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Summary 
 
 

Much effort was put into liver fibrosis drug discovery but no drug has yet been 

approved by the US. Food and Drug Administration. Many potential antifibrotic 

drugs that show positive effect in vitro failed to be effective in vivo. With the 

advance of chemical library synthesis capability, a large amount of chemicals 

await to be tested. The traditional low-throughput approach to liver fibrosis 

drug discovery is too slow; while limited information can be generated from a 

high-throughput screening that only follows one or two markers of fibrosis. In 

addition, these in vitro approaches cannot ensure a high in vivo efficacy before 

animal testing is conducted.  

 

In this project, we show that by integrating the high-content analysis and 

application-specific statistical analysis, we can build a high-throughput anti-

fibrotic drug-screening platform that generates rich information from a single 

study. The system can efficiently screen for anti-fibrotic drugs in vitro and the 

results are positively correlated with in vivo efficacies. Our system can be used 

to predict in vivo histological scores from in vitro data. In addition, a pathway 

analysis identifies the cellular pathways that are common among the more 

effective anti-fibrotic drugs. A structural activity relationship study also 

discovered both structurally and phenotypically similar clusters of drugs.  

 

The results that we present here are the first attempt to demonstrate an in vitro-

in vivo correlation in the liver fibrosis context. Such approach is not foreign in 
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the field of drug dissolution studies. Here we show that an in vitro-in vivo 

correlation also exists in a carefully design system for drug discovery. To 

validate our screening platform, we carried out comprehensive literature search 

for anti-fibrotic drug from in vivo studies. We show that our in vitro scores are 

highly correlated to the in vivo scores from three rat fibrosis models. 

Sulfasalazine, pioglitazone and glycyrrhizin were found to have the highest 

anti-fibrotic efficacy; while most of the anti-oxidants were found to have low 

efficacy. Interestingly, we have seen some promising evidences that the in vitro 

scores may potentially be a good measure of the drug effects in human trials. 

The group of drugs with higher in vitro scores (e.g. pioglitazone and 

glycyrrhizin) gave more promising results in human clinical trials than the 

group of drugs with lower in vitro scores (e.g. colchicine and silymarin). 

Furthermore, drugs with lower in vitro scores generally have fewer in vivo 

publications than drugs with higher in vitro scores.  

 

Since anti-hepatofibrotic treatment is a very important liver research field and 

our study has implications in both rat and human, both pharmaceutical 

companies and researchers working on anti-fibrotic drug discovery may find it 

interesting. One of the potential applications of our system is to rank drugs 

according to their anti-fibrotic efficacies, and hence prioritize drugs for animal 

testing. Our system may also be of interest to clinicians and researchers 

engaged in mechanistic studies on liver fibrosis. In addition, combinations of 

antibodies or drug cocktails may be easily applied to the system; and the results 

may be projected to the in vivo scenario.  
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 Chapter 1 

Introduction 

 

1.1 Pathology of liver fibrosis 

The liver performs important physiological functions in the human body, such 

as maintaining blood glucose level, converting excess ammonia to urea, 

breaking down fats, synthesizing cholesterol, producing bile, breaking down 

hemoglobin, detoxification, and storing glycogen, protein, vitamins, minerals 

and fats. The liver also produces hormones such as insulin-like growth factor-

1 and angiotensinogen. The health status of the liver is crucial to the overall 

health status and quality of life.  

Liver diseases include hepatitis (inflammation), steatosis (excess fat 

deposition), fibrosis (scar formation), cirrhosis (late stage fibrosis with 

irreversible disruption of liver architecture) and hepatocarcinoma (cancer 

development). Since it is such an important organ, liver diseases are closely 

associated with high morbidity and mortality rate. They are among the leading 

causes of mortality in the world [1, 2]. In particular, cirrhosis and primary 

liver cancer account for approximately 2.5% of deaths worldwide [3] and 3% 

in Singapore [4]. 

Fibrosis is one of the most common types of liver diseases. Liver fibrosis is a 

common downstream response to repeated liver injuries, caused by a wide 
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range of chronic hepatic insults. Hepatitis B viral (HBV) infection is the main 

cause of liver fibrosis in the Asian population; while alcohol abuse and 

hepatitis C viral (HCV) infection are the main causes in the United States, 

Europe and Japan [5-8]. HCV alone affects about 170 million people 

worldwide [9], and about 45% of the patients are predicted to develop 

cirrhosis by 2030 [10]. Other possible etiologies of liver fibrosis include 

parasite infection (schistosomiasis), chemicals, toxins, genetic disorders such 

as in Wilson’s disease, and autoimmune response [11]. Prolonged injuries due 

to these various factors invoke the hepatic wound healing process, in which 

the regeneration machinery attempts to replenish damaged cells and restore 

normal liver architecture. Wound healing is a dynamic process that involves 

synthesis and degradation of extracellular matrix (ECM). During prolonged 

liver injuries, the balance between synthesis and degradation may be disturbed, 

leading to accelerated production and deposition of ECM. The excessive 

accumulation of ECM is the hallmark of liver fibrosis, starting from 

perisinusoidal space of Disse and later spreading to the whole liver [12]. 

Excessive ECM may distort normal blood circulation and cause portal 

hypertension. Insufficient blood supply to liver cells hinders their normal 

metabolic and catabolic functions [13, 14]. The normal turnover process of 

hepatocyte is also affected during fibrosis, leading to liver dysfunction [15]. 

Regardless of etiology, fibrosis may progress to cirrhosis and liver failure.   
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1.2 Current indirect anti-fibrotic strategies  

In current clinical practice, the most effective anti-fibrotic treatment is indirect: 

to target the underlying causes of injury, as removal of primary insults may 

lead to spontaneous regression of fibrosis [16, 17]. For example, lamivudine, 

which blocks HBV viral replication, can result in fibrosis resolution [18]. 

Similarly, pegylated interferon alpha with ribavirin is commonly used to treat 

patients with HCV-related fibrosis [19, 20]. Corticosteroids, a group of anti-

inflammatory compounds are used to treat patients with autoimmune hepatitis 

[21] or alcoholic hepatitis [22, 23]. Fibrosis may also be reverted by iron 

depletion in patients with hemochromatosis (iron overload) [24] and copper 

depletion in patients with Wilson’s disease [25]. Regression of fibrosis is 

observed in patients after surgical removal of bile duct obstructions [26]. 

PPAR-gamma ligands ameliorate fibrosis in patients with nonalcoholic 

steatohepatitis [27]. Removal of primary cause may improve some patients’ 

conditions. However, fully activated hepatic stellate cells (HSCs), besides 

being a major source of fibrotic ECM, also secrete a broad range of 

chemokines and cytokines for self-perpetuated fibrosis in the absent of 

primary insults [28]. As a result, indirect treatment by removing the 

underlying irritant is not effective in a significant population of liver fibrosis 

patients. For example, treatment with pegylated interferon alpha with ribavirin, 

the most effective treatment for HCV patients, typically fail to produce 

positive sustained virologic response (undetectable HCV RNA level at 24 

weeks after the completion of treatment) in about 50% of the patients [29, 30]. 

Continuous efforts are put into discovering and engineering better drugs to 
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remove the liver injury causing agents [31], but more importantly, effective 

direct treatment strategies against fibrosis are needed. HSC cells are at the 

center of this research.  

 

1.3 Hepatic stellate cells play an important role in fibrosis 

ECM secreting cells arise from a heterogeneous array of cell types from 

different origins, including periportal and pericentral fibroblasts, bone marrow 

derived fibrocytes, and activated HSCs [32-36]. Epithelial cells such as 

hepatocytes and bile duct epithelial cells have been observed to undergo 

epithelial-mesenchymal transitions (EMT), and convert into fibroblast-like 

cells capable of excreting ECM [37]. Among the various cell types, activated 

HSCs are the major cell source for elevated ECM in a fibrotic liver [38], and 

are widely recognized as the most important cell type in anti-liver fibrosis 

research.  

HSCs were discovered in 1870s by Boll and Von Kupffer [39]. These cells, 

previously known as vitamin-A storing cells, Ito cells or perisinusoidal 

lipocytes [40], are found within the perisinusoidal spaces and are well 

documented as a major cell type responsible for ECM production and liver 

fibrosis progression [41]. They exist in either quiescent or activated states. It is 

believed that HSCs promote and accelerate the fibrogenesis process when they 

are activated [42-44]. In healthy livers, HSCs are in the quiescent state with 

multiple vitamin A storing lipid droplets stored in the cytoplasm [45]. They 

occupy about 1.4% of total liver volume, and the ratio of HSC population to 
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hepatocytes is about 1:20 [46]. The functions of quiescent HSCs are not fully 

understood. Besides the role of being a major storage site of vitamin-A [47], 

modulating sinusoidal blood flow [48-50] and secreting hepatic mitogens such 

as hepatic growth factor (HGF) [51], quiescent HSCs also play a role in T cell 

activation inside the liver [52]. Injured liver cells secrete a wide range of pro-

fibrogenic cytokines. The most potent ones are transforming growth factor β1 

(TGF-β1) [53] and platelet derived growth factor (PDGF) [54, 55]. Studies 

have shown that over-expression of TGF-β1 in the liver can lead to severe 

fibrosis [56]; while introducing either TGF-β1 or PDGF enhances HSC 

migration and induces matrix metalloproteinase (MMP) secretion [57]. 

Besides cytokines, HSCs can also be activated by reactive oxygen species 

(ROS) [58-60], acetaldehydes [61, 62], and lipid sphingosine 1-phosphate [63]. 

When HSCs are activated, they lose vitamin A storing capability, and become 

more proliferative, fibrogenic, and contractile myofibroblast-like cells [64, 65]. 

Activated HSCs promote fibrosis progression by secreting ECM components 

such as collagen [66], fibronectin and proteoglycan [67]. In addition, activated 

HSCs are known to decrease MMPs and increase tissue inhibitor of matrix 

metalloproteinases (TIMPs) [68], which are responsible for degrading and 

preventing degradation of ECM respectively, leading to further ECM 

accumulation.  
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1.4 Current direct anti-fibrotic drug discovery status 

Current drug discovery efforts for direct anti-fibrotic therapies primarily target 

activated HSCs. Some of these strategies are: inhibiting HSC activation, 

reducing proliferation, inducing apoptosis [46], down-regulating pro-

fibrogenesis mediators and cytokine receptors [69], lowering oxidative stress 

[70], minimizing ECM deposition, and inducing fibrotic ECM dissolution [71]. 

A detailed elaboration on each of the strategies is found in Chapter 2.  

A diverse group of positive chemicals have been identified from various in 

vitro and in vivo studies. We used 49 drugs in this study, which included 45 

compounds that have direct effect on in vitro hepatic stellate cell culture and 4 

negative control drugs without anti-fibrotic effect. The 45 anti-fibrotic 

compounds were from a wide range of origins. Some of these are: biologically 

active components in food such as curcumin from India curry, resveratrol 

from grape and wine, and epigallocatechin gallate (EGCG) from green tea; 

plant extracts such as matrine and oxymatrine from plants in Sophora family, 

silymarin from milk thistle (Silybum marianum), and glycyrrhizin from 

liquorice root; angiotensin II receptor antagonists such as olmesartan 

medoxomil and telmisartan; PPAR-gamma ligands such as pioglitazone. The 

most promising anti-fibrotic compounds, such as losartan, pioglitazone and 

Fuzheng Huayu tablets, have entered phase IV clinical trials [72] (Table 1.1). 

Unlike the drugs for indirect treatment, these anti-fibrotic drug candidates can 

potentially be applied to fibrotic patients regardless of the fibrosis causing 

agents. For example, pioglitazone is tested in patients with HCV infection, 

NASH or portal hypertension and cirrhosis (Table 1.1).  
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Drug Phase Condition 

candesartan I,II alcohol liver fibrosis 

GI262570 II chronic hepatitic C 

pioglitazone* IV chronic hepatitic C 

pentoxyphilline + tocopherol*  III chronic hepatitic C 

irbesartan III chronic hepatitis C 

losartan IV chronic hepatitis C 

Fuzheng Huayu II chronic hepatitis C  

colchicine* I cirrhosis 

pentoxifylline* III cirrhosis, liver failure 

pioglitazone* IV HIV and hepatitis C virus 

oltipraz II liver fibrosis, cirrhosis 

rimonabant III NASH 

pioglitazone* III NASH 

rosiglitazone II NASH 

pentoxifylline* II,III NASH 

ursodesoxycholic acid II NASH 

viusid III NASH 

silymarin* II NASH 

pioglitazone* IV portal hypertension, cirrhosis 

simvastatin* II portal hypertension, cirrhosis 

Fuzheng Huayu Tablets IV posthepatitic cirrhosis 

moexipril II primary biliary cirrhosis 

fenofibrate II primary biliary cirrhosis 

atorvastatin III primary biliary cirrhosis 

Table 1.1 List of anti-fibrotic drugs subjected to human clinical trials [72]. 
Drugs that are included in this study are marked with *. 

 

Despite the advance in anti-fibrotic drug discovery, currently there is no anti-

fibrotic drug approved by the U.S. food and drug administration (FDA). Many 

candidate drugs emerged from in vitro screenings fail to alleviate fibrosis or 
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cause severe side-effects in the preclinical or clinical trials. This problem 

exists not only in the anti-fibrotic drug discovery field, it is also a common 

problem faced by most of the pharmaceutical companies. Despite increasing 

investment by pharmaceutical companies, there are less drug candidates 

entering the market each year and the total capitalized costs per drug is 

estimated to increase at a rate of 7.4% annually above general price inflation 

[73].  

Besides discovering new chemicals with better therapeutic values, there are 

also researches on combination therapy. For example, one study showed that 

silymarin-vitamin E-phospholipid complex could result in improvement in 

patients with nonalcoholic fatty liver disease [74]; on the other hand, neither 

silymarin nor vitamin E alone could improve hepatofibrosis in patients with 

biliary obstruction [75]. Targeted delivery is another hot area of anti-fibrotic 

research. Proteins/peptides are designed as targeted carriers to guide 

conjugated drugs to HSCs in vivo, so as to elevate the local drug concentration, 

hence enhance drug efficacy and reduce toxicity. Several such targeted 

delivery systems have shown promising results in vivo, such as human serum 

albumin modified with mannose 6-phosphate (M6P-HSA) [76] and cyclic arg-

gly-asp peptides [77]. However, each of these methods faces its own 

challenges. For example, M6P-HSA was observed to have pro-fibrotic and 

pro-inflammatory effects by activating Kupffer and endothelial cells [78]. 
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1.5 Conventional drug discovery approaches and improvements we aim to 

achieve  

In this project, we intend to fully utilize the advantages of a high-content 

analysis (HCA) system to build an innovative high-throughput and high-

content anti-fibrotic drug screening platform to facilitate anti-fibrotic drug 

discovery. The rationales of our study design and improvements are shown 

below: 

 

1.5.1 A cell-based drug discovery system may ensure higher success rate 

Conventional drug discovery can be broadly divided into two paradigms: 

biology-based and target-based approaches [79]. Biology-based drug 

discovery is based on the identification of natural products or bioactive agents 

with medicinal properties from accidental discovery or low-throughput 

experiments. The approach has a relatively higher success rate, but it is too 

slow and is not suitable for large-scale drug screening. Target-based drug 

discovery screens for drugs against isolated molecular targets in a cell-free 

environment. This approach is good for the development of novel treatments 

for a validated target (target of known drugs), but identification of new targets 

is a challenge, as a cell-free system cannot mimic the tightly controlled 

interactions and complex chemical processes in a living cell [79]. In addition, 

since multiple complex pathways are involved in fibrogenesis, drugs targeting 

a single protein are likely to fail at the systemic level in clinical trials. For 

example, plant alkaloid colchicine is known to inhibit microtubule 
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polymerization by binding to tubulin [80-82]. This process is associated with 

collagen secretion; hence colchicine is believed to have anti-fibrotic potential. 

However, mixed results have been obtained from in vivo experiments. Results 

from several experimental animal models are supportive of the hypothesis [83, 

84], but colchicine failed to reduce liver fibrosis in multiple human clinical 

trials, although improvements were observed in biomarkers such as increment 

in serum albumin level and reduction in serum type III procollagen N-terminal 

pro-peptide (PIIINP) [85-88].  

Recently, the focus in drug discovery research has shifted to cell systems 

biology-based approaches [89]. The assays are multiplexed and carried out in 

the cellular context. It is developed to take advantage of both biology and 

target-based approaches to have a higher success rate and throughput than the 

conventional methods. As a result, the overhead costs of drug development 

can potentially be cut down [89]. In cell systems biology-based drug discovery, 

human cells are used to study the complex drug-induced biological responses 

in a high-throughput manner. In particular, HCA is one of such approaches 

that are gaining popularity. 

 

1.5.2 A high-content analysis system can be easily multiplexed to provide rich 

information 

This project is not the first attempt for building a high-throughput system for 

anti-fibrotic drug discovery. Previous systems typically incorporate only a few 

parameters, such as HSC cell viability [90] or apoptosis markers (i.e. 
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mitochondrial membrane potential, caspase 3 and 9 phosphorylation) [91]. 

The result is limited to a binary output to either confirm or deny the anti-

fibrotic effect of a drug. Such information from a single assay is insufficient 

for selecting the more promising drugs for in vivo studies. Hence, multiple 

assays must be carried out. It normally takes about 5 years before a drug enters 

the preclinical testing phase [92].   

HCA combines automated microscopy with image analysis to capture multiple 

parameters of individual cells (Figure 1.1). The system can easily be 

multiplexed to study an array of parameters. With live-cell imaging 

capabilities, the system can generate spatial and temporal information from 

samples at sub-cellular resolution [93]. The seamless design of a fully 

automated system allows collection of rich information from arrayed samples 

subjected to systematic perturbations at unprecedented high throughput. HCA 

methods have been used for genome wide gene functional analysis [94, 95], 

tracking of proteome sub-cellular localization [96], study of protein-protein 

interactions, and drug screening [97, 98]. In order to interpret information 

captured in images obtained from HCA, numerous efforts have been made 

using advanced statistical methods, such as non-parametric analysis [97], 

neural network [99], support vector machine [100] and factor-analysis [101]. 

