

ω̂ with ω̂j = 1/|β̂j|α, j = 1, . . . , p. We add a penalty for sparsity to the penalty

function in (4.4) and obtain the following estimator

β̃∗(n) = argmin
β

n∑
i=1

(Yi −X�
i β)

2 + λn

{ p∑
k=1

p∑
j=k+1

ŵjk|βj − βk|+
p∑

j=1

ω̂j|βj|
}
.(4.13)

Let Ã + = {1, 2, . . . , L− 1}, Ã − = {L, L+ 1, . . . , p} and

Ã
+
n = {j ∈ {1, . . . , p}, φ̃∗(n)

j 	= 0}, Ã
−
n = {1, . . . , p} − Ã

+
n .

We have the following theorem.

Theorem 4.2.2. Suppose that λn/
√
n → 0 and λnn

(α−1)/2 → ∞. Then β̃∗(n) must

satisfy

(1) Consistency in variable clustering: limn→∞ P (Ã +
n = Ã +) = 1.

(2) Asymptotic normality:
√
n
(
G (β̃∗(n))

Ã + − G (β0)Ã +

)
D→ N(0, σ2C̃−1

Ã +
), where

C̃
Ã + denotes the sub-matrix of C̃ formed by the elements at Ã +’s row and

Ã +’s column of C̃.
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4.3 Extension to the Estimation of Covariance

Matrix

As mentioned in the introduction, the covariance matrix sometimes has clus-

ters of common elements as well. In this section, we extend cLasso to the esti-

mation of covariance matrices. Under sparsity assumption, many methods have

been proposed for the estimation of covariance matrix. See, for example, Wu and

Pourahmadi (2003), Huang et al (2006), Bickel and Levina (2008), Levina et al

(2008) and Lam and Fan (2009). Without loss of generality, we assume that

E(X) = 0, cov(X) = Σ0 = (σij)i,j=1,...,p, and X has finite fourth moments.

Given random samples X1, . . . , Xn from X , the sample covariance matrix

S =
1

n

n∑
i=1

XiX
�
i

is an unbiased estimator of Σ0. Let Zi = XiX
�
i . Consider the half-vectorization

V ech(Σ0) = (σ11, σ12..., σ1p, σ22, σ23, ..., σ2p, ..., σpp)
�

and accordingly

ν0 = V ech(Σ0) ∈ R
m, ν̂n = V ech(S), (4.14)
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where m = p(p+ 1)/2. It follows from the central limit theorem,

√
n(ν̂n − ν0)

D→ N(0,W ), (4.15)

where W = cov(V ech(Zi)). After the vectorization of the covariance matrix, we

can view the covariance matrix estimation problem in the following way. Let

Y = (x2
1,x1x2, . . . ,x1xp,x

2
2,x2x3, . . . ,x2xp, . . . ,x

2
p)

� ∈ R
m (4.16)

and Yi = (x2
i1,xi1xi2, . . . ,xi1xip,x

2
i2,xi2xi3, . . . ,xi2xip, . . . ,x

2
ip)

� ∈ Rm, where X =

(x1, ..., xp)
� and Xi = (xi1, ...,xip)

�. Then estimator ν̂n is the same as the LSE of

the following regression model

Y = ν0 + ε, (4.17)

where ε is an m-dimensional random error with zero mean and positive definite

covariance matrix. In other words,

ν̂n = arg min
ν∈Rm

n∑
i=1

‖Yi − ν‖2 = arg min
ν∈Rm

‖Y − (1n ⊗ Im)ν‖2, (4.18)

where Y = (Y �
1 , . . . , Y �

n )� ∈ Rmn, 1n = (1, . . . , 1)� ∈ Rn. We propose to use the

following cLasso estimation to estimate ν by

ν̂∗(n) = arg min
ν∈Rm

{
‖Y − (1n ⊗ Im)ν‖2 + λn

m∑
j=1

m∑
k=j+1

ŵjk|νj − νk|
}
, (4.19)

where ŵjk = |ν̂j − ν̂k|−α with ν̂n = (ν̂1, . . . , ν̂m)
� given in (4.15), and α ≥ 0.
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To present our theoretical result, we introduce the following variable transfor-

mations. Suppose that ν0 = V ech(Σ0) has L groups of distinct values and ν̃0 is

the rearrangement of ν0 such that the distinct values are arranged in a descending

order. That is, let Q be the m×m permutation matrix such that

ν̃0 = Qν0 := (ϕ1, ..., ϕ1︸ ︷︷ ︸
m1

, ϕ2, ..., ϕ2︸ ︷︷ ︸
m2

, ..., ϕL, ..., ϕL︸ ︷︷ ︸
mL

)�, (4.20)

where ϕ1 > ϕ2 > . . . > ϕL. Correspondingly, let M = {1, . . . , m} and

Ml = {
l−1∑
i=0

mi + 1,
l−1∑
i=0

mi + 2, ...,
l−1∑
i=0

mi +ml}

such that ∪L
l=1Ml = M , Ml ∩ Ms = ∅, for l 	= s, where l, s = 1, 2, ..., L and

m0 = 0. Moreover, denote Mj = m0 +m1 + . . .+mj−1, j = 1, . . . , L, L+ 1, and

M
+ = {M1 + 1,M2 + 1, . . . ,ML + 1}, M

− = M − M
+. (4.21)

Let Ỹ = QY, ε̃ = Qε. It follows that the linear regression model in (4.17) can be

written as

Ỹ = ν̃0 + ε̃. (4.22)
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Let Γ = diag(Γ1, Γ2, ..., ΓL), where

Γl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/ml 1/ml 1/ml ... 1/ml

1 −1 0 ... 0

1 0 −1 ... 0

...
...

...
...

...

1 0 0 ... −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ml×ml

, for l = 1, . . . , L (4.23)

then

Γν̃0 = (ϕ1, 0, . . . , 0︸ ︷︷ ︸
m1−1

, ϕ2, 0, . . . , 0︸ ︷︷ ︸
m2−1

, . . . , ϕL, 0, . . . , 0︸ ︷︷ ︸
mL−1

)�.

There is an m×m permutation matrix P such that

PΓν̃0 = (φ1, . . . , φL, 0, . . . , 0︸ ︷︷ ︸
m−L

)�. (4.24)

Finally, we use T (ν0) to denote the combination of the above transformations,

that is,

T (ν0) = PΓQν0 = (φ1, . . . , φL, 0, . . . , 0︸ ︷︷ ︸
m−L

)�. (4.25)

The linear regression model in (4.17) thus becomes

T (Y ) = T (ν0) + T (ε). (4.26)
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For the cLasso estimator ν̂∗(n) defined in (4.19), denote

T (ν̂∗(n)) = PΓQν̂∗(n) := (τ̂
∗(n)
1 , τ̂

∗(n)
2 , . . . , τ̂ ∗(n)m )�. (4.27)

Let A + = {1, 2, . . . , L}, A − = {L+ 1, . . . , m} and

A
+
n = {j ∈ {1, . . . , m}, τ̂ ∗(n)j 	= 0}, A

−
n = {1, . . . , m} − A

+
n .

We have the following theorem.

Theorem 4.3.1. Suppose that λn/
√
n → 0 and λnn

(α−1)/2 → ∞. Then the

adaptive Lasso estimator φ̂∗(n) = T (ν̂∗(n)) must satisfy

(1) Consistency in variable clustering: limn→∞ P (A +
n = A +) = 1.

(2) Asymptotic normality:

√
n(T (ν̂∗(n))A + − T (ν0)A +)

D→ N(0, GA +),

where the asymptotic covariance matrix G = PΓQWQ�Γ�P� withW given

in (4.15).

Again as in fused Lasso and the discussion after Theorem 4.2.1, the cLasso

estimator may not always be the most efficient. If σi1j1 , ..., σikjk are identified

to be in one cluster with the same value σ̃. Let U = (xi1xj1, ...,xikxjk)
�, then

EU = 1kσ̃. Let V = cov(U). Following the same argument after Theorem 4.2.1,

a more efficient estimator of σ̃ is ��U , where � = (1�
k V 1k)

−1V 1k. Since V is

unknown, the optimal efficient estimator cannot be obtained easily. Consider a
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simple factor model as an example. Suppose xk = aF1 + εk, k = 1, 2 and F1 is

independent of εk. If ε1 and ε2 are IID with variance σ2
e , and are independent of

x3, then U = (x1x3,x2x3)
�, cov(x1,x3) = cov(x2,x3) and

V = cov(U) =

⎛
⎜⎝a2E(F 2

1 x
2
3) + σ2

evar(x
2
3) a2E(F 2

1 x
2
3)

a2E(F 2
1 x

2
3) a2E(F 2

1 x
2
3) + σ2

evar(x
2
3)

⎞
⎟⎠ .

Note that the sum of each rows of V are the same. Thus the cLasso achieve the

optimal estimation efficiency. In other words, for factor models, cLasso estimators

can achieve the optimal efficiency under some weak conditions.

4.4 Simulations

To implement the estimation, we propose the following quadratic approximation

algorithm; see Fan and Li (2001) for more details. For ease of exposition, we only

give the details for cLasso with α = 0, i.e.

