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Summary 

NAD+ glycohydrolase (NADase) from Neurospora crassa is a glycoprotein 

that catalyzes the hydrolysis of NAD+ to ADP-ribose and nicotinamide. It is used as 

one of the reagents in the cycling assay which functions to remove endogenous NAD+. 

Conidia were found to have higher NADase activities than mycelia. Conidial NADase 

is different from mycelial NADase in terms of their optimum pH, Km and 

carbohydrate moiety. Conidial NADase has a Km of 280 µM while the Km of mycelial 

NADase is 500 µM. Optimum pH for conidial NADase is pH 7. The mycelia NADase 

is active over a wide range of pH. N-linked deglycosylation reduced the size of the 

protein from 42 kDa to 32 kDa which suggested that the carbohydrate contributes 20% 

of the molecular mass. The native form of the protein is predominantly a dimer of 75 

kDa without interdisulfide bond. Conidial NADase was purified using affinity 

columns, either cibacron blue 3GA agarose or blue sepharose CL-6B. The sequence of 

NADase was revealed and identified by mass spectrometry analysis. The DNA 

sequence was cloned into intracellularly expression vector, pPICZB and secretion 

expression vector, pPICZαA. The recombinant protein was expressed in the 

methylotropic yeast, Pichia pastoris. The extracellularly expressed protein has higher 

molecular weight than intracellularly expressed protein due to glycosylation. The 

native recombinant protein is a dimer or trimer bonded together by interdisulfide bond. 

The enzyme activity was confirmed by in-gel substrate staining and fluorimetric 

NADase assay. The recombinant proteins were applied in the cycling assay for NAD+. 

It has been shown that the recombinant proteins are effective in removing NAD+. 
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1. INTRODUCTION 
 
1.1 Overview of NAD+ Metabolism and NAD+ Glycohydrolase 

NAD+ is a molecule that has central roles in cellular metabolism and energy 

production. It acts as a coenzyme in many redox reactions in cells, including those in 

glycolysis and in citric acid cycle of cellular respiration. Besides, it also participates in 

non-oxidation reduction reaction which involves enzymatic transfer of ADP-ribose of 

NAD+. Tryptophan is the de novo precursor of NAD+ in almost all eukaryotes. The de 

novo synthesis and salvage pathway of NAD+ involves several enzymes as shown in 

Figure 1.1.  

The synthesis of NAD+ has been associated with diseases. For example, it has 

been shown that axonopathy or Wallerian degeneration (nerve fiber damage) is always 

accompanied by ATP and NAD+ depletion. Mice which are resistance to Wallerian 

degeneration (wlds), protect neuronal NAD+ levels (Wang et. al., 2005). Increasing 

NAD+ levels in nucleus, cytoplasm or mitochondria protects against the 

neurodegeneration (Belenky et. al., 2007). Besides, NAD+ also shows a protective role 

against Candida glabrata during urinary tract infection. C. glabrata is nicotinic acid 

auxotroph (Domergue et. al., 2005). Under the condition of NAD+ depletion, genes 

that encode adhesins (EPA1, EPA6 and EPA7) are transcribed as a result of 

derepression activity by NAD+-dependent Sir2 (Gallo et. al., 2004). In addition, NAD+ 

synthesis is also associated with aging and regulation of cholesterol levels (Belenky et. 

al., 2007).     

The abundance of the NAD+ pools in the cells depends on the enzymes that 

catalyze the synthesis of NAD+ and location inside the cells. In addition, the 
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Figure 1.1. De novo synthesis and salvage pathway of NAD+. De novo synthesis 
begins with the conversion of tryptophan to N-formylkynurenine by either 
indoleamine dioxygenase (Ido) or tryptophan dioxygenase (Tdo). Kynurenine is then 
formed by afmid. Kynurenine monooxygenase (kmo) converts kynurenine to 3-
hydroxykynurenine which is the substrate of kynureninase (kynu) to form 3-
hydroxyanthranilate. This is followed by the formation of quinolate and then NaMN. 
NaMN is adenylylated by Nmnat1, Nmant2 and Nmnat3 to form nicotinic acid 
adenine dinucleotide (NaAD). It is then converted into NAD+ by glutamine-dependent 
NAD+ synthetase (Nadsyn1). NAD+ consuming enzymes like NADase break down the 
substrate into nicotinamide (Nam) and ADP-ribose. Nam is salvaged by Nam 
phosphoribosyltransferase to form nicotinamide mononucleotide (NMN) which can 
also be adenylylated to form NAD+. Nicotinic acid (NA) and nicotinamide riboside 
(NR) ingested from diet are salvaged by Na phosphoribosyltransferase (Naprt) and 
nicotinamide riboside kinases (Nrk1 and Nrk2) respectively. (Pictured adapted from 
Belenky et. al., 2007)    
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abundance of NAD+ is also controlled by the enzymes that break down the NAD+. 

There are many classes of enzymes that cleave NAD+ to generate nicotinamide 

and ADP-ribosyl product such as mono(ADP-ribose) transferases, poly(ADP-ribose) 

transferases, sirtuins and  ADP-ribose cyclases. Collectively, these enzymes are called 

NAD+-dependent ADP-ribosyl transferase (Sauve, 2006). NAD+ glycohydrolase or 

NADase (E.C 3.2.2.5) belongs to the class of mono(ADP-ribose) transferase. It is 

distinguished from the other classes of ADP-ribosyltransferases by their ability to use 

water rather than simple amino acid as the acceptor of ADP-ribose and resulting in 

free ADP-ribose (Jacobson et. al., 1995). It hydrolyzes the bond between nicotinamide 

and ribose moieties in NAD+. The reaction equation is as follow: 

  NAD+ + H2O      NADase           Nicotinamide + ADP-ribose + H+ 

NADase can be found on various types of organisms, ranging from 

microorganisms to mammals (Cho et. al., 1998). The properties of NADase may vary 

widely among species and from tissue to tissue. Differences in the purified NADase 

from several organisms are found with respect to molecular weight, subunit 

composition, specific activity, and Km value and transglycosidase activity as shown in 

Table 1.1 (Kim et. al., 1993). The microorganism NADase is different from 

mammalian NADase in such a way that microorganism NADases are readily soluble 

(Everse et. al., 1980; Gopinathan et. al., 1964; Menegus and Pace, 1980; Stine, 1969) 

while mammalian NADases are non-soluble membrane bound enzymes (Alivisatos et. 

al., 1956; De wolf et. al., 1985; Kim et. al., 1988; Muller et. al., 1983; Pekala and 

Anderson, 1978). The functional significance of NADase remains a puzzle even 

 3



though the enzyme from different sources has been studied for many decades. 

Consequently, NADase has received little attention.  

Nicotinamide and ADP-ribose are the products generated from NADase. 

Nicotinamide is also known as Vitamin B3. Its role remains uncertain. ADP-ribose 

serves as a substrate for ADP-ribosylation. MonoADP-ribosylation was first found on 

diphtheria toxin (Honjo et. al., 1968). MonoADP-ribosylation of several proteins has 

been documented to cause significant alterations in function such as inactivation of the 

protein (Ziegler et. al., 1997). For example in the presence of diphtheria toxin, ADP-

ribose from NAD+ was transferred to aminoacyl transferase II resulting in the 

inactivation of this enzyme (Honjo et. al., 1968). Poly(ADP-ribosylation) is involved 

in a variety of fundamental processes aimed at maintenance of the functional integrity 

of the genome. The function of poly(ADP-ribose) was first reported by Shall and 

coworkers showing the involvement of poly(ADP-ribose) in DNA excision repair 

especially in the ligation step (Durkacz et. al., 1980). The poly-ADP-ribose levels 

have been shown to increase 500 folds after DNA damage (D’Amours et. al., 1999). 

In addition to DNA damage response, it influences processes such as recombination, 

mitosis, gene expression, differentiation and caspase-independent cell death (Ziegler, 

2000; Gagné et. al., 2006).  

 

 

 

 

 

 4



Table 1.1. Comparison of purified NADase from several sources. (Adapted from Kim 
et. al., 1993) 
 

Source 
Molecular 

weight 
(kDa) 

Subunit 
Mr  

(kDa) 

Specific  
activity 

(μmol/min/
mg) 

Km for 
NAD 
(μM) 

Optimal 
pH 

Transglycosidase 
activity 

Rabbit 
erythrocytes 65 65 23 43 7.0 No 

Snake 
Venom 124 62 1380 14 7.5 Yes 

Bovine 
thyroid 120 ND* 1.3 400 7.2 Yes 

Calf spleen 24 ND 9.6 56 7.4 Yes 
Bull semen 36 ND 33 320 7.5 No 

Bacillus 
subtilis 26.2 26.2 0.82 550 7.5 No 

* ND, not described 
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1.1.1 Mammalian NADases 

NADases from various mammalian sources, such as pig brain (Swislocki et. al., 

1976), calf spleen (Schuber et. al., 1976), bull semen (Anderson et. al., 1980), snake 

venom (Yost et. al., 1981), bovine thyroid (De Wolf et. al. 1985), rabbit erythrocytes 

(Kim et. al., 1993) and bovine liver (Ziegler et. al., 1997) have been isolated and 

purified. The richest sources of NADases are generally the spleen, brain and liver 

(Price and Pekala, 1987). The catalytic properties of these enzymes appear closely 

related; however, significant differences were found among their physical properties 

(Everse et. al., 1975). Molecular weights of these NADases range from 24,000 to 

124,000 and some of the enzymes show multiple forms that are enzymatically active. 

Several mammalian NADases have been shown to catalyze a transglycosidation 

reaction, frequently referred to as the pyridine base-exchange reaction (Yost et. al., 

1981, Augustin et. al., 2000) as shown in Table 1.1. The property of transglycosidase 

has been used for the preparation of pyridinium analogs of NAD(P)+ (Price and Pekala, 

1987; Anderson, 1982) 

Mammalian NADases are generally found in association with the plasma 

membranes, therefore insoluble, and inhibited by nicotinamide (Pekala and Anderson, 

1978; Yost and Anderson, 1981; Kim et. al., 1993). Most mammalian NADase 

activity is associated with the membrane and directed toward the extracellular 

environment. The reason for NADase localization on the exterior of the membrane can 

be speculated on the basis of the findings that extracellular NAD+, which is entirely 

impermeable to the membrane, can  be converted to ADPR and nicotinamide, which 

then may be transported or diffused (Kim et. al., 1993). 
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In addition to NADase activity, many mammalian NADases also have ADP-

ribosyl cyclase activity which is able to convert NAD+ to cyclic ADP-ribose (cADPR) 

and nicotinamide in a 1:1 stoichiometry and cADPR hydrolase activity (Figure 1.2). 

ADP-ribosyl cyclase has been first purified from the ovotestis of Aplysia california 

(Hellmich and Strumwasser, 1991). However, the purified Aplysia cyclase generates 

only cADPR rather than ADP-ribose (Lee and Aarhus, 1991; Hellmich and 

Strumwasser, 1991). In invertebrates, cADPR is exclusively generated by ADP-

ribosyl cyclase from NAD+ and the cyclase is a soluble enzyme. cADPR formation 

also has been found out in various mammalian tissues. In mammalian tissues, no 

equivalent enzyme could be detected. But, CD38, a mammalian NADase, shares the 

sequence homology with the cyclase from A. california (States et. al., 1992).   

CD38, a 45-kDa type II transmembrane glycoprotein (Zilber et. al., 2000), is 

predominantly a NADase. It functions as a surface antigen (Ziegler, 2000) found on 

the plasma membranes of thymocytes, resting macrophages, activated B- and T-cells, 

and on many tumours. Like most of the any other NADases, CD38 is a multifunctional 

ecto-enzyme that has NADase activity, cyclase activity and cADPR hydrolase activity.  

Like any other mammalian NADases, it produces mainly ADPR with little amounts of 

cADPR. The cyclase and NADase activity of CD38 share a common mechanism 

involving the transient formation of covalent ADP-ribosyl cyclase complex. 

Dissociation of this intermediate to yield either cADPR or ADP may depend on the 

availability of water molecule at the active site (De Flora et. al., 1997). Mammalian 

NADases are able to consume NAD+ analogues as substrate such as NGD+. NGD+ is 

converted into cGDPR in high yield while cADPR conversion is less than 2% of the 
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reaction products as the N7-position in guanine is more favorable than N1-position in 

adenine for cyclization  formation (Muller-Steffner et. al., 1997 ). 

 

1.1.2 Neurospora crassa NADase 

NADase was first detected in Neurospora crassa by Kaplan et. al. (1951) and 

has been associated with the process of macroconidiation. It is an ectoenzyme 

(Zalokar and Cochrane, 1956). NADase appears in high concentrations in Neurospora 

crassa grown on zinc-deficient medium (Nason et. al., 1950; Kaplan et. al., 1951). 

This increase is from 10- to 20-fold when compared to N. crassa grown on medium 

containing zinc (Nason et. al., 1950).  NADase has long been isolated extensively 

from mycelium mats of N. crassa for its enzymatic reaction studies. 

 N. crassa NADase has a relative molecular weight of 38 kDa on SDS-PAGE 

under reducing conditions. The native form NADase migrates at a relative molecular 

weight of 70 kDa in gel filtration. This indicates that this enzyme can be associated as 

a dimer under non-reducing conditions (Cho et. al., 1998). In addition, it is active in a 

wide range of pH. The activity begins to fall off only below pH 3 and above pH 9 

(Kaplan, 1951). 

 In additional to mycelial NADase, NADase from conidia has been purified and 

characterized by Menegus and Pace (1981). They are the first and only one group who 

has ever looked into the conidial NADase. Conidial NADase has a molecular weight 

of 33 kDa, similar to that of mycelial NADase (38 kDa). But, they have shown that 

conidial NADase is different from mycelial NADase grown in “zinc-deficient” 

medium. The turnover number of conidial NADase (1.6 x 106) is higher than the 
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turnover number of mycelial NADase (5 x 103). Besides, Conidial NADase has lower 

hexose content compared to mycelial NADase. Hyrophobic character of conidial 

NAdase is not noticed in mycelial NADase. 

So far, only one enzyme of several studied, NADase (EC 3.2.2.5) from N. 

crassa, has failed to produce cADPR. In addition, they do not catalyze the transfer of 

nicotinamide or some other pyridine analog to the ADPR moiety of NAD+. This 

enzyme is designated as classical NAD+ glycohydrolase (Reviewed by Mathias, 2000).  

In contrast to mammalian NADases, NADases from this fungus is readily 

soluble and not sensitive to nicotinamide. NADase from N. crassa is only inhibited by 

nicotinamide at high concentrations which is about 0.1 M. The inhibition of 

nicotinamide is competitive in contrast to the noncompetitive inhibition observed in 

the bovine spleen system.  The enzyme operated by a different mechanism from that 

of the animal tissue NADase in such a way that it does not form NAD+ analogs.  

Even though the protein has long been studied and characterized, the sequence 

of N. crassa NADase is not known yet. Neson et. al. (1975) has revealed that the 

NADase gene, nada, is localized on linkage group IV by developing a screening 

method for rapid identification of N. crassa mutants that are deficient in NADase and 

NADPase activities. They have shown that mutations at nada locus did not affect the 

expression of NADase during cell differentiation and general effect on NAD 

catabolism.  
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1.2 cADP-ribose and Ca2+ Signalling 

 The NAD+ metabolite, cADPR was first discovered in 1987 as a Ca2+ 

mobilizing molecule in sea urchin eggs (Clapper et. al., 1987). The cADPR Ca2+ 

signalling pathway is different from inositol 1,4,5-triphosphate (IP3) Ca2+ signalling 

pathway. cADPR appears not to activate IP3 receptors. In addition, cADPR-dependent 

pathway is insensitive to inhibition by heparin, a competitive inhibitor of IP3 receptor 

and not inhibited by desensitization of IP3 pathway by increasing IP3 concentrations 

(Lee et. al., 1995). cADPR-mediated Ca2+ release is an important intracellular 

signalling system in living organisms such as protozoa, plants, invertebrates and 

vertebrates. Changes in intracellular calcium homeostasis occur in response to 

extracellular stimuli such as hormones, mediators, cell-cell contacts or physical stimuli.  

