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SUMMARY 

 

Five analogues with the c-di-GMP backbone structure but with varied bases, 

including c-di-GMP itself were synthesized with reasonable yield of 10-15% after 8 

steps. They were designed as antimicrobial agents to inhibit biofilm formation, which is 

responsible for diseases such as chronic cystic fibrosis and nosocomial bacteremia. These 

compounds were subsequently tested for biological activities on Slr 1143, diguanylate 

cyclase of Synechocystis sp., that was overexpressed from the recombinant plasmid 

which contained the gene of interest and subsequently, purified by affinity 

chromatography. A new HPLC method was optimised and it applied in the analysis of the 

synthetic compounds, which was coincidentally capable of eluting out the compounds 

earlier than the product, hence separating the two peaks, with good resolution.  Results 

have shown that cyclic di-inosinylic acid 9b exhibited a higher inhibition of 60% on 

Slr1143 than c-di-GMP. 9b can also be assayed on diguanylate cyclases of other bacteria 

species to determine its potential as an inhibitor of biofilm formation. Future work can 

also be done to improve the inhibitory activity of 9b by synthesising libraries that contain 

compounds with pharmacophores similar to 9b. It is our firm belief that various diseases 

caused by biofilm formation can be treated with an alternative therapeutic method of 

using strong inhibitors in the near future. 
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CHAPTER 1: INTRODUCTION 

 

Bacteria biofilm, which is defined as a community of bacteria that is attached to a 

surface and encased in a self-produced polymeric matrix1,2, has long been a cause of 

concern for medical specialists and researchers as many chronic bacterial infections are a 

result of biofilm formation. Some of the pathogenic bacteria involved are Vibrio 

cholerae
3,4, Yersiia pestis, Pseudomonas aeruginosa

5 and Staphylococcus aureus
6, to list 

a few. For instance, Staphylococcus aureus is an important human and animal pathogen 

that is found on the skin and mucosal surfaces of humans, specifically in the anterior 

nares. It is the primary and most common cause of surgical infections and nosocomial 

bacteremia due to biofilm-based infections6,7, which can increase hospital stay by 

duration of up to 2-3 days, incurring billions of added cost per year. In addition, biofilm 

formation can also lead to antibiotic resistance6, which is a pressing problem that needs to 

be overcome. Pseudomonas aeruginosa, on the other hand, is responsible for systemic 

infections in individuals with low immunity and chronic respiratory diseases in patients 

with cystic fibrosis whilst Vibrio cholerae can cause acute intestinal infection cholera 

through two main virulence factors; cholera toxin (CT) is responsible for the profuse 

secretory diarrhoea while toxin co-regulated pilus (TCP) is required for colonization of 

the small intestine. Its ability to form biofilm, which can withstand environmental 

stresses, not only increases its chances of survival in aquatic environments between 

cholera epidemics, but may also result in bacterial resistance to the innate host immune 

system functions. 
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Biofilms are resistant to antimicrobial and antibiotics for a myriad of reasons. The 

altered living conditions of the biofilm (e.g. low pH, low pO2, high pCO2, low hydration 

level, etc) may result in low metabolic activity and hence low antimicrobial activity.1,8 

Furthermore, the antimicrobial agents may be trapped as waste or chelated by 

inactivating enzymes. Horizontal gene transfer within bacteria in biofilms also allows 

bacteria to gain resistance1. Quorum sensing signalling systems allow synchronisation of 

the target gene expression within the biofilm, allowing the bacteria to evade the effects of 

antimicrobial agents9,10. In addition, a fraction of bacteria may differentiate into persister 

cells which have extremely low metabolic rate and are non growing. These cells are 

resistant and may regenerate the biofilm once the therapy ended11.  

 

Current therapies to reduce the rate of biofilm infections include prophylactic use 

of antibiotics and microbiocides through methods such as device coatings, device 

immersion and surgical site irrigation12. Quorum quenching enzymes or inhibitors13, as 

well as antimicrobials to destroy persister cells, have been developed over the years. In 

addition, strategies such as enhancing the activity of the antimicrobial agents via 

electromagnetic field14, radiofrequency electrical current15 and ultrasound16 have been 

explored besides destroying and reducing the growth of the biofilm matrix1. 

 

Cyclic purine ribonucleotides such as cyclic adenosine monophosphate (cAMP) 

and cyclic guanosine monophosphate (cGMP) are well-studied examples of second 

messengers - small molecules that play an important role in cellular signalling and 

function. Synthesis of these molecules is regulated by enzymes like adenyl/guanyl 
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cyclases, whereas the breakdown of second messengers via hydrolysis is catalysed by 

phosphodiesterases. This cycle of synthesis and hydrolysis allows the regulation of the 

intracellular levels of cyclic purine ribonucleotide molecules, which has been elucidated 

to be responsible for bacterial response to external stimuli such as change in temperature, 

light, pH, oxygen levels and nutrients . In addition, cyclic purine ribonucleotides are also 

responsible for the mediation of cellular processes such as vision and activities of a wide 

range of protein kinases, GTPases and ion channels in eukaryotes. Although cGMP is 

commonly involved in cellular signalling in eukaryotic cells, prokaryotes do not seem to 

use it as a signalling molecule. Instead they utilise an alternative, cyclic guanosine 

monophosphate (c-di-GMP), also known as cyclic bis(3’-5’)diguanylic acid in cellular 

signalling.                          

 

Although c-di-GMP, was first discovered in 1990 to be an activator of a cellulose 

synthetase complex in Gluconacetobacter xylinus
17, its role as a signalling molecule only 

attracted widespread interest recently in view of the growing bacterial genome sequence 

that has been decoded. It has since been established as an ubiquitous signalling molecule 

in bacteria, but not in eukaryotic cells or archaea.18 The signalling transduction function 

of c-di-GMP, allowing surface-cell and cell-cell interaction is further demonstrated by the 

spanning of diguanylate cyclase across the cell membrane. The structure of c-di-GMP is 

illustrated below (Figure 1). 
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Figure 1. Structure of c-di-GMP 
 
 

 
The synthesis of c-di-GMP involves the conversion of two guanosine triphosphate 

(GTP) molecules by diguanylate cyclases (DGC)s into c-di-GMP. Degradation of c-di-

GMP is achieved via hydrolytic cleavage of the cyclic compound into guanosine 

monophosphate (GMP)17,20,21 by phosphodiesterases (PDE)s through the GGDEF domain 

of DGCs and the EAL domains in PDEs respectively.  There are a number of bacterial 

proteins that are bifunctional, meaning that they contain both the GGDEF and EAL 

domains. Other enzymes show greater specificity in their activity and they function either 

as DGCs or PDEs.22 However, the cellular level of c-di-GMP is not regulated by one 

protein but a myriad of different proteins; the Pseudomonas aeruginosa genome encodes 

17 different DGC domains, 5 PDE domains, and 16 that contain both DGC domains and 

PDE domains (DGC-PDE). Each performs its roles and regulate DGC and PDE levels 

differently such that an appropriate balance is achieved.5  

 
 

c-Di-GMP has the ability to regulate motility and virulence gene expression of 

bacteria and at high intracellular concentrations of c-di-GMP, biofilm formation and 

exopolysaccharide movement.19 Studies of Pseudomonas aeruginosa have shown that an 

increase in the diguanylate cyclases (DGCs)  levels but not the phosphodiesterases (PDEs) 
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levels, accelerated bacterial production, resulting in adhesion to surfaces19. Increase in c-

di-GMP concentration will also result in formation of multilayer pellicle which is a 

hyperbiofilm phenotype.5  

 

It was initially proposed that, based on studies done between 2004 and 200617,20-22, 

allosteric product inhibition of DGCs is of fundamental importance for c-di-GMP 

signalling as this mechanism allows cellular levels of c-di-GMP in bacterial cells to be 

regulated.  This hypothesis is further established by the elucidation of the crystal structure 

of the Caulobacter crescentus response regulator protein, PleD17,20,22,  illustrating the 

dimeric structure of two GGDEF domains of the enzymatically active form of DGC, with 

a catalytic site formed between the two subunits. Allosteric product inhibition occurs 

when two intercalated molecules of c-di-GMP bind to the D2/DGC interface (I-site) and 

immobilise the DGC domain with respect to the D1/D2 stem (Fig 2).22 This prevents the 

DGC enzyme from approaching its counterpart in the dimer, thus preventing the 

formation of c-di-GMP. Clearly, inhibition of PleD is non-competitive i.e. independent of 

substrate concentration, and can thus be attributed to an allosteric effect of the I-site 

binding.22  
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Figure 2. Mechanistic model of PleD regulation22. 
 

It is also interesting to note that biofilm formation and other virulence-related 

traits of pathogenic bacteria were not controlled by the same diguanylate cyclase across 

all bacteria species. For example, late stage biofilm formation by Burkholderia cepacia 

involves a protein with a DGC domain whereas Yersinia pestis regulates this process 

through HmsT protein (DGC) and HmsP protein (PDE).23 In the Salmonella family of 

bacteria, the cellulose component of biofilm is regulated by GcpA protein24 whereas the 

biofilm formation and motility is controlled by AdrA protein, which has a DGC domain 

and is responsible for the synthesis of c-di-GMP25. 

 

In addition to the properties mentioned above, c-di-GMP has been regarded to 

possess many biological activities. In 2005, an increase in the concentration of 

extracellular c-di-GMP was discovered by Karaolis and coworkers to inhibit S. aureus 

intercellular adhesive interactions, hence inhibiting biofilm formation.6 This was also 

observed in methicillin resistant S. aureus and human and bovine intramammary mastitis 

isolates of S.aureus.6 Furthermore, inhibition of S. aureus’ ability to form biofilm in 

human epithelial cells HeLa was also observed.6 In other words, c-di-GMP acts as a 

potential antimicrobial and antipathogenic agent26 in vivo as it reduces bacterial 

colonization, hence reducing the survival of bacteria within the host.  When human colon 

cancer cells were treated with 50µM of c-di-GMP, in vitro basal and growth factor-

stimulated proliferation was inhibited. Studies on human neuroblastoma cells have shown 

that c-di-GMP is non-cytotoxic up to 100 µM which will inhibit human colon cancer 

cells proliferation27. Subsequent research by the same group unravelled the 
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immunostimulatory property of c-di-GMP28 and proved that it is an effective 

immunomodulator and vaccine adjuvant against pneumococcal infection29,30. 

