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SUMMARY 
 

This thesis comprises of three essays on the relationships among intellectual human 

capital, strategic alliances and technological performance. Earlier research has suggested 

that intellectual human capital and strategic alliances are key inputs to a firm’s 

technological performance (Rothaermel and Hess, 2006). This dissertation investigates 

the means through which the above two factors influence a firm’s technological 

performance, explores the mechanisms required for a firm to translate the benefits from 

these factors into better technological performance and finally, examines the 

interdependence between the two factors in influencing the technological performance. 

 The first essay seeks to understand if intellectual human capital and strategic 

alliances contribute to a firm’s technological performance by assisting with the new 

knowledge search process. The second essay attempts to understand the importance of 

exploitation mechanism in converting the competencies of intellectual human capital into 

better technologies. The third essay investigates if intellectual human capital and 

alliances are substitutes or complements of each other in influencing firms’ technological 

performance.  

 I test the theoretical models in the dissertation using the patent, publication and 

alliance data of 222 biotechnology firms from around the world. The results largely 

support the arguments presented in the dissertation. My first essay illustrates that 

intellectual human capital contributes to a firm's technological performance by 

embarking on the new knowledge search process. The results also confirm that strategic 

alliances assist a firm in successfully converting the new knowledge search into better 

technological performance. My second essay shows that a firm needs to have an 
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exploitation mechanism in place to ensure that the knowledge generated by its intellectual 

human capital is exploited for developing valuable technologies. My third essay suggests 

that intellectual human capital and alliances are both complementary and substitutive in 

nature, but that the relationship is contingent on the characteristics of intellectual human 

capital and the attributes of alliance partners.  

 Overall, the dissertation contributes to the managerial research on knowledge 

search, accumulation of intellectual human capital and strategic alliances in the following 

ways. Earlier studies have suggested that intellectual human capital and alliances are key 

mechanisms for knowledge search. My dissertation contributes to this stream of research 

by distinguishing the value of intellectual human capital and strategic alliances to new 

knowledge search. The findings augment the research on accumulation of intellectual 

human capital by suggesting that the kind of knowledge that can be accessed through 

different types of intellectual human capital differs depending on their characteristics. I 

contribute to the stream of research on strategic alliances by showing that a holistic 

understanding of benefits derived from alliance partners, warrants a careful examination 

of the alliance partners’ attributes and their interaction with the focal firm’s 

characteristics.  
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CHAPTER ONE 

INTRODUCTION  
 
 This chapter introduces the research questions investigated in the three essays of 

the dissertation, then summarizes the findings and contributions of each essay.  

 

MOTIVATION AND RESEARCH QUESTIONS 
 

A firm’s ability to adapt, integrate and reconfigure its competencies in accordance with 

the dynamically changing environment is essential for its technological performance. 

Scholars studying the dynamics of technological performance believe that antecedents to 

technological performance can be found both in resources residing within a firm and in 

resources leveraged from external partners (Eisenhardt and Martin 2000). At the firm 

level, heterogeneous distribution of intellectual human capital across firms is shown to be 

a significant predictor of the variance in their technological performance (Subramaniam 

and Venkataraman, 2001). Similarly, the literature on social networks underlines that the 

resources leveraged through strategic alliance are a significant predictor of the variance in 

firms’ technological performance (Powell, Koput and Smith-Doerr, 1996). Recognizing 

the importance of intellectual human capital and strategic alliances for technological 

performance, this thesis comprises of three essays on the relationships between 

intellectual human capital, strategic alliances and technological performance.  

 The first essay of this dissertation, presented in Chapter 2, seeks to understand the 

means through which intellectual human capital and strategic alliances contribute to 

technological performance. Specifically, the essay investigates if intellectual human 

capital and strategic alliances contribute to firms’ technological performance by assisting 
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with the new knowledge search process. The background and specific research question 

of this essay are elaborated upon below.  

 In high technology industries, firms’ abilities in searching for new knowledge 

residing outside their organizational boundary are considered critical for their 

technological performance. It has been shown that through search organizations learn 

new skills (Huber, 1991) and adapt to environmental changes (Cyert and March, 1963). 

Thus, search for new knowledge is an important organizational learning mechanism for 

knowledge-creating companies. This is more so in the case of “competence destroying” 

biotech innovations (The biotechnology industry is the context in testing my research 

framework) because biotech innovations require established pharmaceutical firms to 

move away from their organic chemistry knowledge base and search for knowledge from 

immunology and molecular biology disciplines. In my dissertation, new knowledge 

search refers to a firm’s endeavors in searching external knowledge with the anticipation 

that the knowledge can be recombined into valuable technologies. 

 The first step of the new knowledge search process is to search for and identify 

external knowledge. The second step is to acquire and exploit the searched knowledge. 

The literature on absorptive capacity identifies that existing knowledge forms the base for 

identifying valuable external knowledge (Cohen and Levinthal, 1990). Following the 

literature, I believe that the knowledge residing in intellectual human capital enables 

them to engage in research activities, knowledge transformation endeavors and to act as 

gatekeepers for the flow of external knowledge. Consequently, I propose that intellectual 

human capital plays an important role in searching and identifying new knowledge 

residing outside the organization, thereby assisting with the first stage of the new 
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knowledge search process. In my dissertation intellectual human capital refers to “highly 

skilled and talented employees who hold advanced degrees”.  

 While the literature on evolutionary search acknowledges the difficulty of 

acquiring external knowledge, the literature on social networks proposes inter-

organizational collaborations as an important mechanism for the inflow of external 

knowledge (Mowery et al., 1996). Hence, I propose that strategic alliances play an 

important role at the second stage of the new knowledge search process of acquiring and 

exploiting the searched knowledge, thereby helping a firm translate its new knowledge 

search into better technologies. 

  There are also notable examples in the biotechnology industry that emphasize the 

importance of intellectual human capital and alliances for new knowledge search. The 

success of Merck in its search for the root cause of AIDS is attributed to a group of 

scientists employed by the organization. The advancement of genetic research is closely 

tied to the Nobel Prize winning scientist Kary Mullis’s search of polymerization chain 

reaction techniques. With respect to alliances, Genentech, a leading biotech firm, claims 

that their recent R&D collaboration with Abbott technologies will assist the firm in 

converting their apoptosis research into anti-cancer compounds1. A recent survey 

conducted in this industry highlights that alliances contribute to the success of biotech 

firms in translating their search for new knowledge into useful discoveries2. 

 To better understand the significance of intellectual human capital and alliance to 

new knowledge search, the first essay of this dissertation concentrates on the research 

question: 

                                                 
1 http://www.lifesciencesworld.com/news/view/37908  
2 Global pharmaceutical company partnering capabilities survey 2000    
http://www.biocouncilontario.com/media/Summary_Report.pdf 
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(1) How does (a) intellectual human capital help a firm in its search for new 

knowledge, and how does (b) alliance portfolio help a firm in translating its new 

knowledge search into better technologies? 

  In investigating the above question, I classify new knowledge search into (1) 

technological search, (2) geographical search and (3) science search, depending on the 

knowledge that is searched, and classify intellectual human capital into (1) pure 

scientists, (2) bridging scientists and (3) pure inventors, depending on their specialization. 

Similarly, I concentrate on three attributes of alliance portfolio: (1) technological 

diversity, (2) geographical diversity and (3) number of partners from a university 

background. The above classifications are used to examine how different characteristics 

of intellectual human capital and different attributes of alliance portfolio contribute to the 

three dimensions of new knowledge search in varied ways.  

 While the first essay emphasizes the importance of intellectual human capital and 

alliances, realizing the benefits of these factors is not simple and straightforward. 

Intellectual human capital is inclined to work on intellectually challenging questions, 

even if the findings are not capable of generating economic rents. Since intellectual 

human capital, like scientists, believe that their primary obligation is the advancement of 

research rather than making their skills available to the organization, it is especially 

difficult for a firm to translate their competencies into better technologies. Similarly, the 

difficulty of benefiting from alliances is demonstrated by a survey3 conducted in 2000 

which projected that about 40% of alliances failed to produce their desired effect. Though 

a number of scholars have delved into the means of leveraging alliance partners’ 

                                                 
3 Global pharmaceutical company partnering capabilities survey 2000    
http://www.biocouncilontario.com/media/Summary_Report.pdf 
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capabilities (Dyer and Singh, 1998; Lane and Lubatkin, 1996; Grant and Braden-Fuller, 

2004), the question of how firms realize the benefits of their intellectual human capital 

has not gained enough attention in the literature. Hence, the second essay of this 

dissertation, presented in Chapter 3, investigates the research question: 

(2) How can a firm benefit from the competencies of its intellectual human capital? 

 Specifically, the study looks at mechanisms for converting the competencies of 

intellectual human capital, such as scientists, into better technological performance.  

 The third essay of this dissertation, presented in Chapter 4, investigates the 

interdependency between (1) intellectual human capital and (2) alliances in explaining 

the technological performance of firms. Two different perspectives exist regarding the 

interdependency of these two factors. The first perspective argues that the two factors are 

complementary, whereas the second one perceives the factors to be substitutes of each 

other (Liebeskind et al., 1996; Rothaermel and Hess, 2007). However, neither perspective 

has paid attention to the characteristics of intellectual human capital and alliances that 

might alter the nature of their interdependencies. As the nature of information flow from 

alliance partners and the kind of knowledge that flows through intellectual human capital 

is known to depend on their characteristics (Owen-Smith and Powell, 2004), I believe 

that the attributes of intellectual human capital and alliances play an important role in 

determining their interdependency. Hence, the third essay of this dissertation, presented 

in Chapter 4, pursues the question:  

(3) How do the characteristics of intellectual human capital and alliances alter the 

nature of their interdependency (complements/substitutes)? 
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 To examine this question the essay classifies intellectual human capital into (1) 

pure scientists, (2) bridging scientists and (3) pure inventors, depending on their 

specialization, and alliances into (1) firm alliances and (2) university alliances, based on 

the institutional regime, and then investigates their interdependency.  

 The next section elaborates on the research models, findings, and contributions of 

each of the three essays that comprise this dissertation. 
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RESEARCH MODELS, FINDINGS AND CONTRIBUTIONS 

As outlined above, the first essay of this dissertation investigates the importance of 

intellectual human capital to new knowledge search and how alliances help a firm in 

translating its new knowledge search into better technologies. The research model tested 

in this essay is presented in Figure 1.1. In my study, a firm’s attempt to search for 

knowledge outside its organizational boundary is termed as new knowledge search. 

Depending on the knowledge that is searched, new knowledge search is classified into (1) 

technological search, (2) geographical search and (3) science search.  

 Intellectual human capital and alliances are categorized into three types in order to 

better understand their contributions to new knowledge search and technological 

performance. In high technology industries, intellectual human capital is known to differ 

based on whether they specialize in the science domain, technology domain or both 

(Gittelman and Kogut, 2003). Hence, I classify intellectual human capital into three 

types: (1) pure scientists (only science domain), (2) bridging scientists (both science and 

technology domains) and (3) pure inventors (only technology domain), depending on 

their domain of specialization. Similarly, the benefits from alliances are known to depend 

on their attributes, not just by their size (Stuart, 2000). Accordingly, I look at three 

attributes of alliance portfolio: (1) technological diversity, (2) geographical diversity and 

(3) number of partners from a university background. The three attributes of alliance 

portfolio are consistent with the three dimensions of new knowledge search. 

 The research question, unit of analysis and key results of the first essay are 

presented in the first column of Table 1.1. I use the patent, publication and alliance data 

of 222 biotech firms in testing the research model. The results show that bridging 
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scientists and pure inventors directly contribute to new knowledge search and 

technological performance, but pure scientists do not. The findings further demonstrate 

that the contributions of pure scientists to new knowledge search are indirect by helping 

bridging scientists in their search process. With regard to alliances, all three attributes of 

alliance portfolio have a positive influence on technological performance. A 

technologically and geographically diverse alliance portfolio is observed to enhance the 

contributions of technological and geographical searches to technological performance.  

Figure 1. 1. Research Model of the First Essay 

 
 

  The first essay of this dissertation makes the following contributions. The findings 

contribute to the research on knowledge search by distinguishing the value of intellectual 

human capital and strategic alliances to new knowledge search. The essay contributes to 

studies on intellectual human capital - technological performance link by showing that 

new knowledge search is one of the means through which intellectual human capital 

contributes to technological performance. The findings of this essay help in illustrating 

that the contributions of intellectual human capital to technological performance and new 

INTELLECTUAL 
HUMAN CAPITAL 

1. Pure Scientists 
2. Bridging Scientists 
3. Pure Inventors 

NEW KNOWLEDGE 
SEARCH 

1. Technological Search 
2. Geographical Search 
3. Science Search 

TECHNOLOGICAL 
PERFORMANCE 

ALLIANCE PORTFOLIO 
ATTRIBUTES 

1. Technological Diversity 
2. Geographical Diversity 
3. Number of University Partners 
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knowledge search differ depending on their characteristics. Specifically, I demonstrate 

the contingent value of intellectual human capital, such as scientists, by differentiating 

between the contributions of scientists who play the bridging role (in bridging science 

and technology domains) and scientists who do pure research. The results pertaining to 

alliance portfolio are useful in proposing an alliance strategy to a firm that best fits with 

the firm’s knowledge search strategy. The findings also suggest that the strategic 

advantage derived from alliance partners depends on the partners’ attributes and their 

interaction with the focal firm’s characteristics. 

 The results from the first essay underline the importance of scientists and 

inventors for better technological performance. As inventors are solely involved in 

technology development activities, it should not be very difficult for a firm to translate 

competencies of its inventors into better technologies. This is not so in the case of 

scientists, as scientists are involved in scientific research that is not a ready-made input to 

technological development. Hence, the second essay investigates two mechanisms for 

translating competencies of a firm’s intellectual human capital into better technologies. 

  The first mechanism is an individual level mechanism of letting intellectual 

human capital, such as scientists, work on both upstream scientific research and 

downstream technology development activities. The second one is the firm’s exploitation 

mechanism of letting scientists do the upstream scientific research while also 

encouraging technology developers to exploit the knowledge produced by in-house 

scientists. The research model tested in this essay is presented in Figure 1.2. The key 

results of this essay are presented in the second column of Table 1.2.  
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 The findings of this study support the importance of bridging scientists. 

Nevertheless, exploitation mechanism turns out to be of greater significance than 

bridging scientists because the results indicate that in the absence of an exploitation 

mechanism, bridging scientists have no role to play in converting the scientific 

competency of a firm into better technologies. While existing studies view individuals as 

movers of knowledge across boundaries, my findings illustrate that bridging the science 

and technology domain within a firm is not a simple human capital story of having 

scientists do both. A firm should have an appropriate exploitation mechanism in place to 

achieve this.  

Figure 1. 2. Research Model of the Second Essay 

 
 

 The third essay of this dissertation investigates the interdependency between 

intellectual human capital and alliances. The research model tested in this essay is 

presented in Figure 1.3. Similar to the second essay, intellectual human capital is 

subdivided into (1) pure scientists, (2) bridging scientists and (3) pure inventors. 

Alliances are categorized into (1) firm alliances and (2) university alliances, depending 

INTELLECTUAL 
HUMAN CAPITAL 

1. Bridging scientists 

TECHNOLOGICAL 
PERFORMANCE 

 

FIRM LEVEL MECHANISM 
OF EXPLOITING 

SCIENTISTS’ KNOWLEDGE 
(1) Exploitation of knowledge generated 

by scientists in technological domain 



 11

on their institutional affiliation. The key findings of this essay are presented in the third 

column of Table 1.1.  

 In examining their interdependency, the results show that bridging scientists and 

pure scientists substitute university alliances because they are also involved in an external 

scientific network with a free flow of knowledge from academic communities adhering to 

the norm of openness. However, with respect to firm alliance partners that believe in a 

proprietary model of sharing knowledge, all three types of intellectual human capital act 

as complements to each other. While prior studies have found support for either a 

substitutive or complementary story in explaining the interdependency between 

intellectual human capital and alliances, I support both perspectives. Further, I show that 

the exact nature of interdependency (complements/substitutes) is contingent on the nature 

of intellectual human capital and attributes of alliance partners. The findings also suggest 

that benefits from a formal partnership depend on whether or not it is an extension of the 

social relationships of human capital residing within the firm. 

 This dissertation is organized as follows. Chapters 2, 3 and 4 present the three 

essays of this dissertation. Chapter 2 investigates the means through which intellectual 

human capital and strategic alliances influence a firm’s technological performance. 

Chapter 3 examines mechanisms required for a firm to translate benefits from its 

intellectual human capital into better technological performance. Chapter 4 explores the 

interdependency between intellectual human capital and strategic alliances in influencing 

the technological performance. Chapter 5 integrates the findings of the three essays and 

links these findings with the extant literature on knowledge search, human capital and 
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strategic alliances. I also discuss the limitations and future research directions of this 

dissertation in Chapter 5.  

 

Figure 1.3. Research Model of the Third Essay
 

 
 

INTELLECTUAL 
HUMAN CAPITAL 

1. Pure Scientists 
2. Bridging Scientists 
3. Pure Inventors 

ALLIANCES 
1. No. of University partners 
2. No. of Firm partners 

TECHNOLOGICAL 
PERFORMANCE Complements or  

Substitutes X 
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Table 1.1. Summary of the Three Essays 
 

 First Essay (Chapter 2) Second Essay (Chapter 3) Third Essay (Chapter 4) 

Specific 
Research 
Questions 

How intellectual human capital such as  
(a) pure scientists (b) bridging scientists and (c) pure inventors 
embark on   
(a) technological (b) geographical and (c) science 
search in generating valuable technologies?  
How an alliance portfolio characterized by partners from a 
(a) diverse technological background  
(b) diverse geographical background and  
(c) a greater number of partners from an academic background  
enhance the value of   
(a) technological (b) geographical and (c) science search in 
generating valuable technologies? 

How the individual-level mechanism of having  
(a) bridging scientists  
and the firm-level mechanism of  
(b) exploiting science knowledge in the 
technology domain  
help a firm in translating the competencies of its 
scientists into valuable technologies? 

Are intellectual human capital such as  
(a) pure scientists (b) bridging scientists and (c) 
pure inventors and  
alliances comprised of 
(a) firm partners and 
(b) university partners 
complements or substitutes of each other in 
explaining the technological performance of firms? 

Research 

Design 

Quantitative analysis of patent, publication and alliance data of 
222 biotech firms from Plunkett’s biotechnology directory 

Quantitative analysis of patent and publication 
data of 222 biotech firms from Plunkett’s 
biotechnology directory 

Quantitative analysis of patent, publication and 
alliance data of 222 biotech firms from Plunkett’s 
biotechnology directory 

Findings Bridging scientists and pure inventors assist the technological 
and geographical searches. Pure scientists facilitate the 
technological and geographical searches of bridging scientists.  
Technologically and geographically diverse alliance portfolio 
enhances the contribution of technological and geographical 
searches.  

Firm-level exploitation mechanism moderates 
the degree of relationship between bridging 
scientists and technological performance. In the 
absence of firm-level exploitation mechanisms, 
the mere presence of bridging scientists need not 
result in translation of scientific competency into 
better technologies 

Pure scientists and bridging scientists substitute 
university alliances 
 
Pure scientists, bridging scientists, and pure 
inventors complement firm alliances 
 
 

Contributions (1) Differentiates the value of intellectual human capital and 
strategic alliances to new knowledge search 
 
(2) Illustrates that the contribution of intellectual human capital 
to technological performance and new knowledge search differ 
depending on their characteristics.  
 
(3) Suggests that strategic advantages derived from alliance 
partners depend on the partners’ attributes and their interaction 
with the focal firm’s characteristics. 

(1) Suggests that bridging science-technology 
domains is not a simple human capital story of 
having scientists who are involved in both 
scientific research and technological activities 
 
(2) Illustrates that firms have to acknowledge 
the challenges in making the transition from 
science domain exploration to technology 
domain exploitation and attempt to have 
premeditated mechanisms to bridge the gap 

(1) Suggests that intellectual human capital and 
strategic alliances are both complements and 
substitutes of each other depending on the 
characteristics of intellectual human capital and 
attributes of alliance partners 
 
(2) Demonstrates that benefits from a formal 
partnership depend on whether or not it is an 
extension of the social relationships of human 
capital already residing within the firm 
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CHAPTER TWO 
 

NEW KNOWLEDGE SEARCH: THE ROLE OF INTELLECTUAL HUMAN 
CAPITAL AND ALLIANCE PORTFOLIO 

 

INTRODUCTION 
Organizations innovate by combining new knowledge with existing knowledge (Kogut 

and Zander, 1992). Thus, the search for new knowledge is an inevitable part of 

technological innovation. There are two types of search behaviors exhibited by firms. 

First is to look for new ideas in the neighborhood of research and development (R&D) 

activities residing within the firm. Although the process of 'local search' is cheap and this 

knowledge is easy to access, the dynamically accelerated marketplace requires firms to 

consider the second type of search which spans their organizational boundary and look 

for external knowledge. In this study, firms’ endeavors in looking for knowledge residing 

outside their organizational boundary are termed as a 'new knowledge search'. Several 

studies belonging to the evolutionary search literature have shown that the ability of 

organizations to generate high impact technologies is closely tied to their new knowledge 

search (Rosenkopf and Nerkar, 2001; Ahuja and Lampert, 2001; Rosenkopf and Almeida, 

2003; Ahuja and Katila, 2004).  

 Though new knowledge search helps a firm in generating valuable innovations, 

organizations find it difficult to reach out for distant knowledge (Jaffe, Trajtenberg and 

Henderson, 1993; Stuart and Podolny, 1996). In particular, a firm's search for new 

knowledge is shown to be geographically and technologically bounded. Recent research 

has shown that firms search for and acquire distant knowledge with the help of their 

employees and strategic alliances (Rosenkopf and Almeida, 2003). However, more 
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remains to be understood about the precise contribution of these factors to new 

knowledge search. For instance, the finer aspect of how organizations utilize intellectual 

human capital and alliances for new knowledge search remains unconnected with the 

different stages of new knowledge search.  

 A firm's search for new knowledge to generate better technologies can be 

described as consisting of two stages (Zahra and George, 2002; Tripas, 1997). The first 

stage involves searching for new knowledge. Organizations engage their intellectual 

human capital in search of new knowledge because the knowledge residing in intellectual 

human capital helps in screening and identifying valuable external knowledge. Though 

intellectual human capital engages in search of new knowledge, literature has 

acknowledged that it is not very easy to absorb and exploit knowledge residing outside a 

firm’s environment. This can be due to reasons such as relative absorptive capacity, the 

type of knowledge that is searched, etc. (Lane and Lubatkin, 1998; Gambardella, 1995; 

Phene, Fladmoe-Lindquist and Marsh, 2006). In the absence of an appropriate 

mechanism to enable the transfer and exploitation of the searched knowledge, it is 

difficult to convert new knowledge search into better technologies. Hence, the second 

stage of new knowledge search is to establish collaborative arrangements, such as 

alliances, that facilitate this process.  

 Since the search for new knowledge also incurs huge costs, it is critical to 

investigate the strategic importance of intellectual human capital and alliances for new 

knowledge search, as outlined above. This study has two objectives to demonstrate the 

differential effect of these two factors in the process of searching and acquiring new 

knowledge for creating valuable technologies.  
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 The first objective is in showing that intellectual human capital endowed within a 

firm undertakes new knowledge search, thereby contributing to better technological 

performance. There are several examples in the medical industry that underline the 

significance of intellectual human capital. Their role in search of knowledge related to 

coronary artery disease, genetic research, and AIDS are exemplary examples (Mina, 

Ramlogan, Tampubolon and Metcalfe, 2007)4.   

 I explore the importance of intellectual human capital for three types of new 

knowledge search: (a) technological search (the degree to which a firm searches a wide 

array of technologies), (b) geographical search (the degree to which a firm searches 

diverse geographic locations) (c) science search (the degree to which a firm searches the 

science knowledge base). While literature on evolutionary search traditionally 

concentrates on the ‘technological’ and ‘geographical’ dimensions of search, I follow 

Ahuja and Katila (2004) in including the third dimension ‘science search’. This 

additional dimension has been shown to have a significant contribution to technological 

performance in the high-tech industries. 

 I also categorize intellectual human capital into three types. This is done in order 

to examine their differential effect on the three different dimensions of new knowledge 

search. Innovations in high-technology industries are determined by the advancement of 

both scientific and technological knowledge (Nelson, 2003) and the characteristics of 

intellectual human capital in such industries differ based on the domain in which they 

carry out research activities (science/technology/both) (Gittelman and Kogut, 2003). 

                                                 
4  http://www.lifesciencesworld.com/news/view/37908 
   http://query.nytimes.com/gst/fullpage.html?res=9903E2D61731F934A15751C0A9649C8B63  
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Hence, I classify intellectual human capital into (a) pure scientists, (b) pure inventors and 

(c) bridging scientists based on the domain in which they specialize.  

 The first objective intends to contribute to two streams of research. The first 

contribution is to the literature on evolutionary search in showing the significance of 

different types of intellectual human capital for different dimensions of new knowledge 

search. The second contribution is to the stream of research on intellectual human capital-

technological performance link in showing that intellectual human capital contributes to 

technological performance by engaging in new knowledge search. 

 Literature identifies strategic alliances, especially those on research and 

development (R&D), to be an important mechanism for acquiring and exploiting external 

knowledge (Mowery, Oxley and Silverman, 1996; Grant and Baden-Fuller, 2004). 

Hence, the second objective of this research is to show that strategic alliances help a firm 

in translating its new knowledge search into better technologies. Specifically, I show that 

strategic alliances moderate the relationship between new knowledge search and 

technological performance. One might argue that alliances can also be a direct input to 

new knowledge search. However, I support my claim that the value of strategic alliance is 

to the second stage of new knowledge search in the following way. According to the 

absorptive capacity literature, the first and foremost step in forming an alliance is 

identifying potential partners and evaluating the value of their knowledge. Therefore, a 

firm’s internal resources, such as intellectual human capital, lay the foundation for new 

knowledge search by identifying potential partners. It is with these new partners whom 

the firm then establishes formal relationships such as alliances. Thus, the role of alliances 

is in facilitating the process of acquiring and exploiting the searched knowledge.  
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 The benefits from cooperative strategy are known to depend on the characteristics 

of the alliance network (Stuart, 2000). Therefore, the second objective is to specifically 

investigate the kind of alliance portfolio that best fits the three dimensions of new 

knowledge search. I propose that an alliance portfolio characterized by partners from 

diverse technological and geographical background positively moderates the relationship 

of technological, geographical search with technological performance, respectively. 

Similarly, I argue that an alliance portfolio characterized by a higher number of partners 

from the academe enhances the value of science search.  

 The second objective also intends to contribute to two streams of research. The 

first contribution is to the evolutionary search literature. I intend to identify the kind of 

alliance portfolio that best fits with the different dimensions of new knowledge search, 

thereby enhancing the contribution of new knowledge search to technological 

performance. The next contribution is to the literature on strategic alliances. I suggest that 

a holistic understanding of the benefits derived from an alliance portfolio depends on the 

attributes of the alliance portfolio as well as their interactions with the focal firm’s 

characteristics. 

 The research framework developed in this study is tested using patent, publication 

and alliance data of biotechnology firms. This chapter is organized as follows. In the next 

section I elaborate on each of the linkages shown in Figure 2.1 and develop the 

hypotheses. This research intends to examine the correlation among the variables shown 

in Figure 2.1 and not to test their causal relationship. In the subsequent sections I present 

the research method and results. In the last section I discuss the implications of the 

findings and the limitations of the study. 
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Figure 2. 1. Research Model 
 

 
 

THEORY AND HYPOTHESES DEVELOPMENT 

New Knowledge Search 
Search is an inevitable part of the organizational learning process (Huber, 1991). 

Organizations engage in different types of searches. They are known to search for the 

best manufacturing routine (Jaikumar and Bohn, 1992), superior organizational design 

(Bruderer and Singh, 1996), the best means of implementing new technologies (von 

Hippel and Tyre, 1995), and the like. In this study, I focus on firms’ endeavors in 

searching external knowledge with the anticipation that the knowledge can be 

recombined into valuable technologies. My study refers to this type of search as 'new 

knowledge search'. 

 New knowledge search is categorized into three types: (a) technological search, 

(b) geographical search and (c) science search, depending on the knowledge that is 

searched. All three dimensions of new knowledge search are critical for technological 

performance. For instance, the importance of technological search is explained by 
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Rosenkopf and Nerkar (2001) using the optical disk drive industry. They show that in the 

optical disk drive industry the breakthrough discovery of DVD was made possible by 

integrating ideas from laser technologies. Databases like MedTRACK that incorporate 

advanced tools in searching geographically dispersed knowledge underline the 

significance of geographical search. The importance of science search for technological 

performance can be easily appreciated from the basic definition of technology - 

“incorporating scientific knowledge into physical artifact that benefits users” (Nelson and 

Winter, 1982).  

 There are various means through which firms can search and acquire new 

knowledge. Firstly, as people are known as knowledge holders and movers of knowledge 

across boundaries, intellectual human capital assists a firm in its new knowledge search 

(Almeida and Kogut, 1999). Organizations achieve this by engaging their intellectual 

human capital in research activities, professional communities, etc. Secondly, firms 

engage in formal arrangements such as alliances to acquire and access new knowledge.  

 It should also be acknowledged that many of the organization level factors such as 

organizational design, R&D structure, firm size and technological strength also play an 

important role in directing the new knowledge search (Argyres and Silverman, 2004; 

Siggelkow and Rivkin, 2005; Rivkin and Siggelkow, 2003; Colombo, Grilli and Piva, 

2006). The above studies illustrate that decentralized organizations and organizations that 

are large and highly innovative attempt to search widely for new knowledge. As 

intellectual human capital and alliances are two mechanisms that are directly engaged in 

searching and acquiring new knowledge, my research concentrates on these two factors. 



                                                                                                                                      21 

Nevertheless, I use some of the firm level variables such as size and technological 

strength as control variables.  

 The following sections examine the details of the three dimensions of new 

knowledge search and their contribution to technological performance.  

Technological Search and Technological Performance 
Technological search refers to the search for diverse technological areas in the 

anticipation of recombining them into novel technologies (Rosenkopf and Nerkar, 2001). 

Technological search can enhance the technological performance of firms by the 

following means. First, technological search can positively influence the technological 

performance by increasing the number of elements available for recombination. 

Innovation has been conceptualized as a process of recombination and, according to this 

perspective, important innovations arise out of combining technological components in a 

novel manner (Nelson and Winter, 1982; Henderson and Clark, 1990; Weitzman, 1996). 

When a firm attempts to move beyond existing technological landscapes and search 

broadly for technological elements, it enriches the knowledge pool available. The 

enriched knowledge pool creates opportunities for the cross-fertilization and cross-

application of ideas across technological domains for generating high-impact 

technologies. Indeed, most modern innovations are fusions of ideas searched across 

different technological landscapes. For instance, the discovery of inkjet printers by 

Hewlett Packard as well as the birth of genetic engineering5 are examples of how search 

                                                 
5 “In a conference held in 1972, Stanley Cohen of Stanford University elaborated on the technique of 
introducing DNA (the double-stranded helical molecule chain found in the nucleus of each cell that carries 
the genetic information) into Escherichia Coli, which is the main species of the lower intestine of 
mammals. In the same meeting, Herbert Boyer from the University of San Francisco shared his work on a 
revolutionary enzyme called EcoRI, which could cleave the double-stranded DNA molecule to produce 
single-stranded ends with identical termini. The two scientists saw the potential of combining the two 
discoveries into what is currently known as genetic engineering. Subsequently, the biotechnology industry 
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of new technological landscapes can increase the possibility of recombination, thereby 

resulting in valuable innovation.  

