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Abstract

Recent advances in positioning technologies and wireless communications lead

to a proliferation of location-based services. The moving-object database is a

specialized database system for efficiently storing and processing the location

data in location-based services. The dynamic nature of objects introduces new

challenges to existing database techniques, especially dealing with the frequent

location updates. Given the massive number of GPS-equipped mobile devices

and the spectacular growth rate today, it is of vital importance to consistently

improve the performance of moving-object databases.

In this dissertation, we exploit the possibility of enhancing the performance

of moving-object databases from various aspects. As a preliminary, we propose

a benchmark for evaluating moving-object indexes and conduct a comprehen-

sive study on state-of-the-art moving-object indexes. Based on the strengths

and drawbacks of existing indexes revealed by the study, we design the ST2B-

tree—an index for moving objects that can automatically adjust itself to adapt

to workload changes in moving-object databases. We also present an adap-

tive updating mechanism to minimize the updating workload in moving-object

databases, without affecting the query accuracy. The results of extensive perfor-

mance study show that the proposed techniques take one step further towards

optimizing the performance of moving-object databases.
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Chapter 1

Introduction

With recent breakthroughs in positioning technologies and wireless com-

munications, Location-Based Service (LBS) becomes an emerging industry.

A LBS makes use of the geographical positions of mobile users and pro-

vides the users with useful information regarding their positions. Most of the

present LBSs, such as navigation and mobile advertising, are closely related

to our daily lives. LBSs hence gain popularity quickly and proliferate at an

amazing rate. Naturally, how to manage location data of mobile clients and

provide better support to LBSs soon becomes a hot topic in database com-

munity and has received special attention in database research. The mobile

users, as the core of LBSs, are abstracted as moving objects in database

terminology. In this chapter, we first give an overview of moving-object

management. Then, we describe the challenges in moving-object databases

comparing to traditional database systems, followed by a brief review of

state-of-the-art techniques in moving-object databases.

1
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WiFi/ Mobile Network 
(e.g., 3G, 4G)

GPS Satellites

LBS Server

Internet/Enternet

Access Points/
Base Stations

“Q1: Find all ATM that are no 
further than 1km to me.”

“Q2: Notify all vehicles in 
range with the accident.”

Figure 1.1: A general framework of a location-based service

In recent decades, we have witnessed the rapid proliferation of Location-

Based Services (LBS) [85, 90]. In the 1990s, location-based services, such as

traffic control and management systems, are mainly restricted for govern-

ment usage. In the 2000s, thanks to the advances in technologies, location-

based services have branched out into personal and everyday usages, ranging

from navigation, taxi calling, and mobile advertising to logistics manage-

ment. Modern positioning techniques, such as GPS (Global Positioning Sys-

tem) and RFID (Radio-Frequency Identification), make it possible to sense

the current location of an object. Nowadays, more smart devices, e.g., the

iPhone, car navigators and even digital cameras, are equipped with GPS

receivers, making their locations self-perceivable. The ubiquitous wireless

communications, including the cellular network, 3G and WiFi, build up the

communication channels between location-based service providers and these

mobile devices.
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Figure 1.1 illustrates a general framework of systems that provide location-

based services. The mobile clients, e.g., automobiles, get their current loca-

tions from the GPS satellites and send their locations to the LBS server by

WiFi or 3G network via wireless access points or base stations in cellular

network respectively. To answer location-based queries such as “find all

ATM that are no further than 1km to me” and “notify all vehicles that are

within 1km to the place where an accident happened” efficiently, a database

is used for storing and retrieving the location data.

Although there are a number of general-purpose database management

systems, such as Oracle, IBM DB2 and Microsoft SQL Server, they are

designed for serving as many, diverse applications as possible. However,

they may not be the optimal solution for special applications, such as the

LBSs. A wide variety of specialized databases are proposed to meet the

requirements of different applications, e.g., the spatial database for Geo-

graphical Information System (GIS). Considering the geometric character-

istics of moving objects, spatial databases were used for managing location

data in moving-object applications in the early 1990s. However, since spa-

tial databases are designed for managing static geographical data, e.g., lines

and polygons, it is hard for them to capture the mobility of moving objects

efficiently, i.e., the continuous change of objects’ locations in LBSs. As

a result, Moving-Object Database (MOD) [114, 40] was introduced in the

mid-1990s, exclusively designed for managing moving objects in LBSs.

In the rest of this chapter, we describe the challenges in moving-object

management, followed by a brief review of state-of-the-art technologies and

research topics in moving-object databases. At the end of this chapter, we

summarize the contributions and present an outline of the thesis.



4 Chapter 1. Introduction

1.1 Challenges in Moving Object Management

The problem of moving-object management has attracted great enthusiasm

from the database researchers. For decades, researchers have worked consis-

tently on enhancing the scalability of the database system, i.e., the amount

of workload the system can handle. The workload of a database system

consists of two parts, the updates and queries. Traditional databases are

designed and optimized for relatively static data, for which updates are

infrequent compared to the queries.

Moving-object databases, on the other hand, are proposed specially for

managing moving objects, whose locations change continuously over time.

To track the objects precisely, objects are required to inform the system

about any change of their locations, introducing heavy updating workload

to the database system. The high frequency of updates on the data is a

distinguishing feature that differentiates the moving-object database from

traditional databases, where data are assumed to be constant and are up-

dated very occasionally.

With the ubiquitous GPS-equipped devices, the number of traceable

mobile clients of LBSs increased rapidly in the 2000s. There were roughly

175 million handsets using the GPS worldwide in 2007, and the number

would increase to 560 million in 2012. Analysts have predicted the number

of GPS-enabled handsets will be set to more than triple during the next five

years. Given the incredibly large number of mobile users and the sustain-

able growth rate today, the traditional databases cannot scale up with the

increasing number of moving objects. Designed for static data, traditional

databases concern more on the query processing than the updates. Tra-

ditional databases show their inadequacy of dealing with frequent updates

from a large number of moving objects. The capability of dealing with such
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frequent, enormous updates is the primary consideration in the design of

moving-object databases.

Besides the scalability of the system, the quality of service (QoS) is

another major concern in moving-object databases design. Compared with

traditional databases, minimizing the query response time is even more

important in moving-object databases. Since the locations of objects change

continuously, the answer to a query can be transient and become out-of-date

easily, especially when objects move at a high speed. Therefore, providing

immediate query response is another requirement of utmost importance in

moving-object databases.

1.2 Research in Moving-Object Databases

In this section, we briefly examine state-of-the-art technologies in moving-

objects databases and describe some popular research topics.

1.2.1 Updates in Moving-Object Databases

As objects move, their locations change continuously over time. One funda-

mental problem in moving-object databases is how to track these dynamic

locations. Intuitively, an update is required whenever an object changes

its location. Regardless of the positioning error or the transmission time

between the object and the database, this simple but strict updating proto-

col leads to a 100% precision. However, this simple updating protocol will

produce unacceptably heavy updating workload to the database system.

By contrast, the number of updates can be reduced by easing the trigger

condition of an update. For example, updates are required every 30 seconds

or every 100 meters. With less frequent updates, the error between the



6 Chapter 1. Introduction

exact location and the location known by the database increases. A lower

tracking precision results in a higher inaccuracy in the answers to queries

of the moving-object databases, and affects the quality of location-based

service eventually.

Therefore, an efficient updating protocol is essential to achieve a trade-off

between the tracking precision and the amount of updates. Considering that

minimizing the updating workload and maximizing the tracking precision

are two opposite goals, the current design of updating protocol follows the

principle that the number of updates should be minimized on condition

that the tracking error (or the query inaccuracy) does not exceed a specific

threshold.

In moving-object research, there are in general three types of updat-

ing protocols, namely the time-based updating protocol (e.g., update ev-

ery 30 seconds), the distance-based updating protocol (e.g., update every

100meters) and the deviation-based updating protocol. The deviation-based

updating protocol makes predication on object’s location, an update is re-

quired when the distance between the predicted location and the exact lo-

cation exceeds a given threshold ϵ (e.g., ϵ=100m). With the same threshold

on the tracking error, the deviation-based updating protocol usually leads

to the lightest updating workload, making it the most-adopted protocol in

the literature. A detailed review of these updating protocols is presented

in Section 2.2.

1.2.2 Indexes in Moving-Object Databases

The index is the key component in any database system for speeding up

the retrieval of a large amount of data. It is even crucial in moving-object

databases. A great number of indexing techniques have been proposed for
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moving-object databases exclusively. A short survey on existing moving-

objects is provided in Section 2.3.

Considering the peculiarities of moving-object data, there are generally

two major concerns in the design of moving-object indexes: (1) how to

extend existing indexing structures to deal with dynamic location data; (2)

how to improve the update efficiency of the index.

First, consider that data stored in moving-object databases are spatio-

temporal data, i.e., continuous changing locations. Because the locations

are spatial data points in nature, it is intuitive to use existing spatial indexes

such as the R-tree [41] and Quadtree [88] for indexing moving-object data

directly. Then, the problem is how to combine the spatial location and

the corresponding time information into one single index. A representative

solution to this problem is the TPR-tree [87], which is one of the most noted

moving-object indexes. The TPR-tree introduces the Time-Parameterized

Bounding Rectangle, consisted of bounding rectangles on objects’ locations

and velocities respectively. A Minimum Bounding Rectangle (MBR) is a

rectangle that encloses all possible locations of objects at any given point of

time, derived by linear interpolation on the location and velocity bounding

rectangles. As a result, the R-tree’s update and query algorithms can be

applied directly to moving objects, by using the MBR at corresponding time

as the Bounding Rectangle (BR) in the original R-tree.

On the other hand, despite of the remarkable improvement in the speed

of data retrieval, indexes also require additional storage space and intro-

duce additional overhead on database updates. Traditional databases are

optimized for relatively static data, and improving the efficiency of query

processing is the primary concern in the design of the indexes. Reducing

the overhead on the storage and updates is the secondary consideration.
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However, due to the dynamic nature of moving objects, updates are

more frequent in moving-object databases, comparing to they are in tradi-

tional databases. The additional cost on updates cannot be ignored. As a

result, traditional indexes show deficiencies in such update-intensive appli-

cations. It turns out that updates in the R-trees are not efficient enough to

catch up with the frequent updates in moving-object applications [50, 20].

Consistent efforts have been made to improve the update efficiency of the

R-tree, resulting in indexes such as the LUR-tree [57], the RUM-tree [119]

and the bottom-up R-tree [57]. Other works, e.g., the Bx-tree [50] turn

to other simple but mature indexing structures, such as the B+-tree and

the grid file, for better update performance. For the purpose of minimiz-

ing the updating workload, there are also another branch of works [82, 54]

that build indexes of the queries instead of the objects. These indexes help

retrieve queries that are affected by an object update and the queries are

updated accordingly.

1.2.3 Other Research Topics in Moving-Object Databases

Besides the numerous indexing techniques for supporting efficient updates

and queries, existing research covers a variety of aspects in moving-object

databases.

Modeling and storage: As a fundamental problem, different models of

representing moving objects in the database and the storage paradigm in the

moving-object database have been proposed in [92, 114, 33, 82, 5, 45, 24, 39].

Updating protocol: The adoption of updating protocol is essential to

the moving-object database. The tracking precision is higher when the

updates are more frequent. Various updating protocols have been developed
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in [111, 113, 112, 58], with the purpose of minimizing the number of updates

while keeping a high tracking precision.

In-network moving objects: While most of the existing works assume

that objects move freely in Euclidean space, a number of other works [34,

27, 39] consider objects whose movements are constrained by a fixed road-

network. The road network is utilized to improve the storage of objects and

query processing on them.

Distributed query processing: Most of the existing works assume that

there is only one single database server. Considering the limited compu-

tational capacity and communication bandwidth of a single server, works

in [14, 35, 108, 116] exploit the possibility of processing queries distribut-

edly. By making use of the computational capability of the mobile devices;

objects not only report their locations to the database server but also col-

laborate with the server on processing the queries. Other works [6, 44] study

moving-object management in a P2P (Peer-to-Peer) network, where a set

of servers are used to manage all objects together.

Uncertainty: Due to the imprecision in positioning techniques and the la-

tency in wireless communications, imprecision is an inherent characteristics

of moving-object databases. In addition, the updating protocol adopted in

moving-object databases can reduce the amount of updates, at the cost of

increased imprecision of location tracking. A bunch of works [81, 105, 24,

68, 67] are dedicated to the study of the imprecision (i.e., uncertainty) of

objects’ locations and query answers, using probabilistic approaches.

Privacy: Protecting the privacy of mobile clients becomes a hot issue in

location-based services recently. The k-anonymous and data cloaking tech-

niques are incorporated into moving-object databases to prevent the service
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provider from inferring the identity of mobile client or the real location of

the client [36, 65, 66].

Data mining: Works in [63, 43, 64] perform data mining tasks in moving-

object databases, designing indexing structures and algorithms for discov-

ering interesting patterns on objects movements or aggregation information

on objects’ locations, which are helpful to location-based services such as

the navigation system and the traffic management system.

1.3 Contributions of the Thesis

As mentioned, a large number of indexes have been proposed in literature

to enhance the performance of moving-object database systems. However,

each of these indexes claimed in its original proposal that it was capable

of outperforming the others (i.e., its predecessors). This makes it difficult

to know the advantages and disadvantages of these indexes; and it is even

harder for the potential users of the indexes to make a decision on which

index is the best suited for a specific application.

In addition, existing works on moving-object indexes focus either on the

design of indexing structures or on the development of efficient algorithms

for various kinds of queries. Variability in data workload, i.e., cardinality

and distribution of objects, has so far been overlooked in the design of

moving-object indexes. Such data variability has a significant impact on

the performance of the indexes. It is important for moving-object indexes

to be adaptive to such variability.

On the other hand, comparing to the numerous indexes having been

proposed in the literature, little attention has been paid to other techniques

such as modeling the objects and the updating protocols. While the index
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plays a crucial role in enhancing the efficiency of database operations, the

object model and the updating protocol have a joint effect on the updating

workload of the system, i.e., the number of updates. With the purpose of

improving the performance of moving-object databases, such techniques are

of equal importance to or even more important than the indexes.

This thesis investigates the problem of performance optimization in

moving-object databases from various aspects. Considering the indexing

techniques, the thesis aims to establish a comprehensive study on existing

moving-object indexes and design an index that is adaptive to the data vari-

ability in moving-object applications. The thesis also explores the possibil-

ity of performance optimization from other fundamental aspects of moving-

object databases.

Specifically, the contributions of this thesis are as follows.

• First, we propose a benchmark for evaluating moving-object indexes.

The proposed benchmark covers a series of carefully generated datasets,

a broad variety of workloads, and a standard evaluation procedure. It

covers important aspects of moving-object indexes that have not pre-

viously been covered by any benchmark. The results of the benchmark

study can elicit the characteristics of existing indexes and offer input

to future index development.

• We present a new moving-object index, called ST2B-tree. The design

of the ST2B-tree considers two aspects: (1) the feasibility of tuning

the index; (2) the advantages and drawbacks of existing indexes, as

revealed in our benchmark study. We also introduce an online tuning

framework for the ST2B-tree. Although specially designed for the

ST2B-tree, the tuning framework is applicable to existing and future
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indexes in the same category as the ST2B-tree. With the online tuning

framework, the resulting indexes can adapt to the variability in the

moving-object environment.

• We design an STSR-based updating protocol for moving-object databases.

The new updating protocol can largely reduce the updating workload

of the database, by relaxing the tracking accuracy with care. The

STSR-based updating protocol guarantees the quality of query an-

swers by pulling passive updates from objects whenever necessary.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows. First, the next chap-

ter presents an exhaustive review on existing techniques in moving-object

databases, focusing on those that are closely related to this thesis. Chap-

ter 3 presents a benchmark for evaluating the performances of moving-object

indexes and provides a thorough study on several representative indexes.

Based on the findings of the comparative study of existing indexes, Chap-

ter 4 introduces the ST2B-tree as well as the framework for tuning the ST2B-

tree online. Next, Chapter 5 introduces the STSR-based updating protocol

on reducing the workload of moving-object databases. Finally, Chapter 6

concludes the thesis and discusses some topics for further research.



Chapter 2

Literature Review

Moving-object management is a well-studied topic in database commu-

nity. Tremendous research efforts have been put into this area in last decades,

involving almost every aspect of moving-object databases. In this chapter,

we review several essential techniques in moving-object databases, especially

those related to this thesis. In particular, we first introduce the models for

preparing the objects for database storage and processing. Next, we review

existing updating protocols for tracking objects efficiently. Finally, we survey

state-of-the-art indexing and query processing techniques in moving-objects

databases.

13
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2.1 Modeling Moving Objects

In moving-object management, the first issue to solve is how to represent

location data of objects in the database. While few works exist that study

this topic exclusively [92, 114, 33, 5, 45, 39], there are mainly two approaches

of modeling moving objects in the literature.

2.1.1 Objects as Static Spatial Points

The first model simply treats moving objects as other general types of data

in traditional databases. By neglecting the kinetic feature, moving objects

are simply represented as spatial points, i.e., multi-dimensional data points

in their space of movement, and the database system stores the last-known

locations of objects. In particular, an object moving in the x-y plane is

represented as a tuple ⟨oid,−→p ⟩, where oid is the identifier of the object,

−→p = ⟨px, py⟩ are the coordinates of the object’s location.

As in any traditional database, the data stored remains constant unless

explicitly updated. In the context of moving-object databases, this means

that an object is assumed to stay at the stored location unless it reports

a location update to the database. With this simple model, objects are

handled in an ad-hoc mode. From the database’s perspective, the movement

of an object is not continuous. Instead, the object jumps from one location

to another at discrete points of time.

This model is quite naive and straightforward. With this simple model,

existing DBMSs can be used directly for managing moving objects with-

out much effort. It gains benefit by re-using the mature and comprehensive

techniques on traditional database, ranging from indexing, query processing

to transaction management and etc. For this reason, this model gains pop-
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ularity in a bunch of works [72, 120, 125], on processing queries on current

locations of objects.

On the other hand, since the movements of objects are continuous, their

locations keep changing all the time. The locations stored in the database

are very likely to be obsolete after a short duration of time. To keep the data

stored in the database up-to-date, objects are required to report their “cur-

rent” locations at a high enough frequency, especially when they are moving

fast. As a result, in order to retain a given degree of quality of service, this

simple mode introduces high updating workload as well as communication

overhead between objects and the database server. Although traditional

DBMS performs well in managing static data that are not updated often,

it cannot handle well highly dynamic data from moving objects.

2.1.2 Objects as Time-Parameterized Functions

Unlike the first model that does not distinguish moving objects from other

traditional data, the second approach models moving objects as functions of

time, making use of the patterns beneath objects’ movements. In general,

the location of an object at any time t is abstracted as a function −→p t = f(t),

and the value f changes with the time t. For each object, the database keeps

the coefficients of its motion function. Given a point of time t′, the database

can always derive the location of the object at t′.

Take the linear function as an example. A moving object in the x-

y plane is represented by a tuple ⟨oid,−→p ,−→v , tup⟩. As in the first model,

oid and −→p are the identifier of the object and tis location at time tup.

−→v = ⟨vx, vy⟩ denotes the velocity vector at tup, containing the coordinates

of the object’s speed in corresponding dimension . Then, the location of

the object at any point of time t′ can be derived from the linear function:



16 Chapter 2. Literature Review

−→p t′ = f(t′) = −→p + (t′ − tup) · −→v .

By modeling objects as time-parameterized functions, updates are re-

quired only when the motion functions change, e.g., the velocity changes

(either the direction or the speed) in the above linear function. While the

location of a moving object changes all the time, the corresponding motion

function may remain constant for longer time duration. If an object travels

with a constant velocity, updates can be eliminated.

Compared with the location-only model, this approach reduces the num-

ber of updates significantly. In addition, this model preserves the continuity

of object’s movements: the trajectory of an object consists of conjunctive

piece-wise motion functions in the database system.

Due to its simplicity, the linear function, as introduced in the example,

is undoubtedly the most popular mathematical function adopted by most

existing works [87, 80, 78]. However, considering the complexity and ran-

domness of object’s movement in practice, linear function may not perform

well in capturing objects’ motion in some circumstances. More complex and

accurate functions such as the recursive motion function [95] and Chebyshev

polynomials [15] are also introduced for modeling objects’ movements.

Beside the significant reduction in the amount of updates, we gain other

benefits from modeling objects as time-parameterized functions. By repre-

senting the location of an object as a time function, it becomes possible to

predict the near-future location of the object, as long as the motion function

remains un-changed in the near-future. This characteristic enables a group

of future queries in addition to historical and present queries. Because of

the importance of predictive queries in today’s location-based services, this

model is adopted by most of the works in the literature.
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2.2 Tracking Moving Objects

Given the two object models, the next problem in moving-object databases

is how to keep the locations of the objects up-to-date. On the one hand,

for the purpose of maximizing the tracking precision, updates are required

whenever object’s location changes or motion function changes. On the

other hand, in order to reduce the frequency of updates, the trigger con-

dition of an update can be relaxed, however, at the expenses of tracking

precision. Therefore, the design of a “good” updating protocol is impor-

tant for maintaining the tracking precision while minimizing the commu-

nication costs between the objects and the database server [114, 115]. In

this section, we review the existing updating protocols in moving-object

databases [111, 113, 112].

2.2.1 Time-Bounded Updating Protocol

The first and the most simple updating protocol is called Time-Bounded

Updating Protocol, where updates are issued periodically [59]. For example,

updates are required every 30 seconds. With this method, the physical time

is discretized into a serial of logical timestamps; an object sends an update to

the database server every timestamp. This updating protocol is always used

together with the location-only object model introduced in previous section.

Figure 2.1(a) shows an example of the time-based updating protocol. In

the figure, the solid line represents the real trajectory of an object, and the

solid points on the line show the positions of the object at corresponding

timestamps.

With the time-bounded updating protocol, updates must be frequent

enough to keep a reasonable tracking precision. However, thanks to its



18 Chapter 2. Literature Review

t=1

t=2

t=3

t=4

update

update

update

t=1

t=2

t=3

t=4

update

update

t=1

t=2

t=3

t=4

f(t)

f(t)

update

(a) Time-bounded (b) Distance-bounded (c) Deviation- bounded

Figure 2.1: Examples of updating protocols for tracking moving objects

simplicity, the time-bounded updating protocol is widely adopted in dealing

with continuous queries on current object locations [120, 72, 121], where

frequent query evaluation or maintenance is required.

2.2.2 Distance-Bounded Updating Protocol

Another traditional updating protocol that is typically accompanied by the

location-only object model is the Distance-Bounded Updating Protocol. As

the name suggests, this updating protocol requires an update from an object

once the distance between its current location and the last-known location

stored in the database exceeds a specified threshold. For example, updates

are required every kilometer. As shown in Figure 2.1(b), from t = 1–4,

two updates are required at t = 2, 4, since dist(−→p1 ,−→p2) and dist(−→p3 ,−→p4) are

greater than the distance threshold, shown as the radius of the circles.

With the distance-bounded updating protocol, the frequency of updates

depends on the velocity of object’s movement and the distance threshold.

The database system can achieve a trade-off between the tracking precision

and updating frequency by tuning the distance threshold. The distance-

bounded updating protocol is as simple as the time-bounded updating pro-
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tocol, but provides an error bound on the tracking precision.

2.2.3 Deviation-Bounded Updating Protocol

Different from the previous two updating protocols, the Deviation-Bounded

Updating Protocol is applicable only to the second object model where ob-

jects are represented as functions of time. With the time-parameterized

motion function, it is possible to derive the location of an object at a given

timestamp from its last update. In particular, an update is required only

when the distance between its current location and the derived location

exceeds a specific error bound. Figure 2.1(c) depicts an example of this up-

dating protocol, where the dashed line represents the trajectory captured by

the motion function (previously updated at t = 1). At t = 3, the distance

between the exact location (the solid point) and the derived location (the

hollow point) exceeds the spatial tolerance. With the deviation-bounded

updating protocol, an update should be issued at t = 3.

The time-bounded and distance-bounded updating protocols are nei-

ther effective nor efficient if the objects are modeled as time-parameterized

functions. For the time-bounded updating protocol, an update is mean-

ingless if the function does not change at the scheduled timestamp; on the

other hand, the tracking error cannot be bounded: for example, since the

database system derives the location of the object at any timestamp before

the next scheduled update from the last updated motion function, the dis-

tance between the derived location and the real location can be very large,

if the motion function of the object changes dramatically right after the last

update.

The deviation-bounded updating protocol decides the next updating

time adaptively, depending on how significant the motion change is. The
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deviation-bounded updating protocol brings about significant decrease in

the update frequency, while keeps the tracking error under control. There-

fore, it is now the most widely adopted updating protocol in state-of-the-art

moving-object databases [50, 87, 100, 123, 126].

2.2.4 Deviation-Based Updating Protocol for Predictive

Queries

In [95], Tao et al. improve the basic deviation-bounded update protocol to

support predicative queries better. Specifically, two motion functions are

stored on both the object and the database server. The motion function at

the object side is always in accordance with its current movement, which is

supposed to be more accurate. At each timestamp, the object investigates

the errors between the derived locations of the two functions at subsequent

timestamps before a specific maximum predictive time. An update is issued

if the error at any timestamp exceeds the deviation tolerance.

Continue with the example shown in Figure 2.1(c). The solid line (the

dashed line resp.) can represent the motion model stored at the object side

(the server side resp.). Suppose current time is t = 1 and the maximum

predictive time is 1. No update is required as the error of two models at

t = 2 is still tolerable. On the contrary, if the maximum predictive time is

2, an immediate update will be issued since the error of two models at t = 3

exceeds the threshold.

2.3 Indexing Moving Objects

Indexing is one of the most popular topics in database research for enhancing

the performance over massive data. Given the large number of objects and
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updates, the index is undoubtedly the most essential component in moving-

object databases and hence has attracted the most research efforts. In this

section, we review existing indexes for moving objects.

2.3.1 A Taxonomy of Moving-Object Indexes

Mokbel et al. give a survey of indexing techniques introduced on or before

2003 [69], and follow up with a continuation containing an overview of

indexes presented for the years 2003–2010 [76]. In [69, 76], moving-object

indexes are classified into the following categories.

2.3.1.1 Indexing the Past

The first category of indexes deals with historical data, i.e., the locations

and trajectories of moving objects in the past. Since objects are moving

continuously, the historical data in a moving-object database keep increas-

ing over time. Such indexes are necessary on answering queries, such as

“where did Michael go yesterday?”, and applications that are interested in

mining patterns from objects’ trajectories.

One intuitive way to index historical data is to group the data by time,

i.e., to store object’s locations at the same time together in one spatial

index, such as the R-tree [41] and the Quadtree [88]. In order to reduce

the storage cost, indexes such as the MR-tree [122], the HR-tree [74] and

the HR+-tree [96], overlapping quadtrees [106] incorporate the overlapping

techniques in the B-tree[13] into the R-tree and the Quadtree, by sharing

common nodes or entries among trees of consecutive timestamps.

While the temporal dimension takes priority in indexes such as the HR-

tree, some other indexes consider the spatial dimension first. In particular,

the space is first partitioned into small regions. Then, data inside each



22 Chapter 2. Literature Review

region are indexed in individual structure ordered by the time. For example,

in the MTSB-tree [127], the space is partitioned into grid cells and a B-tree

is maintained for indexing data inside each cell according to their update

time. The FNR-tree [34] and the MON-tree [27] considers objects that

travel inside a fixed road network. A 2D R-tree is used to index the line

segments (roads or routes), and location or trajectory data are organized

within each line segment in chronological order. The MV3R-tree [97] stores

two R-trees on the same set of objects, one of which is optimized for queries

on a given timestamp and the other is optimized for supporting queries over

an interval of time.

Since spatial indexes such as the R-tree are designed for general multi-

dimensional data, an alternative approach of indexing historical data is to

take the time as another dimension(s) in additional to the spatial data of

objects. For example, the 3D R-tree [104] stores objects in an R-tree with

3-dimensional key ⟨x, y, t⟩; in the RT-tree [122], objects are indexes by 6-

dimensional key ⟨MBR, ts, te⟩ in an R-tree, where MBR is the bounding

rectangle of the objects’ locations in time interval [ts, te]; the STR-tree [80]

extends the R-tree with insert/split algorithms optimized for clustering seg-

ments of the same trajectory together while preserving the spatial proximity

of segments.

Another category of indexes [94, 109, 79] focus on supporting queries

on objects’ trajectories, such as “find all automobiles that traveled from

the central park to the city hall during 10am to 11am yesterday?”. Given

the object’s models, an object’s trajectory is represented as a series of line

segments, either by linear interpolation on consecutive locations or as a

conjunction of its motion functions. The TB-tree [80] uses an R-tree to

store all trajectory segments, but with the constraint that the segments
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inside a leaf node must belong to the same trajectory. SETI [16] partitions

the space into regions and uses an R-tree to index segments inside each

region, where cross-boundary segments are indexed in both R-trees.

2.3.1.2 Indexing the Current

Queries such as “notify all vehicles that are entering the neighborhood of a

petrol station with the price drop” are the most common queries in location-

based services. These queries require the database to keep track of the

current location of objects. The second category of moving-object indexes

are designed to answer these types of queries efficiently.

Hashing [93] is one of the earliest attempts to index current locations of

objects. The space is partitioned into regions and objects are indexed with

the hash value of the region it belongs to. Updates are issued only when

objects move across regions. The hashing approach is extended by many

other grid-based indexes [70, 72, 120], where the space partition is with the

help of a uniform grid [77]. In order to reduce the I/O cost of updates,

LUGrid (Lazy Update Grid) [121] maintains a memory buffer for incoming

updates and flushes updates of the same disk page (i.e., the same grid cell)

together.

Comparing to the grid, a larger number of indexes prefer the R-tree as

the underlying structure. The R-tree can be used directly to index current

locations of objects, as multi-dimensional data. However, it is well-known

that updates in the R-tree are not efficient enough given the high frequency

in MODs. Therefore, R-tree-based indexes try to improve the performance

of updates. The LUR-tree (Lazy Update R-tree) [57] prevents the propa-

gation of an update to upper level if the updated location is still covered

by the MBR of the entry in the R-tree. [60] extends the LUR-tree and
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introduces several bottom-up update strategies in the R-tree to further re-

duce the update cost. In the RUM-tree [119, 91], an update inserts the

new location into the R-tree, but does not delete the old record. Similar to

the LUR-tree, the RUM-tree maintains an update memo in the memory of

all obsolete entries. The old entries are purged periodically and in a batch

mode.

2.3.1.3 Indexing the Current and Near-Future

The last category of indexes is designed for managing the near-future lo-

cations of moving objects. Since objects are moving continuously, a query

asking about current locations of objects might become obsolete even be-

fore the results are sent back to the query issuer. Therefore, instead of the

current locations of objects, queries in moving-object databases are more

interested in objects’ locations in the near future. In order to predict the

future locations, objects are modeled as functions of time in all indexes in

this category, typically the linear function.

Numerous indexes of this category have been developed in literature.

Most of them are based on traditional spatial indexes such as the R-tree [41],

the R*-tree [8] and the Quadtree [88].

The TPR-tree [87] first introduces the idea of time-parameterized bound-

ing rectangles in the R-tree. The bounding rectangle of the R-tree can

enlarge with time so that it can still enclose the objects’ future locations.

All the other R-tree-based indexes of this category are descendants of the

TPR-tree, such as the TPR∗-tree [100], the STAR-tree [83] and the REXP -

tree [86]. These indexes try to improve the TPR-tree for better performance

from different aspects in different circumstances.

The Bx-tree [50] is the first moving-object index using the B+-tree [26]
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as the base structure. Although, B+-tree is not designed for spatial or

temporal data, a bunch of indexes including the Bx
r -tree [53], the By-tree

and αBy-tree [18], the Bdual-tree [123] are all built on top it, for its high

updating efficiency. All of these indexes utilize the space filling curve to

transform the multi-dimensional data of moving-objects into 1-dimensional

value that can be indexed by the B+-tree.

While the Bx-tree and TPR-tree families are the two prominent groups

for indexing future locations of objects, there are other attempts on using

other structures, such as the quadtree-based STRIPES [78], MOVIES [28]

which is built on linearized kd-tree, and the Polar Tree [79] which takes the

binary tree as the basic structure.

As predictive queries and indexing of near-future locations of moving

objects are the focus of this thesis, we review indexes of this category in

more detail in the following.

2.3.2 A Close Look at Indexes of Future Locations

In essence, a moving object is a multi-dimensional point in nature, whose

coordinates keep changing over time. The design of a good index has two

concerns: how to preserve an object’s temporal information, i.e., the up-

dating time, and how to cluster objects based on their location proximity

as time elapses. In this section, we review existing structures of indexing

objects’ future locations from these two perspectives.

2.3.2.1 Preserve Temporal Information in the Indexes

To support predictive queries on future locations, objects are represented by

time-parameterized functions. The database system stores the coefficients

of the functions. However, most of the existing indexes do not store the last
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updated time for each object individually. As such, some mechanisms are

required to get a synchronized view of object locations to enable predictive

queries on the objects. There are in general three mechanisms.

Indexing with single reference time: In the first mechanism, the index

has a global reference time tref and the motion functions of all objects stored

in the index are mapped to the reference time. Take the linear function as

an example. An object is represented as function f(t′) = −→p +(t′− tup) · −→v ,

−→p and −→v are the location and velocity reported in the last update. Since

the index does not store the updating time tup for each object separately.

The function is transformed to f(t′) = −→p − (tup − tref ) · −→v + (t′ − tref ) · −→v .

Then, the index keeps the two coefficients −→p − (tup − tref )
−→v and −→v for

the object instead of −→p and −→v . The TPR-tree and its variants adopts this

single reference time mechanism, where the reference time is set to the birth

time of the index.

However, as shown in many recent works, e.g., [50, 20], indexes which

organize objects with single reference time such as the TPR-tree suffer from

severe performance degradation with time. Consider the case that two ob-

jects, which are stored in the same leaf node, have not been updated for

quite a long time. The MBR of the leaf node could become quite large to

enclose both objects. With increasing large MBRs, the overlap between up-

per level MBRs increases and the index performance deteriorates. Tao et al.

have shown in [101] that such deterioration can be alleviated when the up-

date frequency is high enough, i.e., 10% objects update in each timestamp.

However, this frequency is too high that indexes such as the TPR-tree can-

not afford. In addition, since the performance deterioration is mainly caused

by those objects with low update frequencies, even a few such objects will

degrade the performance.
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Indexing with multiple reference times: On the other hand, indexes

such as the Bx-tree, the Bdual-tree, the STRIPES have multiple reference

times. The time axis is partitioned into intervals. Each interval is assigned

a certain reference time, e.g., the staring time of the interval. Objects are

distributed into different groups according to their last updating time and

the transformation of the motion function is based on the corresponding

reference time. An update moves the object from its old group into the

group whose time interval covers the current updating time. Indexes of

this category also use a single tree structure, e.g., B+-tree and quadtree,

to manage all objects. However, the underlying tree is divided into sev-

eral logical sub-trees each of which manages objects of a group, i.e., whose

updating time belongs to the same time interval. We call this method the

“multi-tree” technique.

As a result of object updates, the “multi-tree” technique actually re-

builds the index periodically. All objects are required to update at least

once within a given time interval T so that the sub-tree with the oldest

time interval is empty, i.e., all objects have been moved to other sub-trees.

As a result, the oldest sub-tree can be reused for subsequent updates. A

range query searches all sub-trees with extended query regions. For each

sub-tree, the query region is extended from the querying time to correspond-

ing reference time using the maximum velocities of objects in the sub-tree.