 Up to date, there are 4 models have been proposed to explain how the cADPR 

is synthesized from ADP-ribosyl cyclase. The first model, proposed by Lee, suggests 

that ADP-ribosyl cyclase A. california binds NAD+ in a folded conformation, releases 

nicotinamide by forming an ADP-ribosyl intermediate and cyclizes the molecule by 

forming the intramolecular bond between the nitrogen atom 1 of the adenine and the 

anomeric carbon atom 1 of the second molecule (Lee, 1999). Second model explains 

that the sea urchin eggs ADP-ribosyl cyclase and neurosecretary PC12 cells are 

activated by nitric oxide which in turn activates guanylyl cyclase (Graeff et. al., 1998; 

Galione et. al., 1993; Willmott et. al., 1996; Clementi et. al., 1996). cGMP produced 

activates the cGMP-dependent protein kinase which then phosphorylates ADP-ribosyl 

cyclase. Third model suggest that the ADP-ribosyl cyclase from human Jurkat T cells 

is activated in response to Tyr-phosphorylation as a result of activation of T cell 
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receptor/CD3 complex (Guse et. al., 1999). Fourth model involves the synthesis of 

cADPR by human CD 38 (Guse, 2000). CD 38 is located on the plasma membrane 

and surface of immune cells. Upon the binding of NAD+ to CD 38, nicotinamide is 

released and an enzyme-bound ADP-ribose intermediate is formed. The anomeric 

carbon of the intermediate is in an activated state. N1 of adenine ring would react with 

the activated anomeric carbon to form cADPR (Metha and Malavasi, 2000)     

There is pharmacological evidence showing that Ca2+ is released from 

intracellular Ca2+ pool via ryanodine receptor (RyR), mainly type 2 and 3 RyR (Guse, 

2000). For example, the calcium-induced and caffeine-induced Ca2+ release are 

potentiated by cADPR (Lee, 1993) while ruthenium red and high Mg2+ concentrations 

inhibit cADPR-mediated Ca2+-release (Galione et. al., 1993; Guse et. al., 1996). 

However, the exact mechanism of how cADPR exerts its Ca2+-release effect inside the 

cells is not fully understood. Possibilities are direct binding of cADPR to RyR or via a 

separate cADPR binding protein (Noguchi et. al., 1997; Tang et. al., 2002). RyR is 

sensitized by cADPR to Ca2+ activation and hence promoting calcium-induced 

calcium-release.  

In pancreatic cells, glucose induces an increase cADPR as a result of an 

increase in ATP. ATP is shown to exhibit inhibitory effect on cADPR hydrolase 

activity of CD38 (Kato et. al., 1995). Extracellular NAD+ is converted into cADPR 

and transported into cells by CD38 (Guida et. al., 2002). Thus, CD38 acts as an 

enzyme and transporter. Subsequently, cADPR stimulates the Ca2+ release and insulin 

secretion (Takasawa et. al., 1998). Autoantibodies against CD38 found in patients 
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with non-insulin-dependent diabetes mellitus implies that diseases may be related to 

the cADPR Ca2+ signalling system.  

 

1.3 N. crassa NADase in Cycling Assay 

To investigate roles and functions of cADPR in various tissues, it is important 

to monitor cellular levels of cADPR under various physiological conditions. Six 

strategies have been developed in order to measure cADPR in tissue levels. They 

include thin-layer chromatography (Galione et. al.,1993; Higashida et. al., 1997), 

bioassays that exploit the ability of cADPR in cell extracts to mobilize calcium (Wu et. 

al., 1997), radioimmunoassay (RIA) (Takahashi et. al., 1995), high-performance 

liquid chromatography methods (Da Silva et. al., 1998), radioreceptor assay (Reyes-

Harde et. al., 1999) and cycling assay(Graeff and Lee, 2002). 

Among the strategies developed, cycling assay (Figure 1.3) is the most 

sensitive assay. It can detect the cellular cADPR with nanomolar sensitivity, as low as 

50 fmol. It has advantages over other assays as all components of the assay are 

commercially available and the sensitivity of cycling assay can be further increased to 

sub-nanomolar range by prolonging the cycling reaction. In addition, unlike RIA, the 

assay does not require the synthesis of radioactive and purification of radioactive 

cADPR nor the antibodies against cADPR. 

In this assay, NAD+ is produced as a result of conversion from nicotinamide 

and cADPR by ADP-ribosyl cyclase under high concentrations of nicotinamide. 

NAD+ is then coupled to cycling reaction under enzymatic reaction of alcohol 

dehydrogenase and diaphorase. One molecule of fluorescent resozurin is generated 
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when NAD+ goes through one cycle of cycling reaction. Hence, endogenous 

concentrations of cADPR in nanomolar range can be measured. To remove 

endogenous NAD+, the sample is pre-treated with N. crassa NADase. (Graeff and Lee, 

2002).  

N. crassa NADase is used instead of NADases from other organisms because 

most mammalian NADases are multifunctional enzymes which also catalyze ADP-

ribosyl cyclase activity as described earlier. This will interfere with the cADPR level 

determinations in cycling assay. There are other pure mammalian NADases but they 

are not readily soluble which causes a problem in removing endogenous NAD+ in 

solution assay.  
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Figure 1.3. Cycling assay for cADPR 
Abbreviations used: AD, alcohol dehydrogenase, hv, fluorescence light (Adapted from 
Graeff and Lee, 2002) 
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1.4 Neurospora crassa 

N. crassa is a multicellular filamentous fungus of phylum Ascomycota.  The 

genus name means “nerve spores”. This is because the characteristic striations on the 

spores resemble axons (http://en.wikipedia.org/wiki/Neurospora_crassa). Its asexual 

life cycle is very simple which consists of three different cell types, vegetative hyphae, 

aerial hyphae and asexual spores called conidia as shown in Figure 1.4 (Menegus and 

Pace, 1981). Mycelium mats give rise to aerial hyphae which later produce conidia. 

 N. crassa can be grown under conditions that either promote vegetative growth 

or induce conidiation. When the culture is grown in liquid medium with continuous 

agitation, only vegetative growth occurs. However, growing the culture on solid 

surface or when the mycelia are harvested onto filter paper and incubated under 

aerobic conditions, conidiation is promoted possibly in response to aerobiosis and 

dessication or nutrient limitation (Berlin and Yanofsky, 1985). Conidiation can be 

completed within 12-14 hr (Springer and Yanofsky, 1989). Upon induction, aerial 

hyphae growth occurs and this is followed by apical budding formation to form minor 

constriction chains. Continual apical budding forms major constrictions chains which 

have constrictions between adjacent cells. Nuclei migrate into proconidial chains and 

cell walls are formed between adjacent proconidia. This is the pre-mature conidia. 

After each of these cells become mature, they are free conidium (Springer, 1993).  

 N. crassa has been first documented in 1843 as a contaminant in bakeries in 

Paris and been developed as an experimental organism in 1920s (Shear and Dodge, 

1927; Lindergren, 1936). One of the well-known examples is done by Beadle and 

Tatum for their experiments leading to “one gene one enzyme” hypothesis (Beadle 
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and Tatum, 1941). They mutated Neurospora by exposing the fungus to X-rays. The 

experiment showed that mutation of a particular gene causes the defect of a particular 

enzyme in metabolic pathways. They were awarded the Nobel Prize in 1958 for their 

“one gene one enzyme” proposal. In the later part of 20th century, it has been widely 

used as a eukaryotic model organism in providing the fundamental understanding of 

genome defence systems, DNA methylation, mitochondrial protein import, circadian 

rhythms, post-transcriptional gene silencing and DNA repair (Davis, 2000). It is also 

used to study cellular differentiation and development in addition to other aspects of 

eukaryotic biology (Davis and Perkins, 2002).   

N. crassa has a genome of some 40 Mb in seven chromosomes (linkage group 

LG I to LG VII) (Mannhaupt et. al., 2003). Genome sequencing started on cosmid and 

BAC clones ordered along the individual chromosomes (Aign et. al., 2001). At a later 

stage, a whole genome shotgun approach was initiated by whitehead Genome Center, 

Cambrigde, MA and it has been completely sequenced in 2003 (Galagan et. al., 2003). 

This is the first complete genome sequence of developmentally complex filamentous 

fungus.   
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1.5 Pichia pastoris 

1.5.1 Background 

Pichia pastoris is methylotropic yeast. It can be grown in methanol using it as 

the sole carbon source in the absence of glucose. Methylotrophic bacteria have been 

known since the beginning of 20th century and have been used extensively in 1960s to 

produce single-cell-protein from methanol. It was relatively easy to culture and grew 

well on methanol. During the time, several companies like ICI and Hoechst developed 

single-cell-protein processes based on methylotrophic bacteria. P. pastoris was not 

known until 1969. It was reported by Ogata et. al. (1969) and was initially used by 

Phillips Petroleum Company to produce single-cell-protein production in the early of 

1970s. 

When the yeast is grown on methanol, alcohol oxidase (AO) is the most 

abundant protein in the cell and it can be expressed up to 35% of total cellular proteins 

(Cauderc and Baratti, 1980).  AO is the first enzyme involved in methanol metabolism 

pathway. It converts methanol into formaldehyde and hydrogen peroxide in the 

presence of oxygen as shown in Figure 1.5. The expression of AO is tightly regulated 

by the carbon source. When the yeast cells are cultured in media containing glycerol 

or ethanol, AO level in the cell is not detectable. AO is tightly regulated at 

transcriptional level (Roa and Blobel, 1983; Roggenkamp et. al. 1984). The promoter 

of AO was identified and isolated by Ellis and co-worker (1985). Following this, 

Cregg and co-worker (1985) has successfully developed a transformation system using 

Pichia pastoris as a host.  
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The yeast is now widely used as a host to produce a variety of recombinant 

proteins in both research and industrial use (Table 1.2). The advantages of using 

Pichia expression system include: (1) molecular genetic manipulations are relatively 

simple and easy, (2) recombinants proteins can be expressed at high level either 

intracellularly or extracellularly, (3) it can carry out protein modifications such as 

glycosylation, disulfide-bond formation and proteolysis (Cregg et. al., 2000), (4) it has 

strong inducible promoter known as alcohol oxidase 1 (AOX1) promoter which can 

regulate the expression of foreign protein, (5) it is insensitive to oxygen limitation, (6) 

it can be grown in simple culture media with very few endogenous proteins secreted 

out, thus simplifying the purification and recovery of proteins, (7) the media for 

growing cultures (containing glycerol, methanol, biotin, salts and trace elements) are 

economical and well-defined which is ideal for large scale production. 

 

1.5.2 The Pichia Expression System 

The primary features that are unique to P. pastoris expression system are a 

direct consequence of the inherent transcriptional properties of the promoter 

commonly used to control foreign gene expression. The most frequently used 

promoter to control foreign gene expression is AOX1 gene promoter. Under the 

control of AOX1 gene promoter, foreign gene expression can be “switched-off” by 

growing the cells on a non-methanolic carbon source and “switched-on” by shifting to 

methanol.  

P. pastoris strains can be divided into several groups: 1) wild type strains (X-

33, Y-1134), 2) auxotrophic mutants that are defective in histidinol dehydrogenase 
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Table 1.2. Heterologous proteins expressed by P. pastoris. 
Intracellular proteins Secreted proteins 

Tumor necrosis factor (Sreekrishna et. al., 

1989) 
Invertase (Tschopp et. al., 1987) 

β-galactosidase (Cregg and Madden, 1988) Bovine lysozyme (Digan et. al., 1989) 

Hepatitis B surface antigen (Cregg et. al., 

1987) 

Mouse epidermal growth factor ( Clare et. al., 

1991) 

Tetanus toxin fragment C (Clare et. al., 1991) Aprotinin analog (Vedvick et. al., 1991) 

Pertactin (Romanos et. al., 1991) 
Aplysia ADP-ribosyl cyclase (Munshi and 

Lee, 1997) 

Human serum albumin (Wegner, 1990) Human Insulin (Wang et. al., 2001) 
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(GS115), 3) mutants that are defective in genes involved in methanol utilization 

(KM71, MC 100-3), 4) protease-deficient strains (SMD1163, SMD1165, SMD1168) 

(Higgins and Cregg, 1998). The wild type yeast is wild-type in regard to the AOX1 

and AOX2 genes. They are able to grow on methanol and metabolize methanol at 

normal rate. These are methanol utilization plus (Mut+) strains. The AOX1 gene of 

KM71 strain is mostly deleted and replaced by ARG4 gene of Saccromyces cerevisiae. 

Therefore, this strain relies on weaker AOX2 gene to metabolize methanol at slow rate. 

This strain is referred to as Muts strain. 

 Several common features of plasmids vectors designed for foreign protein 

expression in P. pastoris are listed out in Table 1.3. The expression vectors contain 

AOX1 promoter followed by one or more restriction enzyme sites for the insertion of 

foreign genes. The 3’ end of the multiple coding site contains the transcriptional 

termination sequence from AOX1 gene that directs efficient 3’ processing and 

polyadenylation of mRNAs. Most of the vectors contain HIS4 gene as a selectable 

marker for transformation into his4 mutant host of P. pastoris. Other selectable 

markers include bleomycin and kanamycin resistance gene. Most of the vectors also 

contain the sequences required for plasmid replication and maintenance in bacteria, 

such as ColE1 replication origin and ampicillin resistance gene. Other features include 

AOX1 3’ flanking sequences from 3’ of the AOX1 gene. It can be used to direct the 

cassette containing foreign gene to integrate at the site of AOX1 locus by gene 

replacement. To secrete the foreign gene expressed, the construct contains a secretion 

signal right after the promoter but before the multiple coding sequences. The most 

frequently used secretion signal is α-factor prepro signal sequence from S. cerevisiae. 
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Table 1.3. Common features of P. pastoris expression vectors. (Adapted from Higgins 
and Cregg, 1998) 
Vector 
name 

Selectable 
marker Features 

Intracellular   

pHIL-D2 HIS4 NotI sites for AOX1 gene replacement 

pAO815 HIS4 
Expression cassette bounded by BamHI and BglII sites for 

generation of multicopy expression vector 

pPIC3K HIS4 and kanr 
Multiple cloning sites for insertion of foreign genes; G418 

selection for multicopy strains 

pPICZ bler 

Multiple cloning sites for insertion of foreign genes; Zeocin 

selection for multicopy strains; potential for fusion of foreign 

protein to His6 and myc epitope tags 

pHWO10 HIS4 Expression controlled by constitutive GAPP 

pGAPZ bler 

Expression controlled by constitutive GAPP; multiple cloning 

sites or insertion of foreign genes; Zeocin selection for 

multicopy strains; potential for fusion of foreign protein to 

His6 and myc epitope tags 

Secretion   

pHIL-S1 HIS4 
AOX1p fused to PHO1 secretion signal; XhoI, EcoRI, and 

BamHI sites available for insertion of foreign genes 

pPIC9K HIS4 and kanr 

AOX1 fused to α-MF prepro signal sequence; XhoI (not 

unique), EcoRI, NotI, SnaBI and AvrII sites available for 

insertion of foreign genes; G418 selection for multicopy 

strains 

pPICZαA bler 

AOX1 fused to α-MF prepro signal sequence; multiple 

cloning site for insertion of foreign genes; Zeocin selection 

for multicopy strains; potential for fusion of foreign protein to 

His6 and myc epitope tags 

pGAPZα bler 

Expression controlled by constitutive GAPP; GAPP fused to 

α-MF prepro signal sequence; multiple cloning site for 

insertion of foreign genes; Zeocin selection for multicopy 

strains; potential for fusion of foreign protein to His6 and myc 

epitope tags 
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The vectors of Pichia expression systems contain at least one P. pastoris DNA 

segment (AOX1 or GAP promoter segment). Linearized vectors can generate stable 

transformants of P. pastoris via homologous recombination. The vectors can be 

integrated into yeast genome by single crossover type (Figure 1.6A) or gene 

replacement (Figure 1.6B) with the single crossover has higher possibility than gene 

replacement. There is only 10% to 20% of gene replacement event occur which the 

AOX1 gene is deleted and replaced the expression cassette and marker gene 

(Cereghino and Cregg, 2000). Transfomants resulting from AOX1 single crossover 

events are phenotypically Mut+ while Muts strains are generated from gene 

replacement integration.  