 Second, broad technological search provides a basis for breakthrough 

technologies by helping firms overcome familiarity traps. When firms experiment with 

the technological elements they are familiar with, their experience in those elements 

increases. Greater experience will foster greater usage of the same technological 

elements. This path dependency increases the risk of firms falling into the familiarity 

trap, and this can impair firms’ capability to develop valuable technologies (Ahuja and 

Lampert, 2001). A broad technological search can help to overcome this problem in the 

following ways. Technological search exposes firms to new technological elements that 

challenge the stability of the existing cognitive structure (Lei, Hitt and Bettis, 1996). In 

understanding the new and unfamiliar technological elements, firms develop additional 

insights and profundity. Exposure to diverse technological areas also helps in building a 

heterogeneous repertoire of knowledge. The broad knowledge base provides the benefit 

of heterogeneity in solving problems (Amabile, 1988) rather than solving in a 

paradigmatic way. On both these accounts, broad technological search can circumvent 

the familiarity trap, providing a basis for creating valuable technologies. The above 

arguments suggest that the search for knowledge from diverse technological domains is 

capable of generating valuable technologies.  

 Though technological search has the above-mentioned advantages, it is also 

associated with certain disadvantages. The search of wide technological areas is a costly 

and tedious task. In addition, recombining ideas from different technological domains is 

                                                                                                                                                 
has become increasingly richer, involving knowledge from different disciplines such as molecular biology, 
chemistry, computer science, and the like” (Christensen, 2003; DeCarolis and Deeds, 1999). 
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not straightforward and has inherent uncertainties (Fleming and Sorenson, 2004). 

Identifying one fruitful combination amid the potential number of technological 

recombination is time consuming. Hence, beyond a point, searching across diverse 

technological areas will result in diminishing returns. The above arguments lead to the 

following hypothesis: 

Hypothesis 1a: The breadth of a firm’s technological search is curvilinearly (inverted U) 

related to its technological performance. 

Geographical Search and Technological Performance 
Geographical search refers to the search for geographically distant knowledge in the 

prospect of locating valuable ideas (Song, Almeida and Wu, 2001). There are three 

explanations to support the argument that geographical search leads to better 

technological performance. First, geographical search can increase a firm’s awareness of 

diverse knowledge domains, thereby increasing the likelihood of generating valuable 

technologies. It has been shown that technological trajectories differ across nations 

(Freeman and Soete, 1997). Owing to the knowledge differences across boundaries, any 

attempt to span geographical boundaries can give access to diverse knowledge with the 

potential to be recombined into valuable technologies. As people from different contexts 

are capable of viewing the same thing differently, geographical search can lead to novel 

combinations of existing ideas. Geographical search can also expose firms to specialized 

local knowledge of diverse geographical boundaries that can beget valuable innovation. 

An excellent example of this is the knowledge gained by the American chemical 

company W.R. Grace in developing a commercial drug using neem, a herb traditionally 

used in India for medicinal purposes (Phene et al., 2006).  
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 Second, geographical search can positively influence technological performance 

by exposing firms to rich information and knowledge networks. In developing valuable 

technologies, firms have to constantly rely on external sources of information and 

knowledge. The globalized technological arena has increased the need for firms to stretch 

their regional boundaries in search for external knowledge. Though knowledge is an 

intangible asset, it is considered extremely difficult to transfer knowledge across 

geographical boundaries. With knowledge flow being geographically localized, firms 

have to rely on network connections in order to access knowledge. Research has 

suggested that the extent to which a recipient seeks information from a source depends on 

the extent to which the recipient is aware of the source (Borgotti and Cross, 2003). 

Therefore, searching or scanning for new knowledge is the first step involved in exposing 

firms to valuable sources of knowledge. Thus, a firm’s geographical search will promote 

awareness of different regional networks, thereby providing an opportunity to tap into 

knowledge embedded in these networks for generating valuable technologies. The above 

arguments suggest that the search for knowledge from diverse geographical regions is 

capable of generating valuable technologies.  

 However, scanning wide geographic locations can also be dysfunctional (Ahuja 

and Katila, 2004). Acquiring and integrating knowledge obtained from different 

geography is a difficult job. Distance and cultural differences further exasperate the 

problem of utilizing the searched knowledge to develop technologies. Hence, beyond an 

extent, scanning diverse geographic locations can result in decreased technological 

performance. The above arguments lead to the following hypothesis: 
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Hypothesis 1b: The breadth of a firm’s geographical search is curvilinearly (inverted U) 

related to its technological performance.  

Science Search and Technological Performance 
Science search refers to the intensity of scientific knowledge search with the expectation 

that the knowledge will assist in finding novel technologies (Ahuja and Katila, 2004). 

Unlike technological and geographical search, science search refers to intensity but not 

breadth. This is because the purpose of using scientific knowledge is to achieve a deeper 

understanding of why some phenomena occur during the technology development 

process (Fleming and Sorenson, 2004).  

  Science search can positively influence the technological performance of firms 

through the following means. First, science search has a positive influence on 

technological performance by acting as a direct source of new ideas. Though important 

innovations are seen as a combination of technological ideas, the set of elements 

available for recombination is finite. As a result, the recombination search space will 

decrease over time, ultimately resulting in technological exhaustion (Hargadan and 

Sutton, 1997). In the event of the exhaustion of ideas firms must embark on alternative 

search trajectories, and science is a natural choice. Science search helps in generating 

new theories which, consequently, increases the availability of new ideas. The new ideas 

generated by science subsequently become key ingredients for technology activities.  

 Second, science search can reduce the combinatorial search pace, thereby 

positively influencing technological performance. For instance, scanning scientific 

knowledge can improve the understanding of the cause-effect relationship between 

technological elements. Scientific knowledge also helps in assessing technology and in 
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foreseeing technological risk (Brooks, 1973). Consequently, science search can assist 

firms in exploring productive research avenues and inventing technologies with greater 

reliability.  

 Apart from being a direct input to technological innovation, science search is 

observed to provide some indirect benefits in generating valuable technologies. These 

benefits include enhancing the skills and capabilities of human resources, fine-tuning the 

engineering design and tool and the like. For example, scientific knowledge exploration 

is shown to impart the necessary research skills required for carrying out technology 

development activities. Much of the technical knowledge used in designing and in 

evaluating engineering designs is also shown to be developed from the scientific 

knowledge base (Brooks, 1994). The above arguments suggest that the search for 

knowledge from science base is capable of generating valuable technologies.  

 Though searching the science knowledge base is helpful, excessive amounts of 

science search can be detrimental to technological performance for the following reasons. 

Engaging in scientific exploration can lead to random drift and frequent alterations of a 

firm’s knowledge base. The difficulty associated with adjusting to such random drift can 

obstruct a firm from concentrating on technology development. Time spent on scientific 

exploration can also reduce the availability of time for actively integrating and exploiting 

knowledge, thereby reducing the technological performance. Hence, I hypothesize that: 

Hypothesis 1c: The intensity of a firm’s science search is curvilinearly (inverted U) 

related to its technological performance.  
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Intellectual Human Capital and New Knowledge Search 
 
Knowledge is considered to be the core of a firm, and much of an organization’s 

knowledge resides in its human capital. Consequently, human capital is one of the 

important resources that contribute to knowledge-intensive activities such as new 

knowledge search. This is one reason why highly-skilled and talented employees are 

considered to be valuable resources for successfully adapting to technological changes 

(Siegel, 1999; Siegel, Waldman and Youngdahl, 1997). There are three explanations to 

support the positive association between intellectual human capital and new knowledge 

search.  

 First, the absorptive capacity literature identifies pre-existing knowledge to be an 

important factor in screening and identifying valuable external knowledge (Cohen and 

Levinthal, 1990). The knowledge and skills residing in intellectual human capital enables 

them to actively engage in research activities, thereby playing a key role in new 

knowledge search. Especially in biotechnology industries requiring specialized skill sets, 

intellectual human capital has a significant role in the pursuit of searching knowledge 

(Zuker, Darby and Brewer, 1998). The genetic engineering, AIDS, and polymerization 

chain reaction examples illustrated earlier also underline the contribution of intellectual 

human capital to new knowledge search.  

 Second, propensity to transform knowledge is an essential step for embarking on 

new knowledge search. Rather than relying on preserved knowledge, engaging in 

knowledge transformation activities requires questioning of prevailing norms. Intellectual 

human capital plays a vital role in questioning prevailing norms within the organization 

and in imparting new ways of thinking (Tushman and Anderson, 1986). Thus, by acting 
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as a predominant source for knowledge transformation, intellectual human capital has a 

positive influence on search for new knowledge. 

 Third, engaging in new knowledge search requires awareness of valuable sources 

of knowledge. By actively plugging itself in external professional communities, 

intellectual human capital acts as a channel for the flow of information about valuable 

sources of knowledge. Thus, intellectual human capital plays the vital role of carrying 

meta-knowledge, thereby having a positive influence on new knowledge search. Meta-

knowledge is defined as knowledge about sources of knowledge (Majchrzak, Cooper and 

Neece, 2004). While the above arguments suggest a positive influence of intellectual 

human capital on new knowledge search, the following section categorizes intellectual 

human capital into three types and exemplifies their individual contribution to search.  

 Traditionally, studies on professional careers concentrated on two tracks. The first 

track focused on academic researchers and their scientific activities (Keith and Babchuk, 

1998), and the second track on industrial engineers and their technological activities 

(Allen and Katz, 1992). But, with the birth of science intensive industries such as 

biotechnology and the introduction of the Bayh-Dole Act, we observe an increasing 

number of scientists from academe actively contributing to technological activities in the 

industry. Firms are also known to attract scientists into their organizations and encourage 

them to publish their findings (Stern, 2004). Consequently, we notice three different 

types of intellectual human capital within an organization. The first one, pure scientists, 

are exclusively involved in scientific research. The second type, pure inventors, 

predominantly focus on technological activities. The third type of intellectual human 
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capital, called bridging scientists, are involved in both scientific and technological 

activities. 

  The three classifications of intellectual human capital contribute to new 

knowledge search in varied ways. For instance, involvement of pure scientists in 

scientific research and scientific community enable them to contribute to science search. 

The open scientific community comprised of scientists from different geographic 

locations allows pure scientists to search geographically wide knowledge (Furukawa and 

Goto, 2006). Since basic scientific knowledge can also help in technology assessment, 

pure scientists have a significant role in technological search. The nature of scientific 

research is to question basic assumptions. This means pure scientists play a vital role in 

knowledge transformation activities of a firm, thereby contributing to new knowledge 

search.  

 In parallel, the pure inventors who are engaged in technological activities and 

connected to technical communities facilitate the technological and geographical search 

of a firm. They can also direct the attention of search to useful scientific knowledge that 

has applications in technology development, thereby helping the science search.  

 Bridging scientists have a role in both scientific research and technological 

activities, and therefore contribute to new knowledge search in all the above-mentioned 

ways. In addition, their bridging role aids the flow of information about valuable sources 

of knowledge across these two groups. Hence, I hypothesize that: 

 

Hypothesis 2a: The number of intellectual human capital (Pure Scientists, Bridging 

Scientists, Pure Inventors) within a firm is positively related to its technological search. 
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Hypothesis 2b: The number of intellectual human capital (Pure Scientists, Bridging 

Scientists, Pure Inventors) within a firm is positively related to its geographical search. 

Hypothesis 2c: The number of intellectual human capital (Pure Scientists, Bridging 

Scientists, Pure Inventors) within a firm is positively related to its science search. 

 New knowledge search is just one of several avenues through which intellectual 

human capital can affect technological performance. They can also influence the 

technological performance by increasing the reputation of the firm. For example, 

technology emerging from a firm endowed with important intellectual human capital can 

gain the attention of industry better than technology from a firm lacking in rich 

intellectual human capital. This effect can also be compared to Merton’s Mathew effect 

in sociology of science literature. A firm’s valuable intellectual human capital can also 

attract investments from corporate venture capitalists, thereby contributing to 

technological performance. Hence, I do not expect new knowledge search to fully 

mediate the relationship between intellectual human capital and technological 

performance. Though mediation is not a part of the research model, the methodology 

section encompasses the test for mediation.  

Alliance Portfolio Attributes and Technological Performance 
Strategic alliances are “voluntary arrangements between firms to exchange and share 

knowledge and resources with the intent of developing processes, products or services” 

(Gulati, 1998). A number of studies have shown that alliances influence the technological 

performance of firms. In particular, strategic alliances are shown to be beneficial for 

patent and new product development rates (Deeds and Hill, 1996; Shan, Walker, and 

Kogut, 1994). There are various means through which firms benefit from the alliances in 
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developing better technologies. For instance, alliance is considered to be an important 

means for sourcing external knowledge and leveraging external resources that are crucial 

for better technological performance (Dyer and Singh, 1998). Firms especially rely on 

alliance partners for gaining the technical, social and commercial capital that are valuable 

to their innovation performance (Ahuja, 2000). Alliances also influence the technological 

performance of firms by granting access to complementary assets (Pisano, 1990). Other 

benefits of alliances for better technological performance include: (1) imparting social 

status and recognition (Stuart, 2000), (2) defraying cost and sharing risk (Hagedoorn, 

1993) and the like. These benefits have an effect on the technological performance of 

firms in the following ways. Social status and recognition might enhance the 

opportunities available to a firm for engaging in more R&D alliances, thereby having a 

spiraling effect on technological performance. The advantage of sharing risk and 

investment with its partners can encourage a firm to embark on pioneering research 

avenues that are capable of rendering breakthrough innovations. The above arguments 

suggest that a firm’s alliance network is positively associated with its technological 

performance. 

 Though alliances are generally known to be beneficial, the structural holes 

perspective demonstrates that not all alliance partners are equally beneficial (Burt, 1992). 

Similarly, an increase in the number of alliances is not necessarily considered to bring in 

additional benefits. There is a high chance that the attributes of a new partner overlap 

with existing alliance partners, providing access to redundant information and 

competency. As engaging in an alliance and managing the relationship entails a huge 

investment from the focal firm, such redundancies can be very costly. Hence, it is 
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essential to consider the attributes of alliance partners in assessing their contributions 

(Stuart, 2000). It is also vital to understand the synergetic effect of the whole alliance 

portfolio rather than viewing them as independent events (George, Zahra, Wheatley and 

Khan, 2001; Baum et al., 2000). An efficient alliance portfolio comprising of partners 

with diverse attributes is known to help firms in overcoming redundancy issues and 

gaining enhanced benefits from the alliance. An efficient alliance network characterized 

by diverse partners is also recognized to help firms in lowering their failure rate (Baum 

and Silverman, 1998) and in improving their performance (Baum et al., 2000).  

 Diversity can be attributed to different sources. The importance of concentrating 

on the diverse technological and geographical attributes of an alliance network has been 

recently demonstrated by a study that explored the different dimensions of social capital 

(Koka and Precott, 2002). Similarly, the significance of relationships with public research 

organizations, such as universities, has been underlined in a study by Powell and Smith-

Doerr (1996) in which they highlight that the development of an animal model for 

Alzheimer’s disease is affiliated with a diverse range of knowledge sources including 

universities and nonprofit research institutes. Hence, in this study I concentrate on 

diversity pertaining to the three attributes of an alliance portfolio: (1) technological, (2) 

geographical and (3) number of partners with a university background. The three alliance 

attributes under study also correspond to the three types of new knowledge search. Based 

on the above arguments, I hypothesize that:  

Hypothesis 3a: The alliance portfolio of a firm characterized by partners with diverse 

technological attributes is positively related to its technological performance. 
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Hypothesis 3b: The alliance portfolio of a firm characterized by partners with diverse 

geographical attributes is positively related to its technological performance. 

Hypothesis 3c: The alliance portfolio of a firm characterized by a greater number of 

partners with a university background is positively related to its technological 

performance. 

Alliance Portfolio Attributes Moderating the Effect of New Knowledge Search 
Although internal resources such as intellectual human capital engage in search of new 

knowledge, acquiring external knowledge is not simple. The knowledge and experience 

residing in the intellectual human capital can help them, to an extent, in absorbing 

external knowledge. However, in the absence of a facilitating mechanism, certain 

knowledge, especially knowledge characterized as tacit and complex is difficult to absorb 

from the external environment. Prior studies have also recognized the difficulty in 

absorbing knowledge from the three types of new knowledge search. For instance, 

technology related capabilities are often based on tacit knowledge and are subject to 

considerable uncertainty concerning their quality and performance. Transferring such 

knowledge and exploiting them are subject to high risk failures (Mowery, 1983). Studies 

on national innovation systems suggest that countries have distinct patterns of 

specialization, and that the difference has increased over time (Archibugi and Pianta, 

1992). The geographical distance of the knowledge that makes it valuable also creates 

difficulty in acquiring and absorbing the knowledge (Phene et al., 2006). Similarly, the 

difficulty in absorbing science knowledge that is easily available in the form of public 

good has also been recognized in the past (Gambardella, 1995). 
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 Inter-firm collaborative mechanisms such as alliances are widely recognized as 

devices for overcoming the above-mentioned difficulties in acquiring and accessing 

knowledge (Kogut, 1988; Hamel, 1991). Frequent interactions between alliance partners 

act as a platform for inter-firm knowledge flows. Consequently, by enhancing the degree 

to which knowledge is absorbed, alliance helps a firm in translating new knowledge 

search into better technologies. In particular, an alliance portfolio that best fits with the 

different dimensions of the new knowledge search will be rendering the above-mentioned 

benefits of enhancing the value of search.  

Even if a firm is capable of absorbing the widely searched knowledge, it is very 

difficult for the firm to have in-depth expertise in all the knowledge areas it searches. 

Alliance is a prevalent mechanism used by firms in maintaining a broader and deeper 

knowledge base for translating knowledge into valuable innovations. Many of the 

alliances in knowledge-based industries are knowledge accessing alliances. These allow 

the focal firm to concentrate on a few core knowledge areas while collaborating with 

other firms in order to access their stronger capabilities in additional areas (Grant and 

Braden-Fuller, 2004). Alliances between biotech firms and IT firms, alliances between 

firms and universities and alliances that span national borders are some of the prevalent 

examples in the biotechnology industry falling under this category. Thus, an efficient 

alliance portfolio that best fits with the different dimensions of the new knowledge search 

helps a firm in maintaining knowledge diversity as well as richness, thereby moderating 

the relationship between new knowledge search and technological performance.  

Alliances can also enhance the contribution of new knowledge search to 

technological performance in the following ways. Firms search for new knowledge in the 
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anticipation of combining them into useful technologies. Though widely searched 

knowledge has the potential of being recombined into breakthrough innovations, the 

process of achieving this is a risky task. It is highly likely that a firm will invest money 

and time on a certain combination for several years, yet it might turn out to be 

unsuccessful. There are several drug failure cases (Pfizer, Merck) in the biotechnology 

industry that are exemplary examples of this. As biotech innovations are costly in nature, 

with a new drug consuming about USD 800 million of R&D, firms in this industry are 

known to distribute the risk by forming collaborations. With an additional firm to share 

the cost and risk, firms embark on risky journeys in the pursuit of translating the searched 

knowledge into breakthrough technologies.  

Though the last argument suggests that, in general, alliances moderate the 

relationship between new knowledge search and technological performance, the former 

two arguments suggest an efficient alliance portfolio that corresponds to different 

dimensions of new knowledge search to render the moderating effect. Since an alliance 

portfolio with technologically and geographically diverse alliance partners and partners 

from a university background is also comparable with the different dimensions of search, 

I have the following hypotheses: 

Hypothesis 4a: An alliance portfolio characterized by partners with diverse technological 

attributes positively moderates the relationship between a firm’s technological search 

and its technological performance. 

Hypothesis 4b: An alliance portfolio characterized by partners with diverse geographical 

attributes positively moderates the relationship between a firm’s geographical search 

and its technological performance. 
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Hypothesis 4c: An alliance portfolio characterized by a high proportion of partners with 

a university background positively moderates the relationship between a firm’s science 

search and its technological performance. 

 It should be acknowledged that the tacit knowledge of intellectual human capital 

also helps a firm in the process of converting new knowledge search into valuable 

technologies. As the focus of the paper is only on those factors that assist a firm in 

identifying and absorbing knowledge from its external environment, I did not investigate 

this relationship. Intellectual human capital also helps a firm in absorbing knowledge 

from its alliance partners. However, testing this relationship is beyond the scope of this 

paper.  

RESEARCH METHODOLOGY 

Data 
To test the hypotheses I collected data from biotechnology firms. This industry is 

recognized to be one of the most innovation-intensive industries (Sorenson and Stuart, 

2000). The biotechnology industry was an ideal context for testing the framework 

because the industry is characterized by technological transformation, a growing number 

of inter-organizational relationships and the widely recognized importance of intellectual 

human capital.  

 The data was drawn from Plunkett's6 directory that comprises of 437 public-listed 

biotechnology firms. Biotechnology directories are one of the sources that prior studies 

have consulted in drawing their sample (Gulati and Singh, 1998; Stuart, Huang and 

Hybels, 1999). Generally, firms in the directory are based in the United States of 

                                                 
6 Plunkett's Biotech and Genetics Industry Almanac 2005: the only comprehensive guide to biotechnology 
and genetic companies and trends/editor and publisher: Jack W. Plunkett. 



                                                                                                                                      37 

America. However, the headquarters of 70 firms are located in other nations such as 

Canada, Japan, UK, India, Switzerland, etc. The directory has 3 firms from agriculture, 

13 from infotech, 100 from chemical manufacturing and 321 from the health care areas of 

biotechnology. The directory comprises of firms such as EISAI Co. Ltd., DOW 

Agrosciences, BASF AG and TRIPOS Inc. that have attained the highest sales revenue in 

the year 2000 for the health care, agriculture, chemical manufacturing and infotech areas 

respectively. The directory includes very small firms (with respect to R&D, number of 

employees and sales) such as VIRAGEN and SPECTRAL DIAGNOSTICS, as well as 

large firms such as BAYER and NOVARTIS. With respect to age, there are old firms 

such as PFIZER, as well as new firms formed in the late 90’s such as ATHEROGENICS 

and ARENA PHARMACEUTICAL. 

 I used the publication, patenting and alliance data of these firms in testing the 

hypotheses. The patents issued to these firms between 1990-2000 were obtained from the 

NUS patent database7. The database comprises of patents issued to firms by the United 

States Patent and Trademark Office (USPTO). Publication information of firms between 

1980-2000 was obtained from Web of Science, ISI Science Citation Index (SCI). The SCI 

is an excellent source because it covers a broad range of basic and applied scientific 

journals (Lim, 2004). As the birth of the biotechnology industry is dated back to the late 

70’s and my patent data is restricted to 2000, I focused on publication during the period 

1980-2000.The Recombinant Capital (Recap) database that provides a comprehensive list 

of biotechnology companies worldwide along with their alliances, valuations and clinical 

trials information is used to cross-validate the list of biotechnology firms chosen from the 

                                                 
7 http://patents.nus.edu.sg/ 
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directory and to obtain alliance-related information between 1990-2000. Compustat 

Global is used in collecting the financial data of these firms. 

 The US patent classification system comprises of over 100,000 patent subclasses 

aggregated to about 400 three-digit patent classes. I used the three-digit patent classes and 

only included those patents that fall within the U.S. patent classes listed in Table 2.1, 

which belong to the biotechnology industry. The classes were chosen with reference from 

the USPTO Technology Profile Reports and from prior research (Lim, 2004). Filtering 

those firms that did not have patent data in the specified classes between 1990-2000, the 

final sample size was 222 firms. The list of 222 firms is provided in Table A.2 of the 

Appendix. Of the listed firms, 215 (437-222) firms were dropped from the directory 

because they had zero patents. To ensure that the results were still generalizable, I carried 

out a preliminary assessment of firm level variables. As shown in Table A.3, the average 

of firm R&D and firm size for 437 firms was not significantly different from the average 

of these variables in my final sample. However, I found that the average age of my final 

sample firms was higher than that of the average age for 437 firms. This is possibly 

because younger firms in the directory might not have patents issued between 1990-2000. 

Nevertheless, I do believe that the results of my study hold true even for younger firms, 

because my sample does indeed include younger firms such as Atherogenics and Arena.  

 The total number of patents and publications under consideration was 10,646 and 

100,375. There is huge heterogeneity with respect to patent and publication data. Firms 

like Anika Therapeutics and Viragen received one patent each, while Abbott and Bayer 

had about 1000 patents. Patents issued to firms increased from 424 in 1990 to 1722 in 

2000. There were 19 firms in my sample with 0 publications, but also about 10 firms with 
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at least a few thousand publications. The publications made by firms increased from 1826 

in 1980 to 8181 in 2000. The number of publications, patents and alliances of my sample 

firms between 1990-2000 is provided in Table A.4 of the Appendix.  

Table 2.1. U.S. Patent Classes 
 

 Class Description 
424 Drug, bio-affecting and body treating compositions 
435 Chemistry: molecular biology and microbiology 
436 Chemistry: analytical and immunological testing 
514 Drug, bio-affecting and body treating compositions 
530 Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction 

products thereof 
536 Organic compounds 
800 Multicellular living organisms and unmodified parts thereof and related processes 

 

Measures 
Technological Performance (Forward Citation): The dependent variable is the 

cumulative forward citation frequencies accrued to an individual patent. I count all 

forward citations received by each patent at of the end of 2004. By law, each patent must 

cite prior patents that relate to its technology. Research demonstrates that the number of 

forward citations received by a patent correlates highly with its technological importance 

(Trajtenberg, 1990; Albert, Avery, Narin and McAllister, 1991). Prior studies have 

observed that the self-citation of a firm to its patents represents the extent to which the 

firm appropriates the returns from the patents. As a consequence, they find self-citation to 

reduce the probability of other firms citing the patent (Zhuang, Wong and Lim, 2006). 

However, in my sample I found the self-citations to be positively related to the overall 

forward citations, which indicates that overall citations represent the value of knowledge 

underlying the technology. Hence, instead of removing self-citations, I restricted my 

attention to overall citations accrued by a patent.  
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 One way to measure technological performance would be to use the number of 

products introduced by a firm. However, I restricted my focus to a patent-based 

performance measure because of the following three reasons. First, obtaining data on the 

number of products introduced by my sample firms was difficult.  

 Second, the number of products introduced by a firm not only depends on the 

technological competency of the firm but also other factors such as U.S. Food and Drug 

Administration (FDA) authorization etc. In order to prevent the results from being 

confounded by factors that are not of interest to my research, I relied on patent-based 

performance measure.  

 Third, the biotechnology industry is characterized by open innovation in which 

the activities pertaining to the higher end of the value chain are performed by the firms 

competent in it, while FDA approval and commercialization are taken care of by other 

firms. Hence, a firm introducing a product into the market may not necessarily be the one 

responsible for its basic technological development. As the focus of my study is to relate 

technological competency of a firm with its performance, I believe that a patent would be 

a more appropriate measure of a firm’s capability to generate valuable technologies.  

 Since patent to product conversion process in the biotechnology industry is time 

consuming, many of the results that hold true for a patent-based technological 

performance measure might not hold for a product-based measure. Hence, an interesting 

future research can be to test my research model with both patent-based and product- 

based performance measures and compare their results.  

Independent Variables 
Technological Search (Breadth of Technological Search): Technological search refers 

to the breadth of technological search conducted by firms. This measure is based on the 
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technology class of patents cited by the focal patent issued to a firm (after removing self-

citations). Specifically, the breadth of technological search of patent i is calculated as:  

2

1
1

in

ij
j

S
=

−∑  (One minus the Herfindahl concentration index of the technology classes) 

where ijS refers to the proportion of citations made by patent i to the patents in 

technology class j (after removing self-citations). ni varies for each patent depending on 

the number of different technology classes that the focal patent cites. The three-digit 

technology class is considered in measuring the above. This measure would range 

between 0 and 1, with a greater value suggesting that the patent has searched for a broad 

set of technologies. This measure corresponds to the “originality” measure in the work of 

Jaffe and Trajtenberg (2002). 

Geographical Search (Breadth of Geographical Search): One way to measure the 

geographical search for knowledge would be to use the firm’s R&D laboratories and 

R&D budgets in different locations. Since obtaining data at that level was difficult, I 

relied on patent data to measure the geographic dispersion of a firm’s search for 

knowledge.  

 This measure is based on the geographic location of patents cited by the focal 

patent issued to a firm (after removing self-citations). Specifically, the breadth of 

geographical search of patent i is calculated as:  

2

1
1

in

ij
j

S
=

−∑  (One minus the Herfindahl concentration index of the geographical locations) 

where ijS refers to the proportion of citations made by patent i to the patents in geography 

j (after removing self-citations). ni varies for each patent depending on the number of 
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different geographic locations that the focal patent cites. Patent data contains information 

regarding the geographic location of its inventors. The first inventor’s address (as he/she 

is considered to be a significant contributor for the patent) is taken into consideration in 

measuring the geographic search (Singh, 2005). The geographical unit is defined at the 

country level, in which I use the country of the first inventor as the geographic unit for all 

the patents. In my sample, the majority of the citations are made to patents originating 

from USA, Japan and Europe. Similar to technological search, this measure would range 

between 0 and 1, with a greater value suggesting that the patent has searched a broad set 

of geographic locations. 

Science Search: Science search is the number of times a patent issued to a firm 

references non-patented literature. Every patent is required to cite the prior art that it 

builds upon. This includes both the patent and non-patent references. Sorenson and 

Fleming (2004) have observed that 69% of non-patent references are from peer-reviewed 

scientific journals. The non-patent references cited by a patent are often used as an 

indicator of the science intensity of the invention, which is in turn found to influence the 

forward citation of patents (Gittelman and Kogut, 2003; Noyons, van Raan, Grupp and 

Schmoch, 1994). But the measure does not exclude self-citations to non-patent literature. 

In this way it is different from the technological and geographical search measures. 

However, I did examine the extent to which a firm’s publications are being cited in its 

patents. To observe this, I first identified all the publications produced by the focal firm 

and all the patents citing those publications. For each publication, I checked the first 

assignee name of the citing patents to see if the patent belongs to the firm that generated 

the publication or others. I noticed that just 2% of the firms’ scientific publications are 
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being cited in their patents. This statistic mitigates the limitation of not removing self-

citations.  

Intellectual Human Capital (Pure Scientists, Bridging Scientists, and Pure Inventors):  

The greater the presence of the three types of intellectual human capital, the higher the 

availability of knowledge, experience and skill for new knowledge search. Traditionally, 

studies captures the quality of human capital by measuring their qualifications, affiliation, 

etc. (Hitt, Bierman, Uhlenbruck, and Shimizu, 2001; Hitt, Bierman, Shimizu, and 

Kochhar, 2006). My study implicitly captures this by looking only at intellectual human 

capital that possesses high qualifications in order to engage in R&D activities.  

 I operationalize the three variables in the following manner. The pure scientist 

measure represents the percentage of scientists within firms whose names are exclusively 

listed in publications and not in patents. Next, the bridging scientist measure represents 

the percentage of patent inventors within a firm whose names are listed in both patents 

and in scientific papers published by the firm. Finally, the pure inventor measure 

represents the proportion of inventors of each patent who are exclusively involved in 

patenting but not publishing. In order to obtain these measures, I identified two 

overlapping sets of individuals for each firm. The first comprises of scientists whose 

names are listed on at least one publication made by the focal firm, and the second 

comprises of inventors whose names are listed on at least one patent issued to the focal 

firm. Based on these two lists, I found the percentage of individuals listed as inventors 

who are also listed as scientists for each firm. This percentage is termed as bridging 

scientists. The measure is borrowed from the work of Gittelman and Kogut (2003). Then, 

I identified the percentage of those scientists whose name appeared only in the 
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publications and not in the patents. These scientists who are exclusively involved in 

scientific publishing are termed as pure scientists. Then, for each patent, I identified the 

number of inventors whose names do not appear in the list of scientists. These inventors 

who are exclusively involved in patenting are termed as pure inventors. On average, my 

sample firms had about 900 pure scientists, 34 bridging scientists and 47 pure inventors. 