Q(β, λn) =

n∑
i=1

(Yi −X�
i β)

2 + λn

p∑
k=1

p∑
j=k+1

|βj − βk|.

With an initial estimator of β, denoted by β̃, we approximate Q(β, λn) by

Q̃(β, λn) =

n∑
i=1

(Yi −X�
i β)

2 + λn

p∑
k=1

p∑
j=k+1

(βj − βk)
2

|β̃j − β̃k|
.
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We have

∂Q̃

∂β
= 2X�Xβ − 2X�Y + 2λn(W0(β̃)−W1(β̃))β,

where

W0(β̃) = diag(
∑
i �=1

|β̃1 − β̃i|−1
,
∑
i �=2

|β̃2 − β̃i|−1
, ...,

∑
i �=p

|β̃p − β̃i|−1
)

and

W1(β̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 |β̃1 − β̃2|−1 ... |β̃1 − β̃p|−1

|β̃2 − β̃1|−1 0 ... |β̃2 − β̃p|−1

...

|β̃p − β̃1|−1 |β̃p − β̃p−1|−1 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By solving ∂Q̃/∂β = 0, we update the estimator by

β̃ := {X�X + λn(W0(β̃)−W1(β̃))}−1X�Y. (4.28)

Repeat (4.28) until convergence. The final value is our cLasso estimator.

In the following calculations, we use the estimator from minimizing

Q(β, λn) =

n∑
i=1

(Yi −X�
i β)

2 + λn

p∑
k=1

p∑
j=k+1

(βj − βk)
2

as the initial values for which we has a closed form. We use randomized 3-fold

cross-validation method to select the penalty parameter λn based on 100 times of

random splitting. However, all the selection methods for the penalty parameter λn

are applicable here. See for example Wang et al (2007).
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Since any estimator β̂ is obtained for further prediction, for a new subject X

the prediction error is X�β̂ −X�β. We thus measure of estimation error by

ERR(β̂) = (β̂ − β)�V ar(X)(β̂ − β)/β�V ar(X)β.

We also evaluate the estimation methods by checking their number of clusters, i.e.

the number of different values in the estimated β.

Example 4.4.1. In the following examples, covariates X = (x1, ...,xp)
� are nor-

mally distributed with mean 0 and variance covariance matrix Σ = (σij)1≤i,j≤p and

σij = 0.5|i−j|. In model Y = β�X + ε, we consider two settings of coefficients,

(I) β = (2,−1︸ ︷︷ ︸, 2,−1︸ ︷︷ ︸, ...)�,
(II) β = −p/4 + (0, 0.5, 1, 1.5, ...)�.

For the first setting (I), the segment underbraced is repeated in β. In the second

setting, the parameter increases by 0.5 each element. For each setting, different

signal-noise ratios (SNR) are considered. The first setting is a desired model for

cLasso. We use this example to check the theory of the estimation method such as

the number of clusters in the estimated coefficients and the estimation efficiency as

well. Our simulation results listed in Table 4.2 suggest that as p < n and SNR is

big or n/p is big, cLasso can indeed cluster the coefficients appropriately; see the

last column of Table 4.2. The estimation efficiency is much better than Lasso as

shown in columns 3-5. The efficiency is also satisfactory even when p is larger than

n as compared with ridge regression and Lasso regression. This superior efficiency

over ridge regression or Lasso regression is not surprising because the model is in
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Table 4.2 Simulation results for setting (I) based on sample size n = 40 and 100
replications

ERR no. of clusters
p SNR ridge Lasso cLasso Lasso cLasso
10 2 0.0919 0.2601 0.0714 7.52 4.99
10 4 0.0248 0.0656 0.0177 9.92 3.88
10 8 0.0045 0.0161 0.0025 10.00 2.71

20 2 0.2131 0.5522 0.2222 10.35 6.89
20 4 0.0626 0.1339 0.0264 18.54 5.69
20 8 0.0145 0.0297 0.0039 20.00 3.54

40 2 0.4484 1.3728 0.5559 9.73 5.37
40 4 0.3218 0.7471 0.3465 12.51 6.97
40 8 0.5497 0.8080 0.1927 12.90 6.74
80 2 0.7029 0.9704 0.6071 5.67 6.22
80 4 0.5919 0.9432 0.5967 4.90 7.17
80 8 0.5607 0.9240 0.5548 5.92 6.72

120 2 0.7818 0.9803 0.6352 3.59 6.77
120 4 0.7000 0.9803 0.5826 4.19 5.67
120 8 0.6806 0.9789 0.5563 4.60 5.20

favor of cLasso. However, calculations for setting (II) below confirms the superior

of cLasso in a more general situation.

For setting (II), the coefficients are different from one another and are not in

favor of cLasso. However, cLasso still clusters the coefficients as shown in the

last column of Table 4.3, and generates much more efficient estimators of the

coefficients. It is interesting to see that the clustering is in such a way that the

clustered model estimated by cLasso can approximate the true models well as

evidenced by the estimation error shown in columns 3-5.

Example 4.4.2. In this example, we consider multivariate random vector X =

(x1,x2, ...,xp)
� the following factor model

xi = 2F1 + F3 + εi, i = 1, ..., q
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Table 4.3 Simulation results for setting (II) based on sample size n = 40 and
100 replications

ERR no. of clusters
p SNR ridge Lasso cLasso Lasso cLasso

2 0.108 0.1412 0.0998 7.88 6.82
10 4 0.0663 0.0838 0.0591 8.38 7.43

8 0.0419 0.0506 0.0362 8.82 7.87

2 0.1654 0.2494 0.1324 13.39 11.76
20 4 0.1089 0.1653 0.0859 14.72 12.74

8 0.0729 0.1111 0.0567 15.92 13.9

2 0.2357 0.4536 0.207 27.44 27.36
40 4 0.1694 0.2928 0.1301 27.68 26.16

8 0.1211 0.2071 0.0844 28.94 26.47
2 0.4021 0.8595 0.4683 46.82 64.35

80 4 0.312 0.5601 0.242 46.08 61.69
8 0.2435 0.4288 0.1535 46.89 61.31

2 0.4947 0.9306 0.4983 57.03 102.05
120 4 0.3965 0.6928 0.2858 56.95 97.45

8 0.3224 0.5727 0.1941 57.87 95.03

and

xj = F2 − F3 + 2εj, i = q + 1, ..., p,

where F1, F2 and F3 are IID and follow N(0, 1) each, p = 10 and q = 5. We further

assume that εi, i = 1, ..., p are IID and independent of F1, F2, F3. Then we have

Σ0 = cov(X) = Ip×p +

⎛
⎜⎝ 51q1

�
q −1q1

�
p−q

−1p−q1
�
q 21p−q1

�
p−q + 3Ip−q

⎞
⎟⎠ .

Note that the matrix has 3 clusters of values for the non-diagonal elements. To

evaluate the estimation efficiency, we define the errors of estimator Σ̂ by

d(Σ̂,Σ0) = tr1/2{(Σ̂− Σ0)
�(Σ̂− Σ0)}.
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Our simulation results are listed in Table 4.4, where the number of clusters are

counted for elements not in the diagonal. Table 4.4 suggests that cLasso can

indeed cluster the elements in the covariance matrix well and can generate more

accurate estimators than the MLE method.

Table 4.4 Simulation results for Example 4.4.2
MLE cLasso

Sample size error no. of clusters error no. of clusters

50 0.1244 435 0.1029 112.11
100 0.0873 435 0.0505 5.76
200 0.0608 435 0.0278 3.43

4.5 Real Data Analysis

Example 4.1. The Leukemia data from high-density affymetrix oligonucleotide

arrays have been analyzed in Golub et al. (1999) and are available at the fol-

lowing website: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. There are

7129 genes and 72 samples from two classes: 47 in class ALL (acute lymphocytic

leukemia) and 25 in class AML (acute mylogenous leukemia).

Before we apply our method to the data, we employ the screening procedure

proposed by Fan and Lv (2008) and select P = 50, 100, ..., 500 covariates in a linear

regression model. We randomly split the data into training set and testing set

containing 48 observations and 24 observations respectively. We use the training

set to estimate the linear model and use the estimated model to classify the samples

in the testing set. We split the data 100 times and calculate the average relative

misclassification error. Table 4.5 lists the misclassification errors with different P
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when the penalty parameters are selected by the CV method. Table 4.5 suggests

that models estimated by cLasso has much smaller classification error than ridge

regression or Lasso regression. On the other hand, cLasso clusters the genes into

a few clusters. In genetic analysis, these clusters are called blocks; see for example

Zhang, W. H. et al (2002).

Table 4.5 Simulation results of the Leukemia Data

100 200 300 400 500
Method error n.c. error n.c. error n.c. error n.c. error n.c.

ridge 4.63 — 4.63 — 4.37 — 4.46 — 4.50 —
Lasso 5.00 38.0 4.75 51.9 4.63 57.2 5.08 59.51 5.13 60.70
cLasso 3.71 14.5 3.54 15.6 3.12 10.5 3.37 17.07 3.72 13.75

To remove the effect of choosing the penalty parameters, we also plotted the

classification errors against all values of penalty parameters as shown in Figure

4.2. In terms of the number of clusters, the fitted model by cLasso is the smallest.

Compared with the ridge regression and Lasso, cLasso gives much more accurate

classification as shown in Figure 4.2 for almost all values of the penalty parameters.

