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SUMMARY 

Diesel exhaust particles (DEPs) are one of the important airborne pollutants 

responsible for degrading atmospheric environment and causing adverse health 

effects, and systematic and characterization of DEPs are needed to comprehensively 

provide reference of DEP properties (both physical and chemical ones) to evaluate 

efficiencies of mitigation devices and to explore cost-effective control stratagies. 

Direct contribution of this work to develop cost-effective control strategies is the 

finding that reducing engine loads can significantly decrease number concentrations, 

amounts of persistent free radicals and ultrafine-mode metals as well as carbonaceous 

materials in diesel exhaust particulates. Indirect contribution is providing base 

knowledge of characteristics of chemical and physical properties of DEPs in order to 

evaluate efficiencies of aftertreatment devices to be retrofitted in the future. Four 

driving modes, which consisted of two engine loads (60% and 100%) and two engine 

speed (1800 and 3000 rpm) and could represent real on-road conditions were 

examined to characterize how operating speeds and loads of a medium-duty diesel 

engine affect resultant diesel exhaust particulates (DEPs) in terms of number 

concentrations (≤ 400 nm), size distribution, persistent free radicals, elemental carbon 

(EC), organic carbon (OC), metal contents and organic species.  

At the medium engine load (60%), DEPs of 40−70 nm exhibited the largest 

number concentration. DEPs under the full engine load (100%) showed a distinctive 

bimodal distribution with a large population in 30−50 nm and 100−400 nm. When the 
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engine load decreased from 100% to the medium level (60%), the significant changes 

in DEPs include (i) DEPs in ultrafine size ( ≤ 100 nm) and 100−400 nm decreased for 

at least 1.4 times (5.6−4.0×108 #/cm3) and more than 3 times (2.7−0.8×108 #/cm3), 

respectively; (ii) persistent free radicals in DEPs were decreased for up to ~30 times 

(123−4×1016 #spin/g); and (iii) both EC and OC in total DEPs were concurrently 

reduced for around 2 times, from 27.3−13.9 mg/m3 and 17.6−9.2 mg/m3, respectively. 

Under the full engine load, EC and OC in DEPs smaller than 1 μm consistently 

peaked at 170−330 nm under an engine speed of 1800 rpm, indicating prominent 

nucleation during DEP formation. On the other hand, the surge of EC and OC at 

94−170 nm under an engine speed of 3000 rpm may reflect dominant cluster-cluster 

agglomeration and condensation involving existing DEPs. Decreasing the engine load 

from 100% to 60% reduced EC and OC in DEPs (smaller than 1 μm) for at least 3 

times (0.6 down to 0.2 mg/m3) and 2 times (0.4 down to 0.2 mg/m3), respectively.  

Eighteen metals in DEPs of 6 size ranges between 34 and 1000 nm were 

quantified with a total concentration ranging from 6.1–7.7 μg/m3, which increased 

with increasing engine speeds or engine loads. Among the four driving conditions, 

DEPs in ultrafine size (<100 nm) and in accumulation mode carried up to 40% and 

76% of the total quantified metals, respectively. An increase in the engine load from 

60% to 100% enhanced metal content (from 1.5–3.1 μg/m3) mainly in ultrafine DEPs 

and peaked at DEP < 66 nm, while moderately affected metals in accumulation-mode 

DEPs (by around 10%), suggesting that increasing the engine load may encourage 

metals to undergo nucleation during combustion. Under the maximum engine load, 

metal contents showed an opposite trend to EC, providing the first tailpipe evidence 
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that metals may catalyze oxidation of DEPs during engine operation. Among the 

identified metals, Fe (2.3–3.9 μg/m3) is the most abundant component (> 38%) 

followed by Li, Cr, V, and Pb, which could be mainly contributed from diesel fuel 

and through engine wear. An increase in the engine load enhanced the averaged 

cumulative fraction of the five most abundant metals (Fe, Li, Cr, V and Pb) in 

ultrafine DEPs for 1.4–1.9 times, changing from 24–34% (for engine speed of 1800 

rpm) and 22–42% (for engine speed of 3000 rpm). A Cr-to-Fe ratio of DEPs, ranging 

between 0.08–0.29, can be at least 2 times higher than that of gasoline-exhaust 

particles, suggesting that the Cr-to-Fe ratio can be employed as a fingerprint 

differentiating diesel- vs. gasoline-origin particulates at locations mainly under traffic 

influence.   

Concentration of the identifiable organic compounds in DEPs (<1 µm) ranged 

from 12.4 to around 20 μg/m3, which accounts for 2–10% of the total organic 

compounds. When the engine speed and load increased from 1800 rpm/60% to 3000 

rpm/100%, the fraction of identifiable organic compounds in DEPs (<1 µm) reduced 

for > 3 times, indicating stronger formation of unresolved organic compounds (such 

as humic like substances) under more fuel injection, higher combustion temperature 

and larger pyrolysis zone in diesel engines.  

For all four driving conditions, concentration of identifiable organic compounds 

in DEPs ultrafine (34–94 nm) and accumulation (94–1000 nm) modes ranged from 

2.9–5.7 μg/m3 and 9.5–16.4 μg/m3, respectively; a larger amount (70–83%) of total 

identifiable organics in DEPs (<1 µm) were allocated in accumulation-mode DEPs.  
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The identified organic compounds in DEPs (<1 μm) were classified into eleven 

classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, 

ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing 

compounds.  For all driving conditions, alkane class consistently showed the highest 

concentration (8.3 μg/m3 to 18.0 μg/m3) among the identified organic classes in DEPs, 

followed by carboxylic acids, esters, ketones and alcohols. The concentration of 

alkanes also accounted for more than 60% (or up to 95%) of identified organics in 

DEPs (<1 µm). The amount of alkanes in DEPs (<1 μm) generally peaked between 

C19–C25. Among the 17 alkane species identified in DEPs (<1 μm), C19 exhibited 

the highest concentration for all driving conditions, except that with the highest 

engine speed and load, which peaked at C21.  

Twelve polycyclic aromatic hydrocarbons (PAHs) in DEPs (<1 μm) were 

identified with a total concentration ranging from 37.9–174.8 ng/m3. When the engine 

load increased from 60% to 100%, more than 2 times of increase in the PAHs in 

DEPs (<1 μm) could result from stronger pyrosynthesis in diesel engines.  Similar to 

the alkane class, quantified PAHs were mainly distributed in the accumulation-mode 

DEPs; in the ultrafine and accumulation-mode DEPs, the concentration of PAHs 

ranged from 10.8–23.2 ng/m3 and 16.3–119.0 ng/m3, respectively. When the engine 

load was increased to the maximum, phenanthrene exhibited the highest 

concentration along with most substantial increase (up to 10 times). The concurrent 

increase in elemental carbon (relevant to soot) in DEPs (<1 μm) supports that 

phenanthrene is an important intermediate for PAHs growth and soot formation  
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Nine NPACs were identified in DEPs (<1 μm) with a total concentration ranging 

from 7.0–10.3 ng/m3. Similar to the trend in quantified PAHs, the identified NPACs 

are more abundant in accumulation-mode DEPs of driving conditions, in particular, 

under the full engine load. The identified NPACs are most abundant (6.4–7.5 ng/m3) 

in accumulation-mode DEPs from driving condition under the maximum engine load, 

which could encourage formation of NPACs through pyrosynthesis of PAHs and 

NOx.  

The nine identified NPACs comprise four aza arenes and five nitroarenes with a 

respective concentration of 5.4–7.3 and 1.3–3.1 ng/m3. For all driving conditions, 7,8-

benzoquinoline (7,8-BQ) showed the highest concentration, 5.1–6.0 ng/m3, or 59–

72% of the quantified NPACs. The concentration of 7,8-BQ increased with increasing 

engine loads with the highest concentration under the most demanding driving 

condition (3000 rpm/100%). 7,8-BQ was responsible for 66 and 63% of quantified 

NPACs in ultfaine and accumulation mode DEPs, respectively. Since the most 

abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-

nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure, which 

could evidence the formation of aza arenes (7,8-benzoquinoline) and nitro-PAHs (3-

nitrophenanthrene) through respective pyrosynthesis and nitration between PAHs 

radicals and NOx radicals under the highest engine speed and engine load (3000 

rpm/100% load). 
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Chapter 1 

INTRODUCTION 

1.1 Environmental and Health Effects 

The population of on-road diesel-powered vehicles has been increasing 

substantially in many countries because the higher power output (Dagel and Brady, 

1998) and the better fuel economy compared to gasoline-powered cars (Sullivan et al., 

2004). In Singapore, the number of on-road diesel-powered vehicles has been 

substantially increasing during the past 10 years (Singapore Customer Services 

Division of Land Transport Authority, 2007); the population of on-road diesel cars in 

2006 is 63% more than that in 1996, with more than 70% of diesel vehicle serving for 

shipping goods and other purposes. Interestingly, diesel-powered taxis and buses in 

Singapore account for 15 and 8%, respectively. Republic of Korea and USA reported 

more than 62% and 80% increase of registed diesel vehicles during 2000–2006 

(Korea Ministry of Environment, 2007) and 2002–2005 (US Diesel Technology 

Forum, 2006), respectively. For European countries such as France, Italy and 

Germany, at least 50% of all the produced vehicles during 2005 is diesel-powered 

(Comité des Constructeurs Français d'Automobiles, 2006).  

The increasing numbers of diesel cars in operation receive more concerns on how 

diesel exhaust particles (DEPs) may adversely affect air quality and human health; in 

particular, DEPs have been associating with adverse health effects, including 
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cardiovascular diseases (Hirano et al., 2003), lung cancers (Kagawa, 2002; Sato et al., 

2001) and asthma (Nygaard et al., 2005a, 2005b; Kadkhoda et al., 2004; Heo et al., 

2001). DEPs can also impede atmospheric visibility (Ying et al., 2004; Litton, 2002) 

and affect global climate changes (Novakov et al., 2003; Jacobson, 2002). Although 

advanced technologies can reduce mass concentrations of DEPs, population (numbers) 

of ultrafine particles (UFPs, below 100 nm) can be consequently increased (Kwon et 

al., 2003; Kim et al., 2001; Abdul-Khalek et al., 1998). This can be worrisome 

because a larger population of UFPs provides more surface areas to carry toxic 

materials, which can cause serious health effects (Donaldson et al., 1998).  

Transition metals in airborne particulates collected at urban areas and road sides, 

upon uptake, can participate in generation of reactive oxygen species (ROS) which 

can induce DNA damages in human cells and increase inflammation of respiratory 

systems (Dellinger et al., 2001; Molinelli et al., 2002; Wilson et al., 2002; Lingard et 

al., 2005). Many anthropogenic sources are responsible for metals in airborne 

particulates, such as emissions from power plants (Park et al., 2006; Reddy et al., 

2005), municipal waste incinerators (Hu et al., 2003), and biomass burning (See et al., 

2007; Lala et al., 2005). Of these emission sources, vehicle emission is one of the 

major contributors (Lin et al., 2005; Lough et al., 2005; Gillies et al., 2001), in 

particular diesel exhaust particulates (DEPs). For example, DEPs can contain metals, 

which are 10 times of emissions from coke ovens, or more than 220 folds of 

pollutants from electrical arc furnaces (Wang et al., 2003). However, regulations 

controlling metals in DEPs are yet to be established due to the needs of differentiating 

metals originating from diesel vs. gasoline emissions. This becomes particularly 
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challenging after the phase-out of leaded gasoline, making lead an ineffective tracer 

for gasoline exhausts (Zheng et al., 2004).  

DEPs, a primary pollutant, can also contain organics causing higher cytotoxicity 

and oxidative stress than fine particles collected in urban atmospheres (Hirano et al., 

2003).  Pan et al. (2004) also reported that certain components in DEPs, which are 

resistant to solvent and acid extraction, could catalyze ROS generation, indicating an 

inherent toxicity of DEPs. While a higher engine load of diesel trucks appeared to 

emit more polycyclic aromatic compounds in DEPs causing greater endocrine 

disruption (Okamura et al., 2004), Shah et al. (2005) reported that around 8–18 times 

higher n-alkanes and polycyclic aromatic hydrocarbons (PAHs), potential 

carcinogens, were emitted from heavy-duty diesel engines under creep conditions 

(heavily congested traffic) than under cruise driving. This demonstrates that driving 

conditions can substantially affect amounts and compositions of chemicals in DEPs. 

Nevertheless, unlike emissions of total mass of DEPs and total hydrocarbons, which 

have been standardized in many countries, more data (such as number concentrations, 

organic speciation, metals, etc.) are needed to appropriately regulate undesired 

species in DEPs. 
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1.2 Diesel Exhaust Particles and Mitigation Stratagies 

1.2.1 Concentrations of DEPs 

To better understand how DEPs may affect air quality, Kittleson et al. (2004) 

monitored size distribution and number concentrations of DEPs using a mobile 

emission laboratory traveling along highways, and compared with particle 

concentrations at residential areas upwind and downwind of the highways. Actual on-

road measurements have advantages of monitoring DEPs from various traffic 

conditions, incorporating a real-world dilution and discriminating proper background 

interference. While such data improve our understandings of exposure to on-road 

DEPs, studies on how driving conditions affect DEPs are needed to provide 

specifications (such as speed limit) for regulation purposes.    

A few studies have been devoted to investigate how DEP properties are affected 

by driving conditions; an increase in diesel engine loads and engine speeds appeared 

to substantially increase mass and number concentrations of DEPs during tests using 

a dynamometer and on-road mobile laboratory (Kim et al., 2001; Kittleson et al., 

2004). However, based on tests of 11 on-road heavy-duty diesel trucks, changes in 

engine models substantially affected emission rates (mg/mile) of carbonaceous 

content in DEPs (Shah et al., 2004), indicating that existing literature data concerning 

heavy-duty diesel vehicles can be inapplicable to emissions from medium-duty diesel 

engines. Because on-road medium-duty diesel vehicles are increasingly popular in 

various countries (KAMA, 2005; U.S. Department of Transportation, 2006; ACEA, 

2006), studies systematically characterizing DEPs of medium-duty diesel vehicles are 

in demand. Although Kleeman et al. (2000) and Schauer et al. (1999) measured 
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chemical species in DEPs from medium-duty diesel trucks using Federal Test 

Procedure (FTP), such transient driving conditions insufficiently represent real on-

road situations. This is expected because Denis et al. (1994) and Kelly and Groblicki 

(1993) have shown that FTP tests are mainly for emission tests, while misrepresent 

actual on-road conditions. While Kwon et al. (2003) and Higgins et al. (2003) 

reported size distribution of several driving conditions of medium-duty diesel engines 

operating under constant engine loads, information of chemical composition of DEPs 

were excluded.  

More stringent emission standards have encouraged development of various 

aftertreatments to reduce DEPs from heavy-duty trucks and buses, while a few 

challenges remain. Holmén and Ayala (2002) reported that continuous regenerating 

trap (CRT) reduced total DEP numbers for 10−100 times although optimization of 

operation procedures and understanding of background interference were needed. 

Mohr et al. (2006) compared DEPs from diesel powered passenger cars equipped 

with five different after-treatment systems. They found that although efficient diesel 

particle filters were capable of lowering DEPs to an amount fewer than emissions of 

gasoline powered vehicles, after trap regeneration, DEPs was > 10 times higher than 

before regeneration. This suggests that accumulated soot cakes could enhance DEP 

filtration efficiencies, which, however, could vary with different driving conditions, 

leading to inconclusive quantification of overall reduction in DEPs. Following the 

understanding that CRT can actually increase emissions of ultrafine particles and 

sulfate at high exhaust temperatures, Grose et al. (2006) provided experimental 

evidence that sulfate was one of the major chemical components of DEPs in size of 
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10−560 nm generating from a heavy-duty diesel engine equipped with a CRT and 

powered by low-sulfur (< 50 ppm) diesel fuel. A recent study reported that a 

catalyzed CRT (CCRT) could satisfactorily minimize both ultrafine and accumulation 

mode DEPs down to background level (Kittleson et al., 2006). However, Geller et al. 

(2006) reported that chemical (redox) activity of DEPs unnecessarily decreased when 

aftertreatment devices removed substantial amounts of DEPs, suggesting that toxicity 

of chemical species in DEPs requires independent assessment in detail. 

 

1.2.2 Metals in DEPs  

To better understand metals in DEPs, a few tailpipe measurements were 

conducted. Wang et al. (2003) tested a medium-duty diesel engine operating under a 

US-transient cycle and cruise conditions of three individual engine speeds; they 

identified 20 metal species and correlated metal content with engine speeds without 

consideration of effects of engine loads. On the other hand, by testing more than three 

engine loadings under a constant maximum engine speed (1800 rpm), metal content 

in DEPs generally decreased with an increase in engine loads (Dwivedi et al., 2006). 

While these two studies partially tested effects of engine speeds and engine loads on 

metal contents in DEPs, cross-comparison among published data is hindered by 

inconsistent units expression (such as on a basis of air volumes, driving distance, or 

particulate mass).  

Attempts have been given to reduce metals in DEPs. Catalyzed diesel particle 

filters (DPF) significantly reduced 70–95% of metals (per kilometer driving mileage) 

from diesel vehicles operating under steady-state or transient-mode driving conditions 
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(Geller et al., 2006). However, DEPs in ultrafine mode were shown to escape from 

DPF (Mohr et al., 2006; Kittleson et al., 2006), which may explain why, after DPF, 9 

out of 18 measured metals in DEPs showed a concentration comparable to gasoline-

powered vehicle exhausts. In fact, the amount of iron, chromium, and titanium in 

DEPs could be even higher than that in gasoline exhausts (Geller et al., 2006); in 

particular, iron in DEPs after DPF was still two times higher than that in gasoline 

exhausts, indicating that additional reduction of metals in DEPs is needed. On the 

other hand, after replacing 20% of mineral diesel with biodiesel fuel, Dwivedi et al. 

(2006) reported that emission of Fe, Cr, Ni, Zn, and Mg were actually increased 

although Cd, Pb, Na, and Ni were less in DEPs, demonstrating that alternative fuels 

selectively increased emissions of some metals.  

 

1.2.3 Organic compounds in DEPs 

Most published studies up to date mainly measured aliphatics and PAHs in DEPs. 

Riddle et al. (2007) reported that diesel engines under idle or creep operation generate 

more PAHs in DEPs of 100–320 nm. Shah et al. (2005) also found that emissions of 

n-alkanes and PAHs in total DEPs from creep operation were at least 13 times higher 

than that from cruise driving conditions.  DEPs, which are smaller than 320 nm and 

emitted from driving conditions under low engine loads, contained more PAHs of 

smaller molecular weight, while DEPs of 100–530 nm in emissions under heavier 

engine loads tend to carry PAHs of larger molecular weight (Zielinska et al., 2004a). 

Although gasoline-vehicle exhausts contained higher proportions of PAHs of larger 

molecular weight, and DEPs had more nitro-PAHs (Zielinska et al., 2004b), 
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differentiating emissions from diesel- vs. gasoline-powered vehicles based on 

identified PAHs and alkanes remains challenging.  

Interestingly, organics containing hydroxyl and/or carbonyl substitutes in DEPs 

could cause more cytotoxicity, oxidative stress, and inflammatory response than 

aliphatics and PAHs (Shima et al., 2006; Xia et al., 2004). However, only two studies 

in published literature identified several carbonyl substituents in DEPs, such as n-

alkanoic acids, n-alkenoic acids, benzoic acids, substituted benzaldehydes, polycyclic 

aromatic ketones and quinones from heavy-duty diesel trucks and n-alkanoic acids, 

alkanedioic acids, aromatic acids and aromatic ketones from medium-duty diesel 

trucks (Schauer et al., 1999; Rogge et al., 1993a). Although Shima et al. (2006) and 

Xia et al. (2004) correlated toxicity with hydroxyl functional groups in DEPs, the 

structure of the compounds containing hydroxyl substituents in DEPs remains to be 

identified.  

Taken together, both physical (number concentration) and chemical properties 

(metal and organic composition) in detail of DEPs from different driving conditions 

are needed as a basis to (1) properly evaluate the efficiencies of any mitigation device, 

and (2) explore simple and direct approach to mitigate and control toxic emissions 

from diesel vehicles. In this study, four operation conditions that most frequently 

occur on roads were selected to evaluate how driving conditions (loads and speeds) 

could affect number concentrations (≤400 nm), size distributions, and size 

segregation of elemental carbon (EC), organic carbon (OC), metals as well as organic 

species of DEPs. Since persistent free radicals have been identified in combustion 

generated particles, and could cause respiratory problems (Cormier et al., 2006; 
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Dellinger et al., 2001; Squadrito et al., 2001; Valavanidis et al., 2005), effects of 

engine speeds and engine loads on the generated persistent free radicals were also 

investigated. To assess the effects of driving conditions, 18 metal species and 11 

classes of organic compounds in DEPs were quantified under four driving conditions. 

Individual metals segregated in six size groups ranging from 34–1000 nm were 

analyzed. An attempt is also given to explore potential fingerprint based on metals 

and organics in DEPs to differentiate diesel- vs. gasoline-origin exhaust particulates. 