Firms such as Bayer and Merck had the highest number of pure scientists, bridging 

scientists, and pure inventors. This shows that the measures are not a complement of each 

other, with the pure inventors measures being calculated at the patent level while scientist 

measures are at the firm level.  

 Apart from qualifications, there are other aspects of quality of intellectual human 

capital as measured by the extent to which they are active in producing high quality work. 

This aspect of quality, as measured by the volume and citations of firms’ publications and 

stocks of patents, are captured and controlled in this study. This helps in exploring if 

firms endowed with a greater proportion of each of the intellectual human capital 

dimensions (after controlling for quality) are better in their new knowledge search. 

Technological Diversity of the Alliance Portfolio: Similar to the work of Baum et al. 

(2000), I used the Herfindahl index to measure the diversity of the alliance portfolio. By 

the alliance portfolio, I mean the list of all alliances made by a firm in a year. 

Specifically, the technology diversity of the alliance portfolio of firm i is defined as:  
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where ijS refers to the proportion of alliances of firm i that falls under the technology 

category j (which is nothing but the technology concentration of alliances that is 
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described below). ni varies depending on the number of different technology category 

alliances that the focal firm engages in a year.   

 The Recap database is used in measuring the technological diversity of the 

alliance portfolio. The Recap database comprises of a list of alliances made by firms in a 

particular year, along with other information such as the type of alliance (R&D, 

acquisition, manufacturing, joint venture, licensing, etc.) and technology concentration of 

the alliance (bioinformatics, DNA probes, combinatorial, gene sequencing, gene 

expression, microassays, potenomics, etc.). There are 26 types of alliances and 53 types 

of technology classifications available in the Recap database. The list of alliance types 

and technology classifications is provided in Table A.5 and A.6 of the Appendix. Since 

the study pertains to the R&D activities of the value chain, I concentrated on the alliances 

pertaining to research and development. I then used the classification of partnered 

technology of all alliance partners in a year in order to arrive at the technological 

diversity of the alliance portfolio for that year.  

Geographical Diversity of the Alliance Portfolio: Similar to the technological diversity 

of the alliance portfolio, the Herfindahl index was used to measure geographical 

diversity. I used the nationality of the alliance partners in calculating the Herfindahl 

index. In my sample, alliance partners are from USA, Europe, Japan and Asia, but the 

majority of partners are from the USA.  

Number of Alliance Partners with a University Background: This measure captures the 

extent to which the alliance portfolio of a firm in a year is composed of partners from the 

academe. Hence, I calculated this variable for the focal firm in each year by obtaining the 

number of alliance partners that are classified as academic institutions. On an average, 
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my sample engaged in 40 alliances during the period of observation, of which 7 are 

academic institutions.  

Control Variables 
Publication Volume: This measure is the number of publications produced by the focal 

firm in the year of observation in which the firm filed a patent. I used the number of 

publications made by a firm as a proxy for its scientific capability. A number of scholars 

have used publication count to measure the scientific capability of firms (Lim, 2004; 

Gittelman and Kogut, 2003; Arora and Gambardella, 1994). A firm with strong scientific 

capability is able to identify new applications in the technology domain that might give 

rise to more valuable patents. Prior studies have also shown the significant relationship 

between publication count and patent performance. It is therefore imperative that I 

control for it.  

Firm’s Average Cites to Publications: I use the citations received by the focal firm’s 

publications to represent the relative quality of the firm’s stock of scientific knowledge. 

To compute this measure I first identified all the publications produced by the focal firm 

between the years 1980-2000 and then obtained the number of citations received by these 

publications. Based on the citations, I calculated the mean and standard deviation of the 

citations received by all articles of the sample firms in a publication year. Next, the raw 

citation counts for each publication of firms are normalized by the mean and standard 

deviation of the citations received by all articles in its publication year. Normalizing the 

raw citations by year allows the citations to be summed across years for each firm 

(Gittelman and Kogut, 2003). I then aggregated the normalized citation count of 

publications in a year and divided it by the total number of publications made by the firm. 

The normalized citation count is then aggregated up to the year the observed patent was 



                                                                                                                                      47 

filed in order to obtain a cumulated amount of publication quality. Because a firm’s 

competency in generating high-quality scientific papers has been observed to impact its 

capability to produce high-impact innovation, I controlled for it (Gittelman and Kogut, 

2003).  

Firm’s Technological Strength: Since a technologically strong firm is likely to receive 

more citations, there is a need to control for it. I used the number of patents granted to a 

firm to measure its technological strength. I take into account the year of the focal patent 

in calculating the count of patents granted to a firm. For example, if the patent under 

observation is a patent filed by a firm in year t, I count the number of patents issued to the 

firm in the year t to account for its technological strength.  

Other Control Variables (Technology Class Dummy Variable, Patent Age, Year Fixed 

Effects, R&D Expenditure, Firm Size and Firm Age): Forward citations may accrue to 

patents for other reasons such as technology field characteristics, patent characteristics 

and firm characteristics. Therefore, I included the patent-level and firm-level control 

variables to account for the heterogeneity among firms and for age and field effects. 

Patents belonging to a certain technology class may inherently be more cited than others. 

Similarly, patents with a higher number of years that elapsed since the patent was filed 

are capable of attaining higher citations. I used technology-class dummy variables and 

patent age as patent-level control variables to control for these effects. I also used year-

fixed effects to capture the differences in citation probability across different years.  

 Firms may be highly innovative for different reasons. Larger firms have this 

capability due to economies of scale and scope, younger firms because they represent the 

knowledge of the younger vintage and some firms devote significantly more resources to 
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R&D. Hence, I included firm-level control variables such as R&D expenditure, size of 

the firm as measured by the number of employees and age of the firm as measured by the 

number of years since the firm was founded. I included the logarithmic value of the 

above variables as the control variables.  

  The summary of the dependent, independent and control variables is presented in 

Table A.1 of the Appendix. The summary data for the dependent and independent 

variables and the correlation between the variables at the patent level are reported in 

Table 2.2.  
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Table 2.2. Descriptive Statistics and Correlations 

 
*p<0.01 

 

N Variables Mean Std. 
Dev 

Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Forward Citation 6.34 11.87 0 233 1                
2 Technological 

Search 
0.35 0.29 0 0.98 0.11* 1               

3 Geographical 
Search 

0.23 0.26 0 0.85 0.05* 0.46* 1              

4 Science Search 18.36 35.14 0 492 0.05* 0.16* 0.10* 1             
5 Pure Scientists 0.77 0.32 0 0.99 0.02 -0.08* -0.03* 0.12* 1            
6 Bridging 

Scientists 
0.25 0.15 0 0.83 -0.02 0.09* 0.08* -0.19* -0.69* 1           

7 Pure Inventors 0.65 1.11 0 17 -0.01 0.11* 0.08* -0.06* -0.34* 0.45* 1          
8 Tech.Diversity of 

Alliance Portfolio 
0.30 0.27 0 1 0.19* 0.06* 0.01 0.07* 0.06* -0.10* -0.05* 1         

9 Geog. Diversity of 
Alliance Portfolio 

0.10 0.22 0 1 0.04* 0.27* 0.45* 0.02 -0.21* 0.28* 0.49* 0.03* 1        

10 No. of Univ. 
Partners in 
Alliance Portfolio 

1.61 2.25 0 18 0.27* -0.03* 0.03* -0.05* 0.02 0.09* 0.03* -0.03* 0.04* 1       

11 Publication 
Volume 

136.39 222.74 0 1272 -0.06* -0.06* 0.01 -0.01 0.31* -0.18* -0.10* -0.15* -0.05* -0.01 1      

12 Publication 
Citation 

0.04 0.91 -6.73 9.65 -0.04* 0.03* 0.05* -0.15* -0.28* 0.25* 0.08* -0.10* 0.07* 0.08* -0.08* 1     

13 Patent Age 10.12 2.80 7 17 0.28* 0.03* -0.01 -0.15* -0.09* 0.10* -0.02 0.17* -0.02 0.08* 0.11* 0.00 1    
14 R&D 3.04 2.15 -0.55 12 0.17* 0.06* -0.00 0.05* 0.34* -0.37* -0.21* 0.29* -0.12* -0.02 -0.30* 0.09* 0.06* 1   
15 Firm Size 6.82 2.32 0 11.69 -0.10* -0.03* 0.01 -0.06* -0.63* 0.55* 0.30* -0.20* 0.18* 0.03* 0.00 -0.04* 0.01 -0.69* 1  
16 Firm Age 3.37 1.21 0 5.01 -0.18* -0.01* 0.07 -0.23* -0.47* 0.61* 0.28* -0.31* 0.18* 0.18* 0.14* 0.29* 0.07* -0.57* 0.53*  
17 Tech. Strength 62.86 61.33 1 240 -0.16*  0.00 0.01 0.02 -0.37* 0.32* 0.17* -0.30* 0.09* -0.02 0.18* -0.12* -0.09* -0.65* 0.62* 0.46* 
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Analysis 
Since the dependent variable is forward citation count, a count model was more 

appropriate for this research. The Poisson model is a frequently used count model. As 

patent citations exhibited over-dispersion, I used a negative binomial model that is best 

suited for estimating an over-dispersed parameter (Cameron and Trivedi, 1998). The 

results of negative binomial regression are presented in Table 2.3. All specifications 

include fixed effects for both technology class and application year of the patents. I used 

robust standard errors adjusted for clustering of the firm to control for random firm 

effects. Though my sample had 222 firms and 10,606 patents, due to missing 

observations, the final regression results are based on 157 firms and 7,648 patents. 

Effect of Control Variables 

Model 1 of Table 2.3 presents the regression coefficients for the control variables. The 

publication volume has a significant negative effect (p<0.01) on the forward citation of 

patents. The result pertaining to the negative role of publications on patent citation rate is 

contrary to the findings of Cockburn and Henderson (1998), Gambardella (1995) and 

Gittelman and Kogut (2003). These scholars observed publication volume to have either 

an insignificant or positive influence on patent citations. One possible explanation of my 

result is that when firms concentrate more on producing scientific publications, their 

attention towards developing important technologies might deteriorate and result in fewer 

forward citations for their patents. This explanation is also consistent with the result 

pertaining to publication citation. The quality of firms’ publications as reflected by the 

average cites to these publications has a negative relationship with the forward citation of 
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patents (p<0.05). This shows that when firms engage in the generation of cutting-edge 

scientific research, their technological performance suffers.  

 As expected, firm age has a negative impact on the forward citation of patents 

(p<0.01). Firm size and R&D expenditure do not have a significant relationship with the 

forward citation of patents. A plausible explanation for R&D and firm size being 

insignificant is that increased R&D spending and economies of scale need not necessarily 

increase the quality of technologies, as measured by the forward citations. The 

technological strength of a firm, as measured by the number of patents it generates, is 

negatively associated with the forward citation of patents (p<0.01). This shows that the 

quality of patents is inversely proportional to the quantity generated. A plausible 

explanation for the above negative association is that when firms generate more patents, 

only a small number of these patents are likely to have applications elsewhere, while 

majority of them remain unexploited. The significant (p<0.01) positive effect of patent 

age shows that older patents receive more citations.  

Main Effect of New Knowledge Search 

The regression coefficients in testing the main effect of new knowledge search and 

intellectual human capital are provided in Table 2.3. Models 2, 3, and 4 provide the 

curvilinear test results for technological search, geographical search, and science search 

independently. The linear term of technological search is significantly positive (p<0.01) 

and its squared term is insignificant. The linear terms of geographical and science 

searches are positively significant (p<0.01) and their squared terms are negatively 

significant (p<0.01). Model 5 presents the results of curvilinear test for all three search 

variables. The results of the combined model are consistent with earlier models. Taken 
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together, the results show that technological search has a linear positive effect on 

technological performance, while geographical and science searches have curvilinear 

effects. The results reject H1a and support H1b and H1c.   

Table 2.3. Negative Binomial Regression in Testing the Impact of New Knowledge Search and 
Control Variables on Forward Citation 

 
Variables Model 1 Model 2 Model 3 Model 4 Model 5 

Constant 0.1750 
[0. 3741] 

-0.0605 
[0. 3354] 

-0.0176 
[0.3411] 

-0.0779 
[0.4005] 

-0.2723 
[0.3535] 

Independent Variables 
Technological 
Search 

 0.6253*** 
[0.2623] 

  0.4081** 
[0.2528] 

Technological 
Search 
Squared 

 -0.0066 
[0.3088] 

   0.0365 
[0.2562] 

Geographical 
Search 

  1.4510*** 
[0.4048] 

 0.7989*** 
[0.3062] 

Geographical 
Search 
Squared 

  -1.5472*** 
[0.6761] 

  -0.9095** 
[0.5480] 

Science 
Search 

   0.0056*** 
[0.0015] 

0.0043*** 
[0.0016] 

Science 
Search 
Squared 

   -0.0001*** 
[0.0000] 

-0.0000*** 
[0.0000] 

Pure 
Scientists 

     

Bridging 
Scientists 

     

Pure 
Inventors 

     

Firm Level Control Variables 
Publication 
Volume 

-0.0004*** 
[0.0001] 

-0.0003*** 
[0.0001] 

-0.0004*** 
[0.0001] 

-0.0004*** 
[0.0001] 

-0.0004*** 
[0.0001] 

Publication 
citations 

-0.0500** 
[0.0292] 

-0.0429** 
[0.0265] 

-0.0474* 
[0.0271] 

-0.0354 
[0.0339] 

-0.0331 
[0.0300] 

Firm age -0.2277*** 
[0.0548] 

-0.2204*** 
[0.0493] 

-0.2315*** 
[0.0533] 

-0.2020*** 
[0.0566] 

-0.2045*** 
[0.0518] 

Firm size 0.0401 
[0.0347] 

0.0272 
[0.0320] 

0.0376 
[0.0315] 

0.0406 
[0.0339] 

0.0296 
[0.0311] 

R&D 
Expenditure 

0.0254 
[0.0327] 

0.0105 
[0.0315] 

0.0203 
[0.0295] 

0.0237 
[0.0294] 

0.0107 
[0.0281] 

Technological 
Strength 

-0.0024*** 
[0.0007] 

-0.0022*** 
[0.0006] 

-0.0023*** 
[0.0006] 

-0.0025*** 
[0.0006] 

-0.0022*** 
[0.0005] 

Patent Level Control Variables  
Patent age 0.1718*** 

[0.0218] 
0.1748*** 
[0.0217] 

0.1749*** 
[0.0214] 

0.1790*** 
[0.0222] 

0.1810*** 
[0.0219] 

Log 
Likelihood 

-20551.68 -20480.89 -20501.23 -20517.27 -20449.79 

No of 7648 7648 7648 7648 7648 
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Observations 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses 
Technology class dummy variables and year fixed effect were included but not reported 

  

 The regression results in testing the main effects of intellectual human capital 

variables on new knowledge search are presented in Table 2.4 and Table 2.5. Since the 

technological and geographical search variables are continuous with values restricted 

between 0 and 1, a Tobit regression model is employed. Models 1, 2 and 3 in Table 2.4 

present the Tobit regression with technological search as the dependent variable and the 

three intellectual human capital variables as independent variables, included one at a 

time. Model 4 presents the results when all of the three intellectual human capital 

variables are included together. The results show that both bridging scientists and pure 

inventors have a significant positive influence on technological search (p<0.01). 

However, the relationship between pure scientists and technological search is negatively 

significant (p<0.01). Hence, H2a is supported for bridging scientists and pure inventors, 

but not for pure scientists. Models 5, 6, 7 and 8 in Table 2.4 present the Tobit regression 

with geographical search as the dependent variable and the three intellectual human 

capital variables as the independent variables. Similar to the previous result, I observe 

both bridging scientists and pure inventors to have a positive impact on geographical 

search (p<0.01), while pure scientists have a negative influence (p<0.05) on geographical 

search. Therefore, H2b is also supported for bridging scientists and pure inventors, but 

not for pure scientists. As science search is a count variable, I ran a negative binomial 

regression to test the relationship between science search and intellectual human capital. 

Table 2.5 presents the path coefficients with science search as the dependent variable and 
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the three intellectual human capital variables as the independent variables. The 

coefficients of all the three intellectual human capital variables are insignificant, thereby 

rejecting H2c. 
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Table 2.4. Regression in Testing the Impact of Intellectual Human Capital and Control Variables on the Technological and Geographical Search 
 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
Regression Model Tobit Tobit Tobit Tobit Tobit Tobit Tobit Tobit 
Dependent 
Variable 

Technological 
Search 

Technological 
Search 

Technological 
Search 

Technological 
Search 

Geographical 
Search 

Geographical 
Search 

Geographical 
Search 

Geographical 
Search 

Constant 0.4109*** 
[0. 0572] 

0.1104** 
[0. 0454] 

0.1173*** 
[0.0455] 

0.2859*** 
[0.0590] 

0.1297** 
[0.0663] 

0.0476 
[0.0529] 

0.0541* 
[0.0528] 

0.0362 
[0.0688] 

Independent Variables 
Pure Scientists -0.2016*** 

[0.0240] 
  -0.1196*** 

[0.0259] 
-0.0506** 
[0.0279] 

  0.0078 
[0.0302] 

Bridging Scientists  0.5040*** 
[0.0482] 

 0.3318*** 
[0.0542] 

 0.2890*** 
[0.0556] 

 0.2219*** 
[0.0625] 

Pure Inventors   0.0367*** 
[0.0045] 

0.0250*** 
[0.0047] 

  0.0297*** 
[0.0052] 

0.0237*** 
[0.0055] 

Firm-Level Control Variables 
Publication Volume 0.0000* 

[0.0000] 
0.0000 
[0.0000] 

0.0000** 
[0.0000] 

0.0001*** 
[0.0000] 

0.0001*** 
[0.0000] 

0.0001*** 
[0.0000] 

0.0000*** 
[0.0000] 

0.0001*** 
[0.0000] 

Publication citations -0.0168*** 
[0.0063] 

-0.0073 
[0.0060] 

0.0011 
[0.0059] 

-0.0155*** 
[0.0063] 

-0.0010 
[0.0073] 

-0.0015 
[0.0069] 

0.0032 
[0.0068] 

0.0001 
[0.0073] 

Firm age -0.0095** 
[0.0060] 

-0.0278*** 
[0.0064] 

-0.0082* 
[0.0060] 

-0.0275*** 
[0.0064] 

0.0214*** 
[0.0069] 

0.0088 
[0.0073] 

0.0182*** 
[0.0069] 

0.0085 
[0.0073] 

Firm size 0.0200*** 
[0.0038] 

0.0245**** 
[0.0035] 

0.0309*** 
[0.0034] 

0.0169*** 
[0.0038] 

0.0067* 
[0.0044] 

0.0047 
[0.0041] 

0.0075** 
[0.0040] 

-0.0043 
[0.0044] 

R&D Expenditure 0.0339*** 
[0.0039] 

0.0363*** 
[0.0038] 

0.0350*** 
[0.0038] 

0.0356*** 
[0.0038] 

0.0134*** 
[0.0045] 

0.0148** 
[0.0045] 

0.0141*** 
[0.0044] 

0.0050*** 
[0.0045] 

Technological 
Strength 

-0.0000 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

-0.0000 
[0.0001] 

-0.0002** 
[0.0001] 

-0.0001* 
[0.0000] 

-0.0001* 
[0.0001] 

-0.0001** 
[0.0000] 

Patent-Level Control Variables 
Patent age -0.0082*** 

[0.0029] 
-0.0080*** 
[0.0029] 

-0.0063*** 
[0.0029] 

-0.0075*** 
[0.0029] 

-0.0109*** 
[0.0034] 

-0.0110*** 
[0.0034] 

-0.0098*** 
[0.0034] 

-0.0101*** 
[0.0034] 

Log Likelihood -4854.14 -4834.94 -4857.24 -4810.36 -5102.80 -5090.97 -5088.70 -5081.77 
No. of Observations 7648 7648 7648 7648 7648 7648 7648 7648 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 
Technology class dummy variables and year fixed effect were included but not reported. 
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Table 2.5. Negative Binomial Regression in Testing the Impact of Intellectual Human Capital and 

Control Variables on Science Search 
 

Variables Model 1 Model 2 Model 3 Model 4 
Constant 5.5656*** 

[0. 7734] 
5.3371*** 
[0.5228] 

5.3189*** 
[0.5144] 

5.82586*** 
[0.8906] 

Independent Variables 
Pure 

Scientists 
-0.1568 
[0.2197] 

  -0.3017 
[0.2999] 

Bridging 
Scientists 

 -0.4621 
[0.6279] 

 -0.7985 
[0.7321] 

Pure 
Inventors 

  0.0130 
[0.0399] 

0.0304 
[0.0350] 

Firm-Level Control Variables 
Publication 

Volume 
0.0001 
[0.0003] 

-0.0001 
[0.0002] 

0.0000 
[0.0003] 

0.0000 
[0.0002] 

Publication 
citation 

-0.1898*** 
[0.0711] 

-0.1684*** 
[0.0650] 

-0.1758*** 
[0.0718] 

-0.1869*** 
[0.0667] 

Firm age -0.4836*** 
[0.0932] 

-0.4494*** 
[0.0958] 

-0.4781*** 
[0.0897] 

-0.4513*** 
[0.0949] 

Firm size 0.0023 
[0.0500] 

0.0189 
[0.0407] 

0.0122 
[0.0414] 

-0.0007 
[0.0495] 

R&D 
Expenditure 

-0.0403 
[0.0627] 

-0.0404 
[0.0636] 

-0.0386 
[0.0630] 

-0.0464 
[0.0630] 

Technological 
Strength 

0.0011 
[0.0009] 

0.0012* 
[0.0009] 

0.0012* 
[0.0008] 

0.0011 
[0.0009] 

Patent-Level Control Variables 
Patent age -0.0901*** 

[0.0335] 
-0.0868*** 
[0.0335] 

-0.0876*** 
[0.0341] 

-0.0882*** 
[0.0350] 

Log 
Likelihood 

-27870.01 -27867.20 -27871.50 -27859.14 

No. of 
Observations 

7648 7648 7648 7648 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 
Technology class dummy variables and year fixed effect were included but not reported. 

 
 

Main and Moderating Effect of Alliance Portfolio Attributes 

The regression coefficients for testing the main effects of alliance portfolio attributes are 

provided in Table 2.6. Models 1, 2 and 3 present the main effects of the three attributes of 

alliance portfolio. Model 4 presents the results when all three alliance portfolio attributes 

are included together. The results show that the technological and geographical diversity 

of the alliance portfolio and the number of university partners in the alliance portfolio 
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have significant positive effects on the forward citation of patents (p<0.01). Hence, H3a, 

H3b and H3c are accepted.  

 In order to test if alliance portfolio moderates the relationship between new 

knowledge search and technological performance, I included the interaction terms. The 

results of these are presented in Models 5, 6 and 7 in which each of the interaction terms 

is introduced one by one. Model 8 presents the results when all the interaction terms are 

included together. As technological search had a linear positive effect on forward citation 

(from Table 2.3), I included just the linear interaction term for technological search. 

Since geographical and science search are curvilinearly related to forward citation, I 

included both the linear and squared interaction terms.  

 The significant interaction term of technological diversity of the alliance portfolio 

and technological search in Models 5 and 8 (p<0.01) supports H4a. Figure 2.2 is a 3D 

representation of this interaction effect. The coordinate (L, L) represents low in 

technological search and low in technological diversity of alliance portfolio, while (L, H) 

represents low in technological search and high in technological diversity of alliance 

portfolio. Since technological diversity of alliance portfolio has a positive influence on 

technological performance, the coordinate (L, H) has a higher technological performance 

than (L, L). Similarly, the coordinate (H, L) represents high in technological search and 

low in technological diversity of alliance portfolio, while (H, H) represents high in 

technological search and high in technological diversity of alliance portfolio. The positive 

slope from (L, L) to (H, L) and (L, H) to (H, H), clearly shows that there is positive 

interaction between technological search and technological diversity of alliance portfolio. 

In testing the interaction effect of geographical diversity of alliance portfolio with 
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geographical search, I looked at the squared term of interaction because it provides a 

more complete explanation by preventing any misinterpretation of effects due to linearity 

and additivity in correlated variables (Cortina, 1993). The significant interaction term of 

geographical diversity of alliance portfolio with geographical search squared (p<0.01) 

supports H4b.  However, the interaction between number of universities and science 

search squared is negatively significant, thereby rejecting H4c.  
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Table 2.6. Negative Binomial Regression in Testing the Main and Moderating Effect of Alliance Portfolio Attributes 

 
 
 
 
 
 
 
 
 
 
 
 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model8 
Constant 0.0354 

[0.3772] 
0.1119 
[0. 3528] 

0.1194 
[0.4296] 

-0.0408 
[0.3774] 

 -0.0459 
[0.3330] 

0.0060 
[0.3353] 

-0.0219 
[0.4229] 

-0.1439 
[0.3742] 

Independent Variables 
Technological Diversity of 
Alliance Portfolio 

0.4318*** 
[0.1649] 

   0.4409*** 
[0.1023] 

 0.0124 
[0.1650] 

  0.1004 
[0.1241] 

Geographical Diversity of 
Alliance Portfolio 

 0.6045*** 
[0.1503] 

  0.4579*** 
[0.1188] 

  2.0006*** 
[0.4905] 

 1.4271*** 
[0.3611] 

No. of University Partners in 
Alliance Portfolio 

     0.2233*** 
[0.0645] 

0.2192*** 
[0.0627] 

  0.1673*** 
[0.0673] 

0.1598*** 
[0.0628] 

Technological Search      0.3033* 
[0.2021] 

   0.1652 
[0.1613] 

Geographical Search      0.8589*** 
[0.4035] 

 0.0819 
[0.2711] 

Geographical Search Squared      -0.7195 
[0.6558] 

 0.1319 
[0.4551] 

Science Search       -0.0008 
[0.0023] 

-0.0021 
[0.0023] 

Science Search Squared       0.0000 
[0.0000] 

0.0000 
[0.0000] 

Technological Diversity of 
Alliance Portfolio *Technological 
Search 

    0.8998*** 
[0.2931] 

  0.6161*** 
[0.2595] 

Geographical Diversity of 
Alliance Portfolio *Geographical 
Search 

     -5.6775*** 
[1.9333] 

 -4.0277** 
[1.5151] 

Geographical Diversity of 
Alliance Portfolio *Geographical 
Search Squared 

     4.3912*** 
[2.0497] 

 2.7745** 
[1.7033] 

No. of Univ. Partners in Alliance 
portfolio  
*Science Search 

      0.0038*** 
[0.0012] 

0.0037*** 
[0.0011] 

No. of Univ. Partners in Alliance 
portfolio  
*Science Search Squared 

      -0.0000*** 
[0.0000] 

-0.0000*** 
[0.0000] 
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Table 2.6. Negative Binomial Regression in Testing the Main and Moderating Effect of Alliance Portfolio Attributes (Contd.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 

Technology class dummy variables and year fixed effect were included but not reported.

Firm-Level Control Variables 
Publication 
Volume 

-0.0003*** 
[0.0001] 

-0.0004*** 
[0.0001] 

-0.0004*** 
[0.0001] 

-0.0003*** 
[0.0001] 

-0.0003*** 
[0.0001] 

-0.0003*** 
[0.0001] 

-0.0004*** 
[0.0001] 

-0.0003*** 
[0.0001] 

Firm age -0.2098*** 
[0.0565] 

-0.2404*** 
[0.0528] 

-0.2633*** 
[0.0777] 

-0.2592*** 
[0.0661] 

-0.2125*** 
[0.0520] 

-0.2398*** 
[0.0523] 

-0.2362*** 
[0.0700] 

-0.2373*** 
[0.0572] 

Firm size 0.0351 
[0.0332] 

0.0325 
[0.0326] 

0.0460* 
[0.0349] 

0.0359 
[0.0307] 

0.0243 
[0.0316] 

0.0302 
[0.0317] 

0.0446* 
[0.0334] 

0.0273 
[0.0297] 

R&D 
Expenditure 

0.0235 
[0.0335] 

0.0234 
[0.0300] 

-0.0004 
[0.0357] 

-0.0029 
[0.0337] 

0.0064 
[0.0321] 

0.0177 
[0.0290] 

-0.0018 
[0.0324] 

 -0.0162 
[0.0299] 

Technological  
Strength 

-0.0018*** 
[0.0017] 

-0.0022*** 
[0.0006] 

-0.0017** 
[0.0009] 

-0.0011** 
[0.0008] 

-0.0017*** 
[0.0006] 

-0.0022*** 
[0.0006] 

-0.0016*** 
[0.0008] 

-0.0010* 
[0.0008] 

Patent-Level Control Variables 
Patent age 0.1649*** 

[0.0215] 
0.1770*** 
[0.0287] 

0.1568*** 
[0.0188] 

0.1539*** 
[0.0188] 

0.1694*** 
[0.0211] 

0.1780*** 
[0.0214] 

0.1639*** 
[0.0185] 

0.1614*** 
[0.0179] 

Log 
Likelihood 

-20527.82 -20510.30 -20114.23 -20056.08 -20452.59 -20478.22 -20027.68 -19935.71 

No. of 
Observations 

7648 7648 7648 7648 7648 7648 7648 7648 
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Figure 2.2. Interaction between Technological Search and Technological Diversity of Alliance 
Portfolio for Forward Citation 

 
Note: The coordinates are for technological search and technological diversity of alliance 

portfolio 
 
 

Mediating Role of New Knowledge Search in Explaining the Relationship between 

Intellectual Human Capital and Technological Performance 

Though mediation is not a part of the research model, I performed this test in order to 

have a better understanding of the intellectual human capital-new knowledge search- 

technological performance link. I followed the three-step procedure suggested by Baron 

and Kenny (1986) to test the mediating effect of new knowledge search. In the first step, I 

tested if intellectual human capital demonstrates significant association with 

technological performance. Models 1, 2 and 3 of Table 2.7 present the main effects of the 

three intellectual human capital variables on the forward citation of patents. Both 

L, H 

L, L 

H, H 

H, L 
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bridging scientists and pure inventors have a significant positive influence on the forward 

citation of patents (p<0.10, p<0.01). On the contrary, pure scientists have a significant 

negative effect on the forward citation of patents (p<0.01). A detailed discussion of these 

results is provided in the next section.  

  The second step in testing the meditating effect of new knowledge search is to 

test the relationship between intellectual human capital and new knowledge search. The 

results of regressions in Tables 2.4 and 2.5, which investigate this relationship, have been 

discussed earlier. The regression results suggest the possibility of technological and 

geographical searches mediating the relationship of bridging scientists and pure inventors 

with that of technological performance. The results rule out the need for testing the 

mediation for pure scientists as well as for testing science search as a mediating variable.  

 Therefore, in testing the last step of Baron and Kenny (1986), I concentrated 

solely on the mediating roles of technological and geographical searches for bridging 

scientists and pure inventors. In testing this, I regressed the technological performance 

variable on bridging scientists, pure inventors and new knowledge search, the results of 

which are presented in Table 2.8. To establish complete mediation, the effects of 

intellectual human capital variables on forward citation should become insignificant in 

the presence of new knowledge search variables. However, in comparing Models 1 and 2 

of Table 2.8, I observed that, in the presence of technological search, the effect of 

bridging scientists decreased from (1.2057, p<0.01) to (0.9554, p<0.05). Similarly, 

comparing Models 1 and 3 shows that, in the presence of geographical search, the effect 

of bridging scientists decreased to (1.1403, p<0.05). This shows that geographical search 
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and technological search partially mediate the relationship between bridging scientists 

and technological performance.  

