
ON SILVER’S DICHOTOMY

LI YANFANG

(B.Sc., Tsinghua University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2012



Acknowledgements

With great pleasure, I would like to thank the many people who made this thesis

possible.

First and foremost, I would like to express my sincere gratitude to my supervisor

Prof. Feng Qi. With his motivation, enthusiasm, and immense knowledge, he leads

me to step into the field of logic and guide me continuously during my Ph.D study

and research. Without him, I would have been lost.

I am also deeply indebted to my dissertation advisor Prof. Theodore A. Slaman

from the University of California, Berkeley. Throughout my thesis-writing period,

he provided encouragement, sound advice, and plenty of good ideas which really

help me a lot.

The members of the Logic group have contributed greatly to my personal and

professional time at National University of Singapore. I would like to thank Prof.

Chong Chi Tat, Prof. Yang Yue and Prof. Frank Stephan for all those logic courses

ii



Acknowledgements iii

they offered, as well for the good advice they provided during conversations.

I would also like to thank all the colleagues during my Ph.D study, for providing

a stimulating and fun environment in which I learn and grow. I especially thank

Prof. Wu Guohua, Prof. Shi Xianghui, Prof. Yu Liang, Prof. Wang Wei, Dr. Liu

Jiang, Dr. Yang Sen, Zhu Huiling, Zhu Yizheng, Peng Yinhe, Shao Dongxu, Jin

Chenyuan, Li Wei, for their a wide range of help.

I am grateful to the Institute for Mathematical Sciences at National University

of Singapore, for their efforts to organize the Summer School for Logic ever since

2005. I really appreciate the opportunities to join such an inspiring yearly aca-

demic activity, to enjoy the enlightening talks and meet logicians from all over the

world.

In particular, I would like to express my deepest respect to Prof. W. Hugh Woodin

and Prof. Theodore A. Slaman, for their continuous contributions to this produc-

tive and stimulating activity.

My warm thanks also goes to the math department of National University of Sin-

gapore for providing me such a wonderful study environment and providing partial

financial support during academic year 2010-2011.

I wish to thank all the friends I met in Singapore, for all the happiness they bring

to my life. Especially, I would like to thank Chen Fei, for her encouragement dur-

ing my difficult times.

My special gratitude is due to my parents. They raised me with warm heart and

supported me in all my pursuits. Thank you.



Acknowledgements iv

Lastly, I owe my sincere thanks to my loving, supportive, encouraging, and patient

husband Wu Liuzhen whose unconditional and endless support during my research

is so appreciated. To him I dedicate this thesis.

Li Yanfang

National University of Singapore

March, 2012



Contents

Acknowledgements ii

Summary 1

1 Introduction 2

1.1 Dichotomy Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Borel Reducibility . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Dichotomy Theorems . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Gandy-Harrington Topology . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Fokina-Sy.Friedman-Törnquist’s Results . . . . . . . . . . . . . . . 8

1.4 Reverse Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Second Order Arithmetic . . . . . . . . . . . . . . . . . . . . 12

1.4.2 RCA0, ACA0, Π1
1 − CA0 and ATR0 . . . . . . . . . . . . . 13

1.4.3 Additional Words . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Effectiveness of Silver’s Dichotomy 17

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



Contents vi

2.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Witness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Π1
1 − CA0 and Silver’s Dichotomy 34

3.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 A Model M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Relativization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Comparison with Simpson’s Theorem . . . . . . . . . . . . . . . . . 51

Bibliography 54

Index 58



Summary

One purpose of this study is to investigate effectiveness of Silver’s Dichotomy. The

reverse mathematics strength of our particular version of Silver’s Dichotomy is also

examined in the study.

Inspired by Harrington’s proof of Silver’s Dichotomy, Gandy-Harrington Forcing

is employed to obtain an effective version of Silver’s Dichotomy in Chapter 2. We

strengthen previous results by presenting a calculation of complexity of the reduc-

tion map from ∆(2ω) to the given Π1
1 equivalence relation E. It turns out that the

reduction map is recursive in Kleene’s O.

Moreover, with step by step construction, we could define two continuous functions

a∗, z∗ to witness the reduction from ∆(2ω) to the given Π1
1 equivalence relation E.

a∗ will induce a perfect set of E-inequivalent elements and z∗ will give a real to

witness the inequivalence.

In Chapter 3, we examine the reverse mathematics strength of Silver’s Dichotomy.
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Summary 1

To distinguish the reverse mathematics strengths of our particular version of Sil-

ver’s Dichotomy and Π1
1−CA0, we use a model theoretic approach. The statement

of our particular version of Silver’s Dichotomy is a Σ1
1-sentence. We construct a

model M of second order arithmetic which satisfies all the true in V Σ1
1-sentences.

In the meanwhile, by Gandy’s Basis Theorem, we could avoid bringing Kleene’s O

into M and make Π1
1−CA0 fail in M . To check M satisfies our particular version

of Silver’s Dichotomy restricted to ∆1
1 equivalence relations, upward absoluteness

of Σ1
1-sentences, and downward absoluteness of Π1

1-sentences together with some

descriptive set theoretical facts, are employed.

Furthermore, in order to compare reverse mathematics strength of our result and

Π1
1 − CA0, a routine relativization argument is applied. By reviewing Simpson’s

proof, we compare the reverse mathematics strength of our result and Simpson’s

version of Silver’s Dichotomy.



Chapter 1
Introduction

In 1980, Silver published his theorem on counting the number of equivalence class-

es of coanalytic equivalence relations, saying that every coanalytic equivalence

relation E has either countably many equivalence classes or has a perfect set of

mutually E-inequivalent elements and thus continuum many equivalence classes.

This is what we call Silver’s Dichotomy in this thesis.

On one hand, Silver’s Dichotomy is a theorem in classical descriptive set theory,

which starts since the beginning of 20 century and studies definable sets and func-

tions in complete, separable, metric space. We call such space Polish space. In

Polish space, an analytic set is the projection of some closed set and a coanalytic

set is the complement of some analytic set. [Kechris, 1995], [Moschovakis, 2009]

and [Mansfield and Weitkamp, 1985] are good textbooks of descriptive set theory.

In the context of classical descriptive set theory, Silver’s Dichotomy can be viewed

as a generalization of Suslin’s Perfect Set Theorem ([Lusin, 1917]) which states

that every uncountable analytic set has a non-empty perfect subset. To see this,

given any analytic set A ⊆ ωω, we can define a coanalytic equivalence relation E

2



3

as follows:

xEy ⇔ (x /∈ A ∧ y /∈ A) ∨ x = y.

Every singleton {x} for x ∈ A forms an equivalence class, thus A is uncountable

implies that E has uncountably many equivalence classes. By Silver’s Dichotomy,

the Perfect Set Theorem follows.

On the other hand, Silver’s Dichotomy is a source leading to Harrington, Kechris

and Louveau’s result ([Harrington et al., 1990]), Harrington-Kechris-Louveau’s

Dichotomy(H-K-L’s Dichotomy for short). The latter opens a new era of the

theory of definable equivalence relations, which is also called invariant descrip-

tive set theory in [Gao, 2009]. A quick glance at this subject can be found in

[Kechris, 1999]. For readers who have particular interests in definable equivalence

relations, [Gao, 2009] and [Kanovei, 2008] are good textbooks to read.

Recently, people started to investigate the effective theory of definable equivalence

relations. In [Fokina et al., 2010], some results concerning effectiveness of previous

dichotomy theorems such as Silver’s Dichotomy and H-K-L’s Dichotomy, were p-

resented. Motivated by their results, one objective of this thesis is to investigate

effectiveness of Silver’s Dichotomy, expecting to reduce the complexity of required

parameters. In [Fokina et al., 2010], the authors analyzed the complexity of cate-

gory notion in Gandy-Harrington topology as they worked with proofs in category

argument for both Silver’s Dichotomy and H-K-L’s Dichotomy. In this thesis, we

will work with a proof in forcing argument and we will choose appropriate forcing

conditions in order to restrict the complexity of induced reduction map.

Besides, Silver’s Dichotomy is also a test theorem to study in reverse mathematics.
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From Simpson’s work ([Simpson, 2009]), some weak version of Silver’s Dichotomy

can be proved within ATR0, a subsystem of second order arithmetic. Furthermore,

the reverse mathematics strength of another version of Silver’s Dichotomy is equiv-

alent to Π1
1 − CA0, which is strictly stronger than ATR0. This leads to another

objective of this thesis: discussing reverse mathematics strength of our result on

Silver’s Dichotomy, especially its relationship with Π1
1 − CA0.

In this chapter, we briefly review Silver’s Dichotomy, H-K-L’s Dichotomy, previous

effective results on dichotomy theorems and some materials on reverse mathemat-

ics.

1.1 Dichotomy Theorems

1.1.1 Borel Reducibility

Before we talk about dichotomy theorems, it is necessary to introduce Borel re-

ducibility.

Defnition 1.1. Given two equivalence relations E, F on Polish spaces X, Y re-

spectively, we say that E can be reduced to F if there exists a reduction map f from

X to Y such that

xEy ↔ f(x)Ff(y).

If f is a Borel function, then we call f a Borel reduction from E to F . E ≤B F

means E is Borel reducible to F . E <B F means E ≤B F and F �B E.
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1.1.2 Dichotomy Theorems

Dichotomy theorems is an important topic in invariant descriptive set theory. By

comparing the complexity of two given equivalence relations up to Borel reducibil-

ity, people are trying to draw a global picture of Borel reducibility hierarchy.

Follow the convention of [Kanovei, 2008], given a set X, a simple equivalence rela-

tion on X is the equality relation denoted by ∆(X), i.e,

∀x ∈ X∀y ∈ X(x ∆(X) y)⇔ x = y.

A trivial linear ordering consisting of the equality relations ∆(n) for n < ω and

∆(ω) occupy the bottom of the diagram of Borel reducibility. In this part, we have

∆(1) <B ∆(2) <B . . . <B ∆(ω).

Then Silver’s Dichotomy comes in as the first nontrivial result on Borel reducibility.

Theorem 1.2 (Silver’s Dichotomy, [Silver, 1980]). If E is a coanalytic equivalence

relation on the space of all real numbers and has uncountably many equivalence

classes, then there is a perfect set of mutually E-inequivalent reals (hence E has

2ω many equivalence classes).

Since a Borel equivalence relation is a coanalytic equivalence relation, Theorem 1.2

implies that up to Borel isomorphism, there is no Borel equivalence relation be-

tween ∆(ω) and ∆(2ω).

The next big contribution to the diagram of Borel reducibility is the following

H-K-L’s Dichotomy. It gives the least element above ∆(2ω), E0 defined on 2ω by

xE0y ⇔ ∃n∀m ≥ n(x(m) = y(m)).

Before we state H-K-L’s Dichotomy, we introduce smoothness.
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Defnition 1.3. Given a Borel equivalence relation E on Polish space X, (i.e., E

is Borel as a subset of X2), a (countable) separating family for E is a sequence

{An} of subsets of X such that

xEy ↔ (∀n(x ∈ An ↔ y ∈ An)).