It is also interesting to see that Lasso has worse classification than ridge regression,

indicating that sparsity is not an appropriate assumption for the data.

In genome analysis, it is well demonstrated that the genes function in blocks

called linkage disequilibrium block; see, e.g., Zhang, W. H. et al (2002). The

cLasso actually is in line with the understanding and thus has better classification

than ridge regression and Lasso regression. In each panel, dash line represents the

calculations for Lasso, solid line for cLasso, and dash-dot line for ridge regression.

Example 4.2. We revisit the airpollution data in Hong Kong. The daily average

concentration of air pollutants such as CO2, NO2 and particulate matters were
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Figure 4.2 Calculation results for the Leukemia Data.

recorded from 1994 to 1997. Denoted by NO2,t the average concentration of NO2

on day t. To investigate the effect of air-pollution on public health, the daily

number of hospital admissions of patients suffering from respiratory diseases in

the same period were also recorded, denoted by yt. The data was investigated in

statistical literature for different purpose; see for example Zhang et al (2001). Xia

and Tong (2004) fitted the data with a model based on the cumulative effect. In
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the following, we consider a linear regression model

yt = a0 + a1NO2,t−1 + .... + a1NO2,t−p + εt,

where p = 365 to accommodate the pollutants in the past one year. As comparison,

we consider four different penalties including ridge regression, Lasso regression,

fused Lasso and cLasso. We split the data similarly as in the above example, i.e. 2

thirds of the data are used for the estimation and the other 1/3 for prediction. The

prediction errors are shown in Figure 4.3. We can see that the Lasso approach again

is not appropriate because its prediction is even worse than the ridge regression.

The fused Lasso and cLasso have similar performance especially when their penalty

parameters are both large, in which case the two penalties generate the same

estimator. However, cLasso is slightly better than fused Lasso when the penalty

parameter is properly selected.
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Figure 4.3 The prediction error based on different methods. The penalty pa-
rameters for different methods are adjusted for better visualization in the figure.
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Example 4.5.1. In the last example, we consider the portfolio data mentioned

in the introduction section. We employ cLasso to two problems (1) prediction of

returns of any single portfolio and (2) estimation of covariance matrix of all the

portfolios. In his website, Professor Kenneth French provides monthly returns of

two sets of portfolios. The first set has 25 portfolios and the second 100 portfolios.

We shall consider them separately.

Consider prediction of return xi,t+1 based on the past returns of all portfolios

{xi,s : s ≤ t, i = 1, ..., m}. By checking the ACF or PACF of returns of each port-

folio, it seems that an autoregressive model with lag 1 is appropriate. Therefore,

we consider the simple regression model

xi,t+1 = β0 + β1x1,t + ...+ βmxm,t + εi,t.

For every month t, we use the data in its past 10 years to estimate the model

and use the estimated model to predict the month’s return. Again, we apply ridge

regression, Lasso regression and cLasso to estimate the model and check their

prediction error by

PE =
1

60

5∗12∑
t=1

|xi,t − x̂i,t|2.

For the three methods, we denote the prediction error respectively by PE(ridge),

PE(Lasso) and PE(cLasso). For ease of comparison, we take the prediction error

of ridge regression as the benchmark and consider their relative prediction errors,

PE(ridge)-PE(Lasso) and PE(ridge)-PE(cLasso). Thus, for example, if PE(ridge)-

PE(cLasso)> 0 then the prediction error of cLasso is smaller than the ridge re-

gression, or cLasso has better prediction capability than the ridge regression. The
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prediction errors are shown in figure 4.4, suggesting that for most of the portfolios,

cLasso is better than the ridge regression as shown in the first panel, but Lasso

regression has worse prediction than the ridge regression as shown in the second

panel. By employing the paired Z test (David and Gunnunk (1997)), we conclude

that the cLasso method gives significantly better prediction than ridge estimation

method with Z-value -9.0229 and p-value 9.16× 10−20, and that the Lasso method

gives significantly worse prediction than ridge estimation method with Z-value 5.16

and p-value 1.23 × 10−7. In the first panel of figure 4.4 , the ridge regression and
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Figure 4.4 Relative prediction errors for the 100 portfolios based on different
methods.

the cLasso are compared; in the second panel, the ridge regression and Lasso are

compared. In each panel of figure 4.5, the dashed line (top), dash-dot line (middle)

and the solid line are respectively the prediction errors of Lasso, ridge regression

and cLasso. Next, we turn to investigate the estimation of the covariance matrix.

Again, consider the monthly returns of portfolios from 2001 to 2010. To evaluate

different estimation methods, we randomly split the data into 2 parts: the train-

ing set contains 2/3 of the total observations and the validation set contains 1/3.

We use the training sets to estimate the covariance matrix with different penalty
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Figure 4.5 The calculation results for the estimation of covariance matrices for
two sets of portfolios.

parameter values λ, denote the estimator of the ith splitting by Σ̂i,λ.

We also calculate the sample variance matrix from the testing set, denoted by

Σ̃i. We then evaluate the error of the estimator by the Frobenius norm, d(Σ̂i,λ, Σ̃i),

defined in Example 4.4.2. Based on 100 random splitting, the average of errors, i.e.∑100
i=1 d(Σ̂i,λ, Σ̃i)/100, are shown in the two panels respectively for the two data sets

in Figure 4.5. The Lasso method cannot improve the efficiency at all. Moreover,

the increasing trend with λ for the prediction error in the estimation of Lasso

indicates that the LSE is better than any Lasso estimator. The average error of

cLasso is smaller than that of the ridge method, and that of Lasso is bigger than

the ridge method, which clearly indicates that cLasso can improve the estimation

efficiency over the ridge method and Lasso regression as well.
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4.6 Proofs

Proof of Theorem 4.2.1.

Decompose the objective function into two parts: loss function

L (β) :=
n∑

i=1

(Yi −X�
i β)

2 (4.29)

and penalty function

P(β) := λn

p∑
k=1

p∑
j=k+1

ŵjk|βj − βk|. (4.30)

We first prove the asymptotic normality part.

Let

β = β0 + u/
√
n ⇐⇒ G (β) = G (β0) + G (u)/

√
n,

where u = (u1, . . . , up)
� ∈ R

p and denote

P�
G (u) = (v1, v12, . . . , v1p1 , v2, v22, . . . , v2p2 , . . . , vL, vL2, . . . , vLpL)

�. (4.31)

Now let

Ψn(G (u)) = L (G (β)) + P(G (β))

= L

(
G (β0) + G (u)/

√
n
)
+ P

(
G (β0) + G (u)/

√
n
)
.
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Denote û(n) = argminΨn(u) then

φ̂∗(n) = G (β̂∗(n)) = G (β0) + G (û(n))/
√
n,

that is
√
n
(
G (β̂∗(n))− G (β0)

)
= G (û(n)).

Note that Ψn(G (u))−Ψn(0) = Vn(G (u)), where

Vn(G (u)) =
{
L

(
G (β0) + G (u)/

√
n
)
− L

(
G (β0)

)}
+
{
P

(
G (β0) + G (u)/

√
n
)
− P

(
G (β0)

)}
:= Ln(G (u)) + Pn(G (u)).

For the loss function term

Ln(G (u)) = L

(
G (β0) + G (u)/

√
n
)
− L

(
G (β0)

)
(4.32)

= G (u)�
X̃�X̃
n

G (u)− 2G (u)�
X̃�ε√

n
.

For the penalty term λn

∑p
k=1

∑p
j=k+1 ŵjk|βj − βk|, we define

S(β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 β1 − β2 β1 − β3 ... β1 − βp

β2 − β1 0 β2 − β3 ... β2 − βp

β3 − β1 β3 − β2 0 ... β3 − βp

...
...

... ...
...

βp − β1 βp − β2 βp − β3 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and the p× p matrix

W = (wij) with wjj = 0, wjk = ŵjk = (|β̂j − β̂k|)−α, j 	= k, (4.33)

then

λn

p∑
k=1

p∑
j=k+1

ŵjk|βj − βk| = λn
1

2
1�
p

(
W � |S(β)|

)
1p. (4.34)

where each element of the matrix |S(β)| is the absolute value of the corresponding
element of the matrix S(β) and � denotes the Hadmard product of two matrices.

Denote

P�
G (β) = Γβ := γ := (γ1, γ12, . . . , γ1p1, . . . , γL, γL2, . . . , γLpL)

�,

where for l = 1, . . . , L,

γl =
1

pl

pl∑
i=1

βMl+i, γlk = βMl+1 − βMl+k, k = 2, . . . , pl, (4.35)

since Γ = diag(Γ1, Γ2, ..., ΓL) and

Γj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/pj 1/pj 1/pj ... 1/pj

1 −1 0 ... 0

1 0 −1 ... 0

...
...

...
...