These methods help to convert large volume of raw data into biologically 

meaningful knowledge.  

In this project, we included 10 markers of fibrosis in the HCA systems. 

Besides determining whether a drug has anti-fibrotic effect (Chapter 2), we 

will discuss the other information generated from our system from chapter 3 to 



12	  

	  

chapter 6. The knowledge gained from our system can help to identify drugs 

with higher efficacy both in vitro and in vivo and the likely primary 

mechanism of action of a drug. Such information will be very useful in drug 

discovery research.  

 

Figure 1.1. High-content analysis platform, with 4 core components: sample 
preparation, automated image acquisition, image processing and statistical 
analysis.  
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1.5.3 Ranking: to prioritize drugs to advance to the next level in drug 

discovery 

Ranking is a very powerful approach to quickly identify and differentiate the 

more promising drugs from both non-effective and slightly effective drugs. To 

build a ranking system, data need to be quantified and summarized into a 

single numerical value. It is relatively straightforward if only a single 

parameter is used. For example, one study measured the binding affinities of 

19 opioid drugs. A ranking based on the magnitude of these binding affinities 

was done for developing labeling policies for safe disposal of the opioid drugs 

[102]. In another study, the median inhibitory concentration (IC50) values were 

used for ranking drugs [103].  

There appears to be no published ranking system for anti-fibrotic drugs. In our 

HCA system, 10 markers of fibrosis are used. When multiple parameters are 

involved, it is necessary to determine the relative importance of each of the 

parameter before combining all data into a single index for ranking. We 

proposed an innovative method for determining the optimized weights for 

each of the 10 markers of fibrosis in Chapter 3.  

 

1.5.4 In vitro-in vivo correlation to improve the success rate in drug discovery 

One of the reasons for high drug failure rate in the preclinical and clinical 

trials is that in vitro experimental results have poor correlation with in vivo 

drug effects due to the complicated pathophysiological background of hepatic 

fibrogenesis. As a result, drugs with high in vitro efficacies based on simple 
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biochemical assays may fail to produce significant in vivo effects [104]. 

Despite the different levels of complexity between the in vitro and in vivo 

systems, previous works in some studies not including liver fibrosis have 

demonstrated that the output from a carefully designed in vitro system may 

correlate to the in vivo results [105, 106] (Most of these studies are on drug 

dissolution [107, 108]). In chapter 3, we will propose an in vitro-in vivo 

correlation model for anti-fibrotic drugs.   

 

1.5.5 Pathway analysis for high throughput anti-fibrotic drug discovery 

Pathway information is important in drug discovery, as understanding the 

mechanism of action of a drug can help to understand why a drug has certain 

efficacy as well as toxicity levels. Such information is useful for target 

identification as well as designing new drugs with improved efficacy and 

lowered toxicity. Pathway analysis is a broad concept that involving wet-lab 

experiments as well as computational modeling to study pathways or pathway 

components such as proteins and receptors for a particular biological question. 

Pathway analysis has been used in several HCA papers to study the 

differential response of drugs from different categories and targeting different 

pathways [109].   

The pathway analysis is typically included in a low-throughput anti-fibrotic 

drug discovery journal, in which multiple experiments are carried out to 

elucidate the mechanism of action of a drug. However, to our best knowledge, 

such studies are untested in high-throughput anti-fibrotic studies. One reason 
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is that the primary aim of these studies is to determine whether the drugs being 

screened have anti-fibrotic effect. Hence the studies are typically designed to 

look at one pathway such as proliferation [90] or apoptosis [91] only. In our 

HCA system, since multiple markers of fibrosis are included and they cover 

several key pathways closely relevant in fibrosis, it is feasible to perform a 

pathway analysis (Chapter 4).  

 

1.5.6 Structural-activity relationship study (SAR) for anti-fibrotic drug 

discovery 

SAR is a study of the relationship between the chemical structure of a 

molecule and its biological activity. The analysis can help to determine the 

chemical groups and molecular sub-structures for triggering a biological 

response. Such information can greatly facilitate in silico designing of drug 

molecules with improved biological functions.   

A SAR study is typically performed with a group of structurally similar 

compounds [110]. In our project, anti-fibrotic drugs are selected based on their 

ability to directly target HSCs so as to ameliorate fibrosis in vitro. Hence, the 

compounds do not share a close structural similarity. Nevertheless, we carry 

out a SAR study as a speculative work and some interesting observation is 

reported in chapter 5.    
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1.6 Objectives and research strategies 

The aim of this work was to build a high-throughput platform for more 

comprehensive and accurate anti-fibrotic drug screening. A statistical 

approach was used to design a numerical predictor of the in vitro drug 

response that correlates better with in vivo experimental outcomes.  

• In chapter 2, we established and optimized an HCA-based platform to 

assess drug-induced morphological changes to key hepatofibrosis 

markers in hepatic stellate cells. Using data from collagen stained cells, 

we identified 14 non-specific drugs from a total of 49 drugs.  

• In chapter 3, a HCA based drug efficacy score (Epredict) was created to 

reflect the in vitro anti-fibrotic efficacy of a drug. Epredict showed a 

strong positive correlation with the corresponding in vivo index Ein vivo 

that were computed from histological scores. The result infers that our 

in vitro cell-based system has some predictability of the in vivo 

response.   

• In Chapter 4, a pathway analysis was carried out to investigate if drugs 

with higher efficacies have preferential target pathways. The result 

showed that the primary effects of drugs with significant efficacies 

tend to target proliferation, apoptosis or contractility of HSCs. 

• In chapter 5, the relationship between the chemical structures and the 

phenotypic responses of drugs was investigated to facilitate future in 

silico anti-fibrotic drug design. From the SAR results, it was found that 
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drugs with similar potency coincide well with their chemical structural 

similarities. 

• In chapter 6, HCA technique was applied to several other 

investigations which involved using image processing to answer 

specific biological questions. All the examples used 3D cell cultures; 

hence 3D image processing algorithms were applied. These 

experiences make further improvement on the HCA-based anti-fibrotic 

drug screening platform from 2D to 3D system possible.    

• Chapter 7 discusses the future works. 



18	  

	  

Chapter 2 

Identify drugs with anti-fibrotic effect using an 

optimized HCA-based profiling system 

 

2.1 Introduction 

2.1.1 Current in vitro anti-fibrotic screening strategies 

Several high-throughput in vitro screenings have been performed previously 

on HSCs or fibroblast cells. The main focuses are either on inhibiting collagen 

accumulation or suppressing HSC proliferation. Hashem et al. (2008) 

developed an ELISA-based system to detect the changes in synthesis and 

secretion of human type I collagen at protein level by the influence of 13 

antioxidants [111]. In another report, the culture microenvironment-induced 

time-dependent changes in collagen expression was studied using primary 

HSCs from transgenic mice with a green fluorescent protein (GFP) gene 

linked to collagen type I promoter [112]. Xu et al. (2007) established a 

quantitative screening platform based on TGF-β1 dependent fibroblast nodule 

formation [113]. Using this system, 8 out of 21 herbal extracts were found to 

have anti-fibrotic activities [114]. In other studies, HSC proliferation and 

apoptosis were used to assess the direct effects of drugs on HSCs [115, 116]. 

A drug such as epigallocatechin gallate (EGCG) may target multiple pathways 

besides collagen expression [117-120], and the overall effects coherently lead 
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to the anti-fibrotic therapeutic property. As a result, when a single readout (e.g. 

collagen expression) is taken into consideration, the drug efficacies may be 

undermined. In addition, previous high-throughput anti-fibrotic drug screening 

systems have not attempted to study in vitro-in vivo correlations.  

Since an HCA system can be designed to study multiple markers in a single 

experiment, here we followed changes of 10 markers closely related to 

fibrogenesis and fibrolysis in our HCA system (Figure 2.1C) and the overall 

changes are used for drug efficacy correlation assessment.  

 

Figure 2.1. Fundamental principles for the design of an anti-fibrotic efficacy 
evaluation system. (A) Phenotypic changes of hepatic stellate cells during 
activation. (B) Potential sites for therapeutic interventions and (C) markers 
that track the effects of the interventions.  
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2.1.2 Objective and strategies 

This chapter describes an anti-fibrotic specific HCA system setup by 

integrating and optimizing various parts in the sample preparation steps, which 

involve optimization of the liquid handler, cell culture and treatment 

conditions. The resulting cellular images were quantified and used to identify 

drugs with in vitro anti-fibrotic efficacies. 

 

2.2 Key components in an anti-fibrosis specific high-content analysis system 

The success of HCA in answering a specific biological question relies on 

suitable cell culture, the availability of probes, appropriate perturbations, 

hardware and software systems to handle large data volume and efficient 

algorithms for converting raw data into biologically relevant knowledge.  

 

2.2.1 Cell source 

HSCs represent only 5-8% of the total liver cell population [121]. The limited 

cell source as well as tedious isolation procedures hinders the use of primary 

hepatic stellate cells in large-scale high-throughput studies. In the past, 

different methods have been used to derive immortalized HSC cell lines from 

various animal hosts. We used a human HSC derived cell line LX-2 cells [122, 

123] in our screening platform. Xu et al. have carried out a series of 

experiments to characterize LX-2 cells and to compare them with primary 

cells [124]. They showed that LX-2 expresses key receptors relevant to liver 
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fibrosis such as platelet derived growth factor receptor beta (PDGF-β), obese 

receptor long form, discoidin domain receptor 2 and matrix remodeling 

proteins such as matrix metalloproteinase 2 (MMP-2), tissue inhibitor of 

matrix metalloproteinase 2 (TIMP-2) and membrane type-1 matrix 

metalloproteinase (MT1-MMP). The microarray data showed that there is 98.7% 

similarity in the gene expression between LX2 and primary human HSC.  

 

2.2.2 Proliferation marker 

HSC activation is accompanied by a drastic increase in proliferation rate. 

Controlling HSC proliferation rate can limit the population of activated HSC; 

hence decrease collagen production and deposition. In this study, 

bromodeoxyuridine (BrdU) is used for detecting LX-2 proliferation rate. It is a 

synthetic nucleoside and is incorporated into DNA during DNA replication. 

Hence, the amount of incorporated BrdU can directly reflect the rate of 

proliferation. 

 

2.2.3 Apoptosis markers 

Similar to controlling the proliferation rate of activated HSC, treatments that 

induce HSC apoptosis can also lower ECM production and accumulation. I 

chose phosphorylated caspase 3 and mitochondria membrane potential as two 

indicators of apoptosis. 
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The apoptotic signaling is mediated by caspase family proteins, which include 

initiator caspases such as caspase 2, 8, 9 and 10, and effector caspases such as 

caspase 3, 6 and 7. The initiator caspases are activated in the presence of 

intrinsic or extrinsic apoptotic cues, and they in turn activate effector caspases 

to carry out apoptosis. Caspase 3 has been identified as a key effector caspase 

in mammalian cells [125, 126] and is commonly used to study apoptosis.  

The decline in mitochondria membrane potential has been identified as one of 

the early events during apoptosis [127]. In this study, the mitochondrial 

membrane potential was tracked by MitoTracker Red CMXRos. The amount 

of dye uptake is proportional to the membrane potential. 

 

2.2.4 ECM production markers 

ECM includes matrix proteins collagens and elastin, glycoproteins such as 

fibronectin and laminin, proteoglycans such as decorin and carbohydrates such 

as hyaluronan. Collagen is the major ECM component. Several-fold increase 

in expression was observed for different kinds of collagens during fibrosis. 

Collagen types I, III, IV and V have 8x, 4x, 14x, and 8x fold changes 

respectively [46]. Among the different collagen sub-types, collagen type IV, 

together with laminin and proteoglycans aligns the basement membrane; while 

collagen types I and III are the fibrotic liver matrix components. In this study, 

I chose to follow the expression of collagen type III by immunofluorescence 

staining, as it gives stronger signals than collagen type I, possibly due to the 

choice of primary antibodies. 
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2.2.5 Oxidative stress marker 

Oxidative stress is a common phenomenon present in all kinds of liver 

diseases [58]. The main source of reactive oxygen species (ROS) in the liver is 

NADPH oxidase [128, 129]. ROS lead to lipid peroxidation, during which 

lipid is undergoing oxidative degradation. This process causes cellular damage 

and inflammation, also increases TGF-β1 activity and ECM expression level, 

hence leading to fibrosis [130-133]. Superoxide, one type of oxidative stress, 

was tracked by dihydroethidium (DHE). This drug can be cleaved by 

superoxide to form fluorescent ethidium [134].  

  

2.2.6 MMPs and TIMPs markers 

The dynamics of ECM is regulated by the two groups of proteins: MMPs and 

TIMPs. MMPs are responsible for degrading ECM; while TIMPs inhibit MMP 

activities. Neither group of proteins is responsible for fibrogenesis or 

fibrolysis alone. Thus, both MMP-2 and TIMP-1 were included in this study. 

Based on substrate specificity, MMP family proteins can be classified as 

collagenases (MMP-1 in human and MMP-13 in rodent), gelatinases (MMP-2, 

MMP-9), stromelysins (MMP-3), matrilysins (MMP-7), metalloelastase 

(MMP-12) and membrane-type MMPs (MMP-14). During the onset of 

fibrosis, several MMPs such as MMP-2, MMP-3, MMP-13 and MMP-14 are 

upregulated to degrade ECM in the normal liver tissue, which facilitates the 

deposition of newly synthesized fibrotic ECM [135]. During fibrolysis, HSC 

apoptosis induces MMP-2 activation [136] and activated MMP-2 can degrade 
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interstitial collagen [137, 138]. Depending on the experimental model and 

conditions, MMP-2 mRNA or protein levels were observed to either increase 

[139-142] or decrease during fibrolysis [143-146].  

It has be shown that during fibrogenesis, ECM, TIMP and activated HSC 

increases, while during fibrosis resolution, ECM, TIMP and activated HSC 

decrease [147]. There are 4 members in the TIMP family: TIMP-1, TIMP-2, 

TIMP-3 and TIMP-4. Among them, TIMP-1 plays an important role in liver 

fibrosis [148], and is upregulated in activated HSC. It inhibits MMP activities, 

and as a result, encourages ECM accumulation. Murphy et al. showed that by 

inhibiting MMP activities, the increasing level of TIMP-1 can inhibit HSC 

apoptosis [149]. 

 

2.2.7 TGF-β pathway marker 

TGF-β is one of the most potent pro-fibrogenesis mediators [53]. There are 

three isoforms TGF-β1, TGF-β2 and TGF-β3, which interact with cell surface 

receptors TGF-β receptor type I (TβRI), II (TβRII) and III (TβRIII). The 

downstream signaling in the cells is through Smad family mediators [150, 

151], which are further classified into receptor mediated Smads (R-Smads), 

common mediator Smad (Co-Smads) and inhibitory Smads (I-Smads). The 

two main members in the R-Smads sub-family in HSC are Smad2 and Smad3. 

Smad2 functions mainly in quiescent HSC and is constitutively 

phosphorylated in activated HSC [152]. In the presence of TGF-β, Smad3 is 

phosphorylated by TβRI kinase and the activated form complexes with Co-
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Smad Smad4 and translocate into the nucleus, where it regulates the 

expression of specific gens such as collagen type I [46]. One study has shown 

that over-expression of Smad3, but not Smad2 can activate HSC and increase 

ECM production [153]; while Smad3 knockout mice have decreased ECM 

production [154]. Moreover, there is evidence that the other potent cytokines 

for HSC activation, such as PDGF, also transmits its signaling through 

Smad2/3 [155]. Hence in this study, the expression level of Smad3 was 

followed.  

DHE DHE is a fluorescent dye for superoxide. Superoxide induces caspase 3-

dependent apoptosis in activated HSC, but not in quiescent HSC [134]. 

pCREB The nuclear transcription factor CREB is phosphorylated in the presence of 

elevated intracellular cAMP. Phosphorylated CREB induces target gene 

expression, which inhibits HSC proliferation [156]. 

Smad3 Smad3 antibody staining is used to detect the level of total Smad3 in HSC. 

Smad 3 is in the downstream signaling pathway of TGF-β and is involved in 

the fibrogenesis process [157].     

F-actin Phalloidin dye binds to F-actin. It has been used to study adhesion and 

contractility of HSC [158]. 

BrdU BrdU dye can be incorporated into newly synthesized DNA of replicating 

cells, hence it is commonly used to study cell proliferation [159]. 

Caspase 3 Caspase 3 antibody staining is used to study caspase 3-dependent apoptosis of 

HSC [160]. 

ΔΨm MitoTracker Red is used to detect the level of ΔΨm in HSC. Decrease in ΔΨm 

induces apoptosis [161].  

Collagen III Collagen III antibody staining is used to detect the level of collagen α1 type III 

in HSC. Collagen type III increases about 4 folds in a fibrotic liver [46].  

MMP-2 MMP-2 antibody staining is used to detect the level of MMP-2 (whole 

molecule) in HSC. The expression profile of MMP-2 changes with the fibrotic 

state [135].  

TIMP-1 TIMP-1 antibody staining is used to detect the level of TIMP-1 in HSC. The 

expression profile of TIMP-1 changes with the fibrotic state [135]. 