Since T is the maximum update time interval of all objects, it could

be quite large due to few infrequently updated objects. As a result, a

query needs to search too many sub-trees with large extended query regions.

In [18], the authors present a technique to improve the query performance

at the expense of higher update cost, regarding the highly variable update

frequencies. An object is inserted into multiple sub-trees with different
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reference times (rather than the one covering the updating time only). The

number of sub-trees depends on the predicted time of the object’s next

update and a tunable parameter α, which is used to balance the update and

query performance. Instead of searching all sub-trees, a query is performed

on the α youngest sub-trees only. Query performance is improved as fewer

sub-trees are searched with smaller extended query regions.

2.3.2.2 Preserve Location Proximity in the Indexes

Given the global reference time(s) and the coefficients of the motion func-

tion, we can predict locations of all objects at any point of time. Then, the

second issue is how to cluster near-by objects together in the index to facil-

itate query processing. Considering this, existing indexes can be classified

into two major categories: space partitioning and data partitioning indexes.

Space Partitioning Indexes: The space partitioning indexes adopt a

prior and fixed partition on the physical space, i.e., the space where objects

move. Such indexes typically partition the physical space in advance using

a grid. An object is indexed by the cell it belongs to. Indexes in [70, 72,

120], utilize the grid index directly, while some other indexes such as those

developed in [50, 123] use a B+-tree on top of the grid. Each grid cell is

assigned a unique id, and objects are indexed by the B+-tree with the id

of the cell they belong to. As space partitioning indexes split the space

using a single uniform grid, the workload across different parts of the index

may not be balanced. Such imbalance does impact the performance of the

indexes, especially in the presence of skewed data.

Data Partitioning Indexes: On the other hand, the data partitioning in-

dexes organize objects in dynamic partitions, based on the object distribu-

tion. Representative schemes in this category include the TPR-tree [87], the
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TPR∗-tree [100], the REXP -tree [86] and the STAR-tree [83]. All of these

methods are based on traditional spatial indexes such as the R-tree [41]

and the R∗-tree [8]. In all R-tree-based indexes, at the bottom level, a leaf

node accommodates up to a given number of objects that are close to one

another. At higher levels of the hierarchical structure, each intermediate

node contains up to a given number of entries, each of which contains a

pointer to one of its children and the MBR (Minimum Bounding Rectangle)

of the corresponding child. The MBR of a leaf is the smallest rectangle

covering all the objects it contains. Similarly, the MBR of an intermediate

node is the region which just covers the MBRs of all its children. A node

split occurs when the number of objects/entries to be stored in a node ex-

ceeds its capacity. On the other hand, two neighboring nodes are merged

into one if objects/entries of both nodes can be accommodated in only one

node. As a result of splitting and merging, objects/entries are clustered into

groups based on their proximity. Therefore, the regions in which objects

are crowded always consist of many small (leaf) MBRs. Sparse regions, on

the contrary, are typically covered by a few large MBRs. By comparison,

data partitioning indexes are typically less susceptible to data diversities

and changes as a result of MBR merging and splitting.

However, in [20], the authors compare several state-of-the-art indexes

experimentally and the result shows that space partitioning indexes out-

perform data partitioning indexes in most cases, especially on the update

performance. In general, space partitioning indexes surpass their counter-

parts that are based on data partitioning in two ways. First, both the grid

index and the B+-tree are well established indexing structures present in

virtually every commercial DBMS. The index can be integrated into an

existing DBMS easily. No fundamental (lower level) changes are needed
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for the underlying index structure, concurrency control or the query exe-

cution module of the DBMS. Second, in comparison with spatial indexes

such as the R-tree, operations such as search, insertion and deletion on the

grid index and the B+-tree can be performed very efficiently. To keep the

objects well organized, updates in the R-tree are quite complex. Guo et

al. [37] have shown that the pre-processing and tree optimization strategies

employed in the TPR∗-tree [100] result in extra delay in locking, and hence

reduce the performance gain in query processing due to the preprocessing

during insertions. Other techniques, such as bottom-up update [57], lazy

update [60] and update memo [119], have been developed in the literature

to improve the update performance of the R-tree. However, although the

update cost decreases with varying degrees, it is still higher than those space

partitioning based indexes [20].

Another recent work, the STRIPES [78], is a hybrid of both space par-

titioning and data partitioning indexes. It utilizes the quadtree as the un-

derlying index, so that the way of partitioning is fixed but guided by the

data distribution. However, since the quadtree is an unbalanced structure,

dense regions are partitioned into finer quads and stored deeply in the tree.

Updates and queries on these objects always incur higher overhead.

2.3.2.3 Revisit of State-of-the-Art Indexes

We review six moving-object indexes to which we will later apply the

proposed benchmark: the RUM-tree [119], the TPR-tree [87], the TPR∗-

tree [100], the Bx-tree [50], the Bdual-tree [101], and the STRIPES [78]. The

TPR-tree is chosen since it is the predecessor of more than a dozen propos-

als for moving-object indexes. The other five indexes are representatives of

indexes of different base structures.
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2.3.2.4 R-Tree With Update Memo

Traditional spatial indexes such as the R-tree [41] and the Quadtree [32]

were designed mainly with query efficiency in mind and implicitly assumed

relatively static datasets.

However, in our problem setting, updates are very frequent due to the

need of tracking continuous movements. To render indexing techniques

more suitable for workloads with frequent updates, several techniques [57,

60, 11] have been proposed to improve their update performance. A recent

representative of this line of work is the RUM-tree by Xiong et al. [119].

The RUM-tree introduces a main-memory memo that makes it possible

to avoid disk accesses for deleting the old entry during an update. There-

fore, the cost of an update is reduced to the cost of an insert. In particular,

object updates are ordered temporally according to the processing time. By

maintaining the update memo, more than one entry for an object may co-

exist. Obsolete entries are deleted lazily in batch mode. Garbage collection

is employed to limit the percentage of obsolete entries in the tree and to

control the size of the update memo.

Because the RUM-tree extends the R-tree, it indexes only point locations

rather than linear functions of time. For the benchmark, we will therefore

apply the memo-based update technique of the RUM-tree to the TPR∗-tree

described next.

2.3.2.5 The TPR-tree and TPR∗-tree

Saltenis et al. [87] proposed the TPR-tree (Time-Parameterized R-tree) that

augments the R*-tree [8] (a variant of the R-tree) with velocities to index

linear functions of time. Specifically, an object is represented by its location

as of (global) a reference time and its velocity vector. The sides of the
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bounding rectangles (BRs) employed are also functions of time, and the

BRs are chosen so that they bound all the contained moving objects or BRs

at any time in the future (including the current time).

If no updates occur on a TPR-tree, its BRs will expand, and query

and update performance will deteriorate. When updates occur, objects are

placed in the BRs that they now fit into, and BRs that have grown too

much are tightened.

Tao et al. [100] have proposed the so-called TPR∗-tree, which is a vari-

ant of the TPR-tree. The TPR∗-tree uses the same data structure as the

TPR-tree, but applies different algorithms for maintaining the index. In

particular, these algorithms aim to optimize time-range queries rather than

time-slice queries, as done by the TPR-tree. And while the TPR-tree makes

decisions on where to insert an object on a level-by-level basis, the TPR∗-

tree puts more work into insertions and makes more global decisions. In ad-

dition, the TPR∗-tree is more aggressive than the TPR-tree when it comes

to the tightening of BRs—while tightening costs I/O, it may save I/O sub-

sequently.

2.3.2.6 Bx-tree and Bdual-tree

It is well-known that the R-tree, as well as structures based on the R-

tree, is prone to low update efficiency when compared to structures such

as the B+-tree. The problem is that BRs tend to overlap, which results

in multiple (partial) paths from the root to the leaf level being explored

during the deletion that occurs in connection with an update. This, serves

as motivation for exploring B+-tree-based techniques for the indexing of

moving objects. Another source of motivation is the fact that B+-trees are

already supported widely in existing DBMSs, promising easier integration
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into existing systems of B+-tree-based techniques.

The first B+-tree-based index, called the Bx-tree, was proposed by Jensen

et al. [50]. The Bx-tree adopts the time-parameterized function to model

objects. A space-filling curve (e.g., the Peano or Hilbert curve) is applied to

obtain a one-dimensional point from the location of an object at correspond-

ing reference time. A partitioned B+-tree is used where updated locations

that occur at approximately the same time go into the same partition.

To support queries, original queries are subjected to transformations

that counter the data transformations. These transformations involve query

window enlargements that depend on the velocities of the objects indexed,

the number of partitions, and the query time; a transformed query is created

for each partition in the B+-tree.

To reduce the adverse effects on performance of velocity skew and out-

liers on performance, Jensen et al. [53] equip the Bx-tree with more careful

query enlargement algorithms.

Yiu et al. [123] have recently proposed the Bdual-tree, which aims to

utilizes velocity information to obtain better query performance. The Bdual-

tree uses a four-dimensional Hilbert curve to map both location and velocity

vectors to one-dimensional point. One Bdual-tree is composed of two B+-

trees, and these two trees swap states every so-called maximum update

interval (the maximum time duration between any pair of updates issued

by any object). Each internal entry in the Bdual-tree is associated with a set

of moving-object rectangles (MORs). Each MOR is square in size and has

continuous Hilbert values corresponding to the keys stored in the sub-trees

of the entry. These MORs can be treated as BRs as used in the TPR-

tree, and hence the query algorithms of the TPR-tree can be applied to the

Bdual-tree with minor modifications. However, this query algorithm is not
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based on that of the B+-tree and is thus more difficult to be integrated into

existing database systems.

2.3.2.7 The STRIPES

Similar to the Bdual-tree, the STRIPES [78], is also a dual index that indexes

both location and velocity data. In particular, the STRIPES maps two-

dimensional moving objects to four-dimensional points and indexes them

by a PR bucket quadtree [89]. The arrangement promises efficient updates

and less efficient queries because a node in the STRIPES may contain an

arbitrarily small number of entries, meaning that relatively many pages

need to be accessed to obtain a query result. The low page utilization also

leads to large space consumption. To alleviate these problems, the authors

suggest storing a leaf node with occupancy at most 50% in half of a page

and leaf nodes with over 50% occupancy in a full page. However, such an

arrangement not only complicates the concurrency control mechanism, but

also makes the integration into a DBMS more difficult.

2.4 Querying Moving Objects

A wide variety of queries have been introduced in moving-object databases.

In the following, we examine existing moving-objects queries in four different

taxonomies.

2.4.1 A Classical Taxonomy

In general, all moving-object queries are derived from corresponding spatial

queries, equipped with additional query predicate on the time dimension.

For example, the range query of spatial data retrieves all (static) spatial
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objects within the query region. Its counterpart in moving-object database

finds all (moving) objects that are inside the query region at some point of

time or during some time interval. The classical taxonomy classifies moving-

objects queries based on the spatial component of the query predicate.

2.4.1.1 Range Query

The range query is the most fundamental type of queries in spatial databases

and moving-object databases, which retrieves objects inside a spatial region

given in the query predicate. Typically, the query region is a rectangle

represented by the lower-left and upper-right corners.

Processing range query on moving objects are the same as on other

general multi-dimension data. To avoid scanning all objects, indexes are

created to accelerate the search. As reviewed in Section 2.3.1, existing

moving-object indexes derive from traditional indexes such as the B+-tree,

and the R-tree. The range query processing is either an extension of the orig-

inal query algorithm on the base structure or based on some pre- and (/or)

post-processing of the queries. For example, the TPR-tree [87] extends the

R-tree range query algorithm to search over the time-parameterized bound-

ing rectangles; in Bx-tree [50], a range query on the objects is decomposed

into a set of disjoint range queries on the B+-tree and the answer of the

query is a combination of the answers to all transformed queries.

2.4.1.2 kNN Query

The k-Nearest Neighbor (kNN) query is another well-studied type of query

in database research. A kNN query retrieves k objects that are closest to

the location indicated in the query predicate.

Evaluation of the kNN query is more complex than that of the range
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query. A number of works have been proposed for processing kNN queries

efficiently [9]. As for indexes derived from some spatial index, e.g., the TPR-

tree [87], kNN query processing adopts the well-known branch-and-bound

methodology. On the other hand, indexes such as the Bx-tree [50] process

a kNN query as incremental range queries. The query processing algorithm

first estimates the distance of the k’th neighbor and issues a range query

to find all objects within the range. If fewer than k objects are returned by

the range query, another range query of larger radius is executed, so on and

so forth.

2.4.1.3 Other Types of Queries

Besides the two basic types of queries, many other query types have been

introduced and investigated in the literature.

Reverse k-Nearest Neighbor Query: Given a querying object o, the

Reverse k-Nearest Neighbor Query (RkNN) [10, 118, 56, 117, 30] finds all

objects in the database of whom o is the nearest neighbor. An application

of RkNN query is in a digital battlefield game. A player issues an R1NN

query on the location of his team members. The answer to such query is

the group of players who might ask the query issuer for help, as he is the

one who is closest to these players.

In [10], Benetis et al. use the TPR-tree index the objects and facilitate

the processing of kNN and RkNN queries. The 60◦-property is utilized to

prune unnecessary objects in the query processing. In particular, the space

around the query point q can be partitioned into six 60◦ fan-shaped regions

centered on q, and in each region only the nearest neighbor of q can be the

NN of q. In this way, an RkNN query is reduced to a 6kNN query.

While Benetis et al. in [10] examine the problem of predictive RkNN
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queries, the authors in [118, 56, 117] are more interested in monitoring the

answers of RkNN queries continuously. Kang et al. [56] define two types

of RkNN queries—the monochromatic and bichromatic RkNN queries, and

propose algorithms for monitoring the answers to both queries. Wu et

al. [117] present a CRange-k method that enhances the pruning power in

the query processing by maintaining a continuous range query around each

query point q. A recent work [30] introduces a client-server scheme for

processing RkNN queries, where the communication cost is the primary

concern.

Close Pair Query and Closest Pair Query: The Close Pair Query [127]

aims to find out all pairs of objects the distance between who are smaller

than a given threshold ε. A typical application is “find out the airplanes

that were closer to each other than 10 miles in last month”. Such queries

are helpful for air-traffic monitoring systems to arrange flight routes. The

close pair query is an extension of the spatial join in spatial databases. In

particular, processing queries of this type usually considers a self-join on

objects’ locations with dist ≤ ε as join condition.

Similar to the close pair query, the k-Closest Pair Query [25, 128] also

investigates the distances between objects and tries to find the k closest pairs

between moving objects and points of interests (POI), i.e., static spatial

points such as the ATMs. A real-life example of the k closest pair query in

ship pilotage system is “Monitor 10 pairs of sonar tracking stations and ships

that are the closest to each other”. Chung et al. [25] use a time function

to represent the distance between an object and a POI and present an

event-based structure to detect and index the changes of the order of the

distances efficiently. Zhu et al. [128] propose a system schema that shifts

part of the query processing job to the objects, for the purpose of reducing
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the communication costs between objects and the database server.

Density Query: The Density Query [42, 51] tries to figure out all regions

where the object density exceeds a given threshold, e.g., “find all regions

that contain more than 500 vehicles in the next hour”. Queries of this

type are useful in traffic management applications, which are interested in

finding out all jamming areas that have too many vehicles inside.

The density query is first introduced by Hadjieleftheriou et al. in [42].

However, it turns out that finding dense regions of arbitrary size is ineffi-

cient as for moving-object applications. Therefore, the authors simplify the

general density query by partitioning the space into disjoint cells and finding

dense cells instead. Jensen et al. [51] improve the original query processing

algorithm in [42] to avoid answer loss. While both [42] and [51] study den-

sity queries on Euclidean space, assuming that objects are moving freely.

Lai et al. [58] define the density query over a constrained road-network and

present an algorithm of discovering dense regions of arbitrary size and shape

in the network.

Skyline Query: The Skyline Query retrieves a set of data points that are

not “dominated” by any other points. While most existing works on the

skyline query consider static data, Huang et al. [47] and Chen et al. [19]

investigate the skyline query in the context of moving objects. The skyline

query is valuable in location-based recommendation system. For example,

a tourist may ask for a list of near-by restaurants that are cheap but highly

rated while he is traveling along the beach. In such case, the skyline may

change continuously as the objects move.

In [47], the skyline is computed at the first timestamp and incrementally

maintained using a kinetic data structure. An effective query processing al-

gorithm is introduced exploiting the correlations between the search bound
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and the change of skylines. In [19], the authors propose two algorithms of

processing skyline queries, named RBBS and TPBBS. The RBBS builds an

R-tree for each skyline query. The R-tree takes the distance of the query

to a spatial data point (e.g., the location of the restaurant) as one dimen-

sion and other static attributes (e.g., the price) as other dimensions. Then,

a standard branch-and-bound algorithm can be applied on the R-tree to

find the skyline. The TPBBS augments the TPR-tree with static attributes

and applies the branch-and-bound algorithm on the TPR-tree to find the

skyline. The TPBBS is proved to outperform the RBBS.

2.4.2 A Taxonomy from Temporal Perspective

The classical taxonomy introduced in previous section classifies moving-

object queries from the spatial perspective. In this section, we classify

moving-object queries based on the temporal component of the query pred-

icate.

2.4.2.1 Querying the Past, Current and Future

Based on the time in the query predicate, queries in moving-object databases

can be classified to pass, current and future queries.

Historical Query: The historical query is interested in the past locations

or trajectories of objects, e.g., “where was Michael at 3pm yesterday”.

Current Query: The current query retrieves the current locations of ob-

jects, e.g., “where is Michael right now?”.

Predictive Query: The predictive query searches the future locations of

objects, e.g., “where will Michael be after 5 minutes?”.



40 Chapter 2. Literature Review

Existing works aim to enhance the efficiency of the query processing with

well-designed indexing structures and search operators on the corresponding

index, as we reviewed in Section 2.3.1.

2.4.2.2 Snapshot, Window and Continuous Queries

According to the continuity of moving-object queries, moving-object queries

can be classified into three types: the snapshot query, window query and

continuous query.

Snapshot Query: The snapshot query retrieves objects’ locations at a

given point of time. “Find all vehicles in the central park at 10pm yesterday”

is an example of snapshot historical range query.

In essence, a snapshot query is a traditional spatial query of correspond-

ing type, but over the objects’ locations at the time indicated in the query.

Then, the query processing algorithms of the corresponding spatial queries

are applicable directly as long as the requested locations are known. Ex-

isting works [87, 50, 78, 22, 123, 91] put a lot of effort into the design of

indexing structures for efficient retrieval of objects’ locations at a specific

point of time.

Window Query: The window query contains a temporal predicate regard-

ing an interval of time. For example, a corresponding window version of the

aforementioned example can be “find all vehicles that passed by the central

park from 10am to 11am yesterday”.

An intuitive approach of processing a window query is to decompose

it into a set of snapshot queries on consecutive points of time. However,

this approach is not efficient especially when the time window is large.

Based on this consideration, in most of the existing works on the window
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query [87, 98, 50], objects are represented by time-parameterized functions,

and the query is evaluated only once based on objects’ motion functions.

Continuous Query: The continuous query monitors the answers until the

query issuer cancels the query explicitly, e.g, “notify all vehicles that are

entering the neighborhood of a petrol station with the price drop”.

Hu et al. [46] present a generic client–server framework for processing

continuous queries in moving-object database. Kalashnikov et al. [55] builds

an in-memory spatial index for the queries. Queries are re-evaluated at

every timestamp; in the query evaluation, each object identifies the set of

queries it is involved in with the help of the query index. Mokbel et al. [70]

introduces the SINA—an improved query evaluation method. Queries and

objects are stored in separate tables; query evaluation is performed as a

spatial join between the two tables. To avoid the query re-evaluation at

each timestamp, SINA presents an incremental evaluation technique. In

particular, it uses a uniform grid to index both queries and objects. When

an object moves from one cell to another, the answers of the queries in the

two cells are updated accordingly. The incremental evaluation based on the

grid index brings remarkable improvement on the query efficiency and is

adopted by a number of subsequent works [120, 72, 118, 56, 117].

In these grid-based proposals, the database server stores the current

locations of objects, and updates are issued when objects change their cells.

Other works [99, 48, 62] utilize the time-function model and assume that the

trajectories of objects are known. Event-driven query processing approaches

are introduced for processing continuous kNN queries. The initial query

processing phase finds event that might affect the answer of a query, e.g.,

change of k’th NN and change of NN order; the database monitors motion

changes of objects and updates the query answers accordingly.
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2.4.2.3 Stationary and Moving Queries

As mentioned, moving-object queries are spatial queries with additional

predicates on the time. The spatial component of the query predicate is a

spatial point or a spatial region as for the range query or the kNN query.

In the context of moving-object databases, the spatial component can be

moving over time as well. Depending on the mobility of the spatial com-

ponent, moving-object queries can be classified into stationary and moving

queries as follows.

Stationary Query (on moving objects): The stationary query takes

a constant spatial predicate, e.g., a fixed query region (location resp.) as

for the range query (the kNN query resp.). To distinguish from traditional

static query, stationary query in moving-object terminology means station-

ary query predicate over moving objects.

Moving Query: By contrast, the spatial predicate of a moving query

changes over time. Suppose a query is issued by a moving object itself.

The object is referred to as “focal” object of the query. An example of

the moving range query is “find out all traffic lights within 1km to me”.

While the query issuer is traveling in his car, the predicate of this query is

a moving circular region with 1km radius. This example shows a moving

query over static spatial data points, i.e., locations of the traffic lights.

Apparently, a moving query is either a window query or a continuous

query so that it can capture the location changes of the focal object. While

most of the existing works on continuous queries investigate this type of

moving queries, works, such as MobiEyes [35], SEA-CNN [120], CPM [72],

study another type of moving queries, where both the query and the objects

are moving continuously, e.g., “show me the locations of all my friends if
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they are no further than 1km to me”.

In this thesis, we focus on optimizing moving-object databases for snap-

shot, range and kNN queries on future locations of objects.

2.5 Summary

In this chapter, we reviewed some important techniques in moving-object

databases. We first introduced the most fundamental problem of modeling

objects in the databases. Next, we examined the existing updating protocols

for tracking objects and pursuing a trade-off between tracking precision and

the number of updates. Then we presented a brief survey of the indexing

techniques of moving-objects and reviewed several representative indexes in

detail. Finally, we showed some of the existing query processing techniques

in moving-object databases.





Chapter 3

A Benchmark for Evaluating

Moving Object Indexes

Progress in science and engineering relies on the ability to measure, re-

liably and in detail, pertinent properties of artifacts under design. Progress

in the area of database-index design thus relies on empirical studies based

on prototype implementations of indexes. In this chapter, we propose a

benchmark for measuring the performance of moving-object indexes. The

benchmark evaluates notable aspects of moving-object indexes that have not

previously been covered by any benchmark. We also demonstrate the via-

bility of the benchmark by applying the benchmark to some representative

moving-object indexes. The results of our benchmark study offer new insight

into state-of-the-art moving-object indexes.

45
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3.1 Introduction

Given the large population of moving objects and the mobility of such ob-

jects, indexing techniques are essential for supporting frequent updates and

efficient query processing in moving-object databases. As reviewed in the

previous chapter, numerous moving-object indexes have been proposed in

the literature. However, such indexes often come with results of empirical

studies suggesting that they are capable of beating its counterparts in the

competition. This renders it difficult to obtain an overview of the advan-

tages and disadvantages of the existing indexes. It is even harder for the

potential users of the indexes to make a decision on which index is the best

suited for a specific application. Therefore, there is a need for a benchmark

that can offer important insight into the behavior of each indexing technique

and provide guidance on index selection and improvement.

While a few benchmarks [73, 52] exist that address the problem of pro-

viding a standard way of evaluating moving-object indexes, they are quite

limited with respect to the generation of datasets and workloads. Further-

more, none of the existing benchmarks consider a multi-user environment,

which is the typical scenario in almost every moving-object application.

In this chapter, we aim to establish a more comprehensive benchmark

than has been seen hitherto. In particular, we propose a benchmark that

covers a series of carefully generated datasets, a broad variety of workloads,

and a standard evaluation procedure. Different datasets are employed ei-

ther to measure the overall index efficiency or to simulate certain real-world

scenarios. The workloads generated mix updates and queries according to

the settings of several parameters. The evaluation procedure exhaustively

assesses the performance of a moving-object index regarding the update

efficiency, query efficiency, concurrency control as well as storage require-
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ments. We also report on the results of applying the benchmark to six

recent indexes spanning all the categories aforementioned in Section 2.3.

To the best of our knowledge, no previous studies have compared this many

indexes under the same standard. The results of the benchmark study elicit

the characteristics of each index and give directions on future index devel-

opment.

The remainder of this chapter is organized as follows. First, Section 3.2

provides some backgrounds in benchmarks for moving-object indexes. Sec-

tion 3.3 then presents the details of the proposed benchmark. Section 3.4

reviews our implementations of the indexes. Section 3.5 reports the re-

sults of the benchmark study on state-of-the-art indexes of moving objects.

Finally, Section 3.6 presents a summary of this chapter.

3.2 Background

Before introducing our benchmark, we first provide some background infor-

mation on database benchmarks, especially those for moving-object databases.

Several benchmarks have been proposed for traditional spatio-temporal

databases that store static objects such as buildings and roads. In early

work, Werstein [110] proposed a set of queries to test the temporal and three-

dimensional capabilities as well as the spatial capabilities of a database.

More recently, Tzouramanis et al. [107] proposed a benchmark for evaluating

the performance of access methods for time-evolving regional data. They

compared four types of quadtree-based spatio-temporal indexes using raster

data. However, both benchmarks do not apply to moving-object databases;

they target different types of data, update-operation loads, and types of

queries than do by moving-object applications.
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For moving-object databases, Theodoridis [103] proposed a benchmark

that includes a database description and ten non-predictive SQL-based

queries without any experimental results. Recently, Düntgen et al. [29]

proposed a benchmark, BerlinMOD, that uses the Secondo DBMS [38] for

generating moving-object data. A scenario is simulated where objects move

within the road network of Berlin, sampled positions from such movements

are used as data. A total of 17 carefully selected, SQL-based queries make

up the workload. This benchmark concerns the past, historical positions of

moving objects, and it targets the evaluation of complete spatio-temporal

DBMSs.

Several benchmarks exist that specifically target techniques for the in-

dexing of the current and near-future positions of moving objects. Myl-

lymaki and Kaufman [73] proposed such a benchmark, called DynaMark.

Query and update performance are measured in CPU time, as indexes are

assumed to be main-memory resident. Queries on near-future positions of

the moving objects are considered. More recently, Jensen et al. [52] proposed

a benchmark, called COST. Their workload generation differs substantially

from the benchmark we propose in this chapter. Notably, they assume that

objects move in Euclidean space or in a complete spatial network, and that

an update occurs when an object’s actual location differs from that known

by the index by a chosen threshold. Object locations are inaccurate, but

are known with guaranteed accuracies. Our benchmark uses different actual

road networks for dataset generation, and it assumes accurate positions. Fi-

nally, Tao et al. [101] conducted a careful study of the query performance

of general primal and dual indexes, but with little focus on the update per-

formance. None of the existing benchmarks take into account concurrency

control issue, which is crucial to moving-object databases.
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3.3 The Benchmark

The goal of the benchmark is to extensively evaluate important aspects

of a moving-object index. To do so, we carefully design the datasets and

workloads to be used, and propose a standard evaluation procedure. This

section presents the details of these aspects.

3.3.1 Datasets and Workloads Generation

Our benchmark considers object locations in the space domain of 100, 000×

100, 000m2, which is sufficient to simulate objects moving in various real

environments such as small and large cities. A dataset contains a sequence

of updating records, each of which contains the time of the update t, the

location and velocity of the corresponding object at t. The benchmark

adopts the linear motion model as introduced in Section 2.1, meaning that

any future location of an object is derived from its latest updated location

and velocity by linear interpolation. Specifically, we generate three types

of datasets: uniformly distributed, Gaussian distributed and road-network-

based datasets.

Uniformly Distributed Datasets: The initial locations of objects are

uniformly distributed in the physical space, and their speeds and directions

are randomly chosen. Specifically, an object’s speed is randomly selected

from Nsp +1 candidate speeds ranging from 0 to the maximum speed vmax,

i.e., {0, vmax/Nsp, 2 · vmax/Nsp, . . . , vmax}. An object issues updates accord-

ing to an update frequency parameter fup, which indicates how many up-

dates are issued for an object within the maximum update interval tmu.

The default value of fup is 1, meaning that each object sends exactly one

update every tmu time units. These uniform datasets are used for investi-
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gating the overall performance of a moving-object index and the effect of

various factors on the index efficiency.

Gaussian Distributed Datasets: The Gaussian distributed datasets aim

to capture scenarios where objects (e.g., vehicles) cluster around certain

locations of interest such as prominent landmarks and shopping centers.

A large number of objects flock to these places, and hence their locations

follow a Gaussian-like distribution. In addition, objects trend to slow down

when approaching these places, i.e., when it becomes more crowded.

To generate such datasets, we first randomly select a set of (static) points

as locations of interest, referred to as hotspots. Around each hotspot, we

define multiple speed zones as rings. Each speed zone has a speed limit

proportional to its distance to the corresponding hotspot, so that inner

zones have lower speeds than outer ones. A speed zone also defines the

update frequency accordingly, i.e., an object updates more frequently if it

moves with higher speed.

Given the hotspots, an object is placed initially at a position −→p around

a randomly selected hotspot; the distance from the object to the hotspot

follows a Gaussian distribution. To ensure that objects follow the same

Gaussian distribution as time elapses, updates are generated as follows.

First, we find the speed zone that the object is located in and obtain the

speed range [−→v⊢, −→v⊣] and the update frequency fup accordingly. We then gen-

erate a new position −→pup around the same hotspot according to the Gaussian

distribution and check whether the distance between −→pup and −→p is within

range [−→v⊢ · tmu/fup,
−→v⊣ · tmu/fup], where tmu/fup is the estimated time be-

tween two updates. If −→pup is not in the above range, we re-generate −→pup until

it satisfies the constraint. Finally, we compute the speed of the object as

−→v = (−→pup−−→p ) ·fup/tmu. The update is of the form ⟨−→p ,−→v , t⟩, where t is the
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current time. The next update of this object will be issued when the object

reaches −→pup or enters a new speed zone. Subsequent updates are generated

in the same way.

Road-Network-Based Datasets: This type of datasets is generated based

on a digital representation of real road networks. We use the network-based

moving-object generator of Brinkhoff [12] with some modifications to ac-

commodate the needs of our benchmark.

The digital road network data used derive from the TIGER/Line files [4].

Specifically, a road is represented by a polyline, i.e., a sequence of connected

line segments. An object is initially placed on a randomly selected road

segment and then moves along this segment in a random direction. The

speed is generated in the same way as for uniformly distributed datasets.

When the object reaches the end of the road segment, an update is issued,

and the object continues moving along another randomly selected connected

segment. Each object is required to issue at least one update within tmu.

Query Workloads: The query workloads consist of predictive queries with

query times that range from the current time to tmu time units into the fu-

ture. Two fundamental types of queries are considered. One is the range

query that retrieves all objects whose locations fall within certain rectan-

gular region at the query time. The other is the kNN query that retrieves

k objects for which no other objects are closer to the query object at the

query time. For both types of queries, we first randomly choose a point in

the space based on the same distribution of the objects. For a range query,

the query range is a rectangle of specific size centered at this point; for a

kNN query, the point chosen is used as the query object directly.
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3.3.2 Performance Evaluation Procedure

Our benchmark evaluates both time and space efficiency of an index in

single-user and multiple-user environments. Four metrics are used: (i) num-

ber of I/O accesses, (ii) CPU time, (iii) size of the index on disk, and (iv)

throughput (response time). The last metric is only used in multiple-user

environments.

For each dataset, an index is initialized during the first tmu time units

(e.g., 120s) and then runs for another 2 · tmu time units. Considering that

tmu restricts the maximum time interval between two updates of an object,

all objects must have been inserted into the index after the initialization

phase, i.e., the first tmu time units. Updates are issued according to the

update frequency parameter fup. A batch of 100 queries are issued every

tmu/10 time units. We record the average index size and average query and

update costs during the subsequent 2 · tmu time units. For each index, we

investigate the following aspects.

A1 Data size: The number of objects varies from 100,000 to 1,000,000

(100K and 1M for short).

A2 Time effect: Each index runs for another 5 · tmu after the initialization

round. The update and query costs are collected and averaged for every

tmu/10 time units.

A3 Maximum object speed: The maximum speed varies from 10m/tu

to 100m/tu (“tu” is short for time unit, which is set to 1 second in the

benchmark).

A4 Update frequency: The update frequency fup varies from 1 to 10,

meaning that each object updates for 1 to 10 times during tmu time units.
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A5 Range query size: All range queries in the query workload are square-

shaped with sizes varying from 1,000×1,000m2 to 10,000×10,000m2.

A6 Number of neighbors: The number of neighbors k of the kNN queries

ranges from 10 to 100.

A7 Query predictive time: The predictive time of the queries varies

from 0 to tmu.

A8 Buffer size: An LRU buffer is used by the benchmark to simulate the

memory of a database system. The size of the LRU buffer varies from 0 to

1024KB, i.e., from 0 to 256 pages when the page size is 4KB. By default,

the buffer is set to 50×4KB pages.

A9 Disk page size: The page size varies from 1KB to 8KB, covering the

general cases of most existing operating systems.

A10 Number of hotspots: The number of hotspots varies from 1 to

10,000. When Gaussian distributed datasets are used, we aim to observe the

effects of the number of hotspots, which determines the overall distribution

of the dataset. The datasets are expected to be skewed when there are few

hotspots and near-uniform when there are large numbers of hotspots.

A11 Road network size: For the road-network-based datasets, one ad-

ditional experiment is introduced to investigate the effect of the network

size on the indexes. The size of a road network is defined as the sum of

its nodes and edges. Three real digital road networks are included in the

benchmark: the Oldenburg (OL) city map has 6,105 nodes and 7,035 edges;

the Singapore (SG) city map has 11,414 nodes and 15,641 edges; and the

San Francisco (SA) city map has 175,343 nodes and 223,308 edges.

A12 Update/query ratio: In a multi-user environment, updates and

queries are intermixed according to a proportion, which is different from the



54 Chapter 3. A Benchmark for Evaluating Moving Object Indexes

Table 3.1: Parameters, their value ranges and default values (in bold)

Parameter Values

Space domain 100,000× 100,000m2

Data size 100K, . . . , 1M
Maximum speed 10m/tu, . . . ,100m/tu

Maximum update interval, tmu 120tu
Update frequency, fup 1, . . . , 10
Range query size 1,000× 1,000m2, . . . , 10, 000× 10, 000m2

Number of neighbors, k 10, . . . , 100
Query predictive time 0tu, 10tu, . . . ,60tu, . . . , 120tu

Time duration 240tu, 600tu
Buffer size (number of pages) 50, 0, 16, 32, . . . , 256
Disk page size (KB) 1, 2,4, 8

Number of hotspots 1, 10, 100, 1000, 10000
Road network Oldenburg, Singapore, SanFrancisco

Update/query ratio 1 : 100, . . . ,100 : 1, . . . , 10, 000 : 1
Number of threads 1, 2,4, . . . , 256

single-user environment where queries are issued every tmu/10 time units.

In our benchmark, the update/query ratio varies from 1:100 to 10,000:1.

This wide range of ratios covers many real scenarios, from query-intensive

ones to update-intensive ones.

A13 Number of threads: In a multi-user environment, many users, i.e.,

objects, update and query the database simultaneously. In our benchmark,

we use a multi-threaded program to simulate this scenario. Specifically, we

maintain a thread pool that contains a certain number of worker threads.

All tasks, mixed with updates and queries, are submitted to a job pool.

Then, the tasks are dispatched to free worker threads in chronological order.