    

1.3 Objectives 

This study aims to characterize in detail how engine speeds and loads of a 

medium-duty engine affect both physical and chemical properties of DEPs. The 

specific objectives of this research work are to 

• Characterize engine loads and engine speeds on number concentration and 

size distribution of DEPs; 

• Investigate how elemental carbon and organic carbon alter in total 

concentration and size distribution in DEPs under four driving conditions; 

• Examine impacts of engine loads and engine speeds on resultant persistent 

free radicals in DEPs;  

• Correlate engine loads and engine speeds and resultant metals in DEPs as well 

as soot formation; and 

• Identify changes in organic compositions of DEPs resulting from different 

engine loads and engine speeds.  
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1.4       Organization 

This dissertation consists of four chapters. Following the introduction (Chapter 1), 

Chapter 2 describes the experimental setup (including monitoring and sampling 

system), approach, and analysis protocols. The results and discussion (Chapter 3) of 

this thesis are categorized into three sections: Section 1 examines the effects of 

driving conditions on number concentrations, and concentration of elemental carbon 

(EC), organic carbon (OC) as well as persistent free radicals in diesel exhaust 

particulates (DEPs). Section 2 focuses on the effects of driving conditions on contents 

and size distribution of metals in DEPs. Section 3 discusses the impacts of driving 

conditions on identified 11 classes of organic compounds including polycyclic 

aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic 

compounds (NPACs) in DEPs. Finally, Chapter 4 concludes the overall findings and 

recommends future studies. 
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Chapter 2 

EXPERIMENTAL 

2.1 Sampling and Measurements 

DEPs in this study were collected at the Transportation Pollution Research Center 

(TPRC) of the National Institute of Environmental Research (NIER) in Korea. A 

medium-duty diesel engine (model: K6, displacement: 6,728 cc, maximum power: 

171 Ps/3000 rpm, maximum torque: 44.5 kg⋅m/1800 rpm, combustion system: direct-

injection, DAEWOO Co., Korea), which is equipped in most popular on-road diesel 

vehicles in Korea, was operated in a 13-mode process (Fig. 2.1) and four steady-state 

driving conditions using a dynamometer (APA DYNO, AVL Co., Austria).  
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By using a dynamometer, the diesel engine was operated following 13 driving 

conditions, composing of specific engine speed and load in 1000 seconds. Fig. 2.1 

shows the 13 individual conditions as a function of elapse time (x-axis) with 

corresponding engine load (%) and engine speed (rpm) along primary and secondary 

y-axis, respectively. In detail, Fig. 2.1 shows the individual 13 modes of, in sequential 

order, (1) cold idle (for 83 seconds), (2) 1800 rpm/10% (for 80 seconds), (3) 1800 

rpm/25% (for 80 seconds), (4) 1800 rpm/50% (for 80  seconds), (5) 1800 rpm/75% 

(for 80 seconds), (6) 1800 rpm/100% (for 250  seconds), (7) warm idle-1 (for 84  

seconds), (8) 3000 rpm/100% (for 100 seconds), (9) 3000 rpm/75% (for 20 seconds), 

(10) 3000 rpm/50% (for 20 seconds), (11) 3000 rpm/25% (for 40 seconds), (12) 3000 

rpm/10% (for 20 seconds) and (13) final warm idle-2 (for 83 seconds). The four 

steady-state driving modes comprised two engine speeds (1800 and 3000 rpm) under 

either medium (60%) or full (100%) engine load; the four steady-state driving 

conditions were selected for laboratory investigation in detail because they occurred 

on-road most frequently (or for longest duration) according to a survey of on-road 

driving patterns of medium-duty diesel trucks traveling between Seoul and Daejeon 

city in Korea for 29 trips (Eom et al., 2001). This survey was conducted based on five 

trips per day from Monday−Friday and two trips per day during Saturday and Sunday 

to evaluate actual on-road conditions involving high and low traffic. All trips 

consistently followed the same route of around 80 km, and lasted for more than one 

hour. Diesel fuel used in this study has an cetane number of 56 with a specific gravity 

of 830 kg/m3 (15oC), sulfur content of 0.02% (by wt), and 10% distillation residue of 

0.01% (by wt). For aging effects of engine on DEPs, it is off concerns because the 



 13

mileage of the engine tested in this study was under 80,000 km, which is warranted 

by the manufacture for negligible deterioration (a common practice and test by 

vehicle manufactures world wide).  

Fig. 2.2 shows schematic setup of sampling system of DEPs, which experienced a 

residence time of about 3 seconds from the engine outlet to points of monitoring or 

collection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuel-to-air (FTA) ratio, CO, HC, NOx and exhaust temperatures at the engine outlet 

were monitored throughout individual driving tests, and showed satisfactory 

reproducibility with a relative deviation of 0.4−10% (n = 4). For individual driving 

tests, exhaust stream was, in part, introduced through a mini dilution tunnel (MDT; 

Fig. 2.2 Schematic system for DEP monitoring and sampling. 
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SPC 472, AVL Co, Austria) before total particulate matter (TPM) was collected (Fig. 

2.2). An additional isokinetic sampling port directed exhaust through an ejector 

diluter (Dekati Ltd., Tampere, Finland) to monitor size distribution and number 

concentrations of DEPs using a scanning mobility particle sizer (SMPS; TSI 3936, 

MN, USA). In parallel, DEPs were collected using a low pressure impactor (LPI), 

which segregated DEPs into 6 groups with individual cut-off size of 34, 66, 94, 170, 

330 and 550 nm for following gravimetric measurements and chemical speciation.  

DEPs were collected onto two types of filters, 70-mm quartz filters (Whatman 

International Ltd., England) and 70-mm Teflon-coated glass fiber filters (Emfab™, 

Pallflex®, USA). The quartz-filter samples were for non-destructive measurements of 

persistent free radicals followed by analyses of extractable total carbon (TC) and 

elemental carbon (EC), while samples collected onto Teflon-coated glass fiber filters 

were to correct positive artifacts of the quartz filter samples and to analyze organic 

and metal compositions of DEPs (Fig. 2.3). 

 

 

 

 

 

. 

 

 

 

a 14 × 50 mm filter is also used for next extraction step after persistent free radicals measurement 
b Polycyclic Aromatic Hydrocarbons (PAHs) 
c Nitrogen-containing Polycyclic Aromatic Compounds (NPACs) 
 
Fig. 2.3. Experimental analyses involved for DEP filter samples 
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All filters and glass jars were cleaned prior to collection and storage of DEPs. To 

minimize background interference, Teflon-coated filters underwent sequential solvent 

cleaning, and quartz filters were annealed at 700°C for 2 hours prior to DEP sampling. 

To couple with the LPI, both pre-cleaned quartz filters and Teflon-coated glass-fiber 

filters were prepared in a “doughnut” shape. To obtain gravimetric data, quartz filters 

and Teflon-coated glass-fiber filters were weighed in a temperature- and humidity-

controlled room (20 ± 2oC and 47 ± 5%) before and after DEP sampling. Before 

chemical analyses, all filter samples, including blank samples, were stored at -25°C 

under dark.  

 

2.2 Total Carbon (TC)/Elemental Carbon (EC) Analyses 

To measure extractable total carbon (TC), half of collected quartz filter samples 

underwent solvent extraction using tetrahydrofuran (THF) (Merck, Germany) 

followed by dichloromethane (DCM) (Merck, Germany) and hexane (Merck, 

Germany). The extracts were then transferred into a pre-cleaned and pre-weighed tin 

cup to evaporate solvents using a gentle nitrogen flow before CHNS (Perkin Elmer 

2400 series II analyzer, Shelton, USA) measurements (Krivácsy et al., 2001). Cystine 

(Micro Analysis Limited, Devon, UK) was used to establish a calibration curve of 

carbon analyses. See Appendix B for calibration of total carbon and elemental carbon 

in detail. Replicate cystine standards were also tested between analyses to ensure 

accuracy and consistency among tests.  
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The remaining half of the quartz filter samples was put into a 340°C furnace for 

two hours to remove organic carbon (OC) before solvent extraction (Cachier et al., 

1989). By applying the same CHNS measurements, extractable elemental carbons 

(EC) of the solvent extracts were obtained. Extractable OC was derived as difference 

between the extractable TC and EC (Chen et al., 1997). 

To correct the organic vapors adsorbed onto the quartz filters, we analyzed mass 

ratios of total particulate matter (TPM) collected on quartz filters to that on Teflon-

coated glass-fiber filters, which were larger than 1, indicating positive artifacts on the 

quartz filter samples; in particular, DEPs collected under a driving speed of 1800 rpm 

adsorbed 15−25% more materials (positive artifact) than that under an engine speed 

of 3000 rpm. To correct the positive artifact, organic carbon (OC) resulting from 

artifacts (additional organic vapors adsorbed onto the quartz filters) was estimated 

based on mass difference between quartz-filter samples and corresponding Teflon-

coated glass-fiber filter samples, coupled with an organic-mass-to-organic-carbon 

(OM-OC) ratio of 1.2. Since volatile and semi-volatile organics in diesel exhausts 

contributing to artifacts were mostly composed of hydrocarbons such as alkanes 

(Tobias et al., 2001), adopting an OM-OC of 1.2 can reasonably correct 

overestimated OC. All discussions in following sections are based on corrected data.  
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2.3 Analysis of Persistent Free Radicals  

Two pieces of samples (7 × 25 mm) were cut from each quartz filter, weighed, 

and placed on a standard Wilmad cell (Willmad Glass, NJ, USA) for free radical 

measurements via electron paramagnetic resonance (EPR). A Bruker Elexsys E500 

spectrometer (Bruker Biospin GMBH, Germany) coupled with a rectangular (TE102) 

Super X cavity was operated at room temperature with a center field at 3497.6 G, and 

a field scan width at 110 G. Each scan lasted for 40 seconds using a microwave 

frequency at 9.80985 GHz coupled with a field modulation frequency and amplitude 

of 100 KHz and 3 G, respectively. The spin concentration was quantified along with a 

Mn2+: MgO standard sample. 

 

2.4 Analysis of Metal Contents in DEPs 

Standard gold was selected as an ideal internal standard to monitor recovery of 

metal content throughout experiments because it is unlikely found in DEPs. Based on 

more than 30 tests, the metal analysis in this study rendered an averaged recovery 

efficiency of 88.5±3.5%. Prior to conducting microwave-assisted extraction via a 

digestion system (Milestone, Leutkirch, Germany), 200-μL standard gold solution in 

a concentration of 1 mg/L (Merck, Germany) was evenly spiked onto individual 

samples (including blank) followed by adding 1.5 mL of ultra-pure water, 2.0 mL of 

69.5% HNO3 (Fluka, Switzerland), and 1.5 mL of 30% H2O2 (Merck, Germany). To 

minimize undesired contaminants, before any usage, all apparatus were cleaned by 

soaking in 1% HNO3 for 24 h, followed by rinsing with ultra-pure water three times.   
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To measure trace metals using an inductively coupled plasma-mass spectrometry 

(ICP-MS, Perkin Elmer, USA), aliquots of the digested solutions were further diluted 

to 20 mL using ultra-pure water. To identify and quantify metals in individual 

samples, triplicate measurements were obtained. Normal operating plasma in a dual 

detector mode (analog and pulse counts) was employed, while a cold plasma coupled 

with a pulse detector mode was adopted to measure iron content, least amounts of 

iron in samples were overestimated due to background (40Ar16O+) interference (Yang 

et al., 2007). Calibration curves of 18 standard metals, including silver (Ag), arsenic 

(As), beryllium(Be), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper 

(Cu), iron (Fe), indium (In), lithium (Li), manganese (Mn), molybdenum (Mo), nickel 

(Ni), lead (Pb), tin (Sn), thallium (Tl) and vanadium (V), were established using ICP-

multi element standard solutions VI (1000 mg/L, Merck, Germany) and individual 

standard solutions (1000 mg/L, Merck, Germany) in five concentrations (1, 10, 20, 50 

and 100 μg/L) for quantification of metals in the DEPs samples. See Appendix B for 

calibration information of 18 metals in detail. 
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2.5  Analysis of Organic Compounds in DEPs 

To monitor procedural loss of non-polar and polar compounds, two internal 

standards, perdeuterated tetracosane (C24D50, 31.25 μg) (Aldrich, USA) and 

perdeuterated succinic acid (C4D6O4, 26.25 μg) (Cambridge Isotope Lab. Inc., USA) 

were spiked onto filter samples prior to solvent extraction. All filter samples were 

extracted successively using three types of solvents in the order of tetrahydrofuran 

(THF, 99.9%) (Merck, Germany), dichlormethane (99.8%, Merck, Germany), and 

hexane (98.5%, Merck, Germany).  Each solvent ultrasonication lasted for 10 minutes.  

All the solvent extract was filtered through annealed quartz filters (Whatman QM-A, 

Whatman International Ltd., UK) and concentrated down to 0.5 mL using a 

TurboVap II workstation (Zymark Co., USA). Each extract was then transferred into 

a cleaned 2-mL vial and further dried using a microconcentrator (Pierce Inc., USA) 

then re-dissolved in THF up to 20 μL. All extracted samples were stored in a freezer 

(-25oC) in dark before following chemical analyses. 

To successfully resolute polar compounds via a gas chromatograph coupled with 

mass spectrometer (GC-MS; Agilent Technologies, CA, USA), silylation was adopted 

to replace acidic hydrogens with non-polar trimethylsilyl groups. 10 μL of 

concentrated extracts was transferred into a 2-mL vial before 4-μL of N,O-bis 

(trimethylsilyl) trifluoroacetamide (BSTFA, Pierce, USA; 1% of trimethylsilyl) was 

added.  After 20 to 30 min, 1–2 μL of derivatized extract was injected into GC-MS.  

1-phenyldodecane (1-PD, 51.4 μg/mL THF) (Aldrich, USA) was used as the co-

injection standard to correct injection loss and to account for deviating performance 

of GC-MS. A GC-MS HP-5MS column (5% phenyl-methylpolysiloxane capillary 
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column of 30 m × 0.25 mm i.d. × 0.25 μm, Agilent Technologies, CA, USA) directed 

helium as carrier gas at a flow rate of 1 mL/min undergoing an initial temperature of 

60°C for 3 min before an increase to 280°C at a rate of 8°C/min. Final oven 

temperature of 280°C was held for 15 min (Yang et al., 2007).   

Individual compounds were identified based on spectrum reference provided by 

the National Institute of Standards and Technology (NIST) mass spectral library, or 

confirmed by comparing with mass fragmentation patterns and the elution time of 

authentic standards. Identified compounds were classified into two categories: (1) 

positive identification, when a compound was confirmed with authentic standards, or 

showed a mass spectrum matching against the library database for ≥ 70%, and (2) 

probable identification, when compounds showed a mass spectrum against library 

database between 50% and 70%.  Identifiable compounds were quantified taking into 

account the response of co-injection standard (1-PD) and extraction recovery 

efficiencies, resulting in propagated errors of 7–13%.  Blank analyses were conducted 

to examine background interference. To enhance detection sensitivity of polycyclic 

aromatic hydrocarbons (PAHs) in extracts, selected ion monitoring (SIM) was 

employed for separated GC-MS analyses, and were identified against a suite of 16 

priority PAH standards (Supelco, PA, USA), which are recommended by US EPA.  
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2.6 Analysis of Nitrogen-Containing Compounds in DEPs 

Nitrongen-containing organic compounds were separated using a HP-5MS 

capillary column in a GC (Shimadzu, Japan) equipped with dual detectors, flame-

ionization detector (FID, Shimadzu, Japan) and chemiluminescence detector (Antek 

Inc., TX, USA). While adopting a temperature program same as the GC-MS 

measurements, the carrier gas, helium, was set at a constant flow rate of 3 mL/min.  

At the end of separation column, sample stream was introduced to a 10:1 split adaptor 

leading to FID and chemiluminescence detectors, respectively.  

The chemiluminescence detector was operated at 950°C to pyrolyze samples, and 

ozone was generated to catalyze nitrogen-containing components to nitrogen dioxide 

at an excited state. When the excited nitrogen dioxide returned to ground state, 

chemiluminescence was released and recorded to quantify the amount of nitrogen-

containing compounds (Yu et al., 1999). 

Similar to the abovementioned approach of quality assurance for GC-MS 

measurements, each sample was co-injected with 1-PD (51.4 μg/mL, Aldrich, USA) 

and 50.0 μg/mL of N-nitrosodiphenylamine-d6 (C12H4D6N2O, Cambridge Isotope Lab. 

Inc., USA) to monitor performance of flame-ionization and chemiluminescence 

detectors, respectively. To account for procedural loss, additional internal standards, 

1,10-phenanthroline-d8 (C12D8N2, Aldrich, USA, 50.0 μg), perdeuterated tetracosane 

and perdeuterated succinic acid were spiked onto filter samples prior to solvent 

extraction. Calibration curves of 20 standard nitrogen-containing compounds in five 

concentrations were established to quantify detected nitrogen-containing compounds. 
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For calibration of 20 nitrogen-containing compounds, see Appendix B. The 20 

standards were injected individually for five times (total 100 injetions) and the 

injection of standard mixtures composed of these 20 standards were repeated 8 times 

to assess the reproducibility of elution behavior of these nitrogen-containing organic 

compounds.  Each nitrogen-containing compound, whether injected individually or as 

a part of standard mixtures, exhibited an elution time satisfactorily consistent with a 

deviation of 0.004–0.021 seconds. Among the standard compounds tested, since the 

shortest time between the elution of any two standard compounds is at least 0.1 sec, 

much larger than the deviation of elution time of a single compound, identification of 

individual NPAC based on their GC elution behaviors can be acceptable. For every 

batch (day) analysis, an injection of the standard mixture was conducted before and 

after the analysis of actual samples to monitor how the instrument performs 

differently. Among the injections of 24 DEP samples, the largest difference between 

the eluted compounds and its presumably corresponding standard compounds is 0.092 

second. In other words, any isomers or unknown NPAC eluted within 0.092 second 

may be inaccurately identified. To take into account the influence of instrument 

performance on elution behavior, for each batch of injection, calibration curves were 

established individually.  
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Chapter 3 

RESULTS AND DISCUSSION 

3.1 Effect of Driving Conditions on Number Concentration, EC, OC 

and Persistent Free Radicals in DEPs 

3.1.1 Diesel exhaust particulates (DEPs) distribution of 13-mode 

Following the standard 13-mode driving program, Fig. 3.1 shows the 

concentration of ultrafine DEPs (≤ 100 nm) for individual conditions, which, in the 

sequential order, are cold idle, 1800 rpm/10%, 1800 rpm/25%, 1800 rpm/50%, 1800 

rpm/75%, 1800 rpm/100%, warm idle-1, 3000 rpm/100%, 3000 rpm/75%, 3000 

rpm/50%, 3000 rpm/25%, 3000 rpm/10% and warm idle-2. These individual driving 

conditions are also labeled in the x-axis of Fig. 3.1 accordingly.   
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Fig. 3.1 Ultrafine number concentration of 13-mode. 
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It is interesting to note that under the three idling conditions, 99% of the DEPs 

were emitted in the ultrafine size. Among the three idle conditions, the cold idle 

emitted the largest amount of DEPs (5.06 × 108 #/cm3) followed by the warm idle-2 

(the last testing stage, Fig. 3.1), which had a lower exhaust temperature than the 1st 

warm idle condition (warm idle-1, Fig. 3.1). It is expected that the warm idle-1, 

which had the highest exhaust temperature (156oC), generated the least ultrafine 

particles (UFPs) among the three idling conditions because a higher combustion 

temperature during idling tends to encourage the formation of smaller UFPs through 

homogeneous nucleation and condensation of organic vapor (Kwon et al., 

2003). Although all the three idle conditions generated DEPs predominately with a 

size below 50 nm, the size distribution of UFPs appeared to depend on the exhaust 

temperatures; the peak size of the UFPs decreased from 30 nm for cold idle with an 

exhaust temperature of 70oC to 24 nm for the 2nd warm idle (with an exhaust 

temperature of 108oC), and concentrated at 20 nm for the 1st warm idle which had the 

highest exhaust temperature (156oC) (Fig. 3.2), agreeing with the observations of 

Kwon research group that an increase in the idling temperature generated smaller 

UFPs because of less condensation of organic vapor. Data of non-idling conditions of 

the 13-mode are available in Appendix G. Fig. 3.1 shows that among the non-idle 

conditions, the concentration trend in the UFPs emitted during both driving cycles 

with an engine speed of 1800 or 3000 rpm appeared to generally follow a “v” shape 

with the smallest concentration occurred at 1800 rpm/75% and 3000 rpm/50%,, while 

a larger UFP concentration was observed at the highest and lowest engine loads. In 

the case of highest (100%) engine load, a larger pyrolysis zone and higher 
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combustion temperature in engine cylinders substantially promote homogeneous 

nucleation and condensation, contributing to an increase in UFP and larger size (>100 

nm) particles (Puri, 1993; Someya, 1993). 

 

  

 

 

 

 

 

 

 

 

 

 However, at the lowest engine load (idle condition), 99% of particulates were 

emitted in the UFP size due to oxygenated hydrocarbons which could act as 

nucleation materials of volatile UFPs. These oxygenated hydrocarbons are generated 

by the partial oxidation of diesel fuel within the engine cylinder under such a low 

engine load (Inoue et al., 2006). Since the most frequent on-road driving conditions 

(excluding the idle conditions) occurred with an engine load between 50% and 100% 

for an engine speed of 1800 or 3000 rpm (Eom et al., 2001), a highest and a medium 

engine loadings (100 and 60%) could be appropriate to characterize the emitted 
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particulates. Nevertheless, since the 13-mode test is intended for regulating exhaust 

emissions, this test insufficiently represents the on-road driving patterns. The 

subsequent tests and characterization focused on specific driving conditions, which 

occurred on-road most frequently.  