 From Models 4, 5 and 6 of Table 2.8, I observed that technological search and 

geographical search partially mediate the relationship between pure inventors and 

technological performance. Thus, the results show that technological and geographical 

search variables partially mediate the relationship of bridging scientists and pure 

inventors with that of technological performance. Table 2.9 presents the summary of 

hypotheses and results as to whether the hypotheses are supported or not. 
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Table 2.7. Negative Binomial Regression in Testing the Impact of Intellectual Human Capital and 
Control Variables on Forward Citation 

 
Variables Model 1 Model 2 Model 3 
Constant 1.0636*** 

[0.4602] 
0.7882** 
[0.4360] 

0.7702** 
[0.4320] 

Independent Variables 
Pure 
Scientists 

-0.5815*** 
[0.1637] 

-0.4121*** 
[0.1749] 

-0.4074*** 
[0.1726] 

Bridging 
Scientists 

 0.8573* 
[0.5521] 

0.6644* 
[0.5618] 

Pure 
Inventors 

  0.0633*** 
[0.0206] 

Firm-Level Control Variables 
Publication 
Volume 

-0.0002* 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

Publication 
citation 

-0.1044*** 
[0.0366] 

-0.1021*** 
[0.0353] 

-0.0995*** 
[0.0358] 

Firm age -0.2451*** 
[0.0458] 

-0.2815*** 
[0.0576] 

-0.2825*** 
[0.0579] 

Firm size -0.0087 
[0.0311] 

0.0140 
[0.0330] 

-0.0158 
[0.0330] 

R&D 
Expenditure 

0.0202 
[0.0256] 

0.0247 
[0.0267] 

0.0251 
[0.2270] 

Technological 
Strength 

-0.0027*** 
[0.0006] 

-0.0026*** 
[0.0005] 

-0.0025*** 
[0.0005] 

Patent-Level Control Variables 
Patent age 0.1694*** 

[0.0214] 
0.1692*** 
[0.0208] 

0.1721*** 
[0.0210] 

Log 
Likelihood 

-20525.79 -20514.69 -20506.12 

No. of 
Observations 

7648 7648 7648 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 
Technology class dummy variables and year fixed effect were included but not reported.



65 

Table 2.8. Negative Binomial Regression in Testing the Impact of Intellectual Human Capital, New 
Knowledge Search, and Control Variables on Forward Citation 

 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 
Technology class dummy variables and year fixed effect were included but not reported. 

 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Constant 0.1552 

[0. 3348] 
-0.0603 
[0. 3033] 

0.0330 
[0.3155] 

0.1506 
[0.3622] 

-0.0701 
[0.3258] 

0.0089 
[0.3408] 

Independent Variables 
Technological Search  0.5797*** 

[0.1462] 
   0.5923*** 

[0.1560] 
 

Geographical Search   0.5139*** 
[0.1230] 

   0.5196*** 
[0.1253] 

Bridging Scientists 1.2057*** 
[0.5366] 

0.9554** 
[0.4641] 

1.1403** 
[0.5253] 

   

Pure Inventors    0.0887*** 
[0.0263] 

0.0702*** 
[0.0222] 

0.0837*** 
[0.0245] 

Firm-Level Control Variables 
Publication Volume -0.0002** 

[0.0001] 
-0.0002** 
[0.0001] 

-0.0002** 
[0.0001] 

-0.0004*** 
[0.0001] 

-0.0003** 
[0.0001] 

-0.0004* 
[0.0001] 

Publication citation -0.0691** 
[0.0362] 

-0.0589** 
[0.0316] 

-0.0670** 
[0.0350] 

-0.0513** 
[0.0287] 

-0.0447** 
[0.0260] 

-0.0502** 
[0.0276] 

Firm age -0.2859*** 
[0.0583] 

-0.2672*** 
[0.0531] 

-0.2899*** 
[0.0586] 

-0.2420*** 
[0.0529] 

-0.2320*** 
[0.0488] 

-0.2480*** 
[0.0529] 

Firm size  0.0128 
[0.0326] 

 0.0065 
[0.0311] 

 0.0145 
[0.0307] 

0.0312 
[0.0351] 

0.0208 
[0.0329] 

0.0318 
[0.0328] 

R&D Expenditure 0.0295 
[0.0320] 

0.0144 
[0.0314] 

0.0270* 
[0.0282] 

0.0268 
[0.0325] 

0.0124 
[0.0317] 

0.0247 
[0.0291] 

Technological  
Strength 

-0.0023*** 
[0.0006] 

-0.0021*** 
[0.0005] 

-0.0022*** 
[0.0006] 

-0.0023*** 
[0.0006] 

-0.0021*** 
[0.0005] 

-0.0022*** 
[0.0006] 

Patent-Level Control Variables 

Patent age 0.1704*** 
[0.0209] 

0.1734*** 
[0.0211] 

0.1720*** 
[0.0203] 

0.1758*** 
[0.0216] 

0.1778*** 
[0.0216] 

0.1772*** 
[0.0210] 

Log Likelihood -20525.50 -20464.26 -20489.02 -20533.70 -20469.60 -20496.6 
No. of Observations 7648 7648 7648 7648 7648 7648 
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Table 2.9. Summary of Hypothesis Testing 
Hypothesis Description Result Detailed Result 

 
1a 

 
Technological Search  Technological Performance 

 
Not Supported 

 
Linear positive effect 

 
1b 

 
Geographical Search  Technological Performance 

 
Supported 

 

 
1c 

 
Science Search  Technological Performance 

 
Supported 

 

 
2a 

 
 
Intellectual Human Capital  Technological Search 

Partially 
Supported 

Supported only for bridging 
scientists and pure inventors, 
but not for pure scientists 

 
2b 

 
 
Intellectual Human Capital  Geographical Search 

Partially 
Supported 

Supported only for bridging 
scientists and pure inventors, 
but not for pure scientists 

 
2c 

 
Intellectual Human Capital  Science Search 

Not Supported  

 
3a 

 
Technological Diversity of Alliance Portfolio  Technological Performance 

Supported  

 
3b 

 
Geographical Diversity of Alliance Portfolio  Technological Performance 

Supported  

 
3c 

 
No. of University Partners in the Alliance Portfolio  Technological Performance 

Supported  

 
 

4a 

 
 
                    
Technological Search  Technological Performance 

Supported  

 
 

4b 

 
 
                   
Geographical Search  Technological Performance 

Supported  

 
 

4c 

 
 
                    
Science Search  Technological Performance 
 

Not Supported  

Curvilinear 

+ 

+ 

+ 

+ 

+ 

Technological Diversity of Alliance Portfolio 

     Geographical Diversity of Alliance Portfolio 

No. of University Partners in Alliance Portfolio 

+ 

+ 

+ 

+ 

Curvilinear 

Curvilinear 
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DISCUSSION AND CONCLUSION 
Organizations search for new knowledge in the anticipation of developing valuable 

technologies. The first initiative towards “new knowledge search” is to search and 

identify new knowledge existing outside an organization. Since knowledge residing in 

intellectual human capital helps a firm in scanning and identifying new knowledge, my 

research hypothesizes that intellectual human capital contributes to searching new 

knowledge residing outside the firm boundary. Having identified the knowledge, the next 

important step is to acquire and exploit the searched knowledge in creating valuable 

technologies. Though the internal resources of a firm, including intellectual human 

capital, play an important role in converting new knowledge search into better 

technologies, my study emphasizes that collaboration with other firms is essential for a 

firm to acquire and exploit the new knowledge search. Hence, I hypothesize alliances to 

play an important role in enhancing the capability of a firm to translate its new 

knowledge search into better technologies. Consequently, my study has two objectives.  

 The first objective of this study is to understand how internal resources, such as 

intellectual human capital, contribute to technological performance by engaging in new 

knowledge search. Specifically, my study explores how the three different types of 

intellectual human capital (1) pure scientists, (2) bridging scientists and (3) pure 

inventors, assist the three dimensions of new knowledge search (1) technological, (2) 

geographical and (3) science, thereby contributing to technological performance. The 

second objective is to investigate the role of alliances in enhancing the contribution of 

new knowledge search to technological performance. In particular, the study investigates 

how an alliance portfolio characterized by (1) technologically diverse partners, (2) 
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geographically diverse partners and (3) partners from academic institutions, moderates 

the relationship between the three dimensions of new knowledge search and 

technological performance. When combined, the two objectives help in understanding 

how intellectual human capital and alliances help a firm in the process of searching new 

knowledge and translating it into better technologies. The following sections discuss the 

four hypotheses of my research that encompass the above two objectives. 

 The first hypothesis tests the curvilinear relationship of the three dimensions of 

new knowledge search with technological performance. The results show that 

technological search has a linear positive effect on forward citations, and that the 

relationship is not curvilinear as hypothesized. This suggests that even though searching a 

broad array of technologies is time-consuming and associated with high uncertainty, it is 

helpful in creating valuable technologies. The reason for the results not supporting the 

curvilinear effect of technological search can also be due to the biotech context that is 

under study. Biotech innovations are considered to be interdisciplinary in nature. Hence, 

in creating important innovations, firms inevitably have to search for technologically 

wide knowledge.  

 However, I find geographical and science search to have curvilinear relationships 

with forward citations. This suggests that searching knowledge across a wide geography 

and from the science base is good but, beyond a point, it is detrimental to technological 

performance. My results limit me in further discussion about the possible reasons for 

diminishing returns of geographical search. Nevertheless, some of the results of control 

variables combined with the curvilinear effect of science search help in better 

understanding the role of science for technological performance. Two of my control 
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variables, publication volume and publication citation, had significant negative influences 

on forward citation of patents. The publication volume and publication citation variables, 

as measured in this study, can be interpreted as the capability of firms to generate high 

quality scientific knowledge. The science search reflects a firm’s effort in searching 

scientific knowledge to apply it to technology development. The results corresponding to 

these variables show that the capability of firms to generate scientific knowledge is not 

helpful for technological performance. However, a firm's ability to optimally search for 

knowledge and then apply it to technological development is beneficial to technological 

performance.  

  While prior studies have extensively examined the benefits and drawbacks of 

local search (Karim and Mitchell, 2000; Ahuja and Lampert, 2001), the results from the 

first hypothesis attempt to follow the recent stream of research in explaining the benefits 

and drawbacks of search that spans different boundaries (Ahuja and Katila, 2004). The 

findings highlight the benefits and drawbacks of geographical search and science search. 

Earlier studies have suggested the importance of scientific findings to technological 

search and that technological search conducted beyond national boundaries is detrimental 

to innovation (Fleming and Sorenson, 2004; Phene et al., 2006). My findings suggest that 

searching a wide array of technologies (after controlling for the geographical and science 

searches) is always beneficial for innovations, which are characterized to be inter-

disciplinary in nature.  

 The second hypothesis studies the relationship between the three intellectual 

human capital variables and new knowledge search. Both bridging scientists and pure 

inventors have a significant role to play in assisting with the technological and 
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geographical search process of a firm. However, pure scientists, who are exclusively 

involved in scientific research, have a negative impact on technological and geographical 

searches. It is surprising to find that none of the three intellectual human capital variables 

are related to science search. Two limitations pertaining to science search can be 

plausible explanations for the insignificant results. First, count of all non-patent 

references is taken into consideration in measuring science search. A more appropriate 

measure would have been to consider only citations to scientific publications. But this 

limitation is, to some extent, mitigated by the observation of Sorenson and Fleming 

(2004) that 70% of non-patent references are citations to scientific publications. The 

second limitation is related to the observation by Noyons et al. (1994). They showed that 

reference to scientific literature in patents is not an appropriate measure for identifying 

the science intensity associated with the innovation.  

 A plausible explanation for the negative influence of pure scientists on new 

knowledge search is the same as that of negative influences of publication volume and 

publication citation on technological activities. Pure scientists of an organization 

represent human capital that engages in pure scientific research. The results pertaining to 

publication volume and publication citation and evidences from prior research suggests 

that a firm’s scientific research endeavors are not direct inputs to its technological 

activities (Gittelman and Kogut, 2003). Indeed firms’ technological activities are shown 

to suffer when they concentrate on scientific research. This can be one of the reasons why 

pure scientists have a negative influence on new knowledge search that is targeted toward 

developing technologies. It is only through the skillful application of scientific research 

and resources to technological activities that a firm can benefit from its scientific research 
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endeavors (Gittelman and Kogut, 2003). The following section elaborates on how pure 

scientists can indirectly contribute to technological activities by assisting bridging 

scientists and pure inventors.  

 Fleming and Sorenson (2004) observed that scientific knowledge alters 

technology inventors' search process. According to my conceptualization, bridging 

scientists and pure inventors are those who are directly involved in developing 

technologies. Therefore, the above observation by Fleming and Sorenson (2004) guides 

me to explore if pure scientists’ contributions to new knowledge search are through 

bridging scientists and pure inventors, by providing them with a stylized representation of 

search. If the role of pure scientists is indirect as speculated above, then the relationship 

between bridging scientists, pure inventors and new knowledge search would be 

moderated by pure scientists. In order to test this effect I performed interaction tests, the 

results of which are presented in Table 2.10.  

 Model 1 presents the interaction between pure scientists and bridging scientists in 

explaining the technological search. The interaction term is significant (p<0.01), 

confirming that the contribution of bridging scientists to technological search increased in 

the presence of pure scientists. Figure 2.3 is a 3D representation of this interaction effect. 

The coordinate (L, L) represents low in bridging scientists and low in pure scientists, 

while (L, H) represents low in bridging scientists and high in pure scientists. Since pure 

scientists have a negative influence on technological performance, the coordinate (L, L) 

has a higher technological performance than (L, H). Similarly, the coordinate (H, L) 

represents high in bridging scientists and low in pure scientists, while (H, H) represents 

high in bridging scientists and high in pure scientists. The positive slope from (L, L) to 
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(H, L) and (L, H) to (H, H), clearly shows that there is positive interaction between 

bridging scientists and pure scientists. On the contrary, Model 2 in Table 2.10 shows that 

pure scientists do not help pure inventors in their technological search. Models 3 and 4 

present the interaction results for geographical search and are similar to that for 

technological search. The moderating effect of pure scientists in explaining the 

relationship between bridging scientists and geographical search is further illustrated 

using a 3D graph in Figure 2.4. The interpretation of Figure 2.4 is similar to that of 

Figure 2.3.  
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Table 2.10. Regression in Testing the Moderating Role of Pure Scientists 
 

Variables Model 1 Model 2 Model 3 Model 4 
Regression Model Tobit Tobit Tobit Tobit 
Dependent Variable Technological 

Search 
Technological 
Search 

Geographical 
Search 

Geographical 
Search 

Constant 0.3752** 
[0. 1043] 

0.2661*** 
[0.0628] 

0.3294*** 
[0.1104] 

0.1016* 
[0.0669] 

Independent Variables 
Pure Scientists -0.2209** 

[0.0997] 
-0.0541** 
[0.0291] 

-0.3344*** 
[0.1058] 

-0.0347 
[0.0309] 

Bridging Scientists 0.0565 
[0.1994] 

 -0.3889** 
[0.2122] 

 

Pure Inventors  0.0379*** 
[0.0079] 

 0.0274*** 
[0.0084] 

Bridging Scientists* 
Pure Scientists 

0.5128*** 
[0.2237] 

 0.7986*** 
[0.2382] 

 

Pure Inventors * Pure 
Scientists 

 0.0037 
[0.0121] 

  0.0029 
[0.0128] 

Firm-Level Control Variables 
Publication Volume 0.0001*** 

[0.0000] 
0.0001*** 
[0.0000] 

0.0001*** 
[0.0000] 

0.0001*** 
[0.0000] 

Publication citation -0.0108* 
[0.0075] 

-0.0025 
[0.0069] 

-0.0114* 
[0.0079] 

 0.0001 
[0.0073] 

Firm age -0.0286** 
[0.0070] 

-0.0174*** 
[0.0065] 

 0.0085 
[0.0073] 

0.0172*** 
[0.0069] 

Firm size 0.0178*** 
[0.0042] 

0.0167**** 
[0.0041] 

 0.0071* 
[0.0044] 

 0.0053 
[0.0044] 

R&D Expenditure 0.0377*** 
[0.0042] 

0.0370*** 
[0.0042] 

0.0145*** 
[0.0045] 

0.0140*** 
[0.0045] 

Technological 
Strength 

-0.0000 
[0.0001] 

-0.0000 
[0.0001] 

-0.0001 
[0.0001] 

-0.0002* 
[0.0001] 

Patent-Level Control Variables 
Patent age -0.0090*** 

[0.0031] 
-0.0076*** 
[0.0031] 

-0.0109*** 
[0.0034] 

-0.0099*** 
[0.0034] 

Log Likelihood -5291.4 -5285.23 -5085.35 -5088.04 

No. of Observations 7648 7648 7648 7648 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 
Technology class dummy variables and year fixed effect were included but not reported.
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Figure 2.3. Interaction between Bridging Scientists and Pure Scientists for Technological Search 
 

 

Note: The coordinates are for bridging scientists and pure scientists 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

L, H 

L, L 

H, H 

H, L 
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Figure 2.4. Interaction between Bridging Scientists and Pure Scientists for Geographical Search 

 
Note: The coordinates are for bridging scientists and pure scientists 

 
 
 
  

L, H 

L, L 

H, H 

H, L 
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Taken together, the results illustrate that pure scientists facilitate the technological and 

geographical search processes of bridging scientists, but not of pure inventors. A 

potential explanation is that bridging scientists, who are involved in both science and 

technology domains are in a better position to benefit from pure scientists. Because of 

their dual role, bridging scientists tend to collaborate with pure scientists, thereby 

benefiting from the pure scientists' scientific understanding (Furukawa and Goto, 2006). 

This is also evident from my data, as I observed a number of collaborations between pure 

scientists and bridging scientists in publishing papers. On the other hand, pure inventors 

have been observed to exhibit different communication behavior from that of pure 

scientists (Allen, 1977), and can find it difficult to bridge the gap and take advantage of 

the scientific knowledge possessed by pure scientists. Thus, I follow Gittelman and 

Kogut’s (2003) assertion that scientists who can play a dual role and successfully bridge 

the science and technology domains have a positive influence on technological 

performance. I go one step further in saying that the dual role of bridging scientists can 

also help in translating the ideas of pure scientists into a language that can be easily 

interpreted by pure inventors.  

 Before discussing the results pertaining to alliances, it is worth explaining a few 

other results related to intellectual human capital that are not part of the research model. 

First is the findings related to the influence of intellectual human capital on technological 

performance. The results demonstrate that pure inventors and bridging scientists have 

positive impacts on the technological performance of firms. On the contrary, pure 

scientists have a negative impact on the technological performance. The positive effect of 

pure inventors is trivial because they are solely dedicated to applied research and to 
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developing important innovations. However, it is interesting to note the contingent value 

of scientists, whose involvement in scientific research detracts them from technology 

development. Scientists have a positive influence on technological performance only if 

they are bridging scientists, viz. they are capable of also engaging themselves in 

technology development. This finding further underlines the importance of bridging 

scientists to firms (Gittelman and Kogut, 2003)  

 The next result is corresponding to the mediating role of new knowledge search in 

explaining the intellectual human capital and technological performance link. As 

speculated, the results support only partial mediation, suggesting that new knowledge 

search is one of the means through which intellectual human capital contribute to 

technological performance. Specifically, the findings reveal that technological and 

geographical searches partially mediate the path connecting pure inventors and 

technological performance. Similarly, technological and geographical searches are found 

to partially mediate the relationship between bridging scientists and technological 

performance. The mediating role of new knowledge search is not supported for pure 

scientists. Thus, both pure inventors and bridging scientists, who are directly involved in 

technology development activities, have a positive impact on technological performance 

by assisting in the technological and geographical searches. Since pure scientists are not 

directly involved in the technology development, it is not surprising to notice that the 

results do not support the role of new knowledge search in mediating the relationship 

between pure scientists and technological performance. However, I discussed the indirect 

contribution of pure scientists to new knowledge search in a previous section.  
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 The above findings that pertain to the influence of intellectual human capital on 

new knowledge search have important theoretical and practical implications. The 

theoretical implication is to the stream of research that emphasizes the importance of 

intellectual human capital to technological performance (Subramaniam and Youndt, 

2005). Although the basic link between intellectual human capital and the technological 

performance of firms is persuasive, the finer aspect of how organizations utilize 

intellectual human capital for new knowledge search, which is capable of explaining the 

heterogeneity across firms’ technological performance, is unexplored. This research gap 

is surprising given that organizations invest a significant amount of resources in their 

intellectual human capital, often with the strategic need to develop expertise along new 

trajectories (Zucker, Darby, and Brewer, 1998). My study addresses this issue by 

showing that intellectual human capital engages in new knowledge search, thereby 

contributing to technological performance. Further, it contributes to the literature on 

evolutionary search by illustrating the importance of intellectual human capital to new 

knowledge search and how the contribution of human capital differs depending on their 

domain of expertise. The differences exhibited by the three intellectual human capital 

variables in influencing the new knowledge search as well as technological performance 

(elaborated in the following sections) help managers decide how to utilize their varied 

intellectual human capital in different knowledge-related activities.  

 Hypothesis 3 pertains to the main effect of alliance portfolio. The results 

demonstrate that an alliance portfolio characterized by technologically and 

geographically diverse partners and partners with academic background are beneficial for 

the technological performance of firms. This finding draws the attention of scholars to 
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concentrate on the alliance portfolio attributes rather than merely look at the size of the 

portfolio (Stuart, 2000). Further to the main effect of an alliance portfolio, Hypothesis 4 

tests the moderating effect of an alliance portfolio in enhancing the contribution of new 

knowledge search for better technological performance. The results show that a 

technologically and geographically diverse alliance portfolio enhances the value of a 

firm’s technological and geographical searches, respectively. However, the number of 

university partners does not enhance the value of science search. There are two possible 

reasons for this result. The first reason is due to the limitations of the science search 

measure as described earlier. The second reason is that the difference in institutional 

affiliation (profit firms/non-profit academic institutions) can prevent firms from fully 

benefiting from their university partnership. But the latter reasoning cannot be true, at 

least with respect to my results, because the main effect of the number of university 

partners on technological performance was positive. While prior studies have shown that 

alliance helps firms in going beyond local search (Rosenkopf and Almedia, 2003), the 

above results pertaining to the alliance-knowledge search strategy fit have important 

implications in framing an effective alliance strategy that best fits the search strategy of a 

firm. The findings also suggest that a holistic understanding of strategic advantage of 

alliance partners warrants careful examination of the alliance partners’ attributes and their 

interaction with the focal firm’s knowledge requirements. In addition, I contribute to the 

literature on strategic alliances by illustrating one of the second-order benefits of 

alliances, viz. enhancing the value of new knowledge search.  

 This research is subject to a number of limitations, the first pertaining to patent 

data. Restricting the scope to patent data can be limiting because not all companies have 
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the same propensity to patent and organizations can limit their patents only to most 

successful innovations. In spite of the above limitations, patent data has been widely used 

in testing the factors contributing to innovation (Sorenson and Fleming, 2004; Gittelman 

and Kogut, 2003).  

 The second limitation is related to the operationalization of new knowledge 

search. Currently search is restricted to inference from patent documents, which 

represents successful searches that eventually transformed into patentable innovations. 

However, an enormous amount of search conducted by firms is unsuccessful or at least 

not converted into patents. A measure that incorporates all search efforts made by firms 

will improve my findings and implications.  

 The third limitation is pertaining to the forward and backward citations of patents. 

It is noted that 40% of the citations in patents are added by patent examiners (Alacer and 

Gittelman, 2006). I take into account all the forward and backward citations of patents in 

calculating my measure, which is a limitation of the study. However, this limitation is 

mitigated by the way citations are used in my study. With respect to forward citations, 

whether the citation is made by firms or included by examiners, it represents in general 

the value of the patent. With respect to search measures, even if some of the citations are 

included by examiners, it signifies that the focal firm has implicitly made use of the 

knowledge. 

 The fourth limitation is pertaining to publications. Not all firms involved in 

scientific research have the inclination to disclose their findings by publishing. Even 

among publications, there are articles that can be classified as basic journals and applied 

journals (Lim, 2004). A fine-grained approach in categorizing publications can strengthen 
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my implications. There are also publications made by firms through collaboration with 

other firms and universities. My study includes all publications that are affiliated with the 

sample firms, irrespective of whether the publication is associated with more than one 

organization or not. However, not considering the information on collaboration is not a 

major limitation of my study because the publication is still a strong predictor of the 

knowledge captured by the firm and that the firm has acquired the tacit knowledge of 

individuals engaged in the research (Zucker, Darby and Armstrong, 2002).  

  A fifth limitation is related to the intellectual human capital measure. Currently it 

is operationalized as the proportion of intellectual human capital in 

science/technology/both domains. In reality there exists huge heterogeneity, even among 

individuals belonging to each of these categories. Hence, one of the fruitful research 

extensions can be to develop an intellectual human capital measure that is capable of 

capturing individuals' breadth and depth of knowledge.  

 Sixth, it would be helpful if my study could capture the benefits derived from an 

alliance partner using patents emerging from that specific collaboration, rather than 

looking at the performance of the whole patent portfolio of a firm. Though this is an 

important agenda for my future work, I intend to acknowledge this limitation in 

interpreting the findings of this study.  

 A seventh and final limitation is that, because my study explores the importance 

of intellectual human capital, it can only be generalized to other high-technology 

industries where intellectual human capital is considered a key input for technological 

innovation.  
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 Despite these limitations, this research explaining the means through which 

intellectual human capital and alliance influence the technological performance of firms 

has made several theoretical and practical contributions. In conclusion, this study 

identifies three types of intellectual human capital and illustrates their contributions to 

new knowledge search. The study also demonstrates the characteristics of an alliance 

portfolio that best fits with the different dimensions of new knowledge search, thereby 

enhancing the value of new knowledge search to technological performance.  

 Although the current study explains the importance of intellectual human capital, 

examples in the first chapter reveal that converting their competencies into important 

discoveries, especially the contributions of scientists, is not straightforward. The next 

chapter addresses this issue by determining some of the mechanisms through which a 

firm can benefit from its scientists. Since the results of this chapter identified bridging 

scientists as a valuable human capital, the focus of the next chapter is restricted to 

bridging scientists.    
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CHAPTER THREE 
 

UNDERSTANDING THE MECHANISM OF BRIDGING SCIENCE AND 
TECHNOLOGY DOMAINS WITHIN FIRMS FOR BETTER 

TECHNOLOGICAL PERFORMANCE 

 

INTRODUCTION 
Scholars have long believed that scientific input and R&D effort improve a firm’s 

technological innovation and performance (Henderson and Cockburn, 1994). A study of 

66 firms from seven major manufacturing industries estimates that about 11% of new 

products and 9% of new processes could not have been developed in the absence of 

scientific research from the academe (Mansfield, 1991). Several explanations have been 

offered to illustrate the benefits of science for better technological innovation. Scholars 

have shown that scientific research enhances a firm’s absorptive capacity (Cohen and 

Levinthal, 1990; Gambardella, 1992; Lim, 2004) and serves as guideposts for the process 

of technological investigation (Dasgupta and David, 1994), management of research 

activities (Owen-Smith, 2001), technological search (Fleming and Sorenson, 2004) and 

firm entry into new technologies (Zucker, Darby and Brewer, 1998).  

 While these studies illustrate the benefits of scientific knowledge for technology 

innovation, the process of converting competencies of scientists into better technological 

performance is actually not simple or straightforward (Gittelman and Kogut, 2003). In 

spite of the difficulty in benefiting from scientific competency, firms in high technology 

industries continue to spend heavily on scientific research through research programs 

organized internally and externally (Rosenberg, 1990). Firms also provide lucrative 

research funds and opportunities in order to attract star scientists into their organizations. 
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With these huge investments emerges an important question: How do firms make use of 

the competencies of scientists and translate them into better technology innovations?  

 The difficulty of converting the competencies of scientists into better 

technological performance has not been well investigated with a few exceptions such as 

Gittelman and Kogut (2003). Their study demonstrates that innovation builds on 

knowledge made in science, but science that is good for innovation is propelled by a logic 

different from that employed by the scientific community in determining valuable 

science. Using the patenting and publishing data in the biotechnology industry, they 

generated evidence to show that the logic of scientific discovery does not adhere to the 

same logic that governs the development of new technologies. Their findings suggest that 

by possessing the so-called bridging scientists, who are engaged in both scientific and 

technology domains, firms are in a better position to exploit the competencies of their 

scientists. Thus, their study suggests the importance of the individual-level mechanism of 

possessing bridging scientists in managing the two evolutionary logics.   

 While Gittelman and Kogut (2003) suggest the importance of bridging scientists, 

it is not feasible to expect all scientists in a firm to be bridging scientists. According to 

the learning style inventory model proposed by Kolb, Osland and Rubin (1995), different 

individuals are inclined to different styles of learning and knowledge generation. The two 

learning styles pertaining to knowledge residing in science and technology domains are 

1) conceptualization and 2) experimentation. Conceptualization means designing an 

abstract concept— a theory —in order to explain events, which is similar to producing 

scientific publications. The process of trying out theories in practice is called 

experimentation, and this is equivalent to applying scientific knowledge in practice to the 
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technology innovation process. Every person is inclined to either one learning style or, at 

maximum, two learning styles (Kolb et al. 1995; Raelin, 1997). Hence, it is not 

reasonable to expect every scientist who conducts fundamental research within an 

organization to also focus on downstream innovation activities requiring scientific 

knowledge.  

 While the learning style inventory model questions the viability of expecting all 

scientists to be involved in scientific research and technological innovation, March’s 

(1991) explorative/exploitative learning framework provides a remedial solution. 

Scientists' attempts to investigate new phenomena so as to provide a basic understanding 

of why phenomena occur can be termed as exploration. In contrast, inventors' attempts to 

test and apply the scientific knowledge for developing new technologies can be termed as 

exploitation. A recent study that builds on March’s (1991) framework has emphasized the 

importance of delineating the different domains of experiential learning and advancing 

the notion of maintaining exploration/exploitation balance within and across the domains 

(Lavie and Rosenkopf, 2006). Extending the lessons from this branch of study, I 

distinguish between the science and technology domains within organizations and 

advance the argument that, apart from relying on bridging scientists, firms have to 

encourage inventors involved in technology development to exploit the knowledge 

produced by their scientists. Organizations should have the necessary mechanisms in 

place to ensure that the scientific knowledge discovered by scientists is independently 

exploited by the inventors.  

 The importance of such firm-level mechanism in benefiting from scientists has 

also been established in the past. A study by Furukawa and Goto (2006) has shown that 
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heavily-publishing scientists are not known to directly contribute to the technology 

development process. However, these scientists are known to help the firm indirectly by 

increasing the patenting activities of other inventors who collaborate with them. This 

emphasizes that firm-level knowledge sharing and integration are necessary mechanisms 

for translating scientists’ competencies into better technological performance.  

 To further underscore the importance of firm-level mechanism over individual-

level mechanism in bridging science-technology domains, I study the interaction effect 

between the two mechanisms. Specifically, I use the absorptive capacity literature to 

propose that, in the presence of firm-level exploitation mechanism, the contribution of 

bridging scientists to technological performance increases. Thus, the major tenet of this 

paper is to show how March’s exploration/exploitation framework complements the 

lessons drawn by Gittelman and Kogut (2003) from the sociology and economics of 

science literature in explaining the mechanisms through which science-technology 

domains can be bridged within a firm. I use the publication and patenting behavior of 

biotechnology firms to test my hypotheses.  

 This chapter is organized as follows. The next section provides an overview of 

prior studies pertaining to science-technology relationship and discusses the need for 

bridging the science and technology domains within the firm. In the subsequent sections I 

develop hypotheses pertaining to the two mechanisms through which the science-

technology domains can be bridged, present the research method and results. The last 

section discusses the implications of my findings and the limitations of the study. 
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THE NEED FOR BRIDGING SCIENCE AND TECHNOLOGY DOMAINS 
WITHIN FIRMS 

The notion that scientific research stimulates technological performance and economic 

growth has long been established (Mansfield, 1972; Adams, 1990; Henderson and 

Cockburn, 1994; Jaffe and Trajtenberg, 1996). Both scientific research and scientists are 

known to have a significant positive effect on firms’ performances, especially that of 

firms in high-tech industries (Zucker and Darby, 2001; Zucker, Darby and Armstrong, 

1998).  