The throughput of the thread pool and average task response time are

recorded as the performance figures. The number of threads varies from 1

to 256.

In summary, Table 3.1 lists all parameters and their value ranges used

in the evaluation; the values in bold denote the default values used.
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3.4 Index Implementation

As a precursor to applying the benchmark to the six indexes reviewed in

Section 2.3, namely the TPR-tree, the TPR∗-tree [100], the RUM-tree [119],

the Bx-tree [50], the Bdual-tree [123], and STRIPES [78], we cover pertinent

details of the implementations of the indexes.

TPR-tree: In essence, the TPR-tree is a R-tree with customized querying

and updating algorithms. Specifically, each leaf entry contains an object

of the form ⟨oid, px, py, vx, vy⟩. oid is the identity of the object; px, py are

the coordinates of the object at the reference time of the index (i.e., the

time when the index was born); vx, vy are its velocities along the x- and

y-axes. Each entry in an intermediate node consists of a child pointer pt

and a bounding rectangle in the form of ⟨p⊢x, p⊣x, p⊢y , p⊣y , v⊢x , v⊣x , v⊢y , v⊣y ⟩, where

superscripts ⊢ and ⊣ indicate the lower and upper bound in corresponding

dimension. The updating algorithm of the TPR-tree optimizes the tree

structure for predictive queries in the next H time units. In our benchmark,

H = tmu, meaning that the TPR-tree is optimized for the upcoming tmu

time units.

TPR∗-tree: The TPR∗-tree has exactly the same leaf and internal node

structure as the TPR-tree and inherits the above TPR-tree by overload-

ing the functions of choose subtree, split, reinsertion, and deletion.

Through overloading, we also avoid any extra performance gap between

the TPR-tree and the TPR∗-tree introduced by differences implementa-

tions. Since the TPR∗-tree requires a sample range query for the split

and reinsertion operations, a query with default size (i.e., 1000×1000m2)

is used in the benchmark. The implementations of the TPR-tree and the

TPR∗-tree are based on those provided by the authors of the TPR∗-tree [3].
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RUM∗-tree: It has been proved that all indexes belonging to the R-tree

family show inefficiency on dealing with updates, compared with other basic

indexing structures such as the B+-tree. The RUM-tree [119] significantly

improves the update performance of the R-tree by introducing an update

memo. Updates are postponed and executed in bulk. Therefore, we apply

its memo-based update approach to the TPR∗-tree, and denote the resulting

index as the RUM∗-tree. Obsolete entries in a leaf node are cleared whenever

the node is accessed or the node gets the token for garbage collection. There

are 10 tokens in total, and after every 1000 updates, each token is passed

to another leaf node.

Bx-tree: The Bx-tree has two partitions. The Hilbert-curve is utilized since

it is proved to outperform the other choice (i.e., the Z-curve)[50]. The order

of the Hilbert curve used for space partitioning is always optimized with

respect to the number of objects in the dataset. The maximum update

interval in the Bx-tree is the same as the optimizing time interval tmu of the

TPR-tree. The iterative expanding query algorithm in [53] is employed to

avoid excessively large query region after expansion. The velocity histogram

contains 1,000×1,000 cells.

Bdual-tree: The Bdual-tree uses the same B+-tree as the Bx-tree and also has

two partitions. The order of the Hilbert-curve is also optimized as that of

the Bx-tree, but one degree smaller since the Bdual-tree partitions two more

dimensions (the velocity dimension). The MORs are updated along with

the internal nodes of the B+-tree. In particular, the MORs of an internal

entry are updated if the key range of its subtree is changed by the update.

The MORs are kept in main memory while the index is active.

STRIPES: STRIPES also has two partitions similar to the other two dual-

tree indexes. To improve the space utilization, the two optimization tech-
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niques provided by the authors in [78] are employed: each leaf node first

acquires a half page and will acquire a full page when the data exceeds half

of a page; non-leaf nodes are packed together to be stored in as few disk

pages as possible.

For the throughput test in multi-thread environment, the B-link concur-

rency control mechanism as presented in [61] is implemented in the under-

lying B+-treefor the Bx-tree and Bdual-tree. Similarly, the R-tree (for the

TPR-tree, TPR∗-tree and RUM-tree) employs the R-link technique [75]. As

for the STRIPES, we implement a native 2-phase locking technique of the

quad-tree. Specifically, a search operation holds a read lock on each node

on its current searching path while an insertion/deletion holds a write lock

on the current node. The write lock is released when locks on its children

are granted and split/merge will not happen to the current node after the

insertion/deletion.

3.5 Experimental Study

We now proceed to report on the results of the benchmark study on the

six representative indexes. All the indexes were implemented in C++, in

the way as introduced in the previous section. To be fair, they adopted the

same type of block file, buffer manager, and lock manager. All experiments

were conducted on a PC with Intel Core 2 Duo 2.66 GHz processor, 2 GB

RAM, and a 200 GB SATA disk, running the Window XP Pro OS.

Table 3.2 shows some statistics collected in the experiments, including

the node capacity, index height, leaf node fan-out and the page utilization

factor of each index respectively. In addition, for the 100K uniform and

gaussian datasets, the sizes of the in-memory memo of the RUM-tree are
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∼191KB and ∼146KB respectively, which are 7% and 4% of the size of the

corresponding index.

3.5.1 Uniformly Distributed Datasets

First, we examine the first nine aspects of index performance on uniformly

distributed datasets. Unless specified, query performance concerns range

queries only.

A1 Effect of data size: Figure 3.1 shows the disk space, average update

and query performance of the indexes when the dataset size varies from

100K to 1M. First, we summarize our observations on the space utilization

of the indexes as follows.

• STRIPES requires the most space due to its unbalanced quad-tree

structure. Although STRIPES employs several space optimization

techniques, its space utilization is still quite low in comparison with

the other balanced index structures.

• Except for STRIPES, all the indexes are similar in size. The size of

the RUM∗-tree is the second largest one because it keeps a number of

obsolete entries. The TPR-tree and the TPR∗-tree require nearly the

Table 3.2: Statistics on the indexes

Index
Capacity Uniform Data (100K) Gaussian Data (100K)
leaf non-

leaf
height fan-

out
page uti-
lization

height fan-
out

page uti-
lization

Bx-tree 170 510 2 115 0.68 2 120 0.71

Bdual-tree 170 510 2 115 0.68 2 113 0.67

STRIPES 204 16 3 60 0.29 5 59 0.29

TPR-tree 204 113 2 136 0.66 2 132 0.65

TPR∗-tree 204 113 2 139 0.68 2 134 0.66

RUM-tree 170 113 2 108 0.64 2 108 0.63
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Figure 3.1: A1 Effect of data size

same disk space since they share the same node structure. So do the

Bx-tree and the Bdual-tree.

• The sizes of the R-tree-based indexes are slightly smaller than those of

the B+-tree-based ones. This is because the Bx-tree and the Bdual-tree

need to store one more field for each object: the key value, i.e., the

Hilbert value, resulting in a smaller leaf fan-out.

On the other hand, the update and query costs of all indexes increase lin-

early with the increasing dataset size, since more objects have to be retrieved

for answering a given query on a larger dataset. We also observe several

differences in the update and query performance among the indexes, which

are detailed as follows.

• The TPR-tree and the TPR∗-tree have the best query performance,

but also exhibit the worst update performance. The poor update

performance is mainly due to the overlaps being followed in deletions

among bounding rectangles, which result in multiple search paths dur-

ing query processing.
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• Compared with the TPR∗-tree, the RUM∗-tree improves the update

performance significantly, although at the expense of higher query

cost. By simplifying an update to an insertion and a delayed deletion,

the RUM∗-tree reduces the overall update cost. However, obsolete

entries left in the tree degrade the query performance.

• The Bx-tree and the Bdual-tree both achieve the best update I/O per-

formance. They benefit from their common base structure, the B+-

tree, in which only a single path needs to be searched during a deletion

(and an insertion). Updates of the Bdual-tree are generally slower than

those of the Bx-tree due to the time-consuming computation of MORs.

While the Bdual-tree and the Bx-tree have similar query I/O perfor-

mance, the query time cost of the latter is much higher for the same

reason. The query performance will be investigated in detail when we

study aspect A5.

• The query processing time of STRIPES is as low as those of the R-

tree-based indexes. STRIPES also incurs low update I/O cost that is

comparable to that of the B+-tree-based indexes. However, in compar-

ison with the other indexes, the updating time of STRIPES increases

much faster, because the quad-tree becomes taller and taller with in-

creasing numbers of objects. An update then has to follow a long

path to reach a leaf node. Similarly, the query I/O of STRIPES is

the highest among all indexes due to the low space utilization of the

underlying quad-tree.

A2 Effect of time: Figure 3.2 shows the performance of the indexes as a

function of time. Regarding the space utilization, STRIPES is significantly

affected by the elapse of time. The size of STRIPES shows a periodical
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Figure 3.2: A2 Effect of time
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change due to the dual-tree structure. Its space utilization is best when the

two partitions are balanced. Actually, the Bx-tree and the Bdual-tree, both

of which are also dual-tree structures, exhibit similar changes in size, but

these are not as pronounced as that of STRIPES. In contrast, the sizes of

the TPR-tree and the TPR∗-tree are barely affected by the passing time. In

what follows, we focus on the update and query performance of the indexes.

• The update costs (I/O and CPU time) of the TPR-tree and the TPR∗-

tree keep increasing with the life time of the indexes. This may be

due to the increased overlaps among the BRs. Although the TPR∗-

tree aims to improve the TPR-tree’s performance by shrinking the

BRs more often to bound the objects more tightly, frequent BR ad-

justments introduce additional update I/O. However, as we can see,

the overall gain in query performance is not obvious. The difference

between the two indexes is not that significant.

• Updates in the RUM∗-tree incur the least I/O cost among all the

indexes. The reason is that the RUM∗-tree eliminates the costly dele-

tion from the update. However, the delayed deletions deteriorate the

query performance.

• All dual-tree structures, i.e., the Bx-tree, the Bdual-tree, and STRIPES,

demonstrate similar periodic patterns for both update and query per-

formance. The performance is best when all objects are in one par-

tition of the index while the other partition is empty. Regarding the

update time, updates in both the Bx-tree and STRIPES are too fast

to make the periodic changes visible.

A3 Effect of maximum object speed: Figure 3.3 shows the results of

varying the maximum object speed from 10m/tu to 100m/tu. Increasing
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Figure 3.3: A3 Effect of maximum object speed

object speed leads to increasing query costs for all indexes but does not

affect the update performance of the Bx-tree, the Bdual-tree, and STRIPES.

The update costs of the R-tree based indexes increase linearly with the

maximum object speed. This is because higher speeds lead to faster expan-

sions of bounding rectangles. Consequently, more overlaps occur and more

(partial) paths need to be accessed during updates. We also observe that

the RUM∗-tree incurs the least update I/O and that the growth rate is also

smaller than that of the other two due to the reasons mentioned in A1. In

comparison to the others, STRIPES and the Bdual-tree are less affected by

the objects’ speed, because both of them take advantage of object velocity

while indexing.

A4 Effect of update frequency: In Figure 3.4, we show the results of

varing the update frequency fup from 1 to 10, meaning that the number

of updates issued by an object during tmu time units increases from 1 to

10. When tmu is 120tu, for a 100K dataset, the number of updates during

each time unit varies from 100K
120

to 100K
12

, in increment of 100K
120

. In the figure,
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Figure 3.4: A4 Effect of update frequency

we can observe that all indexes, to varying degrees, exhibit better overall

performance when updates are more frequent. The possible reasons are the

following.

• When updates are frequent, the BRs in the TPR-tree, TPR∗-tree, and

RUM∗-tree are tightened frequently, and hence they bound objects

more closely, which leads to better update and query performance.

• The Bx-tree, the Bdual-tree, and STRIPES all exhibit minor improve-

ments in update I/O with more frequent updates. These improve-

ments are mainly caused by the presence of the LRU buffer. When

an object issues updates frequently, changes in its positions are likely

small, and the updated record will be stored in the same leaf node

with relatively high probability. If the leaf node is already cached in

the buffer, the I/O cost is reduced.

• Updates in the Bx-tree and STRIPES are too fast to make the changes

in the updating time perceptible. The Bdual-tree benefits more from
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Figure 3.5: A5 Effect of range query size

a high update frequency. Each update on the internal node of the

B+-tree requires re-computation of the corresponding MORs. When

objects are updated more frequently, the amortized update I/O de-

creases, and the average time of a single update decreases more sig-

nificant.

A5 Effect of range query size: In this experiment, we investigate the

effect of query sizes by varying the query window from 1,000×1,000m2 to

10,000×10,000m2. The results in Figure 3.5 show that the query costs of all

indexes increase linearly with a larger query window. A larger window cov-

ers more objects and therefore leads to more node accesses. In the following,

we elaborate the performance differences among the indexes.

• The TPR-tree and the TPR∗-tree perform similarly and incur the

lowest I/O cost.

• The query cost of the RUM∗-tree is a little higher than that of the

TPR∗-tree mainly because of the existence of obsolete entries.

• The Bx-tree has similar query I/O to the TPR-tree and the TPR∗-tree.

This is because the Bx-tree uses the iterative query enlargement algo-

rithm, which reduces the number of false hits as well as the query I/O.

However, the query time of the Bx-tree is slightly higher compared to
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other indexes, with the exception of the Bdual-tree. This is possi-

bly caused by the complex computation of converting a 2-dimensional

query range to a 1-dimensional interval and iterative query enlarge-

ments.

• Surprisingly, the query I/O of the Bdual-tree is much higher than that

of the Bx-tree. A possible reason could be that the partitioning in

the velocity dimensions results in some nearby objects with different

velocities being distributed among different leaf nodes, while in the

Bx-tree, nearby objects are clustered together. The query processing

time of the Bdual-tree is also higher, but is affected less than the others.

This is not only because it has higher query I/O, but also because

checking the intersections between queries and large number of MORs

is time-consuming.

• Among all the indexes, STRIPES has the highest I/O cost. The main

reason is that STRIPES always needs to access more nodes to find the

same number of objects due to its low space utilization. In addition,

the low space utilization weakens buffering effect. However, thanks to

its simple structure and query processing algorithm, query processing

of STRIPES is even faster than that of the Bx-tree.

A6 Effect of number of neighbors: Considering kNN queries, all indexes

exhibit slight increases in I/O costs and query processing time with larger

k. In Figure 3.6, all indexes show similar trends as they do in Figure 3.5

with range queries. In the case of the Bx-tree, a kNN query is processed

using incremental range queries. Due to the inaccuracy in estimating the

initial search radius, the query range may be extended several times in order

to find the k neighbors. Such repeated range queries result in an increased
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Figure 3.6: A6 Effect of number of neighbors
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Figure 3.7: A7 Effect of query predictive time

query processing time while the I/O cost remains unchanged because of the

bufferring effect.

A7 Effect of query predictive time: Figure 3.7 shows the effect of the

query predictive time interval, varied from 0 to 120tu. It is not surprising

that the query costs of all the indexes increase with longer the query pre-

dictive time, since either BRs or query ranges need to be enlarged to larger

sizes. Among all indexes, the effect on the Bx-tree is most the significant.

This is because only the Bx-tree processes a predictive query through query

enlargement. A longer predictive time leads to a larger query region and

hence a larger number of false positives, which introduces more I/O and

longer processing time. The Bdual-tree and STRIPES, which index objects

in the dual space, are less affected by the query predictive time, since the

MOR and quadrant enlargements, supervised by the velocity constraints,

are relatively small.
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Figure 3.8: A8 Effect of buffer size

A8 Effect of buffer size: To investigate the effect of the buffer, we vary

the number of buffer pages from 0 to 256. As shown in Figure 3.8, the

query time is relatively stable since it is mainly determined by the query

algorithms used by the indexes; the I/O costs of some indexes can be reduced

substantially by using a small buffer (e.g., 32 pages); after certain point, the

benefit of increasing the buffer size is negligible. In what follows, we discuss

why some indexes benefit more from the use of the buffer.

• The three R-tree based indexes save quite a number of update I/O by

using the buffer. This is because they need to read and write several

internal nodes for each update—the costs of accessing such nodes are

saved if the nodes are already in the buffer. Moreover, an update

in the TPR∗-tree is always slower than that in the TPR-tree, which

conforms to the fact that an update in the TPR∗-tree is more complex

than the TPR-tree. We also observe that the buffering has less of an

effect on the query performance.
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Figure 3.9: A9 Effect of disk page size

• The Bx-tree saves much query I/O with buffering, since some of the

nodes are searched repeatedly during a query. Its update performance

is almost independent of the buffer size because an insertion or a

deletion only needs to access a single path in the index.

A9 Effect of disk page size: Figure 3.9 shows the effect of the disk page

size which varies from 1KB to 8KB. With larger pages, fewer number of

disk I/O is required for the same operation while more time is needed to

check the larger number of objects in a node.

• For all indexes, both the update I/O and the query processing time

decrease with larger pages. The reason is straightforward. With larger

pages, the number of I/O required for a query decreases and so does

the processing time.

• In terms of the update time, the TPR-tree and the TPR∗-tree both

benefit from a small page size, i.e., 1KB or 2KB. A larger page contains

more objects that need to be accessed for an update. There is a higher
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probability of having to update the BRs all the way back to the root

during an update. Therefore, it takes more time. However, with

the help of an LRU buffer, most internal nodes can be kept in main

memory, and the update I/O does not increases.

• It seems that the RUM∗-tree performs best when the disk page size

is 4KB. This may be due to the settings of the RUM∗-tree in the

experiments. As 10 tokens are used for garbage collection, the cleaning

frequency may be too low for the 1KB and 2KB pages where there

are many leaf nodes; and it may occur too often for the 8KB pages

(few leaf nodes). Keeping too many obsolete entries will decrease the

efficiency of the index, while performing the cleaning too often will

slow down the updates. Tuning the parameters of the RUM∗-tree’s

garbage collection may help to relieve the deterioration.

3.5.2 Gaussian Distributed and Road-Network-Based Datasets

A10 Effect of number of hotspots: We now investigate index perfor-

mance while varying the number of hotspots from 1 to 10,000. Figure 3.10

visualizes some of the datasets used in this set of experiments, and Fig-

ure 3.11 shows the results on these datasets. Note that in the dataset with

10,000 hotspots, objects are nearly uniformly distributed.

The performance of all the indexes demonstrate similar trends as those

for the uniform datasets.

• The update costs of the TPR-tree and the TPR∗-tree decrease with

the increasing numbers of hotspots resulting in datasets that become

more uniform. In comparison to the TPR∗-tree, the RUM∗-tree has a

steadier update performance.
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(a) 1 hotspots (b) 10 hotspots

(c) 100 hotspots (d) 10000 hotspots

Figure 3.10: Gaussian datasets

• The Bx-tree incurs higher update I/O when the data are more skewed.

As mentioned in Section 2.3, the granularity of space partitioning for

the Bx-tree is optimized for the number of objects in the dataset.

When data become more skewed, the object density around the hotspots

becomes higher. Many objects are indexed in the same cell with the

same indexing key, leading to overflow pages that adversely affect the

performance.

• In comparison with the Bx-tree, the update costs of the Bdual-tree and

STRIPES are affected less by the skewed data distribution. This may

be because both of them consider the object velocity in partitioning,

which weakens the impact of space distribution on the updates.

• In terms of queries, all indexes require higher query I/O when there

are less hotspots, i.e., the data becomes less uniformed. Since queries
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Figure 3.11: A10 Effect of number of hotspots

are generated according to the same Gaussian distribution around

hotspots, a query needs to retrieve more objects in a more skewed

dataset where objects are crowded around few hotspots.

• The query I/O of the Bx-tree increases fastest among all indexes when

data becomes more skewed. This is due to the fixed space partitioning

of the Bx-tree. The Bdual-tree and STRIPES, both of which partition

the dual space (i.e., location and velocity), exhibit slower increases

in query I/O in comparison to that of the Bx-tree. As for the R-

tree-based indexes, the query I/O increases at the similar, slow rate.

Since the R-tree-based indexes dynamically adjust BRs based on data

distribution, the data skew has the relatively small impact on them.

A11 Effect of network size: This experiment examines the effect of

network size by using three real maps of different sizes (OL < SG < SA), as

shown in Figure 3.12. The results are shown in Figure 3.13, where we can

observe that the performance is not affected by the size of the network. To



3.5. Experimental Study 73

(a) OL (b) SA

(c) SG

Figure 3.12: Road network

obtain a better understanding of this behavior, we first analyze the features

of each dataset.

• The OL network is the smallest. The nodes are distributed more

evenly in space and hence the average length of each edge is the

longest. This in turn results in less updates for each object.

• The SA network contains the largest number of nodes and edges, and

hence it has relatively short edges. Also, the distribution of the nodes

is more skewed than for the OL and SG networks where we can see

that a large number of objects concentrate in the central part of the

network. Therefore, objects in the SA dataset have the highest update
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Figure 3.13: A11 Effect of road network

frequency and are much skewed.

• The SG dataset has an in-between size and hence a moderate update

frequency. The object distribution is close to uniform in most parts

of the network.

Figure 3.13 suggests a complex effect of the road network on the index

performance. The size of the network affects the update frequency while

the shape of the network determines the distribution of the objects. The

index performance is affected by both factors, each of which was discussed

in A4 and A10.

• Considering updates, the TPR-tree and the TPR∗-tree both perform

the best with the OL dataset and the worst with the SA dataset.

This is because of the joint effect of the update frequency and the

data skew. The update cost of all the other indexes remains nearly

the same for the three networks, since the object distribution barely

affects the their update costs (Figure 3.11 in A10) and since the impact
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Figure 3.14: A12 Effect of update/query ratio

of the update frequency on their update costs is also small, i.e., less

than one I/O, as shown in Figure 3.4.

• In terms of the query cost, all indexes perform the best in the SG

dataset and worst in the OL dataset, which is consistent with that

the SG datasets has a balance between the update frequency and the

object distribution.

3.5.3 Concurrency Control

Finally, we evaluate all indexes in a multi-user environment. The perfor-

mance is measured by two metrics: throughput and response time. Through-

put is defined as the average number of tasks finished in one unit time (1tu);

response time is the average time between the submission and completion

of a task, i.e., either an update or an query.

A12 Effect of update/query ratio: Figure 3.14 shows the effect of up-

date/query ratio. We can observe that the throughput of all indexes increase

when there are more updates and fewer queries. The reason is that an up-

date usually can be executed more quickly than a query. Hence, during

the same duration of time, more tasks can be finished if a larger portion of

them are updates. The response time decreases naturally with increasing
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throughput. Next, we focus our discussion on the performance differences

between indexes.

• The Bx-tree exhibits the highest throughput. This is because it per-

forms very fast for updates and relatively fast for queries. More im-

portantly, the concurrency control mechanism of the B+-tree is more

efficient than those of the R-tree and the quad-tree.

• STRIPES achieves the second highest throughput since it has compa-

rable update and query performances as the Bx-tree. Moreover, the

unbalanced quad-tree in STRIPES has more levels and hence concur-

rent operations are more likely to be performed at different levels of

the tree.

• The TPR-tree and TPR∗-tree yield lower throughput mainly due to

their relatively low update performance.

• The Bdual-tree has the lowest throughput, although the concurrency

control in the B+-tree is efficient. This is because the Bdual-tree holds

the nodes for a longer time to handle each update (especially for MOR

computations).

• The RUM∗-tree has a relatively low throughput when queries con-

stitute the majority of the workload. However, as the proportion of

updates in the workload increases, the throughput of the RUM∗-tree

increases at the highest rate, just because updates in the RUM∗-tree

are quite fast.

A13 Effect of number of threads: Figure 3.15 shows the performance

of indexes with various degree of concurrency when the update/query ratio

is fixed at 100:1. Observe that the throughput of all the indexes peak at
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Figure 3.15: A13 Effect of number of threads

about 1 or 2 threads and then decrease when there are more threads. The

main reason is that an update exclusively locks the node being accessed.

When the update frequency is high, multiple threads will compete for the

right to access the same node, meaning that it takes more time for each

thread to execute an operation successfully. In addition, extra time is spent

on frequent thread switching. As a result, the increase in the number of

threads will not help with the throughput, but may even degrade the overall

performance. This is also the reason why the response time increases nearly

exponentially with the number of threads.

• The Bx-tree achieves the highest throughput and shortest response

time among the indexes for the same reason as explained in A12.

• STRIPES has a moderate throughput, which is higher than that of the

TPR-tree, the TPR∗-tree, and the Bdual-tree. The impact of increasing

number of threads on STRIPES is less pronounced compared to the

others. Because of the quad-tree structure, STRIPES is unbalanced.

Locks are distributed among different levels of the tree.

• Apparently, the TPR-tree outperforms the TPR∗-tree in concurrent

operations. The TPR∗-tree accesses more internal nodes than the

TPR-tree for each insertion and deletion. Although such additional

I/O cost is relieved by the buffering in a single thread environment,
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the problem is hard to solve in a multi-threaded environment, where

the TPR∗-tree locks the internal nodes more often than the TPR-tree

does.

• The performance of the RUM∗-tree surpasses all the other indexes

except the Bx-tree when there is no more than 32 threads. In addition

to the internal nodes of the tree, the threads have to compete for the

update memo as well. Therefore, the throughput of the RUM∗-tree

degrades fast with more worker threads.

3.5.4 Result Summary

Table 3.3 presents an overall comparison of the six indexes with respect

to a total of eight different performance aspects, as listed in the leftmost

column. For each row in the table, an entry with value “1” indicates that the

corresponding index usually performs the best regarding the specific aspect,

while an interval “a-b” in other entries indicates that the corresponding

index is a to b times more expensive than the best index. For example, the

first row summarizes the update I/O performance across all experiments.

We can see that the Bx-tree and Bdual-tree both have value “1”, which

indicates that they generally outperform the other indexes. As for the

TPR-tree, an interval “0.7-7” means the update cost of the TPR-tree is

70% of that of the Bx-tree in the best case and is about 7 times higher than

that of the Bx-tree in the worst case. Generally speaking, in each entry, a

smaller number and a smaller range of the interval indicates a better and

more stable performance.

To summarize, we have the following interesting findings from Table 3.3.

• With some restriction on the storage, if an application needs to deal
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Table 3.3: Performance summary

RUM∗-tree TPR-tree TPR∗-tree Bx-tree Bdual-tree STRIPES
Update I/O 0.9-2.3 0.7-7 0.7-7.7 1 1 1.1-1.3
Update time 6-16 8-17 8-18 1 1.2-8 0.9-1.2
Range query I/O 2-5 1 1 0.8-1.8 2-9 2.5-10
Range query time 1.1-2.4 1 1 1.1-1.6 1.2-3 0.9-1.5
kNN query I/O 2.5-2.6 1 1 1.1-1.3 2.3-2.5 3.3-3.5
kNN query time 2-2.2 1 1 1.5-2 3.7-5.1 1.4-1.5
Storage space 1.1-1.2 1 1 1.1-1.2 1.1-1.2 3.2-4
Response time 2-30 3.5-6.5 5-10 0.4-1.6 1.5-2.2 1

with a large number of updates, but relatively few queries, the Bx-tree

is a good choice since it performs the best among all indexes in terms

of both update I/O and update time and it requires relatively little

storage space. This is also true in the multi-user environments where

we can see that the Bx-tree exhibits almost the least response time.

• If an application has to handle more queries than updates, the TPR-

tree is the proper one since it beats all the others with a stably efficient

query performance regardless the query types.

• If the composition of the workload is unclear and the storage space is

not a concern, the Bx-tree and STRIPES are good choices since they

have relatively good, if not optimal, update and query performance

in most situations.

3.6 Summary

In this chapter, we propose a benchmark for studying important properties

of indexing techniques and evaluating the performance of moving-object

indexes. The benchmark includes a dataset and workload generator, and a

standard evaluating procedure. The parameters that control the datasets

and workloads are varied considerably with the goal of covering a wide
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range of settings, the idea being to obtain a better understanding of the

strengths and the weaknesses of an index under varying circumstances. We

also report on the application of the benchmark to six recent moving-object

indexes, thus offering findings that can serve as guidelines for choosing a

proper index for a specific application. x



Chapter 4

ST2B-tree: a Self-Tunable

Spatio-Temporal B+-tree Index

Due to the mobility of objects, the workload of a moving-object database,

including updates and queries, changes all the time. Traditional static indexes

are not able to cope well with such changes, i.e., their effectiveness and

efficiency are seriously affected. This calls for the development of novel

indexes that can be reconfigured automatically based on recent state of the

system. In this chapter, we present the ST2B-tree, a self-tunable spatio-

temporal B+-tree index for moving-object databases. The design of the

ST2B-tree allows it to change its configurations online, and hence makes it

adaptive to the data variability and workload changes. To bring the tuning

of the ST2B-tree into use, an online tuning framework is also proposed in

this chapter.

81
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4.1 Introduction

Database tuning is crucial to the efficient operation of a database man-

agement system. In fact, most commercial database management systems

provide some tuning tools. The goal of tuning is to ensure the database

system always operates in an “optimal” state. Variations in the workload,

including both queries and updates, can significantly impact the perfor-

mance of the database. Usually, some components of the database, such as

indexes and the query optimizer, can be adjusted to adapt to these workload

changes.

Compared with conventional databases, data managed by moving-object

databases are much more dynamic. In moving-object applications, such

as the traffic management system, vehicles move continuously, and their

locations change frequently. More importantly, the distribution of objects

varies over time and space. For example, in a traffic management system,

some places are likely to be more crowded and populated than others. The

number of vehicles at certain locations may be larger during the day and

relatively smaller at night. This means that the numbers of updates and

queries vary in different places and at different times. Even for the same

query, the number of objects involved is quite different at different times,

resulting in different amount of work on the system. Given these dynamics

in moving-object applications, database tuning is even more crucial than in

conventional databases.

Traditionally, tuning is the responsibility of a database administrator,

who needs to monitor the state of the database and makes the tuning when-

ever it is necessary. However, it is impractical for the administrator to keep

an eye on the system all the time. In practice, the administrator tunes the

database regularly by checking the recent state of the system in the system
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log. A better solution is to make a database system self-tunable so that

tuning proceeds automatically with minimal human intervention.

In moving-object databases, for a tuning mechanism to be useful, it must

be not only automated, but also light-weight and fully online. A moving-

object database should be operational at all times (24 by 7). Updates

and queries arrive at the system continuously, making it impractical and

uneconomical to hold the system and postpone all regular operations (i.e.,

updates and queries) until the tuning procedure completes. The tuning

should be performed online and in real time.

While some works have been done to develop self-tuning technologies in

database systems, these are largely restricted to traditional static databases.

A representative example of this line of work can be found in [17]. However,

no existing work has exclusively studied the tuning problem on moving-

object databases. Although there are many studies on moving-object in-

dexes, they mostly focused either on designing indexing structures or de-

veloping efficient algorithms for various kinds of queries. Variability in the

workload has so far been overlooked in the design of moving-object indexes.

In this chapter, we study this problem, focusing on index tuning in moving-

object databases, and make the following contributions.

• We identify the necessity of index-tuning in moving-object databases

by specifying three types of data diversity in moving-object applica-

tions and their impacts on the performance of moving-object indexes.

• We present the ST2B-tree—an Self-Tunable Spatio-T emporal B+-

tree index for moving objects. The ST2B-tree employs the “multi-

tree” technique, which facilitates online tuning by maintaining multi-

ple sub-trees. The index dynamically adapts the granularity of space
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partitioning based on the object density within regions around a set

of reference points.

• We discuss the potential problem of the “multi-tree” technique and

propose an eager update mechanism to cut down the overhead of

migrating objects in the ST2B-tree during rollover from one sub-tree

to another.

• We introduce a framework for online tuning of moving-object indexes.

Although specially designed for the ST2B-tree, the framework is gen-

erally applicable to all “multi-tree” indexes. We also give guidelines

on the selection of the best values for all tunable parameters for the

ST2B-tree, based on rigorous theoretical analysis on the workload with

respect to each of these tunable parameters.

• An extensive experimental study was conducted to evaluate the per-

formance of the ST2B-tree and the tuning process. The results show

that the tuning process lessens the degradation in the effectiveness of

the index with virtually no overhead.

The remainder of the chapter is organized as follows. The next section

discusses some background information. Section 4.3 presents the ST2B-tree

and provides insights on the tuning capability of the ST2B-tree. Section 4.4

studies the constraints of “multi-tree” technique and introduces the eager

update mechanism to alleviate it. Sections 4.5–4.6 provide the theoretical

analysis on the tuning parameters. Section 4.7 presents the online tuning

framework and describes how it works. Section 4.8 reports the results of an

exhaustive performance study. Finally, Section 4.9 summarizes this chapter.
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4.2 Background

In this section, we provide some background information on the design of

the ST2B-tree. We first describe three types of data diversity in moving-

object applications. Then, we discuss how these data diversity may hinder

an index from being “optimal”.

4.2.1 Types of Diversity in Moving Object Applications

Intrinsically, moving objects are spatial objects whose locations change with

time. The diversity (i.e., variability) of data fall into the following three

categories, as illustrated in Figure 4.1.

Spatial Diversity: In a real moving-object environment, objects are rarely

uniformly distributed in space, i.e., the density of objects varies in different

areas in space. For example, some places of interest, such as commercial

centers and major road junctions, always have higher object density than

other places. Such a situation is portrayed in Figure 4.1(a). At time t1,

two regions (enclosed by solid circles) are highly populated with objects,

while the other regions, e.g., the two enclosed by dashed circles, are of

relatively lower object density.

Temporal Diversity: Besides the non-uniformity of object locations at

any instance of time, non-uniformity also exists along the dimension of

time, meaning that the total number of active objects tracked by the sys-

tem changes with time. For example, it is common to have more vehicles

during the daytime, causing heavy traffic on the roads. In contrast, traf-

fic is much lighter at night, with fewer vehicles roaming on the roads.

Referring to our running example, the distribution of objects at t2 (Fig-



86 Chapter 4. ST2B-tree: a Self-Tunable Spatio-Temporal B+-tree Index

(a) Case 1: at t1 (b) Case 2: at t2 (c) Case 3: at t3

Figure 4.1: Examples of data diversity in moving-object applications

ure 4.1(b)) is still the same as at t1 (Figure 4.1(a)); however, the average

density of the entire space decreases significantly.

Spatio-temporal Diversity: It is not uncommon to have a combination

of the above types of diversity, i.e., both the number and the distribution

of active objects change with time. Continuing with the example in Fig-

ure 4.1, from t2 to t3, besides an increase in the total number of objects, the

places of interest move as well. Sparse areas may become dense while dense

areas may become sparse due to some external factors such as peak hours,

road work and accidents. As a practical scenario in real-life, between 8am

to 9am, people drive from the residential suburbs to downtown; during

office hours, most vehicles move in and around the downtown area; after

5pm, people start trickling home. The residential suburbs and downtown

behave as places of interest alternately for different periods of time of a

day.

4.2.2 Impact of Data Diversity on Index Performance

Given the aforementioned three types of diversity in moving-object applica-

tions, we now discuss their effects on the index performance. As indicated in
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(a) Coarse partitioning (b) Fine partitioning

Figure 4.2: Effect of data diversity and space partitioning

Section 2.3, data partitioning indexes such as the TPR-tree [87] can dynam-

ically cluster objects according to their distribution. Each cluster always

contains a specific number of objects. Therefore, these indexes are less af-

fected by the data diversity. On the contrary, space-partitioning indexes

such as the Bx-tree [50] adopt a fixed way of partitioning the space. While

the size and position of a partition are fixed, the number of objects remain

in each partition varies in different areas and at different times. As a result,

the data diversity of moving-object applications has a significant effect on

the performance of this category of indexes. We hereby explain this effect

in more detail.