3.1.2 Size distribution of DEPs  

Fig. 3.3 shows the concentration of three exhaust gases (CO, NOx, HC), exhaust 

temperature (secondary y-axis), and FTA ratio (secondary x-axis) for the four driving 

conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.3 Concentrations of exhaust gases (CO, HC, and NOx) and temperature 
(corresponding to the secondary y-axis) for individual driving conditions with 
corresponding fuel-to-air ratio (secondary x-axis). All data points represent an 
average of four measurements with a standard deviation of CO (2−21) ppm, HC 
(0.5−24) ppm, NOx (7−49) ppm and temperature (1−4) oC.   
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 Compared to the driving modes with the medium engine load (60%), more CO, 

HC, and NOx, along with a higher exhaust temperature (> 400oC) were emitted from 

the full engine load (100%). An increase in engine loads and FTA ratio tend to 

require stronger horse power (Dagel and Brady, 1998; Henein, 1976), which is 

generated from higher fuel injection pressure (Assanis et al., 2003) accompanied with 

a larger pyrolysis zone in combustion cylinders. This results in less complete 

combustion (a larger amount of CO) with higher HC, NOx, and exhaust temperatures 

(Puri, 1993; Kamimoto and Kobayashi, 1991; Henein et al., 1976). Diesel engines 

have much higher compression ratios (15~22:1), compression pressures (30~45 

kgf/cm2) and compression temperature (500~550oC) with large amount of excess 

oxygen than corresponding in-cylinder conditions of gasoline engines (7~11:1, 7~11 

kgf/cm2, and 120~140 oC). Since NOx emissions increase mainly because of high 

combustion temperature, it is expected that diesel exhausts should contain higher 

NOx. A larger pyrolysis zone in diesel cylinders under a full engine load could also 

lead to more prominent nucleation and condensation (Puri, 1993; Someya, 1993; 

Bockhorn, 1994). This may explain that, unlike DEPs from the medium-load 

operation which showed number concentrations surging at around 40−70 nm (Fig. 

3.4(a) & (b)), DEPs under the full engine load (100%) exhibited distinctive bimodal 

distribution with a larger population in size 30−50 nm and 100−400 nm (Fig. 3.4(c) & 

(d)). The population of ultrafine particles (UFPs) peaked at size smaller than 50 nm 

indicates substantial homogeneous nucleation (Kwon et al., 2003), and the second 

peak between 100−400 nm could be mainly attributed to growth of DEPs through 

condensation.  
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Coagulation unlikely affected DEP size distribution in this study because of short 

residence time (about 0.1 s) in the dilution system. Sulfur in diesel fuel used in this 

study should contribute to nucleated UFPs since Schneider et al. (2005) reported 

substantially promoted nucleation (or UFPs smaller than 50 nm) when they increased 

the sulfur content in diesel fuel from 2 to 360 ppm. Based on TEM image, Park et al. 

(2003) explained that sulfur in diesel fuel would easily form H2SO4 vapor, which 

inclines to nucleate as new particles or condense onto existing particles (e.g., diesel 

soot). Using diesel fuel containing sulfur of around 300 ppm, Baumgard and Johnson 

(1996) found a surge in DEPs of 10−30 nm from a medium-duty diesel engine with 

an engine load of 75%. Hence, sulfur (200 ppm) in the diesel fuel used in this study 

should substantially contribute to DEPs peaking around 30 nm under the full engine 

load (Fig. 3.4(c) & (d)).  

Fig. 3.4 also shows the total number concentration for UFPs and DEPs larger than 

100 nm along with corresponding percentages (in terms of number concentrations). 

68−83% of DEPs emitted from the four driving modes were distributed between 20 

and 100 nm (Fig. 3.4), consistent with on-road measurements of DEPs generated 

from a heavy-duty truck (Kittleson, 2002) containing UFPs for more than 80% of 

numbered DEPs. This suggests that DEPs, in particular in the ultrafine mode, can 

contribute a large amount of surface area to carry toxic materials and to facilitate 

chemical reactions. It should be noted that the overall number concentrations given in 

Fig. 3.4 could be overestimated comparing with actual on-road number concentration 

of DEPs; because dilution of on-road exhausts can be up to 1000 times (Kerminen et 

al., 1997; Kittleson et al., 2002), the limited dilution (8.2 times) adopted in our 
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experiments could result in a higher concentration of DEPs due to enhanced 

nucleation and condensation processes.  

For individual driving conditions, total DEP number concentrations, ranging from 

2.3×108−8.3×108 #/cm3 (Fig. 3.4), increased with higher engine speeds or engine 

loads. Interestingly, under the medium engine load of 60%, when the engine speed 

increased from 1800 to 3000 rpm, DEP number concentration increased for more than 

2 times, changing from 2.3×108−4.8×108 #/cm3 (Fig. 3.4(a) & (b)), whereas under the 

full engine load, an increase in the engine speed marginally affected resultant DEP 

number concentration (Fig. 3.4(c) & (d)). This indicates that effects of engine speeds 

on DEP concentration are insignificant if diesel engines were under the full load. A 

possible reason could be the invariance in amounts of elemental carbons (EC), which 

can represent soot-type of particles formed during combustion. As shown later in this 

chapter, amounts of EC remains insensitive to changes in engine speed under the full 

engine loads (Fig. 3.6), suggesting that total number of particles did not change 

significantly. On the other hand, an increase in engine loads substantially increased 

resultant DEP populations, especially when the vehicles were under a lower driving 

speed; a full engine load significantly enhanced DEP number concentrations from 

2.3×108−7.8×108 #/cm3 under the engine speed of 1800 rpm, and from 

4.8×108−8.3×108 #/cm3 under the engine operation of 3000 rpm (Fig. 3.4). In other 

words, decreasing the engine load from 100% to 60% decreased total DEP numbers 

for at least 1.7 to more than 3 times.  For DEPs in ultrafine mode, Fig. 3.4 shows that 

increasing the engine load up to 100%, UFPs increased for more than 2.5 times (from 

1.9×108−5.2×108 #/cm3) under the engine speed of 1800 rpm and for at least 1.4 times 
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under the maximum engine speed (3000 rpm). For DEPs in 100−400 nm generated 

under an engine speed of 1800 rpm, decreasing the engine load from 100% to 60% 

reduced corresponding DEPs for more than 6 times, changing from more than 

2.5×108 #/cm3 to less than 1×108 #/cm3 (Fig. 3.4(a) & (c)). Under a high engine speed 

of 3000 rpm, decreasing the full engine load to the medium level (60%) effectively 

lowered DEPs in 100−400 nm for more than 3 times (from 2.7−0.8×108 #/cm3) (Fig. 

3.4(b) & (d)).  

 

3.1.3 Persistent free radicals and carbon content in DEPs 

Fig. 3.5 shows that concentrations of persistent free radicals in DEPs from the 

tested four steady-state driving conditions ranged from 4−186×1016 #spin/g, 

substantially depending on engine loads. Under the maximum engine load, persistent 

free radicals in DEPs ranged from 123−186×1016 #spin/g, more than 11 times of that 

under the 60% engine load (4−11×1016 #spin/g) (Fig. 3.5). This is expected because 

compared to the medium engine-load condition, a higher engine load tends to induce 

more severe pyrolysis in combustion cylinders, which could reinforce soot formation, 

resulting in more abundant persistent free radicals. This can be of special concerns 

because the maximum engine load in this study also generated larger numbers 

(surface areas) of DEPs, which could facilitate more reactions of existing persistent 

free radicals, which could cause adverse respiratory effects (Cormier et al., 2006; 

Dellinger et al., 2001; Squadrito et al., 2001; Valavanidis et al., 2005). Nevertheless, 

simply reducing the engine load from 100% to 60% can significantly decrease 

persistent free radicals in DEPs for more than 16 times (under engine speed of 1800 
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rpm), or up to 30 times (under engine speed of 1800 rpm), in addition to lowering 

number concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar to reported persistent free radicals in DEPs retained in tailpipes (Abi-Aad 

et al., 2001; Yamanaka et al., 2005) and emitted from diesel-powered taxis 

(Valavanidis et al., 2005), identified persistent free radicals in this study exhibited a 

g-value of 2.0028±0.0002, corresponding to 1- to 5-ring aromatic hydrocarbon π 

radicals (anion), coronene (anion) or aliphatic hydrocarbon σ radicals (neutral) 
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(Petrakis and Grandy, 1983). The aromatic structure of the persistent free radicals 

found in this study could indicate nucleation and growth of soot through 

polymerization of polycyclic aromatic hydrocarbons (PAHs) and/or polyynes 

(including acetylene) (Wen et al., 2006; Richter et al., 2005; Violi et al., 1999). 

Formation of aromatic-structured persistent free radicals during pyrolysis depends 

on combustion temperatures (Ledesma et al., 2002; Marsh et al., 2004). In spite of 

different fuels, four studies examining combustion of catechol fuel, tobacco and 

cellulose chars pyrolysis consistently observed that concentrations of aromatic-

structured persistent free radicals peaked at a threshold temperature and then 

decreased with increasing combustion temperatures (Maskos et al., 2005; Wind et al., 

1993; Ledesma et al., 2002; Marsh et al, 2004). Fig. 3.5 shows that under the full 

engine load, since the DEPs from the engine speed of 3000 rpm along with an exhaust 

temperature of 569oC (secondary x-axis) contained less persistent free radicals than 

that from the engine speed of 1800 rpm with an exhaust temperature of 497oC, the 

threshold temperature corresponding to the most abundant persistent free radicals 

would be lower than 569oC, resulting in the decreasing concentration of persistent 

free radicals with an increase in the exhaust temperature.  

Fig. 3.6 shows that total particulate matter (TPM) were emitted from the 

individual driving conditions in an decreasing order of 3000 rpm/100% > 1800 

rpm/100% > 3000 rpm/60% > 1800 rpm/60%; under the maximum engine speed and 

load (3000 rpm/100%), the diesel engine generated largest amounts of elemental 

carbons (EC) and organic carbons (OC) of 27.3 and 17.6 mg/m3, respectively. 
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Interestingly, under a constant engine speed, when the engine load increased from 

60% to 100%, EC and OC concurrently increased for about 2 times, which could be 

due to the higher FTA ratio (secondar x-axis, Fig. 3.6). On the other hand, an increase 

in the engine speed marginally affected FTA ratios and emitted EC, while enhanced 
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OC in DEPs for around 2 times. It should be noted that while the FTA ratio remained 

similar, the actual amounts of fuel and air can concurrently increase. Hence, invariant 

FTA ratios unnecessarily indicate similar combustion conditions. Based on 

concentrations of CO and hydrocarbons (HC) in exhaust, combustion conditions seem 

to insensitively depend on engine speed (Fig. 3.3). For example, when engine speed 

increased from 1800 to 3000 rpm, amounts of CO and HC changed insignificantly or 

marginally. Since amounts of elemental carbon depend more on combustion 

condition (Shi et al., 2000), it is expected that they would change little with engine 

speeds. On the other hand, amounts of organic carbons (OC) depend on exhaust 

temperatures.  Since exhaust temperature increased with increasing engine speed (Fig. 

3.3), it is not surprising that OC increased accordingly. Thus, relative to reduction in 

engine speeds, decreasing engine loads can concurrently reduce both EC and OC, 

which is more effective of minimizing carbonaceous materials in DEPs.  

As the EC and OC trends mentioned above, parentheses in Fig. 3.6 show that an 

increase in the engine speed from 1800 to 3000 rpm mainly led to more OC along 

with invariant EC in DEPs, which consequently decreased the EC-OC ratio from 2.9 

to 1.5. This is supported by Ålander et al. (2004) who tested a (direct injection) diesel 

engine similar to this study using a chassis dynamometer and reported a decrease in 

EC-OC ratios at higher engine speeds. In fact, depending on the engine speed, EC-OC 

ratios of DEPs from individual driving conditions in this study were either 1.5 or 2.9. 

This is within a wide range of values obtained from eleven types of on-road heavy-

duty diesel trucks, spanning from 0.2−2.4 (Shah et al., 2004). In addition, since 

increasing the engine load concurrently enhanced emission of EC and OC, and 
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resulted in a similar EC-OC ratio of 1.5 (Fig. 3.6), EC-OC ratios reflect little on how 

different engine types and driving conditions affect resultant carbonaceous content of 

DEPs.  

 

3.1.4 Size segregated EC and OC in DEPs 

Fig. 3.7 shows size segregated EC, OC, and EC-OC ratio in DEPs smaller than 1 

μm emitted from individual driving modes tested in this study. Consistent with the 

trend in TPM (Fig. 3.6), the EC and OC concentrations of DEPs smaller than 1 μm 

generally increased with increasing the engine speed or engine load, ranging from 

0.20–1.37 and 0.10–0.40 mg/m3. However, unlike the TPM showing relatively 

invariant EC-OC ratios for individual driving conditions (Fig. 3.6), the EC-OC ratios 

of DEPs smaller than 1 μm generally increased with increasing engine loads, 

spanning from 1.9 to 3.1 (Fig. 3.7). This demonstrates that EC-OC ratios of TPM 

masked the size dependency of EC-OC ratios in the sub-micron DEPs. On the other 

hand, since DEPs smaller than 1 μm only contained 5% and 3% of total EC and OC 

in TPM, respectively, the EC-OC ratios of the TPM were mainly determined by DEPs 

larger than 1 μm. For DEPs below 1 μm, at 60% load, combustion temperature 

slightly increased from 312oC to 371oC with similar combustion condition based on 

amounts of CO and HC in exhausts (Fig. 3.3). Hence, EC and OC changed 

insignificantly when engine speed increased under the 60% engine load. On the other 

hand, at 100% load, an increase in engine speed substantially increased exhaust 

temperature from 497oC to 569oC along with more severe incomplete combustion 

(Fig. 3.3). The increase in temperature significantly enhanced amounts of OC, and the  
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more severe incomplete combustion increased, in particular, EC (or soot process). 

This results in a trend that EC/OC ratio increased with engine speed at 100% load. 

For DEPs below 1 μm, at 60% load, combustion temperature slightly increased from 

312oC to 371oC with similar combustion condition based on amounts of CO and HC 

in exhausts (Fig. 3.3). Hence, EC and OC changed insignificantly when engine speed 

increased under the 60% engine load. On the other hand, at 100% load, an increase in 

engine speed substantially increased exhaust temperature from 497oC to 569oC along 

with more severe incomplete combustion (Fig. 3.3). The increase in temperature 

significantly enhanced amounts of OC, and the more severe incomplete combustion 

increased, in particular, EC (or soot process). This results in a trend that EC/OC ratio 

increased with engine speed at 100% load. 

For size segregated EC, Fig. 3.7(a) and (b) show that under the medium (60%) 

engine load, EC mildly increased with larger DEP size, whereas under the full engine 

load, EC peaked at size of 170−330 nm and 94−170 nm as shown in Fig. 3.7(c) and 

(d), respectively. Among the tested four driving conditions, the driving mode of 3000 

rpm/100% exhibited the largest EC concentration for all six size groups (Fig. 3.7), 

with a concentration ranging from 0.09−0.42 mg/m3. This is consistent with previous 

observations of DEPs from heavy-duty diesel engines with a size cross all size or ≤ 

2.5 μm that stronger formation of soot (or EC) took place at high engine speeds and 

high engine loads (Shah et al., 2004; Shi et al., 2000). Relative to the medium engine 

speed and engine load (1800 rpm/60%), the maximum engine speed/load (3000 

rpm/100%) emitting EC in UFPs (34−94 nm) and in 94−1000 nm was around 7 times 

higher (0.22 vs. 0.03 mg/m3 for 34-94 nm; 1.15 vs. 0.17 mg/m3 for 94−1000 nm). 
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This is expected because heavier engine loads, which are often accompanied with a 

higher combustion temperature and larger injection of fuel (or FTA ratios), tend to 

encourage formation of primary soot (nonvolatile core) in size 20−50 nm (Burtscher, 

1992) followed by agglomeration. While particle-cluster agglomeration may 

primarily contribute to DEPs in ultrafine size, cluster-cluster agglomeration could 

substantially result in accumulation-mode DEPs (Virtanen et al., 2004). This suggests 

that large EC in size of 94−170 nm (Fig. 3.7(d)) and in size of 170−330 nm (Fig. 

3.7(c)) could be attributed to strong sooting under the driving condition of 3000 

rpm/100%, and substantial cluster-cluster agglomeration under the driving condition 

of 1800 rpm/100%, respectively.  

Consistent with the trend in EC, among the tested driving conditions, size-

segregated OC (in DEPs smaller than 1000 nm) from the driving condition of 3000 

rpm/100% showed the largest concentration for all the six size ranges, spanning from 

0.04 mg/m3 (66−94 nm) to 0.10 mg/m3 (94−170 nm) (Fig. 3.7(d)). This could be due 

to the higher FTA ratio and stronger fuel injection pressure under this most 

demanding driving condition, resulting in supersaturated organic vapor available for 

nucleation and condensation. Less nucleation of UFPs under 1800 rpm/60% may also 

explain that the resultant OC in 34−94 nm was down to 0.01 mg/m3 (Fig. 3.7(a)), one 

tenth of corresponding OC (0.10 mg/m3) under the driving condition of 3000 

rpm/100%. Interestingly, under the two driving conditions with the full engine load, 

OC in DEPs smaller than 1 μm mainly peaked at the accumulation mode, 170−330 

nm (Fig. 3.7(c)) and 94−170 nm (Fig. 3.7(d)) for the engine speed of 1800 and 3000 

rpm, respectively. Since condensation would dominate DEPs in accumulation-mode 
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(100−1000 nm), decreasing the engine load from 100% to 60% reduced OC in DEPs 

larger than 100 nm for more than 1.5 times, changing from more than 0.25 mg/m3 

down to less than 0.17 mg/m3 (Fig. 3.7).  

 

3.2 Effect of Driving Conditions on Metal Contents in DEPs 

3.2.1 Effects of driving conditions, diesel fuel, and lubricants on metals in DEPs  

For DEPs of 34 nm–1 µm, Fig. 3.8(a) demonstrates that the total quantified 

metals ranged from 6.1–7.7 μg/m3. Fig. 3.8(a) also shows that the engine speed 

marginally affected metal concentrations in DEPs. On the other hand, when the 

engine load increased from 60% to 100%, metal concentrations (μg/m3) increased for 

more than 16% along with higher fuel-to-air ratios (secondary x-axis), suggesting that 

a larger consumption of diesel fuel contributed to the increased metal content. To 

evaluate metal abundance per unit of DEPs (by weight), Fig. 3.8(b) shows that metal 

abundance significantly decreased with an increase in the engine speed or engine load, 

differing from the trend in Fig. 3.8(a). This is mainly because, at a higher speed or 

load, diesel engines tend to emit more DEPs (secondary x-axis) consisting of 

significant amounts of carbonaceous compounds. In particular, at the medium engine 

speed (1800 rpm), an increase in engine load from 60% to 100% enhanced DEP mass 

concentration (secondary x-axis of Fig. 3.8(b)) for at least five times, or decreased 

metal abundance for more than four times (Fig. 3.8(b)). Relative to Fig. 3.8(a), while 

metal abundance (metal content per unit of DEPs, by weight as shown in Fig. 3.8(b)) 

can be employed as an emission rate to facilitate modeling of source apportionments, 

metal concentration (mass per unit of air volume) is applicable to examine effects of 
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driving conditions on metal emissions without interference of concurrent changes in 

carbonaceous materials in DEPs. In addition, the expression of metal concentrations 

(mass per volume) is comparable with those in ambient environments and from 

primary emission sources, paving ways to assess how DEPs affect ambient air quality.  

Among the identified 18 metal species, Fig. 3.9 depicts nine species with the rest 

nine trace metals classified into the category of “Others”, which accounted for less 

than 3% of total quantified metals. Because Fe is the major component in both diesel 

fuel and lubricant used in this study (Fig. 3.9(a) & (b)), it consistently exhibited the 

highest concentration in DEPs of all four driving conditions (Fig. 3.9(c)–(f)). In the 

diesel fuel, Fe concentration (14.7 μg/mL) is more than 60% of total quantifiable 

metal content, followed by Cu (14%) and Cr (12%) (Fig. 3.9(a)). While the lubricant 

used in this study contains quantifiable metals of 47.7 μg/mL, which is more than two 

times higher than diesel fuel (23.2 μg/mL), the little consumption rate of lubricants (< 

60 g/hr), compared to diesel fuel (10–27 kg/hr), contributed little to resultant metals 

in DEPs. Hence, it is not surprising that the lubricant insignificantly affected resultant 

profiles of metal concentrations in DEPs (Fig. 3.9(c)–(f)) although more than 40% of 

quantified metals in the lubricant are attributed to Mn (17%), Ni (14%) and Mo (14%) 

(Fig. 3.9(b)).   

Fig. 3.9(c)–(f) show Fe as the most abundant metal species (>38%) followed by 

Pb (5–15%), Cr (9–12%), V (9–10%) and Li (8–15%). Fe exhibited the largest 

concentration ranging from 2.3–3.9 μg/m3, consistent with Wang et al. (2003), who 

reported Fe having the highest concentration (543 μg/m3) among the identified 12  
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Fig. 3.9 Comparison of metal contents in DEPs (34 nm–1 μm) with diesel fuel and 
lubricant. 
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transition metals. Such a high concentration of Fe measured in total DEPs could be 

attributed to the high content of Fe in the used diesel fuel and the aged (1990-model) 

medium-duty diesel engine. In this study, Fe and Cr in DEPs were most likely 

originated from diesel fuel containing relatively abundant Fe, Cr, and Cu (Fig. 3.9(a)).  

