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SUMMARY 

 

Colorectal cancer (CRC) is the second most common form of cancer in the 

world and the most common cancer in Singapore. The limitations of the 

currently available methods and biomarkers for CRC management highlight 

the necessity of finding novel markers. Alterations in different metabolic 

pathways in CRC as indicated by proteomic studies, are likely to result in 

changes in metabolic profile which if identified with the aid of metabolic 

profiling can help in the identification of marker metabolites and can provide 

molecular insight in CRC. Metabolic profiling is complementary to genomics 

and proteomics as it measures the perturbed metabolic end-points due to 

environmental, pharmacological or pathological influences while in genomics 

and proteomics, more upstream biological events are typically profiled and 

studied. 

In this thesis, metabolic profiling of CRC was carried out with a non-

targeted as well as a targeted approach to identify metabolite-based markers. 

For non-targeted metabolic profiling of CRC, three different analytical 

platforms namely GC/MS, HR-MAS NMR spectroscopy and 

GC×GC/TOFMS were explored. The data generated in conjunction with 

chemometric analysis led to the identification of marker metabolites belonging 

to diverse chemical classes. Although the orthogonal partial least squares 

discriminant analysis (OPLS-DA) models generated on the basis of profiled 

data using the three analytical platforms were capable of discriminating 

normal tissues from malignant ones, no valid OPLS-DA model was obtained 

using CRC stage as the classifier. This implied that the metabolic phenotype 
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associated with CRC although distinct from that of normal tissue, it is not 

sensitive enough to discriminate the different stages of CRC. Of the three 

analytical methods used, only HR-MAS NMR spectroscopy-based metabolic 

profiling was able to produce a valid OPLS-DA model capable of 

discriminating anatomical site of tumor. The identified marker metabolites 

when linked to metabolic pathways using KEGG database, revealed 

perturbations of various biochemical processes the majority of which could be 

attributed to the higher energy demand, tissue, hypoxia and altered synthetic 

rate of cellular components of rapidly proliferating tumor cells. In addition to 

this, altered eicosanoid biosynthetic pathway as indicated by reduced 

arachidonic acid (AA) levels in CRC tissues and presence of comparatively 

higher levels of picolinic acid in CRC tissues, implied an association of 

inflammatory environment with CRC development.   

A strong evidence of association between inflammation and CRC 

exists. Moreover the significant role played by eicosanoids in inflammation, as 

well as the altered expression of key enzymes involved in eicosanoid 

biosynthesis in CRC, formed our objective to carry out targeted metabolic 

profiling of 8 biologically relevant eicosanoids and the major metabolic 

precursor AA. The main aim of this study was to record the fluctuations of 

these inflammatory metabolites and to better understand their implicated roles 

in inflammation mediated CRC carcinogenesis. An UPLC/MS/MS-based 

method was developed and validated successfully for this purpose. The results 

indicated deregulation of eicosanoid biosynthetic pathways and implied that a 

complex interaction between pro-tumorigenic and antitumorigenic eicosanoids 

is involved in inflammation-associated CRC carcinogenesis.  
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Metabolic profiling of CRC led to the identification of marker 

metabolites and revealed metabolic perturbations that may be exploited for 

future biomarker research or finding new therapeutic strategies. 
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CHAPTER 1  

INTRODUCTION 

 

1.1. Overview of colorectal cancer 

 

In this section an overview of different aspects of colorectal cancer (CRC) 

such as prevalence, etiology, pathways of CRC development, diagnosis, 

staging, prognosis, treatment, relation between inflammation and CRC and 

current challenges in CRC management is presented. 

 

1.1.1. Prevalence of colorectal cancer 

 

Worldwide statistics indicate that CRC is the third most common cancer in 

men (663000 cases, 10.0% of the total) and the second in women (571000 

cases, 9.4% of the total) (Ferlay et al., 2008). Incidence rates are considerably 

prominent in men than in women [overall sex ratio of the age-standardized 

rate (ASR) is 1.4:1]. According to the World Health Organization (WHO), the 

ASR for incidence of CRC is greater than 49.4 per 100,000 per year, in 

regions such as North America, Europe, Japan, Israel, Singapore, Australia 

and New Zealand. In addition to this, CRC is relatively prevalent in some 

areas of Brazil, Argentina, Hong Kong, Southern China and Malaysia (ASR 

for incidence of CRC greater than 25.3 per 100,000 per year) 

(http://www.who.int, Rozen et al., 2006). In Singapore, CRC is the leading 

cancer in males and the second most common cancer in females, accounting 

for 17.9% of all cancers in males and 14.4% in females. When both genders 
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are combined, CRC is the most common cancer in Singapore. In the world, 

around 608000 deaths occur from CRC, constituting for 8% of all cancer 

deaths, making it the fourth most common cause of death from cancer. As 

observed for incidence, mortality rates are lower in women than in men, 

except in the Caribbean. There is less variability in mortality rates worldwide 

(6-fold in men, 5-fold in women), with the highest mortality rates in both 

sexes estimated in Central and Eastern Europe (20.1 per 100,000 for male, 

12.2 per 100,000 for female), and the lowest in Middle Africa (3.5 and 2.7 

respectively). Almost 60% of the cases occur in developed regions (Ferlay et 

al., 2008). The ASR for mortality from CRC in Singapore over the period 

from 2002 to 2006 was 18.1 per 100,000 per year in males and 12.5 in females 

(Tey et al., 2008). The ASR for CRC mortality rates in the United States and 

United Kingdom in 2002 according to the WHO were 14.8 and 17.3 per 

100,000 per year, respectively (http://www.who.int). Certainly CRC has 

emerged as a serious threat to public health both in Singapore as well as 

overseas. 

 

1.1.2. Etiology of colorectal cancer 

 

On the basis of etiology, CRC can be inheritable, inflammatory or sporadic in 

nature. Lynch syndrome is the most common hereditary syndrome that 

predisposes patients to CRC, followed by familial adenomatous polyposis coli 

(FAP). Although the terms Lynch syndrome and hereditary nonpolyposis 

colorectal cancer (HNPCC) are often used synonymously, HNPCC 

specifically refers to those disorders that have similar phenotypes but lack the 
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specific mutations involved in Lynch syndrome. Lynch syndrome and HNPCC 

together account for 2-5% of all CRC. This form of heritable CRC is 

characterized by early onset and predominantly right-sided mucinous tumor. 

Germline mutations in the mismatch repair (MMR) genes namely MLH1 and 

MSH2 characterized by replication error and hence DNA or microsatellite 

instability (MSI), comprises the major genetic defect causing HNPCC or 

Lynch syndrome. Apart from CRC, HNPCC or Lynch syndrome also 

predisposes patients to other extra-colonic cancers such as small-intestine, 

renal pelvis and endometrial cancer (Lindor et al., 2005; Lynch et al., 2009). 

FAP which is responsible for less than 1% of all CRC cases occurs due to a 

mutation in the adenomatous polyposis coli (APC) gene. Development of 

hundreds to thousands of adenomatous polyps in the colon and rectum of 

individuals starting from early adolescence, which inevitably leads to CRC if 

untreated, is the main characteristic of FAP. FAP also leads to various extra-

colonic manifestations like thyroid cancer, duodenal and fundic gland 

polyposis and desmoids (Jasperson et al., 2010). Inflammatory bowel disease 

(IBD) including Crohn’s disease (CD) and ulcerative colitis may also lead to 

CRC. However patients with IBD represent only 1-2% of CRC cases. The risk 

of CRC is much higher in individuals having prolonged (more than 30 years) 

and extensive ulcerative colitis (Lakatos and Lakatos, 2008; Kraus and Arber, 

2009). Majority of CRC (up to 80%) is sporadic in nature with no well defined 

etiology and occurs due to interaction between genetic and environmental 

factors (Cheah, 1990).  Ageing is one of the major risk factors for sporadic 

CRC as 99% of cases occur in people more than 40 years of age and 85% in 

those more than 60 years of age. Higher incidence of CRC in affluent societies 
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is related to lifestyle related factors such as high intake of fat and red meat, 

insufficient intake of fiber rich food and vegetables, obesity and low physical 

activity. High alcohol consumption, diabetes mellitus and smoking also 

increase the risk of CRC (Ballinger and Anggiansah, 2007; Cunningham et al., 

2010). 

 

1.1.3. Pathways of colorectal cancer development 

 

CRC develops because of genetic abnormalities most of which are caused by 

environmental and lifestyle related factors while some are inherited. The two 

major genetic pathways of CRC development are the chromosomal instability 

(CIN) pathway and the microsatellite instability (MSI) pathway. In most cases 

CRC develops by the CIN pathway which is characterized by aneuploidy. The 

most frequent genetic abnormality consists of mutations in the V-Ki-ras2 

Kirsten rat sarcoma viral oncogene homolog (KRAS) and APC genes. 

Inherited mutations in the APC gene results in FAP whereas allelic loss of 

chromosome 5 (site of the APC gene) causes APC changes in sporadic CRC. 

Loss of function of the protein 53 (p53) is a crucial event related to the 

transformation of adenoma to carcinoma (Powell et al., 1992; Stoler et al., 

1999; Vogelstein et al., 1988). The MSI pathway is characterized by the 

dysfunction of MMR gene. Such mutations may be inherited resulting in 

HNPCC or Lynch syndrome or may result from acquired epigenetic events. 

Genes which are more susceptible to mutations in this pathway include 

transforming growth factor-beta receptor II (TGFBR2) gene, B-cell 

lymphoma-2 (bcl-2) associated X protein (BAX) gene (essential for apoptosis) 
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and Immunoglobulin G Fc Receptor II (IGFR2) gene (essential for 

differentiation) (Grady, 2004). Apart from the CIN and the MSI pathways, 

CRC can also develop through the serrated adenoma pathway. This pathway is 

characterized by the absence of MSI and widespread methylation of genes 

SLC5A8, p16 and MGMT (Dong et al., 2005; Jass, 1999). 

 

1.1.4. Diagnosis of colorectal cancer 

 

CRC if diagnosed at an early stage improves the chances of survival of 

patients and reduces treatment-related morbidity. An individual may be 

diagnosed with CRC when he or she presents certain symptoms or as a result 

of any screening program. Usually the early stage CRC does not produce any 

detectable symptoms. Moreover, most of the symptoms of CRC such as 

change in bowel habits, blood in stool, general discomfort in the abdomen, 

weight loss and tiredness, lack specificity. Therefore it is essential to carry out 

regular screening programs to detect CRC. Endoscopy using either flexible 

sigmoidoscopy or colonoscopy with tumour biopsy is the most common 

diagnostic method for CRC. However, these techniques require extensive 

bowel preparation and lacks patient compliance due to their invasive nature.  

Double contrast barium enema (DCBE) is used as an adjunct diagnostic 

technique especially to detect tumours or polyps in tortuous anatomical sites 

where endoscopic study is difficult to carry out. Although faecal occult blood 

test (FOBT) for CRC diagnosis is simple and non invasive in nature, it lacks 

specificity. Faecal DNA based test is more sensitive than FOBT but it is 

tedious to administer and expensive. Computed tomographic (CT) 
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colonography, also termed as virtual colonoscopy, is a non- invasive 

diagnostic technique that produces two- and three-dimensional images of the 

colorectal tract. It is particularly useful for imaging the colonic lumen 

proximal to a stenosing or obstructed lesion which cannot be traversed by a 

flexible endoscope.  It is also used to stage the extent of disease in patients 

with suspected distant metastasis from CRC. Magnetic resonance imaging 

(MRI) with its superior differentiation of tissue planes, is especially useful in 

assessing the local invasion of rectal tumors within the narrow confines of the 

pelvis. However, these imaging techniques do not allow for biopsies for 

histological proof and requires exposure to ionizing radiation or nephrotoxic 

contrast administration. Of the various serum-based markers for CRC that 

have been investigated, CEA has been found to be useful for preoperative 

staging and follow up. However, CEA is not recommended for diagnosis 

because of its low sensitivity and specificity. Genetic tests are required for 

screening of heritable forms of CRC (Cunningham et al., 2010; Labianca et 

al., 2010).  

 

1.1.5. Staging of colorectal cancer 

 

The Dukes classification (Dukes, 1932; Weiss, 2000) and the TNM (tumor, 

node, metastases) system (Fleming et al., 1997) are the two most common 

staging systems for CRC. The other less commonly used staging system is the 

modified Astler Coller (MAC) system (Astler and Coller, 1954; Gunderson 

and Sosin, 1974). The TNM system is mainly based on the size and degree of 

invasion of the primary tumour (T), extent of lymph node involvement (N) 
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and degree of metastasis (M). It was introduced by the AJCC and the most 

preferred system of staging of CRC. The TNM system and AJCC stage 

groupings with equivalent Dukes and MAC stages of CRC are summarized in 

Table 1.1. The TNM system encompasses both clinical and a pathological 

staging. The clinical classification is designated as cTNM and the 

histopathological classification is designated as pTNM. Usually the cTNM is 

used to select treatment regimen whereas the pTNM is used for prognosis of 

CRC. Preoperative staging involves assessment of patient’s medical history, 

physical examination for hepatomegaly, ascites, lymphadenopathy, blood 

count, CEA,  liver chemistries, examination of large intestine. Surgical staging 

of CRC involves an evaluation of extra-colonic metastases, nodal spread and 

degree of tumour invasion through the colonic wall and into surrounding 

structures (Labianca et al., 2010). 

 

1.1.6. Prognosis of colorectal cancer 

 

The extent of penetration of tumor through the colonic wall and the 

involvement of lymph nodes, are important prognostic factors of CRC. Other 

pertinent prognostic parameters include tumor grade, thymidine labelling 

index, vascular and perineural invasion and lymphoid inflammatory response. 

Grading of CRC tumors is carried out on the basis of histopathological 

parameters such as histologic type, quality of differentiation, polarity of 

nucleus, configuration of tubules, growth pattern, lymphocytic infiltration and 

extent of fibrosis. At present a three grade system is most widely used. Well 

differentiated tumors with well formed tubules and showing least nuclear 
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polymorphism and mitoses are termed as grade 1. Poorly differentiated tumors 

with rare glandular forms, multistructural cells and a high extent of mitoses 

are termed as grade 3. Tumors intermediate between grades 1 and 3 are 

considered as grade 2. Grade 1 CRC tumors are the least aggressive and the 5-

year survival rate (YSR) is 59-93%. In case of grade 2 and 3 tumors the 5-

YSR falls to 33-75% and 11-56% respectively (Jass et al., 1986; Qizilbash, 

1982). The clinical utility of various other prognostic indicators like 

expression of p53, bcl-2, TGF-α, EGF, TGFBR2, deleted in colorectal cancer 

(DCC) gene, thymidylate synthase (TS), KRAS mutations, MSI status, allelic 

loss of chromosome 18q, has been investigated. Although 18q deletion and 

MSI status have shown promise, their practical utility remains to be confirmed 

by large scale studies (Deans et al., 1992; Steinberg et al., 1987; Sternberg et 

al., 1999). Location of CRC tumor is also a good indicator of prognosis. For 

instance, the left sided lesions favour patient survival whereas right sided 

tumors, especially those causing bowel obstruction, reduce the chances of 

survival  (Wolmark et al., 1983).  Presence of perforation in the colonic tract 

indicates negative prognosis (Steinberg et al., 1987). Increased pre-treatment 

levels of serological markers like carbohydrate antigen 19-9 (CA 19-9) and 

CEA are associated with poor prognosis (Filella et al., 1992). CRC patients 

who respond to chemotherapy with drugs like 5-fluorouracil (5-FU), irinotecan 

and oxaliplatin have longer median survival time than non-responders. 

Response to chemotherapy and chances of survival in cases of metastatic CRC 

are dependent on the extent of metastasis which can be evaluated by 

determining the number of sites to which metastasis has occurred, number of 

lesions in such sites and the extent to which the metastatic site is affected. 
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Table 1.1. TNM system and AJCC stage groupings with equivalent Dukes and 

MAC stages of CRC (adapted from Labianca et al., 2010). 
 

TNM system 

Primary tumour (T) 

TX: Assessment of primary tumour cannot be done 

T0: Lack of evidence of primary tumour 

Tis: Carcinoma in situ: invasion of the lamina propria or intraepithelial  

T1: Submucosa invaded by tumour  

T2: Muscularis propria invaded by tumour  

T3: Invasion of tumour through the muscularis propria into the subserosa, or into 

the nonperitonealized pericolic or perirectal tissues 

T4: Tumour directly invades other organs or structures and/or perforates the 

visceral peritoneum 

Regional lymph nodes (N) 

NX: Assessment of regional nodes cannot be done 

N0: Regional lymph node metastasis absent 

N1: Metastasis in 1 to 3 regional lymph nodes 

N2: Metastasis in 4 or more regional lymph nodes 

Distant metastasis (M) 

MX: Presence of distant metastasis cannot be assessed 

M0: No distant metastasis 

M1: Distant metastasis 

AJCC stage 

grouping 

TNM  

value 

Dukes 

Stage 

MAC  

Stage 

Stage 0 Tis, N0, M0 - - 

Stage I T1, N0, M0 

T2, N0, M0 

A A 

B1 

Stage IIA T3, N0, M0 B B2 

Stage IIB T4, N0, M0  B3 

Stage IIIA T1-2, N1, M0 C C1 

Stage IIIB T3-4, N1,M0  C2 

Stage IIIC Any T, N2, M0  C3 

Stage IV Any T, any N, M1 D D 
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Generally female patients have better survival time than male patients. 

Patients showing no symptoms of CRC exhibit better response to 

chemotherapy and survive longer than those showing symptoms. Prior 

chemotherapy results in resistance to second-line treatment (Buyse et al., 

2000a, 2000b; Kohne et al., 2002). 

 

1.1.7. Treatment of colorectal cancer 

 

Surgery alone is the first line of treatment particularly for stage 0 and I CRC. 

Adjuvant chemotherapy is administered especially in high risk stage II and III 

CRC in order to reduce chances of recurrence and to increase survival time. 5-

FU [with leucovorin (LV)] by infusion or capecitabine (oral prodrug of 5-FU) 

is usually used for adjuvant chemotherapy. In some cases, oxaliplatin in 

combination with 5-FU (with LV) is also used (Labianca et al., 2010). 

Unfortunately 25 to 30% of CRC patients reach stage IV at the time of 

diagnosis, implying that the optimal treatment window has already expired. In 

such cases, the standard treatment approach involves surgical removal of the 

primary tumor, treatment of extra-colonic metastases and palliative 

radiotherapy and chemotherapy. Liver is the commonest organ to be affected 

by distant metastasis from CRC followed by lung (Ridge and Daly, 1985). 

Treatment of metastases involves surgical resection if possible with or without 

additional chemotherapy. Radiotherapy and chemotherapeutic agents like 5-

FU, irinotecan and oxaliplatin are used for palliative treatment in inoperable 

metastatic cases (Metrakos, 2009). In some cases, newer drugs such as 

bevacizumab [an inhibitor of vascular endothelial growth factor (VEGF)] and 
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cetuximab (an antibody against EGF) are used in combination with 

conventional drugs to enhance response and survival of metastatic CRC 

patients (Hurwitz et al., 2004; Kabbinavar et al., 2003; Saltz et al., 2004). 

 

1.1.8. Inflammation and colorectal cancer 

 

Past evidence suggest a strong association of inflammation with different 

forms of cancer including CRC. For instance, IBD is a considerable risk factor 

for CRC development. Inflammation is also linked to both hereditary and 

sporadic forms of CRC. Inflammation promotes tumor growth, partially 

through stimulation of proliferation and angiogenesis as well as by inhibiting 

apoptosis and immune surveillance. The underlying mechanisms involved in 

the interplay of inflammation and CRC are quite complicated. Although 

various inflammatory cytokines, such as tumor necrosis factor- alpha (TNF-α) 

and interleukin-6 (IL-6), have been found to be involved in CRC 

carcinogenesis, the two major bridging factors of inflammation and CRC are 

the cyclooxygenase-2 (COX-2) enzyme and nuclear factor kappa B (NF-ĸB) 

(Mantovani et al., 2008; Kraus and Arber, 2009; Terzic et al., 2010). NF-ĸB 

consists of a family of five closely related transcription factors which are 

involved in the modulation of inflammation and apoptosis (Dolcet et al., 

2005). Activation of constitutive NF-ĸB promotes tumor growth in CRC. Of 

the different isoforms of COX, which catalyze the metabolism of arachidonic 

acid (AA) into eicosanoids, including prostaglandins (PGs) and thromboxanes 

(TXs), COX-2 is overexpressed in CRC (Kashfi and Rigas, 2005; Sano et al., 

1995; Soslow et al., 2000). Some of the lipoxygenase (LOX) enzymes which 
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convert AA to eicosanoids like hydroxy eicosatetraenoic acids (HETEs) and 

leukotrienes (LTs) are also overexpressed in CRC (Shureiqi and Lippman, 

2001; Soumaoro et al., 2006). As a consequence, perturbation of AA 

metabolic pathway, which plays a key role in inflammation mediated CRC 

carcinogenesis, occurs. Clinico-epidemiological studies have shown that 

chronic use of selective COX-2 inhibitors like coxibs and non selective non-

steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of CRC implying 

the importance of COX-2 in inflammation mediated development of CRC 

(Marnett, 1992; Smalley and DuBois, 1997). 

 

1.1.9. Challenges in the management of colorectal cancer 

 

Pre-symptomatic screening is carried out with the aim of detecting early stage 

CRC or precursor lesions in order to improve survival and reduce treatment-

related morbidity. Unfortunately, only about 37% of CRC remain localized at 

the time of diagnosis. Present diagnostic and screening methods for CRC, such 

as colonoscopy, flexible sigmoidscopy, DCBE, CT, FOBT, faecal based DNA 

test, serological markers such as CEA, have certain limitations and shortfalls 

in their own ways. For instance, endoscopic diagnostic techniques are invasive 

and may cause iatrogenic injury resulting in poor patient compliance. 

Although the use of FOBT and colonoscopy in high risk individuals, has 

improved detection, CRC detected using these methods usually are not at early 

stages, meaning the chance of curing such patients has already passed. The 

limitations of these methods become more pronounced when it comes to 

prognosis of CRC. Although CEA measurement is minimally invasive, it 
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suffers from low specificity. Faecal DNA testing while more specific, is 

cumbersome to administer leading to poor patient compliance (Brenner et al., 

2005). Although genomics and proteomics techniques have lead to the 

identification of many serum-based, tissue- based and faecal- based markers of 

CRC, the clinical utility of such markers is limited and in some cases 

controversial (de Noo et al., 2006; Locker et al., 2006).  

Patients at high risk for CRC relapse following surgical resection may 

be given adjuvant chemotherapy to improve their survival time. Although the 

5-year survival rate (YSR) for patients with stage II CRC is 75%, recurrence 

occurs in one fourth of these patients. Response of stage II or stage III CRC 

patients to 5-FU based adjuvant therapy is dependent on MSI status of 

patients. Responders usually have stable or low MSI whereas non-responders 

have high MSI. However, determination of MSI status is quite labour 

intensive and costly (Ribic et al., 2003). Therefore, some patients may not 

derive significant clinical benefits when given adjuvant chemotherapy and 

may in fact suffer from the toxic side effects of anticancer drugs. Therefore, 

there is a real need to identify new markers of CRC that demonstrate 

diagnostic and prognostic values as well as markers capable of patient 

stratification. This would enable oncologists to optimize the current clinical 

management of CRC (Crawford et al., 2003; Duffy et al., 2007). 

 

1.2. Metabolic profiling 

 

Since its inception in the late 1960’s the field of metabolic profiling has grown 

remarkably in terms of its applications and contributions to system biology 
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research. Metabolic profiling which encompasses both metabonomics and 

metabolomics, provides a powerful tool for gaining valuable insight into 

functional biology, toxicology, pharmacology and diagnosis of diseases. 

Although the terms metabonomics and metabolomics are often used 

interchangeably there exists an important difference between the two. 