Coarse Space Partitioning: When the space partitioning is too coarse

with respect to the data density, each partition will contain many objects.

A range query processing procedure has to check all objects in the parti-

tions that overlap with the query region. This may lead to a large number

of false positives for those partitions that only partially overlap with the

query region (i.e., cover the boundary of the query region). For example,

in Figure 4.2(a), all objects in the 3×3 cells (solid dots) that intersect

with the query region (the dark square) must be examined, and 8 of these
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are boundary partitions where most of objects are negative answers to the

query. On the other hand, recall that objects in one partition are treated

indistinguishably by the index, e.g., indexed with the same key in the Bx-

tree. Having too many objects in one partition leads to an increase in the

number of overflow pages in the index. The overflow pages are organized

as a chain, meaning that the update cost will be higher as the overflow

pages have to be read and searched linearly. In addition, the existence of

overflow pages compromises the balance property of indexes, which bounds

the search cost.

Fine Space Partitioning: At the opposite end, if the space is partitioned

in finer granularity, each partition contains fewer objects. For example,

Figure 4.2(b) zooms in on the query region in Figure 4.2(a). With a finer

partitioning, most partitions contain no more than one object. Obviously,

no additional update overhead is incurred. The number of false positives

in query processing also decreases because the smaller boundary partitions

contain fewer objects. However, for query processing, instead of 6 parti-

tions in Figure 4.2(a), 36 partitions have to be checked in Figure 4.2(b).

Although the overhead of pruning false positives is reduced, the increase in

the number of partitions to search deteriorates query performance. Take

the Bx-tree as an example. A range query is transformed into several one-

dimensional range queries that can be evaluated on the underlying B+-tree.

The number of one-dimensional range queries needed increases from 2 to

9 as shown in Figure 4.2 (Each one-dimensional range query is shown as

dotted, thick line in Figure 4.2).

In summary, given the object density in some area and at some instance

of time, the granularity of space partitioning affect the efficiency of an index
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significantly. Considering the three types of diversity in moving-object ap-

plications, an index suffers from performance degradation when the (fixed)

space partitioning becomes unsuited for the data. In order to minimize the

performance degradation caused by the data diversity, a moving-object in-

dex should: (1) discriminate between regions of different densities, and (2)

adapt to density and distribution changes with time.

4.3 ST2B-tree: a Self-Tunable Index for Moving

Objects

In this section, we introduce the structure and basic algorithms of the ST2B-

tree. We also explain why the ST2B-tree is capable of tuning itself to fit

the workload changes in moving-object databases.

4.3.1 ST2B-tree Structure

Similar to the Bx-tree as introduced in Section 2.3, the ST2B-tree is built

on the B+-tree without any changes to the underlying tree structure and

basic operations, such as insertion and deletion. Since the B+-tree is a

one-dimensional (1d for short) index, to enable the adoption of the B+-

tree, we need to construct such 1d keys for the objects first. Given that

a moving object is a spatio-temporal point in its natural space, the 1d

key must capture both spatial and temporal characteristics of the object.

Specifically, in the ST2B-tree, the 1d key is composed of two components:

KEYtime and KEYspace, as introduced in the following.
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4.3.1.1 Index with Time

To deal with the time dimension, the ST2B-tree adopts the “multi-tree”

technique, which is adopted by many indexes such as the Bx-tree, Bdual-

tree and STRIPES as reviewed in Section 2.3. Specifically, the “multi-

tree” technique works as follows. Assume Tup is the maximal time interval

between contiguous updates of an object, which means that an object is

updated at least once in time interval Tup. The B+-tree is logically split

into two sub-trees, BT0 and BT1. Each sub-tree is assigned with a range

of T consecutive time points, where T = Tup. Specifically, the time ranges

covering BT0 and BT1 are [2iT, 2iT+T ) and [2iT+T, 2iT+2T ) respectively;

as time elapses, the value of i increases from zero and the time ranges of

the two sub-trees roll over alternately. The index therefore rolls over with

time. This behavior is illustrated in Figure 4.3.

Without loss of generality, suppose that current time is t ∈ [2iT, 2iT+T ).

As shown in Figure 4.3, BT ′
1 is the older sub-tree, i.e., the one covering the

earlier time interval [2iT − T, 2iT ), while BT0 is the younger sub-tree, i.e.,

the one covering the current time interval [2iT, 2iT + T ). BT ′
1 is now in a

monotonic shrinking phase — only deletions affect BT ′
1, and all insertions

are conducted in the other sub-tree BT0. Since T = Tup, all objects would

be updated during [2iT, 2iT + T ). As a result, at the next transition time

2iT + T , all objects are stored in the younger sub-tree BT0, while the older

sub-tree BT ′
1 becomes empty. Subsequently, a new time interval [2iT +

T, 2iT+2T ) is assigned to the empty sub-tree BT ′
1, which is now represented

as BT1 in Figure 4.3. This change of time interval for the sub-tree BT1

does not interfere with any objects which are currently indexed in BT0.

The older sub-tree BT ′
1 is refreshed while the original younger sub-tree BT0

now becomes the “older” one and enters the shrinking phase. In the next
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Figure 4.3: The essence of the ST2B-tree

transition time 2iT +2T , BT0 will become empty and be assigned with the

newer time interval [2iT + 2T, 2iT + 3T ), and so on and so forth.

Suppose an object o issues an update ⟨−→p ,−→v ⟩ at tup, where
−→p and −→v

represent the location and velocity of the object at tup. The object will be

indexed in the sub-tree whose time range covers tup. For instance, updates

issued in [0, T ) are indexed in the first sub-tree BT0 while those in [T, 2T )

fall into the right sub-tree BT1. Subsequent updates in [2T, 3T ) go back to

BT0, and so on and so forth.

Each sub-tree has a unique reference time Tref and o is indexed with its

location at Tref ,
−→p ′ = −→p +−→v · (Tref − tup). Herein, we set Tref to the upper

boundary of the time range, which is:

Tref = (i+ 1)T, if tup ∈ [iT, iT + T ). (4.1)

Basically, Tref can be any instance of time. The value set in Equation 4.1 is

the best choice that optimizes the performance of the index. We will discuss

the selection of Tref later in Section 4.6.1.

Finally, the temporal component KEYtime, which is used to identify the
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sub-tree that the object belongs to, is obtained as follows:

KEYtime =


0, if tup ∈ [2iT, 2iT + T ),

1, if tup ∈ [2iT + T, 2iT + 2T ).

(4.2)

4.3.1.2 Index in Space

According to the taxonomy in Section 2.3, the ST2B-tree is a data-supervised

space-partitioning index. The ST2B-tree adopts the same technique used in

[124, 49]. The space is first partitioned into Voronoi cells of a set of reference

points, and objects inside a Voronoi cell are clustered into a group, which

occupies a contiguous segment of the entire key space. In [124, 49], objects

inside each Voronoi cell are sorted by their distances to the corresponding

reference point. The ST2B-tree, however, further partitions the space of

each sub-space with a uniform grid. An object is indexed by the id of the

grid cell it belongs to.

As mentioned, in moving-object applications, objects are unevenly dis-

tributed in different areas. In the ST2B-tree, these areas are distinguished

with the help of reference points. Specifically, given a set of n reference

points {RP0, RP1, . . ., RPn−1}, the data space is then partitioned into n

disjoint regions {V C0, V C1, . . . , V Cn−1} in terms of the distance to the ref-

erence points, that is, the partitioning forms a Voronoi Diagram of the n

reference points as illustrated in Figure 4.4(a). Along with each reference

point RPi, the ST
2B-tree maintains a grid Gi, which is centered at RPi and

covers its Voronoi Cell V Ci.

Given an update ⟨−→p ,−→v ⟩ of object o and its nearest reference point RPi,

the spatial component KEYspace is:

KEYspace(o) = i× SPANspace + cid(−→p ′, Gi), (4.3)
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Figure 4.4: Spatial key generation in the ST2B-tree

where i is the grid id, i.e., the id of the reference point closest to o. A

portion of SPANspace continuous keys in the B+-tree are reserved for each

grid. i × SPANspace helps to locate the portion of key values reserved for

grid Gi. cid(
−→p ′, Gi) is the id of the cell in Gi that

−→p ′ belongs to. The cell id

is assigned with the help of a space filling curve. To preserve locality well,

the ST2B-tree utilizes the Hilbert curve as shown in Figure 4.2. In order to

guarantee that the keys of adjacent grids do not intersect with each other,

SPANspace must be an upper bound of cid in all grids.

Figure 4.4(b) illustrates how objects are indexed around two reference

points RP1 and RP2. o1, whose nearest reference point is RP1, is indexed

in G1 and o2 in G2 likewise. Another object o3, although covered by G2 as

well, is indexed in G1 because o3 is closer to RP1 than RP2, i.e., in RP1’s

Voronoi cell V C1. Although overlap may exist between adjacent grids, the

Voronoi cells of reference points are disjoint. Therefore, it is clear for an

object which grid it belongs to.

In summary, in the ST2B-tree, object o is indexed with KEYST 2 :

KEYST 2 = KEYtime × SPANtime +KEYspace, (4.4)
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Algorithm 4.1: Compute Key

Input : location −→p , current time t
Output: 1d key

1 KEYtime = ⌊t/T ⌋ mod 2;
2 KEYspace = KEYspace(

−→p );
3 key = KEYtime ∗ SPANtime +KEYspace;
4 return key;

Algorithm 4.2: Update

Input : object update ⟨oid,−→p ,−→v ⟩, current time t

1 Delete (oid);
2 Tref = ⌈t/T ⌉ ∗ T ;
3
−→p ′ = −→p + (Tref − t) ∗ −→v ;

4 key=ComputeKey (−→p ′);
5 Insert (key, ⟨oid,−→p ′,−→v ⟩);

where SPANtime, similar to SPANspace, is the size of the key range reserved

for each sub-tree. SPANtime must be an upper bound of KEYspace to avoid

overlap between keys in two sub-trees. KEYtime and KEYspace are derived

as described.

Algorithm 4.1 computes KEYST 2 as in Equation 4.4. Algorithm 4.2

shows the steps of an update, where t is the current time. Tref , KEYtime and

KEYspace are derived based on Equation 4.1, Equation 4.2 and Equation 4.3

respectively. To process an update, the old entry of the object is first

deleted from the index (line 1 in Algorithm 4.2). Procedure Delete(oid)

deletes an object by its identifier. An auxiliary hash table is used to keep

the identifiers of all objects and their current indexing keys. When the

old record is deleted, Procedure Insert(key, record) inserts the record of the

object into the B+-tree using the new indexing key.

Figure 4.3 shows the essence of the ST2B-tree. The current time is in

[2iT, 2iT+T ). The two logical sub-trees are BT0 and BT1. At time 2iT+T ,

the time range of BT ′
1 has changed to [2iT+T, 2iT+T ), shown as BT1. The
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next rotation will happen at 2iT + T . BT0 will be assigned a newer time

range, shown as BT ′
0. For key allocation, the key space is halved according

to the update time. At the second level, each half is further partitioned for

the n grids. Finally, at the bottom level, within the key space of each grid,

objects are sorted in ascending order of the id of the cells they belong to.

4.3.2 Snapshot Query Algorithms

Algorithm 4.3 depicts the evaluation procedure of a simple range query in

the ST2B-tree. Both sub-trees are searched. Since all objects in sub-tree

BTi are indexed with positions at time Trefi, the algorithm first enlarges

the query region Rq from query time tq to Trefi using the global maximum

velocity maxv (line 3) (the same way as in the Bx-tree). Then, the grids of

the reference points whose Voronoi cell intersects with the enlarged query

region need to be further searched (lines 4-5). The cells that intersect with

the enlarged query region are retrieved (line 6-7), in ascending order of cell

id assigned by using the space filling curve. Finally, an object is added to

the result set if its position at time tq is contained in the query region (lines

8-9). When the query q is a current query, tq = tnow (tnow is the current

time when the query is issued). If q is a predictive query, tq = tnow + h,

where h denotes the prediction interval.

In the ST2B-tree, a kNN query is conducted as incremental range queries

until exact k neighbors are found. We omit the detailed algorithm here (a

similar procedure can be found in [50]). The query processing starts with

an initial search radius r. If k neighbors are not found in the initial search

region, it extends the search radius by increment. Both r and increment
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Algorithm 4.3: Range Query

Input : Query region Rq, query time tq
Output: Query results R

1 R = ∅;
2 foreach sub-tree BTi do
3 R′

q = EnlargeRegion(Rq,maxv, tq, Trefi);

4 foreach reference point RPj do
5 if R′

q overlaps with V Cj then
// V Cj stands for the Voronoi cell of RPj

6 foreach cell c of Gj that overlaps with R′
q do

7 foreach object o in c do
8 ptq = Position(o, tq, Trefi); if ptq ∈ Rq then
9 Add o into R;

10 return R;

are set to Dk/k as in [50], where

Dk =
2√
π
[1−

√
1−

√
k

N
]. (4.5)

Dk is the estimated distance to the k’th nearest neighbor [102] and N is the

number of objects in a unit space.

4.3.3 Why is the ST2B-tree Tunable?

We now explain why the ST2B-tree can be easily tuned to adapt to the

three kinds of data diversity discussed in Section 4.2.1.

Diversity in Space: The ST2B-tree partitions space using n reference points.

Each reference point has its own grid and the cell sizes are not necessarily

identical for all the grids. In fact, grid granularity can be determined by

object density in the Voronoi cell of the reference point. As shown in Fig-

ure 4.4(b), objects are relatively dense around RP1, therefore G1 is of finer

granularity. For RP2, objects are relatively sparse, so G2 uses larger cells
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and partitions space at a coarser level. By using different grids in differ-

ent areas (for different reference points), the ST2B-tree can discriminate

between regions of different density.

Diversity with Time: Based on the constraint that T is the maximum

update time interval, at each transition time iT , the sub-tree in ST2B-tree

to be refreshed with a new time interval is always empty. At this point,

the ST2B-tree can use a different granularity of grids for this empty sub-

tree, according to the object density investigated in the previous T time.

The grids of the other non-empty sub-tree are kept unchanged and all the

objects currently in the index are unaffected. Therefore, the two sub-trees

in the ST2B-tree can have their own set of grids. While searching/updating

in a sub-tree, the corresponding set of grids is used. No collision happens.

Once the granularity are determined, they will not change during the next

T time before the next transition time.

Diversity in Space with Time: In a similar way as the granularity of

grids can be tuned to capture the change of object density with time, the

number and positions of reference points can also be tuned to capture

the change of object distribution with time. For example, in Figure 4.1,

at t0 and t1, the centers of the four circles are used as reference points.

Later, at t2, the centers of the three circles are used as reference points

instead. Further, the two sub-trees use their own set of reference points

and corresponding grids.

In short, thanks to the “multi-tree” structure of the ST2B-tree, the two

sub-trees work independently without interference. Any settings about the

indexing, including both reference points and grid granularity, are tunable

in the ST2B-tree. As a result, the ST2B-tree can meet the two requirements
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mentioned in Section 4.2. Later in Section 4.7, we will discuss the details

about the self-tuning strategy of the ST2B-tree, which helps the ST2B-tree

perform better with time-dependent workload changes.

4.4 Eager Update: Minimizing Object Migra-

tion during Rollover

As discussed in the previous section, the “multi-tree” indexing technique

opens the door for tuning the index online. In addition, with the “multi-

tree” technique, an object is indexed with a reference time Tref , growing in

step with the current time. The overall query performance of a “multi-tree”

index will not deteriorate as time elapses, in contrast with the single-tree

indexes such as the TPR-tree [87].

4.4.1 Effect of T : the length of the time interval covered

by a sub-tree

The effectiveness and efficiency of the “multi-tree” structure depend largely

on the value of T , i.e., the length of the time interval covered by a sub-tree.

4.4.1.1 T vs. Query Cost

The sub-tree rollover at the transition time iT is feasible only if no existing

objects are affected, i.e., when the old sub-tree contains no objects. This

condition is guaranteed by constraining the length of the time interval cov-

ered by a sub-tree (T ) to be at least the maximum time interval between

contiguous updates of an object (Tup), as mentioned in Section 4.3.1.1. In

practice, some objects update very infrequently, resulting in a large Tup and
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a large T as well. As aforementioned, the ST2B-tree avoids false negatives

by query enlargement in query processing. The query performance largely

depends on the size of the enlarged query region, while the query enlarge-

ment is proportional to the value of T . With a larger T , a query is enlarged

to cover a larger region, incurring higher query processing costs. In the

extreme case when T → ∞, the “multi-tree” index degrades to a single

tree index. The query enlargement keeps increasing as time elapses and the

query performance deteriorates significantly with a large T .

4.4.1.2 T vs. Object Migration

Since the value of T affects the query performance significantly, we con-

sider setting T as small as possible. However, if T is set smaller than the

maximum update interval Tup, at the point of transition, there may be

some objects remaining in the older sub-tree. For the “multi-tree” tech-

nique to work correctly, we have to migrate all these un-updated objects

to the younger sub-tree manually before assigning a new time interval to

the sub-tree∗. In particular, objects are inserted into the younger sub-tree

with their locations at the corresponding reference time. This location is

estimated from the location and velocity stored in the older sub-tree. The

migration of un-updated objects incurs extra update workload on the index.

Furthermore, since the migration happens at the transition time, it causes a

burst of updates. All the upcoming regular updates are postponed until the

migration finishes and the older sub-tree is empty. Although, a query can

be processed as usual, the response time may be long due to lock contention

∗An alternative way of dealing with these un-updated objects is to discard them from
the database, simply assuming that those objects have left the system (e.g., parking).
No migration is required in this case. The older sub-tree is treated as empty. All the
active objects are indexed by the other sub-tree and kept unaffected by the tuning. We
do not consider this situation here.
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caused by those updates. From this point of view, T should be as large as

possible so as to minimize the migration cost. The smaller T is, the larger

portion of objects need to be migrated, and the more frequent migration

happens.

In brief, the value of T affects the query cost and the migration cost in

opposite ways. We will discuss the effect of T on both the query and update

theoretically in Section 4.6.2.

4.4.2 Eager Update

As shown above, a larger T leads to a higher query cost, while a smaller T

may introduce extra migration cost. In order to avoid migration as much as

possible while keeping T relatively small, we now introduce an eager update

technique.

The principle of eager update is to update as many objects as possible

without increasing the number of I/O accesses. Algorithm 4.4 shows the

steps of an eager update. Consider an update in the form of (oid,−→p ,−→v ),

where oid is the identity of the object, −→p ,−→v are the current location and

velocity of the object.

The update procedure first finds the record of object oid. oldkey is

the current indexing key of oid and L is the leaf node that contains the

record (lines 1-2). If the object is already indexed in the younger sub-tree

(line 4), the update continues in a normal way as in Algorithm 4.2 (line

5). Otherwise, if the update needs to move the object from the older sub-

tree to the younger one, the eager update checks all the other objects in

the same leaf node L (line 11), and computes their estimated locations in

the reference time of the younger sub-tree (line 12). If the object will be

indexed by the same key as the object oid (line 14), this record is inserted
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Algorithm 4.4: Eager Update

Input : object update ⟨oid,−→p ,−→v ⟩
1 L = Search(oid);
2 oldkey=key of the existing record of oid in L;
3 KEYtime = ⌊oldkey/SPANtime⌋;
4 if KEYtime = t/T mod 2 then
5 Update (oid,−→p ,−→v );
6 else
7 Tref = ⌈t/T ⌉ ∗ T ;
8

−→p ′ = −→p +−→v ∗ (Tref − t);
9 key = ComputeKey(−→p ′);

10 Q = ∅;
11 foreach record ri = ⟨keyi, oidi,−→p i,

−→v i⟩ in the leaf node L do
12

−→p ′ = −→p i +
−→v i ∗ T ;

13 key′ = ComputeKey(−→p ′);
14 if key == key′ then
15 Q=Q + ⟨key, oidi,−→p ′,−→v i⟩;
16 Delete ri from L;

17 L′ = Search(key);
18 foreach ri ∈ Q do
19 Insert ri into L’;

into a queue Q (line 15) and then deleted from the current leaf node L (line

16). Q maintains objects to be updated in an eager manner. Subsequently,

the update procedure finds the leaf node L′ in the younger sub-tree which

object oid should be inserted into (line 17). Finally, all objects in Q are

inserted into L′, since they have the same indexing key as object oid (lines

18-19).

4.4.2.1 Benefits of Eager Update

As we can see, an eager update accesses the same tree nodes as a regular

update. Therefore, additional I/Os are incurred only when the eager update

causes node splitting or merging while the regular update does not. With

eager update, a regular update moves more than one object to the younger
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tree. As a result, in T time (supposing T is smaller than the maximal

update time interval), more objects are updated to the younger tree than

usual. Fewer objects are left in the older sub-tree and the migration cost

decreases. Another benefit of eager update is that it saves the cost of regular

update as well. If an object has been updated into the younger sub-tree

eagerly, the real update of the object affects the younger sub-tree only, i.e.,

both deletion and insertion happen in the younger sub-tree. Considering

that objects move continuously in the space, it is likely that the deletion and

insertion access the same leaf node. The insertion and deletion of an update

work along the same path. The number of I/O accesses could decrease, with

an LRU buffer, even if it is small in volume. On the contrary, if eager update

is not supported, the deletion operation would delete an entry in the older

sub-tree and the insertion operation would insert an entry in the younger

sub-tree. In this case, even if the object does not move at all, different set

of nodes will be visited during these two steps of the update. We shall see

the effect of migration and cost of different updates in Section 4.8.3.

4.4.2.2 Degree of Eagerness

In Algorithm 4.4, all objects, which have the same key as the core updating

object in the younger sub-tree, are updated eagerly. Here, we introduce a

tuning knob, denoted asDe, to migrate objects from the older sub-tree to the

younger sub-tree more aggressively. Essentially, all objects whose indexing

keys in the younger sub-tree differ no more than De from that of the core

updating object are migrated. The intuition here is that objects with similar

indexing key values are likely to be geographically close together. However,

since objects move continuously in space, there is no guarantee on where

those objects will be (in the younger sub-tree) after T time. As such, as De
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increases, the I/O overhead will also increase. Moreover, since objects with

key values smaller than De may be found in other nodes, accessing these

nodes will further increase the I/O cost. To handle the second problem,

we restrict the migration to only those objects that are in the same leaf

node as the core updating objects. In this way, EagerUpdate shown in

Algorithm 4.4 corresponds to the case when De=0. On the other extreme,

with De=∞, all objects within the leaf node will be migrated. A moderate

value of De will result in migrating only subset of the objects within the

node.

4.5 Grid Granularity

As discussed in Section 4.2.2, data density and grid granularity are impor-

tant factors that affect the performance of any index based on grid par-

titioning. Thus, grid granularity is a core parameter to be tuned for the

ST2B-tree and any other space partitioning indexes. To find the optimal

granularity, we now analyze the effects of different grid granularity on the

overall performance of an index.

For ease of analysis, we assume that objects are uniformly distributed

in the entire space and the space is partitioned using a single grid. Without

ambiguity, the result is directly applicable to each grid in the ST2B-tree

with local uniform assumption around each reference point.

The notations used are listed in Table 4.1. We start our analysis by

giving a definition of the grid order λ.

Definition 4.1. Grid Order.

The grid order λ is defined as the resolution of the space filling curve used for

mapping grid cells into 1d values. A grid of order λ partitions the data space
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Table 4.1: Notations for analyzing grid granularity

Symbol Description

N number of objects
λ resolution of space filling curve
IOL number of leaf node I/O
NL number of leaf nodes
no average number of overflow nodes per leaf node
CL capacity of leaf nodes
CO capacity of overflow nodes
f average fan-out of tree nodes
h height of the tree
V velocity used in query enlargement
L side length of the square-sized region covered by a leaf node
Lq side length of a square-sized range query
tq time of the query
Tref reference time of objects stored in the index
Nq number of 1d range queries
NI number of internal node accesses

into 2λ × 2λ cells.

Suppose that the entire space is a unit space which is partitioned by

a grid of order λ. Then the side length of each cell is 2−λ. The following

Lemma 4.2 estimates the number of leaf I/O accesses [123].

Lemma 4.2 The number of leaf node accesses of a square-sized range query

is

IOL = NL[L+ Lq + V · |tq − Tref |]2 (4.6)

NL is the number of leaf nodes. Let NL = 22i, where i is an integer no

larger than λ. Then, each leaf node covers 22(λ−i) cells on average, which

forms a square with side length L = 2−i = (1/NL)
1/2.

Let LQ = Lq +V · |tq −Tref |. LQ is the side length of the enlarged query

region. (L+LQ)
2 is the probability that the enlarged query range intersects

with the spatial region covered by a leaf node. The number of leaf nodes to

be accessed by a query is therefore NL[L+ LQ]
2.
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However, Equation 4.6 in Lemma 4.2 is valid only when there are no

overflow pages in the tree, which means that there are very few objects

having the same key. Considering the uniform distribution of objects, N
22λ

≤

1 (λ ≥ 1
2
log2 N) is a necessary condition of Lemma 4.2.

Lemma 4.3 If λ ≥ 1
2
log2N , IOL does not change when λ increases.

Proof. If λ ≥ 1
2
log2N , each cell contains at most 1 object and duplicate

keys are rare. NL=
N
f
and f=69% · CL, where 69% is a typical fill factor of

the B+-tree.

IOL = NL(L+ LQ)
2 = NL

(
(1/NL)

1
2 + LQ

)2

=
N

f

(
(f/N)

1
2 + LQ

)2

.

Thus, IOL is independent of λ.

Lemma 4.4 If λ ≤ 1
2
log2N − 1

2
log2CL, IOL increases when λ decreases.

Proof. If λ ≤ 1
2
log2 N − 1

2
log2 CL ( N

22λ
≥ CL), the number of objects con-

tained in a cell is larger than the capacity of a leaf node. Each leaf node

has only one key; therefore NL = 22i, i = λ. Suppose each leaf node has no

overflow nodes, then:

IOL = NL(1 + no)
(
(1/NL)

1
2 + LQ

)2

Let CL = CO,

no =
N
22λ

− CL

CO

=
N

22λCO

− 1

IOL =

(
N

CO

)
(2−λ + LQ)

2.

Clearly, IOL increases as λ decreases.

Lemma 4.4 can be explained as follows. All objects contained in the

boundary cells, which partially intersect with the query range, need to be
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checked. As λ decreases, the extent of a grid cell grows exponentially, bring-

ing in more false positives. Access to these false positives incurs additional

I/Os.

Corollary 4.5 The grid order λ that minimizes IOL is in range

[
1

2
log2N − 1

2
log2 CL,

1

2
log2 N ]

Proof. This can be easily deduced from Lemma 4.3-Lemma 4.4, IOL keeps

unchanged when λ is larger than 1
2
log2 N (Lemma 4.3), and increases when

λ is smaller than 1
2
log2N − 1

2
log2 CL (Lemma 4.4).

According to Corollary 4.5, in order to minimize the number of leaf node

accesses during a query, the space filling curve with resolution 1
2
log2N −

1
2
log2CL ≤ λ ≤ 1

2
log2N should be used.

While Corollary 4.5 focuses on the I/O overhead of the leaf nodes, we

now consider the overhead of internal node accesses. The problem with

dimensionality reduction is that a multidimensional range query is split into

several 1d range queries. The number of 1d range queries has a significant

impact on internal node accesses.

Lemma 4.6 The number of 1d range queries Nq and internal node accesses

NI increases with λ.

Proof. As proven in [71], the number of 1d range queries is about half the

perimeter of the query range. Therefore, we have Nq = 2 ·LQ/2
−λ. Suppose

we do not modify the query algorithm of the B+-tree. Each 1d range query

starts from the root and searches for the lower boundary of the range. Then,

the number of internal node accesses is:

NI = Nq · h = Nq · logf NL = 2λ+1 · logf NL · LQ



4.5. Grid Granularity 107

The height of the tree h is relatively stable when NL varies. NI is mainly

determined by Nq. As λ increases, Nq increases, and so does NI . Therefore,

a larger value of λ indicates a heavier overhead on internal nodes.

To evaluate the query performance of a tree-index, the number of leaf

I/O NL is usually the main concern. However, as we shall see in Sec-

tion 4.8.2.1, the number of I/O varies slightly with a wide range of grid

order (in between [1
2
log2 N − 1

2
log2 CL,

1
2
log2 N ]). Consequently, the num-

ber of accesses to internal nodes dominates query performance in terms of

query time. In addition, the effect of internal node accesses becomes even

more important in a concurrent environment. When queries and updates

arrive simultaneously, each access to the internal node requires locking the

node and postponing concurrent updates accessing the same node. There-

fore, according to Lemma 4.6 and Corollary 4.5, ⌈1
2
log2 N − 1

2
log2CL⌉ is

the best value for λ that minimizes the query costs.

We also need to consider the effect of grid granularity on update cost.

An update consists of deleting the old record and inserting the new record.

To find the old record, 1 + 1
2
no nodes are searched on average, apart from

the cost for node underflow. The old record is deleted and the node is

written back. Despite the sporadic node overflow, inserting the new record

incurs (1 + no) + 1 leaf and overflow node I/O. The insertion follows the

overflow chain to obtain the last overflow node into which the new record

is to be inserted. Writing it back contributes another I/O. The update cost

increases with the average number of overflow pages. The cell size increases

with smaller λ and so does the number of overflow pages.

In summary, a smaller λ within the range indicated in Corollary 4.5 leads

to better query performance; nevertheless it incurs higher update costs. As

we shall see in Section 4.8.1, the costs of query and update achieve the best
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Table 4.2: Notations for analyzing time-related parameters

Symbol Description

Ni number of objects in BTi

Tup maximum update time interval
T length of the time interval covers a sub-tree
Trefi reference time of sub-tree BTi

Tli lower boundary of BTi’s time range
Tui upper boundary of BTi’s time range
tr offset between Trefi to Tli (Trefi − Tli)
CQavg average cost of a query
CUavg average cost of an update
CU1 average cost of an update involving only one sub-tree
CU2 average cost of an update involving both sub-trees
CUm average cost of migrating an object

trade-off when

λ = ⌈1
2
log2N − 1

2
log2CL⌉ (4.7)

In the analysis in this section, we have an implicit uniform assumption

on query distribution. The performance of an index is sensitive to query

distributions as well. Here, we simplify our cost model to uniform queries

for the ease of analysis. We will show the impact of query distribution

experimentally in Section 4.8.

4.6 Time Related Parameters

In this section, we will discuss the selection of two parameters of the ST2B-

tree: the reference time Tref and the length of the time interval T covered

by a sub-tree in the ST2B-tree currently. Both are critical parameters for

the “multi-tree” structure, having significant impact on the overall index

performance. Table 4.2 shows the notations we use in the following analysis

in addition to the notations in Table 4.1.
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4.6.1 Reference Time of a Sub-tree: Tref

In Section 4.3, as shown in Equation 4.1, we simply set the reference time

Tref to be the upper boundary of the time interval of a sub-tree. In fact, the

reference time of a sub-tree does affect query performance. Since a query

is enlarged into Tref using maximum object velocity maxv, Tref and maxv

have a joint effect on query enlargement. maxv is a data-related parameter,

over which the system has no control, while Tref is a system parameter. In

the following, we try to find an “optimal” value of Tref that minimizes the

average query cost CQavg. Since Tref only affects query performance of the

index and has no effect on the update performance, update cost is not our

concern here.

Since each sub-tree covers a temporal range of length T , the query cost

exhibits a periodic variation. Therefore, we investigate the average query

cost CQavg in [Tl, Tu), where Tl and Tu are the lower and upper boundary

of the time interval covered by the younger sub-tree. Assuming that queries

arrive evenly in time,

CQavg =
1

Tu − Tl

∫ Tu

Tl

CQ(t)dt, i = 1, 2, . . . (4.8)

where CQ(t) is the cost of a query at time t. Given T as the length of the

time interval,

CQavg =
1

T

∫ Tl+T

Tl

CQ(t)dt, i = 1, 2, . . .

In Section 4.5, the number of leaf I/O for a query is estimated as IOL =

NL[L+LQ]
2 = N

f
[( f

N
)
1
2 +LQ]

2 = 1+2(N
f
)
1
2LQ+NL2

Q. The cost is dominated

by NL2
Q. To simplify the analysis, we now estimate the query cost using

NL2
Q, i.e., the number of objects contained in the enlarged query LQ. The

experimental results in Section 4.8 empirically confirm the fact that the
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Tl-T Tref0 Tl t Tref1 Tl+T

∆t

T+∆t

BT0       BT1

tr T-tr 

Figure 4.5: Graphic representations for time-related parameters

query cost is proportional to the number of objects in the enlarged query.

Consider a square-sized range query with side length Lq enlarged with speed

V along each side,

CQ(t) = N0(Lq + V |t− Tref0 |)2 +N1(Lq + V |t− Tref1 |)2, (4.9)

where Ni represents the number of objects in the corresponding sub-tree

BTi at time t. (Lq + V |t − Trefi|)2 is the enlarged query range of sub-tree

BTi. The cost of a query consists of two parts, i.e., the cost of processing

the enlarged query over each sub-tree.

Combining Equations 4.8–4.9,

CQavg =
1

T

∫ Tl+T

Tl

[
(Lq + V |t− Tref0 |)2N0 + (Lq + V |t− Tref1 |)2N1

]
dt.

Without loss of generality, we assume that BT0 is older than BT1 in the

current ST2B-tree. Figure 4.5 illustrates the meaning of the notations. For

BT1, the query region is enlarged by ∆t, where ∆t is the time difference

between Tref1 to the query time t, i.e., ∆t = t−Tref1 . Since Tref1 = Tref0+T ,

the query region is enlarged by T +∆t for BT0. , then ∆t+ T = t− Tref0 .

Let tr = Tref1 − Tl, which is the offset between the reference time to the

lower boundary of BT1’s time range. When the query time t varies from Tl

to Tl + T , ∆t varies from −tr to T − tr. Then, CQavg can be alternatively

represented by the following equation:

CQavg =
1

T

∫ T−tr

−tr

[
N0(Lq + V |∆t+ T |)2 +N1(Lq + V |∆t|)2

]
d∆t
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1) The case when T ≤ Tup

Here, Tup is the maximum update time and N is the total number of objects.

Suppose that object updates are uniformly distributed in Tup time. If T ≤

Tup, the numbers of objects in BT0 and BT1 are:
N0 = N − t−Tl

Tup
N

N1 =
t−Tl

Tup
N

T ≤ Tup. (4.10)

At the last transition time Tl, BT1 is empty while BT0 contains all N

objects. Till timestamp t, t−Tl

Tup
N objects have been updated to BT1 and

N − t−Tl

Tup
N objects remain in the older sub-tree BT0.

According to Equation 4.10, we have

CQavg =
N

TTup

∫ T−tr

−tr

[
(Lq + V |∆t+ T |)2(Tup −∆t− tr)

+(Lq + V |∆t|)2(∆t+ tr)
]
d∆t

Lemma 4.7 When T ≤ Tup, CQavg is minimized at

tr = T + αTup −
√

α2T 2
up + αT 2 − αTupT ,

where α = 1 + V T/2Lq and tr ∈ [T, 2T ].

Proof.

CQavg =
N

TTup

∫ T−tr

−tr

[
(Lq + V |∆t+ T |)2(Tup −∆t− tr)

+(Lq + V |∆t|)2(∆t+ tr)
]
d∆t

=
N

TTup

E1 + 2LqV
N

TTup

E2,

where

E1 =

∫ T−tr

−tr

[
L2
qTup + V 2[Tup∆t2 + (T 2 + 2T∆t)(Tup −∆t− tr)]

]
d∆t

E2 =

∫ T−tr

−tr

(∆t+ tr)|∆t|)d∆t+

∫ T−tr

−tr

(Tup −∆t− tr)|∆t+ T |d∆t



112 Chapter 4. ST2B-tree: a Self-Tunable Spatio-Temporal B+-tree Index

Then, we consider the two parts of CQavg individually.