Pb and V could participated in DEPs mainly through engine wear since Pb is 

commonly used in alloys of engine bearings and in coatings of engine pistons (Denis 

et al., 2000); V is often incorporated in materials of cylinder liner (Vatavuk and 

Demarchi, 1995) and combustion chamber (Holmes et al., 1990). Similar to Pb and V, 

Li could be added to aluminum alloys for engine pistons (United States Patent 

5169462), and is normally used as one of antirust additives (Denis et al., 2000). 

Hence, although less than 1% of Li was quantified in the diesel fuel and lubricant 

employed in this study (Fig. 3.9(a) & (b)), it can participate in combustion through 

engine wear where its high volatility and reactivity (Allègre et al., 2001; Sullivan, 

2001) could easily facilitate formation of lithium oxide and lead to relatively large 

amounts of Li in DEPs (Fig. 3.9(d)–(f)). This may also explain why more Li was 

quantified in DEPs of driving conditions with the higher engine speed (3000 rpm) or 

engine load (100%) (Fig. 3.9(e) & (f)), accompanied with a higher combustion 

temperature, in addition to more consumption of the diesel fuel and lubricant.  

 

3.2.2 Metal contents in size segregated DEPs 

Size distribution of metals in DEPs was first evaluated in two size groups, 34–94 

nm (ultrafine DEPs) and 94 nm–1 μm (accumulation-mode DEPs). Fig. 3.10(a) shows 

that while metal concentration of accumulation-mode DEPs (in white bars) changed  
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Fig. 3.10 Effect of driving conditions on size distribution of metal contents in DEPs. 
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marginally (by around 10%), a full engine load significantly increased metals in 

ultrafine DEPs (in gray bars) by 73% (from 1.5–2.6 µg/m3) and 94% (from 1.6–3.1 

µg/m3) under the medium and maximum engine speeds, respectively. This provides 

insights of Fig. 3.8(a) that the increase (1.1–1.4 µg/m3) of metals in DEPs (34 nm–1 

µm) of the driving conditions under the full engine load was mainly contributed by 

ultrafine DEPs. Since after-treatment devices (e.g., diesel particle filters) can 

efficiently remove (metals in) DEPs larger than 100 nm (Mohr et al., 2006; Kittleson 

et al., 2006), employing after-treatment devices coupled with a restricted engine load 

(e.g., up to 60% as shown in Fig. 3.10(a)) can complementarily remove metals in 

DEPs over a wide size range, including those in ultrafine DEPs.    

Fig. 3.10(a) also shows that under the maximum engine load, metals in ultrafine 

DEPs was more than 1.7 times of those under the 60% engine load. This may affirm 

the hypothesis of Lee et al. (2006) that under higher engine loads, a larger amount of 

diesel fuel in an engine results in supersaturated metal vapor, favoring homogeneous 

nucleation. Since the same group also postulated that smaller amounts of metal vapor 

in a combustion chamber (e.g., under a smaller engine load) could preferably undergo 

heterogeneous condensation onto existing carbon particulates, it is not surprising that, 

under the medium engine load (60%), more than 75% (by weight) of quantified 

metals concentrated in DEPs larger than 100 nm (Fig. 3.10(a)).  

In terms of metal content in each DEP, Fig. 3.10(b) shows that under the full 

engine load, the amounts of metal carried by each ultrafine (34–94 nm) particle and 

accumulation-mode (94–330 nm) DEPs are similar (0.7–0.9×10-8 pg/particle), 

indicating that nucleation and condensation resulted in similar metal content per 
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particle. On the other hand, under the medium engine load, the amounts (3.1–3.7×10-8 

pg/particle) of metal concentrated in DEPs of 94–330 nm are at least 4 times more 

than that in ultrafine DEPs. This suggests that under a smaller engine load, metals 

were involved in DEPs dominantly through condensation.  

To examine size distribution of metals in more detail, Fig. 3.11 shows metal 

concentrations in 6 size groups, ranging from 34–1000 nm. Consistent with Fig. 3.10, 

under the medium engine load, most metals concentrated in DEPs larger than 100 nm 

(Fig. 3.11(a) & (b)), whereas a full engine load elevated metal content in ultrafine 

DEPs, peaking at DEPs smaller than 66 nm with a concentration more than 1.5 μg/m3 

(Fig. 3.11(c) & (d)). This further supports that under higher engine loads, more metals 

participate in ultrafine DEPs. Interestingly, at the full engine load, metal contents 

showed an opposite trend to elemental carbon (EC) (Fig. 3.11(c) & (d)); when metal 

concentrations decreased (or increased) in individual size ranges, EC increased (or 

decreased) concurrently. This could be supported by Kim et al. (2005) who reported 

that an addition of metal additives to diesel fuel could suppress soot inception and 

growth because metal components can catalyze oxidation of soot in combustion 

chambers. The same research group also doped soot by bubbling fuel through iron 

pentacarbonyl prior to combustion, and observed that the iron-doped soot underwent 

more significant oxidation at combustion temperatures above 500oC. By using a high 

temperature oxidation tandem differential mobility analyzer, they also found that 

iron-doped soot was “shrunk” to nano size during combustion, indicating that a larger 

amount of metals in ultrafine DEPs shown in Fig. 3.11(c) and (d) could also be 

contributed by oxidation of larger DEPs at high temperatures under full engine loads.  
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Fig. 3.11 Size distribution of metal contents and elemental carbon in DEPs.  
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For the driving conditions under the 60% engine load, however, indistinguishable 

trends between metals and EC are observed in DEPs smaller than 1 μm, which could 

be attributed to less soot emission resulting from less fuel consumption and lower 

combustion temperature (< 500oC).  

Fig. 3.12 shows the size segregation of nine metal species exhibiting relatively 

more substantial concentrations in DEPs. Depending on the engine loads, these 

metals show two general trends in their size distribution: under the engine load of 

60%, individual metals concentrated more in DEPs larger than 100 nm, with an 

accumulated concentration in DEPs (100–1000 nm, accumulation mode) of 26 ng/m3 

(for Mo) to more than 2100 ng/m3 (for Fe), or the metals in DEPs of accumulation 

mode is 2.0–6.5 times of that in ultrafine DEPs. On the other hand, under the full 

engine load, the amount of metals in DEPs was generally distributed more evenly 

among individual size ranges, compared to that of the medium engine load (Fig. 3.12); 

DEPs larger than 100 nm contained metals, in average, 1.7–1.9 times of ultrafine 

DEPs (see data in Appendix D, Table D). Interestingly, under the driving condition 

with the highest engine speed (3000 rpm) and engine load (100%), Cu in 

accumulation-mode DEPs was almost 7 times of that in ultrafine DEPs, uniquely 

differing from other metals with a concentration ratio ranging between 1 and 1.8 (data 

not shown).   

For ultrafine DEPs, under the medium engine load, no more than 30% of most 

metals was in the ultrafine range (secondary y-axis of Fig. 3.12), whereas under the 

maximum engine load, the individual metals shown in Fig. 3.12 had, in average, 40% 

of their mass in the ultrafine DEPs.  In fact, under the most strenuous driving  
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Fig. 3.12 Size distribution and cumulative fractions of 9 most abundant metals in DEPs. 
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condition (3000 rpm/100%), 7 out of 18 identified metals distributed 50% of their 

mass in ultrafine DEPs (see data in Appendix D, Table D), demonstrating that a 

substantial amount of metals can be carried by ultrafine DEPs.  

Under the 100% engine load, metals often peaked at the smallest ultrafine DEPs 

(< 66 nm) with a concentration up to ~800 ng/m3 (for Fe) (Fig. 3.12). This, again, 

indicates the dominant involvement of metals (in particular Fe) in ultrafine DEPs 

under the full engine load. In addition, when the engine load increased from 60% to 

100% (at the maximum engine speed of 3000 rpm), the averaged cumulative fraction 

of five metals Fe, Li, Cr, V and Pb increased for around 2 times (from 22% to 43%) 

(Fig. 3.12). This suggests that reducing the engine load can substantially decrease the 

amount of metals in ultrafine DEPs.  

It is worthwhile to note that while roadside observations also show that a 

substantial amount of metals (e.g., 50% of quantified cadmium) was retained in 

ultrafine particles emitting mainly from diesel vehicles (Lin et al., 2005), consistent 

with this study, the most abundant five metals (Fe, Cr, Pb, Ni and Cd) in ultrafine 

(10–100 nm) particulates collected along roadsides with a substantial influence of 

diesel emissions (Lin et al., 2005) differ from this study (Fe, Li, Cr, V and Pb). This 

is not surprising because roadside measurements can vary depending on locations and 

on-road fleet compositions.   

 

3.2.3 Comparison of metals-to-iron ratio with other studies 

Table 3.1 summarizes concentration ratios of four metals (Cr, Ni, Cu, and Pb) to 

Fe, which were derived from four studies, including this work. In addition to different 
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Table 3.1 Metal-to-iron ratios of particulates in vehicle emissions 

Types of used fuel  Diesel  Diesel  Diesel   Gasoline  

Engine/vehicle 1 medium-duty engine 1 medium-duty engine 1 light-duty vehicle 24 light-duty vehicles 

Driving conditions 4 steady-state modes1 3 constant speeds2 Federal Test Procedure3 Transient modes4 

Testing methods Engine dynamometer Engine dynamometer Chassis dynamometer Chassis dynamometer 

Source This study Wang et al., 2003 Vilhunen et al., 1999 Cadle et al., 2001 

Cr-Fe ratio 0.23±0.06 0.21±0.02 0.09±0.01 0.03±0.01 

Ni-Fe ratio 0.08±0.01 0.13±0.02 0.14±0.02 0.04±0.02 

Cu-Fe ratio 0.09±0.05 0.11±0.01 0.03±0.01 0.07±0.05 

Pb-Fe ratio 0.21±0.13 0.03±0.00 0.01±0.01 0.04±0.03 

No. of tests 4 3 3 3 

1Consisting of two engine speeds (1800 and 3000 rpm) and two engine loads (60 and 100%) 
2Engine speeds of 100, 60, 40% under a maxim engine load 
33 steps of Federal Test Procedure (FTP) 
43 types of testing programs: (i) 3 steps FTP (ii) Unified Cycles (iii) REP05 driving cycles 
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types of engines and testing methods, published studies often adopt different units of 

metal concentrations making cross-comparison difficult. As Table 3.1 shows, by 

normalizing the individual metals with the Fe concentration in the same studies, these 

four studies, consisting of 3 studies on DEPs and 1 study of gasoline emissions, 

provide comparable information of metal in particulates emitting from vehicle 

tailpipes. Unlike other metals, Cr-to-Fe (Cr-Fe) ratio of DEPs (0.09±0.01−0.23±0.06) 

is at least 2 times higher than that of particulates from gasoline exhausts (0.03±0.01) 

(Table 3.1). The higher Cr-Fe ratio in DEPs could be due to a larger amount of Cr in 

diesel fuels and lubricants, while Cr was hardly detected in both regular- and 

premium-level of gasoline fuels (in USA) since year 1998 (Ozaki et al., 2004). It 

should be noted that although diesel-powered cars tend to emit more Cr, gasoline-

powered vehicles (in USA) of model years earlier than 1985 can emit more Cr and Fe 

than diesel-powered vehicles (Cadle et al., 1999); employing the Cr-Fe ratio, instead 

of Cr or Fe concentration individually, can objectively differentiate diesel- vs. 

gasoline-originated emissions. Nevertheless, adopting the abovementioned Cr-Fe 

ratio as a fingerprint for diesel emissions should be conditional because Cr-Fe ratios 

in stack emissions (such as from oil fired power plants, coke ovens, and coal power 

plants) and of biomass burning exhibit a Cr-Fe ratio ranging from 0.09–0.28 (Reddy 

et al., 2005; Wang et al., 2003; See et al., 2007), similar to that in DEPs. In addition, 

Cr-Fe ratios in ambient PM10 and PM2.5 near a city area is smaller than 0.03 

(Marcazzan et al., 2001; Singh et al., 2002), similar to that of gasoline exhausts. 

Hence, the Cr-Fe ratio is only applicable to identify contribution of DEPs for studies 
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conducted in traffic tunnels or at locations under a substantial influence of traffic 

emissions.   

 

3.3 Effect of Driving Conditions on Organic Compounds in DEPs 

3.3.1 Effects of driving conditions on identified organic compounds in DEPs 

Fig. 3.13(a) shows that the concentration of identifiable organic compounds in 

DEPs (<1 μm) ranged from 12.4 to around 20 μg/m3 for individual driving conditions. 

The secondary x-axis shows the corresponding concentration of total organic 

compounds in DEPs (<1 μm), which was estimated based on experimentally 

measured organic carbon in DEPs (<1 μm) coupled with an organic-mass-to-organic 

carbon (OM-OC) ratio of 1.2 (secondary x-axis). The OM-OC ratio of 1.2 employed 

in the estimation is reasonable because most organics in DEPs have alkane structure.  

Differing from the trend in identifiable organic compounds, when the engine 

speed and load increased from 1800 rpm/60% to 3000 rpm/100%, the total organic in 

DEPs (<1 μm) (secondary x-axis) increased for almost 4 times, changing from 0.12 

up to 0.47 mg/m3 (Fig. 3.13(a)), whereas no more than 10% of the organic 

compounds were identifiable (Fig. 3.13(b)). This indicates that more than 90% (by wt) 

of organics in DEPs (<1 μm) in this study could be under detection limit and/or 

unidentifiable by using the existing analytical techniques because they could be 

humic-like substances (Ghio et al., 1996). Although literature studies reporting 

organics in DEPs <1 μm in detailed are unavailable for comparison, the small fraction 

(%) of identifiable organics observed in this study can be supported by the 
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measurements of Schauer et al. (1999) and Rogge et al. (1993a), who only identified 

around 4% and 6% of organics in total DEPs emitting from a medium-duty and a 

heavy-duty diesel engine, respectively.  
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When the driving conditions changed from 1800 rpm/60% to 3000 rpm/100%, Fig. 

3.13(b) shows that the fraction of identifiable organics in DEPs (<1 μm) reduced for 

more than 3 times (from 10.3–2.8 %), indicating stronger formation of unresolved 

organics under more strenuous driving conditions, which were accompanied with 

more fuel injection and higher combustion temperature (as shown in the secondary x-

axis of Fig. 3.13(b)) as well as larger pyrolysis zones in diesel engines. Such 

incomplete combustion could encourage formation of organics with large molecular 

weights, such as humic-like substances, or with complex mixture of branched and 

cyclic hydrocarbons, which are difficult to be resolved from analytical column (Ghio 

et al., 1996; Simoneit, 1984).   

Table 3.2 shows that the concentration of identifiable organic compounds in DEPs 

of ultrafine (34–94 nm) size and accumulation (94–1000 nm) modes ranged from 

2.9–5.7 μg/m3 and 9.5–16.4 μg/m3, respectively; a large amount (70–83%) of 

identifiable organics in DEPs (< 1 μm) were allocated in accumulation-mode DEPs, 

suggesting that organic compounds in DEPs could have undergone prominent 

condensation. Although DEPs under the driving condition of 3000 rpm/60% and 1800 

rpm/100% contained the largest concentration of identifiable organics in ultrafine (5.7 

μg/m3) and accumulation-modes (16.4 μg/m3), respectively (Table 3.2), changes in 

driving conditions ambiguously correlated with the size distribution of identified 

organic. While aftertreatments (such as application of diesel particle filter; DPF) can 

effectively remove up to 99% (in terms of number) of accumulation-mode DEPs 

(Mathis et al., 2004), Geller et al. (2006) reported that chemical (redox) activity of 

DEPs unnecessarily decreased accordingly, suggesting that organic compounds in 
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ultrafine DEPs may contain substantial reactivity. Nevertheless, since the identifiable 

organics in this study are only up to 10% of total organic compounds, more 

understanding of size distribution and molecular structures of unresolved organics in 

DEPs are needed.  

Table 3.2 Identifiable organic compounds in ultrafine and accumulation-mode DEPs 

Driving modes Ultrafine DEPs (34–94 nm) Accumulation-mode DEPs (94–1000 nm)

 Concentration (µg/m3) Fraction (%) Concentration (µg/m3) Fraction (%)

1800 rpm/60% 2.9 23 9.5 77 

3000 rpm/60% 5.7 30 13.3 70 

1800 rpm/100% 3.3 17 16.4 83 

3000 rpm/100% 3.0 23 10.0 77 

 

Since organics containing hydroxyl and/or carbonyl substitutes (O-containing 

organics) in DEPs could provoke different oxidative stress, and cytotoxic as well as 

inflammatory response from aliphatic compounds and PAHs (non O-containing 

organics) (Shima et al., 2006; Xia et al., 2004), the identified organics were grouped 

as oxygen (O)-containing organics vs. non-O-containing organics. The former 

consists of quantifiable carboxylic acids, ester, ketones, ethers, oxygenated S-, N-

containing compounds and oxygenated PAHs, and the non-O-containing organics 

include alkanes, alkenes, alkynes, aromatic hydrocarbons and aza arenes. The 

concentration of identified non-O-containing organics in DEPs ranged from 8.4–17.9 

μg/m3, 2 times more than O-containing organics (0.9–4.5 μg/m3). Majority of both 

classes of identified organics were in accumulation-mode DEPs; more than 80% of 

O-containing organics (except DEPs of 1800 rpm/100%) and more than 60% of non-
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O-containing organics were found in accumulation-mode DEPs (data not shown). 

Interestingly, the non-O-containing organic compounds generally show a 

concentration trend opposite to the O-containing organic compounds in both ultrafine 

(34–94 nm) and accumulation-mode (94–1000 nm) DEPs (Fig. 3.14).  
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Fig. 3.14 Oxygen-containing and non-oxygen-containing organic compounds in 
(a) ultrafine DEPs and (b) accumulation-mode DEPs. 
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In ultrafine DEPs, the non-O-containing organics peaked at the driving condition 

of 3000 rpm/60% (5.6 μg/m3), corresponding to the lowest concentration of the O-

containing organics (Fig. 3.14(a)). Similarly, in accumulation-mode DEPs, when the 

non-O-containing organics exhibited a pivotal concentration (15.2 μg/m3) under the 

driving condition of 1800 rpm/100%, the O-containing organics reversed a decreasing 

trend and peaked at the driving condition of 3000 rpm/100% with the largest 

concentration of 3.1 (μg/m3) (Fig. 3.14(b)). This is consistent with observations of 

organics during in-cylinder diesel engine measurements that oxidative pyrolysis and 

partial oxidation of aliphatic hydrocarbons could increase the amount of oxygenated 

organic compounds (Barbella et al., 1990). Since the toxicity of O-containing 

compounds differ from that of non-O-containing compounds, specific molecular 

structure of organic compounds may provide more specific assessment of potential 

health problems imposed by DEPs  

To better understand the potential toxicity of organic compounds in DEPs, 

according to molecular structure, the identified organic compounds in DEPs (34 nm 

to 1 μm) were classified into eleven classes: alkanes, alkenes, alkynes, aromatic 

hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen (N)-

containing compounds, and sulfur (S)-containing compounds.  

Fig. 3.15 shows the concentration of identified compound class in DEPs (<1 µm) 

for individual driving conditions. Among the identified organic classes, alkane is the 

most abundant compound class, followed by carboxylic acids, esters, ketones and 

alcohols (corresponding to the secondary y-axis of Fig. 3.15). 
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Fig. 3.15 Identified organic compound classes in DEPs (<1 μm) under four driving 
conditions. The concentration of non-alkane compound classes corresponds to the 
secondary y-axis. 
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Alkanes consistently exhibited the highest concentration, ranging from 8.3 μg/m3 

to 18.0 μg/m3 (Fig. 3.15), and accounted for more than 60% (or up to 95%) of 

identified organics in DEPs (<1 µm) in this study. Among the tested driving 

conditions, DEPs of 3000 rpm/60% contained the largest alkanes (5.6 μg/m3) in 

ultrafine size (grey bar, Fig. 3.15(b)), accounting for >97% of the quantified organics, 

and DEPs of 1800 rpm/100% contained most abundant alkanes in larger DEPs, 

responsible for ~88% of identifiable organics in the accumulation-mode (white bar, 

Fig. 3.15(c)). Abundant alkanes in DEPs found in this study are consistent with 

Rogge et al. (1993a) (more than 60 %). In addition, because more than 98% diesel 

fuel used for this study consists of alkanes (ranging from C9–C24) (Table 3.3), 

unburned fuel could be involved in resultant DEPs.  

Table 3.3. Identifiable organic compounds in diesel fuel and lubricant employed in 
this study 
 
Compound Classes  Diesel fuel  Lubricant 
  Concentration (μg/mL) 
Alkanes (C9–C24) 11,067.6 - 
PAHs 133.5 - 
Carboxylic acids  - 482.8 
Ketones  - 42.2 
Oxygenated N containing 
compounds 

- 18.8 

Alcohols  - 8.3 
Esters  - 6.3 
PAHs  - 1.6 

 

Consistent with the trend given in Fig. 3.14, alkanes show a concentration trend 

opposite to oxygenated compounds (including carboxylic acids, esters, ketones and 
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alcohols) (Fig. 3.15).  For example, a higher concentration in oxygenated organics in 

DEPs of 1800 rpm/60% and 3000 rpm/100% (3.0–4.3 μg/m3) was accompanied with 

alkanes in a smaller concentration (8.3–9.3 μg/m3) (Fig. 3.15(a) & (d)), whereas other 

two driving conditions (3000 rpm/60% and 1800 rpm/100%) emitted smaller amounts 

of oxygenated organics along with larger amounts of alkanes (17.1–18.0 μg/m3) (Fig. 

