
BioMed CentralBMC Bioinformatics

ss

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS
Open AcceResearch
Flanking signal and mature peptide residues influence signal peptide 
cleavage
Khar Heng Choo1 and Shoba Ranganathan*2,1

Address: 1Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore and 2Department 
of Chemistry and Biomolecular Sciences & ARC Centre of Excellence in Bioinformatics, Macquarie University, Sydney NSW 2109, Australia

Email: Khar Heng Choo - justin@bic.nus.edu.sg; Shoba Ranganathan* - shoba.ranganathan@mq.edu.au

* Corresponding author    

Abstract
Background: Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the
correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient
peptides is crucial to the medical, food and beverage and biotechnology industries yet our
understanding of these peptides remains limited. This paper examines the most common type of
signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking
the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii)
Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria.

Results: In this study, 2352 secretory peptide sequences from a variety of organisms with amino-
terminal SPs are extracted from the manually curated SPdb database for analysis based on
physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge
and position-specific residue preferences. Our findings show that the three groups share several
similarities in general, but they display distinctive features upon examination in terms of their amino
acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or
prediction of their sequences should be separated and treated as distinct groups.

Conclusion: We conclude that the peptide segment recognized by SPase I extends to the start of
the mature protein to a limited extent, upon our survey of the amino acid residues surrounding
the cleavage processing site. These flanking residues possibly influence the cleavage processing and
contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate
prediction tools for recognition and identification of cleavage site of SPs.

Background
Amino-terminal signal peptides (SPs) [1,2] mediate the
transport of prokaryotic and eukaryotic secretory proteins
to the cell membrane and endoplasmic reticulum respec-

tively. Synthesized as part of secretory precursor proteins
(preproteins), SPs guide the preproteins to the targeted
destination before being excised by the membrane-bound
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type I signal peptidases (SPase I) [3] during translocation
across the cell membrane.

These transient "zip codes" measure between 13 to 36
amino acid residues (aa) [1] comprising a tripartite struc-
ture, with a central hydrophobic region, flanked by the
amino and carboxy segments of the signal peptide. The
"h-region" forming the hydrophobic core at the centre of
the SP is lined with stretches of hydrophobic residues, said
to adopt an α-helical conformation [4]. The length of the
hydrophobic core varies with the organism. Preceding the
hydrophobic core is the "n-region" containing positively-
charged and polar residues, while the "c-region" at the end
of the signal peptide adopts an extended β-conformation
to facilitate recognition by SPase I. Other characteristic
features have been described in detail elsewhere [2,5].
Apart from targeting, SPs have been reported to exhibit
regulatory function in immune surveillance [6], to pro-
mote effective translocation by preventing the premature
or misfolding of secretory preproteins [7], to control the
amount of proteins to their destination [8,9] and possibly
other functions as more revelations surface over time.
Numerous studies [10-12] have also highlighted the
adverse effects caused by mutation to SPs.

The functional repertoire of SPs warrants further investiga-
tion of their properties and their neighboring residues to
advance our understanding of SPs for their crucial roles in
the secretory pathways of both prokaryotes and eukaryo-
tes [5,13].

The recent deluge of protein sequences have spurred the
development of myriad computational tools and tech-
niques [14-19] to predict the SP cleavage site. While the
prediction accuracies of these tools vary depending on the
datasets employed in their studies, they have generally
achieved high levels of accuracy. Nonetheless, the precise
mechanism governing the cleavage of the preprotein thus
far remains a conundrum and the accuracy of even the
best prediction methods for modifications to the signal
peptide region remains unpredictable. As a means to
understand the cleavage processing and the targeting
mechanism, it is necessary to understand the intricacies of
protein secretion, which include its SP and mature pep-
tide (MP) moieties. An early study of 118 eukaryotic and
32 prokaryotic sequences conducted by von Heijne [20]
provided excellent insights into the nuances of the differ-
ences between eukaryotic and bacterial SPs. Subsequent
studies [21-23] investigated SPs and MPs, either singularly
or in combination, often through gene fusion and muta-
genesis studies to observe their translocation and differen-
tial expression levels. Wide-ranging studies [23-30] were
conducted to inspect the charge bias, hydrophobicity and
various aspects related to the physical chemical properties
of SPs. Other studies examining the structural aspects of

SPase I-substrate complexes through 3D-structures and
computational models [31-34] were also carried out to
study the substrate specificity of the cleavage site and the
characteristics of the amino acid residues around the
cleavage site. With the massive increase in protein
sequences deposited to the public sequence databases
since 1999, there is a tremendous opportunity to further
explore our understanding of SPs and their mechanisms.