- As for E1:

E1 = L2
qTupT + V 2[TupTtr

2 + T 3tr − 3TupT
2tr +

7

3
TupT

3 − 7

6
T 4]

It is easy to know that E1 is minimized at tr = T + Tup−T

2Tup
T ∈ [T, 2T ].

- As for E2:

E2 =



−1
2
(T − Tup)T

2 + Tup(T − tr)T + 1
3
tr3, if tr ≤ T

1
3
(T − tr)3 + Tup(T − tr)2

+Tup(T − tr)T + 1
2
(Tup − T + 2tr)T 2 − 2

3
T 3, if T ≤ tr ≤ 2T

1
2
(T − Tup)T

2 − Tup(T − tr)T if tr ≥ 2T

Then, we know that

min(E2) =


1
2
(Tup − 1

3
T )T 2, if tr ≤ T,when tr = T

1
2
(Tup + T )T 2, if tr ≥ 2T,when tr = 2T

Considering all the three cases, we can get the conclusion that E2 should

be minimized when tr ∈ [T, 2T ].

Finally, combining E1 and E2, if T ≤ Tup, CQavg should be minimized

when tr ∈ [T, 2T ].

min(CQavg) =

N

TTup

[
L2
qTupT + V 2

(
TupTtr

2 + T 3tr − 3TupT
2tr +

7

3
TupT

3 − 7

6
T 4

)]
+ 2LqV

N

TTup

[
1

3
(T − tr)3 + Tup(T − tr)2 + Tup(T − tr)T

+
1

2
(Tup − T + 2tr)T 2 − 2

3
T 3

]
Therefore, min(CQavg) is minimized when tr = T+αTup−

√
α2T 2

up + αT 2 − αTupT ,

where α = 1 + V T/2Lq.
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From Lemma 4.7, we see that CQavg is minimized when the reference

time Tref1 is sometime between Tl + T = Tu and Tl + 2T = Tu + T . The

“optimal” reference time varies with different queries, i.e., different Lq and

V . To simplify the problem, we consider the case that T is equal to Tup.

Corollary 4.8 If T = Tup, all objects have been updated to the younger

sub-tree in T time. CQavg is minimized when tr = T . Tref1 is set to Tl +

T = Tu, which is the upper boundary of its time range, the same as shown in

Equation 4.1.

Proof. Derive from Lemma 4.7.

Object migration can be reduced, or even avoided, by using the eager

updates as introduced in Section 4.4. Since update cost is not our concern

here, we can assume that all objects are eagerly updated to the younger

sub-tree BT1 within T time. As a result, although T is actually smaller

than Tup, Corollary 4.8 also holds. The average query cost is minimized

when Tref is set to the upper boundary of the time range of a sub-tree, that

is, when tr = T , we have:

CQavg = N

[
L2
q +

V 2

12

(
4T 2 − 2T 2 T

Tup

)
+

LqV

6T

(
6T 2 − 2T 2 T

Tup

)]
(4.11)

(2) The case when T > Tup

If T > Tup, the numbers of objects in BT0 and BT1 are:
N0 = N − t−Tl

Tup
N,N1 =

t−Tl

Tup
N, if Tup < t ≤ Tl + Tup

N0 = 0,N1 = N if t ≥ Tl + Tup

(4.12)

Before Tl+Tup, i.e., t ≤ Tl+Tup, N0 andN1 are the same with Equation 4.10.

After Tl + Tup, i.e., Tup < t ≥ Tl + Tup all objects are moved to the younger
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sub-tree BT1 and BT0 is empty. According to Equation 4.12, we have

CQavg =
N

TTup

∫ Tup−tr

−tr

[
(Lq + V |∆t+ T |)2(Tup −∆t− tr)

+(Lq + V |∆t|)2(∆t+ tr)
]
d∆t+

N

T

∫ T−tr

Tup−tr

[
(Lq + V |∆t|)2

]
d∆t.

Lemma 4.9 If T ≥ Tup, CQavg is minimized when tr = 1
2
(T + Tup). Tref1 =

Tl +
1
2
(T + Tup) and

CQavg = N

[
L2

q +
V 2

12

(
T 2 + T 2

up

)
+

LqV

6T

(
3T 2 + T 2

up

)]
. (4.13)

Proof.

CQavg =
N

TTup

∫ Tup−tr

−tr

[
(Lq + V |∆t+ T |)2(Tup −∆t− tr)

+(Lq + V |∆t|)2(∆t+ tr)
]
d∆t+

N

T

∫ T−tr

Tup−tr

[
(Lq + V |∆t|)2

]
d∆t

=
N

TTup

E1 + 2LqV
N

TTup

E2 +
N

T
E3,

where

E1 =

∫ Tup−tr

−tr

[
L2
qTup + V 2[Tup∆t2 + (T 2 + 2T∆t)(Tup −∆t− tr)]

]
d∆t,

E2 =

∫ Tup−tr

−tr

(∆t+ tr)|∆t|)d∆t+

∫ Tup−tr

−tr

(Tup −∆t− tr)|∆t+ T |d∆t,

E3 =

∫ T−tr

Tup−tr

[
(Lq + V |∆t|)2

]
d∆t.

The three components are minimized as follows.

min(E1) = L2
qT

2
up +

V 2

12
T 2
up[T

2
up − 2TupT + 3T 2],when tr =

1

2
(T + Tup)

min(E2) =
1

6
T 2
up(3T − Tup), for ∀tr ∈ [Tup ≤ T ]

min(E3) = L2
q(T − Tup) +

V 2

12
(T − Tup)

3 + 2LqV
1

4
(T − Tup)

2,when tr =
1

2
(T + Tup)

Therefore, CQavg is minimized, when tr = 1
2
(T + Tup) and

min(CQavg) = N [L2
q +

V 2

12
(T 2 + T 2

up) +
LqV

6T
(3T 2 + T 2

up)].
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In summary, for the purpose of minimizing the average query cost, we

set the reference time of a sub-tree as follows:

Tref =


Tl + T if T ≤ Tup,

Tl +
1
2
(T + Tup) if T > Tup.

(4.14)

Note that when T ≤ Tup, Equation 4.14 is the same as Equation 4.1.

4.6.2 The Length of the Time Interval of a Sub-tree: T

While the reference time Tref affects the query performance only, the length

of the time interval T has an impact on both the queries and updates as

discussed in Section 4.4.1.

4.6.2.1 Effect of T on Queries

Given that Tref is determined according to Equation 4.14, the average query

cost is as follows:

CQavg =


N

[
L2
q +

V 2

12
(4T 2 − 2T 2 T

Tup
) + LqV

6T
(6T 2 − 2T 2 T

Tup
)
]
, if T ≤ Tup

N
[
L2
q +

V 2

12
(T 2 + T 2

up) +
LqV

6T
(3T 2 + T 2

up)
]
, if T > Tup

The average query cost CQavg always increases with larger T . In order to

minimize the query cost, T should be as small as possible.

4.6.2.2 Effect of T on Updates

Now let us consider the update, concerning the average cost of each “real”

update, i.e., update issued by the object actively.

Lemma 4.10 When T ≤ Tup, the average cost of an update is:

CUavg = CU2 +
Tup − T

T
CUm
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Proof. Suppose that objects update evenly in Tup time. 1
Tup

N objects up-

date at each timestamp. Just before the transition, a total number of T
Tup

N

objects have been deleted from the older sub-tree and inserted into the

younger sub-tree. The remaining N - T
Tup

N objects need to be migrated.

The average cost of a “real” update is

CUavg =

[
CU2

T

Tup

N +
Tup − T

Tup
CUmN

]
/
T

Tup

N

= CU2 +
Tup − T

T
CUm

Lemma 4.11 When T > Tup, the average cost of an update is:

CUavg =
Tup

T
CU2 +

T − Tup

T
CU1

Proof. Till t = Tup, all objects have been updated to the younger sub-

tree actively and the total cost is CU2N . After Tup and right before the

transition, all subsequent updates operate on the younger sub-tree only. In

the remaining T − Tup time, there are a total number of T−Tup

Tup
N updates

and the cost is CU1
T−Tup

Tup
N . As a result, the average update cost is

CUavg =

[
CU2N + CU1

T − Tup

Tup

N

]
/
T

Tup

N

=
Tup

T
CU2 +

T − Tup

T
CU1

Combining Lemma 4.10 and Lemma 4.11,

CUavg =


CU2 +

Tup−T

T
CUm, if T ≤ Tup

Tup

T
CU2 +

T−Tup

T
CU1, if T > Tup

The three types of updates incur different costs, as we will see in Sec-

tion 4.8.3. In essence, CU2 > CU1 > CUm. If T ≤ Tup, the average update
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Figure 4.6: Online tuning framework

cost is minimized when no migration happens at T = Tup. Otherwise, if

T > Tup, it is better to maximize the percentage of single tree updates, and

T should be as large as possible.

The length of sub-tree time interval T has an opposite effect on query

and update costs. In Section 4.8.5, we will investigate the effect of T with

respect to various query/update ratios via empirical studies.

4.7 Self-Tuning of the ST2B-tree

As discussed in Section 4.3, the multi-tree design makes the ST2B-tree fea-

sible for tuning. Section 4.5 and Section 4.6 provide guidelines for choosing

optimal values for the various parameters used in the ST2B-tree. We now

introduce how self-tuning is realized on the ST2B-tree.

Figure 4.6 shows the tuning framework of the ST2B-tree. The tuning

framework adds four components on top of the underlying DBMS: the Index

Profile, the Key-Gen, the Statistics and the Online Tuning.
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4.7.1 Index Profile

Index Profile maintains the current settings of the ST2B-tree. As shown in

Figure 4.6, for each sub-tree BTi, the global profile contains three parame-

ters: the time interval of the sub-tree [Tli , Tui
] and the reference time Trefi .

If we do not want to tune T—the length of the time interval covering a sub-

tree—there is no need to maintain Tli , Tui
and Trefi . When T is fixed, Tli

and Tui
can be derived from the current time, and Trefi is known according

to Equation 4.1.

Besides global parameters, Index Profile keeps a reference table for the

reference points in each sub-tree. Each reference point RPj has an entry in

the reference table, including its position, size of its grid Gj and granularity

of its grid λj. If eager updates are allowed, Index Profile also keeps the

degree of eagerness De currently used by the index.

4.7.2 Key-Gen

The Key-Gen module works as an interface between the ST2B-tree and the

underlying B+-tree. On receiving an object update, it reads the index set-

tings from the Index Profile that are necessary for computing KEYST 2 , in-

cluding the reference time and reference points of the younger sub-tree. It

then calculates KEYST 2 according to Equation 4.4. Finally, the update is

performed over the B+-tree with KEYST 2 and new location and velocity of

the object.

4.7.3 Statistics

The purpose of tuning is to make the index adaptive to the workload. The

Statisticsmodule maintains statistics about the workload in the current time



4.7. Self-Tuning of the ST2B-tree 119

interval, i.e., the time interval of the younger sub-tree. The statistics will be

used to tune the index at the next transition time. While dealing with an

object update, the statistics is updated accordingly. Right after the tuning

process finishes, the statistics is cleared for the next time interval.

Generally, two kinds of statistics are maintained. The global statistics

contains statistics about all objects and queries in the entire space. In order

to tune the length of sub-tree time interval T as discussed in Section 4.6.2,

the following statistics are required: 1) the total number of objects N ,

2) maximum update time Tup, 3) three types of update cost CU1, CU2 and

CUm as defined in Table 4.2, 4) update/query ratio R, and 5) average query

side length L and maxv for query enlarging. In addition, if the eager update

technique is applied, the global statistics maintains one more field which is

the number of objects Nm that are migrated at the last transition time.

Besides the global statistics, we use a 2d histogram to maintain regional

statistics. The 2d histogram consists of n× n buckets, each of which main-

tains the statistics of a cell in the space. Specifically, the entire space is

partitioned evenly into n × n square sized cells (different from the cells

used for indexing in Section 4.3.1). In the histogram, the bucket of cell cij,

where i and j denote the row and column number of the cell, is a tuple

hij = (−→pij, nij), where nij is the estimated number of objects in that cell

and −→pij is the centroid of objects in the cell. The statistics maintained by

the histogram summarizes the distribution in difference regions (cells) all

over the space, which is necessary for the tuning purpose.

4.7.3.1 Histogram Maintenance

Suppose the current time interval is [Tl, Tu] and the reference time for the

younger sub-tree is Tref . The next transition time should be Tu, when the
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online tuning process starts. The tuning process aims to find the best space

partitioning for the next time interval [Tu, Tu + T ]. During that time, all

objects will be indexed at a new reference time T ′
ref . Therefore, objects are

estimated and counted at the time instance of T ′
ref in the histogram.

Specifically, given an update ⟨oid,−→p ,−→v ⟩ at tup, the histogram is updated

as follows:

1. Estimate o’s position at the time instance T ′
ref :

−→p ′′ = −→p +−→v · (T ′
ref − tup) =

−→p +−→v · (Tref + T − tup)

Since the optimal length of the next time interval T is determined only

when the tuning process completes, we simply assume that T will not

change for the next time interval while maintaining the histogram.

T ′
ref can be determined accordingly, where T ′

ref = Tref + T . Then,

−→p ′′ = −→p +−→v · (Tref + T − tup)

Note that if the update affects only the youngest sub-tree, the old

record is deleted from the youngest sub-tree. The statistic should be

updated in a reverse manner first, i.e., re-computing the centroid by

subtracting old position of the object and decreasing the number of

objects.

2. hij of the cell that −→p ′′ belongs to is updated

−→pij =
nij · −→pij +−→p ′′

nij + 1
,

nij = nij + 1.

Thus, −→pij is always the centroid of all objects estimated to be in cell cij at

T ′
ref .

−→pij =
∑nij

k=1

−→
p′′k

nij
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4.7.4 Online Tuning

The Online Tuning module is responsible for executing the tuning process.

At each transition time, i.e., the upper boundary of current time interval,

the Timer triggers the Online Tuning module to start the tuning procedure.

Based on the statistics maintained, it determines new parameters for the

ST2B-tree. At the end of the tuning procedure, parameters in the Index

Profile are updated accordingly.

As shown in Figure 4.6, the tuning can be applied in two aspects. On

the one hand, we can tune the length of the sub-tree time interval and the

reference time. On the other hand, we can improve the space partitioning

by adjusting the set of reference points and their grid granularity.

4.7.4.1 T and Tref

As shown in Section 4.6.2, the value of T affects update and query perfor-

mance in opposite ways. In order to get the best tradeoff, we can also tune

the value of T with respect to the latest query and update loads. With

the global statistics maintained by the Statistics Module, the Online Tuning

module can estimate the average query and update costs. In order to im-

prove query performance, the system can tune down the value of T ; in order

to minimize the average update cost, the system can tune up the value of

T . The final decision is made depending on the main concern of the system,

either query response time or supporting more updates/objects.

Given that Tup is maintained as a global statistics in the Statistics mod-

ule, once T is determined, we can get the Tref that minimizes average query

cost according to Equation 4.14.
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4.7.4.2 Reference Points and Grid Granularity

The ST2B-tree can dynamically adjust to different space partitioning. How-

ever, since the data is highly dynamic, it is difficult to find an optimal par-

titioning. Even if such an optimal partitioning exists, it is costly to discover

it; moreover, its optimality is bound to be short-lived because of the dy-

namics of the system. Therefore, we aim to rapidly find a moderate set of

reference points that roughly, but effectively, partitions the space based on

density differences, so that the tuning procedure can be done online without

deferring any other operations.

- Finding Reference Points via Region Growing

The tuning procedure is triggered by the timer at each transition time. With

the histogram, e.g., Figure 4.7(b), we identify dense and sparse regions by

region growing. Recall that the Statistic module maintains a histogram with

n × n buckets, each of which stores information about a cell in the space.

Note here these cells of the histogram are detached from the cells which

are used by the reference points for the purpose of indexing. The cells

of the histogram are over all the space simply to have an idea of density

distribution.

Region growing is a technique widely used in image segmentation for

finding adjacent similar pixels. In image processing, similarity of pixels is

defined over color, brightness, etc. For us, each cell in the histogram acts

as a pixel. Two cells are said to be similar if they have a similar number of

objects. Algorithm 4.5 shows the procedure of region growing.

First, we take the previous reference points as the seeds for growing.

Since the distribution and density of moving objects change gradually, the

positions of the reference points should move slightly. Starting from cell c,
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Figure 4.7: Example of region growing for finding reference points

Algorithm 4.5: Region Growing

Input : Current reference points {RP1, . . . , RPk, . . .}
Output: Set of regions {R}

1 RS = ∅;
2 foreach previous reference points RPk do
3 c=the cell that contains RPk;
4 if c is unmarked then
5 Add c to a new region R;
6 Mark c;
7 Growing (c, R);
8 Add R to RS;

9 while there is c that is unmarked do
10 Add c to a new region R;
11 Mark c;
12 Growing (c, R);
13 Add R to RS;

14 return RS;

we examine its neighboring cells. If a neighboring cell c′ does not belong

to any existing region and |c.n−R.maxn|
R.avgn

6ϵ and |c.n−R.minn|
R.avgn

6ϵ, c′ is added into

the region R of c. R.maxn, R.minn, R.avgn are the maximum, minimum

and average number of objects of cells in R currently. ϵ is a predefined

threshold that defines similarity. The growing procedure terminates when

all the cells belong to some region.

The output of the region growing algorithm is a set of regions that have
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Algorithm 4.6: Growing

Input : c, R
Output: R

1 foreach neighbor cell c′ of c do

2 if c′ is unmarked and |c.n−R.maxn|
R.avgn

6 ϵ and |c.n−R.minn|
R.avgn

6 ϵ then

3 Add c′ to R;
4 Mark c;
5 Growing (c′, R);

similar object density. The centers of the resultant regions are marked as the

reference points. More specifically, a resultant region R consists of several

adjacent cells. The center of R, i.e., the reference point RP , is calculated

as:

RP.−→p =

∑
cij∈R nij · −→pij∑

cij∈R nij

The object density for RP is

RP.ρ =

∑
cij∈R nij

|R|

where |R| is the number of cells in R.

Figure 4.7 shows a running example of finding reference points by Al-

gorithm 4.5. Region-growing starts with four previous reference points as

shown in Figure 4.7(a). Figure 4.7(b) shows the resultant regions (ϵ = 1)

filled with different patterns and enclosed by thick lines. Then all regions

that contain no more than 3 cells are pruned. Finally, we get 6 regions

(shaded regions). As shown in Figure 4.7(c), the region growing method

roughly identifies 6 reference points, which further partition the space into

disjoint Voronoi cells. We use the cells in R (with a similar number of ob-

jects) for estimating density for RP , ignoring the other cells which are noted

as noises. When the reference points are determined, the grid granularity

for each RPi can be computed according to Equation 4.7.
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- Alternative Methods

Intuitively, we can also apply density-based clustering methods to partition

the space. Examples of density based spatial clustering methods include

DBSCAN [31] and OPTICS [7]. However, none of these existing methods

facilitates online tuning. First, they can only find dense areas; sparse regions

may be completely disregarded. Second, density-based clustering methods

are time-consuming. DBSCAN takes seconds to cluster a few thousand

data points, even in the presence of a spatial index. While the tuning

procedure is running, all updates have to be suspended. An update costs

a few milliseconds over a B+-tree on average, which means that thousands

of updates may need to be postponed during the tuning procedure. This is

not acceptable for online tuning of an index meant to support high update

load.

Yet another practical approach to select reference points is to consider

the characteristics of real world moving objects, e.g., city traffic. In re-

ality, hotspots remain hotspots, no matter how many objects there are.

Prominent landmarks, such as major road junctions and commercial cen-

ters, always attract more vehicles than the other places. These hotspots can

be used as reference points most of the time. On the other hand, we can

also discover that real traffic often exhibits seasonal patterns, either daily,

weekly or monthly. For example, many vehicles move toward the downtown

area of a city between 8 to 9am and travel back to the residential suburbs

at around 5 to 6pm every weekday. Based on the above observations, refer-

ence points can also be computed off-line based on historical data. We can

compute and preserve the reference points for each time slice that the data

shows similar patterns regularly. An online tuning module can then choose

the set of preset reference points of the right slice of time as the tree rolls
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over with time. However, this method is only acceptable for a fairly stable

environment. The preset settings may not be suitable once the environments

changes for a non-trivial amount of time. For instance, road construction

may last long enough to disrupt the system’s responsiveness but not long

enough to warrant changes to the indexes. It is a better choice if the tuning

process can select the reference points and other parameters based on the

latest workload at real-time and incurring imperceptible overhead.

4.7.4.3 Degree of Eagerness De

Last but not least, if eager update is employed, we can also vary the degree

of eagerness De according to the number of objects being migrated Nm last

time. If Nm ≤ ξ, we may increase De by one; otherwise decrease De. Here,

ξ is a user defined threshold, which depends on the latency that the system

can afford to wait for object migration.

4.8 Performance Evaluation

In this section, we report the results of an exhaustive experiential study

on the ST2B-tree and the online-tuning framework. We first specify some

settings of the experiments, and then show and explain the experimental

results.

4.8.1 Experiment Setup

The experiments in this section follow the standard evaluation procedure

introduced the benchmark as presented in Chapter 3. Using the data gener-

ator included in the benchmark, we generate two kinds of workload, uniform

and Gaussian datasets. Generally, the uniform datasets are used for evalu-
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Table 4.3: Parameters, their value ranges and default values

Parameter Setting

Space domain 100,000×100,000m2

Data size 100K, . . . , 1M
Maximum object speed 10m/tu, . . . , 100m/tu

Maximum update interval Tup 120tu
Range query size 1,000×1,000m2, . . . ,10,000×10,000m2

Number of neighbors, k 10, . . . , 100
Query Predictive Time 0tu, 10tu, . . . , 60tu, . . . , 120tu

Time duration 240tu, 1200tu
Buffer size (number of pages) 50
Disk page size (KB) 4

Number of hotspots 10

Query/Update ratio 100:1, . . . , 1:100, . . . , 1:10,000
Number of threads 1, 2, 4, . . . , 128, 10

Length of sub-tree time interval T 0.1Tup, 0.2Tup, . . . , 0.9Tup, Tup

Offset of reference time Tref -Tl 0, 0.2T , 0.4T , . . . , T , 1.2T , . . . , 2T
Degree of eagerness De 0, 1, 2, 4, 8, 32, 64

ating the benefits of tuning time-related parameters, the eagerness of eager

update strategy, etc. Since we intend to investigate the imbalance and

changes in the workloads, we use Gaussian workloads to test the impact on

the density-based space partitioning scheme of the ST2B-tree. Specifically,

the data generator randomly selects some points in the space as hotspots.

Each hotspot uses a Gaussian distribution to generate objects around it.

The queries can be either uniformly distributed or not; in the case of non-

uniform queries they follow the same distribution as the objects. In order to

evaluate the ST2B-tree and the self-tuning framework, we select four of the

six moving-object indexes that have been studied in Section 3.5, i.e., the Bx-

tree [50], the Bdual-tree [123], the TPR∗-tree [100] and STRIPES [78], and

compared them with the ST2B-tree. These four indexes represent indexes

of different underlying structure. The same implementations and settings

as in used Section 3.5 were adopted in the experiments reported in this

section.
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Table 4.3 summarizes the settings of workload used in the experiments,

where default values of variable parameters are shown in bold. tu is short

for timestamp. Parameters are shown in groups based on their meanings.

The experiments use the same range and default settings as the benchmark.

In order to evaluate the tuning effect, we vary the tunable parameters such

as T , Tref , De. Parameter ϵ for region growing is fixed at 1 in all the

experiments. The execution time for region growing increases with the

number of cells in the 2d-histogram. In our experiments, we use 100×100

cells in the 2d-histogram to keep the tuning time to be lower than 5ms, so

that the system will not be stalled by the tuning process.

All the indexes are implemented in C++. All experiments are conducted

on a IBM ThinkPad with Pentium M 1.86GHz processor, 1.0GB RAM and

60G SATA Disk, running Windows XP. All the results are the average for

10 runs. As the authors in [50, 100, 101, 18] do in the experiments, we also

use a block file with 4KB blocks to simulate a disk with 4KB pages. A LRU

buffer with 50 pages is used. We use a tool, Lavalys R⃝ EVEREST, to test

the random I/O speed on disk and memory respectively. The speeds of read

and write of 4KB clusters on disk are ∼20MB/s and ∼12MB/s respectively.

The speeds of memory reads and writes are ∼3356MB/s and ∼2770MB/s.

The simulating experiments count the exact I/Os with our experimental

settings. However, since we cannot prohibit the operating system from

using the physical memory, the results actually shows the time for memory

I/Os. Since all the indexes are implemented with the same disk manager,

we did a fair lateral comparison between all indexes by simulation.
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Figure 4.8: Effect of the grid granularity

4.8.2 Tunable Parameters

Before comparing with other moving-object indexes, we first investigate the

effect of the tunable parameters discussed in Section 4.5 and Section 4.6.

In this set of experiments, we use uniform datasets to get a clearer under-

standing of the effect of these parameters.

4.8.2.1 Effect of Grid Granularity

We first study the effect of grid granularity empirically to verify the anal-

ysis in Section 4.5 and to determine the optimal grid order. We test on

two uniform workloads, including 100K and 1M moving objects. Since the

objects are uniformly distributed, the object density in the whole space is

the same. The ST2B-tree will have only one reference point at the center of

the space. The query workload consists of 100 uniform range queries with

default settings.

Figure 4.8 illustrates the overall performance with grid order λ varying

from 3 to 11. We make the following observations:

1. The update I/O increases significantly when λ ≤ 1
2
(log2N − log2CL)

(about 7 for 1M objects) and hardly changes with finer partitioning.

2. When λ ≤ 1
2
(log2N − log2CL), the query I/O increases with smaller
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value of λ. However, with larger λ, the number of average query I/O

hardly changes. In Figure 4.8(b), the query I/O of the 1M dataset is

labeled with the right y-axis with different values, because we do not

intend to compare the I/O of 100K and 1M datasets but to show the

trend of I/O changes with grid order λ.

3. The query processing time increases dramatically with a larger λ due

to the increasing number of key retrievals. Note that the query pro-

cessing time increases when λ becomes smaller. This can be explained

by the fact that with excessively large grid cells, very few number of

1d searches are required. However, the I/O cost increases significantly,

which contributes more to the processing time. In addition, it incurs

more time to prune away a large number of false positives when the

grid cells are too large.

Based on the above observations and the analysis in Section 4.5, we set

the grid granularity λ to ⌈1
2
(log2N − log2CL)⌉ as in Equation 4.7, which

results in the best tradeoff between update and query performance. In the

remainder of this section, this rule is applied to the selection of global space

partitioning for the Bx-tree; while for the ST2B-tree, it guides the selection

of grid granularity of each reference point.

4.8.2.2 Effect of Reference Time

We now see the effect of the reference time. As discussed in Section 4.6.1, the

reference time only affects the query performance. Therefore, we investigate

the query time and I/O with respect to different choices of reference time.

We vary the value of Tref − Tl from 0 to 240tu (2Tup), i.e., the offset from

the reference time to the lower boundary of the time interval of the sub-

tree. The maximum update time Tup is fixed at the default value of 120tu.
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Figure 4.9: Effect of the (relative) reference time

Figure 4.9 shows the average cost when the length of the sub-tree time

interval T is set to 0.5Tup, Tup, 1.5Tup and 2Tup.

As shown, when T = 0.5Tup, the query cost is minimized when Tref−Tl =

60, which is equal to T . When T ≥ Tup, i.e., T = Tup, 1.5Tup and 2Tup, the

query cost is minimized when Tref − Tl = 120tu, 140tu, 200tu respectively.

The results in Figure 4.9 verify the analysis in Section 4.6.1. The optimal

reference time is selected as Equation 4.14. While Tref deviates from the

optimal value, the query cost increases monotonically.

4.8.2.3 Effect of the Length of sub-tree Time Interval T

In this experiment, we investigate the problem caused by object migration

during rollover. The length of the sub-tree time interval T varies from 0.1Tup

to Tup (if T is larger than Tup, no migration occurs). In order to see the

pure effect of object migration, eager update is disabled.
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Figure 4.10: Effect of sub-tree life time T on object-migration
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Figure 4.11: Effect of sub-tree life time T on updates

Figure 4.10 shows the total running time and number of I/Os of one

migration. As expected, the total migration time is proportional to the

number of un-updated objects left in the old sub-tree, which decreases with

larger T . When T is only 10% of the maximum update time Tup, there is

a delay of more than 3s to finish the migration. If T increases to about

90%Tup, the migration time is reduced to around 0.5s. Note that the migra-

tion I/Os is less affected when T is smaller than 90%Tup. This is because

migration is done by deleting objects from the older sub-tree and inserting

them into the younger sub-tree in a batch mode, which saves a number of

I/Os, especially with the help of the LRU buffer.

Figure 4.11 illustrates the corresponding costs for different types of up-

dates, where “up1” represents updates that involve only one sub-tree, “up2”
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Figure 4.12: Effect of sub-tree life time T on queries

represents updates that affect both sub-trees and “mg” denotes the amor-

tized cost of migrating one object. The amortized migration cost is the

minimum, i.e., around 0.04ms and no more than 0.1 I/O access. A single-

sub-tree update (up1) incurs about 2/3 I/Os of an update involving both

sub-trees.

Although the total migration time seems to be not very long (only a few

seconds), it is still not acceptable in a continuous running MOD. As shown in

Figure 4.11, the average update time is only about 0.1 millisecond. During

the migration time, the MOD is capable of handling tens of thousands of

updates.

Finally, Figure 4.12 shows the effect of T on query performance. As

expected, the query cost, including the CPU time and the number of I/O

accesses increase with T .

4.8.3 Effect of Eager Updates

Now we proceed to investigate the effect of eager updates. T is set to be half

of the maximum update time, i.e., 0.5Tup. In this set of experiments, we

vary the degrees of eagerness De from 0 to 64. The corresponding benefit on

migration cost and overhead on update cost are shown in Figure 4.13 and
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Figure 4.14 respectively. The leftmost point (marked as “no ea”) in both

figures represents the corresponding result of the case where eager update

is disabled.

First, Figure 4.13 shows the benefit of eager updates in terms of total

time and I/O cost of an migration. If there are no eager updates, it re-

quires about 1.3 seconds for migrating objects during rollover. However,

when eager update is enabled, the migration cost decreases dramatically.

Specifically, when De = 0, which means the smallest degree of eagerness,

the migration time is reduced to about 50ms. When De = 4, the migration

time is around 5ms only, which is much more acceptable considering the

continuity of a MOD.

Eager update technique undoubtedly relaxes the constraints on T by
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reducing the migration cost, but at the expense of an increase in update

cost. Figure 4.14 shows the average update cost. As shown, the migrating

cost (“mg”) is still the smallest. The cost of single tree update (“up1”)

is more or less the same as that in Figure 4.11, since eager update is only

applicable to updates involving two sub-trees as described in Algorithm 4.4.

There is a significant increase on the average cost of updates (“up2”) when

eager update is applied. When De = 0, the update is about 7 times slower

than normal update (the one marked with “no mig”), while the increase in

the number of I/Os is no more than 1. Intuitively, when De = 0, the update

cost should not increase since the deletion and insertion access the same

tree nodes as a normal update. In practice, by deleting and inserting more

records from a leaf may cause leaf merge or split, which incurs additional

I/Os. With larger De, the I/O cost increases more significantly, since the

insertions may happen in leaf nodes other than the leaf node where the core

object, i.e., the object causes the eager update, is inserted.

Figure 4.15 shows the number of updates of different types. With higher

degree of eagerness, i.e., larger De, not only the number of objects to be

migrated decreases, but also the number of updates involving both sub-trees.

Through eager updating, a number of updates are avoided and reduced into

single sub-tree updates. Therefore, as we can see, the number of single tree

updates (“up1”) increases with De.
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Finally, Figure 4.16 shows the effect of De on the total update through-

put, i.e., the total number of active updates processed in unit time. Updates

caused by migration are not counted here since they are additional work-

load introduced by the design constraints of the system. When there is no

eager update, the throughput is quite high since the update cost is the low-

est as shown in Figure 4.14. With eager updates, although the throughput

becomes much smaller, the system will not be paused for object migration.

From Figure 4.15, we can observe that the percentage of single tree updates

increases with larger De. Since single tree updates are less costly, the total

update throughput increases when De increases. When De is larger than 8,

the throughput starts to drop. This is because when De is large enough,

the percentage of single tree updates does not increase substantially, while

the cost of eager updates does increase.

In summary, regarding the migration cost, the benefit of eager updating

is already significant when De is as small as 0 or 1. With larger De, the

further improvement is minor. Considering the migration time and the

update cost, we believe that setting De to 0 or 1 is sufficient enough for the

tuning purpose.
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Figure 4.17: Distribution of default gaussian workload (10 hotspots)

4.8.4 Spatial Diversity

We now investigate the effectiveness of the ST2B-tree with regard to the

spatial diversity of moving objects. We use a Gaussian workload generated

with 10 randomly selected hotspots as default. Figure 4.17 shows a sample

of the workload used (some hotspots are close to others and cannot be

clearly seen). In order to examine the effect of data skew only, we keep

the distribution and cardinality of workload unchanged with time in this

set of experiments. For the same purpose, eager updating is disabled and

T is fixed to Tup so as to guarantee that there is no object migration. The

indexes run up to 2Tup (240tu). The query workload consists of 100 queries.

The queries are evaluated every 12 timestamps and the average costs are

record.

4.8.4.1 Scalability Test

First, Figure 4.18 shows the effect of the data size on query performance.

The number of objects varies from 100K to 1M, with an increment of 100K.

The results of all the indexes (except the ST2B-tree) conform to the findings

we made in Chapter 3. Specifically, as shown in Figures 4.18(a)–4.18(b), the
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Figure 4.18: Effect of data size

TPR∗-tree incurs a high update cost in both I/O and time. This is because

of the overlap between MBRs that results in the TPR∗-tree having to search

multiple paths in an update. The MBR adjustment during an update oper-

ation further degrades the update time. The update time of the TPR∗-tree

is about 7 and 14 times higher than that of the ST2B-tree with 100K and

1M objects respectively. The Bx-tree has fast update, but the number of

update I/Os is higher than the others except the TPR∗-tree. The number

of update I/Os of the Bx-tree is affected by the granularity of space parti-

tioning with regard to the data distribution. Since the workload is skewed,

a uniform grid leads to some densely populated cells which break the bal-

ance of the B+-tree by introducing many overflow pages. Consequently, the

update I/O cost increases. Owing to the data-adaptive space partitioning,

the ST2B-tree has both fairly constant update time, i.e., about 0.2ms, and

number of I/Os, which is around 4. STRIPES and the Bdual-tree, although
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having smaller number of update I/Os than the Bx-tree, take longer time

to process a query.

Figures 4.18(c)–4.18(d) show the average query cost with respect to the

number of objects. As expected, for all indexes, the query cost increases

linearly with the data size. This is because more objects need to be retrieved

in a given query region for a larger dataset. The ST2B-tree, the Bx-tree and

the TPR∗-tree incur similar number of I/Os. The cost of the ST2B-tree and

the Bx-tree are mainly determined by the number of objects contained in the

enlarged query region, while the TPR∗-tree has been specifically designed to

reduce its I/O cost over the original TPR-tree. The Bdual-tree incurs a larger

number of I/Os. This is partially because the partitioning in the velocity

dimensions makes some nearby objects of different velocities distributed into

different leaf nodes, while in the ST2B-tree and Bx-tree, nearby objects are

clustered together. Among all the indexes, STRIPES is the most expensive

regarding the I/O cost due to the unbalancing structure and low utilization

space of the quad-tree.