If E has a Borel separating family, then we say that E is smooth.

We present two versions of H-K-L’s Dichotomy, in bold face and in light face.

Theorem 1.4 ([Harrington et al., 1990]). Let X be a Polish space and E a Borel

equivalence relation on X. Then exactly one of these following holds:

(i) E is smooth or

(ii) E0 v E (continuously), i.e., there is a continuous embedding of E0 into E.

Theorem 1.5 ([Harrington et al., 1990]). Let E be a ∆1
1 equivalence relation on

ωω. Then exactly one of the following holds:

(i) E has a separating family {An} consisting of ∆1
1 sets (in fact uniformly, i.e.,

there is a separating family {An} such that the set A defined by

(x, n) ∈ A⇔ x ∈ An

is ∆1
1 in ωω × ω) or

(ii) E0 v E (continuously).

The former can be proved by relativizing the latter and applying the classical trans-

fer theorem which says that given a Polish space X, B a Borel subset of X, then

there is a continuous embedding from ωω to X and a closed set C ⊆ ωω such that

B is the image of C.

It is worth to note that, although Theorem 1.4 and Theorem 1.5 are both theorems

in invariant descriptive set theory, they in fact originate from Glimm and Effros’s

earlier dichotomy theorems concerning equivalence relations induced by group ac-

tions. Basic knowledge of Polish group actions can be found in [Gao, 2009] and
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[Becker and Kechris, 1996] is a book for further reading.

As we can see, up to E0, the diagram is still linear. However, beyond E0, the

situation becomes much more complicated. In fact, it is no longer linear and

there are incomparable Borel equivalence relations. For instance, it is shown in

[Adams and Kechris, 2000] that there are uncountably many incomparable count-

able Borel equivalence relations where countable Borel equivalence relation means

Borel equivalence relations such that each equivalence class is countable. A partial

picture of the diagram could be found in page 68 of [Kanovei, 2008]. In this thesis,

we only focus on the linear part of the Borel reducibility hierarchy.

1.2 Gandy-Harrington Topology

In both proof of Silver’s Dichsotomy and H-K-L’s Dichotomy, Gandy-Harrington

topology and effective descriptive set theory playes a crucial role. Readers who are

not familiar with effective descriptive set theory are referred to [C.A.Rogers, 1980],

Part 4 for an introduction, as well as an elegant proof of Silver’s Dichotomy. In

fact, in proving our effective result on Silver’s Dichotomy, we also follow Harring-

ton’s idea to execute Gandy-Harrington forcing, but in a more specific way.

The rest of this section is devoted to review some facts about Gandy-Harrington

topology.

Defnition 1.6. The Gandy-Harrington topology on Polish space X, denoted by τ ,

is the topology generated by all Σ1
1 sets.

As far as we concern, X is usually taken to be ωω or product spaces such as
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ωn × (ωω)m.

One good property of τ is that it satisfies the Baire category theorem, i.e., the

intersection of countably many dense open sets is still dense.

Gandy-Harrington forcing is the partial order P consisting of basic open sets

of τ ordered by inclusion. Basic knowledge of forcing can be found in [Jech, 2003]

and [Kunen, 1983].

The following fact of P implies that a P-generic filter is equivalent to a P-generic

real.

Fact 1.1 (Lemma 30.2, [Miller, 1995]). If G is P-generic over V , then there exists

g ∈ ωω such that G = {p ∈ P : g ∈ p} and {g} =
⋂
G.

We call this g P-generic real.

There are two versions of proofs of Silver’s Dichotomy, in [Miller, 1995] and [C.A.Rogers, 1980].

Although one uses forcing argument and the other uses topological argument,

they are essentially the same. The crucial point in both proof is, in the Gandy-

Harrington topology τ , using some effective descriptive set theory, it can be shown

that either E has at most countably many equivalence classes or E is meager on

some A× A in the τ × τ topology, where A is non-empty open in τ .

However, it is pointed out by Kechris and Martin that, in the standard topology, it

is not always true that given a coanalytic equivalence relation E with uncountably

many equivalence classes, E must be meager on some square A× A.

1.3 Fokina-Sy.Friedman-Törnquist’s Results

By replacing Borel with Hyperarithmetic, people started to study Hyp reducibil-

ity and obtained results in the effective theory of Borel reducibility. Here Hyper-

arithmetic sets are equivalent to ∆1
1 sets.
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Defnition 1.7 ([Fokina et al., 2010]). Let E and F be equivalence relations on ωω.

E is Hyp-reducible to F if there exists a Hyperarithmetic function

f : ωω → ωω

such that

xEy ↔ f(x)Ff(y)

which we denote by E ≤H F .

E ≡H F if and only if E ≤H F and F ≤H E. If E ≡H F , then they have the same

Hyp-degree.

In 2010, Fokina, Sy.Friedman and Törnquist showed in [Fokina et al., 2010] that

the effective theory of Borel reducibility is quite different from the classical case.

For instance, even in very low level of Hyp reducibility hierarchy, the diagram is

far from linear.

In the meanwhile, they presented some effective results on Silver’s Dichotomy and

H-K-L’s Dichotomy. Unfortunately, both effective versions of the two dichotomy

theorems do not hold for Hyperarithmetic equivalence relations. Furthermore, they

analyzed the parameters in both Silver’s Dichotomy and H-K-L’s Dichotomy and

showed that instead of “Borel”, the complexity of reduction map can be reduced to

“Hyp in Kleene’s O” (O is the set of constructible ordinals and basic knowledge

of O can be found in [Sacks, 1990]).

The following two theorems are their effective results on Silver’s Dichotomy and

H-K-L’s Dichotomy.

In convenience to state the results, we introduce some notations.
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Defnition 1.8 ([Fokina et al., 2010]). For every n ∈ ω, n ≥ 1, =n is the Hyp-

degree of the following equivalence relation on ωω defined by

x ≡ y ⇔ x(0) = y(0) or both x(0), y(0) ≥ n− 1.

=ω is the Hyp-degree of the equivalence relation on ωω defined by

x ≡ y ⇔ x(0) = y(0)

=P(ω)
1is the Hyp-degree of the equality relation = on P(ω), the power set of ω.

Theorem 1.9 ([Fokina et al., 2010]). Let E be a Hyp equivalence relation on ωω.

Then either

(1)

E ≤H=ω

or

(2)

=P(ω)≤∆1
1(O) E.

Theorem 1.10 ([Fokina et al., 2010]). Let E be a Hyp equivalence relation on ωω.

Then either

(1)

E ≤H=P(ω)

or

(2)

E0 ≤∆1
1(O) E.

Theorem 1.9 and Theorem 1.10 say that with regard to Hyp reducibility, in the

second case of Silver’s Dichotomy and H-K-L’s Dichotomy, there are reduction

1In this thesis, we interchange between =P(ω) and ∆(2ω) when we cite results in

[Fokina et al., 2010].
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maps which are “Hyp in Kleene’s O”. In fact, Theorem 1.9 is one of the work from

which our result in Chapter 2 is motivated since we would like to know whether

“Hyp in Kleene’s O” is the best possible parameter.

1.4 Reverse Mathematics

The main question of reverse mathematics is: what is the foundation of mathe-

matics and what is the appropriate axiom system of mathematics? In other words,

the major subject of reverse mathematics is to study under what axiom system, a

given theorem of ordinary mathematics can be proved?

There are some results on Silver’s Dichotomy with regard to reverse mathematics

strength in [Simpson, 2009]. Out of curiosity about reverse mathematics strength

of our result on Silver’s Dichotomy, we include the discussion on Silver’s Dichotomy

as a test theorem in reverse mathematics. Contents in Chapter 3 can be viewed as

discussion in adjoint part between descriptive set theory and reverse mathematics.

Purpose of this section is not to present deep facts in reverse mathematics but only

to let the readers get a quick glance at some necessary terminologies used in this

thesis. For readers who are particularly interested in foundation of mathematics, it

is suggested to read Simpson’s Book, [Simpson, 2009], for a better understanding

of this subject. All the definitions and theorems presented in this section follow

[Simpson, 2009]’s convention. In addition, to understand the rest of this section,

basic knowledge of model theory is needed. [Marker, 2002] or [Shoenfield, 1967] is

referred to readers for a first acquaintance of model theory.
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1.4.1 Second Order Arithmetic

Being different from first order arithmetic whose language has only number vari-

ables, the language of second order arithmetic has two kinds of variables. One is

number variables ranging over ω and the other is set variables ranging over all sub-

sets of ω. There are two constant symbols, 0 and 1, two binary operation symbols,

+ and ·, which are intended to represent addition and multiplication of natural

numbers respectively. Besides propositional connectives ¬, ∨, ∧, → and number

quantifiers ∀n, ∃n, there are also set quantifiers ∀X, ∃X. Terms, atomic formulas

and formulas are formed conventionally. We denote the language of second order

arithmetic by L2.

Next, the following is the formal system of second order arithmetic, denoted by

Z2.

Defnition 1.11 (second order arithmetic). The axioms of second order arithmetic

consist of the universal closures of the following L2-formulas:

(i) basic axioms:

m+ 1 6= 0

(m+ 1 = n+ 1)→ m = n

m+ 0 = m

m+ (n+ 1) = (m+ n) + 1

m · 0 = 0

m · (n+ 1) = (m · n) +m

¬(m < 0)

(m < n+ 1)↔ (m < n ∨m = n)

(ii) induction axiom:

(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)
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(iii) comprehension scheme:

∃X∀n(n ∈ X ⇔ ϕ(n))

where ϕ(n) is any formula of L2 in which X does not occur freely.

Defnition 1.12 (L2-structure). A structure for L2 is an ordered 7-tuple

M = (|M |, SM ,+M , ·M , 0M , 1M , <M),

where |M | is a set which serves as the range of the number variables, SM is a set

of subsets of |M | serving as the range of the set variables, +M and ·M are binary

operations on |M |, 0M and 1M are distinguished elements of |M |, <M is a binary

relation on |M |.

Lastly, we introduce some L2-structures which will appear later.

Example 1.13 (intended model). The intended model for L2 is

(ω,P(ω),+, ·, 0, 1, <).

Example 1.14 (ω-model). An ω-model of L2-structure is of the form

(ω, S,+, ·, 0, 1, <)

where S is a non-empty collection of subsets of ω.

Example 1.15 (β-model). A β-model is an ω-model (ω, S,+, ·, 0, 1, <) with the

following property:

If ϕ is any Π1
1 or Σ1

1-sentence with parameters from S, then (ω, S,+, ·, 0, 1, <)

satisfies ϕ if and only if the intended model satisfies ϕ.

1.4.2 RCA0, ACA0, Π1
1 − CA0 and ATR0

In this part, we introduce some subsystems of Z2.

The first subsystem of Z2 to introduce is RCA0. Before we define RCA0, it is

necessary to define Σ0
1 induction and ∆0

1 comprehension.
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Defnition 1.16 (Σ0
1 induction). The Σ0

1 induction scheme is the restriction of the

second order induction scheme (as in Definition 1.11 (ii) ) to L2-formulas ϕ(n)

where ϕ is Σ0
1.