 

Hence, the above examples proved that c-di-GMP has numerous biological 

potential. With the emergence of resistant-strain bacteria, traditional antimicrobial agents 

and antibiotics may lose their viability. Hence, there is an urgent need to search for an 

alternate therapeutic approach to inhibit infections and diseases caused by bacteria. Most 

importantly, the main root of the problem, biofilm formation, should be addressed. Since 

biofilm formation can be controlled via regulation of c-di-GMP levels and c-di-GMP has 

shown to exhibit numerous biological potential, it is of our interest to synthesise cyclic 

dinucleotides with the same backbone structure but different bases and evaluate their 

inhibitory activities against diguanylate cyclases. 
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CHAPTER 2: SYNTHESIS OF CYCLIC DIGUANYLIC ACID (C-DI-GMP) AND 

ITS ANALOGUES 

 

2.1 Introduction 

 

 Since the late 1950s, a few synthetic methodologies have been developed for the 

synthesis of oligonucleotides in general. In chronological order, they are the 

phosphodiester approach, phosphotriester approach, phosphite triester approach, 

phosphoramidite approach and the H-phosphonate approach.1 Van Boom et al
2 was the 

first group to publish a synthetic pathway for c-di-GMP in the late 1980s. Their strategy 

was based on the modified hydroxybenzotriazole phosphotriester approach. In 2004, 

Hayakawa et al.
3 published the first alternative synthetic pathway. Their strategy was 

based on the phosphoramidite approach. In 2004 too, Jones et al.
4 published a second 

alternative to the synthesis of c-di-GMP using the phosphoramidite approach coupled 

with a H-phosphonate cyclization process. In 2006, Giese et al.
5 used the modified 

hydroxybenzotriazole phosphotriester approach in which the starting material was a 

ribose (rather than a nucleoside as in other reported methods); the base moiety was 

introduced onto the ribose only after cyclization of two ribose monophosphate molecules. 

In 2007, Yan et al.
6 utilized the H-phosphonate approach for their synthesis of c-di-GMP.  

  

 This project aims to synthesize c-di-GMP and four other analogues. The 

analogues consist of the c-di-GMP’s cyclic ribose template that is attached to two of the 

three different bases: guanine, uridine and inosine, instead of two guanine bases. 
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There are two general approaches towards the synthesis of c-di-GMP as shown in 

Scheme 1.  
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Scheme 1: Retrosynthetic analysis of two 
major approaches for synthesizing c-di-
GMP 

 

The first approach, the phosphoramidite strategy, synthesizes the cyclic backbone 

first, with the base being introduced subsequently in the route, as demonstrated by Giese5. 

Although this method allowed base derivatives of c-di-GMP to be made from a common 

synthetic intermediate, the analogues thus proposed can only have identical bases on both 

riboses due to the symmetrical nature of the cyclic sugar backbone.  

 

The second approach utilized a nucleoside as the starting material, with the base 

present right at the beginning of synthesis. As such, besides obtaining analogues with 

identical nucleosides, analogues with different combinations of nucleosides could also be 

prepared. This allowed a more diverse library of c-di-GMP analogues to be formed, 

1st Approach 2nd Approach 
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thereby explaining our choice of utilizing the second approach. The synthetic route which 

was used in this project was adapted and optimised from the paper written by Hayakawa 

et al.
7  

 

2.2 Results and Discussion 

 

 The synthetic route is presented in Scheme 2 and the synthesized analogues are 

shown in Figure 1. Synthesis of 2’-O-TBDMS-protected nucleoside derivatives was 

achieved in the first step by regioselectively protecting the 3’- and 5’-hydroxyls of 

nucleosides, as discussed by Corey8 and Trost9, before protecting the 2'-OH with 

TBDMSCl. To prepare 2a, guanosine 1a was first suspended in DMF at 0 °C. Di-tert-

butylsilanediyl ditriflate (1.2 eq,) was then added dropwise to the suspension. As the 

reaction progressed, the primary alcohol (5’-OH) preferentially reacted with the triflate 

first, then with 3’-OH, to form the protected diol that was soluble in DMF. This allowed 

more guanosine to dissolve, resulting in a clear solution 45 minutes later. Imidazole was 

then added to neutralize the triflic acid formed and to serve as a nucleophilic catalyst for 

the protection of 2’-OH by TBDMSCl to form a white precipitate 2a. The 3’,5’- protected 

diol was favourably formed instead of the 2’,5’-diol because the resultant diol formed a 

6-membered ring which was highly stable. 
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Scheme 2: Synthetic Route of c-di-GMP and analogues 
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- From 1 to 6, guanosine derivatives are denoted by ‘a’; uridine derivatives by ‘b’; inosine derivatives by ‘c’. 

- The general base is denoted by ‘B’; guanine base by ‘G’; dimethylformamidine-protected G by Gdmf; uracil base by 

‘U’, hypoxanthine base by ‘I’. 
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Figure 3: Analogues of 9 

 

For uridine, it was soluble in DMF but not inosine and interestingly, 2b and 2c did 

not precipitate out of the reaction mixture. Hence, alternative workup – extraction and 

flash column chromatography – was performed to purify the crude product. 

 

The free amine on the purine ring of guanosine was subsequently protected with a 

dimethylformamidine protecting group. This imine protecting group was chosen as it was 

susceptible to strong bases and would be cleaved at the end of the route, together with the 

β-cyanoethyl protecting group10-12. 

 

 To allow 3'-OH to be phosphorylated, the silyl diol protecting group was first 

cleaved with hydrogen fluoride-pyridine complex in dichloromethane to free the 3'-OH 

and 5'-OH. The product after extraction, which was of high purity as observed from TLC, 
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was protected at the 5'-OH with DMTrCl under anhydrous conditions. Only the 5’-OH 

protected regioisomer was observed as the secondary alcohol 3’-OH was too sterically 

hindered to attack the tertiary dimethoxytrityl carbocation. To prevent the undesired 

protection of the secondary alcohol, the concentration of the reagent was diluted. 

 

 For the 2’-OH-protected inosine, it was insoluble in DCM unlike the other two 

bases. Workup was hence simplified as only filtration was needed and the solid was 

washed thoroughly with saturated NaHCO3 to neutralize the acid and to remove the 

pyridine. 

 

 2-Cyanoethyl N,N-diisopropylchloro-phosphoramidite 11 was initially synthesized 

to be used for coupling with the free 3’OH on the protected nucleoside in the presence of 

collidine and N-methylimidazole to form 5a-5c.7 The synthesis of 11 (Scheme 3) is as 

follows: 3-hydroxypropionitrile was added dropwise to a mixture of PCl3 and acetonitrile 

at 0 °C. Nitrogen gas was then bubbled into the reaction mixture to purge out the gaseous 

HCl evolved during the reaction. The mixture was then concentrated in vacuo to remove 

PCl3 and acetonitrile. Subsequent addition of 2 equivalence of diisopropylamine to the 

mixture yielded 11.13,14 An additional equivalent of the base was necessary to form a salt 

with the remaining HCl present in the reaction mixture. Its counterpart 2-cyanoethyl bis-

N,N-diisopropylphosphordiamidite15 12 was also synthesized as shown in Scheme 3 and 

replaced 11 in the synthesis of 5a-c as both gave similar yields of approximately 78% and 

most importantly, 12 solved all the problems that were encountered. 11 was difficult to 

handle as it was highly moisture-sensitive unlike 12 which could undergo extractive 
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workup. Most importantly, extractive workup performed for the phosphitylation reaction 

utilizing excess 11 hydrolysed the monochlorophosphoramidite to 

monohydroxyphosphoramidite. This hydroxyl compound was difficult to remove by 

column chromatography during the purification of 5a-c as it tailed seriously and would 

eventually elute together with the product.  

PCl3     + HO
CN ACN, 0 oC, 2 h Cl

P
O

Cl

CN

N
H

N
H

(2 equiv)

(5 equiv)

b.p. = 76oC b.p. = 228oC

b.p. = 298oC

b.p. = 323.8oC
ether, rt, 12 h

ether, rt, 12 h

N

P
O

NC
N

P
O

NC
N

Cl

10

10

11

12

78%

79%  

Scheme 3: Synthesis of 11 and 12 

 

12 was synthesized by adding 5 instead of 2 equivalence of diisopropylamine to 2-

cyanoethyl dichlorophosphoramidite to ensure the substitution of all chloro groups with 

diisopropylamine. With 12, coupling was achieved in the presence of 1H-tetrazole in 

anhydrous acetonitrile. Tetrazole extracted the proton from the free 3’OH, increasing the 

rate of the nucleophilic attack to form 4a-c. Tetrazole also converted diisopropylamine to 
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diisopropylammonium tetrazolide salt, which precipitated out of the reaction mixture, 

thus driving the reaction forward. 

 

Allyl alcohol was added to a mixture of 5 and molecular sieves in acetonitrile. The 

displacement of diisopropylamine by allyl alcohol was promoted by the acid azole, 

imidazolium perchlorate (IMP). The postulated mechanism16,17 is as follows: IMP first 

acted as an acid by protonating the phosphoramidite at nitrogen to form an activated 

species. The free imidazole then attacked the phosphorous centre, displacing 

diisopropylamine to form a phosphorazolidite. Being a good leaving group, the azole was 

then easily displaced by allyl alcohol. Subsequent oxidation of the diribonucleoside 

phosphite to diribonucleoside phosphate was achieved with butanone peroxide. 