In this respect, we have extracted an updated, manually
curated set of 2352 eukaryotic and bacterial SPs
[described in Methods] to examine the characteristics of
the amino acid residues at the cleavage site, representing
an updated large-scale, comprehensive analysis of SPs,
based on manually curated data. Furthermore, we have
carefully analysed the residues composition in the vicinity
of the cleavage site, as a multitude of site-directed muta-
genesis studies have revealed that residues upstream and
downstream of this site affect cleavage processing [25,35].

Results
Ensuring quality of the dataset
Initiating this study with a high quality dataset is crucial.
In this study, we have restricted our investigation to 2352
secretory sequences containing amino-terminal SPs. The
curated dataset is available from Additional file 1.

During our manual investigation phase, where we plotted
scatter plots of the assembled SPs, β-hexosaminidase A
[Swiss-Prot: HEXA_PSEO7], an αβ-subunit heterodimer
lysosomal hydrolase was identified as an outlier. Tsujibo
et al. [36] indicated that the SP cleavage site is 11 aa and
added that its SP does not possess the typical tripartite fea-
tures of an SP. However, sequence comparison against
other species using Swiss-Prot database reveals lengths of
approximately 18 to 22 aa. Due to this inconsistency, this
entry was manually removed from the final dataset.

Examining eukaryotic and bacterial datasets
The cleansed data was grouped into (i) eukaryotes (Euk)
with 1877 sequences (ii) Gram-positive (Gram+) bacteria
with 168 sequences and (iii) Gram-negative (Gram-) bac-
teria with 307 sequences. From the boxplot (Figure 1), SPs
of Gram+ (SPsGram+) tend to be longer with median length
of 30 aa and display a bi-modal distribution with peaks at
29 aa and 41 aa (Figure 2) as compared to SPs of Euk
(SPsEuk) and SPs of Gram- (SPsGram-) which carry median
length of 22 aa and 23 aa respectively. Interestingly, SPsEuk
and SPsGram- exhibit somewhat similar SP length distribu-
tion although 4.5% or 14 SPsGram- extend beyond 40 aa. In
spite of the wide range of SP lengths permissible within
many groups of organisms excluding SPs of plants
(SPsPlant), the majority of the lengths within the groups
still fall in the 25th to 75th percentile, affirming the many
studies which have reported SPs as having variable length.
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The cleavage site, designated P1–P1', occurs between resi-
dues located at position -1 (the last residue of the SP or
P1, prior to the scissile peptide bond) and +1 (the first res-
idue of the MP or P1'). Figure 3 depicts the sequence logos
[37] for the three groups starting from position -35 (P35)
to position +5 (P5'), spanning contiguous segments from
the SP and MP moieties.

P1 and P3 favour small, aliphatic residues; in particular
Ala and Val, which inclination is strikingly apparent in
bacterial SPs. Glycine (Gly), serine (Ser) and threonine
(Thr) are also noticeable at these two positions in SPsEuk.
P2 of SPsEuk exhibits preferences for Leu (15.2%) and Ser
(12.0%) whereas different sets of amino acids: {Ser
(12.5%), glutamine (Gln) (11.9%), phenlyalanine (Phe)
(11.9%), Ala (11.3%)} and {Leu (17.6%), Gln (14.3%),
Phe (11.4%), His (11.4%)} are preferred by SPsGram+ and
SPsGram- respectively [see Additional file 2 for the fre-
quency matrices]. From P1' onwards, there is no obvious
pattern of amino acid conservation in SPsEuk with the
exception of slightly enhanced occurrences of Ala (13.5%)
and Gln (11.0%) at P1'.