 The frequency of multiple gene insertion is 1% to 10% of all Zeocin resistant 

(ZeoR) transformants (Higgins and Cregg, 1998; Cereghino and Cregg, 2000). The 

event can occur at AOX1 or his4 locus. The multicopy strains which contain more 

than one copy of integrated expression cassettes sometimes have higher protein yield 

than single-copy strains (Thill et. al., 1990; Clare et. al., 1991). The multicopy events 

can be detected by DNA analysis methods or by examining the levels of the foreign 

protein directly. There is a need to screen hundreds to thousands ZeoR transformants in 

order to locate strains with 20 or more copies.   
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A 

 

B 

Figure 1.6. Integration of expression vectors into P. pastoris genome. (A) Integration 
of vectors into Pichia genome at AOX1 locus by single cross over event. (Picture 
adapted from EasySelect Pichia Expression Kit manual, Invitrogen)  (B) Gene 
replacement event at AOX1 gene. (Piture adapted from Higgins and Cregg, 1998)  
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1.5.3 Expression of Foreign Proteins 

 Expression of foreign proteins can be done in shake-flask cultures but protein 

levels are much higher in fermentation cultures. This is because only under the 

fermentative condition, the environment of the cultures such as pH, aeration and 

carbon source feed rate, are well controlled. This enables the cultures to grow to ultra-

high cell densities (>100 g/L dry cell weight) (Higgins and Cregg, 1998; Cereghino et. 

al., 2002). In addition, the transcription level resulted from AOX1 promoter can be 3 

to 5 times higher in fermentative cultures than cells grown in excess methanol 

(Higgins and Cregg, 1998). Besides for the 2 reasons stated above, oxygen 

consumption rate is higher in shake-flask culture, expression of foreign proteins is 

negatively affected by oxygen limitation (Higgins and Cregg, 1998). Under controlled 

environment of a fermenter, the oxygen levels of the cultures can be monitored and 

adjusted accordingly. Thus, the fermentation cultures can express higher levels of 

foreign proteins than shake-flask cultures.   

 

1.5.4 Posttranslational Modifications 

 The advantage of Pichia expression system is the ability of P. pastoris to 

perform posttranslational modifications resemble to higher eukaryotes. The 

posttranslational modifications include processing of signal sequences, folding, 

disulfide bond formation and O-/N-linked glycosylation.  

Even though there are many secretion signal sequences can be used, the most 

common and successfully used secretion signal is S. cerevisiae α-factor prepro peptide. 

The signal sequence consists of a 19-residue (pre) signal sequence followed by a 66-
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residue (pro) signal sequence containing 3 consensus N-linked glycosylation sites and 

1 dibasic Kex2 endopeptidase processing site (Kurjan and Herskowitz, 1982). The 

cleavage of signal peptide involves 3 basic steps. First, the pre signal is removed by 

endopeptidase in endoplasmic recticulum followed by cleavage of pro leader sequence 

by Kex2 endopeptidase at Arg-Lys site. The last step involves the cleavage of Glu-Ala 

repeats by Ste13 protein (Brake et. al., 1984).  

Pichia pastoris system has the ability to produce disulfide-bonded 

heterologous proteins which is not achievable by prokaryotic system due to the 

reducing environment (White et. al., 1994). The disulfide-bonded proteins produced 

by the Pichia expression system include thrombomodulin containing 2 epidermal 

growth factor-like domains and coagulation protease (Macauley-Patrick et. al., 2005). 

The activity of proteins might be affected by the disulfide bond present (Debski et. al., 

2004).   

Pichia pastoris is able to perform O-linked and N-linked glycosylation on 

heterologous protein. O-oligosaccharides which compose of only mannose (Man) 

residues are added to hydroxyl groups of Ser and Thr residues of secreted proteins. In 

contrast to higher eukaryotes such as mammals, varieties of O-oligosaccharides 

including N-acetylgalactosamine, galactose and sialic acid, are added to Ser and Thr 

residues. One cannot assume that a heterologous protein is not O-linked glycosylated 

even if the protein is not glycosylated by its native host. Moreover, the specific Ser 

and Thr residues for glycosylation in original host might not be the same as the Ser 

and Thr residues for glycosylation in Pichia expression system (Cereghino and Cregg, 

2000; Macauley-Patrick et. al., 2005).    

 28



 In all eukaryotes, N-linked glycosylation begins on the cytoplasmic site of 

endoplasmic reticulum with the transfer of a lipid-linked oligosaccharide unit, 

Glc3Man9GlcNAc2 to asparagine at the consensus recognition sequence, Asn-X-

Ser/Thr. The oligosaccride core is then trimmed to Man8GlcNAc2. In mammalian 

Golgi apparatus, the oligosaccharide cores undergo a series of trimming and addition 

reaction with 3 final products generated. They are Man5-6GlcNAc2 (high mannose), a 

mixture of several different sugars (complex), or a combination of both (hybrid) 

(Figure 1.7).  

However, in Pichia, the oligosaccharide chains of secreted proteins remain 

unaltered and consist of Man8-9GlcNAc2 (Montesino et. al., 1998). In S. cerevisiae, 

heterologous secreted proteins produced are always hyperglycosylated where the 

mannose residues are typically 50-100 in length. The high mannose oligosaccharide 

structures in the recombinant proteins represent a significant problem in 

pharmaceutical industry. The proteins are antigenic and rapidly cleared from the blood 

when introduced intravenously. Besides, the high mannose structures may interfere 

with the folding and biological activity of the foreign proteins. The Pichia 

oligosaccharides are also different from Saccharomyces oligosaccharides by not 

having any terminal α-1,3-linked mannose structures (Montesino et. al., 1998; 

Verostek and Trimble, 1995). In addition, α-1,6-linked mannose are found in P. 

pastoris-secreted invertase (Trimble et. al., 1991) and kringle-2 domain of tissue-type 

plasminogen activator (Miele et. al., 1997). This structure is not found on 

oligosaccharide structures of Saccharomyces secreted proteins.   
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1.6 The objectives  

In this project, NADase from conidia of N. crassa was purified using affinity 

chromatography namely cibacron blue 3GA agarose and blue sepharose CL-6B. 

Purified NADase was then analyzed by SDS-PAGE or native PAGE, followed by in-

gel substrate staining. The band which showed activity on gel was subjected to mass 

spectrometry analysis to identify peptide sequence of NADase from protein databases. 

The sequence was then cloned into yeast expression vectors, pPICZαA and pPICZB 

vector to express the protein extracellularly and intracellularly, respectively. This 

recombinant NADase was applied in the cycling assay for NAD+ to test its efficacy in 

removing NAD+.  
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals and Reagents 

Standard analytical grade laboratory chemicals for the preparation of general 

reagents were obtained from BDH, Poole, England; Merck, Darmstadt, Germany; 

Sigma Chemicals Co., St. Louis, MO, USA and J.T. Baker, Phillipsburg, NJ, USA.  

 

2.1.2 Genetic Strain 

Bd strain (FSGC #1859) of N.  crassa fungal culture was obtained from Fungal 

Genetic Stock Center (Kansas City, USA). Wild type (ATCC 10815) N.  crassa was a 

gift from Dr. Kim Uh-Hyun (Cho et al., 1998). Pichia expression vectors (pPICZαA 

and pPICZB), Escherichia coli strain (TOP10F’) and wild type Pichia pastoris strain 

(X33) were generous gifts from Prof. Chua Kaw Yan from Department of Paediatrics, 

Yong Loo Lin School of Medicine, National University of Singapore.      

 

2.2 Neurospora crassa Fungal Culture 

2.2.1 Mycelia Culture 

Starter cultures of wild type (ATCC 10815) N. crassa were initiated with 

inoculations from frozen stocks into 2 to 3 ml of Zinc-deficient medium in green cap 

tubes. Starter cultures were grown at 30oC in the incubator (Boekel Incubator Model 

133000) until the fungus grew. Starter cultures were transferred into 1 l zinc-deficient 

medium prepared in 2-l conical flasks for big scale fungus growth. After six to seven 

days’ growth, mycelium mats were collected by filtering through filter paper and 
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washed with Mili-Q water.  Weights of mycelium mats were recorded. Mycelium mats 

were frozen at -80oC for at least 1 hour before homogenized to facilitate enzyme 

extraction. From 10 l of medium, 17-20 g of mats were obtained. 

 

2.2.2 Conidia Culture 

Bd strain was grown in 250 ml-, 500 ml- or 1 l- conical flasks on Vogel’s 

minimal medium (Davis et al., 1970) with 1.5% sucrose as carbon source and 

solidified with 2% agar (Biomed Diagnostics, Sparks, USA). The fungal cultures were 

incubated at 30oC for 3 to 4 days in the incubator (MRC, London, UK). Inocula were 

prepared in 96 mm x 16 mm petri dish (Greiner Bio-one, Frankfurt, Germany) starting 

from conidia frozen stock.    

 

2.3 Isolation of N. crassa Proteins 

2.3.1 Isolation of Mycelia Proteins 

 Crude extract of mycelia was prepared as described by Cho et. al. (1998) with 

slight modifications. Frozen mycelium mats were homogenized in three times their 

weight of ice-cold lysis buffer using pestle and mortar and 55-ml Dounce-type glass 

homogenizer with ten times tight passes. This was followed by centrifugation at 

12,000 x g (Beckman Coulter, Fullerton, CA) for 30 min at 4oC. 

 

2.3.2 Isolation of Conidia Proteins 

 Conidia proteins were prepared as described by Menegus and Pace (1981) with 

modifications. Three milliliters, 5 ml and 10 ml of Mili-Q H2O (Millipore, Bedford, 
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MA) were dispensed into 250 ml-, 500 ml- and 1 l-conical flasks respectively. Conidia 

on the surface of agar were resuspended and collected. The suspension was 

centrifuged at 20,000 x g for 30 min at 4oC. Water was then discarded and the wet 

weight of conidia was recorded. Three volume of ice-cold 0.17 M of KCl was used to 

resuspend and wash 1 g of conidia. This is followed by centrifugation at 20, 000 x g 

for 30 min at 4oC. This step is repeated for 3 times. All the extracts from 3 times of 

repeating resuspension and washing were pooled together. Pooled extracts were then 

concentrated into small volume and desalted with Buffer A by ultrafitration using 

Centripep 30 (Millipore, Billerica, MA).  

 

2.4 Column Chromatography 

All operations were performed at 4oC unless otherwise stated. 

2.4.1 Cibacron Blue Agarose  

Five milliliter of cibacron blue agarose (Sigma Chemicals Co., St. Louis, MO, 

USA) was equilibrated with 25 ml of Buffer A. Concentrated sample of crude extract 

was mixed with cibacron blue agarose for 1 hour and 30 min at 4oC with Intelli-mixer 

(Elmi, Riga, Latvia). After batch-wise mixing, beads were packed into 0.8 cm x 0.9 

cm glass column. The column was washed with 50 ml of buffer A. Proteins were 

eluted out using 1 M potassium chloride in buffer A in gravity flow. Fractions 

containing the enzyme activity were pooled together. Sample was topped up with 

buffer A to lower the concentration of potassium chloride and concentrated using 

centripep 30 (Millipore, Billerica, MA). 
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2.4.2 Blue Sepharose CL-6B 

 Every 5 mg of crude extract proteins were loaded into 1 ml of Buffer A-

equilibrated blue sepharose CL-6B beads (Amersham Biosciences, New Jersey, USA). 

Five column volume of washing buffer containing 0.5 M of sodium chloride in 50 mM 

of sodium phosphate, pH 7.0 was used to wash the column. Bounds proteins were 

eluted with 1 M of sodium chloride in 50 mM of sodium phosphate, pH 7.0. After the 

first CV of elution buffer was dispensed into the column and collected, the column 

was left for 30 min for complete disruption of interaction between the protein and the 

beads. The remaining elution buffer was then applied until no significant enzyme 

activity was found in the collected fractions. Enzyme activity was checked for 

collected fractions. Fractions contained enzyme activity were pooled together and 

concentrated using Centripep 30 (Millipore, Billerica, MA). 

 

2.4.3 Superdex 75 

Purification using an ÄKTA-FPLC system (Amersham Biosciences, New 

Jersey, USA) was accomplished using a 24 ml superdex 75 10/300 GL (Amersham 

Biosciences, New Jersey, USA) gel filtration column following the protocol 

recommended by the manufacturer. In brief, the column was equilibrated with 2 CV of 

50 mM sodium phosphate, 0.15 M sodium chloride, pH 7.0 at recommended flow rate, 

0.5ml/min. Blue sepharose sample was centrifuged at 10, 000 x g for 10 min at 4oC to 

remove any insoluble particulate. A maximum volume of 500 μl sample was then 

injected into the column. The protein was eluted using 2 CV of equilibration buffer 

mentioned above. The fractions of 0.6 ml each were collected using fraction collector 
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Frac-950 (Amersham Biosciences, New Jersey, USA). Enzyme activity was checked 

for each fraction. 

 

2.4.4 His-Tag Column 

 Intracellularly expressed recombinant proteins were solubilized in binding 

buffer. The His-tag columns used were His SpinTrap mini columns (GE Healthcare, 

Uppsala, Sweden). The purification steps were done according to manufacturer’s 

recommendation. The column was repeatedly inverted and shaken to resuspend the 

medium. Cap was loosened and bottom closure was broken off.  The column was spun 

for 30 s at 100 × g in a 2-ml microcentrifuge tube to remove the storage liquid. After 

that, the column was equilibrated with 600 μl binding buffer followed by 

centrifugation for 30 s at 100 × g. A maximum volume of 600 μl sample was applied 

into the column and centrifuged for 30 s at 100 × g. The column was then washed with 

600 μl binding buffer and centrifuged for 30 s at 100 × g. Target protein was eluted 

twice with 200 μl elution buffer and centrifuged for 30 s 100 × g.  

 

2.5 Bio-Rad Protein Assay 

The Bio-Rad Protein Assay, based on the method of Bradford (1976), is a 

simple and accurate procedure for determining concentration of solubilized protein. 

Protein concentration was determined by Bio-Rad protein Assay Kit (Bio-Rad, 

Hercules, CA) using BSA (Promega, Madison, WI) as the standard. A standard curve 

was plotted using a range of concentrations of 2, 4, 6, 8, 10 and 12 μg/ml. The BSA 

stock was diluted to 0.1 mg/ml and mixed in each tube as follows: 
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Final concentration 
(μg/ml) 

Volume of BSA 
(μl) 

Volume of ddH2O 
(μl) 

Blank 0 800 

2 20 780 

4 40 760 

6 60 740 

8 80 720 

10 100 700 

12 120 680 
 

200 μl of concentrated Bradford reagent was added to each tube, vortexed and spun 

down before incubating at room temperature for 5 min (total volume of 1 ml). The 

absorbance was measured immediately at 595 nm in DU® 640B spectrophotometer 

(Beckman Coulter, Fullerton, CA). A linear plot (r2 > 0.95) of BSA standard was used 

to determine the concentration of protein samples. 

 

2.6 NAD Glycohydrolase Enzyme Assay 

2.6.1 Potassium Cyanide Method 

 This method was a modification of the assay described by Colowick et al. 