3.15(b) & (c)). It is worth while to note that among the four tested driving conditions, 

the maximum engine speed and load (Fig. 3.15(d)) emitted DEPs (<1 µm) containing 

the largest amount of carboxylic acids (2.2 μg/m3), alcohols (0.9 μg/m3), N-

containing compounds (0.2 μg/m3) and aromatic hydrocarbons (0.2 μg/m3), but least 

amount of alkanes (8.3 μg/m3). Although carboxylic acid is absent from diesel fuel, 

its abundance in the lubricant used in this study (Table 3.3) may lead to their presence 

in DEPs as suggested by Liang et al. (2005).  

A few probable reaction pathways resulting in appearance and disappearance of 

organic compounds (such as carboxylic acids, esters, ketones, alcohols) in ultrafine 

and accumulation-mode DEPs at different driving modes could be suggested.  Since 

chemical compositions of gas-phase compounds in diesel exhaust are unavailable, 

quantified organic species in particulate-phase could result from complicated 

pathways, including condensation and nucleation of gas-phase reactions, oxidation 

over particulate surfaces, etc. Hence, suggested chemical reactions based on observed 

concentration profiles should be taken as preliminary approximation. According to 

the proposed mechanisms under combustion (≥ 800oC with sufficient oxygen), for 

oxygenated organic compounds (carboxylic acids, esters, ketones, alcohols, and 

ethers), alcohols seemed to play a critical role determining formation of carboxylic 
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acids, esters, and ethers. At 1800rpm/60% driving mode, alcohols were mainly in 

accumulation-mode, indicating substantial condensation or particulate-phase 

oxidation, which could directly result in a substantial amount of esters in 

accumulation-mode (Fig. 3.15(a)). Ethers were solely in ultrafine-mode, which could 

be in expense of all alcohols in the same size of DEPs (Fig. 3.15(a)). Carboxylic acids 

appeared to participate evenly in ultrafine- vs. accumulation-mode DEPs. The fact 

that alcohols in ultrafine DEPs were negligible indicates that formation with 

carboxylic acids to form esters would be little as shown in (Fig. 3.15(a)). Alcohols in 

ultrafine DEPs could mainly depleted by forming ethers in the same DEP mode, and 

hence less unavailable to react with carboxylic acids. If alcohols hold a key role of 

determining other classes of oxygenated compounds, it is not surprising that the 

disappearance of alcohols at 3000 rpm/60% was accompanied with negligible or little 

amounts of carboxylic acids, esters and ethers ((Fig. 3.15(b)). Interestingly, ketones 

showed much higher concentration in accumulation-mode at 3000rpm/60%, opposite 

to that at 1800rpm/60% (Fig. 3.15(a) & (b)). Since presence ketones mainly depend 

on alkoxy or peroxy radicals, it is not surprising that its trend might not correlate with 

other oxygenated compounds in DEPs. In addition, ketones are more volatile than 

other oxygenated compounds; hence, they can be easily oxidized to other compounds 

or partition into gas-phase.  

Similar to observation of Fig. 3.15(a), correlations among alcohols, carboxylic 

acids, esters, and ethers could be applied to the oxygenated compounds at the full 

engine load. In the case of 1800 rpm/100%, a relatively high concentration of alkanes 

(and alkenes) in accumulation-mode (Fig. 3.15(c)) indicates that condensation of 
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alkanes (and alkenes) dominated over oxidation of these hydrocarbons. Hence, less 

oxygenated organics (e.g., carboxylic acids, ketones, ethers, esters and alcohols) in 

both ultrafine- and accumulation-mode DEPs. 

For 3000 rpm/100%, severe oxidation of alkanes and hydrocarbons could produce 

more carboxylic acids, esters, ketones and alcohols in ultra- and/or accumulation-

mode through nucleation and condensation from gas-phase, as well as particle surface 

reactions. This is possible because Barbella et al. (1990) have shown that at high 

temperature in diesel engine cylinder, more oxidation of hydrocarbons could produce 

more oxygenated organics. Hence, abundant of carboxylic acids and alcohols in 

accumulation-mode could form dominant esters in accumulation-mode through 

esterification and more oxidation of alkanes in ultrafine-mode could produce 

relatively high ketones in ultrafine-mode. 

3.3.2 Effects of driving conditions on alkanes in DEPs  

Consistent with Fig. 3.15, Fig. 3.16 shows that most alkanes species concentrated 

in accumulation-mode DEPs of the four driving conditions; while individual alkanes 

in ultrafine DEPs contained a similar concentration, C19–C25 alkanes in 

accumulation-mode DEPs had larger concentration than other alkane species. 

Interestingly, after an increase in the engine speed or engine load, larger alkanes 

(C25–C31) decreased in concentration for more than 2 times (Fig. 3.16), which could 

be due to more severe thermal decomposition (Yu and Eser, 1997) since an increase 

in the engine speed or load in this study could enhance combustion (exhaust) 

temperatures for more than 200oC.  
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Fig. 3.16 Identified alkane species in ultrafine and accumulation-mode DEPs. 
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Fig. 3.16 shows that the identified alkanes in DEPs (<1 μm) (dashed lines in Fig. 

4) generally peaked between C19–C25. Among the identified 17 alkane species in 

DEPs, C19 exhibited the highest concentration for all driving conditions, except that 

under the maximum engine speed and load, which peaked at C21 (Fig. 3.16(d)). 

While alkanes containing the highest concentration in DEPs (<1 µm) vary marginally 

among the individual driving conditions, a relative concentration ratios between the 

two most abundant alkanes may characterize effects of individual driving conditions. 

For example, the concentration ratios of individual driving conditions are: 1.7 

(=C19/C25) for 1800 rpm/60%, 2.9 (=C19/C24) for 3000 rpm/60%, 1.8 (=C19/C24) 

for 1800 rpm/100%, and 2.0 (=C21/C25) for 3000 rpm/100%. This demonstrates that 

a ratio higher than 2 could represent DEPs of maximum engine speed. According to 

the data of other studies, alkanes in DEPs of a heavy-duty and a medium-duty truck 

operating following the Federal Test Procedure (FTP) showed a ratio of 3.0 

(=C20/C25) (Rogge et al., 1993a) and 2.7 (=C20/C26) (Schauer et al., 1999), 

respectively. Since testing conditions, engine types, and diesel fuel used could affect 

emitted alkane composition and resultant ratios, the resultant ratios should be 

employed conditionally and may not be generalized. Nevertheless, the alkane ratio 

can characterize diesel- vs. gasoline-powered vehicles during tailpipe measurements 

because the ratio of alkanes in exhaust particulates of gasoline-powered vehicles 

undergoing the FTP tests were all smaller than 1.0. For gasoline-powered vehicles 

without and with catalytic converters, the ratio range from 0.3 (C22/C26)–0.9 

(=C20/C25) and 0.7 (=C20/C25)–0.8 (C18/C25), respectively (Rogge et al., 1993a; 

Schauer et al., 2002). Hence, while the alkane ratio may not differentiate sources of 
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DEPs, it can serve as a potential fingerprint distinguish diesel-powered vs. gasoline-

powered vehicles based on tailpipe measurements.   

3.3.3 Effects of driving conditions on polycyclic aromatic hydrocarbons (PAHs) 

in DEPs 

Fig. 3.17 depicts twelve identified polycyclic aromatic hydrocarbons (PAHs) in 

DEPs (<1 μm), according to the molecular weight, namely acenaphthylene (Acy), 

acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), 

fluoranthene (Flt), pyrene (Pyr), chrysene (Cry), benzo(a)anthracene (BaA), 

benzo(b)fluoranthene (BbFt), benzo(k)fluoranthene (BkFt) and benzo(a)pyrene (BaP), 

with a concentration ranging from 37.9–174.8 ng/m3. The driving condition of 3000 

rpm/100% emitted DEPs (<1 μm) containing the largest amount of PAHs, followed 

by 1800 rpm/100%, 1800 rpm/60% and 3000 rpm/60%. When the engine load 

increased from 60% to 100%, the amount of identifiable PAHs were increased for at 

least 2 times (under the engine speed of 1800 rpm) or for more than 5 times (under 

the maximum engine speed). This is expected because the higher combustion 

temperature and larger pyrolysis zone during the driving condition under the 

maximum engine load could encourage highly reactive free radicals undergoing 

pyrosynthesis (fusion of smaller molecules under pyrolysis conditions) to form larger 

and more stable PAHs (Collier et al., 1995; Mastral and Callen, 2000). Fig. 3.17 also 

shows the distribution of PAH in ultrafine and accumulation-mode DEPs. Similar to 

the alkane class, more PAHs were concentrated in the accumulation-mode DEPs (Fig. 

3.15); in the ultrafine and accumulation-mode DEPs, the concentration of PAHs 

ranged from 10.8–23.2 ng/m3 and 16.3–119.0 ng/m3, respectively.   
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Fig. 3.17 Identified PAHs in ultrafine and accumulation-mode DEPs.  
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Among the identified PAHs in DEPs (<1 μm), the concentration of phenanthrene, 

ranging from 11.4–114.0 ng/m3, was the highest for the four driving conditions (Fig. 

3.17). When the engine load was increased to the maximum, the concentration of 

phenanthrene increased up to 10 times (from 11.4–114.0 ng/m3) (Fig. 3.17). This is 

consistent with other studies examining DEPs from light-duty diesel vehicles (chassis 

dynamometer tests) (Devos et al., 2006; Abrantes et al., 2004) and from heavy-duty 

diesel vehicles (Mobile Emission Laboratory tests) (Shah et al., 2005). At a bus 

station dedicated to only diesel-powered vehicles, phenanthrene was also the most 

abundant PAH (> 40% of identified PAHs) (Tavares et al., 2004), indicating that 

phenanthrene could fingerprint diesel emissions if its emission from other 

combustions sources remained insignificant. In the accumulation-mode DEPs of this 

study, phenanthrene is responsible for the seven-fold increase in quantified PAHs 

(from 16.3–119.0 ng/m3) when the engine load increased to 100%. In other words, 

when the engine load increased from 60 to 100%, in accumulation-mode DEPs, the 

quantified PAHs increased from 16.3 up to 119.0 ng/m3, and phenanthrene increased 

from 7.9 up to 93.6 ng/m3 accordingly (Fig. 3.17), which accounts for 83% of the 

increased amount in PAHs. The significant amount of phenanthrene in the 

accumulation-mode indicates prominent condensation onto DEPs under the most 

strenuous driving condition. In addition, because phenanthrene was postulated as one 

of the dominant intermediates during PAH growth and soot formation (Skjoth-

Raamussen et al, 2004; Marinov et al, 1998) through hydrogen abstraction acetylene 

addition (HACA) pathways (Lombaert et al., 2006), polymerization involving 

prominent condensation could be important to forming DEPs in accumulation-mode. 



 70

It is also worth noting that under the maximum engine speed and engine load (3000 

rpm/100%), the largest pyrolysis zone and highest combustion temperature could 

stimulate generation of more resonantly stabilized radicals (e.g., cyclopentadienyl 

radical), which can subsequently form the most abundant phenanthrene (Richer and 

Howard, 2000) as shown in Fig. 3.17(d). Further more, since phenanthrene (22.0 

μg/mL) was one of the dominant PAHs in the diesel fuel employed for this study, 

more injection of diesel fuel under the maximum engine load could also contribute to 

the abundant phenanthrene in DEPs. 

3.3.4 Effects of driving conditions on nitrogen-containing polycyclic aromatic 

compounds (NPACs) in DEPs 

Nine NPACs were identified in DEPs (<1 μm) with a total concentration ranging 

from 7.0–10.3 ng/m3. Similar to the trend in quantified PAHs, the identified NPACs 

are more abundant in accumulation-mode DEPs of driving conditions, in particular, 

under the full engine load. Under the driving condition with the maximum engine 

speed and load (3000 rpm/100%), the stronger pyrolysis and higher combustion 

temperature in the diesel engine could promote pyrosynthesis between pyrolyzed 

PAH radicals and NOx radicals (Ghigo et al., 2006), resulting in a larger 

concentration of NPACs (Fig. 3.18(d)). This appears to support the postulation of 

Williams et al. (1986 and 1989) that reaction of nitrogen oxides (NOx) with PAHs in 

hot diesel exhausts could generate NPACs. Since NPACs were emitted during 

incomplete combustion of various fuels (e.g., coals and diesel) (Murahashi et al., 

2003; Yu et al., 1999), they could be formed through thermal fusion under high 

temperatures. Rogge et al. (1993b) reported that aza arenes could be formed during  
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Fig. 3.18 Identified NPACs in ultrafine and accumulation-mode DEPs 
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the combustion of fossil fuels similar to PAH formation by incorporating N-atoms 

into their ring structures. Wiersum (1996) hypothesized that significant concentration 

of aryl radicals and NO2 radicals could be combined to form NPACs in the pyrolysis 

under high temperature. In addition, Ghigo et al. (2006) suggested direct nitration of 

NO2 radicals followed by H abstraction to form nitroarenes under high-temperature 

(1200K) combustion conditions.  

The identified 9 NPACs consist of four aza arenes (nitrogen-containing 

heterocyclic aromatic hydrocarbons) and five nitroarenes (nitro-PAHs) with a total 

concentration of 5.4–7.3 ng/m3 and 1.3–3.1 ng/m3, respectively. The four aza arenes 

are mainly composed of 2–3 aromatic rings, including 3-methylisoquinoline (3-MiQ), 

7,8-benzoquinoline (7,8-BQ), acridine (Acr), and phenanthridine (Phd). The 

identified five nitroarenes are 4-nitrobiphenyl (4-Nbp), 9-nitroanthracene (9-Nant), 

and 3-nitrophenanthrene (3-Nphe), 7-nitrobenz[a]anthracene (7-NBaA), and 6-

nitrochrysene (6-NCry), which consist of 1–3 aromatic rings. According to their 

molecular weight, Fig. 3.18 shows the concentration of individual NPACs in DEPs 

(<1 μm) of individual driving conditions. For all driving conditions, 7,8-

benzoquinoline (7,8-BQ) showed the highest concentration, 5.1–6.0 ng/m3, or 59–

72% of the quantified NPACs. The concentration of 7,8-BQ increased with increasing 

engine loads with the highest concentration under the most demanding driving 

condition (3000 rpm/100%) (Fig. 3.18). 7,8-BQ was responsible for 66 and 63% of 

quantified NPACs in ultrafine and accumulation-mode DEPs, respectively. Similar to 

7,8-BQ, the concentration of 3-nitrophenanthrene (3-Nphe) also peaked under the 

same driving condition, up to 2.6 ng/m3.  
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Interestingly, while 3-Nphe was particularly abundant in the accumulation-mode 

DEPs under 3000 rpm/100% (Fig. 3.18(d)), only under 1800 rpm/60% was it solely 

present in ultrafine DEPs (Fig. 3.18(a)). This indicates that 3-Nphe could mainly 

undergo nucleation under mild driving conditions, while the condensation became 

more prominent along with an increase in the engine speed and/or engine load. It is 

worth noting that since the most abundant PAH (phenanthrene) and NPAC (7,8-

benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-

ring) structure (Fig. 3.18). This could evidence the formation of aza arenes (7,8-

benzoquinoline) and nitro-PAHs (3-nitrophenanthrene) through respective 

pyrosynthesis and nitration between PAHs radicals and NOx radicals under the most 

strenuous driving condition (3000 rpm/100% load). In addition, because a bay-region 

like structure of aromatic compounds can impose more genotoxicity and higher 

tumor-initiating potential compared with other type of PAHs (linear structure) 

(Upham et al., 1998; Rummel et al., 1999), larger amounts of phenanthrene, 7,8-

benzoquinoline and 3-nitrophenanthrene, which contain the bay-region structure, 

suggest a higher toxic potential in DEPs generating under the largest engine speed 

and engine load.   

Among a few studies on NPACs, Chen et al. (1998) observed strong seasonal 

variation of atmospheric aza arenes having a total concentration fluctuating between 

0.4 and 7.6 ng/m3 in urban atmosphere. They also reported that among the identified 

NPAC, methylated quinoline isomers had the highest concentration with a 

concentration ranging from 0.01–2.29 ng/m3 and could mainly originate from 

combustion of fossil fuel. In addition, Rogge et al. (1993b) found aza arenes 
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(benzoquinoline, phenanthridine and acridine) in particulate samples collected from 

exhausts of natural gas combustion in a concentration of 7.4–48.4 pg/kJ. Three nitro-

PAHs (9-nitroanthracene, 7-nitrobenz[a]anthracene and 6-nitrochrysene) in DEPs 

from the medium-duty diesel engine tested in this study were also found by Zielinska 

et al. (2004b), who measured 6 nitro-PAHs in DEPs by testing a light- and medium-

duty diesel vehicles using a transient chassis dynamometer. This indicates that 

NPACs could be commonly emitted from diesel combustion. Although NPACs were 

also carried by particulates emitting from gasoline-powered vehicles, their 

concentrations are usually too low to be detected (Zielinska et al., 2004b). Since 4 of 

the 9 NPACs identified in this study were also reported in the abovementioned urban 

ambient environments, it is likely that DEPs could be one of major primary emission 

sources contributing to atmospheric NAPCs.  
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Chapter 4 

CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

Summary of contributions of this work 

The findings of this work directly and indirectly contribute to scientific 

communities and government bodies, respectively as follows: (1) this study provides 

direct evidence that simply reducing engine loads can significantly decrease number 

concentrations, amounts of persistent free radicals and ultrafine-mode metals as well 

as carbonaceous materials in DEPs; (2) a chromium to iron ratio in DEPs can be used 

to differentiate emissions of gasoline- vs. diesel-powered vehicles; (3) concentration 

profiles of identified organics in DEPs provide the first experimental data that the 

evolution of phenanthrene, 7,8-benzoquinoline, and 3-nitrophenanthrene demonstrate 

the importance of pyrosynthesis, nitration, and soot formation in diesel engines. 

Chemical processes observed in coal combustions can be applicable to combustion 

condition of diesel engines; and (4) the systematically characterized physical and 

chemical properties of DEPs from on-road medium-duty diesel vehicles can provide a 

basis to evaluate efficiencies of aftertreatment devices and performance of alternative 

fuels. Comprehensive analyses of chemical composition of DEPs are particularly 

important because reducing numbers and mass of DEPs using aftertreatment devices, 

such as diesel particulate filter (DPF) and diesel oxidation catalyst (DOC), and/or 
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ultra low sulfur diesel (ULSD) fuel insufficiently evaluates changes in chemical 

properties (e.g., redox potential) of DEPs.  

Specific findings of this work are classified under three components and given below:  

 

(1) Effects of driving conditions on number concentration, EC, OC and 

persistent free radicals in DEPs 

• The number concentration DEP (≤ 400 nm) increased with increasing engine 

speeds or engine loads, ranging from 2.3−8.3 × 108 #/cm3.  

• Under the medium engine load (60%), the DEP population surged at around 

40−70 nm. Under the full engine load (100%), DEPs showed a distinctive 

bimodal distribution with a large population peaking in 30−50 nm and 

100−400 nm.  

• Decreasing the engine load from 100% to 60% reduced (i) total DEP number 

concentrations for 1.7 times (8.3−4.8 × 108 #/cm3) to >3 times (7.8−2.3 × 108 

#/cm3), (ii) DEPs in ultrafine size and 100−400 nm decreased respective 2.5 

times (5.2−1.9×108 #/cm3) and 6 times (2.6−0.4×108 #/cm3) when the engine 

speed remained at 1800 rpm, (iii) At a high engine speed (3000 rpm), 

decreasing the engine load from 100% to 60% reduced DEPs larger than 100 

nm for more than 3 times (2.7−0.8×108 #/cm3), while marginally affected 

DEPs in ultrafine range, and (iv) significantly decrease persistent free radicals 

in DEPs for more than 16 times (186−11×1016 #spin/g) under an engine speed 
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of 1800 rpm, or more than 30 times (123−4×1016 #spin/g) under an engine 

speed of 3000 rpm, and (v) EC and OC in DEPs (smaller than 1 μm) were 

reduced for at least 3 times (0.6−0.2 mg/m3) and more than 2 times (0.4−0.2 

mg/m3), respectively 

• For DEPs smaller than 1 μm, at the maximum engine load, EC and OC 

consistently peaked at 170−330 nm DEPs of an engine speed of 1800 rpm, or 

94−170 nm DEPs of an engine speed of 3000 rpm. The size distribution of EC 

and OC suggests strong sooting, cluster-cluster soot agglomeration, and 

organic condensation processes.  

 (2) Effects of driving conditions on metal contents in DEPs 

 Total 18 metals in DEPs were quantified with a concentration ranging from 

6.1–7.7 μg/m3. Distribution of metals in ultrafine (<100 nm) and in 

accumulation-mode DEPs were up to 40% and 76%, respectively.  

• When the engine load increased from 60% to 100%, metals in ultrafine DEPs 

increased from 1.5–2.6 (at the engine speed of 1800 rpm), or 1.6–3.1 μg/m3 

(at the maximum engine speed of 3000 rpm) and peaked at DEP < 66 nm. 

This indicates that under higher engine loads, metals may preferably 

participate in homogeneous nucleation.  