Metabonomics involves determination of changes in metabolic profiles of 

living organisms in response to any diseased condition or genetic modification 

or due to effect of environment or lifestyle related factors (Nicholson et al., 

1999) whereas in metabolomics, metabolic profiling of living organisms under 

normal physiological conditions without any extraneous influence is carried 

out (Harrigan and Goodacre, 2003). Metabolic profiling is complementary to 

genomics and proteomics as it measures the perturbed metabolic end-points 

due to environmental, pharmacological or pathological influences while in 

genomics and proteomics, more upstream biological events are typically 

profiled and studied (Fiehn, 2001). It involves the analysis of various 

biological matrices such as plasma, urine and tissues using suitable analytical 

platforms. Metabolic profiling can be carried out with a global non-targeted 

approach as well as with a targeted approach. In targeted metabolic profiling, 

alterations in the levels of a specific class of metabolites or metabolites 

belonging to a specific metabolic pathway are ascertained using an appropriate 

analytical technique (Morris and Watkins, 2005; Urpi-Sarda et al., 2009). In 

global non-targeted metabolic profiling, metabolites belonging to diverse 

metabolic pathways are profiled. The metabolites that are determined in non-

targeted approach belong to various chemical classes such as organic acids, 

amino acids, fatty acids, amines, sugars, sugar alcohols, steroids, nucleic acid 



15 

 

bases and other miscellaneous substances. So, multiple complementary 

analytical techniques are often utilized for non-targeted metabolic profiling of 

biological matrices, in order to cover as much of metabolic space as possible 

(Dunn and Ellis, 2005; Lindon et al., 2007a). 

 

1.2.1. Biomatrices used for metabolic profiling 

 

Plasma, urine, tissue specimens and tissue extracts are the commonly used 

biomatrices for metabolic profiling. As plasma and urine can be obtained in 

minimally invasive manner, metabolic profiling of these biomatrices, holds the 

potential for diagnosis of diseases. On the other hand tissue-based metabolic 

profiling furnishes spatial and site specific information about metabolites and 

provides molecular insight into disease conditions (Price et al., 2008). In 

addition to these, other biomatrices utilized for metabolic profiling include 

seminal fluid, saliva, cerebrospinal fluid, lung aspirates, gastrointestinal fluids, 

bile, tears, fluids obtained from cysts and blisters, amniotic fluid, synovial 

fluid and dialysis fluid (Lindon et al., 2007b). Metabolic profiling can also be 

carried out using in vitro cell culture systems such as cancer cells (Ippolito et 

al., 2005) and tissue spheroids (Bollard et al., 2002).  

 

1.2.2. Analytical platforms used in metabolic profiling 

 

In an ideal world, an analytical platform for metabolic profiling should allow 

analysis with minimal or no sample preparation, should be high throughput, 

highly sensitive and should exhibit high degree of robustness and 
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reproducibility. Moreover for non- targeted metabolic profiling, 

comprehensive coverage of metabolic space and ease of identification of 

profiled metabolites are additional desirable properties of an analytical 

platform. Analytical platforms that are commonly used for metabolic profiling 

include nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS) based techniques like direct infusion MS, gas 

chromatography mass spectrometry (GC/MS), liquid chromatography mass 

spectrometry (LC/MS) or capillary electrophoresis mass spectrometry 

(CE/MS). In addition to these techniques other methods like Fourier transform 

infrared (FTIR) spectroscopy, LC with ultraviolet or coulometric detection and 

CE with ultraviolet detection have also been used for metabolic profiling. In 

this section a brief overview of the different analytical methods used for 

metabolic profiling is provided. 

 

1.2.2.1. Nuclear magnetic resonance (NMR) spectroscopy 

 

NMR spectroscopy possesses many attributes of an ideal platform for 

metabolic profiling such as minimal sample pretreatment, high reproducibility, 

robustness, rapid analysis time, non-selectivity (in terms of metabolic space) 

and capability of providing detailed structural information about profiled 

metabolites. Although NMR spectroscopy is comparatively less sensitive than 

MS-based techniques, the availability of cryogenic NMR probes has improved 

the sensitivity and throughput of NMR spectroscopy (Keun et al., 2002). An 

estimate of NMR sensitivity in terms of number of metabolites measured can 

be obtained from a recent study in which NMR was able to measure 49 
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metabolites in human serum as compared to 96 by LC/MS and 99 by GC/MS 

(Psychogios et al., 2011). NMR spectroscopy has been utilized extensively for 

the metabolic profiling of liquid biomatrices like body fluids and tissue 

extracts. The introduction of high resolution magic angle spinning NMR (HR-

MAS NMR) spectroscopy has extended the applicability of NMR 

spectroscopy for metabolic profiling of solid and semisolid biomatrices like 

intact tissue specimens. Proton (
1
H) NMR spectroscopy is the dominant 

technique used for metabolic profiling. Spectral assignment and metabolite 

identification in 
1
H NMR is quite complicated and dependent on chemical 

shifts, relative intensities, signal multiplicities of the 
1
H resonances and 

coupling constants. Two dimensional 
1
H NMR spectroscopic methods like 

correlation spectroscopy (COSY) and total correlation spectroscopy (TOCSY) 

are often utilized for spectral assignment and identification of metabolites. 

Apart from 
1
H, other types of nuclei such as 

15
N, 

13
C or 

31
P can also be 

exploited to aid spectral assignment in certain cases.  Various NMR pulse 

sequences can be utilized to differentiate spectral contributions of 

macromolecules (such as proteins and lipoproteins) from those obtained from 

low molecular weight metabolites (Lenz and Wilson, 2007; Lindon et al., 

2007b; Nicholson et al., 1995). 

 

1.2.2.2. Mass spectrometry (MS) based techniques 

 

MS can be used alone as direct infusion MS or in conjunction with separation 

techniques for metabolic profiling. Direct infusion of liquid biomatrices or 

tissue extracts into MS has been used for metabolic profiling in some cases. 
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Although it is a high throughput technique, it suffers from the disadvantage of 

high matrix effects, as proper sample preparation steps and chromatographic 

separation are not involved. Matrix effect can be defined as the indirect or 

direct changes or interference in response due to the presence of unintended 

analytes (for analysis) or other interfering substances in the sample (FDA, 

2001). The limitations become more pronounced in the case of complex and 

variable biomatrices like urine and also in the case of isobaric analytes (Dunn 

et al., 2005). 

High resolution, high sensitivity and availability of commercial 

libraries for metabolite identification render GC/MS an excellent and robust 

platform for the global non-targeted metabolic profiling of complex 

biomatrices. However, GC/MS analysis involves tedious sample preparation 

steps as it is necessary to derivatize analytes to reduce their polarity and 

increase volatility. This shortcoming is often tolerated in metabonomic 

research where the demand for chromatographic resolution takes priority over 

the need for the assay to be high throughput. The advent of two dimensional 

gas chromatography time of flight mass spectrometry (GC×GC/TOFMS) has 

comprehensively enhanced the metabolic space coverage of conventional 

GC/MS. Moreover, the development of softwares packages with 

deconvolution feature to differentiate co-eluting chromatographic peaks has 

facilitated shorter GC/MS analysis thus improving the throughput of the 

technique (Lenz and Wilson, 2007). 

LC/MS has certain advantages over GC/MS in terms of ease of sample 

pretreatment and flexibility in throughput. The applicability of LC/MS in non-

targeted metabolic profiling is comparatively restricted due to the constraint in 
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the number of metabolites amenable to analysis (Halket et al., 2005; Want et 

al., 2010). However, developments in diverse LC column chemistries and 

chemical derivatization strategies (Groger et al., 2003; Halket et al., 2005; 

Tolstikov and Fiehn, 2002) have enhanced the metabolic space coverage of 

LC/MS. Although LC/MS is considered as a suitable analytical platform for 

both targeted and non-targeted metabolic profiling, its applicability is more 

established in the case of targeted profiling of metabolites. This is due the fact 

that LC/MS can be operated in highly selective and sensitive mode if desired 

for targeted analysis. For non-targeted profiling, LC/MS is generally operated 

in both positive and negative electrospray ionization (ESI) modes for the 

comprehensive coverage of metabolic space. The emergence of microbore 

LC/MS and ultra performance LC (UPLC) systems has improved the resolving 

capacity, sensitivity and separation speed of conventional LC/MS (Lenz and 

Wilson, 2007; Lindon et al., 2007b; Wilson et al., 2005). 

CE/MS has also been used as a platform for metabolic profiling 

especially for profiling low abundance metabolites. The separation mechanism 

of CE/MS makes it a suitable platform for analysis of polar, ionisable 

metabolites. Another advantage of CE/MS is the small sample volume needed. 

Moreover, liquid biomatrices like urine requires minimal sample preparation 

steps prior to analysis (Lee et al., 2007; Soga et al., 2003, 2007). 

 

1.2.2.3. LC/NMR/MS hybrid techniques 

 

For metabolic profiling, LC/NMR/MS hybrid platforms can also be utilized. In 

such systems the LC eluent is split into two parts and subjected to concomitant 
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analysis by both NMR and MS. The resulting NMR- and MS-based data 

provide in-depth molecular information and aids in metabolite identification 

(Lindon et al., 2000, 2004). Emergence of highly sophisticated data analysis 

techniques has further facilitated the analysis and interpretation of 

LC/NMR/MS hybrid platforms (Cloarec et al., 2007; Shen et al., 2002). 

LC/NMR/MS methods have shown promise in the discovery of metabolite 

based markers of xenobiotic induced renal toxicity (Foxall et al., 1996) and 

characterization of lipoproteins in human blood serum (Daykin et al., 2001). 

LC/NMR/MS has also been utilized for urinary metabolic profiling of 

pediatric metabolic disorders such as methylmalon aciduria (Zurek et al., 

2005). It has also been used for the metabolic profiling of human amniotic 

fluid with an aim to diagnose disorders in the mother or developing fetus 

(Graca et al., 2008).  

 

1.2.2.4. Other analytical techniques 

 

Although LC with ultraviolet (Pham-Tuan et al., 2003) or coulometric 

detection (Gamache et al., 2004; Vigneau-Callahan et al., 2001) and CE with 

ultraviolet detection (Barbas et al., 1998; Zomer et al., 2004) have been 

explored for metabolic profiling, their usage is limited by their inability to 

identify metabolites directly. However, in the case of LC with coulometric 

detection, libraries of standard compounds can be created on the basis of LC 

retention times and redox properties for metabolite identification (Gamache et 

al., 2004). Although FTIR spectroscopy has been explored for metabolic 

profiling, its applicability is very limited as it does not provide sufficient 
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information to identify metabolites. However, the short analysis time required 

per sample (about 5 to 10 s) enables its usage as an optional tool for screening 

or group classification or as an adjunct method to other commonly used 

analytical platforms (Dunn et al., 2005; Harrigan et al., 2004; Kaderbhai et al., 

2003; Leon et al., 2009). The advantages, disadvantages and applications of 

different analytical platforms used for metabolic profiling have been 

summarized in Table 1.2. 

 

1.2.3. Chemometrics in metabolic profiling 

 

Global non-targeted metabolic profiling results in the generation of huge and 

complex data sets containing a large number of variables. Multivariate 

statistical techniques or chemometric tools are indispensable for the analysis 

of such data sets. Of the different chemometric methods available such as 

hierarchical clustering, partitional clustering, artificial neural networks, 

support vector machine, evolutionary-based algorithms and regression trees, 

projection-based chemometric methods are extensively used (Goodacre et al., 

2007). Projection-based methods include both unsupervised methods like 

principal component analysis (PCA) and supervised methods such as partial 

least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-

DA). Projection-based methods are based on the assumption that the system in 

question is controlled by a few latent variables (LVs) or principal components 

(PCs). In PCA, the variation in the data is approximated by a model plane of a 

low dimension on the basis of computed principal components. The largest 

variation in the data is defined by the first PC and the second largest variation
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Table 1.2. Advantages, disadvantages and applications of different analytical platforms used for metabolic profiling 

 

Analytical Technique Advantages Disadvantages Applications 

NMR spectroscopy Involves minimal sample 

pretreatment 

Highly reproducible and robust 

High throughput  

Non-selective (in terms of 

metabolic space)  

Provides detailed structural 

information about profiled 

metabolites 

Less sensitive than MS-based 

techniques 

Spectral assignment and 

metabolite identification is 

complicated 

Metabolic profiling for xenobiotic 

toxicity assessment, different forms of 

cancer, neurological disorders, 

metabolic disorders, aging etc (Coen et 

al., 2008). 

Intact tissue based metabolic profiling 

using solid state MAS-NMR (Keun et 

al., 2002).  

Direct infusion MS High throughput Suffers from high matrix effect 

and isobaric interference 

Microbial metabolic profiling studies 

(Dunn et al., 2005) 

GC/MS High resolution and sensitivity 

Availability of EI spectra-based 

commercial libraries for 

metabolite identification 

Not susceptible to matrix effect 

Involves tedious sample 

preparation 

Comparatively low throughput 

Profiling of volatile metabolites in lung 

cancer (Chen et al., 2007) and skin 

emissions (Gallagher et al., 2008) 

using headspace GC/MS. 

Metabolic profiling for validating 

animal models of diseases (Chang et 

al., 2011), xenobiotic toxicity 

assessment (Boudonck et al., 2009), 

different forms of cancer (Denkert et 

al., 2008), metabolic disorders (Bao et 

al., 2009), neurological disorders 

(Underwood et al., 2006). 
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Table 1.2. Advantages, disadvantages and applications of different analytical platforms used for metabolic profiling  (Continued). 

 

Analytical Technique Advantages Disadvantages Applications 

LC/MS Ease of sample pretreatment as 

compared to GC/MS 

Allows flexibility in throughput 

Highly suitable for targeted 

profiling 

Susceptible to matrix effect 

Non-availability of EI spectra-

based commercial libraries for 

easy metabolite identification 

Metabolic profiling for xenobiotic 

metabolism and toxicity assessment (Chen 

et al., 2007), different forms of cancer (Ong 

et al., 2010), metabolic disorders (Wang et 

al., 2005), neurological disorders (Li et al., 

2010). 

CE/MS Liquid biomatrices like urine 

requires minimal sample 

preparation 

Requires small sample volume 

Metabolic space coverage 

restricted to polar, ionisable 

metabolites 

Microbial metabolic profiling and as a 

complementary platform to GC/MS or 

LC/MS for metabolic profiling of diseases 

(Lenz and Wilson, 2007; Barbas et al., 

2011) 

LC/NMR/MS Provides in-depth molecular 

information 

Combination of NMR and MS 

aids in metabolite identification 

Highly expensive 

instrumentation 

Metabolic profiling for metabolic disorders 

(Zurek et al., 2005) and human amniotic 

fluid (Graca et al., 2008). 

FTIR spectroscopy High throughput  Applicability is limited as it 

does not provide sufficient 

information to identify 

metabolites 

Microbial metabolic profiling, metabolic 

profiling for cancer and other diseases 

(Dunn et al., 2005).  

CE or LC with UV or 

coulometric detection 

Comparatively inexpensive  Application limited due to 

inability to identify metabolites 

readily 

Less sensitive and less specific 

than MS-based techniques 

Evaluation of food ingredient impact 

(Pham-Tuan et al., 2003; Vigneau-Callahan 

et al., 2001), animal model of diabetes 

(Barbas et al., 2011), profiling of exogenous 

metabolites (Gamache et al., 2004). 
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by the second PC and so on. These PCA model components are mutually 

orthogonal to each other. A score plot generated by plotting the first two 

components aids in the visualization of the relation between the observations 

or samples in the data set. The score plot is useful for identifying outliers and 

inherent clustering trends. Outliers can also be detected by using the distance 

to model plot (DModX) based on residual variance of the model. The 

contribution of the variables in the model plane and their interrelation are 

depicted by the loading plot (Lindon et al., 2001). PLS is a supervised method 

that is usually used to determine whether a quantitative relationship exist 

between two data matrices for instance X matrix and Y matrix. PLS when 

used to discriminate different classes, is termed as partial least squares 

discriminant analysis (PLS-DA). In PLS-DA, class information is used to 

enhance separation of observations belonging to different classes. The class 

information is provided by generating a Y data matrix composed of discrete 

dummy variables denoting specific class belonging. However the disadvantage 

of PLS models is that they are influenced by variation in the X matrix that is 

unrelated to the Y matrix. This results in difficulty of model interpretation and 

identification of variables contributing significantly to the model for instance 

identifying marker metabolites in the case of metabonomics (Wold et al., 

1984). The orthogonal partial least squares (OPLS) method is a modified form 

of PLS where orthogonal signal correction is used to split the variation in X 

matrix into two parts, one that is unrelated or orthogonal to Y and the other 

that is related to Y. This eases model interpretation and identification of 

important variables contributing to the model. OPLS if used for class 

discrimination is termed as orthogonal partial least squares discriminant 
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analysis (OPLS-DA) (Bylesjö et al., 2006). In our global non-targeted 

metabolic profiling studies, we have used PCA to identify innate grouping 

trends and outliers (if any) and OPLS-DA to generate discriminating models 

and to identify marker metabolites. Chemometric softwares such as SIMCA-P 

and Unscrambler (CAMO software, Oslo, Norway), and mathematical 

environments such as MATLAB and R (open source GNU project) are 

typically employed for chemometric data analysis in metabonomics. 

A typical chemometric model built in a metabonomic study is 

characterized by the use of a relatively small number of observations 

compared to the number of variables (Westerhuis et al., 2008). Therefore, in 

some cases, it is possible that optimistic performance characteristics observed 

in a PLS-DA or OPLS-DA model could be due to specimen artifacts, over 

fitting of data or chance correlation (Broadhurst and Kell, 2006; Smit et al., 

2007; Trygg et al., 2007). Therefore, validation of each model should be 

performed before it can be leveraged to predict the unknown observations or 

identification of marker metabolites. Model validation can be performed in 

two stages starting with internal validation and followed by external 

validation. Internal validation of PLS-DA models can be performed using 

permutations test and receiver operating characteristic (ROC) analysis 

(Pasikanti et al., 2010). In permutation test, goodness of fit (R
2
 and Q

2
) of the 

original model is compared with the goodness of fit of several PLS-DA 

models built using the data matrix where the order of the Y-observations are 

randomly permuted, while the X-matrix is kept intact (Mahadevan et al., 2008; 

Wiklund et al., 2007). Subsequent to confirmation of validity of each model 

using internal validation strategies, model validity can be further confirmed 
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using external validation. To perform external validation, a subset of 

observations is randomly selected for building a training set and classification 

of the remaining samples are then predicted. The selection of training and tests 

sets should be defined prior to chemometric analysis to represent actual 

prediction of unknown samples and to avoid any bias related to data 

preprocessing and pretreatment. External validation can be performed 

iteratively by randomly selecting different combination of training and test 

sets to estimate the predictive ability of the model. Most software packages 

(SIMCA-P or MetaboAnalyst) offer in-built features to perform validation.   

 

1.2.4. Role of metabolic profiling in colorectal cancer 

 

The present challenges in the management of CRC imply that there is a dearth 

in the availability of clinically significant biomarkers of prognostic, diagnostic 

and patient stratification. Global non-targeted metabolic profiling has already 

shown potential in identifying metabolite-based markers in ovarian cancer 

(Denkert et al., 2006), prostate cancer (Cheng et al., 2005; Sreekumar et al., 

2009), kidney cancer (Kind et al., 2007), bladder cancer (Pasikanti et al., 

2009), liver cancer (Yang et al., 2004) and brain cancer (Petrik et al., 2006). 

Similar metabolic profiling of CRC may lead to the identification of marker 

metabolites which may provide greater insight into the carcinogenesis, 

diagnosis, prognosis and patient stratification. On the other hand, targeted 

metabolic profiling can help in recording the deregulation of a specific 

metabolic pathway and thereby elucidating the roles of the associated 

metabolites in CRC development. 
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1.3. Study hypotheses 

 

1.3.1. Hypothesis for non-targeted metabolic profiling of CRC 

 

Previous studies indicate that changes in gene expression and consequent up 

or down regulation of metabolic enzymes may result in perturbation of 

metabolic pathways in CRC (Bi et al., 2006; Longley et al., 2006). This led to 

our hypothesis that tissue-based non-targeted metabolic profiling of CRC if 

used to determine such changes in metabolic profiles would enable 

identification of marker metabolites differentially expressed in CRC and 

normal tissue and provide greater insight into disease progression, treatment 

response and carcinogenesis in CRC.  

 

1.3.2. Hypothesis for targeted profiling of eicosanoids and arachidonic 

acid in CRC 

 

Altered expression of COX-2 and LOX enzymes in CRC causes fluctuations 

in the levels of eicosanoids such as PGs, HETEs, TXs and LTs (Kashfi and 

Rigas, 2005; Sano et al., 1995; Shureiqi and Lippman, 2001; Soslow et al., 

2000; Soumaoro et al., 2006). Therefore we hypothesized that targeted 

profiling of these eicosanoids and their major metabolic precursor AA would 

help to elucidate the deregulation of eicosanoid biosynthetic pathway as well 

as the implications of these profiled metabolites in inflammation-mediated 

CRC carcinogenesis.  
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1.4. Study objectives 

 

The main objectives of this study are stated below. 

 Tissue-based non-targeted metabolic profiling of CRC using three 

different analytical platforms viz. GC/MS, HR-MAS NMR 

spectroscopy and GC×GC/TOFMS followed by multivariate and 

univariate statistical analyses of generated data to identify marker 

metabolites and altered metabolic processes in CRC. 

 

 Targeted metabolic profiling of eicosanoids and their major metabolic 

precursor AA using ultra performance liquid chromatography tandem 

mass spectrometry (UPLC/MS/MS) in order to identify significantly 

altered metabolites belonging to the eicosanoid biosynthetic pathway 

and their biological relevance in inflammation-mediated CRC 

development.  

 

1.5. Significance of the study 

 

Non-targeted metabolic profiling of CRC in conjunction with chemometric 

data analysis may help in the identification of marker metabolites and related 

metabolic pathways that are altered in CRC. This in turn would help to 

elucidate the metabolic phenotype of CRC and provide molecular insight in 

CRC development. Such information is valuable from the perspective of 

future biomarker research and identification of alternative therapeutic 
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strategies in CRC. Targeted metabolic profiling of relevant eicosanoids and 

AA in CRC would help to elucidate the role of these metabolites in associating 

inflammation with CRC. As NSAIDs exert their pharmacological effect 

primarily by inhibiting COX mediated synthesis of some of these eicosanoids, 

the targeted profiling of these metabolites would also help to postulate the 

mechanistic aspect of NSAID-based adjuvant chemotherapy in improving the 

prognosis of CRC.  
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CHAPTER 2 

DEVELOPMENT AND VALIDATION OF A GC/MS METHOD FOR 

NON-TARGETED METABOLIC PROFILING OF HUMAN COLON 

TISSUE 

 

2.1. Introduction 

 

Tissue-based metabolic profiling differs from plasma- or urine-based 

metabolic profiling as it provides anatomical site-specific information of the 

endogenous metabolites. As these metabolites belong to diverse chemical 

classes and possess physicochemical heterogeneity, it is quite challenging to 

develop a robust and reproducible analytical method for their profiling.  

Among the various methods utilized conventionally for metabolic profiling, 

GC/MS has emerged as a potentially useful method because of its high 

sensitivity, reproducibility and peak resolution. Moreover identification of 

metabolites can be easily carried out using GC/MS electron impact (EI) 

spectral libraries. However chemical derivatization of the polar functional 

groups of analytes in order to decrease their polarity, increase their volatility 

and thermal stability, is usually required for GC/MS analysis. As a result of 

this tedious sample preparation process as well long elution time, GC/MS is 

considered as a low throughput technique when compared to other techniques 

like LC/MS or NMR spectroscopy (Pasikanti et al., 2008). Nonetheless, the 

ease of metabolite identification by GC/MS along with its high sensitivity and 

resolution makes it a feasible option in non targeted metabolic profiling. So far 

GC/MS has been used for tissue-based metabolic profiling of mice liver (Xin 
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et al., 2006), heart, muscle and adipose tissue (Atherton et al., 2006), human 

ovarian tissue (Denkert et al., 2006) and human colon tissue (Denkert et al., 

2008).  

This chapter deals with the development and validation of a GC/MS 

method for non-targeted metabolic profiling of human colon tissue. In this 

study, a suitable GC/MS method was developed, sample preparation steps 

were optimized and different validation parameters such as sensitivity, 

selectivity, linearity of response, precision, freeze-thaw cycle stability, auto-

sampler stability and long term stability were investigated.   

 

2.2. Experimental 

 

2.2.1. Materials 

 

Standard compounds such as standard alkane series (C-10 to C-40), L-alanine, 

L-valine, glycine, L-threonine, L-proline, L-phenylalanine, L-tyrosine, myo-

inositol, uridine, uracil, D-glucose, D-mannose, D-galactose, L-(+)-lactic acid, 

fumaric acid, D-(+)-malic acid, arachidonic acid, phosphoric acid and 

cholesterol were obtained from Sigma-Aldrich Inc. (St. Louis, MO, USA). 