Regarding the query processing time, the Bx-tree is not able to handle

hotspots well due to its use of one single grid granularity, and causes many

false positives to be retrieved and examined, and therefore incurs higher

I/Os. The ST2B-tree is most efficient in terms of query time due to its

adaptive use of appropriate grid granularity when it rolls forward with time.

In Figure 4.18, the Bx-tree consistently outperforms the Bdual-tree. This

is somewhat surprising, since it does not conform to the findings in [123],

where the Bdual-tree is expected to beat the B+-tree in terms of the num-

ber of I/Os. We find the following reasons for this inconsistency. In [123],

the disk page is only 1K bytes and no buffer is used. Query processing

of the Bx-tree incurs larger number of I/Os, since it has to revisit upper-
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Figure 4.19: Effect of range query size

level tree nodes several times. However, in our experiments, a small LRU

buffer is used and intermediate nodes are kept in memory most of the

time. The buffering effect brings a considerable decrease on the number

of querying processing I/Os. As for the query processing time, [123] does

not provide any result on the query processing time of the Bdual-tree. In

our experiments, we find that the decomposition and overlapping testing of

the MORs in the Bdual-tree are both time-consuming tasks. Therefore, the

query processing time of the Bdual-tree is consistently higher than all the

other indexes.

4.8.4.2 Size of Query

Figure 4.19 shows the average cost of processing range queries. All the

indexes are tested with square-sized range queries with side length varying

from 1km to 10km. As expected, the query cost of each index increases with

an increasing query window size. Larger windows contain more objects and

therefore lead to more node accesses. In general, Figure 4.19 shows the same

relative order between the curves as in Figure 4.18. The TPR∗-tree, the Bx-

tree and the ST2B-tree have the similar number of I/Os. With the default

100K Gaussian workload, the Bx-tree spends twice the query processing

time of the TPR∗-tree. As discussed in Section 2.3, the TPR∗-tree is a data
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Figure 4.20: Effect of number of neighbors

partitioning index, which is less affected by the data distribution comparing

with the Bx-tree. The ST2B-tree shortens the processing time of the Bx-tree

by about 30% for queries with 10km side length. The ST2B-tree improves

the Bx-tree with more adaptive space partitioning. As a result, the effect of

data skew is mitigated. The Bdual-tree takes the longest processing time and

incurs twice number of I/Os than the TPR∗-tree, the Bx-tree and the ST2B-

tree. As for STRIPES, the processing time increases the fastest among all

indexes because of the significant increase in the number of I/Os.

Figure 4.20 examines the performance of kNN queries further, with the

number of neighbors k varying from 10 to 100. As for kNN queries, all

indexes have a slight increase in I/O cost and query processing time. The

I/O cost of the kNN queries, which depends on the number of objects in the

expanded query region, is less sensitive to k for the Bx-tree and the ST2B-

tree. In terms of the number of I/Os, the ST2B-tree surpasses the Bx-tree by

a greater margin for kNN queries than for range queries. The kNN queries in

both Bx-tree and the ST2B-tree are conducted as incremental range queries

with the initial search region estimated from the objects density. The cost

depends largely on the accuracy of the estimated search radius. The Bx-

tree makes such estimation using global object density. As a result, in dense
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regions, the Bx-tree starts the kNN search with an oversized search region;

in sparse regions, the Bx-tree starts with a small search region, but has

to expand the region for many times to find the kNNs. Both affect the

query processing time and I/Os. The ST2B-tree, on the other hand, starts

the search with a more accurate radius according to the object density

around the reference points. Owing to more accurate search region, the

performance of the ST2B-tree on kNN queries is less affected by the data

skew. The TPR∗-tree incurs fewer I/Os because of its branch-and-bound

kNN search algorithm. The kNN query performance of STRIPES and the

Bdual-tree are similar to their performance on range queries, contributing

the highest number of I/Os and the highest processing time respectively.

4.8.5 Temporal Diversity

Next, we examine the effectiveness of the ST2B-tree’s self-tuning to adapt

to the time-dependent changes in data cardinality. All the objects follow

the same distribution used in the previous experiments (Figure 4.17). We

build the indexes in the first round and run them for another 9 rounds

of time. Each round is 120s. In each round, each object updates once

and the whole index will be refreshed after the round. The number of

queries is 1% of the number of updates each round. This is to simulate the

real applications where many moving objects will keep on updating their

positions, and the number of positional updates significantly outnumbers

the number of queries. We study the total time of processing the updates

and queries in each round as a measure of the overall performance. Then we

compute the speedup introduced by the self-tuning feature of the ST2B-tree,
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Figure 4.21: Benefit of index tuning with increasing data size

defined as:

speedup =
total processing time of the Bx-tree

total processing time of the ST2B-tree

The granularity of the Bx-tree is selected using the initial number of ob-

jects, while the space partitioning of the ST2B-tree is dynamically tuned in

accordance to the workload. When the data is uniformly distributed, the

performance of the ST2B-tree degrades to that of the Bx-tree with only one

reference point at the center of the space. In other words, the Bx-tree is

a static version of the ST2B-tree which completely ignores the distribution

and changes of objects. Hence we compare the ST2B-tree with the static

Bx-tree to show the effectiveness of the self-tuning features. The running

time of the self-tuning process is included in the total processing time of

the ST2B-tree.

First, we start with 100K objects and add another 100K each round.

Figure 4.21 shows the speedup brought by self-tuning in each round of time.

The speedup introduced by self-tuning grows with time, when the hotspots

and data distribution change with time.

Initially, the Bx-tree selects the granularity of space partitioning with

100K objects. It then uses a grid with large cells (about 3000×3000m2).

With the increasing number of objects in the following rounds, the update
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Figure 4.22: Benefit of index tuning with decreasing data cardinality

performance degrades, because the increase in the number of overflow pages

affects the balance of the underlying B+-tree. On the other hand, since the

ST2B-tree partitions and indexes objects according to the distribution and

density, the update cost remains at about 0.2ms all the time. Since the

Bx-tree uses a large cell, it saves on query processing time according to our

findings in Section 4.8.2.1. However, with carefully chosen granularity of

space partition, the query processing time of the ST2B-tree is higher than

the Bx-tree only in the dense regions. In those sparse regions, the ST2B-tree

might use even larger grid cells, which would reduce the query processing

time. Therefore, combining all these facts, the overall speedup introduced

by the self-tuning of the ST2B-tree over static Bx-tree, especially when there

are more updates than queries, are obvious and significant.

Figure 4.22 shows the results of a reverse process. Starting with 1M

objects, the number of objects being indexed decreases by 100K per round.

The Bx-tree now uses a fine grid with smaller cells (about 200×200m2) to

partition the entire space. As we can see, the speedup introduced by the

self-tuning to the system is just a little higher with non-uniform queries.

That is because the cost of the Bx-tree is also near optimal with such a

fine grid. Non-uniform queries follow the same distribution as objects, and
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(a) Round 5 (b) Round 9

Figure 4.23: Distributions of workloads in spatio-temporal test

therefore queries are concentrated at those dense regions. Now, in those

dense regions, the ST2B-tree also employs fine grid. Therefore, the system

speedup introduced by tuning is less significant. However, for the uniform

queries, the ST2B-tree gains more by tuning with the data workload. The

ST2B-tree reduces the processing time of queries in the sparse regions by

using larger grid cells. The overall performance gain is much more significant

than for non-uniform queries.

4.8.6 Spatio-Temporal Diversity

Now we further investigate the performance of the self-tuning phase of the

ST2B-tree with regard to the changes of objects distribution with time.

We generate a set of workloads in which the skewness of objects increases

with time. In round 0, we build the indexes with 1M uniformly distributed

objects. Next, in round 1, the objects are generated with 10 hotspots.

Subsequently, the number of hotspots is reduced by 1 each round. Finally,

in round 9, there is only one hotspot. Figure 4.23 shows the snapshots of

objects at round 5 (moderately skewed) and round 9 (highly skewed). The

query-update ratio is still 1:100.

Figure 4.24 shows the changes of system speedup with time. As ex-
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Figure 4.24: Benefit of index tuning with changing data distributions

pected, the gain of the self-tuning ST2B-tree over the static Bx-tree increases

when the data become even more skewed with time. During round 1, the

ST2B-tree is comparable to the Bx-tree. Since the objects are uniformly

distributed, the region-growing algorithm will result in only one reference

point and hence the ST2B-tree degenerates to a Bx-tree with only one refer-

ence point. However, with skewed objects joining in the subsequent rounds,

the ST2B-tree gradually outperforms the Bx-tree owing to the self-tuning

phases, which are equipped with adaptive space partitioning and granularity

of indexing. For range queries (Figure 4.24(a)), the ST2B-treeoutperforms

the Bx-tree by about 2 times in round 9 for both uniform and non-uniform

query workloads. For kNN queries (Figure 4.24(b)), the performance gain

is much higher, which is about 4 times.

4.8.7 Throughput Test

Finally, we evaluate all indexes in a multiple-user environment. We use a

multi-thread program to simulate the real multiple-user environment. All

indexes adopt the concurrently control mechanism as included in the bench-

mark in Section 3.4, i.e., B-link [61] for the B+-tree, R-link [75] for the

R-tree, and the native 2-phase lock of the quad-tree for STRIPES.
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The default 1M dataset as shown in Figure 4.17 is used. The query

workload consists of range queries with default settings, following the same

distribution of the data objects. Updates and queries arrive evenly in time

and are loaded into a task pool and then randomly distributed to each free

working thread. The performance is measured by two metrics: throughput

and response time. The throughput is defined as the average number of

tasks finished in a unit time (1tu). The results are the average of 10 runs

of simulation.

Figure 4.25 shows the throughput and response time with the query-

update ratio varying from 100:1 to 1:1000 using 10 working threads. In

real moving-object applications, the update load caused by the changes in

object locations and moving speed is much higher than the query load,

and the query-update ratio is to simulate such scenario. As expected, the

throughput of the indexes increases significantly with more updates and

the response time decreases. The queries, which hold shared lock on the

node being accessed, do not prevent the other queries. However, although

queries allow other read operations, they block the update operations, and

by design of the experiment, the updates contribute more to the throughput.

The updates access only a few nodes in the index and can finish very quickly.

The (range) queries, on the other hand, have to traverse multiple paths and

read many leaf nodes (data nodes); hence they take longer than the updates.

Since the throughput is defined as the number of operations completed by

the indexes every second, the updates contribute more to it. Therefore,

when the percentage of updates in the workload increases, the throughput

increases and the response time decreases accordingly.

Figure 4.26 shows the effect of the number of threads under workload

whose query-update ratio is 1:100. The number of threads varies from 1 to
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Figure 4.25: Effect of update/query ratio
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Figure 4.26: Effect of number of threads (update/query=100:1)
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128. In general, the throughput reduces with increasing number of threads

for all indexes. The response time increases with the number of threads

being used. An update locks exclusively the node being accessed and all

the concurrent requests for reading/writing the node are suspended. As the

workload includes more updates than queries, the indexes are frequently

being write-locked. The throughput decreases with more threads and each

thread waits for a longer time for its turn to access the tree.

However, with more queries, the throughput first increases and then

reduces with increasing number of threads. As shown in Figure 4.27, when

the workload consists of 50% queries and 50% updates, the throughput

reaches the peak with about 2 threads or 4 threads for both indexes. As

more threads are introduced, they start to compete for resources and the

throughput reduces as a result. Because the queries hold a shared lock on

the node being accessed, it will not suspend the other query operations.

Therefore, the degree of concurrency becomes higher with more queries.

With more queries, the throughput reaches the peak with more threads.

For example, when query-update ratio is 10:1, the peak of the throughput

is 4 threads or so. However, in moving-object databases, there are typically

more short updates than queries, so we omit the results for such workload

composition.

As can be observed from Figure 4.26 and Figure 4.27, the indexes hit

thrashing point after the number of threads increases to a certain point and

this is when the throughput starts to decrease after hitting the peak. We

note that the throughput and the response time can be improved by im-

plementing some admission controls to throttle the amount of work being

performed concurrently. However, the admission control introduces another

dimension of effect to the performance, which has not been taken into ac-
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count here.

4.9 Summary

In this chapter, we studied the problem of index tuning in moving-object

databases. We identified several forms of data diversity in moving-object

applications that existing indexes are unable to handle effectively. We then

proposed the ST2B-tree index that can automatically adjust itself to avoid

performance degradation caused by the data diversity. To adapt to space

diversity, the ST2B-tree partitions the data space using a set of reference

points. Each reference point uses its own individual grid to partition its

Voronoi cell. The grid granularity is determined by object density around a

reference point. By monitoring the distribution and density of objects con-

tinuously, the ST2B-tree dynamically determines a different set of reference

points, and adaptively adjusts the granularity of space partitioning. We also

proposed methods to choose the reference points, and introduced a guideline

on the optimal choice of granularity. To deal with the time diversity, the

ST2B-tree employs a “multi-tree” approach, where two sub-trees are used to

index objects regarding their last update time. The basic idea is to rebuild

the sub-trees periodically and alternately, during which the newly identified

reference points and granularity are used. To guarantee the correctness, the

sub-tree to be rebuilt must be empty. If not, the remaining objects must be

migrated to the other sub-tree manually. To overcome this constraint, we

proposed a novel eager update mechanism that can reduce the migration

load while incurring little or even no additional cost. An extensive experi-

mental study against several state-of-the-art indexes showed the superiority

of the ST2B-tree, confirming that the ST2B-tree is efficient, robust and scal-
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able with respect to data distribution, volume and concurrent operations.

More importantly, equipped with the self-tuning capability, the ST2B-tree

is also adaptive to changes in workload.





Chapter 5

An Adaptive Updating Protocol

for Moving Object Databases

For decades, research on databases has been focused on the design of

indexing techniques and query processing algorithms to improve the perfor-

mance of the database system. In moving-object databases, while a variety

of indexing techniques have been proposed to accelerate the processing of

workload in the database, i.e., updates and queries, no much attention has

been paid to the possibility of reducing the workload in the first place. In this

chapter, we explore this possibility and introduce a generic and adaptive up-

dating protocol. Compared with existing updating mechanisms, the proposed

protocol provides larger space of tolerance for object-tracking, freeing objects

from frequent updates. The experimental results confirm that the proposed

protocol significantly reduces the number of updates, thereby reducing the

overall workload of the system.

153
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5.1 Introduction

While most of the existing studies on moving-object databases focus on

enhancing indexing and query processing efficiency, less effort has been made

to address the issue of performance optimization from a more fundamental

perspective. Although the numbers of objects and queries are not controlled

by the system∗, the actual workload of the system can vary greatly with

different system designs. In particular, the updating workload of the system,

i.e., the number of updates, is decided by the representation of objects and

the updating protocol. For example, updates can be less frequent if linear

motion model is used to estimate objects’ movement, compared to the case

that objects are stored as spatial points (i.e., last known locations) in the

system.

Considering the limited room of technical advances on indexing struc-

tures and query processing algorithms, it is even important now to recon-

sider the design of the updating protocol. In this chapter, we make the

first attempt at a systematic investigation on this possibility. In particular,

we propose a new adaptive updating protocol, called STSR-based Updating

Protocol, which reduces the object updating frequency by maintaining only

relaxed motions instead of exact ones in the database. The design of the

protocol is on the basis of a careful analysis on the advantages and disadvan-

tages of the existing protocols. Compared with existing updating protocols

introduced in Section 2.2, the proposed STSR-based updating protocol is

equipped with three major features to enhance the performance, as follows.

First, instead of the traditional object representations, the proposed pro-

tocol keeps an Spatial-T emporal Safe Region (STSR) for each object. The

∗Assume that the system wants to serve as many objects and queries as possible.
The numbers of objects and queries are application-dependent, which are not controlled
by the database system.
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STSR allows approximation on object motion in both spatial and velocity

spaces, leading to higher tolerance of tracking accuracy and hence a de-

crease in the number of updates in the database. On the other hand, to

answer queries accurately, the system is required to probe the latest status

of objects when their STSRs are inadequate in returning the exact query

results.

Second, the linear motion model is adopted instead of other complex

high-order models. While achieving benefits on computational cost and

index efficiency with the simple motion model, our empirical studies show

that there is no significant difference on prediction quality even when more

complicated motion model is employed instead. In addition, since the linear

model is adopted by most of existing indexes, it enables the protocol to work

seamlessly with existing indexing structures.

Third, the STSR-based updating protocol takes both historical updat-

ing records and query distribution into consideration, rendering a cost op-

timization model and an automatic tuning mechanism highly adaptive to

the changing world. This enables our STSR-based updating protocol to

outperform existing solutions in maximizing the savings on the number of

updates.

Finally, we summarize the contributions of this chapter as follows:

• We present a new and adaptive updating protocol for reducing the

updating workload while guaranteeing the efficiency and accuracy of

predictive queries.

• We propose a cost model to estimate the update workload incurred by

specific moving object(s), based on the historical records of updates

and recent queries in the vicinity.
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• We discuss cost-based optimization strategies to reduce the updating

workload, which tries to construct optimized spatial-temporal safe

regions to minimize the expected updating workload in the future.

• We extend our protocol by allowing the system to output approximate

but accuracy bounded query results, to cut unnecessary updates fur-

ther and reduce the impact of fast moving vehicles.

• We extensively evaluate the performance of our proposal with a variety

of index structures on different real and synthetic datasets.

The remainder of the chapter is organized as follows. Section 5.2 de-

scribes some preliminary concepts required in this chapter. Section 5.3

introduces the STSR-based updating protocol and the basic algorithms for

update and query processing. Section 5.4 presents an algorithm for finding

the optimized STSR and some related optimization techniques. Section 5.5

discusses the integration problem of the new protocol. Section 5.6 intro-

duces approximate query processing with the STSR-based updating pro-

tocol. Section 5.7 reports the experimental study and Section 5.8 finally

summarizes the chapter.

5.2 Preliminaries

Assume there are n moving objects, O = {o1, o2, . . . , on}, being moni-

tored in the system. Following the common assumption in moving-object

databases, the temporal dimension is represented as discrete time instances

T = {0, 1, . . . , t, . . .}. The exact location of object oi at t is denoted by

a vector lti = ⟨lti.x, lti.y⟩. Similarly, the velocity of oi at t is denoted by

vti = ⟨vti .x, vti .y)⟩. With the linear motion model, the Predicted Location of
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oi at time s (s ≥ t), denoted by plsi , can be derived from lti and vti , where


plsi .x = lti.x+ vti .x · (s− t)

plsi .y = lti.y + vti .y · (s− t)

(5.1)

5.2.1 Spatio-Temporal Safe Region

Before delving into the detail of our updating protocol, we first introduce

the concept of Spatio-Temporal Safe Region, as defined below.

Definition 5.1. Spatio-Temporal Safe Region (STSR).

Given a moving object oi, a Spatio-T emporal Safe Region (STSR) of oi is

represented by a tuple R(oi) = ⟨LR, V R, tr, te⟩, where LR is a rectangle in the

physical space (i.e., the space where the object moves), V R is a rectangle in

the velocity space, tr is the reference time, and te is the expiry time (te > tr).

Given an STSRR(oi), the location rectangle LR is bounded by
[
LR.x⊢, LR.x⊣]

and
[
LR.y⊢, LR.y⊣

]
on the two spatial dimensions respectively. Similarly,

the velocity rectangle V R is bounded by
[
V R.x⊢, V R.x⊣]×[

V R.y⊢, V R.y⊣
]
.

Intuitively, LR relaxes the location of oi at reference time tr, and V R en-

closes the possible velocities of oi before te. Given the STSR R(oi), a Pre-

dicted Region is a region that encloses all possible locations of oi at time t

before the expiry time te, as defined below.

Definition 5.2. Predicted Region.

Given an STSR R(oi) = ⟨LR, V R, tr, te⟩, the predicted region of oi at time

t (tr ≤ t ≤ te), P
t
i =

[
P.x⊢, P.x⊣] × [

P.y⊢, P.y⊣
]
, is the maximal spatial
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Figure 5.1: Examples of STSR

rectangle expanded from LR with respect to V R, where

P.x⊢ = LR.x⊢ + V R.x⊢(t− tr)

P.x⊣ = LR.x⊣ + V R.x⊣(t− tr)

P.y⊢ = LR.y⊢ + V R.y⊢(t− tr)

P.y⊣ = LR.y⊣ + V R.y⊣(t− tr)

(5.2)

The definition above assumes that the predictive time t is no earlier than

the reference time tr, which can be easily relaxed. When t < tr, the pre-

dicted region is calculated with the “reverse” velocity bounding rectangle,

which is
[
V R.x⊣, V R.x⊢]× [

V R.y⊣, V R.y⊢
]
, and the predicted region is

P.x⊢ = LR.x⊢ + V R.x⊣(t− tr)

P.x⊣ = LR.x⊣ + V R.x⊢(t− tr)

P.y⊢ = LR.y⊢ + V R.y⊣(t− tr)

P.y⊣ = LR.y⊣ + V R.y⊢(t− tr)

(5.3)

As an example, Figure 5.1 shows the STSRs of three objects {o1, o2, o3},

and Table 5.1 specifies the details of these STSRs. Based on Definitions 5.1–
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Table 5.1: Details on the STSRs in Figure 5.1

STSR LR VR tr te

R(o1) [0.5, 1.5]× [0.2, 1.2] [1, 1]× [0.5, 0.5] 1 4
R(o2) [1, 2]× [5, 6] [1.2, 2]× [−1.4,−1] 2 5
R(o3) [5, 6]× [2, 3] [−1,−1]× [0.5, 0.75] 1 5

5.2, we can get the predicted regions of the objects at timestamp t = 3,

shown as dashed rectangles (P 3
1 , P

3
2 , P

3
3 ) in Figure 5.1.

5.2.2 Consistency Verification

An STSR R(oi) is valid at time t if R(oi) can capture all predicted locations

at all subsequent timestamps before te. Specifically, R(oi) is said to be

consistent with oi at t if both of the following two conditions hold: 1) the

exact location lti of oi remains in the predicted region P t
i inferred from R(oi);

and 2) the predicted location plsi remains in the predicted region P s
i for any

s (t < s ≤ te). Note that the consistency depends on the locations only;

R(oi) remains valid even if the velocity of oi at time t is out of the velocity

rectangle V R.

According to Definitions 5.1–5.2, it is straightforward for an object to

verify the consistency between its current movement and the STSR, by

simply checking the predicted locations of the object at every timestamp

before the expiry time. Since the linear model is used to derive the predicted

regions, the verification process can be simplified by checking predicted

locations at only two or three timestamps. In particular, the object first

tests whether the STSR is expired, i.e., t > te. If so, the algorithm returns

a negative answer immediately. Otherwise, the object continues to check

whether the exact location lti and the predicted location pltei at the expiry

time are covered by predicted regions P t
i and P te

i respectively. Besides, if
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Algorithm 5.1: Consistency Verification

Input : Current time t, exact location lti and velocity vti at t,
current STSR R(oi) = ⟨LR, V R, tr, te⟩

Output: true, if R(oi) is consistent with lti and vti ; otherwise false

1 if t > te then
2 return false;

3 Compute the predicted region P t
i w.r.t R(oi);

4 if lti is out of P
t
i then

5 return false;

6 Compute the predicted region P te
i w.r.t. R(oi);

7 Compute the predicted location pltei w.r.t. lti and vti ;
8 if pltei /∈ P te

i then
9 return false;

10 if t < tr then
11 Compute the predicted location pltri w.r.t. lti and vti ;
12 if pltri /∈ LR then
13 return false;

14 return true;

the reference time tr is after current time t, it is also necessary to check

whether the predicted location pltri is covered by the location rectangle LR.

The complete verification algorithm is shown in Algorithm 5.1.

We then give examples to show why checking predicted regions at these

two or three timestamps is sufficient to prove the consistency of an STSR.

Figure 5.2 shows two STSRs R(o1) and R(o2), where the solid points denote

the exact locations at current time t and the hollow points represent the

predicted locations inferred from the exact locations and velocities at t

based on Equation 5.1. As for o1, the reference time is early than t (i.e.,

tr < t < te). Since the exact location at t is inside the location rectangle

(i.e., lt1 ∈ LR1) and the predicted location at te is covered by the predicted

region (i.e., plte1 ∈ P te
1 ), R(o1) is consistent with all predictions from t to

te based on o1’s exact location and velocity at t. On the other hand, the

reference time of R(o2) is after t (i.e., t < tr < te). The predicted regions
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Figure 5.2: Examples of checking the consistency of STSR

between t and tr are thus extended backwards according to Equation 5.3.

If we test only the locations at the current timestamp and expiry time,

some false-positive STSR may pass the verification wrongly. As we can

see in Figure 5.2, although the predicted regions can bound the predicted

locations at t and te respectively (i.e., lt2 ∈ P t
2 and plte2 ∈ P te

2 ), the predicted

region P tr
2 fails to cover pltr2 . In this case, R(o2) is inconsistent with o2’s

prediction at tr. To prune such false positives, the algorithm continues to

verify the predicted location at the reference time. The STSR is valid if it

passes all three verifications, as the predictions at l
t

2, pl
tr
2 and pl

te
2 imply.

Otherwise, the algorithm returns a negative answer, as for lt2, pl
tr
2 and plte2 in

the example. Since linear interpolation is employed, if the predicted regions

at the two ending timestamps cover the corresponding predicted locations,

all predicated regions at intermediate timestamps do as well.

5.2.3 Predictive Queries

The STSR-based updating protocol introduced in this chapter is specially

optimized for predictive range queries in moving-object databases. Given
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a querying rectangle QR in location space and the querying time tq, the

predictive range query finds all the objects with predicted locations in QR

at time tq.

Definition 5.3. Predictive Range Query.

Given the moving-object database O at current time t, a predictive range query,

in terms of querying region RQ and querying time tq (tq ≥ t), finds all objects

in O whose predicted locations are inside RQ at tq, i.e., {oi ∈ O | pltqi ∈ RQ}.

Although we constrain our discussion in range queries throughout the

chapter, it is easy to see that other queries, such as the kNN query, can

be answered with a series of range queries†. If the database system always

returns the complete result to any query, the system is said to commit to

Exact Query Processing. When the system performance is more important

than the completeness of the query result, it is possible to reduce the work-

load by employing Approximate Query Processing instead. In the following,

we give a formal definition on approximate query processing.

Definition 5.4. α-Approximate Query Processing.

Given the moving-object database O at current time t, a predictive range query,

in terms of querying range RQ and querying time tq (tq ≥ t), finds a set R

of objects whose predicted location in RQ at time tq, i.e., {oi ∈ R | pltqi ∈

RQ, oi ∈ O}, and |R| ≥ α · |{oi ∈ O | pltqi ∈ RQ}|, 0 < α ≤ 1.

Approximate query processing is found to be sufficient in many real ap-

plications of moving-object databases. For example, in a traffic monitoring

system, the users are only interested in analyzing the traffic volume at spe-

cific time. A rough number of vehicles, instead of the exact vehicles, are

†See kNN query processing of the Bx-tree in [50] and the ST2B-tree in Chapter 4.
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more than enough for the users to understand the traffic conditions of the re-

gions of interest. In the following sections, we first focus on the design of the

STSR-based updating protocol for exact query processing. In Section 5.6,

we extend the protocol to support α-approximate query processing.

5.3 STSR-Based Updating Protocol

Generally speaking, the STSR-based updating protocol consists of two types

of updates: the active update and the passive update. In the following, we

discuss these two updates in detail.

5.3.1 Active Update

With the STSR-based updating protocol, each object oi is always associated

with one (and only one) STSR R(oi), which is stored in the database as well

as the memory of the client device. At each instance of time, the object

checks whether its STSR R(oi) remains consistent with its latest motion

prediction with its current location and velocity, using Algorithm 5.1. If

inconsistency exists, the object issues an active update to the database

including its current location and velocity.

At the server side, the database system continuously listens to any in-

coming active updates from the objects. If an object updates its location

and velocity at time t, the system updates the STSR of the object stored

in the database accordingly. Specifically, the system first calculates a new

STSR for oi based on the updated record. The new STSR is sent to the

object oi, while the old STSR of oi in the database is replaced by the new

one. An outline of the update procedure can be found in Algorithm 5.2.



164 Chapter 5. An Adaptive Updating Protocol for Moving Object Databases

Algorithm 5.2: Update with STSR

Input : Object oi, current location lti, current velocity vti , current
time t

1 Calculate a new STSR R(oi) = ⟨LR, V R, tr, te⟩ according to lti and vti ;
2 Send R(oi) to oi;
3 Replace the STSR of oi in the database with R(oi);

5.3.2 Query Processing and Passive Update

While active updates are initiated by the objects themselves due to signif-

icant motion changes, passive updates are issued when the database pro-

cesses queries. Typically, range queries in most moving-object databases

are processed using a filter-and-refine approach, which determines candi-

date objects based on their predicted regions and verifies them by probing

passive updates if necessary. A candidate set is constructed first by retriev-

ing all objects whose predicted regions overlap with the query region QR

at query time tq. For each candidate object oi, if the predicted region of oi

is completely covered by the query range, the object can be safely marked

as a positive answer to the query. Otherwise, a request is sent to the object

for an update on its current location and velocity, which will be used by

the server to make a more accurate prediction. Subsequently, the object is

listed in the query answer if the new predicted location is still inside the

query region. Algorithm 5.3 presents the general working flow for answering

range queries based on the concept of STSRs.

Let us recall the example shown in Figure 5.1, and see how predictive

range queries are answered with STSRs. If a range query is issued in the

rectangle region QR = [2.5, 4.5] × [2.5, 4.5] at querying time tq = 3, the

predicted regions can be calculated according to the inference equations

(Equations 5.2–5.3). Take object o3 as an example. The predicted region at

t = 3, P 3
3 , is the rectangle [3, 4]× [3, 4.5]. Since P 3

3 is covered by the query



5.4. Optimization Techniques 165

Algorithm 5.3: Range Query with STSR

Input : Query region QR, query predictive time tq
Output: Query result R

1 Find the object set O′ ⊆ O that the predicted region P
tq
i overlaps

with QR for any oi ∈ O′;
2 foreach oi ∈ O′ do

3 if P
tq
i is covered by QR then

4 Include oi in the query result R;
5 else
6 Send a probe request to oi for current location and velocity;

// When the update arrives at the system, Algorithm 5.2 is
triggerred.

7 Compute the new pl
tq
i with current location and velocity of oi;

8 if pl
tq
i ∈ RQ then

9 Include oi in the query result R;

10 return the (complete) query result R;

region completely, o3 is a positive answer given that o3’s STSR is consistent

with its current motion prediction. On the other hand, there is no overlap

between P 3
1 and QR, implying that o1 is a negative result. Unlike o1 or o3,

the case of o2 is more complicated, since the predicted region P 3
2 partially

overlaps with QR. To clarify if o2 is in the query result or not, the system

needs to probe a passive update from o2 for its current motion parameters,

i.e., the location and velocity. On receiving the update, the query result

and the STSR of o2 are updated accordingly.

5.4 Optimization Techniques

To put the STSR-based updating protocol in use, there are two issues to

be resolved. First, to minimize the updating workload of the system, it

is important to find the optimal STSR given an object update (Step 1 in

Algorithm 5.2), as the size of STSR has opposite effects on the numbers
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of active and passive updates. Second, considering the variety of indexing

structures in moving-object databases, objects are stored and retrieved in

different ways, even if the same linear motion model is adopted. Therefore,

it remains unclear so far how the STSR-based updating protocol can be

integrated into existing indexes. This is important for efficient retrieval

of candidate objects in the filter step of the query processing (Step 1 in

Algorithm 5.3).

In this section, we focus on the first issue. First, Section 5.4.1 provides a

detailed study on the effect of the size of STSR. Then, in Section 5.4.2, we

present an algorithm of finding the optimized STSR. Section 5.4.3 suggests

some optimization techniques to enhance the performance of the system

further. The integration problem will be discussed in the next section.

5.4.1 Cost Model

In this sub-section, we present a cost model estimating the probable valid-

ity of a given STSR. As introduced in Section 5.3, there are two types of

updates, namely Active Update and Passive Update. Either active or pas-

sive update leads to a new STSR. We use Pa(R(oi)) and Pp(R(oi)) denote

the probabilities of active and passive update happening on R(oi) before

the expiry time te. An STSR remains valid until the expiry time te with

probability:

Pvalid(R(oi)) = (1− Pa(R(oi))) · (1− Pp(R(oi))) (5.4)

An optimal STSR should maximize Pvalid. Intuitively, a larger LR and

V R lead to a lower Pa(R(oi)) but a higher Pp(R(oi)), and vice versa. To

maximize Equation 5.4, it is necessary to estimate both probabilities first.
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5.4.1.1 Active Update Probability

An active update is issued by object oi if the previous STSR is no longer con-

sistent with the current motion prediction. Given an STSR R(oi), Pa(R(oi))

is the probability of inconsistency happening before the expiry time te of

R(oi). Without the exact future trajectory of oi, it is hard to estimate

Pa(R(oi)). If we assume the previous motion model does not change, R(oi)

will always be valid until te. On the other hand, it is hard to indicate

possible changes in the motion without any additional knowledge on the

exact future trajectory. However, if all the similar historical trajectories are

recorded in the database, we can make an estimation on the active update

probability based on the statistical information. Unfortunately, this solu-

tion is impractical due to the high cost in both storage and processing on the

trajectories. To facilitate effective and efficient statistical estimation, the

database system maintains a set of recent STSR update records, as defined

below, to sample the historical trajectories of objects.

Definition 5.5. STSR Update Record.

An STSR update record is a tuple ⟨R(ok), ok, l
tu
k , vtuk , tu⟩, where k is the identity

of the associated moving object, tu is the time when the update record is

generated, ltuk and vtuk are the location and velocity of ok at tu, and R(ok) =

⟨LR, V R, tr, te⟩ is the latest STSR of ok before the update time tu.

The STSR update records are maintained in a separate table in the

database, called the Update Record Table. A record is inserted into the

table when: 1) an update from ok is received due to the violation on R(ok),

or 2) the previous STSR R(ok) expires. In the first case, the location and

velocity at update time are written into the record. In the second case,

NULL values are inserted instead. This implies that each STSR issued in
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Figure 5.3: Coverage of STSR on update records

the past has a record kept by the database system in the update history

table.

Next, we introduce the concept of Record Coverage to evaluate the ro-

bustness of a new STSR with respect to similar STSR update records in

the update record table. Specifically, an STSR R(oi) covers an STSR up-

date record U = ⟨R(ok), ok, l
tu
k , vtuk , tu⟩, if 1) R(oi).LR covers R(ok).LR, and

2) R(oi).V R covers both R(ok).V R and vtuk . Without ambiguity, we use

R(oi) ⊇ U denote the coverage relationship, in which U is a specific update

record. In Figure 5.3, we present an example on the coverage relationship

with an STSR R(oi) and four update records {U1, U2, U3, U4}. The loca-

tion rectangle LR of the update records in the physical space is shown with

solid thin borders on the left. Similarly, the velocity rectangle V R and the

velocity at update time vtuk are plotted in the velocity space on the right.

Given R(oi).LR and R(oi).V R as gray rectangles with dashed thick borders

in both spaces, R(oi) covers U2 by the definition above. U3 is not covered

by R(oi) since the updated velocity vtuk of U3 is out of the velocity rectangle

U3.V R.

When the STSR R(oi) covers an update record U , it remains consistent
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until the expiry time if oi follows the same trajectory of ok when U was

recorded for ok. This motivates the following definition of Coverage Rate to

approximate the probability of an active update on the new STSR R(oi).