Dichloroacetic acid was added to cleave the DMT protecting group to afford compounds 

6a-e in high yields; this resulted in a orange-red solution, which indicated the presence of 

the DMT-OH.  

 

Different nucleosides can be coupled together in the presence of the promoter IMP 

and molecular sieves as moisture scavenger16. The mechanism of this reaction is the same 

as the previous step. The free 5’-OH group on 6a displaces the diisopropylamine group 

on 5a to form a coupled product via the phosphorazolidite intermediate. Subsequent 

oxidation and detritylation gave compound 7a. The other analogues were synthesized in 

the same manner using the respective phosphoramidite and 5’-O-free nucleoside 

phosphate. 
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With sodium iodide in refluxing acetone, the iodide attacked the partially electron 

deficient allylic alcohol oxygen on 7 to form the alkoxide, with allyl iodide as side 

product. This intermediate was highly hygroscopic. Attempts to isolate it by filtration was 

only partially successful as most of the precipitate dissolved during the course of 

filtration. Hence, an alternative isolation procedure was attempted. Cold anhydrous 

acetone was added to the concentrated reaction mixture to precipitate more white solid, 

which was quickly filtered, washed with cold anhydrous acetone and dissolved in 

methanol. Removal of methanol in vacuo afforded the dried intermediate, which was 

further dried overnight in vacuo at 45 °C before suspending it in anhydrous THF under 

high-dilution conditions at room temperature, with N-methylimidazole (N-MeIm) as the 

nucleophilic catalyst and 2,4,6-triisopropylbenzenesulfonylchloride (TPSCl) as the 

condensing agent.  

 

The yield of this cyclization step was generally very low. In all theattempts, the 

cyclization reaction did not go to completion even after 60 hrs. The long hours of reaction 

also resulted in the formation of many side products (as shown by TLC analysis). To 

circumvent these problems, we proceeded to modify the procedure by adding moisture 

scavenger, molecular sieves (3Å) to the reaction mixture and using 5 – 7 equivalence of 

TPSCl and N-MeIm. These modifications enabled the reaction to go to completion with 

minimal side products in 36 hours. This made the isolation of the cyclized product easier. 

 

Finally, the fully protected cyclic dinucleotide was treated with a 1:1 mixture of 

concentrated aqueous ammonia and methanol to remove the dimethylformamidine and β-



  

    20 

cyanoethyl protecting groups. Subsequent treatment with triethylamine trihydrofluoride 

removed the silyl group. The resulting crude product was purified by reverse-phase 

HPLC. The purified c-di-GMP and its analogues were obtained in 10 – 15% average 

overall yields. 

 

2.3 Experimental Section 

 

3.1 Materials 

 

All solvents and reagents were purchased from commercial sources and used 

without further purification. Powdery molecular sieves (MS) 3Å were used without 

further treatment. Imidazolium perchlorate16 and 2-cyanoethyl bis-N,N-

diisopropylphosphoramidite15 were prepared according to reported methods. 

 

3.2    General 

 

 Moisture-sensitive reactions were carried out under nitrogen atmosphere with 

commercially obtained anhydrous solvents. Reactions were monitored by thin layer 

chromatography (TLC) using precoated plates (Merck silica gel 60, F254) and visualized 

with UV light or by charring with ninhydrin or phosphomolybdic acid. Flash column 

chromatography was performed with silica (Merck, 230 – 400 mesh). 1H-NMR, 13C-

NMR and 31P-NMR spectra were recorded at 298 K on either a Bruker ACF300, Bruker 

AMX500 or Bruker DPX-300 NMR spectrometer calibrated using residual undeuterated 
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solvent as an internal reference. The following abbreviations were used to explain the 

multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). The number of 

protons (n) for a given resonance was indicated as nH.  ESI mass spectra were acquired 

using Finnigan LCQ or Finnigan TSQ7000 spectrometer. HPLC analysis was carried out 

using a Phenomenex Luna 3µ-C18 column [4.6 (diameter) × 50 (height) mm]. Semi-

preparative HPLC was achieved using a COSMOSIL 5C18-AR-300 column [10 

(diameter) × 250 (height) mm]. 

 

3.3 Preparation of Compounds 2 – 9 

 

2.3.1 General Procedure for Preparation of 2 

 

To a stirred suspension of the respective nucleoside 1 (15 mmol) in DMF (30 mL) 

at 0 °C, di-tert-butylsilanediyl ditriflate (6.6 mL, 18 mmol) was added dropwise over 15 

min. After stirring at the same temperature for 30 min, imidazole (75 mmol) was added. 

This resulting mixture was stirred at 0 °C for 5 min and then at room temperature for 45 

min. When the reaction has ended, tert-butyldimethylchlorosilane (TBDMSCl) (22.5 

mmol) was added and the resulting mixture stirred at 60 °C for 2 hrs. The occurring 

precipitate was collected by filtration, washed with cold methanol and dried in vacuo to 

give pure 2a. For 2b and 2c, the reaction mixture remained clear at the end of the reaction. 

After DMF was partially removed in vacuo, the resulting material was partitioned 

between water (30 mL) ether (60 mL). The layers were separated and the aqueous layer 

back-extracted with ether (3 × 20 mL). The combined organic extracts were washed with 

brine (50 mL), dried over anhydrous Na2SO4 and concentrated in vacuo. The resulting 
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residue was purified by flash column chromatography. Elution using a gradient from 1:30 

ethyl acetate: dichloromethane to 1:20 ethyl acetate: dichloromethane afforded pure 2b. 

Elution using a gradient from 1:50 methanol: dichloromethane to 1:40 methanol: 

dichloromethane afforded pure 2c.   

 

2’-O-(tert-Butyldimethylsilyl)-3’,5’-O-(di-tert-butylsilanediyl)guanosine (2a) 

 1H NMR (300 MHz, DMSO–d6) δ 0.07 (s, 3H), 0.09 (s, 3H), 0.86 (s, 9H), 1.01 (s, 9H), 

1.06 (s, 9H), 3.93 – 4.01 (m, 2H), 4.26 – 4.35 (m, 2H), 4.57 (d, J = 5.1 Hz, 1H), 5.72 (s, 

1H), 6.35 (s, br, 2H), 7.91 (s, 1H), 10.65 (s, 1H); C24H44O5N5Si2
+ (M + H+) calcd m/z 

538.2876, found m/z 538.2895. Yield = 72%. 

 

2’-O-(tert-Butyldimethylsilyl)-3’,5’-O-(di-tert-butylsilanediyl)uridine (2b) 

1H NMR (300 MHz, (CD3)2CO) δ 0.17 (s, 3H), 0.21 (s, 3H), 0.96 (s, 9H), 1.06 (s, 18H), 

4.10 – 4.16 (m, 3H), 4.46 (d, J = 4.2 Hz, 1H), 4.52 (d, J = 4.2 Hz, 1H), 5.62 (d, J = 8.1 

Hz, 1H), 5.77 (s, 1H), 7.60 (d, J = 8.1 Hz, 1H), 10.27 (s, br, 1H); C23H42O6N2NaSi2
+ (M + 

Na+) calcd m/z 521.2474, found m/z 521.2490. Yield = 67%. 

 

2’-O-(tert-Butyldimethylsilyl)-3’,5’-O-(di-tert-butylsilanediyl)inosine (2c) 

1H NMR (300 MHz, CDCl3) δ 0.06 (s, 3H), 0.08 (s, 3H), 0.85 (s, 9H), 0.98 (s, 9H), 1.06 

(s, 9H), 4.00 – 4.08 (m, 2H), 4.35 – 4.36 (m, 1H), 4.50 – 4.55 (m, 1H), 4.58 – 4.59 (m, 

1H), 5.93 (s, 1H), 8.04 (s, 1H), 8.28 (s, 1H), 12.43 (s, br, 1H); C24H42O5N4NaSi2
+ (M + 

Na+) calcd m/z 545.2586, found m/z 545.2612. Yield = 80%. 
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2.3.2 Preparation of N
2
-(Dimethylamino- methylene)-2’-O-(tert-butyldimethyl- silyl)-

3’,5’-O-(di-tert-butylsilanediyl) guanosine (3) 

 

N,N-Dimethylformamide dimethyl acetal (52 mmol) was added to a suspension of 

2a (13 mmol) in methanol (78 mL). The reaction mixture was stirred at 50 °C for 5 hrs. 

After the solvent was removed in vacuo, hexane was added to precipitate out a white 

solid under cooling. The solid was collected by filtration, washed with cold hexane and 

dried in vacuo to afford pure 3. 

 

1H NMR (300 MHz, DMSO-d6) δ 0.08 (s, 3H), 0.11 (s, 3H), 0.87 (s, 9H), 1.01 (s, 9H), 

1.05 (s, 9H), 3.04 (s, 3H), 3.12 (s, 3H), 3.93 – 4.08 (m, 2H), 4.31 – 4.40 (m, 2H), 4.59 (d, 

J = 4.9 Hz, 1H), 5.88 (s, 1H), 7.99 (s, 1H), 8.48 (s, 1H), 11.40 (s, 1H); C27H49O5N6Si2
+ 

(M + H+) calcd m/z 593.3298, found m/z 593.3311. Yield = 96%. 

 

2.3.3 General Procedure for Preparation of 4 

 

To a solution of 3, 2b and 2c (10.7 mmol) respectively in dichloromethane (42 mL) 

at 0 °C, a chilled solution of hydrogen fluoride-pyridine complex (42.7 mmol) in pyridine 

(5.1 mL) was added dropwise over 15 min. The reaction mixture was stirred at 0 °C for 2 

hrs. The reaction mixture was then washed with saturated sodium bicarbonate solution (2 

× 30 mL) and extracted with dichloromethane (3 × 30 mL). The combined organic 

extracts were washed with brine (40 mL), dried over anhydrous Na2SO4, concentrated 

and dried in vacuo to give the detritylated product of 2b and 3 as white solids respectively. 
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For detritylated 2c, it precipitated out of the reaction mixture. Saturated sodium 

bicarbonate solution was added to the stirred reaction mixture till the pH was alkaline. 