Spectroscopy grade methanol, chloroform and toluene were obtained from 

Tedia (Fairfield, OH, USA) and water used for the study was purified with a 

Milli-Q water purification system (Millipore, Billerica, MA, USA). N, O-bis 

(trimethylsilyl) trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane 

(TMCS), N-methyl-N-trifluoroacetamide (MSTFA) with 1% 

trimethylchlorosilane (TMCS) and methoxyamine hydrochloride in pyridine 
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(MOX) were obtained from Thermo Fisher Scientific (Rockford, IL, USA) 

while sodium sulphate was obtained from Sigma-Aldrich (St. Louis, MO, 

USA). 

 

2.2.2. Human colon tissue samples 

 

Human colon tissues were provided by the Department of Colorectal Surgery, 

Singapore General Hospital (SGH), Singapore. The utilization of human tissue 

was approved by the institutional review board (IRB) at the SGH (IRB 

reference number 260/2007). For method development and validation, one 

representative normal colon tissue (3.00 g) was snap-frozen immediately 

following surgery and then stored at -80ºC until processing. The tissue was 

subsequently cut and divided into tissue masses of about 20 mg each for the 

GC/MS method development and validation. 

 

2.2.3. Sample preparation 

 

For the development of the sample preparation protocol, previously reported 

sample preparation strategies (James et al., 2004; Lin et al., 2007; Lisec et al., 

2006; Pasikanti et al., 2008) were used as references. Various parameters such 

as different methods of extraction (homogenization alone, homogenization 

followed by ultra-sonication, ultra-sonication alone) and time periods of ultra-

sonication (40, 60 and 100 min), weights of colonic tissue samples (5 to 40 

mg) and derivatization strategies (incubation with BSTFA or MSTFA at 70ºC 

for 30 min and overnight methoximation using MOX followed by incubation  
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Figure 2.1. GC/MS chromatograms depicting results of development and 

optimization of sample preparation method. A: No appreciable difference 

observed between different extraction strategies. [Sonication for 100 min 

opted for ease of sample preparation].; B: Effect of different tissue weights on 

GC/MS profile [20 mg chosen as minimal weight for tissue]; C: Effect of 

different derivatization strategies [MOX effecting resolution as compared to 

MSTFA alone]. 

    

 

 

 

A 

B 

C 



34 
 

with MSTFA at 70ºC for 30 min) were explored to optimize the final sample 

preparation protocol. Some of the results obtained during development and 

optimization of sample preparation method are presented in Figure 2.1. 

 Using the optimized method, each colon tissue was weighed accurately 

and transferred to 15 mL glass centrifuge tubes. 1  mL  of  a  mono-phasic  

mixture  of chloroform-methanol-water in ratio of 20:50:20 (v/v) was added to 

each sample and the tissue sample along with the extraction solvent system 

was ultra-sonicated in a bath ultra-sonicator at ambient temperature (24ºC) for 

100 min and then vortex-mixed for 2 min. The samples were subsequently 

centrifuged at 1800 g units for 3 min and 0.8 mL of the supernatant was 

collected separately from each sample in 15 mL glass tube. The collected 

supernatant was concentrated to complete dryness at 50ºC for 30 min using 

Turbovap LV nitrogen evaporator (Caliper Life Sciences, Hopkinton, MA, 

USA). 100 µL of toluene kept anhydrous with sodium sulphate was added to 

each of the dried tissue extracts, vortex-mixed for 1 min and again evaporated 

to complete dryness using Turbovap LV in order to eliminate any trace of 

water which might interfere with the GC/MS analysis. The dried samples were 

then derivatized by adding 100 µL of MSTFA with 1% TMCS to each sample. 

The samples were then vortex-mixed for 1 min and incubated at 70ºC for 30 

min. After incubation, samples were again vortex-mixed for 1 min and then 

transferred to vials for GC/MS analysis. 

 

 

 

 



35 
 

2.2.4. GC/MS analysis 

 

Analysis was performed on a Shimadzu QP2010 GC/MS system (Shimadzu, 

Kyoto, Japan). A HP-5MS 30 m × 250 µm (i.d.) fused silica capillary column 

(Agilent J&W Scientific, Folsom, CA, USA), chemically bonded with a 5% 

diphenyl 95% dimethylpolysiloxane cross-linked stationary phase (0.25 µm 

film thickness), was used with open split interface. Helium was used as the 

carrier gas at 1.2 mL/min and the injector split ratio was set to 1:5. An 

injection volume of 1 µL was used and the solvent cut-off time was 5 min. 

The injector and source temperatures were kept at 250 and 200ºC, 

respectively. Oven temperature was kept at 60ºC for 3 min, increased at 7ºC 

per min to 140ºC where it was held for 4 min and further increased at 5ºC per 

min to 310ºC where it remained for 6 min. The MS was operated in EI 

ionization mode at 70 eV. Data acquisition was performed in the full scan 

mode from m/z 50 to 650 with a scan time of 0.5 s. To detect and eliminate 

retention time (Rt) shift, standard alkane series mixture (C-10 to C-40) was 

injected periodically into the GC/MS system during analysis of each batch of 

samples. Chromatogram acquisition and preliminary compound identification 

by the National Institute of Standards and Technology (NIST) and Wiley EI 

mass spectral library search were performed using the Shimadzu GCsolution 

(Version 2.5) software. Rt correction of peaks based on Rt of standard alkane 

series mixture (C-10 to C-40) was performed using the automatic adjustment 

of Rt function of the Shimadzu GCsolution software. The chromatograms of 

all the samples analyzed were subjected to noise reduction and baseline 

correction using metAlign software (http://www.metalign.nl) prior to 
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integration of peak area. Integrated peak areas of multiple derivative peaks 

belonging to each of the same metabolites (D-mannose, D-galactose, D-

glucose, myo-inositol) were summed and considered as single compound. All 

known artifact peaks, such as peaks due to column bleed and MSTFA artifact 

peaks were not considered in the final data analyses. Data normalization to a 

constant sum of the chromatographic peak area was carried out before 

statistical analyses. 

 

2.2.5. Method validation 

 

All the method validation studies, except for linearity validation, were carried 

out using unspiked human normal colon tissue samples (~20 mg each) 

according to the US-FDA guidelines for bio-analytical method validation with 

suitable modifications wherever necessary (FDA, 2001). A relative stability of 

100 ± 15% and relative standard deviation (RSD) of 15% were considered as 

acceptable in our method validation. Calculations of method validation results 

were performed using Microsoft Excel 2007 software. 

 

2.2.5.1. Freeze-thaw cycle and auto-sampler stability 

 

For each stability study, 6 human colon tissues of ~20 mg each were used. In 

order to evaluate the freeze-thaw stability, the samples were stored at -80ºC 

for 24 h and then thawed unassisted at room temperature (24ºC). When 

completely thawed, the samples were refrozen for 24 h at -80ºC. The freeze-

thaw cycle was repeated two more times and then the samples were processed 
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and analyzed in the third cycle. The results obtained were compared with that 

obtained from samples which were not subjected to freeze-thaw cycles in 

order to determine the freeze-thaw stability. Auto-sampler stability was 

evaluated by keeping the samples in the auto-sampler (24ºC) and re-injecting 

them after 50 h. 

 

2.2.5.2. Long-term stability 

 

Human colon tissue samples, stored at -80ºC, were processed and analyzed at 

intervals of 1 month and 3 months, respectively. At each sampling point, 

triplicate samples of ~20 mg each were analyzed. The results obtained were 

compared with that of samples analyzed on the first day of method validation. 

 

2.2.5.3. Intra- and inter-day precision 

 

6 human colon tissues of ~20 mg each were processed and analyzed for 

determination of both intra- and inter-day precision. The inter-day precision 

values were determined on three different days (first, second and third day of 

method validation). 

 

2.2.5.4. Selectivity 

 

The selectivity of the GC/MS method was investigated by comparing the 

chromatogram of blank sample (solvent blank) to that of processed sample 

(~20 mg of human colon tissue). 
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 2.2.5.5. Linearity 

 

19 of the identified endogenous metabolites were selected to investigate the 

linear response of the GC/MS method. These compounds cover a wide range 

of GC Rt (9.85-53.70 min), and belong to various classes of metabolites 

(amino acids, organic acids, fatty acids, inorganic acids, sugars, alcohols, 

pyrimidines and steroids) with diverse physicochemical properties. As all the 

19 metabolites were endogenously present in colon tissue, it was practically 

not possible to obtain “blank” human colon tissue devoid of these metabolites. 

Therefore we validated the linearity of response by spiking the corresponding 

standard compounds before extraction by the solvent mixture composed of 

chloroform, methanol and water in the ratio of 20:50:20 (v/v). and then taken 

through the entire sample preparation process. The concentrations of standard 

compounds were calculated with respect to 20 mg of colon tissue. For 

instance, a spiked amount of 200 µg of any standard compound was 

considered equivalent to a concentration of 200 µg per 20 mg of colon tissue 

that is 10 µg/mg of colon tissue. The calibration curve of each of the 19 

analytes was constructed by linear regression of the absolute integrated peak 

area data against its concentrations. 

 

2.2.5.6. Sensitivity 

 

The main objective of our study was to develop an optimal GC/MS method for 

the profiling of endogenous metabolites of colon tissue. Therefore, instead of 

determining limit of detection (LOD) and limit of quantification (LOQ) of 
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individual metabolites, it was considered comparatively more important to 

determine the minimal amount of colon tissue that was required to produce a 

reasonably sensitive profiling of the endogenous metabolites. In our method 

development, different weights of colon tissue (5, 10, 20 and 40 mg) were 

processed and analyzed to determine an optimal balance between tissue weight 

and generation of sufficient GC/MS data. 

 

2.3. Results and discussion 

 

While exploring various parameters during pre-validation development of 

sample preparation method, extraction of colon tissue samples by ultra-

sonication for 100 min and derivatization using 100 µL of MSTFA at 70ºC for 

30 min, were found to be optimal in terms of extraction of metabolites and 

metabolite extraction and coverage. Overnight methoximation of samples 

using MOX reagent prior to derivatization with MSTFA is considered a 

conventional step in sample preparation protocol for metabolic profiling 

(James et al., 2004). The methoximated derivatives of the monosaccharides 

were found to elute in quick succession in our GC/MS method as compared to 

the non-methoximated monosaccharides, thus affecting chromatographic 

resolution. Moreover overnight methoximation at 37ºC also meant 

comparatively longer sample processing time. Based on these factors, 

methoximation was eliminated from our colon tissue preparation protocol. As 

a result, multiple peaks were generated for the monosaccharides and their 

cumulative peak areas were used in the data analysis. A representative GC/MS 

chromatogram of normal human colon tissue is shown in Figure 2.2. 



40 
 

GC/MS analysis lead to the identification of 53 metabolites belonging 

to diverse chemical classes such as amino acids, organic acids, inorganic 

acids, monosaccharides, aldehydes, amines, amides, fatty acids, fatty acid 

esters, polyols and pyrimidines (Figure 2.2, Table 2.1). As our developed 

GC/MS method was the first method to be reported for metabolic profiling of 

human colorectal tissue samples, it was not feasible to compare it with other 

reported GC/MS method. However, in a concomitant study by another group a 

GC/TOFMS method for profiling of CRC tissue samples was used to obtain 

around 700 chromatographic peaks per sample (Denkert et al., 2008). 

However it should be noted that the MS used in their study was a TOFMS 

which allows spectral deconvolution of coeluting peaks and therefore it is not 

practical to compare it with our GC-single quadrupole MS platform. Later, 

when we used our developed sample preparation protocol and analyzed our 

samples using GCxGC/TOFMS (described in Chapter 5) we were able to 

obtain more than 800 chromatographic peaks per sample indicating that our 

developed method is quite comparable with that of Denkert et al. 

Peaks with similarity index (SI) more than 70% were assigned 

compound names while those having less than 70% SI were considered as 

unknown compound. Identities of selected metabolites preliminarily identified 

by NIST mass spectral library were further confirmed by comparison of their 

mass spectra and Rt with those obtained using commercially available 

reference standards (L-alanine, L-valine, glycine, L-threonine, L-proline, L-

phenylalanine, L-tyrosine, myo-inositol, uridine, uracil, D-glucose, D-

mannose, D-galactose, L-(+)-lactic acid, fumaric acid, D-(+)-malic acid, 

arachidonic acid, phosphoric acid, boric acid, formaldehyde and cholesterol). 
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In actual clinical situations where colon tissues are collected from the 

hospital, stored and processed in the laboratory, the samples would ideally not 

be subjected to more than 2 freeze-thaw cycles. In this study, the stability of 

the colon tissue samples was validated over 3 freeze-thaw cycles. Since the 

stability studies were carried out using unspiked human colon tissue, all 53 

identified metabolites (Table 2.1) were used in the validation studies. In 

clinical sample analysis, multiple samples may be submitted for batch 

analysis. As the analysis time for each sample is about 1 h, the time difference 

between the analyses of the first and final samples can be appreciable. In this 

study, a batch analysis of 50 samples was assumed and hence, the stability of 

processed samples was validated over 50 h while being kept in the auto-

sampler. As colon tissue collected from the hospital may not be analyzed 

immediately, a long-term stability study was also performed (up to 3 months) 

where the samples were kept at -80ºC. As shown in Table 2.1., the relative 

stability of all the 53 metabolites was within the acceptable limits of 100 ± 

15% for all three freeze-thaw, auto-sampler and long-term stability studies. 

Our results implied that human colon tissues are stable over 3 freeze-thaw 

cycles and when kept at -80ºC for up to 3 months. Our results also confirmed 

that batch analysis can be performed for up to 50 processed samples with 

minimum compromise in the integrity of the metabolites. These findings are 

important in guiding future GC/MS profiling of human colon tissue in terms of 

the collection, processing, storage and analysis of the samples. 

All the 53 identified metabolites were taken into consideration to 

investigate the precision of the method. The RSD of all the 53 metabolites in 

terms of intra- and inter-day precision studies was found to be less than 15% 
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(Table 2.1.). The high precision of the developed GC/MS method observed in 

our study is pertinent to the success of a metabolic profiling study since the 

variations in the levels of the metabolites should be an outcome due to an 

environmental or pathological perturbation rather than a compromise in the 

precision of the analytical method. A comparison of GC/MS chromatogram of 

blank and processed colon tissue samples revealed interferences during the 

first 6 min of the chromatogram due to MSTFA artifacts which would not 

interfere with the peaks of relevant metabolites. Thus the developed GC/MS 

method was found to be sufficiently selective. 

Each of the 19 metabolites selected for investigating the linearity study 

showed a satisfactory linear response as evident from their respective r
2
 values 

(Table 2.2.). GC/MS analysis involves tissue metabolite extraction and 

derivatization. The latter process may affect the linearity of the method. As 

metabolic profiling of the colon tissue is a semi-quantitative experiment, it 

becomes important to validate the linearity of the detection. 
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Figure 2.2. Representative GC/MS metabolite profile of normal human colon tissue. The numbering of metabolite peaks corresponds to peak 

number of metabolites as shown in Table 2.1. Metabolites are also classified according to their chemical classes. 
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Table 2.1. Endogenous metabolites and results of stability and precision studies. 

 

 

Peak 

No.
a
 

Metabolites 

% Freeze 

thaw 

stability 

% Auto- 

sampler 

stability 

 

% Long term stability 

Intra-day 

Precision 

%RSD 

Inter-day 

Precision 

%RSD 

1 month 3 months   

1 Formaldehyde 100.58 98.99 100.80 102.22 1.92 2.20 

2 Ethylamine 101.78 97.62 100.72 99.61 1.85 2.15 

3 L-Norvaline 101.33 100.18 103.35 103.96 1.50 1.47 

4 Boric acid 100.50 100.70 101.50 102.44 1.36 1.43 

5 Methyl cyclopent-3-ene 103.59 98.35 105.62 109.54 3.01 3.22 

6 Lactate 100.45 99.25 100.39 101.78 1.79 1.73 

7 L-Valine 101.84 100.24 100.50 101.92 1.67 2.09 

8 L-Alanine 97.69 94.28 92.68 95.05 4.84 5.18 

9 Glycine derivative 99.95 99.54 102.72 103.74 2.38 2.50 

10 Pyruvate 101.03 101.21 103.75 102.97 2.00 2.06 

11 (S)-2-amino-4-methyl-pentanamide 100.48 100.11 100.70 102.52 1.52 1.52 

12 Ethanethioic acid 101.13 100.42 101.41 104.79 1.33 1.33 

13 L-Valine derivative 100.44 100.58 102.15 102.12 2.40 2.31 

14 L-Serine derivative 98.71 98.70 99.05 101.36 1.97 1.93 

15 Phosphate 100.51 101.77 102.25 100.63 2.25 2.20 

16 L-Threonine derivative 97.86 94.80 97.02 97.93 2.61 2.52 

17 L-Proline derivative 100.69 100.67 99.46 102.20 2.22 2.55 

18 Glycine 98.88 101.18 99.76 100.57 3.93 5.25 

a. Similar numbers are used to mark the peaks in the GC/MS chromatogram as shown in Figure 2.1. 
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Table 2.1. Endogenous metabolites and results of stability and precision studies (continued). 

 

 

Peak 

No.
a
 

Metabolites 

% Freeze 

thaw 

stability 

% Auto- 

sampler 

stability 

 

% Long term stability 

Intra-day 

Precision 

%RSD 

Inter-day 

Precision 

%RSD 

1 month 3 months   

19 Uracil 103.94 106.57 110.75 114.32 9.24 12.37 

20 Fumarate 100.24 105.55 95.70 105.45 6.48 6.44 

21 L-Threonine 100.51 103.88 97.50 104.47 4.61 4.59 

22 L-Methionylglycine 87.32 103.02 89.79 85.13 12.51 13.53 

23 2-Hydroxy-3-methylvalerate 102.09 102.76 101.93 102.85 1.72 1.86 

24 Methylamine 100.74 99.86 100.77 102.03 1.50 1.49 

25 Malate 101.44 102.18 101.40 102.83 1.69 1.74 

26 L-Proline 101.65 99.84 102.92 104.01 2.59 4.25 

27 Phenylalanine 98.46 99.10 99.36 103.39 2.89 3.59 

28 Creatinine enol 114.30 113.07 111.67 108.71 6.78 11.23 

29 D-γ-lactone-xylonic acid 92.01 96.06 94.53 104.46 8.87 10.95 

30 L-α-glycerophosphate 102.32 101.23 101.27 102.30 3.43 3.66 

31-A,B D-Mannose 105.84 98.33 89.83 93.17 7.27 8.52 

32-A,B D-Galactose 100.58 101.83 99.55 98.72 1.76 1.80 

33 Cadaverine 104.26 98.78 100.78 100.98 4.11 4.12 

34 L-Tyrosine 100.82 100.65 101.23 101.97 3.23 3.77 

35-A,B,C D-Glucose 100.87 99.12 102.48 106.05 2.20 2.14 

36-A,B,C Myo-inositol 103.21 102.12 107.94 105.92 1.65 1.77 

a. Similar numbers are used to mark the peaks in the GC/MS chromatogram as shown in Figure 2.1. 
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Table 2.1. Endogenous metabolites and results of stability and precision studies (continued). 

 

 

Peak 

No.
a
 

Metabolites 

% Freeze 

thaw 

stability 

% Auto- 

sampler 

stability 

 

% Long term stability 

Intra-day 

Precision 

%RSD 

Inter-day 

Precision 

%RSD 

1 month 3 months   

37 Palmitic acid 100.78 99.69 97.45 98.77 4.42 4.79 

38 Margaric acid 97.38 98.60 98.55 103.69 3.83 4.79 

39 (Z,Z)-9,12-Octadecadienoic acid 93.35 99.35 97.17 98.27 4.96 5.83 

40 Oleic acid 100.74 102.05 103.48 107.23 2.29 3.00 

41 Stearic acid 100.03 101.28 104.84 102.61 5.65 5.60 

42 Mannose-6-phosphate 101.03 100.51 100.84 103.78 1.17 1.19 

43 1-Hexadecanol 85.04 106.99 85.57 86.40 11.76 11.83 

44 D-Glucose-6-phosphate 99.37 99.24 100.69 101.09 2.47 2.47 

45 Arachidonic acid 113.62 104.05 98.32 102.64 6.42 6.91 

46 D-Glucopyranose-6-phosphate 90.63 98.25 103.84 101.36 11.73 11.67 

47 Uridine 98.28 90.32 109.55 111.31 8.56 9.22 

48 11,14-Eicosadienoic acid 98.40 95.83 90.00 94.59 5.36 5.23 

49 11-Eicosenoic acid 108.76 103.27 99.94 110.71 9.34 8.86 

50 1-O-Heptadecylglycerol 100.09 106.46 94.72 105.31 7.51 7.47 

51 1-Monooleoylglycerol 94.49 102.74 86.48 87.42 11.14 11.38 

52 Propyl octadecanoate 94.14 105.28 101.11 108.94 9.49 9.04 

53 Cholesterol 85.26 101.85 85.54 85.86 10.14 10.10 

a. Similar numbers are used to mark the peaks in the GC/MS chromatogram as shown in Figure 2.1. 
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Table 2.2. Results of linearity of response of 19 selected standard metabolites 

(spiked before extraction and then taken through the entire sample preparation 

process). 

 

Compound 
Concentration Range 

(µg/mg of tissue) 
r

2
 

Lactate 0.025-10.0 0.9988 

Fumarate 0.25-10.0 0.9963 

Malate 0.5-10.0 0.9979 

L-Alanine 0.05-10.0 0.9967 

L-Valine 0.025-10.0 0.9962 

L-Proline 0.5-10.0 0.9938 

L-Threonine 0.5-10.0 0.9944 

L-Phenylalanine 1.0-10.0 0.9954 

D-Glucose 0.1-10.0 0.9994 

D-Mannose 0.25-10.0 0.9929 

D-Galactose 0.25-10.0 0.9998 

Uridine 0.5-10.0 0.9972 

Arachidonic acid 0.5-10.0 0.9985 

Cholesterol 0.5-10.0 0.9956 

Phosphate 0.5-10.0 0.9962 

Myo-inositol 0.5-10.0 0.9908 

L-Tyrosine 0.25-10.0 0.9950 

Glycine 0.5-10.0 0.9953 

Uracil 1.0-10.0 0.9974 

 

During method development, it was determined that at least 20 mg of 

colon tissue sample was needed to generate a reasonably sensitive profiling of 

the endogenous metabolites. So far Denkert et al. had demonstrated that 5 mg 

of tissue is sufficient to produce satisfactory metabolic profile using gas 

chromatography coupled to time of flight mass spectrometry (GC/TOFMS) 

(Denkert et al., 2006, 2008). The relatively greater amount of tissue needed in 

our case was possibly related to the difference in the inherent sensitivity of our 

GC/MS (single quadrupole) system as compared to GC/TOFMS. 
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2.4. Conclusion 

 

A suitable GC/MS method for the non-targeted metabolic profiling of human 

colon tissue was developed and successfully validated in terms of its sample 

stability, reproducibility, selectivity, linear response and sensitivity. Our 

developed GC/MS method could be used alone or in conjunction with other 

complementary analytical techniques like NMR, especially HR-MAS NMR 

spectroscopy for the comprehensive non-targeted metabolic profiling of 

human colon tissue. 
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CHAPTER 3 

NON-TARGETED METABOLIC PROFILING OF COLORECTAL 

CANCER USING GC/MS 

 

3.1. Introduction 

 

In this chapter, tissue-based non-targeted metabolic profiling of CRC using 

GC/MS is described.  The GC/MS method that we developed and validated, 

(described in Chapter 2) was utilized for the said purpose. The clinical 

samples consisted of CRC and normal colon tissues obtained from 31 CRC 

patients.  The data obtained was subjected to multivariate as well as univariate 

statistical analyses to identify marker metabolites expressed differentially in 

CRC and normal tissue.  

 

3.2. Experimental 

 

3.2.1. Clinical population and tissue samples 

 

Clinical data such as age, gender, ethnicity, location of primary tumor, 

histological staging and grade were obtained from a prospectively maintained 

computerized database at the Singapore Polyposis Registry & the Colorectal 

Cancer Research Laboratory, Department of Colorectal Surgery, SGH. The 

anatomical and clinicopathological characteristics related to the clinical tissue 

samples analyzed by GC/MS are summarized in Table 3.1. The study 

population comprised of 31 patients with a mean age of 67 ± 13 years at the 
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time of cancer diagnosis. 3 patients were younger than 50 years old (T11, T13 

and T21). There were 18 males (58%) and 13 females (42%). The majority 

(87%) of the patients were Chinese (n = 27), while the remaining comprised 2 

Indians (T5 and T27), 1 Malay (T7) and 1 of other ethnicity (T16, T23; n = 1). 