 Although research has reiterated the benefits of science and scientists for 

technology innovation, there is difficulty associated with the process of converting 

competencies of scientists into tangible benefits that a corporate firm demands. The 

reason8 is driven by the open norm of the scientific community and the general conflict 

involved in the adaptation of professionals, such as scientists, to organizational goals. 

Scientific endeavors were cloaked in secrecy until sixteenth century, but today scientific 

investigation receives a substantial amount of attention for its norm of openness. The 

institutionalization of science has encouraged the validation and diffusion of scientific 

ideas as open to public scrutiny (David, 1998; Gittelman and Kogut, 2003; Merton, 

1973). The nature of the scientific community reinforces norms of rapid disclosure and 

wider dissemination of new discoveries to account for rapid validation of findings, 

reducing excess duplication of efforts, and enlarging the domain of complementarities. 

                                                 
8 While certain areas of scientific research cannot be translated into practical applications (an example 
pertaining to the biotech context includes gene-sequencing. Identifying a gene-sequence potentially has no 
direct application. But the gene-sequencing research aids the process of relating a disease with a distortion 
in a gene-structure, which can subsequently be corrected by a chemical compound), in discussing the 
above, I focus on that scientific research that has practical applications. 
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Consequently, the success of scientists and their professional reputation is tied to priority 

based publication in prestigious journals.   

 While firms have a lower incentive to let potentially valuable information 

spillover to the public domain, in order to attract and retain very good scientists, firms 

realign the incentive structure and allow scientists to publish their research findings 

(Stern, 1999; Zucker and Darby, 2001). In addition to giving scientists autonomy and 

letting them operate in a community that values communism, firms must also become 

more adept at utilizing their scientific skills for better technological performance. The 

difficulty in achieving the above has been highlighted by Merton (1949) wherein he 

mentions that professional scientists differ from ‘technicians’ (or technical inventors) 

who believe that their primary obligation is to make their technical skills available to the 

organization. Kornhauser (1962, p:9) has termed this phenomenon as ‘professions limit 

organizations’, whereby professionals are constrained to act according to the 

requirements set by their profession rather than their corporate firms.  

 Thus, utilizing the competencies of scientists and translating them into better 

technological performance is not simple or straightforward. However, the question of 

how firms bridge science and technology domains has not attained enough attention in 

the literature. Such an understanding is essential because, in the absence of mechanisms 

to translate the competencies of scientists into better technological performance, firms 

might not be able to directly benefit from their scientific investments. In the following 

section, I develop hypotheses pertaining to two important mechanisms in bridging the 

science and technology domains within firms.  
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THEORY AND HYPOTHESES DEVELOPMENT 

Bridging Science-Technology Domains: Individual Level 
The work of Arrow (1962) exhibits science to be associated with features of public good 

and hence the need for academia and non-profit research to be involved in the production 

and dissemination of basic research findings. In subsequent research on the science and 

technology relationship, scholars started recognizing the importance of in-house scientific 

research for firms to even absorb scientific knowledge from the public domain (Allen, 

1991; Gambardella, 1995). The development of pharmaceutical and biotechnology 

industries has also singled out the scientific competency of firms and the presence of star 

scientists as critical factors for successful and productive firms (Zucker, Darby and 

Brewer, 1998; Cockburn and Henderson, 1998; Zucker, Darby and Armstrong, 2002).  

 Although scientists represent a vital resource for firms in high-tech industries, 

managing scientists who conduct fundamental research in industrial organizations creates 

friction. The friction is due to the conflicting nature of organizational demands and the 

identity of scientists being embedded in a collegiate reputation-based reward system of 

open science. Scientists are more inclined to utilize their competency in producing 

scientific publications so as to gain a reputation in the community of scientists, whereas 

the competitive advantage of science-based organizations depends on the ability of the 

scientists to exploit their scientific competency in innovation.  

 Though scientific research programs can be tailored to be useful inputs for 

furthering scientific investigation as well as technological innovation, one major 

challenge for firms with industrial R&D function is to define the roles of scientists, 

identify and evaluate the competencies of individual scientists, and provide appropriate 

incentive schemes to align their interests accordingly. The ability of the firm to find a 



90 

way to manage the two contradictory logics of science and innovation will be crucial for 

innovation performance (Cockburn, Henderson and Stern, 1999). However, ineffective 

human resource policy may also result in some scientists being trapped between the two 

evolutionary logics. 

As implied in the study by Gittelman and Kogut (2003), when scientists are 

properly motivated, they can be involved in generating both scientific findings as well as 

developing technologies. This will enable them to establish links between the science and 

technology domains, thereby creating valuable innovations. A feasible incentive structure 

is to induce scientists to play a dual role as both scientists and inventors, encouraging 

them to contribute to both knowledge domains, while inhabiting a single epistemic 

community. Their primary role as scientists in the community will facilitate firms to 

benefit from their networks and social interactions (Salter and Martin, 2001), generating a 

perpetual flow of external knowledge into the firm (Allen, 1991; Furukawa and Goto, 

2006). Meanwhile, by making the scientists indulge in technology innovation, a firm can 

utilize their tacit knowledge specific to internal scientific research to create technological 

innovation that no other firms can duplicate (Nonaka, 1994; Leonard-Barton, 1995). 

Thus, their secondary role as inventors aids in utilizing their scientific competencies in 

the technology innovation process, the consequence of which is found to have positive 

influence on the innovation performance of the firm (Gittelman and Kogut, 2003). The 

dual role of scientists also enables them to be gatekeepers of knowledge to bring in new, 

related and complementary knowledge that is beneficial for technological innovation 

(Allen, 1991; Gittelman and Kogut, 2003; Tushman, 1977).  
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 The importance of pushing scientists into marketable innovations has also been 

explained in a study on the Japanese and German biotechnology industries (Lehrer and 

Asakawa, 2004). The study found that the biotech firms in these countries, unlike the 

American and British counterparts, had failed to capitalize on the competencies of their 

scientists for better technological performance because of the lack of science 

entrepreneurship in the broader industrial context. The inability of these countries to 

excel in the biotechnology field was said to be a consequence of their scientists’ over-

inclination toward scientific publishing instead of patenting through commercially driven 

innovation (Lehrer and Asakawa, 2004).  

Following the above arguments and research findings, I posit that by defining the 

dual role of scientists in both scientific and technology innovation activities, firms can 

effectively bridge the science-technology domains. With the growing importance of 

individuals as movers of knowledge between organizational boundaries (Almeida and 

Kogut, 1999), using scientists as the level of analysis facilitates an ‘inside the box’ view 

of how firms bridge the two domains. In this paper, “dual role” means the extent to which 

scientists are engaged in both publishing and patenting activities organized within the 

firm. The above arguments suggest that: 

Hypothesis 1: The number of scientists within a firm who are directly involved in both 

scientific publications and technology patenting is positively associated with the 

technological performance of the firm 

Bridging Science-Technology Domains: Firm Level  
Building on March’s (1991) exploration/exploitation framework, a recent study that 

delineates distinct domains of exploration and exploitation provides some useful insights 
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through which a firm can benefit from the competencies of its scientists (Lavie and 

Rosenkopf, 2006).Exploitation is defined as 'refinement and extension of existing 

competencies', and exploration as 'embarking on new alternatives'. Exploration and 

exploitation differ on the type and amount of learning rather than presence and absence of 

learning. Recent studies on exploration/exploitation have shown that the delineation of 

exploration and exploitation in different domains enable firms to simultaneously embark 

on both, thereby maintaining the balance (Gupta, Smith and Shalley, 2006; Lavie and 

Rosenkopf, 2006). The capability of maintaining the exploration/exploitation balance by 

concurrently engaging in both types of knowledge searches is termed as ambidexterity.  

 Scientific efforts in producing abstract theories for understanding basic 

phenomena and causal relationships between technological components can be termed as 

exploration. The effort in applying the knowledge gained from scientific theories to the 

technology development process can be termed as exploitation. Though Gittelman and 

Kogut’s (2003) suggestion that having bridging scientists enables the generation and 

application of scientific knowledge in technology, there are practical limitations 

associated with this approach. Exploration and exploitation require radically different 

mindsets and routines, and it is not reasonable to expect every scientist within firm to also 

be competent in technology development. Consequently, though engaging scientists in 

both exploration and exploitation can lead to bridging of science and technology 

domains, a firm cannot solely rely on this mechanism to exploit the knowledge possessed 

by its scientists.  

 The organization learning literature that emphasizes the need for carrying out 

exploration/exploitation in different domains and maintaining a balance both within and 
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between them provides useful insights in overcoming the above-mentioned limitation 

(Lavie and Rosenkopf, 2006). Extending lessons from this branch of study, I distinguish 

the science and technology domains within an organization and advance the notion of 

letting scientists explore scientific areas and facilitating inventors in the technology 

domain to actively exploit the knowledge generated by the science domain. The main role 

of scientists in the science domain will be to specialize in their expertise areas and 

generate important findings that are valuable to technology development. In addition to 

the scientific role, scientists who are competent in technology development should be 

permitted to play a dual role by engaging themselves in technological innovation.  

 But in bridging the science and technology domains, firms should not wholly rely 

on the scientists playing the dual role. Instead, the capability of firms in bridging science 

and technology domains relies on how well the firm has organizing principles to exploit 

the knowledge produced by the science domain in its technology domain. The organizing 

principles underlying firm level exploitation mechanism encompasses (a) the extent to 

which a firm has lateral communication across functional domains (Demsetz, 1991) (b) 

how work is coordinated within the organization and information disseminated across 

groups (Grant, 1996) (c) the collective experiences of members of firms that enable even 

tacit knowledge of scientists to be transformed into comprehensible code that can be 

exploited by technology inventors (Teeni, 2001) (d) the introduction of an appropriate 

incentive structure to encourage employees to exploit the knowledge produced by 

colleagues (Subramanian and Soh, 2009) etc. The mechanisms stated above will facilitate 

the inventors in the technology domain to actively test and apply the internally-generated 
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scientific findings in developing technologies, thereby bridging the science and 

technology domains. 

 The firm-level mechanism of exploiting scientific knowledge in the technology 

domain results in better technological performance in the following ways. Firstly, firm-

level exploitation mechanism provides inventors with quick and easy access to internally-

generated scientific findings before being published, thereby enabling the inventors to 

introduce better products earlier than other firms. Secondly, the firm level exploitation 

mechanisms help firms readily apply scientific knowledge to resolve many technical 

problems related to technological breakthrough development. Thirdly, firm-level 

exploitation mechanism increases a firm’s capability in realizing the benefits of its 

investment in internal basic research.  

 Following the above arguments, I posit that firms that are capable of exploiting 

internally-generated scientific knowledge in their technology domain are in a better 

position to bridge the science and technology domains. The above arguments lead to my 

second hypothesis: 

Hypothesis 2: The degree to which a firm exploits the knowledge produced by its 

scientists in the technology domain is positively associated with the technological 

performance of the firm. 

 It is to be noted that Hypotheses 1 and 2 are not mutually exclusive. The first 

hypothesis explains the importance of nurturing bridging scientists, whose competence is 

invaluable to producing better technological innovation. The second hypothesis puts 

emphasis on a broader firm-level exploitation mechanism. In other words, enabling 

inventors to access and apply the internally generated scientific knowledge as well as 
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developing absorptive capacity for external sources of innovation would be the routines 

to establish inside a firm. Therefore, it is feasible for a firm to have both bridging 

scientists and the exploitation mechanism which utilizes the internally-generated 

scientific knowledge in the firm’s technology domain. For example, consider a firm with 

two scientists (A&B) in the science domain. Scientist A may be competent in both the 

science and technology domains, and hence becomes a bridging scientist, whereas 

scientist B may be a pure scientist exclusively involved in generating scientific 

knowledge. In order to fully translate the competencies of both scientists into better 

innovation performance, the firm has to facilitate the process of exploiting both the 

scientists’ knowledge in the technology domain, rather than just relying on scientist A to 

do the job.  

 The following section develops my third hypothesis which underscores the 

importance of firm-level exploitation mechanism. I argue that, in the presence of 

exploitation mechanism, the contribution of bridging scientists to technological 

performance increases. 

Bridging Science-Technology Domains: Firm Level Moderating Individual Level 
According to the absorptive capacity literature (Cohen and Levinthal, 1990), a strong 

positive interaction exists between individual-level and firm-level mechanisms of 

capability building. It has been observed that the benefits derived from individual-level 

capabilities are significantly influenced by firm-level mechanisms such as knowledge 

transfer, integration, and exploitation across units. For example, more conducive 

organizational mechanisms are found to increase the effectiveness of intellectual human 

capital (Hitt, Hoskisson, Ireland and Harrison, 1991). In particular, a study by 
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Grosysberg, Nanda and Nohria (2004) showed that when star financial analysts switched 

firms their short-term variations in performance were determined by organizational 

aspects of the new firm. Following this perspective, I hypothesize that the firm-level 

exploitation mechanism moderates the positive influence of bridging scientists on the 

technological performance. In order words, the degree of influence of bridging scientists 

on technological performance is higher for firms that are good at exploiting the scientific 

knowledge in their technology innovation. Two explanations support the moderating 

effect.    

 First, scientific knowledge exploitation in the technology domain widens the 

scope of application of bridging scientists’ knowledge, thereby enhancing their 

contribution to technological performance. As emphasized by Brooks (1994), scientific 

knowledge can help technology development in sundry ways. Science generates new 

knowledge that can function as inputs to technology development across wide areas. For 

example, advancement in basic physics led to the discovery of the transistor, which was 

subsequently found to be useful in developing medical equipment such as hearing aids. 

Scientific knowledge can be used in designing engineering tool and techniques. In 

addition, science helps in evaluating technological areas.  

 Though the presence of bridging scientists can help in exploiting scientific 

knowledge, it is undue to expect bridging scientists to be involved in every application 

area to exploit the knowledge. Bridging scientists can help firms in translating abstract 

scientific theories into working ideas for technology development. Despite the surface 

level similarities, scientists and engineers are observed to exhibit different 

communication behavior (Allen, 1991). Bridging scientists can act as a channel to 
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translate the ideas of other core scientist within the firm into a language that can be easily 

interpreted by inventors. In the presence of such bridging scientists, when a firm 

encourages its inventors in the technology domain to exploit the knowledge, the 

translated ideas of bridging scientists can span a broader set of technology domains. 

Thus, by widening the application of bridging scientists’ knowledge, firm-level 

exploitation mechanism can positively moderate the relationship between bridging 

scientists and the technological performance of firms.  

 Second, firm-level exploitation mechanisms enhance the value of bridging 

scientists by providing them with novel scientific challenges. The application of science 

knowledge to the technology innovation process is a rich source of novel scientific 

challenges. Exploration of these scientifically challenging questions would bring forth 

important findings that are in turn valuable to technological innovation. For example, the 

use of basic physics to understand some of the material processes and properties in 

semiconductor devices has led to the birth of a new scientific discipline called Materials 

Sciences (Brooks, 1994). This discipline now has an extensive use in the technology 

innovation process, including innovations related to nutrition and dietetics. Firm-level 

mechanisms that encourage the exploitation of scientific knowledge in technology 

domain would make inventors from diverse background experiment with the knowledge 

generated by scientists. Since bridging scientists are involved in science and technology 

domains, the firm-level exploitation mechanism would expose these scientists to new 

application areas. Novel questions arising from these diverse areas can be easily picked 

up by bridging scientists for further exploration, thereby enhancing the value of bridging 

scientists for technology development. The above arguments lead to my third hypothesis:  
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Hypothesis 3: The degree of relationship between the dual role of scientists and the 

technological performance of a firm is moderated by the extent to which the firm exploits 

its scientists’ knowledge in the technology domain.   

 Even in the presence of bridging scientists, certain circumstances might prevent 

firms from translating the competencies of scientists into better technologies. For 

instance, since scientific ideas serve as inputs for scientific research as well as technology 

development, it is vital that bridging scientists make use of the important scientific 

knowledge to generate valuable technologies rather than merely investing their time and 

effort in furthering the scientific understanding. But, as the professional reputation of 

scientists is tied to their important discoveries in the scientific discipline, even bridging 

scientists might intend to use the knowledge for scientific advancement. Besides, as 

publishing scientists in firms receive lower wages than other scientists and inventors who 

are not allowed to publish, they have less incentive to exploit the important scientific 

findings for the benefit of the firm. Therefore, the professional orientation of bridging 

scientists can prevent a firm from translating their scientific competency into better 

technological innovation. Active collaboration between inventors and scientists can 

facilitate inventors to exploit important scientific findings in the technology development 

process. This can enable firms to overcome the incentive issues and to fully benefit from 

the competencies of bridging scientists. Further to the moderation effect of exploitation 

mechanism in enhancing the value of bridging scientists, the above argument emphasizes 

that, in the absence of firm-level exploitation mechanisms, the presence of bridging 

scientists alone may not help in bridging science and technology domains. 

 



99 

RESEARCH METHODOLOGY 

Data 
To test the hypotheses I collected data from the biotechnology industry. Biotechnology is 

recognized to be one of the most innovation-intensive industries (Sorenson and Stuart, 

2000). The biotechnology industry was an ideal context in testing the framework because 

the industry is characterized by technological transformation and the widely-recognized 

importance of scientific research and intellectual human capital.  

 The data was drawn from Plunkett's9 directory that comprises of 437 public-listed 

biotechnology firms. Biotechnology directories are one of the sources that prior studies 

have consulted in drawing their samples (Gulati and Singh, 1998; Stuart, Hoang and 

Hybels, 1999). Generally, firms in the directory are based in the United States of 

America. However, the headquarters of 70 firms are located in other nations such as 

Canada, Japan, UK, India, Switzerland, etc. The directory has 3 firms from agriculture, 

13 from infotech, 100 from chemical manufacturing and 321 from the health care areas of 

biotechnology. The directory comprises of firms such as EISAI Co. Ltd., DOW 

Agrosciences, BASF AG and TRIPOS Inc. that have attained the highest sales revenue in 

the year 2000 for the health care, agriculture, chemical, and infotech areas respectively. 

The directory includes very small firms (with respect to R&D, number of employees, and 

sales) such as VIRAGEN and SPECTRAL DIAGNOSTICS, as well as large firms such 

as BAYER and NOVARTIS. With respect to age, there are old firms such as PFIZER as 

well as new firms formed in late 90’s such as ATHEROGENICS and ARENA 

PHARMACEUTICAL. 

                                                 
9 Plunkett's Biotech and Genetics Industry Almanac 2005: the only comprehensive guide to biotechnology 
and genetic companies and trends/editor and publisher: Jack W. Plunkett. 
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 I used the publication and patenting activities of these firms in testing the 

hypotheses. The patents issued to these firms between 1990-2000 were obtained from the 

NUS patent database10.The database comprises of patents issued to firms by the United 

States Patent and Trademark Office (USPTO). Publication information of firms between 

1980-2000 was obtained from Web of Science, ISI Science Citation Index (SCI). The SCI 

is an excellent source because it covers a broad range of basic and applied scientific 

journals (Lim, 2004). As the birth of the biotechnology industry is dated back to the late 

70’s and my patent data is restricted to 2000, I focused on publication during the period 

1980-2000.Compustat Global is used in collecting the financial data of these firms. 

 The US patent classification system comprises of over 100,000 patent subclasses 

aggregated to about 400 three-digit patent classes. I used the three-digit patent classes and 

only included those patents that fall within the U.S. patent classes listed in Table 3.1, 

which belong to the biotechnology industry. The classes were chosen with reference from 

the USPTO Technology Profile Reports and from prior research (Lim, 2004). Filtering 

those firms that did not have patent data in the specified classes between 1990-2000, the 

final sample size was 222 firms. The list of 222 firms is provided in Table A.2 of the 

Appendix. Of the listed firms, 215 (437-222) firms were dropped from the directory 

because they had zero patents. To ensure that the results were still generalizable, I carried 

out a preliminary assessment of firm level variables. As shown in Table A.3, the average 

of firm R&D and firm size for 437 firms was not significantly different from the average 

of these variables in my final sample. However, I found that the average age of my final 

sample firms was higher than that of average age for 437 firms. This is possibly because 

younger firms in the directory might not have patents issued between 1990-2000. 
                                                 
10http://patents.nus.edu.sg/ 
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Nevertheless, I do believe that the results of my study hold true even for younger firms, 

because my sample does indeed include younger firms such as Atherogenics and Arena.  

 The total number of patents and publications under consideration was 10,646 and 

100,375. There is huge heterogeneity with respect to patent and publication data. Firms 

like Anika Therapeutics and Viragen received one patent each, while Abbott and Bayer 

had about 1000 patents. Patents issued to firms increased from 424 in 1990 to 1722 in 

2000. There were 19 firms in my sample with 0 publications, but also about 10 firms with 

at least a few thousand publications. The publications made by firms increased from 1826 

in 1980 to 8181 in 2000. The number of publications and number of patents of my 

sample firms between 1990-2000 is provided in Table A.4 of the Appendix. 

 

Table 3.1. U.S. Patent Classes 
 

Class Description 
424 Drug, bio-affecting and body treating compositions 
435 Chemistry: molecular biology and microbiology 
436 Chemistry: analytical and immunological testing 
514 Drug, bio-affecting and body treating compositions 
530 Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof 
536 Organic compounds 
800 Multicellular living organisms and unmodified parts thereof and related processes 

 

Measures 
Dependent Variable 

Technological Performance (Forward Citation) : The dependent variable is the 

cumulative forward citation frequencies accrued to an individual patent. I count all 

forward citations received by each patent at of the end of 2004. By law, each patent must 

cite prior patents that relate to its technology. Research demonstrates that the number of 
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forward citations received by a patent correlates highly with the technological importance 

(Trajtenberg, 1990; Albert, Avery, Narin and McAllister, 1991). On average, each patent 

in my sample received about 6 forward citations. Prior studies have observed that the 

self-citation of a firm to its patents represents the extent to which the firm appropriates 

the returns from the patents. As a consequence, they find self-citation to reduce the 

probability of other firms citing the patent (Zhuang, Wong and Lim, 2006). However, in 

my sample I found the self-citations to be positively related to the overall forward 

citations, which indicates that overall citations represent the value of knowledge 

underlying the technology. Hence, instead of removing self-citations, I restricted my 

attention to overall citations accrued by a patent. 

 

Independent Variables 

Bridging scientists or Joint Patent-Publishers: This measure represents the percentage 

of patent inventors within a firm whose names are also listed on scientific papers 

published by the firm. In order to obtain this measure I identified two overlapping sets of 

individuals for each firm. The first comprises of those scientists listed on at least one 

publication made by the focal firm, and the second list comprises of inventors involved in 

at least one patent issued to the focal firm. Based on these two lists, I calculated the 

percentage of individuals listed as inventors who are also listed as scientists for each 

firm. The measure is borrowed from Gittelman and Kogut (2003).  

Exploitation of science domain knowledge in technology domain or Relative use of a 

firm’s publications in patents: Since measuring the exploitation mechanisms through 

secondary data was difficult, I take into account the outcome of exploitation mechanism 
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in my measure, which the extent to which a firm uses internally-generated scientific 

knowledge in technology. For this, I measured the proportion of the focal firm’s patents 

over all patents citing the focal firm’s scientific publications. To compute this measure, I 

first identified all the publications produced by the focal firm and then all the patents 

citing those publications. For each publication, I checked the first assignee name of the 

citing patents to obtain a count of patents by focal firm and by other firms. Next, I 

computed the proportion of publication citations by focal firm over the total citations 

received by each publication. I then averaged this out for all the publications made by the 

focal firm. For each firm the value of this measure ranges from 0 to 1. The value 0 is 

assigned when focal firm’s publications are cited only by other firms and 1 when the 

publications are cited only by the focal firm.  

 

Control Variables 

Publication Volume: This measure is the number of publications produced by the focal 

firm in the year of observation in which the firm filed a patent. I used the number of 

publications made by a firm as a proxy for its scientific capability. A number of scholars 

have used publication count to measure the scientific capability of firms (Lim, 2004; 

Gittelman and Kogut, 2003; Arora and Gambardella, 1994). A firm with strong scientific 

capability is able to identify new applications in the technology domain that might give 

rise to more valuable patents. Prior studies have also shown the significant relationship 

between publication count and patent performance. It is therefore imperative that I 

control for it. 



104 

Non-patent Reference: Non-patent reference is the count of the number of times a patent 

issued to a firm references non-patented literature. Every patent is required to cite the 

prior art that it builds upon, and this includes both the patent and non-patent references. It 

has been observed by Fleming and Sorenson (2004) that 69% of the non-patent 

references are from peer-reviewed scientific journals. Non-patent references cited by a 

patent are often used as an indicator of the science intensity of the invention that is found 

to be influencing the forward citation of patents (Gittelman and Kogut, 2003; Noyons, 

van Raan, Grupp and Schmoch, 1994). Hence, I controlled for it. The average number of 

non-patent references cited by the patents under study is about 18.  

Firm’s Average Cites to Publications: I use the citations received by the focal firm’s 

publications to represent the relative quality of the firm’s stock of scientific knowledge. 

To compute this measure, I first identified all the publications produced by the focal firm 

between the years 1980-2000, and then obtained the number of citations received by 

these publications. Based on the citations, I calculated the mean and standard deviation of 

the citations received by all articles of the sample firms in a publication year. Next, the 

raw citation counts for each publication of firms are normalized by the mean and standard 

deviation of the citations received by all articles in its publication year. Normalizing the 

raw citations by year allows the citations to be summed across years for each firm 

(Gittelman and Kogut, 2003). I then aggregated the normalized citation count of 

publications in a year and divided it by the total number of publications made by the firm. 

The normalized citation count is then aggregated up to the year the observed patent was 

filed in order to obtain a cumulated amount of publication quality. Because a firm’s 

competency in generating high-quality scientific papers has been observed to impact its 
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capability to produce high-impact innovation, I controlled for it (Gittelman and Kogut, 

2003).  

Number of Pure Inventors: This measure is the number of inventors listed in a patent 

who are exclusively involved in patenting. Since the number of inventors listed in a 

patent represents the research effort and resources invested in coming up with the patent, 

I controlled for it.  

Other Control Variables (Technology class dummy variable, Patent age, Year fixed 

effects, R&D expenditure, Firm size, and Firm age): Forward citations may accrue to 

patents for other reasons such as technology field characteristics, patent characteristics 

and firm characteristics. Therefore, I included the patent-level and firm-level control 

variables to account for the heterogeneity among firms and for age and field effects. 

Patents belonging to a certain technology class may inherently be more cited than others. 

Similarly, patents with a higher number of years that elapsed since the patent was filed 

are capable of attaining higher citations. I used technology-class dummy variables and 

patent age as patent-level control variables to control for these effects. I also used year-

fixed effects to capture the differences in citation probability across different years. 

 Firms may be highly innovative for different reasons. Larger firms have this 

capability due to economies of scale and scope, younger firms because they represent the 

knowledge of the younger vintage, and some firms devote more resources to R&D. 

Hence, I included firm-level control variables such as R&D expenditure, size of the firm 

as measured by the number of employees, and age of the firm as measured by the number 

of years since the firm was founded.  
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  The summary of the dependent, independent and control variables is presented in 

Table A.1 of the Appendix. The summary data for the dependent and independent 

variables and the correlation between the variables at the patent level are reported in 

Table 3.2. As the numbers show, the patents and publications exhibit a lot of variance. 
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Table 3.2. Descriptive Statistics and Correlations 
 

S.No Variables Mean Std. 
Dev 

Min Max 1 2 3 4 5 6 7 8 9 10 11 

1 Forward Citation 6.34 11.87 0 233 1           
2 Bridging Scientists 0.25 0.15 0 0.83 -0.02 1          
2 Exploitation of 

Science Knowledge 
0.29 0.28 0 1 0.05* -0.38* 1         

3 Publication Volume 136.39 222.74 0 1272 -0.06* -0.18* 0.04* 1        
4 Publication Citation 0.04 0.91 -6.73 9.65 -0.04* 0.25* 0.23* -0.08* 1       
5 Patent Age 10.12 2.80 7 17 0.28* 0.10* -0.15* 0.11* -0.01 1      
6 R&D 3.04 2.15 -0.55 12 0.17* -0.37* 0.28* -0.30* 0.09* 0.06* 1     
7 Firm Size 6.82 2.32 0 11.69 -0.10* 0.55* -0.45* 0.00 -0.04* 0.01 -0.69* 1    
8 Firm Age 3.37 1.21 0 5.01 -0.18* 0.61* -0.29* 0.14* 0.29* 0.07* -0.57* 0.53* 1   
9 Tech. Strength 53.22 56.29 1 240 0.31* 0.32* -0.34* 0.18* -0.12* -0.09* -0.65* 0.62* 0.46* 1  
10 Non-patent 

reference 
18.36 35.14 0 492 0.05* -0.19* 0.07* -0.01 -0.15* -0.15* 0.05* -0.06* -0.23* 0.02  

11 No of Pure 
Inventors 

0.65 1.11 0 17 -0.01 0.45* -0.20* -0.10* 0.08* -0.02 -0.21* 0.30* 0.28* 0.17* -0.06* 

*p<0.01
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Analysis 
Since the dependent variable is forward citation count, the count model was more 

appropriate for my study. The Poisson model is a frequently used count model. As patent 

citations exhibited over-dispersion, I used the negative binomial model that is best suited 

for estimating an over-dispersed parameter (Cameron and Trivedi, 1998). The results of 

negative binomial regression are presented in Table 3.3. 

 
Table 3.3. Negative Binomial Regression in Testing the Impact of Bridging Scientists, Exploitation of 

Science Domain Knowledge, and Control Variables on Forward Citation 
 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 
Constant -0.0465 

[0. 3830] 
-0.0739 
[0.3479] 

-0.3861 
[0.3831] 

-0.4773* 
[0.3559] 

-0.4741* 
[0.3522] 

Independent Variables 
Bridging scientists  1.1610*** 

[0.5504] 
   1.3101*** 

[0.5830] 
 1.4573*** 
[0.5591] 

Exploitation of science domain 
knowledge 

  0.3722* 
[0.2553] 

0.4323** 
[0.2568] 

0.5603** 
[0.3002] 

Bridging Scientists* 
Exploitation of science domain 
knowledge 

    -0.6558 
[1.0979] 

Firm-Level Control Variables 
Publication Volume -0.0003*** 

[0.0001] 
-0.0002** 
[0.0001] 

-0.0004*** 
[0.0001] 

-0.0002*** 
[0.0001] 

-0.0002** 
[0.0001] 

Publication citation -0.0415* 
[0.0305] 

-0.0582* 
[0.0368] 

-0.0731** 
[0.0456] 

-0.0975** 
[0.0508] 

-0.0894** 
[0.0552] 

Firm age -0.2230*** 
[0.0545] 

-0.2725*** 
[0.0613] 

-0.2060*** 
[0.0499] 

-0.2587*** 
[0.0554] 

-0.2575*** 
[0.0559] 

Firm size 0.0321 
[0.0346] 

0.0081 
[0.0324] 

-0.0501* 
[0.0340] 

0.0261 
[0.0292] 

0.0217 
[0.0292] 

R&D Expenditure 0.0257 
[0.0298] 

0.0288 
[0.0291] 

0.0320 
[0.0303] 

0.0369 
[0.0295] 

0.0345 
[0.0293] 

Technological 
Strength 

-0.0024*** 
[0.0006] 

-0.0024*** 
[0.0006] 

-0.0022*** 
[0.0006] 

-0.0021*** 
[0.0006] 

-0.0022*** 
[0.0005] 

No. of Pure Inventors 0.0878*** 
[0.0258] 

0.0593*** 
[0.0184] 

0.0933*** 
[0.0279] 

0.0617*** 
[0.0189] 

0.0607*** 
[0.0187] 

Patent-Level Control Variables 
Patent age 0.1812*** 

[0.0219] 
0.1792*** 
[0.0212] 

0.1846*** 
[0.0212] 

0.1828*** 
[0.0204] 

0.1828*** 
[0.0205] 

Non patent reference 0.0033*** 
[0.0012] 

0.0036*** 
[0.0011] 

0.0031*** 
[0.0011] 

0.0035*** 
[0.0011] 

0.0035*** 
[0.0011] 

Log Likelihood -20506.10 -20483.69 -20488.22 -20459.97 -20458.76 
No. of Observations 7648 7648 7648 7648 7648 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 
Technology class dummy variables and year fixed effect were included but not reported. 
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All specifications include fixed effects for both technology class and application year 

from 1985-2000. I used robust standard errors adjusted for clustering of firm to control 

for random firm effects.   