The white solid of detritylated 2c was collected by filtration and washed with water 

followed by cold dichloromethane. The resulting dried solid of detritylated 2b, 2c and 3 

were then respectively dissolved in anhydrous pyridine (100 mL).  Dimethoxytrityl 

chloride (21.4 mmol) was added and the reaction mixture stirred at room temperature for 

12 hrs. The reaction was quenched by addition of methanol (3 mL). Concentration of the 

reaction mixture gave a viscous liquid. This material was partitioned between saturated 

sodium bicarbonate solution (30 mL) and dichloromethane (30 mL). The layers were 

separated and the aqueous layer back-extracted with dichloromethane (3 × 20 mL). The 

combined organic extracts were washed with brine (30 mL), dried over anhydrous 

Na2SO4 and concentrated in vacuo.  The resulting residue was purified by flash column 

chromatography. Elution using a gradient from 1:1 ethyl acetate-hexane to 1:20 

methanol-dichloromethane afforded pure 4a, 4b and 4c respectively. 

 

N
2
-(Dimethylaminomethylene)-2’-O-(tert-butyldimethylsilyl)-5’-O-

(p,p’dimethoxytrityl) guanosine (4a) 

1H NMR (300 MHz, CD3OD) δ -0.06 (s, 3H), 0.03 (s, 3H), 0.82 (s, 9H), 2.95 (s, 3H), 

3.02 (s, 3H), 3.32 – 3.46 (m, 2H), 3.70 (s, 6H), 4.17 – 4.18 (m, 1H), 4.36 – 4.39 (m, 1H), 

4.71 (t, J = 5.0 Hz, 1H), 6.00 (d, J = 5.0 Hz, 1H), 6.79 (d, J = 8.9 Hz, 4H), 7.16 – 7.44 (m, 

9H), 8.02 (s, 1H), 8.49 (s, 1H); C40H51O7N6Si+ (M + H+) calcd m/z 755.3583, found m/z 

755.3601. Yield = 89%. 
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2’-O-(tert-butyldimethylsilyl)-5’-O-(p,p’-dimethoxytrityl)uridine (4b) 

1H NMR (300 MHz, (CD3OD) δ 0.14 (s, 6H), 0.92 (s, 9H), 3.46 – 3.47 (m, 2H), 4.04 (s, 

6H), 4.11 (m, 6H), 4.32 – 4.33 (m, 2H), 5.25 (d, J = 8.1 Hz, 2H), 5.89 (s, 1H), 6.84 (d, J 

= 8.7 Hz, 4H), 7.20 – 7.42 (m, 9H), 8.00 (d, J = 8.1 Hz, 1H); C36H44O8N2NaSi+ (M + Na+) 

calcd m/z 683.2759, found m/z 683.2766. Yield = 90%. 

 

2’-O-(tert-butyldimethylsilyl)-5’-O-(p,p’-dimethoxytrityl)inosine (4c) 

1H NMR (300 MHz, (CD3)2CO) δ 0.54 (s, 3H), 0.64 (s, 3H), 1.44 (s, 9H), 3.39 – 3.42 (m, 

2H), 4.02 – 4.04 (m, 2H), 4.37 (s, 6H), 4.82 – 4.85 (m, 1H), 5.00 – 5.03 (m, 1H), 5.52 – 

5.55 (m, 1H), 6.64 – 6.66 (m, 1H), 7.38 – 7.48 (m, 4H), 7.79 – 8.11 (m, 9H), 8.63 (s, 1H), 

8.73 (s, 1H); C37H44O7N4NaSi+ (M + Na+) calcd m/z 707.2871, found m/z 707.2884. 

Yield = 89%. 

 

2.3.4 General Procedure for Preparation of 5 

 

To a solution or suspension of 4a, 4b and 4c (5.5 mmol) in anhydrous acetonitrile 

(33 mL) respectively, 1H-tetrazole (5.5 mmol) was added. NCCH2CH2OP(N(i-C3H7)2)2 

(11 mmol) was then added dropwise at room temperature and allowed to stir for 12 hrs. 

The occurring white solid was removed by filtration and washed with ethyl acetate. The 

filtrate was concentrated, diluted with ethyl acetate (30 mL) and washed with saturated 

sodium bicarbonate (20 mL). The aqueous layer was back-extracted with ethyl acetate (3 

× 20mL). Combined organic extracts were then washed with brine (30 mL), dried over 

anhydrous Na2SO4 and concentrated in vacuo.  The resulting residue was purified by 
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flash column chromatography. Elution using 1:2 ethyl acetate-hexane afforded pure 5b. 

Elution using a gradient of 3:2 ethyl acetate-hexane to 2:1 ethyl acetate-dichloromethane 

afforded pure 5a and 5c respectively. 

 

N
2
-(Dimethylaminomethylene)-2’-O-(tert-butyldimethylsilyl)-5’-O-(p,p’-

dimethoxytrityl) guanosine 3’-[(2-Cyano-ethyl) N,N-Diisopropylaminophospho-

ramidite] (5a) 

1H NMR (300 MHz, CD3OD) δ -0.13, -0.09 (2s, 3H), 0.03, 0.04 (2s, 3H), 0.80, 0.83 (2s, 

9H), 1.03 – 1.23 (m, 12H), 2.40 – 2.44 (m, 1H), 2.72 – 2.78 (m, 1H), 2.94, 2.96, 3.08 (3s, 

6H), 3.47 – 3.68 (m, 4H), 3.77, 3.78 (2s, 6H), 3.84 – 4.01 (m, 1H), 4.29 – 4.40 (m, 1H), 

4.46 – 4.51 (m, 1H), 4.88 – 4.97 (m, 1H), 5.99 – 6.05 (m, 1H), 6.81 – 6.87 (m, 4H), 7.21 

– 7.48 (m, 9H), 8.02, 8.04 (2s, 1H), 8.48, 8.51 (2s, 1H); 31P NMR (121.5 MHz, CD3OD) 

δ 150.21, 151.72; C49H68O8N8PSi+ (M + H+) calcd m/z 955.4662, found m/z 955.4658. 

Yield = 79%. 

 

2’-O-(tert-butyldimethylsilyl)-5’-O (p,p’-dimethoxytrityl)uridine 3’-[(2-Cyanoethyl) 

N,N-Diisopropylamino-phosphoramidite] (5b) 

1H NMR (300 MHz, (CD3)2CO) δ 0.27, 0.29 (2s, 6H), 1.03, 1.04 (2s, 9H), 1.16 – 1.31 (m, 

12H), 2.69 (t, J = 6.0 Hz, 1H), 2.84 – 2.88 (m, 1H), 3.57 – 3.82 (m, 5H), 3.87 (s, 6H), 

3.94 – 4.02 (m, 1H), 4.38 – 4.46 (m, 1H), 4.50 – 4.57 (m, 1H), 4.62 – 4.68 (m, 1H), 5.41 

(dd, J = 6.6, 8.1 Hz, 1H), 6.04 – 6.11 (m, 1H), 6.99 – 7.03 (m, 4H), 7.35 – 7.62 (m, 9H), 

8.02 (dd, J = 8.2, 16.8 Hz, 1H) 10.27 (s, br, 1H); 31P NMR (121.5 MHz, (CD3)2CO) δ 



  

    27 

150.80, 151.22, 151.43; C45H61O9N4NaPSi+ (M + Na+) calcd m/z 883.3838, found m/z 

883.3850. Yield = 84%. 

 

2’-O-(tert-butyldimethylsilyl)-5’-O (p,p’-dimethoxytrityl)inosine 3’-[(2-Cyanoethyl) 

N,N-Diisopropylamino-phosphoramidite] (5c) 

1H NMR (300 MHz, (CD3)2CO) δ -0.10 (s, 3H), 0.05, 0.06 (2s, 3H), 0.83 (s, 9H), 1.14 – 

1.34 (m, 12H), 2.55 – 2.63 (m, 2H), 2.79 – 2.83 (m, 1H), 3.43 – 3.48 (m, 1H), 3.55 – 3.62 

(m, 2H), 3.66 – 3.72 (m, 2H), 3.79 (s, 6H), 4.01 – 4.08 (m, 1H), 4.50 (m, 2H), 5.10 (m, 

1H), 6.07 – 6.09 (m, 1H), 6.88 – 6.92 (m, 4H), 7.24 – 7.57 (m, 9H), 8.10 – 8.11 (m, 1H), 

8.16 – 8.19 (m, 1H); 31P NMR (121.5 MHz, (CD3)2CO) δ 149.35, 150.90; 

C46H61O8N6NaPSi+ (M + Na+) calcd m/z 907.3950, found m/z 907.3962. Yield = 87%. 

 

2.3.5 General Procedure for Preparation of 6 

To a solution of 5a, 5b and 5c (2.5 mmol) in anhydrous acetonitrile (9 mL) 

respectively, powdery MS 3Å (115 mg) and allyl alcohol (3 mmol) were added. The 

resulting mixture was stirred at room temperature for 30 min. Imidazolium perchlorate (5 

mmol) was then added and stirring continued for an additional 45 min. To the resulting 

mixture, a 31% solution of 2-butanone peroxide/dimethyl phthalate in toluene (1.1 mL) 

was added. This reaction mixture was stirred for 10 min, after which the MS 3Å was 

removed by filtration through a Celite 545 pad. The filtrate was diluted with ethyl acetate 

(20 mL) and then washed with saturated sodium bicarbonate solution (20 mL). The 

aqueous layer was back-extracted with ethyl acetate (2 × 20 mL). Combined organic 

extracts were washed with brine (20 mL), dried over anhydrous Na2SO4 and concentrated 
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in vacuo to obtain a viscous liquid. This liquid was then dissolved in dichloromethane (19 

mL) and cooled to 0 °C. Dichloroacetic acid (50 mmol) was then added dropwise to the 

reaction mixture. This was stirred for 5 min after which the reaction was quenched by 

addition of saturated sodium bicarbonate solution to the stirred reaction mixture till the 

pH was alkaline. The aqueous layer was extracted with dichloromethane (3 × 20 mL). 