...

1 0 0 ... −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

pj×pj

, j = 1, . . . , L.
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On the other hand, we have Γ−1 = diag(Γ−1
1 , Γ−1

2 , ..., Γ−1
L ) with

Γ−1
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1/pj 1/pj ... 1/pj

1 −1 + 1/pj 1/pj ... 1/pj

1 1/pj −1 + 1/pj ... 1/pj
...

...
...

...
...

1 1/pj 1/pj ... −1 + 1/pj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It follows that for l = 1, . . . , L,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

βMl+1

βMl+2

...

βMl+pl

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Γ−1
l

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γl

γl2
...

γlpl

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= γl +
1

pl

pl∑
j=2

γlj −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

γl2
...

γlpl

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Now, we use the variable γ to equivalently express S(β) as

S̃(γ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S̃1,1(γ) S̃1,2(γ) ... S̃1,L(γ)

S̃2,1(γ) S̃2,2(γ) ... S̃2,L(γ)

...
...

...
...

S̃L,1(γ) S̃L,2(γ) ... S̃L,L(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.36)
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where

S̃ll(γ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γl2 γl3 ... γlpl

−γl2 0 γl3 − γl2 ... γlpl − γl2

−γl3 γl2 − γl3 0 ... γlpl − γl3
...

...
...

...
...

−γlpl γl2 − γlpl γl3 − γlpl ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and when s 	= t,

S̃st(γ) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δst Δst + γt2 Δst + γt3 ... Δst + γt,pt

Δst − γs2 Δst + γt2 − γs2 Δst + γt3 − γs2 ... Δst + γt,pt − γs2

Δst − γs3 Δst + γt2 − γs3 Δst + γt3 − γs3 ... Δst + γt,pt − γs3
...

...
...

...

Δst − γs,ps Δst + γt2 − γs,ps Δst + γt3 − γs,ps ... Δst + γt,pt − γs,ps

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Δst = γs+ p−1
s

∑ps
j=2 γs,j − γt− p−1

t

∑pt
j=2 γt,j. Correspondingly, the adaptive

weights can be written as

W = (wij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W11 W12 ... W1L

W21 W22 ... W2L

...
...

...
...

WL1 WL2 ... WLL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.37)

Define the operators 〈·〉 and � for any matrix A = (aij)1≤i≤b,1≤j≤c respectively
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as

〈A〉 =
b∑

i=1

c∑
j=1

aij , and A�d = (a�d
ij )1≤i≤b,1≤j≤c,

with a�d
ij = 1/adij if aij 	= 0; 0 otherwise. The penalty term can be written as

λn
1

2
1�
p

(
W � |S̃(γ)|

)
1p =

λn

2

{
L∑
l=1

〈Wll � |S̃ll(γ)|〉+
L∑

s=1

L∑
t=s+1

〈Wst � |S̃st(γ)|〉
}
.(4.38)

Note that S̃ll(P
�G (β0)) = 0pl×pl and S̃st(P

�G (β0)) = Δ0
stIps×pt for s 	= t, where

Ips×pt denotes the ps × pt identity matrix and Δ0
st = γ0

s −γ0
t . Recall (4.31), we have

Pn(G (u)) =
λn

2
√
n

L∑
l=1

〈Wll �
√
n|S̃ll(P

�
G (β0) + P�

G (u)/
√
n)|〉

+
λn

2
√
n

L∑
s=1

L∑
t=s+1

〈Wst �
√
n
(
|S̃st(P

�
G (β0) + P�

G (u)/
√
n)| − |Δ0

st|Ips×pt

)
〉

=
λn

2
√
n

L∑
l=1

〈Wll �
√
n|S̃ll(P

�
G (u)/

√
n)|〉 (4.39)

+
λn

2
√
n

L∑
s=1

L∑
t=s+1

〈Wst �
√
n
(
|Δ0

stIps×pt + S̃st(P
�
G (u)/

√
n)| − |Δ0

st|Ips×pt

)
〉

since the matrices Sst(P
�G (β0)+P�G (u)/

√
n) = Sst(P

�G (β0))+Sst(P
�G (u)/

√
n).

Combined with (4.32), we have

Vn(G (u)) = G (u)�
X̃�X̃
n

G (u)− 2G (u)�
X̃�ε√

n
(4.40)

+
λn

2
√
n

L∑
l=1

〈Wll �
√
n|S̃ll(P

�
G (u)/

√
n)|〉

+
λn

2
√
n

L∑
s=1

L∑
t=s+1

〈Wst �
√
n
(
|Δ0

stIps×pt + S̃st(P
�
G (u)/

√
n)| − |Δ0

st|Ips×pt

)
〉.
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It is given in (4.12) that X̃�X̃/n → C̃ and X̃�ε√
n

D→ N ∼ N(0, σ2C̃). Now we

consider the limiting behavior of the penalty term. We consider two cases.

(1) When βj0 	= βk0, ŵjk →p |βj0− βk0|−α and in this case, ŵjk is an element of

some Wst with s 	= t.

That is to say, for the last term of (4.40) , we haveWst → {W 0
st}�α in probability

and

√
n
(
|Δ0

stIps×pt + S̃st(P
�
G (u)/

√
n)| − |Δ0

st|Ips×pt

)
→ sgn(Δ0

st)S̃st(P
�
G (u)).

Since λn/
√
n → 0, we have in probability

λn

2
√
n

L∑
s=1

L∑
t=s+1

〈Wst �
√
n
(
|Δ0

stIps×pt + S̃st(P
�
G (u)/

√
n)| − |Δ0

st|Ips×pt

)
〉 → 0.

(2) When βj0 = βk0, in this case, ŵjk is an element of some Wll. And
λn√
n
ŵjk =

λn√
n
nα/2(

√
n|β̂j − β̂k|)−α → ∞ since

√
nβ̂n = Op(1).

Thus,

λn

2
√
n
〈Wll �

√
n|S̃ll(P

�
G (u)/

√
n)|〉 = 1

2
〈λnn

(α−1)/2(Wll/
√
n)�α � |S̃ll(P

�
G (u))|〉 → ∞.

Therefore, we have Vn(G (u)) → V (G (u)) in probability with

V (G (u)) =
{ G (u)�

A +C̃A +G (u)A + − 2G (u)�
A +NA + , if G (u)l = 0, for l ∈ A −,

∞, otherwise.
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Since V (G (u)) is convex and the unique minimum of V (G (u)) is (C̃−1
A +NA + , 0)�.

Following the epi-convergence results of Geyer (1994) and Knight and Fu (2000),

we have

(
G (û(n))

)
A +

D→ C̃−1
A +NA + , and

(
G (û(n))

)
A −

D→ 0. (4.41)

Note that the transformation G is linear, we have

(
G (û(n))

)
A +

=
√
n
(
G (β̂∗(n))A + − G (β0)A +

)
D→ N(0, σ2C̃−1

A +),

then we complete the proof of the asymptotic normality part.

Next, we show the consistency. Recall the notations in (4.8) and (4.9), for any

i ∈ A +, the asymptotic normality results indicate that φ̂
∗(n)
i → γ0

i in probability,

thus P (i ∈ A +
n ) → 1. Then it suffices to show that for any j ∈ A −, P (j ∈ A +

n ) →
0. Since j ∈ A −, there exists some l ∈ {1, . . . , L} (group) and s ∈ {2, . . . , pl} such

that φ̂
∗(n)
j = γ̂

∗(n)
ls . By the KKT optimality conditions, we have,

2
x̃�
j (Y − X̃G (β̂∗(n)))√

n
=

λn

2
√
n
〈Wll�sgn(γ̂

∗(n)
ls )Us〉+ λn

2
√
n

L∑
t=l+1

〈Wlt�p−1
l sgn(Δ̂

∗(n)
lt )Tls〉,
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where

Us =

sth⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 1 0 . . . 0

...
...

...
...

...
...

...

0 . . . 0 1 0 . . . 0

−1 . . . −1 0 −1 . . . −1

0 . . . . . . 1 . . . . . . 0

...
...

...
...

...
...

...

0 . . . 0 1 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

sth
, Tls =

⎛
⎜⎜⎜⎜⎝

I(s−1)×p

c

I(p−s)×p

⎞
⎟⎟⎟⎟⎠

are two p× p constant matrices with

c :=
1− pl

sgn(Δ̂
∗(n)
lt )

(
sgn(Δ̂

∗(n)
lt − γ̂

∗(n)
ls ), sgn(Δ̂

∗(n)
lt − γ̂

∗(n)
ls + γ̂

∗(n)
t2 ),

. . . , sgn(Δ̂
∗(n)
lt − γ̂

∗(n)
ls + γ̂

∗(n)
tpt )

)
∈ R

1×p.

Note that

2
x̃�
j (Y − X̃G (β̂∗(n)))√

n
= 2

x̃�
j X̃

√
n(G (β0)− G (β̂∗(n)))

n
+ 2x̃�

j ε/
√
n.