(1951). The microcentrifuge tube containing 52 μl of 0.1 M potassium phosphate, pH 

7.0 and 17 μl β-NAD+ was incubated at 37oC. The reaction was initiated by adding in 

17 μl of properly diluted enzyme. At 0 min and 7.5 min, the reaction was terminated 

by pippetting in 514 μl of 1 M potassium cyanide. Potassium cyanide will react with 

β-NAD+ to form a NAD-cyanide complex which has absorbance maximum at 327 nm. 

The reaction mixtures were cooled to room temperature and absorbance was read 
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against a blank of 52 μl 0.1 M potassium phosphate, pH 7.5, 17 μl H2O, 17 μl diluted 

enzyme and 514 μl 1 M potassium cyanide.  

 A β-NAD+ standard with a range of concentratrations of 45 μM, 90 μM, 135 

μM and 180 μM was prepared as follows:  

β-NAD+ concentrations 
(μM) 

5.4 mM β-NAD+ 
stock (μl) 

H2O 
(μl) 

1 M potassium 
cyanide (μl) 

0 0 86 514 

45 5 81 514 

90 10 76 514 

135 15 71 514 

180 20 66 514 
 

Enzyme activities of samples were calculated based on the standard curves constructed 

above. Total Activity and Specific Activity are defined as: 

Total Activity = [μmol β-NAD+ consumed/min/ml] x [total volume of sample]  

Specific Activity = Total Activity/total protein (μmol/min/mg protein) 

 

2.6.2 Fluorimetric Assay 

 NADase activity was determined as described by Ziegler et. al. (1996) using 

substrate analog, etheno-NAD+ (Sigma, St. Louis, MO). The assay was carried out in a 

final volume of 180 μl reaction mixtures consisting of 50 mM potassium phosphate, 

pH 7.0 and 10 μM etheno-NAD+ at 37oC. The reaction was initiated by an addition of 

a properly diluted enzyme. The fluorescence intensity was monitored continuously at 

an excitation wavelength of 310 nm and emission wavelength at 410 nm. The 

 38



fluorescence measurement was done using LS 50B luminescence spectrophotometer 

(PerkinElmer, Wellesley, MA). The specific enzymatic activity was calculated from 

the initial linear slope of the fluorescence change (Δ) and expressed as Δ fluorescence 

intensity/min/mg protein.      

 

2.7 ADP-Ribosyl Cyclase Activity Assay 

The enzymatic activity of ADP-ribosyl cyclase was determined as described in 

Graeff et.  al. (1994). In brief, proteins were incubated at 37°C for 15 min with 100 

μM NGD+ (Sigma, St. Louis, MO) in 20 mM Tris-HCl pH 7.2. The fluorescence 

intensity was monitored continuously at an excitation wavelength of 300 nm and an 

emission wavelength of 410 nm using LS 50B luminescence spectrophotometer 

(PerkinElmer, Wellesley, MA). The specific enzymatic activity was calculated from 

the initial linear slope and change in fluorescence (Δ) was calibrated from standard 

curves constructed with known concentrations of cGDPR. Results are expressed as a 

mean ± SD cGDPr formed in nmoles mg-1 min-1 protein.  

 

2.8 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

and Native PAGE 

SDS-PAGE and Native PAGE was run according to the method of Laemmli (Laemmli, 

1970) by using a mini-PROTEAN® II electrophoresis system (Bio-Rad, Hercules, 

CA). 
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2.8.1 Non-Reducing SDS-PAGE 

A 8% SDS-PAGE gel (see Appendix) was used to separate proteins of interest. 

Proteins were mixed with 5X non-reducing sample buffer (see Appendix) and placed 

on ice. The protein samples were loaded into each well and electrophoresis was 

carried out in cold room. Initially a voltage of 100V was applied until the sample had 

fully entered the stacking gel, after which the voltage was increased to 150 V. When 

the dye reached the bottom of the gel, the electrophoresis was stopped. For the 

determination of molecular mass, prestained SDS-PAGE standard protein marker, 

Precision Plus ProteinTM Standards, (Bio-Rad, Hercules, CA, USA) was used.  

 

2.8.2 Reducing SDS-PAGE 

  Proteins were mixed with 5X reducing sample buffer (see Appendix) and 

denatured by boiling water for 5 min before cooling in ice. After the samples had been 

loaded into wells, the electrophoresis was run at the room temperature with an initial 

voltage of 100V followed by 150V when the samples had fully entered stacking gel. 

Prestained SDS-PAGE standard protein marker, Precision Plus ProteinTM Standards, 

(Bio-Rad, Hercules, CA, USA) was used.  

 

2.8.3 Native PAGE 

An 8% native PAGE gel (see Appendix) was used to separate proteins of 

interest. Proteins were mixed with 5X sample buffer for native PAGE (see Appendix) 

and placed on ice. The protein samples were loaded into each well and electrophoresis 

was carried out in cold room. Initially a voltage of 100V was applied until the sample 

 40



had fully entered the stacking gel, after which the voltage was increased to 150 V. 

When the dye reached the bottom of the gel, the electrophoresis was stopped.  

 

2.9 Identification of NADase Activities in Gels after SDS-PAGE 

 In-gel substrate staining was done as described by Ziegler et al. (1997). After 

SDS-PAGE separation, the gel was washed 3 times in a solution containing 50 mM 

Tris/HCl, pH 7.5, and 0.5% LDAO with each 15 min. To visualize NADase activity, 

gels were then incubated for 15 min in a buffer consisting of 50 mM Tris/HCl, pH 7.5, 

0.03% LDAO and 150 μM e-NAD+. For native PAGE, the gel was subjected to buffer 

containing substrate without going through washing step. Gels were imaged using a 

gel-doc system running the GeneSnap program (Syngene, Cambridge, UK) and 

photographs were taken.  

 

2.10 Silver Staining 

 Gels were fixed overnight with 25 ml/gel of fixer (see Appendix) with 

continuous shaking at room temperature. Gels were then rinsed twice with milli-Q 

H2O for 5 min each. After the gels were incubated with sensitizer solution (see 

Appendix) for 30 min, gels were rinsed thrice with milli-Q H2O again for 5 min each. 

Gels were incubated with cooled staining solution (see Appendix) for 20 min at 4oC 

and rinsed twice with milli-Q H2O for 1 min each before soaking in developing 

solution. Development was stopped when bands were clearly seen by displacing the 

developing solution (see Appendix) with stopping solution (see Appendix) for 10 min. 

Gels were rinsed with milli-Q H2O thrice for 5 min each. Gels were imaged using a 
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gel-doc system running the GeneSnap program (Syngene, Cambridge, UK) and 

photographs were taken.  

     

2.11 Immunoblotting 

Immunoblotting was performed according to the method of Towbin et al. 

(1979). Briefly, the proteins resolved in the gel were electrophoretically transferred to 

a 0.2 μm nitrocellulose membrane (Bio-Rad, Hercules, CA) using tank transfer system 

mini trans-blot® cell (Bio-Rad, Hercules, CA) at 100 V for 1.5 hours at room 

temperature. The transfer buffer (see Appendix) was prepared according to the method 

of Bjerum and Schafer-Nielsen (1986). After the proteins were transferred, the 

membrane was placed in blocking solution (see Appendix) and incubated at room 

temperature for 1 hour. The blot was then incubated with 1:1000 dilution of mouse-

monoclonal anti-c-MYC (Sigma, St. Louis, MO) diluted with 1X TBST (see 

Appendix) containing 5% skim milk for overnight at 4oC with continuous shaking. 

The blot was washed thrice with ample amounts of 1X TBST, 15 minutes for each 

wash at room temperature. After washing in 1X TBST, the blot was incubated with 

horseradish peroxidase-conjugated rabbit anti-mouse IgG (Sigma, St. Louis, MO) 

diluted 5000X with 1X TBST containing 5% skim milk for 1 hr with continuous 

shaking. The blot was then washed with 1X TBST as before and developed using the 

ECLTM kit (GE Healthcare, Buckinghamshire, England) as instructed by the 

manufacturer. Briefly, an equal volume of ECLTM detection solution 1 was mixed with 

detection solution 2 (both solutions are provided in the ECLTM Western blotting kit). 

This mixture was directly added to the blot, which was subsequently incubated for 1 
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min at room temperature and immediately wrapped in plastic cling wrap. The signals 

on the blot were visualized by exposing to CL-X PosureTM film (Pierce, Rockford, IL) 

for 2 to 5 min. A standard protein marker (Bio-Rad, Hercules, CA) was 

electrophoresed simultaneously for comparing the molecular weights of the visualized 

proteins in the membrane.  

To probe the same membrane with mouse monoclonal anti-His (C-term) 

antibody (Invitrogen, Carlsbad, CA), the membrane was stripped with 10 ml of 

stripping buffer by incubating it at 50oC for 30 min with occasional shaking. The 

membrane was then washed twice with TBST, 10 min for each. The membrane was 

blocked with 5 % skim milk dissolved in 1X PBST for 1 hour at room temperature 

with continuous shaking. The membrane was washed in 1X PBST 2X for 5 min each. 

Membrane was then incubated in 1:5000 dilution of anti-His (C-term) antibody in 

blocking buffer. The membrane was incubated at room temperature for 1 hour or at 

4oC for overnight with shaking. Membrane was transferred to a tray containing 1X 

PBST and washed twice for 5 min each. Subsequently, the membrane was incubated 

with horseradish peroxidase-conjugated rabbit anti-mouse IgG (Sigma, St. Louis, MO) 

diluted 5000X with 1X PBST containing 5% skim milk for 1 hr with continuous 

shaking.  The membrane was washed with 1 X PBST for 2X, 5 min each. This is 

followed by ECL detection as described earlier with exposure time of 2 to 10 min.   

  

2.12 Km Determination 

Rate of reaction of enzyme activity (µmol of NAD+ consumed/min) is 

determined using different concentration of β-NAD+ (5 µM, 8 µM, 10 µM, 20 µM, 30 
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µM, 40 µM, 50 µM). A lineweaver-burke plot was then plotted. Km was determined 

from the X-axis intercept.  

 

2.13 Effect of pH on the Enzyme Activity 

Enzyme assay was performed at a wide range of pH, pH 2 to 11. Enzyme 

acitivity was determined and compared to enzyme activity performed at pH 7.0. 

 

2.14 Effect of Temperature on the Enzyme Activity 

NADase was incubated at 4oC for overnight, 55oC for 1 hour and 80oC for 10 

min. Enzyme activity was then measured at different time points. 

 

2.15 N-Linked Deglycosylation 

Deglycosylation was performed according to manufacturer’s instruction with 

modification. Basically, NADase was deglycosylated in native conditions. Twenty 

micrograms of proteins were brought up to 38 μl with deionized water. Ten 

microliters of 5X reaction buffer was added and followed by 2 μl of enzyme (5 

Units/ml), Endoglycosidase H (Sigma, St. Louis, MO). The mixture was incubated at 

37oC for 1 hour and 3 hour. Enzyme activity was checked after each incubation time 

point and in-gel substrate staining was performed to check the size of the protein after 

deglycoslation. 
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2.16 Total RNA Preparation 

Conidia were cultured in Vogel’s minimal media and grown at 30oC with 

shaking at 200 rpm for 18 hours. Culture was then harvested and washed with 0.1 % 

DEPC-treated water. Total RNA was extracted according to the procedure described 

by Sokolovsky et al. (1990). All manipulations were performed at room temperature if 

not stated otherwise. Culture was pulverized in a mortar with liquid nitrogen and 

transferred into a 2-ml Eppendorf tube containing 0.75 ml RNA extraction lysis buffer 

and 0.75 ml phenol (saturated with 0.1 M Tris-HCl, pH 8.0). The tube was mixed for 

15-20 min using Intelli-mixer (Elmi, Riga, Latvia). Mixture was then centrifuged at 

10,000 rpm for 10 min. Upper aqueous phase was transferred into an equal volume of 

Tris-HCl saturated phenol and vortexed. The mixture was then spun down again at 

10,000 rpm for 10 min. Upper aqueous phase was once again transferred into a tube 

containing 0.75 volumes of 8 M LiCl and stored at 4oC for overnight. The mixture was 

vortexed briefly before it was centrifuged at 10,000 rpm for 10 min. Pellet was 

resuspended with 0.3 ml 0.1 % DEPC-treated water, mixed with 3 M sodium acetate 

(pH 5.2) and 0.75 ml ethanol. The mixture was stored at -20oC for 2 hours or at -70oC 

for 30 min. After that, it was centrifuged at 10,000 rpm for 10 min. Precipitate was 

washed with 70 % ethanol. RNA pellet was then dried and dissolved in appropriate 

amount of 0.1 % DEPC-treated water. Total RNA was quantitated at 260 nm 

wavelength using DU® 640B spectrophotometer (Beckman Coulter, Fullerton, CA). 

The integrity of the extracted RNA was confirmed by electrophoresis in a 1.2% 

denaturing agarose gel (see Appendix). 
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 2.17 First Strand cDNA Synthesis   

First-strand cDNA was synthesized by mixing 5 μg total RNA with 300 ng 

oligo dT primer (Promega, Madison, WI) and incubating at 65˚C for 5 min, followed 

by cooling it at 42˚C for 2 min before adding 8 μl 5X reverse transcription buffer, 4 μl 

0.1 M dithiothreitol (DTT), 20 U RNasin® ribonuclease inhibitor (Promega, Madison, 

WI), 20 nmol dNTP, 200 U Superscript™ II reverse transcriptase RNase H– 

(Invitrogen, Carlsbad, CA) and topped up with nuclease-free water to 20 μl. The 

reaction was incubated at 42˚C for 90 min, 70˚C for 10 min and held at 4˚C in a 

Mastercycler® ep Gradient S thermal cycler (Eppendorf, Hamburg, Germany). The 

cDNA was stored at –20˚C before analysis. 

 

2.18 Polymerase Chain Reaction 

PCR reaction was done using 100 ng of cDNA, 25 pmol of each gene-specific 

primer pairs, 5X Phusion HF buffer, 10 nmol dNTP, 1.0 U High Fidelity DNA 

polymerase (Finnzymes, Espoo, Finland) and topped up with ddH2O to 50 μl. Gene 

specific primers used were as follows: 1) forward primer for secretion expression 5’-

gcctcgagaaaagacttcccactagctcctcct-3’ (with built in restriction site XhoI in bold, Kex2 

cleavage signal is in italics); 2) forward primer for intracellular expression 5'-

cggaattcatgaagttcaccctcctctc-3' (with built in restriction site EcoRI in bold); 3) reverse 

primer 5'-aagcggccgcgtagtttctaggaaccagcc-3' (with built in restriction site NotI in bold). 

PCR was performed in a Mastercycler® ep Gradient S thermal cycler (Eppendorf, 

Hamburg, Germany) under the amplification profile of 98ºC for 10 s, 57°C for 30 s, 

72ºC for 30 s, for 35 cycles at the exponential phase of amplification. Samples 
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replaced with distilled water were used as water controls. The amplified PCR products 

were analyzed on an ethidium bromide-stained 1.2% TAE agarose gel and 

electrophoresed at 100 V for 20 min. The product size was determined by concurrently 

separating a 1 kb DNA ladder (Promega, Madison, WI) on the gel and visualized 

under UV transillumination. Gels were imaged using a gel-doc system running the 

GeneSnap program (Syngene, Cambridge, UK). Densitometric analyses were 

performed using Gel-Pro Analyser version 3.1 software (Media Cybernetics, Silver 

Spring, MD). 

 

2.19 Restriction Enzyme Digestion 

PCR products were purified using gel extraction kit (GeneAll, Seoul, Korea) 

and sequenced using BigDye Terminator V3.1 cycle sequencing kit (Applied 

Biosystems, Foster City, CA) to confirm the sequence. Around 1.5 μg-1.8 μg of PCR 

products and 2 μg of plasmids vectors (pPICZB and pPICZalpha A, Figure 2.1) were 

added with 4 μl of 10X RE buffer, 2 μg acetylated BSA, 5 U of XhoI enzyme 

(secretion expression) or 5 U of EcoRI (intracellular expression) and 5 U of NotI 

enzyme (Promega, Madison, WI). The reaction mixture was topped up to 40 μl with 

ddH2O and incubated at 37oC for 1.5 hour. The RE digested products were gel-

extracted and ready to be used for ligation.     