Combined organic extracts were washed with brine (30 mL), dried over anhydrous 

Na2SO4 and concentrated in vacuo. The resulting residue was purified by flash column 

chromatography. Elution using a gradient of 1:30 methanol-dichloromethane to 1:10 

methanol-dichloromethane afforded pure 6a, 6b and 6c respectively.  

 

N
2
-(Dimethylaminomethylene)-2’-O-(tert-butyldimethylsilyl)guanosine 3’-(Allyl 2-

Cyanoethyl Phosphate) (6a) 

1H NMR (300 MHz, CD3OD) δ -0.18, -0.17 (2s, 3H), -0.01, 0.00 (2s, 3H), 0.78, 0.79 (2s, 

9H), 2.92 – 2.94 (m, 2H), 3.11 (s, 3H), 3.20 (s, 3H), 3.85 – 3.88 (m, 2H), 4.31 – 4.34 (m, 

2H), 4.42 – 4.44 (m, 1H), 4.66 – 4.72 (m, 2H), 4.98 – 5.02 (m, 2H), 5.31 – 5.48 (m, 1H), 

5.43 – 5.50 (m, 1H), 5.98 (d, J = 6.42 Hz, 1H), 6.05 – 6.11 (m, 1H), 8.14 (s, 1H), 8.59 (s, 

1H); 31P NMR (121.5 MHz, CD3OD), δ -1.02, -0.99; C25H41O8N7PSi+ (M + H+) calcd m/z 

626.2518, found m/z 626.2507. Yield = 85%. 

 

2’-O-(tert-butyldimethylsilyl)uridine 3’-(Allyl 2-Cyanoethyl Phosphate) (6b) 

1H NMR (300 MHz, CD3OD) δ 0.09, 0.10, 0.13, 0.14 (4s, 6H), 0.91 (s, 9H), 2.93 (t, J = 

5.9 Hz, 2H), 3.82 – 3.85 (m, 2H), 4.28 – 4.37 (m, 3H), 4.54 – 4.58 (m, 1H), 4.65 – 4.71 

(m, 2H), 5.31 – 5.35 (m, 1H), 5.42 – 5.49 (m, 1H), 5.77 (d, J = 8.1 Hz, 1H), 5.99 – 6.09 
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(m, 2H), 8.05 (d, J = 8.1 Hz, 1H); 31P NMR (121.5 MHz, CD3OD) δ -1.83; 

C21H34O9N3NaPSi+ (M + Na+) calcd m/z 554.1694, found m/z 554.1706. Yield = 78%. 

 

2’-O-(tert-butyldimethylsilyl)inosine 3’-(Allyl 2-Cyanoethyl Phosphate) (6c) 

1H NMR (500 MHz, CDCl3) δ 0.22, 0.25 (2s, 6H), 0.93, 0.96 (2s, 9H), 2.78 – 2.87 (m, 

1H), 2.89 – 2.94 (m, 1H), 3.84 – 3.91 (m, 1H), 4.14 – 4.19 (m, 1H), 4.33 – 4.34 (m, 2H), 

4.42 – 4.46 (m, 2H), 4.65 – 4.67 (m, 2H), 5.28 – 5.44 (m, 4H), 5.94 – 6.10 (m, 2H), 8.51 

(s, 1H), 9.87 – 9.96 (m, 1H), 13.59 (s, br, 1H); 31P NMR (202.5 MHz, CDCl3) δ -1.23, -

1.08; C22H34O8N5NaPSi+ (M + Na+) calcd m/z 578.1807, found m/z 578.1820. Yield = 

80%. 

 

2.3.6 General Procedure for Preparation of 7 

 

A mixture of 5a and 6a, 5a and 6b, and 5c and 6c respectively (0.9 mmol of each 

compound), were dissolved in anhydrous acetonitrile (7 mL). MS 3Å (80 mg) was then 

added and the reaction mixture stirred at room temperature for 30 min. Imidazolium 

perchlorate (1.8 mmol) was then added and stirring continued for an additional 45 min. 

To the resulting mixture, a 31% solution of 2-butanone peroxide/ dimethyl phthalate in 

toluene (1.2 mL) was added. This reaction mixture was stirred for 10 min, after which the 

MS 3Å was removed by filtration through a Celite 545 pad. The filtrate was concentrated 

to obtain a viscous liquid. This liquid was then dissolved in dichloromethane (11 mL) and 

cooled to 0 °C. Dichloroacetic acid (18 mmol) was then added dropwise to the reaction 

mixture. This was stirred for 5 min after which the reaction was quenched by addition of 
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saturated sodium bicarbonate solution to the stirred reaction mixture till the pH was 

alkaline. The aqueous layer was back-extracted with dichloromethane (3 × 20 mL). 

Combined organic extracts were washed with brine (30mL), dried over anhydrous 

Na2SO4 and concentrated in vacuo. The resulting residue was purified by flash column 

chromatography. Elution using a gradient of 1:30 methanol-dichloromethane to 1:5 

methanol-dichloromethane afforded pure 7a, 7b and 7c respectively.  

 

Guanylyl (3’-5’)guanosine 3’-Phosphate (7a) 

1H NMR (300 MHz, CDCl3) δ -0.23 – 0.09 (m, 12H), 0.75 – 0.85 (m, 18H), 2.80 – 2.82 

(m, 4H), 3.09, 3.12, 3.19, 3.23 (4s, 9H), 3.72 – 3.82 (m, 2H), 4.31 – 4.63 (m, 10H), 4.89 

– 5.04 (m, 4H), 5.29 – 5.45 (m, 2H), 5.78 – 6.02 (m, 3H), 7.80 – 7.91 (m, 2H), 8.40 (s, 

1H), 8.61 (s, 1H); 31P NMR (121.5 MHz, CDCl3), δ -1.68, -1.41, -1.13, -0.88; 

C44H68O14N14NaP2Si2
+ (M + Na+) calcd m/z 1157.3945, found m/z 1157.3958. Yield = 

57%. 

 

Inosinylyl(3’-5’)inosine 3’-Phosphate (7b) 

1H NMR (300 MHz, MeOD) δ -0.21 – 0.09 (m, 12H), 0.74 – 0.97 (m, 18H), 2.89 – 2.95 

(m, 4H), 3.77 – 3.78 (m, 2H), 4.33 – 4.37 (m, 4H), 4.96 – 4.99 (m, 2H), 5.17 (m, 1H), 

5.33 – 5.36 (m, 1H), 5.44 – 5.50 (m, 1H), 6.04 – 6.09 (m, 3H), 7.61 – 7.67 (m, 2H), 7.71 

– 7.75 (m, 2H), 8.15 (d, J = 5.8 Hz, 1H) 8.31 (s, 1H), 8.42 (s, 1H); 31P NMR (202.5 MHz, 

CDCl3) δ -1.64, -1.51, -1.13, -1.03, -0.95; C41H62O15N10NaP2Si2
+ (M + Na+) calcd m/z 

1075.3302, found m/z 1075.3303. Yield = 60%. 
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Uridylyl(3’-5’)uridine 3’-Phosphate (7c) 

1H NMR (300 MHz, (CD3)CO) δ 0.12 - 0.16 (m, 12H), 0.91 (s, 18H), 2.95 - 3.01 (m, 

6H), 3.88 (s, 2H), 4.27 - 4.68 (m, 12H), 4.94 - 4.96 (m, 2H), 5.33 (d, J = 10.4 Hz, 1H), 

5.44 (d, J = 15.8 Hz, 1H), 5.66 - 5.72 (m, 2H), 5.91 - 5.98 (m, 3H), 7.74 (d, J = 8.2 Hz, 

1H), 8.00 (d, J = 5.4 Hz, 1H); 31P NMR (121.5 MHz, (CD3)CO) δ -0.99- -1.20 (m); 

C39H62N6NaO17P2Si2
+ (M + Na+) calcd m/z 1027.3078 found m/z 1027.3092 Yield = 79% 

 

Guanylyl(3’-5’)uridine 3’-Phosphate (7d) 

1H NMR (500 MHz, CDCl3) δ -0.25 – 0.12 (m, 12 H), 0.78 – 0.89 (m, 18H), 2.82 (m, 

4H), 3.11 (s, 3H), 3.19 (s, 3H), 3.72 – 3.91 (m, 4H), 4.29 – 4.63 (m, 10H), 4.93 – 5.07 (m, 

3H), 5.32 – 5.43 (m, 2H), 5.68 – 5.78 (m, 2H), 5.95 (m, 2H), 7.47 (m, 1H), 7.86 (s, 1H), 

8.43 (s, 1H), 9.15 (m, 1H); 31P NMR (202.5 MHz, CDCl3) δ -1.96, -1.80, -1.31, -0.99, -

0.88; C43H69O16N10P2Si2
+ (M + H+) calcd m/z 1099.3901, found m/z 1099.3899. Yield = 

49% 

 

Inosylyl(3’-5’)uridine 3’-Phosphate (7e) 

1H NMR (300 MHz, MeOD) δ -0.18 - 0.16 (m, 12H), 0.84 (dd, J = 2.4, 43.5 Hz, 18H), 

1.99 (s, 1H), 2.90 - 2.98(m, 4H), 3.86 (m, 2H), 4.31 - 4.71 (m, 11H), 5.03 (d, J = 4.5 Hz, 

2H), 5.33 (d, J = 10.4 Hz, 1H), 5.45 (d, J = 17.1 Hz, 1H), 5.78 - 6.00 (m, 2H),  6.01 - 

6.09 (m, 2H), 7.68 - 7.73 (m, 1H), 8.12 (s,1H), 8.40 (s, 1H); 31P NMR (202.5 MHz, 

MeOD) δ 8.0414, 8.6787; C40H62O16N8NaP2Si2 
+ (M + H+) calc m/z 1051.3190 found m/z 

1051.3220. Yield = 53% 
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2.3.7 General Procedure for Preparation of 8 

 

To a solution of 7a, 7b and 7c (0.24 mmol) in anhydrous acetone (7.2 mL) 

respectively, sodium iodide (2.4 mmol) was added. The resulting mixture was stirred 

under reflux for 2 – 3 hrs. The reaction mixture was then concentrated. Addition of 

chilled anhydrous acetone precipitated a white solid which was filtered, washed with 

chilled anhydrous acetone and subsequently dissolved in methanol. Methanol was then 

removed in vacuo to obtain a colourless crystalline solid. This solid was then suspended 

in anhydrous THF (41 mL), to which MS 3Å (50 mg), N-methylimidazole (12 mmol) and 

2,4,6-triisopropylbenzenesulfonyl chloride (12 mmol) were added. The resulting mixture 

was stirred at room temperature for 36 – 48 hrs. Water (18 mL) was then added and 

stirring continued for an additional 1 hr. The reaction mixture was concentrated in vacuo. 