Table 2.1. List of the 10 markers of fibrosis 
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2.2.8 Perturbations 

A systematic literature search of drugs with anti-fibrotic effects revealed 45 

drugs with direct effects on HSCs. They include drugs from a wide range of 

categories such as PPAR-gamma receptor antagonists (e.g. pioglitazone), 

statins (e.g. simvastatin and lovastatin), and anti-oxidants (e.g. resveratrol and 

silymarin). The primary mechanisms of action of these drugs will be covered 

in chapter 4. In addition, we have included 4 control drugs (e.g. paclitaxel and 

rotenone) that induce cell cycle arrest or apoptosis non-specifically in all cell 

types and have not been reported to have anti-fibrotic effect. 
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2.3 Materials and methods 

2.3.1 Liquid handling system 

An automated liquid handling system Perkin Elmer JanusTM was used for 

seeding cells, adding drugs to cells and staining. The relative position of a tip 

attaching to the dispensing head of the liquid handling system during 

aspiration and dispensing is set to be 1mm and 2mm respectively above well 

bottom and (-2.06mm, 2.27mm) away for the center of the well at (0mm, 0mm) 

horizontally. The aspirating and dispensing rates were set to be 10ul/s in all 

the steps. A maximum of 6 96-well plates were processed in a single batch of 

experiments.  

Figure 2.2. The automated liquid handling system. Image (A) and floor plan 
(B) of the integrated robotic system with various components. We have 
purchased a custom-built integrated robotic system for automation of routine 
assays such as albumin and urea ELISA in our laboratory. The system 
includes an automated liquid handling system Perkin Elmer JanusTM, a robot 
arm Thermo Scientific CRS Catalyst-5, a plate washer Wellwash AC, a 
microplate centrifuge Thermo Scientific GR4 Auto, a fluorescent and 
absorbance reader Tecan Safire2, a PCR machine Bio-Rad DNA engine, an 
incubator Thermo Scientific Cytomat, and a barcode reader Microscan MS-3 
Laser. (C) User interface of the liquid handling system. 
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2.3.2 Cell culture  

The human HSC cell line LX-2 was obtained as a generous gift from Dr. Scott 

Friedman (Mount Sinai Hospital, NY). The cells were cultured in Dulbecco’s 

modified eagle medium with 1000mg/L glucose, and 10% heat inactivated 

fetal bovine serum (Gibco, Grand Island, NY, USA) and incubated in 37oC in 

a humidified atmosphere with 95% air/5% carbon dioxide. 

 

2.3.3 Drug preparation  

45 anti-fibrotic drugs and 4 non-specific control compounds not related to 

fibrosis were included in this study. The stock solution of each drug was 

prepared by dissolving the drug in dimethyl sulfoxide (Sigma-Aldrich, St 

Louis, MO, USA) at the maximum solubility of a drug unless the solvent is 

specifically indicated in the manufacturer’s information sheet. The highest 

working concentration of each drug was determined as the IC50 value from a 

cell viability assay and was dispensed in the second column of a 96-well plate 

(Nunc, Roskilde, Danmark). 10 other working concentrations were prepared 

by a 2-fold serial dilution from the highest concentration in the same 96-well 

plate from column 3 to column 12. The first column of each plate was used as 

a drug-free control column. 
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2.3.4 Drug treatment  

LX-2 cells were seeded in 96-well glass-bottom optical plates (Matrical 

bioscience, Spokane, Washington). The seeding density was 0.007 million in 

100µl medium per well, allowing cells to reach 70% confluence after 3-day 

incubation. 24 hours after cell seeding, the culture medium was removed and 

fresh medium with drug was added and the cells were further incubated for 48 

hours before the viability assay or staining was performed. Samples with the 

same drug treatment conditions were prepared 16 times in different 96-well 

plates on different days for the cell viability and staining assays and their 

duplicates. 

 

2.3.5 Cell viability assay 

Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium (MTS), according 

to the manufacturer's instructions (CellTiter 96 Aqueous One Solution Cell 

Proliferation Assay, Promega). MTS reagent was prepared by mixing 

minimum essential medium (Gibco, Grand Island, NY, USA), FBS and 

CellTiter One solution at a ratio of 9:1:2 just before the assay. 120µl of the 

prepared reagent was added to each well and the plates incubated for 60 

minutes in a 37oC incubator. At the end of the incubation, 100µl of the 

medium was transferred to a new 96-well plate and the absorbance read at 

490nm. All readings were corrected with blank controls (MTS reagent 

incubated for 1 hour in 37oC in empty wells). All conditions were duplicated 
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per experiment and all experiments were performed twice. The average values 

were used to determine the IC50 values and the highest drug working 

concentrations were set to be close to the IC50 values.  

 

2.3.6 Cell staining 

Ten markers of fibrosis were included in this study and they were studied 

using 7 staining sets. We used 5 Cellomics Hitkits to track changes in cell 

proliferation (BrdU cell proliferation kit), apoptosis (Multiparameter apoptosis 

1 kits and Caspase 3 activation kit), cell shape (Multiparameter apoptosis 1 

kits), oxidative stress (Oxidative stress 1 kit) and cytokine activities (Smad3 

and phospho-CREB activation kit). Five samples and their duplicates were 

separately stained using the 5 kits. The staining steps were carried out 

according to the manufacturer's instructions (Thermo Fisher Scientific, 

Rockford, Illinois) with the exception of the nuclear staining procedure. For 

all the staining protocols in this study, nuclei were separately stained (Hoechst 

33258 diluted 1:1000) after secondary antibody staining and incubated for 10 

minutes under room temperature before the cells were washed and subjected 

to image acquisition.    

In addition, two samples and their duplicates were separately stained with 

collagen type III antibody or double-stained with matrix metalloproteinase-2 

(MMP-2) and tissue inhibitor of metalloproteinases-1 (TIMP-1) antibodies. 

LX-2 cells were fixed in pre-warmed 3.7% paraformaldehyde (Sigma-Aldrich, 

St Louis, MO, USA) in 37oC for 10 minutes and permeabilized with 1% 
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Triton X-100 (Thermo Fisher Scientific, Rockford, Illinois) at room 

temperature for another 10 minutes before blocking with 10% BSA (Sigma, 

Canada). After 30 minutes blocking, the cells were incubated with either anti-

collagen III antibody (diluted 1:100, Santa Cruz Biotechnology) or a mixture 

of the MMP-2 and TIMP-1 antibodies (anti-MMP-2 antibody was diluted 

1:1000, Santa Cruz Biotechnology; anti-TIMP-1 antibody was diluted 1:100, 

Santa Cruz Biotechnology) for 2 hours at room temperature. After washing, 

the cells were incubated with fluorescein-conjugated affinity purified anti-

rabbit IgG (H&L) (goat) (diluted 1:200, Rockland, USA) or Texas red 

conjugated affinity purified anti-mouse IgG (H&L) (donkey) (diluted 1:200, 

Rockland, USA) at room temperature for 1 hour, protected from light. Hoechst 

33258 (diluted 1:1000) was subsequently added for 10 minutes before the cells 

were washed and subjected to image acquisition.  

 

2.3.7 Image acquisition 

Images were acquired using Cellomics ArrayScan VTI (Thermo Scientific) 

controlled by vHCS™ Scan software version 6.1.4 (Build 6133). All images 

were taken with a LD Plan_Neofluar 20x air objective. 16 high-resolution 

images (1024x1024 pixels) were taken per well, which captured about 1000 to 

2000 cells per experimental condition. 
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2.3.8 Image processing and statistical analysis 

There are about 100 to 200 cells captured per image. Image segmentation and 

feature extraction were performed with modified evolving generalized 

Voronoi diagrams (EGVD) algorithm [162]. This Matlab algorithm was 

originally developed to segment images of neuronal cells with extended 

processes. Since HSCs also have extended morphology, especially when cells 

are under stress, the algorithm can be adapted with minimal modification 

(Figure 2.3). 

 

Figure 2.3. Image segmentation procedures. A: EGVD image processing flow 
chart. B: Segmentation result of LX-2 with mitochondria (red) and actin 
(green) staining.  C: Segmentation result of LX-2 with collagen type III (green) 
staining.  Nuclei were shown in blue color in both images. 

 

Individual cells were identified and 25 or 16 cytological features were 

extracted per cell for samples with 3-channel or 2-channel-staining 

respectively. These features described cellular shape, protein distribution and 

content. A complete list of cytological features is shown in Table 2.2. The 
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output of the algorithm is a 2D matrix, which is saved as a text file per image. 

This file includes all the feature values (columns of the matrix) for all the cells 

(rows of the matrix) in that image. The title of the text file is the same as the 

image file for easy tracking purpose.   

 Features Description S1 S2 S3 S4 S5 S6 S7 
1 ObjectAreaCh1 Area in pixels of Ch1 object x       
2 ObjectShapeCh1 Circularity measured by the ratio 

of perimeter square to 4*pi*area 
of Ch1 object 

x       

3 TotalIntensityCh1 Total intensity of all pixels in Ch1 
object 

x       

4 AveIntensityCh1 Average intensity of all pixels in 
Ch1 object 

x       

5 ObjectfragCh1 Object fragmentation measured 
by standard deviation divided by 
mean of Ch1 object 

x       

6 ObjectAreaCh2 Area in pixels of Ch2 object x x x x x x x 
7 ObjectShapeCh2 Circularity measured by the ratio 

of perimeter square to 4*pi*area 
of Ch2 object 

x x x x x x x 

8 TotalIntensityCh2 Total intensity of all pixels in Ch2 
object 

x x x x x x x 

9 AveIntensityCh2 Average intensity of all pixels in 
Ch2 object 

x x x x x x x 

10 ObjectfragCh2 Object fragmentation measured 
by standard deviation divided by 
mean of Ch2 object 

x x x x x x x 

11 TotalIntensityCh3 Total intensity of all pixels in Ch3 
object 

 x   x  x 

12 AveIntensityCh3 Average intensity of all pixels in 
Ch3 object 

 x   x  x 

13 ObjectfragCh3 Object fragmentation measured 
by standard deviation divided by 
mean of Ch3 object 

 x   x  x 

14 TotalIntensityNucCh2 Total intensity of all pixels in Ch2 
within Ch1 object mask 

x x x x x x x 

15 AveIntensityNucCh2 Average intensity of all pixels in 
Ch2 within Ch1 object mask 

x x x x x x x 

16 TotalIntensityCytoCh
2 

Total intensity of all pixels in Ch2 
within Ch2 but not in Ch1 object 
mask 

x x x x x x x 

17 AveIntensityCytoCh2 Average intensity of all pixels in 
Ch2 within Ch2 but not in Ch1 
object mask 

x x x x x x x 

18 TotalIntensityCyto/N
ucCh2 

Ratio of TotalIntensityCytoCh2 to 
TotalIntensityNucCh2 

x x x x x x x 

19 TotalIntensityNucCh3 Total intensity of all pixels in Ch3 
within Ch1 object mask 

 x   x  x 

20 AveIntensityNucCh3 Average intensity of all pixels in 
Ch3 within Ch1 object mask 

 x   x  x 

21 TotalIntensityCytoCh Total intensity of all pixels in Ch3  x   x  x 
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3 within Ch3 but not in Ch1 object 
mask 

22 AveIntensityCytoCh3 Average intensity of all pixels in 
Ch3 within Ch3 but not in Ch1 
object mask 

 x   x  x 

23 TotalIntensityCyto/N
ucCh3 

Ratio of TotalIntensityCytoCh3 to 
TotalIntensityNucCh3 

 x   x  x 

24 AveIntensityRatioCh2
/Ch1 

Ratio of AveIntensityCh2 to 
AveIntensityCh1 

x x x x x x x 

25 AveIntensityRatioCh3
/Ch1 

Ratio of AveIntensityCh3 to 
AveIntensityCh1 

 x   x  x 

Table 2.2. List of cellular features according to staining sets. 10 fibrotic 
markers were studied using 7 staining sets. S1: Cellomics BrdU cell 
proliferation kit (BrdU). S2: Cellomics multiparameter apoptosis 1 kits (F-
actin, mitochondrial membrane potential, ΔΨm). S3: Cellomics caspase 3 
activation kit (caspase 3). S4: Immunofluorescence staining of collagen III 
(collagen III). S5: Immunofluorescence staining of MMP-2 and TIMP-1 
(MMP-2, TIMP-1). S6: Cellomics oxidative stress 1 kit (DHE). S7: Cellomics 
Smad3 and phosphor-CREB activation kit (Smad3, pCREB). Ch1: channel 1 
for nuclear staining (blue). Ch2: channel 2 for protein staining (red or green 
for two-channel images; green for three-channel images). Ch3: channel 3 for 
protein staining (red for three-channel images). The nuclear region is defined 
by the Ch1 object mask. The cytoplasmic region that is positive for protein 
staining is defined by Ch2 (or Ch3) object mask. Nuclei were stained in all 7 
staining sets. Since nuclear features (features 1 to 5) are similar regardless of 
the protein stainings in channel 2 and 3, they are only considered once in S1. 
S1, S3, S4 and S6 were double-stained with one nuclear dye (Ch1) and one 
dye for a marker protein (Ch2). They do not have features related to Ch3.  
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2.3.9 Study design  

The data volume is shown below: 

Sample preparation: 

7 drugs in each 96-well plate 

7 plates for 49 drugs 

2x duplicates 

7 x staining sets 

= Total 98 96-well plates (7 plates x 2 replicates x 7 stainings) 

Image acquisition:  

Approximately 100 cells per image  

16 images per well in a 96-well plate 

= 150528 images (98 plates x 96 wells x 16 images)  

Cellular features 

16 or 25 features per cell for double or triple stained cells. 

≈ 0.3 x 109 data points (150528 images x 100 cells x 16 features) 
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2.4 Results 

2.4.1 Optimization of the highest working concentrations for all the drugs to 

ensure statistical significant number of cells being captured per image  

Image-based HCA can only capture cells adhered to the bottom of a well (live 

adherent cells). Floating cells (dead cells for adherent cell types) are removed 

through repeated washing steps during staining, thus cannot be recorded. To 

ensure that a significant number of cells can be captured per image, it is 

important to conduct a cell viability assay to determine the IC50 values of the 

drugs.  

MTS cell viability assay was conducted to find the percentage cell viability at 

various drugs concentrations and the IC50 values were determined from the 

percentage viability vs. drug concentration curves (data not shown). The 

highest drug concentration tested were 100 times diluted from the stock, so as 

to minimize the effects from DMSO solvent on cells. The highest working 

concentration is chosen to be around the IC50 values (Table 2.3). Some of the 

drugs, such as curcumin did not show cytotoxicity to LX-2 cells even at the 

highest concentration applied (More than 50% of cells were viable at the 

highest drug concentration). For these drugs, the highest working 

concentration is 100x diluted from the stock concentration.  

On average, about 100 to 150 cells were captured per image for control cells 

without drug treatment; and at least 20 cells were captured per image for drug 

treated cells. We took 16 images per well; hence at least 320 cells were 

recorded for every condition for each duplicate experiment.  
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 Drug name Company Cat. No Highest working 

concentration (µM) 

1 AG1296 Merck (Calbiochem) 658551 100 

2 curcumin Merck (Calbiochem) 239802 10 

3 epigallocatechin gallate 
(EGCG) 

Merck (Calbiochem) 324880 200 

4 resveratrol Merck (Calbiochem) 554325 250 

5 silymarin Sigma 254924 250 

6 taxifolin Merck (Calbiochem) 580553 125 

7 pentoxifylline Merck (Calbiochem) 516354 1000 

8 minoxidil sulphate Merck (Calbiochem) 475850 500 

9 colchicine Merck (Calbiochem) 234115 0.01 

10 TGFβ inhibitor III Merck (Calbiochem) 616453 62.5 

11 TGFβ inhibitor V Merck (Calbiochem) 616456 62.5 

12 AG1295 Merck (Calbiochem) 658550 100 

13 silybin Sigma S0417 500 

14 minoxidil Sigma M4145 250 

15 paclitaxel Merck (Calbiochem) 580555 0.016 

16 aphidicolin Merck (Calbiochem) 178273 500 

17 nocodazole Merck (Calbiochem) 487928 0.1 

18 staurosporine Merck (Calbiochem) 569397 100 

19 rotenone Sigma R8875 1 

20 genistein Sigma G6776 500 

21 bortezomib Selleck chemicals S1013 0.005 

22 imatinib mesylate Selleck chemicals S1026 15 

23 MG132 Calbiochem 474790 6.25 

24 gliotoxin Sigma G9893 0.15 

25 camostat mesylate Tocris Bioscience 3193 1000 

26 pirfenidone Sigma P2116 2000 

27 lovastatin Tocris Bioscience 1530 100 

28 PTK787/ZK22258 (PTK/ZK) Selleck S1101 250 

29 simvastatin Sigma S6169 50 

30 taurine Sigma T0625 4000 

31 Y27632 Selleck S1049 500 

32 thalidomide Sigma T144 5000 

33 5-Pregnen-3β-ol-20-one-16α-

carbonitrile (PCN) 

Sigma P0543 1000 

34 berberine chloride Sigma B3251 250 

35 tetrandrine Sigma 365629 6.25 

36 sulfasalazine Sigma S0883 5000 

37 olmesartan medoxomil Toronto research chemicals inc. O550000 308 

38 rosmarinic acid Tocris Bioscience 0630 700 

39 matrine Sigma M5319 5000 

40 fasudil HCl Tocris Bioscience 0541 62.5 

41 tranilast Tocris Bioscience 1098 1000 

42 melatonin Sigma M2675 1000 

43 glycyrrhizin Merck (Calbiochem) 356780 13.3 

44 somatostatin Merck (Calbiochem) 05-23-0850 10 

45 malotilate Selleck S1137 267 
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46 oxymatrine Wako reagents 150-01511 3780 

47 astragaloside IV Sigma 74777 200 

48 telmisartan Sigma T8949 200 

49 pioglitazone Toronto research chemicals inc. P471000 700 

Table 2.3 List of drugs and their highest working concentrations.  