Compared to eukaryotic SPs, the amino acid composition
is different in bacterial SPs. In the case of SPsGram+, P1' is
mostly occupied by Ala (36.3%), Asp (11.3%), Ser
(10.7%) and Glu (9.5%). P2' is populated by Thr

(14.3%), Glu (13.7%), proline (Pro) (13.1%), Ser
(10.7%) and Asp (10.7%). Lys (13.1%) is the dominant
amino acid at P3' while Pro (14.3%) and Thr (14.3%) are
preferred at P4'. Beyond P4', there are no clear patterns if
we were to compare the relative frequencies between the
adjacent positions for the same amino-acid type. Similarly
for SPsGram-, P1' is populated by Ala (41.7%), Gln
(12.1%), Asp (7.2%) and Glu (6.2%) whereas P2' is
largely distributed between Asp (17.3%), Glu (16.9%),
Pro (10.8%) and Thr (10.8%). From P3' onwards, when
we compared the relative frequencies of each amino acid
with respect to its adjacent positions and also within the
column [see Additional file 2] and (Figure 3), we could
not ascertain any discernible patterns. His, tryptophan
(Trp) and tyrosine (Tyr) are clearly under-represented in
all three groups of SPs and for all the positions (P10 to
P10') that we examined while Cysteine (Cys) is almost
nonexistent in bacterial SPs throughout the aforesaid
positions. Pro is visibly avoided in positions from P3 to
P1' but relatively prevalent at P4 and P2'. In contrast, Gly,
Ile, Thr (except at P1 in bacterial SPs), Val (except at P1),
Ser and particularly Ala (especially at P3, P1 and P1') are
ubiquitous in all the positions that we profiled.

In all three groups of SPs, acidic residues (Asp and Glu)
are pronounced from P1' onwards. Similar trends can be
seen for basic or positive-charged residues comprising

Boxplot illustrating the SPs distribution found in selected organisms and groups (Eukaryotes, Gram-positive and Gram-negative bacteria)Figure 1
Boxplot illustrating the SPs distribution found in selected organisms and groups (Eukaryotes, Gram-positive 
and Gram-negative bacteria). Mean length (■) and median (-, grey bar) values are indicated.
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Arg, Lys and His. In fact, when we group the basic and
acidic residues (see Additional file 2], we observe consist-
ent and modest occurrence of these charged residues
across all three groups of SPs from P1' onwards, inclusive
of P2 but conspicuously absent or appearing in minute
amounts at P3 and P1, most prominently in the eukaryo-
tic MPs. Basic residues, Arg and Lys are common at the n-
region of bacterial SPs.

Interestingly, when we measure the net charge of SPs and
MPs individually (Figure 4), bacterial SPs are overwhelm-
ingly positive-charged (>0) while their MPs gravitate
towards a net negative-charge bias. Median net charge for
SPsGram+ and SPsGram- are +3 and +2 respectively. Eukaryo-
tes share a somewhat similar net charge distribution in
their MPs when compared to MPsBacteria but their SP moi-
eties support a more uniform net charge distribution (+ve:
57.3%; neutral: 32.9%; -ve: 9.8%) in comparison to the
positive-charge preference in SPsBacteria.

To examine the extent of differences in amino acid com-
position between the SP and MP moieties of eukaryotes
and bacteria, we constructed scatter plots (Figure 5) of iso-
electric point (pI), aliphaticity, GRAVY and mean charge
calculations plotted against the length of SPs (■) and the
corresponding MPs (▲). In all three groups of organisms,
we observed that the overall computed values of MPs tend
to be clustered in a narrower range when compared with
SPs. For instance, based on the calculation using the
aliphatic index, MPsGram+ lie mostly between 50 to 100
within the scale whereas SPsGram+ occur anywhere
between 75 to 200. A similar trend such as this exists in
the other calculations including GRAVY and pI except for
the pI of MPsEuk. SPsEuk form two clusters based on pI cal-
culation whilst SPsGram+ and SPsGram- are predominantly
represented within single clusters with median pI values
of of 10.3 and 10.0, respectively. From hydropathicity cal-
culations, the GRAVY score of SPs are largely positive
(SPsEuk:99.7%; SPsGram+:93.5%; SPsGram-:97.7%) indicat-

Signal peptides from the three organism groups measured based on their lengthFigure 2
Signal peptides from the three organism groups measured based on their length. The Y-axis shows the frequency 
of occurrences for a specific length of signal peptide while the X-axis depicts the various lengths.
Page 4 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 12):S15 http://www.biomedcentral.com/1471-2105/9/S12/S15
ing a hydrophobic propensity. MPs, on the other hand,
show preferences towards hydrophilic nature (MPsEuk:
93.7%; MPsGram+: 94.6%; MPsGram-: 95.1%).