The CRC anatomical site, tissue histology, tumor grade, TNM and Dukes 

stages are presented in Table 3.1. There were 22 left-sided tumors (defined as 

those arising distal to the splenic flexure) of which 14 were in the 

rectosigmoid or rectum. The tumors were predominantly moderately 

differentiated (81%; n = 25), and the remaining 6 comprised 2 each of 

mucinous, well and poorly differentiated tumors. Although not presented in 

Table 3.1., tumor invasion of neighboring organs, lesion nature and 

dimension, and presence of angiolymphatic or perineural invasion were also 

noted. This study was approved by the IRB at the SGH (IRB reference number 

260/2007). Matched CRC and normal tissue (n = 63) were obtained from the 

31 CRC patients during surgery. Among these subjects, 1 patient provided two 

matched pairs of tissues (M23, T23, M16 and T16), while another only 

provided the normal mucosa (M19). None of the patients received neoadjuvant 

chemotherapy or radiotherapy prior to surgical excision. Resection of tissue 

samples were carried out by trained personnel at Singapore General Hospital. 

Fresh tumor tissue and matched normal mucosa were snap-frozen immediately 

following excision of the specimen at surgery, then stored at -80°C until 

processing. Tumor specimens were carefully micro-dissected to ensure that at 

least 90% of the analyzed tissue contained cancer cells. Matched normal 

tissues were taken at least 5-10 cm away from the edges of the tumor. All 

CRC tissues and matched normal tissue were cut and weighed accurately  



51 

 

Table 3.1. Summary of anatomical and clinicopathological characteristics of 

the clinical tissue samples analyzed by GC/MS. 

 

Normal
a 

CRC
a
 CRC  

anatomical site 

Histology Grade
c
 TNM 

Stage 

Dukes 

Stage 

M23 T23
b
 Caecum Adenocarcinoma MD T3N0M0 B 

M16 T16
b
 Caecum Adenocarcinoma MD T3N0M0 B 

M7 T7 Caecum Adenocarcinoma MD T3N2M0 C 

M4 T4 Ascending colon Adenocarcinoma MD T3N1M0 C 

M2 T2 Hepatic flexure Adenocarcinoma MD T2N0M1 D 

M1 T1 Transverse colon Adenocarcinoma MD T3N2M0 C 

M8 T8 Transverse colon Adenocarcinoma MD T3N2M0 C 

M30 T30 Transverse colon Adenocarcinoma MD T3N0M0 B 

M31 T31 Descending colon Adenocarcinoma MD T3N0M0 B 

M19 - Descending colon Adenocarcinoma PD T4N1M0 C 

M6 T6 Sigmoid colon Adenocarcinoma PD T2N1M0 C 

M33 T33 Sigmoid colon Adenocarcinoma MD T3N1M0 C 

M24 T24 Sigmoid colon Adenocarcinoma MD T3N1M0 C 

M28 T28 Sigmoid colon Adenocarcinoma MD T3N0M0 B 

M29 T29 Sigmoid colon High-grade dysplasia MD T2N0M0 A 

M32 T32 Sigmoid colon Adenocarcinoma WD T4N0M0 B 

M27 T27 Sigmoid colon Mucinous M T3N1M0 C 

M17 T17 Sigmoid colon Adenocarcinoma MD T3N1M0 C 

M3 T3 Rectosigmoid colon Adenocarcinoma MD T2N0M1 D 

M15 T15 Rectosigmoid colon Adenocarcinoma MD T1N0M0 A 

M11 T11 Rectosigmoid colon Adenocarcinoma WD T3N1M0 C 

M25 T25 Rectum Adenocarcinoma MD T3N2M0 C 

M10 T10 Rectum Adenocarcinoma MD T3N1M1 D 

M5 T5 Rectum Adenocarcinoma MD T2N0M0 B 

M12 T12 Rectum Adenocarcinoma MD T2N0M0 A 

M26 T26 Rectum Adenocarcinoma MD T3N0M0 B 

M22 T22 Rectum Adenocarcinoma MD T3N0M0 A 

M9 T9 Rectum Adenocarcinoma MD T2N0M0 B 

M13 T13 Rectum Adenocarcinoma MD T4N0M1 D 

M20 T20 Rectum Mucinous M T3N1M0 C 

M21 T21 Rectum Adenocarcinoma MD T3N0M0 B 

M18 T18 Rectum Adenocarcinoma MD T3N0M1 D 
a 
For each T (CRC) sample, matched M (normal) tissue was provided, with the 

exception of M19 (i.e. no matched T19). 
b 
M16, T16, M23 and T23 were obtained from one patient. 

c 
MD, WD, M and PD are moderately differentiated, well-differentiated, 

mucinous and poorly differentiated, respectively. 
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where approximately 20 mg of each tissue was reserved for GC/MS analysis. 

The samples were kept at -80°C until analysis. The remaining specimens were 

preserved in formalin and submitted for routine histological examination with 

hematoxylin and eosin staining by a gastrointestinal pathologist to determine 

the tumor stage and differentiation. 

 

3.2.2. GC/MS analysis 

 

Tissue samples for GC/MS analysis were prepared as per the procedure 

described in section 2.2.3 of Chapter 2. The same GC/MS conditions as 

described in section 2.2.4. of Chapter 2 were used for analysis. The total 

analysis time (including sample preparation and data acquisition) for each 

sample was approximately 200 min.   

 

3.2.3. GC/MS data analysis 

 

All known artifact peaks, such as peaks due to column bleed and MSTFA 

artifact peaks, were not considered in the final data analyses. The GC/MS data 

was pre-processed by normalization to a constant sum of the chromatographic 

peak area before chemometric and statistical analyses. The normalization step 

was used to account for variations of the overall concentrations of samples 

caused by subtle variations in wet weight of tissue samples, variations 

introduced during sample preparation and variations caused by instrument 

response. Metabonomic/metabolomic responses and fluxes mainly influence a 

certain number of metabolites in body fluids and consequently certain number 
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of peaks of the corresponding chromatogram/spectrum. These specific 

changes are visible as relative changes of concentrations of few metabolites 

related to the concentrations of all other metabolites, which represent the 

overall concentration of the sample. Usually these specific relative changes are 

of interest in metabolic profiling studies in contrast to the overall 

concentration of the sample. Therefore, a normalization step, which 

compensates for the differences of the overall concentration, is crucial, as 

variations of the overall concentrations obscure specific changes of 

metabolites. As internal standards are usually spiked into tissue matrix and 

then subjected through sample preparation procedure they can account for the 

variations caused by sample preparation, instrument response but they cannot 

account for variations introduced by subtle variations in tissue wet weight. 

Although normalization to total area may become suboptimal in case of huge 

metabolic changes but still it is a popular normalization method and has been 

successfully used in other tissue based metabolic profiling studies (Denkert et 

al., 2006, 2008; Wang et al., 2005; Yang et al., 2007). The normalized data 

was subjected to PCA to identify clustering trends and outliers followed by 

OPLS-DA (Bylesjö et al., 2006) using chemometric SIMCA-P software 

(Umetrics, Umeå, Sweden). The data were mean-centered and Pareto-scaled 

during chemometric data analysis. An independent ‘t’ test with Welch’s 

correction using SPSS software (Version 11.0, SPSS Inc., Chicago, IL, USA) 

was used for the comparison of the marker metabolite levels to determine their 

statistical significant differences between the CRC and normal mucosa groups 

(p < 0.05 was considered to be statistically significant). The Welch correction 

is designed to provide a valid t-test in the presence of unequal population 
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variances. Receiver operating characteristic (ROC) is a graphical plot of the 

sensitivity, or true positive rate, vs. false positive rate (1 − specificity or 1 − 

true negative rate), for a binary classifier system as its discrimination threshold 

is varied. Each point on the ROC curve represents a sensitivity/specificity pair 

corresponding to a particular decision threshold. The area under the ROC 

curve is a measure of how well a parameter can distinguish between two 

diagnostic groups (diseased/normal). ROC analysis was performed using the 

GraphPad Prism software (Version 5.02., GraphPad Software Inc., La Jolla, 

CA, USA) to validate the robustness of the OPLS-DA model using the cross-

validated (7-fold) predicted Y values. Cross-validation is a procedure where 

multiple models are generated each excluding a different portion of the data 

(in our case every 7th sample), such that all samples are excluded once and 

once only. Predicted classifications (Y values) were then generated for each 

set of excluded samples using the appropriate model, in order to estimate the 

predictive performance of the classification algorithm. The area under the 

ROC curve denoted as AUC was calculated using the trapezoidal rule. 

 

3.3. Results and discussion 

 

In total, 31 tumor samples and 32 normal tissues from 31 CRC patients were 

analyzed by GC/MS (Table 3.1.). The representative chromatograms of CRC 

and normal tissue extracts are illustrated in Figure 3.1. From the 

chromatogram, it was clear that the GC/MS platform was highly reproducible 

in the elution time of the metabolites. The PCA plot using the GC/MS data has 

been presented in Figure 3.2. The scores plot of the OPLS-DA model 
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generated using the GC/MS data has been presented in Figure 3.3. [2 LV, 

R
2
(Y) = 0.849, Q

2
(cum) = 0.784]. LV, R

2
Y and Q

2
(cum) are the latent 

variables, fraction of the sum of squares of all Y values explained by the 

current latent variable and cumulative Q
2
 for the extracted latent variable, 

respectively. Q
2
 is given by the expression Q

2
=1-∑(Ypredicted−Ytrue)

2
 ‚∑Y

2
true. 

The overall explained variance, R
2
Y, has the same expression as Q

2
 but 

calculated for a model generated with all the training data (Keun et al., 2003). 

The model was subjected subsequently to ROC analysis using the cross-

validated predicted Y values (Figure 3.4., AUC 0.9726). An AUC value of 1.0 

corresponds to a prediction model with 100% sensitivity and 100% specificity, 

whereas an AUC value of 0.5 correspond to a poor predictive model. The high 

AUC values of the ROC analysis indicated that the OPLS-DA model was 

robust in this discrimination. The marker metabolites that were responsible for 

the separation of CRC specimens from their matched normal tissues in the 

OPLS-DA model are summarized in Table 3.2. Except for fumarate, malate, 

mannose, galactose, glucose and AA which were found to be present at higher 

levels in normal tissues, the remaining marker metabolites were found in 

greater amounts in the CRC specimens. All the metabolites were found to be 

statistically different between the two test groups (p < 0.05). The marker 

metabolites as presented in Table 3.2. are also labelled in Figure 3.1. to aid 

visualization of their Rt. OPLS-DA was also performed with different 

combinations of anatomical sites and Dukes stages of CRC specimens as test 

classifiers. However, no valid model was obtained. In addition to the existing 

literature, the Human Metabolome database (HMDB) (Wishart et al., 2009) 

and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and 
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Figure 3.1. GC/MS chromatogram overlay of CRC and normal tissues depicting the marker metabolite peaks. 
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Table 3.2. Marker metabolites identified by GC/MS. 
 

 

Metabolite 

Rt 

(min) 

Chemical class Identified 

by
a
 

 

% fold 

change of 

cancer 

from 

normal
b
 

p value
c
 

Lactate 9.85 Organic acid Standard 40.1 <0.0001 

Phosphate 14.65 Inorganic acid Standard 6.1 <0.05 

Glycine 15.40 Amino acid Standard 38.5 <0.0001 

Fumarate 16.76 Organic acid Standard -20.1 <0.05 

Malate 21.41 Organic acid Standard -25.1 <0.0005 

L-Proline 22.37 Amino acid Standard 71.6 <0.05 

L-Phenylalanine 23.06 Amino acid Standard 72.5 <0.05 

D-Mannose
d
 30.10, 

33.72 

Monosaccharide Standard -28.5 <0.0001 

D-Galactose
d
 31.00,

32.38 

Monosaccharide Standard -36.8 <0.0005 

D-Glucose
d
 32.16, 

32.41, 

34.00 

Monosaccharide Standard -67.0 <0.0001 

Palmitic acid 35.53 Fatty acid NIST 38.1 <0.0001 

Margaric acid 37.44 Fatty acid NIST 64.2 <0.01 

Oleic acid 38.90 Fatty acid NIST 13.1 <0.05 

Stearic acid 39.44 Fatty acid NIST 39.0 <0.0001 

Arachidonic acid 41.71 Fatty acid Standard -16.7 <0.05 

Uridine 42.18 Pyrimidine 

nucleoside 

Standard 102.4 <0.0001 

11-Eicosenoic acid 42.51 Fatty acid NIST 59.6 <0.0005 

1-Monooleoylglycerol 47.96 Polyol 

derivative 

NIST 119.5 <0.0001 

Cholesterol 53.70 Steroid Standard 13.8 <0.005 
a
 Metabolite identification using standard compound or NIST library search. 

b
 Positive and negative percentages indicate higher levels of metabolites in 

cancer and normal tissues, respectively. 
c
 Statistical p value calculated using the independent ‘t’-test with Welch’s 

correction (significance at p < 0.05). 
d
 Multiple peaks were observed for each compound in the GC/MS 

chromatogram. 
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Figure 3.2. PCA plot of CRC and normal tissues based on GC/MS metabolic 

profiles. 

 

 

 
 

 

 

Figure 3.3. OPLS-DA scores plot discriminating CRC from normal tissues 

based on GC/MS metabolic profiles.  
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Figure 3.4. ROC curve determined using the cross-validated predicted Y 

values of the GC/MS OPLS-DA model. 

 

 

 

 

 

 

 

 

 

 

 

Goto, 2000) were also used to obtain information about the identified marker 

metabolites and their related metabolic pathways, respectively.   

Using GC/MS, lactate and glycine were consistently found to be higher 

in CRC specimens while glucose was consistently lower (Table 3.2.). Lactate 

is an end product of glycolysis that increases rapidly during hypoxia and 

ischemia. Hypoxic regions of tumors develop when a tumor outgrows its 

vasculature. As increased lactate levels have been associated with a range of 

tumors (Griffin and Shockcor, 2004), our observation in this study was not 

unexpected. Higher levels of glucose uptake, consumption and conversion to 

lactate is a common observation in tumor cells even in high oxygen 

conditions, and was first observed by Otto Warburg (Warburg et al., 1956). 

Glycine can be formed from the glycolytic intermediate 3-phosphoglycerate, 

and its increased levels in CRC could relate to this glycolytic phenotype.  
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Alternatively, glycine is an important source of the one-carbon units for de 

novo purine synthesis, as shown by NMR experiments in the MCF7 breast 

tumor line (Fu et al., 2001).  Hence the observed increase in glycine content 

could reflect enhanced nucleotide synthesis. 

Based on the GC/MS non-targeted metabolic profiling approach, 

monounsaturated fatty acids (oleic acid and 11-eicosenoic acid) were found to 

be elevated in CRC specimens when compared to normal tissues (Table 3.2.). 

It is an established fact that 18-carbon chain length monounsaturated lipids 

were implicated in the apoptotic process (Griffin and Shockcor, 2004). 

Moreover such fatty acids have been shown to have tumor promoting effects 

in murine models of cancer and are often considered as a risk factor for CRC 

(Reddy, 1986, 1992). 

Our GC/MS data indicated clearly that AA level was reduced in CRC 

specimens compared to normal tissues (Table 3.2.). The depletion of AA in 

CRC tissue substantiated the overexpression of COX-2 and LOX enzymes in 

CRC which catalyze the conversion of AA to eicosanoids viz. PGs. TXs, 

HETEs and LTs which act as inflammatory mediators. Alteration in the 

endogenous levels of AA emphasizes the role of these eicosanoids in bridging 

inflammation and CRC (Kashfi and Rigas, 2005; Sano et al., 1995; Shureiqi 

and Lippman, 2001; Smith, 1992; Soslow et al., 2000; Soumaoro et al., 2006). 

The geographical incidence of CRC correlates well with high fat diets 

(Lipkin et al., 1999). Patients with CRC, have high levels of faecal bile acids 

and cholesterol. It is thought that faecal bile acids and cholesterol metabolites 

may act as promoters, co-carcinogens or carcinogens in large bowel 

tunmorigenesis. Cholesterol is an obligatory precursor of bile acids and 3-
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hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase is involved in 

its synthesis. Higher levels of cholesterol were associated with the CRC 

specimens as demonstrated by GC/MS (Table 3.2.). This finding is consistent 

with earlier reports on the overexpression of HMG-CoA in colon cancer cell 

lines (Hentosh et al., 2001; Wachtershauser et al., 2001). 

In line with other studies (Denkert et al., 2008; Ong et al., 2010), we 

also found lower levels of malate and fumarate in the CRC specimens (Table 

3.2.) which are most likely related to deregulation of tricarboxylic acid (TCA) 

cycle and the higher energy demand in tumors. Uridine, a pyrimidine 

nucleoside, was also elevated in CRC specimens (Table 3.2.). These 

alterations are probably associated with the higher propagation rate of the 

tumor cells. 

 

3.4. Conclusion 

 

GC/MS was successfully utilized to profile metabolites in CRC and normal 

biopsied tissue specimens obtained from CRC patients. The data thus obtained 

was subjected to OPLS-DA which in turn generated a robust model capable of 

discriminating CRC from normal tissues. Moreover chemically diverse marker 

metabolites were identified which suggested perturbations of processes such 

as tissue hypoxia, glycolysis, TCA cycle, steroid metabolism, nucleotide 

biosynthesis, lipid metabolism and biosynthesis of eicosanoids. However the 

GC/MS data was unable to generate any OPLS-DA model capable of 

discriminating different stages of CRC or anatomical site of tumor. 
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CHAPTER 4 

NON-TARGETED METABOLIC PROFILING OF COLORECTAL 

CANCER USING HR-MAS NMR SPECTROSCOPY 

 

4.1. Introduction 

 

HR-MAS NMR spectroscopy is a solid state NMR technique in which the 

sample is spun rapidly at an angle of 54.7° (“magic angle”) with respect to the 

magnetic field resulting in attenuation of line broadening effects and 

generation of high resolution NMR spectra. HR-MAS NMR spectroscopy is a 

valuable analytical platform for metabolic profiling of intact tissue specimens. 

The probe heads used for HR-MAS NMR spectroscopy are capable of 

studying the samples in rapid rotation (4-6 kHz) around an axis of 54.7° tilted 

relative to that of the static magnetic field. As a result, chemical shift 

anisotropy, contributions from dipolar couplings and susceptibility distortions 

are largely reduced providing high-resolution spectra from semisolid and solid 

samples, such as tissues. HR-MAS NMR spectroscopy has been used in the 

analysis of gastrointestinal biopsies (Backshall, 2009; Seierstad et al., 2008; 

Tugnoli et al., 2006a; Wang et al, 2005, 2007, 2008), prostate tumors (Cheng 

et al., 2005; Swanson et al., 2003, 2006; Teichert et al., 2008), breast tumors 

(Sitter et al., 2006), brain tissue (Barton et al., 1999; Cheng et al., 1996, 1997, 

2000; Tugnoli et al., 2006b; Tzika et al., 2007), renal cancer biopsies (Moka et 

al., 1998; Tate et al., 2000), heart tissue (Bollard et al., 2003) and liver tissue 

(Bollard et al., 2000; Duarte et al., 2005; Rooney et al., 2003; Wang et al., 

2003). The sensitivity and resolution of HR-MAS NMR spectroscopy is 
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comparatively lower than MS techniques. However, the main advantage of 

HR-MAS NMR spectroscopy over MS and liquid state NMR techniques is 

that it requires minimal sample preparation and the metabolic space covered is 

independent of the choice of solvent(s) used for extraction of metabolites from 

tissues (Beckonert et al., 2010; Schenetti et al., 2006). 

 In this chapter, HR-MAS NMR spectroscopy has been used as an 

analytical platform for the non-targeted metabolic profiling of CRC and 

normal tissue specimens obtained from CRC patients. The HR-MAS NMR 

analysis, data pre-treatment and pre-processing by Matlab were carried out by 

our collaborators at the Imperial College London, UK.  Raw spectral data 

analysis by Chenomx, multivariate statistics by SIMCA and pathway mapping 

of marker metabolites using KEGG were carried out at the Department of 

Pharmacy, NUS, Singapore. 

 

4.2. Experimental 

 

4.2.1. Clinical population and tissue samples 

 

The same cohort of clinical samples (described in Table 3.1. of Chapter 3) 

which was used for GC/MS analysis, was used for HR-MAS NMR 

spectroscopy analysis. However due to limited size of each tissue block, all the 

tissues (n=63) were analyzed using GC/MS, while 47 tissues were analyzed 

using HR-MAS NMR spectroscopy, of which 18 pairs were matched samples. 

The anatomical and clinicopathological characteristics of the clinical tissue 

samples analyzed by HR-MAS NMR spectroscopy are summarized in Table  



64 

 

4.1. Collection, handling and storage of tissue samples were carried out in the 

same manner as described in section 3.2.1. of Chapter 3. About 10 mg of each 

tissue specimen was accurately weighed and kept at -80ºC until HR-MAS 

NMR spectroscopy analysis. 

Table 4.1. Summary of anatomical and clinicopathological characteristics of 

the clinical tissue samples analyzed by HR-MAS NMR spectroscopy. 

Normal
a 

CRC
a
 CRC anatomical 

site 

Histology Grade
b
 TNM 

Stage 

Dukes 

Stage 

M23 T23 Caecum Adenocarcinoma MD T3N0M0 B 

- T7 Caecum Adenocarcinoma MD T3N2M0 C 

M4 T4 Ascending colon Adenocarcinoma MD T3N1M0 C 

M1 - Transverse colon Adenocarcinoma MD T3N2M0 C 

M30 T30 Transverse colon Adenocarcinoma MD T3N0M0 B 

M31 T31 Descending colon Adenocarcinoma MD T3N0M0 B 

M19 - Descending colon Adenocarcinoma PD T4N1M0 C 

M6 - Sigmoid colon Adenocarcinoma PD T2N1M0 C 

M33 T33 Sigmoid colon Adenocarcinoma MD T3N1M0 C 

M24 T24 Sigmoid colon Adenocarcinoma MD T3N1M0 C 

M28 T28 Sigmoid colon Adenocarcinoma MD T3N0M0 B 

M29 T29 Sigmoid colon High-grade dysplasia MD T2N0M0 A 

M32 T32 Sigmoid colon Adenocarcinoma WD T4N0M0 B 

M27 T27 Sigmoid colon Mucinous M T3N1M0 C 

- T17 Sigmoid colon Adenocarcinoma MD T3N1M0 C 

M3 T3 Rectosigmoid colon Adenocarcinoma MD T2N0M1 D 

M15 - Rectosigmoid colon Adenocarcinoma MD T1N0M0 A 

M11 - Rectosigmoid colon Adenocarcinoma WD T3N1M0 C 

M25 T25 Rectum Adenocarcinoma MD T3N2M0 C 

M10 T10 Rectum Adenocarcinoma MD T3N1M1 D 

- T5 Rectum Adenocarcinoma MD T2N0M0 B 

M12 - Rectum Adenocarcinoma MD T2N0M0 A 

M26 T26 Rectum Adenocarcinoma MD T3N0M0 B 

M22 T22 Rectum Adenocarcinoma MD T3N0M0 A 

M9 T9 Rectum Adenocarcinoma MD T2N0M0 B 

M13 - Rectum Adenocarcinoma MD T4N0M1 D 

M20 T20 Rectum Mucinous M T3N1M0 C 

M21 T21 Rectum Adenocarcinoma MD T3N0M0 B 

M18 - Rectum Adenocarcinoma MD T3N0M1 D 
a 
T (CRC) tissue, M (normal) tissue. 

b 
MD, WD, M and PD are moderately differentiated, well-differentiated, 

mucinous and poorly differentiated, respectively. 
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4.2.2. HR-MAS NMR spectroscopy analysis 

 

HR-MAS NMR spectroscopic analysis including sample pretreatment was 

carried out at the Imperial College London, UK, as per the validated protocol 

which has been recently published (Beckonert et al., 2010). Each accurately 

weighed intact tissue (about 10 mg) was bathed in D2O solution for 15 s. The 

tissue was inserted into a zirconium oxide 4 mm outer diameter rotor with an 

additional drop of D2O to provide a field-frequency lock for the NMR 

spectrometer. An insert was placed into the rotor to make a spherical sample 

volume of 25 µL. A cap was finally added as a closure of the rotor and the 

assembled device was used immediately for NMR analysis. All samples were 

randomized during analysis to reduce any potential systematic errors.  