By (4.41), the first term on the right hand side above tends to some normal dis-

tribution and 2x̃�
j ε/

√
n

D→ N(0, 4||x̃j||2σ2). However,

λn

2
√
n
〈Wll � sgn(γ̂

∗(n)
ls )Us〉 =

1

2
〈λnn

(α−1)/2(Wll/
√
n)�α � sgn(γ̂

∗(n)
ls )Us〉 → ∞
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and

λn

2
√
n

L∑
t=l+1

〈Wlt � p−1
l sgn(Δ̂

∗(n)
lt )Tls〉 =

1

2

L∑
t=l+1

〈 λn√
n
Wlt � p−1

l sgn(Δ̂
∗(n)
lt )Tls〉 → 0.

Therefore,

P (j ∈ A
+
n )

≤ P
(
2
x̃�
j (Y − X̃G (β̂∗(n)))√

n

=
λn

2
√
n
〈Wll � sgn(γ̂

∗(n)
ls )Us〉+ λn

2
√
n

L∑
t=l+1

〈Wlt � p−1
l sgn(Δ̂

∗(n)
lt )Tls〉

)
→ 0

We complete the proof. �

Proof of Theorem 4.2.2

The proof of Theorem 4.2.2 is similar to that of Theorem 4.2.1 but with an

additional penalty term λn

∑p
j=1 ω̂j|βj| (to obtain the sparsity) where ω̂j = 1/|β̂j|α

and now G (β0) = (γ0
1 , . . . , γ

0
L−1, γ

0
L, 0, . . . , 0︸ ︷︷ ︸
p−L+1

)� = (γ0
1 , . . . , γ

0
L−1, 0, 0, . . . , 0︸ ︷︷ ︸

p−L+1

)�. Thus,

we mainly focus on the differences here.

Let

β = β0 + u/
√
n ⇐⇒ G (β) = G (β0) + G (u)/

√
n,
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where u = (u1, . . . , up)
� ∈ R

p and denote

P�
G (u) = (v1, v12, . . . , v1p1 , v2, v22, . . . , v2p2 , . . . , vL, vL2, . . . , vLpL)

�. (4.42)

The loss function and penalty function are given respectively as

L (β) =
n∑

i=1

(Yi −X�
i β)

2, P(β) = λn

p∑
k=1

p∑
j=k+1

ŵjk|βj − βk|+ λn

p∑
j=1

ω̂j |βj|.

We first prove the asymptotic normality part. Now let

Ψn(G (u)) = L (G (β)) + P(G (β))

= L

(
G (β0) + G (u)/

√
n
)
+ P

(
G (β0) + G (u)/

√
n
)
.

Denote ũ(n) = argminΨn(u) then

φ̃∗(n) = G (β̃∗(n)) = G (β0) + G (ũ(n))/
√
n,

that is
√
n
(
G (β̃∗(n))− G (β0)

)
= G (ũ(n)).

Note that Ψn(G (u))−Ψn(0) = Vn(G (u)), where

Vn(G (u)) =
{
L

(
G (β0) + G (u)/

√
n
)
− L

(
G (β0)

)}
+
{

P

(
G (β0) + G (u)/

√
n
)
− P

(
G (β0)

)}
:= Ln(G (u)) + Pn(G (u)).
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For the loss function term

Ln(G (u)) = L

(
G (β0) + G (u)/

√
n
)
− L

(
G (β0)

)
(4.43)

= G (u)�
X̃�X̃
n

G (u)− 2G (u)�
X̃�ε√

n
.

For the penalty term λn

∑p
k=1

∑p
j=k+1 ŵjk|βj − βk| + λn

∑p
k=1 ω̂k|βk|, we defined

the same S̃(γ) as in (4.36) and the same p × p matrix W as in (4.37). Moreover,

we denote

ω̂ = (ω̂1, . . . , ω̂p)
� := (�1, �12, . . . , �1p1, . . . , �L, �L2, . . . , �LpL)

�,

and it follows that

p∑
k=1

ω̂k|βk| =

L∑
l=1

�l|γl + 1

pl

pl∑
j=2

γlj|+
L∑
l=1

pl∑
i=2

�li|γl + 1

pl

pl∑
j=2

γlj − γli|(4.44)

Combined with (4.43) and recall the notation (4.42), we have

Vn(G (u)) = G (u)�
X̃�X̃
n

G (u)− 2G (u)�
X̃�ε√

n
(4.45)

+
λn

2
√
n

L∑
l=1

〈Wll �
√
n|S̃ll(P

�
G (u)/

√
n)|〉

+
λn

2
√
n

L∑
s=1

L∑
t=s+1

〈Wst �
√
n
(
|Δ0

stIps×pt + S̃st(P
�
G (u)/

√
n)| − |Δ0

st|Ips×pt

)
〉

+
λn√
n

L−1∑
l=1

√
n�l(|γ0

l + (vl +
1

pl

pl∑
j=2

vlj)/
√
n| − |γ0

l |) +
λn√
n
�L|vL +

1

pL

pL∑
j=2

vLj |

+
λn√
n

L−1∑
l=1

pl∑
i=2

√
n�li(|γ0

l + (vl +
1

pl

pl∑
j=2

vlj − vli)/
√
n| − |γ0

l |)
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+
λn√
n

pL∑
i=2

�Li|vL +
1

pL

pL∑
j=2

vLj − vLi|.

It is given in (4.12) that X̃�X̃/n → C̃ and X̃�ε/
√
n

D→ Z ∼ N(0, σ2C̃).

Now we consider the limiting behavior of the penalty terms. We consider the

all possible four cases.

(1) When βj0 	= βk0 and βj0 	= 0, βk0 	= 0. In this case, ŵjk is an element of

some Wst with s 	= t. And

√
n
(
|Δ0

stIps×pt + S̃st(P
�
G (u)/

√
n)| − |Δ0

st|Ips×pt

)
→ sgn(Δ0

st)S̃st(P
�
G (u)).

Since λn/
√
n → 0, we have in probability

λn

2
√
n

L∑
s=1

L∑
t=s+1

〈Wst �
√
n
(
|Δ0

stIps×pt + S̃st(P
�
G (u)/

√
n)| − |Δ0

st|Ips×pt

)
〉 → 0.(4.46)

Since βj0 	= 0, βk0 	= 0, they should belong to two groups other than group L, say,

s and t respectively. Thus for l = s or l = t,

λn√
n

pl∑
i=2

√
n�li(|γ0

l + (vl +
1

pl

pl∑
j=2

vlj − vli)/
√
n| − |γ0

l |) →p 0 (4.47)

and

λn√
n

√
n�l(|γ0

l + (vl +
1

pl

pl∑
j=2

vlj)/
√
n| − |γ0

l |) →p 0 (4.48)

(2) When βj0 = βk0 	= 0, in this case, ŵjk is an element of some Wll. And
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λn√
n
ŵjk =

λn√
n
nα/2(

√
n|β̂j − β̂k|)−α → ∞ since

√
nβ̂n = Op(1). Thus,

λn

2
√
n
〈Wll �

√
n|S̃ll(P

�
G (u)/

√
n)|〉

=
1

2
〈λnn

(α−1)/2(Wll/
√
n)�α � |S̃ll(P

�
G (u)/

√
n)|〉 → ∞ (4.49)

However, (4.47) and (4.48) are still satisfied.

(3) When βj0 = βk0 = 0, in this case, (4.49) is satisfied and moreover

λn√
n
�L|vL +

1

pL

pL∑
j=2

vLj | → ∞,
λn√
n

pL∑
i=2

�Li|vL +
1

pL

pL∑
j=2

vLj − vLi| → ∞. (4.50)

(4) If βj0 	= βk0 = 0, then βk0 belong to group L. Suppose βj0 belong to group

s 	= L, it is easy to see that (4.46) is satisfied with t = L. We also have (4.50).

With l = s, (4.47) and (4.48) are also satisfied.

Therefore, we have Vn(G (u)) → V (G (u)) in probability with

V (G (u)) =
{ G (u)�

Ã +
C̃

Ã +G (u)
Ã + − 2G (u)�

Ã +
Z

Ã + , if G (u)l = 0, for l ∈ Ã −,

∞, otherwise.

Since V (G (u)) is convex and the unique minimum of V (G (u)) is (C̃−1

Ã +
Z

Ã + , 0)�.

Following the epi-convergence results of Geyer (1994) and Knight and Fu (2000),

we have

(
G (ũ(n))

)
Ã +

D→ C̃−1

Ã +
Z

Ã + , and
(
G (ũ(n))

)
Ã −

D→ 0. (4.51)



4.6 Proofs 139

Note that the transformation G is linear, we have

(
G (ũ(n))

)
Ã +

=
√
n
(
G (β̃∗(n))

Ã + − G (β0)Ã +

)
D→ N(0, σ2C̃−1

Ã +
),

Thus we complete the asymptotic part. The consistency part is similar to that

of Theorem 4.2.2. Just notice that for j ∈ Ã −, there are two cases: (1) there

exists some l ∈ {1, . . . , L − 1}, and s ∈ {2, . . . , pl} such that φ̃
∗(n)
j = γ̃

∗(n)
ls ; (2)

φ̃
∗(n)
j = γ̃

∗(n)
Ls , s ∈ {2, . . . , pl} or φ̃

∗(n)
j = γ̃

∗(n)
L . Both imply that the KKT condition

cannot be satisfied.Thus, P (j ∈ Ã +
n ) → 0. �

Proof of Theorem 4.3.1

We divide the proof into three parts. In part I, we will rewrite the loss term and

penalty term of the objective function (4.19) into the function of the transformed

variable T (ν). In part II, we will show the asymptotic normality result. The

asymptotic consistency result will be shown in part III.