• The opposite trends in size distribution of metals and EC in DEPs from 

tailpipes provide the first tailpipe evidence that metals may catalyze oxidation 

of DEPs during combustion.  
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• An increase in the engine load enhanced the averaged cumulative fraction of 

five most abundant metals (Fe, Li, Cr, V and Pb) in ultrafine DEPs for 1.4–1.9 

times, changing from 24–34% (for 1800 rpm) and 22–42% (for 3000 rpm).  

• Among the identified metals, Fe (2.3–3.9 μg/m3) was the most abundant 

species (>38%) among the total quantified metals in DEPs (34–1000 nm), 

followed by Pb (5–15%), Cr (9–12%), V (9–10%), and Li (8–15%), which 

were mainly originated from diesel fuels and through engine wear.  

• Cr-to-Fe ratio (0.08−0.29) of DEPs was at least 2 times higher than that of 

particulates from gasoline exhaust (0.02−0.04), which could be adopted as a 

fingerprint differentiating diesel- vs. gasoline-emission origins at locations 

mainly under traffic influence. 

(3) Effects of driving conditions on organic compounds in DEPs 

• Concentration of the identifiable organic compounds in DEPs (<1 µm) ranged 

from 12.4 to around 20 μg/m3, which accounts for 2–10% of the total organic 

compounds.  

• When the engine speed and load increased from 1800 rpm/60% to 3000 

rpm/100%, the fraction of identifiable organic compounds in DEPs (<1 µm) 

reduced for > 3 times, indicating stronger formation of unresolved organic 

compounds (such as humic like substances) under more fuel injection, higher 

combustion temperature and larger pyrolysis zone in diesel engines.  
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• For all four driving conditions, concentration of identifiable organic 

compounds in DEPs ultrafine (34–94 nm) and accumulation (94–1000 nm) 

modes ranged from 2.9–5.7 μg/m3 and 9.5–16.4 μg/m3, respectively; a larger 

amount (70–83%) of total identifiable organics in DEPs (<1 µm) were 

allocated in accumulation-mode DEPs.  

• The identified organic compounds in DEPs (<1 μm) were classified into 

eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic 

acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and 

sulfur-containing compounds. The concentration of identified non-oxygen-

containing organics in DEPs ranged from 8.4–17.9 μg/m3, 2 times more than 

oxygen-containing organics (0.9–4.5 μg/m3). More than 80% of oxygen-

containing organics (except DEPs of 1800 rpm/100%) and more than 60% of 

non-oxygen-containing organics were found in accumulation-mode DEPs.  

• As a function of driving conditions, the non-oxygen-containing organics 

exhibited a reversed concentration trend to the oxygen-containing organics in 

DEPs (<1 μm). The driving condition with the highest engine load and speed 

(3000 rpm/100%) could encourage oxidation of non-oxygen-containing 

organics, resulting in a larger concentration of oxygen-containing organics in 

DEPs, with a highest concentration of 3.1 (μg/m3).  

• For all driving conditions, alkane class consistently showed the highest 

concentration (8.3 μg/m3 to 18.0 μg/m3) among the identified organic classes 

in DEPs, followed by carboxylic acids, esters, ketones and alcohols. The 
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concentration of alkanes also accounted for more than 60% (or up to 95%) of 

identified organics in DEPs (<1 µm). The amount of alkanes in DEPs (<1 μm) 

generally peaked between C19–C25. Among the 17 alkane species identified 

in DEPs (<1 μm), C19 exhibited the highest concentration for all driving 

conditions, except that with the highest engine speed and load, which peaked 

at C21.  

• Twelve polycyclic aromatic hydrocarbons (PAHs) in DEPs (<1 μm) were 

identified with a total concentration ranging from 37.9–174.8 ng/m3. When 

the engine load increased from 60% to 100%, more than 2 times of increase in 

the PAHs in DEPs (<1 μm) could result from stronger pyrosynthesis in diesel 

engines. 

• Similar to the alkane class, quantified PAHs were mainly distributed in the 

accumulation-mode DEPs; in the ultrafine and accumulation-mode DEPs, the 

concentration of PAHs ranged from 10.8–23.2 ng/m3 and 16.3–119.0 ng/m3, 

respectively.  

• When the engine load was increased to the maximum, phenanthrene exhibited 

the highest concentration along with most substantial increase (up to 10 times). 

The concurrent increase in elemental carbon (relevant to soot) in DEPs (<1 

μm) supports that phenanthrene is an important intermediate for PAHs growth 

and soot formation  

• Nine NPACs were identified in DEPs (<1 μm) with a total concentration 

ranging from 7.0–10.3 ng/m3. Similar to the trend in quantified PAHs, the 
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identified NPACs are more abundant in accumulation-mode DEPs of driving 

conditions, in particular, under the full engine load. The identified NPACs are 

most abundant (6.4–7.5 ng/m3) in accumulation-mode DEPs from driving 

condition under the maximum engine load, which could encourage formation 

of NPACs through pyrosynthesis of PAHs and NOx.  

• The nine identified NPACs comprise four aza arenes and five nitroarenes with 

a respective concentration of 5.4–7.3 ng/m3 and 1.3–3.1 ng/m3. For all driving 

conditions, 7,8-benzoquinoline (7,8-BQ) showed the highest concentration, 

5.1–6.0 ng/m3, or 59–72% of the quantified NPACs. The concentration of 7,8-

BQ increased with increasing engine loads with the highest concentration 

under the most demanding driving condition (3000 rpm/100%). 7,8-BQ was 

responsible for 66 and 63% of quantified NPACs in ultrafine and 

accumulation-mode DEPs, respectively.  

• The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 

3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure, 

which could evidence the formation of aza arenes (7,8-benzoquinoline) and 

nitro-PAHs (3-nitrophenanthrene) through respective pyrosynthesis and 

nitration between PAHs radicals and NOx radicals under the highest engine 

speed and engine load (3000 rpm/100% load). 
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4.1 Recommended Future Work 

To further understand behavior of DEPs under various driving conditions change 

and to evaluate effects of emissions from on-road diesel-powered vehicles on air 

quality, the future work expanding from the data presented in this study include:   

 

(1) Effects of cold and warm idle condition on DEP properties 

Design of on-road transportation and congested traffic conditions in urban areas 

easily cause on-road vehicles operating in frequent idle conditions. Since idle 

conditions is accompanied with unique combustion conditions, systematic 

characterization of DEP properties from engines under idle and transient patterns 

representative of on-road conditions is needed. Concurrent monitoring of gaseous 

pollutants will provide complimentary understanding of how gas-particle partitioning 

correlating with DEP properties.  

(2) Effects of DEPs on air quality and public health 

In addition to characterizing DEPs emitted from tailpipes, on-road sampling or 

near road sampling is needed to assess how primary emissions may affect air quality 

and public health. On-road analysis, taking substantial dilution effects into account, 

would provide realistic information of subsequent transport and transformation of 

initially emitted DEPs. This will lend information to systematically assess potential 

toxicity of diesel exhausts based on chemical composition in DEPs undergoing aging 

processes.  
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(3) Evaluation of removal efficiencies of aftertreatment devices  

Employing the current study as the basis, removal efficiencies of various 

aftertreatment devices will be evaluated by comprehensively examining regulated 

components (such as CO, NOx, HC and TPM) and unregulated chemical species from 

tailpipes. This future work could also provide important information for manufactures 

to advance vehicle technology and for governments to establish prospective policies. 

In addition, to reduce formation of soot particles, effects of amount of diesel fuel 

injected into engine on resultant amounts of DEPs would be evaluated. 
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APPENDIX A 
 

Table A1. Reported concentrations of EC and OC in diesel exhausts 

Analytical Method Concentration 

Thermal-optical 
(NIOSH5040)  μg/cm2 mg/mile 

*mg/km 
**mg/m3 

μg/m3 % mg/min 

EC 

53-310a, 86.5b, 
1.4-151.7f, 
5.64-8.20g, 
0.07-14.90h 

15.35-804.76c, 
*25.50-31.27k, 
175-340m 

**3.72-4.34e,
13-122j 40.5c 4.1-110.7m 

OC 

25-272a, 
0.5-131.8f, 
17.15-19.47g, 
1.42-21.04h 

51.44-407.06d, 
*19.27-25.17k, 
74.7-607m 

**6.88-9.74e,
46-125j 

32.6c, 
34.1-58.7i, 
23.6-62.7l 

17.0-45.5m 

Coulometric 
(ZH1/120.44)      

EC 
1.6-129.1f, 
8.32-16.70g, 
0.30-17.40h 

    

OC 
0.1–131.8f, 
8.03-15.17g, 
1.20-13.70h 

    

aComparison of solvent extraction and thermal-optical carbon analysis methods (Japar et al., 
1984) 
bInterlaboratory analysis of carbonaceous aerosol samples (Courtess, 1990) 
cChemical composition of emission from urban sources of fine organic aerosol (Hildemann et al., 
1991) 
dCharacterization of heavy-duty diesel vehicle emissions (Lowenthal et al., 1994) 
eElemental carbon-based method for monitoring occupational exposures to particulate diesel 
exhaust (Birch, 1996) 
fInternational round robin tests on the measurement of carbon in diesel exhaust particulates 
(Guilemin et al., 1997) 
gAnalysis of carbonaceous aerosols: interlaboratory comparison (Birch, 1998) 
hComparison of two carbon analysis methods for monitoring diesel particulate levels in mines 
(Birch et al., 1999) 
iComposition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area 
(Cadle et al.,1999) 
jA survey of exposure to diesel engine exhaust emissions in the workplace (Groves et al., 2000) 
kOn-road particulate matter(PM2.5 and PM10)emissions in the Sepulveda tunnel, Los Angeles, 
California (Gillies et al., 2001) 
lIn-use light-duty gasoline vehicle particulate matter emissions on three driving cycles (Cadle et 
al., 2001) 
mEmission rates of particulate matter and elemental and organic carbon in-use diesel engines 
(Shah et al., 2004) 
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Table A2. Reported concentrations of EC and OC in ambient samplings 

Analytical Method Concentration 

Thermal-optical 

(NIOSH5040)  
μg/cm2 μg/m3 

EC 
5.9b, 6.8c,  

1.57-3.00f 

3.5b, 4.86-10.7g, 0.6-3.0h, 1.55-3.25i, 0.66-6.56j, 

1.48-3.26k, 3.08-7.95l,1.5-2.5m, 0.9-11n 

OC 25.4b, 9.40-11.12 f 
10.5b, 7.77-14.4g, 4.9-16.4h,3.24-10.8i, 2.43-

2.46j, 3.20-7.56k, 6.62-14.16l, 9.7-15.1m, 3.5-44n 

Coulometric 

(ZH1/120.44) 
  

EC 2.30-11.25f  

OC 3.97-9.60f  

Carbon analyzer 

(CHNS, #NDIR) 
  

EC #6.1-19.1a 2.3-8.0d, 5.05-42.8e 

OC (TC) #9.9-22.6a (4.4-14.5d), 1.62-70.1e 

aProblems in the sampling and analysis of carbon particulate (Cadle et al., 1983) 
bComparison of sampling methods for carbonaceous aerosols in ambient air (Hering et al., 1990) 
cInterlaboratory analysis of carbonaceous aerosol samples (Courtess, 1990) 
dA chemical characterization of atmospheric aerosol in Sapporo (Ohta et al., 1990) 
eParticle size distribution of aerosol carbons in ambient air (Chen et al., 1997) 
fAnalysis of carbonaceous aerosols: interlaboratory comparison (Birch, 1998) 
gConcentrations of carbonaceous species in particles at Seoul and Cheju in Korea (Kim et al., 
1999) 
hCharacteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea (Park et 
al., 2001) 
iMeasurement of carbonaceous aerosols: validation and comparison of solvent extraction-gas 
chromatographic method and a thermal optical transmittance method (Sin et al., 2002) 
jOrganic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric 
lifetime for elemental carbon (Lim et al., 2003) 
kComparison of two methods for the determination of water-soluble organic carbon in 
atmospheric particles (Yang et al., 2003) 
lAbundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10 (Yu 
et al., 2004) 
mPrimary and secondary carbonaceous species in the atmosphere of western riverside county, 
California (Na et al., 2004) 
nElemental and organic carbon in urban canyon and background environments in Budapest, 
Hungary (Salma et al., 2004) 
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Table A3. Reported concentrations of organic compounds in diesel and gasoline 
exhausts* 

 

Compound 
*Medium duty diesel truck 
(mg/km)a Compound Light duty gasoline vehicle w/o 

catalyst (w/ catalyst*) (mg/km)b

12.1 50.8 (0.94*) 
Alkanes 4.6 Alkanes 4.1 (0.17*) 
PAHs 1.8 PAHs 43.3 (0.40*)
Isoprenoids 2.2 Isoprenoids (0.11*) 
Aromatic Acids 2.0 Aromatic Acids (0.13*) 

Resolved Semi-
VOCs 

Other Compounds 1.5 

Resolved Semi-
VOCs 

Other Compounds 3.4 (0.13*) 

2.28 9.89 (0.05*) 
Alkanes 0.41 Alkanes 3.3 (0.013*)
PAHs 1.0 PAHs 4.1 
n-Alkanoic Acids 0.44 Alkylcyclohexanes 1.6 
Alkanedioic Acids 0.31 Alkanedioic Acids (0.026*) 

Resolved 
Particle-Phase 
Organic 
Compounds 

Other Compounds 0.12 

Resolved 
Particle-Phase 
Organic 
Compounds 

Other Compounds 0.89 (0.011*)

Particle EC 56 Particle EC 8.3 ( 0.8*) 

Particle Phase Unresolved Complex 
Mixture 41.4 Particle Phase Unresolved 

Complex Mixture 405 (1.4*) 

Semi-Volatile Gas-Phase 
Unresolved Complex Mixture 54 Gas-Phase Unresolved Complex 

Mixture 50 (7.3*) 

216  
Alkanes 15.8   
Olefins 17.3   
Aromatics & Cyclics 22.3   
Acetaldehyde 41.8   
Propanal 14.0   
Acetone 22.0   
Crotonaldehyde 13.4   

Gas-phase 
Volatile 
Organics  

Other Carbonyls 55.4 

 

  
* Hot-start Federal Test Procedure 
aMeasurement of emission from air pollution sources. 2. C1 through C30 organic compounds from 
medium duty diesel trucks (Schauer et al., 1999) 
bMeasurement of emission from air pollution sources. 5. C1-C32 organic compounds from 
gasoline-powered motor vehicles (Schauer et al., 2002) 
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Table A4. The polycyclic aromatic compounds (PACs) found in diesel exhausts 

Ring 
number Main structure PAH derivative  Nitro-PAH derivative  

naphthalenea,b,c,d,p 1-methylnaphthalenec,d,p 1-nitronaphthalenee,s 
 2-methylnaphthalenec,d,p 2-nitronaphthalenes 
 dimethylnaphthalened,p  
biphenylb  2-nitrobiphenylf,s 
  3-nitrobiphenyls 

Two-ring 
PAC 

  4-nitrobiphenyle,f 
phenanthrenea,b,g,p 1-methylphenanthreneg 1-nitrophenanthrenef 
 2-methylphenanthreneg 3-nitrophenanthrenef,s 
 3-methylphenanthreneg 4-nitrophenanthrenef,s 

 4 and 9-
methylphenanthreneg 

9-nitrophenanthrenef,s 

 methylphenanthrenep  
 dimethylphenanthrenep  
anthraceneb,g,p,q 1-methylanthraceneg 1-nitroanthracenef,m 
 2-methylanthraceneg 2-nitroanthracenef 
 9-methylanthraceneg 9-nitroanthracenee,g,o,s 

 9,10-dimethylanthraceneg 1-nitro-2-
methylanthracenef 

  2-nitro-3-
methylanthracenef 

  3-nitro-1-
methylanthracenef 

fluoreneb,p 2-methylfluoreneg 2-nitrofluorenef,n,o,s 
  5-nitrofluorenef 
acenaphtheneb,p  5-nitroacenaphthenee,s 
dibenzothiopheneb,g   

Three-
ring PAC 

acenaphthyleneb,c   
fluoranthenea,c,g,h,i,j,p,q  1-nitrofluoranthenef.m,s 
  2-nitrofluoranthenej,s 
  3-nitrofluoranthenef,o,s 
  7-nitrofluoranthenef,s 
  8-nitrofluoranthenef,s 
pyrenea,c,g,h,i,j,n,p,q 1-methylpyreneg 1-nitropyrened,g,i,k,l,m,n,o,r,s 
 2-methylpyreneg 2-nitropyrenei,s 
  4-nitropyrenes 
  dinitropyrenek 
  1,3-dinitropyrenes 
  1,6-dinitropyrenes 
  1,8-dinitropyrenes 
chryseneb,g,h,j,n,p,q  5-nitrochrysenef 

  6-nitrochryseneo,s 

Four-ring 
PAC 

benzo[a]anthraceneb,g,h,i,j,n,p,q  7-nitrobenzo[a]anthraceneo,s

peryleneb,g,n  3-nitroperylenek More 
than benzo[a]pyreneb,g,h,i,j,p,q  6-nitrobenzo[a]pyreneh,s 
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  1-nitrobenzo[a]pyrenes 
  3-nitrobenzo[a]pyrenes 
benzo[e]pyreneg,i,j,p  1-nitrobenzo[e]pyrenes 
  3-nitrobenzo[e]pyrenes 
benzo[ghi]pyrenep   
benzo[ghi]peryleneb,c,g,h,n,q   
benzo[a]fluoreneg   
benzofluoranthene p   
benzo[ghi]fluorantheneg   
benzo[b]fluorantheneb,g,h,j   
benzo[j]fluorantheneh   
benzo[k]fluorantheneb,h,i,j   
benzo[b+j+k]fluorantheneq   
indeno[1,2,3-
cd]pyreneb,g,h,i,j,q   

dibenz[a,h]anthraceneb,i,j   
dibenz[a,h+a,c]anthraceneq   
benzo[b]naphtho[1,2-
d]thiopheneg   

four-ring 
PAC 

cyclopenta[cd]pyreneg   
 aQuantitative Determination of PAHs in Diesel Engine Exhausts by GC-MS (Fleurat-Lessard et 
al., 1999) 
 bQuantitative Characterization of PAHs in Burn Residue and Soot Samples and Differentiation of 
Pyrogenic PAHs from Petrogenic PAHs – The 1994 Mobile Burn Study (Wang et al., 1999). 
cOrganic Emissions Profile for a Light-duty Diesel Vehicle (Siegl et al., 1999). 
dFuel residues and organic combustion products in diesel exhaust emissions: sources, sampling 
and analysis (Rhead and Trier, 1992). 
eEvidence for the Adsorption of Nitrated Polycyclic Aromatic Hydrocarbons by Tree Bark (Douce 
et al., 1997). 
fCapillary Column Gas Chromatographic Determination of Nitro Polycyclic Aromatic 
Compounds in Particulate Extracts (Campbell and Lee, 1984). 
gDetermination of Polycyclic Compounds and Dioxin Receptor Ligands Present in Diesel Exhaust 
Particulate Extracts (Li et al., 1996). 
hCharacterization of Polycyclic Aromatic Hydrocarbons on Motor Vehicle Fuels and Exhaust 
Emissions (Marr et al., 1999). 
iNitro-PAH in Ambient Particulate Matter in the Atmosphere of Athens (Marino et al., 2000). 
jDistribution of N-alkanes, Polyunclear Aromatic Hydrocarbons and Nitrated Polyunclear 
Aromatic Hydrocarbons between the Fine and Coarse Fractions of Inhalable Atmospheric 
Particulates (Cecinato et al., 1999). 
kDetermination of Mono-and Di-nitro Polycyclic Aromatic ydrocarbons by On-line Reduction and 
High-performance Liquid Chromatography with Chemiluminescene Detection (Li and 
Westerholm, 1994). 
lChemical Characterization of Exhaust Emissions Originating from the Regeneration Mode of a 
Diesel Particulate Trap (Li et al., 1994). 
mAn Improved Method for Nitro-PAH Analysis (Chiu and Miles, 1996). 
nDetection and average content levels of carcinogenic and mutagenic compounds from the 
particulates on diesel and gasoline engine mufflers (Handa et al., 1983) 
oSupercritical fluid extraction of nitrated polycyclic aromatic hydrocarbons and polycyclic 
aromatic hydrocarbons and polycyclic aromatic hydrocarbons from diesel exhaust particulate 
matter (Paschke et al., 1992) 
pCharacterization of heavy-duty diesel vehicle emissions (Lowenthal et al., 1994) 
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qComposition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area 
(Cadle et al., 1999) 
rAn automatic method for the determination of carcinogenic 1-nitropyrene in extracts from 
automobile exhaust particulate matter (Murahashi et al., 2003) 
sDetermination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and 
diesel particulate reference materials (Bamford et al., 2003) 
 
 
Table A5. Reported concentrations of PAHs in diesel exhausts 

Concentrations 
Compound 

(ng/m3 of exhaust) (μg/g of particulates) (mg/km) 
*(mg/mile) 

Two rings (Total) <1200,000a - - 
Three rings (Total) <1000,000a - - 
Four rings (Total) <250,000a - - 
Five rings (Total) <90,000a - - 
naphthalene - 18-63b, 59c 0.19d 
1-methylnaphthalene - - 0.44d, *1.42-3.85j

2-methylnaphthalene - - 0.69d, *1.65-2.90j

dimethylnaphthalene   *1.88-7.47j 
biphenyl - 4c - 
phenanthrene - 93-209b, 94c, 37.74e  *0.13-0.50j 
1-methylphenanthrene - 9.89e - 
2-methylphenanthrene - 19.21e - 
anthracene - 2.2c, 7.15e  *0.005-0.042j 