All 
1
H NMR spectra were recorded on a Bruker AV-600 NMR 

spectrometer (Rheinstetten, Germany) operating at 600.11 MHz for 
1
H, 

equipped with a HR-MAS at a spin rate of 5000 Hz. Sample temperature was 

regulated using cooled N2 gas at 10 ºC during the acquisition of spectra to 

minimize spectral degradation. Two different types of 
1
H NMR experiments 

were carried out for each sample, a one-dimensional (1D) Nuclear Overhauser 

effect spectroscopy (NOESY) experiment with water suppression and a 1D 

Carr-Purcell-Meiboom-Gill (CPMG) spin-echo experiment. CPMG pulse 

sequence is widely used to measure spin-spin relaxation time T2 and thus the 

CPMG sequence generated spectra can be edited by T2 relaxation times to 

reduce signals from high molecular weight species or systems in intermediate 

chemical exchange (Zhang and Hirasaki, 2003).  1D NOESY is a selective 1-

D experiment that uses shaped pulses to selectively excite specific resonances 
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in order to observe isolated dipolar couplings. The 1D NOESY experiment 

generates a corresponding unedited spectrum with improved solvent peak 

suppression (Teahan et al., 2006). The CPMG spin-echo experiment gave the 

clearest signature of metabolic changes between the cancer and normal tissues, 

with little extra information contained in the higher molecular weight 

components. As such, results obtained from the CPMG experiments were used 

for further data analysis. CPMG spin-echo spectra were obtained using the 

pulse sequence [recycle delay (RD)-90º-(τ-180º-τ)n - acquire FID], with a 

spin-spin relaxation delay, 2nτ, of 240 ms. The RD was 2 s. The 90º pulse 

length was 6.9-9.0 µs. A total of 256 transients were collected into 32 K data 

points with a spectral width of 20 ppm. 
1
H MAS NMR spectra of tissues were 

manually phased and baseline corrected using XwinNMR 3.5 (Bruker 

Analytik, Rheinstetten, Germany). The 
1
H NMR spectra were referenced to 

the methyl resonance of alanine at δ 1.47. The total analysis time (including 

sample preparation, optimization of NMR parameters and data acquisition) of 

HR-MAS NMR spectroscopy for each sample was approximately 40 min. 

Although a greater mass of the tissue (> 20 mg) is recommended to fill the 

rotor space for MAS analysis, the ~10 mg tissue used in our experiments 

generated good signal sensitivity and resolution. For assignment purposes, 

two-dimensional (2D) correlation spectroscopy (COSY) and J-resolved 

(JRES) NMR spectra were acquired on selected samples. 
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4.2.3. HR-MAS NMR spectroscopy data analysis 

 

The data generated from HR-MAS NMR spectroscopy were analyzed in two 

different ways –  

1. Using Matlab (Version 7, The Mathworks, Inc., Natwick, MA, USA) 

followed by manual identification of metabolites and statistical analyses. 

2. Using Chenomx NMR suite software (Version 6.1., Chenomx Inc., Alberta, 

Canada) followed by statistical analyses. 

 

4.2.3.1. HR-MAS NMR spectroscopy data analysis using Matlab and 

manual identification of metabolites 

 

The spectra over the range of δ -1.0 to 10.0 were imported into Matlab using 

in-house script developed by Dr. Rachel Cavill, Dr. Tim Ebbels and Dr. 

Hector Keun at the Imperial College London, UK. All spectra were “binned” 

into 0.01 ppm regions. Probabilistic quotient normalization of the spectra 

using the median spectrum to estimate the most probable quotient was carried 

out before chemometric and statistical analyses (Dieterle et al., 2006). The 

binned data were analyzed initially by OPLS-DA using SIMCA-P software 

(Umetrics, Umeå, Sweden), generating a model classifying normal from tumor 

[3 LV, R
2
Y = 0.843, Q

2
(cum) = 0.653] and the correlated loadings were used 

to help identify the spectral regions discriminating between these groups. 

These differential spectra regions were subsequently confirmed via visual 

inspection of the NMR spectra. The marker metabolites were assigned 

subsequently. The peak intensities of the spectra region related to the marker 



68 

 

metabolites were integrated from the full-resolution data. All processed data 

were mean-centered and Pareto-scaled during chemometric data analysis. A 

secondary OPLS-DA model was created using the marker metabolite 

intensities as variables. The residual water resonance signal (δ 4.50-5.19) and 

the spectral region (δ 1.0 to 0.5) were removed prior to analysis. The peak 

intensities of the spectra region related to the marker metabolites were 

integrated in Matlab using the full-resolution data and a local linear baseline 

correction. An independent „t‟ test with Welch‟s correction was used for the 

comparison of the marker metabolite levels to determine their statistical 

significant differences between the CRC and normal mucosa groups (p < 0.05 

was considered to be statistically significant). ROC analysis was performed 

using GraphPad Prism software (Version 5.02., GraphPad Software Inc., La 

Jolla, CA, USA) to validate the robustness of the OPLS-DA model(s) using 

the cross-validated (7-fold) predicted Y-values. 

 

4.2.3.2. HR-MAS NMR spectroscopy data analysis using Chenomx NMR 

suite software 

 

Processed NMR spectra for all the samples present in the form of Bruker „1r‟ 

files were imported and converted to Chenomx NMR suite format (.cnx) using 

the processor module of Chenomx NMR suite. As no chemical shape indicator 

(CSI) was present in the samples, all the NMR spectra were referenced to the 

methyl resonance of alanine at δ 1.47. After conversion of the NMR spectra of 

all the samples into .cnx format, metabolite identification and quantification 

were carried out using the in-built spectral library of the profiler module of 
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Chenomx NMR software. The resulting data were normalized before 

chemometric analyses. The normalized data were analyzed using PCA 

followed by OPLS-DA using SIMCA-P software (Umetrics, Umeå, Sweden). 

All processed data were mean-centered and unit-variance (UV) scaled during 

chemometric data analysis. An independent „t‟ test with Welch‟s correction 

was used for the comparison of the marker metabolite levels to determine their 

significant differences between the CRC and normal tissues groups (p < 0.05 

was considered as statistically significant). ROC analysis was performed using 

GraphPad Prism to validate the robustness of the OPLS-DA model using the 

cross-validated (7-fold) predicted Y-values. 

 

4.3. Results and discussion 

 

In total, 22 tumor samples and 25 normal tissues obtained from 29 CRC 

patients were analyzed by HR-MAS NMR spectroscopy (Table 4.1.). The 

representative HR-MAS NMR spectra of CRC and normal tissue are shown in 

Figure 4.1. The marker metabolites which were identified from NMR data 

processed using Matlab followed by manual metabolite assignment, are 

summarized in Table 4.2. The corresponding OPLS-DA model [3 LV, R
2
(Y) = 

0.622, Q
2
(cum) = 0.518] and the ROC curve (AUC = 0.9542) are shown in 

Figures 4.2. and 4.3., respectively. The set of marker metabolites identified 

from NMR data processed by Chenomx NMR suite software is shown in 

Table 4.3. The HMDB (Wishart et al., 2009) and the KEGG (Kanehisa and 

Goto, 2000) were referred to acquire information on the identified marker 

metabolites and related metabolic pathways, respectively.  
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Lipids and glucose were found to be present at higher levels in normal 

tissues compared to CRC tissues, while choline-containing compounds 

(ChoCC), taurine, scyllo-inositol, glycine, phosphoethanolamine (PE), lactate 

and phosphocholine (PC) were present at higher levels in the CRC specimens. 

Our HR-MAS NMR results indicated clearly higher levels of both saturated 

and unsaturated lipids and/or fatty acids in normal tissues compared to CRC 

specimens (Table 4.2.). The lower lipid levels in the CRC specimens were 

likely to be associated with higher metabolic turnover and demand in 

membrane biosynthesis for cell propagation leading to a higher utilization rate 

of lipids, particularly triglycerides. Another class of compounds that were 

found to be perturbed in tumors is the choline-containing compounds (ChoCC) 

such as choline, PC, phosphatidylcholine, glycerophosphocholine and PE, all 

important precursors of constituents of cell membranes (Glunde et al., 2006; 

Griffin and Shockcor, 2004). Consistent with earlier observations, (Moreno et 

al., 1993) PC and PE were found in our study to be present at higher levels in 

the CRC specimens based on the results of HR-MAS NMR spectroscopy 

(Tables 4.2. and 4.3.). Taurine is important in osmoregulation and its level was 

found to be increased in several tumors including CRC (Griffin and Shockcor, 

2004; Moreno et al., 1993). Scyllo-inositol is an osmolyte that was found to be 

higher in normal human colon as compared to the different longitudinal levels 

of the healthy gut (Wang et al., 2007). Our results showed that scyllo-inositol 

was further elevated in CRC compared to normal colon tissues and suggested 

the localized change in osmotic regulation in CRC tumor. Like GC/MS, HR-

MAS NMR data also showed that levels of lactate and glycine were 

consistently higher in CRC specimens while glucose was consistently lower. 
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Finally, OPLS-DA was performed using the full-resolution data with different 

combinations of anatomical sites and Dukes stages of CRC specimens as test 

classifiers. For this experiment, the data related to the normal tissues were 

excluded during analysis. 

 

Figure 4.1. HR-MAS NMR spectra of representative CRC and normal tissue. 
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Table 4.2. Marker metabolites identified by HR-MAS NMR spectroscopy 

(data processed by Matlab with manual metabolite assignment). 

  

Metabolite δ 
1
H 

(ppm) 

Group Multiplicity
a
 Identified 

by 

% fold 

change of 

cancer 

from 

normal
b
 

p value
c
 

Lipids 0.90 CH3 M 1D -83.3 <0.01 

 2.00 CH2-C=C M  -48.0 <0.05 

 5.28-

5.44 

-CH=CH- M  -84.5 

 

<0.01 

ChoCC
d
 3.21 N(CH3)3 s (multiple) 1D, 

COSY 

82.7 <0.05 

Taurine 3.25 NCH2 T 1D, JRES, 

COSY 

115.8 <0.0001 

3.42 SCH2 T 152.3 <0.0001 

Scyllo-

inositol 

3.34 Half δ-CH2 S 1D, JRES 39.1 <0.05 

Glycine 3.55 CH2 S 1D, JRES 24.4 0.1751 

PE
d
 3.99 OCH2 M 1D, JRES, 

COSY 

46.0 0.0541 

Lactate 4.11 α-CH Q 1D, JRES, 

COSY 

65.0 <0.01 

PC
d
 4.19 OCH2 T 1D, JRES, 

COSY 

75.6 <0.01 

Glucose 4.64 1-CH D 1D, JRES, 

COSY 

-45.8 <0.05 

5.23 1-CH D 1D, JRES, 

COSY 

-63.3 <0.01 

a. d, m, q, s and t are doublet, multiplet, quartet, singlet and triplet, 

respectively. 

b. Positive and negative percentages indicate higher levels of metabolites 

in CRC and normal tissues, respectively. 

c. p value calculated using the independent „t‟-test with Welch‟s 

correction (significance at p < 0.05). 

d. ChoCC, PE and PC are choline-containing compounds, 

phosphoethanolamine and phosphocholine, respectively. 
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Table 4.3. Marker metabolites identified by HR-MAS NMR spectroscopy 

(data processed by Chenomx NMR suite). 

 

Metabolite δ 
1
H (ppm) Identified 

By 

% fold change 

of cancer 

from normal
a
 

p value
b
 

ChoCC
d
 3.2, 3.5, 4.0  Chenomx library 55.3  <0.0005  

Taurine 3.3, 3.4 Chenomx library 72.0  <0.0001  

Glycine 3.6 Chenomx library 47.6  <0.005  

PE
c
 3.2, 4.0 Chenomx library 51.7  <0.0005  

Lactate 1.3, 4.1 Chenomx library 55.4  <0.0001  

PC
c
 3.2, 3.6, 4.2 Chenomx library 58.8  <0.0005  

Glucose 3.2, 3.4, 3.5, 

3.7, 3.8, 3.9, 

4.6, 5.2 

Chenomx library -129.2 

 

<0.05 

 

a. Positive and negative percentages indicate higher levels of metabolites 

in CRC and normal tissues, respectively. 

b. p value calculated using the independent „t‟-test with Welch‟s 

correction (significance at p < 0.05). 

c. ChoCC, PE and PC are choline-containing compounds, 

phosphoethanolamine and phosphocholine, respectively. 

 

 

The colon class comprised all samples obtained from ceacum, ascending, 

transverse and descending colon and sigmoid colon, while the rectum class 

consisted of samples obtained from the rectosigmoid colon and rectum. Figure 

4.6 shows the OPLS-DA model scores generated from the NMR data 

(processed by Matlab with manual metabolite assignment) using anatomical 

sites as classifiers [7 LV, R
2
(Y) = 0.983, Q

2
(cum) = 0.625]. The corresponding 

ROC curve (AUC = 1.00) is shown in Figure 4.7. Normal tissue samples did 

not show any clustering trend based on anatomical site when subjected to 

PCA. Our results suggested that CRC harbors distinct metabolic phenotype 

according to the anatomical location of the tumor. However the NMR data 

processed by Chenomx was unable to generate any such OPLS-DA model 

which may be due to the unavailability of marker metabolites such as lipid and  
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Figure 4.2. OPLS-DA scores plot discriminating CRC from normal tissues 

based on marker metabolites detected by HR-MAS NMR (data processed by 

Matlab with manual metabolite assignment). 

  

 

Figure 4.3. ROC curve determined using the cross-validated predicted Y-

values of the HR-MAS NMR OPLS-DA model (data processed by Matlab 

with manual metabolite assignment). 
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Figure 4.4. OPLS-DA scores plot discriminating CRC from normal tissues 

based on marker metabolites detected by HR-MAS NMR (data processed by 

Chenomx NMR 

suite).

 
 

Figure 4.5. ROC curve determined using the cross-validated predicted Y-

values of the HR-MAS NMR OPLS-DA model (data processed by Chenomx 

NMR suite). 
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Figure 4.6. OPLS-DA scores plot discriminating colon from rectal cancers 

based on HR-MAS NMR data (processed by Matlab with manual metabolite 

assignment). 

 

 

 
 

Figure 4.7. ROC curve determined using the cross-validated predicted Y-

values of the HR-MAS NMR OPLS-DA model with anatomical site as 

classifier. 
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scyllo-inositol in the Chenomx library. No valid OPLS-DA model was 

obtained when the Duke stages were used as classifier. 

 

4.4. Conclusion 

 

HR-MAS NMR spectroscopy-based non-targeted metabolic profiling 

generated pertinent data using CRC and normal biopsied tissue specimens 

obtained from CRC patients. The data thus obtained was subjected to 

chemometric analyses which in turn generated OPLS-DA models capable of 

discriminating CRC from normal tissues as well as the anatomical site of 

tumors. The high AUC values of the respective ROC curves confirmed that 

the OPLS-DA models were robust in nature. The marker metabolites 

identified by HR-MAS NMR spectroscopy indicated deregulations in tissue   

hypoxia,   glycolysis,   nucleotide   biosynthesis,   osmoregulation   and   lipid  

metabolism. However, the HR-MAS NMR spectroscopy data was unable to 

generate any OPLS-DA model capable of separating the different stages of 

CRC. 
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CHAPTER 5 

NON-TARGETED METABOLIC PROFILING OF COLORECTAL 

CANCER USING GC×GC/TOFMS 

 

5.1. Introduction 

 

GC×GC/TOFMS consists of two capillary columns having complementary 

stationary phases. The primary or first-dimension column is non-polar in 

nature allowing separation of large number of compounds belonging to 

different chemical classes. As a result, each individual narrow 

chromatographic fraction eluting out of the primary column consists of 

analytes with closely similar volatilities. The secondary or second-dimension 

column is polar in nature which allows fast separation of analytes having close 

volatilities. Therefore, the two columns operate orthogonally generating a 2D 

plane of separation for the analytes and resulting in a synergistically enhanced 

peak capacity obtained by the two individual columns. The modulator device 

which acts as the interface between the two columns performs three main 

functions - 1. accumulation and trapping of eluent of primary column, 2. 

refocusing and 3. rapid release of the adjacent fractions of the primary column 

into the secondary column. Cryogenic modulators are typically used for this 

purpose (Beens et al., 2001; Khummueng et al., 2006). TOFMS are the 

preferred detectors for GC×GC as they can acquire 50 or more mass spectra 

per second necessary for proper reconstruction of the very fast eluted second-

dimension peaks, and enable reliable spectral deconvolution of co-eluting 

peaks.  Although the analysis time of GC×GC/TOFMS is usually shorter as 
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compared to GC/MS, the amount of information provided per sample per unit 

time is not compromised. Apart from the increased number of detectable peaks 

as compared to GC/MS, spectral purity is much improved in GC×GC/TOFMS, 

which in turn aids in mass spectral deconvolution and compound 

identification. Despite the many advantages of using GC×GC/TOFMS in non-

targeted metabolic profiling, one of its biggest challenges is the complexity 

and large volume of the generated data (Adahchour et al., 2008; Dimandja et 

al., 2003; Ryan et al., 2005). GC×GC/TOFMS has already been successfully 

utilized in non-targeted metabolic profiling (Koek et al., 2007; Mohler et al., 

2006; Pasikanti et al., 2010; Sinha et al., 2004; Welthagen et al., 2005). Thus it 

is pertinent to explore GC×GC/TOFMS as an analytical platform for non-

targeted metabolic profiling of CRC in order to gain greater metabolic space 

coverage as compared to GC/MS and HR-MAS NMR spectroscopy. This 

chapter deals with the non-targeted metabolic profiling of CRC using 

GC×GC/TOFMS. 

 

5.2. Experimental 

 

5.2.1. Clinical population and tissue samples 

 

The same cohort of tissue specimens that was used for GC/MS analysis was 

subjected to analysis by GC×GC/TOFMS. Please refer to Table 3.1. of 

Chapter 3 for the anatomical and clinicopathological characteristics of the 

tissue samples. 
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5.2.2. Validation of analytical performance of GC×GC/TOFMS  

 

As the same set of samples which were analyzed by GC/MS was used for 

GC×GC/TOFMS analysis and the same sample preparation protocol (section 

2.2.3. of Chapter 2) was followed, separate sample stability studies were not 

further performed. The different sample stability studies were carried out 

while validating our GC/MS method and are described in Chapter 2. Due to 

the large number of chromatographic peaks generated by GC×GC/TOFMS 

(about 800 peaks in the case of colon tissue samples) and inherent 2D nature 

of separation, the applicability and feasibility of conventional analytical 

method validation parameters is limited. Therefore to evaluate the analytical 

performance of GC×GC/TOFMS we adopted an alternative approach in which 

we used quality control (QC) samples in conjunction with chemometric 

analyses. The QC samples were prepared by processing about 20 mg aliquots 

of a normal colon tissue sample, as per our developed sample preparation 

protocol (section 2.2.3. of Chapter 2). These QC samples were injected 

periodically during analysis of the clinical samples. After analysis, the 

chromatographic data generated for the QC samples were subjected to 

chemometric analyses along with that of the clinical samples. The analytical 

performance of GC×GC/TOFMS was considered as satisfactory if the QC 

samples were found to be clustered together in the PCA plot.         
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5.2.3. GC×GC/TOFMS analysis 

 

Tissue samples for GC×GC/TOFMS analysis were prepared as per the 

procedure described in section 2.2.3 of Chapter 2. The samples were 

randomized to nullify any system effect before analysis. Analysis was carried 

out using a Pegasus GC×GC/TOFMS (Leco Corp., St. Joseph, MI, USA) 

system comprising an Agilent 7890 GC and Pegasus IV TOFMS. A dual-

stage, quad jet thermal consumable free modulator was used. The N2 gas for 

the modulator was chilled by a closed-loop immersion cooler (FTS, Stone 

Ridge, NY, USA) which was set at a temperature of -80°C. Helium was used 

as the carrier gas at a constant flow rate of 1.0 mL/min. An injection volume 

of 1 µL and an injector split ratio of 1:10 were used. A DB-1 [30 m × 250 μm 

(i.d.) × 0.25 μm] fused silica capillary column (Agilent J&W Scientific, 

Folsom, CA, USA) and a Rxi
®
-17 [1 m × 100 μm (i.d.) × 0.10 μm] fused silica 

capillary column (Restek Corp., Bellefonte, PA, USA) were used as the 

primary and secondary columns, respectively. The temperature gradient used 

for the primary column was 60ºC for 0.2 min, increased at 5ºC/min to 125ºC 

and further increased at 15ºC/min to 270ºC where it was kept for 25 min. The 

secondary column was always maintained at 10°C higher temperature than the 

primary column temperature. The modulator temperature offset was +20°C 

relative to the secondary column. The solvent acquisition delay was 500 s. A 

modulation period of 4 s with hot pulse time of 0.8 s was used. The injector, 

front inlet, transfer line, and ion source temperatures were kept constant at 

250, 250, 270 and 200°C, respectively. The MS was operated using EI mode 

(70 eV) at a detector voltage of 1650 V. A scan range of m/z 50 to 650 and an 
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acquisition rate of 100 spectra/s were used for data acquisition. Chromatogram 

acquisition, noise reduction, baseline correction, smoothing, library matching 

and peak area calculation were carried out using the ChromaTOF software 

(Version 4.21, Leco Corp.). Only peaks having signal-to-noise ratio (s/n) 

greater than 100 were considered and peak area was computed by the software 

using unique mass. Peaks with SI more than 70% were assigned compound 

names while those having less than 70% SI were considered as unknown 

compound. Identities of selected metabolites were further confirmed by 

comparison of their mass spectra and Rt with those obtained using 

commercially available reference standards. 

 

5.2.4. GC×GC/TOFMS data analysis 

 

The Statistical Compare feature of ChromaTOF software was used to align 

analytes from chromatograms belonging to different samples and to generate 

data table consisting of sample names and area of analytes.  The normalization 

of each sample was done by dividing the area of each analyte by the total peak 

area of all the analytes present in the sample. The normalized data was 

subjected to PCA to identify outliers and innate clustering trends using 

SIMCA-P software (Umetrics, Umeå, Sweden). The data were mean-centered 

and UV-scaled during chemometric data analysis. After PCA, OPLS-DA was 

performed to generate a model discriminating CRC from normal tissue 

specimens and to identify marker metabolites responsible for such 

discrimination. OPLS-DA was also carried out using anatomical site and 

Duke‟s stage of CRC as classifiers. An independent „t‟ test with Welch‟s 
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correction using SPSS software (Version 11.0, SPSS Inc., Chicago, IL, USA) 

was used for the comparison of the marker metabolite levels to determine their 

significant differences between the CRC and normal tissue groups (p < 0.01 

was considered to be statistically significant).  ROC analysis was also 

performed using GraphPad Prism software (Version 5.02., GraphPad Software 

Inc., La Jolla, CA, USA) to validate the robustness of the OPLS-DA model 

using the cross-validated predicted Y values. 

 

5.3. Results and discussion 

 

GC×GC/TOFMS was used for the non-targeted metabolic profiling of 31 

tumor samples and 32 normal tissues obtained from 31 CRC patients. Figure 

5.1. shows the surface  and  contour  plots  of  a  representative  

GC×GC/TOFMS  chromatogram  of human colon tissue. The analytical 

performance of GC×GC/TOFMS was found to be satisfactory as the PCA plot 

of all the samples showed that all the QC samples were clustered together 

(Figure 5.2.). The OPLS-DA model [2 LV, R
2
Y = 0.979, Q

2
(cum) = 0. 932] 

generated from the GC×GC/TOFMS data and the corresponding ROC curve 

(AUC = 1.000) are shown in Figures 5.3. and 5.4., respectively. However no 

valid OPLS-DA model was obtained using anatomical site of CRC tumor or 

Duke‟s stage as classifier. The 44 marker metabolites identified on the basis of 

the OPLS-DA model (Figure 5.3.) and which were found to be significantly 

different between CRC and normal tissue group (p < 0.01, Welch „t‟ test) are 

summarized in Table 5.1. All the marker metabolites except squalene, AA, 

mannose, galactose, glucose, ribitol, fumarate, malate, oxalate and succinate,  
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Figure 5.1. A. Surface plot of GC×GC/TOFMS chromatogram of human 

colon tissue. 

B. Contour plot of GC×GC/TOFMS chromatogram of human colon tissue 

(black dots indicate peaks). 
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Figure 5.2. PCA plot of CRC and normal tissues along with QC samples 

based on GC×GC/TOFMS metabolic profiles. 