 

2.4.2 All 10 markers of fibrosis captured drug-induced changes in LX-2 cells 

Drug-induced changes can be clearly detected in the datasets; for example, 

glycyrrhizin caused an increase in apoptosis (i.e. increase in the caspase 3 

level and decrease in the mitochondrial membrane potential measured by 

MitoTracker Red, ΔΨm) and a decrease in four other markers: proliferation 

(i.e. bromodeoxyuridine (BrdU) positive cells), oxidative stress (i.e. 

dihydroethidium (DHE) intensity), collagen (i.e. collagen type III intensity), 

and TIMP-1 (i.e. TIMP-1 intensity) (Figure 2.4). The Smad3 marker for TGF-

β1/fibrosis signaling is also studied. The ratio between nuclear and 

cytoplasmic intensities for Smad3 decreased with drug treatment, 

demonstrating a reduced extent of cytoplasmic to nuclear translocation and a 

reduced extent of activation of the protein. This suggests that glycyrrhizin can 

down-regulate the TGF-β1 signaling pathway. Furthermore, the total Smad3 

level increased in cells treated with anti-fibrotic drugs; previous work showed 

that Smad3 is required for inhibiting HSC proliferation [154].  
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Figure 2.4. Changes of hepatic stellate cells LX-2 with glycyrrhizin treatment. 
The cells are treated with or without 13.3µM of glycyrrhizin as indicated for 
48 hours. Nuclei are stained (blue) in all the images; while 10 fibrotic markers 
are represented with either red or green colors.  

 

2.4.3 Consistency and reproducibility of the cellular features  

We used a robotic liquid handling system to automate all the steps during 

sample preparation; as a result the samples are expected to have high 

consistency and reproducibility. These can be reflected by the consistency of 

cellular feature values, which are the output from the modified EGVD 

algorithm. For example, Figure 2.5 shows the average intensities of double-

stained cells with DAPI in channel 1 and DHE in channel 2. The cells were 



40	  

	  

treated with different concentrations of drug silymarin. In both plots A and B, 

the relative small error bars, which represent the standard deviation from 2 

duplicate samples, show that the feature values are reproducible. In addition, 

DHE intensity varies positively with the extent of oxidative stress in a cell as 

discussed previously. We can see that the anti-oxidant drug silymarin caused a 

decrease in average DHE intensity in Figure 2.5B. This decrease is not 

observed for the control cells without silymarin treatment in the same figure. 

Furthermore, the DNA content is not affected by the silymarin treatment as 

shown in Figure 2.5A. The observation agrees with our expectation based on 

the understanding of the drug effects on HSC cells and the cellular feature 

values are consistent and reproducible in duplicated samples.  
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Figure 2.5. Images and quantification of hepatic stellate cells LX-2 double-
stained with (A) DAPI in channel 1 and (B) DHE in channel 2 (blue: DAPI; 
red: DHE). Cells are treated with silymarin at the indicated concentrations for 
48 hours. The average intensities of DAPI and DHE per cell are quantified. 
Error bars represent standard deviation from 2 replicate datasets.  

 

The cell seeding density was optimized to 0.007 million in 100µl of culture 

medium per well. This density allows cells to reach about 70% confluence 

after 3-day incubation. Images in Figure 2.4 show typical density and 

distribution of LX-2 cells after the 3-day incubation period. The cells 

generally well spread and there are at least 30 cells captured per image for 

most of the images. However, despite seeding cells at the optimal seeding 

density and minimizing uneven distribution of cells by avoiding shaking the 

plates after cell seeding, there are occasional images with either no cell or too 
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many cells. These images tend to have lower signal to noise ratio and are more 

prone to over-segmentation by the modified EGVD algorithm. To remove 

these images, a Matlab code was implemented to identify images with 0 (no 

cell) or more than 200 (overcrowded) cells. Three example images are shown 

in Figure 2.6. Only cells from accepted images are used for subsequent 

analysis.  

 

Figure 2.6. Image selection according to cell density. A: Example of accepted 
image with good cell density (1 ~ 200 cells per image). B: Example of reject 
image with no cells. C: Example of rejected image with high cell density (> 
200 cells).   

 

2.4.4 Identification of drugs with non-specific effects from in vitro HCA 

analysis 

Drugs that target only the non-specific pathways such as proliferation and 

apoptosis (non-specific drugs) were eliminated to ensure that the system was 

specific for anti-fibrosis study. In agreement with other high-throughput anti-

fibrotic systems [111, 163], collagen expression level was used as an indicator 

to identify non-specific drugs. Since the percentage collagen (type III as an 

example) intensity in the control cells without drugs does not fluctuate more 

than 7% (p ≈ 10-8), any drug  (data not shown) that caused more than 7% 
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increase in collagen III intensity (i.e. profibrogenic property) at its highest 

concentration was defined as a non-specific drug.  

A total of 49 drugs were screened (Table 2.3). Using pioglitazone, EGCG and 

aphidicolin as examples, graphs of percentage collagen III intensity versus 

increasing drug concentrations were plotted for cells treated with each of the 

three drugs. A decreasing trend can be clearly seen for cells treated with 

pioglitazone and EGCG, which reduced collagen production by 33% and 22% 

respectively (Figure 2.7A, B); on the other hand, the percentage value 

increased from 100% to 161% for aphidicolin (Figure 2.7C). The standard 

deviations from two replicate experiments (error bars) are relatively small for 

most of the data points, showing the reproducibility of the HCA system. This 

approach identified 14 non-specific drugs from a total of 49 drugs: curcumin, 

resveratrol, silymarin, minoxidil sulphate, simvastatin, genistein, lovastatin, 

PTK/ZK, Y27632, rotenone, AG1295, paclitaxel, aphidicolin, nocodazole. All 

4 randomly chosen non-specific controls including aphidicolin, rotenone, 

paclitaxel and nocodazole were successfully identified. These drugs affect 

non-specific pathways like cell proliferation or apoptosis, but have not been 

documented to have anti-fibrosis effects.  
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Figure 2.7. Images and quantification of hepatic stellate cells LX-2 with 
collagen III immuno-fluorescence staining. Cells are treated with (A) 
pioglitazone, (B) EGCG, or (C) aphidicolin at the indicated concentrations for 
48 hours (blue: nuclei; green: collagen III). The amount of collagen III in the 
cytoplasmic region is quantified and represented as the percentage of total 
collagen III intensity with respect to control (0µM of drug). Error bars 
represent standard deviation from 2 replicate datasets.  

 

The in vitro efficacies of drugs depend on their concentration and treatment. 

Since the primary target of many drugs is not directly affecting collagen 

expression, the collagen level of drug treated cells may not show a significant 

decrease under the experimental conditions. As a result, a relaxed condition 

was used as the first screening step. Drugs causing more than a 7% increase in 

collagen were removed from further analysis. Subsequent procedures 

examined the overall drug induced cellular changes. Drugs that failed to 

produce a significant response would be reflected by their low index values. 
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On the other hand, if a drug showed an overall high efficacy, it could be 

recommended for further characterization. One such example is sulfasalazine, 

which at its highest concentration did not cause a significant decrease in 

collagen type III expression. However, our subsequent analysis predicted that 

this drug has relatively high anti-fibrotic efficacy (Chapter 3.3.4). This 

prediction agrees with the observation from a short-term study, in which a 

single injection of sulfasalazine reduced the fibrosis score from 3.0 in CCl4 

only rat livers to 1.5 [140].  

 

2.5 Discussion  

The natural process of HSC activation involves a morphological change from 

a more spherical morphology to a more star-like extended morphology. This 

morphological change is regulated by both physical and chemical cues [164-

166]. The physical cue comes from the stiffness of the substratum. It has been 

reported that LX-2 cells are in a quiescent state when cultured on Matrigel 

(soft surface); while in an activated stated on glass or plastic surfaces (hard 

surface) [124]. HSCs seeded on hard surfaces are generally considered to have 

an activated phenotype, but they can be further stimulated by pro-fibrogenic 

and pro-proliferative cytokines such as TGF-β1 and PDGF [141, 167]. In this 

study, cytokines were not used to further activate HSCs, because HCA is a 

more sensitive method than other assays such as western blot or ELISA, which 

only measure the total protein content. HCA also measures the protein 

distribution, localization and cell shape, which together with total protein 

content are used to account for drug induced changes in the cells. In the 
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subsequent chapters, multiple cellular features are combined for the in vitro-in 

vivo correlation studies.   

Commercial bioapplication software modules are commonly packaged with 

the HCA systems and the modules are developed for certain biological 

applications. For example, the cell cycle module, the compartmental analysis 

module and the target activation modules from Cellomics are recommended 

for BrdU cell proliferation assays. It is possible to use cellular features 

extracted from these commercial bioapplication software modules for 

subsequent statistical analysis; however, there are several drawbacks. Firstly, 

to optimize the software to have a good segmentation result for a particular 

cell type and its fluorescence intensity, extensive manual inputs are required. 

Although it is possible to load and reuse previous software settings, it is still 

necessary to adjust several parameters to account for variable factors such as 

intensity fluctuation of the light source. Secondly, different software modules 

(e.g. Cellomics bioapplication software modules) generate different number of 

output features and similar features may be called by different names in 

different modules. Hence, manual selection of these features is needed every 

time when exporting data from Cellomics database to third-party software 

such as Microsoft Office Excel. The procedure is labor-intensive, time-

consuming and prone to human errors. As an alternative option, we 

incorporated a custom-built modified EGCD algorithm for image processing 

into the HCA system for better control and automation. The algorithm was 

designed to normalize cellular intensity with respect to the background signal 
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in the same image, and the cellular features are standardized regardless of the 

staining sets.   

Several markers of fibrosis that we used in our platform, such as caspase 3 and 

BrdU are not specific markers of fibrosis. For example, anti-cancer drugs may 

also target cell proliferation and apoptosis. To ensure system specificity, we 

have added in the requirement that drug that causes an increase in collagen 

expression are non-specific drugs and the approach successfully identified all 

4 negative controls. In addition, 10 other drugs, mostly anti-oxidants were also 

found to be non-specific. Drug efficacies of the rest 35 drugs were then 

assessed by their overall performance in multiple pathways in the subsequent 

chapters.  
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Chapter 3 

In vitro-in vivo correlation study of anti-fibrotic 

drugs 

 

3.1 Introduction 

Current anti-fibrotic drug discovery efforts follow a sequential procedure. 

Drug candidates are first subjected to a series of in vitro experiments, and 

those satisfying a set of pre-defined criteria are advanced to in vivo animal 

testing. Very often, in vitro data have poor correlation with in vivo drug effects 

due to the complicated pathophysiological background of hepatic fibrogenesis. 

As a result, a significant number of drugs fail to show desirable in vivo effects 

[168]. Not only does such process have low success rate, it also prolongs the 

drug discovery process. To overcome these limitations, it is important to take 

drugs’ in vivo response into consideration as early as possible in the drug 

development process. In this chapter, we show that by integrating HCA and 

application-specific statistical analysis, we can build a high-throughput anti-

fibrotic drug-screening platform that generates rich information from a single 

study and correlates in vitro and in vivo drug effects.  

In this chapter, we quantitatively assessed and compared the end-point anti-

fibrotic drug responses from the in vitro and in vivo models. A drug efficacy 

predictor (Epredict) was computed from in vitro HCA data and optimized to 
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have a high positive correlation with the in vivo drug efficacy (Ein vivo) 

extracted from studies using rat carbon tetrachloride (CCl4) treatment models. 

This positive correlation was validated with two additional validation datasets 

from rat CCl4 preventive and dimethylnitrosamine (DMN) treatment models. 

CCl4 and DMN are two hepatotoxins commonly used to induce liver fibrosis 

in laboratory animals. 

 

3.2 Mathematical models for computing in vitro index Epredict from cellular 

feature values 

Step1. Kolmogorov-Smirnov statistics for unimodal distributions: 

0sup ( ) ( )mfc x mfc mfKS F x F x= −  

where sup is the least upper bound function, and 
mfcF is the empirical 

distribution function  

1

1( )
mfci

N

mfc X x
i

F x I
N ≤

=

= ∑  

1       
0        

mfciif X x
I

otherwise
≤⎧

= ⎨
⎩

 

where N is the total number of cells captured in a well with drug concentration 

c and marker m. 
mfciX  represents the value of feature f for cell i in that well.  
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Ratio for bimodal distributions: 

0mfc mfc mfR r r= −  

min

1 K

mfc mfci
i k

r m
N =

= ∑  

where K is the total number of bins in a histogram of feature f for cells 

captured in a well with drug concentration c and marker m. 
mfcim is the number 

of cells in the ith bin, mink  is the bin with the minimum number of cells to the 

right of the first peak.  

 

KR values: 

   if  has unimodal distribution
    if  has bimodal distribution

mfc
mfc

mfc

KS f
KR

R f
⎧

= ⎨
⎩

 

(Higher multimodal distributions are not observed in the dataset.) 

 

Step 2. Use trapezoidal rule to estimate the area under the curve (KR vs. 

relative drug concentration) for each feature f of cells stained with marker m: 

 

where C equals 10 in this study as 11 concentrations are used per drug.  

for control cells without drug treatment. 2c accounts for the two-time serial 

dilution that was made during drug preparation. The relative drug 

( 1)
0

1 ( ) 2
2

C
c

mf mfc mf c
c

AUC KR KR +
=

= × + ×∑

0c =
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concentration for all drugs ranges from 20 to 211. Compared with KR values at 

a particular concentration, AUC is more resistant to noise as positive and 

negative fluctuations in area under the curve tend to cancel each other out, 

leaving a more consistent and reproducible value.  

 

Step 3. Compute sign corrected sum of AUC for each marker: 

m mf mf
f

SAUC AUC S= ×∑   

where  is -1, 0 or 1. If a feature value decreases under the influence of anti-

fibrotic drugs (e.g. ΔΨm drops in apoptotic cells),  is equal to -1. If the 

feature value increases,  is equal to 1. If the direction of change cannot be 

clearly determined,  is assigned to 0. Since most of the drugs in this study 

have been previously shown to have anti-fibrotic effects, it is assumed that 

feature variations in the majority of drugs will change in the anti-fibrotic 

direction and the  values are assigned accordingly.  always 

increases under the influence of anti-fibrotic drugs.    

Nuclear staining is done for all cells. To avoid redundancy of counting nuclear 

channel information 10 times, the 5 nuclear channel features are only used in 

computing SAUC for BrdU stained cells.   

 

 

 

mfS

mfS

mfS

mfS

mfS mf mfAUC S×
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Step 4. Computing Epredict: 

0                         all non-specific drugs
                   otherwiseoptpredict

m m
m

E SAUC W
⎧⎪= ⎨ ×
⎪⎩
∑  

where opt
mW is the optimized weight for marker m as shown. 

highestC  is the 

highest drug working concentration. Non-specific drugs have been identified 

from the analysis on the variation of the percentage total collagen III intensity 

with drug concentrations. If a negative index value is obtained, the index will 

be assigned to 0 value. 

All statistically analysis algorithms were developed in Matlab R2009a with 

image processing and statistical toolboxes. 
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3.3 Results 

3.3.1 First level data dimension reduction – a KD value to reflect cellular 

changes at population level 

HCA data from cells stained with 10 markers of fibrosis were used to 

quantitatively assess and compare anti-fibrotic efficacies of the drugs. 

Approximately 1000 to 2000 cells were collected from a single well in a 96-

multi-well plate. We tested the performance of mean, median, and 

Kolmogorov-Smirnov (KS) score [169] as an estimator of the population 

behavior of all the cells from same treatment conditions, so as to obtain a 

single numerical value per cellular feature for subsequent steps.   

 

3.3.1.1 Kolmogorov-Smirnov value is a good population estimator 

KS test is used for testing the hypothesis that the two populations are of the 

same distribution [170]. A KS score is defined to be the greatest vertical 

distance between two cumulative distribution functions A and B, in which B 

represents the observations from drug treated samples; while A represents 

expectations from drug-free control samples (cumulative distribution functions 

in Figure 3.1B). Figure 3.1C shows how KS values vary with drug AG1296 

from 0µM to 100µM. A decrease in KS value means a decrease in cellular 

feature value and vice versa.  

The advantage of KS test is that it is a non-parametric method; hence the test 

does not depend on the assumption of a normal distribution. As shown in the 

histograms in Figure 3.1B, cellular feature values do not follow a normal 



54	  

	  

distribution. Secondly, the KS values are bound in the range from -1 to 1. Two 

KS values for two different cellular features are intrinsically at similar 

magnitudes without the need of additional normalization steps. In addition, KS 

values for the control cells without drug treatment are observed to be 

relatively constant across different wells in a 96-well plate and among 

different plates. In all the plots in Figure 3.2, KS values vary between -0.2 and 

0.2 in the control samples. As a result, any changes outside this range can be 

considered significant. KS values greater than 0.2 magnitude in the drug 

treated wells are due to drug treatment instead of noise fluctuation. In 

summary, KS value is a good population estimator for our HCA data. 

 

Figure 3.1. KS values for feature collagen type III average intensity captured 
drug-induced changes in (A) LX-2 cells treated with 0uM to 100uM of 
AG1296 (blue: nuclei; green: collagen type III). (B) Histograms and 
cumulative distribution functions for collagen III average intensity (blue curve 
in the cumulative distribution functions: expectations from drug-free control 
samples; red curve: the observations from drug treated samples). The red 
vertical line between the blue and red curves represents the KS value. (C) KS 
value decreases as collagen III average intensity. 
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Figure 3.2. The KS values for the 16 features from control cells with BrdU 
staining. The number on top of each subplot is the feature index corresponded 
to Table 2.2. Each dot in the plot represents the KS value from all the cells a 
control well. There are 8 control wells (first column) per plate and 98 plates in 
total. Y-axis in each plot is the KS value. 

 

In comparison, the mean is one of the estimators for a parametric test, in 

which we have some idea or can make a hypothesis of the population 

distribution. This assumption does not hold for all the cellular features. In 

addition, a normalization step is needed to ensure that the means of all features 

fluctuate within a similar range, so that all features carry equal weights for the 

subsequent analysis. If different weights are needed for different cellular 

features, they should be assigned based on their relative importance towards 

addressing the biological question of the study.  