Definition 5.6. Coverage Rate.

Given an STSR R(oi) and a group of similar STSR update records UNN , the

coverage rate of R(oi) is measured by |{Uk∈UNN | R(o)⊇Uk}|
|UNN |

We now discuss the similar update record set UNN in the above defini-

tion. To get all update records related to the object oi, the system retrieves

all update records Uk ∈ UNN , if the location rectangle Uk.LR and velocity

rectangle Uk.V R of the record Uk cover the location ltri and velocity vtri of

oi at reference time tr respectively. As a summary, we get the active update

probability from the historical perspective as

Pa(R(oi)) = 1− |{Uk ∈ UNN | R(oi) ⊇ Uk}|
|UNN |

(5.5)

5.4.1.2 Passive Update Probability

A passive update is issued when it is not sufficient to decide whether an ob-

ject meets the query with its STSR stored in the database, i.e., the predicted

region partially overlaps with the query region. To estimate the number of

passive updates for a given STSR, it is necessary to predict the probability

of partial overlap. To simplify the model and save computational cost, we

relax the probability by including any overlap even if the predicted region

is completely covered by the query region. This relaxation does not affect

estimation error much since the query range is usually not large enough to

cover many predicted regions.

Following the existing assumptions on the performance analysis of range

queries [87, 123], we assume the querying location and querying time follow
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the uniform distribution in spatial space and temporal space. The proba-

bility of a predicted region overlapping any range query at time t is thus

proportional to the volume of the predicted region.

For an STSR R(oi) issued at update time tu, the total volume of all

predicted regions at timestamps between tu and te is denoted by V ol(R(oi)).

By using the following notations to represent the side lengths of the location

rectangle and the velocity rectangle, i.e.,

LDx = LR.x⊣ − LR.x⊢

LDy = LR.y⊣ − LR.y⊢

V Dx = V R.x⊣ − V R.x⊢

V Dy = V R.y⊣ − V R.y⊢

(5.6)

The total volume can be further simplified as follows.

V ol(R(oi)) =
te∑

t=tu

(LDx + V Dx(t− tr)) · (LDy + V Dy(t− tr)) (5.7)

If the expected number of queries happening at each timestamp is N and

the volume of the whole spatial space is S, the probability of not meeting

any range query is approximated by the ratio of total volume with respect

to the expected query volume, i.e., 1−Pp(R(oi)) = max{1− V ol(R(oi))·N
(t−tr)·S , 0}.

Finally, we get the probability of a passive update as shown below.

Pp(R(oi)) = min

{
V ol(R(oi)) ·N
(t− tr) · S

, 1

}
(5.8)

5.4.2 Calculation of the Optimal STSR

Based on the cost model presented above, we present an algorithm to find

the optimal STSR R(oi) that minimizes the expected update probability.

The estimation on the active update probability Pa(R(oi)) depends on the

number of update records covered by R(oi). This implies that there are only
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Algorithm 5.4: Optimized STSR Computation

Input : Current location lti, current velocity vti , expiry time te
Output: The optimal STSR R(oi)

1 Search all update records covering lti and vti and store them in UNN ;
2 Initialize R(oi) with LR = {lti}, V R = {vti} and te;
3 Initialize covered update record set CR = ∅;
4 Initialize the cost Cost(R(oi)) = ∞;
5 while Cost(R(oi)) does not converge do
6 Set optimal expansion record U∗ as null;
7 Set optimal expanded STSR R∗ as null;
8 foreach update record Uj ∈ UNN do
9 Construct R′ by expanding R(oi) to cover Uj;

10 Estimate Pa(R
′) and Pp(R

′);
11 if Cost(R′) < Cost(R∗) then
12 Replace R∗ with R′;
13 Replace U∗ with Uj;

14 if U∗ is not null then
15 Replace R(oi) with R∗;
16 Move U∗ from UNN to CR;

17 return R(oi);

2|UNN | different values for the possible active update probability for R(oi).

Each possible value is associated with a group of covered records. This

motivates our optimization technique of modeling the record covering with

a series of discrete events. Algorithm 5.4 outlines the steps of finding the

optimal STSR for an object. To find the optimized STSR, the algorithm

iteratively refines the current STSR. An initial STSR R(oi) is first created

with minimal LR and minimal V R covering only lti and vti of oi respec-

tively. In each subsequent iteration, it tries to expand the STSR to cover

one more update record from the remaining uncovered records in UNN . If

the estimated update cost does not further decrease after an iteration, the

optimization procedure stops and returns the final STSR.

In Figure 5.4, we illustrate an example of the optimization algorithm,

using the data shown in Figure 5.3. The solid square points are the loca-
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Figure 5.4: An running example of STSR optimization algorithm

tion and velocity of the object oi at tr. At the beginning of the algorithm,

the STSR R(oi) is initialized with the minimum square covering the solid

square points in both spaces. Since the inclusion of any update record has

the same reduction effect on Pa(R(oi)), the optimal update record to cover

next actually has the minimum increase on the passive update probabil-

ity Pp(R(oi)). By checking all update records, U2 is selected according to

the selection criterion. The STSR R(oi) grows in both spatial and velocity

spaces to cover the update record U2, as shown in Figure 5.4(a). In the

second iteration, as shown in Figure 5.4(b), the update record U1 is picked

since the decrease on Pa(R(oi)) is still larger than the increase on Pp(R(oi)).

The algorithm terminates after the second iteration, when there is no other
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expansion that can further reduce the estimated cost. Note that this algo-

rithm works in a greedy manner. Hence, it does not guarantee convergence

to the global optimum.

The retrieval of the similar update record set UNN discovers all update

records covering both the location and velocity of the current object. To

support such retrieval process efficiently, an R-tree index is built on the

update records with respect to their location and velocity rectangles. Given

the index structure, UNN is simply retrieved with the issuance of a point

query at location lti and velocity vti . The computation of Pp(R(oi)) takes

constant time since the total volume V ol(R(oi)) can be summed up quickly

by Equation 5.7. In each iteration, all the remaining update records are

tested in sequence. This leads to O(m2) complexity in the worst case, if m

update records are retrieved from the index structure.

5.4.3 Reducing Computation Cost

The above STSR calculation algorithm runs in quadratic complexity in

terms of the number of STSR update records. Thus, the computation cost

on the STSRs can be very high if the system runs the Algorithm 5.4 for

every single update. We then introduce two simple strategies to reduce the

computational cost, namely the Static STSR, and Global Dynamic STSR

strategies. To distinguish them from the basic strategy, which finds the

optimal STSR for each object update individually, we call the basic solution

the Personal Dynamic STSR strategy.

With the Static STSR strategy, there is a group of fixed parameters

{∆l,∆v,∆t}. ∆l and ∆v are rectangles in the spatial and velocity space,

centered at the origins of corresponding spaces respectively. ∆t is a positive

constant value that specifies the length between the reference time and
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expiry time. For an update of object oi with location lti, velocity vti and

time t, the location rectangle LR of R(oi) is initialized by moving ∆l to

make lti align with the center of the ∆l, i.e.,

LR.x⊢ = lti.x+∆l.x
⊢

LR.x⊣ = lti.x+∆l.x
⊣

LR.y⊢ = lti.y +∆l.y
⊢

LR.y⊣ = lti.y +∆l.y
⊣

Similarly, the velocity rectangle V R of R(oi) is also constructed by ex-

panding the velocity with margins in ∆v on both dimensions. The ex-

piry time of R(oi) is t + ∆t. This strategy is supposed to incur mini-

mal computation cost, since the parameters are never updated after the

specification at the beginning. As an example, if the parameter set is

{∆l = (−1, 1) × (−2, 1),∆v = (−0.2, 0.1) × (−0.1, 0.3),∆t = 5}, object

oi updates at time tr = 10 with location lti = (10, 15) and velocity vti =

(1, 2), the new STSR R(oi) is constructed with LR = (9, 11) × (13, 16),

V R = (0.8, 1.1)× (1.9, 2.3) and te = 15.

The Global Dynamic STSR strategy, similar to the Static STSR strat-

egy, adopts a set of parameters {∆l,∆v,∆t} for all objects in the database.

However, the parameter set changes dynamically according to the system

workload, and each parameter set is valid only in a limited time inter-

val. All updates are handled with the global parameters that are valid at

the updating time, as they are with the static strategy. Compared with

the Static STSR strategy, the Global Dynamic STSR strategy incurs some

computational cost for calculating new parameter set when the previous

global parameter set is expiring. In addition, the computation on parame-

ter re-computation can be run off-line when the system has free CPU cycles
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available for use, without affecting the performance of the database system.

As shown in Algorithm 5.4, Personal Dynamic STSR strategy always

finds the optimal STSR for each object individually. However, as for the

Global Dynamic STSR strategy, the global STSR parameters should be

optimized for all objects and refreshed from time to time. In the following,

we present some modifications to Algorithm 5.4 to utilize it for finding the

optimal STSR parameters for Global Dynamic STSR strategy.

In order to find the optimal STSR for an object, Algorithm 5.4 (Line 1)

first retrieves the STSR update records UNN covering the updating location

of the object. However, in global STSR computation, there is no such focal

object, since the STSR parameters are object- and location-independent,

which will act on all objects without distinction. Therefore, instead of the

set of update records in UNN , all STSR update records maintained in the

system are utilized. Specifically, we first align the centers of all STSRs in the

update records to the origin of our coordinate system. After the alignment

operation, a virtual“focal” object is created. The location of the focal object

is at the origin; the velocity of the focal object the average speeds of the

objects on both dimensions. Then, Algorithm 5.4 is applied on the virtual

object and the aligned records. Finally, the global parameters {∆l,∆v,∆t}

are set according to the STSR returned by the algorithm, i.e., ∆l = LR,

∆v = V R and ∆t = te − tr.

5.5 Integration with Existing Indexes

The STSR-based updating protocol can be seamlessly integrated into almost

all existing indexing structures in moving-object databases. In this section,

we focus on incorporating the proposed protocol into two fundamental data
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structures: the TPR-tree [87] and the B+-tree based indexes [50, 123]. The

protocol can be applied to other mainstream indexes in similar ways.

5.5.1 The TPR-tree and Variants

As reviewed in Section 2.3, in the TPR-tree and its variants such as the

TPR∗-tree, each object has an entry in some leaf node, containing its lo-

cation and velocity at the reference time. To incorporate the STSR-based

updating protocol into the TPR-tree, we only need to make some minor

modifications on the leaf nodes. Instead of the exact location and velocity

of an object, the STSR of the object is stored as the underlying object rep-

resentation in the leaf node. Such change on the leaf nodes will not affect

the intermediate nodes. In the TPR-tree, each intermediate entry links to

a child node and maintains a spatio-temporal bounding rectangle, which

consists of a MBR and a VBR bounding the possible locations and veloc-

ities of objects within the corresponding child respectively. The location

rectangle LR and the velocity rectangle V R of an STSR work in the same

manner as the MBR and VBR of the TPR-tree. Therefore, no changes in

the intermediate nodes are required for enabling the integration.

On the other hand, since the overall structure of the TPR-tree remains

unchanged and every object entry, namely the STSR, can be regarded as

the traditional spatial-temporal bounding rectangle, the existing updating

and query processing algorithms on the TPR-tree can be reused without

any modification. Similarly, other auxiliary mechanisms applicable to the

TPR-tree, such as the R-link concurrency control strategy [75], can still be

adopted directly.

In summary, with the minor change on the leaf nodes, the STSR-based

updating protocol can be easily embedded into the TPR-tree and all afore-
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mentioned algorithms on the STSRs (Algorithms 5.2–5.4) can be applied

directly.

5.5.2 The B+-tree-based Indexes

Besides the TPR-tree and its variants, the B+-tree-based indexes, such as

the Bx-tree [50] and the Bdual-tree [123], make another prominent category of

indexes in moving-object databases. This category of indexes uses the B+-

tree as the basic indexing structure, which sorts objects by one-dimensional

keys. To enable the incorporation, similar to what we do to the TPR-tree,

object’s location and velocity are replaced with its STSR in corresponding

leaf entry of the underlying B+-tree and no other modifications are done to

tree structure. Actually, the B+-tree is a mature index implemented in all

commercial databases, which we cannot and should not change its internal

structure.

5.5.2.1 The Bx-tree

In the Bx-tree, the spatial space is divided into small cells of equal width

on both dimensions. Objects are ordered by the id of the cell covering its

predicted location at the reference time. This implies that the location

rectangle LR of the STSR stored in the Bx-tree must also be discretized to

get a linear order before inserting into the underlying B+-tree.

There are two possible solutions to support the STSR-based protocol

with the Bx-tree. The first one is to allow STSRs to occupy a few spatial

cells. In this case, the STSR will be discretized to more than one cells, and

hence it is necessary to store multiple copies of the STSR with different keys

in the tree. This solution shows high flexibility in the shape of the STSR,
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however, reducing the storage efficiency and incurring extra processing costs

on queries.

An alternate solution constrains the location rectangle of an STSR to

cover exactly one cell in the partitioned spatial space. Since the STSR is

constructed with constraint, the STSR of an object may not be the opti-

mal one found by Algorithm 5.4, but a “near-optimal” one that meets the

constraint. This solution sacrifices some of the tuning ability.

However, with the constraint on the shape of the location rectangle, each

object has only one entry in the B+-tree, just like it does in the original

design of the Bx-tree. Therefore, both the updating and querying algorithms

on the Bx-tree can be simply adopted without any modifications. Other

optimizations for the Bx-tree, such as object grouping and cell size tuning

introduced with the ST2B-tree in the previous chapter and the Blink-tree

concurrency control in [61], can also be applied directly. Based on this

consideration, in our empirical studies in Section 5.7, we adopt the second

solution while incorporating the STSR-based updating protocol into the Bx-

tree, where the location rectangle of an STSR always aligns with the space

partition of the Bx-tree.

5.5.2.2 The Bdual-tree

The Bdual-tree is another indexing structure built on top of the B+-tree, but

adopting the updating and querying algorithms of the TPR-tree. Similar

to the TPR-tree, the Bdual-tree also has the notions of MBR and VBR.

However, the MBR and VBR are not stored explicitly in the tree, but are

derived from the one-dimensional key. Specifically, the one-dimensional key

in the Bdual-tree is obtained based on the discretization of both spatial and

velocity space. Therefore, the MBR and VBR can be derived from the
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Figure 5.5: Initial location and velocity rectangle for Bdual-tree

corresponding key reversely.

Similar to the TPR-tree, the updating and querying algorithms of the

Bdual-tree are directly applicable to a Bdual-tree with the STSR-based up-

dating protocol. The only modification is on the initialization of the STSR

(second step in Algorithm 5.4). In particular, the STSR at the beginning

is initialized by expanding the location and velocity to the minimal cells

containing them. In Figure 5.5, we present the initial STSR for the same

moving object update in Figure 5.4. If the widths of the cells in the spatial

space and the velocity space are 1 and 0.1 respectively, the new STSR before

the first iteration in Algorithm 5.4 is constructed with LR = (1, 2)× (2, 3)

and V R = (0.1, 0.2)× (0.2, 0.3). The subsequent expansion iterations con-

tinue normally as introduced in Section 5.4.

5.6 Approximate Query Processing

In our updating protocol, any object, whose predicted region partly over-

laps with the querying range, must update its new location and velocity

to the server via a passive update. This requirement is crucial when the

system commits to returning fully accurate query answers, meaning the
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query results of Algorithm 5.3 are exactly the same as if all objects up-

date their movement information at every timestamp. This requirement

can be simply relaxed by allowing approximate query processing in the sys-

tem, when the users are comfortable with query results accurate and almost

complete. In this section, we explore more on this direction and propose

some optimization techniques on approximate query processing to enhance

the system performance. In the following, we first give a formal definition

on approximate query processing.

Definition 5.7. α-Approximate Query Processing.

Given a positive real number α (0 < α ≤ 1), the query processing algorithm

is α-approximate, if for any range query (QR, tq) with exact result R∗, the

algorithm always returns some query result R that R ⊆ R∗ and |R| ≥ α|R∗|.

The definition above implies that 1) there is no false positive in any

α-approximate query result and 2) the completeness ratio of approximate

query result is guaranteed when α is large enough. In particular, when

α = 1, it degenerates to traditional exact query processing. By relaxing

α to some number smaller than 1, the database engine is able to exploit

the weaker completeness requirement, by probing only a smaller fraction of

candidate objects.

In Algorithm 5.5, we outline the approximate range query processing

algorithm. Compared with the traditional query processing algorithm for

complete results in Section 5.3, the new algorithm has one additional pa-

rameter α, which indicates the minimal percentage of positive answers re-

turned to the user. Instead of executing passive updates in random order

on the candidate objects, the algorithm of approximate queries sorts all

the candidate objects based on some specific order. When retrieving the

new status of the objects in order, the algorithm stops and returns the cur-
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Algorithm 5.5: Approximate Range Query Processing with STSR

Input : Query range QR, query time tq, tolerance parameter α
Output: Approximate query result R

1 Find the object set C ⊆ O that the predicted region P
tq
i overlaps

with QR;
2 Sort all objects in C based on some pre-defined order, and initialize
result buffer R;

3 foreach oi ∈ C do
4 Remove oi from C;

5 if P
tq
i is totally covered by QR then

6 Include oi in the query result R;
7 else
8 Send a probe request to oi for current location and velocity;

9 Compute new pl
tq
i with new location and velocity;

10 if pl
tq
i ∈ RQ then

11 Include oi in the query result R;

12 if |R| ≥ α(|R|+ |C|) then
13 break;

14 return the (partial) query result R;

rent results when the result buffer has reached desirable quantity, i.e., when

|R| ≥ α(|R|+ |C|).

Given an index on the object set O, the complexity of retrieving object

set C (line 1) is O(log |O|); sorting objects in C (line 2) takes O(log |C|)

time; checking the objects (line 3-13) takes O(α|C|) time. The complexity

of Algorithm 5.5 is O(log |O| + log |C| + α|C|). Suppose |C| ≪ |O|, the

complexity of Algorithm 5.5 is ≀(log |O|).

Lemma 5.8 Algorithm 5.5 always returns α-approximate results to all predic-

tive range queries, regardless of the probing order on C.

Proof. It is straightforward to see that all objects selected in the result

buffer R must be exact, since all these objects are either 1) with predicted

region completely covered by the querying range or 2) with exact predicted

location in querying range after passive update. In the following, we prove
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Figure 5.6: Example of approximate query processing with STSR

the completeness in terms of the parameter α. Assume the exact answer

to the predictive range query ⟨QR, tq⟩ is R∗, we prove in the following that

the algorithm always returns some R with |R| ≥ α|R∗|.

After an iteration, the algorithm keeps two sets of the objects, R and C.

R contains all objects already verified as positive answers to query ⟨QR, tq⟩,

and C consists of all unverified objects. If R′ is the subset of C satisfying

the condition of the query ⟨QR, tq⟩, we have R∗ = R ∪R′, and

|R∗| = |R|+ |R′|

The algorithm terminates in two cases. In the first case, it stops when

|R| ≥ α(|R|+ |C|). Because |R′| ≤ |C|, we have

|R|
|R∗|

=
|R|

|R|+ |R′|
≥ |R|

|R|+ |C|
= α

In the second case, the algorithm visits all candidates and returns the exact

query result R = R∗. For both cases, the results will definitely satisfy the

condition in Definition 5.4.

In Figure 5.6, we present an example of approximate query processing.

In this example, there are four objects whose predicted regions overlap

with the query range. Their predicted locations (derived from their current
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locations and velocities) are represented by solid square points in the figure.

In particular, o2 is completely covered by the query range, implying that

o2 is an exact answer to the query. The other three moving objects, o1, o3

and o4, are required to report their current locations and velocities for more

accurate investigation. If the query quality parameter is set at 0.5, i.e.,

α = 0.5, and o1’s new predicted location turns out to reside in the querying

range QR, the passive updates for o3 and o4 can be waived. Even if o3

and o4 are exact answers to the query, the exclusion of o3 and o4 does not

risk the guarantee on the completeness. On the other hand, if the system

decides to probe with passive updates in the order of {o4, o3, o1}, all objects

have to update their new information, since both o4 and o3 are out of the

query range after the updates.

The example above implies that the performance of the approximate

query processing algorithm heavily relies on the order of probing passive

updates from candidate objects. If the order is not well optimized, the

approximate query processing may gain no benefit, still having to probe

updates from all candidate objects in the worst case. Intuitively, the exam-

ple above shows that the performance can be improved when objects that

are positive answers to the query are probed before other objects. In the

rest of the section, we study the design of the passive updating order.

5.6.1 Order for Individual Query

For every object oi in the candidate set C, we assume that σi is the prob-

ability of oi in the result of query ⟨QR, tq⟩. Our greedy local ordering

method simply ranks all the candidates objects on the probabilities {σi}

non-increasingly. In the following, we prove that sorting candidate objects

in this order optimizes the expected number of passive updates for the ap-



184 Chapter 5. An Adaptive Updating Protocol for Moving Object Databases

proximate processing on any single query ⟨QR, tq⟩.

Theorem 5.9 The order based on the probabilities {σi} for query ⟨QR, tq⟩

minimizes the expected number of objects requested for passive updates, re-

gardless of the quality parameter α.

Proof. Assume that we use another order {σπ(i)} instead of the non-increasing

order {σi}. There is at least one pair of objects oi and oj that σi > σj and

π−1(i) > π−1(j). By swapping between oi and oj in the object order, the

probability of seeing ith object in the query result increases. Therefore,

the expected number of probes to answer α-approximate predictive range

query is less. Therefore, such swap must the query processing efficiency by

incurring less passive updates by expectation. This implies that it is always

optimal by sorting the objects based on their σis.

Although the theorem above proves the optimality of the greedy order-

ing method, it remains difficult and unclear on how to calculate the exact

probability σi. We simply use the ratio of overlap as an estimation of the

probability σi. Recall the example in Figure 5.6. If σi is defined as the

overlapping ratio, we have σ1 = 0.425, σ2 = 1, σ3 = 0.33 and σ4 = 0.25.

The resulting order will be {σ2, σ1, σ3, σ4}. Note that o2 will not be probed

since the probability of o2 in the query result is exactly 1.

5.6.2 Order for Multiple Queries

Local ordering minimizes the expected number of passive updates for a

single query. When there are multiple queries under processing at a sin-

gle timestamp, running local orderings on all these queries may not be an

optimal option, since some objects may involve in multiple queries. In Fig-

ure 5.7, we show an example of multiple predictive range queries involving
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O1

O3 O4
O2 QR1
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Figure 5.7: Example of multiple approximate query processing

the predicted locations of four moving objects. The optimal ordering for the

first query ⟨QR[1], tq[1]⟩ is no longer optimal for such query combination.

For query ⟨QR[2], tq[2]⟩, there is no need to probe any objects except o2

whose predicted region overlaps with QR[2]; for query ⟨QR[3], tq[3]⟩, o2 and

o4 should be probed. Therefore, {σ2, σ4, σ1, σ3} is a better order since we

can avoid probing o1 if α = 0.5.

Assuming the system receives a group of queries as {⟨QR[1], tq[1]⟩, . . . ,

⟨QR[h], tq[h]⟩, . . .}, submitted to the system on the same timestamp, we use

σh
i to denote the probability of oi’s predicted location resides in QR[h] at

query predictive time tq[h]. An optimal global ordering provides an order on

all candidate objects, which is capable of minimization on expected passive

updates on these objects. Unfortunately, the problem of finding optimal

global ordering is NP-hard. In the following, we present a polynomial-time

reduction from Multiset Covering Problem [84] to global ordering problem.

Theorem 5.10 Finding optimal global ordering is generally NP-hard problem.

Proof. InMultiset Covering, there is a multisetM = {(I1, n1), . . . , (Ik), (nk)}

indicating there are ni copies of item Ii in the set. Another set of candidate

covers, i.e., S = {S1, S2, . . . , Sm}, are also provided, in which each Sj is
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Figure 5.8: Example of reduction from multiset covering to global ordering

itself a multiset on the item collection {I1, . . . , Ik}. A cover subset S ′ ⊆ S

is a valid cover of the multiset M , if every Ii appears at least ni times in S ′.

A cover set S∗ is optimal, if S∗ is the smallest among all valid cover sets.

Interestingly, the problem is NP-hard, even when there are only 2 items,

i.e., k = 2. Therefore, we only need to construct a reduction from multiset

covering problem with k = 2 to our global ordering problem. In particular,

we construct k = 2 parallel queries in the 2-dimensional space, as is shown

in Figure 5.8. For every candidate cover Sj, we build a predicted range

covering the left query with overlap of
n1j

n1
and right query with overlap of

n2j

n2
. Here, nij is number of items Ii in cover Sj and ni is the expected num-

ber of objects in target multiset. It is thus easy to show that the optimal

cover set can be retrieved, if the optimal global ordering on our problem

is available. This proves that the problem of computing global ordering is

also NP-hard.

Due to the hardness of the problem, we simply apply some greedy strat-

egy to construct some suboptimal global ordering on the candidate objects,

as is shown in Algorithm 5.6. In our algorithm, we maintain a set of Unre-

solved Queries. At the beginning, the set of unresolved queries Qu is initial-

ized by including all queries from the users, i.e., Qu = {⟨QR[1], tq[1]⟩, . . . ,
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Algorithm 5.6: Multiple Query Processing

Input : Query set Q = {⟨QR[1], tq[1]⟩, . . . , ⟨QR[h], tq[h]⟩, . . .},
tolerance parameter α

Output: Query result set R = {R1, . . . , Rh, . . .}
1 Initialize unresolved query set
Qu = {⟨QR[1], tq[1]⟩, . . . , ⟨QR[h], tq[h]⟩, . . .};

2 Initialize query result set R = ∅;
3 while Qu ̸= ∅ do
4 Find oi with maximal

∑
⟨QR[h],tq [h]⟩∈Qu σh

i ;

5 Send probe request to oi for passive update;
6 Update all query result in Qu based on current status of oi;
7 foreach ⟨QR[h], tq[h]⟩ ∈ Qu do
8 if enough results are available in Rh for ⟨QR[h], tq[h]⟩ then
9 Include current results Rh in R;

10 Remove ⟨QR[h], tq[h]⟩ from Qu;

11 return R = {R1, . . . , Rh, . . .};

⟨QR[h], tq[h]⟩, . . .}. In following iterations, the algorithm selects next object

oi for probing with the maximal probabilities to the unresolved queries, i.e.,∑
⟨QR[h],tq [h]⟩∈Qu σh

i . After receiving the recent status of oi, our algorithm

updates all the query results remaining in Qu. A query ⟨QR[h], tq[h]⟩ is

removed from Qu, if |Rh| ≥ α(|Rh| + |Ch|), where Rh is the current result

to the query and Ch is the objects waiting for further investigation. The

algorithm thus recalculates the global ordering of the remaining objects and

starts next iteration. The iterations terminate when all queries in Qu are

cleared.

Suppose we have n objects to check, the complexity of finding the oi

(line 4) is O(log n). In the worst case, we need to probe all n objects to

resolve all the queries. In each iteration, only one object is probed and

eliminated, whereas n = n− 1; and the object is validated with each query

in Qu. Therefore, the complexity of Algorithm 5.6 is O(n log n+ n|Qu|).
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5.7 Experimental Evaluation

In this section, we report our empirical studies that evaluate effectiveness

and efficiency of the STSR-based updating protocol.

5.7.1 Experimental Settings

Three sources of real and semi -real datasets were used in our experiments.

Figure 5.9 shows the maps of road networks of the datasets.

TRK: TRK is a real dataset provided by R-tree Portal [2], which contains

the trajectories of 276 trucks moving in Athens metropolitan area (see

Figure 5.9(a)). The trucks update at a rate of 30sec.

EC: EC is another real dataset as a part of the e-Courier datasets [1].

e-Courier keeps track of the movements of all its couriers all over UK

(see Figure 5.9(b)). The couriers report their locations (GPS records)

every 10sec. We crawled e-Courier for one week and extracted 587 objects

(i.e., trajectories) that moved nonstop for over 120ts, i.e., had at least 120

continuous updates in the system.

SIN: Due to the lack of large real moving object datasets, we used Brinkhoff

generator [12] to generate a set of synthetic movements based on the real

road map of Singapore (see Figure 5.9(c)). We generated SIN datasets of

different sizes and used the one containing 100K objects by default.

Table 5.2 summarizes the specifications of the three data sources above,

including the data space, maximum object speed and the mapping from

physical time to logical time (a timestamp).

On the other hand, the query load of the experiments consists of a given

number of predictive range queries. Each of these range queries is square-
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(a) TRK: Athens metropolitan (b) EC: UK

(c) SIN: Singapore

Figure 5.9: Maps of various data sources

sized, with a preset side length. Since the datasets differ in data space size,

we use qlen to represent the percentage of the side length of the query over

the length of the entire data space. In the experiments, qlen is varied from

0.25% to 4% (e.g., 120–2058m for SIN datasets). Queries follow the same

distribution as the objects. Specifically, the location of a randomly picked

object is used as the center of the query. The average predictive time of

queries varies from 1ts to 256ts. The query frequency qfqy varies from 1

to 256, meaning that there are 1 to 256 queries per timestamp on average.

In summary, Table 5.3 lists the parameters and their values used in the

experiments, where default values for variable parameters are shown in bold.
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Table 5.2: Specifics of data sources

Data source TRK EC SIN

Space (long side) 47255.6m 287409.0m 51455.0m
Maximum speed 33.5m/s 54.3m/s 325m/s
Logical timestamp 30sec 10sec 1sec

Table 5.3: Experimental parameters and values

Parameter Setting

Datasets TRK, EC, SIN
Time duration 120ts

Number of objects numObj 25K, 50K, 100K, 200K, 400K
Query side length qlen 0.25%, 0.5%, 1%, 2%, 4%
Query predictive time qpdt 1ts, 4ts, 16s, 64ts, 256ts
Query frequency qfqy 1, 4, 16, 64, 256
α 0.2, 0.4, 0.6, 0.8, 1.0

∆t 1ts, 2ts, 4ts, 8ts, 16ts, 64ts, 256ts
δl 10m, 40m, 160, 640m, 2560m
δv 1m/ts, 4m/ts, 16m/ts, 64m/ts, 256m/ts

All the programs are implemented in C++ and run on a PC with 2.33 GHz

Intel Core2 Duo CPU, 2.25 GB RAM and 200 GB SATA disk.

5.7.2 The Results

In this section, we discuss the experimental results on the basis of the set-

tings introduced in previous section. Specifically, Section 5.7.2.1 focuses on

the effectiveness of STSR-based protocol without using any index. Sec-

tion 5.7.2.2 compares our proposal against existing updating protocols.

Then, in Section 5.7.2.3, we show the results of the performance of ap-

proximate query processing. Section 5.7.2.4 presents results when different

implementation strategies are applied on different index structures.
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Figure 5.10: Effect of δl on TRK, EC and SIN

5.7.2.1 The basic STSR-based updating protocol

We first studied the performance of the basic STSR-based updating pro-

tocol, regardless of the underlying index. We investigated the effect of the

three elements of the STSR: the spatial and velocity rectangles and the

valid time duration, i.e., the length of time between expiry time and ref-

erence time. Following the instructions in Section 5.4.3, a static global

parameter set is used in each experiment in this section, where

∆l.x
⊢ = ∆l.x

⊢ = −δl

∆l.y
⊣ = ∆l.y

⊣ = δl

∆v.x
⊢ = ∆v.x

⊢ = −δl

∆v.y
⊣ = ∆v.y

⊣ = δl

(5.9)

The parameters δl, δv, and ∆t, whose values are listed in Table 5.3, are

introduced in the experiments to control the size of the STSR.
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Figures 5.10–5.12 show the effect of δl, δv and ∆t on the updating work-

load and the quality of query results.

First, it is worth noting that query precision and recall are not affected

by the shape of the STSR. During query processing, an object is added to or

excluded from the results if its predicted region is fully contained or disjoint

with the query region. Otherwise, a passive update is invoked. The query

precision and recall are primarily decided by the predictability of object’s

motion itself, i.e., predicting based on the location and velocity of the object

at query issuing time.

Hence, we put our focus on the number of updates. As δl increases,

meaning a larger spatial rectangle LR of the STSR, the number of active

updates decreases at the expense of more passive updates, resulting in an

increase in the total number of updates. As shown in Figure 5.11, δv has

a similar effect on the numbers of both updates. With a larger δv, the

predicted region expands faster. The STSR is more likely to enclose the

location of the object and fewer active updates are incurred. On the other

hand, a larger predicted region has higher probability to intersect with the

query region and more passive updates are required consequently.

The temporal duration of STSRs ∆t, on the other hand, affects the

update performance differently. The number of active updates and the total

number of updates both decrease with a longer temporal length ∆t. When

∆t is smaller than a given threshold (i.e., 4ts for TRK and EC, 16ts for SIN),

the smaller ∆t is, the faster the STSR expires. In this case, the number of

active updates increases with smaller ∆t. However, when ∆t is larger than

the threshold, the number of active updates increases slowly with larger ∆t.

Since the expiry time is far away in the future, a small deviation on the

velocity will lead to a quite large distance between the predicted location
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Figure 5.11: Effect of δv on TRK, EC and SIN

and the predicted region at the expiry time. Therefore, the STSRs stand

higher probability to fail in the consistency verification. On the other hand,

the number of total number of updates is more stable since the increase in

active updates also brings in a decrease in passive updates in return.

5.7.2.2 Motion Functions

We next investigated the effect of different updating protocols on both up-

dating and querying performance. We compared the STSR-based updating

protocol with the improved spatial bounded updating protocol [95], as in-

troduced in Section 5.1. In [95], the authors propose the improved spatial

bounded updating protocol together with the STP-tree, which integrates

the protocol into the TPR-tree. In the rest of this section, we call this

improved spatial bounded updating protocol “STP” for short.

The STP updating protocol uses recursive functions to model the move-
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Figure 5.12: Effect of ∆t on TRK, EC and SIN
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Figure 5.13: Effect of query predictive time qpdt on TRK
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Figure 5.14: Effect of query predictive time qpdt on EC

ments of objects. Specifically, a client (object) keeps h historical records

and derives a recursive motion function from the h records. Then, a D di-

mensional polynomial function is derived as a simple approximation of the

recursive motion function. On an update, the polynomial function is sent

to the server, and the system can predict object location using the polyno-

mial function. The recursive function is more complex than the polynomial

function and therefore is supposed to make a more accurate prediction on

the object’s future locations. An active update is issued if the spatial error

between the predicted locations derived by the polynomial in the server and

the recursive function is larger than the error bound de in any of the sub-

sequent H timestamps. In our experiments, h, D, de and H are set to 8, 5,

160m and 30ts respectively. The query processing of the STP is similar to

that of the STSR, i.e., the system asks for an update (passive) if it cannot

determine whether the object is inside the query region or not.
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Figures 5.13–5.14 show the results while varying the query predictive

time qpdt on TRK and EC respectively. Since the results in this section

are largely related to the predictability of the moving object data, it makes

more sense to investigate the real data. Regarding this, we only show results

on the two real datasets, i.e., TRK and EC, throughout this section.

For both TRK and EC, the STP method results in a higher query preci-

sion, while the STSR protocol has a higher query recall. The differences in

precision and recall increase with the query predictive time. On TRK, when

qpdt = 16, the precision of STSR is about 10% less than that of STP; how-

ever, the recall is about 1.6times of that of STP. On EC, when qpdt = 64,

the difference in query precision is less than 0.05, while difference in query

recall is as large as 0.5.