  

 

 

Figure 5.3. OPLS-DA scores plot discriminating CRC from normal tissues 

based on GC×GC/TOFMS metabolic profiles. 
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Figure 5.4. ROC curve determined using the cross-validated predicted Y 

values of the GC×GC/TOFMS OPLS-DA model. 
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were found to be higher in CRC tissues as compared to normal tissues (Table 

5.1.). Out of the 44 marker metabolites identified by GC×GC/TOFMS, 19 

metabolites were also identified by GC/MS and 3 metabolites by HR-MAS 

NMR spectroscopy. The directions of fold changes of the common marker 

metabolites were found to be consistent across the three different analytical 

platforms reinforcing the clinical validity and robustness of these marker 

metabolites in characterizing CRC. In this section we focus our discussion 

only on those exclusive marker metabolites which were identified by 

GC×GC/TOFMS as the other marker metabolites identified by either GC/MS 

or HR-MAS NMR spectroscopy have been discussed in Chapters 3 and 4. The 

HMDB (Wishart et al., 2009) and the KEGG (Kanehisa and Goto, 2000) were 

utilized to get information about the identified marker metabolites and their 

related metabolic pathways, respectively. 

AUC=1.000 
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Table 5.1. Marker metabolites identified by GC×GC/TOFMS. 

 

Metabolite 

 

Chemical class 

 

Identified  

by
c
 

% fold 

change 

of 

cancer 

from 

normal
d
 

 

p value
e
 

Glycine
b
 Amino acid Standard 115.2 <0.0001 

L-Proline
a
 Amino acid Standard 83.3 <0.0001 

L-Phenylalanine
a
 Amino acid Standard 28.9 <0.01 

L-Alanine Amino acid Standard 90.9 <0.001 

L-Leucine Amino acid Standard 82.2 <0.0001 

L-Valine Amino acid Standard 88.2 <0.001 

L-Serine Amino acid Standard 42.3 <0.01 

L-Threonine Amino acid Standard 95.5 <0.01 

L-Isoleucine Amino acid Standard 148.7 <0.0001 

Picolinic acid Amino acid NIST 94.1 <0.0001 

L-Methionine Amino acid Standard 30.8 <0.01 

L-Aspartic acid Amino acid Standard 28.9 <0.01 

β-Alanine Amino acid NIST 184.9 <0.001 

Aminomalonic acid Amino acid NIST 311.9 <0.0001 

1-Methyl-hydantoin Amino ketone NIST 34.3 <0.001 

a
 Profiled also by GC/MS. 

b 
Profiled also by GC/MS and HR-MAS NMR spectroscopy. 

c 
Metabolite identification using standard compound or NIST library search. 

d
 Positive and negative percentages indicate higher levels of metabolites in 

cancer and normal tissues, respectively. 
e
 Statistical p value calculated using the independent „t‟-test with Welch‟s 

correction (significance at p < 0.01). 
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Table 5.1. Marker metabolites identified by GC×GC/TOFMS (continued). 

 

 

Metabolite 

 

Chemical class 

 

Identified  

by
c
 

% fold 

change 

of 

cancer 

from 

normal
d
 

 

p value
e
 

Palmitic acid
a
 Fatty acid NIST 52.5 <0.0001 

Margaric acid
a
 Fatty acid NIST 21.6 <0.01 

Oleic acid
a
 Fatty acid NIST 118.4 <0.0001 

Stearic acid
a
 Fatty acid NIST 20.5 <0.001 

Arachidonic acid
a
 Fatty acid Standard -38.7 <0.001 

11-Eicosenoic acid
a
 Fatty acid NIST 25.6 <0.01 

Myristic acid  Fatty acid  NIST 86.1  <0.0001  

Pentadecanoic acid  Fatty acid  NIST 71.1  <0.01  

Linolenic acid  Fatty acid  NIST 128.2  <0.0001  

Lignoceric acid  Fatty acid  NIST 122.9  <0.0001  

Phosphate
a
  Inorganic acid  Standard 47.1  <0.0001  

D-Mannose
a
  Monosaccharide  Standard -50.9  <0.01  

D-Galactose
a
  Monosaccharide  Standard -72.6  <0.01  

D-Glucose
b
  Monosaccharide  Standard -91.0  <0.0001  

L-Arabinose  Monosaccharide  NIST 54.5  <0.0001  

a
 Profiled also by GC/MS. 

b 
Profiled also by GC/MS and HR-MAS NMR spectroscopy. 

c 
Metabolite identification using standard compound or NIST library search. 

d
 Positive and negative percentages indicate higher levels of metabolites in 

cancer and normal tissues, respectively. 
e
 Statistical p value calculated using the independent „t‟-test with Welch‟s 

correction (significance at p < 0.01). 
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Table 5.1. Marker meabolites identified by GC×GC/TOFMS (continued). 
 

 

Metabolite 

 

Chemical class 

 

Identified  

by
c
 

% fold 

change 

of 

cancer 

from 

normal
d
 

 

p value
e
 

Lactate
b
  Organic acid  Standard 94.6  <0.0001  

Fumarate
a
  Organic acid  Standard -14.7  <0.01  

Malate
a
  Organic acid  Standard -64.3  <0.0001  

Oxalate  Organic acid  Standard -118.3  <0.001  

Succinate  Organic acid  Standard -62.5  <0.01  

Maleic acid  Organic acid  Standard 43.6  <0.0005  

Pantothenic acid  Organic acid  NIST 188.2  <0.005  

Glycerol  Polyol  Standard 59.9  <0.0001  

Ribitol  Polyol  Standard -59.1  <0.005  

1-Monooleoylglycerol
a
  Polyol derivative  NIST 97.5  <0.01  

Uracil  Pyrimidine derivative  Standard 86.3  <0.0001  

Uridine
a
  Pyrimidine nucleoside  Standard 141.0  <0.0001  

Cholesterol
a
 Steroid  Standard 65.5  <0.0001  

Squalene Triterpene NIST -34.5 <0.01 

a
 Profiled also by GC/MS. 

b 
Profiled also by GC/MS and HR-MAS NMR spectroscopy. 

c 
Metabolite identification using standard compound or NIST library search. 

d
 Positive and negative percentages indicate higher levels of metabolites in 

cancer and normal tissues, respectively. 
e
 Statistical p value calculated using the independent „t‟-test with Welch‟s 

correction (significance at p < 0.01). 
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 Recent studies suggest that the enzyme phosphoglycerate 

dehydrogenase (PHGDH) which oxidizes the glycolytic intermediate 3-

phosphoglycerate to initiate serine biosynthesis, is over-expressed in breast 

cancer and helps cancer cells to proliferate rapidly (Locasale, et al., 2011; 

Possemato et al., 2011). This further implies that the suppression of PHGDH 

can be a new therapeutic target.  Using GCxGC/TOFMS we observed higher 

levels of L-serine and glycine in cancer tissues which indicated branching of 

serine biosynthetic pathway from glycolysis and its upregulation, the end 

product of which is glycine. Our findings using human CRC tissue samples, 

were actually made before the findings by Locasale et al. and Possemato et al. 

and suggested that there is also a possible existence of this particular form of 

metabolic deregulation in human CRC.  

Squalene acts as the metabolic precursor of cholesterol. Reduced level 

of squalene justifies the corresponding increase in cholesterol in CRC tissues. 

Moreover squalene has been shown to possess chemopreventive effect in rat 

models of CRC. It is a constituent of dietary oils like olive oil and this finding 

further emphasizes the influence of diet in CRC development (Rao et al., 

1998). The endogenous levels of several fatty acids (myristic acid, 

pentadecanoic acid, lignoceric acid, linolenic acid in addition to those detected 

by GC/MS except AA), glycerol, cholesterol and polyol derivatives (Table 

5.1.) were found to be significantly elevated in CRC tissue. This indicated the 

high biosynthetic rate of  these  metabolites  to  meet  energy  demand  and  

rapid  generation  of  lipid bio-components of cell membrane in fast 

proliferating tumor cells (Garber, 2006; Ong et al., 2010). Apart from this, 

previous studies have shown that such fatty acids act as tumor promoters in 
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murine cancer models and increase the risk of CRC in humans (Reddy, 1986, 

1992). Lignoceric acid is a very long chain fatty acid (24 carbon atoms long) 

which acts as a tissue marker of peroxisomal disorder and is associated with 

perturbation in lipid metabolism (Wishart et al., 2009). This metabolite was 

found in higher levels in CRC tissues than in normal tissues suggesting 

definite alteration of lipid metabolism in CRC.     

In accordance with other studies (Denkert et al., 2008; Ong et al., 

2010), we also found that several proteinogenic amino acids were significantly 

elevated in CRC tissues (Table 5.1.). This observation can be attributed to 

increased protein synthesis in malignant cells as seen in different forms of 

cancer including CRC (Griffin and Shockcor, 2004). β-Alanine and L-proline 

play important role in osmoregulation (Burg and Ferraris, 2008). Higher levels 

of these two amino acids along with taurine and scyllo-inositol (identified by 

HR-MAS NMR spectroscopy) in CRC suggested altered osmoregulation. 

Aminomalonic acid is an amino acid which originates from defects in protein 

synthesis. Higher level of this metabolite in CRC suggested the possible 

existence of erratic protein synthesis (Wishart et al., 2009).  

Picolinic acid is produced under inflammatory conditions and acts as 

an inducer of some inflammatory cytokines (Bosco et al., 2000; Wishart et al., 

2009). Elevated levels of picolinic acid along with reduced levels of AA 

(major metabolic precursor of eicosanoids which act as inflammatory 

mediators) in CRC tissue further emphasize the significant association of 

inflammation with CRC (Kashfi and Rigas, 2005; Sano et al., 1995; Shureiqi 

and Lippman, 2001; Smith, 1992; Soslow et al., 2000; Soumaoro et al., 2006). 
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Succinate and oxalate were found to be reduced in CRC tissues along 

with fumarate and malate (also identified by GC/MS). This finding 

corroborated with the perturbation of TCA cycle in response to altered energy 

demand in CRC.  

Higher level of pantothenic acid (vitamin B5) was found in CRC as 

compared to normal colon tissues. Similar observation was obtained 

previously in a rat model of colon adenocarcinoma (Baker et al., 1981) 

suggesting that high vitamin B5 content is required for catalysis of metabolism 

associated with rapid proliferation of tumors. 

A comparison of the three analytical platforms that we used for the 

non-targeted metabolic profiling of CRC is presented in Table 5.2. Although 

GC×GC/TOFMS was found to be superior to GC/MS and HR-MAS NMR in 

terms of metabolic space coverage, HR-MAS NMR spectroscopy proved to be 

more advantageous in terms of the ease of sample preparation and the shorter 

total analysis time. Moreover, HR-MAS NMR spectroscopy was the only 

platform which was able to discriminate anatomical site of CRC tumor while 

the other two platforms failed to do so. It was not possible to cover all the 

metabolite classes using the three analytical platforms. Therefore it is always 

recommended to use multiple and complimentary analytical platforms to cover 

as much metabolic space as possible. Metabolite classes such as lyso-

phospholipids, sphingolipids, oxylipins, glycolipids, glycerolipids, 

glucoronides, pterins, quinones, lipoamides, carnitines, retinoids are some of 

the metabolite classes that have not been covered by the three analytical 

platforms. 
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In some cases metabolite identification was not possible because of 

low SI. These “missed” or “unknown” metabolites constituted about 17% of 

the total metabolites analyzed by the method. However this amount can be an 

overestimate particularly in case of GCxGC/TOFMS data because second 

dimensional separation can split a single peak of an unknown analyte into 

multiple peaks resulting in an apparent increase in the number of unknown 

analytes. The unknown metabolites constitute a constant challenge in the field 

of metabolic profiling. Online databases such as the Golm‟s database and the 

HMDB database could be used to identify the unknowns in some cases but the 

coverage of such databases is still limited and in future collaborative efforts 

are required to build more comprehensive databases which can aid in finding 

the identity of unknowns. Even if any unknown metabolite contributed 

significantly to the chemometric separation of CRC and normal tissue, it was 

not considered to be significant as it did not provide any useful information 

regarding metabolic pathway or aided in biological interpretation of metabolic 

profiling results.   

In order to enhance the information obtained from non-targeted 

metabolic profiling of CRC, it was pertinent to map and cross-compare the 

marker metabolites identified using all the three analytical platforms with 

regards to the human metabolic pathways. For this purpose the KegArray 

application (Version 1.2.3) of KEGG was used. This application facilitated the 

association of metabolites with organism specific KEGG metabolic pathway 

maps. The findings about the key sets of marker metabolites, related metabolic 

pathways and their biological relevance are summarized in Table 5.3. 
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5.4. Conclusion 

 

GC×GC/TOFMS was able to provide coverage of comparatively more 

metabolic space as evident from the identification of 44 marker metabolites 

belonging to various chemical classes. A robust OPLS-DA model capable of 

discriminating CRC from normal tissue groups was generated on the basis of 

GC×GC/TOFMS metabolic profiles. However no valid OPLS-DA model was 

obtained using the Dukes stage or anatomical site of CRC as classifier. The 

marker metabolites identified using all the three analytical platforms were 

associated with perturbations in metabolic pathways such as glycolysis, TCA 

cycle, lipid metabolism, amino acid metabolism and nucleotide metabolism. 

Deregulation of these metabolic pathways suggested the existence of 

conditions like tissue hypoxia, altered osmoregulation, rapid proliferation, 

high energy demand of cancer cells and inflammatory environment in CRC. 

These perturbations of metabolic pathways shed light on the carcinogenesis of 

CRC and may yield potential therapeutic targets with further research.  
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Table 5.2. Comparison of different analytical platforms used for non-targeted metabolic profiling of CRC. 

 

Parameters HR MAS NMR GC/MS GC×GC/TOFMS 

Sample preparation  simple tedious tedious 

Total analysis time  40 min 200 min 190 min 

No. of chromatographic peaks  not applicable ~75 ~800 

No. of marker metabolites  9 19 44 

Chemical class of metabolites  acyl phosphate, lipid, amino 

acid, monosaccharide, polyol,  

organic acid, choline 

containing compounds  

monosaccharide, amino acid, 

steroid, organic acid, fatty acid, 

polyol, polyol derivative, 

inorganic acid, pyrimidine 

nucleoside. 

monosaccharide, amino acid, 

triterpene, amino ketone, steroid, 

organic acid, fatty acid, polyol 

derivative, inorganic acid, 

pyrimidine derivative, pyrimidine 

nucleoside.  

Q
2
(cum) of OPLS-DA model  

(CRC vs. Normal) 

 

0.779 0.784 0.934 

Q
2
(cum) of OPLS-DA model 

(Anatomical site of tumor) 

0.625 no valid model no valid model 
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Table 5.3. Metabolites, metabolic pathways and biological relevance in CRC. 
 

Metabolite
a
 Metabolic pathway

b
 Major metabolic process

b
 Biological relevance 

D-Mannose (↓) Fructose and mannose metabolism Carbohydrate metabolism Enhanced carbohydrate metabolism 

especially glycolytic pathway to meet 

high energy demand of cancer cells under 

hypoxic conditions 

D-Galactose (↓) Galactose metabolism Carbohydrate metabolism 

D-Glucose (↓) Glycolysis Carbohydrate metabolism 

Lactate (↑) Glycolysis Carbohydrate metabolism 

Ribitol (↓) Pentose and glucuronate interconversions Carbohydrate metabolism 

Fumarate (↓) TCA cycle Carbohydrate metabolism Deregulation of TCA cycle caused by 

altered energy demand in cancer cells Malate (↓) TCA cycle Carbohydrate metabolism 

Succinate (↓) TCA cycle Carbohydrate metabolism 

Oxalate (↓) Glyoxylate and dicarboxylate metabolism Carbohydrate metabolism  

Palmitic acid (↑) Fatty acid biosynthesis Lipid metabolism Increased biosynthesis of lipid 

components of cell membrane to cope up 

with rapid growth of cancer cells 

Oleic acid (↑) Fatty acid biosynthesis Lipid metabolism 

Stearic acid (↑) Fatty acid biosynthesis Lipid metabolism 

γ-Linolenic acid (↑) Fatty acid biosynthesis Lipid metabolism 

Lignoceric acid (↑) Fatty acid biosynthesis Lipid metabolism 

Myristic acid (↑) Fatty acid biosynthesis Lipid metabolism 

Pentadecanoic acid (↑) Fatty acid biosynthesis Lipid metabolism 

Margaric acid (↑) Fatty acid biosynthesis Lipid metabolism 

Glycerol (↑) Glycerolipid metabolism Lipid metabolism 

Phosphocholine (↑) Glycerophospholipid metabolism Lipid metabolism 

Phosphoethanolamine (↑) Glycerophospholipid metabolism Lipid metabolism 

Cholesterol
c
 (↑) Steroid biosynthesis Lipid metabolism 

Squalene (↓) Steroid biosynthesis Lipid metabolism 

Cholesterol
c
 (↑) Primary bile acid biosynthesis Lipid metabolism Bile acids may act as tumor promoters or 

carcinogens in CRC 
a
 Metabolites are grouped together on basis of biological relevance, (↑): Elevated in CRC (↓): Reduced in CRC 

b
 Related to metabolites using KEGG 

c
 Metabolites found to be involved in more than one relevant metabolic pathway 
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Table 5.3. Metabolites, metabolic pathways and biological relevance in CRC (continued). 

 

Metabolite
a
 Metabolic pathway

b
 Major metabolic process

b
 Biological relevance 

L-Aspartic acid (↑) Alanine, aspartate and glutamate metabolism Amino acid metabolism Increased synthesis of proteins to meet 

demand of rapidly proliferating cancer 

cells 

L-Alanine (↑) Alanine, aspartate and glutamate metabolism Amino acid metabolism 

N-Methyl-hydantoin (↑) Arginine and proline metabolism Amino acid metabolism 
Glycine

c
 (↑) Glycine, serine and threonine metabolism Amino acid metabolism 

L-Serine (↑) Glycine, serine and threonine metabolism Amino acid metabolism 
L-Threonine (↑) Glycine, serine and threonine metabolism Amino acid metabolism 

L-Methionine (↑) Methionine biosynthesis Amino acid metabolism 
L-Phenylalanine (↑) Phenylalanine biosynthesis Amino acid metabolism 

L-Proline
c
 (↑) Proline biosynthesis Amino acid metabolism 

L-Leucine (↑) Valine, leucine and isoleucine biosynthesis Amino acid metabolism 
L-Isoleucine (↑) Valine, leucine and isoleucine biosynthesis Amino acid metabolism 
L-Valine (↑) Valine, leucine and isoleucine biosynthesis Amino acid metabolism 
L-Proline

c
 (↑) ATP-binding cassette (ABC) transport Membrane transport Osmoregulation to maintain the 

homeostasis of rapidly proliferating 

cancer cells 

β-Alanine
c
 (↑) β-Alanine metabolism Amino acid metabolism 

Scyllo inositol (↑) Inositol phosphate metabolism Carbohydrate metabolism 

Taurine (↑) Taurine and hypotaurine metabolism Amino acid metabolism 

Glycine (↑) Purine metabolism Nucleotide metabolism Increased nucleotide biosynthesis to meet 

demand of rapidly proliferating cancer 

cells 

Uracil (↑) Pyrimidine metabolism Nucleotide metabolism 

Uridine (↑) Pyrimidine metabolism Nucleotide metabolism 

β-Alanine
c
 (↑) Pyrimidine metabolism Nucleotide metabolism 

Arachidonic acid (↓) Eicosanoid biosynthesis Lipid metabolism Inflammation associated with CRC 

development Picolinic acid (↑) Tryptophan metabolism Amino acid metabolism 
a
 Metabolites are grouped together on basis of biological relevance, (↑): Elevated in CRC (↓): Reduced in CRC 

b
 Related to metabolites using KEGG 

c
 Metabolites found to be involved in more than one relevant metabolic pathway 
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CHAPTER 6 

DEVELOPMENT AND VALIDATION OF AN UPLC/MS/MS 

METHOD FOR TARGETED PROFILING OF EICOSANOIDS AND 

ARACHIDONIC ACID IN COLORECTAL CANCER 

 

6.1. Introduction 

 

Different analytical platforms such as enzyme immunoassay (EIA) (Nicosia et 

al., 1992), radioimmunoassay (RIA) (Levine, 1986; Pugh and Thomas, 1994; 

Rigas et al., 1993; Rigas and Levine, 1984), GC/MS, gas chromatography 

tandem mass spectrometry (GC/MS/MS) (Capdevila et al., 1981, 1992; Catella 

et al, 1990; Hubbard et al., 1986; Tsikas, 1998; Tsukamoto et al, 2002), 

capillary electrophoresis with ultraviolet detection (Vandernoot and 

VanRollins, 2002), HPLC with fluorescence detection (Maier  et al., 2000; 

Nithipatikom  et al., 2000; Yue et al., 2004), LC/MS and liquid 

chromatography tandem mass spectrometry (LC/MS/MS) (Bolcato et al., 

2003; Hishinuma et al., 2007; Kempen et al., 2001; Margalit et al., 1996; 

Takabatake et al., 2002; Yang et al., 2006; Yue et al., 2007), have been used to 

determine selected sub-sets of the eicosanoids. Although GC/MS and 

GC/MS/MS with negative ion chemical ionization are the most commonly 

used techniques for the eicosanoids, tedious sample preparation steps 

including derivatization are necessary before analysis. EIAs and RIAs cannot 

determine eicosanoids simultaneously and are affected by cross reactivity. 

Moreover RIAs suffer from the disadvantage of radiation hazards. Fluorescent 

HPLC method is applicable but it suffers from long elution time and high 
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background noise (Yue et al., 2004). Although various LC/MS or LC/MS/MS 

methods have been used for identification and quantification of eicosanoids in 

different biological matrices such as microsomal incubates (Bolcato et al., 

2003), human synovial cell-culture (Takabatake et al., 2002), human blood 

(Margalit et al., 1996), rat brain tissue (Yue et al., 2007), mouse prostate tissue 

(Yang et al., 2006), human lung cancer cells, rat leukemia cells (Kempen et 

al., 2001) and mouse bone marrow-derived mast cells (Hishinuma et al., 

2007), they have not been explored for the determination of eicosanoids in 

human colon tissue. Unlike LC/MS, RIA (Pugh and Thomas, 1994; Rigas et 

al., 1993) and GC/MS (Bennett et al., 1987; Giardiello et al., 1998; Yang et 

al., 1998) were reported for the determination of eicosanoids in human colon 

tissue. 

In this chapter, we report the development and validation of an 

UPLC/MS/MS method for the simultaneous and fast determination of AA and 

biologically relevant eicosanoids in human colorectal tissue viz. prostaglandin 

E2 (PGE2), prostacyclin (PGI2) [assayed as its stable hydrolytic product 6-

keto-prostaglandin1α (6-k-PGF1α)], prostaglandin D2 (PGD2), leukotriene B4 

(LTB4), thromboxane A2 (TXA2) [assayed as its stable breakdown product 

thromboxane B2 (TXB2)], 13S-hydroxy-9Z,11E-octadecadienoic acid (13S-

HODE), 12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-HETE) and 8-

hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid (8-HETE). As prostaglandin 

F2α (PGF2α) does not play a role in CRC carcinogenesis, it was not profiled in 

our study (Wang and Dubois, 2008). As 15-LOX-2 which catalyze the 

conversion of AA to 15-hydroxy eicosatetraenoic acid (15-HETE) is not 

expressed in human colon tissue, 15-HETE was also excluded from our study 
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(Ikawa et al., 1999).  Although 13S-HODE is not a metabolic product of AA, 

it was included in our study as it has shown anticarcinogenic effect in CRC 

cells (Shureiqi et al., 1999). 

 

6.2. Experimental 

 

6.2.1. Materials 

 

Butylated hydroxyl toluene (BHT), PGE2, 6-k-PGF1α, PGD2, LTB4, TXB2, 

13S-HODE, 12-HETE, 8-HETE and deuterated prostaglandin E2 (PGE2-d4) 

were purchased from Cayman Chemical Company (Ann Arbor, MI, USA). 

PGE2-d4 was used as the internal standard (IS). AA and citric acid were 

obtained from Sigma-Aldrich Inc. (St. Louis, MO, USA). HPLC-grade 

methanol and acetonitrile (ACN) were purchased from Tedia Company Inc. 

(Fairfield, OH, USA). HPLC-grade ethyl acetate and n-hexane were purchased 

from Fisher Scientific (Leicestershire, UK). Ammonium acetate and formic 

acid (FA), both of 99% purity, were purchased from VWR International Ltd. 