Discussion
The aim of this study is to uncover details about SPs,
based on their primary structure, to understand the possi-
ble correlations with their structure, variability in length
and composition and any distinct features around the
cleavage processing site. Therefore, we have included the
MP moiety in addition to the SP, since exploring the envi-
rons of the scissile bond may provide clues to the hitherto
reported features of SPs.

Inter-group differences
Our results indicate that SPsGram+ and SPsGram- share more
similarities, compared to SPsEuk. When we measured the
net charge of the SP moieties of these three groups (Figure
4), we observe that SPsEuk is distinctly different from the
bacterial SPs in that bacterial SPs overwhelmingly favour
a net positive charge bias whereas SPsEuk do not exhibit
any such inclination. Moreover, from the constructed fre-
quency occurrence matrices (shown in Additional file 2)
as well as the sequence logos (Figure 3) of these three
groups, it becomes clear that the bacterial datasets bear
much resemblance in their overall features and properties,
such as the diverse variability in their SPs primary struc-

Sequence logos [37] of eukaryotic and bacterial (Gram-positive and Gram-negative) signal and mature peptides starting from position -35 to +5Figure 3
Sequencelogos 37 of eukaryotic and bacterial (Gram-positive and Gram-negative) signal and mature peptides 
starting from posistion -35 to +5.[] The interface between position -1/+1 represents the SPase I cleavage site. The amino-
acid residues are grouped and coloured based on the R group of their side-chain. Red denotes polar acidic amino-acid residues 
(D, E); Blue denotes polar basic amino-acid residues (K, R, H); Green denotes polar uncharged amino-acid residues (C, G, N, 
Q, S, T, Y); Black denotes non-polar hydrophobic amino-acid residues (A, F, I, L, M, P, V, W).
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ture, the highly-visible P3-P1 sequence motif which
exhibits high selectivity for small, aliphatic residues and a
detectable hydrophobic-region (h-region) at the core of
SPs. Even so, underlying these commonalities are inter-
group differences, albeit subtle in some cases. For exam-
ple, mean length and h-region of SPsGram+ are considera-
bly longer than those of SPsGram- and SPsEuk. In the case of
the tripartite structure consisting of n-region (positively
charged), h-region (hydrophobic) and c-region (neutral
and polar) which are commonly reported in the literature,
our findings show that this structure is pronounced in the
bacterial SPs but somewhat ambiguous in SPsEuk, specifi-
cally in the n-region where positively-charged residues are
far less prominent. Likewise, the sequence motif at P3 and
P1 of bacterial SPs is almost dominated by Ala and Val,
while such exclusivity is not asserted in SPsEuk where a
number of other different amino acids are tolerated. These
nuances are likely attributed to the differences in their
cell-membrane structures, suggesting certain overall, min-
imal requirements at the sequence and possibly at struc-
ture level [38] as well that a SP must conform to, for
recognition and processing in the secretion pathway. Per-
haps this may account for the seemingly contrasting selec-
tivity for certain types of amino acids at certain subsites
while simultaneously maintaining a generous accommo-
dation for amino acid degeneracy at other subsites in the
SP.

Influences of the mature peptide moiety
Since the (-3, -1) rule [39] was proposed, where small,
uncharged residues are favoured at the P3 and P1 posi-
tions, the SP moiety has drawn much attention. A fair
number of ensuing reports [22,25,40-43] began to
explore the influences of the MP moiety besides the SP
and many such studies continue to furnish additional
support and evidence to advance our comprehension of
the less understood role of the amino acids at the MP moi-
ety. Numerous studies [40,44] experimented with SPs by
fusing them to an assortment of secretory and non-secre-
tory proteins for homologous and heterologous secretion
and demonstrated that the SP alone is not sufficient to
ensure the processing of secretory proteins, implying that
a section of the MP must contribute to the process. In fact,
such studies have shown that a balance between the SP
and portion of the MP moiety affects export efficiency [45-
47].