The residual material was dissolved in ethyl acetate (20 mL) and washed with brine (20 

mL). Combined organic extracts were dried over anhydrous Na2SO4 and concentrated in 

vacuo. The resulting residue was purified by flash column chromatography. Elution using 

a gradient of 1:30 methanol:dichloromethane to 1:10 methanol:dichloromethane afforded 

pure 8a, 8b and 8c respectively. 

 

Fully Protected Cyclic Bis(3’-5’)diguanylic Acid (8a) 

1H NMR (300 MHz, MeOD) δ -0.17 – 0.06 (m, 12H), 0.79 – 0.83 (m, 18H), 2.91 – 2.95 

(m, 4H), 3.13 (s, 6H), 3.21 (s, 6H), 4.08 – 4.13 (m, 2H), 4.29 – 4.38 (m, 4H), 4.66 – 4.73 

(m, 4H), 5.31 (m, 1H), 5.34 (m, 1H), 5.42 (m, 1H), 5.47 (m, 1H), 5.96 (d, J = 6.6 Hz, 2H), 



  

    33 

8.62 (s, 2H), 8.90 (s, 2H); 31P NMR (121.5 MHz, MeOD) δ -1.72, -1.69; 

C44H68O14NaP2Si2
+ (M + Na+) calcd m/z 1157.3945, found m/z 1157.3958. Yield = 40%. 

 

Fully Protected Cyclic Bis(3’-5’)diinosinic Acid (8b) 

1H NMR (500 MHz, MeOD) δ -0.14 (s, 6H), 0.11 (s, 6H), 0.78 (s, 18H), 2.98 – 3.00 (m, 

4H), 4.24 – 4.28 (m, 2H), 4.58 (dd, J = 4.4, 10.7 Hz, 4H), 4.74 – 4.78 (m, 4H), 5.33 (dd, J 

= 5.1, 8.2 Hz, 2H), 5.41 – 5.45 (m, 2H), 6.04 (d, J = 7.6 Hz, 2H), 8.12 (s, 2H), 8.26 (s, 

2H); 31P NMR (202.5 MHz, MeOD) δ 0.88; C38H56O14N10NaP2Si2
+ (M + Na+) calcd m/z 

1017.2884, found m/z 1017.2842. Yield = 45%. 

 

Fully Protected Cyclic Bis(3’-5’)diuridylic Acid (8c) 

1H NMR (300 MHz, MeOD) δ 0.13 (s, 6H), 0.19 (s, 6H), 0.91 (s, 9H), 0.94 (s, 9H), 2.95 

(t, J = 5.9 Hz, 4H), 4.24 - 4.68 (m, 10H), 5.70 - 5.76 (d, 2H), 5.82 (d, J = 6.1 Hz, 2H), 

7.68 (d, J = 8.2 Hz, 2H); 31P NMR (121.5 MHz, MeOD) δ -0.6641; C36H56N6O16NaP2Si2
+ 

(M + Na+) calcd m/z 969.2659 found m/z 969.2688. Yield = 30% 

 

Fully Protected Cyclic (3’-5’)guanylic/uridylic Acid (8d) 

1H NMR (300 MHz, MeOD) δ -0.10, 0.10, 0.20 (3s, 12H), 0.79, 0.90 (2s, 18H), 2.91 – 

3.00 (m, 4H), 3.20 (s, 6H), 4.10 – 4.68 (m, 12H), 5.13 – 5.19 (m, 1H), 5.32 – 5.38 (m, 

1H), 5.76 (d, 1H, J = 8.1 Hz), 5.86 – 5.94 (m, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.95 (s, 1H), 

8.69 (s, 1H); 31P NMR (121.5 MHz, MeOD) δ 0.34, 0.68; C40H62N10O15NaP2Si2
+ (M + 

Na+) calc m/z 1063.3 found m/z 1063.3. Yield = 39%. 
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Fully Protected Cyclic (3’-5’)inosylyl/uridylic Acid (8e) 

1H NMR (300 MHz, MeOD) δ -0.14 - 0.19 (m, 12H), 0.78 - 1.68 (m, 18H), 2.95 - 3.00 

(m, 4H), 4.21 - 4.76 (m, 11H), 4.90 - 5.37 (m, 3H), 5.74 (d, J = 8.3 Hz, 1H), 5.85 (d, J = 

7.3 Hz, 1H), 6.03 (d, 1H, J = 7.0 Hz), 7.66 (d, J = 8.0 Hz, 1H), 8.11 (s, 1H), 8.25 (s, 1H); 

31P NMR (202.5 MHz, (CD3)2CO) δ 0.88 - 3.71 (m); C37H56O15N8NaP2Si2
+ calc m/z 

993.2771 found m/z 993.2804. Yield = 30% 

 

2.3.8 General Procedure for Preparation of 9 

 

To a solution of 8a, 8b and 8c (0.05mmol) in methanol (8 mL) respectively, 

concentrated aqueous ammonium hydroxide (8 mL) was added. The resulting mixture 

was stirred at 50 °C for 12 hrs, after which it was then concentrated and dried in vacuo to 

obtain a residual material. This was then dissolved in (C2H5)3N.3HF (1.0 mL) and the 

mixture stirred at room temperature for 12 hrs. To the reaction mixture was added a 1M 

ammonium acetate buffer solution (10 mL). The reaction mixture was stirred vigorously 

at 40 °C to precipitate a pale yellow solid. After the removal of the precipitate, the 

aqueous solution was subjected to semi-preparative HPLC using a COSMOSIL 5C18-

AR-300 column [20 (diameter) × 250 (height) mm]. Elution was carried out under the 

following conditions to obtain 9a, 9b and 9c respectively: [A = water with 1% TFA, B = 

20:80 mixture of water and acetonitrile with 1% TFA] gradient: 0 – 3 min: 100% A, 3 – 

35 min: (linear gradient) 100% A to 85% A / 15% B, 35 – 45 min: 100% B, 45 – 55 min: 

100% A; detection at 254 nm; flow rate 3 mL/min. Relevant fractions were collected, 

concentrated and subsequently washed with acetonitrile. Centrifugation afforded a white 
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solid which was dissolved in 1M aqueous ammonium acetate. Average overall yields of 

10 – 15% were observed. 

 

Cyclic Bis(3’-5’)diguanylic Acid (9a) 

1H NMR (500 MHz, D2O), δ 4.01 – 4.04 (m, 2H), 4.32 – 4.40 (m, 4H), 4.83 (s, 2H), 5.04 

(m, 2H), 5.81 (s, 2H), 7.95 (s, 2H); 31P NMR (202.5 MHz, D2O) δ -1.05; C20H23O14N10P2
- 

(M – H-) calcd m/z 689.0865, found m/z 689.0849. Yield = 84%. 

 

Cyclic Bis(3’-5’)diinosylic Acid (9b) 

1H NMR (500 MHz, D2O) δ 3.92 – 3.98 (m, 2H), 4.12 (m, 2H), 4.51 – 4.60 (m, 4H), 6.09 

(s, 1H), 6.21 (s, 1H), 8.10 (s, 1H), 8.30 (s, 1H), 8.63 (s, 2H); 31P NMR (202.5 MHz, D2O) 

δ -1.04; C20H23O14N8P2
+ (M + H+) calcd m/z 661.0804, found m/z 661.0828. Yield = 85%. 

 

Cyclic Bis(3’-5’)diuridylic Acid (9c) 

1H NMR (300MHz, MeOD) δ 3.94 -3.97 (m, 2H), 4.28 - 4.40 (m, 10H), 4.48 - 4.56 (m, 

4H), 5.5 - 5.70 (m, 4H), 7.90 (d, J = 7.7 Hz, 2H); 31P NMR (121.5 MHz, D2O) δ -1.08; 

C18H20O16N4P2
- (M – H-) calcd m/z 611.0433, found m/z 611.0452. Yield = 90% 

 

Cyclic (3’-5’)guanylic/uridylic Acid (9d) 

1H NMR (500 MHz, D2O) δ 4.08 (m, 2H), 4.41 – 4.52 (m, 4H), 5.34 (m, 2H), 5.60 (m, 

1H), 5.93 (m, 1H), 7.49 (s, 1H), 7.92 (m, 2H), 8.45 (m, 1H), 8.70 (s, 1H); 31P NMR 

(202.5 MHz, D2O) δ -0.89; C19H23N7O15NaP2
+ (M + Na+) calcd 673.0547 found m/z 

673.0568. Yield = 82%. 
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Cyclic (3’-5’) inosylic/uridylic Acid (9e) 

1H NMR (500 MHz, D2O) δ 4.05 (m, 2H), 4.51-4.36 (m, 7H), 5.42 (s, 1H), 6.16 (s, 1H), 

7.89 (s, 1H), 8.16 (s, 1H); 31P NMR (202.5 MHz, D2O) δ -0.97(s); C19H21O15N6P2 (M
-) 

calc m/z found m/z 635.0535. Yield = 92% 
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CHAPTER 3: BIOLOGICAL SCREENING OF COMPOUNDS 

 

3.1 Introduction  

  

To achieve the aim of screening the synthesized compounds for biological activity, 

an enzyme that contains only the GGDEF domain (diguanylate cyclase activity) but not 

the EAL domain (phosphodiesterase activity) has to be obtained, so as to assay the 

amount of c-di-GMP formed. Gomelsky and coworkers have isolated PCR-amplified 

bacterial DNA fragments coding for GGDEF domain-containing proteins and cloned 

them into vector pMAL-c2x (New England Biolabs) in strain E. coli DH5α1. Hence, his 

recombinant bacterial cells were requested for and upon receipt, the cells were streaked 

on LB agar plates and kept at 4oC for subsequent overexpression of the protein.  