Defnition 1.17 (∆0
1 comprehension). The ∆0

1 comprehension scheme consists of

(the universal closures of) all formulas of the form

∀n(ϕ(n)↔ ξ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ(n) is any Σ0
1-formula, ξ(n) is any Π0

1-formula, n is any number variable,

and X is a set variable which does not occur freely in ϕ(n).

Similarly, we can define arithmetic comprehension, Π1
1 comprehension by

replacing ∆0
1 with arithmetic, Π1

1 in Definition 1.17 respectively.

Defnition 1.18 (RCA0). RCA0 is the subsystem of Z2 consisting of the basic

axioms in Definition 1.11 (i), the Σ0
1 induction scheme and the ∆0

1 comprehension

scheme.

Similarly, we define ACA0 and Π1
1 − CA0.

Defnition 1.19 (ACA0). ACA0 is the subsystem of Z2 consisting of the basic

axioms in Definition 1.11 (i), the induction axiom in Definition 1.11, and the

arithmetic comprehension scheme.

Defnition 1.20 (Π1
1−CA0). Π1

1−CA0 is the subsystem of Z2 by replacing arith-

metic comprehension with Π1
1 comprehension in ACA0 .

Obviously, RCA0 is the weakest and Π1
1 − CA0 is the strongest among the above

three subsystems of Z2.

Next, we define another subsystem of Z2, ATR0, consisting of ACA0 plus the

scheme of arithmetical transfinite recursion.

Defnition 1.21 (arithmetical transfinite recursion). θ(n,X) is an arithmetical

formula with a free number variable n and a free set variable X. Note that θ(n,X)
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may also contain parameters, i.e., additional free number and set variables.

Define an “arithmetical operator” Θ : P(ω)→ P(ω) by

Θ(X) = {n ∈ ω : θ(n,X)}.

Let A,<A be any countable well ordering and consider the set Y ⊆ ω×A obtained

by transfinitely iterating the operator Θ along A,<A defined by the following con-

ditions:

(i) Y ⊆ ω × A;

(ii) For each a ∈ A, Ya = Θ(Y a) where Y a = {(n, b) : n ∈ Yb ∧ b <A a}. Thus, Y a

is the result of iterating Θ along the initial segment of A,<A up to but not including

a and Ya is the a-section of Y if such Y exists, i.e., Ya = {m : (m, a) ∈ Y }.

Arithmetical transfinite recursion is the axiom scheme asserting that for every

arithmetical operator Θ and every countable well ordering A,<A, such a set Y

exists.

A fact that is not so obvious is the reverse mathematics strength of ATR0 is weaker

than Π1
1−CA0, thus is between ACA0 and Π1

1−CA0. In discussion of Chapter 3,

Silver’s Dichotomy is closely related to ATR0 and Π1
1 − CA0.

1.4.3 Additional Words

In Chapter 3, the approach we used to judge the reverse mathematics strength of

our specific version of Silver’s Dichotomy is model theoretical.

In order to prove that version of Silver’s Dichotomy is weaker than Π1
1 − CA0, we

constructed a model M which is capable to “recognize and satisfy” the specific

Silver’s Dichotomy within itself but can not be too strong such that model Π1
1 −

CA0. After constructing M , we have to make sure that all the argument can be

captured by M . To achieve this, we need upward (downward) absoluteness of
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of Σ1
1 (Π1

1) sentences, together with some coding. Having the above, by Gödel’s

completeness theorem, the result follows.



Chapter 2
Effectiveness of Silver’s Dichotomy

As mentioned before, this chapter is devoted to study the effectiveness of Silver’s

Dichotomy.

We prove the following effective version of Silver’s Dichotomy.

Theorem 2.1. Let E be a Π1
1 equivalence relation on ωω. Then either

(1) E has countably many equivalence classes or

(2)

∆(2ω) ≤Rec(O) E

where ≤Rec(O) means the reduction map is recursive in O.

2.1 Preliminaries

In this section, we briefly review Harrington’s proof of Silver’s Dichotomy and in-

dicate the key lemma which we would strengthen to imply Theorem 2.1. Readers

can refer to [Miller, 1995] or [C.A.Rogers, 1980] for more details about Harring-

ton’s proof. Here we follow [Miller, 1995]’s convention.

17
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Harrington’s proof of Silver’s Dichotomy is completed by a sequence of lemmas.

Given a coanalytic equivalence relation E on ωω, let P denote the Gandy-Harrington

forcing mentioned in Chapter 1.

We consider the set B, which is the union of all ∆1
1 sets which is contained in a

single equivalence class, i.e.,

B =
⋃
{D ⊆ ωω : D is ∆1

1 ∧ ∀x∀y(x, y ∈ D → xEy)}.

To calculate the complexity of B, we use the following ∆1
1 coding theorem (Theo-

rem1.7.4, [Gao, 2009]).

Theorem 2.2 (∆1
1 coding). Given a Polish space X, there are Π1

1 subsets P+,

P− ⊆ ω ×X and C ⊆ ω such that

(i) for any n ∈ C, P+
n , P−n are complements of each other, and

(ii) for any ∆1
1 set D, there is n ∈ C such that D = P+

n .

By ∆1
1 coding theorem,

z ∈ B ⇔ ∃n(n ∈ C ∧ z ∈ P+
n ∧ ∀x∀y(x, y /∈ P−n → xEy)).

B is Π1
1.

If B = ωω, then E has only countably many equivalence classes since there are

only countably many ∆1
1 sets.

Otherwise, A = ωω \ B is a nonempty Σ1
1 set and thus a condition in P. The

next lemma indicates that A forces the P-generic reals should appear in a new

equivalence class:

Lemma 2.3 (Lemma 30.5, [Miller, 1995]). Suppose c ∈ ωω ∩ V . Then

A P ¬(c̆Ĕġ)

where ġ is a name for the P-generic real.

It can be derived from Lemma 2.3 that two mutually P-generic reals are E-

inequivalent.
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Corollary 2.4 (Harrington, [Miller, 1995]). If (g0, g1) is P × P-generic over V .

then

(A,A) P×P ¬ġ0Ĕġ1.

Proof. Let G0 be the corresponding P-generic filter for g0. Ă is the name for A.

V [g0] |= g0 ∈ Ă/G0

where Ă/G0 is the interpretation of Ă by G0.

Since g0, g1 are mutually P-generic, g1 is P-generic over V [g0], and therefore by

Lemma 2.3,

(A,A) P×P ¬(ġ0Ĕġ1).

To complete the proof, we take Vκ containing enough information.

In particular, Vκ knows

(A,A) P×P ¬(ġ0Ĕġ1).

Let M be the transitive collapse of a countable elementary substructure of (Vκ,∈).

Note that we do not have to assume there are P-generic reals over V .

A typical splitting construction provides a perfect set of reals mutually P-generic

over M .

Note that “E is an equivalence relation” is a Π1
1 statement. Using absoluteness of

Π1
1-sentences, a perfect set of mutually P-generic over M reals produces a perfect

set of E-inequivalent reals.

Lemma 2.5 (Lemma 30.6, [Miller, 1995]). Suppose M is a countable transitive

model of a sufficiently large fragment of ZFC and P is a partially ordered set in

M . Then there exists a “perfect” set of P-filters {Gα : α ∈ 2ω} such that for every

α 6= β, (Gα, Gβ) is P× P-generic over M .



2.2 Proof of Theorem 2.1 20

Take {Gα : α ∈ 2ω} as in Lemma 2.5 with A ∈ Gα for all α and let

P = {gα : α ∈ 2ω}

be the set of corresponding P-generic reals. By Lemma 2.3, for every α, β ∈ 2ω,

α 6= β → ¬(gαEgβ).

Moreover, from the construction, we can require the map α 7→ gα to be continuous.

Thus P is perfect.

This finishes proof of Silver’s Dichotomy.

Note that in Lemma 2.5, the complexity of the map α 7→ gα is not estimated. In

the next section, we will give an analysis of the complexity of such map.

2.2 Proof of Theorem 2.1

In Harrington’s proof, the construction of the reduction map involves the following

two steps:

(1) prove two mutually P-generic reals are E-inequivalent,

(2) construct a perfect set of mutually P-generic reals over a sufficiently large count-

able transitive model M .

Step 2 is completed by a typical splitting construction and the induced map is con-

tinuous without imposing extra requirement on those forcing conditions during the

construction. In this section, we will take care of the complexity of the reduction

map making sure that it is recursive in Kleene’s O.

Proof. (Proof of Theorem 2.1)

We follow Harrington’s proof of Silver’s Dichotomy assuming that the set A defined
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in Section 2.1 is nonempty and do Gandy-Harrington forcing.

Along with the forcing, we construct a map µ : 2<ω → ω<ω inductively. Before

the construction, we carry out some necessary calculation.

The following facts will be used in the calculations.

Firstly, note that O is Π1
1 complete (Theorem 5.4, Chapter 1, [Sacks, 1990]), hence

all the Π1
1 sets are many-one reducible to O, i.e., given a Π1

1 set P ⊆ ω, there is a

recursive function h witnessing that for all e,

e ∈ P ↔ h(e) ∈ O.

Using the above fact, we can show that determining whether a Σ1
1 subset of ωω is

nonempty is recursive in O.

To see this, take any Σ1
1 set S ⊆ ωω and take TS to be a recursive tree on ω × ω

representing S.

WFG is the collection of Gödel numbers (a definition of Gödel number can be

found in [Shoenfield, 1967]) of all well-founded recursive trees. By Theorem 4.9,

[Mansfield and Weitkamp, 1985], WFG is a Π1
1 but not Σ1

1 set of integers. Thus

there is a recursive function h witnessing for all e, e ∈ WFG ↔ h(e) ∈ O. Fix

this h.

Let eS be the Gödel number of recursive tree TS.

S = ∅ ↔ TS is well-founded↔ eS ∈ WFG↔ h(eS) ∈ O.

Secondly, by Harrington’s result, 3.2, [Harrington et al., 1990], there is a “good”

universal system Uωω ⊆ ω × ωω for Σ1
1 subsets of ωω which is defined by the two

properties below.

(1) For any Σ1
1 S ⊆ ωω, there is an n ∈ ω such that S = Uωω

n where Uωω

n is the

n-section of Uωω
. Hence we can view any n ∈ ω as a code of some Σ1

1 subset of ωω.
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(2) For any m ∈ ω, there is a recursive function Sm,ω
ω

: ωm+1 → ω such that

(e, k1, . . . , km, x) ∈ Uωm×ωω ↔ (Sm,ω
ω

(e, k1, . . . , km), x) ∈ Uωω

.

Fix such a “good” universal system Uωω
.

Fix some notations.

Since Uωω
itself is a Σ1

1 set, let TUωω be the recursive tree representation of Uωω
.

Given a recursive tree T , let OT denote the Gödel number of T .

Using this good universal system, we can calculate codes of some objects which

will be used in construction of µ.