 For recombinant plasmids linearization, 10 μg of recombinant plasmids were 

added with 20  μl of 10X RE buffer, 10 μg of acetylated BSA and 25 U of SacI  

(Promega, Madison, WI). The reaction mixture was topped with ddH2O to 200 μl and 
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Figure 2.1. Pichia expression vectors for intracellular (A) and secretion (B) 
expression. pPICZB and pPICZalphaA were used in this project for protein 
expression. The gene of interest for intracellular expression was cloned into pPICZB 
between EcoRI and NotI restriction sites. For secretion expression, the gene was 
inserted into XhoI in α-factor sequence and NotI restriction sites of pPICZalphaA 
vector. The gene was cloned in frame with the C-terminal myc epitope tag and 
polyhistidine tag in both the expression vectors.  
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 incubated at 37oC for 1.5 hour. Digested recombinant plasmids were gel-extracted. 

 

2.20 Ligation and E. coli Transformation 

 One μl of vector DNA, 7 μl of insert DNA, 1 μl of 10X ligase buffer and 1 U 

of T4 DNA ligase (Promega, Madison, WI) were brought up to 10 μl. Ligase reactions 

were performed at room temperature for 3 hours.  

 Following the ligation, ligated DNA was transformed into TOP10F’ competent 

cells. E. coli transformation was performed as by Ausubel et al. (1997). Competent 

cells were thawed rapidly and dispensed 100 μl immediately into 1.5 ml-Eppendorf 

tube containing the ligated DNA. The tube was gently swirled to mix and placed on 

ice for 10 min. Cells were heat-shocked by placing the tube into 42oC heat block for 2 

min. After that, the cells were transferred into a green cap tube containing 1 ml low 

salt LB medium. The tube was incubated at 37oC for 1 hour with moderate shaking at 

250 rpm. One hundred microliter of transformation culture was plated on low salt LB 

agar plates containing 25 μg/ml Zeocin (Invitrogen, Carlsbad, CA). Plates were 

incubated at 37oC for 12 to 16 hours. 

 

2.21 Yeast Transformation 

Pichia pastoris transformation was done according to manufacturer’s 

recommendation. Wild type strain of P. pastoris, X33 was grown in 50 ml yeast 

extract peptone dextrose medium (YPD) at 30oC with shaking to an OD600 of 0.8-1.0. 

Cells were harvested and washed with 25 ml of sterile water followed by 

centrifugation at 1500 g for 10 min at room temperature. Water was discarded and 
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cells were resuspended with 1 ml of 100 mM LiCl. Cell suspension was transferred to 

a 1.5 ml Eppendorf tube and spun down at maximum speed for 15 s. Cells were 

resuspended in 400 μl of 100 mM LiCl. Fifty microliter of cell suspension was 

dispensed into a 1.5 ml Eppendorf tube for each transformation and used immediately.  

One milliliter of 2 mg/ml denatured, fragmented salmon sperm DNA 

(Qbiogene, Morgan Irvine, CA) was boiled for 5 min and chilled on ice. Competent 

yeast cells were spun down and LiCl solution was removed.  Two hundred and forty 

microliter of 50 % PEG (Sigma, St. Louis, MO), 36 μl 1 M LiCl, 25  μl 2 mg/ml 

salmon sperm DNA and 10 μg plasma DNA in 50 μl sterile water were added 

accordingly into the yeast competent cells. The tube was vortexed vigorously until the 

cell pellet was completely mixed and incubated at 30oC for 30 min. Heat shocked was 

done in a heat block at 42oC for 20-25 min. Tube was centrifuged at 8000 rpm for 15 s 

to remove the transformation solution. The pellet was resuspended in 1 ml of YPD and 

incubated at 30oC with shaking at 200 rpm. After 1 hour and 4 hours, 100 μl of 

transformation culture was plated on YPD plates containing 100 μg/ml Zeocin. The 

plates were incubated at 30oC for 2-3 days. 

     

2.22 Direct PCR Screening of Pichia pastoris Clones 

Direct PCR screening of pichia pastoris clones were done as described by 

Linder et al. (1996) with slight modification. A single colony was picked and 

resuspended in 10 μl of sterile water. Twenty five unit of lyticase (Sigma, St. Louis, 

MO) was added into the cell suspension and incubated at 30oC for 10 min to 20 min. 

The sample was then frozen at -80oC for 10 min. A 50 μl PCR reaction was set up for 
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a hot start by adding 10 μl of 5X colourless GoTaq Flexi buffer, 3 μl of 25 mM MgCl2, 

1 μl 10 mM dNTPs mix, 1 μl of 10 μM AOX1 5’ primer (5’-

GACTGGTTCCAATTGACAAGC-3’) and AOX1 3’ primer (5’-

GCAAATGGCATTCTGACATCC-3’) each followed by 5 μl of sample. The reaction 

mixture was topped up with sterile water to 50 μl and put into the cycler to heat them 

at 95oC for 5 min  before 1.25 U of GoTaq (Promega, Madison, WI) was added into 

the tube. PCR was performed in a Mastercycler® ep Gradient S thermal cycler 

(Eppendorf, Hamburg, Germany) under the amplification profile of 95ºC for 1 min, 

54°C for 1 min, 72ºC for 1 min, for 30 cycles followed by final extension at 72oC for 7 

min. PCR products were analyzed by running a 10-μl aliquot of reactions on 1.2 % 

TAE agarose gel. 

 

2.23 Mut Phenotype Determination 

Five to six Zeocin-resistant colonies were picked and streaked on an minimal 

methanol (MM) plate first followed by an minimal dextrose (MD) plate. Plates were 

incubated at 30°C for 2 days. Mut+ strain will grow normally on both plates. MutS 

strain will grow normally on MD plates but show little or no growth on MM plates. 

 

2.24 Small Scale Expression Studies 

A single colony of Mut+ strain was inoculated into 5 ml buffered glycerol-

complex (BMGY) medium in a 50 ml Falcon tube (CLP, San Diego, CA) to screen 

clones or 50 ml BMGY in 250 ml-conical flask for small scale expression. The culture 

was grown overnight at 30oC in a shaking incubator (250 rpm) until the culture 
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reached OD600 of 2 to 6. The cells were harvested by centrifugation at 3000 g for 5 

min at room temperature. Supernatant was discarded and cell pellet was resuspended 

in buffered methanol-complex (BMMY) medium to an OD600 of 1.0 to induce 

expression. 100 % methanol was added into the culture to a final concentration of 0.5 

% methanol every 24 hours to maintain induction.  

To screen for optimum expression time point, at 0 hr, 24 hr, 48 hr and 72 hr 

time point, 1 ml of expression culture was transferred to a 1.5 ml Eppendorf tube. 

Culture was spun down at 13.4 rpm for 3 min at room temperature. Supernatant was 

transferred to a separate clean tube. Both cell pellets and supernatants were stored at –

80oC until ready to assay.    

 

2.25 Extraction of Yeast Protein 

Cell pellets were thawed quickly and placed on ice. For 1 ml sample, 100 μl 

breaking buffer was added to the cell pellet. An equal volume of 0.5 mm glass beads 

(BioSpec Products, Bartlesville, OK) were added. The samples were vortexed for 30 s 

and then incubated on ice for 30 s. This is repeated for a total of 8 cycles. Samples 

were centrifuged at 16000 g for 10 min at 4oC. Supernatants were transferred to fresh 

Eppendorf tubes.  

 

2.26 NAD+ Cycling Assay 

β-NAD+ was measured by the cycling enzymatic assay described by Graeff 

and Lee (2002), the sensitivity of which is in the nanomolar range. Briefly, reactions 

were conducted in black opaque 96-well plates. Forty nanomolar of β-NAD+ was 
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incubated with 0.1 unit/ml recombinant proteins in 20 mM sodium phosphate, pH 7.0 

for 30 min at 37oC. Enzymes were removed by filtration with Centricon-3 filters and 

samples were recovered in the filtrate after centrifugation at 4oC for 50 min using 

Beckman JA 20 rotor. To 100 µl sample, the cycling reagent (0.1 ml) was then added, 

which contained 2% ethanol, 100 μg/ml alcohol dehydrogenase, 20 μM resazurin, 10 

μg/ml diaphorase, 10 μM FMN, 10 mM nicotinamide, 0.1 mg/ml BSA and 100 mM 

sodium phosphate, pH 7.0. The cycling reaction was allowed to proceed for 2 hours 

and the increase in the resorufin fluorescence (with excitation at 544 nm and emission 

at 590 nm) was measured periodically (15 min interval) using SpectraMax Gemini 

Fluorescence Reader (Molecular Devices, Sunnyvale, CA, USA). Standard solutions 

of β-NAD+ (ranging from 0-40 nM) were prepared in 20 mM sodium phosphate, pH 

7.0, and taken through the same steps as the samples. The assay was done in 

triplicates.  

 

2.27 Statistical Analysis 

Differences between samples were analyzed from raw data using an unpaired 

two-tailed Student’s t-test. P < 0.05 was taken as showing significance. All results are 

expressed as the mean ± SD and n refers to the number of determinations. 
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3. RESULTS 
 
3.1 Comparison of NADase Activity between Mycelia and Conidia of N. crassa  
 

In order to find out which stage of the life cycle of N. crassa contains the most 

abundance of NADase, mycelial and conidial proteins were extracted. Assays of 

enzyme activities of mycelial and conidial NADase were carried out and compared. 

The results showed that conidia had significantly higher specific enzyme activity of 

NADase than mycelia. The specific NADase activity of conidia and mycelia were 

520.2 ± 36.3 µmol/min/mg protein and 0.112 ± 0.05 µmol/min/mg protein, 

respectively (Table 3.1). The specific enzyme activity of conidia was about 5000-fold 

higher than the specific enzyme activity of mycelia. Figure 3.1 showed the mobilities 

of the conidial and mycelial NADase on SDS-PAGE by catalyzing the NADase 

reaction using etheno-NAD+ (e-NAD+) as substrate to generate a fluorescent product, 

etheno-ADPR (e-ADPR). Mycelial NADase showed a smear band at the high 

molecular weight range, ranging from 250 kDa to 100 kDa, and a faint band at 42 kDa 

(Figure 3.1A). However, conidial NADase showed intense and sharp bands at 42 kDa 

and 75 kDa (Figure 3.1B). Figure 3.1C is the positive control using rat liver CD38, 

which is also a NADase.  

 

3.2 Comparison of Conidial NADase with Partial Purified NADase from Sigma 

 Conidial NADase was also compared with partial purified NADase from 

Sigma in in-gel substrate staining. The partial purified NADase from Sigma is 

currently used as an endogenous NAD+ remover in the cycling assay (Graeff and Lee, 

2002). The conidial NADase had higher specific enzyme activity than the partial  
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   Table 3.1. Specific enzyme activity of mycelial and conidial NADase from N. crassa.   
   The data represent the mean ± SEM from three independent experiments performed in   
   duplicates. 

NADase Specific enzyme activity (µmol/min/mg protein) 

Mycelia 0.1118 ± 0.05 
Conidia 520.2 ± 36.3 

 

 

 

A B C 

                                                                                    

75 kDa 

150 kDa 100-250 
kDa 

42 kDa 42 kDa 

75 kDa 

 Figure 3.1. In-gel substrate staining of mycelia and conidia NADase. Twenty 
micrograms of mycelia crude enzyme (A) and conidia crude enzyme (B) were 
resolved in 8% non-reducing SDS PAGE. After electrophoresis, gels were washed 
with 50 mM Tris-HCl, pH 7.2 and 0.5% LDAO. Thereafter, gels were incubated 
with 50 mM Tris-HCl, pH 7.2, 0.03% LDAO and 150 µM e-NAD+ as described in 
the Materials and Methods. Rat liver CD 38 (C) was used as a positive control.  
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NADase Specific enzyme activity (µmol/min/mg protein) 

Conidia 520.2 ± 36.3 
Sigma 6.540 ± 0.089 

Table 3.2. Specific enzyme activity of conidia NADase from N. crassa and partial 
purified NADase from Sigma. The data represent the mean ± SEM from three 
independent experiments performed in duplicates. 
 

 

 

A B 

                                                                     

75 kDa 

42 kDa 

100-150 
kDa 

 Figure 3.2. In-gel substrate staining of conidia NADase and partial purified NADase 
from Sigma. Twenty micrograms of conidia crude enzyme (A) and 15 µg of partial 
purified NADase from Sigma (B) was resolved in 8% non-reducing SDS PAGE.
The gel was subjected to in-gel substrate staining thereafter. 
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purified NADase from Sigma, 520.2 ± 36.3 µmol/min/mg protein of conidial NADase 

compared to 6.540 ± 0.089 µmol/min/mg protein of Sigma NADase (Table 3.2). From 

Figure 3.2B, Sigma NADase showed a diffused band at high molecular weight range, 

similar to mycelial NADase.   

 

3.3 Purification of Conidial NADase by Affinity Column 

3.3.1 Cibcron Blue Agarose Purification 

 Conidia protein was extracted using KCl salt wash as described in the 

Materials and Methods. The crude protein was then applied to Cibacron Blue 3GA 

agarose affinity column. Table 3.3 demonstrated that after the purification step, the 

enzyme purity was increased 1.6-fold only with the loss of about 90% of the total 

enzyme activity. From Figure 3.3A lane 1, crude extract lane showed positive 

substrate staining at 42 kDa and 75 kDa band. The 42 kDa band had higher intensity 

than 75 kDa band. After the protein was purified by cibacron blue 3GA agarose, the 

staining spread across a wide range of molecular weight and this lane had higher 

intensity than crude extract lane even though same amount of protein was loaded into 

each lane (Figure 3.3A, lane 2). On the basis of the results in lane 1, the smear was 

contributed predominantly by 42 kDa and 75 kDa bands in lane 2. The purification 

factor is not high, but the purification step enabled NADase to be concentrated. 

From the silver staining gel (Figure 3.3B, lane 2), even though the enzyme was 

partially purified, the proteins were quite well separated. It is clearly seen that the 75 

kDa band was weakly stained as compared to 42 kDa band. The 42 kDa protein was 

more abundant than the 75 kDa protein. The staining of 42 kDa band in this lane  
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Table 3.3. Purification table for cibacron blue agarose purified NADase. 

 
Total 

protein 
(mg) 

Total enzyme 
activity 

(µmol/15min) 

Specific enzyme 
activity 

(µmol/15min/mg 
protein) 

Purification 
(fold) 

Yield 
(%) 

Crude 
extract 6.74 8645.38 1282.7 1 100 

Cibacron 
blue 

agarose 
0.1416 281.15 1990.45 1.6 3.25 

 

 

 
A B

 1 2 1 2 M

                                                      
  37 kDa 

  50 kDa 

100 kDa 
  75 kDa 

150 kDa 
250 kDa 

75 kDa 

42 kDa 

 Figure 3.3. SDS PAGE analysis of cibacron blue purified NADase. Twenty 
micrograms of each crude extract (lane 1) and cibacron blue purified proteins (lane 
2) were loaded into the 7.5% non-reducing SDS PAGE. (A) The gel was subjected 
to in-gel substrate staining. (B) Gel was stained with silver staining after in-gel 
substrate staining. Numbers on the right indicate the positions of marker proteins 
(M). 
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(Figure 3.3B, lane 2) was more intense than the 42 kDa band in crude extract lane 

(Figure 3.3B, lane 1). This further illustrated that the protein was concentrated after 

purification. However, the 75 kDa band cannot be seen in the crude extract lane 

(Figure 3.3B, lane 1) as in-gel substrate staining in Figure 3.3A, lane 1. The 42 kDa 

and 75 kDa bands (Figure 3.3B, lane 2) were cut out and subjected to mass 

spectrometry analysis.  