 

Out of the five proteins isolated from the delivered recombinant bacteria, only Slr 

1143 from oxygenic phototroph Synechocystis sp. (Cyanobacteria) and DRB0044 from 

the radiation- and desiccation-resistant soil bacterium D. radiodurans 

(Deinococcus/Thermus) were highly overexpressed. However, optimal purification of 

DRB0044 could not be achieved due to a lack of time and resources, thus our efforts were 

channeled into the purification of Slr1143. Not much is known about Slr1143, except that 

it is a diguanylate cyclase consisting of 344 amino acids2.  

 

The vector pMAL-c2x was designed such that after the insertion of the protein of 

interest, it would fuse to the maltose binding protein (MBP) to form a fusion protein. This 
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facilitated the purification of the desired protein via affinity chromatography whereby the 

maltose binding protein was captured by the amylose resin (New England Biolabs), thus 

allowing the unwanted proteins to be washed off. Washing of the resin with buffer 

solution containing maltose allowed the isolation of pure protein. To obtain the protein of 

interest, the fusion protein was cleaved from the MBP with the specific protease Factor 

Xa. Subsequently, the maltose was removed from the protein mixture, before it was 

passed through the amylose resin once again to remove the MBP. However, in our 

experiment, the cleavage of the MBP was not performed, as Gomelsky had illustrated that 

the protein is viable without the removal of MBP1. The malE gene on the vector pMAL-

c2x was also deleted from the signal sequence, so the fusion protein produced would 

remain in the cytoplasm and not be exported out into the media.  

 

The compounds synthesized were screened to determine the biological activities 

they may possess against Slr1143. After the enzymatic assay in which the enzyme was 

incubated with both its substrate and inhibitor, the mixture of GTP, c-di-GMP and 

inhibitor was separated by reverse phase HPLC and the product peak area was 

determined by software, LCsolution Ver 1.2. To determine the inhibitory activity of the 

compounds, the product of the enzyme, c-di-GMP, was assayed relative to the control. 

For preliminary screening, the enzyme was screened with 100µM of inhibitor and 100µM 

of GTP, against the control, which did not contain any inhibitor.  

 

3.2 Material and Methods 
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 All methods of preparation of media and solutions can be obtained from New 

England Biolabs pMALTM Protein Fusion and Purification System Instruction Manual. 

Plasmid coding for Slr1143 was kindly provided for by Gomelsky1. Enzymatic assay 

buffer was prepared according to reported method1. Protein concentration was determined 

to be 2.069mg/ml by Bradford assay. HPLC analysis was carried out using a Phenomenex 

Luna 3µ-C18 column [4.6 (diameter) × 50 (height) mm].  

 

3.2.1 Large scale overexpression of protein 

 

1L rich LB broth with 2g glucose and ampicillin (100 µg/ml) was inoculated with 

10ml of overnight culture of E.coli cells and incubated at 37oC to an OD of 0.6-0.8 at 

600nm. 3ml of 0.1M Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added next to 

the subculture to a final concentration of 0.3mM and further incubated for 2 hours to 

induce the expression of protein. After which, the cells were centrifuged at 4oC for 20 

min at 4000g and the supernatant was discarded. 25ml of column buffer was added to 

resuspend the cells before Halt Protease Inhibitor Cocktail (Pierce) was added and kept at 

-20oC overnight. Lysozyme was added at 1mg/ml of buffer and incubated for 30 min. To 

further disrupt the cells to facilitate the release of protein into the supernatant, the cells 

were sonicated for 10min, 10sec on, 15sec off, on ice. The crude was then centrifuged at 

9000g for 30 min. The supernatant was subsequently incubated with 1ml of amylose 

beads (New England Biolabs), which were washed beforehand according to the 

instructions, for an hour at 4oC.  

 



  

    41 

3.2.2 Purification of protein 

 

The amylose beads were poured into affinity column and the flow through was 

collected.  As the amylose beads would only bind to the maltose binding protein (MBP) 

within the fusion protein, the unwanted protein were washed out with 10 column volumes 

of column buffer before elution of the fusion protein with 10mM of maltose in column 

buffer was performed. Small fractions of 0.6ml of eluant were collected. SDS-PAGE was 

carried out on all the fractions to determine which fractions contained the fusion protein. 

Glycerol was added at a concentration of 20% before a Bradford assay was performed to 

determine the concentration of the protein. Subsequently, the protein was aliquoted into 

smaller fractions of 20ul. 

 

3.2.3 Analysis of Slr1143 diguanylate cyclase with different GTP concentration. 

 

Enzyme (2µl, 1µM) (kept on ice) in enzymatic assay buffer was incubated at 30oC 

for 5min. Following which, GTP (kept on ice) was added to desired concentration and 

incubated at 30 oC. 50µl of the reaction mixture was pipetted out at 0.5, 1, 1.5 and 2 min 

and quenched by heating it at 95oC. Each sample was filtered with 0.2µM HPLC filter, 

before 10µl was analysed by HPLC reversed phase. The experiment was then repeated 

for other GTP concentrations. 

 

3.2.4 Analysis of compounds on Slr1143 diguanylate cyclase. 
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5µl of a 1mM compound in enzymatic assay buffer was added to a mixture of 

enzyme (1µM, 2µl) (kept on ice) in enzymatic buffer (38µl) to a final concentration of 

100µM in 50µl and the mixture was incubated at 37oC for 5min. Following that, 5µl of 

1mM GTP (kept on ice) was added to a final concentration of 100µM and the reaction 

was quenched at 2 min, by heating it at 95oC. Each sample was filtered with 0.2µM 

HPLC filter, before 10µl was analysed by HPLC reversed phase. The experiment was 

then repeated for the other compounds. 

 

3.2.5 HPLC method 

Buffer A: 20mM Triethylammonium bicarbonate buffer. Buffer B: Methanol. 

0-2 min: A: 100%, 2-10 min: B: 12% 10-12min B: 18% 12-20min B: 30%  

 

3.3 Results and Discussion 

 

3.3.1 Overexpression and purification of enzyme 

 

A small scale experiment was initially performed according to the protocol by New 

England Biolabs for pMAL-c2 vectors to determine the expression level of the maltose-

binding fusion protein and the feasibility of the method. Uninduced cells, pellet of lysed 

crude cell extract were resuspended in 1ml of column buffer and its supernatant were 

kept for SDS PAGE to determine the expression levels. This was similarly done for the 

large scale preparation to determine the amount of protein released into the supernatant 

and the amount remaining in the pellet. 
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 The cells were initially lysed with B-PER Bacterial Protein Extraction Reagent II 

(Pierce) but the lysis was shown to be ineffective as seen from the absence of the protein 

in the supernatant as shown in Figure 4. Effective lysis will release the fusion protein into 

the supernatant and a band at 80kDa would be observed after running SDS-PAGE. 

Slr1143 protein

Lane 1: Protein marker
2: Uninduced cells
3: Supernatant

4: Pellet

1         2         3         4

Slr1143 protein

Lane 1: Protein marker
2: Uninduced cells
3: Supernatant

4: Pellet

1         2         3         4
 

Figure 4: SDS-PAGE showing absence of protein in 
supernatant. 

 

An alternative attempt at cell lysis was performed using sonication on ice, for two 

pulses of 10 seconds on and 10 seconds off. However, it was only effective for the small 

scale but not on the large scale experiment. Even sonication for 30 minutes did not result 

in a significant amount of protein being released into the supernatant as compared to the 

pellet. This could be due to the fact that the sonicator was attached to a microprobe and 

too much buffer was added initially (50 mL), resulting in the crude cell extract being too 

dilute. Coupled with the fact that the disruptive forces of the ultrasound waves became 

weaker as they travelled further away from the microprobe, the cells could not be lysed 

effectively. Feliu et al
3
 have shown that cell concentration has no effect on the rate at 

which the protein is released whereas the volume of the extract has an inverse 

relationship on the rate. Hence, in subsequent attempts to lyse the cells, only 25 mL of 
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buffer was added. In addition, a major consideration when ultrasonicating is sample 

heating. Cavitation caused by the ultrasonicator can raise the temperature quickly, and the 

solution may get very hot in the vicinity of the tip of the microprobe. The heat thus 

generated could lead to protein denaturation and aggregation. For this reason, one can do 

many short pulses rather than one long continuous pulse. An additional precaution in 

preventing the cell suspension from getting too hot is to make sure that equipment and 

samples are kept cold at all times. 

 

A third attempt at cell lysis was the freeze/thaw method which was repeated six 

times, before under going sonication cycle of 10 seconds on, 15 seconds off, for 10 min. 

This proved to be a very effective but time consuming method. Hence, to enhance cell 

lysis before subjecting the cells to ultrasound waves, lysozyme (1 mg/ml) was added and 

incubated for 30 minutes at 37 °C, the temperature at which the activity of lysozyme is 

optimal. Thereafter, the crude cell extract was subjected to centrifugation. The 

supernatant was retained and subjected to affinity chromatography to obtain the pure 

Slr1143 protein as shown in Figure 4. 