Results pertaining to Control Variables: Model 1 in Table 3.3 presents the results for 

all the control variables. The publication volume has a negative influence on the forward 

citation of patents (p<0.01). On the contrary, the non-patent reference has a significant 

positive influence (p<0.01) on the forward citation of patents. One possible explanation 

of my result is that when firms concentrate more on producing scientific publications, 

their attention towards developing important technologies might deteriorate and result in 

fewer forward citations for their patents. This explanation is also consistent with the 

result pertaining to the publication citation. The quality of firms’ publications, as 

reflected by the average cites to publications, has a negative relationship with the forward 

citation of patents (p<0.10). This shows that when firms engage in the generation of 

cutting-edge scientific research, their technological performance suffers. As expected, the 

firm age and number of pure inventors have, respectively, a negative and positive impact 

on the forward citation of patents (p<0.01, p<0.01). Firm size and R&D expenditure do 

not have a significant relationship with the forward citation of patents. A plausible 

explanation for R&D and firm size being insignificant is that increased R&D spending 

and economies of scale need not necessarily increase the quality of innovation, as 

measured by the forward citations. The technological strength of a firm, as measured by 

the number of patents generated by the firm, is negatively associated with forward 

citation of patents (p<0.01). This shows that quality of patents is inversely proportional to 

the quantity generated. A plausible explanation is that for a given amount of R&D 
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investment and firm size, firms producing more number of patents receive fewer citations 

for their patents. The significant (p<0.01) positive effect of patent age shows that older 

patents receive more citations.   

Results pertaining to the independent variables: Model 2 presents the results after 

including the first independent variable, bridging scientists. The coefficient of bridging 

scientists is positively significant (p<0.01) suggesting that the presence of bridging 

scientists confirms the translation of scientific competency into valuable patents for 

firms. Thus, hypothesis 1 is accepted.  

 Model 3 includes the second independent variable, which is the extent to which 

organizations exploit their scientific publications in their technology domain. The 

positive significant coefficient (p<0.10) supports hypothesis 2 that firms’ endeavors 

toward the exploitation of their scientific knowledge in technology innovation will 

increase the forward citation rates of their patents. Model 4 includes both the independent 

variables. The significant coefficients of both ‘bridging scientists’ and ‘exploitation of 

science domain knowledge’ confirm the acceptance of hypotheses 1 and 2.Model 5 

introduces the interaction term of the two independent variables under study. Since 

hypothesis 3 pertains to degree moderation, an insignificant interaction term need not 

mean that the hypothesis is rejected. The following section elaborates on the 

methodology in testing the degree moderation.  

Results pertaining to the moderation effect: The moderation effect is usually tested by 

observing the interaction term of regression analysis. However, such a test will only 

verify the moderating effect of the form of relationship, not the degree of relationship. 

The degree of relationship between a dependent variable Y and an independent variable 
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X indicates the percentage of Y variance accounted for by X. The form of relationship 

denotes the amount of score difference in Y associated with a unit change in X. As 

argued by Arnold (1982), the form of relationship between two variables is indicated by 

the coefficients of the regression equation, whereas the degree of relationship is measured 

by the magnitude of the correlation coefficient. Since my third hypothesis is regarding the 

moderation of degree, I observed the correlation coefficient to test the effect.   

 In testing the moderating effect of the degree of relationship between bridging 

scientists and technology performance, I performed a mean split on the variable 

‘exploitation of science domain knowledge’, resulting in two groups. In other words, I 

broke the sample into two groups based on the extent to which the firms exploited their 

scientific knowledge in the technology domain. With the mean of scientific knowledge 

exploitation in technology being 0.29, I had the high exploitation group comprising of 

47% of the sample firms. The low exploitation group had about 53% of the sample firms. 

The technique of splitting the sample is also consistent with Baron and Kenny’s (1986) 

third case of moderation, wherein it is suggested that, at some value of ‘exploitation of 

science domain knowledge’, the ‘bridging scientists’ become more effective in increasing 

the technological performance of firms. Their study also suggests the approach of 

dichotomizing the moderating variable to evaluate a variable’s moderating effect. Thus, 

in testing the degree of moderation using the above technique, I observe the correlation 

between bridging scientists and forward citation for both the groups. According to Arnold 

(1982), the following formulae are used in testing the difference in correlation between 

the two groups to confirm the significance of moderation effect: 

Fisher Z= (Z1 - Z2)/SQRT [1/ (n1-k-2) + (1/n2-k-2)] 
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where k is the number of independent variables and n is the size of the group.  

Z1 and Z2 are obtained by the Fisher Z transformation of the partial correlations between 

bridging scientists and forward citation obtained for the two subgroups, given by   

Zi=0.5 * LN [(1+ri)/ (1-ri)] 

where LN is the natural log and ri is the partial correlation coefficient.  

 Table 3.4 reports the result of correlation analysis for testing the moderating 

effect of bridging scientists. The significance of the Z value shows that, in the presence of 

exploitation of scientists’ knowledge in the technology domain, bridging scientists 

account for much higher variance in the forward citation of patents. This confirms that 

exploitation of science domain knowledge moderates the degree of relationship between 

bridging scientists and technology innovation performance, thus supporting hypothesis 3. 

 

Table 3.4. Analysis of Correlation Differences 
 
Variables Group 1: 

High Exploitation of 
science domain knowledge 

(Z1) 

Group 2: 
Low Exploitation of 

science domain knowledge 
(Z2) 

Z Value Significance 

Bridging 
Scientists and 

Forward Citation 
relationship 

 
0.0726 

 

 
-0.0195 

 

 
4.03 

 

The difference is 
significant (p<0.01). 

Moderation Supported 

  

Apart from testing the correlation differences, I also estimated the regression coefficients 

of bridging scientists for the two subgroups. This was done to understand the extent to 

which the relationship between bridging scientists and forward citation of patents is 

moderated by the exploitation mechanism. It is evident from Table 3.5 that the regression 

coefficient of bridging scientists in explaining the forward citation of patents for high 

exploitation group is significant at the 5% level of significance. On the contrary, the 
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coefficient is insignificant for the low exploitation group. Taken together, the results 

show that, when the exploitation of science domain knowledge in technology domain is 

low, the mere presence of bridging scientists is not capable of generating valuable 

technological innovation. Thus, the results strongly confirm the moderating effect of 

‘exploitation of science domain knowledge in technology domain’ in explaining the 

relationship between ‘bridging scientists’ and ‘forward citation of patents’.  

 One might suspect that the story behind such a relationship is that the firm-level 

mechanism of exploitation is actually capturing the bridging scientists’ efforts in 

exploiting science knowledge in the technology domain. Nevertheless, this reason 

appears to be unlikely because, in my data, very few inventors (2.5% of the inventors) 

referenced their own publication materials. While Sorenson and Fleming (2004) observed 

about 3% of the inventors in their sample to reference their own publications, in my data 

I found the percentage to be much smaller. Hence, it is highly unlikely that the result 

pertaining to firm-level bridging mechanism is confounded because of bridging scientists. 

In addition, it is important to note that, in the presence of firm-level exploitation 

mechanisms, the main effect of bridging scientists on forward citation rate of patents is 

positively significant (Table 3.3). If the firm-level mechanism is capturing the effect of 

exploitation of knowledge by bridging scientists, then the main effect of bridging 

scientists should have become insignificant in Table 3.3.  
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Table 3.5. Analysis of Regression Coefficient 
 

Variables Group 1: 
High Exploitation of 

science domain 
knowledge 

Group 2: 
Low Exploitation of 

science domain 
knowledge 

Independent Variable 
Bridging Scientists  1.2338* 

[0.9244] 
0.7086 
[0.8351] 

Firm-Level Control Variables 
Publication Volume -0.0001 

[0.0001] 
-0.0007** 
[0.0004] 

Publication citation -0.0578* 
[0.0419] 

-0.1713* 
[0.1282] 

Firm age -0.3478*** 
[0.1452] 

-0.2342*** 
[0.0550] 

Firm size -0.0155 
[0.0425] 

-0.0204 
[0.0398] 

R&D Expenditure 0.0345 
[0.0525] 

-0.0050 
[0.0423] 

Technological 
Strength 

-0.0026*** 
[0.0011] 

-0.0026*** 
[0.0006] 

No. of Pure Inventors 0.1062*** 
[0.0330] 

0.0434*** 
[0.0136] 

Patent-Level Control Variables  
Patent age  0.1594*** 

[0.0373] 
0.1935*** 
[0.0202] 

Non-patent reference 0.0042*** 
[0.0013] 

0.0021** 
[0.0010] 

No. of Observations 3595 4053 
*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 

Technology class dummy variables and year fixed effect were included but not reported. 
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DISCUSSION AND CONCLUSION 
While many studies explore the benefits of science to technology development, this study 

focuses on the means through which firms are able to make use of the competencies of 

scientists and translate them into better technological innovations. My study investigates 

two important mechanisms of bridging science-technology domains, one at the individual 

level and the other at the firm level, and has several important findings to enrich this 

branch of literature.  

 The first mechanism explored in my study is the extent to which a firm has 

bridging scientists, who are involved in both scientific research and technological 

innovation. In other words, these scientists publish as well as patent. My results are 

consistent with Gittelman and Kogut’s (2003) assertion that bridging scientists improve 

the technological performance of firms. Further to bridging scientists, in my second 

mechanism I show that it is also important for firms to have an exploitation mechanism in 

place so as to ensure that the knowledge generated by their scientists is exploited by the 

inventors in technology domain. One of the main contributions of my study is to show 

that the degree to which bridging scientists enhance the technological performance is 

much higher in the presence of a firm-level exploitation mechanism. In the absence of 

calculated exploitation of scientific knowledge in the technology domain, bridging 

scientists do not play a significant role in explaining the technological performance. 

Therefore, the mere presence of bridging scientists in an organization does not ensure a 

smooth transfer of knowledge between science and technology domains.  

 Consequently, my research demonstrates that March’s exploration/exploitation 

framework complements the sociology and economics of science literature in 

understanding the mechanisms of transforming competencies of scientists into better 
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technological innovation. Science and technology are two distinct domains within a firm. 

Apart from maintaining exploration/exploitation balance within each domain, it is also 

important that knowledge exploration of the science domain is complemented by the 

exploitation of such knowledge in the technology domain. This underlines Lavie and 

Rosenkopf’s (2006) suggestion that firms ought to be ambidextrous in maintaining an 

exploration/exploitation balance, both within and across domains. Bridging science-

technology domains is not a simple human capital story of having scientists who are 

involved in both patenting and publishing. Firms have to acknowledge the challenges in 

making the transition from science domain exploration to technology domain 

exploitation, and attempt to have premeditated mechanisms to bridge the gap. Inventors 

involved in developing technologies should be encouraged to actively experiment and 

make use of the knowledge generated by the scientists. Similarly, scientists should be 

encouraged to coordinate with inventors in solving basic problems encountered in the 

technology development process. This underscores active communication, coordination 

and knowledge sharing within an organization to let individuals specialize in their 

expertise area, yet not to let them work solo. 

 There are a few other results worth explaining to understand the science-

technology relationship. First, the non-patent reference also termed as the science 

intensity of patents was found to be a significant predictor of patents’ values. This result, 

together with the negative relationship of publication volume with patent performance, 

suggests that a firm’s ability to generate scientific knowledge does not result in the firm 

generating better technological innovation. On the contrary, a firm’s capability to apply 

scientific knowledge in technology development guarantees generation of valuable 
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technological innovation. This result is consistent with the findings of Gittelman and 

Kogut (2003). I follow their contention in saying that it is only through the skillful 

application of science to the innovation process that firms can transform their scientific 

capability into valuable innovation. This has important implications for firms with low 

R&D budgets. These firms can encourage their inventors to effectively utilize scientific 

findings in their technology innovation process, so as to benefit from the scientific 

community’s knowledge spillover.  

 Second, the publication citation has a negative influence on the forward citation 

of patents. This shows that a firm’s capability to generate cutting-edge science is not 

helpful for its technological innovation. Rather, the extra attention paid in creating 

cutting-edge science diverts the firm’s attention from working on valuable technologies. 

As explained above, another plausible reason could be that the cutting-edge science 

represents an embryonic stage of research which the firms’ are unable to translate into 

patentable innovations within a short span. Thus, indulging in breakthrough science is 

detrimental to firms’ technological performance if they fail to exploit the breakthrough 

results in developing valuable patents. 

 This research is subject to a number of limitations. The first one is pertaining to 

patent data. Restricting the scope to patent data has several limitations because not all 

companies have the same propensity to patent and firms can limit their patents only to 

their most successful innovations. In spite of the above limitations, patent data has been 

widely used in testing the factors contributing to innovation (Sorenson and Fleming, 

2004; Gittelman and Kogut, 2003). Secondly, a count of all non-patent references is 

considered when measuring a firm's capability to apply science to technology 
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development. A more appropriate measure would have been to consider only citations to 

scientific publications. However, this limitation is to some extent mitigated by the 

observation of Fleming and Sorenson (2004) that the majority of the non-patent 

references are citations to scientific publications. My research interprets the citations of 

publications in patents as the usage of scientific knowledge in technology. However, 

practitioners such as Narin, Hamilton, and Olivastro (1997) have acknowledged that such 

linear science-push perspective is simplistic and inaccurate. 

 Third is a limitation is pertaining to publications. Not all firms involved in 

scientific research have the inclination to disclose their findings by publishing. Even 

among publications, there are articles that can be classified as basic journals and applied 

journals (Lim, 2004). A fine-grained approach in categorizing publications can strengthen 

my implications. There are also publications made by firms through collaboration with 

other firms and universities. My study includes all publications that are affiliated with the 

sample firms, irrespective of whether the publication is associated with more than one 

organization or not. However, not considering the information on collaboration is not a 

major limitation of my study because the publication is still a strong predictor of the 

knowledge captured by the firm and that the firm has acquired the tacit knowledge of 

individuals engaged in the research (Zucker, Darby and Armstrong, 2002). 

 Fourth, my study exploring the relationship between science and technology can 

be generalized to only those industries where scientific findings are important inputs for 

technological innovation.  

 Despite the above limitations, the study has enhanced the understanding of 

bridging the science and technology domains. In summary, the research has made an 
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important theoretical contribution by showing that the degree to which bridging scientists 

enhance the technological performance of a firm depends on the extent to which the firm 

exploits its scientific findings in technology development. 

 While the first two essays emphasize the importance of intellectual human capital 

and alliances, it is important to analyze the interdependency across these two factors to 

better understand their contribution to technological performance. The next essay 

attempts to investigate this issue. Specifically, the next essay explores if intellectual 

human capital and alliances are substitutes or complements of each other in explaining 

firms’ technological performance.  
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CHAPTER FOUR 
 

INTELLECTUAL HUMAN CAPITAL AND STRATEGIC ALLIANCES: ARE 
THEY SUBSTITUTES OR COMPLEMENTS 

INTRODUCTION 
 
Organizations are perceived as biological organisms that struggle and compete in a 

hostile environment (Nelson and Winter, 1982). Since the survival of firms in such an 

environment depends on their innovativeness, a number of scholars investigate factors 

related to firms’ capability to generate high-impact technologies. Studies exploring this 

issue can be classified into two levels: firm level and network level.  

 Scholars exploring the firm level determinants of innovation attribute 

technological performance differences across firms to the variance in firms’ resources. 

Resources are defined as those attributes of physical and knowledge-based assets that 

enable firms to conceive and implement strategies that lead to a variance in performance 

(Wernerfelt, 1984). Among the organizational resources, the human element has gained 

greater importance because the knowledge they hold is considered a critical ingredient for 

a competitive advantage (Grant, 1996). It is especially true that an organization’s 

capability to produce valuable technologies is closely tied to its intellectual human capital 

(Subramaniam and Venkataraman, 2001). In this study, intellectual human capital refers 

to “highly skilled and talented employees who hold advanced degrees”. 

 Scholars investigating the network level determinants of innovation attribute 

performance differences across firms to the variance in the extent to which firms leverage 

external resources. Among the various means of leveraging external resources, resources 

leveraged through strategic alliance are known to significantly alter a firm’s competitive 
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position (Kogut, 1988). Specifically, a number of studies have conceived of alliances as 

instruments used by firms to acquire know-how and to learn new skills vital for 

developing technologies (Hamel, 1991; Powell and Smith-Doerr, 1996; Hagedoorn, 

1993).  

 Recently, scholars have begun to explore the interdependency between 

determinants of technological performance that lie across multiple levels (Rothaermel 

and Hess, 2007; Cassiman and Veugelers, 2006). Two different perspectives exist 

regarding the interdependency of the firm level determinant: Intellectual human capital, 

and the network level determinant: Strategic alliances. The first perspective argues that 

intellectual human capital and strategic alliances are complements (i.e. marginal return to 

one factor increases in the presence of another) (Liebeskind, Oliver, Zucker and Brewer, 

1996). On the contrary, the second perspective argues that intellectual human capital and 

alliances are substitutes (i.e. marginal return to one factor decreases in the presence of 

another) (Rothaermel and Hess, 2007). Nevertheless, neither perspective has paid 

attention to the characteristics of these two factors that might alter the nature of their 

interdependency. Considering that scholars have established that the kind of information 

and knowledge flowing through intellectual human capital and alliances differs 

depending on their attributes, this research gap is especially surprising (Owen-Smith and 

Powell, 2004; Corolleur, Carrere and Mangematin, 2004). Since the contribution of 

intellectual human capital and alliances to technological performance depends on the 

nature of the information and knowledge that flows through them, their characteristics are 

vital in studying the interdependency. 
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 The objective of this study is to use the economics and sociology of science 

literature in showing that the nature of interdependency (whether substitutes or 

complements) between intellectual human capital and strategic alliance is contingent on 

their characteristics. I synthesize insights from prior studies and classify intellectual 

human capital into three types. Innovations in high-technology industry are determined 

by the advancement of both scientific and technological knowledge (Nelson, 2003). The 

characteristics of intellectual human capital in such industries differ based on the domain 

in which they carry out research activities (science/technology/both) (Gittelman and 

Kogut, 2003). Hence, I classify intellectual human capital into (a) pure scientists, (b) pure 

inventors or (c) bridging scientists, based on the domain in which they specialize. 

Similarly, I categorize alliance partners into two types. As information flow from 

network partners is known to depend on their institutional regimes (Owen-Smith and 

Powell, 2004), I classify them into (1) firm partners and (2) university partners.  

 I begin with the consideration that intellectual human capital and strategic 

alliances are both substitutive and complementary in nature, depending on their 

respective attributes. For instance, I argue that pure scientists and bridging scientists 

substitute university partners. The institutional underpinning of university partners 

encourages them to be transparent in sharing their knowledge. Through their 

publications, the pure scientists and bridging scientists of a firm are potentially connected 

to a scientific network rich in spillover of knowledge from the academe (Furukawa and 

Goto, 2006). Therefore, I posit that pure scientists and bridging scientists act as boundary 

spanners in facilitating free flow of knowledge from universities, thereby substituting 

them. On the contrary, firm partners are committed to proprietary uses of knowledge and 
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require formal arrangement such as alliances in sharing knowledge. The knowledge 

residing in a firm’s intellectual human capital helps the firm in identifying potential firm 

partners, evaluating their knowledge quality, and in absorbing knowledge from the 

partnership (Murray, 2004). Hence, I propose that intellectual human capital 

complements firm partners. The hypotheses concerning the substitutive and 

complementary nature of determinants of technological performance across different 

levels are tested using patent, publication, and alliance data drawn from biotech firms. 

 This chapter is organized as follows. The next section develops hypotheses 

regarding the interdependency between the firm-level and network-level determinants of 

technological performance. In the subsequent sections I present the research method and 

results. In the last section I discuss the implications of my findings and the limitations of 

the study. 

THEORY AND HYPOTHSES DEVELOPMENT 

Intellectual Human Capital and Technological Performance 
Knowledge is considered as the core of the theory of firms, and much of the 

organization’s knowledge resides in its human capital. Consequently, human capital is 

considered to be one of a firm's most important resources (Pfeffer, 1994). Although 

human capital is considered a valuable resource, firms in high-technology industries 

consider highly-skilled and talented employees to be critical determinants of 

technological performance (Subramaniam and Venkataraman, 2001). Several studies 

have provided evidence that intellectual human capital is a key input for technological 

performance (Zucker, Darby and Brewer, 1998; Zucker and Darby, 2001).  

 Intellectual human capital has a positive influence on the technological 

performance through the following means. First, intellectual human capital renders a 
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positive impact on the technological performance by actively engaging in technology 

development. The rigorous training acquired by intellectual human capital during the 

course of education and tacit knowledge resulting from their research activities help firms 

to embark on important application areas, consequently having a positive influence on the 

technological performance.  

 Second, external resource is an indispensable element of a firm’s technology 

development process. By actively engaging themselves in external professional 

communities, intellectual human capital acts as a channel for continuous flow of external 

knowledge, thereby having a positive influence on the technological performance 

(Corolleur, Carrere and Mangematin, 2004).  

 Third, intellectual human capital positively influences the technological 

performance by enhancing the absorptive capacity of firms (Cohen and Levinthal, 1990). 

By participating in external communities, intellectual human capital facilitates acquiring 

and assimilating external knowledge and information, thereby improving the potential 

absorptive capacity of firms. The tacit knowledge and experience of intellectual human 

capital helps in combining existing knowledge with newly acquired knowledge and in 

exploiting the knowledge for competitive advantage, thereby enhancing the realized 

absorptive capacity of firms. The above arguments suggest that firms endowed with 

intellectual human capital have a greater capability for engaging in knowledge intensive 

activities, and this is helpful in generating valuable technologies.  

 Numerous studies have pointed out that not all intellectual human capital is 

equally competent, creating the notion that there exists heterogeneity even within 

specialized human capital (Rothaermel and Hess, 2007). Traditionally, studies on 
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professional careers concentrated on two tracks. The first track focused on academic 

researchers and their scientific activities (Keith and Babchuk, 1998), and the second on 

industrial engineers and their technological activities (Allen and Katz, 1992). But with 

the birth of science intensive industries such as biotechnology and the introduction of the 

Bayh-Dole act, we observe increasing number of scientists from academe actively 

contributing to technological activities in the industry. Firms are also known to attract 

scientists into their organization and encourage them to publish their findings (Stern, 

2004). Consequently, we notice three different types of intellectual human capital within 

an organization depending on their domain of specialization: (1) pure scientists, (2) pure 

inventors and (3) bridging scientists. The first type called 'pure scientists' are exclusively 

involved in scientific research. The second type called 'pure inventors' predominantly 

focus on technological activities. The third type of intellectual human capital is called 

'bridging scientists', and they are involved in both scientific and technological activities.  

 All the three types of intellectual human capital are known to fetch the above-

mentioned benefits of engaging in R&D activities and acting as gatekeepers of 

knowledge. Pure scientists contribute to technological performance by engaging in basic 

research and helping the inflow of scientific knowledge from external environments. On 

the other hand, pure inventors contribute to technological performance by getting 

involved in applied research and the inflow of technological knowledge from external 

environments. Bridging scientists contribute in both these ways as well as helping to 

bridge pure scientists and pure inventors, thereby enhancing technological performance. 

Based on the above arguments, I hypothesize: 
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Hypothesis 1a: The proportion of pure scientists within a firm is positively related to the 

firm’s technological performance. 

Hypothesis 1b: The proportion of bridging scientists within a firm is positively related to 

the firm’s technological performance. 

Hypothesis 1c: The proportion of pure inventors within a firm is positively related to the 

firm’s technological performance. 

Alliance Portfolio Attributes and Technological Performance 
Strategic alliances are voluntary arrangements between firms to exchange and share 

knowledge and resources with the intent of developing processes, products, or services 

(Gulati, 1998). A number of studies have shown that alliances influence the technological 

performance of firms. In particular, strategic alliances are shown to be beneficial for 

patent and new product development rates (Deeds and Hill, 1996; Shan, Walker and 

Kogut, 1994). There are various means through which firms benefit from alliances in 

developing better technologies. For instance, alliance is considered to be an important 

means for sourcing external knowledge and leveraging external resources that are crucial 

for better technological performance (Dyer and Singh, 1998). Firms especially rely on 

alliance partners in gaining technical, social and commercial capital that are valuable to 

their innovation performance (Ahuja, 2000). Alliances also influence the technological 

performance of firms by giving access to complementary assets (Pisano, 1990). Other 

benefits of alliances for better technological performance include: (1) imparting social 

status and recognition (Stuart, 2000), (2) defraying cost and sharing risk (Hagedoorn, 

1993), etc. These benefits have an effect on the technological performance of firms in the 

following ways. Social status and recognition might enhance the opportunities available 



127 

to a firm to engage in a greater number of R&D alliances, thereby having a spiraling 

effect on the technological performance. The advantage of sharing risk and investment 

with its partners can encourage a firm to embark on pioneering research avenues that are 

capable of rendering breakthrough innovations. The above arguments suggest that a 

firm’s alliance network is positively associated with its technological performance. 

 Though alliances are generally known to be beneficial, the advantages which a 

focal firm derives from its alliance partners have been shown to depend on the attributes 

of the partners (Stuart, 2000). With respect to biotechnology, it is shown that the strength 

and robustness of the industry depend on contributions from both public and private 

research entities (Owen-Smith, Riccaboni, Pammoli, and Powell, 2002). Prior studies 

have also shown that profit and non-profit organizations differ in their flow of 

information (Owen-Smith and Powell, 2004). Hence, I classify alliances partners into two 

types: (1) university alliances and (2) firm alliances, depending on their institutional 

demography. The classification of alliance into the above two types depending on their 

institutional regime is also consistent with the different types of external professional 

communities to which the three types of intellectual human capital are connected. 

Scientists are connected to scientific communities that comprise of other scientists from 

universities, while inventors are connected to technological communities that comprise of 

inventors from other firms.  

 Both university and firm partners are recognized to bring the above benefits to 

technological performance. University partners are capable of bringing in knowledge and 

social capital as outlined in the previous section. Apart from knowledge and social 



128 

capital, firm partners can also bring in commercial capital, thereby contributing to the 

focal firm’s technological performance. Based on the above arguments, I hypothesize: 

Hypothesis 2a: The number of university alliances of a firm is positively related to its 

technological performance.  

Hypothesis 2b: The number of firm alliances of a firm is positively related to its 

technological performance.  

Intellectual Human Capital and Alliances: Complements or Substitutes? 
Two different perspectives exist regarding the interdependency of intellectual human 

capital and strategic alliances. According to the first perspective, intellectual human 

capital complements strategic alliance. Two activities are said to be complements of each 

other if the marginal effect of an activity increases in the presence of the other activity. 

Intellectual human capital and strategic alliances are proposed to be complements due to 

the following reasons. The presence of intellectual human capital is known to help 

organizations in identifying and incorporating pertinent research from external networks 

(Liebeskind et al., 1996). Intellectual human capital can act as a gatekeeper, thereby 

facilitating knowledge flow from alliance partners (Tushman and Katz, 1980). The 

knowledge residing in intellectual human capital also helps in absorbing knowledge from 

alliance partners (Cohen and Levinthal, 1990).  

 On the contrary, the second perspective argues that intellectual human capital and 

strategic alliance are substitutes of each other. Two activities are said to be substitutes if 

the marginal benefit of each activity decreases in the presence of the other. According to 

this perspective, different technology strategies of a firm compete for a finite resource. 

Hence, a firm’s attempt to simultaneously venture in pursuit of innovation across 

multiple levels (firm and network) would result in decreased innovation output at the 
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margin. It is also recognized that firms use one innovation mechanism repeatedly, learn 

by experience, and build competency in that specific mechanism, rather than switching 

across different innovation mechanisms (Levitt and March, 1988). For example, the 

pharmaceutical firm Merck is known to develop its research capability by developing its 

intellectual human capital, whereas Eli Lily is known to engage in alliances for 

innovation (Rothaermel and Hess, 2007).  

 While both perspectives offer important insights about the interdependency of 

intellectual human capital and alliances, neither approach has paid attention to the 

characteristics of intellectual human capital and attributes of alliances that are vital to 

understanding their interrelationship. For instance, the interdependency of intellectual 

human capital and alliances can be both complementary and substitutive, depending on 

the characteristics of intellectual human capital and attributes of alliances that are under 

consideration. The following section elaborates on how such contingent factors might 

alter the nature of interdependency. As outlined in previous sections, my study 

concentrates on three different types of intellectual human capital: (1) pure scientists, (2) 

bridging scientists and (3) pure inventors, and two attributes of alliance: (1) university 

alliances and (2) firm alliances. 

 The institutional differences between university and firm stem from: (1) the kind 

of research being conducted and (2) the nature of information flow and knowledge 

diffusion. Universities engage in early stages of research activities that are scientifically 

advanced and valuable for technology development. Scientific research has received a 

substantial amount of attention for its norm of openness (David, 1998; Gittelman and 

Kogut, 2003; Merton, 1973). Consequently, public research organizations such as 
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universities differ from research intensive firms in diffusing their knowledge. New 

knowledge is known to flow out of universities more readily than it does from 

commercial entities such as firms (Jaffe, Trajtenberg and Henderson, 1993). Universities 

are also open to sharing knowledge through informal networks (Dasgupta and David, 

1994).  

 With universities following the open norm of knowledge disclosure, I believe 

corporate scientists to fetch the information and knowledge benefits that university 

alliance partners can bring forth. Though the primary task of corporate scientists is to 

conduct R&D to invent new technologies, many of these scientists also publish papers in 

order to be connected with the academic community. By building a relationship of give-

and-take with the scientific community, corporate scientists also establish trust with 

university scientists (Furukawa and Goto, 2006). This provides opportunities for them to 

have significant technological discussions and exchanges of ideas with university 

scientists in academic meetings. As a result of plugging themselves with the scientific 

community, corporate scientists help in the inflow of knowledge from universities that 

adhere to the norm of open information disclosure. Corporate scientists also help firms 

absorb knowledge from articles published by university scholars in the open domain. The 

above arguments suggest that, through their informal networks, scientists working for 

firms can assist in the free flow of information and knowledge from the academic 

community without necessarily having partnership with them. This can also be 

appreciated from the fact that the leading biotech firm Genetech, founded by a group of 

scientists, engaged in only 2 university alliances between the years 1980-200711. Hence, I 

suppose pure scientists and bridging scientists within firms to act as substitutes for 
                                                 
11 Source: Recap database 



131 

university alliances. However, the likelihood of pure inventors being associated with the 

academic community is much less because they are not involved in scientific research 

and in publishing. Therefore, I do not expect pure inventors to substitute university 

alliances. The above arguments suggest that bridging scientists and pure scientists 

substitute university alliances. 