• Part I. (Rewrite the objective function)

We first denote index sets M = {1, . . . , m} and

Ml = {
l−1∑
i=0

mi + 1,
l−1∑
i=0

mi + 2, ...,
l−1∑
i=0

mi +ml}

satisfy that ∪L
l=1Ml = M , Ml ∩ Ms = ∅, for l 	= s, where l, s = 1, 2, ..., L

and m0 = 0. Moreover, denote Mj = m0 + . . . +mj−1, j = 1, . . . , L, L+ 1,



4.6 Proofs 140

and

M
+ = {M1 + 1,M2 + 1, . . . ,ML + 1}, M

− = M − M
+. (4.52)

Note that T (Y ) = PΓQY,T (ν) = PΓQν, we have

Y = P�Γ−1Q�
T (Y ), ν = P�Γ−1Q�

T (ν).

Thus, the loss term

‖Y − (1n ⊗ Im)ν‖2 =
n∑

i=1

‖Yi − ν‖2

=

n∑
i=1

(T (Yi)− T (ν))�QΓ̃Q�(T (Yi)− T (ν))

where the m×m matrix

Γ̃ :=
(
Γ−1

)�
Γ = diag

((
Γ−1
1

)�
Γ−1
1 , . . . ,

(
Γ−1
L

)�
Γ−1
L

)
= diag

(
m1,I1, m2,I2, . . . , mL,IL

)
, (4.53)

where the (ml−1)× (ml−1) matrix Il := Iml−1 −m−1
l (1ml−1 ⊗ 1�ml−1), l =

1, . . . , L since

Γ−1
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1/ml 1/ml ... 1/ml

1 −1 + 1/ml 1/m1 ... 1/ml

1 1/ml −1 + 1/m1 ... 1/ml

...
...

...
...

...

1 1/ml 1/ml ... −1 + 1/ml

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

(
Γ−1
l

)�
Γ−1
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ml 0 0 ... 0

0 1− 1/ml −1/ml ... −1/ml

0 −1/ml 1− 1/ml ... −1/ml

...
...

...
...

...

0 −1/ml −1/ml ... 1− 1/ml

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for l = 1, . . . , L.

Moreover, from (4.53), we can see that the eigenvalues of Γ̃ are

{ml, 1/ml, 1, . . . , 1︸ ︷︷ ︸
ml−2

}

which implies that Γ̃ is a positive definite matrix and we can decompose it

as

Γ̃ = Γ̃1/2Γ̃1/2. (4.54)

Let

Q̃ = QΓ̃1/2,

the loss term of the objective function can be written as

L (T (ν)) := ‖Y − (1n ⊗ Im)ν‖2

=
n∑

i=1

(
Q̃�(T (Yi)− T (ν))

)�(
Q̃�(T (Yi)− T (ν))

)
.(4.55)
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To deal with the penalty term λn

∑m
j=1

∑m
k=j+1 ŵjk|νj − νk|, we define

S(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ν1 − ν2 ν1 − ν3 ... ν1 − νm

ν2 − ν1 0 ν2 − ν3 ... ν2 − νm

ν3 − ν1 ν3 − ν2 0 ... ν3 − νm
...

...
... ...

...

νm − ν1 νm − ν2 νm − νm−1 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and m×m matrix

W = (wij) with wjj = 0, wjk = ŵjk = (|ν̂j − ν̂k|)−α, j 	= k, (4.56)

then

λn

m∑
j=1

m∑
k=j+1

ŵjk|νj − νk| = λn
1

2
1�
m

(
W � |S(ν)|

)
1m (4.57)

where each element of the matrix |S(ν)| is the absolute value of the matrix

S(ν) and � denotes the Hadmard product of two matrices.

Using the permutation matrix Q, suppose

Qν = (ν̃M1+1, . . . , ν̃M2
, ν̃M2+1, . . . , ν̃M3

. . . , ν̃m)
� = (�ν�

1 , . . . , �ν
�
L )

�,

with

�νl = (ν̃Ml+1, . . . , ν̃Ml+1
)�,
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and

P�
T (ν) = ΓQν = (ϕ1, ϕ12, . . . , ϕ1m1

, ϕ2, ϕ22, . . . , ϕ2m2
, . . . , ϕL, ϕL2, . . . , ϕLmL

)�,

with

�ϕl := Γl�νl = (ϕl, ϕl2, . . . , ϕlml
)�.

It follows that

ϕl =
1

ml

ml∑
j=1

ν̃Ml+j, ϕlk = ν̃Ml+1 − ν̃Ml+k, k = 2, . . . , ml

and

�νl = Γ−1
l �ϕl = ϕl +

1

ml

ml∑
j=2

ϕlj −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

ϕl2

...

ϕlml

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, l = 1, . . . , L.

Now let

S̃(ν) := QS(ν)Q� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S̃1,1(ν) S̃1,2(ν) ... S̃1,L(ν)

S̃2,1(ν) S̃2,2(ν) ... S̃2,L(ν)

...
...

...
...

S̃L,1(ν) S̃L,2(ν) ... S̃L,L(ν)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.58)

then S̃lc(ν) is an ml ×mc matrix with the (j, k)-th element being

ν̃Ml+j − ν̃Mc+k, j = 1, . . . , ml; k = 1, . . . , mc; l, c = 1, . . . , L. (4.59)
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Notice that

m∑
j=1

m∑
k=j+1

ŵjk|νj − νk| =

L∑
l=1

Ml+1∑
j=Ml+1

Ml+1∑
k=j+1

ŵjk|ν̃j − ν̃k|

+
L∑
l=1

L∑
c=l+1

Ml+1∑
j=Ml+1

Mc+1∑
k=Mc+1

ŵjk|ν̃j − ν̃k|.

For j ∈ {Ml + 1,Ml + 2, . . . ,Ml+1}, k ∈ {j + 1, . . . ,Ml+1},

ν̃j − ν̃k =
{ ϕlk, for j = Ml + 1,

−(ϕlj − ϕlk), otherwise.

=
{ ϕlk, for j ∈ M+ ∩ Ml,

−(ϕlj − ϕlk), for j ∈ M− ∩ Ml;

For j ∈ {Ml + 1,Ml + 2, . . . ,Ml+1}, k ∈ {Mc + 1, . . . ,Mc+1}, l 	= c,

ν̃j − ν̃k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δlc, for j ∈ M+ ∩ Ml & k ∈ M+ ∩ Mc,

Δlc + ϕck, for j ∈ M+ ∩ Ml & k ∈ M− ∩ Mc,

Δlc − ϕlj, for j ∈ M− ∩ Ml & k ∈ M+ ∩ Mc;

−(ϕlj − ϕck) + Δlc, otherwise ;

where Δlc = (ϕl − ϕc) +
1
ml

∑ml

s=2 ϕls − 1
mc

∑mc

s=2 ϕcs.

The penalty term (4.57) of the objective function can be written as

P(T (ν)) := λn

m∑
j=1

m∑
k=j+1

ŵjk|νj − νk|

= λn

L∑
l=1

{ ∑
j∈M+∩Ml

Ml+1∑
k=j+1

ŵjk|ϕlk|+
∑

j∈M−∩Ml

Ml+1∑
k=j+1

ŵjk|ϕlj − ϕlk|
}



4.6 Proofs 145

+λn

L∑
l=1

L∑
c=l+1

{ ∑
j∈M+∩Ml

∑
k∈M+∩Mc

ŵjk|Δlc|

+
∑

j∈M+∩Ml

∑
k∈M−∩Mc

ŵjk|Δlc + ϕck|

+
∑

j∈M−∩Ml

∑
k∈M+∩Mc

ŵjk|Δlc − ϕlj|

+
∑

j∈M−∩Ml

∑
k∈M−∩Mc

ŵjk|Δlc + (ϕck − ϕcj)|
}
. (4.60)

• Part II. (Asymptotic normality)

Let T (ν) = T (ν0) + T (u)/
√
n, where for vector u = (u1, . . . , um)

� ∈ R
m,

the transformation T (u) satisfies

P�
T (u) = (v1, v12, . . . , v1m1

, v2, v22, . . . , v2m2
, . . . , vL, vL2, . . . , vLmL

)�(4.61)

which corresponds to the transformation of ν.

Let

Ψn(T (u)) = L (T (ν)) + P(T (ν))

= L

(
T (ν0) + T (u)/

√
n
)
+ P

(
T (ν0) + T (u)/

√
n
)

Let û(n) = argminΨn(u) then φ̂∗(n) = T (ν̂∗(n)) = T (ν0) + T (û(n))/
√
n.