(a) Calculating codes of Σ1
1 subsets of A.

Fix a code of the Σ1
1 set A, denoted by nA. Consider the intersection of A and

some Σ1
1 set Uωω

k ⊆ ωω for some k ∈ ω. Its code can be calculated as follows:

consider Hk such that

(nA, k, x) ∈ Hk ⇔ (nA, x) ∈ Uωω ∧ (k, x) ∈ Uωω

,

then Hk is Σ1
1, hence there is an ek ∈ ω such that

(nA, k, x) ∈ Hk ↔ (ek, nA, k, x) ∈ Uω2×ωω ↔ (S2,ωω

(ek, nA, k), x) ∈ Uωω

.

Hence, S2,ωω
(ek, nA, k) gives a code of A ∩ Uωω

k .

Denote k 7→ ek by e1. An appropriate good universal system guarantees this map

is recursive. S2,ωω
(e1(·), nA, ·) with domain ω is a recursive function which outputs

codes of Σ1
1 subset of A. Abbreviate S2,ωω

(e1(·), nA, ·) by SA.

(b) Calculating codes of Nς ∩ (Uωω

m ∩ A) where Nς = {x ∈ ωω : ς ⊆ x}.

View ω<ω as ω. Given m ∈ ω and a finite sequence ς ∈ ω<ω, to find a code for

Nς ∩ (Uωω

m ∩ A) , we consider the set Qm,ς such that

(ς,m, x) ∈ Qm,ς ⇔ (SA(m), x) ∈ Uωω ∧ ς ⊆ x.
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Since Qm,ς is Σ1
1, there is an em,ς ∈ ω such that

(ς,m, x) ∈ Qm,ς ↔ (em,ς , ς, SA(m), x) ∈ Uω2×ωω ↔ (S2,ωω

(em,ς , ς, SA(m)), x) ∈ Uωω

.

Hence, S2,ωω
(em,ς , ς, SA(m)) gives a code of Nς ∩ (Uωω

m ∩ A).

Denote (m, ς) 7→ em,ς by e2. An appropriate good universal system guarantees

this map is recursive. S2,ωω
(e2(·, ·), ·, SA(·)) with domain ω<ω × ω is a recursive

function which outputs codes of Nς∩(Uωω

m ∩A) for ς ∈ ω<ω and m ∈ ω. Abbreviate

S2,ωω
(e2(·, ·), ·, SA(·)) by S ′A.

S ′A(ς,m) is a code of Nς ∩ (Uωω

m ∩ A) and thus Nς ∩ (Uωω

m ∩ A) = Uωω

S′A(ς,m). Let

TUωω

S′
A

(ς,m)
the representing recursive tree.

Moreover,

Nς ∩ (Uωω

m ∩ A) 6= ∅ ↔ TUωω

S′
A

(ς,m)
is ill-founded

↔ OT
Uωω

S′
A

(ς,m)

/∈ WFG↔ h(OT
Uωω

S′
A

(ς,m)

) /∈ O.

h and S ′A are both recursive functions. Hence, whether Nς ∩(Uωω

m ∩A) is nonempty

is recursive in O.

(c) Finding codes of two Σ1
1 subsets of A which splits the finite sequence ς ∈ ω<ω

determined by P-condition Uωω

m ∩ A.

Given m ∈ ω, ς ∈ ω<ω, let Lς,m be the collection of (ζ0, ζ1) satisfying the following:

(i) (ς ⊆ ζ0) ∧ (ς ⊆ ζ1);

(ii) ζ0 � (n− 1) = ζ1 � (n− 1) where n is the length of ζ0, ζ1;

(iii) (Nζ0 ∩ (Uωω

m ∩ A) 6= ∅) ∧ (Nζ1 ∩ (Uωω

m ∩ A) 6= ∅).

For each ς, m, Lς,m is intended to contain all the pairs of sequences that split ς

where ς is determined by the P-condition Uωω

m ∩ A.

(i) and (ii) are obviously recursive. A similar calculation as in (b) shows that (iii)

is recursive in O. Therefore, the set Lς,m is recursive in O.

Furthermore, to pick up a representative from Lς,m is recursive in O.

To see this, we introduce two well orderings, <∗ on ω<ω and <∗ on ω<ω × ω<ω for

convenience.



2.2 Proof of Theorem 2.1 24

Defnition 2.6. Given s, t ∈ ω<ω, if s = (s0, . . . , sm−1), t = (t0, . . . , tn−1), then

s <∗ t⇔ (s $ t) ∨ (∃i < min{m,n}(∀j < i(sj = tj) ∧ si < ti)).

Defnition 2.7. Given (s, t), (s′, t′) in ω<ω × ω<ω,

(s, t) <∗ (s′, t′)⇔ (s <∗ s′ ∨ (s = s′ ∧ t <∗ t′)).

Let (ς0, ς1) be the <∗-least element in Lς,m. Since <∗ is a recursive well ordering,

computing (ς0, ς1) from Lς,m is also recursive in O.

Therefore, Nς0 ∩ (Uωω

m ∩ A) and Nς1 ∩ (Uωω

m ∩ A) are two Σ1
1 subsets of A which

split ς ∈ ω<ω. We call them splitting subsets of Nς ∩ (Uωω

m ∩ A). S ′A(ς0,m) and

S ′A(ς1,m) are codes of Nς0 ∩ (Uωω

m ∩ A) and Nς1 ∩ (Uωω

m ∩ A) respectively.

Next we define a function λ : ω<ω × ω → ω × ω which can compute the codes of

splitting subsets of Nς ∩ (Uωω

m ∩ A) for any given ς ∈ ω<ω and m ∈ ω as follows:

Fix l, l′ ∈ ω such that l, l′ are not in range of SA.

λ(ς,m) = (j0, j1) if

(1) h(OT
Uωω

S′
A

(ς,m)

) /∈ O

(2)

j0 = S ′A(ς0,m) ∧ j1 = S ′A(ς1,m)

where (ς0, ς1) is the <∗-least element in Lς,m.

λ(ς,m) = (l, l′) if h(OT
Uωω

S′
A

(ς,m)

) ∈ O.

By our calculation (a), (b), (c), λ is an O-recursive function.

Now we start forcing and construct µ : 2<ω → ω<ω using λ defined above.

Let 〈·〉 denote the empty sequence. At the beginning, simply let µ(〈·〉) = 〈·〉.
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Let G0, G1 denote two mutually P-generic filters and ġ0, ġ1 be the names of corre-

sponding P-generic reals.

Input m0 where m0 is a code of ωω and r0 = 〈·〉. We can find λ(r0,m0) = (m0
0,m

1
0)

and (s0, t0) which is the least <∗-least element in Lr0,m0 . Let n0 be the length of

s0, t0.

Let p0 = A ∩Ns0 and p1 = A ∩Nt0 , then

(p0, p1) P×P (ġ0 � (n0−1) = ġ1 � (n0−1) = s̆0 � (n0−1))∧(ġ0 � n0 = s̆0)∧(ġ1 � n0 = t̆0).

Define

µ(〈0〉) = s0, µ(〈1〉) = t0.

Since λ is O-recursive, subsequently, O can recursively compute s0, t0.

Suppose we have constructed µ for ρ ∈ 2<(k+1) and obtained all the intermediate

information.

The next step is to define µ(ρ) where ρ ∈ 2k+1.

Find λ(rk+1,mk+1) = (m0
k+1,m

1
k+1) such that rk+1 is µ(%) for some % ∈ 2k and

mk+1 is a code of the forcing condition p% forcing that µ(%) is an initial segment of

the P-generic real where % ∈ 2k.

(sk+1, tk+1) are the <∗-least element in Lrk+1,mk+1
. Let nk+1 be the length of sk+1,

tk+1.

Let p%_0 = p% ∩Nsk+1
6= ∅ and p%_1 = p% ∩Ntk+1

6= ∅.

(p%_0, p%_1) P×P ġ0 � (nk+1 − 1) = ġ1 � (nk+1 − 1) = s̆k+1 � (nk+1 − 1)

and

(p%_0, p%_1) P×P ġ0 � nk+1 = s̆k+1 ∧ ġ1 � nk+1 = t̆k+1.

Define

µ(%_0) = sk+1, µ(%_1) = tk+1.
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In this way, µ is constructed in countably many steps and it is O-recursive.

Finally, let µ∗ : 2ω → ωω be defined by

µ∗(α) =
⋃
n∈ω

µ(α � n)

µ∗ is a reduction map of ∆(2ω) to E. This is because, by our construction, if α 6= β,

then µ∗(α), µ∗(β) are two mutually P-generic reals and they are E-inequivalent.

Moreover, µ∗ is continuous since for any Ns with s of length n, there is some m ≤ n

such that a P-condition pγ with γ ∈ 2m determines s.

Lastly, recall definition of code of continuous function.

Defnition 2.8 ([Mansfield and Weitkamp, 1985]). Let f be a continuous function

from a set of reals into reals. A real δ is a code for f iff for every k ∈ ω, δ(k) = 0

exactly when k codes a pair 〈s, t〉 such that f(NS) ⊆ Nt.

By definition, µ can be viewed as a code for µ∗. Since µ is O-recursive, µ∗ is also

O-recursive .

Using a different approach, it is proved in Theorem 1.9 that a reduction map can

be ∆1
1 in Kleene’s O. We can get a corollary from the following theorem.

Theorem 2.9 ([Fokina et al., 2010]). Let z be a real in which Kleene’s O is not

hyperarithmetic. Then there is a Hyp equivalence relation E such that

=P(ω)≤∆1
1(O) E, but =P(ω)�∆1

1(z) E.

Note that by Theorem 17, [Fokina et al., 2010], any such Hyp equivalence relation

E actually has uncountably many equivalence classes. Thus by Theorem 2.1, E

satisfies that =P(ω)≤Rec(O) E. Thus we have the following corollary.

Corollary 2.10. Let z be a real in which Kleene’s O is not hyperarithmetic. Then

there is a Hyp equivalence relation E such that =P(ω)≤Rec(O) E, but =P(ω)�∆1
1(z) E.
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2.3 Witness

In this section, we prove a stronger form of Silver’s Dichotomy concerning the

witness of two E-inequivalent reals. This result will be used in next chapter.

Theorem 2.11. If E is a Π1
1 equivalence relation on ωω, T is a recursive tree on

ω × ω × ω such that ∀x, y ∈ ωω,

¬(xEy) iff ∃w∀n(T (w � n, x � n, y � n)),

then either

(1) E has countably many equivalence classes or

(2)

∃a∃z∀σ, τ ∈ 2<ω(σ 6= τ → T (z(σ, τ), a(σ), a(τ))).

Moreover, a : 2<ω → ω<ω and z : 2<ω × 2<ω → ω<ω induce continuous functions

a∗ : 2ω → ωω and z∗ : 2ω × 2ω → ωω defined by

a∗(α) =
⋃
n∈ω

a(α � n) and z∗(α, β) =
⋃
n∈ω

z(α � n, β � n)

where α, β ∈ 2ω.