The normalization step linearly scales all data points to a pre-defined range 

(e.g. between 0 and 1, with 0 being the lowest value and 1 the maximum). 
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Such operation requires the knowledge of global maximum and minimum 

values. If we carry out normalization on a subset of data (training set), the rest 

or new data may contain values greater than the greatest value in the training 

subset, thus causing a problem. Similar to the mean, the maximum value of 

median cannot be obtained from a subset of data. Hence, mean and median are 

not good population estimators for our study.  

 

3.3.1.2 Ratio- conversion from continuous to binary readouts  

Although KS values work well with most of the cellular features, some 

exceptions were observed. Figure 3.3 shows KS values and means of 5 

cellular features under the influence of increasing drug concentration. Both 

estimators showed a decrease in nuclear area, an increase in nuclear 

fragmentation and an increase in phosphorylated caspase 3 (Figure 3.3 A-F), 

all of which show that the cells are in an apoptotic state. However, for the 

other 2 features (Figure 3.3 G-J), KS values do not agree with the means.  



57	  

	  

 

Figure 3.3. Comparison between the KS values and means for different 
cellular features. X-axis: drug concentration. Y-axis: KS or mean as indicated. 
KS and mean change in the same direction in A-F; opposite direction in G-J. 

 

Upon a closer look, features with different trends for the KS values and means 

exhibit two populations of values (bimodal distribution) (Figure 3.4C), 

compared to a unimodal distribution such as in Figure 3.4A. As concentration 

increases, the bimodal distribution switches back to unimodal (Figure 3.4D 

and 3.5). Since KS value does not work well for these features, we 

implemented a code to identify these features and replace the KS values for 

these features with ratios. 
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Features with bimodal distribution were identified automatically using 

standard deviation, as the KS values for these features have greater spread 

than those with unimodal distribution. We found that such features only exist 

in BrdU stained samples (features: BrdU_TotalIntensityCh2, BrdU_Ave-

IntensityCh2, BrdU_TotalIntensityNucCh2, BrdU_AveIntensityNucCh2 and 

BrdU_AveIntensityRatio-Ch2ToCh1) at low drug concentrations.  

 

Figure 3.4. Distribution of KS values for features with unimodal (A) and 
bimodal (C) distributions. (B) Same feature as (A) at higher drug 
concentration. (D) Same feature as (C) at higher drug concentration. 

 

The KS values of these features were replaced with ratio, which is the 

proportion of cells with dye intensity greater than a threshold. The threshold 

value was determined to be the first minimal point from the left of a smoothed 

histogram. All ratio values were then subtracted by the ratio value in the 

control sample so that the results are centered about 0. The maximum and 

minimal ratio values can theoretically reach 1 and -1. As the variation is less 
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than 1 unit in both positive and negative direction, the magnitude of ratio is 

comparable to that of a KS value. As shown in Figure 3.5, ratio value for 

BrdU average intensity decreases with increasing drug concentrations, and this 

trend agrees with the trend in Figure 3.3I.  

 

Figure 3.5. Ratio of BrdU average intensity. Histogram shows the frequency 
of cell numbers at each feature value internal. Drug concentration increases 
from (A) to (L). Red line represents the threshold point, which is determined 
from (B), and the numerical value at the upper right corner is the ratio value. 

 

All data were converted into either KS [169] or ratio, depending on whether a 

feature has a unimodal or bimodal distribution. The combined term from KS 

and ratio was named KR value and it varies from -1 to 1. A negative KR value 

represents a decreasing feature value (e.g. intensity) compared with the control; 

while a positive one represents increasing feature value. The KR values exhibit 

drug concentration-dependent changes shown by the color intensities in the 

heatmaps (Figure 3.6). 
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Figure 3.6. Heatmaps showing the variations of the KR values for each of the 
cytological features (y-axis) with increasing drug concentrations from 0 µM to 
13.3 µM (x-axis) of glycyrrhizin. Cytological features with similar variations 
are clustered together. Drug-induced concentration-dependent changes can be 
clearly detected in the graphs (blue: decrease in feature values; red: increase in 
feature values). Numbers in the heatmaps are the SAUC values.  

 

3.3.2 Second level dimension reduction - SAUC scores which describe the 

extent of changes in fibrotic markers from in vitro culture  

The KR values are combined to create a single SAUC score for each marker. 

The SAUC score is the sum of the sign corrected area under the curve from KR 

values versus drug concentration plot. The sign of the SAUC value was 

corrected to increase if the drug exhibits anti-fibrotic effects. Features with 

ambiguous directions are assigned to 0 (data not shown). This step ensures 

that the SAUCs vary positively with the anti-fibrotic effects of a drug on the 

10 markers. 

Each drug has 10 SAUC values corresponding to the 10 markers of fibrosis. In 

vitro drug effects can be assessed based on these values, and the results could 
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be correlated to in vivo response. For example, oxymatrine exhibited a 

relatively higher efficacy than colchicine, as oxymatrine treated rats had lower 

histopathological scores, smaller collagen area in the liver tissue, and lower 

concentrations of the serum markers such as hyaluronic acid and procollagen 

III compared with colchicine treated rats [171]. From our HCA results, the 

SAUC values for at least half of the markers showed a higher value for 

oxymatrine than colchicine (Figure 3.7). In order to have a more quantitative 

comparison of the drug efficacies, our goal is to consolidate the 10 SAUC 

values into a single index as a drug efficacy predictor that is positively 

correlated to an in vivo drug efficacy index.  

 

Figure 3.7. The SAUC values for drugs colchicine and oxymatrine.   
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3.3.3 An in vivo anti-fibrotic drug efficacy index ranks drugs based on their in 

vivo effects  

Different weights were assigned to the SAUC values to reflect the relative 

importance of each of the markers towards the overall efficacy. The weights 

were chosen so that the overall index can reflect the in vivo response of a drug. 

Before we could do that, we needed a numerical measure of the in vivo drug 

efficacy. Previous works that involved multiple drugs in a single in vivo study 

carried out the drug efficacy comparison by assessing the extent of fibrosis in 

liver biopsy samples as well as the level of surrogate serum markers for liver 

fibrosis such as alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST). Such an approach does not summarize the 

experimental results into a drug efficacy index for direct comparison and 

ranking of drugs within a single in vivo study or between studies. Here we 

analyzed the literature and an in vivo drug efficacy scoring system was 

computed based on histological scores. 

Most of the in vivo studies reported in the literature were carried out in rat 

models. Although numerous such papers are available, there is no standard 

method to compare these results. To compare the in vivo drug efficacies, we 

have established an in vivo index based on pathologist-graded histological 

scores, which are considered the gold standard for quantifying the extent of 

fibrosis. A systematic search was performed on the reported in vivo effects of 

all 49 drugs on hepatofibrotic rats. The search yielded 28 papers with 

pathologist-graded histological scores from 1986 to 2009, using CCl4, TAA, 

DMN, cisplatin, pig serum, high calorie diet or bile duct ligation (BDL) 
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induced fibrotic rats (Table 3.1). These studies can be further divided into 

preventive or treatment models depending on whether a drug is given since the 

first injection of hepatotoxin or after liver fibrosis has been established.  

CCl4 and DMN induce fibrosis through similar mechanisms by inducing 

necrosis in parenchymal cells; while TAA induces fibrosis through 

inflammatory responses [172, 173]. BDL causes both cholemia (excess bile in 

the blood) and parenchymal liver disease [174]. Cisplatin causes G2 arrest in 

the cell cycle, and triggers apoptosis of hepatocytes [175]; it also causes 

oxidation in liver tissues [176]. Pig serum induces liver septal fibrosis without 

causing necrosis or inflammation to liver cells [177].  

 

 Authors Year Drug(s) Rat 
fibrotic 
model 

Treatment 
(T) 
/Preventive 
(P) 

1 [178] Jeong, et al. 2005 silymarin CCl4 P 
2 [179] Hsu, et al. 2007 tetrandrine, 

silymarin 
DMN T 

3 [180] Chong, et al. 2006 thalidomide, 
silymarin 

DMN T 

4 [181] Shu, et al. 2009 curcumin, colchicine CCl4 P 
5 [182] Dumont, et 

al. 
1986 malotilate CCl4 P, T 

6 [183] Wu, et al. 2008 oxymatrine  CCl4 P 
7 [171] Deng, et al. 2009 oxymatrine, 

colchicine  
CCl4 P 

8 [184] Seung, et al. 2004 colchicine DMN T 
9 [185] Yuan, et al. 2004 pioglitazone CCl4 P, T 
10 [186] Dekel, et al. 2003 gliotoxin TAA T 
11 [187] Zhen, et al. 2007 EGCG CCl4 P 
12 [188] Li, et al. 2009 rosmarinic acid, 

silymarin 
CCl4 T 

13 [140] Oakley, et al. 2005 sulfasalazine CCl4 T 
14 [189] Wang, et al. 2005 melatonin CCl4 P 
15 [190] Hong, et al. 2009 melatonin CCl4 P 
16 [191] Tasci, et al. 2007 taurine CCl4 T 
17 [192] Raetsch, et al. 2002 pentoxifylline BDL P, T 
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18 [193] Marek, et al. 2005 PCN CCl4 P, T 
19 [194] Bruck, et al. 2007 curcumin TAA P, T 

20 [195] Liu, et al. 2009 astragoloside IV, 
colchicine 

pig serum P 

21 [196] Kuzu, et al. 2007 genistein CCl4 P 
22 [197] Baur, et al. 2006 resveratrol high 

calories 
diet 

P 

23 [198] Lv, et al. 2007 thalidomide CCl4 T 
24 [199] Iseri, et al. 2007 simvastatin cisplatin P 
25 [200] Lv, et al. 2006 thalidomide CCl4 P 
26 [201] Yeh, et al. 2004 thalidomide TAA T 

27 [202] Ryhanen, et 
al. 

1996 malotilate DMN P 

28 [203] Tasci, et al. 2008 taurine CCl4 P 
Table 3.1. List of papers with pathologist graded histological scores on fibrotic 
rats from 1986 to 2009. 

 

To define a formula for in vivo drug efficacy, we attempted to combine the 

histological score of fibrotic animals without drug treatment (Sc) and the 

histological score of drug treated animals (St). The in vivo efficacy of a drug is 

expected to be positively correlated to the changes in histological scores 

between the control and drug-treated biopsy samples (Sc - St). In addition, the 

drug efficacy may also be positively dependent on the fibrosis severity, as 

there are observations that individuals with more advanced fibrosis are less 

likely to respond to treatment, hence these patients require drugs with higher 

efficacy [104]. A quantitative in vivo efficacy index (Ein vivo) was computed as 

shown below: 

 ( )in vivo c c tE S S S= × −  

Both Sc and St were linearly converted to a 0-4 scale, which is a commonly 

used range for histological scores in several fibrosis scoring systems such as 
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Metavir, Knodell and Ludwig [204]. If histological scores of a drug from 

multiple studies were available, the highest Ein vivo value was chosen.  

The severity of fibrosis induced by different hepatotoxins varies (e.g. Ein vivo 

for silymarin is 0.8 for DMN treatment model, 3.1 and 6 for CCl4 treatment 

and preventive models); hence the indices are only comparable within the 

same fibrosis model. Subsequent correlation analysis was conducted using 

studies with long-term (>3 weeks) drug treatment, and fibrotic models with at 

least 3 drugs. The in vivo results satisfying these criteria were summarized in 

Table 3.2A-C. CCl4 preventive and treatment models have 5 drugs in common; 

we found that three of these drugs: silymarin, malotilate and pioglitazone have 

the same relative ranking in both models while PCN and taurine didn’t follow 

the ranking (Table 3.2D). Interestingly subsequent analysis showed that both 

PCN and taurine were outliers in the in vitro-in vivo correlation plots.  

The calculated Ein vivo is an attempt to capture the therapeutic efficacy of drugs 

on human patients. There are relatively few studies suitable for directly 

comparing drug effects on human patients due to variations in experimental 

designs. In one example, two similar clinical studies using colchicine and 

silymarin on patients with cirrhosis due to any primary insults showed that 

colchicine led to 75% 5-year survival rate [205], while silymarin led to 58% 4-

year survival rate [206]. Ein vivo agrees with these reports that colchicine has a 

higher value (5.7) than silymarin (0.8) (Table 3.2A). 
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A. DMN induced 
fibrosis 
(treatment) 

histological 
score (DMN 
alone) (Sc) 

histological 
score (with 
drug) (St) 

Ein vivo:  
(Sc-St)xSc 

colchicine[184] 3.8 2.3 5.7 
silymarin[179] 2 1.6 0.8 
tetrandrine[179] 2 1.3 1.4 
thalidomide[180] 1.56 0.89 1 
 

B. CCl4 induced 
fibrosis (treatment) 

histological 
score (CCl4 
alone) (Sc) 

histological 
score (with 
drug) (St) 

Ein vivo:  
(Sc-St)xSc 

malotilate[182] 3.76 2.67 4.1 
5-Pregnen-3β-ol-20-
one-16α-carbonitrile 
(PCN)[193] 

3.84 2.8 4 

pioglitazone[185] 4 2.63 5.5 
rosmarinic acid[207] 3.4 2.1 4.4 
silymarin[207] 3.4 2.5 3.1 
taurine[191] 3.33 1.33 6.7 
 

C. CCl4 induced 
fibrosis (preventive) 

histological 
score (CCl4 
alone) (Sc) 

histological 
score (with 
drug) (St) 

Ein vivo:  
(Sc-St)xSc 

melatonin[190] 3.38 2.25 3.8 
silymarin[178] 4 2.5 6 
malotilate[182] 2.91 0.76 6.3 
EGCG[187] 3.58 1.5 7.4 
oxymatrine[183]  3.76 2.43 5 
taurine[203] 3.03 1.87 3.5 
PCN[193] 3.6 3.68 -0.3 
pioglitazone[185] 4 1.94 8.2 
 

 

 

 

 

 

Table 3.2. Indexing of anti-fibrotic drugs from in vivo data. All data are taken 
from the literature using (A) dimethylnitrosamine (DMN) treatment, (B) 
carbon tetrachloride (CCl4) treatment, or (C) CCl4 preventive fibrotic rat 
models. Histological scores are linearly converted to a scale from 0 to 4. Ein 

vivo is established as shown. (D) Drugs are sorted according to Ein vivo. 
Silymarin, malotilate and pioglitazone have the same relative ranking in CCl4 
treatment and preventive models.  

D. DMN induced 
fibrosis 
(treatment) 

CCl4 induced 
fibrosis 
(treatment) 

CCl4 induced 
fibrosis 
(preventive) 

In
cr

ea
si

ng
 E

in
 v

iv
o  silymarin silymarin PCN 

thalidomide PCN  taurine 
tetrandrine  malotilate  melatonin 
colchicine  rosmarinic acid oxymatrine 
 pioglitazone  silymarin 
 taurine  malotilate 
  EGCG 
  pioglitazone 
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3.3.4. An in vitro efficacy predictor Epredict is computed to positively correlate 

with the Ein vivo value of a drug 

The SAUC values for the majority of drugs showed a weak positive correlation 

with the Ein vivo (Figure 3.8: ΔΨm, TIMP-1, DHE, pCREB and Smad3). We 

investigated if we could further enhance this correlation by applying weights 

(0, 1 or 2) to the SAUC values. 0 indicates no contribution of the marker to the 

positive correlation; while 2 indicates strong contribution of the marker to the 

positive correlation. The Ein vivo values from the CCl4 treatment model were 

used as the training dataset to find the optimized weights. 

 

Figure 3.8. Correlation between SAUC and Ein vivo for rat CCl4 treatment model 

 

All possible linear combinations of the 3 weights with 10 markers (310 

combinations) were subjected to the Spearman’s rank correlation test [208] 

against Ein vivo from CCl4 fibrosis model. One outlier was allowed in the 

analysis, as the sample size is relatively small. The Spearman’s rank 

correlation coefficient rho ranges from 0 to 1, where 1 means perfect rank 

correlation (excluding the outlier), and 0 means the opposite order. The 
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optimized weight for each marker was determined to be the value with the 

highest frequency occurrence out of all cases which achieved rho = 1 (Figure 

3.9). It implied relatively high importance of the marker towards contributing 

to a strongly positive correlation. An efficacy predictor (Epredict) was computed 

as the linear combination of the 10 optimized weights with the SAUC values 

as shown below: 

   

1 3

2

2 2 2
predict DHE collagen III mitochondrial membrane potential

TIMP pCREB Smad

E SAUC SAUC SAUC
SAUC SAUC SAUC−

= + + ×

+ × + × + ×
 

A greater Epredict represented a higher drug efficacy and all negative values 

were assigned to 0 as no efficacy. The Epredict values for drugs with non-

specific effects identified in chapter 2 were also assigned to 0 (Table 3.3).  