 

3.3.2 Blue Sepharose CL6B Purification 

The protein was also purified using blue sepharose (Amersham Biosciences) 

affinity chromatography. From the purification table, it showed that the specific 

enzyme activity was 4.4-fold higher after purification and the yield was 46%. For blue 

sepharose purified NADase, the protein was separated by native gel, followed by in-

gel substrate staining and silver staining. One positive staining band was detected in 

the in-gel substrate staining of native gel while the crude extract exhibited a diffused 

band (Figure 3.4A). From the silver staining gel (Figure 3.4B), the blue sepharose lane 

(lane 2) was fairly pure compared to crude extract lane (lane 1). Basically, there were 

only 3 bands in the blue sepharose lane. These 3 bands were cut out for mass 

spectrometry analysis. 

 

3.4 Characterization of Conidial NADase 

 The molecular weight of conidial NADase in its native form, Km, effect of pH 

and temperature on the enzyme, N-linked glycosylation pattern of the enzyme were 

characterized.    
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 Table 3.4. Purification table for blue sepharose purified NADase.

 
Total 

protein 
(mg) 

Total enzyme 
activity (Δfluo 

int/15min) 

Specific enzyme 
activity (Δfluo 
int/15min /mg 

protein) 

Purification 
(fold) 

Yield 
(%) 

Crude 
extract 10.35 1.62x107 1.57x106 1 100 

Blue 
sepharose 1.09 7.5x106 6.88x106 4.4 46 

   

 

 
A B 

 
1 2 1 2

                                          

NADase 

 
 Figure 3.4. Analysis of blue sepharose purified protein by native PAGE. Crude 

extract (lane 1) and blue sepharose (lane 2) purified proteins were analyzed by 8% 
native PAGE.  Five micrograms of proteins were loaded into each lane. After the 
electrophoresis was stopped, the gel was subjected to in-gel substrate staining (A) 
and then silver staining (B).  
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Figure 3.5. Calibration of Superdex 75 column and molecular weights of conidial
NADase from N. crassa. The curve of Kav versus log molecular weight was plotted. 
Void volume for Blue Dextran (2000 kDa) and each elution volume were estimated 
by absorption at 280 nm. NADases were assayed using fluorimetric method. The 
blue colour diamond represents the standards while open circle represents the 
NADase. 
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-1/Km, Km = 279.6 µM ± 4.96 

  
Figure 3.6. Km determination of conidial NADase. -1/Km is intercept at x-axis of 
the Lineweaver-Burke plot. V: velocity; S; substrate.  

 61



3.4.1 Molecular Weight Determination of Conidial NADase 

 In order to determine the molecular weight of conidial NADase under native 

conditions, a FPLC gel filtration column, Superdex 75 was equilibrated with 0.05M 

sodium phosphate buffer, pH 7.5 in 0.15 M sodium chloride. The column was 

calibrated with ribonuclease A (13700 Da), chymotrypsin A (25000 Da), ovalbumin 

(43000 Da) and albumin (67000 Da). From the Figure 3.5, it illustrated that NADase 

corresponded to a molecular weight of around 80 kDa and 45 kDa in gel filtration. 

However, 80 kDa protein is the predominant form as this fraction has higher enzyme 

activity than 45 kDa protein fraction (data not shown).  

 

3.4.2 Determination of Km of the Conidial NADase 

 The Km of NADase for β-NAD+ was determined by measuring the enzyme 

activity of NADase using different concentrations of the substrate as described in the 

Materials and Methods. From the Lineweaver-Burke plot (Figure 3.6), the Km was 

found to be 279.6 ± 4.95 µM.  

 

3.4.3 Effect of pH and Temperature on Enzyme Activity 

 The NADase was assayed in a wide range of pH, from pH 2 to pH 11, to see 

the effect of pH on the enzyme activity. From Figure 3.7, pH 7 is the optimum pH for 

NADase. The enzyme activity began to fall below and above pH 7. The enzyme 

activity dropped sharply from pH 3 to pH 2. The enzyme could not function totally at 

pH 2 as no enzyme activity was detected. At pH 11, there was about 30 % of the 

enzyme activity remained.   
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Figure 3.7. Effect of pH on NADase enzyme activity. NADase activity was tested in 
wide ranges of pH (pH 2 to pH 11). The enzyme activities were compared with 
enzyme activity carried out at pH 7. (n=3) 
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Figure 3.8. Effect of temperature on NADase enzyme activity. NADases were 
incubated in different temperature (4oC, 55oC and 80oC) and NADases were 
assayed as described in the Materials and Methods.   
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The effect on temperature on the enzyme was also investigated. The enzyme incubated 

at 4oC for overnight, 55oC for 1 hour and 80oC for 10 min. Enzymes were aliquoted 

out for the determination of the enzyme activities at certain time points during 

incubation. After incubation at 4oC for overnight, the enzyme activity decreased to 

60% (Figure 3.8A). The enzyme was totally inactivated after an incubation at 55oC for 

30 min (Figure 3.8B). However, an incubation of the enzyme at 80oC for 2 min was 

sufficient to inactivate the enzyme.  

 

3.4.4 N-Linked Deglycosylation  

The N-linked carbohydrate is the most common form of glycosylation. To 

investigate whether the conidial NADase is N-link glycosylated, endoglycosidase H 

was used to remove asparagine-linked oligomannose and hybrid, but not complex, 

oligosaccharides from glycoproteins. It cleaves between the two N-acetylglucosamine 

residues in the diacetylchitobiose core of the oligosaccharide, generating a truncated 

sugar molecule with one N-acetylglucosamine residue remaining on the asparagine. 

Endoglycosidase H reduced the size of NADase about 10 kDa, from 42 kDa to 32 kDa 

(Figure 3.9). One hour incubation completely removed the N-link glycosylation 

because incubation up to 3 hours did not reduce the size of NADase further. 

Deglycosylation did not affect the enzyme activity of the NADase.  

 

3.5 Mass Spectrometry Analysis 

The 42 kDa and 75 kDa bands from the cibacron blue purified protein lane and 

3 bands from native PAGE of blue sepharose purified protein lane as described in 
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Section 3.3, were cut out and sent for MALDI-TOF-TOF (Matrix-assisted laser 

desorption/ionization- Time of Flight) mass spectrometry to identify the protein. The 

trypsin-digested proteins were mixed with matrix and subjected to MALDI-TOF. Set 

of peptides obtained was matched with N. crassa database for peptide mass 

fingerprinting. From the mass spectrometry results summary table (Table 3.4), gi| 

85106032  (hypothetical protein) was the only candidate protein that appeared 3 times 

in all the analyses, from the 42 kDa band, 75 kDa of cibacron blue agarose purified gel 

and middle band from blue sepharose purified protein lane in native gel. A search 

from National Center for Biotechnology Information (NCBI) was performed on this 

candidate protein, the identified gene is located in on linkage group IV (chromosome 

IV) of the genome and it is a secreted protein.  

Other protein candidates identified from MALDI-TOF analysis were known 

proteins which were not likely to be the NADase. Most of the enzymes matched were 

dehydrogenases which take part in energy metabolism. One common similarity shared 

by these protein candidates is that they use NAD+/NADH as cofactor. 
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Table 3.5. Summary for mass spectrometry results. 

Cibacron blue agarose Blue sepharose 

42 kDa band 75 kDa band Middle band Top and bottom 
bands 

NADP-specific 
glutamate 

dehydrogenase 

glutathione-disulfide 
reductase 

Protein similar 
to alcohol 

dehydrogenase 

Gi|85089847 
hypothetical 

protein 

protein similar to 6-
phosphogluconate 

dehydrogenase 

Gi|85106032 
hypothetical protein 

Gi|85106032 
hypothetical 

protein 

Gi|85091612 
hypothetical 

protein 

Gi|85106032 
hypothetical protein 

related to alpha-
glucosidase b   

 
protein similar to 

cellobiose 
phosphorylase 

  

 

 
M 1 2 3

                                        

100 kDa 
  75 kDa 
  50 kDa 

32 kDa
42 kDa  37 kDa 

  25 kDa 

 

                  

 

 
 

Figure 3.9. Endoglycosidase H treatment of conidia NADase. Blue sepharose 
purified proteins were subjected to N-link deglycosylation by endoglycosidase H. 
After 1 hour and 3 hours incubation, the size of NADase was checked by running the 
8% SDS-PAGE. Lane 1, untreated conidia NADase; lane 2, NADase treated with 
endoglycosidase H for 1 hour; lane 3, NADase treated with endoglycosidase H for 3 
hours; lane M, marker. 
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3.6 Construction of Gi|85106032 Recombinant Proteins in P. pastoris 

To identify the signal peptide of the identified protein, SignalIP prediction tool 

was used to predict the secretion signal sequence. The probability of this protein being 

a secreted protein is 1.0 and the cleavage site is between the alanine and isoleucine 

amino acid residues (Figure 3.10). The full length sequence and mature sequence of 

Gi|85106032 was shown in Figure 3.11. The mature cDNA sequence was fused to the 

prepro region of the α-factor mating secretion signal in the vector pPICZαA. To 

express the intracellularly expressed protein, the full length cDNA with native 

secretion signal was cloned into vector pPICZB. 

Total RNA isolated from the conidia culture which had been grown for 18 hrs 

in liquid media, was transcribed to first strand cDNA and amplified by PCR using 

specific primers for gi| 85106032 as described in Section 2.16 in the Materials and 

Methods. Figure 3.12 showed the PCR products for the intracellular and extracellular 

expression. The cDNA encoding the intracellular expressed protein had the size of 747 

bp while the cDNA encoding secreted protein was about 696 bp. PCR products were 

ligated into respective linearized vectors and transformed into TOP10 F’ (E. coli 

strain). Cloned plasmids were isolated and RE digested to confirm the size and 

sequence. All the intracellular and extracellular clones isolated had the correct sizes of 

both vector and cDNAs. The extracellular expressed plasmids had 3.6 kb vector and 

686 bp insert (Figure 3.13A). The intracellular expressed plasmids had 3.3 kb vector 

and 736 bp insert (Figure 3.13B).
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          1 atgaagttca ccctcctctc caccgccgtc gccctcttga ccagcaccgc cgtcgccctt 
        61 cccactagct cctcctctgc tggaagtctc ctcaacgagc gctcctacgt caacgcctcc 
      121 tccaccgcca ccacctgccc ctacagccgg cgctccccgg cttactgcgc cggcaccgcg
      181 caaaaccgga cgctctcggc aacctacatc tgcggcgact cgcgcctggg gcccgtcgtg
      241 ctgccgcagt tctttttgcc gctggatccc attctcgaca tctacgaccg cttcggcggg 
      301 ctgtgcccgg gcgccttttt ggaaaagtgg ttcaaccaga cgggcagcgg ctggtgggac
      361 tacccgcccc aaaacggctt cagtgtcgat gatgaaggga acatcatcgc ggccaacttg
      421 acgctgcaga cgggcacgtt tgtggaccgg ttcggcagcg agtatggcag tttcctggcg
      481 ccggcggcgg cgccgtatct gcagaggagt ttgccgccta gtaatttgaa tggggatgcc
      541 aagttcccgt ggaactacca cgtttacagc gtcatcaagc cctttgctgt ccttgctgga 
      601 cccatcgccc cgtggttcgg ccagcctggt cagggcgtgc agtaccagac gtatgagaac
      661 gtcgcgacgc tgattgctga tgggtatctg aaagctgagg atccccagag gctggttcct 
      721 agaaactact ag 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11. Full length sequence of gi|85106032. The mature sequence of 
gi|85106032 is in bold while the stop codon is in red. 
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696 bp
600 bp
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747 bp

 Figure 3.12. PCR products of gi|85106032. Sequences for intracellular expression 
(A) was amplified from full length cDNA while secretion expression (B) were 
amplified from the mature sequence. The sequences were amplified using Finnzyme, 
proof-reading DNA polymerase as described in the Materials and Methods. Lane 1, 
PCR products for intracellular expression; lane 3, secretion expression PCR 
products; lane 2 and 4, H2O control; lane M, marker. 
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Clone 1 Clone 2

1     2    3     4    M
 

                                                         

3.3 kb 

736 bp 

    

 

 

                             

3.6 kb 

686 bp 

Clone 1  

M 5 6 7 8 9 10 11 12 13 14

Clone 2 Clone 3 Clone 4 Clone 5

Figure 3.13. Analysis of E. coli transformants. Recombinant plasmids were isolated 
from E. coli transformants and subjected to restriction enzyme digestion. (A) 
pPICZB-gi|85106032 recombinant plasmids were RE digested by EcoRI and NotI. 
(B) pPICZalphaA-gi|85106032 recombinant plasmids were digested by XhoI and 
NotI restriction enzymes. Lane 1,3,5,7,9,11,13, plasmids treated with restriction 
enzymes; lane 2,4,6,8,10,12,14, uncut plasmids; lane M, marker. 
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Clone 6 Clone 7 Clone 8  Positive control 

A 

Figure 3.14. Mut phenotype determination of intracellular expression clones, 
pPICZB-gi|85106032. ZeoR clones were patched on minimal dextrose agar plate 
followed (A) by minimal methanol agar plates (B). Mut+ clones will be able to grow 
on both agar plates. 

B 

A B 

re 3.15. Mut phenotype determination of secretoion expression clones, 
CZalphaA-gi|85106032. ZeoR clones were patched on minimal dextrose agar 
te followed (A) by minimal methanol ag plates (B). Mut+ clones will be able to 

Figu
pPI
pla ar 
grow on both agar plates. 
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588 bp

1284 bp

2.2 kb

323 bp

1070 kb

2.2 kb

M 1 2 3 4 5 6 7 8

M 9 10 11 12 13 14 15 16 17 18 19

Figure 3.16. Direct yeast colony PCR. Five colonies of pPICZB-gi|85106032 P. 
pastoris transformants (A) and 8 pPICZalphaA-gi|85106032 colonies (B) were 
subjected to colony PCR. Mut+ clones would have the foreign gene insert and an 
additional band at 2.2 kb. Lane 1-5, pPICZB-gi|85106032 yeast transformants; lane 
9-16, pPICZalphaA-gi|85106032 transformants; lane 6 and 17, yeast transformed 
with empty plasmids; lane 7 and 18, untransformed yeast; lane 8 and 19, H2O 
controls. 
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Recombinant plasmids were amplified by TOP10 F’ and transformed into X33 

using chemical transformation. The Mut+ phenotype of the clones were confirmed by 

Mut phenotype determination. Figure 3.14 and Figure 3.15 showed that all clones 

were Mut+ clones as all grew on MM and MD plates.  

Five clones for intracellular expression and 8 clones for secreted expression 

were randomly selected to perform the yeast colony PCR and check for Mut+ clones. 

All the 5 clones for intracellular expression were Mut+ clones as all had the gi| 

85106032 insert and 2.2 kb AOX1 gene (Figure 3.16A). However, 1 out of the 8 

secretion expression clones did not contain the insert (Figure 3.16B). The remaining 

clones were Mut+ clones.  

 

3.7 Small Scale Expression of pPICZB-gi| 85106032 and pPICZalphaA-

gi|85106032 Recombinant Proteins  

In both of the expression vectors, the heterologous NADase protein is 

expressed under the control of AOX1 promoter. When the recombinant yeast is 

cultured in the media containing methanol, the heterologous protein is expressed. As 

seen from the western blot of intracellular expression, all clones expressed the protein 

with molecular weight at 37 kDa (Figure 3.17A). The positive control was a 

recombinant protein containing α-c-myc tag (Invitrogen, Carlsbad, CA). But, clone 1 

and clone 5 expressed significant amounts of proteins compared to clone 2 to clone 4. 