Proof. We still use Gandy-Harrington forcing P and start with the Σ1
1 set A as-

suming that E has uncountably many equivalence classes. As well, the work is

carried out in a countable transitive set M which knows sufficient information.

We will focus on handling the problem of keeping track of the witnesses where the

function z arises. Functions a and z are constructed along with the forcing process.

Let 〈·〉 denote the empty sequence. At the beginning, simply let a(〈·〉) = 〈·〉 and

z(〈·〉, 〈·〉) = 〈·〉.
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Let G0, G1 denote two mutually P-generic filters and ġ0, ġ1 be the names of corre-

sponding P-generic reals. By Lemma 2.3 and Corollary 2.4, we have

(A,A) P×P ∃w∀n(T (w � n, ġ0 � n, ġ1 � n)).

Let ẇ be a P× P-name with

(A,A) P×P ẇ ∈ ωω ∧ (∀n(T (ẇ � n, ġ0 � n, ġ1 � n))).

Since g0, g1 are mutually P-generic, there exist n0 ∈ ω, r0 ∈ ωn0−1, s0, s1 ∈ ωn0 ,

r0 ⊆ s0, r0 ⊆ s1, s0(n0 − 1) 6= s1(n0 − 1) such that

(p0, p1) P×P (ġ0 � (n0 − 1) = ġ1 � (n0 − 1) = r̆0) ∧ ġ0 � n0 = s̆0 ∧ ġ1 � n0 = s̆1,

where p0 = A ∩Ns0 6= ∅, p1 = A ∩Ns1 6= ∅.

Moreover,

(p0, p1) P×P ẇ ∈ ωω ∧ (∀n(T (ẇ � n, ġ0 � n, ġ1 � n))).

Let σ0 ∈ ωn0 and (p′0, p
′
1) ≤ (p0, p1) be such that

(p′0, p
′
1) P×P ẇ � n0 = σ̆0.

Now we can define

a(〈0〉) = s0, a(〈1〉) = s1

and

z(〈0〉, 〈1〉) = σ0.

Also, we define z(〈1〉, 〈0〉) = σ0 to make z be symmetric.

Since g0, g1 are mutually P-generic, there exist n1 ∈ ω, n1 > n0, r ∈ ωn1−1, s∗00,

s∗01 ∈ ωn1 , r ⊆ s∗00, r ⊆ s∗01 and s∗00(n1 − 1) 6= s∗01(n1 − 1) such that

(p00, p01) P×P (ġ0 � (n1 − 1) = ġ1 � (n1 − 1) = r̆) ∧ ġ0 � n1 = s̆∗00 ∧ ġ1 � n1 = s̆∗01,
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where p00 = p′0 ∩Ns∗00
6= ∅ and p01 = p′0 ∩Ns∗01

6= ∅.

Let s∗1 ∈ ωn1 , s1 ⊆ s∗1 and p′′1 ≤ p′1 be such that

(p00, p
′′
1) P×P ġ0 � n1 = s̆∗00 ∧ ġ1 � n1 = s̆∗1.

Since p00 ≤ p′0,

(p00, p
′′
1) P×P ẇ � n0 = σ̆0.

Let σ00,1 ∈ ωn1 , σ0 ⊆ σ00,1, and (p′00, p
(3)
1 ) ≤ (p00, p

′′
1) be such that

(p′00, p
(3)
1 ) P×P ẇ � n1 = σ̆00,1.

In the meanwhile,

(p01, p
(3)
1 ) P×P ġ0 � n1 = s̆∗01 ∧ ġ1 � n1 = s̆∗1.

Since p01 ≤ p′0,

(p01, p
(3)
1 ) P×P ẇ � n0 = σ̆0.

Let σ01,1 ∈ ωn1 , σ0 ⊆ σ01,1, and (p′01, p
(4)
1 ) ≤ (p01, p

(3)
1 ) be such that

(p′01, p
(4)
1 ) P×P ẇ � n1 = σ̆01,1.

Since g0, g1 are mutually P-generic, let n′1 ∈ ω, n′1 > n1 satisfy

∃l ≤ n′1, ∃t ∈ ωl−1, ∃s10, s11 ∈ ωn
′
1 , t ⊆ s10, t ⊆ s11 and s10(l− 1) 6= s11(l− 1) such

that

(p10, p11) P×P (ġ0 � (l − 1) = ġ1 � (l − 1) = t̆) ∧ ġ0 � n
′
1 = s̆10 ∧ ġ1 � n

′
1 = s̆11,

where p10 = p
(4)
1 ∩Ns10 6= ∅, p11 = p

(4)
1 ∩Ns11 6= ∅.

Let s00, s01 ∈ ωn
′
1 be such that s∗00 ⊆ s00, s∗01 ⊆ s01, and (p′′00, p

′′
01) ≤ (p′00, p

′
01),

(p′′00, p
′′
01) P×P ġ0 � n

′
1 = s̆00 ∧ ġ1 � n

′
1 = s̆01.

This finishes searching for s00, s01, s10 and s11.
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Now we consider choices of the corresponding witnesses.

Following lexicographic order, the first witness to consider is σ00,01. By above, n′1

is the length of sij where i, j ∈ {0, 1}. So let σ00,01 ∈ ωn
′
1 , (p

(3)
00 , p

(3)
01 ) ≤ (p′′00, p

′′
01)

be such that

(p
(3)
00 , p

(3)
01 ) P×P ẇ � n′1 = σ̆00,01.

Now we finish searching for σ00,01.

Similarly, we find σ00,10, σ00,11, σ01,10, σ01,11, σ10,11.

For σ00,10, since p
(3)
00 ≤ p′00, p10 ≤ p

(3)
1 ,

(p
(3)
00 , p10) P×P ẇ � n1 = σ̆00,1.

Let σ00,10 ∈ ωn
′
1 , σ00,1 ⊆ σ00,10, (p

(4)
00 , p

′
10) ≤ (p

(3)
00 , p10) be such that

(p
(4)
00 , p

′
10) P×P ẇ � n′1 = σ̆00,10.

For σ00,11, since p
(4)
00 ≤ p′00, p11 ≤ p

(3)
1 ,

(p
(4)
00 , p11) P×P ẇ � n1 = σ̆00,1.

Let σ00,11 ∈ ωn
′
1 , σ00,1 ⊆ σ00,11, (p

(5)
00 , p

′
11) ≤ (p

(4)
00 , p11) be such that

(p
(5)
00 , p

′
11) P×P ẇ � n′1 = σ̆00,11.

For σ01,10, since p
(3)
01 ≤ p′01, p′10 ≤ p

(4)
1 ,

(p
(3)
01 , p

′
10) P×P ẇ � n1 = σ̆01,1.

Let σ01,10 ∈ ωn
′
1 , σ01,1 ⊆ σ01,10, (p

(4)
01 , p

′′
10) ≤ (p

(3)
01 , p

′
10) be such that

(p
(4)
01 , p

′′
10) P×P ẇ � n′1 = σ̆01,10.

For σ01,11, since p
(4)
01 ≤ p′01 p

′
11 ≤ p

(4)
1 ,

(p
(4)
01 , p

′
11) P×P ẇ � n1 = σ̆01,1.
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Let σ01,11 ∈ ωn
′
1 , σ01,1 ⊆ σ01,11, (p

(5)
01 , p

′′
11) ≤ (p

(4)
01 , p

′
11) be such that

(p
(5)
01 , p

′′
11) P×P ẇ � n′1 = σ̆01,11.

Lastly, for σ10,11, since (p′′10, p
′′
11) ≤ (p10, p11),

(p′′10, p
′′
11) P×P ẇ ∈ ωω ∧ (∀n(T (ẇ � n, ġ0 � n, ġ1 � n))).

Just let σ10,11 ∈ ωn
′
1 , (p

(3)
10 , p

(3)
11 ) ≤ (p′′10, p

′′
11) be such that

(p
(3)
10 , p

(3)
11 ) P×P ẇ � n′1 = σ̆10,11.

Now we can define a, z for σ, τ of length 2,

a(〈i, j〉) = sij where i, j ∈ {0, 1},

z(〈i1, j1〉, 〈i2, j2〉) = σi1j1,i2j2 where i1, i2, j1, j2 ∈ {0, 1}.

Moreover, by symmetry, we define

z(〈i1, j1〉, 〈i2, j2〉) = z(〈i2, j2〉, 〈i1, j1〉).

Continue in this way, we can carry out the rest of the construction and get the

induced functions a∗, z∗.

Note that a∗ is continuous since for any Ns with s of length n, there is some m ≤ n

such that a P condition p
(k)
γ for some k ∈ ω with γ ∈ 2m determining s. Similarly,

z∗ is also continuous.

This finishes the proof.

Note that in [Fokina et al., 2010], it is proved that if E is a ∆1
1 equivalence relation

with only countably many equivalence classes, then

E ≤H=ω .
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Remark 2.1. The proof of the above result in [Fokina et al., 2010] involves effec-

tive descriptive set theory. The fact that the code set of all ∆1
1 sets is Π1

1 is used in

the proof. The argument can not be applied when E is a Π1
1 equivalence relation.

Therefore, if E is a ∆1
1 equivalence relation, “E has countably many equivalence

classes” in Theorem 2.11 can be strengthened to “E ≤H=ω”. The following corol-

lary follows.

Corollary 2.12 (Silver’s Dichotomy for ∆1
1 equivalence relations). If E is a ∆1

1

equivalence relation on ωω, and T is a recursive tree on ω × ω × ω such that

∀x, y ∈ ωω,

¬(xEy) iff ∃w∀n(T (w � n, x � n, y � n)),

then either (1)

E ≤H=ω

or (2)

∃a∃z∀σ, τ ∈ 2<ω(T (z(σ, τ), a(σ), a(τ)))

Moreover, a : 2<ω → ω<ω and z : 2<ω × 2<ω → ω<ω induce continuous functions

a∗ : 2ω → ωω and z∗ : 2ω × 2ω → ωω defined by

a∗(α) =
⋃
n∈ω

a(α � n) and z∗(α, β) =
⋃
n∈ω

z(α � n, β � n)

where α, β ∈ 2ω.

In Chapter 3, we will construct an ω-model of second order arithmetic in which

Corollary 2.12 “holds”.

Regarding to complexity of a and z, we have the following corollary.

View two reals x, y as subsets of ω. x⊕ y is called the join of x and y, defined by

x⊕ y = {2n : n ∈ x} ∪ {2m+ 1 : m ∈ y}.
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Corollary 2.13. There are a, z satisfying Theorem 2.11 and

ωCK,a⊕z1 = ωCK1 .

Proof. Observing that the sentence

∃a∃z∀σ, τ ∈ 2<ω(T (z(σ, τ), a(σ), a(τ)))

is Σ1
1, by Gandy’s Basis Theorem (Theorem A.1.4, [Gao, 2009]), the result follows.

From now on, we call a real x is “low” if ωCK,x1 = ωCK1 .