 

Figure 3.9. Pie charts showing the chance of occurrence of weights in all cases 
where the Spearman’s rank correlation coefficient rho achieves 1 in the 
training dataset. Three weights ranging from 0 to 2 are iteratively multiplied 
with SAUC of each marker. The sums of all possible combinations of the 
weights and markers are subjected to Spearman’s rank correlation test against 
index A from CCl4 treatment model. One outlier is excluded from the 
correlation test each time. The optimized weight for each marker is the value 
with the highest occurrence indicated with a * in each pie chart, which implies 
the relatively higher importance of the marker towards contributing to a 
stronger positive correlation. 
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Rank Drugs	   Epredict	  
1 taxifolin	   0	  
1 taurine	   0	  
1 curcumin	   0	  
1 resveratrol	   0	  
1 silymarin	   0	  
1 minoxidil sulphate	   0	  
1 simvastatin	   0	  
1 genistein	   0	  
1 lovastatin	   0	  
1 PTK787/ZK22258 (PTK/ZK)	   0	  
1 Y27632	   0	  
1 rotenone	   0	  
1 AG1295	   0	  
1 paclitaxel	   0	  
1 aphidicolin	   0	  
1 nocodazole	   0	  
2 pentoxifylline	   5175	  
3 matrine	   5295	  
4 astragaloside IV	   5496	  
5 thalidomide	   6263	  
6 colchicine	   6487	  
7 TGFβ inhibitor V	   6974	  
8 gliotoxin	   7086	  
9 5-Pregnen-3β-ol-20-one-16α-carbonitrile (PCN)	   8203	  
10 camostat mesylate	   8231	  
11 imatinib mesylate	   8454	  
12 oxymatrine	   8528	  
13 pirfenidone	   8837	  
14 minoxidil	   9069	  
15 AG1296	   9154	  
16 somatostatin	   10057	  
17 MG132	   10669	  
18 tetrandrine	   10747	  
19 telmisartan	   11467	  
20 malotilate	   12941	  
21 melatonin	   13728	  
22 fasudil HCl	   14295	  
23 olmesartan medoxomil	   15959	  
24 silybin	   18138	  
25 TGFβ inhibitor III	   18315	  
26 tranilast	   19594	  
27 epigallocatechin gallate (EGCG)	   19704	  
28 bortezomib	   21047	  
29 rosmarinic acid	   21435	  
30 berberine chloride	   21983	  
31 staurosporine	   25015	  
32 glycyrrhizin	   25728	  
33 pioglitazone	   35226	  
34 sulfasalazine	   39437	  
Table 3.3. List of Epredict values for all the drugs 
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Figure 3.10A shows that the Epredict values had a good correlation with the Ein 

vivo from the CCl4 treatment model, which was used for optimizing the weights. 

Although the statistical approach used was to optimize the ranking order of the 

drugs, a linear relationship was observed in the plot. Taurine was found to be 

an outlier. Its relatively high in vivo efficacy compared with other drugs in 

Table 3.2B might be due to the much higher drug concentration used in the 

study (1200mg/kg daily) compared with a typical drug concentration 

(<100mg/kg daily) for the rest of the drugs.  

To validate that Epredict is a robust anti-fibrotic drug efficacy predictor that can 

correlate with the in vivo data from other rodent fibrosis models different from 

the training dataset; we tested the ability of Epredict to correlate with two “blind” 

in vivo datasets. We drew two additional correlation plots of Epredict against Ein 

vivo from DMN treatment (Figure 3.10B) and CCl4 preventive models (Figure 

3.10C). Epredict was kept the same as computed for the CCl4 treatment model. 

A positive correlation as well as a linear relationship between Epredict and Ein 

vivo was again observed in both plots. To further prove that this relationship 

does not depend on the choice of the training set of data, similar results were 

obtained if DMN treatment or CCl4 preventive models were used as the 

training dataset instead of the CCl4 treatment model (data not shown). 

Sulfasalazine, pioglitazone and glycyrrhizin were found to have the highest 

anti-fibrotic efficacy; while most of the anti-oxidants such as taxifolin, 

silymarin and curcumin were found to have low efficacy. Interestingly, we 

have seen some promising evidences that the in vitro scores may potentially 

be a good measure of the drug effects in human trials. The group of drugs with 



71	  

	  

relatively higher in vitro scores (e.g. pioglitazone [209] and glycyrrhizin [210]) 

gave more promising results in human clinical trials than the group of drugs 

with lower in vitro scores (e.g. colchicine [211] and silymarin [212]). 

Furthermore, drugs with lower in vitro scores generally have fewer in vivo 

publications than drugs with higher in vitro scores. 

 

Figure 3.10. Correlation between Epredict and Ein vivo. (A) Optimization of 
Epredict. Epredict is computed as a weighted combination of the features with 
weights optimized using Spearman’s rank correlation test to best correlate 
with Ein vivo from the CCl4 treatment model. (B, C) Blind validations of in 
vitro-in vivo correlation between Epredict and Ein vivo from two independent 
datasets containing DMN treatment and CCl4 preventive models respectively. 
The linear relationship is highlighted using linear regression lines in all (A, B 
and C). The equations of the linear regression lines and the R2 values are 
computed without considering the outliers in the graphs (i.e. taurine in A, 
colchicine in B and PCN in C). 
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3.3.5 System stability 

Figure 3.11A and B demonstrate how rho varies with the number of markers 

and the number of cytological features, respectively. Both curves reach a 

plateau before or at our experimental configuration of 10 markers and 16 

features per cell, showing that our study design is sufficient for the anti-

fibrotic correlation study. We next tested the robustness of the experimental 

configuration by shuffling the weights in the Epredict formula; Figure 3.11C 

shows the plot for the percentage distribution of rho for all possible 

combinations of the 3 weights and 10 markers. There is a 23% chance of rho 

being equal to 1, which is significantly higher than the random control (5% 

chance of rho being equal to 1) in which the relative ranks were randomized 

before applying the Spearman’s rank correlation test. This demonstrates that a 

positive correlation between the in vitro and in vivo indices can be achieved 

even if the optimized set of weights is not used, implying that the weighting 

procedure of our system is not vulnerable to high background noise. The in 

vitro SAUCs have good predictive value alone, and the Epredict  weighting of the 

SAUCs optimizes their correlation and augments their predictive power.  
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Figure 3.11. System stability test. (A) Relationship between the average rho 
value and the number of markers. (B) Relationship between average rho and 
the number of features per marker. Error bars represent standard deviation. (C) 
The percentage distribution of rho is plotted for all possible combinations of 
the 3 weights and 10 markers. The random control was done by randomizing 
the relative ranks of the in vivo drug efficacies for the Spearman’s rank 
correlation test. 
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3.4 Discussion 

In vitro-in vivo correlation studies can help select promising categories of 

drugs to be given priority in the drug discovery pipeline. However, it is 

challenging to perform such analysis from limited in vivo literature. The 

preclinical and clinical results of many drugs are often lacking, incomplete or 

inconclusive. Even when in vivo data is available, the histological scores may 

not be assessed, while other serum markers such as ALT and AST may not 

directly reflect fibrosis severity [192]. Different human clinical studies 

typically give a mixture of positive and negative conclusions about the 

efficacy of a drug due to the variations in study designs [104]. For example, a 

double blind, randomized, and controlled trial of colchicine versus placebo on 

100 patients with cirrhosis of various causes showed that colchicine could help 

to improve fibrosis [205]. However, no improvement was observed in another 

smaller study on 55 patients with alcoholic cirrhosis [213]. Direct correlation 

with human clinical response is hindered by limited and sometimes conflicting 

results. A typical in vivo animal study tests a single drug’s efficacy or its effect 

compared to an existing known drug. Although numerous such papers are 

available, there is no quantitative method to cross-examine these results in a 

systematic manner. Only qualitative comparison was done in several review 

papers [46, 104, 214], which is not sufficient to help clinicians and doctors to 

make the right decision of which drug candidate is more promising than the 

rest.  

Since in vivo drug testing studies are better controlled and have better 

credentials in rats than in human, currently our system are optimized with in 
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vivo studies in rats. However, we have also demonstrated some implications 

from our system on human data. We believe that similar approach may also be 

applicable for appropriately designed meta-analysis of human clinical studies. 

Further improvement may even make the system directly correlate with the 

clinical data. 

In this study the Epredict value was derived from HCA and its magnitudes could 

be positively correlated to most of the available in vivo scores from fibrotic rat 

models. The level of the in vitro efficacy was assessed by the overall effect of 

a drug on multiple pathways and partially reflected the complex in vivo 

response. It is interesting to see that a linear relationship with R2>0.9 exists 

between the in vitro and in vivo data for CCl4 and DMN fibrotic treatment 

models; while a weaker linear correlation (R2=0.54) was observed for the CCl4 

preventive model. In the latter, fibrosis causing agents such as CCl4 and drugs 

were given together to rats. As a result, many of the drugs showing positive 

effects are protecting hepatocytes from toxins or preventing HSC activation, 

rather than inducing fibrosis regression. Since an activated HSC cell line is 

used in our screening platform, it is more closely mimicking the treatment 

model; hence, a stronger linear relationship exists for both CCl4 and DMN 

treatment models. Furthermore, anti-oxidants worked by preventing HSC 

activation induced by free radicals. This group of drugs can be considered 

preventive drugs, more than treatment drugs, which agrees with our result that 

most of the anti-oxidants have lower Epredict values.  

The ability of cell culture models to predict in vivo drug effects is limited by 

many fundamental constraints. For example, drugs might be able to improve 
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liver fibrosis by improving vascular flow or liver architecture, such as 

angiotensin II receptor antagonist losartan and candesartan. Some drugs are 

metabolized by hepatocytes into a secondary compound with different effects; 

and such effects cannot be foreseen in vitro using HSC monoculture. This 

study investigated the effect of a drug on HSC only. A multi-dimensional 

analysis of high-content datasets had permitted in vitro drug efficacies to be 

correlated with the published in vivo efficacies. The HCA datasets were 

correlated with the outcome of the drugs in CCl4 fibrotic treatment models to 

compute the Epredict values using the optimized weights for in vitro markers. 

Epredict was then used to predict drugs that may have high efficacy for DMN 

treatment and CCl4 preventive rat models and again the outcomes showed 

strong correlations. It is possible that the correlations we extracted were only 

appropriate for a subset of anti-fibrotic drugs. Our system is not suitable to 

substitute for animal trials, but we recommend it for prioritizing the selection 

of drugs to enter animal trials.  
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Chapter 4 

Applications of Epredict 

 

4.1 Introduction 

We have developed an HCA-based quantitative assessment screen that uses 

the Epredict value to correlate in vitro and in vivo anti-fibrotic drug responses in 

the previous chapter. In this chapter, the Epredict value was used in two 

applications: predicting in vivo drug efficacy from in vitro data and 

determining the cellular pathways that are common among the more effective 

anti-fibrotic drugs.  

 

4.1.1 Current approach for anti-fibrotic drug classification 

Anti-fibrotic drugs can be classified in multiple ways. Hu et al. (2009) 

classified the drugs based on their efficacies and toxicities [114]; while other 

classification systems classified anti-fibrotic drugs into categories according to 

drug targets in HSCs. For example, Rockey (2008) classified anti-fibrotic 

drugs into 3 categories, namely (1) inhibit stellate cell activation and 

fibrogenesis, (2) inhibit stellate cell fibrogenesis, and (3) other/unknown or 

generalized effect [104]. Tsukada et al. (2006) made a 6-category system 

based on drug targets or origin of discovery: (1) anti-inflammatories, (2) 

antioxidants, (3) cytokines/signal transduction molecules, (4) ECM-targeted, 
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(5) promoters of HSC apoptosis, and (6) herbal medicines [214]. Gressner 

(2006) had a 4-category system based on (1) stellate cells, (2) cytokines, 

receptors, (3) reactive oxygen species, and (4) collagen synthesis [46]. In an 

earlier paper, Pinzani et al. (2004) summarized anti-fibrotic drug effects 

according to: effects on HSCs, antioxidant activity, anti-inflammatory activity 

and effect on collagen [131].  

Most of these classification efforts were reported in review papers, where 

results from previous works were summarized. These attempts could be labor 

intensive and need constant updates when new findings are published. The 

different classification criteria used in different papers may also be confusing. 

For example, drug colchicine was classified under anti-inflammatories by 

Tsukada et al. (2006) [214]; and under collagen synthesis by Gressner (2006) 

[46]. In the review by Pinzani et al. (2004), besides the above two categories, 

colchicine is also in the group antioxidants.   

 

4.1.2 Strategies  

We firstly utilized the in vitro-in vivo linear relationship to predict a 

histological score from in vitro data and compared the result with the 

published data. In addition, all drugs were classified into 3 categories based on 

their Epredict values. Their primary targets and effects on the 10 markers were 

investigated to find if there is any similarity within the groups that may lead to 

their respective high or low efficacies.  
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4.2 Materials and methods - Principal component analysis (PCA)  

The covariance matrix of the SAUC values for all drugs in the very positive 

group was used for PCA. The top 4 principal components, which captured 

more than 95% cumulative sum of the variances, were kept and the rest with 

low information were removed. All the drugs were then mapped to the 4-

principal-component system. PCA was performed in Matlab R2009a. 
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4.3 Results 

4.3.1 The in vivo histological scores can be estimated from Epredict  

The linear relationship observed in all of the three correlation plots (Figure 

3.10) may be used to generate predictions of in vivo drug efficacies based on 

in vitro measurements. Since all the in vivo data from long-term drug 

treatment studies have been used either to build or validate the in vitro-in vivo 

correlation, we now turned to short-term drug treatment (<3-week treatment 

including single injection) as another source of information for validating the 

predictive capability of Epredict. We would like to use in vitro Epredict values 

generated from HCA to predict in vivo histological scores. Since Epredict was 

optimized with data from long-term studies, the predicted histological scores 

should be similar to long-term drug treatment outcomes. The histological 

scores from short-term studies are expected to be slightly higher than our 

prediction, because prolonging the treatment with the same drug used in the 

short-term studies may further improve the fibrotic status and decrease the 

histological scores.  

The Epredict value of sulfasalazine is 39437; using the linear relationship from 

CCl4 treatment model (equation in Figure 3.10A), the Ein vivo value was 

calculated to be 5.8. Assuming the histological score of untreated livers is 3.0 

(same as in [140]), a long-term treatment with sulfasalazine to the rats with 

CCl4 induced fibrosis is predicted to reduce the fibrosis histological score to 

1.1. A short-term study on the rat CCl4 treatment model reported that a single 

injection of sulfasalazine reduced the fibrosis score to 1.5 compared with 3.0 
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in untreated CCl4-only livers [140]. The results agreed with our expectation, 

showing that the in vivo histological scores could be estimated from Epredict. 

 

4.3.2 High-efficacy drugs tend to target proliferation, apoptosis and 

contractility of HSCs 

All drugs were grouped into 3 categories based on their Epredict values. The 

negative (n) group consists of all drugs with Epredict equivalent to 0. Seven 

drugs with the highest Epredict values were placed into the very positive (vp) 

group. The rest of the drugs were in the positive (p) group. Before proceeding 

to quantitative analysis, we firstly remark on some trends and background 

about the categorized drugs. The n group contains 16 drugs including 6 anti-

oxidants, two HMG-CoA reductase inhibitors, simvastatin and lovastatin, and 

all 4 non-specific control compounds not related to fibrosis. Tranilast from p 

group has anti-fibrotic effects in renal and liver fibrosis [215, 216], and it has 

a relatively high Epredict value of 19594. Tranilast has been reported as a 

positive drug in another high-throughput screening study [113]. In the vp 

group, glycyrrhizin, a herbal extract from licorice, showed positive effects on 

patients with hepatitis C [217]. Pioglitazone is another highly effective drug in 

the vp group that has been subjected to multiple advanced stage of clinical 

studies [72]. It is one of the peroxisomal proliferator activated receptor gamma 

ligands, which have overall higher efficacies on human patients than 

colchicine, interferon gamma, and angiotensin receptor blockers [104].   
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4.3.2.1 Drugs with high efficacies have similar cellular effects 

The mean KR values of the average intensity for fibrosis markers were 

represented as boxplots for the n, p and vp groups of the drugs (Figure 4.1). 

Fewer outliers (red plus) were observed in the plot for the vp group compared 

with that for all the drugs (n+p+vp), showing that drugs with high efficacies 

have similar cellular effects and probably have similar cellular targets.  

 

Figure 4.1. The average intensities of the 10 makers for all drugs (n+p+vp), all 
positive (p+vp) drugs and the vp group of drugs. The inter-quartile range in 
the boxplots is represented by blue rectangles. Whiskers represent 1.5 times of 
the inter-quartile range and any data (outliers) beyond the ends of the whiskers 
are shown using red +. 

 

4.3.2.2 Apoptosis is found to be an attractive anti-fibrotic target from PCA 

analysis 

A principal component analysis (PCA) was carried to detect the set of markers 

that carry the most information, which could reflect the importance of the 

underlying pathways. The top 4 principal components built from SAUC values 

from the drugs in the vp group explained more than 95% of the cumulative 

variance in the system. The first principal component mainly captures 
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variation in ΔΨm, which plays an important role in the apoptotic pathway. 

The second principal component mainly captures variations in caspase 3 (also 

apoptosis), collagen III (ECM), MMP-2 (ECM) and TIMP-1 (ECM) (Figure 

4.2A). The three groups of drugs with different level of efficacies can be well 

separated when mapped to the first, second and fourth principal component 

coordinates (Figure 4.2B). The vp group (blue) was found to have relatively 

large values in the first, second and fourth principal components; while the p 

group (black) had positive values in the first principal component, but 

relatively low values in the second principal component. These results showed 

that apoptosis is an attractive anti-fibrotic target, while targeting ECM directly 

is also effective. Interestingly ΔΨm and caspase 3 did not co-vary with each 

other in the first and second principal components, suggesting that the highly 

effective anti-fibrotic drugs target distinct sub-pathways of apoptosis: either 

the intrinsic mitochondria-dependent or non-mitochondria, or caspase 3 

dependent pathways. As a result, multiple apoptotic markers were needed to 

measure the effect of an anti-fibrotic drug on HSC apoptosis. In addition, 

MMP-2 and TIMP-1 have the expected roles in the PCA analysis, being 

somewhat important, and often inversely co-vary with each other. 
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Figure 4.2. Distinctive characteristics of the negative (n), positive (p), and 
very positive (vp) groups of drugs from PCA analysis. (A) Principal 
component analysis (PCA) is done using data from the vp group. The top 4 
principal components explain 95% of the cumulative variance in the system. 
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(Bi) All 49 drugs are mapped to the first and second principal component 
coordinates. Drugs in the gray box in (Bi) are mapped to the second and fourth 
principal component coordinates in (Bii). The vp group (blue) is found to have 
relatively large values in the first, second and fourth principal components; 
while the p group (black) has positive values in the first principal component, 
but relatively low values in the second principal component. 