When we examine the frequencies between the adjacent
positions of ten amino acid residues from both sides of
the cleavage site (data shown in Additional file 2) viz. SP
(P10-P1) and MP (P1' – P10') for all three organism
groups, the frequencies of charged residues (counting
both positively and negatively charged residues) are rela-
tively stable. The transition value from one position to
another does not fluctuate beyond 50% of the difference
for the MP moiety. For the SP moiety (P10-P1), the fluc-
tuations are more dramatic at P5, P4 and P2 (although
less pronounced for gram-negative bacteria) while virtu-

Net charge calculations of signal and mature peptides for the three groups of organismsFigure 4
Net charge calculations of signal and mature peptides for the three groups of organisms. The net charges are 
grouped into three classes: positive (>0), neutral (= 0) and negative (<0) charge. The numbers represent the frequencies of 
which the charges are observed.
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ally absent at other positions. When we divided the
charged residues into positively and negatively charged
subgroups, we observed that a specific charged subgroup
is preferred at certain positions. Moreover, when we meas-
ured the mean charge using a sliding window of variable
size (3 to 11; data not shown), we noticed that the fluctu-
ations between the positively and negatively charged resi-
dues seem to converge and stabilize at around P8' to P10'

whereas uncharged residues maintain a uniform trend
throughout all the positions.

Approximately a quarter of the bacterial MPs and 35% of
MPsEuk bear a net positive charge, 5–6% are neutral while
the majority of MPs favour a net negative charge. This is in
stark contrast to the SP moiety which is inclined towards
a net positive charge, the trend being especially strong in
bacteria. Probably, secretory proteins maintain their

Comparison of the isoelectric point (pI), aliphatic index, GRAVY value and mean charge among the three organism groupsFigure 5
Comparison of the isoelectric point (pI), aliphatic index, GRAVY value and mean charge among the three 
organism groups. Data are represented by squares which denote SP while triangles denote MP.
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desired net charge levels within the SP and MP moieties to
enable their interaction with other players in the secretion
pathway. This can be done by varying or accommodating
diverse amino acids at selected positions while being rigid
in the choice of amino acids at others. This selectivity is
visible at some MP positions particularly those in the
vicinity of the cleavage site but not further downstream.

Kajava et al. [25] proposed that a net charge with null or
negative bias should be maintained for the first 18 amino
acid residues of the MP, to promote successful expression
of proteins in Gram-bacteria and any optimization per-
formed on the SP should include the specified region.
However, we do not observe any significant pattern
beyond P5' at the MP moiety based on our results (Figure
1, Figure 3 and Additional file 2) to support this proposal,
possibly because the first 18 residues could include several
combinations of SP and MP moieties. Moreover, if we
compare the relative frequencies of adjacent positions at
the MP moieties, they appear to be rather stable. Our
results are in general agreement with other studies that
include the MP moiety, but the extent of the region to be
included remains debatable. The varying results from the
different studies make it difficult to compare and obtain
consensus. Furthermore, the paucity of crystal structures
solved to date (only three SPase I-related entries are found
in Protein Data Bank [48]) adds to the challenge of deci-
phering the extent of MP involvement in the secretory
pathway.

Recognition of the cleavage site and its flanking region
From our dataset, out of 1877 eukaryotic, 168 gram-posi-
tive and 307 gram-negative sequences, the occurrence fre-
quencies of the consensus sequence motif Ala-x-Ala at P3
and P1 are 14.5%, 47.0% and 58.9% respectively. This is
much lower than the frequencies for the individual posi-
tion columns of Ala (Additional file 2), implying that the
sampling space for cleavage site recognition is not limited
to the Ala-x-Ala motif. In our previous study [31] where
we modeled the 3D-structure of E. coli SPase I substrate-
complex using computational approach, our model sug-
gested that amino acid residues upstream and down-
stream of the cleavage site may influence substrate
cleavage. The various subsites identified in that modeling
study suggest amino acids of certain properties such as the
nature, size and charge of the side-chain, can be accepted
at these pockets. If we scrutinize these flanking residues
further in the light of our current results, more significant
patterns become prominent. Pro is implicated as a struc-
ture disruptor due to its steric hindrance from its cyclic
side-chain and inability to form a hydrogen bond that sta-
bilizes a helix [49]. Pro is often found at the end of α-hel-
ices, in turns or loops but produces a bend when it
appears in the middle of an α-helix. Pro is markedly disfa-
voured from P3 to P1' but it is comparatively prevalent at