After the recombinant proteins were purified with His-tag column, the band intensities 

increased (Figure 3.17B).      
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Surprisingly, there were detectable amount of recombinant proteins detected in 

the supernatants of all intracellularly expressed clones and the protein had the 

molecular weight of 50 kDa (Figure 3.18A). This suggested that the secretion signal 

from the N. crassa can be recognized by the P. pastoris. From the Figure 3.18B, all 7 

secreted expression clones also expressed the recombinant proteins with clone 5 

expressed the highest amount of protein. The molecular weight of secreted expressed 

protein was not the same as molecular weight of intracellularly expressed recombinant 

protein but was about the molecular weight of proteins detected in the supernatant of 

intracellular expression. Two forms of proteins were expressed, 50 kDa and 55 kDa 

proteins. For the negative controls in Figure 3.18, no bands were detected. The 

negative controls used were the X33 transformed with empty plasmid, pPICZB 

(Figure 3.18A, lane 6) or pPICZalphaA (Figure 3.18B, lane 14). 

In order to follow the time course of pPICZB-gi| 85106032 and pPICZalphaA-

gi|85106032 expression and to determine the optimum time to terminate the yeast 

culture, 1 ml aliquot of culture media were removed daily during 4 days after 

methanol induction. Western blot analysis was performed to detect the abundance of 

recombinant protein. Clone 1 of intracellular expression and clone 5 of secretion 

expression were used in the time course study. Clone 1 of intracellular expression 

expressed the highest amount of proteins at 24- and 48-hr (Figure 3.19A). Extending 

beyond 2 days resulted in a decrease of recombinant protein expression. However, for 

clone 5 of secretion expression, the optimum time for expression is at 72-hr (Figure 

3.19B). At 96-hr, there was an insignificant decrease in protein amount. Thus, the 
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Figure 3.17. Western blot analysis of intracellularly expressed recombinant proteins 
expressed by P. pastoris. Thirty micrograms of crude extract lysate (A) and His-tag 
column purified proteins (B) were loaded into 8% SDS PAGE. Proteins were 
detected by incubating the membrane with α-c-myc antibody. The amount of 
positive control for α-c-myc tag loaded was 2.5 µg. Lane 1, clone 1; lane 2, clone 2; 
lane 3, clone 3; lane 4, clone 4; lane 5, clone 5; lane 6, clone 6; lane 7, positive 
control (recpmbinant protein containing α-c-myc tag). Data represent 3 independent 
experiments. 

 

37 kDa
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50 kDa 
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55 kDa 

50 kDa

 Figure 3.18. Western blot analysis of supernatant of intracellular expression and 
secretion expression recombinant proteins expressed by P. pastoris. Cultures were 
spun down and 40 µl of supernatant of intracellular expression (A) and secretion 
expression (B) were resolved in 8% SDS PAGE. Lane 1-5, intracellular expression 
clone 1-5; lane 7-13, secretion expression clone 1-6 and 8; lane 6 and 14, negative 
controls (X33 transformed with respective empty vectors). Data represent 3 
independent experiments. 
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55 kDa 

50 kDa 

Figure 3.19. Time course of intracellularly expressed and secreted recombinant 
proteins. Both intracellular expression clone 1 (A) and secretion expression clone 5 
(B) were cultured for 96 hours. One milliliter of culture was collected every 24 hour. 
Thirty micrograms of crude extract lysate and 20 µl of supernatant of secretion 
culture were resolved in 8% SDS PAGE and detected using α-c-myc antibody. Data 
represent 3 separate determinations. 
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optimum time for expression is at 24-hr and 72-hr for intracellular and secretion 

expression, respectively. 

 

3.8 Enzyme Activity Check 

arly and extracellularly expression proteins were subjected to 

-gel substrate staining to check the enzyme activities and size of the recombinant 

roteins in non-reducing condition. Seen from Figure 3.20, all clones, including the 

atants of intra u  ex ssi showed positive substrate staining. Under 

non-reducing condition, the stained bands had the molecular weight of about 100 kDa. 

 also confirmed by fluorimetric NADase enzyme assay. All 

combinant proteins catalyze the breakdown of e-NAD+ by showing an increase in 

recombinant proteins only possess NADase activity.      

Both intracellul

in

p

supern cell lar pre on, 

The enzyme activity was

re

the fluorescence intensity over the time as a result of the formation of fluorescent 

product, e-ADPR (Figure 3.21). No cyclase activity was detected from the 

recombinant proteins samples (Figure 3.22). This further confirmed that the 
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Figure 3.20. Enzyme activity check by in-gel substrate staining. Thirty micrograms 
, 40 µl of supernatant of 

intracellular expression (B) and supernatant of secretion (C) expression proteins 
were loaded into 10% SDS PAGE. Lane 1-5, clone 1-5; lane 7-11, clone 1-5; lane 
13-19, clone 1-6 and 8; lane 6, 12 and 20, negative controls.  
 

of intracellularly expressed crude extract lysate (A)
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Figure 3.21. Fluorimetric NADase enzyme assay. The crude extract lysate (A), 
supernatant of intracellular expression (B) and supernatant of secretion expression 
were checked for enzyme activity using e-NAD+ as substrate as described in the 
material and methods. The excitation and emission wavelength were 310 nm and 
410 nm respectively. Data represent 3 independent experiments. 
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 3.22. Analysis of ADP-ribosyl cyclase activity. Representative tracing of
GDP-ribosyl cyclase activity (expressed in fluorescence intensity in arbitrary units) 
versus time (seconds) in the presence of 100 μ
intracellular clone 1 or supernatant of serection clone 5 incub  in 20 mM 
Tris-HCl pH 7.2. Lysate of CD 38 transfected Hela cells was used as positive 
control. No cyclase activity was detected in recombinant proteins. Data represent 3 
independent experiments. 
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ated at 37ºC
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3.9 NAD+ Cycling Assay 

The recombinant proteins which contained the NADase activity was applied in 

e NAD+ cycling assay to test its effectiveness in catalyzing conversion of β-NAD+ 

to ADP-ribose and nicotinamide. Known amount of NAD+, 40 µM of NAD+, was 

cubated with recombinant proteins followed by conversion of residual NAD+ into 

resorufin fluorescence by a coupled-enzyme cycling reactions. Figure 3.23 showed 

that NAD+ was successfully removed as residual NA he 

incubation with secreted protein while it was less th 

tracellularly expressed protein. The partial purified Sigma NADase was used as 

ositive control and no enzyme was added in the negative control.   
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Figure 3.23. Cycling assay for NAD+. Forty nanomolar of β-NAD
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4. DISCUSSION 

.1. Isolation and Characterization of Conidial NADase from N. crassa 

Conidial NADase appeared to possess the highest specific enzyme activity 

among the three NADases tested, ie. mycelial NADase, conidial NADase and the 

ommercial partial purified NADase from Sigma (Menegus and Pace, 1981). In 

ddition, mycelial NADase and Sigma NADase appeared as a smear band in in-gel 

bstrate staining rather than a clear band as in the case of conidial NADase. Sigma 

ADase is the product purified from mycelia of N. crassa. Therefore, it is not 

rprising that the isolated mycelial NADase from this study and Sigma NADase 

 

 

n aving high content of carbohydrates (Everse et. al., 1975). The conidial 

ADase has lower hexose content than mycelial NADase (Menegus and Pace, 1981). 

ADase from conidia contains 20% carbohydrates while the enzyme from mycelia 

has 80% carbohydrates (Pace et. al., 1998).  

 The conidial NADase was purified using affinity chromatography, either with 

cibacron blue 3GA agarose or blue speharose CL-6B. However, the yield for each 

purification step was extremely low, especially when using cibacron blue agarose. As 

a result, the protein is usually not sufficient for the subsequent purification step. This 

could be due to the fact that conidial NADase is rather hydrophobic (Menegus and 

Pace, 1981) such that the enzyme is adsorbed tightly by alkyl-sepharose columns with 

sorption affinity rising as the alkyl group is increased from 3 to 8 carbon atoms (Er-el 

4

 

c

a

su

N

su

possess the same migration pattern, i.e. smear band, in non-reducing SDS-PAGE.

NADase is a glycoprotein and the carbohydrate moiety on mycelial NADase is 

different from that on conidial NADase. The NADase purified from mycelia is

nusual i  hu

N

N
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et. al., 1972). As a result of the high hydrophopbicity, significant amount of enzyme 

ated with monomer band protein is more 

activity of the enzyme was lost.  

 The reported molecular weight of conidial NADase is 33 kDa (Menegus and 

Pace, 1981), while the mycelial NADase was reported to be 37 kDa (Cho et. al., 1998). 

However, the molecular weights of conidial NADase found in this study were 42 kDa 

and 75 kDa in SDS-PAGE or 45 kDa and 80 kDa in gel filtration, which are 

corresponding to the monomer and dimer form of NADase, respectively. NADase is 

present as a dimer when the enzyme is concentrated or when it is subjected to high 

temperature (for example 25oC) while the monomer of NADase is the most active 

form (Pace et. al., 1997). The molecular weight of the dimer form of conidial NADase 

is similar to the dimer form of mycelial NADase, which is 70 kDa (Cho et. al., 1998). 

Under native condition, the NADase dimer is the predominant form of protein (Cho et. 

al., 1998).  

 It is speculated that the dimer form of the enzyme is not inter-disulphide-

bonded. This can be seen from non-reducing SDS-PAGE that 2 forms of NADase 

detected when the sample was very concentr

abundant than the dimer form. Only one form of NADase i.e. monomer form of 

NADase was detected when the sample was diluted. When the dimer protein 

undergoes partial dissociation, it exits as monomer and dimer protein in SDS-PAGE. 

The enzyme forms a dimer through hydrophobic bonds (Pace et. al., 1998). As the 

hydrophobic interactions are endothermic, the bonds are stronger when the 

temperature is raised. This results in the formation of enzyme dimer.  
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 The conidial NADase is distinct from the enzyme purified from mycelial 

cultured in Zn-deficient medium (Menegus and Pace, 1981). The conidial NADase is 

he Km of conidial enzyme determined for this enzyme was 279.6 ± 4.95 

 sequence of 

gi|85106032, NADase is 732 bp with the deduced protein molecular weight of 27 kDa 

different from mycelial NADase in terms of the carbohydrate moiety, effect of pH, 

temperature and Km. The optimum pH for conidial NADase is pH 7.0. This is in 

contrast to mycelial NADase which is active over a wide range of pH, from pH 3 to 

pH 9 (Kaplan, 1955). The conidial NADase is sensitive to changes in temperature. An 

overnight incubation at 4oC caused a significant loss of enzyme activity. The enzyme 

becomes inactivated slowly at 4oC (Kaplan, 1955). An increase of the temperature 

from 4oC to 55oC and 80oC denatures the enzyme and cause a loss of enzyme activity. 

At high temperature, for example at 80oC, the protein was observed to precipitate out. 

This was due to the fact that at high temperature, hydrophobic bonds are promoted 

between the proteins. This results in the aggregation of protein and thus precipitation 

of protein. T

µM which was different from the Km of mycelial NADase, 500 µM (Kaplan, 1955). 

This is consistent with the finding that the specific enzyme activity of conidial 

NADase is higher than specific enzyme activity of mycelial NADase.  

 

4.2 Identification of NADase Sequence 

 Conidial NADase has been purified and characterized in 1980s but the 

genomic sequence has not been revealed yet. The present study first identified the 

cDNA sequence of NADase, the sequence of which has been deposited in NCBI but 

the function remained uncharacterized. The full length cDNA
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without subjected to any post translational modifications. The mature sequence of 

NADase starts from the 58bp of the full length cDNA sequence.  

The protein bands identified from the SDS-PAGE were subjected to mass 

spectrometry analysis. The peptide masses were matched against the Neurospora 

crassa database to reveal the identity of the proteins. N. crassa genome contains 7 

linkage groups, which means 7 chromosomes. The genome has been sequenced and 

reported recently (Galagan et. al., 2003; Mannhaupt et. al., 2003; Mewes et. al., 2004). 

The genome sequence has a total length of 38.6 Mb and contains 10,000 protein-

coding genes. The genome sequences were searched against the public protein 

database to reveal or predict the function of uncharacterized sequences. Our mass 

spectrometry results matched some known proteins and hypothetical proteins. But the 

gi|85106032 hypothetical protein appeared the most frequent, 3 times out of 5 analyses. 

Gi|85106032 is a protein from linkage group IV and it is a secreted protein. All these 

information match the criteria of conidial NADase which is a secreted protein and its 

nada gene is located at linkage group IV (Nelson et. al., 1975).  

  

4.3 Cloning and Expression of Gi|85106032 

in order to perform the reverse transcription.   mRNA of N. crassa was isolated 

Initially, the mRNA from conidia was isolated and used to perform the reverse 

transcription. However, no products could be detected after PCR. In order to get the 

mRNA of gi|85106032, the culture method was changed. The conidia were cultured 

for 18 hours in media before mRNA extraction. With the use of mRNA after 18-hour 

culture, we could detect the PCR product encoding this protein. Even though highest 
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enzyme activities are detected in the conidia, it does not show any mRNA 

transcription in the mRNA of the conidia as the mRNA is a transcript during 

conidio

 vectors, pPICZB and 

hese 2 vectors utilize the AOX1 promoter to drive the transcription of 

Dase was ligated with the intracellular 

phore differentiation. N. crassa NADase has been shown to be associated with 

the process of microconidiation (Stine, 1968; Urey, 1971; Zalokar and Cochrane, 

1956). The NADase enzyme activity is the highest during the early phase of conidia 

germination (0-7 hour conidial growth in media) and when the conidiophores age (56-

96 hour growth in media) (Stine, 1968). There is no or little enzyme activity detected 

during 24 to 48 hours growth in media. This may explain that during the logarithmic 

growth of conidia and during the differentiation of conidiophores, the protein is being 

under transcription and translation to prepare the needs for later stage of development. 

Therefore, mRNA of the gene can be detected after 18-hr culture, which corresponds 

to logarithmic growth of conidia. Accumulation of enzyme acitivities in conidia is an 

integral part of genetic program for the differentiation of aerial hyphae and 

macroconidia (Nelson et. al., 1975).  

 The PCR products were ligated with the yeast expression

pPICZalphaA. T

foreign genes. The full length sequence of NA

expression vector. However, the cDNA encoding the mature NADase was ligated with 

the secretion expression vector, pPICZalphaA, since the vector contains the α-factor 

secretion signal from S. cerevisiae. The protein can be cloned in frame either with the 

native secretion signal or S. cerevisiae α-factor prepro-peptide. NADase enzyme 

activity can be detected from the supernatant of intracellular expression culture. 

Protein can be detected as well from the supernatant of the culture. This implies that 
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the secretion signal of the N. crassa can be recognized by the P. pastoris expression 

system (Digan et. al.1989; Tschopp et. al., 1987). However, it was found that the level 

of secreted recombinant enzyme using native secretion signal was lower than using α-

factor prepro-peptide signal sequence.    

 Clonal variation is observed within collections of transformants harboring the 

same number of expression cassettes. Therefore, it is necessary to screen a number of 

transformants to check their expression levels (Cregg et. al., 1993). Our results 

showed that clone 1 from intracellular expression and clone 5 from secretion 

expression express more proteins than other clones. However, the reduction in the 

yield of recombinant proteins beyond the optimum expression time point might be due 

to the proteolysis of protein by P. pastoris protease. Secreted recombinant proteins are 

potentially subjected to proteolysis by extracellular protease, cell-bound protease and 

intracellular protease from lysed cells (Macauley-Patrick et. al., 2005). But there was 

an insignificant reduction in yield from 72 hour to 96 hour. This could be due to the 

addition of casamino acids in the media which may protect the product from 

proteolysis by a carrier mechanism or may provide amino acids and energy for foreign 

protein synthesis and secretion (Cregg et. al., 1993).  