Chapter 3
Π1

1 − CA0 and Silver’s Dichotomy

Main result of this chapter is to construct an ω-model of second order arithmetic

M such that Corollary 2.12 “holds” in M but M does not satisfy Π1
1 − CA0. By

doing this, we establish that our particular version of Silver’s Dichotomy does not

require Π1
1-comprehension. In addition, we draw comparison of our result with

some other version of Silver’s Dichotomy in [Simpson, 2009]. It turns out that

they have different reverse mathematics strengths.

3.1 Preparation

In Theorem 2.1 and Theorem 2.11, equivalence relation E is on Baire space ωω.

However, set variables range over P(ω) in ω-models of second order arithmetic. It

is necessary to interpret objects in ωω into objects in 2ω.

In this section, we introduce some notations in order to present our main result of

this chapter.

Given M as an ω-model of second order arithmetic, we consider interpretation of

34
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x ∈ ωω in M .

In order to carry out the interpretation, we introduce a pairing function.

Defnition 3.1 ([Shoenfield, 1967]). Given two natural numbers n, k ∈ ω, ordered

pair dn, ke is calculated by the pairing function d·, ·e:

dn, ke = (n+ k) · (n+ k) + n+ 1.

Define a map π : ωω → 2ω by

(x(n) = k)↔ π(x)(dn, ke) = 1.

This map is recursive and one-to-one.

Hence, given a real x ⊆ ωω, xM = π(x) is an interpretation of x in M .

Next we consider the interpretation of a and z in M where a and z are as in

Theorem 2.11.

Define aM : 2<ω → 2<ω using a as follows:

Given σ ∈ 2<ω, and a(σ) = s∗, let n be the length of s∗ and s∗(i) = ki where

i = 0, 1, . . . , n− 1. Then aM(σ) is of length dn− 1, kn−1e+ 1 and

aM(σ)(di, kie) = 1↔ π(s∗)(di, kie) = 1↔ a(σ)(i) = ki.

Similarly, we define zM : 2<ω × 2<ω → 2<ω using z as follows:

Given σ, τ ∈ 2<ω, and z(σ, τ) = s∗, let n be the length of s∗ and s∗(i) = ki where

i = 0, 1, . . . , n− 1. Then zM(σ) is of length dn− 1, kn−1e+ 1 and

zM(σ, τ)(di, kie) = 1↔ π(s∗)(di, kie) = 1↔ z(σ, τ)(i) = ki.

Furthermore, if a∗ : 2ω → ωω and z∗ : 2ω × 2ω → ωω are as in Theorem 2.11, and

given α, β ∈ 2ω,

(a∗)M(α) = π ◦ a∗(α)
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and

(z∗)M(α, β) = π ◦ z∗(α, β).

Finally, we consider interpretation of ∆1
1 equivalence relation E in M .

Let E be a ∆1
1 equivalence relation in V .

Fix Σ1
1-formulas ϕ(x, y), ψ(x, y) ∈ L2 with all free variables shown such that

V |= ∀x∀y(ϕ(x, y)↔ (¬ψ(x, y))) (3.1)

and

V |= ∀x∀y(xEy ↔ ϕ(x, y)). (3.2)

Then we have

V |= ∀x∀y∀z(ϕ(x, x) ∧ (ϕ(x, y)→ ϕ(y, x)) ∧ ((ϕ(x, y) ∧ ϕ(y, z))→ ϕ(x, z))).

E itself is not an element of M , but in M , we can describe E using ϕ and ψ.

Regarding to tree representation of Σ1
1-formulas, we consider interpretations of

recursive trees on ω × ω × ω in M .

Let T1, T2 be recursive trees on ω × ω × ω such that for x, y ∈ ωω,

xEy ↔ ∃w∀n(T1(w � n, x � n, y � n))

and

xEy ↔ ¬(∃w∀n(T2(w � n, x � n, y � n))).

Given a finite sequence of natural numbers σ, let ln(σ) denote the length of σ.

Using Ti, we define TMi on 2× 2× 2.

(η∗, σ∗, τ ∗) ∈ TMi if the following holds:
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(1) ∃(η, σ, τ) ∈ Ti(ln(σ) < ln(σ∗));

(2)

∀m < ln(σ)∀k < ln(σ∗)∀k′ < ln(σ∗)(dm, ke < ln(σ∗) ∧ dm, k′e < ln(σ∗))→

(σ∗(dm, ke) = 1↔ (σ(m) = k)) ∧ (τ ∗(dm, k′e) = 1↔ (τ(m) = k′));

(3) if ∃m < ln(σ)∃k < ln(σ∗)∃k′ < ln(σ∗), σ∗(dm, ke) = 1 and τ ∗(dm, k′e) = 1,

and dm, η(m)e < ln(σ∗), then

η∗(dm, η(m)e) = 1.

Otherwise,

η∗(dm, η(m)e) = 0.

Then, if Ti,(x,y) has a path, then TMi,(π(x),π(y)) has a path. Conversely, if TMi,(α,β) has

a path, we can find a path in Ti,(π−1(α),π−1(β)).

Thus, we can define E∗ on 2ω by

αE∗β ⇔ ∃γ∀n(TM1 (γ � n, α � n, β � n))

and

αE∗β ⇔ ¬(∃γ∀n(TM2 (γ � n, α � n, β � n))).

In this way, if E is a ∆1
1 equivalence relation in V , then E∗ is an interpretation of

E in M . We denote it by EM .

3.2 A Model M

The main purpose of this section is to prove the following theorem.
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Theorem 3.2. If E is a ∆1
1 equivalence relation in V , then there is an ω-model

of second order arithmetic M such that

M |= (EM ≤H=M
ω )1 ∨ (∃aM∃zM∀σ, τ ∈ 2<ω(TM(zM(σ, τ), aM(σ), aM(τ))))

where aM , zM , TM are as in Section 3.1, but without satisfying Π1
1 − CA0.

Proof. We will construct an M = (ω, S,+, ·, 0, 1, <) and it will satisfy the following

requirements:

(1) M is a β-model.

(2) If E is a ∆1
1 equivalence relation in V , then

M |= (EM ≤H=M
ω ) ∨ (∃aM∃zM∀σ, τ ∈ 2<ω(TM(zM(σ, τ), aM(σ), aM(τ)))).

(3)

M 2 Π1
1 − CA0

We start with the standard model of first order arithmetic N = (ω,+, ·, 0, 1, <).

Before we execute the construction, we prove the following two claims.

Claim 3.1. Given a real x, if y is a ∆1
1(x) real, then {y} is a Σ1

1(x)-singleton.

Claim 3.2. If y is a ∆1
1(x) real and ∃zφ(z, y) is a Σ1

1-sentence with y as the

only parameter, then ∃zφ(z, y) can be written as a Σ1
1-sentence with x as the only

parameter.

Claim 3.1 says that if x is a witness of some Σ1
1-sentence, then every ∆1

1(x) reals is

a witness of some Σ1
1 sentence and will be added to N eventually when we complete

the construction.

Claim 3.2 guarantees that a Σ1
1-sentence with a ∆1

1(x) real as the only parameter

where x has already been added to N is still a Σ1
1(x)-sentence.

1=M
ω is defined by using the approach introduced in Section 3.1.
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Proof. (Proof of Claim 3.1)

If y is a ∆1
1 real, then there are two Σ1

1-formulas ϕ(n) and ψ(n) with

∀n(ϕ(n)↔ ¬ψ(n))

which defines y by

∀n((n ∈ y → ϕ(n)) ∧ (¬ψ(n)→ n ∈ y)). (3.3)

We define A by

y ∈ A⇔ ∀n((n ∈ y → ϕ(n)) ∧ (¬ψ(n)→ n ∈ y)).

Since (3.3) is a Σ1
1-formula and defines the ∆1

1 real y, A = {y} is a Σ1
1-singleton.

By relativizing to x, we conclude that if y is a ∆1
1(x) real, then {y} is a Σ1

1(x)-

singleton.

Proof. (Proof of Claim 3.2)

By Claim 3.1, we can replace the appearance of y by a Σ1
1(x)-formula. Thus

∃zφ(z, y) can be written as

∃z∃yφ(z, y) ∧ (specification of y as a Σ1
1-singleton).

Now we start our construction.

Fix an enumeration of Σ1
1-formulas {ϕj,i}j,i∈ω where ϕj,i denotes the j-th Σ1

1-

formula with an i-tuple parameter. In particular, ϕj,0 denotes the j-th Σ1
1-formula

with the empty set as its parameter set. Each ϕj,i is in form of ∃xψj,i(x, ~Xi) where

~Xi is an i-tuple and ψj,i(x, ~Xi) is a Π0
1-formula.

We will find a sequence of reals {xl}l∈ω such that

∀i∀j∀〈xj0 , xj1 , . . . , xji−1
〉∃l ≥ max(j0, j1, . . . , ji−1)ψj,i(xl, 〈xj0 , xj1 , . . . , xji−1

〉) (3.4)
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and

∀i(x0 ⊕ x1 . . .⊕ xi �T O). (3.5)

Define an order <◦ on
⋃
i∈ω({i} × ωi) as follows:

For each (i, 〈a0, . . . , ai−1〉) ∈
⋃
i∈ω({i} × ωi), we abbreviate i+ Σ0≤j≤i−1aj by I.

<lex denotes the lexicographic order on
⋃
i∈ω({i} × ωi).

(i, 〈a0, . . . , ai−1〉) <◦ (i′, 〈a0, . . . , ai′−1〉)

⇔ I < I ′ ∨ ((I = I ′) ∧ ((i, 〈a0, . . . , ai−1〉) <lex (i′, 〈a0, . . . , ai′−1〉).

<◦ on
⋃
i∈ω({i} × ωi) is a well ordering of order type ω.

(0, 〈·〉), (1, 〈0〉), (1, 〈1〉), (2, 〈·〉), . . . is an initial segment of (
⋃
i∈ω({i} × ωi), <◦).

From now on, we view ω×
⋃
i∈ω({i}×ωi) as ω×ω and well order ω×

⋃
i∈ω({i}×ωi)

by canonical well-ordering on ω × ω. We denote this well ordering by <•.

The following picture presents an initial segment of (ω ×
⋃
i∈ω({i} × ωi), <•)
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In our construction, we go along with this well ordering to find the sequence {xl}l∈ω.
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Actually, the construction defines a partial function inductively

ν : ω × (ω × ω<ω)→ ω

such that if ν(j, i, 〈a0, a1, . . . , ai−1〉) = l, then

V |= ψj,i(xl, 〈xa0 , xa1 , . . . , xai−1
〉).

For each ϕj,i, there are two cases.

Case 1:

V |= ∃xψj,i(x, ~Xi).

Case 2:

V |= ∀x(¬ψj,i(x, ~Xi)).

At Stage 0, we consider ϕ0,0.

If Case 1 holds, then by Gandy’s Basis Theorem, there is an x0 with ωCK,x01 = ωCK1

and

V |= ψ0,0(x0).

We add x0 to N and define ν(0, 0, 〈·〉) = 0.

If Case 2 holds, then we add nothing to N and ν is undefined at (0, 0, 〈·〉).

Trivially, x0 �T O.