 

Slr1143 protein

Lane  1: Protein marker
2: Pellet

3: Eluted fraction 1

4: Eluted fraction 2 

1          2         3         4

Slr1143 proteinSlr1143 protein

Lane  1: Protein marker
2: Pellet

3: Eluted fraction 1

4: Eluted fraction 2 

1          2         3         4  
Figure 4: SDS-PAGE showing pure protein in 
eluted fractions 1 and 2 
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3.3.2 HPLC elution buffer solution 

 

Phosphate buffers are common buffers used for the separation of GTP and c-di-

GMP peaks with HPLC1,4-7. Initially, phosphate buffer was used but the baseline was 

very noisy and there was another problem of column clogging due to precipitation of 

phosphate salts at low room temperatures or when the column was not properly washed 

with non-buffered solvents. Hence, re-preparation of the buffer solution was necessary. 

As adjustment of buffer pH was necessary, the temperature at which the adjustment of 

pH was done would need to be the same as that during analysis. Therefore, alternatives 

were considered.  

 

One such method would be to use [32P] GTP and separate the reaction mixture on 

polyethyleneimine-cellulose plates. The concentration of the compound was determined 

by comparing the intensity of the radioactive compounds as seen on a phosphorimaging 

screen, against a standard8. However, radioactive materials are hazardous and should best 

be avoided. The standard buffer system of ACN/H2O and 0.1% TFA in ACN/0.1% TFA 

in H2O were used but GTP peaks were not observed at 254nm. However, the usage of 

triethylammonium carbonate9 was a good alternative as it is liquid at room temperature 

and would thus solve the problem of potential column clogging. As triethylammonium 

carbonate was not easily available, triethylammonium bicarbonate was experimented as a 

possible alternative and to our surprise, a smoothened baseline was observed (Figure 5). 

The method was subsequently optimized to avoid the hassle of adjusting pH, to obtain a 

good resolution of the peaks and to cut down on the running time from 50 min to 30 min. 
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Figure 5: (a) Chromatogram obtained when phosphate buffer was used. (b) Chromatogram obtained after 
optimization. 
 
 
3.3.3 Analysis of effect of compounds on the activity of Slr1143 diguanylate cyclase. 

 

Prior to the actual assay, a Michaelis-Menten graph was necessary to determine if 

this diguanylate cyclase also possessed intrinsic allosteric inhibitor properties like other 

DGCs. If Slr1143 exhibited allosteric inhibition, the optimum concentration substrate 

could be elucidated from the curve. To obtain the graph, different concentrations of 

substrate were introduced to a mixture of 1µM of pre-incubated enzyme and assay buffer 

for 2 mins. Aliquots of the reaction mixture were taken out every 30s and quenched by 
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heating at 95oC for 3 mins. The experiment was repeated twice and a graph of product 

peak area was plotted against time to obtain the rate of reaction. Subsequently, the 

average rate of reaction was plotted against the concentration of substrate. 
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Figure 6: Activity of Slr1143 at 30oC in the presence of different substrate concentration. 

 

 From the results obtained, an initial increase in the concentration resulted in an 

increase in rate of reaction. However, as the concentration increased, the rate of the 

reaction would reach a maximum at around 100µM before undergoing a decline. This 

confirmed that Slr1143, like other diguanylate cyclases, exhibited allosteric product 

inhibition10. At low concentrations of substrate, the amount of product formed initially 

was too low to inhibit the enzyme allosterically. As the concentration of substrate 

increased, the frequency of collision between enzyme and substrate increased, hence rate 

of reaction increased. However, as concentration increased further, the rate of reaction 

would reach a maximum and subsequently, the amount of product synthesized would be 

high enough to inhibit the activity of Slr1143 drastically, resulting in the curve (Figure 6).  

From the graph, the optimum substrate concentration at which the enzyme activity 
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exhibited the maximum rate, without the product interfering with the rate of reaction was 

determined to be at 100µM. Now that the optimum concentration has been determined, 

assay of the analogues was carried out in duplicates with 100µM of compound and 

100µM of substrate.  

 

From Figure 7 shown below, it could be concluded that 9b was a much better 

inhibitor than c-di-GMP 9a, with an inhibition of 60% at 100µM, with an IC50 value of 

68.9µM (Figure 8). The only difference between 9b and 9a was the presence of an amino 

group on each of the two bases. Interestingly, two compounds, 9c and 9d, which have 

uridine bases in common, were found to activate the enzyme.  

 

 

Figure 7: Inhibitory activities of compounds 9a-e 
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Figure 8: Graph of absorbance vs concentration of 9b 

 

However, DGC activity of the GGDEF domains of Slr1143 protein was reported 

to be lower than that of full length proteins1. Though the diguanylate cyclase has the 

intrinsic capability of forming dimers and trimers, similar to its parent, it is strongly 

affected by neighbouring proteins or protein domains that interact with it1. Other factors 

that might affect its activity would be the composition of the enzymatic buffer, which 

was not optimized. Hence, although the results obtained would definitely differ from an 

experiment using a full length protein, they were still able to give us a good idea of the 

inhibitory activities of the compounds, thus justifying future in vivo studies to determine 

if the compounds inhibit biofilm formation. 
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APPENDIX A: SPECTRAL ANALYSES 
 
 
 
Spectrum 1 1H NMR spectrum of compound 2b 51 

Spectrum 2 1H NMR spectrum of compound 4b 51 

Spectrum 3 1H NMR spectrum of compound 5b 52 

Spectrum 4 31P NMR spectrum of compound 5b 52 

Spectrum 5 1H NMR spectrum of compound 6b 53 

Spectrum 6 31P NMR spectrum of compound 6b 53 

Spectrum 7 1H NMR spectrum of compound 7a 54 

Spectrum 8 31P NMR spectrum of compound 7a 54 

Spectrum 9 1H NMR spectrum of compound 7b 55 

Spectrum 10 31P NMR spectrum of compound 7b 55 

Spectrum 11 1H NMR spectrum of compound 7c 56 

Spectrum 12 31P NMR spectrum of compound 7c 56 

Spectrum 13 1H NMR spectrum of compound 7d 57 

Spectrum 14 31P NMR spectrum of compound 7d 57 

Spectrum 15 1H NMR spectrum of compound 7e 58 

Spectrum 16 31P NMR spectrum of compound 7e 58 

Spectrum 17 1H NMR spectrum of compound 8a 59 

Spectrum 18 31P NMR spectrum of compound 8a 59 

Spectrum 19 1H NMR spectrum of compound 8b 60 

Spectrum 20 31P NMR spectrum of compound 8b 60 

Spectrum 21 1H NMR spectrum of compound 8c 61 
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Spectrum 22 31P NMR spectrum of compound 8c 61 

Spectrum 23 1H NMR spectrum of compound 8d 62 

Spectrum 24 31P NMR spectrum of compound 8d 62 

Spectrum 25 1H NMR spectrum of compound 8e 63 

Spectrum 26 31P NMR spectrum of compound 8e 63 

Spectrum 27 1H NMR spectrum of compound 9a 64 

Spectrum 28 31P NMR spectrum of compound 9a 64 

Spectrum 29 1H NMR spectrum of compound 9b 65 

Spectrum 30 31P NMR spectrum of compound 9b 65 

Spectrum 31 1H NMR spectrum of compound 9c 66 

Spectrum 32 31P NMR spectrum of compound 9c 66 

Spectrum 33 1H NMR spectrum of compound 9d 67 

Spectrum 34 31P NMR spectrum of compound 9d 67 

Spectrum 35 1H NMR spectrum of compound 9e 68 

Spectrum 36 31P NMR spectrum of compound 9e 68 
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Spectrum 1: 1H NMR spectrum of compound 2b 

 
Spectrum 2: 1H NMR spectrum of compound 4b 
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Spectrum 3: 1H NMR spectrum of compound 5b 

 
Spectrum 4: 31P NMR spectrum of compound 5b 
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Spectrum 5: 1H NMR spectrum of compound 6b 

 
Spectrum 6: 31P NMR spectrum of compound 6b 
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Spectrum 7: 1H NMR spectrum of compound 7a 

 
Spectrum 8: 32P NMR spectrum of compound 7a 
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Spectrum 9: 1H NMR spectrum of compound 7b 

  
Spectrum 10: 32P NMR spectrum of compound 7b 
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Spectrum 11: 1H NMR spectrum of compound 7c 

 
Spectrum 12: 31P NMR spectrum of compound 7c 
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Spectrum 13: 1H NMR spectrum of compound 7d 

  
Spectrum 14: 

31P NMR spectrum of compound 7d 
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Spectrum 15: 

1H NMR spectrum of compound 7e 

 
Spectrum 16: 31P NMR spectrum of compound 7e 
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Spectrum 17: 1H NMR spectrum of compound 8a 

  
Spectrum 18: 31P NMR spectrum of compound 8a 
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Spectrum 19: 1H NMR spectrum of compound 8b 

 

 
Spectrum 20: 31P NMR specrum of compound 8b 
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Spectrum 21: 1H NMR spectrum of compound 8c 

 
Spectrum 22: 31P NMR spectrum of compound 8c 
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Spectrum 23: 1H NMR spectrum of compound 8d  

  
Spectrum 24: 

31P NMR spectrum of compound 8d 
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Spectrum 25: 1H NMR spectrum of compound 8e 

 
Spectrum 26: 31P NMR spectrum of compound 8e 
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Spectrum 27: 1H NMR spectrum of compound 9a 

  
Spectrum 28: 31P NMR spectrum of compound 9a 
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Spectrum 29: 1H NMR spectrum of compound 9b  

 
Spectrum 30: 32P NMR spectrum of compound 9b 
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Spectrum 31: 1H NMR spectrum of compound 9c 

 
Spectrum 32: 32P NMR spectrum of compound 9c 
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Spectrum 33: 1H NMR spectrum of compound 9d 

 
Spectrum 34: 32P NMR spectrum of compound 9d 
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Spectrum 35: 1H NMR spectrum of compound 9e 

 
Spectrum 36: 32P NMR spectrum of compound 9e 
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