Considering the updating load, the number of active updates is less

affected by the query predictive time for both methods, while the STSR

effectively incurs fewer the number of active updates. The number of total

updates of the STP is pretty stable with the predictive time. However, as

for the STSR protocol, the number of total updates increases rapidly with

the query predictive time. Since the predicted region is larger with longer

predictive time, the objects are more likely to issue passive updates. When

qpdt = 16, the number of total updates of STSR protocol is 20% less than

that of STP; when qpdt = 64, on EC, the number of total updates of STSR

is slightly higher than that of STP.

As shown in Table 5.2, one timestamp of TRK(EC) corresponds to

30sec(10sec). Therefore, a predictive time of qpdt = 64 means to find

the objects in specific region after 32mins(10mins). Based on this consid-

erations, although our experiments show that STSR incurs higher updating

costs than STP on EC when query predictive time is larger than 64, we



5.7. Experimental Evaluation 197

argue that the prediction is meaningful only on a near future.

5.7.2.3 Approximate Query Processing

Next, we study the performance of processing approximate queries (Algo-

rithm 5.5 and Algorithm 5.6). First, Figures 5.15–5.16 show the results on

TRK and EC datasets varying the approximate query quality parameter α.

In the figures, “STSR” and “STP” represent exact query processing with

STSR and STP protocols; “α-STSR” and “α-STP” denote corresponding

approximate query processing algorithms. Note that when α = 0, there is

no passive updates at all. When α = 1, the approximate query processing

algorithm becomes the same as the exact query algorithm, returning the

complete results to all queries. Algorithm 5.6 is adopted here to process

multiple queries at a timestamp, and, on average, there are 16 queries at

each timestamp by default.

Generally, a larger value of α leads to a lower query precision but higher

recall, where the increase in query recall is more significant. The query

recall increases linearly with α, since the larger α is, a larger percentage

of predicted answers are required before the approximate query processing

terminates. On the contrary, the query precision increase slightly since

when more objects are returned for a query, the chance of a false positive

becomes higher. On the other hand, considering the updating workload, we

can hardly observe any effect of α on the number of active updates, however,

there is a distinct increase in the total number of updates with α. This is

because the approximate query processing largely reduces the number of

query-driven, passive updates. The fewer answers are required by a query,

the larger the save on passive updates is. As for EC dataset, when α = 0.6,

i.e., the approximate query processing algorithm returns 60% of the positive
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Figure 5.15: Effect of approximate query parameter α on TRK (order for
multiple queries)
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Figure 5.16: Effect of approximate query parameter α on EC (order for
multiple queries)
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Figure 5.17: Effect of query frequency qfqy on TRK

query answers, with a decrease of 12% (3% resp.) on the query recall, the

STSR (STP resp.) updating protocol saves upto 30% (15% resp.) on the

number of updates. As we can see in the figures, to enable approximate

queries is an effective and efficient option to further reduce the updating

workload.

Second, we examine the effect of query frequency qfqy on the perfor-

mance of approximate query processing. We varied the number of queries

per timestamp from 1 to 256. The performances of 0.5 -approximate queries

(α = 0.5) on both datasets are shown in Figures 5.17–5.18 respectively. In-

tuitively, the query frequency qfqy does not affect the query precision and

recall, as shown in Figure 5.18 for EC dataset. As for TRK dataset in Fig-

ure 5.17, the query precision and recall oscillate with qfqy, which implies

that qfqy has insignificant impact on the query accuracies. Since the pre-

cision and recall on TRK is quite low compared to those of EC, they are
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Figure 5.18: Effect of query frequency qfqy on EC

more easily affected by the randomness of the experiments. As for the up-

dates, it is as expected that the number of active updates is not affected by

the query frequency, while the total number of updates increases for both

exact and approximate queries. Naturally, the number of passive updates

increases linearly with the number of queries per timestamp. It is notable

that the total number of updates with approximate query processing in-

creases slowly than it is with exact query processing. The gap between the

increasing rates is practically proportional to the value of α, which is 0.6 in

Figures 5.17–5.18.

Note that in Figures 5.15–5.16, the STSR-based updating protocol im-

proves the query recall and largely reduces the number of updates at the

expense of little decrease in query precision. The performances of the two

protocols are consistent with our previous findings in Section 5.7.2.2. We

do not present the computation cost of approximate query processing, since
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Figure 5.19: Effect of number of objects numObj on SIN

the additional cost of computing the overlaps and sorting the candidate

objects in Algorithm 5.6 is hardly perceptible, compared to the updating

cost.

5.7.2.4 The STSR strategies

We now proceed to study the performance of different STSR strategies as

introduced in Section 5.4.3, namely the Static STSR, the Global Dynamic

STSR and the Personal Dynamic STSR. We implemented all the three

STSR strategies on top of both the TPR-tree and the Bx-tree as explained

in Section 5.5. In the remaining part of this section, ‘BX’/‘TPR’ denotes

using the Bx-tree/TPR-tree with static STSR; ‘BX-G’/‘TPR-G’ denotes

using the Bx-tree/TPR-tree with global dynamic STSR; ‘BX-P’/‘TPR-P’

denotes using the Bx-tree/TPR-tree with personal dynamic STSR.

We first examined the scalability of all update strategies by varying



202 Chapter 5. An Adaptive Updating Protocol for Moving Object Databases

the object cardinality from 25K to 400K. Figure 5.19 illustrates the total

processing time and the number of updates. The total processing includes

all computations on queries, STSR computation and updates of the moving

objects, in 120 consecutive timestamps.

Comparing to the static and personal dynamic strategies, global dy-

namic strategy largely decreases the amount of active updates, while adds

a number of passive updates. The personal dynamic strategy, on the other

hand, reduces the number of passive updates at the expense of more active

updates. This is because that with global dynamic strategy, the size of

STSRs is much larger than those generated by personal dynamic strategy.

Second, we examined the effect of various query parameters on the per-

formance of different STSR update strategies. From Figure 5.19, we have

already seen that the ‘TPR-G’ requires the highest execution time and is

the least scalable in terms of object cardinality, while the ‘TPR’ always in-

curs the highest update times. For clear illustration, we leave ‘TPR-G’ and

‘TPR’ out. The results of these two methods are omitted in the following

figures and analysis.

Figure 5.20 shows the performance of STSR strategies with respect to

different query size. Specifically, the query side length varies from 250 to

4,000m. In general, the Bx-tree with global dynamic STSR is the best

among all considering both total processing time and total number of up-

dates. The Bx-tree with static STSR, although performs good in terms of

total proceeding time, sends out the largest total number of updates. For all

methods except ‘TPR-G’, the number of passive updates increases with the

query size, since the STSRs of more objects intersects with the query region.

For the ‘TPR-G’, the STSR is relatively large, and thus the performance is

less affected by the query size.
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Figure 5.20: Effect of query side length qlen on SIN
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Figure 5.21: Effect of query predictive time qpdt on SIN
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Figure 5.22: Effect of query frequency pfqy on SIN

Figure 5.21 shows the effect of query prediction time qpdt on different

STSR strategies. We vary the query prediction time from 0 (current query)

to 120ts. As the prediction time changes, the total processing time shows

the similar trends as those of other parameters, i.e., the ‘BX-G’ and ‘BX’

both run much faster than the ‘GX-P’ and ‘TPR-G’. As ‘BX-G’ tunes the

parameters for the STSR periodically, it has the best performance in terms

of the total processing time. ‘BX-P’ also minimizes the total number of

updates, however, at the expense of longer processing time (for computing

the parameters for objects individually). In general, as the predication time

increases, more passive updates are incurred.

Finally, we study the effect of query frequency qfqy on the performance

Figure 5.22 shows the effect of query prediction time. For the STSR strate-

gies, with more frequent queries, the number of passive updates increases

a lot while the number of active updates decreases slightly. It is worth
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noticing that the total processing time is not much influenced by the query

frequency, although the total number of queries increases a lot (by 16times).

The time for computing STSR dominates the processing time of the whole

index.

5.7.3 Result Summary

In summary, the proposed STSR-based updating protocol achieves reason-

ably good query precision and outperforms the STP updating method re-

garding the query recall. In addition, the STSR-based updating protocol

can effectively reduce the updating workload when query predictive time

is in a reasonable range. Enabling approximate query processing can fur-

ther reduce the updating workload to a large extent while still provide a

guarantee on the quality of query results. Among all the STSR strategies

and indexing structures, the ‘BX-G’, i.e., the Bx-tree with the global dy-

namic STSR strategy, achieves the best performance with respect to the

computational and updating workload in general.

5.8 Summary

In this chapter, we propose a generic updating protocol for moving-object

databases. By utilizing the concept of Spatio-Temporal Safe Region (STSR),

objects actively send motion updates to the database server only when the

prediction error of their current movement is no longer bounded. To guar-

antee the accuracy of predictive query answers, the database server asks

objects for their latest locations and velocities, if they are potential answers

to a query. To minimize the updating workload, a cost model is presented

to estimate the approximate updating cost, depending on the most recent
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update records in the system. Based on the cost model, an algorithm is

designed to construct an optimized STSR that minimizes the expected up-

dating cost. To cut the cost further, the STSR-based updating protocol is

extended by allowing incomplete query answers with bounded accuracy. We

carefully evaluate three different implementation strategies, including static

STSR, dynamic global STSR and dynamic personal STSR. Experiments on

the TPR-tree and the Bx-tree show that the STSR based protocol signifi-

cantly reduces the updating cost while achieving high accuracy of predictive

query answers.



Chapter 6

Conclusion

6.1 Conclusion

With the increasing availability of accurate geo-positioning, e.g., using GPS

receivers, and the rapid deployment of mobile devices capable of commu-

nicating wirelessly with their surroundings, it is fast becoming possible to

track the locations of large populations of moving objects, e.g., individu-

als with mobile phones or vehicles with on-board navigation systems. This

capability opens up a wide range of applications, including a variety of mon-

itoring applications, traffic control, tourist services, and mobile commerce.

Such applications greatly rely on the ability to manage and query these

objects. While databases are commonly used to store, organize and re-

trieve large amount of data, moving-object databases are specially designed

for these emerging applications, considering the characteristics of moving

objects, especially the mobility.

It is well-known that indexing techniques are of primary importance to

the performance of any database. While there are quite a number of index-

ing techniques in the literature, each of them claims that it outperforms the

others, rendering it hard to choose one for a specific application. In this

207
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study, we first proposed a benchmark for evaluating important performance

properties of techniques for indexing moving objects. The benchmark in-

cludes a general dataset and workload generator, together with a standard

evaluation suit. The generator can produce data simulating moving ob-

jects under various circumstances; the evaluation suit examines almost ev-

ery aspect of an index. We applied the benchmark to six representative

moving-object indexes, i.e., the TPR-tree, TPR∗-tree, RUM∗-tree, Bx-tree,

Bdual-tree and STRIPES. To the best of our knowledge, no previous studies

have compared this many indexes under the same standard. The results

of the benchmark study provide valuable insights into the strengths and

weaknesses of these indexes, which can serve as guidelines for future index

development and the selection of a proper index for a specific application.

In our benchmark study, it was found that the index performance is seri-

ously affected by the distribution of objects. For the purpose of eliminating

such performance degradation, we then examined the problem of tuning

moving-object indexes to make it adaptive to the diversity and change of

workloads in various applications. We first identified several forms of data

diversity in moving-object applications and their impacts on existing in-

dexes. Then, we proposed the ST2B-tree index that can automatically ad-

just itself to avoid performance degradation caused by these data diversity.

To deal with the non-uniformity in space, the ST2B-tree dynamically par-

titions the space into regions of different object densities. For each region,

the ST2B-tree manages the objects inside with a uniform grid, whose gran-

ularity of the grid is adaptively adjusted to fit the object density. To adapt

to the changes with time, the ST2B-tree employs a “multi-tree” technique,

where two sub-trees are used to index objects regarding their last update

time. The basic idea is to rebuild the sub-trees periodically and alternately.
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During the rebuilding process, the space partitioning is adjusted according

to the latest recorded object distribution. The results of our experimen-

tal study showed the superiority of the ST2B-tree over the other indexes

and confirmed that the ST2B-tree is adaptive to the variety and changes in

workloads of moving object applications.

Given the numerous moving-objects indexes in the literature, there is lit-

tle room left for improving performance through better indexing techniques.

Based on this consideration, we further explored the possibility of perfor-

mance optimization by reducing the updating workload of a moving-object

database. A generic updating protocol was developed. With the concept

of STSR, the new protocol relaxes the accuracy of object tracking, leading

to a decrease in the number of updates. However, lower tracking accuracy

results in higher inaccuracy of query results. To guarantee the query accu-

racy, updates are requested from objects that are potential answers of the

query given the imprecise tracking information. We presented a cost model

that analyzes the approximate updating cost and an algorithm of construct-

ing the optimized STSR was introduced to minimize the expected updating

workload. We also showed that the updating protocol is independent of the

underlying index structure and can be easily incorporated into any existing

indexes. The experimental results on various real moving-object datasets

showed that the proposed updating protocol significantly reduces the up-

dating workload while achieving high accuracy of query answers.

While most of the works on moving-object databases focus on designing

efficient indexing techniques and query processing algorithms, this study

opens the door to performance improvement from totally different perspec-

tives. While the impact of data varieties on database performance has been

overlooked, this study is the first to investigate the tuning problem exclu-
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sively for moving-object databases to handle these varieties. Furthermore,

no previous work has ever explored the possibility of improving the perfor-

mance by reducing the workload in the first place, with the help of a more

elegant updating protocol.

6.2 Future Work

The benchmark presented in this study has already covered various datasets

from uniform datasets in the ideal case to datasets that simulate in-network

objects. Although we tried our best to simulate as many circumstances as

possible, lack of real moving-object datasets remains a common problem of

current moving-object benchmarks and researches. Although we have found

some real datasets as used in Chapter 5, available real datasets are quite

limited, especially in terms of size. A promising future work is to extend

the benchmark with real datasets of large size.

In Chapter 4, we identified the necessity of tuning and presented a

generic tuning framework for moving-object databases. Although the tun-

ing framework is generally applicable to all moving-object databases, we

only discussed and provided guidelines for the tuning of the index. A direct

extension of work in this direction is to explore the potential performance

benefits obtained by tuning other components of the database, such as the

cache and the query optimizer.

Finally, the results in Chapter 5 revealed that the quality of predictive

query answers largely relies on the predictability of the object’s motion.

It was also shown that the predictability is practically independent of the

motion model adopted. Since objects can control there own movements, it

is hard to predict their future locations and motions. However, considering
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the fact that an object’s movement is typically restrained by the underlying

road network in practice, it will be interesting to utilize historical statistics

on the road network to make a more precise prediction.





Previously Published Materials

Chapter 3 revises a previous publication [20].

Chapter 4 revises previous publications [22, 21].

Chapter 5 revises previous publication [23].
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meta-index for spatio-temporal moving object databases. In DAS-
FAA, pages 653–660, 2008. [cited at p. 9]

[45] Kathleen Hornsby and Max J. Egenhofer. Modeling moving objects
over multiple granularities. Ann. Math. Artif. Intell., 36(1-2):177–194,
2002. [cited at p. 8, 14]

[46] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A generic framework
for monitoring continuous spatial queries over moving objects. In
SIGMOD Conference, pages 479–490, 2005. [cited at p. 41]

[47] Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K. H. Tung.
Continuous skyline queries for moving objects. IEEE Trans. Knowl.
Data Eng., 18(12):1645–1658, 2006. [cited at p. 38]



Bibliography 219

[48] Glenn S. Iwerks, Hanan Samet, and Kenneth P. Smith. Continuous k-
nearest neighbor queries for continuously moving points with updates.
In VLDB, pages 512–523, 2003. [cited at p. 41]

[49] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui
Zhang. idistance: An adaptive b+-tree based indexing method for
nearest neighbor search. ACM Trans. Database Syst., 30(2):364–397,
2005. [cited at p. 92]

[50] Christian S. Jensen, Dan Lin, and Beng Chin Ooi. Query and update
efficient b+-tree based indexing of moving objects. In VLDB, pages
768–779, 2004. [cited at p. 8, 20, 24, 26, 28, 30, 33, 35, 36, 40, 41, 55, 56, 87, 95, 96,

127, 128, 162, 176, 177]

[51] Christian S. Jensen, Dan Lin, Beng Chin Ooi, and Rui Zhang. Ef-
fective density queries on continuously moving objects. In ICDE,
page 71, 2006. [cited at p. 38]

[52] Christian S. Jensen, Dalia Tiesyte, and Nerius Tradisauskas. The cost
benchmark—comparison and evaluation of spatio-temporal indexes.
In DASFAA, pages 125–140, 2006. [cited at p. 46, 48]

[53] Christian S. Jensen, Dalia Tiesyte, and Nerius Tradisauskas. Robust
b+-tree-based indexing of moving objects. In MDM, page 12, 2006.
[cited at p. 25, 33, 56]

[54] Dmitri V. Kalashnikov, Sunil Prabhakar, and Susanne E. Hambrusch.
Main memory evaluation of monitoring queries over moving objects.
Distributed and Parallel Databases, 15(2):117–135, 2004. [cited at p. 8]

[55] Dmitri V. Kalashnikov, Sunil Prabhakar, Susanne E. Hambrusch, and
Walid G. Aref. Efficient evaluation of continuous range queries on
moving objects. In DEXA, pages 731–740, 2002. [cited at p. 41]

[56] James M. Kang, Mohamed F. Mokbel, Shashi Shekhar, Tian Xia,
and Donghui Zhang. Continuous evaluation of monochromatic and
bichromatic reverse nearest neighbors. In ICDE, pages 806–815, 2007.
[cited at p. 36, 37, 41]

[57] Dongseop Kwon, Sangjun Lee, and Sukho Lee. Indexing the current
positions of moving objects using the lazy update r-tree. In Mobile
Data Management, pages 113–120, 2002. [cited at p. 8, 23, 30, 31]

[58] Caifeng Lai, Ling Wang, Jidong Chen, Xiaofeng Meng, and Karine
Zeitouni. Effective density queries for moving objects in road net-
works. In APWeb/WAIM, pages 200–211, 2007. [cited at p. 9, 38]

[59] Thuy Thi Thu Le and Bradford G. Nickerson. Efficient search of
moving objects on a planar graph. In GIS, page 41, 2008. [cited at p. 17]



220 Bibliography

[60] Mong-Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and Keng Lik
Teo. Supporting frequent updates in r-trees: A bottom-up approach.
In VLDB, pages 608–619, 2003. [cited at p. 23, 30, 31]

[61] Philip L. Lehman and S. Bing Yao. Efficient locking for concurrent op-
erations on b-trees. ACM Trans. Database Syst., 6(4):650–670, 1981.
[cited at p. 57, 146, 178]

[62] Yifan Li, Jiong Yang, and Jiawei Han. Continuous k-nearest neigh-
bor search for moving objects. In SSDBM, pages 123–126, 2004.
[cited at p. 41]

[63] Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye.
Mining periodic behaviors for moving objects. In KDD, pages 1099–
1108, 2010. [cited at p. 10]

[64] Zhenhui Li, Ming Ji, Jae-Gil Lee, Lu An Tang, Yintao Yu, Jiawei
Han, and Roland Kays. Movemine: mining moving object databases.
In SIGMOD Conference, pages 1203–1206, 2010. [cited at p. 10]

[65] Dan Lin, Elisa Bertino, Reynold Cheng, and Sunil Prabhakar. Posi-
tion transformation: a location privacy protection method for moving
objects. In SPRINGL, pages 62–71, 2008. [cited at p. 10]

[66] Dan Lin, Elisa Bertino, Reynold Cheng, and Sunil Prabhakar. Lo-
cation privacy in moving-object environments. Transactions on Data
Privacy, 2(1):21–46, 2009. [cited at p. 10]

[67] Hechen Liu and Markus Schneider. Querying moving objects with
uncertainty in spatio-temporal databases. In DASFAA, pages 357–
371, 2011. [cited at p. 9]

[68] Yiming Ma, Dmitri V. Kalashnikov, and Sharad Mehrotra. Toward
managing uncertain spatial information for situational awareness ap-
plications. IEEE Trans. Knowl. Data Eng., 20(10):1408–1423, 2008.
[cited at p. 9]

[69] Mohamed F. Mokbel, Thanaa M. Ghanem, andWalid G. Aref. Spatio-
temporal access methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.
[cited at p. 21]

[70] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. Sina: Scal-
able incremental processing of continuous queries in spatio-temporal
databases. In SIGMOD Conference, pages 623–634, 2004. [cited at p. 23,

28, 41]

[71] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz.
Analysis of the clustering properties of the hilbert space-filling curve.
IEEE Trans. Knowl. Data Eng., 13(1):124–141, 2001. [cited at p. 106]



Bibliography 221

[72] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias.
Conceptual partitioning: An efficient method for continuous nearest
neighbor monitoring. In SIGMOD Conference, pages 634–645, 2005.
[cited at p. 15, 18, 23, 28, 41, 42]

[73] Jussi Myllymaki and James H. Kaufman. Dynamark: A benchmark
for dynamic spatial indexing. In Mobile Data Management, pages
92–105, 2003. [cited at p. 46, 48]

[74] Mario A. Nascimento and Jefferson R. O. Silva. Towards historical
r-trees. In SAC, pages 235–240, 1998. [cited at p. 21]

[75] Vincent Ng and Tiko Kameda. The r-link tree: A recoverable index
structure for spatial data. In DEXA, pages 163–172, 1994. [cited at p. 57,

146, 176]

[76] Long-Van Nguyen-Dinh, Walid G. Aref, and Mohamed F. Mokbel.
Spatio-temporal access methods: Part 2 (2003 - 2010). IEEE Data
Eng. Bull., 33(2):46–55, 2010. [cited at p. 21]

[77] Jürg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid
file: An adaptable, symmetric multikey file structure. ACM Trans.
Database Syst., 9(1):38–71, 1984. [cited at p. 23]

[78] Jignesh M. Patel, Yun Chen, and V. Prasad Chakka. Stripes: An
efficient index for predicted trajectories. In SIGMOD Conference,
pages 637–646, 2004. [cited at p. 16, 25, 30, 34, 40, 55, 57, 127]

[79] Kostas Patroumpas and Timos K. Sellis. Monitoring orientation of
moving objects around focal points. In SSTD, pages 228–246, 2009.
[cited at p. 22, 25]

[80] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel
approaches in query processing for moving object trajectories. In
VLDB, pages 395–406, 2000. [cited at p. 16, 22]

[81] Dieter Pfoser and Nectaria Tryfona. Capturing fuzziness and uncer-
tainty of spatiotemporal objects. In ADBIS, pages 112–126, 2001.
[cited at p. 9]

[82] Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G. Aref,
and Susanne E. Hambrusch. Query indexing and velocity constrained
indexing: Scalable techniques for continuous queries on moving ob-
jects. IEEE Trans. Computers, 51(10):1124–1140, 2002. [cited at p. 8]

[83] Cecilia Magdalena Procopiuc, Pankaj K. Agarwal, and Sariel Har-
Peled. Star-tree: An efficient self-adjusting index for moving objects.
In ALENEX, pages 178–193, 2002. [cited at p. 24, 29]



222 Bibliography

[84] Sridhar Rajagopalan and Vijay V. Vazirani. Primal-dual rnc approxi-
mation algorithms for set cover and covering integer programs. SIAM
J. Comput., 28(2):525–540, 1998. [cited at p. 185]

[85] Bharat Rao and Louis Minakakis. Evolution of mobile location-based
services. Commun. ACM, 46(12):61–65, 2003. [cited at p. 2]

[86] Simonas Saltenis and Christian S. Jensen. Indexing of moving ob-
jects for location-based services. In ICDE, pages 463–472, 2002.
[cited at p. 24, 29]

[87] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and
Mario A. Lopez. Indexing the positions of continuously moving ob-
jects. In SIGMOD Conference, pages 331–342, 2000. [cited at p. 7, 16,

20, 24, 28, 30, 31, 35, 36, 40, 41, 87, 98, 169, 176]

[88] Hanan Samet. The quadtree and related hierarchical data structures.
ACM Comput. Surv., 16(2):187–260, 1984. [cited at p. 7, 21, 24]

[89] Hanan Samet. The design and analysis of spatial data structures.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1990. [cited at p. 34]

[90] Jochen H. Schiller and Agnès Voisard. Location-Based Services. Mor-
gan Kaufmann, 2004. [cited at p. 2]

[91] Yasin N. Silva, Xiaopeng Xiong, and Walid G. Aref. The rum-
tree: supporting frequent updates in r-trees using memos. VLDB
J., 18(3):719–738, 2009. [cited at p. 24, 40]

[92] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao.
Modeling and querying moving objects. In ICDE, pages 422–432,
1997. [cited at p. 8, 14]

[93] Zhexuan Song and Nick Roussopoulos. Hashing moving objects. In
Mobile Data Management, pages 161–172, 2001. [cited at p. 23]

[94] Zhexuan Song and Nick Roussopoulos. Seb-tree: An approach to in-
dex continuously moving objects. In Mobile Data Management, pages
340–344, 2003. [cited at p. 22]

[95] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin Liu. Predic-
tion and indexing of moving objects with unknown motion patterns.
In SIGMOD Conference, pages 611–622, 2004. [cited at p. 16, 20, 193]

[96] Yufei Tao and Dimitris Papadias. Efficient historical r-trees. In SS-
DBM, pages 223–232, 2001. [cited at p. 21]



Bibliography 223

[97] Yufei Tao and Dimitris Papadias. Mv3r-tree: A spatio-temporal ac-
cess method for timestamp and interval queries. In VLDB, pages
431–440, 2001. [cited at p. 22]

[98] Yufei Tao and Dimitris Papadias. Time-parameterized queries in
spatio-temporal databases. In SIGMOD Conference, pages 334–345,
2002. [cited at p. 41]

[99] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous near-
est neighbor search. In VLDB, pages 287–298, 2002. [cited at p. 41]

[100] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The tpr*-tree: An
optimized spatio-temporal access method for predictive queries. In
VLDB, pages 790–801, 2003. [cited at p. 20, 24, 29, 30, 32, 55, 127, 128]

[101] Yufei Tao and Xiaokui Xiao. Primal or dual: which promises faster
spatiotemporal search? VLDB J., 17(5):1253–1270, 2008. [cited at p. 26,

30, 48, 128]

[102] Yufei Tao, Jun Zhang, Dimitris Papadias, and Nikos Mamoulis. An
efficient cost model for optimization of nearest neighbor search in low
and medium dimensional spaces. IEEE Trans. Knowl. Data Eng.,
16(10):1169–1184, 2004. [cited at p. 96]

[103] Yannis Theodoridis. Ten benchmark database queries for location-
based services. Comput. J., 46(6):713–725, 2003. [cited at p. 48]

[104] Yannis Theodoridis, Michalis Vazirgiannis, and Timos K. Sellis.
Spatio-temporal indexing for large multimedia applications. In
ICMCS, pages 441–448, 1996. [cited at p. 22]

[105] Goce Trajcevski, Ouri Wolfson, Klaus Hinrichs, and Sam Chamber-
lain. Managing uncertainty in moving objects databases. ACM Trans.
Database Syst., 29(3):463–507, 2004. [cited at p. 9]

[106] Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis
Manolopoulos. Overlapping linear quadtrees and spatio-temporal
query processing. Comput. J., 43(4):325–343, 2000. [cited at p. 21]

[107] Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis
Manolopoulos. Benchmarking access methods for time-evolving re-
gional data. Data Knowl. Eng., 49(3):243–286, 2004. [cited at p. 47]

[108] Haojun Wang, Roger Zimmermann, and Wei-Shinn Ku. Distributed
continuous range query processing on moving objects. InDEXA, pages
655–665, 2006. [cited at p. 9]

[109] Longhao Wang, Yu Zheng, Xing Xie, and Wei-Ying Ma. A flexible
spatio-temporal indexing scheme for large-scale gps track retrieval. In
MDM, pages 1–8, 2008. [cited at p. 22]



224 Bibliography

[110] Paul Werstein. A performance benchmark for spatiotemporal
databases. In The 10th Annual Colloquium of the Spatial Informa-
tion Research Centre, pages 365–373, 1998. [cited at p. 47]

[111] Ouri Wolfson, Sam Chamberlain, Son Dao, Liqin Jiang, and Gisela
Mendez. Cost and imprecision in modeling the position of moving
objects. In ICDE, pages 588–596, 1998. [cited at p. 9, 17]

[112] Ouri Wolfson, Liqin Jiang, A. Prasad Sistla, Sam Chamberlain, Naph-
tali Rishe, and Minglin Deng. Databases for tracking mobile units in
real time. In ICDT, pages 169–186, 1999. [cited at p. 9, 17]

[113] Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, and Yelena Yesha.
Updating and querying databases that track mobile units. Distributed
and Parallel Databases, 7(3):257–387, 1999. [cited at p. 9, 17]

[114] Ouri Wolfson, Bo Xu, Sam Chamberlain, and Liqin Jiang. Moving
objects databases: Issues and solutions. In SSDBM, pages 111–122,
1998. [cited at p. 3, 8, 14, 17]

[115] Ouri Wolfson and Huabei Yin. Accuracy and resource consumption
in tracking and location prediction. In SSTD, pages 325–343, 2003.
[cited at p. 17]

[116] Wei Wu, Wenyuan Guo, and Kian-Lee Tan. Distributed processing of
moving k-nearest-neighbor query on moving objects. In ICDE, pages
1116–1125, 2007. [cited at p. 9]

[117] Wei Wu, Fei Yang, Chee Yong Chan, and Kian-Lee Tan. Continuous
reverse k-nearest-neighbor monitoring. InMDM, pages 132–139, 2008.
[cited at p. 36, 37, 41]

[118] Tian Xia and Donghui Zhang. Continuous reverse nearest neighbor
monitoring. In ICDE, page 77, 2006. [cited at p. 36, 37, 41]

[119] Xiaopeng Xiong and Walid G. Aref. R-trees with update memos. In
ICDE, page 22, 2006. [cited at p. 8, 24, 30, 31, 55, 56]

[120] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. Sea-cnn:
Scalable processing of continuous k-nearest neighbor queries in spatio-
temporal databases. In ICDE, pages 643–654, 2005. [cited at p. 15, 18,

23, 28, 41, 42]

[121] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. Lugrid:
Update-tolerant grid-based indexing for moving objects. In MDM,
page 13, 2006. [cited at p. 18, 23]



Bibliography 225

[122] Xiaomei Xu, Jiawei Han, and Wei Lu. Rt-tree: An improved r-tree
indexing structure for temporal spatial databases. In 4th International
Symposium on Spatial Data Handling (SSDH), pages 1040–1049, 1990.
[cited at p. 21, 22]

[123] Man Lung Yiu, Yufei Tao, and Nikos Mamoulis. The bdual-tree: in-
dexing moving objects by space filling curves in the dual space. VLDB
J., 17(3):379–400, 2008. [cited at p. 20, 25, 28, 33, 40, 55, 104, 127, 139, 140, 169,

176, 177]

[124] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing
the distance: An efficient method to knn processing. In VLDB, pages
421–430, 2001. [cited at p. 92]

[125] Xiaohui Yu, Ken Q. Pu, and Nick Koudas. Monitoring k-nearest
neighbor queries over moving objects. In ICDE, pages 631–642, 2005.
[cited at p. 15]

[126] Meihui Zhang, Su Chen, Christian S. Jensen, Beng Chin Ooi, and
Zhenjie Zhang. Effectively indexing uncertain moving objects for pre-
dictive queries. PVLDB, 2(1):1198–1209, 2009. [cited at p. 20]

[127] Panfeng Zhou, Donghui Zhang, Betty Salzberg, Gene Cooperman,
and George Kollios. Close pair queries in moving object databases.
In GIS, pages 2–11, 2005. [cited at p. 22, 37]

[128] Manli Zhu, Dik Lun Lee, and Jun Zhang. k-closest pair query moni-
toring over moving objects. In MDM, page 14, 2006. [cited at p. 37]


	Contents
	List of Tables
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Challenges in Moving Object Management
	1.2 Research in Moving-Object Databases
	1.2.1 Updates in Moving-Object Databases
	1.2.2 Indexes in Moving-Object Databases
	1.2.3 Other Research Topics in Moving-Object Databases

	1.3 Contributions of the Thesis
	1.4 Outline of the Thesis

	2 Literature Review
	2.1 Modeling Moving Objects
	2.1.1 Objects as Static Spatial Points
	2.1.2 Objects as Time-Parameterized Functions

	2.2 Tracking Moving Objects
	2.2.1 Time-Bounded Updating Protocol
	2.2.2 Distance-Bounded Updating Protocol
	2.2.3 Deviation-Bounded Updating Protocol
	2.2.4 Deviation-Based Updating Protocol for Predictive Queries

	2.3 Indexing Moving Objects
	2.3.1 A Taxonomy of Moving-Object Indexes
	2.3.2 A Close Look at Indexes of Future Locations

	2.4 Querying Moving Objects
	2.4.1 A Classical Taxonomy
	2.4.2 A Taxonomy from Temporal Perspective

	2.5 Summary

	3 A Benchmark for Evaluating Moving Object Indexes
	3.1 Introduction
	3.2 Background
	3.3 The Benchmark
	3.3.1 Datasets and Workloads Generation
	3.3.2 Performance Evaluation Procedure

	3.4 Index Implementation
	3.5 Experimental Study
	3.5.1 Uniformly Distributed Datasets
	3.5.2 Gaussian Distributed and Road-Network-Based Datasets
	3.5.3 Concurrency Control
	3.5.4 Result Summary

	3.6 Summary

	4 ST2B-tree: a Self-Tunable Spatio-Temporal B+-tree Index
	4.1 Introduction
	4.2 Background
	4.2.1 Types of Diversity in Moving Object Applications
	4.2.2 Impact of Data Diversity on Index Performance

	4.3 ST2B-tree: a Self-Tunable Index for Moving Objects
	4.3.1 ST2B-tree Structure
	4.3.2 Snapshot Query Algorithms
	4.3.3 Why is the ST2B-tree Tunable?

	4.4 Eager Update: Minimizing Object Migration during Rollover
	4.4.1 Effect of T: the length of the time interval covered by a sub-tree
	4.4.2 Eager Update

	4.5 Grid Granularity
	4.6 Time Related Parameters
	4.6.1 Reference Time of a Sub-tree: Tref
	4.6.2 The Length of the Time Interval of a Sub-tree: T

	4.7 Self-Tuning of the ST2B-tree
	4.7.1 Index Profile
	4.7.2 Key-Gen
	4.7.3 Statistics
	4.7.4 Online Tuning

	4.8 Performance Evaluation
	4.8.1 Experiment Setup
	4.8.2 Tunable Parameters
	4.8.3 Effect of Eager Updates
	4.8.4 Spatial Diversity
	4.8.5 Temporal Diversity
	4.8.6 Spatio-Temporal Diversity
	4.8.7 Throughput Test

	4.9 Summary

	5 An Adaptive Updating Protocol for Moving Object Databases
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Spatio-Temporal Safe Region
	5.2.2 Consistency Verification
	5.2.3 Predictive Queries

	5.3 STSR-Based Updating Protocol
	5.3.1 Active Update
	5.3.2 Query Processing and Passive Update

	5.4 Optimization Techniques
	5.4.1 Cost Model
	5.4.2 Calculation of the Optimal STSR
	5.4.3 Reducing Computation Cost

	5.5 Integration with Existing Indexes
	5.5.1 The TPR-tree and Variants
	5.5.2 The B+-tree-based Indexes

	5.6 Approximate Query Processing
	5.6.1 Order for Individual Query
	5.6.2 Order for Multiple Queries

	5.7 Experimental Evaluation
	5.7.1 Experimental Settings
	5.7.2 The Results
	5.7.3 Result Summary

	5.8 Summary

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work

	Bibliography