 

4.3.2.3 Classification of drugs based on their primary mechanisms of action 

reported in literature 

To validate the finding that apoptosis is an attractive anti-fibrotic target, the 

primary mechanism of action of each drug was found from the literature 

(Table 4.1) and was broadly categorized into 4 targets [46]. The target 

“cytokine” includes drugs targeting cytokines such as TGF-β1 and PDGF 

activities; the target “ECM” includes drugs inhibiting collagen synthesis or 

promoting degradation; the target “ROS” includes all anti-oxidants; and the 

target “HSCs” includes all other aspects including drugs targeting HSC 

proliferation, apoptosis or contractility. Drugs were allowed to be in 1 or 

multiple categories to account for the multiple signaling pathways a drug may 

be involved in; however, secondary mechanism of action (e.g. HCS apoptosis 

due to the anti-oxidative activity of a drug) is not included. The results were 

summarized in the 4-way Venn diagrams (Figure 4.3). The 49 drugs showed a 

balanced distribution in each of the 4 categories. However, the more effective 

drugs seem to have their primary effects on HSCs directly, which agrees with 

the PCA result that the HSC apoptosis pathway is a potent drug target.   
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Hepatic stellate cells  Collagen synthesis Cytokines/ 
Receptors 

Anti-oxidants Others 

lovastatin 
[218] (n) 

lovastatin 
[218] (n) 

AG1295 
[219] (n) 

taurine 
[220] (n) 

paclitaxel 
(n) 

simvastatin 
[218] (n) 

simvastatin 
[218] (n) 

PTK/ZK 
[221] (n) 

curcumin 
[222] (n) 

rotenone 
(n) 

taurine 
[223] (n) 

minoxidil sulphate 
[224] (n) 

genistein 
[225] (n) 

silymarin 
[226] (n) 

aphidicolin 
(n) 

curcumin 
[227] (n) 

oxymatrine 
[228] (p) 

curcumin 
[229] (n) 

resveratrol 
[230] (n) 

nocodazole 
(n) 

resveratrol 
[231] (n) 

minoxidil 
[224] (p) 

oxymatrine 
[183] (p) 

genistein 
[232] (n) 

 

genistein 
[233] (n) 

pentoxifylline 
[234] (p) 

tetrandrine 
[235] (p) 

taxifolin 
[236] (n) 

 

Y27632 
[237] (n) 

EGCG 
[119] (p) 

EGCG 
[120] (p) 

silybin 
[238] (p) 

 

pentoxifylline 
[239] (p) 

pirfenidone 
[240] (p) 

AG1296 
[241] (p) 

EGCG 
[118] (p) 

 

telmisartan 
[242] (p) 

astragaloside IV 
[243] (p) 

matrine 
[244] (p) 

melatonin 
[245] (p) 

 

olmesartan 
medoxomil 
[246] (p) 

olmesartan 
medoxomil 
[246] (p) 

olmesartan 
medoxomil 
[246] (p) 

olmesartan 
medoxomil 
[247]  (p) 

 

matrine 
[248] (p) 

somatostatin 
[249] (p) 

imatinib mesylate 
[250] (p) 

  

pirfenidone 
[251] (p) 

colchicine 
[252] (p) 

telmisartan 
[242] (p) 

  

MG132 
[253] (p) 

malotilate 
[254] (p) 

pirfenidone 
[255] (p) 

  

tetrandrine 
[256] (p) 

glycyrrhizin 
[157] (vp) 

camostat mesylate 
[257] (p) 

  

PCN 
[258] (p) 

 tranilast 
[259] (p) 

  

gliotoxin 
[260] (p) 

 colchicine 
[184] (p) 

  

thalidomide 
[261] (p) 

 TGF-β inhibitor 
III (p) 

  

somatostatin 
[262] (p) 

 TGF-β inhibitor V 
(p) 

  

EGCG 
[117] (p) 

 astragaloside IV 
[243] (p) 

  

fasudil hydrochloride 
[263] (p) 

 rosmarinic acid 
[207] (vp) 

  

colchicine 
[184] (p) 

    

pioglitazone 
[264] (vp) 

    

sulfasalazine 
[140] (vp) 

    

bortezomib 
[253] (vp) 

    

staurosporine 
[265] (vp) 

    

rosmarinic acid 
[207] (vp) 

    

berberine chlroride 
[266] (vp) 

    



87	  

	  

Table 4.1 Mechanisms of action of drugs. All 49 drugs are classified based on 
their mechanisms of action from literature. The drug efficacy is indicated with 
negative (n), positive (p) or very positive (vp). 

 

 

 

 

Figure 4.3. All drugs (n+p+vp), all positive (p+vp) drugs and the vp group of 
drugs are classified into 4 categories according to their mechanisms of action. 
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4.4 Discussion 

Understanding the mechanism of action of a drug is important in drug 

discovery. Single-parameter in vitro studies generate limited information; 

while multi-parameter in vitro studies are easy to perform but difficult to 

interpret. In this chapter, we utilized Epredict computed from HCA platform 

with 10 markers of fibrosis for mechanistic study and found that Epredict can be 

used to classify drugs and those with high efficacies exert their effects through 

directly modulation of HSC proliferation, apoptosis and contractility. This 

result is independently validated with literature data.  In addition, Epredict is a 

very powerful tool for predicting in vivo histological scores based on in vitro 

data.  
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Chapter 5 

Structural activity study of anti-fibrotic drugs 

 

5.1 Introduction 

We did a speculative study to investigate if there is any relationship between 

the chemical structures and the anti-fibrotic effects in this chapter. A typical 

structural activity relationship (SAR) analysis studies compounds that target a 

single site (e.g. an enzyme binding site). The SAR has a basic assumption that 

compounds with similar chemical structures have similar activities [267]. 

Hence, structural analogs (a family of similar molecules designed to target at a 

single site) are normally tested in a SAR [268, 269].   

This work is different from the conventional SAR study design, since we 

included drugs that have direct anti-fibrotic effect on hepatic stellate cells. 

There are many possible anti-fibrotic strategies as discussed previously and 

the drugs studied here vary greatly in terms of their chemical structures as well 

as cellular target sites. Instead of associating the anti-fibrotic property with a 

specific group of chemical structures, in this chapter we try to look for strong 

trends across different groups of chemical compounds. We think it is an 

interesting attempt and possibly meaningful investigation for future anti-

fibrotic drug design.  

Many applications in cheminformatics and computer-aided drug discovery 
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rely on chemical structural fingerprinting to find structural characteristics and 

to predict chemical properties. The method represents each chemical molecule 

with a string of binary values, which code for a set of descriptors. Each 

descriptor is a numerical value addressing a particular aspect of the structural 

characteristics, such as molecular weight, number of bonds, and solvent 

accessible surface area. 

Molecular Design Limited (MDL) is one of the methodologies for chemical 

fingerprinting.  It is a set of 960, mostly sub-structural features, developed for 

rapid sub-structural searching in the Integrated Scientific Information System 

(ISIS) databases. Each molecule is regarded as a binary string of 1’s and 0’s. 

A set of 166 keys, small topological sub-structure fragments, is used in 

tandem with a 960 key set which includes algorithmically generated, more 

abstract atom-pair descriptors [270]. 

We attempted to cluster drugs based on their chemical fingerprints. The results 

were then used to compare with the HCA data to identify clusters of drugs, 

which exhibit the highest potency and drug-like physical properties.  
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5.2 Materials and methods:  Clustering based on chemical structural 

similarities 

Chemical structural fingerprints were computed for the 35 anti-fibrotic drugs 

identified in chapter 2. The chemical structures were obtained from respective 

companies’ drug datasheets and reproduced in Chemdraw (ChembridgeSoft). 

The structural fingerprinting was done in Pipeline Pilot version 7.5 (Accelrys), 

using MDL public keys. Pair-wise structural similarity based on MDL public 

keys were generated and represented in heatmaps. Clusters of structural 

similarity drugs were compared based on their corresponding in vitro data.   
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5.3 Results 

5.3.1 Classification of anti-fibrotic drugs based on the chemical fingerprints 

The pair-wise chemical structural similarities of the 35 anti-fibrotic drugs 

were represented in a clustergram (Figure 5.1), in which higher structural 

similarity is reflected by more intense shade of red. The score ranges from 0 

(no similarity) to 1 (identical structure). Five clusters were identified, in which 

most of the similarity scores were above 0.5.  

 

Figure 5.1. Structural similarity heatmap of the anti-fibrotic drugs. The 35 
drugs are aligned along both the x and y axis in the same order. 5 clusters of 
drugs are highlighted in boxes. 
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Cluster A contains drugs with fused 5- or 6-member heterocyclic rings with 

basic ionizable nitrogen atom, such as pyridine, piperidine and pyrrolidine, e.g. 

matrine, oxymatrine, thalidomide, gliotoxin and pentoxifylline (Figure 5.2).  

 

Figure 5.2. Cluster A and its drugs. The drug efficacy is indicated with 
negative (n), positive (p) or very positive (vp). 

 

Cluster B contains drugs with one or more amide functional groups (-

C=ONH-) (Figure 5.3).  

 

Figure 5.3. Cluster B and its drugs. The drug efficacy is indicated with 
negative (n), positive (p) or very positive (vp). 
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Cluster C contains drugs with fused heterocyclic rings with methyl or methoxy 

group at the ortho position (Figure 5.4).  

 

Figure 5.4. Cluster C and its drugs. The drug efficacy is indicated with 
negative (n), positive (p) or very positive (vp). 

 

Astragaloside IV and glycyrrhizin in cluster D are structurally similar with 

fused ring structures and more than 5 hydroxyl groups (Figure 5.5).  

 

Figure 5.5. Cluster D and its drugs. The drug efficacy is indicated with 
negative (n), positive (p) or very positive (vp). 
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Cluster E contains drugs with phenolic functional groups (Figure 5.6).  

 

Figure 5.6. Cluster E and its drugs. The drug efficacy is indicated with 
negative (n), positive (p) or very positive (vp). 

 

5.3.2 Chemically similar clusters exhibit functional similarities 

We compared the SAUC values of the drugs in the different clusters. Drugs in 

cluster B and C were found to have higher efficacy than drugs in the other 

clusters, while drugs in cluster A seem to have the least efficacy (Figure 5.7). 

Drugs in cluster D and E seem to have less coherent response than the other 

clusters.  



96	  

	  

 

Figure 5.7. The SAUC values for different clusters of drugs 

 

We ranked drugs according to their Epredict values (Table 3.3). The average 

rank of drugs within a structurally similar cluster was used to assess the 

average efficacy of drugs within that cluster (Figure 5.8). 
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Figure 5.8. Average rank of drugs within clusters A to E as well as drugs 
without a cluster. Error bar represents the standard error of the mean.  

 

From the result, the linear amide functional group in cluster B seems to be 

important for the anti-fibrotic activity of a compound shown by the high 

Epredict value (e.g. bortezomib, staurosporine, pioglitazone, MG132 and 

somatostatin). Amide carbon-nitrogen bonds are rigid and not rotatable 

because of their high rotational energy barrier. Drugs that contain multiple 

amide bonds are more conformationally restrained and these rigid molecules 

have an entropic advantage for binding potency because fewer bonds have to 

be frozen before the drug candidate is presented to a target receptor.	   

The introduction of methyl or methoxy substituent at the ortho position in the 

drugs in cluster C may help to enhance drug activity (e.g. tetrandrine, 

telmisartan, olmesartan medoxomil, berberine chloride, TGF-β inhibitor III). 

Alkyl and alkoxy groups are both electron donating by an inductive effect. 

The presence of these groups might play a significant role in promoting the 
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binding to the receptor via electronic effect, hence resulting in relatively high 

activity. The branched chains present in some of the drugs within this cluster 

may help to improve the solubility of the drug by reducing their surface area 

and hence weaken their intermolecular interactions.  

The presence of heterocyclic rings with basic ionizable nitrogen atom in 

cluster A failed to enhance the activity of the drug significantly. All results 

were summarized in Table 5.1. 

Cluster Chemical structures In vitro scores 
A fused 5- or 6-member heterocyclic rings with basic 

ionizable nitrogen atom 
+ 

B amide functional groups (-C=ONH-) ++++ 
C fused heterocyclic rings with methyl or methoxy 

group at the ortho position 
++++ 

D fused ring structures with multiple hydroxyl 
substituents 

++ 

E phenolic functional groups +++ 
Table 5.1. Summary of in vitro anti-fibrotic activities of the 5 clusters of 
structurally similar drugs. +: lowest efficacy, ++: moderately low efficacy, 
+++: moderately high efficacy, ++++: high efficacy. 
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5.4 Discussion 

Chapter 5 studies the relationship between the chemical structures of anti-

fibrotic drugs and their phenotypic responses. A SAR study was performed by 

comparing the pair-wise phenotypic and structural similarities. Drugs 

containing linear amide functional groups in cluster B are found to have 

relatively higher activity. These drugs are more conformationally restrained 

and have a greater binding affinity to receptors. Fused ring structure 

containing branched alkyl chains or methoxy functional group also seems to 

enhance the activity of the drugs (cluster B: staurosporine, cluster C: 

tetrandrine, telmisartan, olmesartan medoxomil, berberine chloride, TGF-β 

inhibitor III). The introduction of phenolic ring group and fused heterocyclic 

ring fails to significantly increase drug activity (cluster A: matrine, oxymatrine, 

thalidomide, gliotoxin, pentoxyfylline and cluster E:  rosmarinic acid, silibinin, 

taxifolin).   

This chapter describes the speculative work that attempt to link in silico and in 

vitro data of anti-fibrotic drugs. The clustering result can potentially facilitate 

more accurate in silico screening of chemical compound library prior to in 

vitro HCA experiments. 
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Chapter 6 

Applications of image processing in 3D cell 

cultures 

 

6.1 Introduction 

A conventional HCA system uses 2D image analysis algorithms on 2D cell 

cultures for drug screening or biological research. However, there is an 

increasing need for analyzing cells in 3D configurations, because of the more 

in vivo like environment in a 3D cell culture may help to enhance cell 

functionality [271, 272]. For example, primary hepatocytes, which are 

important for drug toxicity screening, are more sensitive to drugs when 

cultured on a layer of feeder cells, in 3D hydrogel or in microfluidic devices. 

Such environments promote cell-cell contact and the proper establishment of 

cell polarity (e.g. apical and basolateral polarity of hepatocytes), which in turn 

sensitize the cells to drugs by enhancing the expression of drug metabolizing 

genes such as the CYP family enzymes and various transporters.  

Commercial HCA systems with high-speed confocal microscopes for 3D 

applications are available in the market (Table 6.1). To our best knowledge, 

large-scale 3D drug screening has not been performed, due to the 

exponentially increasing demands for data storage and computing power to 

handle 3D data than 2D data.  
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  Model Company 
Wide-field system  ImageXpress Micro  Molecular Devices 
  ArrayScan ThermoFisher Scientific 
  In Cell Analyzer 2000 GE Healthcare 
  Operetta Perkin Elmer 
  Cell-IQ The Automation Partnership 
 Confocal system  ImageXpress Ultra  Molecular Devices 
  In Cell Analyzer 3000 GE Healthcare 
  Opera Perkin Elmer 
  BD Pathway 435 BD Biosciences Pathway 
  BD Pathway 855 BD Biosciences Pathway 
Table 6.1 Commercial high-content analysis systems 

 

In this chapter, several collaboration works will be described. All of them use 

either chemical linkers or engineering devices to achieve 3D cell 

configurations. 3D microscopic images are captured and quantified to prove 

the respective hypotheses. The valuable experience gained in handling 3D 

images on 3D cell cultures can be used to further improve the anti-fibrotic 

drug-screening platform, which will be discussed in chapter 7. 



102	  

	  

6.2 Quantification of spheroid formation (Mo et al., 2010 [273]) 

6.2.1 Overview  

This study used specially designed positively charged oleyl-PEG conjugated 

DAB dendrimeric intercellular linkers to physically link cells together in a 

rapid and precise manner. The technique could be used to aggregate cells to 

form cell sheets, branching rods and rings (Figure 6.1) as potential tissue 

building blocks, which could be further assembled into larger tissue constructs 

for biomedical applications [273].  

In order to optimize linker concentration and cell treatment conditions for 

more efficient cell aggregate formation, the size of cell aggregates was needed 

to be estimated. An automated image-processing algorithm was developed for 

such purpose. Compared to the conventional practice of manual quantification, 

the algorithm significantly speeds up the data analysis process.  
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Figure 6.1. Cellular aggregate configurations. 

 

6.2.2 Materials and methods 

0.5mM oleyl-PEG conjugated DAB dendrimer or PBS (control) was added to 

1.0 × 106 C3A cells and centrifuged at 40rcf for 1 min using (Model 5415R, 

Eppendorf Centrifuge); or incubated for 30 min at 4oC on an orbital shaker 

(Model 260 200, Boekel Scientific, US). For a 7- day culture, the linker 

engineered constructs were washed with PBS and re-suspended in culture 

medium and placed on an orbital shaker (Spectra- teknik, USA) rotating at 

70rpm at 37oC in a humidified environment with 5% CO2. Images were taken 

with a phase contrast microscope (Olympus, Japan), with at least 10 images 

per experiment. The areas occupied by cells were identified with the 

expectation maximization segmentation (developed by Prof. Jose Vicente 
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Manjon Herrera) using Matlab R2009a. The number of cells in aggregation 

was estimated based on the assumption that all cells occupy similar areas in 

the 2D image. The size distribution of the multi-cellular structures was then 

plotted. Error bars represent the standard error of the mean of three 

independent experiments. 