P4 and P2' (Additional file 2). The absence of Pro at these
positions is consistent with reports on impaired function
or inhibition of SPase I with Pro appearing at this position
[50,51]. Glycine, another helix-breaking residue, is also
spotted in modest amount at P5 and P4. Karamyshev et al.
have shown that a β-turn is present at the P5 to P1 region
of SPase-substrate complex [52]; our model [31] also gen-
erated a similar structure, which is consistent with the res-
idue occurrence patterns in these positions (Additional
file 2). The canonical Ala-x-Ala sequence motif for the SP
cleavage site is only able to account for approximately half
of the recognition sites. By considering these flanking res-
idues, many non-canonical cleavage sites can be
accounted for. These features working in concert provide
the secretory machinery flexibility, versatility and perhaps
accuracy to enact the signal peptide recognition processes.

Conclusion
In this study, we have compiled a manually curated set of
experimentally determined amino-terminal SP-contain-
ing sequences and analysed the cleavage sites and flanking
regions of three organism groups namely eukaryote and
bacteria (gram-positive and gram-negative). Our findings
show that the three groups share several similarities in
general, but display distinctive features upon examination
in terms of their amino acid composition and frequency
of residue occurrence, characterized by various physico-
chemical properties. Thus, analysis or prediction of their
sequences should be separated and treated as distinct
groups. Further, we survey the amino acid residues sur-
rounding the cleavage processing site and conclude that
the domain recognized by the SPase I extends into MP to
a limited extent. These flanking residues possibly influ-
ence the cleavage processing and constitute non-canonical
cleavage sites.

Our large-scale analysis work uses substrate proteins
derived from a variety of organisms and can help in defin-
ing more accurate prediction tools for the recognition of
SPs and the identification of their cleavage sites. Our find-
ings are also applicable to the design of more efficient SPs
used in heterologous protein secretion.

Methods
Dataset manually curated and extracted from SPdb
We assembled a preliminary dataset containing 2512
sequences using the manually-curated Signal Peptide
database (SPdb) Release 5.1 [53]. SPdb contains
sequences which were reported with experimentally-veri-
fied SP cleavage sites as opposed to computational predic-
tion, classified "putative" in several protein sequence and
signal peptide data resources. The data in SPdb were
extracted from the Swiss-Prot [54] Release 55.0 and EMBL
[55] Release 93 sequence databases, based on a set of fil-
tering criteria, described in detail elsewhere [53]. Viral and
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archaeal SPs were excluded as there were too few to render
any meaningful analysis. Sequences that contain ambigu-
ous positions or non-standard amino acids as identified
by the characters 'X', 'Z' or 'U' found in their MP moiety
were discarded. SPase II-cleaved lipoprotein SPs [56] and
SPs of Twin-arginine translocation (Tat) proteins [57]
were also deliberately omitted from this study since these
SPs rely on different mechanism for processing their cleav-
age sites. In the process of assembling the dataset, we
investigated the need for redundancy reduction [44,58] as
we were concerned about the bias or over-representation
of certain classes of sequences in the dataset. CD-HIT (ver-
sion 3.1.1) [59] was used to cluster the sequences and
removed sequences with sequence identities 100% in
their SP moiety as studies [10-12,35] have shown that
even a single substitution in amino acid could result in a
pronounced effect.