 In a similar vein, we also observe that, in the biotechnology industry, firms 

lacking internal scientific expertise offset this disadvantage by forming partnerships with 

universities (George, Zahra, Wheatley and Khan, 2001). This suggests that university 

alliances can substitute scientific capital of a firm, leading to my third hypotheses: 

Hypothesis 3a: Pure scientists and university alliances substitute one another in 

explaining a firm’s technological performance. 

Hypothesis 3b: Bridging scientists and university alliances substitute one another in 

explaining a firm’s technological performance. 

 

 Unlike universities, firms are committed to proprietary uses of knowledge and 

require formal ties in transferring knowledge. Though corporate scientists and inventors 

are connected to professional communities that involve other firms, such linkages 

represent closed conduits (Owen-Smith and Powell, 2004). The possibility of knowledge 

spillover from other firms through informal relationship is negligible and requires 

contractual arrangements, such as alliances, in transferring knowledge. Hence, I believe 

that intellectual human capital within a firm cannot substitute firm partners. Nevertheless, 

I suppose the informal connections of intellectual human capital to transmit information 

about potential alliance partners and opportunities for technical collaboration (Rosenkopf, 

Metiu and George, 2001). Pure inventors, who are connected to professional technical 
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communities, especially help a firm in identifying potential firm partners. Intellectual 

human capital can also help in evaluating the knowledge of potential firm partners. 

Particularly, scientific knowledge that is used in assessing technological activities enables 

pure scientists and bridging scientists to evaluate the knowledge of potential firm partners 

(Brook, 1994). The presence of intellectual human capital also assists in absorbing, 

assimilating, and exploiting knowledge from alliance partners (Murray, 2004).  

 While the above arguments suggest that intellectual human capital enhances the 

contribution of firm alliances to technological performance, it is equally true that alliance 

partners enhance the contribution of intellectual human capital to technological 

performance by helping them learn new skills (Hitt, Bierman, Shimizu and Kochhar, 

2006). This leads to the fourth hypotheses: 

Hypothesis 4a: Pure scientists and firm alliances complement one another in explaining 

a firm’s technological performance. 

Hypothesis 4b: Bridging scientists and firm alliances complement one another in 

explaining a firm’s technological performance. 

Hypothesis 4c: Pure inventors and firm alliances complement one another in explaining 

a firm’s technological performance. 

 

 Table 4.1 provides the summary of hypothesized interaction effects.  
Table 4.1. Summary of Interaction Hypotheses 

 
Variables Firm Alliances University Alliances 

Pure Scientists            +                 - 

Bridging Scientists            +                     - 

Pure Inventors            +  Not Hypothesized 
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RESEARCH METHODOLOGY 

Data 
To test the hypotheses, I collected data from the biotechnology industry. Biotechnology is 

recognized to be one of the most innovation-intensive industries (Sorenson and Stuart, 

2000). The biotechnology industry was an ideal context in testing the framework, because 

the industry is characterized by technological transformation, a growing number of inter-

organizational relationships, and the widely recognized importance of intellectual human 

capital.  

 The data is drawn from Plunkett's12 directory that is comprised of 437 public-

listed biotechnology firms. Biotechnology directories are one of the sources that prior 

research works have consulted in drawing their sample (Gulati and Singh, 1998; Stuart, 

Hoang, and Hybels, 1999). Generally, firms in the directory are based in the United 

States of America. However, the headquarters of 70 firms are located in other nations 

such as Canada, Japan, UK, India, Switzerland, etc. The directory has 3 firms from 

agriculture, 13 from infotech, 100 from chemical manufacturing and 321 from the health 

care areas of biotechnology. The directory comprises of firms such as EISAI Co. Ltd., 

DOW Agrosciences, BASF AG and TRIPOS Inc. that have attained the highest sales 

revenue in the year 2000 for the health care, agriculture, chemical manufacturing and 

infotech areas respectively. The directory includes very small firms (with respect to 

R&D, number of employees and sales) such as VIRAGEN and SPECTRAL 

DIAGNOSTICS, as well as large firms such as BAYER and NOVARTIS. With respect 

to age, there are old firms such as PFIZER, as well as new firms formed in late 90’s such 

as ATHEROGENICS and ARENA PHARMACEUTICAL. 
                                                 
12 Plunkett's Biotech and Genetics Industry Almanac 2005: the only comprehensive guide to biotechnology 
and genetic companies and trends/editor and publisher: Jack W. Plunkett. 
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 I used the publication, patenting, and alliances of these firms in testing the 

hypotheses. The patents issued to these firms between 1990-2000 were obtained from the 

NUS patent database13. The database comprises of patents issued to firms by the United 

States Patent and Trademark Office (USPTO). Publication information of firms between 

1980-2000 was obtained from Web of Science, ISI Science Citation Index (SCI). The SCI 

is an excellent source because it covers a broad range of basic and applied scientific 

journals (Lim, 2004). As the birth of the biotechnology industry is dated back to the late 

70’s and my patent data was restricted to 2000, I focused on publication during the period 

1980-2000.The Recombinant Capital (Recap) database that provides a comprehensive list 

of biotechnology companies worldwide along with their alliances, valuations and clinical 

trials information was used to cross-validate the list of biotechnology firms chosen from 

the directory and to obtain alliance-related information between 1990-2000. Compustat 

Global was used in collecting the financial data of these firms. 

 The US patent classification system comprises of over 100,000 patent subclasses 

aggregated to about 400 three-digit patent classes. I used the three-digit patent classes and 

only included those patents that fall within the U.S. patent classes listed in Table 4.2, 

which belong to the biotechnology industry. The classes were chosen with reference from 

the USPTO Technology Profile Reports and from prior research (Lim, 2004). Filtering 

those firms that did not have patent data in the specified classes between 1990-2000, the 

final sample size was 222 firms. The list of 222 firms is provided in Table A.2 of the 

Appendix. Of the listed firms, 215 (437-222) firms were dropped from the directory 

because they had zero patents. To ensure that the results were still generalizable, I carried 

out a preliminary assessment of firm level variables. As shown in Table A.3, the average 
                                                 
13 http://patents.nus.edu.sg/ 
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of firm R&D and firm size for 437 firms was not significantly different from the average 

of these variables in my final sample. However, I found that the average age of my final 

sample firms was higher than that of average age for 437 firms. This is possibly because 

younger firms in the directory might not have patents issued between 1990-2000. 

Nevertheless, I do believe that the results of my study hold true even for younger firms, 

because my sample does indeed include younger firms such as Atherogenics and Arena. 

 The total number of patents and publications under consideration was 10,646 and 

100,375. There is huge heterogeneity with respect to patent and publication data. Firms 

like Anika Therapeutics and Viragen received one patent each, while Abbott and Bayer 

had about 1000 patents. Patents issued to firms increased from 424 in 1990 to 1722 in 

2000. There were 19 firms in my sample with 0 publications, but also about 10 firms with 

at least a few thousand publications. The publications made by firms increased from 1826 

in 1980 to 8181 in 2000. The number of publications, patents and alliances of my sample 

firms between 1990-2000 is provided in Table A.4 of the Appendix. 

Table 4.2. U.S. Patent Classes 
 

Class Description 
424 Drug, bio-affecting and body treating compositions 
435 Chemistry: molecular biology and microbiology 
436 Chemistry: analytical and immunological testing 
514 Drug, bio-affecting and body treating compositions 
530 Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction 

products thereof 
536 Organic compounds 
800 Multicellular living organisms and unmodified parts thereof and related processes 

 

Measures 
Technological Performance (Forward Citation): The dependent variable is the 

cumulative forward citation frequencies accrued to an individual patent. I count all 
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forward citations received by each patent at the end of 2004. By law, each patent must 

cite prior patents that relate to its technology. Research demonstrates that the number of 

forward citations received by a patent correlates highly with its technological importance 

(Trajtenberg, 1990; Albert, Avery, Narin and McAllister, 1991). Prior studies have 

observed that the self-citation of a firm to its patents represents the extent to which the 

firm appropriates the returns from the patents. As a consequence, they find self-citation to 

reduce the probability of other firms citing the patent (Zhuang, Wong and Lim, 2006). 

However, in my sample I found the self-citations to be positively related to the overall 

forward citations, which indicates that overall citations represent the value of knowledge 

underlying the technology. Hence, instead of removing self-citations, I restricted my 

attention to overall citations accrued by a patent. 

 One way to measure technological performance would be to use the number of 

products introduced by a firm. However, I restricted my focus to a patent-based 

performance measure because of the following three reasons. First, obtaining data on the 

number of products introduced by my sample firms was difficult.  

 Second, the number of products introduced by a firm not only depends on the 

technological competency of the firm but also other factors such as U.S. Food and Drug 

Administration (FDA) authorization etc. In order to prevent the results from being 

confounded by factors that are not of interest to my research, I relied on patent-based 

performance measure.  

 Third, the biotechnology industry is characterized by open innovation in which 

the activities pertaining to the higher end of the value chain are performed by the firms 

competent in it, while FDA approval and commercialization are taken care of by other 
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firms. Hence, a firm introducing a product into the market may not necessarily be the one 

responsible for its basic technological development. As the focus of my study is to relate 

technological competency of a firm with its performance, I believe that a patent would be 

a more appropriate measure of a firm’s capability to generate valuable technologies.  

 Since patent to product conversion process in the biotechnology industry is time 

consuming, many of the results that hold true for a patent-based technological 

performance measure might not hold for a product-based measure. Hence, an interesting 

future research can be to test my research model with both patent-based and product- 

based performance measures and compare their results.  

 

Independent Variables 
Intellectual Human Capital (Pure scientists, Bridging Scientists and Pure Inventors): 

The greater the presence of the three types of intellectual human capital, the higher the 

availability of knowledge, experience, and skill for new knowledge search. Traditionally, 

studies capture the quality of human capital by measuring their qualifications, affiliations, 

etc. (Hitt, Bierman, Uhlenbruck, and Shimizu, 2001; Hitt et al., 2006). My study 

implicitly captures this by looking only at intellectual human capital that possesses high 

qualifications in order to engage in R&D activities.  

 I operationalize the three variables in the following manner. The pure scientist 

measure represents the percentage of scientists within firms whose names are exclusively 

listed in publications and not in patents. Then, the bridging scientist measure represents 

the percentage of patent inventors within a firm whose names are listed in both patents 

and scientific papers published by the firm. Finally, the pure inventor measure represents 

the proportion of inventors exclusively involved in patenting but not publishing. In order 
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to obtain these measures, I identified two overlapping sets of individuals for each firm. 

The first comprises of scientists whose names are listed on at least one publication made 

by the focal firm, and the second comprises of inventors whose names are listed on at 

least one patent issued to the focal firm. Based on these two lists, I found the percentage 

of individuals listed as inventors who are also listed as scientists for each firm. This 

percentage of scientists is termed as bridging scientists. The measure is borrowed from 

the work of Gittelman and Kogut (2003). Then, I identified the percentage of those 

scientists whose name appeared only in the publications and not in the patents. These 

scientists who are exclusively involved in scientific publishing are termed as pure 

scientists. Then, for each patent, I identified the number of inventors whose names do not 

appear on the list of scientists. These inventors exclusively involved in patenting are 

termed as pure inventors. On average, my sample firms had about 900 pure scientists, 34 

bridging scientists and 47 pure inventors. Firms such as Bayer and Merck had the highest 

number of pure scientists, bridging scientists and pure inventors. This shows that the 

measures are not a complement of each other, with the pure inventors measure being 

calculated at the patent level while scientist measures are at the firm level. 

  Apart from qualifications, there are other aspects of quality of intellectual human 

capital as measured by the extent to which they are active in producing high-quality 

work. This aspect of quality, as measured by the volume and citations of firms’ 

publications stocks of patents, are captured and controlled in this study. This helps to 

explore if firms endowed with greater proportion of each of the intellectual human capital 

dimensions (after controlling for quality) are better in their new knowledge search. 
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Alliances (University alliances, Firm alliances): This measure represents the number of 

partnerships that a firm engages in a year. I tracked each firm’s alliances with academic 

institutions and for-profit organizations, and had the count of academic alliance partners 

and firm alliance partners separately. I used the Recap database in obtaining this measure. 

The Recap database comprises of a list of alliances made by firms in a particular year 

along with other information such as the type of alliance (R&D, acquisition, 

manufacturing, joint venture, licensing, etc.), type of alliance partners (university/firm), 

and technology concentration of alliance. There are 26 types of alliances and 53 types of 

technology classifications available in the Recap database. The list of alliance types and 

technology classification is provided in Table A.5 and A.6 of the Appendix. Since the 

study is pertaining to the R&D activities of value chain, I concentrated on alliance 

pertaining to Research and Development. However, I concentrated on all types of 

technology classifications. The information pertaining to the type of alliance partner is 

used in counting the number of university and firm alliances separately. On average, my 

sample firms engaged in 40 alliances during the period of observation, of which 7 were 

with academic institutions. 
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Control Variables 
Publication Volume: This measure is a count of the number of publications produced by 

the focal firm in the year of observation in which a patent was filed by the focal firm. I 

used the number of publications made by a firm as a proxy for its scientific capability. A 

number of scholars have used publication count to measure the scientific capability of 

firms (Lim, 2004; Gittelman and Kogut, 2003; Arora and Gambardella, 1994). A firm 

with a strong scientific capability is capable of identifying new applications in the 

technology domain that might give rise to more valuable patents. Prior researchers have 

also shown the significant relationship between publication count and patent 

performance. It is therefore imperative that I control for it.  

Non-patent Reference: Non-patent reference is the count of the number of times a patent 

issued to a firm references non-patented literature. Every patent is required to cite the 

prior art that it builds upon. This includes both the patent and non-patent references. It 

has been observed by Fleming and Sorenson (2004) that 69% of the non-patent 

references are from peer-reviewed scientific journals. Non-patent references cited by a 

patent are often used as an indicator of the science intensity of the invention that is found 

to be influencing the forward citation of patents (Gittelman and Kogut, 2003; Noyons, 

van Raan, Grupp and Schmoch, 1994). Hence, I controlled for it. The average number of 

non-patent references cited by the patents under study is about 18. 

Firm’s Average Cites to Publications: I use the citations received by the focal firm’s 

publications to represent the relative quality of the firm’s stock of scientific knowledge. 

To compute this measure I first identified all the publications produced by the focal firm 

between the years 1980-2000, and then obtained the number of citations received by 
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these publications. Based on the citations, I calculated the mean and standard deviation of 

the citations received by all articles of the sample firms in a publication year. Next, the 

raw citation counts for each publication of firms are normalized by the mean and standard 

deviation of the citations received by all articles in its publication year. Normalizing the 

raw citations by year allows the citations to be summed across years for each firm 

(Gittelman and Kogut, 2003). I then aggregated the normalized citation count of 

publications in a year and divided it by the total number of publications made by the firm. 

The normalized citation count is then aggregated up to the year the observed patent was 

filed in order to obtain a cumulated amount of publication quality. Because a firm’s 

competency in generating high-quality scientific papers has been observed to impact its 

capability to produce high-impact innovation, I controlled for it (Gittelman and Kogut, 

2003).  

Firm’s technological strength: Since a technologically strong firm is likely to receive 

more citations, there is a need to control for it. I used the number of patents granted to a 

firm to measure the technological strength of the firm. I take into account the year of the 

focal patent in calculating the number of patents granted to a firm. For example, if the 

patent under observation is a patent filed by a firm in year t, I count the number of patents 

issued to the firm in the year t, to account for its technological strength.  

Other Control Variables (Technology class dummy variable, Patent age, Year fixed 

effects, R&D expenditure, Firm size, and Firm age): Forward citations may accrue to 

patents for other reasons such as technology field characteristics, patent characteristics 

and firm characteristics. Therefore, I included the patent-level and firm-level control 

variables to account for heterogeneity among the firms and for age and field effects. 
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Patents belonging to certain technology classes may inherently be more cited than others. 

Similarly, patents with more years having elapsed since the patent was filed are capable 

of attaining higher citations. I used technology class dummy variables and patent age as 

patent-level control variables to control for these effects. I also used year fixed effects to 

capture the differences in citation probability across different years.  

 At the firm level, larger firms due to economies of scale and scope, younger firms 

because they represent the knowledge of younger vintage and firms that devote more 

resources for R&D are capable of being highly innovative. Hence, I included firm-level 

control variables such as R&D expenditure, size of the firm as measured by the number 

of employees and age of the firm as measured by the number of years since the firm was 

founded. I included the logarithmic value of the above variables as the control variables.  

  The summary of the dependent, independent, and control variables is presented in 

Table A.1 of the Appendix. The summary data for the dependent and independent 

variables and the correlation between the variables at the patent level are reported in 

Table 4.3. As the numbers show, the patents and publications exhibit a lot of variance. 
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Table 4.3. Descriptive Statistics and Correlations 
 
S.No Variables Mean Std. 

Dev 
Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Forward Citation 6.34 11.87 0 233 1             
2 Pure Scientists 0.77 0.32 0 0.99 0.02 1            
3 Bridging Scientists 0.25 0.15 0 0.83 -0.02 -0.69* 1           
4 Pure Inventors 0.65 1.11 0 17 -0.01 -0.34* 0.45* 1          
5 No. of University 

Alliances 
1.61 2.25 0 18 0.26* 0.02 0.09* 0.03* 1         

6 No. of Firm 
Alliances 

10.00 10.99 0 93 0.12* -0.05* 0.06* 0.05* 0.04* 1        

7 Publication Volume 136.39 222.74 0 1272 -0.06* 0.31* -0.18* -0.10* -0.01 0.08* 1       
8 Publication Citation 0.04 0.91 -6.73 9.65 -0.04* -0.28* 0.25* 0.08* 0.08* 0.03* -0.08* 1      
9 Patent Age 10.12 2.80 7 17 0.28* -0.09* 0.10* -0.02 0.08* -0.02 0.11* -0.01 1     
10 R&D 3.04 2.15 -0.55 12 0.17* 0.34* -0.37* -0.21* -0.02 -0.17* -0.30* 0.09* 0.06* 1    
11 Firm Size 6.82 2.32 0 11.69 -0.10* -0.63* 0.55* 0.30* 0.03* 0.11* 0.00 -0.04* 0.01 -0.69* 1   
12 Firm Age 3.37 1.21 0 5.01 -0.18* -0.47* 0.61* 0.28* 0.18* 0.17* 0.14* 0.29* 0.07* -0.57* 0.53* 1  
13 Tech. Strength 53.22 56.29 1 240 -0.16* -0.37* 0.32* 0.17* -0.02 0.14* 0.18* -0.12* -0.09* -0.65* 0.62* 0.46* 1 
14 Non Patent 

Reference 
18.36 35.14 0 492 0.05* 0.12* -0.19* -0.06* -0.05* -0.01 -0.01 -0.15* -0.15* 0.05* -0.06* -0.23* 0.02 

*p<0.01
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Analysis 
Since the dependent variable is forward citation count, a count model was more 

appropriate for this research. The Poisson model is a frequently used count model. As 

patent citations exhibited over-dispersion, I used a negative binomial model that is best 

suited for estimating an over-dispersed parameter (Cameron and Trivedi, 1998). The 

results of negative binomial regression are presented in Table 4.4. All specifications 

include fixed effects for both technology class and application year of the patents. I used 

robust standard errors adjusted for clustering of firm to control for random firm effects.   

Effect of control variables 

 Model 1 of Table 4.4 presents the regression coefficients for the control variables. 

The publication volume has a significant negative effect (p<0.01) on the forward citation 

of patents. On the contrary, the non-patent reference has a significant positive influence 

on forward citations (p<0.01). The result pertaining to the negative role of publications 

on patent citation rate is contrary to the findings of Cockburn and Henderson (1998), 

Gambardella (1995) and Gittelman and Kogut (2003). These scholars observed 

publication volume to have either an insignificant or positive influence on patent 

citations. One possible explanation of my result is that when firms concentrate more on 

producing scientific publications their attention towards developing important 

technologies might deteriorate and result in fewer forward citations for their patents. This 

explanation is also consistent with the result pertaining to the publication citation. The 

quality of firms’ publications, as reflected by the average cites to publications, has a 

negative relationship with the forward citation of patents (p<0.10). This shows that when 
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firms engage in generating cutting-edge scientific research, their technological 

performance suffers.  

 As expected, firm age has a negative impact on the forward citation of patents 

(p<0.01). Firm size and R&D expenditure do not have a significant relationship with the 

forward citation of patents. A plausible explanation for R&D and firm size being 

insignificant is that increased R&D spending and economies of scale need not necessarily 

increase the quality of innovation, as measured by the forward citations. The 

technological strength of a firm, as measured by the number of patents generated, is 

negatively associated with the forward citation of patents (p<0.01). This shows that 

quality of patents is inversely proportional to the quantity generated. A plausible 

explanation is that for a given amount of R&D investment and firm size, firms producing 

more number of patents receive fewer citations for their patents. The significant (p<0.01) 

positive effect of patent age shows that older patents receive more citations. 

Main effect of intellectual human capital and alliances 

 The regression coefficients in testing the main effects of intellectual human 

capital and alliances are provided in Table 4.4. Models 2, 3 and 4 present the main effects 

of the three intellectual human capital variables. Both bridging scientists and pure 

inventors have a significant positive effect (p<0.05, p<0.01) on the forward citation of 

patents, supporting H1b and H1c. On the contrary, pure scientists have a significant 

negative effect on the forward citation of patents (p<0.01), thereby rejecting H1a. Models 

5 and 6 present the main effect of alliances. As hypothesized in H2a and H2b, both 

university and firm alliances have a significant positive effect on the forward citation of 

patents (p<0.01, p<0.01). 
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 Interaction effects: Complements and Substitutes 

 The interaction terms of the three intellectual human capital factors with 

university alliances are presented in Model 7. Model 8 presents the regression 

coefficients when all the interaction terms are included in the specifications. The results 

show that pure scientists and bridging scientists substitute university alliances. Hence, 

H3a and H3b are supported. 3D graphs illustrating this substitution effect are presented in 

Figure 4.1 and Figure 4.2. In Figure 4.1 the coordinate (L, L) represents low in pure 

scientists and low in university alliances, while (L, H) represents low in pure scientists 

and high in university alliances. Similarly, the coordinate (H, L) represents high in pure 

scientists and low in university alliances, while (H, H) represents high in pure scientists 

and high in university alliances. The negative slope from (L, L) to (H, L) and (L, H) to 

(H, H) clearly shows that pure scientists and university alliances are substitutes of each 

other. Figure 4.2 should be interpreted in the same way as Figure 4.1 in explaining the 

substitution effect between bridging scientists and university alliances. Though I did not 

hypothesize the interaction between pure inventors and university alliances, I included 

their interaction term to explore the relationship. The interaction term is insignificant, 

which neither supports the complementary or substitutive argument. A plausible 

explanation is that pure inventors are not connected to scientific networks to substitute 

for university alliances, nor are they are competent in the scientific domain to 

complement university partners.  

 With regard to firm alliances, the results show that all three intellectual human 

capital variables complement firm alliances. Thus, the results support H4a, H4b, and 

H4c. Figures 4.3, 4.4 and 4.5 that are 3D plots of complementarity can be interpreted in 
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the same way as that of Figure 4.1. The positive slopes in these figures illustrate the 

complementarity between pure scientists, bridging scientists, pure inventors and firm 

alliances.    
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Table 4.4. Negative Binomial Regression in Testing the Impact of Intellectual Human Capital, 
Alliances and Control Variables on the Forward Citation 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
Constant -0.0240 

[0. 3944] 
0.8476** 
[0.4825] 

0.4992 
[0.4329] 

0.4886 
[0.4304] 

0.7136** 
[0.3980] 

0.6200** 
[0.3507] 

0.1405 
[0.3309] 

0.2390 
[0.3442] 

Independent Variables 
Pure Scientists  -0.5702*** 

[0.1637] 
-0.3660*** 
[0.1703] 

-0.3628*** 
[0.1682] 

 -0.5334*** 
[0.1329] 

-0.6050*** 
[0.1328] 

-0.2982*** 
[0.1815] 

-0.3623** 
[0.2046] 

Bridging  
Scientists 

  1.0319** 
[0.5614] 

0.8494* 
[0.5675] 

 0.4692 
[0.4069] 

0.5141* 
[0.5018] 

1.7275*** 
[0.4152] 

1.4901*** 
[0.4591] 

Pure Inventors    0.0589*** 
[0.0186] 

0.0568*** 
[0.0212] 

0.0447*** 
[0.0197] 

0.0403*** 
[0.0206] 

0.0081 
[0.0216] 

University 
Alliances 

    0.2207*** 
[0.0619] 

0.1987*** 
[0.0551] 

0.5592*** 
[0.0696] 

0.5694*** 
[0.0663] 

Firm Alliances      0.0231*** 
[0.0024] 

0.0222*** 
[0.0021] 

0.0003 
[0.0133] 

Pure Scientists* 
Univ. Alliances 

      -0.1875*** 
[0.0708] 

-0.1915*** 
[0.0067] 

Brdg. Scientists* 
Univ. Alliances 

      -0.7898*** 
[0.1123] 

-0.8072*** 
[0.1062] 

Pure Inventors* 
Univ. Alliances 

      0.0010 
[0.0062] 

-0.0006 
[0.0069] 

Pure Scientists* 
Firm Alliances 

       0.0117* 
[0.0091] 

Brdg. Scientists* 
Firm Alliances 

       0.0390** 
[0.0241] 

Pure Inventors* 
Firm Alliances 

       0.0031*** 
[0.0011] 

Firm-Level Control Variables 
Publication 
Volume 

-0.0004*** 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

-0.0001 
[0.0001] 

Publication 
citation 

-0.0398* 
[0.0320] 

-0.0935*** 
[0.0394] 

-0.0897*** 
[0.0363] 

-0.0878*** 
[0.0366] 

-0.0714*** 
[0.0316] 

-0.0837*** 
[0.0313] 

-0.0765*** 
[0.0321] 

-0.0735*** 
[0.0331] 

Firm age -0.2088*** 
[0.0561] 

-0.2257*** 
[0.0483] 

-0.2676*** 
[0.0609] 

-0.2688*** 
[0.0612] 

-0.2960*** 
[0.0607] 

-0.3204*** 
[0.0704] 

-0.3280*** 
[0.0725] 

-0.3306*** 
[0.0723] 

Firm size 0.0410 
[0.0341] 

-0.0069 
[0.0309] 

0.0134 
[0.0328] 

-0.0152 
[0.0328] 

-0.0118 
[0.0264] 

0.0089 
[0.0316] 

-0.0022 
[0.0303] 

 0.0018 
[0.0297] 

R&D 
Expenditure 

0.0242 
[0.0300] 

0.0194 
[0.0238] 

0.0244 
[0.0243] 

0.0249 
[0.0247] 

-0.0025 
[0.0274] 

0.0067 
[0.0261] 

0.0060 
[0.0249] 

 0.0098 
[0.0247] 

Technological 
Strength 

-0.0025*** 
[0.0006] 

-0.0028*** 
[0.0005] 

-0.0026*** 
[0.0005] 

-0.0026*** 
[0.0005] 

-0.0021*** 
[0.0007] 

-0.0027*** 
[0.0007] 

-0.0027*** 
[0.0008] 

-0.0026*** 
[0.0008] 

Patent-Level Control Variables 
Patent age 0.1774*** 

[0.0220] 
0.1750*** 
[0.0217] 

0.1753*** 
[0.0210] 

0.1779*** 
[0.0211] 

0.1621*** 
[0.0175] 

0.1653*** 
[0.0007] 

0.1626*** 
[0.0177] 

0.1628*** 
[0.0175] 

Non Patent 
Reference 

0.0033*** 
[0.0012] 

0.0032*** 
[0.0011] 

0.0035*** 
[0.0011] 

0.0035*** 
[0.0011] 

0.0030*** 
[0.0010] 

0.0030*** 
[0.0010] 

0.0027*** 
[0.0009] 

0.0028*** 
[0.0009] 

Log Likelihood -20523.86 -20498.67 -20482.71 -20475.20 -20035.10 -19864.56 -19769.96 -19762.32 

No. of 
Observations 

7648 7648 7648 7648 7648 7648 7648 7648 

*p<0.1, **p<0.05, ***p<0.01. Standard error is provided in the parentheses. 
Technology class dummy variables and year fixed effect were included but not reported. 
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Figure 4.1. Interaction between Pure Scientists and University Alliances 
 

 
Note: The coordinates are for pure scientists and university alliances 
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Figure 4.2. Interaction between Bridging Scientists and University Alliances 
 

 
Note: The coordinates are for bridging scientists and university alliances 
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Figure 4.3. Interaction between Pure Scientists and Firm Alliances 
 

 
Note: The coordinates are for pure scientists and firm alliances
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Figure 4.4. Interaction between Bridging Scientists and Firm Alliances 
 

 
Note: The coordinates are for bridging scientists and firm alliances 
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Figure 4.5. Interaction between Pure Inventors and Firm Alliances 
 

 

Note: The coordinates are for pure inventors and firm alliances 
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DISCUSSION AND CONCLUSION 
Following recent theoretical developments emphasizing that antecedent to technological 

performance can be found in factors at firm and network level (Eisenhardt and Martin, 

2000), this research extends the current understanding of interdependence between 

factors across these different levels. Intellectual human capital endowed with a firm is the 

firm level factor under study. Resources leveraged from external relationships such as 

alliances represent the network level factor under consideration. First, I examined the 

independent influence of these factors on the technological performance of firms. 

Second, I investigated if the factors across these two levels are complements or 

substitutes of each other. 

 The first hypothesis tested in this study confirms the importance of intellectual 

human capital for better technological performance. Human capital has been 

conceptualized in different ways, and recent studies on high-tech industries recognize the 

importance of intellectual human capital such as scientists (Zucker and Darby, 2001; 

Zucker, Darby and Brewer, 1998). In order to extend the current understanding of 

intellectual human capital’s contribution to technological performance, this research 

classifies them into three categories viz. pure scientists, bridging scientists and pure 

inventors. The results demonstrate that both pure inventors and bridging scientists have a 

positive impact on the technological performance of firms. On the contrary, pure 

scientists have a negative impact on technological performance. The positive effect of 

pure inventors is trivial because they are solely dedicated to applied research and to 

developing important innovations. However, it is interesting to note the contingent value 

of scientists, whose involvement in scientific research detracts them from technology 

development. Scientists have a positive influence on technological performance only if 
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they are bridging scientists, viz. they are capable of engaging themselves in scientific 

research as well as in technology development. Thus, I follow Gittelman and Kogut’s 

(2003) assertion that scientists who can play a dual role and successfully bridge the 

science and technology domains have a positive influence on technological performance. 

 The second hypothesis tests the importance of alliances for technological 

performance. I categorize alliances into university alliances and firm alliances, depending 

on the institutional characteristics of the partners. The results show that both university 

and firm alliances are helpful for technological performance, but with varied effect sizes. 

The contribution of university alliances to technological performance was considerably 

higher than that of firm alliances. This underlines the importance of firms to have 

partnerships with public research organizations in order to enhance their innovation 

performance (Powell et al., 1996).   

 The third and fourth hypotheses of this study examine the interdependency of 

intellectual human capital and alliance in enhancing a firm's technological performance. 

While prior studies have shown that intellectual human capital and alliances are either 

substitutes or complements of each other, my study supports both. Further, I show that 

the nature of interdependency is contingent on the characteristics of intellectual human 

capital and attributes of alliance partners. My results show that pure scientists and 

bridging scientists substitute university alliances, whereas pure scientists, bridging 

scientists and pure inventors complement firm alliances. Public research organizations, 

such as universities, tend to shy away from proprietary limitations on the use of their 

knowledge. Hence, pure scientists and bridging scientists, who are connected to the 
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academic community through their publications, facilitate free inflow of knowledge from 

the academic arena, thereby making partnerships with universities redundant.  