 

6.2.3 Auto-detection of spheroid size from transmission images 

To study linker efficiency in aggregating cells, cells were treated with 

different concentrations of the linkers and phase contrast images were taken to 

capture randomly selected cell aggregates to estimate the percentage of cells 

forming aggregates as well as the size distribution of aggregates. The areas 

occupied by single cells and cell aggregates were identified using the 

expectation maximization segmentation method [274]. The minimal size of 

cell aggregates was defined to be greater than 5 cells (4500 pixels) shown in 

Figure 6.2A. The number of cells per aggregate was estimated and the 

percentage of cells forming aggregates was quantified and the distribution 

chart is plotted in Figure 6.2B. The size distribution of the aggregates is 

plotted in Figure 6.2C. From the analysis, the optimal linker concentration was 

found to be 0.5µM.  
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Figure 6.2. Quantification for linker-based multi-cellular aggregates. (A) 
Image processing procedures. (B) 88±5% of the linker-treated cells were 
effectively clustered by centrifugation at 40 rcf for 1 min. (C) The multi- 
cellular structure size distribution was indicated as histogram. The 
dendrimeric linker can form multi-cellular structures with average of 184±44 
cells/construct.  

 

Before the image-processing algorithm was developed for this study, manual 

measurement was used to estimate aggregate sizes. Images were opened in 

imageJ software and two lines were drawn per aggregate as the best estimates 

of its longest and shortest diameters, from which the mean value was 

computed. The size of the aggregates per experimental condition was then 

calculated as the mean value of more than 50 randomly selected aggregates. 

Such approach is labor-intensive and time consuming. The whole set of 

images collected for one figure such as Figure 6.2B required a single person 

more than 3 days of work; while it only takes less than half a day for the 
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computer to process the same number of images using the algorithm described 

above.   
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6.3 Dye penetration and uniformity in hepatocyte spheroid and serially 

connected wells of hepatocytes on collagen sandwich culture  

6.3.1 Overview 

Spheroid dimension is directly linked to its mass transfer property. If the 

aggregate is too big, nutrients, oxygen and metabolites cannot penetrate to the 

center of the spheroid and waste cannot be transported away, hence, cells in 

the center of the spheroid will die. It is important to determine the optimal size 

of the aggregates that allow efficient mass transfer between cells in the center 

of the aggregates and culture medium. When the spheroids are cultured in 

serially connected wells in a bioreactor for drug testing purpose, it is also 

important to ensure the uniformity of drug concentrations as well as cells with 

similar mass transfer properties in all wells.  

 

6.3.2 Materials and methods 

Cell aggregates were stained with CellTracker green and confocal images 

were acquired for 10 randomly selected aggregates. An image-processing 

algorithm was developed in the Matlab environment to firstly segment the cell 

aggregate from background, determine the centroid coordinates of the 

aggregate and then compute the dye intensity distribution from the centroid to 

the periphery in all directions. The average distribution was plotted for cells 

cultured in different conditions. To assess the uniformity in serially connected 

wells, the average fluorescence intensity of cells from each well was 

compared.  
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 6.3.3 Hepatocytes cultured on RGD-gal substratum are in 3D configuration, 

while exhibiting better mass transfer property than on galactose substratum 

To control hepatocyte morphology and hence functions, the cells were 

cultured on galactose (gal)/Arg-Gly-Asp (RGD) hybrid membrane. 

Hepatocytes had extended cell morphology when cultured on cell adhesion 

peptides such as RGD [275]. Hepatocytes could also attach to galactose-

conjugated substratum via the galactose-asialoglycoprotein receptor (ASGPR) 

[276], adopted a round morphology and self-assembled into 3D spheroids in 

the presence of epidermal growth factor [277]. To overcome the limitations of 

galactose substratum, on which cell spheroids detach easily and large 

spheroids have poor mass transfer, hepatocytes were cultured on bioactive 

galactose (gal)/Arg-Gly-Asp (RGD) hybrid membrane to form 3D monolayers 

[278]. They showed enhanced functionality compared to cells in 2D 

configuration on collagen substratum. Hence, it was proposed to be used for 

hepatotoxicity screening. To further characterize the culturing condition 

including RGD:gal ratio and mass transfer property at different time points for 

drug testing purpose, images of cells cultured on 4 different substrata, collagen, 

gal, hybrid 1000 (RGD:gal 1:1000) and hybrid 5000 (RGD:gal 1:5000) for 1 

to 4 hours and the stained cells were imaged (Figure 6.3A). From the images, 

cells cultured on both hybrid substrata were able to form spheroids, similar to 

galactose substratum. Cell intensity reflected the dye uptake efficiency, which 

was proportional to the mass transfer property. An algorithm was developed to 

segment the cellular spheroid from background, and the intensity distribution 

from the centroid of the spheroid to the periphery was measured. As shown in 
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the line plots, Dye could penetrate to the center of the spheroids cultured on 

both hybrid substrata, shown by an increase in intensity at the center of the 

spheroid during prolonged incubation (Figure 6.3B-D). For example, the 

centroid intensity for hybrid 5000 increased from 30 for 1-hour incubation to 

60 for 4-hour incubation. In addition, the centroid intensities for cells cultured 

on hybrid substrata are almost twice as high as that on galactose substratum 

after 4-hour incubation and hybrid 5000 seems to cause a more uniform 

intensity distribution than hybrid 1000.   

In summary, the image-processing algorithm developed is able to determine 

the mass transfer property of cells cultured on different substrata in an 

automated manner. More images can be processed to reach statistically 

meaningful results. 

Figure 6.3. Quantification of the mass transfer property of hepatocyte 3D 
spheroids. (A) Hepatocytes were cultured on 4 different substrata for indicated 
durations. (B-D) The intensities from the centroid of the spheroid to the 
peripheral were plotted for the different conditions. 
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6.3.4 Quantification of mass transfer efficiency and uniformity in serially 

connected wells (Zhang et al., 2011 [279]) 

To increase the throughput of the hepatotoxicity screening system, an 

alternative design of 96-well-format bioreactor with sandwich cell-based 

system was designed (RoboTox). The dye intensity (hence mass transfer) of 

the sandwich culture was quantified using a Matlab code developed for this 

project by accurately segmenting the cells from background and computing 

the average intensity of the cellular area in the image. The results were 

compared with the conventional collagen and the Si3N4 sandwich systems 

and it was found that the mass transfer is significantly improved in the 

RoboTox system (Figure 6.4A,B). The uniformity among different wells was 

also determined from images using similar approach (Figure 6.4C). The 

results showed that there is no significant inter-well variation in intensity. 
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Figure 6.4. RoboTox has higher mass transfer efficiency than conventional 
sandwich culture. (A) Confocal images of (i) collagen sandwich, (ii) Si3N4 
sandwich and (iii) RoboTox-cultured hepatocytes incubated with 2mM 
CellTracker Green for 2 hours shows that fluorescence intensity was the 
highest in RoboTox-cultured hepatocytes, indicating the highest mass transfer 
efficiency among the three culture configurations. (B) The quantification of 
fluorescence intensity shows that mass transfer efficiency was 2.5 times higher 
in Si3N4 sandwich and 5.5 times higher in RoboTox culture hepatocytes 
compared to collagen sandwich. (C) The uniformity of mass transfer 
efficiency of hepatocytes cultured in 8 serially connected wells was evaluated. 
No statistical significance difference was observed (One-way ANOVA, p = 
0.20476). Error bars represent standard error of the mean of 3 independent 
experiments. *: p < 0.05. 
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6.4 Quantification of cell density and distribution of hepatocytes in 

microfluidic device 

6.4.1 Overview 

Primary hepatocytes are physically trapped in microfluidic devices to enhance 

cell-cell interactions. Initial packing density seems to be an important factor 

for hepatocyte cell functionality. To quantitatively assess the packing density 

of cells in the microfluidic device, a image-based method was used to 

precisely count the number of cells in the given volume in the microfluidic 

channel and to identify cells with double nuclei.  

 

6.4.2 Materials and methods: Quantification of cell seeding density  

Hepatocytes were first allowed to flow into the microfluidic channel using 

both hydrodynamic flow and mechanical peristalsis force and DAPI was flow 

into the channel to stain for the nuclei. Z-stack confocal images were taken 

and they were processed using the spot detection module in Imaris (ver. 7.1.0) 

software. The images were smoothed with a Mexican Hat filter (sigma = 

0.75*diameter/2) and the spots were located at the local maxima of the filtered 

3D images. The total number of nuclei as well as the centroid coordinates of 

all the spheres was given as the output of the program.   
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6.4.3 Cell numbers in tightly and loosely packed configurations 

Seeding cells in a three-dimensional cell culture construct such as the 3D-

uFCCS resembles a packing problem consisting of spheres that are randomly 

packed into a confined space. A quantitative measure of particle packing is 

packing density (i.e., volume fraction of a given space occupied by particles) 

[280]. It follows that the packing densities in the compact and the non-

compact seeding configurations are expected to be different even though they 

were not distinguishable under conventional phase microscopy (Fig 6.5Bi, Ci). 

To quantitatively ascertain the packing densities in the two experimental 

configurations, we determined the number of cells in a specified volume by 

fluorescence imaging and 3D image processing (Fig 6.5Bii, Cii). The cell 

density in the non-compact configuration was 7.8x107 ± 4.5x106 cells/cm3 

while that of the compact configuration was 1x108 ± 3.9x106 cells/cm3, which 

was in the same order of magnitude previously reported by Lee et al. [281]. 

These cell densities corresponded to a packing density of 69.9 ± 4% and 93.1 

± 3.1% respectively (Fig 6.5D). The packing density of the non-compact 

configuration was similar to the maximum value exhibited during random 

packing of the rigid spheres (i.e., 63.4%) [280]. Since cells are much more 

compliant than rigid spherical objects in typical packing problems, the packing 

density can be significantly increased (Student’s t-test, p<0.05) to over 90% 

by applying mechanical forces to compress more cells into a given volume, 

such as in the case of the compact configuration demonstrated here. 
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Figure 6.5. Difference in cell numbers in non-compact and compact culture 
configurations. (A) Illustration of the two configurations. (Bi, Ci) Wide field 
images of cells in the microfluidic channels. Packing density cannot be 
distinguished. (Bii, Cii) Hepatocyte nuclei (green) are shown in 3D view in 
Imaris. White spheres represent the center of nuclei identified by the spot 
detection module, which can accurately determine the number of cells in 
different cell packing configurations. It has an efficient algorithm to determine 
high intensity regions (nuclear staining) of a user-defined dimension (nuclear 
diameter) within a 3D space. (D) Percentage cell packing density for non-
compact and compact configuration.  
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6.4.4 Identification of cells with double nuclei 

We observed about less than 2% cells with double nuclei in the images. Since 

the number was smaller than the inter-image variations in nuclear numbers, it 

would not affect the previous study on cell density. However, as an alternative 

analysis to determine the percentage of cells having double nuclei in different 

packing conditions, the same algorithm in Imaris was used and the center-to-

center distance was computed between all possible pairs of nuclei. As nuclei 

within a single cell tend to have much closer distance than that between the 

nuclei from adjacent cells, a threshold distance could be determined based on 

the images as well as the numerical values. The number of cells with double 

nuclei could be found by counting the nuclei with nucleus-nucleus distance 

below the threshold. The analysis is still ongoing.  



116	  

	  

Chapter 7 

Future works 

 

7.1 A co-culture of hepatic stellate cells and hepatocytes for anti-fibrotic drug 

screening 

Numerous studies have shown that HSCs has close interactions with other 

liver cell types both in vitro and in vivo. Several recent studies have shown 

that HSCs can help guide embryonic stem cells differentiating into 

hepatocyte-like cells [282] and hepatic oval cells into mature hepatocyte [283]. 

HSCs can also help maintain the functions of primary hepatocytes, which 

would otherwise decrease rapidly [284]. On the other hand, a hepatocyte cell 

line was found to secrete soluble mediators to induce HSC apoptosis [285]. A 

study on HSCs cultured with Kupffer cells showed that the chemokine 

interactions between the two cell types suppressed HSC activation [286]; 

while another study showed that co-culture of HSCs with Kupffer cells shifted 

the gene expression of HSCs toward the pattern observed during in vivo 

activation in mice treated with CCl4 or bile duct ligation [287]. Although the 

observations needed to be further verified [288], the results suggested the 

importance of the microenvironment in driving HSC activation.  

To further improve our anti-fibrotic drug screening platform, we propose to 

introduce a second cell type such as hepatocyte or Kupffer cell into the system 

to achieve a more in vivo like microenvironment, allowing exchange of 
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cytokines and key regulators between HSCs and the other liver cell type, so as 

to enhance the functionality of HSCs. The experience gained through several 

collaboration works on 3D image processing on 3D cell cultures shown in 

chapter 6 laid a solid foundation for upgrading the current 2D HCA system to 

3D, which is required for more accurate feature extraction and data processing 

of cells in a 3D co-culture system.   

 

7.2 Preliminary results: Entosis may happen between hepatocytes and HSCs 

Co-culture assays for HCA have been reported previously. For example, in a 

neurotoxicity study [289], neurons and astrocytes were stained with two 

different dyes in a co-culture system and analyzed simultaneously. As a proof 

of concept of the feasibility of adopting such approach in the HSC co-culture 

system, I seeded LX-2 with either one of the two hepatocyte cell lines (Huh7 

and C3A). The cells were pre-stained with CellTracker Orange (LX-2) or 

CellTracker Green (Huh7 or C3A) before co-culture and were imaged 4 days 

after co-culture (Figure 7.1).  
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Figure 7.1. Co-culture of hepatic stellate cells LX-2 with hepatocyte cell lines 
Huh7 or C3A. The cells were stained with CellTracker Orange (LX-2) or 
Green (Huh7 and C3A) before seeding and images were taking 4 days after 
culturing. (A) Mono-cultures of the three cell lines. All images contain both 
red and green channels to detect if there is any color channel crosstalk. Co-
culture of LX-2 with (Bi) Huh7 or (Ci) C3A. (Bii) and (Cii) are 3D surface 
rendered images of (Bi) and (Ci), showing the relative location of cells in 3D 
space.    

 

Since both cell types in the co-culture could be labeled by some of the 10 

marker dyes in our system (e.g. phalloidin staining of actin), it is challenging 

to differentiate the two cell types during analysis. Hence, it was necessary to 

pre-label one cell type before co-culture. The dye should last for the whole 

experiment duration (72 hours for our HCA system), without being transferred 

to the neighboring cells.  
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From the preliminary results in Figure 7.1A, the florescence signal from 

CellTracker dyes can be detected after 4 days of culture and there is minimal 

crosstalk in the alternative red or green channels. We observed different 

behavior of LX-2 cultured with Huh7 (Figure 7.1B) and C3A (Figure 7.1C). A 

strong colocalization was seen in LX-2 and Huh7 co-culture; while minimal 

colocalization was seen in LX-2 and C3A co-culture. To test the hypothesis 

that Huh7 is either preferentially located on top or below LX-2, I used the 

Imaris image analysis software for 3D visualization and 3D surface rendering. 

Interestingly, Huh7 and LX-2 occupied the same 3D space, and Huh7 seems 

to be slightly larger than LX-2 (Figure 7.1Bii). CellTracker dyes transform 

into cell membrane impermeant products once inside the cell, hence the dyes 

can only be passed to the daughter cells through cell fusion. They cannot be 

transferred to adjacent cells (Invitrogen material data sheet).   

We believe that cell fusion may take place between LX-2 and Huh7. One 

possible mechanism is entosis [290, 291], which describes the cell-in-cell 

phenomenon. The fate of activated HSCs during fibrosis regression is not well 

known. There are hypotheses that the HSCs undergo apoptosis or revert back 

to their quiescent state [42]. Other studies reported that activated HSCs can 

transform into hepatocyte like phenotypes both in vitro [292] and in vivo [293]. 

We think that entosis might be an explanation for these observations. Further 

investigations are needed to support our hypothesis.  

More experiments are needed to determine which co-culture system (LX-2-

Huh7 or LX-2-C3A) is better for anti-fibrotic drug screening. Additional 

experiments are also needed to test the co-culture of HSC with Kupffer cells. 
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Alternative co-culture configurations such as using trans-well [294], 

microfabrication techniques [295] or cell sheet engineering [296] may also be 

worth testing. 

By introducing a second cell type in our screening platform, we hope that the 

more in vivo like environment will help to generate in vitro HCA results that 

are more closely correlated to the in vivo drug efficacies. In addition, drug 

toxicity on hepatocytes could be studied simultaneously with additional 

hepatotoxicity markers. Hepatocytoprotective drugs that exert their anti-

fibrotic effect by reducing hepatocyte damage instead of targeting HSC [46] 

could also be studied in a co-culture configuration.  

 

7.3 Other anti-fibrotic drug discovery efforts  

Due to the high-throughput capability and strong correlation to in vivo results, 

the HCA-based system developed in this work can be used for large-scale re-

discovery of the existing drugs’ anti-fibrotic potential. It can also be used for 

integrative medicine by testing drug combinations on HSCs instead of a single 

drug each time.  

Re-discovery of anti-fibrotic potentials in existing drugs: Besides screening for 

chemical libraries for anti-fibrotic chemicals, the anti-fibrotic effect of many 

drugs was found by re-discovering anti-fibrotic potential in existing drugs. For 

example, an anti-cancer drug curcumin has been reported to be able to inhibit 

HSC activation [297], induce apoptosis and inhibit ECM gene expression 
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[227]. In another report, an anti-diabetic drug thiazolidinedione was shown to 

inhibit collagen synthesis and HSC activation [298].  

Integrative medicine: Combination/integrative medicine is another hot area of 

research. For example, administration of silymarin with vitamin E has shown 

to improve fibrosis conditions in several independently studies [299, 300]. The 

traditional Chinese medicine Fuzheng Huayu is a complex mixture of herbal 

extracts that has promising effects in inhibiting HSC activation and promoting 

hepatoprotection [301]. Recently it underwent a phase 4 clinical trial against 

posthepatitic cirrhosis and another phase II study has been planned to study 

this drug on patients with chronic hepatitis C [72].  
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