*0.225-0.562k 
methylphenanthrene - - *0.09-1.13j 
dimethylphenanthrene - - *0.03-0.93j 
1-methylanthracene - 10.39e - 
2-methylanthracene - 2.06e - 
9-methylanthracene - 0.1e - 
9,10-dimethylanthracene - 0.41e - 
fluorene - 12c *0.06-0.37j 
2-methyl-fluorene - 0.56e - 
acenaphthylene - 2.8c - 
dibenzohiophene - 43c, 2.67e - 
acenaphthene - 0.5c 0.19d, *0.07-0.21j

fluoranthane 4.9-33.2f, 1.67g, 1.17h 11-138b, 21.1d, 46.72e *0.02-0.05j 
*0.181-0.896k 

pyrene 2.5-41f, 1.57g, 1.33h 20-144b, 24.3d, 40.49e *0.01-0.05j 
*0.209-1.053k 
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1-methylpyrene - 1.53e - 
2-methylpyrene - 3.6e - 
chrysene 3.8-7.8f, 2.79h 27.0c, 11.89e, 78.9i *0.005-0.05j 

*0.0238-0.153k 
benzo[a]anthracene 3.9-8.9f, 35.0g, 1.27h 11.0c, 7.55e, 5.66i *0.001-0.002j 

*0.0165-0.0768k 
perylene - 0.17e, 9.0c, 0.05i - 
benzo[a]pyrene 3.2-8.4f, 0.61g, 1.73h 35.6c, 1.04e  *0.001-0.004j 

*0.0108-0.0392k 
benzo[e]pyrene 2.8h 3.06e, 34.0g *0.002-0.016j 
benzo[ghi]pyrene - - *0.001-0.006j 

*0.0151-0.0829k 
benzo[a]fluorene - 5.77e - 
benzo[ghi]perylene 5.04d, 1.0-8.5f 76.0c, 1.08e, 0.22i - 
benzofluoranthrene - - *0.002-0.02j 
benzo[ghi]fluoranthrene - 12.22e - 
benzo[b]fluoranthrene 3.1-5.7f, 4.49h 29.0c, 4.6e - 
benzo[j]fluoranthrene 1.38g - - 
benzo[k]fluoranthrene 1.1-3.1f, 0.46g, 1.19h 73.4c - 
benzo[b+j+k]fluoranthrene - - *0.0463-0.115k 
indeno[1,2,3-cd]pyrene 0.32-3.1f, 0.23g, 2.98h 54.6c, 0.37e *0.00797-0.0476k

dibenzo[a,h]anthracene 0.24g, 0.35h 6.9c - 
dibenzo[a,h+a,c]anthracene  - *0.00145-0.0038k

benzo[b]naphtho[1,2-d] 
thiophene  

- 0.33e - 

cyclopenta[cd]pyrene - 0.19e - 
aPAH Emissions Influenced by Mn-based Additive and Turbocharging from a Heavy-duty Diesel 
Engine (Yang et al.,1998) 
bQuantitative Determination of PAHs in Diesel Engine Exhausts by GC-MS (Fleurat-Lessard et 
al., 1999). 
cQuantitative Characterization of PAHs in Burn Residue and Soot Samples and Differentiation of 
Pyrogenic PAHs from Petrogenic PAHs – The 1994 Mobile Burn Study (Wang et al., 1999). 
dOrganic Emissions Profile for a Light-duty Diesel Vehicle (Siegl et al., 1999). 
eDetermination of Polycyclic Compounds and Dioxin Receptor Ligands Present in Diesel Exhaust 
Particulate Extracts (Li et al., 1996). 
fCharacterization of Polycyclic Aromatic Hydrocarbons on Motor Vehicle Fuels and Exhaust  
Emissions (Marr et al., 1999). 
gNitro-PAH in Ambient Particulate Matter in the Atmosphere of Athens (Marino et al., 2000). 
hDistribution of N-alkanes, Polyunclear Aromatic Hydrocarbons and Nitrated Polyunclear 
Aromatic Hydrocarbons between the Fine and Coarse Fractions of Inhalable Atmospheric 
Particulates (Cecinato et al., 1999). 
iDetection and average content levels of carcinogenic and mutagenic compounds from the 
particulates on diesel and gasoline engine mufflers (Handa et al., 1983) 
jCharacterization of heavy-duty diesel vehicle emissions (Lowenthal et al., 1994) 
kComposition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area 
(Cadle et al., 1999) 
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Table A6. Reported concentrations of nitro-PAHs in diesel exhausts 

Concentrations Compound 
ng/m3 in exhaust μg/g, *ng/g of particulates ng/km, *μg/km

1-nitronaphthalene - 1.64-2.5a, *13.6-86.4j - 
2-nitronaphthalene - *37.1-238 j - 
2-nitrobiphenyl - *7-15.3 j - 
3-nitrobiphenyl - 7-58.1 j - 
4-nitrobiphenyl - 6.14-13.19a, 5.1b,  - 
1-nitrophenanthrene - 0.5b - 
3-nitrophenanthrene - 9.3b, *80.3-4350 j - 
4-nitrophenanthrene - 0.7b, *10.8-150 j - 
9-nitrophenanthrene - 2.3b, *205-510 j - 
1-nitroanthracene - 4.6b - 
2-nitroanthracene - 10.1b - 
9-nitroanthracene - 4.13-9.79a, 2.8b, 62h, *1284-

6080 j 
- 

1-nitro-2-
methylanthracene 

- 18.9b - 

2-nitro-3-
methylanthracene 

- 3.9b - 

2-nitrofluorene - 4.1b, 5.52g, 28 h, *2-46.2 j - 
5-nitroacenaphthene - 2.48-12.43a, *10-37.0 j - 
1-nitrofluoranthene - 4.1b, *48.4-274 j - 
2-nitrofluoranthene 0.38c *71-201 j - 
3-nitrofluoranthene - 10b, 11h, *65.2-4301 j - 
7-nitrofluoranthene - 1.6b, *<2 j - 
8-nitrofluoranthene - 2b, *106-656 j - 
1-nitropyrene 12.0c, 0.18d 18.39-21.73a, 43c, 4.5-6.5e, 

27.7g, 540 h, *16070-39640 j 
0.034f, *3.0i 

2-nitropyrene 0.08d *<4 j - 
4-nitropyrene - *68.2-173 j - 
dinitropyrene - 0.3e - 
1,3-dinitropyrene - *44.4-1146 j - 
1,6-dinitropyrene - *84.5-2543 j - 
1,8-dinitropyrene - *<9-3580 j - 
5-nitrochrysene - 4.6b - 
6-nitrochrysene - 4h, *44.4-2368 j - 
7-nitrobenzo[a]anthracene - 12 h, *995-5300 j - 
3-nitroperylene - 1.1e - 
1-nitrobenzo[e]pyrene - *<10-1788 j - 
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3-nitrobenzo[e]pyrene - *89-6857 j - 
1-nitrobenzo[a]pyrene - *<5 j - 
3-nitrobenzo[a]pyrene - *<5 j - 
6-nitrobenzo[a]pyrene - 5.8b, *514-1650 j - 
aEvidence for the Adsorption of Nitrated Polycyclic Aromatic Hydrocarbons by Tree Bark (Douce 
et al., 1997). 
bCapillary Column Gas Chromatographic Dtermination of Nitro Polycyclic Aromatic Compounds 
in Particulate Extracts (Campbell and Lee, 1984). 
cDistribution of N-alkanes, Polyunclear Aromatic Hydrocarbons and Nitrated Polyunclear 
Aromatic Hydrocarbons between the Fine and Coarse Fractions of Inhalable Atmospheric 
Particulates (Cecinato et al., 1999). 
dNitro-PAH in Ambient Particulate Matter in the Atmosphere of Athens (Marino et al., 2000). 
eDetermination of Mono-and Di-nitro Polycyclic Aromatic hydrocarbons by On-line Reduction 
and High-performance Liquid Chromatography with Chemiluminescene Detection (Li and 
Westerholm, 1994). 
fChemical Characterization of Exhaust Emissions Originating from the Regeneration Mode of a 
Diesel Particulate Trap (Li et al., 1994). 
gDetection and average content levels of carcinogenic and mutagenic compounds from the 
particulates on diesel and gasoline engine mufflers (Handa et al., 1983) 
hSupercritical fluid extraction of nitrated polycyclic aromatic hydrocarbons and polycyclic 
aromatic hydrocarbons and polycyclic aromatic hydrocarbons from diesel exhaust particulate 
matter (Paschke et al., 1992) 
iAn automatic method for the determination of carcinogenic 1-nitropyrene in extracts from 
automobile exhaust particulate matter (Murahashi et al., 2003) 
jDetermination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and 
diesel particulate reference materials (Bamford et al., 2003) 
 
 
Table A7.  Reported concentrations of metals in diesel exhausts 

Concentration and Analytical Method 
Elements mg/milea, b, wt % of detectable amountsc 

(XRF) μg/m3 (ICP-AES)d mg/g of particulates 
*(ICP-AES) d 

Si 0.05-1.6a, 3.189b, 0.63±0.04c 917 20.1 
P 0.07-0.35 a, 0.634 b   
S 2.59-33.33 a, 4.504 b, 0.22±0.02 c   
Cl 0.005-0.32 a, 0.139 b   
K 0.002-0.05 a   
Ca 0.03-0.96 a, 1.329 b 831 28.4 
Ti 0.002-0.01 a 81.0 1.37 
V 0.0005-0.005 a 20.2 0.784 
Cr 0.0004-0.007 a 88.6 8.69 
Mn 0.001-0.02 a 21.0 3.27 
Fe 0.05-0.65 a, 3.151 b, 0.05±0.01 c 543 38.4 
Co 0.0001-0.0006 a 39.3 1.45 
Ni 0.0002-0.001 a 51.1 6.04 
Cu 0.001-0.04 a, 0.019 b 55.4 3.72 
Zn 0.001-1.33 a, 1.731 b, 0.07±0.01 c 111 3.74 
Ga 0.0001-0.001 a   



 108

As 0.0011-0.086 a   
Se 0.0008-0.059 a   
Br 0.0006-0.0036 a, 0.009 b   
Rb 0.0002-0.0007 a   
Sr 0.0002-0.0033 a 14.4 2.96 
Y 0.0001 a   
Zr 0.0004-0.0039 a   
Mo 0.0002-0.0014 a 81.5 10.0 
Pd 0.0034-0.0094 a   
Ag 0.0046-0.0229 a 13.7 0.865 
Cd 0.0065-0.0554 a 10.7 0.580 
In 0.0173-0.0554 a   
Sn 0.0319-0.0695 a   
Sb 0.0031-0.0107 a 18.8 1.44 
Ba 0.0372-0.2702 a 23.1 0.739 
La 0.0736-0.2959 a   
Au 0.0004-0.0013 a   
Hg 0.0001-0.0012 a   
Tl 0.0001-0.016 a   
Pb 0.0025-0.0085 a, 0.15 b 40.6 0.931 
U 0.0003-0.0006 a   

Mg 0.402 b 138 6.16 
Al 0.303 b 641 27.4 

* Engine speed is at 100% loading condition. 
aCharacterization of heavy-duty diesel vehicle emission (Lowenthal et al., 1994) 
bComposition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area 
(Cadle et al.,1999) 
cMeasurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from 
medium duty diesel trucks (Schauer et al., 1999) 
dEmissions of fuel metals content a diesel vehicle engine (Wang et al., 2003) 
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APPENDIX B 
 
Table B1. Standard calibration plots for N-containing polycyclic aromatic compounds  
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Chemical structure Average
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M.W.(g)Name of compound & 
Chemical structure Average

E.T.(min)

Standard calibration plot 
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M.W.(g)Name of compound & 
Chemical structure Average

E.T.(min)

Standard calibration plot 
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M.W.(g)Name of compound & 
Chemical structure Average

E.T.(min)

Standard calibration plot 
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M.W.(g) Name of compound & 
Chemical structure Average 

E.T.(min) 

Standard calibration plot 
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Fig. B1. Standard calibration plots for total carbon and elemental carbon 
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Fig. B2-1. Standard calibration plots for metals  
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Fig. B2-2. Standard calibration plots for metals 
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Fig. B2-3. Standard calibration plots for metals 
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APPENDIX  C 
 
Table C. Size segregated chemical species concentrations for 13-mode  
 
LPI size (nm) 34-66 66-94 94-170 170-330 330-550 550-1000 Total 
Carbon content (mg/m3)               
Elemental Carbon 0.10 0.16 0.20 0.27 0.38  0.27 1.38 
Organic Carbon 0.02 0.03 0.04 0.07 0.08  0.04 0.28 
Organic species (μg/m3)        
Alkanes 5.13 2.53 3.88 7.77 8.74  6.90 34.95 
Alkenes 0.22 0.00 0.00 0.00 0.00  0.00 0.22 
Polycyclic aromatic hydrocarbons 0.02 0.01 0.02 0.02 0.02  0.02 0.11 
Carboxylic acids  0.05 0.15 0.00 0.10 0.25  1.67 2.21 
Esters  0.00 0.13 0.00 0.10 1.06  0.43 1.71 
Ketones  0.28 1.39 0.55 0.28 0.00  0.00 2.51 
Alcohols  0.00 0.25 1.25 0.00 0.19  0.15 1.84 
N-containing compounds  0.23 0.07 0.00 0.06 0.00  0.00 0.37 
S-containing compounds  0.00 0.00 0.00 0.50 0.00  0.00 0.50 
Aldehyde 0.00 0.00 0.00 0.00 0.30  0.00 0.30 
Metals content (ng/m3)               
Fe 1573.29 1661.44 1461.81 1125.39 1341.21  1115.69 8278.83 
Li 418.95 483.89 397.42 346.67 385.24  331.83 2364.00 
V 274.39 288.87 209.17 135.94 177.03  101.90 1187.31 
Cr 235.27 253.71 206.70 113.26 199.83  95.96 1104.73 
Cu 25.58 80.08 126.15 284.18 64.00  29.72 609.71 
Ni 70.40 82.73 64.35 45.83 54.02  87.07 404.40 
Pb 79.61 110.19 72.31 18.32 43.37  9.48 333.28 
Mn 76.24 102.81 65.53 18.07 49.52  8.86 321.02 
As 10.49 10.56 6.96 3.94 4.52  0.91 37.39 
Co 6.51 7.79 5.10 2.30 4.73  1.50 27.92 
Sn 8.04 6.19 5.32 2.21 3.62  1.90 27.28 
Mo 5.81 6.94 4.10 1.82 2.98  0.94 22.60 
Be 4.45 3.80 2.58 3.28 2.48  3.57 20.17 
Ag 3.14 2.90 1.84 0.84 1.15  1.20 11.07 
Cs 1.70 2.16 1.42 0.52 0.92  0.30 7.03 
Cd 0.83 1.17 0.56 0.34 0.51  0.61 4.01 
Tl 0.30 0.69 0.50 0.12 0.22  0.10 1.94 
In 0.29 0.33 0.20 0.06 0.12  0.07 1.08 
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APPENDIX D 
 
Table D. Size distribution of metals contents in DEPs (34nm–1μm) 
 

1800 rpm/60% 3000 rpm/60% 1800 rpm/100% 3000 rpm/100% Driving 
modes Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) 

(ng/m3)  34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Fe  285.5 299.3 432.8 328.1 514.9 483.7 442.1 410.0 457.5 708.7 404.0 561.5 746.8 437.2 518.5 506.9 644.8 665.6 796.8 691.3 465.7 724.0 601.2 601.6 

Pb  121.9 148.5 169.6 134.3 171.3 162.7 106.2 117.6 104.2 142.9 89.1 114.4 90.9 78.0 78.4 80.2 71.9 68.9 86.2 67.7 38.2 74.3 34.1 42.6 

Cr  50.4 99.1 160.1 136.4 163.8 103.6 58.9 59.0 114.2 225.1 142.3 169.8 158.7 65.4 126.8 111.8 116.4 99.6 178.4 146.1 102.1 148.0 81.2 59.3 

V  50.7 97.8 147.5 82.8 142.5 46.1 52.0 55.9 116.4 149.1 113.3 129.6 182.6 88.7 122.1 90.7 129.0 110.9 180.2 140.8 69.6 108.0 84.8 105.3 

Li  26.0 68.2 108.8 83.5 130.3 52.2 43.6 78.8 123.6 165.5 142.8 169.0 201.1 137.2 188.0 164.1 191.3 190.6 220.9 230.8 151.0 207.9 173.9 205.2 

Mn  23.9 45.4 71.8 43.7 73.4 49.6 15.0 33.5 42.5 88.6 46.2 65.4 69.5 32.5 53.0 39.7 58.0 55.5 59.4 58.7 18.3 63.2 24.8 33.2 

Cu  30.1 27.0 156.9 21.9 121.1 22.0 14.7 18.7 10.0 26.3 33.5 54.4 51.0 106.9 82.0 60.4 32.6 44.7 12.5 14.3 62.0 48.3 40.3 28.9 

Ni  20.2 18.8 51.5 34.6 46.1 50.6 13.0 21.7 35.4 85.8 40.7 62.8 48.5 18.1 43.1 38.8 47.7 41.6 49.9 61.5 38.9 58.9 27.0 49.9 

Mo  5.4 6.8 7.7 5.2 7.4 15.8 4.6 4.7 5.5 9.8 5.0 5.6 7.6 3.3 5.1 6.1 6.8 6.6 7.0 5.0 3.3 11.1 3.4 3.1 

Sn  6.4 6.6 7.1 6.8 8.9 9.8 6.0 3.9 3.7 6.2 4.6 5.9 8.0 3.9 3.0 1.6 4.0 3.9 4.6 3.8 2.7 5.3 5.8 3.8 

As  4.4 8.5 11.1 6.4 10.2 4.2 4.8 4.6 7.4 9.6 6.4 7.5 9.3 5.6 6.2 5.3 5.9 5.3 7.9 6.9 2.8 4.4 3.2 4.4 

Cs  2.1 2.4 2.7 2.1 2.6 2.3 1.4 1.8 1.8 2.5 1.6 1.9 1.8 1.2 1.5 1.3 1.4 1.3 1.5 1.3 0.6 1.2 0.5 0.8 

Ag  2.0 2.2 2.6 1.9 2.7 2.2 3.0 2.0 2.0 3.2 1.8 2.7 3.2 1.1 1.4 1.2 1.7 1.3 1.9 1.4 0.4 0.6 0.7 1.3 

Co  1.6 2.6 4.2 2.8 4.6 7.9 1.5 1.7 3.2 5.4 3.3 4.2 5.4 1.6 4.0 2.1 4.0 3.5 4.1 4.5 1.2 9.6 1.9 2.7 

In  1.7 1.6 1.6 1.2 1.9 1.4 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.4 0.5 0.3 0.4 0.4 0.4 0.3 0.1 0.2 0.2 0.2 

Cd  1.2 1.3 1.9 1.1 1.7 0.9 0.8 1.0 0.7 1.5 0.6 0.9 0.7 0.5 0.7 1.0 0.7 0.5 0.7 0.7 0.2 0.5 0.6 0.6 

Tl  1.0 0.9 1.1 0.9 1.0 0.6 0.6 0.9 0.7 0.9 0.6 0.8 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.5 0.2 0.3 

Be  0.3 0.3 0.9 0.7 1.4 0.8 0.4 1.0 1.3 1.8 1.5 1.7 1.9 1.1 1.5 1.0 1.9 2.0 2.2 2.0 1.2 2.7 1.7 1.8 

         

Sum  635.1 837.2 1339.8 894.3 1405.8 1016.5 769.5 817.4 1030.8 1633.6 1038.0 1358.7 1588.3 983.4 1236.2 1113.0 1318.9 1302.6 1614.9 1437.6 958.5 1468.8 1085.7 1144.8 
   (10%) (14%) (22%) (15%) (23%) (17%) (12%) (12%) (16%) (25%) (16%) (20%) (21%) (13%) (16%) (15%) (17%) (17%) (21%) (19%) (12%) (19%) (14%) (15%) 
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APPENDIX E 
 

Table E. Possible origins from fuel and/or lubricant and possible formation mechanisms during combustiona, b, c   
 
Organic compounds 
(Functional group) 

Possible origins from fuel and/or 
lubricant 

Possible formation mechanisms during combustion 

1. Alkanes 
  (R, C-C) 

▫ Fuel  
▫ Lubricant (alkylated additives) 

RH (hydrocarbons) → R˙ + H+ 

R˙ + R˙ → R2 (heavier hydrocarbons; alkanes) [chain termination] 
2. Carboxylic acids  
  (RCO2H) 

▫ Lubricant additives  
 (phenolic antioxidants;  
  alkylsalicylates) 

RH + O2 → R˙ + HO2˙ [initiation] 
R˙ + O2 → RO2˙ (alkyl peroxide radical) [propagation of chain reactions] 
RO2˙ + RH → ROOH + R˙ [propagation of chain reactions] 
ROOH → RO˙ (alcoxy radical) + HO˙ [chain branching] 
RCH2OO˙ → RC˙HOOH → RCHO (aldehydes) + ˙OH [formation of aldehydes -a] 
RR’CHO˙ → RCHO (aldehydes) + R’˙ [formation of aldehydes -b] 
RCH2O˙ + O2 → RCHO (aldehydes) + HO2˙ [formation of aldehydes-c] 
RCHO (aldehydes) → RCO˙ + H+ 