The dataset was split into two sub-datasets based on the
sequence moieties (i) SP and (ii) MP before being clus-
tered with global sequence identity threshold set at 0.9;
word size of 5 and other parameters assume the program's
default. In each cluster, homologous sequences with
100% sequence identity in the SP moiety were discarded.
Identical full-length (SP+MP) sequences were implicitly
removed as a result. The reduced dataset of 2352 SPs-con-
taining sequences were further categorized into three
groups namely (a) Gram+ bacteria (Firmicutes, Actinobac-
teria, Deinococcus, Fibrobacteres, Thermotogae); (b) Gram-
(Proteobacteria, Spirochetes, Bacteroidetes, Cyanobacteria,
Aquificae, Chlamydiae) and (c) eukaryotes (see additional
file 2) as the SPs of these three groups display distinct fea-
tures [2,5]. Subsequently, we computed the physico-
chemical properties of the SP and MP moieties for every
sequence using ExPASy ProtPram [60]. The calculations
include molecular weight, theoretical isoelectric point
(pI), aliphatic index, GRand AVerage of hydropathY
(GRAVY) and absolute mean charge.

Calculations of the physicochemical properties
Size dimension is assumed to influence the bending of a
peptide chain where the size of an amino acid is deter-
mined by the length and bulkiness of its side chain [24].
But since molecular weight (MW) of an amino acid is eas-
ier to measure and it is roughly proportional to its size, we
thus use MW as an approximation.

pI is defined as the pH value where a given protein has no
net charge and it often has the lowest solubility. Different
algorithms exist to calculate pI rendering different values
due to the different set of pKa values used. The pKa values
adopted in this study were described by Bjellqvist et al.
[61].

Aliphatic index [62] measures the relative volume occu-
pied by aliphatic side chains (Ala, Val, Ile and Leu) of a
protein according to the formula:

AliphaticIndex = XA + a*XV + b*(XI + XL)

where XA (Ala), XV (Val), XI (Ile) and XL (Leu) are mole per-
cent (100 * mole fraction) of the respective amino acid
residue. The coefficients a and b are the relative volume of
Val side chain (a = 2.9) and of Leu/Ile side chains (b = 3.9)
compared to the side chain of Ala.

GRAVY [63] is an estimation of the overall hydrophobic-
ity of a protein, but it does not take into account of inter-
action or positional effect of adjacent residues. Given a
protein sequence S, its GRAVY score is computed as:

where i is one of the 20 standard amino acids; fi is the rel-
ative frequency of i in S; αi is the hydropathy value of i
according to the scale propounded by Kyte and Doolittle
[63] and n is the total number of residues in the sequence.

Net charge is the algebraic sum of all the charged amino-
acid residues present in SPs and MPs calculated using the
equation:

The 20 standard amino acids are represented by i and fi
represents the relative frequencies of occurrences of the
amino acid i. Positively-charged residues (arginine (Arg),
histidine (His) and lysine (Lys)) are assigned αi = 1
whereas negatively-charged residues (aspartic acid (Asp)
and glutamic acid (Glu) are set as αi = -1. All other amino
acid residues are assigned αi.= 0.

The iep program, part of the EMBOSS bioinformatics
package (version 2.9.0) [64] was used to calculate the
mean charge at neutral pH. The absolute value of the
mean charge is further divided by the length of the
polypeptide.

Mean hydrophobicity is defined as the arithmetic mean of
the normalized hydrophobicity values of all the residues
in the polypeptide where hydrophobicity was calculated
using as defined by Kyte and Doolittle [63].
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Additional file 1
Curated dataset used to perform this analysis. 2352 secretory sequences 
containing amino-terminal SPs extracted and filtered from SPdb depos-
ited into three worksheets, arranged according to the three organism 
groups namely eukaryotes, Gram-positive and Gram-negative bacteria. 
Each worksheet contains 7 columns of data namely Entry_name, 
Description (of the protein), Organism, SP_Length (length of the sig-
nal peptide), Prot_length (length of the protein sequence), Signal Pep-
tide (signal peptide sequence), Mature Peptide (mature peptide starting 
from P1' and stops at the first 30 residues).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-S12-S15-S1.xls]

Additional file 2
Frequency matrix for eukaryotes and bacteria datasets. Amino acid fre-
quency matrix for the signal peptides and mature peptides of eukaryotes 
and bacteria. Percentage occupancy values from P10 to P10' [-10, +10] 
are shown, with the cleavage site in dotted line at -1/+1. Significant high 
and low values, in bold font are highlighted:grey: >10%; black: most pre-
ferred residue(s); cyan: charged residue group and green: aliphatic group.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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