Note that Ψn(T (u))−Ψn(0) = Vn(T (u)), where

Vn(T (u)) =
{

L

(
T (ν0) + T (u)/

√
n
)
− L

(
T (ν0)

)}
+

{
P

(
T (ν0)

+T (u)/
√
n
)
− P

(
T (ν0)

)}
:= Ln(u) + Pn(u).
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First,

Ln(T (u)) = L

(
T (ν0) + T (u)/

√
n
)
− L

(
T (ν0)

)
=

n∑
i=1

(
Q̃�(T (Yi)− (T (ν0) + T (u)/

√
n))

)�

×
(
Q̃�(T (Yi)− (T (ν0) + T (u)/

√
n))

)
−

n∑
i=1

(
Q̃�(T (Yi)− T (ν0))

)�(
Q̃�(T (Yi)− T (ν0))

)

= T (u)�Q̃Q̃�
T (u)− 2T (u)�Q̃Q̃� 1√

n

n∑
i=1

T (εi).

and also recall from (4.15) and (4.18) that

√
n(ν̂n − ν0) =

√
n(

1

n

n∑
i=1

Yi − ν0) =
1√
n

n∑
i=1

(Yi − ν0)

=
1√
n

n∑
i=1

εi
D→ ξ ∼ N(0,W ),

which implies

1√
n

n∑
i=1

T (εi) = PΓQ
1√
n

n∑
i=1

εi
D→ ξ ∼ N(0, G),

where G = PΓQWQ�Γ�P�.

Second,

P

(
T (ν0) + T (u)/

√
n
)
= λn

L∑
l=1

{ ∑
j∈M+∩Ml

Ml+1∑
k=j+1

ŵjk|ϕ0
lk + vlk/

√
n|

+
∑

j∈M−∩Ml

Ml+1∑
k=j+1

ŵjk|ϕ0
lj − ϕ0

lk + (vlj − vlk)/
√
n|
}
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+λn

L∑
l=1

L∑
c=l+1

{ ∑
j∈M+∩Ml

∑
k∈M+∩Mc

ŵjk|Δ0
lc + δlc/

√
n|

+
∑

j∈M+∩Ml

∑
k∈M−∩Mc

ŵjk|Δ0
lc + ϕ0

ck + (δlc + vck)/
√
n|

+
∑

j∈M−∩Ml

∑
k∈M+∩Mc

ŵjk|Δ0
lc − ϕ0

lj + (δlc − vcj)/
√
n|

+
∑

j∈M−∩Ml

∑
k∈M−∩Mc

ŵjk|Δ0
lc + (ϕ0

ck − ϕ0
cj) + (δlc + (vck − vcj))/

√
n|
}

where δlc = (vl − vc) +ml
−1

∑ml

s=2 vlj −mc
−1

∑mc

s=2 vcj and the superscript 0

denotes the true value. Moreover, recall the assumption on the true value,

we have

Pn(T (u)) = P

(
T (ν0) + T (u)/

√
n
)
− P

(
T (ν0)

)
= λn

L∑
l=1

∑
j∈M+∩Ml

Ml+1∑
k=j+1

ŵjk

{
|ϕ0

lk + vlk/
√
n| − |ϕ0

lk|
}

(4.62)

+λn

L∑
l=1

∑
j∈M−∩Ml

Ml+1∑
k=j+1

ŵjk|(vlj − vlk)/
√
n| (4.63)

+λn

L∑
l=1

L∑
c=l+1

∑
j∈M+∩Ml

∑
k∈M+∩Mc

ŵjk

{
|Δ0

lc + δlc/
√
n| − |Δ0

lc|
}

(4.64)

+λn

L∑
l=1

L∑
c=l+1

∑
j∈M+∩Ml

∑
k∈M−∩Mc

ŵjk (4.65)

·
{
|Δ0

lc + ϕ0
ck + (δlc + vck)/

√
n| − |(δlc + vck)/

√
n|
}

+λn

L∑
l=1

L∑
c=l+1

∑
j∈M−∩Ml

∑
k∈M+∩Mc

ŵjk (4.66)

·
{
|Δ0

lc − ϕ0
lj + (δlc − vcj)/

√
n| − |(δlc − vcj)/

√
n|
}

+λn

L∑
l=1

L∑
c=l+1

∑
j∈M−∩Ml

∑
k∈M−∩Mc

ŵjk (4.67)
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·
{
|Δ0

lc + ϕ0
ck − ϕ0

cj +
δlc + vck − vcj√

n
| − |δlc + vck − vcj√

n
|
}

If we denote the true value ν0 = (ν10, . . . , νm0)
�, then only when j ∈ Ml

and k ∈ Ml, (l = 1, . . . , L) can νj0 = νk0.

(1) When νj0 	= νk0, ŵjk →p |νj0 − νk0|−α and

√
n
(
|(νj0 − νk0) +

uj − uk√
n

| − |νj0 − νk0|
)
→ (uj − uk)sgn(νj0 − νk0).

Thus

λn√
n
ŵjk

√
n
(
|(νj0 − νk0) +

uj − uk√
n

| − |νj0 − νk0|
)
→p 0.

Therefore, the terms from (4.64) to (4.67) goes to 0 in probability as n → ∞.

(2) When νj0 = νk0,

√
n
(
|(νj0 − νk0) +

uj − uk√
n

| − |νj0 − νk0|
)
= |uj − uk|

and λn√
n
ŵjk =

λn√
n
nα/2(

√
n|ν̂j − ν̂k|)−α → ∞ since

√
nν̂n = Op(1).

For l = 1, . . . , L,, j ∈ M+ ∩ Ml, k = j + 1, . . . ,Ml+1,

√
n(|ϕ0

lk + vlk/
√
n| − |ϕ0

lk|) →p vlksgn(ϕ
0
lk)

and

λn√
n
ŵjk =

λn√
n
nα/2(

√
n|ν̂j − ν̂k|)−α → ∞.

Thus, the term (4.62) goes to infinity except when vlk = 0, k = 2, . . . ,Ml+1.
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Similarly, for l = 1, . . . , L, j ∈ M− ∩ Ml, k = j + 1, . . . ,Ml+1, if

vlj 	= vlk then
λn√
n
ŵjk

√
n|(vlj − vlk)/

√
n| → ∞.

In a word, for each group l, l = 1, . . . , L, we require vlj = vlk = 0, j, k =

2, . . . ,Ml+1 in order to get the finite limit of the penalty term.

Therefore, by Slutsky’s theorem, we have Vn(u)
D→ V (u) for every u

V (T (u)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
T (u)

)�

A +

(
Q̃Q̃�)

A +

(
T (u)

)
A +

− 2
(
T (u)

)�

A +

(
Q̃Q̃�)

A +ξA + ,

if
(
T (u)

)
s
= 0 for s ∈ A −,

∞, otherwise.

The unique minimum of V (T (u)) is (ξ�
A +, 0)�. Following the epi-convergence

results of Geyer (1994), we have

(
T (û(n))

)
A +

D→ ξA + , and
(
T (û(n))

)
A −

D→ 0.

Note that the transformation T is linear, we have

(
T (û(n))

)
A +

=
√
n
(
T (ν̂∗(n))A + − T (ν0)A +

)
D→ N(0, GA +),

then we complete the proof of the asymptotic normality part.

• Part III. (Consistency)

For ∀j ∈ A + = {1, . . . , L}, based on the asymptotic normality result, we

have

τ̂
∗(n)
j →p φj thus P (j ∈ A

+
n ) → 1.
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Then it suffices to show that ∀j ∈ A −, P (j ∈ A +
n ) → 0. Take the first

derivative of the loss function on τ̂
∗(n)
j and divide by

√
n, we obtain

−2
1√
n

n∑
i=1

{
(T (Yi))j − τ̂

∗(n)
j

}
(4.68)

Note that

1√
n

n∑
i=1

{
(T (Yi))j − τ̂

∗(n)
j

}
=

1√
n

n∑
i=1

(T (Yi))j −
√
nτ̂

∗(n)
j = Op(1), (4.69)

from (4.15) and
√
nτ̂

∗(n)
j

D→ 0 for j ∈ A −.

Now we deal with the penalty function. For the j ∈ A −, there exists some

l (group) and s ∈ {2, . . . , ml} such that

τ̂
∗(n)
j = φ̂

∗(n)
ls .

The first derivative of the penalty function on τ̂
∗(n)
j divided by

√
n is

Hn :=
λn√
n

∑
j∈M+∩Ml

ŵjssgn(φ̂
∗(n)
ls )

+
λn√
n

∑
j∈M−∩Ml

ŵjssgn(φ̂
∗(n)
lj − φ̂

∗(n)
ls )(−1)

+
λn√
n

L∑
c=l+1

∑
j∈M+∩Ml

∑
k∈M+∩Mc

ŵjksgn(Δ̂
∗(n)
lc )C1

+
λn√
n

L∑
c=l+1

∑
j∈M+∩Ml

∑
k∈M−∩Mc

ŵjksgn(Δ̂
∗(n)
lc + φ̂

∗(n)
ck )C2

+
λn√
n

L∑
c=l+1

∑
j∈M−∩Ml

∑
k∈M+∩Mc

ŵjksgn(Δ̂
∗(n)
lc − φ̂

∗(n)
lj )C3
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+
λn√
n

L∑
c=l+1

∑
j∈M−∩Ml

∑
k∈M−∩Mc

ŵjksgn(Δ̂
∗(n)
lc + (φ̂

∗(n)
cj − φ̂

∗(n)
cj ))C4

=
λn√
n

Ml+1∑
j=Ml+1

ŵjsC
′
j +

λn√
n

L∑
c=l+1

∑
j∈Ml

∑
k∈Mc

ŵjkDjk

:= H1n +H2n,

where C1, C2, C3, C4 and C ′
j, Djk are constants. By the KKT optimality

conditions, we know that

−2
1√
n

n∑
i=1

{
(T (Yi))j − τ̂

∗(n)
j

}
= Hn.