Suppose ν has been constructed for k stages.

At Stage k + 1, let (jk, ik, 〈ak0, . . . , akik−1
〉) be a tuple such that

ν(jk, ik, 〈ak0, . . . , akik−1〉) = k.

In other words, (jk, ik, 〈ak0, . . . , akik−1
〉) is the k-th input at which ν halts. Note that

ak
ik−1

< k.
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Suppose (jk+1, ik+1, 〈ak+1
0 , . . . , ak+1

ik+1−1
〉) is the successor of (jk, ik, 〈ak0, . . . , akik−1

〉)

in (ω ×
⋃
i∈ω({i} × ωi), <•). Hence the next Σ1

1-formula to be considered is

ϕjk+1,ik+1(〈xak+1
0
, . . . , xak+1

ik+1−1

〉). Again, ak+1
ik+1−1

< k + 1.

View ϕjk+1,ik+1(〈xak+1
0
, . . . , xak+1

ik+1−1

〉) as a Σ1
1(x0, x1, . . . , xk)-sentence.

If Case 1 holds, then by Gandy’s Basis Theorem relativized to x0 ⊕ x1 . . . ⊕ xk,

there is an xk+1 with ω
CK,xk+1

1 = ωCK,x0⊕x1...⊕xk1 and

V |= ψjk+1,ik+1(xk+1, 〈xak+1
0
, . . . , xak+1

ik+1−1

〉).

Since xk+1 is “low” in x0 ⊕ x1 . . . ⊕ xk and by induction, x0 ⊕ x1 . . . ⊕ xk is also

“low”. Furthermore, x0 ⊕ x1 . . .⊕ xk+1 is “low” and thus x0 ⊕ x1 . . .⊕ xk+1 �T O.

We add a new real xk+1 to N and define ν(jk+1, ik+1, 〈ak+1
0 , . . . , ak+1

ik+1−1
〉) = k + 1.

If Case 2 holds, then we add nothing to N and ν is undefined at

(jk+1, ik+1, 〈ak+1
0 , . . . , ak+1

ik+1−1
〉).

Continue in this way, after countably many steps, we add a sequence {xl}l∈ω sat-

isfying (3.4) and (3.5) to N and get a new model M = (ω, S,+, ·, 0, 1, <) where

S = {xl : l ∈ ω}. M is a β-model since for every x ∈ S, the witnesses of all the

Σ1
1-formulas with x appearing as a parameter are added to S at some stage later.

Note that for all x ∈ S, x is “low”. But Kleene’s O is not in M since by our

construction all the reals added satisfy (3.5). Since the definition of Kleene’s O is

a Π1
1-formula, M is not a model of Π1

1 − CA0.

By above, we see that M satisfies requirement (1) and (3).

Before we verify M satisfies requirement (2), we do some preparation.

The next claim shows that if V thinks E is a ∆1
1 equivalence relation, then M also

thinks E is a ∆1
1 equivalence relation.

Claim 3.3. If

V |= ∀x∀y(ϕ(x, y)↔ (¬ψ(x, y)))
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and

V |= ∀x∀y∀z((¬ψ(x, x))∧(ϕ(x, y)→ (¬ψ(y, x)))∧((ϕ(x, y)∧ϕ(y, z))→ (¬ψ(x, z)))),

then

M |= ∀x∀y(ϕ(x, y)↔ (¬ψ(x, y)))

and

M |= ∀x∀y∀z((¬ψ(x, x))∧(ϕ(x, y)→ (¬ψ(y, x)))∧((ϕ(x, y)∧ϕ(y, z))→ (¬ψ(x, z)))).

Proof. Note that (¬ψ(x, y)→ (ϕ(x, y))) is a Σ1
1-formula. Since M is a Σ1

1 elemen-

tary submodel of V ,

V |= ∀x∀y(¬ψ(x, y)→ (ϕ(x, y)))⇒M |= ∀x∀y(¬ψ(x, y)→ (ϕ(x, y))).

Since ∀x∀y(ϕ(x, y) → (¬ψ(x, y))) is a Π1
1-sentence, by downward absoluteness of

Π1
1-sentences,

V |= ∀x∀y(ϕ(x, y)→ (¬ψ(x, y)))⇒M |= ∀x∀y(ϕ(x, y)→ (¬ψ(x, y))).

Similarly, since

∀x∀y∀z((¬ψ(x, x)) ∧ (ϕ(x, y)→ (¬ψ(y, x))) ∧ ((ϕ(x, y) ∧ ϕ(y, z))→ (¬ψ(x, z))))

is a Π1
1-sentence, by downward absoluteness of Π1

1-sentences,

V |= ∀x∀y∀z((¬ψ(x, x))∧(ϕ(x, y)→ (¬ψ(y, x)))∧((ϕ(x, y)∧ϕ(y, z))→ (¬ψ(x, z))))

implies

M |= ∀x∀y∀z((¬ψ(x, x))∧(ϕ(x, y)→ (¬ψ(y, x)))∧((ϕ(x, y)∧ϕ(y, z))→ (¬ψ(x, z)))).
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Remark 3.1. Note that being a ∆1
1 equivalence relation is a Π1

2-sentence. It is not

absolute between V and ω-model of second order arithmetic M in general. It may

happen that “ M thinks ‘E’ is a ∆1
1 equivalence relation, but in V , E is not a ∆1

1

equivalence relation”.

Next we define code of recursive trees on ω × ω × ω in M .

Note thatM is a β-model and thusM |= ACA0. By Lemma V.1.4, [Simpson, 2009],

ACA0 proves the normal form theorem for Σ1
1-formulas,

M |= ∀x(ϕ(x)↔ (∃f∀mθ(x � m, f � m)))

where ϕ is a Σ1
1-formula and θ is a Σ0-formula.

Thus, for the two Σ1
1-formulas ϕ, ψ defining E, there exist two Σ0-formulas θ, ρ

such that

M |= ∀x∀y(ϕ(x, y)↔ (∃w∀nθ(w � n, x � n, y � n))),

and

M |= ∀x∀y(ψ(x, y)↔ (∃w∀nρ(w � n, x � n, y � n))).

Define two recursive trees T1 and T2 on ω × ω × ω using θ and ρ by

(η, σ, τ) ∈ T1 ⇔ θ(η, σ, τ),

and

(η, σ, τ) ∈ T2 ⇔ ρ(η, σ, τ).

Following the convention of [Simpson, 2009], in RCA0, we code finite sequences

of natural numbers by natural numbers. Hence for any given finite sequence of

natural numbers σ, we denote its code by cσ which is a natural number.

Define a real Ci by

n ∈ Ci ⇔ ∃n1 < n∃n2 < n∃n3 < n∃σ1 ∈ ω<ω∃σ2 ∈ ω<ω∃σ3 ∈ ω<ω
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((σ1, σ2, σ3) ∈ Ti ∧ n1 = cσ1 ∧ n2 = cσ2 ∧ n3 = cσ3 ∧ n = c〈n1,n2,n3〉).

This is an arithmetical definition. Thus, we can regard T1 and T2 as two reals C1

and C2 respectively. Moreover, C1 and C2 are in M by arithmetical comprehension.

From now on, we use C1 and C2 to represent T1 and T2 in M .

M satisfies ACA0, thus we have

M |= ϕ(x, y)↔ (∃w∀nC1(w � n, x � n, y � n)),

and

M |= ψ(x, y)↔ (∃w∀nC2(w � n, x � n, y � n)).

Here Ci(w � n, x � n, y � n) means c〈cw�n,cx�n,cy�n〉 ∈ Ci.

The next claim states that some facts is absolute between V and M .

Claim 3.4. By absoluteness of ∆1
1-formulas to M , we can show that

∀x, y ∈M,M |= ∃w∀nC1(w � n, x � n, y � n) iff V |= ∃w∀nT1(w � n, x � n, y � n)

(3.6)

and

∀x, y ∈M,M |= ¬(∃w∀nC2(w � n, x � n, y � n)) iff V |= ¬(∃w∀nT2(w � n, x � n, y � n)).

(3.7)

Proof. By upward absoluteness of Σ1
1-formulas, we have

∀x, y ∈M,M |= ∃w∀nC1(w � n, x � n, y � n)⇒ V |= ∃w∀nT1(w � n, x � n, y � n).

This shows one direction for (3.6).

For the other direction for (3.6), consider the following.

By (3.1), we have

∀x, y ∈M, V |= ∃w∀nT1(w � n, x � n, y � n)⇒ V |= ¬(∃w∀nT2(w � n, x � n, y � n)).
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By downward absoluteness of Π1
1-formulas,

V |= ¬(∃w∀nT2(w � n, x � n, y � n))⇒M |= ¬(∃w∀nC2(w � n, x � n, y � n)).

By (3.1) and Claim 3.3, we have

M |= ¬(∃w∀nC2(w � n, x � n, y � n))⇒M |= ∃w∀nC1(w � n, x � n, y � n).

(3.7) can be proved in the same way.

Now we verify that M satisfies requirement (2):

if E is a ∆1
1 equivalence relation in V , then

M |= (EM ≤H=M
ω ) ∨ (∃aM∃zM∀σ, τ ∈ 2<ω(TM(zM(σ, τ), aM(σ), aM(τ))))

where aM , zM and TM are as in Section 3.1.

In V , by Corollary 2.12, there are two cases.

Case 1: There is a Hyp function f : ωω → ωω and

∀x∀y(xEy ↔ (f(x)(0) = f(y)(0))).

Now fix x0, y0 ∈M such that x0Ey0 in V , i.e., V |= ϕ(x0, y0).

By Claim 3.3, in M , “x0Ey0” as well.

If Case 1 holds in V , let f be the Hyp reduction from E to =ω, then we have

V |= (∃w∀nT1(w � n, x0 � n, y0 � n))→ (f(x0)(0) = f(y0)(0))

and

V |= (f(x0)(0) = f(y0)(0))→ ¬(∃w∀nT2(w � n, x0 � n, y0 � n)).
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(∃w∀nT1(w � n, x0 � n, y0 � n))→ (f(x0)(0) = f(y0)(0))

and (f(x0)(0) = f(y0)(0)) → (¬(∃w∀nT2(w � n, x0 � n, y0 � n))) are both Π1
1-

sentences with parameters x0, y0 from M , thus by downward absoluteness of Π1
1-

sentences,

M |= (∃w∀nC1(w � n, x0 � n, y0 � n))→ (f(x0)(0) = f(y0)(0))

and

M |= (f(x0)(0) = f(y0)(0))→ (¬(∃w∀nC2(w � n, x0 � n, y0 � n))).

So if Case 1 holds in V , then

M |= ∀x∀y((∃w∀nC1(w � n, x � n, y � n))→ (f(x)(0) = f(y)(0)))

and

M |= ∀x∀y((f(x)(0) = f(y)(0))→ (¬(∃w∀nC2(w � n, x � n, y � n))),

i.e., Case 1 holds in M .