RCO˙ (acyl radical) + O2 → RCO3˙ (peroxide radical) 
RCO3˙ + R’H → RCO3H + R’˙ 
RCO3H → RCO2˙ (carboxyl radical) + ˙OH 
RCO2˙ + R’H → RCO2H (carboxylic acids) + R’˙ [formation of carboxylic acids -a] 
ROH (alcohols) + CO → RCO2H (carboxylic acids) [formation of carboxylic acids -b] 

3. Esters 
  (RCO2R’) 

▫ Fuel additives  
 (metallic additives in the form  
  of acid salts; stearates),  
▫ Lubricant additives  
 (dispersant; succinic esters and  
  mono- or bi-succinimides) 

RCO2H (carboxylic acids) + R’OH (alcohols) → RCO2R’ (esters) + H2O  
[Fischer esterification] 
 

4. Ketones  
  (RCOR’) 

▫ Lubricant additives  
 (dispersant; mono- or bi- 
  succinimides) 

RCHO + R’O˙ → RR’CHOO˙ 
RR’CHOO˙ → RC˙OOH R’→ RCO R’ (ketones) + ˙OH  
RR’R”COO˙ (tertiary radical) → RCO R’ (ketones) + R”O˙   

5. Alcohols  
  (ROH) 

▫ Lubricant additives 
 (coolant; phenolic antioxidants) 

RO˙ + R’H → ROH (alcohols) + R˙ [chain branching] 
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6. Nitrogen  
  containing  
  compounds 
  (RN, RON,  
   RONO, RNO2) 

▫ Addition of nitrogen from NOx  
 during combustion 

O + N2 ↔ NO + N 
N + O2 ↔ NO + O 
N + OH ↔ NO + H 
N2 + O2 → 2NO 
NO2 + O → NO + O2 
NO + H2O → NO2 + OH 
R˙ + NO → RON  
R˙ + N → RN  
R˙ + NO2 → RONO (alkylnitrates) 
R˙ + NO2 → RNO2 (nitroalkanes)  

7. Aromatic  
  hydrocarbons 

▫ Fuel  
▫ Lubricant (alkylaryl additives) 

HACA (hydrogen abstraction acetylene addition) mechanisms 
 

8. Sulfur containing  
  compounds 
  (ROS) 

▫ Fuel (sulfur content)  
▫ Lubricant additives  
 (extreme pressure additives;  
  polysulphides and detergents;  
  alkylarysulfonates)  

SO2 + OH˙ → HOSO2˙ 
HOSO2˙ + O2 → SO3 + HO2˙ 
SO3 + H2O → H2SO4 
HOSO2˙ + R → ROS + HO2˙ 
 

9. Alkenes 
  (R, C=C) 

▫ Fuel  
▫ Lubricant  

HxC-CHx (alkanes) → Hx-1C=CHx-1 (alkenes) + H2 [dehydrogenation] 
H-C-C-OH (alcohols) → C=C (alkenes) + H2O [dehydration]  

10. Ethers 
   (ROR’) 

▫ Conversion of alcohols during 
 combustion 

ROH + H+ → ROR’ (ethers) + H2O 
 

11. Alkynes  
   (R, C≡C) 

▫ Fuel  
▫ Lubricant 

HxC=CHx (alkenes) → Hx-1C≡CHx-1 (alkynes) + H2 [dehydrogenation] 
 

 
aCarey, F.A. (Eds), 2006. Organic chemistry, McGraw-hill international edition, Singapore  
bDegobert, P. (Eds), 1995. Automobiles and pollution, Society of Automotive Engineers, Warrendale, PA 
cDenis, J., Briant, J., Hipeaux, J.C. (Eds.), 2000. Lubricant properties analysis and testing. Editions Technip, Paris, France.  
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APPENDIX F 
 
Table F. Size distribution of organic compounds in DEPs (34nm–1μm) 
 

Driving modes   1800rpm/60% 3000rpm/60% 1800rpm/100% 3000rpm/100% 

(μg/m3)   Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) 

Alkanes Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Decane, 
3,3,6-trimethyl- C13H28 184 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.14678 0.00000 0.00000 0.00000 1.02771 0.00000 0.00000 0.00000 0.00000 0.00000 0.09516 0.00000 0.00000 0.00000 0.00000 

Undecane, 
3,3-dimethyl- C13H28 184 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Dodecane, 
2,7,10-trimethyl- C15H32 212 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.07315 

Heptadecane C17H36 240 0.00000 0.00000 0.06533 0.12176 0.18746 0.12404 0.19139 0.00000 0.10843 0.23634 0.30504 0.23367 0.07009 0.10752 0.25646 0.24889 0.24735 0.26670 0.00000 0.08460 0.19713 0.14438 0.17549 0.00000 

9-Octadecene, (E)- C18H36 252 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.06511 0.07972 0.00000 0.05994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5-Octadecene, (E)- C18H36 252 0.00000 0.00000 0.00000 0.00000 0.16020 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1-Octadecene C18H36 252 0.07448 0.06038 0.00000 0.00000 0.00000 0.00000 0.16586 0.00000 0.00000 0.00000 0.07583 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Octadecane C18H38 254 0.00000 0.00000 0.00000 0.10698 0.00000 0.05104 0.00000 0.00000 0.10399 0.27346 0.36578 0.00000 0.08556 0.00000 0.22625 0.32976 0.33664 0.28079 0.00000 0.00000 0.00000 0.11135 0.19384 0.00000 

Tetradecane, 
1,1-dimethoxy- C16H34O2 258 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.11407 0.00000 0.00000 0.00000 0.00000 

Pentadecane, 
2,6,10,14-tetramethyl- C19H40 268 0.00000 0.00000 0.21260 0.27190 0.40513 0.14647 0.21760 0.17260 0.07326 0.53906 0.68670 0.54498 0.02154 0.14728 0.20761 0.23034 0.27188 0.23210 0.00000 0.00000 0.14801 0.00000 0.00000 0.06887 

Nonadecane C19H40 268 0.08612 0.08271 0.10818 0.20015 0.29609 0.19421 0.07764 0.08177 0.09671 0.35358 0.45330 0.38349 0.07511 0.12464 0.30801 0.52038 0.43337 0.44035 0.04657 0.09411 0.20950 0.25947 0.15186 0.12403 

Hexadecane, 
2,6,10-trimethyl- C20H42 282 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Hexadecane, 
2,6,10,14-tetramethyl- C20H42 282 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.24190 0.00000 0.30422 0.00000 0.00000 0.13471 0.21331 0.16650 0.16395 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Eicosane C20H42 282 0.03712 0.05862 0.05646 0.15829 0.22670 0.16799 0.07388 0.05942 0.07454 0.28765 0.33742 0.23267 0.05855 0.11637 0.34751 0.65568 0.45523 0.39770 0.05915 0.12203 0.26873 0.23942 0.15973 0.13678 

Hexadecane, 
1,1-dimethoxy- C18H38O2 286 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.09181 0.00000 0.00000 0.00000 

Heptadecane, 
2,6,10,15-tetramethyl- C21H44 296 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.10039 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Heneicosane C21H44 296 0.04993 0.09923 0.09668 0.19944 0.22203 0.12283 0.00000 0.08655 0.06290 0.32128 0.37000 0.20223 0.09221 0.18211 0.38328 0.68148 0.46564 0.35807 0.09361 0.19208 0.34255 0.36223 0.23348 0.22124 

Docosane C22H46 310 0.07347 0.07605 0.07143 0.18219 0.19184 0.10502 0.12953 0.06866 0.07739 0.31793 0.26272 0.18633 0.08471 0.15153 0.33756 0.54625 0.33114 0.29127 0.08836 0.16593 0.34235 0.33070 0.20053 0.15735 

Nonadecane, 
2,6,10,14-tetramethyl- C23H48 324 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02180 0.00000 0.00000 0.00000 0.00000 0.00000 0.07115 0.00000 0.00000 0.00000 0.00000 0.00000 

Tricosane C23H48 324 0.12913 0.10693 0.14825 0.20816 0.20726 0.15646 0.26630 0.10676 0.09621 0.32265 0.28063 0.21276 0.00000 0.10806 0.19177 0.39090 0.20859 0.15003 0.00000 0.15196 0.27286 0.22720 0.19206 0.13953 

Tricosane, 2-methyl- C24H50 338 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.12309 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Tetracosane C24H50 338 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.85521 0.00000 0.00000 0.58390 0.00000 0.46792 0.00000 0.00000 0.36889 0.48318 0.34113 0.32859 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Heptadecane, 9-octyl- C25H52 352 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.11232 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Pentacosane C25H52 352 0.21164 0.13908 0.19029 0.20257 0.15577 0.25167 0.70283 0.06630 0.08787 0.20051 0.19508 0.29279 0.07872 0.00000 0.15062 0.24186 0.13345 0.12154 0.07734 0.08213 0.26730 0.16797 0.08387 0.05784 

Docosane, 9-butyl- C26H54 366 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Docosane, 11-butyl- C26H54 366 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Hexacosane C26H54 366 0.16908 0.01638 0.13785 0.11429 0.05875 0.29184 0.78587 0.04091 0.05643 0.18605 0.03916 0.28223 0.00000 0.02507 0.10395 0.18001 0.06704 0.00214 0.00000 0.02676 0.20393 0.11764 0.00000 0.00000 

Heptacosane C27H56 380 0.12162 0.01070 0.09703 0.14399 0.00984 0.15879 0.65765 0.00000 0.00000 0.13987 0.06474 0.28028 0.00000 0.05552 0.00000 0.03367 0.00000 0.00000 0.00000 0.00000 0.05483 0.00528 0.00000 0.00000 

Octacosane C28H58 394 0.10027 0.02888 0.07745 0.16378 0.00000 0.14185 0.40797 0.00000 0.00000 0.03702 0.00000 0.15947 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Nonacosane C29H60 408 0.00000 0.00000 0.05542 0.09228 0.00000 0.03050 0.22149 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2,6,10,14,18,22- 
Tetracosahexaene, 

2,6,10,15,19,23- 
hexamethyl-, (all-E)- 

C30H50 410 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02315 

Heneicosane, 11-decyl- C31H64 436 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02479 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Driving modes   1800rpm/60% 3000rpm/60% 1800rpm/100% 3000rpm/100% 

(μg/m3)   Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) 

Carboxylic acids Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Propanoic acid, 
3-hydroxy- C3H6O3 90 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.17675 0.13499 0.00000 0.00000 0.00000 0.09770 

Pentanoic acid C5H10O2 102 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01274 0.00000 0.02556 0.00000 0.00000 0.00000 0.00000 0.00000 

Nonanedioic acid C9H16O4 188 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.64933 0.00000 0.00000 0.00000 0.00000 0.00000 

Hexanoic acid C6H12O2 188 0.05131 0.00000 0.00000 0.00502 0.00000 0.00000 0.00000 0.00000 0.07905 0.00000 0.00000 0.08955 0.00000 0.00000 0.00000 0.00000 0.00200 0.00000 0.00000 0.00000 0.00000 0.00000 0.00005 0.00000 

Octadecanoic acid C18H36O2 284 0.00000 0.00000 0.00000 0.06381 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.53183 0.00000 0.00000 

Propanoic acid, 
2-methyl-, 

1-(1,1-dimethylethyl)- 
2-methyl- 

1,3-propanediyl 

C16H30O4 286 0.00000 0.00000 0.00000 0.12733 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.06786 0.00000 0.05937 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Heptadecanoic acid C17H34O2 298 0.00000 0.05625 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.07131 0.00000 0.00000 

Tetradecanoic acid C14H28O2 300 0.02667 0.03763 0.02666 0.00575 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00428 0.00000 0.01520 0.03198 0.03370 

Hexadecanoic acid C16H32O2 328 0.07352 0.00000 0.02811 0.00000 0.00000 0.01546 0.01791 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03022 0.18448 0.00000 0.00885 0.00000 0.00000 0.00000 0.38194 0.00000 0.01540 

Esters Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Butanoic acid, 
2,3-dihydroxypropyl  

ester 
C7H14O4 162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.23565 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1,6-Dioxacyclododecane 
-7,12-dione C10H16O4 200 0.00000 0.00000 0.00000 0.00000 0.19250 0.29532 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37268 0.00000 0.00000 0.00000 0.00000 0.00000 0.17631 

Carbonic acid, 
dipentyl ester C11H22O3 202 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Propanoic acid, 
2-methyl-, 

2-(hydroxymethyl) 
-1-propylbutyl ester 

C12H24O3 216 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.22026 

Heptadecanoic acid, 
14-methyl-,  

methyl ester 
C19H38O2 298 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Heptadecanoic acid, 
15-methyl-,  

methyl ester 
C19H38O2 298 0.00000 0.05625 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Heptadecanoic acid, 
16-methyl-, methyl ester C19H38O2 298 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.07131 0.00000 0.00000 

Acetic acid, 
octadecyl ester C20H40O2 312 0.00000 0.00000 0.07747 0.12232 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Octadecanoic acid, 
2-methylpropyl ester C22H44O2 340 0.00000 0.00000 0.00000 0.06381 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.53183 0.00000 0.00000 

Hexanedioic acid, 
dioctyl ester C22H42O4 370 0.00000 0.00000 0.00000 0.00000 0.45102 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Ketones Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Cycloheptanone, 
4-methoxy- C8H14O2 142 0.00000 0.00000 0.00000 0.15756 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.18778 0.00000 0.00000 0.00000 0.00000 

2-(2-Hydroxyethyl) 
heptanoic acid lactone C9H16O2 156 0.00000 0.68948 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.60542 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2-Nonanone, 
O-methyloxime C10H21NO 171 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03489 0.00000 0.00000 0.00000 

4-Tridecanone C13H26O 198 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Alcohols Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Propylene Glycol C3H8O2 76 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.04841 0.00000 0.00000 0.00000 0.08761 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1,4-Butanediol C4H10O2 90 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.27705 0.00000 0.00000 0.00000 

Glycerol C3H8O3 92 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1,2-Cyclohexanediol, 
1-methyl-, trans- C7H14O2 130 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2,6-Octadiene 
-4,5-diol C8H14O2 142 0.00000 0.00000 0.00000 0.00000 0.11642 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.16869 0.00000 0.00000 0.00000 0.19656 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1,6-Heptadien-4-ol, 
4-propyl- C10H18O 154 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.11615 0.00000 

2,6-Octadiene-4, 
5-diol, 4-methyl- C9H16O2 156 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.41505 0.00000 

1,2-Benzenediol, 
4-(1,2-dihydroxyethyl)-, C8H10O4 170 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.07547 0.00000 0.00000 0.00000 0.00000 0.00000 

5-Dodecenol C2H24O 184 0.00000 0.00000 0.00000 0.04083 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9-Dodecenol C6H24O 232 0.00000 0.00000 0.00000 0.00000 0.12287 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Driving modes   1800rpm/60% 3000rpm/60% 1800rpm/100% 3000rpm/100% 

(μg/m3)   Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) Size range of LPI (nm) 

N containing compounds Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Undecanone,  
2-methyl oxime C12H25NO 199 0.00000 0.00000 0.00000 0.00000 0.03936 0.00000 0.08902 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Isoquinoline, 
 1-(2,2-dimethylpropyl)- C14H17N 199 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Butanoic acid, 
 4-nitrophenyl ester C10H11NO4 209 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.09400 0.00000 0.00000 0.00000 0.00000 0.00000 

2-Tridecanone, 
 o-methyloxime C14H29NO 227 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05616 0.00000 0.00000 

2-Nonadecanone, 
 O-methyloxime C20H41NO 311 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3-Methylisoquinoline C10H9N 143 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00024 0.00000 0.00000 

7,8-Benzoquinoline C13H9N 179 0.00094 0.00079 0.00087 0.00095 0.00061 0.00106 0.00094 0.00099 0.00078 0.00084 0.00079 0.00075 0.00080 0.00077 0.00117 0.00088 0.00085 0.00079 0.00092 0.00105 0.00109 0.00102 0.00105 0.00090 

Acridine C13 H9N 179 0.00000 0.00000 0.00010 0.00000 0.00000 0.00000 0.00014 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00011 0.00000 0.00011 0.00000 0.00020 0.00000 0.00011 

Phenanthridine C13 H9N 179 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00022 0.00000 0.00000 0.00008 0.00000 0.00030 0.00000 0.00011 0.00015 0.00010 0.00009 0.00000 0.00008 0.00000 0.00029 0.00000 0.00019 

4-Nitrobiphenyl C12 H9NO2 199 0.00000 0.00013 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00013 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00016 0.00000 0.00000 

9-Nitroanthracene C14 H9NO2 223 0.00027 0.00000 0.00000 0.00047 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00030 0.00000 0.00046 0.00000 0.00050 0.00000 0.00029 0.00000 0.00000 0.00000 0.00000 

3-Nitrophenanthrene C14 H9NO2 223 0.00037 0.00043 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00038 0.00000 0.00039 0.00000 0.00000 0.00000 0.00000 0.00043 0.00037 0.00000 0.00000 0.00038 0.00128 0.00094 0.00000 0.00000 

7-Nitrobenz[a]anthracene C18H11NO2 273 0.00035 0.00000 0.00037 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00039 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6-Nitrochrysene C18H11NO2 273 0.00000 0.00030 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00039 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Aromatic hydrocarbons Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

9H-Fluoren- 
9-one (Fluorenone) C13H8O 180 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00375 0.00812 0.00806 0.00000 0.00328 

Naphthalene, 
decahydro-1,8a- 

dimethyl- 
7-(1-methylethyl)-, 

[1R-(1.alpha.,4a 

C15H28 208 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00584 

7,8-Diphenylbicyclo 
[4.2.1]nona-2,4,7-triene C21H18 270 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00353 0.00000 0.00000 0.00000 

Acenaphthylene C12H8 152 0.00003 0.00009 0.00005 0.00007 0.00012 0.00007 0.00013 0.00009 0.00015 0.00005 0.00001 0.00004 0.00004 0.00000 0.00003 0.00000 0.00003 0.00004 0.00001 0.00006 0.00006 0.00008 0.00005 0.00007 

Acenaphthene C12H10 154 0.00004 0.00235 0.00091 0.00234 0.00040 0.00046 0.00126 0.00167 0.00079 0.00073 0.00045 0.00070 0.00081 0.00075 0.00071 0.00025 0.00078 0.00093 0.00041 0.00049 0.00062 0.00064 0.00341 0.00063 

Fluorene C13H10 166 0.00034 0.00060 0.00079 0.00038 0.00077 0.00003 0.00057 0.00087 0.00128 0.00081 0.00035 0.00083 0.00056 0.00063 0.00065 0.00008 0.00056 0.00075 0.00045 0.00082 0.00094 0.00106 0.00086 0.00077 

Phenanthrene C14H10 178 0.00183 0.00251 0.00106 0.00399 0.00268 0.00193 0.00144 0.00201 0.00114 0.00220 0.00175 0.00285 0.00432 0.00433 0.01678 0.00375 0.01114 0.01505 0.00504 0.01533 0.03027 0.02695 0.01804 0.01830 

Anthracene C14H10 178 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00036 0.00000 0.00000 0.00000 0.00429 0.00000 0.00000 0.00000 0.00000 0.01134 0.00000 0.00000 

Fluoranthene C16H10 202 0.00016 0.00029 0.00029 0.00033 0.00023 0.00018 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00038 0.00021 0.00016 0.00025 

Pyrene C16H10 202 0.00063 0.00109 0.00129 0.00099 0.00085 0.00041 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00046 0.00061 0.00049 0.00047 

Chrysene C18H12 228 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00003 0.00003 0.00008 

Benzo(a)anthracene C18H12 228 0.00071 0.00107 0.00094 0.00124 0.00109 0.00106 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Benzo(b)fluoranthene C20H12 252 0.00003 0.00006 0.00006 0.00004 0.00002 0.00001 0.00151 0.00011 0.00006 0.00031 0.00011 0.00061 0.00017 0.00016 0.00019 0.00008 0.00007 0.00016 0.00011 0.00021 0.00034 0.00023 0.00012 0.00023 

Benzo(k)fluoranthene C20H12 252 0.00002 0.00005 0.00006 0.00012 0.00009 0.00006 0.00000 0.00004 0.00000 0.00013 0.00005 0.00006 0.00001 0.00000 0.00004 0.00000 0.00002 0.00007 0.00001 0.00002 0.00005 0.00005 0.00003 0.00005 

Benzo(a)pyrene C20H12 252 0.00002 0.00009 0.00007 0.00019 0.00011 0.00006 0.00105 0.00000 0.00004 0.00022 0.00008 0.00049 0.00011 0.00015 0.00015 0.00003 0.00008 0.00015 0.00006 0.00016 0.00028 0.00018 0.00015 0.00004 

S containing compounds Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

3-Methyl-1-(phenylthio) 
Butan-2-one C11H14OS 194 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.14123 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Butyric acid, thio-, 
 S-decyl ester C14H28OS 244 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02642 0.04302 0.07369 0.03644 0.00000 0.00000 0.00000 0.00000 0.00000 

Alkenes Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

1,12-Tridecadiene C13H24 180 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Squalene C30H50 410 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.76996 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Ethers Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

Ether,  
1-dodecenyl methyl C13H26O 198 0.10608 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Ether,  
1-hexadecenyl methyl C17H34O 254 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.07006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Alkynes Formula M.W. 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 34-66 66-94 94-170 170-330 330-550 550-1000 

1-Hexadecyne C16H30 222 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05306 0.00000 
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APPENDIX  G 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.G. Size distribution for non-idling conditions of 13-mode.  
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