Therefore

P (j ∈ A
+
n ) ≤ P

(
− 2

1√
n

n∑
i=1

{
(T (Yi))j − τ̂

∗(n)
j

}
= Hn

)
.

Recall that j ∈ A −, similarly as the discussion in the proof of Part II, we

have

H1n →p ∞ and H2n →p 0

which implies Hn →p ∞. Therefore,

P (j ∈ A
+
n ) ≤ P

(
− 2

1√
n

n∑
i=1

{
(T (Yi))j − τ̂

∗(n)
j

}
= Hn

)
→ 0.

We complete the proof. �
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CHAPTER 5

Conclusions and Future Work

In Chapter 2 of the thesis, we proposed to select the threshold variable of the

Smooth Threshold Autoregressive (STAR) model by the recently developed L1

regularization approach. Oracle properties of the adaptive lasso estimator have

been obtained. Compared with the threshold variable selection via the hypothesis

testing method or classification methods, this method can produce a parsimonious

number of nonzero coefficients for the threshold variable, thus leading to a simple

way of selecting the threshold variable. In this chapter, a new penalizing approach,

Direction Adaptive Lasso (DAL), was also proposed specially for the three models

where the shape of the link function cannot be neglected. It was shown from nu-

merical studies that by penalizing the direction of the coefficient vector instead of

the coefficients themselves, the threshold variable is more accurately selected. A

possible explanation is that the norm of the coefficient vector implies the threshold
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shape which should not be penalized. Real data analysis also suggests that the

proposed method is able to select the threshold variable more efficiently than the

general L1 regularization method, especially when the sample size is small. More-

over, the experimental result on the popular analyzed real data (Lynx Data Set)

is in agreement with the result of the previous studies. This study is very useful

in practical application because larger sample size requires more time and money

cost and it is not always possible to obtain large sample sets in high-dimensional

spaces since an exponentially increasing number of data points are required with

increasing dimension. This study has provided a new perspective of threshold vari-

able selection and extended the previous adaptive lasso method to a more efficient

one. However, the studies on the new method are restricted to the one specific

type of model and the effect of the shape of the link function was only examined

numerically. Based on the good numerical performance of the proposed method,

further research is needed to examine the theoretical results on the effect of the

shape of the link function on the variable selection. In this way, future study could

attempt to identify a general class of model where this method can be applied to

improve the variable selection efficiency.

In Chapter 3, motivated by the compelling need to improve the numerical sta-

bility in high dimension and by practical examples in which different coefficient

functions are linearly dependent, we proposed a new varying coefficient model,

PVCM, which incorporates the intrinsic patterns in the coefficients. Combined

with the kernel smoothing approach, the limiting distributions of the estimators

have been obtained under regular conditions. Moreover, incorporating with the L1

penalty, the estimation can automatically select variables in the linear part and
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the nonlinear part. It was shown that the L1 estimator has the oracle properties.

The model possesses superior estimation efficiency over VCM. The advantage of

PVCM over VCM increases as p increases. PVCM reduces the actual number of

nonparametric functions, and thus has better estimation efficiency. Numerical s-

tudies including both simulation study and real data analysis also suggest that

the model together with the kernel smoothing estimation method has good esti-

mation performance and is numerically stable even when the number of covariates

is large. The gain in estimation efficiency and numerical stability is due to further

model identification that only a small number of principal functions need to be

estimated non-parametrically, regardless of which smoothing method is used. The

key benefit of the proposed model is that the estimation efficiency only depends on

a few principal functions. Principal Varying Coefficient Model (PVCM) together

with the estimation methods provides a powerful approach towards the analysis of

complicated data and results in a considerable improvement for solving the issue

“curse of dimensionality”. However, this study did not consider the smoothing

methods other than the kernel smoothing. Kernel smoothing is popularly used in

nonparametric modeling and more theoretically convenient to study. In addition,

it is the kernel smoothing that causes the numerical instability in high dimension

case. Therefore, this study only focuses on this estimation method. However,

the proposed model is a semi-parametric model and thus can be estimated based

on other smoothing methods such as spline smoothing. Recent advances indicate

that the spline smoothing and the penalized splines enjoy many good properties.

See, for example, Wood (2006), and Ruppert et al (2009). It would be interest-

ing to incorporate the spline smoothing into the proposed model. The estimation

performance based on the splines smoothing needs further investigation.
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In Chapter 4, based on the way of dependence in epidemiology, finance study

and genetic analysis, where the variates usually function in blocks, we have consid-

ered a special L1 penalty, called cLasso. We have shown that cLasso can achieve

the goal of identifying the blocks when the penalty parameters are selected appro-

priately. On the other hand, the calculation results in all the examples suggest

that the sparsity assumption is not appropriate due to its bigger prediction error

than the simple regression or ridge regression. Instead, cLasso has much small-

er prediction error in all the examples. Moreover, we applied the cLasso to the

estimation of covariance matrix. Numerical examples showed that the estimation

performance cLasso on the covariance matrix is better than that of Lasso and ridge

in some cases.We obtained the oracle properties of cLasso on the covariance ma-

trix. However, it is under the condition that n goes to infinity while p keep fixed.

Since the high/ultra-high dimensional problems attract more interest of research

with the development of modern technologies, the case p = p(n) → ∞ as n → ∞
would be interesting to be investigated.
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[12] van Dijk, D. Teräsvirta, T. and Franses, P.H. (2002). Smooth tran-

sition autoregressive models - a survey of recent developments. Econometric

Reviews, 21, 1-47.

[13] Duan, N. and Li, K.-C. (1991). Slicing regression: A link-free regression

method. Annals of Statistics, 19(2), 505-530.

[14] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004).

Least angle regression. Annals of Statistics, 32, 407-451.

[15] Fama, E. F. and French, K. R. (1993). Common risk factors in the returns

on stocks and bonds. Journal of Financial Economics, 33, 3-56.

[16] Fan, J. and Gijbels, I. (1996). Local polynomial modeling and its applica-

tions. Chapman and Hall, New York.

[17] Fan, J. and Huang, T. (2005). Profile likelihood inferences on semipara-

metric varying-coefficient partially linear models. Bernoulli, 11, 1031-1057.

[18] Fan, J. and Jiang, J. (2005). Nonparametric inferences for additive models.

Journal of the American Statistical Association, 100, 890-907.



Bibliography 158

[19] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likeli-

hood and its oracle properties. Journal of the American Statistical Association,

96, 1348-1360.

[20] Fan, J. and Lv, J. (2008). Sure independence screening for ultra-high di-

mensional feature space. (with discussion). Journal of Royal Statistical Society

B, 70, 849-911.

[21] Fan, J. and Yao, Q. (2003). Nonlinear time series. Nonparametric and

parametric methods. Springer-Verlag, New York.

[22] Fan, J. and Zhang, J. T. (2000). Two-step estimation of functional linear

model with application to longitudinal data. Journal of the Royal Statistical

Society, Series B, 62, 303-322.

[23] Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficient

models. Annals of Statistics, 27, 1491-1518.

[24] Fan, J. and Zhang, W. (2000). Simultaneous confidence bands and hy-

pothesestesting in varying-coefficient models. Scandinavian Journal of Statis-

tics, 27, 715-731.

[25] Fan, J. and Zhang, W. (2008). Statistical methods with varying coefficient

models. Statistics and Its Interface, 1, 179-195.

[26] Frank, I.E. and Friedman, J. H. (1993). A statistical view of some chemo-

metrics regression tools. Technometrics 35, 109-148.

[27] Franses, P. H. and van Dijk, D. (2000). Nonlinear time series models in

empirical finance. Cambridge, New York.

[28] Fu, W. (1998). Penalized regressions: the bridge versus the Lasso. Journal

of Computational and Graphical Statistics, 7 397-416.

[29] Geyer, C. (1994). On the asymptotics of constrained M-estimation. Annals

of Statistics, 22 1993-2010.

[30] Golub, T. R., Slonim, D. K. , Tamayo, P. , Huard, C., Gaasenbeek,

M. , Mesirov, J. P. , Coller, H. , Loh, M. L. , Downing, J. R. ,



Bibliography 159

Caligiuri, M. A. , Bloomfield, C. D., and Lander, E. S. (1999).

Molecular classification of cancer: class discovery and class prediction by gene

expression monitoring. Science, 286 531-537.
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