(Leicestershire, UK). Ultra pure grade phosphate buffer saline (PBS) was 

obtained from 1
st
 Base Private Limited (Singapore). Water used for the study 

was purified with a Milli-Q water purification system (Millipore, Billerica, 

MA, USA). Bovine serum albumin (BSA) and Coomassie
®
 Brilliant Blue G-

250 dye were obtained from Bio-Rad Laboratories (Hercules, CA, USA). 
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6.2.2. Human colon tissue samples 

 

Human colon tissues were provided by the Department of Colorectal Surgery, 

SGH, Singapore. The utilization of human tissue was approved by the 

SingHealth Centralised Institutional Review Board (CIRB), Singapore (CIRB 

reference number 2009/723/B). For method development and validation, one 

representative normal colon tissue (3 g) was snap-frozen immediately 

following surgery and then stored at -80ºC until processing. The tissue was 

subsequently cut and divided into tissue masses of about 10 mg each for the 

UPLC/MS/MS method development and validation. 

 

6.2.3. Sample preparation 

 

For the development of the sample preparation protocol, previously reported 

sample preparation strategies were used as references (Kempen et al., 2001; 

Yang et al., 2006). About 10 mg of each human colon tissue was weighed 

accurately and transferred to a 2 mL Eppendorf tube and 500 µL of ice-cold 

PBS containing 0.1% BHT was added to each sample. 20 µL of 1N citric acid 

and 10 µL of a 500 ng/mL stock solution of PGE2-d4 (IS) were added to each 

sample.  The samples were then homogenized for 2 min at a frequency of 25 

Hz using 4 mm inner diameter metal balls in a Retsch MM400 ball mill (Haan, 

Germany). Each homogenate was subsequently transferred to a 15 mL glass 

centrifuge tubes. 1 mL of n-hexane:ethyl acetate (1:1, v/v) was added to the 

aqueous homogenate and vortex-mixed for 2 min. Each sample was then 

centrifuged at 1800 g units for 3 min. The upper organic layer was collected 
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and the extraction process was repeated two more times. After extraction, 10 

µL of the lower aqueous layer was kept aside for protein assay as the amount 

of individual eicosanoids and AA in each tissue was normalized with respect 

to the total protein content. The organic phases obtained from three extractions 

were pooled and then evaporated to dryness under a stream of nitrogen at 

room temperature (24°C) using a Turbovap LV (Caliper Life Sciences, 

Hopkinton, MA, USA). Each sample was then reconstituted in 50 µL of 

methanol and used for UPLC/MS/MS analysis. 

 

6.2.4. Protein assay 

 

The protein content in tissue samples was determined using the Bradford assay 

via a 96 well plate format. The dye reagent was prepared by diluting 1 part of 

Coomassie
®
 Brilliant Blue G-250 dye concentrate with 4 parts of water 

followed by filtration to remove particulates. Protein standard solution of BSA 

(100 µg/mL) was prepared in PBS containing 0.1% BHT. For preparation of 

calibration curve, 2, 5, 10, 20 and 50 µL of the protein standard solution with 

corresponding 98, 95, 90, 80 and 50 µL of PBS containing 0.1% BHT were 

added in separate wells followed by addition of 25 µL of dye reagent to each 

well. For tissue samples, 10 µL of the lower aqueous layer obtained during 

sample preparation, 90 µL of PBS containing 0.1% BHT and 25 µL of dye 

reagent were added to each well. Solutions were mixed using a microplate 

mixer and incubated at room temperature (24ºC) for 5 min. The absorbance 

was then measured at 595 nm using a Tecan Infinite M200 microplate reader 
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(Tecan Group Ltd., Männedorf, Switzerland). The protein content in each 

sample was determined from the standard calibration curve. 

 

6.2.5. UPLC/MS/MS analysis 

 

Analysis of AA and eicosanoids was performed using an ACQUITY UPLC 

system (Waters, Milford, MA, USA) coupled to a 3200 QTRAP hybrid triple 

quadrupole linear ion trap mass spectrometer (Applied Biosystems, Foster 

City, CA, USA) equipped with a Turbo Ion Spray electrospray ionization 

(ESI) source. Multiple reaction monitoring (MRM) experiments were 

performed using negative ESI ionization mode. The dwell time used for all 

MRM experiments was 50 ms. The optimized source-dependent and 

compound-dependent MS parameters for the analytes are shown in Table 6.1. 

The collision-activated dissociation (CAD) gas was set to „Medium‟ 

throughout the experiments. The interface heater was kept on to maximize the 

ion signal and to avoid contamination of the ion optics. Chromatographic 

separations were carried out on an ACQUITY UPLC BEH C18 (1.7 µm 100 × 

2.1 mm i.d.) column (Waters, Milford, MA, USA). The column and 

autosampler temperature were maintained at 45 and 4 °C, respectively. The 

optimized mobile phase consisted of 0.1% FA in water (solvent A) and 0.1% 

FA in ACN (solvent B). The mobile phase flow rate was 0.4 mL/min. The 

optimized elution condition is shown in Table 6.2. A partial loop with needle 

overfill injection mode was used and the injection volume was 2 µL. The 

analysis time for each sample was 5.5 min. Data acquisition and processing 
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were performed using the Analyst software (Version 1.4.2, Applied 

Biosystems, Foster City, CA, USA). 

 

6.2.6. Method validation 

 

US-FDA guidelines for bioanalytical method validation and International 

Conference on Harmonization (ICH) guidelines on analytical method 

validation with suitable modifications were followed for the method validation 

studies (FDA, 2001; ICH 1994, 1996). During method validation, parameters 

such as selectivity, sensitivity, matrix effect, linearity, accuracy, precision, 

extraction efficiency and autosampler stability of samples were investigated. 

Calculations of method validation results were carried out using the Microsoft 

Excel 2007 software. 

 

6.2.6.1. Selectivity 

 

Selectivity of the developed UPLC/MS/MS method was investigated by 

comparing the chromatograms of blank and standard samples. The blank 

sample comprising 500 µL of ice-cold PBS containing 0.1% BHT was 

subjected to sample preparation as described earlier. The standard sample 

containing all the standard metabolites (at concentrations of 10 pg/mg and 5 

ng/mg of colon tissue for eicosanoids and AA, respectively) was used for 

checking background chromatographic interferences, if any. 
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Table 6.1. Optimized source- and compound-dependent MS parameters 

 

Source-dependent parameters 

Curtain gas (psi) 15 

Ion spray voltage (V) -4500 

Temperature (°C)  500 

Nebulizer gas 1 (psi)  40 

Nebulizer gas 2 (psi) 45 

Compound-dependent parameters 

Metabolite MRM transition 

(m/z) 

DP
a
 (V) EP

b
 (V) CE

c
 (V) CXP

d
 

(V) 

6-k PGF
1α

  369.2→163.0 -55 -6 -38 -1 

TXB
2 
 369.1→169.2 -35 -4 -26 -1 

PGE
2 
 351.3→271.2 -19 -6 -27 -1 

PGE2-d4 (IS) 355.1→275.3 -30 -5 -27 -2 

PGD
2 
 351.3→189.2 -20 -4 -28 -1 

LTB
4 

 335.1→195.2 -48 -4 -23 -1 

13S-HODE  295.1→277.0 -30 -7 -21 -1 

8-HETE  319.2→155.2 -30 -5 -22 -1 

12-HETE  319.1→179.0 -30 -7 -21 -1 

AA 303.1→259.0 -45 -5 -21 -1 

a
 Declustering potential; 

b 
Entrance potential; 

c 
Collision energy; 

d 
Collision 

cell exit potential 

 

Table 6.2. Optimized UPLC elution conditions 

 

Time (min) % Solvent A
a
 % Solvent B

a
 Curve

b
 

0.00 50 50 6 

3.70 5 95 4 

4.35 5 95 6 

4.50 50 50 6 

5.50 50 50 6 

a 
Solvent A: 0.1% FA in water, solvent B: 0.1% FA in ACN  

b 
Different curves of the UPLC gradient were used to optimize the 

chromatographic resolution of the analytes. 
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6.2.6.2. Sensitivity 

 

The limit of detection (LOD) and limit of quantification (LOQ) of each 

metabolite were determined as per ICH guidelines (ICH, 1994, 1996). The 

LODs and LOQs of metabolites were calculated using equations 1 and 2 with 

regards to three calibration curves. 

 

LOD = 3.3 × (SD of y intercept) ÷ average slope (equation 1) 

LOQ = 10 × (SD of y intercept) ÷ average slope (equation 2) 

 

In addition to the determination of the LOD and LOQ of individual 

metabolites, it was important to determine the minimal amount of colon tissue 

that was required to produce a reasonably sensitive profiling of endogenous 

eicosanoids and AA. In our method development, different weights of colon 

tissue (5, 10 and 20 mg) were processed and analyzed to determine an optimal 

balance between tissue weight and sensitivity limit of the UPLC/MS/MS 

assay.  

 

6.2.6.3. Matrix effect 

 

The matrix effect was investigated using the post-extraction spike method 

(spiked in matrix extract) in which the peak areas of standard metabolites in 

neat solvent were compared to that obtained from standard metabolites spiked 

in matrix post-extraction (Bottcher et al., 2007). As all the eicosanoids and AA 

profiled in our study were present endogenously in human colon tissue, it was 
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impossible to obtain „blank‟ human colon tissue devoid of these metabolites. 

To negate the endogenous occurrence of these metabolites which could 

interfere with our evaluation of matrix effect, the peak area observed in the 

case of standard metabolites spiked in matrix post-extraction was corrected by 

subtracting the basal peak area of metabolites in unspiked matrix. For this 

purpose, one representative normal colon tissue was divided into aliquots of 

about 10 mg each and homogenized in a ball mill using 500 µL of ice-cold 

PBS containing 0.1% BHT for each sample. The homogenates thus obtained 

were pooled and mixed so that a matrix homogenate with uniform basal 

amount of endogenous metabolites was obtained. The homogenate was further 

redistributed into 500 µL aliquots. Each aliquot was then subjected to 

extraction as per our sample preparation method. Standard metabolites were 

spiked subsequently into the matrix extract at low (30 pg/mg and 15 ng/mg of 

colon tissue for eicosanoids and AA, respectively), medium (300 pg/mg and 

40 ng/ mg of colon tissue for eicosanoids and AA, respectively) and high 

(4000 pg/mg and 300 ng/mg of colon tissue for eicosanoids and AA, 

respectively) concentration levels. Three replicates were used for each 

concentration level. The basal peak areas of the metabolites in matrix were 

determined using three replicates of 500 µL of matrix homogenate devoid of 

any standard metabolite. The matrix effect was then evaluated using equation 

3. 

Matrix effect = [1-(A1 – A2) ÷ A3] × 100 (equation 3) 

where, 

A1 = mean peak area of sample consisting of matrix extract spiked with 

standard metabolite  
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A2 = mean basal peak area of metabolite present in matrix 

A3 = mean peak area of standard metabolite in neat solvent 

 

6.2.6.4. Linearity and accuracy 

 

Stock solutions of standard metabolites were prepared in methanol containing 

0.1% BHT. Due to the unavailability of metabolite-free „blank‟ matrix, the 

standard addition method was adopted to study the linearity and accuracy of 

our assay. The calibration standards and quality control (QC) samples were 

prepared by spiking standard metabolites into 500 µL aliquots of matrix 

homogenate (prepared as per method described in “matrix effect” section and 

having uniform basal amount of metabolites) and then subjecting them to 

sample preparation as described earlier. The concentrations of the metabolites 

in the calibration standards and QC samples were calculated with reference to 

10 mg of colon tissue. For instance, a spiked amount of 500 pg of an 

eicosanoid was considered equivalent to a concentration of 500 pg of 

eicosanoid per 10 mg of colon tissue or 50 pg/mg of colon tissue. The 

concentration range used for calibration of the 8 eicosanoids was 10-5000 

pg/mg of colon tissue whereas that for AA was 5-500 ng/mg of colon tissue. 

As per FDA guidelines for bioanalytical method validation QC samples should 

be used at three different concentrations (Bansal and DeStefano, 2007; FDA, 

2001): 

 Low QC: three times the lower limit of quantification (prepared QC: 3 

times 10 pg/mg i.e 30 pg/mg)  
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 Medium QC: ~mid value of calibration range (prepared QC: 300 

pg/mg) 

 High QC: ~70-85% of higher limit of quantification (prepared QC: 

80% of 5000 pg/mg i.e. 4000 pg/mg). 

Similarly, as per guidelines the QC samples for AA were prepared at three 

concentrations of 15, 40 and 300 ng/mg of colon tissue. The basal peak area of 

a metabolite (determined using three replicates of 500 µL of matrix 

homogenate devoid of any standard metabolite) was subtracted from the 

observed peak areas of the metabolite in calibration samples to account for the 

endogenous occurrence of each metabolite in the matrix. The resulting peak 

areas were divided by the IS peak areas and the ratios were plotted against 

nominal concentration to construct calibration curve for each metabolite. The 

constructed calibration curves were used to determine the concentrations of 

the metabolites in the QC samples. The observed concentration of a metabolite 

in QC sample was corrected by subtracting the basal concentration of the 

metabolite (determined using three replicates of 500 µL of matrix homogenate 

devoid of any standard metabolite). The accuracy of the developed method 

was determined by measuring the percentage deviations of the observed 

concentrations of calibration samples and corrected concentrations of the QC 

samples from the nominal concentrations. A percentage deviation within 

±15% was considered acceptable. 
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6.2.6.5. Intra- and inter-day precision 

 

Both intra- and inter-day precision were determined using QC samples 

(prepared by standard addition method) at three different nominal 

concentrations viz. 30, 300 and 4000 pg/mg of colon tissue for the 8 

eicosanoids and 15, 40 and 300 ng/mg of colon tissue for AA, respectively. 

The observed concentration of a metabolite in QC sample was corrected as 

discussed previously. The inter-day precision values were determined on three 

different days (first, second and third day of method validation). A relative 

standard deviation (RSD) of 15% was considered as satisfactory in our method 

validation. 

 

6.2.6.6. Autosampler stability 

 

In order to evaluate the stability of the extracted metabolites in the 

autosampler of the UPLC system, 6 human colon tissues of about 10 mg each 

were processed. The extracted samples were injected into the UPLC/MS/MS 

system (0 h), kept in the autosampler (4ºC) and re-injected after 24 h. The 

autosampler stability was determined by comparing the peak area of each 

metabolite measured at 0 and 24 h. A relative stability of 100 ± 15% was 

considered acceptable. 
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6.2.6.7. Extraction efficiency 

 

The extraction efficiency was estimated at three concentration levels viz. 30, 

300 and 4000 pg/mg of colon tissue for the 8 eicosanoids and 15, 40 and 300 

ng/mg of colon tissue for AA. The standard metabolites were spiked into 

aliquots of 500 µL of matrix homogenate and processed as per our sample 

preparation protocol. The peak area of a metabolite obtained in the case of 

spiked samples was corrected by subtraction of basal peak area of the 

metabolite (determined using three replicates of 500 µL of matrix homogenate 

devoid of any standard metabolite) and was compared to the peak area of the 

unextracted standard metabolite to determine the extraction efficiency. 

 

6.3. Results and discussion 

 

During our preliminary UPLC/MS/MS method development, different mobile 

phase combinations comprising methanol, 0.1% FA in water, 0.1% FA in 

ACN and 10 mM ammonium acetate were attempted. Based on the quality of 

peak shape and resolution of metabolites, it was confirmed that mobile phase 

comprising 0.1% FA in water and 0.1% FA in ACN yielded the best results. A 

representative UPLC/MS/MS chromatogram of a sample comprising all the 

standard metabolites is shown in Figure 6.1. The total analysis time for each 

sample was short (5.5 min) as compared to previously reported methods 

(Hishinuma et al., 2007; Hubbard et al., 1986; Kempen et al., 2001; Maier et 

al., 2000; Takabatake et al., 2002; Tsukamoto et al., 2002; Yang et al., 2006; 

Yue et al., 2004, 2007). This supported the potential profiling of human CRC 



112 

 

samples by clinical laboratories where a short turn-around time is expected 

from the physicians.  

The developed UPLC/MS/MS method was found to be selective with 

regards to all the MRM transitions, as considerable interferences were not 

observed when a blank sample was compared with a sample containing all the 

standard metabolites. While this finding was not unexpected due to the high 

selectivity of MRM experiments, it was pertinent to confirm that the profiled 

metabolites were derived from endogenous AA and eicosanoids and not other 

impurities or co-metabolites. The high selectivity of the method is essential to 

ensure that the observed perturbations in the levels of the inflammatory 

marker metabolites were related to the pathology of CRC and not due to 

chance correlation. The minimal amount of fresh colon tissue required to 

generate a reasonably sensitive profiling of endogenous AA and eicosanoids 

was found to be 10 mg. The establishment of this parameter would help guide 

clinician scientists in understanding and accommodating the requirement of 

the targeted profiling assay in addition to other tests such as histopathological 

assessment and genomic profiling of the colon tissues. While evaluating 

matrix effect (Figure 6.2.), we observed concentration-independent ion 

suppression for all the profiled analytes. The ion suppression due to matrix 

effect was found to be minimal ranging from 5 to 13 % across the three 

investigated concentration levels. 

The calculated values of LOQ and LOD for all the eicosanoids and AA 

are shown in Table 6.3. Although the LOQ and LOD values were found to be 

higher than previously reported methods (Hubbard et al., 1986; Tsukamoto et 

al., 2002; Yue et al., 2004, 2007), our method was found to be sufficiently 
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sensitive as the profiled endogenous levels of AA and eicosanoids in human 

colon tissue were above the respective LOQs and LODs. The UPLC/MS/MS 

method was validated over a calibration range of 10-5000 pg/mg of colon 

tissue for the 8 eicosanoids and 5-500 ng/mg of colon tissue for AA. All the 

analytes showed satisfactory linearity of response as evident from their 

average correlation coefficients of greater than 0.99 (Table 6.3.). The accuracy 

of the developed method was found to be satisfactory as the percentage 

deviations of the observed concentrations of calibration and QC samples from 

the nominal concentrations were all within the acceptable limit of ±15% for all 

the metabolites. The RSDs of all the metabolites in terms of intra- and inter-

day precision were found to be less than 15% (Table 6.4.). In addition, the 

relative stability of each metabolite was found to be within the acceptable 

limits of 100 ± 15% when kept in the autosampler at 4ºC for 24 h (Table 6.4.). 

Our results implied that batch analysis of clinical samples can be performed 

for up to 260 processed samples without compromising the chemical integrity 

of each metabolite. The extraction efficiencies of all the metabolites were 

consistent as indicated by the low SD values (0.94-6.25) and this is critical for 

developing a reliable method for the targeted profiling of AA and eicosanoids 

(Table 6.5.). 
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Figure 6.1. Representative UPLC/MS/MS chromatogram of a sample comprising all the standard metabolites. 
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Figure 6.2. Matrix effect on profiled metabolites (represented by mean 

percentage ion suppression with error bars depicting standard deviation).  

 

 

 

 

Table 6.3. Linearity, LOD and LOQ of eicosanoids and AA 

 

Metabolite Calibration 

range
a
 

Average r
2
  

(n=3) 

LOD
a
 

 

LOQ
a
 

 

6-k PGF
1α

  10-5000 0.9998 1.52 4.61 

TXB
2 
 10-5000 0.9996 2.73 8.29 

PGE
2 
 10-5000 0.9998 1.74 5.27 

PGD
2 
 10-5000 0.9999 2.43 7.35 

LTB
4 

 10-5000 0.9997 3.19 9.68 

13S-HODE  10-5000 0.9998 2.28 6.91 

8-HETE  10-5000 0.9998 1.24 3.75 

12-HETE  10-5000 0.9997 2.59 7.84 

 Calibration 

range
b
 

Average r
2
 

(n=3) 

LOD
b
 LOQ

b
 

AA 5-500 0.9910 1.24 3.75 
a
 pg/mg of colon tissue; 

b
 ng/mg of colon tissue 
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Table 6.4. Validation of assay precision and autosampler stability of 

metabolites 

 

 

Metabolite 

Intra-day precision  

(% RSD) 

Inter-day precision  

(% RSD) 

Auto-

sampler 

stability
c
 

(%) (n=6) 

4000
a
 

(n=9) 

300
a
 

(n=9) 

30
a
 

(n=9) 

4000
a
 

(n=9) 

300
a
 

(n=9) 

30
a
 

(n=9) 

6-k PGF
1α

  2.69 4.80 6.22 4.36 5.54 7.21 96.44±3.77 

TXB
2 
 1.89 2.07 5.74 4.41 4.48 5.54 91.77±6.09 

PGE
2 
 3.07 1.99 4.57 2.84 6.46 7.28 94.34±3.67 

PGD
2 
 3.34 3.04 5.83 3.80 6.25 9.79 97.34±1.65 

LTB
4 

 0.63 2.85 2.72 5.31 5.63 4.99 95.32±3.98 

13S-HODE  1.45 3.65 5.41 3.17 3.84 8.07 98.86±6.55 

8-HETE  3.03 3.28 2.39 6.69 5.29 7.49 89.89±3.92 

12-HETE  6.04 2.42 4.05 5.81 3.47 8.46 90.57±2.41 

 300
b
 

(n=9) 

40
b
 

(n=9) 

15
b
 

(n=9) 

300
b
 

(n=9) 

40
b
 

(n=9) 

15
b
 

(n=9) 

 

AA 2.55 3.67 7.02 3.41 3.76 8.00 87.42±0.82 
a
 pg/mg of colon tissue; 

b 
ng/mg of colon tissue;  

c 
Values are expressed as mean % stability ± SD 

 

 

Table 6.5. Extraction efficiency of eicosanoids and AA 

 

 

Metabolite 

Extraction efficiency (%)
a
 

30
b
 (n=3) 300

b 
(n=3) 4000

b
 (n=3) 

6-k PGF
1α

 79.74±6.30 83.85±1.77 86.55±1.58 

TXB
2
 82.28±4.56 85.53±4.82 85.44±3.33 

PGE
2
 78.30±3.12 79.02±2.65 81.37±1.58 

PGD
2
 79.17±9.55 80.70±4.15 83.71±1.84 

LTB
4
 78.78±5.09 85.12±1.53 85.73±1.51 

13S-HODE 75.98±5.27 81.54±3.55 86.62±3.27 

8-HETE 81.16±6.64 85.13±2.54 86.09±2.21 

12-HETE 79.37±4.96 82.63±4.95 85.84±4.26 

 15
c 
(n=3) 40

c 
(n=3) 300

c 
(n=3) 

AA 79.65±7.52 79.87±4.63 83.63±3.65 
a
 Values are expressed as mean ± SD; 

b
 pg/mg of colon tissue; 

c 
ng/mg of 

colon tissue 
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6.4. Conclusion 

 

An UPLC/MS/MS-based analytical platform was developed and validated 

successfully (in terms of selectivity, sensitivity, matrix effect, precision, 

accuracy, extraction efficiency, linear response and sample stability) for the 

simultaneous profiling of AA and 8 eicosanoids in human colon tissue. Our 

rapid profiling method has the potential to be applied in clinical trials to 

determine the effect of NSAIDs on the endogenous levels of eicosanoids so as 

to better elucidate the mechanism and value of NSAID-based adjuvant therapy 

in improving the prognosis of human CRC. 
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CHAPTER 7 

TARGETED PROFILING OF EICOSANOIDS AND ARACHIDONIC 

ACID IN COLORECTAL CANCER USING UPLC/MS/MS 

 

7.1. Introduction 

 

Cumulative evidences indicate an association between inflammation and CRC. 

IBD is an important risk factor for the development of CRC. Inflammation is 

also likely to be involved with other forms of sporadic as well as heritable 

CRC (Coussens and Werb, 2002; Mantovani et al., 2008; Kraus and Arber, 

2009; Terzic et al., 2010). The link between CRC and inflammation is further 

reinforced by the preventive effect of NSAIDs in the development of CRC. 

NSAIDs exert their pharmacological effect primarily by inhibiting COX 

enzyme (Chan et al., 2005; Smalley and DuBois, 1997). The expression of 

COX-2 and LOX enzymes which are involved in the biosynthesis of 

eicosanoids gets perturbed in CRC. As a consequence fluctuations in the 

endogenous levels of these eicosanoids are expected which in turn play a 

prominent role in inflammation mediated development of CRC (Kashfi and 

Rigas, 2005; Melstrom et al., 2008; Sano et al., 1995; Soslow et al., 2000; 

Soumaoro et al., 2006; Steele et al., 1999; Wang and Dubois, 2008, 2010). The 

pathways of AA metabolism are shown in Figure 7.1. Therefore, the targeted 

and simultaneous profiling of biologically relevant eicosanoids viz. PGE2, 

PGI2 [assayed as its stable hydrolytic product 6-k-PGF1α (Brash et al., 2007)], 

PGD2, LTB4, TXA2 [assayed as its stable breakdown product TXB2 

(Needleman et al., 1976)], 13S-HODE, 12-HETE, 8-HETE and their major 
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metabolic precursor AA, could shed molecular insight into the role of 

inflammation in CRC carcinogenesis and progression.  