 However, firms are reluctant to share their knowledge through informal channels 

and require formal arrangements such as alliances in benefiting from them. Firms also 

exercise stringent legal mechanisms to limit spillover of knowledge to alliance partners. 

With regard to such close conduits of linkages, the presence of intellectual human capital 

facilitates the transfer and exploitation of knowledge from partners. Hence, intellectual 

human capital is observed to complement firm alliances. My results show that all three 

types of intellectual human capital complement firm alliances. The technology 

development experience of bridging scientists and pure inventors enhances the relative 

absorptive capacity of firms, thereby facilitating the transfer and exploitation of 

knowledge from firm alliance partners. Hence, their role in complementing firm alliances 

is stronger than that of pure scientists. Taken together, the results show that the role 

played by different intellectual human capital in complementing or substituting the 

alliance network differs depending on their expertise. In either case, bridging scientists 

turn out to be an important type of intellectual human capital, and contribute to 

technological performance in several ways.  

 While prior studies have widely explored various determinants of technological 

performance and investigated their interdependency, my findings demonstrate the 

importance of considering the features of the determinants. I show that the extent to 

which a focal firm benefits from collaborative strategies depends on the institutional 

demographics of collaborative partners as well as on the social connections of the 

intellectual resources of the focal firm. Thus, benefits from a formal partnership depend 
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on whether or not it is an extension of the social relationships of human capital residing 

within the firm. This explains why firms encourage their corporate scientists to be active 

in collaborating with star scientists from universities (Zucker, Darby and Armstrong, 

2002). This also explains why scholars suggest that informal relationships between 

individuals residing within a firm should span geographical and technological boundaries 

(Singh, 2005).  

 My study also helps in understanding how benefits derived from alliance partners 

depend on the characteristics of the partners and the kind of resources endowed within 

the firm. Prior studies have shown the importance of intellectual human capital within a 

firm for benefiting from alliance partners (Hitt et al., 2006). I go further in saying that the 

characteristics of intellectual human capital within a firm also help to determine if it is 

necessary to form partnerships with an entity or not.  

 This research is subject to a number of limitations, the first of which pertains to 

patent data. Restricting the scope to patent data has several limitations because not all 

companies have the same propensity to patent, firms can limit their patents to only the 

most successful innovations, and the like. In spite of the above limitations, patent data 

has been widely used in testing the factors contributing to innovation (Sorenson and 

Fleming, 2004; Gittelman and Kogut, 2003). 

 The second limitation is related to intellectual human capital measure. Currently it 

is operationalized as the proportion of intellectual human capital in 

science/technology/both domains. In reality, there exists huge heterogeneity even among 

individuals belonging to each of these categories. Hence, one of the fruitful research 
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extensions can be to develop an intellectual human capital measure capable of capturing 

an individual’s breadth and depth of knowledge.  

 A third limitation pertains to publications. Not all firms involved in scientific 

research have the inclination to disclose their findings through publishing. Even among 

publications, there are articles that can be classified as basic journals and applied journals 

(Lim, 2004). A fine-grained approach in categorizing publications can strengthen my 

implications. There are also publications made by firms through collaboration with other 

firms and universities. My study includes all publications that are affiliated with the 

sample firms, irrespective of whether the publication is associated with more than one 

organization or not. However, not considering the information on collaboration is not a 

major limitation of my study. This is because the publication is still a strong predictor of 

the knowledge captured by the firm and that the firm has acquired the tacit knowledge of 

individuals engaged in the research (Zucker, Darby and Armstrong, 2002). 

 Fourth, my study exploring the importance of intellectual human capital can only 

be generalized to those high-technology industries where intellectual human capital is 

considered a key input for technological innovation.  

 Despite the limitations, my research provides important insights about the 

interdependence of antecedents of innovation across two different levels, one at the firm 

and other at the network level. With several industries being dominated by an open 

innovation structure, my study draws the attention of scholars and managers into more 

pragmatic aspects of evaluating the value of partnerships. 
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CHAPTER FIVE 

DISCUSSION AND CONCLUSION 

CONCLUSION 

This dissertation comprises of three essays. The central theme underlying the three essays 

is in exploring the determinants of the technological performance of firms. Specifically, 

the essays attempt to study the interrelationships between intellectual human capital, 

strategic alliances and technological performance. 

 The first essay investigates the means through which intellectual human capital 

and strategic alliances contribute to technological performance. The findings show that 

new knowledge search is one process through which intellectual human capital and 

strategic alliances contribute to the technological performance of firms. Since intellectual 

human capital differ in their capabilities, I categorized them into pure scientists, pure 

inventors and bridging scientists, depending on their specialized domains. The results 

show that the relationship between bridging scientists, pure inventors and technological 

performance is mediated by technological and geographical searches. The new 

knowledge search does not mediate the relationship between pure scientists and 

technological performance. However, pure scientists are observed to help the 

technological and geographical searches conducted by bridging scientists, thereby 

contributing to new knowledge search indirectly.  

 With regard to alliances, the results demonstrate that firms have to rely on 

external resources, such as those leveraged from alliance partnerships, in order to 

enhance the value of their new knowledge search to technological performance. A 
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technologically and geographically diverse alliance portfolio is known to increase the 

contributions of technological and geographical searches to technological performance.  

The second essay is about mechanisms that help a firm in converting the 

competencies of its intellectual human capital, especially scientists, into better 

technological performance. The essay investigates the importance of two mechanisms for 

bridging science and technology domains, one at the individual level and the other at the 

firm level, that help a firm in translating the competencies of its scientists into better 

technologies. The results suggest that the individual-level mechanism of possessing 

bridging scientists, who are engaged in both scientific research and technology 

development, helps an organization to bridge its science and technology domains. 

Further, the results show that bridging science and technology domains within an 

organization cannot be achieved by merely engaging individuals in both of the domains. 

Instead, a firm should have an exploitation mechanism in place for exploiting the 

knowledge generated by in-house scientists in the technology domain.  

The third essay is about the inter-relationship between firm level factors, such as 

intellectual human capital, and network level factors, such as strategic alliances. The 

essay examines if intellectual human capital and strategic alliances are substitutes or 

complements of each other. The findings illustrate that, depending on the characteristics 

of intellectual human capital and attributes of alliance partners, the factors at these two 

levels can be either substitutes or complements. Similar to the first essay, three types of 

intellectual human capital are taken into consideration in testing the interdependency. 

With respect to alliances, the partners are classified into (1) university alliances and (2) 

firm alliances, depending on their institutional affiliation. Pure scientists and bridging 
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scientists residing within a firm are observed to be substitutes of university alliances. On 

the contrary, all of the three intellectual human capital variables are observed to 

complement firm alliances.   

 

CONTRIBUTIONS 

The dissertation contributes to theory and practice in several ways. The first contribution 

is to the research on knowledge search. This dissertation augments the existing studies 

that emphasize the importance of technological, geographical and science search for 

better technological performance (Ahuja and Katila, 2004; Phene et al., 2006; Rosenkopf 

and Nerkar, 2001). The curvilinear effects of geographical and science searches suggest 

that, beyond a point, search along these dimensions can result in diminishing returns. The 

curvilinear effect also highlights the value of identifying the optimum amount of search, 

suggested by scholars investigating the exploration/exploitation balance. Unlike 

searching across diverse geographic areas or scientific domains, technological search had 

a linear positive effect on technological performance. Prior studies have suggested the 

importance of scientific findings to technological search, and that technological search 

conducted beyond national boundaries is detrimental to innovation (Fleming and 

Sorenson, 2004; Phene et al., 2006). However, after controlling for the geographical and 

science searches, the linear positive effect of technological search suggests that searching 

a wide array of technologies is always beneficial to biotech innovations, which are 

characterized to be inter-disciplinary in nature.  

 A second implication of this dissertation is to the upcoming research on various 

mechanisms that help the new knowledge search process. Intellectual human capital and 
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strategic alliances are two important mechanisms identified to be helpful in new 

knowledge search and knowledge brokering (Rosenkopf and Amedia, 2003; Hsu and 

Lim, 2008). Borrowing insights from absorptive capacity, I show that intellectual human 

capital helps in searching for new knowledge and that strategic alliances help in 

translating the new knowledge search into better technological performance. 

Consequently, I add to the stream of research by distinguishing the value of these two 

mechanisms to new knowledge search.  

 Third, in recent times an increasing number of scholars are interested in 

examining the contributions of human capital, especially the contributions of intellectual 

human capital to knowledge related activities and technological performance (Zucker et 

al., 2001; Subramaniam and Venkaratraman, 2001; Rothaermel and Hess, 2006). The 

results from the first essay suggest that bridging scientists and pure inventors assist in 

technological and geographical searches. The essay also suggests that pure scientists help 

the technological and geographical searches conducted by bridging scientists. The results 

from the third essay suggest that pure scientists and bridging scientists also help in the 

free flow of knowledge from the open scientific network. Taken together, the results add 

to the above stream of research in suggesting the kind of knowledge that can be accessed 

through the different types of intellectual human capital (Rosenkopf and Nerkar, 2001). 

The findings contribute to the upcoming stream of research that attempts to relate a firm’s 

knowledge exploration process to the kind of employees that the firm hires (Perretti and 

Negro, 2006). They also support the notion that contributions of pure scientists to 

technological activities are indirect, by assisting the knowledge related activities of 

individuals who are directly involved in technological activities (Furukawa and Goto, 
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2006; Rothaermel and Hess, 2006). In addition, I contribute to the research on the 

intellectual human capital-technological performance link by showing that new 

knowledge search is one of the processes through which intellectual human capital 

contributes to technological performance.  

 The above findings may also help managers in deciding on the kind of intellectual 

human capital to hire, depending on their knowledge requirements. If an organization is 

interested in searching wide arrays of technologies and geographies, the firm should 

consider hiring bridging scientists and pure inventors. Further, the results show how 

important it is for organizations to hire bridging scientists. Apart from assisting in the 

new knowledge search and connecting science-technology domains, bridging scientists 

also bridge pure scientists and the new knowledge search process, thereby helping firms 

to indirectly benefit from their pure scientists. Pure scientists might not be of direct help 

in searching for new knowledge related to technology development. Nevertheless, this 

thesis identifies a distinct and important role played by pure scientists. Since pure 

scientists are known to be connected to the open scientific world through publishing, 

these scientists bring in knowledge and information benefits similar to those that 

university partners can bring in. As university-firm partnerships are compared to the 

merging of entities from Mars and Venus, a firm can avoid such difficult partnerships by 

employing pure scientists within their organization. 

 Fourth, the findings from the second essay add to the stream of research on 

science-technology relationship in suggesting that bridging science and technology 

domains within a firm is not a simple human capital story of having scientists do both. A 

firm should have an appropriate exploitation mechanism in place to achieve this. The 
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essay also contributes to the research on knowledge exploration/exploitation in the 

following ways. First, it not reasonable to expect the individuals/domains involved in 

exploration to be also involved in exploitation. Instead, the exploration/exploitation 

balance should be balanced across different level/domains (Levie and Rosenkopf, 2006). 

Second, firm level structures play a vital role in appropriating returns from organizational 

search (Argyres and Silverman, 2004; Siggelkow and Rivkin, 2006). I also developed a 

novel measure that uses the patent and publication data to capture the extent to which a 

firm exploits the scientific knowledge that it produces in its technology development 

activities. In computing this measure, I first identified all publications produced by the 

focal firm and then all the patents citing those publications. Based on the assignee name 

of the patents, I calculated the proportion of the focal firm’s patents over all patents citing 

the focal firm’s scientific publications. The measure that lies between 0 and 1 helps in 

estimating the extent to which the scientific publications produced by a firm are being 

exploited in its patents. This measure can be used by scholars investigating the science-

technology relationship and the exploration/exploitation balance issues.  

 The above findings have important implications for practice. Managers cannot 

simply recruit intellectuals such as scientists and expect to see returns. The results 

suggest the importance of firm-level mechanisms for benefiting from intellectual human 

capital. I conducted interviews with the CEOs of two biotech firms in order to identify 

firm-level factors that they think are important for benefiting from intellectual human 

capital like scientists. Five factors emerged from the interviews. They are (1) frequent 

inter-departmental meetings that encourage exchange of ideas, (2) deliberate personal 

meetings with introverted scientists, who are generally silent during meetings, (3) a good 
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project manager- a person with good interpersonal skills, who need not necessarily be a 

scientist, but is capable of understanding what each scientist in a team is saying at a 

broader level and attempts to unify the scientists with a single project identity, (4) 

centralized R&D structure and (5) having at least one star scientist within the firm, or 

inviting a star scientist from outside onto the firm’s advisory board  

 The fifth implication is to the research on strategic alliances. The importance of 

strategic alliance to technological performance has been well established in the literature 

(Powell et al., 1996). Subsequently, scholars have started concentrating on the attributes 

of alliance partners in order to evaluate their significance (Stuart, 2000). This dissertation 

proposes that a holistic understanding of the strategic advantage derived from alliance 

partners warrants a careful examination of the alliance partners’ attributes and their 

interaction with the focal firm’s characteristics. A few scholars have started to unravel 

this effect by studying the technological overlap between alliance partners in 

investigating the relative benefits (Mowery, Oxley and Silverman, 1998). My first essay 

contributes to this stream of research in identifying the kind of alliance portfolio that best 

fits with the different types of searches conducted by the focal firm. Similarly, the finding 

from the third essay that pure scientists and bridging scientists substitute university 

partners suggests that the benefits from a formal partnership depend on whether or not it 

is an extension of the social relationships of human capital residing within the firm. The 

substitutive/complementary findings from the third essay underline that knowledge 

spillover from network entities is a function of their institutional commitments and 

practices of members of the network (Owen-Smith and Powell, 2004). The above result 
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also encourages multi-level scholars who investigate the inter-dependency of factors 

across different levels to give due attention to the characteristics of factors under study.  

  In deciding on the alliance strategy, management is required to choose a 

particular partner from a set of possible choices, often with the objective of minimizing 

the risk of making the wrong choice. The above findings provide important directions to 

managers in deciding if a firm will benefit from choosing an entity as an alliance partner 

or not, in conjunction with the firm’s internal requirements and competencies. The 

findings suggest that if a firm is interested in searching for new knowledge from a wide 

array of technologies and geographies, it is vital that the firm deliberately chooses a 

technologically and geographically diverse alliance portfolio. Nevertheless, it should be 

acknowledged that absorbing knowledge from such a diverse portfolio is not an easy task. 

The results supporting the argument that intellectual human capital and firm partners are 

complements proposes a solution to this absorptive issue. The findings advocate that a 

firm should have the necessary diversity in their internal expertise in order to ensure that 

they can absorb the knowledge from a diverse alliance portfolio. 
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LIMITATIONS AND FUTURE DIRECTIONS 

 
There are number of limitations acknowledged in each of the essays. A few important 

ones to mention are as follows. The first limitation is pertaining to patent and publication 

data. Restricting the scope to patent data has several limitations because not all 

companies have the same propensity to patent and publish. In collecting the patent data, I 

restricted my attention to 7 technology classes (US 3-digit classification) that represent 

the biotechnology industry. However, I take into consideration all the publications made 

by the sample firms rather than restricting my attention to those that concentrate on 

biotechnology areas. It is possible that a few diversified firms such as Johnson and 

Johnson and BASF have publications on areas that are beyond the focus of the patent 

portfolio under consideration. Consequently, an important limitation of my three essays is 

that the estimates pertaining to publications and scientists can be biased upwards for a 

few firms.   

 Second, it is noted that 40% of the citations in patents are added by patent 

examiners (Alacer and Gittelman, 2006). I take into account all the forward and 

backward citations of patents in calculating the measures, which is a notable limitation of 

this dissertation. However, as explained in the first essay, this limitation is mitigated by 

the way citations are used in my dissertation. 

 The third limitation is related to the operationalization of measures, such as new 

knowledge search and exploitation mechanism. Currently, these variables are restricted to 

inferences from patent and publication documents which represent successful searches 

and exploitation that eventually were transformed into patentable and publishable 

innovations. However, not all searches and knowledge exploitation eventually get 
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translated into successful patents and publications. A measure using primary data that 

completely incorporates the finer aspects of the above variables will improve my findings 

and implications. Further, in accounting for the geographical search and exploitation 

mechanism, I consider only the first inventor and first assignee of the patents. A more 

comprehensive measure encompassing the list of inventors and assignees of patents 

would make the results and implication robust.  

 Last but not least, my study exploring the importance of intellectual human 

capital can only be generalized to high-technology industries where intellectual human 

capital is considered to be a key input for technological innovation. Further, my sample 

focuses only on those firms that have patents issued under their name. Hence, the results 

are applicable only to those firms that have the inclination and competency to apply for 

patents and get them issued.  

 There are several avenues of future research. First, I am interested in identifying 

other factors that might mediate the relationship between intellectual human capital and 

technological performance. A second opportunity for research is in understanding how 

intellectual human capital and alliances help firms in a new knowledge search that is both 

technologically and geographically distant (i.e. interaction of technological and 

geographical search). Third, I am conducting interviews with biotech firms in order to 

unravel some of the firm-level factors that facilitate the exploitation of knowledge within 

organizations. Fourth, while this dissertation uses performance of patents as the 

dependent variable, a worthwhile area of research is to identify outputs (that are capable 

of generating economic rents) at different stages of the biotech value chain. This will help 

in precisely evaluating the contributions of factors that lie across different stages of the 
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value chain. A fifth possibility for research is to identify a method capable of measuring 

the contributions of alliance partners individually, by looking at the intellectual property 

rights emerging from each partnership.  

 To conclude, I believe that the findings from my dissertation will stimulate 

scholars and practitioners to have a systemic view of managing intellectual human capital 

and strategic alliances for better technological performance. Scholars and managers 

should be motivated to delve into the characteristics of intellectual human capital and 

attributes of alliance partners while they investigate the benefits derived from these 

factors. In exploring the contribution of intellectual human capital to technological 

performance, it is equally important that scholars and practitioners give due attention to 

the organizational structure, as this is what ensures a smooth translation of the 

competencies of intellectual human capital into better technologies. 
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APPENDIX 
Table A.1. Summary of Dependent, Independent and Control Variables 

Variables Level Description 
Dependent Variable 
Technological 
Performance 

Patent-Year 
Level 

Cumulative forward citation frequencies accrued by the focal 
patent 

Independent Variables 
Technological 
search 

Patent-Year 
Level 

One minus the Herfindahl concentration index of the technology 
classes of backward cited patents  

Geographical 
search 

Patent-Year 
Level 

One minus the Herfindahl concentration index of the geographical 
origin of backward cited patents  

Science search Patent-Year 
Level 

Number of times a patent refers to non-patented literature 

Pure scientists Firm   Level Proportion scientists within firms whose names are exclusively 
listed in publications and not in patents  

Bridging scientist Firm Level Proportion of patent inventors within a firm whose names are also 
listed in scientific papers published by the firm 

Pure inventors Patent-Year 
Level 

Number of patent inventors for each patent who names are 
exclusively listed in patents  

Technological 
diversity of alliance 
portfolio 

Firm-Year 
Level 

One minus the Herfindahl concentration index of the 
technological classification of alliance portfolio (Alliance 
portfolio comprises of all the entities with whom the focal firm 
had formed alliance in the year of observation in which a patent 
was filed by the focal firm)  

Geographical 
diversity of alliance 
portfolio 

Firm-Year 
Level 

One minus the Herfindahl concentration index of the geographical 
location of alliance portfolio (Alliance portfolio comprises of all 
the entities with whom the focal firm had formed alliance in the 
year of observation in which a patent was filed by the focal firm) 

No of university 
partners in the 
alliance portfolio 

Firm-Year 
Level 

Number of alliance partners from academic institutions in the year 
of observation in which a patent was filed by the focal firm  

Exploitation of 
science knowledge 
in technology 
domain 

Firm-Year 
Level 

Proportion of focal firm’s patents over all patents citing the focal 
firm’s scientific publications  

University alliances Firm-Year 
Level 

Number of university partners with whom the focal firm had 
formed alliance in the year of observation  

Firm alliances Firm-Year 
Level 

Number of firm partners with whom the focal firm had formed 
alliance in the year of observation  

Control Variables 
Publication volume Firm-Year 

Level 
Cumulated count of the number of publications produced by the 
focal firm in the year of observation in which a patent was filed by 
the focal firm 

Publication citation Firm-Year 
Level 

Normalized citation count received by focal firm’s publications 

Firm’s technological 
strength 

Firm-Year 
Level 

Number of patents granted to a firm in the year of observation in 
which a patent was filed by the focal firm  

R&D expenditure Firm-Year 
Level 

R&D expenditure made in the year of observation in which a 
patent was filed by the focal firm 

Firm size Firm-Year 
Level 

Number of employees in the year of observation in which a patent 
was filed by the focal firm 

Firm age Firm-Year 
Level 

Number of years since the firm was founded 
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Patent age Patent-Year 
Level 

Year elapsed since the patent was filed  

Technology class 
dummy variable 

Patent-Year 
Level 

Dummy variable for the technology class of the focal patent 

Year fixed effects Patent-Year 
Level 

Dummy variable for the year in which the focal patent is filed 
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Table A.2. List of Sample Firms 
 
AASTROM BIOSCIENCES INC IMMUNOGEN INC 
ABAXIS INC IMMUNOMEDICS INC 
ABBOTT LABORATORIES INSITE VISION INC 
ABGENIX INC INSPIRE PHARMACEUTICALS INC 
ACCESS PHARMACEUTICALS INTRABIOTICS PHARMACEUTICALS 
ACLARA BIOSCIENCES INC ISIS PHARMACEUTICALS INC 
ADOLOR CORP JOHNSON & JOHNSON 
ADVANCED BIONICS CORPORATION KING PHARMACEUTICALS INC 
AFFYMETRIX INC KOS PHARMACEUTICALS INC 
AKZO NOBEL NV KOSAN BIOSCIENCES INC 
ALBANY MOLECULAR RESEARCH LA JOLLA PHARMACEUTICAL 
ALCON INC LARGE SCALE BIOLOGY CORP 
ALEXION PHARMACEUTICALS LEXICON GENETICS INC 
ALIZYME PLC LIFECORE BIOMEDICAL INC 
ALKERMES INC LIGAND PHARMACEUTICALS INC 
ALLERGAN INC LYNX THERAPEUTICS INC 
ALLIANCE PHARMACEUTICAL CORP MARTEK BIOSCIENCES CORP 
ALLOS THERAPEUTICS INC MATRITECH INC 
ALPHARMA INC MAXIM PHARMACEUTICALS 
ALTEON INC MAXYGEN INC 
ALZA CORP MDS INC 
AMARILLO BIOSCIENCES INC MEDAREX INC 
AMGEN INC MEDICIS PHARMACEUTICAL CORP 
AMYLIN PHARMACEUTICALS INC MEDIMMUNE INC 
ANDRX CORP MERCK & CO INC 
ANGIOTECH PHARMACEUTICALS MILLIPORE CORP 
ANIKA THERAPEUTICS INC MOLECULAR DEVICES CORP 
APHTON CORP MONSANTO CO 
ARENA PHARMACEUTICALS INC MYRIAD GENETICS INC 
ARIAD PHARMACEUTICALS NANOGEN INC 
ARQULE INC NASTECH PHARMACEUTICAL CO INC 
ASTRAZENECA PLC NEOPHARM INC 
ATHEROGENICS INC NEOSE TECHNOLOGIES INC 
ATRIX LABORATORIES INC NEUROBIOLOGICAL TECHNOLOGIES INC 
AUTOIMMUNE INC NEUROCRINE BIOSCIENCES INC 
AVANIR PHARMACEUTICALS NEUROGEN CORP 
AVANT IMMUNOTHERAPEUTICS NEXIA BIOTECHNOLOGIES INC 
AVI BIOPHARMA INC NEXMED INC 
AVIGEN INC NORTHFIELD LABORATORIES 
BARR LABORATORIES INC NOVARTIS AG 
BASF AG NOVAVAX INC 
BAUSCH & LOMB INC NOVEN PHARMACEUTICALS 
BAXTER INTERNATIONAL INC NPS PHARMACEUTICALS INC 
BAYER CORP NUTRITION 21 INC 
BIOCRYST PHARMACEUTICALS ONYX PHARMACEUTICALS INC 
BIOMET INC ORCHID BIOSCIENCES INC 
BIOMIRA INC ORGANOGENESIS INC 
BIOSITE INC ORPHAN MEDICAL INC 
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Table A.2. List of Sample Firms (Contd.) 
 
BIOTECH HOLDINGS LTD OSI PHARMACEUTICALS INC 
BIOTIME INC OXIGENE INC 
BONE CARE INTERNATIONAL OXIS INTERNATIONAL INC 
BOSTON BIOMEDICA INC PEREGRINE PHARMACEUTICALS INC 
BRADLEY PHARMACEUTICALS PFIZER INC 
BRISTOL MYERS SQUIBB CO PHARMACOPEIA INC 
CANGENE CORP PHARMACYCLICS INC 
CARRINGTON LABORATORIES INC POLYDEX PHARMACEUTICALS 
CELGENE CORP POZEN INC 
CELL GENESYS INC PRAECIS PHARMACEUTICALS 
CELL GENESYS INC PROGENICS PHARMACEUTICALS 
CELLEGY PHARMACEUTICALS PROMEGA CORP 
CELSIS INTERNATIONAL PLC PROTEIN DESIGN LABS INC 
CEPHALON INC PROTEIN DESIGN LABS INC 
CHATTEM INC QLT INC 
CHIRON CORP REGENERON PHARMACEUTICALS INC 
CIMA LABS INC RIGEL PHARMACEUTICALS INC 
CIPHERGEN BIOSYSTEMS INC SALIX PHARMACEUTICALS 
COLLAGENEX PHARMACEUTICAL SANOFI-SYNTHELABO 
COLUMBIA LABORATORIES SCHERING AG 
COMMONWEALTH BIOTECHNOLOGIES INC SCHERING-PLOUGH CORP 
CONNETICS CORP SCICLONE PHARMACEUTICALS 
CORTEX PHARMACEUTICALS SCIOS INC 
CSL LIMITED SENETEK PLC 
CUBIST PHARMACEUTICALS SEPRACOR INC 
CV THERAPEUTICS INC SEQUENOM INC 
DEPOMED INC SICOR INC 
DISCOVERY LABORATORIES SKYEPHARMA PLC 
DOW AGROSCIENCES LLC SONUS PHARMACEUTICALS 
DRAXIS HEALTH INC SPECIALTY LABORATORIES INC 
DUSA PHARMACEUTICALS INC SPECTRAL DIAGNOSTICS INC 
DYAX CORP STRATAGENE CORP 
EISAI CO LTD SUPERGEN INC 
ELAN CORP PLC SYNAPTIC PHARMACEUTICAL 
ELI LILLY & CO SYNBIOTICS CORP 
EMBREX INC TANOX INC 
EMISPHERE TECHNOLOGIES TARGETED GENETICS CORP 
ENTREMED INC TARO PHARMACEUTICAL INDUSTRIES 
ENZO BIOCHEM INC TECHNE CORP 
EPIMMUNE INC TELIK INC 
E-Z-EM INC TEVA PHARMACEUTICAL INDUSTRIES 
FORBES MEDI-TECH INC THIRD WAVE TECHNOLOGIES INC 
FOREST LABORATORIES INC TRANSKARYOTIC THERAPIES 
FUJISAWA PHARMACEUTICALS COMPANY 
LTD TRIMERIS INC 
GENE LOGIC INC TRIPOS INC 
GENELABS TECHNOLOGIES INC TULARIK INC 
GENENCOR INTERNATIONAL INC UNIGENE LABORATORIES 
GENENTECH INC V.I. TECHNOLOGIES INC 
GEN-PROBE INC VALENTIS INC 
GENTA INC VASOGEN INC 
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Table A.2. List of Sample Firms (Contd.) 
 
GENVEC INC VERTEX PHARMACEUTICALS INC 
GENZYME BIOSURGERY VICAL INC 
GILEAD SCIENCES INC VION PHARMACEUTICALS INC 
GUILFORD PHARMACEUTICALS INC VIRAGEN INC 
HAUSER INC VIROLOGIC INC 
HEMISPHERX BIOPHARMA INC VIROPHARMA INC 
HESKA CORP VYSIS INC 
HUMAN GENOME SCIENCES INC WATSON PHARMACEUTICALS INC 
HYBRIDON INC WYETH 
HYCOR BIOMEDICAL INC XECHEM INTERNATIONAL 
IDEXX LABORATORIES INC XOMA LTD 
IMCLONE SYSTEMS INC ZILA INC 
IMMTECH INTERNATIONAL ZYMOGENETICS INC 
 
 

 
 

Table A.3. Comparison of Descriptive Statistics across 437 and 222 firms 
 
Descriptive Statistics for 437 firms 
Variables Average Standard 

Deviation 
Max Min 

Firm R&D  9.97 15.6 162754.7 0.5 
Firm Age  29.6 2.74 149.9 1 
Firm Size 8.9 200.3 119372.0 0.1 
Descriptive Statistics for 222 firms 
Variables Average Standard 

Deviation 
Max Min 

Firm R&D 20.9 8.6 162754.7 0.5 
Firm Age 29.1 3.35 149.9 1 
Firm Size 915.9 10.2 119372.0 1 

 
 
 
 
 

Table A.4. General Description of 222 Sample Firms between 1990-2000 
 

Year No. of 
Patents

No. of 
Publications 

No. of 
Alliances 

1990 424 3863 298
1991 489 3436 455
1992 540 3995 577
1993 584 4573 468
1994 538 4857 643
1995 548 5349 545
1996 901 5297 805
1997 1394 6984 863
1998 1778 7095 847
1999 1728 7943 829
2000 1722 8181 852
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Table A.5. Types of Recap Alliances 
 
1 Acquisition 14 License 
2 Asset Purchase 15 Loan 
3 Assignment 16 Manufacturing 
4 Co-Development 17 Marketing 
5 Co-Market 18 Merger 
6 Collaboration 19 Option 
7 Co-Promotion 20 Research 
8 Cross-License 21 Security 
9 Development 22 Settlement 
10 Distribution 23 Sublicense 
11 Equity 24 Supply 
12 Joint Venture 25 Termination 
13 Letter of Intent 26 Warrant 

 
 
 

Table A.6. Technology Classification of Recap Alliances 
 
1 Adjuvant 28 Monoclonals - Conjugates 
2 Attenuated Virus Production 29 Monoclonals - Humanized Abs 
3 Bioinformatics 30 Monoclonals - Transgenic mice 
4 Carbohydrates 31 Natural Product 
5 Cell Therapy - Stem Cells/Factors 32 Oligonucleotide ligands 
6 Collagen matrix 33 Oligonucleotides - Antisense/Triple 

helix 
7 Combinatorial 34 Oligonucleotides - Gene Therapy 
8 Device 35 Oligonucleotides - Ribozymes 
9 DNA Probes 36 Peptides 
10 Drug Delivery - Liposomes 37 PFOB Emulsions 
11 Drug Delivery - Oral 38 Pharmacogenomics 
12 Drug Delivery - Other 39 Phototherapy 
13 Drug Delivery - Sustained Release 40 Polyclonal Antibodies 
14 Drug Delivery - Transdermal 41 Polyethylene glycol (PEG) products 
15 Gene Expression 42 Proteomics 
16 Gene Sequencing 43 Purines & Pyrimidines 
17 Generics 44 Rational Drug Design - Computational 
18 Hyaluronic acid 45 Rational Drug Design - Synthetics 
19 Immunoassay 46 Recombinant DNA 
20 Immunoglobulin 47 Resin Polymers 
21 Implantable Devices 48 Screening 
22 In-licensed Products 49 Separations 
23 Microarrays 50 Service Laboratory 
24 Micropropagation 51 Synthetics 
25 Microspheres 52 Transcription Factors 
26 Monoclonals 53 Transgenics 
27 Monoclonals - Anti-Idiotypes 
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