Case 2: If Case 1 fails in V , then by Theorem 2.11,

V |= ∃a∃z∀σ, τ ∈ 2<ω(T2(z(σ, τ), a(σ), a(τ))),

since M is a β-model,

M |= ∃aM∃zM∀σ, τ ∈ 2<ω(C2(zM(σ, τ), aM(σ), aM(τ))),

i.e., Case 2 holds in M .

Note that a∗, z∗ are also in M since a∗, z∗ can be defined by the following arith-

metical formulas with parameters a, z from M

(α, x) ∈ a∗ ⇔ ∀n((α � n, x � n) ∈ a)

and

(α, β, x) ∈ z∗ ⇔ ∀n((α � n, β � n, x � n) ∈ z).

This finishes proof of Theorem 3.2.
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Now we consider arithmetic equivalence relations.

Given an arithmetic equivalence relation F defined by φ(x, y) in V . Then we have

V |= ∀x∀y(xFy ↔ φ(x, y))

and

V |= ∀x∀y∀z(φ(x, x) ∧ (φ(x, y)→ φ(y, x)) ∧ ((φ(x, y) ∧ φ(y, z))→ φ(x, z))).

Both

∀x∀y(xFy ↔ φ(x, y))

and

∀x∀y∀z(φ(x, x) ∧ (φ(x, y)→ φ(y, x)) ∧ ((φ(x, y) ∧ φ(y, z))→ φ(x, z)))

are Π1
1-sentences. Since M is a β-model, being an arithmetic equivalence relation

is absolute between V and M .

Similar argument as in proof of Theorem 3.2 shows that

Corollary 3.3. There is an ω-model of second order arithmetic M so that if E is

an arithmetic equivalence relation in V , then

M |= (EM ≤H=M
ω ) ∨ (∃aM∃zM∀σ, τ ∈ 2<ω(TM(zM(σ, τ), aM(σ), aM(τ))))

where aM , zM and TM are as in Section 3.1. But M does not satisfy Π1
1 − CA0.

3.3 Relativization

By examining the proof of Corollary 2.12, we can relativize Corollary 2.12 as fol-

lows:
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Corollary 3.4. Given p ∈ ωω, if E is a ∆1
1(p) equivalence relation on ωω, and T

is a tree recursive in p on ω × ω × ω such that ∀x, y ∈ ωω,

¬(xEy)↔ ∃w∀n(T (w � n, x � n, y � n)),

then either (1)

E ≤Hyp(p)=ω

or (2)

∃a∃z∀σ, τ ∈ 2<ω(T (z(σ, τ), a(σ), a(τ)))

Moreover, a : 2<ω → ω<ω and z : 2<ω × 2<ω → ω<ω induce continuous functions

a∗ : 2ω → ωω and z∗ : 2ω × 2ω → ωω defined by

a∗(α) =
⋃
n∈ω

a(α � n) and z∗(α, β) =
⋃
n∈ω

z(α � n, β � n)

where α, β ∈ 2ω.

We relativize proof of Proposition 2, [Fokina et al., 2010] to prove Corollary 3.4.

Suppose E has countably many equivalence classes. To show case (1) holds, recall

B =
⋃
{D ⊆ ωω : D is ∆1

1 ∧ ∀x, y ∈ D, xEy}.

Since E is a ∆1
1(p) equivalence relation, B is Π1

1(p). Let C be the set of codes of

∆1
1(p) set contained in a single equivalence class as above. It is a classical result of

effective descriptive set theory that C is Π1
1(p).

Consider the relation

R = {(x, c) : c ∈ C ∧ x ∈ H(c), the ∆1
1(p) set coded by C}.

R is Π1
1(p), and can be uniformized by a Π1

1(p) function F . Since the value of F

are all natural numbers, F is ∆1
1(p) and by separation theorem, there is a ∆1

1(p)

set D such that range(F ) ⊆ D ⊆ C.

Define an equivalence relation E∗ on D by

d0E
∗d1 ⇔ (∀x0, x1)((x0 ∈ H(d0) ∧ x1 ∈ H(d1))→ x0Ex1)
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⇔ (∃x0, x1)((x0 ∈ H(d0) ∧ x1 ∈ H(d1)) ∧ x0Ex1).

Thus d0E
∗d1 if and only if H(d0) and H(d1) are subsets of the same E-equivalence

class. Since E is ∆1
1(p), E∗ is ∆1

1(p). Furthermore, F witnesses that E is ∆1
1(p)

reducible to E∗.

Lastly, E∗ is ∆1
1(p) reducible to =ω.

To see this, view =ω as equality relation on ω and define f : ω → ω by

f(c) = c∗ ↔ cE∗c∗ ∧ (∀c′(c′E∗c∗ → c∗ ≤ c′)).

Therefore, by transitivity, E is ∆1
1(p) reducible to =ω.

If E has uncountably many equivalence classes, then recall A = ωω \B. A is Σ1
1(p).

The rest of the proof of Theorem 2.11 follows.

Relativization of Theorem 3.2 also holds. Explicitly, we have

Corollary 3.5. Given M as constructed in Theorem 3.2 and p ∈ M . If E is a

Hyp(p) equivalence relation in V , then

M |= (EM ≤Hyp(p)=M
ω ) ∨ (∃aM∃zM∀σ, τ ∈ 2<ω(TM(zM(σ, τ), aM(σ), aM(τ)))).

where aM , zM and TM are as in Section 3.1. But M does not satisfy Π1
1 − CA0.

Corollary 3.6. Given M as constructed in Corollary 3.3 and p ∈ M . If E is a

Σ0
n(p) equivalence relation for some n in V , then

M |= (EM ≤Hyp(p)=M
ω ) ∨ (∃aM∃zM∀σ, τ ∈ 2<ω(TM(zM(σ, τ), aM(σ), aM(τ)))).

where aM , zM and TM are as in Section 3.1. But M does not satisfy Π1
1 − CA0.

To see this, just note that

Observation 1. Since p ∈ M , therefore, if V thinks E is a ∆1
1(p) or Σ0

n(p) (for

some n) equivalence relation, then M also recognizes E as a ∆1
1(p) or Σ0

n(p) (for

some n) equivalence relation. The rest of the proof of Theorem 3.2 can be easily

relativized to p.
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Remark 3.2. We need p ∈M to ensure that when we complete the relativization,

M can still recognize E as a ∆1
1(p) or Σ0

n(p) (for some n) equivalence relation.

3.4 Comparison with Simpson’s Theorem

In this section, we compare the reverse mathematics strengths of our version of

Silver’s Dichotomy with some other version of Silver’s Dichotomy.

It is shown by Simpson that over RCA0, some version of Silver’s Dichotomy is

equivalent to Π1
1−comprehension.

Defnition 3.7 (Silver’s Theorem, [Simpson, 2009]). If E is a coanalytic equiva-

lence relation, then either

(1) there exists a sequence of points 〈yn : n ∈ ω〉 such that

∀x∃n(xEyn)

or

(2) there exists a perfect set P such that

∀x∀y((x, y ∈ P ∧ x 6= y)→ (¬(xEy))).

Theorem 3.8 ([Simpson, 2009]). The following statements are pairwise equivalent

over RCA0.

(i) Π1
1−comprehension.

(ii) Silver’s theorem.

(iii) Silver’s theorem restricted to equivalence relations on ωω which are ∆0
2 defin-

able (with parameters).

Since our constructed model M satisfies Corollary 3.4 restricted to arithmetical (in

particular ∆0
2) in p equivalence relations for p ∈ M but not Π1

1-comprehension, a

simple observation will lead us to the following question:
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Question 3.1. Is there any contradiction between Theorem 3.8 and our result?

The following discussion answers Question 3.1.

In [Simpson, 2009], Simpson firstly proves the following version of Silver’s theorem

is provable in ATR0:

Theorem 3.9 (an ATR0 version of Silver’s Theorem, [Simpson, 2009]). The fol-

lowing is provable in ATR0. If E is a coanalytic equivalence relation, then either

(1) there exists a sequence of Borel codes (Definition V.3.1,[Simpson, 2009])

〈Bn : n ∈ ω〉 such that

∀x∃n(x ∈ Bn)

and

∀n∀x∀y(((x, y ∈ Bn)→ (xEy))

or

(2) there exists a perfect set P such that

∀x∀y((x, y ∈ P ∧ x 6= y)→ (¬(xEy))).

Consider the reverse mathematics strength of Definition 3.7, Theorem 3.9 and

Corollary 3.4. The strength of Definition 3.7 is different from Theorem 3.9, and is

also different from Corollary 3.4.

Our model M is a β-model. From Chapter VII, [Simpson, 2009], it is a model of

ATR0, and hence it models Theorem 3.9.

Case (1) of Definition 3.7 claims that if there are only countably many equivalence

classes, then we can pick up for each equivalence class a representative. This is

stronger than case (1) in Corollary 3.4 which only claims there exists a Hyp(p) re-

duction from E to =ω. The construction of M gives no clue that we should believe

that M satisfies Definition 3.7 or (iii) in Theorem 3.8. In fact, if M satisfies either
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of them, we will have a contradiction.

Claim 3.5. M does not satisfy (iii) in Theorem 3.8.

Proof. Firstly, note that (iii) implies arithmetic comprehension.

As mentioned in page 105, [Simpson, 2009], to see this, we only have to show that

(iii) implies that every function g : ω → ω has a range.

Given g : ω → ω, we can define an equivalence relation Eg as follows:

∀x∀y(xEgy ⇔ ∀n∀n′(n ∈ x→ (∃m(g(m) = n))) ∧ (n′ ∈ y → (∃m′(g(m′) = n′))).

Eg is a Π0
2 equivalence relation with parameter g. Obviously, there are only two

equivalence classes for Eg. One is the range of g and the other is the complement

of the range of g. By (iii), there are y1, y2 representing the two equivalence classes

respectively and thus g has a range y1.

Therefore, (iii) implies arithmetic comprehension.

Let φ0 be a Π1
1-formula which defines Kleene’s O, i.e., O = {m : φ0(m)}. Thus the

complement of O is defined by a Σ1
1-formula ϕ0 = ¬φ0. By Kleene’s normal form

theorem, we can write ϕ0(m) as ∃fθ(m, f) where θ is Π0
1. Define a ∆0

2 equivalence

relation Eθ on ω × ωω by

(m, f)Eθ(n, g)⇔ (m = n ∧ (θ(m, f)↔ θ(n, g))).

By definition of Eθ, Eθ has only countably many equivalence classes. By (iii), there

are a sequence of representatives 〈(mk, fk) : k ∈ ω〉 such that

∀m∀f∃k(m, f)Eθ(mk, fk).

Then

∀m(∃fθ(m, f)↔ ∃k(m = mk ∧ θ(mk, fk)).

∃fθ(m, f) is equivalent to an arithmetic formula with a sequence of parameters

〈(mk, fk) : k ∈ ω〉.
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Hence {m : ϕ0(m)} = {m : ∃fθ(m, f)} exists by arithmetic comprehension. There-

fore, if such parameters exist in M , then we can define O in M which is impossi-

ble.

From the above discussion, we can see that there is no contradiction between

Theorem 3.8 and our results.
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