The molecular weights of intracellularly expressed and secreted proteins from 

intracellular expression culture are different. The intracellularly expressed protein has 

the molecular weight of 37 kDa while the secreted protein is 50 kDa. There are 2 

forms of protein detected from secretion expression. They have the molecular weight 

of 50 kDa and 55 kDa. The difference in molecular weight between secreted protein 

and intracellular protein is attributed to different degree of glycosylation of the protein. 
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The intracellular proteins are rarely glycosylated or they have simpler sugar 

modifications. Unlike secreted proteins, they are glycoproteins. The different 

composition of glycosylation may be the reason for different molecular weight of the 

protein (Huo et. al. 2007; Sethuraman et. al., 2006). The most common glycosylation 

rough the secretory pathway to 

underg

is N-linked glycosylation where sugar components are added to asparagines found in 

Asn-X-Ser/Thr recognition sequences in protein. There are 4 potential N-linked 

glycosylation sites found in the amino acid sequence of NADase. Thus, it is possible 

that the secreted proteins go through the N-linked glycosylation in Pichia pastoris 

which mostly consists of short chain mannose N-acetylglucosamine residues. 

Regardless of the degree of glycosylation by P. pastoris expression system, it does not 

affect the enzyme activity of NADase.        

 Besides glycosylation, proteins are also disulfide-bonded. Under non-reducing 

condition, the secreted protein is about 2 times larger than the monomer protein. 

However, the intracellular recombinant protein is 3 times larger than its monomer. 

This indicates that yeast expressed protein is a dimer or trimer and the monomers are 

bonded together by interdisulfide bond. P. pastoris expression system is unique in 

such a way that it permits the protein that goes th

o post-translational modifications including glycosylation, disulfide bond 

formation and proteolytic processing (Cereghino et. al., 2002; Cregg et. al., 2000). 

This is unlike prokaryotic system which has been unsuccessfully in the formation 

disulfide bond due to reducing environment. 
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4.4 NAD+ Cycling Assay 

 Recombinant NADase was applied in the cycling assay for determination of 

NAD+ to test its efficacy. The results showed that the recombinant NADases from 

intracellular and secretion expression can be applied in the cycling assay, which is 

able to measure cellular cADP-ribose with nanomolar sensitivity. Recombinant 

NADases can be produced in large scale to meet the need of cycling assay with 

relative economical cost since the defined media needed are inexpensive and 

commercially available. In addition, with the use of secretion expression, the 

purification of recombinant protein will be of ease since the yeast secretes low level of 

native proteins. It is known that the secreted heterologous protein comprises the 

majority of the total protein in the medium (Barr et. al., 1992).         

ng assay.  

 

4.5. Conclusions 

 We have isolated and characterized the conidial NADase from N. crassa. 

Conidial NADase is different from mycelial NADase in certain aspects. Using mass 

spectrometry analysis, we have revealed the sequence of N. crassa NADase which has 

never been identified before even though it has been purified for a long time. The gene 

was cloned into the Pastoris expression vectors, pPICZB and pPICZalphaA. The 

recombinant proteins have been expressed successfully using the intracellular and 

secretion expression vectors. Furthermore, the recombinant proteins have been shown 

to be effective in removing NAD+ in the cycli
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6. APPENDIX 
 
Vogel’s minimal medium  

   0.5 g 
aCl     0.1 g 

eCl .6H O   9.6 x 10-4 g  

nCl     5 x 10-5 g 

issolve in 1 l water and autoclave for 20 min at 121oC. 

 ZnCl2 added. 

 mM EDTA 

% Triton X-100 

0 mM sodium phosphate buffer, pH 7.0 

 PMSF 
repare fresh. 

reaking buffer 
0 mM sodium phosphate, pH 7.25 

1 mM PMSF 
 mM EDTA 

5% Glycerol 
repare fresh. 

 

 

Sucrose   20 g  
KH2PO4  1 g 
MgSO4.7H2O
N
CaCl2     0.1 g 
biotin    5 x 10-6 g 
sodium tetraborate  8.8 x 10-5 g 
(NH4)6Mo7O24  6.4 x 10-5 g  
F 3 2
CuCl2    2.7 x 10-4 g  
MnCl2.4H2O   7.2 x 10-5 g  
Z 2
sodium tartarate  5.0 g 
NaNO3   1.0 g 
D
 
Zinc-deficient medium 
Same recipe as Vogel’s minimal medium except no
 
Protein extraction lysis buffer 
0.1 M sodium phosphate buffer, pH 7.5 
1
0.1 mM DTT 
1 mM PMSF 
1
Prepare fresh. 
 
Buffer A 
5
1 mM EDTA 
1 mM DTT 
1 mM
P
 
B
5

1

P
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His-tag binding buffer 
0 mM sodium phosphate, pH 7.4 

idazole 

odium hosph H 7.4 

, H 6.8   6 ml 
 12 g 

  45 g 
 in 10 ml deionised water. Warm to dissolve SDS. Store at room remperature. 

 80 µl 

 75 µl 
nol blue 20 µl 

8% 
Resolving 

10% 
Resolving 

Gel 

12% 
Resolving 

Gel 

4% 
Stacking 

Gel 

2
500 mM NaCl 
20 mM im
 
His-tag elution buffer 
20 mM s  p ate, p
500 mM NaCl 
500 mM imidazole 
 
Solution H6 
1 M Tris-HCl p  60 mM
SDS         12% 
Sucrose    1.3 M
Dissolve 0 

 
5X non-r in ple bueduc g sam ffer 
H6 solution   400 µl 
Deionised water  
2% Bromophenol blue 20 µl 
 
5X reducing sample buffer 
H6 solution   400 µl 
Β-mercaptoethanol  25 µl 
Deionised water 
2% Bromophe
 
SDS-PAGE 

Reagent 
Gel 

30% acryl
 (

amide 
solution 29:1) 

t #161-
 

2.7 ml 3.3 ml 4.0 ml 0.4 ml (Bio-rad Ca
0156)

0.75 M Tris.HCl, pH 2.5 ml 2.5 ml 2.5 ml -- 

-- -- 0.38 ml 
4 ml 3.3 ml 2.3 ml 

olution 0.1 ml 0.1 ml 0.1 ml 30 μl 
olution 0.1 ml 0.1 ml 0.1 ml 30 μl 

 6 μl 4 μl 4 μl 3 μl 
Total volume : 10.0 ml 10.0 ml 10.0 ml 3.0 ml 

8.8 
0.5 M Tris.HCl, pH 6.8 -- 

 water 4.6 ml Deionised
10% SDS s
10% APS s

TEMED
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1X SDS running buffer 
Glycine   0.192 M  144.1 g 

l sulfate 0.1%   10 g 
 0.25 M   30.3 g  

op up to 1 L with deionised water. The pH is about 8.3. Store at room temperature. 

8% Resolving 
Gel 

4% Stacking 
Gel 

Sodium dodecy
Tris base  
T

 
Native PAGE 

Reagent 

30% acrylamide solution 

6) 
l l (29:1) 

 Cat # 61-01
2.7 m 0.4 m

(Bio-rad 1 5
0.75 M Tris.HCl, pH 8.8 2.5 ml -- 
0.5 M Tris.HCl, pH 6.8 -- 0.38 ml 

Deionised water 4.7 ml 2.4 ml 
10% APS solution 0.1 ml 30 μl 

6 μl 3 μl 
3.0 ml 

TEMED 
Total volum 10.0e :  ml 

 
1X Running buffer 

ate st the pH to 8.3. 

 M Tris-HCl, pH 6.8   15.5 ml 
enol blue  2.5 ml 

Glycerol    25 ml 
Deionised  .0 
 
Silver Staining solution 

a
 

Glacial acetic acid  10 ml 
ed wa 00 ml. 

 

 
 
 

Dissolve in 100 ml deionised water.  
 
c n 
Silver nitrate  0.25 g 
Dissolve in 100 ml deionised water. 

Tris base  3.0 g 
Glycine  14.4 g 
Dissolve in 1 l deionised w r and adju
 
5X loading dye for Native PAGE 
1
1% Bromoph

water  7 ml 

. Fixer 
Ethanol  40 ml 

Top up with deionis ter to 1

b. Sensitizer 
Ethanol  30 ml 
Sodium thiosulfate 0.2 g 
Sodium acetate 6.8 g 

. Silver reactio
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d. Developing solution 
Sodium carbonate  2.5 g 
Formaldehyde  40 µl 
Dissolve in 100 ml deionised water. 

 
e. Stopping
EDTA, sodi

 solution 
um salt 

Dissolve in 100 ml deion
 
T
T  
G g 
M ml 
T er to 1  at 4oC. 
 
Blo
Skim milk powder 2.5 g 
Disso T/PBST. oC. 

g 

Dis m temperature. 
 
Str
 M 3.125 ml 

 2%  10 ml 
14. 350 µl 
Top  water.  
 
Die  Water 
DEPC 

ionised water and stir overnight. Autoclave and store at room 
tem
 

1.46 g 
ised water. 

ransfer buffer 
ris base  3.1 g
lycine  14.4 

 ethanol  200
op u  watp with deionised  l. Store

cking   solution

lve in 50 ml TBS Store at 4
 
TBST 
Tris base  2.4 g 
NaCl   8 g 
Tween 20  1 ml 

issolve in 1 l deionised water and adjust the pH to 7.5 with concentrated HCl. Store D
at 4oC. 
 
PBST 
Na2PO4  1.42 g 
KH2PO4  0.25 g 

aCl   8.0 g N
KCl   0.2 
Tw   500 µl een 20 

solve in 1 l deionised water. Store at roo

ipping buffer 
 Tris-HCl, pH 6.7  62.5mM 1

10% SDS  
3 M Β-mercaptoethanol 100 mM 

0 ml u eionised up the volume to 5 sing d

thylpyrocarbonate (DEPC) Treated
 0.1%  1 ml 

Top up to 1 L with de
perature. 
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RNA lysis buffer 
M  0.61 g 

NaC M  1.6 g 
ED M 1.46 g 
SD 2 g 

issolve in DEPC-treated water, adjust the pH to 8.0 and top up to 50 ml with DEPC-

 
1.2
0X MOPS   5 ml 

 0.6 g 
ith D PC-tr water to 50 ml. After melting the agarose, cool to about 

e solution and 0.5 μl 10 mg/ml ethidium bromide 
 temperature. 

0X MOPS Buffer 
10 mM  2.92 g 

M 41.85 g 

op up to 1 L with DEPC treated water and adjust to pH 7.0 with NaOH. Store at 4ºC 
ark. 

 10 ml 

to 100 ml with DEPC treated water and store at room temperature. 

A Loading Buffer 

l 
 ml 

2 ml 

op up to 10 ml with DEPC treated water. Store at 4°C. 

μl 

00 mM dTTP    100 μl 

Tris   100 m
l   0.6  

TA   100 m   
S   4%   

D
treated water.  

% denaturing agarose gel 
1
Agarose powder 
Top up w E eated 
65°C. Add 900 μl 37% formaldehyd
solution to mix. Pour to set at room
 
1
EDTA   
MOPS   200 m
Sodium acetate 50 mM  4.10 g 
T
in the d
 
1X MOPS Running Buffer 
10X MOPS   
Formaldehyde (37%)  2 ml 
Top up 
 
5X RN
0.5 M EDTA solution  80 µl 
10X MOPS buffer  4 ml 
Formaldehyde (37%)  720 µ
Formamide   3.084
Glycerol   
Saturated bromophenol blue  16 µl 
T
 
10 mM dNTP Mix for RT & PCR 
100 mM dATP   100 μl 
100 mM dCTP   100 
100 mM dGTP   100 μl  
1
DEPC treated or deionised water 600 μl 
Store at –20°C. 
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Agarose gel 
Add the required amount of agarose powder into 1X TAE (For example 2% gel, 2.0 g 

 melted, cool the agarose to 
 mg/ml stock) per ml of gel 

 
ris base   48.46 g 

72 g 

ionised wate e at room temperature. 

nd without amino acids in 1000 ml 
eionised water and filter sterilize. The shelf life of the solution is approximately one 

l dei ater and filter sterilize. Store at 4°C. The 

0X Dextrose (20%) 
 in 1 l deionised water. Autoclave for 15 min or filter 

roximately one year. 

ix 5 ml of methanol with 95 ml of deionised water. Filter sterilize and store at 4°C. 
n is approximately two months.  

sp ate bu pH 6.0 
 K H h 868 ml of 1 M KH2PO4. Autoclave for 20 min. 

 solution is greater than one year. 

Autoclave for 20 min or filter 
erilize. Store at room temperature. The shelf life of the solution is greater than one 

2%  100 ml 
issolve yeast extract and peptone in 900 ml deionised water. Add 20 g of agar if 
aking YPD plates. Autoclave for 20 min at 121oC. Cool the solution to ~60 oC and 

dd 100 ml 20% dextrose. Add 1.0 ml of 100 mg/ml Zeocin, if needed. Store plates 

in 100 ml buffer). Microwave to melt the agarose. Once
about 50°C and add about 0.4 μg of ethidium bromide (10
volume. Pour to set at room temperature. 
 
1X TAE buffer
T
EDTA, disodium salt  3.
Acetic acid   12.01 g 
Dissolve in 1 l de r. Stor
 
10X YNB (13.4%) 
Dissolve 134 g YNB with ammonium sulfate a
d
year. 
 
500X Biotin (0.02%) 
Dissolve 20 mg biotin in 100 m onised w
shelf life of the solution is approximately one year. 
 
1
Dissolve 200 g of D-glucose
sterilize. The shelf life of the solution is app
 
10X Methanol (5%) 
M
The shelf life of the solutio
 
1 M potassium pho h ffer, 
Combine 132 ml of 1 M PO4 wit2
Store at room temperature. The shelf life of the
 
10X Glycerol (10%) 
Mix 100 ml of glycerol with 900 ml of deionised water. 
st
year. 
 
 
YPD 
Yeast extract  1%  10 g 
Peptone  2%  20 g 
10X Dextrose  
D
m
a
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and mediua with Zeocin at 4oC in the dark. Plates containing Zeocin can be stored for 

ml 
00X Biotin  4 x 10 % 2 ml 

0.5%  100 ml 
 g of agar for 20 min at 121oC. Cool the 

recipe . Mix the solution well and pour into plates 

D 
1.34%  100 ml 

ve 800 ml of deionised water with 15 g of agar for 20 min at 121 C. Cool the 
lution and add the recipes above. Mix the solution well and pour into plates 

oC. 

east extract    1%  10 g 
  2%  20 g 

00X Biotin    4 x 10 % 2 ml 
  0.5%  100 ml 

in and methanol. Mix the 
lution well and store at 4 C.   

eptone    2%  20 g 
ate, pH6.0 100 mM 100 ml 

lycerol    1%  100 ml 
issolve yeast extract and peptone in 700 ml deionised water and autoclave for 20 min 

t 121oC. Add the potassium phosphate buffer, YNB, biotin and glycerol. Mix the 
n well and store at 4oC.   

2 weeks.  
 
MM 
10X YNB  1.34%  100 

-55
10X Methanol  
Autclave 800 ml of deionised water with 15
solution and add the s above
immediately. Store at 4oC. 
 
M
10X YNB  
500X Biotin  4 x 10-5% 2 ml 
10X Dextrose  2%  100 ml 
Autcla o

so
immediately. Store at 4
 
BMMY 
Y
Peptone  
1 M potassium phosphate, pH6.0 100 mM 100 ml 
10X YNB     1.34%  100 ml 

-55
10X Methanol  
Dissolve yeast extract and peptone in 700 ml deionised water and autoclave for 20 min 
at 121oC. Add the potassium phosphate buffer, YNB, biot

oso
 
BMGY 
Yeast extract    1%  10 g 
P
1 M potassium phosph
10X YNB     1.34%  100 ml 
500X Biotin    4 x 10-5% 2 ml 
10X G
D
a
solutio
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Low salt LB medium 
Tryptone  1%  10 g 

east extract  0.5%  5 g 
  0.5%  5 g 

 7.0 with NaOH. Add 15 g/l agar 
t . Top toclave for 20 min at 121oC. Cool the 

4oC.  

Y
NaCl 
Dissolve in 950 ml deionised water and adjust to pH
to prepare pla es  up the volume to 1 l. Au
solution to ~55oC and add 250 µl if desired. Store at 
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