In this chapter the targeted profiling of endogenous AA and 

eicosanoids in matched pairs of CRC and normal tissues obtained from 36 

CRC patients is described. For this purpose, the UPLC/MS/MS method that 

we developed and validated as described in Chapter 6 was utilized. 

 

7.2. Experimental 

 

7.2.1. Clinical population and tissue samples 

 

Because of ethical reasons, the amount of tissue that can be removed from 

patients while performing colonoscopy or surgery is limited. The first cohort 

of tissue samples obtained was fully utilized for non-targeted metabolic 

profiling study and this necessitated the use of a second cohort for our targeted 

profiling study. Clinical data such as age, gender, ethnicity, location of 

primary tumor, histological staging and grade were obtained from a 

prospectively maintained computerized database from the Singapore Polyposis 

Registry & the Colorectal Cancer Research Laboratory, Department of 

Colorectal Surgery, SGH. The anatomical and clinicopathological 

characteristics of the clinical tissue samples analyzed by UPLC/MS/MS are 

summarized in Table 7.1. The study population comprised 36 patients with a 

mean age of 59 ± 19 years at the time of cancer diagnosis. There were 20 

males (56%) and 16 females (44%). The majority (80.5%) of the patients were 

Chinese (n = 29), while the remaining comprised 5 Malays (C10, C21, C31, 
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C33, C34), 1 Indian (C11) and 1 of other ethnicity (C5). There were 28 left-

sided tumors (defined as those arising distal to the splenic flexure) of which 19 

were in the rectosigmoid or rectum. This study was approved by the CIRB at 

the SGH (CIRB reference number 2009/723/B). Matched CRC and normal 

tissues (n = 72) were obtained from the 36 CRC patients during surgery. Fresh 

tumor tissue and normal tissue were snap-frozen immediately following 

excision of the specimen at surgery, then stored at -80 °C until processing. 

Resection of tissue samples were carried out by trained personnel at Singapore 

General Hospital. Tumor specimens were carefully micro-dissected to ensure 

that at least 90% of the analyzed tissue contained cancer cells. Matched 

normal tissues were taken at least 5-10 cm away from the edges of the tumor. 

All CRC tissues and matched normal tissues were cut and weighed accurately 

where approximately 10 mg of each tissue were reserved for UPLC/MS/MS 

analysis. The samples were kept at -80 °C until analysis. 

 

7.2.2. UPLC/MS/MS analysis 

 

Tissue samples for UPLC/MS/MS analysis were prepared as per the procedure 

described in section 6.2.3. of chapter 6. The protein content of each tissue 

sample was determined as per the method described in section 6.2.4. of 

Chapter 6. The same UPLC/MS/MS conditions as mentioned in section 6.2.5. 

of Chapter 6 were used for analysis. 
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7.2.3. UPLC/MS/MS data analysis 

 

The amount of individual eicosanoids and AA in tissue samples as determined 

by UPLC/MS/MS were normalized with respect to total protein content. The 

normalized data were subjected to paired samples ‘t’ test using SPSS software 

(Version 11.0, SPSS Inc., Chicago, IL, USA) to identify metabolites 

significantly different between the CRC and normal tissue groups (p <0.05 

was considered to be statistically significant). In order to verify any probable 

association between the endogenous levels of metabolites and Dukes stage of 

CRC or anatomical site of tumor, Spearman’s correlation analysis was also 

carried out using the SPSS software. 

 

7.3. Results and discussion 

 

The endogenous levels of AA and 8 eicosanoids in 36 matched pairs of CRC 

and normal colon tissues are shown in Figure 7.2. and summarized in Table 

7.2. The levels of these inflammatory mediators in CRC and normal tissues 

were compared statistically using paired samples ‘t’ test. Among the 

metabolites, 6-k PGF1α, PGE2, 12-HETE, 13S-HODE and AA were found to 

be significantly different between CRC and normal colon tissues (p<0.05). 

These inflammatory metabolic markers are therefore important in 

characterizing the phenotype of human CRC. However, it was noted that no 

significant correlation was found between the levels of the profiled 

inflammatory mediators and the Duke’s stage of CRC or anatomical site of 

tumor. 
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Figure 7.1. Pathways for Arachidonic acid metabolism. 

COX: cyclooxygenase; LOX: lipoxygenase; AA: arachidonic acid; PG: 

prostaglandin; PGI2: prostacyclin; 6-kPGF1α: 6-keto-prostaglandin1α; HETE: 

hydroxy-eicosatetraenoic acid; EET: epoxy-eicosatrienoic acid; DiHETE: 

dihydroxy-eicosatetraenoic acid; 13S-HODE: 13S-hydroxy-9Z,11E-

octadecadienoic acid; LTB4: leukotriene B4, TX: thromboxane. 

 

 
 



123 

 

Table 7.1. Summary of clinicopathological characteristics of CRC patients 

 

Normal
a
 CRC

a
 CRC 

anatomical site 

Histology Grade
b
 TNM 

stage 

Duke 

stage 

N1 C1 Sigmoid Adenocarcinoma MD T2N2M0 C 

N2 C2 Sigmoid Adenocarcinoma MD T3N2M0 C 

N3 C3 Hepatic flexure Adenocarcinoma PD T3N2M0 C 

N4 C4 Rectosigmoid Adenocarcinoma MD T3N0M0 B 

N5 C5 Rectum Adenocarcinoma MD T2N0M0 A 

N6 C6 Rectum Adenocarcinoma MD T3N1M0 C 

N7 C7 Ascending colon Adenocarcinoma MD T3N0M0 B 

N8 C8 Rectum Adenocarcinoma MD T3N0M0 B 

N9 C9 Rectosigmoid Adenocarcinoma WD T3N0M0 B 

N10 C10 Ascending colon Mucinous M T2N1M0 C 

N11 C11 Rectum Mucinous M T4N1M0 C 

N12 C12 Rectum Adenocarcinoma PD T3N1M0 C 

N13 C13 Rectum Adenocarcinoma MD T3N0M0 B 

N14 C14 Sigmoid Adenocarcinoma MD T3N0M0 B 

N15 C15 Rectum Adenocarcinoma MD T3N0M0 B 

N16 C16 Caecum Adenocarcinoma MD T3N0M0 B 

N17 C17 Rectum Adenocarcinoma MD T3N0M0 B 

N18 C18 Sigmoid Adenocarcinoma MD T4N0M0 B 

N19 C19 Caecum Adenocarcinoma WD T3N1M0 C 

N20 C20 Rectum Adenocarcinoma MD T3N2M0 C 

N21 C21 Hepatic flexure Adenocarcinoma MD T3N1M0 C 

N22 C22 Caecum Adenocarcinoma MD T3N0M0 B 

N23 C23 Rectum Adenocarcinoma MD T2N0M0 A 

N24 C24 Sigmoid Adenocarcinoma MD T2N1M0 C 

N25 C25 Sigmoid Adenocarcinoma PD T2N1M0 C 

N26 C26 Rectum Adenocarcinoma PD T3N0M0 B 

N27 C27 Rectum Adenocarcinoma MD T3N0M0 B 

N28 C28 Sigmoid Adenocarcinoma MD T3N0M0 B 

N29 C29 Rectosigmoid Adenocarcinoma WD T2N0M0 A 

N30
c
 C30

c
 - Adenocarcinoma MD - - 

N31 C31 Sigmoid Adenocarcinoma MD T4N2M0 C 

N32 C32 Rectosigmoid Adenocarcinoma MD T4N2M0 C 

N33 C33 Rectum Adenocarcinoma MD T3N0M0 C 

N34 C34 Sigmoid Adenocarcinoma MD T3N1M0 B 

N35 C35 Rectosigmoid Adenocarcinoma MD T3N0M0 B 

N36 C36 Ascending colon Adenocarcinoma MD T3N0M0 B 
a
 For each C (CRC) sample, matched N (normal) tissue was provided. 

b
 MD, WD, PD and M are moderately differentiated, well-differentiated, 

poorly differentiated and mucinous, respectively. 
c
 5 lesions were removed from multiple site, stage not determined 
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6-k PGF1α, a stable non-enzymatic hydrolytic product of unstable PGI2, 

was found to be higher in normal colon as compared to CRC colon tissue. This 

finding corroborated with the previous results published by Rigas et al. (1993). 

PGI2 showed cytoprotective activity on gastric mucosal surfaces and was 

determined to be important for maintaining normal vasculature (Wang and 

Dubois, 2008). PGI2 and its stable synthetic analogues such as Cicaprost were 

shown to prevent lung and liver metastases in murine models of prostate 

(Schirner and Schneider, 1992), ovarian (Schirner and Schneider, 1991), 

mammary (Schirner et al., 1994; Schirner and Schneider, 1992), skin 

(Costantini et al., 1988) and lung (Lapis et al., 1990; Sava et al., 1989) 

carcinomas. In addition, these compounds demonstrated inhibitory effect on 

the growth of established micrometastases after the removal of primary 

mammary tumors in rats (Schirner and Schneider, 1997). Mechanistic studies 

have further revealed that PGI2 and its analogues exhibited both direct and 

indirect antimetastatic effects by interfering with tumor cell-host interactions 

and potentiating host immune competency (Schirner et al., 1998). Recently it 

has been shown that platelets play an important role in metastasis and the 

antimetastatic effect of PGI2 could be partially attributed to its inherent 

antiplatelet property (Gay and Felding-Habermann, 2011).   

In this study, a significantly higher content of PGE2 was found in CRC 

compared to normal colon tissue. This finding was consistent with the results 

of previous studies (Bennett et al., 1987; Rigas et al., 1993). The role of PGE2 

is quite dominant  in  the  promotion  CRC  growth.  The  COX-2/PGE  

synthase-dependent  
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Figure 7.2. Endogenous levels of eicosanoids and AA in 36 pairs of CRC and 

normal tissues 
 

 
 

Table 7.2. Endogenous levels of eicosanoids and AA in 36 pairs of CRC and 

normal tissues 
 

 

Metabolite 

Normal
a
 

(pg/µg of 

protein) 

CRC 

(pg/µg of 

protein) 

 

p value
b
 

% fold change  

of CRC from 

normal
c
 

6-k PGF
1α

  17.91±13.56 2.59±2.41 <0.00001 -590.8 

TXB
2 
 4.23±2.08 4.38±3.34 0.798 3.3 

PGE
2 
 11.98±12.60 32.01±19.46 0.00001 62.6 

PGD
2 
 16.62±7.89 17.86±5.52 0.489 7.0 

LTB
4 

 1.27±0.32 1.51±1.02 0.221 15.5 

13S-HODE  22.30±15.84 15.11±11.71 0.040 -47.5 

8-HETE  1.74±1.59 2.09±1.42 0.357 16.8 

12-HETE 9.36±7.43 16.27±8.28 0.00007 42.5 

 Normal
a
 

(ng/µg of 

protein) 

CRC 

(ng/µg of 

protein) 

 

p value
b
 

% fold change  

of CRC from 

normal
c
 

AA 14.93±6.41 10.92±5.13 0.001 -36.7 
a
 Values are expressed as mean±SD 

b
 Statistical p value calculated using paired samples ‘t’ test (significance at 

p<0.05) 
c
 Positive and negative percentages indicate higher levels of analytes in CRC 

and normal tissues, respectively. 
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biosynthesis of PGE2 and 15-hydroxyprostaglandin dehydrogenase (15-

PGDH)-dependent degradation of PGE2, determine its steady-state cellular 

levels. The expression of 15-PGDH was found to be reduced in CRC 

(Backlund et al., 2005; Yan et al., 2004) whereas the levels of COX-2 and 

PGE synthase were elevated (Yoshimatsu et al., 2001). The fluctuations of 

these enzymes resulted subsequently in the elevated levels of PGE2 in CRC 

tissue which in turn contributed to CRC development by promoting 

angiogenesis (Tsujii et al., 1998), metastasis (Tsujii et al., 1997), 

immunosuppression (Kojima et al., 2001),  proliferation (Sheng et al., 2001) 

and inhibiting apoptosis (Sheng et al., 1998). These effects exerted by PGE2 

are mediated through the activation of various signaling pathways. PGE2 

causes up-regulation of β-catenin transcriptional activity and phosphorylation 

of the EGF receptor resulting in activation of oncogenic phosphatidyl-inositol-

3-kinase (PI3K), serine/threonine protein kinase (Akt) and rat sarcoma viral 

oncogene-mitogen activated protein kinase (RAS-MAPK) cascade (Pai et al., 

2002). PGE2 also activates the peroxisome proliferator activated receptor-δ 

(PPARδ) via stimulation of PI3K and stimulates expression of the angiogenic 

factor VEGF, the proliferation promoting factor cyclin D1 and the anti-

apoptotic factor bcl-2 (Wang and Dubois, 2008, 2010). PGE2 causes activation 

of Tcf-4 transcription factors via stabilization of β-catenin in CRC cells and 

consequently also activates the Wnt signaling pathway (Castellone et al., 

2005). Moreover several downstream pathways of PGE2 may act as a positive 

feedback loop and cause further upregulation of COX-2 expression (Chan and 

Giovannucci, 2010). 
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Our study further demonstrated that the endogenous levels of 12-

HETE was significantly higher in CRC as compared to normal colon tissue. 

Evidences from in vitro studies indicated that 12-HETE enhanced adhesion, 

migration and metastasis of cancer cells (Chopra et al., 1991; Honn et al., 

1992; Liu et al., 1995; Nie et al., 1998). Moreover in vivo studies have shown 

that 12-HETE plays an important role in carcinogenesis in murine skin tumor 

(Krieg et al., 1995) and human prostate cancer (Shureiqi and Lippman, 2001). 

13S-HODE was found to be significantly higher in normal tissues as 

compared to CRC samples. This observation is corroborated by other studies 

(Shureiqi et al., 1999, 2010). In vitro studies in CRC cell lines have shown that 

13S-HODE exerts an antitumorigenic effect by promoting apoptosis and 

causing cell cycle arrest (Shureiqi and Lippman, 2001).  Moreover linoleic 

acid which acts as the metabolic precursor of 13S-HODE has been shown to 

have an inhibitory effect in murine model of skin cancer (Fischer et al., 1996).  

Interestingly, various in vitro studies have shown that the tumor promoting 

effects of 12-HETE, are counteracted by 13S-HODE as well as PGI2 and its 

analogues (Grossi et al., 1989; Honn et al., 1992; Liu et al., 1991; Tang et al., 

1993). These observations suggested that stable PGI2 analogues and LOX 

modulators could also be investigated as potential chemotherapeutic agents in 

CRC. 

Finally, we observed that the level of AA was significantly decreased 

in CRC colon tissue. This observation was consistent with our earlier findings 

where CRC was profiled using GC×GC/TOFMS- and GC/MS-based 

metabolic profiling platforms (Chan et al., 2009). The depleted levels of AA in 

CRC tissue could be attributed to the overexpression of COX-2 enzyme which 
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catalyzes the conversion of AA to eicosanoids (Kashfi and Rigas, 2005; Sano 

et al., 1995; Soslow et al., 2000).  

 

7.4. Conclusion 

 

Targeted profiling of eicosanoids and AA in 36 matched pairs of CRC and 

normal tissues were carried out using UPLC/MS/MS. The results indicated 

significantly higher levels of AA and antitumorigenic eicosanoids such as 

PGI2 (assayed as its stable product 6-k PGF1α) and 13S-HODE in normal 

tissues whereas pro-tumorigenic eicosanoids such as PGE2 and 12-HETE were 

found to be higher in CRC tissue specimens. However no significant 

association was observed between the endogenous levels of the profiled 

metabolites with CRC stage or anatomical site of tumor. The findings implied 

definite deregulation of eicosanoid biosynthetic pathways and suggested that a 

complicated interplay between eicosanoids is involved in inflammation 

mediated CRC development.     
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CHAPTER 8 

CONCLUSION AND FUTURE DIRECTIONS 

 

8.1. Conclusion 

 

In my PhD project, both non-targeted metabolic profiling and targeted 

metabolic profiling of eicosanoids and AA in CRC using biopsied tissue 

specimens obtained from CRC patients were carried out. For global non-

targeted metabolic profiling of CRC, three different analytical platforms 

namely GC/MS, HR-MAS NMR spectroscopy and GC×GC/TOFMS were 

explored. Prior to its application for non-targeted profiling the GC/MS method 

was developed and validated successfully in terms of sample stability, 

reproducibility, selectivity, linear response and sensitivity. HR-MAS NMR 

spectroscopic analysis including sample pretreatment was carried out at the 

Imperial College London, UK, as per the validated protocol which has been 

published recently (Beckonert et al., 2010). For validation of analytical 

performance of GC×GC/TOFMS an alternative approach involving QC 

samples and multivariate statistical analyses was used successfully. Although 

GC×GC/TOFMS proved to be better than GC/MS and HR-MAS NMR 

spectroscopy with respect to the extent of metabolic space coverage, HR-MAS 

NMR spectroscopy proved to be more advantageous in terms of sample 

preparation and total analysis time. The data generated by the three analytical 

platforms in conjunction with chemometric analysis led to the identification of 

marker metabolites belonging to diverse chemical classes such as 

monosaccharides, amino acids, triterpenes, amino ketones, steroids, organic 
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acids, fatty acids, fatty acid esters, polyols, polyol derivatives, pyrimidine 

derivatives, pyrimidine nucleosides, acyl phosphates, lipids and choline 

containing compounds. Although the OPLS-DA models generated on the basis 

of profiled data using the three analytical platforms were capable of 

discriminating normal tissues from malignant ones, no valid OPLS-DA model 

was obtained using CRC stage as classifier. This implied that the metabolic 

phenotype associated with CRC, although distinct from that of normal tissue, 

is not sensitive enough to discriminate the different stages of CRC. Of the 

three analytical methods used, only HR-MAS NMR spectroscopy-based 

metabolic profiling was able to produce a valid OPLS-DA model capable of 

discriminating anatomical site of tumor. This finding is interesting as the 

hazard of recurrence and metastasis in rectal cancer is 1.5 times that in colon 

cancer (Li et al., 2007). Thus, our results suggested that CRC harbors distinct 

metabolic signatures according to the anatomical location of tumor which may 

be exploited in future to better understand the distinction between colon and 

rectal cancers. The identified marker metabolites when linked to metabolic 

pathways using KEGG database revealed perturbations of biochemical 

processes such as glycolysis, TCA cycle, amino acid metabolism, fatty acid 

biosynthesis, steroid biosynthesis, eicosanoid biosynthesis, bile acid 

biosynthesis, nucleotide metabolism and osmoregulation. Majority of these 

observations can be attributed to the high energy demand, tissue hypoxia and 

altered synthetic rate of cellular components of rapidly proliferating tumor 

cells. Moreover our non-targeted metabolic profiling study using 

GCxGC/TOFMS suggested the branching of serine biosynthetic pathway from 

glycolysis and its upregulation, the end product of which is glycine. Recent 
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studies suggest that the enzyme phosphoglycerate dehydrogenase (PHGDH) 

which oxidizes the glycolytic intermediate 3-phosphoglycerate to initiate 

serine biosynthesis, is over-expressed in breast cancer and helps cancer cells to 

proliferate rapidly (Locasale, et al., 2011; Possemato et al., 2011). This further 

implies that the suppression of PHGDH could be a new therapeutic target.  

Our findings using human CRC tissue samples, were actually made before the 

findings by Locasale et al. and Possemato et al. and suggested that there is also 

a possible existence of this particular form of metabolic deregulation in human 

CRC. In addition to this, altered eicosanoid biosynthetic pathway as indicated 

by reduced AA levels in CRC tissues and presence of comparatively higher 

levels of picolinic acid in CRC tissues, implied an association of inflammatory 

environment with CRC development.  

The strong evidence of association between inflammation and CRC 

and the significant role played by eicosanoids in it, as well as the altered 

expression of COX-2 and LOX enzymes involved in eicosanoid biosynthesis 

in CRC, formed our objective to carry out targeted metabolic profiling of 8 

biologically relevant eicosanoids and the major metabolic precursor AA to 

record the fluctuations of these inflammatory metabolites and to understand 

their implicated roles in inflammation mediated CRC carcinogenesis better. 

For this purpose an UPLC/MS/MS-based method was developed and validated 

successfully (in terms of selectivity, sensitivity, precision, accuracy, extraction 

efficiency, linear response and sample stability) for the simultaneous profiling 

of AA and 8 eicosanoids in human colorectal tissue. Targeted profiling of 

eicosanoids and AA in 36 matched pairs of CRC and normal tissues revealed 

significantly higher levels of 6-k PGF1α (stable hydrolytic product of unstable 
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PGI2), 13S-HODE and AA in normal tissues whereas PGE2 and 12-HETE 

were found to be higher in CRC tissue specimens. However, no significant 

correlation was obtained between the endogenous levels of the profiled 

metabolites with CRC stage or anatomical site of tumor. Both non-targeted 

profiling of CRC using GC×GC/TOFMS and GC/MS and targeted profiling 

showed diminished levels of AA in CRC tissues which could be attributed to 

the overexpression of COX-2 enzyme in CRC. These findings suggested 

deregulation of eicosanoid biosynthetic pathways and suggested that a 

complex interaction between pro-tumorigenic eicosanoids such as PGE2 and 

12-HETE and antitumorigenic eicosanoids such as PGI2 and 13S-HODE is 

intimately involved in inflammation-associated CRC carcinogenesis.       

 

8.2. Future directions 

 

As one of our aims was to elucidate the metabolic phenotype associated with 

CRC and to verify its potential to be utilized for staging and prognosis of 

CRC, we used biopsied tissue specimens for our non-targeted metabolic 

profiling experiments. This is due to the fact that tissue provides site specific 

information and is less susceptible to variation as compared to serum, urine or 

faeces. During the progress of our project, concurrent studies were conducted 

by other research groups which involved non- targeted metabolic profiling of 

CRC using other biomatrices like serum (Ma et al., 2010; Ludwig et al., 2009; 

Qiu et al., 2009), urine (Qiu et al., 2010; Wang et al., 2010) and faecal water 

extracts (Monleón et al., 2009). Such findings have opened the way for 

utilizing non-targeted metabolic profiling as a minimally invasive or non-
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invasive diagnostic tool for CRC. However, large scale clinical studies are 

required in the future to establish and validate such metabolic profiling-based 

diagnostic methods as suitable alternatives to existing diagnostic methods of 

CRC. With the development of LC/NMR/MS hybrid techniques (Lindon et al., 

2000, 2004), it will be interesting to explore such analytical platforms for non-

targeted metabolic profiling of CRC in the future so as to expand the 

metabolic space covered currently by the existing methods. Other biomatrices 

such as saliva and dried blood spot can also be investigated for non-targeted 

metabolic profiling of CRC. Proteomic study of exosomes from CRC ascites 

(Choi et al., 2011) has paved the way for future metabolic profiling studies of 

such exosomes. In our non-targeted metabolic profiling study we found 

metabolic perturbations related to lipid metabolism which also warrants 

lipidomic study of CRC in future to gain additional insight.   

The results obtained from our targeted profiling of eicosanoids 

supported the concept of using aspirin and other NSAIDs as preventive agents 

or adjuvant therapeutic agents as they act primarily by inhibiting COX 

enzyme. However, verification of the mechanistic aspect of NSAID-based 

therapy in CRC requires large scale clinical trials to be conducted in future. In 

fact an international, multi-centre, double-blind randomized phase III clinical 

trial (ASCOLT, http://indox.org.uk/research/clinical/ascolt) that utilizes 

Aspirin as an adjuvant treatment for CRC is currently being conducted by our 

collaborators at SGH, Singapore. Our rapid UPLC/MS/MS profiling method 

has the potential to be applied in such clinical trials to determine the effect of 

aspirin or other NSAIDs on the endogenous levels of eicosanoids so as to 

better elucidate the mechanism and value of NSAID-based adjuvant therapy in 
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improving the prognosis of human CRC. Our targeted profiling results also 

implied that PGI2 analogs and LOX modulators can also be explored in the 

future as potential chemotherapeutic agents in CRC. Future studies can also be 

carried out to elucidate the possible association of antiplatelet property of PGI2 

with its antimetastatic function (Gay and Felding-Habermann, 2011). 

Moreover, targeted metabolic profiling of other key metabolic pathways like 

components of amino acid, fatty acid, carbohydrate or nucleotide metabolism 

that get altered in CRC can be carried out in future so as to better elucidate the 

molecular mechanisms involved in CRC development and to identify potential 

metabolite-based biomarkers of disease progression or targets for therapeutic 

intervention. 
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